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Abstract. Assessing microsatellite stability status of a patient’s col-
orectal cancer is crucial in personalizing treatment regime. Recently,
convolutional-neural-networks (CNN) combined with transfer-learning
approaches were proposed to circumvent traditional laboratory test-
ing for determining microsatellite status from hematoxylin and eosin
stained biopsy whole slide images (WSI). However, the high resolution
of WSI practically prevent direct classification of the entire WSI. Cur-
rent approaches bypass the WSI high resolution by first classifying small
patches extracted from the WSI, and then aggregating patch-level clas-
sification logits to deduce the patient-level status. Such approaches limit
the capacity to capture important information which resides at the high
resolution WSI data. We introduce an effective approach to leverage WSI
high resolution information by momentum contrastive learning of patch
embeddings along with training a patient-level classifier on groups of
those embeddings. Our approach achieves up to 7.4% better accuracy
compared to the straightforward patch-level classification and patient
level aggregation approach with a higher stability (AUC, 0.91 ± 0.01 vs.
0.85 ± 0.04, p-value < 0.01). Our code can be found at https://github.
com/TechnionComputationalMRILab/colorectal cancer ai.

Keywords: Digital pathology · Colorectal cancer · Self-supervised
learning · Momentum contrast learning

1 Introduction

Colorectal cancer is a heterogeneous type of cancer which can be generally
classified into one of two groups based on the condition of Short Tandem
Repeats (STRs) within the DNA of a patient. These two groups are known as
Microsatellite Stable (MSS) and Microsatellite Instable (MSI). When the series
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of nucleotides in the central cores of the STRs exhibit a highly variable num-
ber of core repeating units, the patient sample is referred to as Microsatellite
Instable. Otherwise, if the number nucleotides is consistent, that patient sam-
ple is referred to as Microsatellite Stable (MSS) [18]. Microsatellite instability
(MSI) exists in approximately 15% of colorectal cancer patients. Due to the fact
that patients with MSI have different treatment prospects than those without
MSI, it is critical to know if a patient exhibits this pathology before determining
treatment direction [2].

Currently, it is possible to determine microsatellite status in a patient by
performing various laboratory tests. While these methods are effective, they
are expensive and take time, resulting in many patients not being tested for it
at all. Therefore, there exist many recent efforts aimed toward utilizing deep-
learning-based methods to uncover a computational solution for the detection of
MSI/MSS status from hematoxylin and eosin (H&E) stained biopsy whole slide
images (WSI).

However, the WSIs have an extremely large resolution, often reaching over
a billion pixels (Fig. 1). Since neural networks can operate, due to computa-
tional constraints, only on relatively low resolution data, the input WSI must be
shrunk down in some way to a size that is manageable by today’s models and
hardware. A relatively näıve approach to do this is by down sampling inputs to
approximately the same resolution as Image Net (which also allows one to lever-
age transfer learning) [10,16]. While this is not detrimental for natural images,
where fine detail might not be critical, the same cannot be said for WSI of human
tissue where the information of concern may exist in various scales. Our work
presents a novel method for effectively down sampling patches into lower dimen-
sional embeddings while preserving features critical to making clinical decisions.
Due to our effective dimensional reduction of individual patches, we are then
able to concatenate the features of multiple patches together and make clinical
decisions using inter-patch information.

Fig. 1. Example of an single patient WSI and a subset of the patches generated from
the WSI. The resolution of the WSI is 45815 × 28384 and the corresponding patches
are 512 × 512.
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1.1 CNN-Based MSI/MSS Classification from WSI Data

A simple and straightforward method to alleviate the above issue is by cutting
WSI’s into many patches and then applying modern deep learning methods
to these individual patches as if each of them were a separate image from a
data set [10,16]. Once the input has been tessellated, there are a few known
ways of training a model from them. One way is to simply assign a label to
every patch based on the patient from which they are derived, and then train a
model on a patch-by-patch basis. Once the model has been trained, its outputs
on all the patches can be averaged for a patient-level classification. Described
mathematically, the inference procedure is described below:

Suppose we have some trained classifier F (which returns the probability
that a patch belongs to class MSI or MSS e.g. 0 ≤ F (x) ≤ 1 for some input
patch x), a whole slide image W , and n patches extracted from W such that
{p1, p2, ...pn} ∈ W . Then, a patient level probability prediction PW (on the WSI)
can be formulated as such:

PW =
1
n

∑
F (pn) (1)

And given some classification threshold 0 ≤ t ≤ 1, we can arrive at a final
classification CW for the patient:

CW =

{
MSS PW < t

MSI PW ≥ t
(2)

However, such approaches practically ignore the fact that much of the infor-
mation critical to making an informed decision on a patient level may reside
in the high resolution and inter-patch space. Further, the classification of the
patches based on the patient-level data may result in incorrect classification
as not necessarily all patches are contributing equally to the classification of a
patient as MSI or MSS.

