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Abstract. Quantitative analysis of fetal lung Diffusion-Weighted MRI
(DWI) data shows potential in providing quantitative imaging biomark-
ers that indirectly reflect fetal lung maturation. However, fetal motion
during the acquisition hampered quantitative analysis of the acquired
DWI data and, consequently, reliable clinical utilization. We intro-
duce qDWI-morph, an unsupervised deep-neural-network architecture
for motion compensated quantitative DWI (qDWI) analysis. Our app-
roach couples a registration sub-network with a quantitative DWI model
fitting sub-network. We simultaneously estimate the qDWI parameters
and the motion model by minimizing a bio-physically-informed loss func-
tion integrating a registration loss and a model fitting quality loss. We
demonstrated the added-value of qDWI-morph over: 1) a baseline qDWI
analysis without motion compensation and 2) a baseline deep-learning
model incorporating registration loss solely. The qDWI-morph achieved
a substantially improved correlation with the gestational age through in-
vivo qDWI analysis of fetal lung DWI data (R2 = 0.32 vs. 0.13, 0.28). Our
qDWI-morph has the potential to enable motion-compensated quantita-
tive analysis of DWI data and to provide clinically feasible bio-markers
for non-invasive fetal lung maturity assessment. Our code is available at:
https://github.com/TechnionComputationalMRILab/qDWI-Morph.
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1 Introduction

Fetal lung parenchyma maldevelopment may lead to life-threatening physio-
logic dysfunction due to pulmonary hypoplasia and pulmonary hypertension
[10]. Accurate assessment of lung maturation before delivery is critical in deter-
mining pre-natal and post-natal care and potential interventions [2]. In current
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clinical practice, the non-invasive assessment of fetal lung parenchyma devel-
opment relies upon fetal lung volume estimation from either ultrasonography
[12], or anatomical magnetic resonance imaging (MRI) [5] data. However, these
modalities are limited in providing an insight into lung function and are therefore
suboptimal in assessing fetal lung maturity and in providing relevant biomarkers
for fetal lung parenchyma maldevelopment.

Diffusion-weighted MRI (DWI) is a non-invasive imaging technique sensitive
to the random movement of individual water molecules. The displacement of
individual water molecules results in signal attenuation in the presence of a
magnetic field encoding gradient pulses. This attenuation increases with the
degree of sensitization-to-diffusion of the MRI pulse sequence (the “b-value”) [1].
Quantitative analysis of the DWI data (qDWI) has been suggested previously for
functional assessment of fetal lung parenchyma development [1,13]. The qDWI
analysis is performed by a least-squares fitting of a signal decay model describing
the DWI signal attenuation as a function of the b-value to the acquired DWI
data. Commonly, a mono-exponential signal decay model of the form of:

Si = S0 · e−bi·ADC (1)

where Si is the signal at b-value bi, S0 is the signal without sensitizing the diffu-
sion gradients, and ADC is the apparent diffusion coefficient, which represents
the overall diffusivity, is used in clinical practice [8].

However, qDWI analysis is intrinsically highly susceptible to gross motion
between the acquisition of the different b-value images [1]. Hence, the irregular
and unpredictable motion of the fetus, in addition to the maternal respiratory
and abdominal motion, causes misalignment between image volumes, acquired
at multiple b-values, and impairs the accuracy and robustness of the signal decay
parameter estimation [9].

Specifically, Afacan et al. [1] examined the influence of the presence of motion
during the DWI data acquisition on the correlation between the overall diffusivity
characterized by the ADC parameter and the gestational age (GA). They found
that the dependence of the ADC parameter on the GA is of an exponential
saturation type, with an R-squared (R2) value of 0.71 for fetal DWI data that
was not affected by fetus motion. However, when fetal DWI data with gentle
motion were included, the R2 dropped to 0.232, and when fetal DWI data with
severe motion were included, the R2 dropped to 0.102.

We introduce qDWI-Morph, an unsupervised deep-neural-network model for
motion-compensated qDWI analysis. Our specific contributions are: 1) unsuper-
vised deep-neural-network (DNN) model for simultaneous motion compensation
and qDWI analysis, 2) Introduction of a bio-physically-informed loss function
incorporating registration loss with qDWI model fitting loss, and 3) improved
correlation between qDWI analysis by means of the ADC parameter and GA
demonstrated using in-vivo DWI data of fetal lungs.

