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Abstract. The diversity of action possibilities offered by an environ-
ment, a.k.a affordances, cannot be addressed in a scalable manner sim-
ply from object categories or semantics, which are limitless. To this end,
we present a one-shot learning approach that trains on one or a hand-
ful of human-scene interaction samples. Then, given a previously unseen
scene, we can predict human affordances and generate the associated
articulated 3D bodies. Our experiments show that our approach gener-
ates physically plausible interactions that are perceived as more natural
in 60–70% of the comparisons with other methods.
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1 Introduction

Fig. 1. Trained in a one-shot manner, our
approach detects human affordances and
hallucinates the associated human bodies
interacting with the environment in a nat-
ural and physically plausible way

Coined by James J. Gibson in [3],
affordances refer to the action pos-
sibilities offered by the environment
to an agent. He claimed that living
beings perceive their environment in
terms of such affordances.

An artificial agent with object,
semantics and human affordances
detection capabilities would be able to
identify elements, their relations and
the locations in the environment that
support the execution of actions like
stand-able, walk-able, place-able, and
sit-able. This enhanced scene under-
standing is helpful in the Metaverse,
where virtual agents should execute
actions or where scenes must be populated by humans performing a given set of
interactions.

We present a direct representation of human affordances that extracts a
meaningful geometrical description through analysing proximity zones and clear-
ance space between interacting entities in human-environment configurations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13803, pp. 758–766, 2023.
https://doi.org/10.1007/978-3-031-25066-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25066-8_46&domain=pdf
http://orcid.org/0000-0003-0077-3380
http://orcid.org/0000-0001-8973-1931
https://doi.org/10.1007/978-3-031-25066-8_46


One-Shot Learning for Human Affordance Detection 759

Our approach can determine locations in the environment that support them
and generate natural and physically plausible 3D representations (see Fig. 1).
We compare our method with state-of-the-art intensively trained methods.

2 Related Work

Popular interpretations of the concept of affordances refer to them as action pos-
sibilities or opportunities of interaction for an agent/animal that are perceived
directly from the shape and form of the environment/object.

The affordances detection from RGB images was explored by Gupta et al.
[4] with a voxelised geometric estimator. Lately, data-intensive approaches were
used by Fouhey et al. [2] with a detector trained with labels on RGB frames
from the NYUv2 dataset [13] and by Luddecke et al. [9] with a residual neural
network trained with a lookup table between affordances and objects parts on
the ADE20K dataset [20].

Other approaches go further by synthesising the detected human-
environment interaction. The representation of such interactions has been show-
cased with human skeletons in [7,8,15]; nevertheless, their representativeness
cannot be reliably evaluated because contacts, collisions, and the naturalness of
human poses are not entirely characterised.

Closer to us, efforts with a more complex interaction representation over 3D
scenes have been explored. Ruiz and Mayol [12] developed a geometric interac-
tion descriptor for non-articulated, rigid object shapes with good generalisation
in detecting physically feasible interaction configurations. Using the SMPL-X
human body model [10], Zhang et al. [18] developed a context-aware human
body generator that learnt the distribution of 3D human poses conditioned on
the depth and semantics of the scene from recordings in the PROX dataset [5].
In a follow-up effort, Zhang et al. [17] developed a purely geometric approach to
model human-scene interactions by explicitly encoding the proximity between
the body and the environment, thus only requiring a mesh as input. Lately, Has-
san et al. in [6] learnt the distribution of contact zones in human body poses
and used them to find environment locations that better support them.

Our main difference from [5,6,17,18] is that ours is not a data-driven app-
roach; ours does not require the use of most, if not all, of a labelled dataset,
e.g. around 100K image frames in PROX [5]. Just one if not a few examples of
interactions are necessary to train our detector, as in [12], but we extend the
descriptor to consider the clearance space of the interactions and their uses and
optimise with the SMPL-X human model after positive detection.