1.2 Self-supervision for Patch Embbedings

In recent years self-supervised learning methods have become an extremely
attractive replacement for autoencoders as encoding or downsampling mecha-
nisms, while learning features that are much more informative and meaningful
[19] and therefore can be easily leveraged for use in downstream tasks. This is
an exciting property that has led to new research being done in an attempt to
circumvent the issues with downsampling described earlier.

Although self-supervised learning is relatively new and there are many algo-
rithms that attempt to achieve effectively the same goal [3,11,12]. Of the various
methods, contrastive learning techniques such as those introduced in SimCLR
[7] have become very popular due to their high efficacy and simplicity.

Recently there have been some attempts to use self-supervised contrastive
learning, and more specifically the aforementioned SimCLR algorithm, to aid in
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classification of WSI imagery. Unfortunately SimCLR requires large computa-
tional resources to train in a reasonable amount of time. That is why we decided
to test the advent of Momentum Contrast Learning with MoCo v2 by Chen et al.
[8]. This framework relies on storing a queue of previously encoded samples to
overcome the large batch size requirement of SimCLR while seemingly improving
downstream classification accuracy as well.

2 Related Work

2.1 CNN-Based MSS/MSI Classification

Building on top of Echle [10] and the Eqs. 1 and 2 was that of Kather et al.
[16]. Here, transfer learning via pretraining with ImageNet [9] was employed to
marginally improve results of this straightforward method. Although it has an
enormous amount of images, they are not medical, and certainly not pictures of
H&E stained biopsy slides. Therefore the degree to which the learned features
from ImageNet transfer well to H&E stained WSI imagery is arguably negligible.

It is also important to discuss the particular resolution under which the
patches were acquired. Due to the small size of the patches, any individual
patch may not be large enough to contain the information required to make a
classification (even on the tissue contained within only that patch). One must
understand whether or not the task at hand requires intra-cellular information
(requiring maximum slide resolution) or tissue-level information (requiring down-
sampling before patching). Unfortunately in either case, it is also possible that
information at multiple levels of resolution is required for optimal results.

Still, more drawbacks can be found tessellating high resolution images into
many smaller patches, regardless of patch resolution concerns. For one, the model
cannot learn inter-patch information. This is especially important considering
that it is very possible that a majority of the patches do not actually contain
targeted tissue. Moreover, training the model in such a way is misleading, con-
sidering that many patches which have MSS tissue (yet are found on an MSI
classified patient) will be marked as MSI for the model. This is likely to result
in the model learning less than optimal features.

The work by Hemati et al. [14] gets around this issue by creating a mosaic
of multiple patches per batch during training. Unfortunately, this creates other
drawbacks. Most notably, they cannot use all the patches per patient, and so
they use another algorithm which is mutually exclusive to the learning procedure
in order to choose patches, with no guarantee that they contain targeted tissue.
Moreover, the mosaic of these selected patches is also still limited by resolution,
and so they still must scale down the patches from their original resolution before
training.

An improvement on all these previous works was done in the research by
Bilal et al. [1]. Most notably, they advanced upon the work from Hemati [14]
by learning the patch extraction, or as they call it, patch detection, using a
neural network as well. Thereby alleviating an inductive bottleneck. Their pro-
cess also includes significant work surrounding intermittent detection of known
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biologically important features to such a problem, such as doing nuclear seg-
mentation, and then providing that information to the next model to make a
better-informed decision.

2.2 Self Supervision for Patch Embbedings

Due to self-supervised learning being a fairly recent invention, the works similar
to ours which cite using it are rather sparse. One of the works which explores
the validity of using these methods in the first place is that of Chen et al. [6].
They show that features learned through self-supervised contrastive learning
are robust and can be learned from in a downstream fashion. Another paper
that uses a similar two stage approach with self-supervised learning being the
first stage is DeepSMILE by Schirris et al. [21]. They used a similar approach
to the above mentioned contrastive self-supervised learning step with SimCLR,
but learned on the features using Deep Multiple Instance Learning (MIL) [15].
While this approach was effective, the computational requirements of SimCLR
and the added complexity of MIL may keep the advent of this research out of
the hands of many researchers.

Very recently an improvement on the work by Chen [6] was introduced in
their research using Hierarchical Vision transformers [5]. Here, the authors apply
self-supervised learning through DINO [4] to train 3 stages of vision transformers
in achieving entire WSI level classifications. Though seemingly effective, the
increased complexity of their approach and the necessity of utilizing transformers
makes it relatively inflexible.