1.1 Background

Fetal Lung Development. The normal fetal lung parenchyma development
starts in the second trimester and progresses through multiple phases before
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becoming fully functional at full term. The first phase of development, the embry-
onic and pseudo glandular stage, is followed by the canalicular phase, which
starts at 16 weeks, then the saccular stage, which starts at 24 weeks, and ends
with the alveolar stage, which starts at 36 weeks gestation. [14]. The formation
of a dense capillary network and a progressive increase in pulmonary blood flow,
leading to reduced extra-cellular space on the one hand and increased perfusion
on the other hand, characterizes the progression through these phases [6]. Hence,
changes in the overall tissue diffusivity are thought to serve as a functional indi-
cator of lung development.

Diffusion-Weighted MRI. DWI is a non-invasive imaging technique sensitive
to the random movement of individual water molecules. The movement of water
molecules depends on tissue micro-environments and results from two phenom-
ena: diffusion and perfusion [6]. The water molecule mobility attenuates the DWI
signal according to the degree of sensitivity-to-diffusion, the “b-value”, used in
the acquisition. Typically, DWI images are acquired at multiple b-values, and
the signal decay rate parameters are quantified per voxel by least-squares model
fitting [9]. DWI can potentially be a functional biomarker for lung maturity
since it results from diffusion and perfusion. According to the mono-exponential
model, the signal of a particular voxel decreases exponentially with an increas-
ing b-value (Eq. 1), with a decay rate that depends on the overall diffusivity of
the voxel, the ADC, encapsulating both pure diffusion and perfusion influence
on the DWI signal. Quantifying the ADC out of the measurements is done by
applying log(·) on both sides of Eq. 1:

log(Si) = log(S0) − bi · ADC (2)

A set of B equations is obtained by scanning with B different b-values. This
linear set of equations can be solved by linear least-squares regression (LLS) [15].
The solution is given by:

x̂LS = argmin
S0,ADC

∑

i∈B

| log (Si) − log (S0) + biADC|2 (3)

= (AT A)−1AT β (4)

where:

A =

⎛

⎜⎝
1 −b0
...

...
1 −bB

⎞

⎟⎠ , β =
[
log(S0), · · · , log(SB)

]T
, x =

[
log(S0), ADC

]T (5)

In order to be stable against outliers in the acquired DWI signals, a more
robust solution can be obtained by using an iterative-least squares algorithm [4].
This is an iterative method in which each step involves solving a weighted least
squares problem:
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Fig. 1. LLS Vs. IRLS fitting of DWI Signal.

x̂
(t)
IRLS = argmin

S0,ADC

∑

i∈B

w
(t)
i | log (Si) − log (S0) + biADC| (6)

= (AT W (t)A)−1AT W (t)b (7)

where W (t) is a diagonal matrix of weights, with all elements set initially to:
{

w
(0)
i

}

i∈B
= 1 (8)

and updated after each iteration to:
{

w
(t)
i

}

i∈B
=

1
max

{|Ax(t−1) − b|i, 0.0001
} (9)

As shown In Fig. 1, the IRLS is more accurate and ignores outliers by setting
them a low weight. On the other hand, the IRLS algorithm is computationally
expensive and time-consuming.

1.2 Fetal Lung Maturity Assessment with qDWI

Assessing fetal lung maturation using qDWI was first suggested by Moore et al.
[13] in 2001. More recently, Afacan et al. [1] demonstrated a strong association
between ADC and GA in fetuses with normal lung development. The ADC is
quantified per voxel by LLS regression (Eq. 4). Then, the averaged ADC in the
lung can indicate the GA of the fetus according to the saturation-exponential
model suggested by [1]:

ADC = ADCsat(1 − e−α·GA) (10)
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Since the ADC quantification is done voxel-wise, it is sensitive to poten-
tial misalignment between image volumes acquired at different b-values, which
accrue from fetal motion. Previous techniques for motion compensation include
post-acquisition motion compensation based on image registration to bring the
volumes acquired at different b-values into the same physical coordinate space
before fitting a signal decay model [7,11]. However, each b-value image has a dif-
ferent contrast. As a result, independent registration of different b-value images
to a b = 0 s/mm2 image may result in suboptimal registration, especially for
high b-value images where the signal is significantly attenuated and the signal-
to-noise ratio is low [9].

