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Abstract. Intrinsic image decomposition (IID) is an under-constrained
problem. Therefore, traditional approaches use hand crafted priors to
constrain the problem. However, these constraints are limited when cop-
ing with complex scenes. Deep learning-based approaches learn these con-
straints implicitly through the data, but they often suffer from dataset
biases (due to not being able to include all possible imaging conditions).

In this paper, a combination of the two is proposed. Component spe-
cific priors like semantics and invariant features are exploited to obtain
semantically and physically plausible reflectance transitions. These tran-
sitions are used to steer a progressive CNN with implicit homogeneity
constraints to decompose reflectance and shading maps.

An ablation study is conducted showing that the use of the proposed
priors and progressive CNN increase the IID performance. State of the
art performance on both our proposed dataset and the standard real-
world ITW dataset shows the effectiveness of the proposed method. Code
is made available here.

Keywords: Priors - Semantic segmentation - Intrinsic image
decomposition -+ CNN - Indoor dataset

1 Introduction

An image can be defined as the combination of an object’s colour and the inci-
dent light on it projected on a plane. Inverting the process of image formation
is useful for many downstream computer vision tasks such as geometry estima-
tion [18], relighting [34], colour edits [5] and Augmented Reality (AR) insertion
and interactions for applications like the Metaverse. The process of recovering the
object colour (reflectance or albedo) and the incident light (shading) is known
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as Intrinsic Image Decomposition (IID). As the problem is ill-defined (with only
one known), constraint-based approaches are explored to limit the solution space.
For example, as an explicit gradient assumption, softer (or smoother) gradient
transitions are attributed to shading transitions, while stronger (or abrupt) ones
are related to reflectance transitions [21]. Colour palette constraints in the form
of sparsity priors and piece-wise consistency are also employed for reflectance
estimation [1,15]. However, these approaches are based on strong assumptions
of the imaging process and hence are limited in their applicability.

Implicit constraints, by means of deep learning-based methods, are proposed
to expand previous approaches [26]. For these methods, the losses implicitly
formulate the constraints and are dependent on the training data. These methods
learn a flexible representation based on training data which may lead to dataset
biases. [23] integrates multiple datasets to manage the dataset bias problem.
However, introducing more datasets only acts as an expansion of the imaging
distribution. Additionally, multiple purpose-built losses are needed to train the
network. An alternative approach of combining constraints and deep learning
is explored in [12] where edges are used as an additional constraint to guide
the network. However, edges at image locations with strong illumination effects,
like pronounced cast shadows, may lead to edge misclassification resulting in
undesirable effects like shading-reflectance leakages.

On the other hand, [2] forgoes priors and specialised losses to leverage joint
learning of related modalities. They explore semantic segmentation as a closely
related task to IID, arguing that jointly learning the semantic maps provides the
network information to jointly correct for reflectance-shading transitions. How-
ever, no explicit guidance or constraint between the semantics and reflectance
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Fig. 1. The proposed network overviews. The network consists of i) the global encoder
module, ii) the reflectance edge module, iii) the initial estimation module, and iv) the
final correction module. The final reflectance and shading outputs are used for all the
evaluations. Please refer to the supplementary for more details. Images shown here are
ground truth images, for illustrative purposes.
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are imposed. The network thus relies on learning the constraints from the ground
truth semantic, reflectance and shading jointly. Moreover, only outdoor gardens
are considered, where most natural classes (e.g., bushes, trees, and roses) contain
similar colours (i.e., constrained colour distributions).

This paper exploits physical and statistical image properties for IID of indoor
scenes. Illumination and geometry invariant descriptors [16] yield physics-based
cues to detect reflectance transitions, while statistical grouping of pixels in an
image provides initial starting estimates for IID components. To this end, a
combination of semantic and invariant transition constraints is proposed. Seman-
tic transitions provide valuable information about reflectance transitions i.e., a
change in semantics most likely matches a reflectance transition but not always
the other way around (objects may consist of different colours). Illumination
invariant gradients provide useful information about reflectance transitions but
can be unstable (noisy) due to low intensity. Exploiting reflectance transition
information on these two levels compensates each other and ensures a stronger
guidance for IID. In addition, indoor structures, like walls and ceilings, are often
homogeneously coloured. To this end, the semantic map can be used as an
explicit homogeneous prior. This allows for integrating an explicit sparsity /piece-
wise consistency (homogeneity) prior in the form of constant reflectance colour.