2.3 Hypothesis and Contributions

Hypothesis: Learning effective patch embeddings with self-supervised learning
and training a small classifier on groups of those embeddings is more effective
than either training on down-sampled WSI’s or training on individual patch
embeddings and averaging the classification for a patient.

We believe this hypothesis to be true due to the ability of a network to learn
inter-patch information at an embedding level. This way, information that is
encoded in one patch can impact the decision of the entire WSI. Our contribu-
tion is an intuitive and elegant framework that improves patient classification
accuracy by up to 7.4%. We argue that this method is very simple to understand
and has many avenues of possible improvement. Specifically when considering
the initial feature extraction stage, there are many other self-supervised repre-
sentation learning methods that can be tested and directly compared using our
approach.

3 Data

The training and validation data used in our method consists of the COAD and
READ cohorts of The Cancer Genome Atlas (TCGA) [22]. Out of a total of 360
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unique patients, the train set is comprised of 260 patients and the validation set
is comprised of 100 patients, where each patient is equivalent to one WSI. Each
of these WSIs were tessellated into patches of size 512× 512 pixels at 0.5µm/px
and then downsampled to 224 × 224 (this was done only for comparison with
Kather et al. [16]). Next the probability of each patch to contain cancerous tissue
was computed by a trained CNN and only the patches which were likely to have
cancer tissue were kept. Finally, the patches were color normalized. Further detail
on the data preprocessing procedure can be found in the paper by Kather et al.
[17]. The 260 train patients were tessellated into 46,704 MSS labeled patches, and
46,704 MSIMUT labeled patches. The 100 validation patients were tessellated
into 70,569 MSS labeled patches, and 28,335 MSIMUT labeled patches.

Finally, we also ran some final experiments on a more balanced subset of the
validation dataset, referred to later in this paper as the “Balanced Validation
Set”. It comprises of 15 MSS patients and 15 MSIMUT patients which all have a
relatively similar distribution of patches extracted from them. 7281 patches were
extracted from the MSIMUT patients and 7446 patches were extracted from the
MSS patients.

4 Method and Model

4.1 Overview

Our method comprises of two main training stages (Fig. 2):

Fig. 2. Both stages of our proposed model.
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Stage 1 utilizes MoCo and stands to generate robust patch level embeddings that
encode patches in a way such that they can be learned from in a downstream
fashion. Above, Qi,j represents the encoded query for patient i and patch j. Sim-
ilarly Ki,j represents the same for patches encoded by the momentum encoder
stored in the queue, and Xi,j corresponds to individual samples from the dataset
relating to patient i and patch j. The stage 1 diagram is very similar to that
found in Chen et al. [8].

Stage 2 groups the patches so that their features can be aggregated and the
head of our model can learn from a set of patches as opposed to an individual
sample. The encoder in stage 2 is a frozen copy of the trained encoder from stage
1. The snowflake indicates that its gradients are not tracked.

4.2 Stage 1: Training a Self-supervised Feature Extractor
for Patch-Level Embeddings

In stage 1 of training, our feature extractor is trained in exactly the same way
as described in the MoCo v2 paper [8]. Data loading and augmentation are
unchanged. The main difference is our use of a Resnet18 [13] backbone as opposed
to the Resnet50 (C4) backbone which was tested in the original implementation.
This was done due to computational constraints and for comparison to the base-
line approach from Kather. We also used cosine learning rate annealing, which
seems to improve training. The output dimension of our feature extractor is
512 (no).

To evaluate the ability of MoCo to extract usable features from patches, we
tracked the value of the InfoNCE loss [20] on the training set. After achieving
the lowest value for train InfoNCE loss (0.88 in our case), the model was saved
and used for stage 2 training. This was not tracked on the validation dataset
to avoid overfitting. Below you can see the training curve for MoCo over 621
epochs (Fig. 3):

Fig. 3. InfoNCE training loss over 621 epochs for MoCo.
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The goal of contrastive learning, and thus momentum contrast learning, is
to (as stated in the paper by He et al.) learn an encoder for a dictionary look
up task. The contrastive loss function InfoNCE exists to return a low loss when
encoded queries to the dictionary are similar to keys, and a high loss otherwise.

