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Abstract. In recent times there is a growing development of video-
based applications for surgical purposes. Part of these applications can
work offline after the end of the procedure, other applications must react
immediately. However, there are cases where the response should be done
during the procedure but some delay is acceptable. In the literature, the
online-offline performance gap is known. Our goal in this study was to
learn the performance-delay trade-off and design an MS-TCN++-based
algorithm that can utilize this trade-off. To this aim, we used our open
surgery simulation data-set containing 96 videos of 24 participants that
perform a suturing task on a variable tissue simulator. In this study,
we used video data captured from the side view. The Networks were
trained to identify the performed surgical gestures. The naive approach
is to reduce the MS-TCN++ depth, as a result, the receptive field is
reduced, and also the number of required future frames is also reduced.
We showed that this method is sub-optimal, mainly in the small delay
cases. The second method was to limit the accessible future in each
temporal convolution. This way, we have flexibility in the network design
and as a result, we achieve significantly better performance than in the
naive approach.

Keywords: Surgical simulation · Surgical gesture recognition · Online
algorithms

1 Introduction

Surgical data science is an emerging scientific area [21,22]. It explores new ways
to capture, organize and analyze data with the goal of improving the quality of
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interventional healthcare. With the increased presence of video in the operating
room, there is a growing interest in using computer vision and artificial intelli-
gence (AI) to improve the quality, safety, and efficiency of the modern operating
room.

A common approach for workflow analysis is to use a two-stage system. The
first stage is a feature extractor such as I3D [4] or ResNet50 [5,29]. The next
stage usually includes temporal filtering. The temporal filtering may include
recurrent neural networks such as LSTM [6,33,35], and temporal convolutional
networks (TCN) such as MS-TCN++ [19] or transformers [25,34].

Automatic workflow analysis of surgical videos has many potential applica-
tions. It may assist in an automatic surgical video summarizing [2,20], progress
monitoring [26], and the prediction of remaining surgery duration [32]. The devel-
opment of robotic scrub nurses also depends on the automatic analysis of surgical
video data [14,30]. In addition, video data is used for the assessment of surgical
skills [3,9,10] and identifying errors [15,23,24].

Traditionally systems are divided into causal and acausal. However, not all
applications require this dichotomic strategy. For example, the prediction of the
remaining surgery duration may tolerate some delay if this delay ensures a more
stable and accurate estimation. On the other hand, a robotic scrub nurse will
require real-time information. In general, any acausal system may be transformed
into a causal system if a sufficient delay is allowed. Where in the extreme case,
the delay would be the entire video. This study aims to find the optimal system,
given a constraint on the amount of delay allowed.

Many studies use Multi-Stage Temporal Convolutional Networks (MS-TCN)
for workflow analysis [19]. It has both causal and acausal implementations. The
network’s number of layers and structure defines the size of its receptive field. In
the causal case, the receptive field depends on past data. On the other hand, in
the acausal case, half of the receptive field depends on future data and half on
the past. Assume a fixed amount of delay T is allowed. A naive approach would
be to use an acausal network with a receptive field 2 · T . However, this limits
the number of layers in the network and may provide sub-optimal results. In
this study, we develop and assess a network with an asymmetric receptive field.
Thus we may develop a network with all the required layers while holding the
constraint on the delay time T . This network will be called Bounded Future MS-
TCN++ (BF-MS-TCN++). We will compare this method to the naive approach
that reduces the receptive field’s size by changing the network’s depth. The
naive approach will be coined Reduced Receptive Field MS-TCN++ (RR-MS-
TCN++). We perform gesture recognition using video from an open surgery
simulator to evaluate our method.

The main contribution of our work is the development of an MS-TCN++
with a bounded future window, which makes it possible to improve the causal
network performance by delaying the return of output at a predetermined time.
In addition, we evaluated a causal and acausal video-based MS-TCN++ for
gesture recognition on the open surgery suturing simulation data.
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2 Related Work

Lea et al. [16] was the first to study TCN’s ability to identify and segment human
actions. Using TCN, they segmented several non-surgical data sets such as 50
Salads, GETA, MERL Shopping, and Georgia Tech Egocentric Activities. They
implemented causal and acausal TCNs and compared their performance on the
MERL data set. The acausal solution provided superior results. They also out-
perform a previous study that uses an LSTM as a causal system and a Bidirec-
tional LSTM as an acausal system. In TeCNO [5] causal Multi-Stage Temporal
Convolutional Networks (MS-TCN) were used for surgical phase recognition.
Two data-sets of laparoscopic cholecystectomy were used for evaluation. The
MS-TCN outperformed various state-of-the-art LSTM approaches. In another
study [29], this work was expanded to a multi-task network and was used for
step and phase recognition of gastric bypass procedures.