In this paper, a progressive CNN is employed, consisting of two stages. The
first stage of the network exploits the prior information to arrive at an ini-
tial estimation. This estimation is based on the semantics, the invariant guided
boundaries, and sparsity constraints. The second stage of the network takes the
initial estimation and fine-tunes it using the original image cues to disentangle
the reflectance and shading maps while being semantically correct. This allows
the network to separate the problem into two distinct solution spaces that build
progressively on each other. In addition, it allows the network to learn a con-
tinuous representation that can extrapolate even when the priors contain errors.
An overview of the proposed network is shown in the Fig. 1.

While deep learning networks have shown very good performance, they
require high quality datasets. Traditional physical-based rendering methods are
often time and resource intensive. Recently, these methods are more efficient i.e.,
real time on consumer hardware. Hence, a dataset of physical-based and photo-
realistic rendered indoor images is provided. The synthetic dataset is used to
train the proposed method.

In summary, our contributions are as follows:

— Algorithm: An end-to-end semantic and physically invariant edge transition
driven hybrid network is proposed for intrinsic image decomposition of indoor
scenes.

— Insight: The use of component specific priors outperforms learning from a
single image.

— Performance: The proposed algorithm is able to achieve state-of-the-art
performance on both synthetic and real-world datasets.

— Dataset: A new ray-traced and photo-realistic indoor dataset is provided.
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2 Related Works

A considerable amount of effort has been put in exploring hand-crafted prior con-
straints for the problem of IID. [21] pioneered the field by assuming reflectance
changes to be related to sharper gradient changes, while smoother gradients
correspond to shading changes. Other priors have been explored like piece-wise
constancy for the reflectance, and smoothness priors for shading [1], textures [15].
Constraints in the form of additional inputs have also been explored. [22] explores
the use of depth as an additional input, while [19] explores surface normals. Near
infrared priors are used by [10] to decompose non-local intrinsics. Humans in the
loop is also studied by [8] and [27]. However, these works mostly focus on single
objects and do not generalise well to complete scenes.

In contrast to the use of explicit (hand-crafted) constraints, deep learn-
ing methods that implicitly learn (data-driven) specific constraints are also
explored [26]. [3] explores disentangling the shading component into direct and
indirect shading. [39] differentiates shading into illumination and surface normals
in addition to reflectance. [6] uses a piece-wise constancy property of reflectances
and employs Conditional Random Fields to perform IID. [12] shows that image
edges contain information about reflectance edges and uses them as a guidance
for the IID problem. [23] reduces the solution space by using multiple task spe-
cific losses. [31] directly learns the inverse of the rendering function. Finally, [2]
forgoes losses and jointly learns semantic segmentation to implicitly learn a pos-
terior on the IID, while [30] uses estimated semantic features as a support for
an iterative competing formulation for ITD. However, the above approaches do
not explicitly integrate the physics-based image formation information and rely
on the datasets containing a large set of imaging conditions. Hence, they may
fall short for images containing extreme imaging conditions such as strong shad-
ows or reflectance transitions. Large datasets [23,25,29] are proposed to train
networks. Unfortunately, they are limited in their photo-realistic appearance.

Unlike ITID, physics-based image formation priors have been explored in other
tasks. [13] introduces Colour Ratios which are illumination invariant descriptors
for objects. [16] then introduces Cross Colour Ratios which are both geometric
and illumination invariant reflectance descriptors. [4] shows the applicability
of the descriptors to the problem of IID. In contrast to previous methods, in
this paper, a combination of explicit image formation-based priors and implicit
intrinsic component property losses are explored.