4.3 Stage 2: Training a Supervised Classifier on Patch Embedding
Groups

In stage 2, the resnet18 [13] feature extractor trained by MOCO is frozen, and
so gradients are not tracked. When making the forward pass, features extracted
from patches are grouped by ng (group size), meaning they are concatenated
into one long vector. The length of this vector (lg) will be:

lg = ng ∗ no (3)

Meaning that the input dimension of our multi-layer percpetron (MLP)
group-level classifier, or model head that we are training in stage 2 must have an
input dimension of lg. This brings us to the first issue regarding the ng param-
eter. The larger the group size after feature extraction, the larger the first layer
of the head must be. This is likely why we found a group size of 4 to be optimal
for our dataset. When using a larger group size, the number of parameters for
the head of the model increases dramatically, and it tends to overfit much faster.

As an interesting test, we also attempted ng = 1, which performed very
similarly to the standard approach. This is what we expected as it indicates the
embedding space from Momentum Contrastive Learning is similarly effective to
the embedding space of a model trained in a supervised fashion.

4.4 Evaluation

Judgement of the algorithm is performed using two main criteria. The first is
patch level accuracy and the second is patient level accuracy.

Patch level accuracy (Apatch) is exactly the same as accuracy in the general
context. The only caveat is how the patches are assigned their label. Since our
WSI’s are labeled on a patient basis, the patches are labeled by inheriting the
label of the patient to which they belong.

Apatch =
Number of Correctly Predicted Patches

Total Number of Patches
(4)

Patient level accuracy (Apatient) is a more crucial and more difficult to
improve upon metric. It cannot be trained for directly, as an entire WSI cannot
fit on GPU without downsampling. To measure this metric, we must save the
models predictions on individual patches (or on groups of patches and extrapo-
late individual patch predictions) and calculate a final prediction for a patient
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using the cumulative predictions of its constituent patches. This can be done
using a majority vote approach or it is also possible to treat each patches pre-
diction as a probability and average the probabilities before thresholding on a
patient level and achieving a final prediction.

Apatient =
Number of Correctly Predicted Patients

Total Number of Patients
(5)

5 Experiments and Results

5.1 Standard Dataset

The results in this section refer to performance measured on the original dataset
processed by Kather et al. [17]. We show the results of our implementation of
Kather’s method compared to our improvement using momentum contrastive
learning and group patch embeddings (Table 1 and Fig. 4).

Table 1. Accuracy comparison on standard dataset. Both methods trained to 100
epochs. These are the validation results of an average of 10 runs per method. Our
method achieves significantly higher accuracy in both patient (paired t-test, p < 0.001),
and patch level (paired t-test, p � 1e−6) evaluation while also having a much more
stable result given its smaller standard deviation.

Method Patient accuracy Patch accuracy

Ours 0.862 ± 0.006 0.797 ± 0.005

Kather et al. 0.837 ± 0.016 0.716 ± 0.015

Fig. 4. Validation accuracy during training. Average of 10 runs.

Due to the feature extractor already having been learned, our method ini-
tially trains much faster than the baseline. We have even noted that for some
hyperparameter combinations it may be most effective to stop training after only
a few epochs. And below are the ROC curves for the above models (Fig. 5):
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Fig. 5. ROC curves on standard validation dataset. Average of 10 runs. Our method
achieves a significantly higher AUC in both patient (paired t-test, p < 0.01) and patch
level evaluation (paired t-test, p � 1e−7).

5.2 Balanced Validation Set

The results in this section refer to performance measured on the balanced sub-
set of the validation dataset processed by Kather et al. [17]. We describe the
composition of this dataset in the second paragraph of the data section of this
paper. Our method does even better on this balanced validation set compared
to the original one from above. The differences were significant for both patient
level (paired t-test, p � 1e−4), and patch level (paired t-test, p � 1e−6) clas-
sification. This suggest that our method is less prone to bias and overfitting to
patients with more or less patches that have been extracted from them (Table 2
and Fig. 6).

Table 2. Accuracy comparison on balanced dataset.

Method Patient accuracy Patch accuracy

Ours 0.797 ± 0.010 0.751 ± 0.006

Kather et al. 0.723 ± 0.026 0.662 ± 0.013

Fig. 6. ROC curves on balanced dataset. Average of 10 runs. Our method achieves
a significantly higher AUC in both patient (paired t-test, p < 0.01) and patch level
evaluation (paired t-test, p � 1e−6).
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6 Conclusions

Our work validates the feasibility of learning usable features from H&E stained
biopsy slide patches using momentum contrast learning. We also qualify that
learning from the aggregated features of multiple patches works better than
simply averaging the predictions of individual patches for a WSI prediction.
Finally, we contribute a simple and intuitive framework for combining these
concepts with huge potential for improvement. The future for this domain lies
in improving patch level feature extraction and aggregating more features to
make global WSI decisions. The advent of a WSI classifier that is as accurate as
laboratory testing for microsatellite status can drastically improve the rate at
which patients are diagnosed and their treatment prospects.
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