In one study, the performance of an acausal TCN was assessed. The analysis
included both non-surgical action segmentation datasets as well as a dataset of
a simulator for robotic surgery [18]. Zhang et al. [36] used a Convolutional Net-
work to extract local temporal information and an MS-TCN to capture global
temporal information. They used acausal implantation to perform Sleeve Gas-
trectomy surgical workflow recognition. Not all studies use a separate network
for capturing temporal information. In Funke et al. [8] a 3D convolutional neu-
ral networks was used. In this study, they used the sliding window approach to
evaluate different look-ahead times.

The use of TCN is not limited to video segmentation. It has been studied
in the context of speech analysis as well [27]. In this context, the relationship
between delay and accuracy has been assessed [28].

3 Methods

3.1 Dataset

Eleven medical students, one resident, and thirteen attending surgeons partic-
ipated in the study. Their task was to place three interrupted instrument-tied
sutures on two opposing pieces of the material. Various materials can simulate
different types of tissues; for example, in this study, we used tissue paper to
simulate a friable tissue and a rubber balloon to simulate an artery. The partici-
pants performed the task on each material twice. Thus, the data set contains 100
procedures, each approximately 2–6 min long. One surgeon was left-handed and
was excluded from this study. Thus, this study includes a total of 96 procedures.
Video data were captured in 30 frames per second, using two cameras, providing
top and side views. In addition to video, kinematic data were collected using
electromagnetic motion sensors (Ascension, trakSTAR). For this study, we only
use the side-view camera. We perform a gesture recognition task, identifying
the most subtle surgical activities within the surgical activity recognition task
family. Six surgical gestures were defined: G0 - nonspecific motion, G1 - Needle
passing, G2 - Pull the suture, G3 - Instrumental tie, G4 - Lay the knot G5 - Cut
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the suture. The video data were labeled using Behavioral Observation Research
Interactive Software (BORIS) [7].

3.2 Architecture

MS-TCN++ [19] is a temporal convolutional network (TCN) designed for video
data activity recognition. The input for this network is a vector of features
extracted from the raw video using a CNN, such as I3D [4]. The video length
is not predetermined. Let us assume that the video is given in 30 frames per
second and contains T frames, namely, T is a parameter of a specific video.
In the following sections, we will describe the different components of the MS-
TCN++ and the modifications made for the BF-MS-TCN++. It should be noted
that the naive approach, RR-MS-TCN++ has the same structure as the acausal
MS-TCN++ and was coined with a unique name to emphasize the limitation on
the receptive field size.

The architecture of MS-TCN++ is structured from two main modules: the
prediction generator and the refinement. For the sake of simplicity, we will first
describe the refinement module structure and then the prediction generator.

Refinement Module: As shown in Fig. 1, the refinement module includes sev-
eral refinement stages, where the output of each stage is the input of the next.
The refinement stage is a pure TCN that uses dilated residual layers (DRL). This
allows the module to handle varying input lengths. To match the input dimen-
sions of the stage with the number of feature maps, the input of the refinement
stage passes through a 1 × 1 convolutional layer. Then these features are fed
into several DRLs where the dilation factor is doubled in each layer. The dila-
tion factor determines the distance between kernel elements, such that a dilation
of 1 means that the kernel is dense. Formally, the dilation factor is defined as
δ(�) = 2�−1 : � ∈ {1, 2, . . . L}, where � is the layer number and L is the total
number of layers in the stage. In MS-TCN++, the DRL is constructed from an
acausal dilated temporal convolutional layer (DTCL), with a kernel size of 3,
followed by ReLU activation and then a 1 × 1 convolutional layer. The input of
the block is then added to the result by a standard residual connection, which
is the layer’s output. To get the prediction probabilities, the output of the last
DRL passes through a prediction head which includes a 1 × 1 convolution, to
adjust the number of channels to the number of classes, and is activated by a
softmax.