3 Methodology

3.1 Priors

Semantic Segmentation: [2] shows that semantic segmentation provides use-
ful information for the IID problem. However, components are jointly learned
and hence their method lacks any explicit influence of the component’s prop-
erty. Since object boundaries correspond to reflectance changes such boundary
information can serve as a useful global reflectance transition guidance for the
network. Furthermore, homogeneous colour (i.e., reflectance) constraints (e.g.,
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a wall has a uniform colour) can be imposed on the segmentation explicitly. To
this end, in this paper, an off-the-self segmentation algorithm Mask2Former [9]
is used to obtain segmentation maps.

Invariant Gradient Domain: Solely using semantic regions as priors may
cause the network to be biased to the regions generated by the segmentation
method. To prevent such a bias, an invariant (edge) map is included as an
additional prior to the network. In this work, Cross Colour Ratios (CCR) [16] are
employed. These are illumination invariants i.e., reflectance descriptors. Given
an image I with channels Red (R), Green (G) and Blue (B) and neighbouring
pixels p; and py, CCR is defined by Mgrg = % , Mrp = % and
P2 pP1 P2 r1
Meap = % where, R,,, G, and By, are the red, green, and blue channel
for pixel p1. Descriptors Mra, Mrp and Mgp are illumination free and therefore
solely depending on reflectance transitions. Using the reflectance gradient as an

additional prior allows the network to be steered by reflectance transitions.

Reflectance and Shading FEstimates: Consider the simplified Lamber-
tian [32] image formation model: I = R x S, where shading (5) is the scaling
term on the reflectance component (R). Hence, for a given constant reflectance
region, all the pixels are different shades of the same colour. In this way, the
reflectance colour becomes a scale optimisation for which the pixel mean of a
segment can be used: M, = ZnN:1 I¢ where, M, is the channel-specific mean
of the pixels. Mg, Mg and Mp values are then spread within the region to
obtain an initial starting point for reflectance colour based on the homogeneity
constraint. Conversely, these values can be inverted using the image formation
to obtain the corresponding scaled shading estimates. A CNN is then employed
to implicitly learn the scaling for both priors. Additionally, since the mean of
the segment does not consider textures, a deep learning method is proposed to
compensate it by means of a dedicated correction module, see Sect.3.2. The
supplementary material provides more visuals for these priors.

3.2 Network Architecture

The network consists of 4 components: i) Global encoder blocks, ii) Reflectance
edge Decoder, iii) Initial estimation decoder and iv) Final correction module. The
network is trained end-to-end. The input to the network is an image and its cor-
responding segmentation obtained by Mask2Former [9]. The CCR, Reflectance
and Shading estimates are computed from the input image for the respective
encoder blocks. Additional details and visuals for the modules can be found in
the supplementary materials.

Global Encoder Module: The input image, the segmentation image, the aver-
age reflectance estimate, inverse shading estimate and the CCR images are
encoded through their respective encoders. The encoders share the same configu-
ration, but the intermediate features are independent of each other. The seman-
tic features (Fg) provide guidance for the general outlines of object boundaries,
while the CCR features (F¢) focus on local reflectance transitions, possibly
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Fig. 2. Overview of the global encoder module. Each of the inputs are provided with
their independent encoders to enable modality specific feature learning. The respective
features are used in the downstream decoders to provide component specific information
for the network.

including textures. Correspondingly, the average reflectance estimate features
(Fr..,) and the inverse shading estimate features (Fg, ) provide a starting
point for the reflectance and the shading estimation, respectively. Finally, the
image features (Fy) provide the network a common conditioning to learn the
scaling and boundary transitions for the intrinsic components. Figure2 shows
the overview of the module.