3 Method

3.1 A Spatial Descriptor for Spatial Interactions

Inspired by recently developed methods that have revisited geometric features
such as the bisector surface for scene-object indexing [19] and affordance detec-
tion [12], our affordance descriptor (see Fig. 2) expands on the Interaction Bisec-
tor Surface (IBS) [19], an approximation of the well-known Bisector Surface (BS)
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Fig. 2. Illustrative 2D representation of our training pipeline. (a) Given a posed human
body Mh interacting with an environment Me on a reference point ptrain, (b) we extract
the Interaction Bisector Surface from the Voronoi diagram of sample points on Mh and
Me, then (c) we use the IBS to characterise the proximity zones and the surrounding
space with provenance and clearance vectors

[11]. Given two surfaces S1, S2 ∈ R
3, the BS is the set of sphere centres that

touch both surfaces at one point each.
Our one-shot training process requires 3-tuples (Mh, Me, ptrain), where Mh is

a posed human body mesh, Me is an environment mesh and ptrain is a reference
point on Me where the interaction is supported.

Let Ph and Pe denote the sampling points on Mh and Me, respectively; their
IBS I is defined as:

I =
{
p | min

p′
h∈Ph

‖p − p′‖ = min
p′
e∈Pe

‖p − p′‖}
(1)

We operate the Voronoi diagram D generated with Ph and Pe to produce
I. By construction, every ridge in D is equidistant to the couple of points that
define it. Then, I is composed of ridges in D generated because of points from
both Ph and Pe. An IBS can reach infinity, but we limit I by clipping it with
the bounding sphere of Mh augmented ibsrf times in its radius. A low sampling
rate degenerates on an IBS that pierces the boundaries of Mh or Me. A higher
density of samples is critical in those zones where the proximity between the
interacting meshes is small. We use three stages to populate Ph and Pe: 1) We
generate Poisson disk sample sets [16] of ibsini points on each Me and Mh. 2)
Counterpart sampling strategy. We append to Pe the closest points on Me to
elements in Ph, and equally, we integrate into Ph the closest point on Mh to
samples in Pe. We executed the counterpart sampling strategy ibscs times. 3)
Collision point sampling strategy. We calculate a preliminary IBS and test it for
collisions with Mh and Me; if they exist, we add as samples the points where
collisions occur as well as their counterpart points. We perform the collision
point sampling strategy until we get an IBS that does not pierce Mh nor Me.

To capture the regions of interaction proximity on our enhanced IBS, as
mentioned above, we use the notion of provenance vectors [12]. The provenance
vectors of an interaction start from any point on I and finish at the nearest
point on Me. Formally:
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Vp =
{
(a,�v) | a ∈ I, �v = arg min

e∈Me

‖e − a‖ − a
}

(2)

where a is the starting point of the delta vector �v to the nearest point on Me.
Provenance vectors inform about the direction and distance of the interaction;
the smaller the vector, the more noteworthy is for the description of the inter-
action. Let V ′

p ⊂ Vp the subset of provenance vectors that ends at any point in
Pe; we perform a weighted randomised sampling selection of elements from V ′

p

with the weight allocation as follows:

wi = 1 − |�vi| − |�vmin|
|�vmax| − |�vmin| , i = 1, 2, . . . , |Pe| (3)

where |�vmax| and |�vmin| are the norms of the biggest and smallest vectors in V ′
p

respectively. The selected provenance vectors Vtrain integrate into our affordance
descriptor with an adjustment to normalise their positions with the defined ref-
erence point ptrain:

Vtrain =
{
(a′

i, �vi) | a′
i = ai − ptrain, i = 1, 2, . . . , numpv

}
(4)

where numpv is the number of samples from V ′
p to integrate into our descriptor.

However, the provenance vectors are, on their own, insufficient to capture the
whole nature of the interaction on highly articulated objects such as the human
body. We expand this concept by taking a more comprehensive description that
includes a set of vectors to define the surrounded space necessary for the inter-
action. Given SH an evenly sampled set of numcv points on Mh, the clearance
vectors that integrate to our descriptor Ctrain are defined as follows:

Ctrain =
{
(s′

j ,�cj) | s′
j = sj − ptrain, sj ∈ SH , �cj = ψ(sj , n̂j , I)

}
(5)

ψ(s′
j , n̂j , I) =

{
dmax · n̂j if ϕ(sj , n̂j , I) > dmax

ϕ(sj , n̂j , I) · n̂j otherwise
(6)

where ptrain is the defined reference point, n̂i is the unit surface normal vector
on sample sj , dmax is the maximum norm of any �cj , and ϕ(sj , n̂j , I) is the
distance travelled by a ray with origin sj and direction n̂i until collision with I.