Prediction Generation Module: The prediction generator consists of only
one prediction generation stage. The general structure of this stage is similar to
the refinement stage; however, instead of a DRLs, it has a dual dilated residual
layers (DDRLs). Let’s consider layer � ∈ {1, 2, . . . , L}. The input of the DDRL is
entered into two DTCLs, one with a dilation factor of δ1(�) = 2�−1 and the other
with a dilation factor of δ2(�) = 2L−�. Then, the outputs of the two DTCLs are
merged by concatenation of the feature in the channel dimension, followed by a
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Fig. 1. General structure of MS-TCN++. The input is a vector of features (blue). It
composes of multiple stages, where each stage predicts the frame segmentation. The
first stage is the prediction generator (red) and the other are refinement stages (green),
which can be any number (k ≥ 0) of them. The loss is computed over all stages’
predictions. (Color figure online)

1D convolutional layer to reduce the number of channels back to the constant
number of feature maps. This output passes through a ReLU activation and an
additional 1D convolutional layer before the residual connection. For a formal
definition of MS-TCN++ stages and modules, see [19].

Future Window Size Analysis: As MS-TCN++ is a temporal convolu-
tional network with different dilatation among the layers, analyzing the tempo-
ral dependence is not trivial. In order to determine the number of future frames
involved in the output calculation, careful mathematical analysis is required.
Calculating the number of future frames required is equivalent to the output
delay of our system.

In the naive approach, RR-MS-TCN++, the number of layers of the network
governs the receptive field and the future window. The BF-MS-TCN++ is based
on the limitation of the accessible future frames in each temporal convolution;
hence the name Bounded Future. This section aims to analyze both methods
and calculate desired future window.

The input and the output of DRLs and DDRLs (i.e. (D)DRL) have the same
dimensions of Nf × T , where Nf represents the number of feature maps in the
vector encoding the frame and T is the number of frames in the video. We
assume that for every (D)DRL, the vector in the t index represents features that
correspond to the frame number t. However, in the acausal case, the features
of time t can be influenced by a future time point of the previous layer output.
In MS-TCN++, (D)DRL has symmetrical DTCLs with a kernel size of 3. The
layer’s input � is padded by 2×δ(�) zero vectors to ensure the output dimensions
are equal to the input dimensions. A symmetric convolution is created by padding
the input with δ(�) number of zeros vectors before and after it. The result is that
half of each layer’s receptive field represents the past and the other half represents
the future. To obtain a causal solution, all 2× δ(�) zero vectors are added before
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the input. As a result, the entire receptive field is based on the past time. This
method has been used in [5,16].

Let S = {PG,R, Total} be a set of symbols, where PG represents relation
to the prediction generator, R to the refinement stage, and Total to the entire
network. Let Ls : s ∈ S be the number of (D)DRLs in some stage or in the entire
network. The number of refinement stages in the network is NR. Note that we
assume that all refinement stages are identical, and that LTotal = LPG+NR ·LR.
Let the ordered set Ltotal = (1, 2, . . . , LTotal), where � ∈ Ltotal represents the
index of �th (D)DRL in the order it appears in the network. Given integer x, [x]
denotes the set of integers satisfying [x] = {1, · · · , x}.

Definition 1. Let DTCL φ with dilation factor of δ(φ). The Direct Future Win-
dow of a φ is m ∈ [δ(φ)] if and only if the number of the padding vectors after the
layers input is m and number of padding vectors before the vector is 2m − δ(φ).
The function DFW (φ) = m gets a DTCL and returns it’s direct future window.

The definition of a Direct Future Window is shown in Fig. 2.

Fig. 2. Illustration of Direct Future Window of a dilated temporal convolutional layer
(DTCL) with δ = 2, for first (upper part) and second (lower part) timeframes. Blue
dots denote input features, yellow dots denote padding needed for DTCL, and orange
dots denotes the output of DTCL. (Color figure online)

Reduced Receptive Field MS-TCN++ Case: In the DRLs, in the refine-
ment stages, the direct future window is equal to the direct future window of
it’s DTCL. Formally, let � ∈ [LR] a DRL, that contains a DTCL φ. The direct
future window of this layer is given by DFWR(�) = DFW (φ), where the sub-
script R indicates an association with a refinement stage. However, each DDRL
contains two different DTCLs φ1 and φ2, as described in Sect. 3.2. Consider a
DDRL � ∈ [LPG]. The direct future window of this layers is given by Eq. 1.

DFWPG(�) = max{DFW (φ1),DFW (φ2)} (1)
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Definition 2. The Future Window of layer � ∈ Ltotal defined as follows:

FW (�) =
∑

i∈[�]

DFW(i)

Figure 3 shows how direct future windows are aggregated to the future window.

Fig. 3. Illustration of Future Window in a refinement stage with three dilated residual
layers (DRLs).

Based on Definition 2, the future window of the RR-MS-TCN++ network is
defined in Eq. 2.