Reflectance Edge Module: This sub-network decodes the reflectance edges
of the given input. The decoded reflectance and edges are used as an attention
mechanism to the initial estimation module to provide (global) region consis-
tency. The features, Fs and Fg are concatenated with the image features Fj
and passed on to the edge decoder. The semantic and CCR features provide
object and reflectance transitions, respectively. The image features allow the
network to disentangle reflectance from illumination edges. Corresponding skip
connections from Fr, Fr, ., and Fg encoders are used to generate high frequency
details. Scale space supervision, following [36], is provided by a common decon-
volution layer for the last 2 layers, for scales of 64 x 64 and 128 x 128, yielding
a scale consistent reflectance edge prediction. The ground truth edges are calcu-
lated by using a Canny Edge operation on the ground truth reflectance. Figure 3
shows an overview of the module.

Initial Estimation Module: The initial estimation decoder block focuses on
learning the IID from the respective initial estimates of the intrinsic (Fig. 3). It
consists of two parallel decoders. The Reflectance decoder learns to predict the
first estimation from F; and Fg__,. The features are further augmented with the
learned boundaries from the reflectance edge decoder passed through an atten-
tion layer [35]. Fg is also passed to the decoder to guide global object transitions
and acts as an additional attention. Similarly, the Shading decoder only receives
Fr and Fg,_,, focusing on properties like smoother (shading) gradient changes.
The reflectance and shading decoders are interconnected to provide an addi-
tional cue to learn an inverse of each other. Skip connections from the respective
encoders to the decoders are also given. This allows the network to learn an
implicit scaling on top of the average reflectance and the inverse shading estima-
tion. The output at this stage is guided by transition and reflectance boundaries
and may suffer from local inconsistencies like shading-reflectance leakages.
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Fig. 3. Overview of the reflectance edge and the attention guided initial estimation
module. The edge module takes the image encoder, semantic encoder, and the invari-
ant encoder feature to learn a semantically and physically guided reflectance transition.
The edge features are then transferred through an attention block to the initial esti-
mation decoder module. The reflectance decoder in this module takes the semantic
encoder, image encoder and the average reflectance estimation features and input.
The shading decoder correspondingly takes the image encoder along with the average
shading estimation feature. Interconnections in the decoder allows the network to use
reflectance cues for shading and vice versa.
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Fig. 4. The final decoder module. The initial reflectance and shading estimates from
the previous step are further corrected to obtain the final reflectance and shading.
The encoder consists of an independent parallel reflectance and shading encoder. The
reflectance encoder takes receives the initial reflectance and the reflectance edge as an
input, while the shading encoder receives the initial shading. Two parallel decoders are
used for reflectance and shading to obtain the final IID outputs.
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Final Correction Module: To deal with local inconsistencies, a final correc-
tion module is proposed. First, the reflectance edge from the edge decoder and
the reflectance from the previous decoder is concatenated and passed through
a feature calibration layer. This allows the network to focus on local inconsis-
tencies guided by global boundaries. The output is then passed through a final
reflectance encoder. The shading from the previous module is similarly passed
through another encoder block. The output of these two encoders is then passed
through another set of parallel decoders for the final reflectance and shading
output. Since the reflectance and shading from the previous block is already
globally consistent, this decoder acts as a localised correction. To constrain the
corrections to local homogeneous regions, skip connections (through attention
layers) of encoded reflectance edge features are provided to the decoders. In
this way, the network limits the corrections to the local homogeneous regions
and recover local structures like textures. Skip connections from the respective
reflectance and shading encoders are provided to include high frequency infor-
mation transfer. The reflectance and shading features in the decoder are shared
within each other to enforce an implicit image formation model. Figure 4 shows
the overview of the module.

3.3 Dataset

Unreal Engine [11] is used to generate a dataset suited for the task. The render-
ing engine supports physically based rendering, with real-time raytracing (RTX)
support. The engine first calculates the intrinsic components from the various
material and geometry property of the objects making up the scene. Then, the
illumination is physically simulated through ray tracing and lighting is calcu-
lated. Finally, all these results are combined to render the final image. Since the
engine calculates the intrinsic components, ground truth intrinsic is recovered
using the respective buffer. The dataset consists of dense reflectance and shading
ground-truths. The network learns the inversion of this process.