2 Method

We hypothesize that simultaneous qDWI analysis and fetal motion compensation
will result in improved quantification of the ADC, which will correlate better
with fetal lung maturity compared to qDWI analysis without compensating for
motion and to motion compensated approach which does not account for the
signal decay model fit quality.

We define the simultaneous qDWI analysis and motion compensation prob-
lem as follows:

Φ̂, ̂ADC = argmin
Φ,ADC

∑

i∈B

‖φi ◦ Si − S0 exp(−bi · ADC)‖2 (11)

where Φ = {φ}i∈B is the set of transformations that align the different b-value
images to the images predicted by the model, and B is the number of b-values
used during the DWI acquisition.

Taking an unsupervised DNN-based perspective, the optimization problem
seeks to find the DNN weights that minimize the following:

Θ̂ = argmin
Θ

∑

i∈B

‖fΘ({bi, Si}i∈B)[0] ◦ Si − S0 exp(−bi · fΘ({bi, Si}i∈B)[1])‖2

(12)

where Θ are the DNN parameters to be optimized, fΘ({bi, Si}B
i=0)[0] is the first

output of the DNN model, represents the set of transformations Φ between the
different b-value images {Si}i∈B , and fΘ({bi, Si}i∈B)[1]) is the second output of
the DNN model represents the predicted ADC.

2.1 DNN Architecture

Figure 2 presents our qDWI-Morph architecture used for the optimization of
Eq. 12. The qDWI-Morph model is composed of two sub-networks: a qDWI
model fitting sub-network and an image registration sub-network. Our method
is iterative, where the motion-corrected images from the previous iteration enter
as input to the next iteration until convergence. We normalize the input in each
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Fig. 2. Overall architecture of our proposed framework.

iteration k by the maximal value of the signal at the previous iteration S
(k−1)
0 .

The input to the model at each iteration k is a set of 3D images from the same
patient, each scanned with a different b-value along with their corresponding
b-values {bi, Si}(k)i∈B . The output of our model is composed of the set of motion-
corrected images forced pixel-wise to the mono-exponential model (Eq. 1).

Quantitative DWI Model Fitting Sub-network. first layer is a LLS layer
for quantifying the ADC at each pixel using Eq. 4. The second layer is a recon-
struction layer that generates a new set of 3D images, {Rb}(k)b∈B, by calculating
the model pixel-wise using Eq. 1. The reconstructed set, {Rb}(k)b∈B , is retreated
as fixed images and is an input for the second sub-network, the registration
network.

Registration Sub-network. is based on the publicly available deep learn-
ing framework for deformable medical image registration, VoxelMorph [3]. The
moving images are {Sb}(k)b∈B, and the fixed one are {Rb}(k)b∈B . The output of the
VoxelMorph network is a registration field, φ, that can be applied to the moving
images to get the next motion-compensated images, {Sb}(k+1)

b∈B . The registra-
tion is done between corresponding b-values images from the moving and fixed
images. For example, the moving image S0 will be registered to the fixed image
R0. This way, we overcome the differences in contrast between b-values and
use prior knowledge that the resulting compensated image needs to follow the
mono-exponential model.
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2.2 Convergence Criteria

In each iteration, we calculate the averaged ADC of the lung at the given region
of interest (ROI). We quantify the ADC by the IRLS algorithm from Eq. 7.
We define convergence of the model after five iterations without change in the
calculated ADC. We leverage our prior knowledge of the model (Eq. 1) to choose
the best iteration as the iteration with the highest R2 from the IRLS fitting.

2.3 Bio-physically-informed Loss Function

Our bio-physically-informed loss function consists of 3 terms.