FWRR(LTotal) =
∑

�∈[LPG]

max{2�−1, 2LPG−�} + NR ·
∑

�∈[LR]

2�−1 (2)

Note that superscript RR indicates that the network is RR-MS-TCN++.
According to Definition 2, Eq. 2 is obtained by summing the prediction genera-
tor and refinement stages separately. In addition, the fact that in the prediction
generator, for every DDRL � ∈ [LPG] there exists two DTCLs φ1, φ2 that satis-
fied DFW (φ1) = 2�−1, and DFW (φ2) = 2LPG−�, yields that the direct future
window of the DDRL is the maximum between these terms, as defined in Eq. 3.
We take the maximum since the direct future window is determined by the
furthest feature in the layer’s input that participates in the calculation.

DFWPG(�) = max{2�−1, 2LPG−�} (3)

and for some DRL � ∈ [LR] in the refinement DFW(�) = 2�−1.

Bounded Future MS-TCN++ Case: Let wmax be a bounding parameter
that bounds the size of the direct future window. We determine that the direct
future window of every DRL � ∈ [LR], in the refinement stage of the BF-MS-
TCN++, is given by Eq. 4.

DFWBF
R (�) = min{wmax, δ(�)} = min{wmax, 2�−1} (4)
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The superscript BF indicates that the network is BF-MS-TCN++ and the
subscript R indicates that this belongs to the refinement stage, where the replace-
ment of R with PG indicates association with the prediction generator.

Figure 4 illustrates how the convolution’s symmetry is broken in the case of
δ(�) > wmax.

Fig. 4. Illustration of a Future Window and asymmetry in padding in a refinement
stage of Bounded Future MS-TCN++ with three dilated residual layers (DRLs) and
wmax = 3. In the last layer, since the dilation factor δ is larger than wmax, the number
of padding vectors (yellow) before and after the sequence is different.

The future window of the refinement stage is given by Eq. 5.

FWBF
R (LR) =

∑

�∈[LR]

DFWBF
R (�) =

∑

�∈[LR]

min{wmax, 2�−1} (5)

For the DDRL � ∈ [LPG] of the prediction generators, the direct future
window is given by Eq. 6

DFWBF
PG(�) = max{min{wmax, 2�−1},min{wmax, 2LPG−�}} (6)

Hence the future window of the prediction generator for a causal network
with delay is given by Eq. 7.

FWBF
PG (LPG)

∑

�∈[LPG]

DFWBF
PG(�) (7)

=
∑

�∈[LPG]

max{min{wmax, δ1(�)},min{wmax, δ2(�)}}

This leads to Eq. 8 which presents the future window for the entire network.

FWBF (LTotal) =
∑

�∈[LPG]

max{min{wmax, 2�−1},min{wmax, 2LPG−�}} (8)

+NR ·
∑

�∈[LR]

min{wmax, 2�−1}
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Note that a network with wmax = 0 is a causal network, which may have a
fully online implementation.

3.3 Feature Extractor Implementation Details

As a first step, we trained a (2D) EfficientNetV2 medium [31] in a frame-wise
manner; namely, the label of each frame is its gesture. The input was video
frames with a resolution of 224 × 224 pixels. For each epoch, we sampled in
a class-balanced manner 2400 frames, such that each gesture appears equally
among the sampled frames. The frames were augmented with corner cropping,
scale jittering, and random rotation. The network was trained for 100 epochs,
with a batch size of 32. Cross-entropy loss was used. All the experiments were
trained using an Adam optimizer, with an initial learning rate of 0.00025 that
was multiplied by a factor of 0.2 after 50 epochs, and decay rates of β1 = 0.9
and β2 = 0.999. The code of this part is based on the code provided by Funke et
al. [8]. After the individual training of each split, the one before the last linear
layer was extracted and used as a feature map for the MS-TCN++.

4 Experimental Setup and Results

4.1 Experimental Setup

In order to evaluate the effect of the delay on the performance of online algo-
rithms we compare two methods, the naive RR-MS-TCN++ and our BF-
MS-TCN++. To this aim, we performed a hyperparameter search. For both
networks, the number of refinement stages and the number of (D)DRLs inside
the stages affect the total receptive field and hence the future window. The
uniqueness of the BF-MS-TCN++ is that the future window can be limited
by the bounding parameter Wmax as well, regardless of the values of the other
parameters. In our search, we forced the number of DRLs in the prediction gen-
erator to be equal to the number of DRLs in the refinement stages, namely
LPG = LR = L.