Assets from the unreal marketplace are used to generate the dataset. These
assets are professionally created to be photo realistic. 5000 images are generated
of which 4000 images are used for training, and 1000 are used for validation and
testing. To evaluate the generalisability of the network, Intrinsic Images in the
Wild (IIW) [6] is used as a real-world test. Figure 5 shows a number of samples
from the dataset. The dataset generated is comparatively small. However, the
purpose of the dataset is that the network learns an efficient physics guided
representation, rather than a dataset dependent one. The pretrained model and
the dataset will be made available.

3.4 Loss Functions and Training Details

MSE loss is applied for each output of the network: (i) Initial estimation loss (L.
& £;) and (ii) Final correction loss (L£y). L. is the loss applied on the scale space
reflectance edge. £; is the loss on the reflectance and shading output from the ini-
tial estimation module. Additional losses are also applied on the reflectance and
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Fig. 5. Samples from the proposed dataset. The dataset comes with the corresponding
dense reflectance and shading maps. The dataset consists of various everyday objects
and lighting, containing both near local light sources, like lamps, and more global light
sources like sunlight and windows.

shading output from the final correction module. This reflectance and shading
are also combined and compared with the input image for a reconstruction loss.
These 3 losses are collected in the term L. An invariance loss Lnorm is added
between the normalised RGB and the prediction of the network for each seg-
ment. A Total Variation (TV) loss (L7 ) is included to deal with the assumption
that large indoor classes like walls and ceilings are homogeneously coloured. This
loss is only applied to ceilings and wall pixels and minimises the TV between the
prediction and the ground truth reflectance. Finally, to encourage perceptually
consistent and sharper textures, a perceptual and dssim loss are included and
grouped as L. The final loss term to minimise for the network thus becomes:

£:)\e£e+)\z£z+ﬁf

(1)
+£No1“m + »CTV + ‘Cé

where A\, and \; are weighting terms for the edge and initial estimation losses.
They are empirically set to 0.4 and 0.5, respectively. The network is trained for
60 epochs, with a learning rate of 2e — 4 and the Adam [20] optimiser. Please
refer to the supplementary materials for more details.

4 Experiments

4.1 Ablation Study

To study the influence of different architecture components and losses, an abla-
tion study is conducted. For a fair evaluation, the ablation study is performed on
the test-set of the rendered dataset. For all the ablations, all hyper-parameters
are kept constant. The results of the ablation study are presented in Table 1.
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Table 1. Ablation study for the proposed network. For each experiment, the respective
parts of the network are modified. All the experiments are conducted on the same test
and train split of the proposed dataset. All the applicable hyper-parameters are kept
constant.

Reflectance Shading

MSE LMSE | DSSIM | MSE LMSE | DSSIM
w/o final correction 0.0029 | 0.0020 |0.0225 |0.0044 |0.0035 |0.0276
w/o priors 0.0105 | 0.0047 |0.0444 |0.0054 |0.0034 |0.0399
w canny edges 0.0032 | 0.0037 |0.0229 |0.0031 |0.0049 |0.0293
w/o average estimates 0.0030 |0.0023 |0.0232 |0.0041 |0.0043 |0.0267
w/o reflectance edge module 0.0097 |0.0156 |0.3254 |0.0033 |0.0061 |0.0270
No DSSIM loss 0.0131 |0.0240 |0.3704 |0.0041 |0.0055 |0.1488
No perceptual loss 0.0032 | 0.0022 |0.0289 |0.0032 |0.0038 |0.0285
No invariant & homogeneity loss | 0.0032 | 0.0027 | 0.0288 | 0.0024 | 0.0024 | 0.0318
Proposed 10.0026 | 0.0018 | 0.0219 | 0.0030 | 0.0033 |0.0252

Influence of Final Correction Module: In this experiment, the influence of
the final correction module is studied. The output from the initial estimation
decoder is taken as the final output.

From the results, it is shown that the final correction module helps in improv-
ing the outputs. The improvement in the DSSIM metric for both components
shows that the final correction module is able to deal with structural artefacts.