Formally, our affordances descriptor is defined as:

f : (Mh,Me, ptrain) −→ (Vtrain, Ctrain, n̂train) (7)

where n̂train is the unit surface normal vector of Me at ptrain.

3.2 Human Affordances Detection

Let A = (Vtrain, Ctrain, n̂train) an affordance descriptor, we define its rigid trans-
formations as:

Ω(A, φ, τ) = (VA
φτ , CA

φτ , n̂train) (8)

VA
φτ =

{
(a′′

i , �vi) | a′′
i = Rφ · a′

i + τ , (a′
i, �vi) ∈ Vtrain

}

CA
φτ =

{
(s′′

i ,�ci) | b′′
i = Rφ · s′

i + τ , (s′
i, �ci) ∈ Ctrain

}
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a) Testing supportability on p test
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Fig. 3. We determine supportability of interaction on a given point by (a) measuring
compatibility of surface normal, as well as provenance and clearance vector over differ-
ent rotated configurations. (b) After a positive detection, the body pose is optimised
to generate a natural and physically plausible interaction

where τ ∈ R
3 is the translation vector, φ is the rotation around z defined by the

rotation matrix Rφ.
We determine that a test location ptest on an environment Mtest with a

unit surface normal vector n̂test supports a trained interaction A if the angle
difference between n̂train and n̂test is less than a threshold ρ�n, and its translated
descriptor at ptest has a good alignment of provenance vectors and a gated
number of clearance vector that collide with Mtest in any of the nφ different φ
values used during the test.

After corroborating the match between train and test normal vectors, we
transform the interaction descriptor A with τ = ptest and nφ different φ values
within [0, 2π]. For each calculated 3-tuple (VA

φτ , CA
φτ , n̂train), we generate a set

of rays Rpv defined as follows:

Rpv =
{

(a′′
i , ν̂i) | ν̂i =

�vi

‖�vi‖ , (a′′
i , �vi) ∈ VA

φτ

}
(9)

where a′′
i is the starting point, and ν̂i ∈ R

3 is the direction of each ray. Then we
extend each ray in Rpv by εpv

i until collision with Mtest as

(a′′ + εpv
i · ν̂i) ∈ Mtest, i = 1, 2, . . . , numpv (10)

and compare with the magnitude of each correspondent provenance vector in
VA

φτ . When any element in Rpv extends beyond a predetermined limit maxlong,
the collision with the environment is classified as non-colliding. We calculate the
alignment score κ as a sum of the differences between the extended rays and the
trained provenance vectors with

κ =
∑

∀i|εpvi ≤maxlong

|εpv
i − �vi| (11)

The higher the κ value, the less supportability of the interaction on ptest. We
experimentally determine interaction-wise thresholds for the sum of differences
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Fig. 4. Action planning as a further step. Left: 3 affordances evaluated in an environ-
ment. Right: scores are used to plan concatenated action milestones

maxκ and the number of missing ray collisions maxmissings that allow us to
score the affordance capabilities on ptest.

Clearance vectors are meant to fast detect collision configurations by the cal-
culation of ray-mesh intersections. Similarly to provenance vectors, we generate
a set of rays Rcv with origins and directions determined by CA

φτ . We extend the
rays in Rcv until collision with the environment and calculate its extension εcv

j .
Extended rays with εcv

j ≤ ‖�cj‖ are considered as possible collisions. In practise,
we also track an interaction-wise threshold to refuse supportability due to col-
lisions maxcollisions. A sparse distribution of clearance vectors on noisy meshes
results in collisions not detected by clearance vectors. To improve, we enhance
scenes with a set of spherical fillers that pad the scene (see Fig. 3).