L = Lsimilarity + α1Lsmooth + α2LModel fit (13)

Lsimilarity is a L1 loss applied to corresponding b-values images from fixed and
wrapped moving images, averaged over the B b-values images:

L(R(k), S(k) ◦ φ
(k)
i ) =

1
B

1
|Ω|

∑

i∈B

∑

p∈Ω

|R(k)
i (p) − [S(k)

i ◦ φ
(k)
i ](p)| (14)

where Ω is the image dimension. Minimizing Lsimilarity will encourage {Si}(k)b∈B ◦
φ
(k)
i to approximate {Ri}(k)b∈B , but may generate a non-smooth φ that is not

physically realistic [3].

Lsmooth is a regularization term introduced by Balakrishnan et al. [3]. This loss
term encourages a smooth displacement field φ using a diffusion regularize on
the spatial gradients of displacement u:

Lsmooth(Φ) =
∑

p∈Ω

‖∇u(p)‖2 (15)

Lmodel f it is the loss that responsible for forcing each voxel to act according to
the mono-exponential model from Eq. 2. This loss is an MSE loss on the least
square residual:

Lmodel fit(ADC) =
1
B

1
|Ω∗|

∑

i∈B

∑

p∈Ω∗
(log(S0) − bi · ADC − log(Si))2 (16)

where Ω∗ is a subset of the image, including only voxels from the lung, as we
assume the mono-exponential model can describe them, contrary to the back-
ground, which doesn’t present a mono-exponential decay of the DWI signal.
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3 Experiments

3.1 Clinical Data-Set

Legacy fetal DWI data was used in the study. The data acquisition was performed
on a Siemens 3T Skyra scanner equipped with an 18-channel body matrix coil.
Each patient was scanned with a multi-slice, single shot, echo-planar imaging
(EPI) sequence that was used to acquire diffusion-weighted scans of the lungs.
The in-plane resolution was 2.5 mm × 2.5 mm for each study, and the slice thick-
ness was set at 3 mm. Echo time (TE) was 60 ms, whereas repetition time (TR)
ranged from 2 s to 4.4 s depending on the number of slices required to cover the
lungs. Each patient was scanned with 6 different b-values (0, 50, 100, 200, 400,
600 s/mm2) in axial and coronal planes. A region of interest (ROI) was manually
drawn for each case in the right lung [1]. We cropped each image to a shape:
96×96×16 and normalized it by the maximal value at S0. The data includes 38
cases with a range of minor misalignment between the different b-values image
volumes.

3.2 Experiment Goals

The objectives of the experiment are: 1) To analyze the effect of quantitative
DWI motion-compensation on the correlation between the ADC parameter and
GA. 2) To analyze the contribution of our proposed model fitting quality loss in
addition to the registration loss in improving the observed correlation between
the ADC parameter and GA.

3.3 Experimental Setup

Our baseline method is ADC quantification without motion compensation. We
compared the baseline method to our suggested method with: 1) Registration
loss solely, and 2) Our hybrid loss combining both registration loss and a model
fitting quality loss. For each of the three methods, we quantified the averaged
ADC in the right lung of each subject by IRLS algorithm. We used an exponential
saturation model suggested by Afacan et al. [1] described in Eq. 10 above.

3.4 Implementation Details

We implemented our models on PyCharm 2021.2.3, Python 3.9.12 with PyTorch
1.11.0.

We applied our suggested methods with a batch size of one, meaning that
each batch is data from one patient with size: nb ×nx ×ny ×nz, where nb is the
number of b-values used for scanning the patient, and nx × ny × nz is the image
shape. We trained the networks in two epochs so that the earlier cases will be
contributed from the later ones. We experimented the affect of training in a wide
range of epochs and found that the network converged after the second epoch,
and there was no further improvement after that. We used an Adam optimizer
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Fig. 3. Sample case with ROI. Top row left to right: b = 0, 50, 100 s/mm2. Bottom
row left to right: b-value = 200, 400, 600 s/mm2.

with an initial learning rate of 10-4. If the total loss increases compared to the
previous iteration, we reduce the learning rate by 10. We limited the number
of iterations for each case to 50. The hyper-parameter we used are: α1 = 0.01,
α2 = 1000. We choose α2 by a search-grid of the best α2 in terms of correlation
between ADC and GA. For testing the qDWI-Morph method without fit model
loss term, we set α2 = 0.