Influence of Priors: The influence of all the priors is studied in this ablation.
The additional priors are removed, and the network only receives the image
as an input. All network structures are kept the same. This setup studies if
the network can disentangle the additional information from the input image
without any specific priors.

Removing all priors makes the network to perform worse for all metrics.
In this setting, the network only uses the image to derive both the reflectance
and shading changes. This is challenging for strong illumination effects. This
shows that the priors are an important source of information enabling a better
disentanglement between intrinsic components.

Influence of Specialised Edges: This experiment studies the need of spe-
cialised edges obtained from the semantic transition boundaries and invariant
features. The edges obtained from the input image are provided to the network.
The study focuses on whether the network can distinguish between reflectance,
geometry, and shadow edges directly from the image.

From the results, it is shown that using image edges is not sufficient. Image
edges can be ambiguous due to the presence of shadow edges. However, the
performance is still better than using the image as the only input, showing that
edges yield, to a certain extent, useful transition information.
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Influence of Reflectance and Shading Estimate Priors: In this experi-
ment, the efficacy of the statistic-based homogeneous reflectance and the inverted
shading estimate is studied.

Removing the average reflectance and shading estimates degrades the per-
formance. With the priors of the estimates, the network can use its learning
capacity to deal with the scaling of the initial estimation to obtain the correct
IID. The network needs to learn the colour as well as the scaling within the same
learning capacity.

Influence of Reflectance Edge Guidance Module: For this experiment,
the edge guidance module is removed. As such, the network is then forced to
learn the attention and the reflectance transition boundaries implicitly as part
of the solution space.

Removing the reflectance edge module results in the second worse result. This
shows that, apart from the priors, the ability to use those features to learn a
reflectance transition, is useful. It is shown that without such a transition guid-
ance, the network is susceptible of misclassifying shadow edges as reflectance
transitions. Furthermore, it is shown that without this module, the reflectance
performance suffers more than the shading performance. Hence, using a learned
edge guidance allows the network to be more flexible and better able to distin-
guish between true reflectance transitions.

Influence of Different Losses: The influence of the different losses is studied
in this experiment. For each sub-experiment, the same proposed structure is
used, and the respective losses are selectively turned off.

From the results, it is shown that the DSSIM loss contributes to a large
extend, to the performance, because this loss penalises perceptual variations like
contrast, luminance, and structure. As such, by removing the supervision, the
network learns an absolute difference which is not expressive to smaller spatial
changes. Similar trend of performance decrease is shown when removing the
perceptual and homogeneity losses. This is expected since both losses contribute
to region consistency. With the addition of the losses on the reflectance, the
shading values suffer slightly. However, structurally they perform better when
including the losses, as shown by the DSSIM metric. This indicates that applying
such a loss helps not only to achieve a better reflectance value, but it also jointly
improves shading, resulting in sharper outputs.

4.2 Comparison to State of the Art

On the Proposed Dataset: To study the influence of the dataset, the proposed
network is compared to baseline algorithm’s performance. For these experiments,
the standard, MSE, LMSE and the DSSIM metric are used. The baselines are
chosen based on their performance of the Weighted Human Disagreement Rate
(WHDR), widely used in the literature. Hence, [23] is chosen as a baseline. [39]
does not provide any publicly available code, hence is not included. Although [12]
is the state of the art, their provided code generates errors when trying to run
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on custom datasets and hence is not used for comparison. For completeness, [37]
and [33] is also compared. [37] uses an optimization-based method based on the
pioneering Retinex model. Since it is a purely physical constraint-based model,
it is included for comparison. For a fair comparison, methods focusing on indoors
are used. [2] assumes outdoor settings and requires semantic ground truths to
train and hence is not included. For all the networks, they are retrained on the
dataset that is proposed in this paper, using the optimum hyperparamters as
mentioned in the respective publication. The results are shown in Table 2 and
Fig.6
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Fig. 6. Comparison of the proposed to baseline methods. It is shown that the proposed
method is able to better disentangle the illumination effect. In comparison, CGIntrin-
sics, which has comparable results on the WHDR SoTA, suffers from discolouration.
STAR misses the illumination while ShapeNet suffers from artefacts.