Every human-environment interaction trained from the PROX dataset [5] has
an associated SMPL-X characterisation that we use to optimise the human pose
with previously determined body contact regions, the AdvOptim loss function
presented in [17] and the SDF values of the scene.

4 Experiments

We evaluate the physical plausibility and the perception of the naturalness of
the human-environment interactions generated. Our baselines are the approaches
presented in PLACE [17] and POSA [6].

PROX [5] is a dataset with 12 scanned indoor environments and 20 recordings
with data of subjects interacting within them. We divide PROX into train and
test sets following the setup in [17]. To generate our descriptors, we get data from
23 manually selected frames with subjects sitting, standing, reaching, lying, and
walking. We also test on 7 rooms from MP3D [1] and 5 rooms of Replica [14].

We generate the IBS surface I with an initial sampling set of ibsini = 400
points on each surface, with the counterpart sampling strategy executed ibscs = 4
times and a cropping factor of ibsrf = 1.2. Our descriptors are made up of
numpv = 512 provenance vectors and numcv = 256 clearance vectors extended
up to dmax = 5[cm]. In testing, we use a normals angle difference threshold
of ρ�n = π/3, check for supportability on nφ = 8 different directions and extend
provenance vectors up to maxlong = 1.2 times the sphere radius used for cropping
I during training.

Physical Plausibility Test. We use the non-collision and contact scores as
in [17], but include an additional cost metric that indicates the collision depth
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Table 1. Physical plausibility. Non collision, contact and collision depth scores (↑:
benefit, ↓: cost) before and after optimization. Best results boldface

Model Optimizer Non collision↑ Contact↑ Collision depth↓

PROX MP3D Replica PROX MP3D Replica PROX MP3D Replica

PLACE w/o 0.9207 0.9625 0.9554 0.9125 0.5116 0.8115 1.6285 0.8958 1.2031

PLACE SimOptim 0.9253 0.9628 0.9562 0.9263 0.5910 0.8571 1.8169 1.0960 1.5485

PLACE AdvOptim 0.9665 0.9798 0.9659 0.9725 0.5810 0.9931 1.6327 1.1346 1.6145

POSA (contact) w/o 0.9820 0.9792 0.9814 0.9396 0.9526 0.9888 1.1252 1.5416 2.0620

POSA (contact) optimized 0.9753 0.9725 0.9765 0.9927 0.9988 0.9963 1.5343 2.0063 2.4518

Ours w/o 0.9615 0.9853 0.9931 0.5654 0.3287 0.4860 0.1648 0.1326 0.2096

Ours AdvOptim 0.9816 0.9853 0.9883 0.9363 0.6213 0.8682 0.6330 0.8716 0.8615

between the generated body and the scene. We generate 1300 interacting bodies
per model in each scene and report the averages of the scores in Table 1. In all
datasets, bodies generated with our optimised model present high non-collision
as well as low contact and collision-depth scores.

Perception of Naturalness Test. Every scene in our datasets is used equally
in the random selection of 162 test locations. We use the optimised version of
the models to generate human-environment interactions at test locations and
evaluate their perceived naturalness on Amazon Mechanical Turk. Each MTurk
performs 11 randomly selected assessments, including two control questions, by
observing interactions with dynamic views. Three different MTurks evaluate
every item. In a side-by-side evaluation, we simultaneously present outputs from
two different models. Answers to “Which example is more natural?” show that
our human-environment configurations are preferred on 60.7% and 72.6% of the
comparisons with PLACE and POSA, respectively. In an individual evaluation,
where every interaction generated is assessed with the question “The human is
interacting very naturally with the scene. What is your opinion?” using a 5-point
Likert scale (from 1 for “strongly disagree” to 5 for “strongly agree”), the mean
and standard deviations of the evaluations are: PLACE 3.23 ± 1.35, POSA 2.79
± 1.18, and ours 3.39 ± 1.25.

5 Conclusion

Our approach generalises well to detect interactions and generate natural and
physically plausible body-scene configurations. Understanding a scene in terms
of action possibilities is a desirable capability for autonomous agents performing
in the Metaverse (see Fig. 4).
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