4 Results

Figure 3 presents an example of DWI data before accounting for motion by
the registration. Figure 4 presents our iterative motion-compensation and model
estimation. The top row is the motion-compensation b = 0 s/mm2 images from
different iterations, where the top-left image is the input image. The second row
is the ADC map result from the LLS layer, and the bottom row is the corre-
sponded reconstructed b = 0 s/mm2 image. The right column is the convergence
iteration. The ADC map (middle row) becomes sharper and more clinically-
meaningful as the motion is correct during the iterations. However, the final
motion-compensated b-value images become more blurry as a result of the reg-
istration wrapping process by the linear interpolation.

Figure 5 demonstrates the averaged signal in the ROI as a function of the
b-value at different iterations. The lines are the corresponding fit to Eq. 1. At
the last iteration, after the motion compensation process (5c), the dots behave
according to the expected model and are less scattered.
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Fig. 4. The process done by our method, qDWI-Morph, demonstrated over time. Top
row: the motion-compensation b = 0 s/mm2 images. Second row: ADC map result from
the LLS layer. Bottom row: the model-reconstructed b = 0 s/mm2 images.

Figure 6 shows the ADC parameter plotted against GA for all three meth-
ods. The data is color-coded by the degree of conformity to the mono-exponential
model from Eq. 1 in terms of R2. The Darker the dot, the higher R2. Our app-
roach achieved the best correlation (R2 = 0.32) between the ADC and the GA
compared to both motion compensation by our qDWI-Morph without adding
the model fit loss (R2 = 0.28) and to baseline approach without motion com-
pensation (R2 = 0.13).

Table 1 summarizes the fitted ADC saturation model (Eq. 10) using the dif-
ferent approaches along with the correlation between the ADC and GA in terms
of R2. The fitted model parameters are bout the same for all methods. However,
our qDWI-Morph achieved the best correlation between the ADC and the GA,
since the average ADC vs. GA is less sparse, as seen in Fig. 6.
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(a) (b) (c)

Fig. 5. The averaged signal in the ROI for one case, as a function of b-value at differ-
ent iterations, with a curve fit to the mono-exponential model: (a) Original data, (b)
iteration 19, and (c) iteration 38.

(a) (b) (c)

Fig. 6. Averaged ADC in the right lung vs. GA with the three methods: (a) Baseline;
W.O motion compensation. (b) qDWI-Morph W.O model fit loss. (c) qDWI-Morph.
The data is color-coded by the degree of conformity to the mono-exponential model
from Eq. 1 in terms of R2.

Table 1. The correlation of the averaged ADC in the right lung vs. GA by the three
methods: W.O M.C; the baseline method, ADC quantification without motion compen-
sation. W.O F.L; qDWI-Morph without model fit loss, and our method: q-DWI-Morph.

Method R2 A ×10−3 (mm2/s) B ×10−3 (mm2/s) C

W.O. M.C 0.13 3.2 0.005 0.07

W.O. F.L 0.28 3.17 0.006 0.07

qDWI-Morph 0.32 3.19 0.006 0.07

5 Conclusions

We introduced qDWI-Morph, an unsupervised deep-neural-networks approach
for Motion-compensated quantitative Diffusion-Weighted MRI analysis with
application in fetal lung maturity assessment. Our model coupled a registra-
tion sub-network with a model fitting sub-network to simultaneously estimate
the motion between the different b-value images and the signal decay model
parameters. The optimization of the model weights is driven by minimizing a
bio-physically-informed loss representing both the registration loss and the fit



qDWI-Morph: Motion-Compensated Quantitative DWI Analysis 493

quality loss. The integration of the fit quality loss encourages the model to
produce deformation fields that will lead to bio-physically expected behavior
of the signal along the b-value axis, in addition to the standard registration
loss, which encourages similarity and smoothness within the deformation field
of each b-value image. Our experiments demonstrated an added-value of adding
the model-fitting loss in addition to the registration loss for fetal lung matu-
rity assessment. The proposed approach can potentially improve our ability to
quantify DWI signal decay model parameter in cases with motion.
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