From the table it is shown that our proposed model is able to provide the
highest scores. From the figure, the baselines suffer from strong illumination
effects. CGlIntrinsics discolours the regions while STAR mostly fails. ShapeNet,
suffers from artefacts and colour variations around the illumination regions. In
comparison, the proposed network is able to recover from such effects.
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On IIW [6]: The proposed network is finetuned on the IIW dataset and com-
pared to the baselines. The training and testing splits are used as specified in
the original publication. For the baselines, the numbers are obtained from the
respective original publications. The results are shown in Table 3 and visuals in
Fig. 7.

Table 2. Comparison to the baseline methods on the proposed dataset. It is shown
that the proposed method outperforms all other methods.

Reflectance Shading
MSE |LMSE |DSSIM |MSE |LMSE |DSSIM

ShapeNet [33] 0.0084 |0.0133 |0.1052 | 0.0065 |0.0129 |0.1862

STAR [37] 0.0304 |0.0166 |0.1180 |0.0290 |0.0128 |0.1572
CGlntrinsics [23] | 0.0211 |0.0156 |0.0976 |0.0848 |0.0577 |0.2180
Proposed 0.0026 | 0.0018 | 0.0219 | 0.0030 | 0.0033 | 0.0252
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Fig. 7. Visual results on the IIW test set. Compared to CGlIntrinsics [23] and Fan et
al. [12], the proposed method disentangles better the shading and highlights (high-
lighted in red boxes), showing a smoother reflectance. Both CGlntrinsics and [12] are
unable to remove the highlights from the reflectance, resulting in discolouration. They
are also susceptible to reflectance colour change as be seen on the cat and furniture
(highlighted green boxes). The proposed method is able to better retain the original
colour in the reflectance. (Color figure online)
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Table 3. Baseline comparison for the ITW dataset. Results marked with * are post-
processed with a guided filter [28]

Methods WHDR (mean)
Direct intrinsics [26] | 37.3
Color retinex [17] 26.9
Garces et al. [14] 25.5
Zhao et al. [38] 23.2
ITW [6] 20.6
Nestmeyer et al. [28] | 19.5
Bi et al. [7] 17.7
Sengupta et al. [31] |16.7
Li et al. [24] 15.9
CGlIntrinsics [23] 15.5
GLoSH [39] 15.2
Fan et al. [12] 15.4
Proposed 15.2
CGlntrinsics [23]* |14.8
GLoSH [39]* 14.6
Fan et al. [12]* 14.5
Proposed* 13.9

The IIW dataset does not contain dense ground truth and hence is only
finetuned with the ordinal loss. A guided filter [28] is used to further improve
the results. Overall, our proposed method is on par with GLoSH [39] which is
the best performing method without any post filtering. However, they need both
lighting and normal information as supervision, while the proposed method is
trained with just reflectance and shading, along with a smaller dataset (58,949
images of [39] vs. 5000 of the proposed method). For the filtered results, the
proposed method is able to achieve a comfortable lead compared to the current
best of 14.5 obtained by [12], showing the efficiency of the current model.

5 Conclusions

In this paper, an end-to-end prior driven approach for indoor scenes has been pro-
posed for the task of intrinsic image decomposition. Reflectance transitions and
invariant illuminant descriptors has been used to guide the reflectance decom-
position. Image statistics-based priors have been used to provide the network
a starting point for learning. To integrate explicit homogeneous constraints, a
progressive CNN was used. To train the network, a custom physically rendered
dataset was proposed.
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An extensive ablation was performed to validate the proposed network show-

ing that: 1) using explicit reflectance transition priors helps the network to
achieve an improved intrinsic image decomposition, ii) image statistics-based
priors are helpful for simplifying the problem and, iii) the proposed method
attains sota performance for the standardised real-world dataset ITW.
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