To this end, for the RR-MS-TCN++ network, the number of DRLs L
included in the search was in the range of {2, 3, 4, 5, 6, 8, 10}. The number of
refinement stages NR was in the range of {0, 1, 2, 3}. For the BF-MS-TCN++,
the search included two grids. In the first grid, the values of wmax were in the
range of {0, 1, 2, 3, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 20}, where 0 represents a online
algorithm. The number of DRLs L was in the range of {6, 8, 10}, and the number
of refinement stages NR was in the of {0, 1, 2, 3}. In the second grid, the values
of wmax were in the range of {1, 3, 7, 10, 12, 15, 17}. The number of DRLs L was
in the range of {2, 3, 4, 5}, and the number of refinement stages NR was in the of
{0, 1, 2, 3}. In total, we performed 320 experiments. The rest of the hyperparam-
eters remained constant, where the learning rate was 0.001, dropout probability
was 0.5, the number of feature maps was 128, batch size of 2 videos, the num-
ber of epochs was 40, and the loss function was the standard MS-TCN++ loss
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with hyperparameters τ2 = 16 and λ = 1. All experiments were trained with
an Adam optimizer with the default parameters. Training and evaluation were
done using a DGX cluster with 8 Nvidia A100 GPUs.

4.2 Evaluation Method

We evaluated the models using 5-fold cross-validation. All videos of a specific
participant were in the same group (leave-n-users-out approach). The videos
assigned to the fold served as the test set of that fold. The remaining participants’
videos were divided into train and validation sets.

The validation set for fold i ∈ [5] consists of 3 participants from fold (i +
1) mod 5. Namely, for each fold, 12 videos were used as a validation set (3
participants × 4 repetitions). With this method, we create unique validation
sets for each fold. The stopping point during training was determined based on
the best F1@50 score on the validation set. The metrics were calculated for each
video separately, so the reported results for each metric are the mean and the
standard deviation across all 96 videos when they were in the test set.

4.3 Evaluation Metrics

We divide the evaluation metrics into two types: segmentation metrics and frame-
wise metrics. The segmentation metrics contain F1@k where k ∈ {10, 25, 50} [16],
and edit distance [17]. While the frame-wise metrics included Macro-F1 [12] and
Accuracy. We calculated each metric for each video and then averaged them
across all videos.

F1@k: The intersection over union (IoU) between the predicted segments and
the ground truth was calculated for each segment. If there is a ground truth
segment with IoU greater than k, that ground truth segment is marked as true
positive and is not available for future use. Otherwise, the predicted segment
has been defined as a false positive. Based on these calculations, the F1 score
was determined.

Segmental Edit Distance: The segmental edit distance is based on the Lev-
enshtein distance, where the role of a single character is taken by segments of
the activity. The segmental edit distance was calculated for all gesture segments
in the video and normalized by dividing it by the maximum between the ground
truth and prediction lengths.

Frame-Wise Metrics: We calculated the Accuracy and the multi-class F1-
Macro scores as used in [11].

4.4 Experimental Studies

We performed four studies: (1) Baseline estimation; (2) Performance comparison;
(3) Network hyperparameter importance; and (4) Competitive analysis.
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(1) First, we try to estimate the best fully casual and acausal networks, which
will serve as a baseline.

(2) In the Performance comparison study we compare directly between the per-
formance of Reduced Receptive Field MS-TCN++ and our Bounded Future
MS-TCN++, with respect to Future Window size. We defined 12 Future
Window intervals: [0, 0.001, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,∞] seconds.
For each method separately, we divide the networks into these intervals
considering the Future Window. A representative value of each interval was
selected based on the highest results within each interval. Notice that a few
intervals may be left empty.

(3) In the third study, we analyzed the marginal performance and marginal
importance of the investigated hyperparameters on the F1@50 using the
fANOVA method [13]. The receptive field is determined by the hyperparam-
eters of our network structure. To understand the advantages and weaknesses
of each of our methods, it’s essential to assess the importance and trends of
the hyperparameters.

(4) In the Competitive analysis study, we have two aims. First, it is to try to
reveal what is the required delay to approach the best offline performance.
Next, we aim to determine which method is more advantageous at which
delay values. To this end, we need to define two new metrics: Global and
local competitive ratio. In this paper, the Competitive-Ratio, inspired by its
definition in theoretical analysis of online algorithms [1], will be the ratio
between the performance of the causal (with delay) algorithm and the best
acausal network. In addition, for each interval, we define the Local Com-
petitive Ratio as the ratio between the best BF-MS-TCN++ and RR-MS-
TCN++ networks in that interval.

4.5 Results

Table 1 lists the results of the baseline estimation study. The feature extractor
performed relatively well in a frame-wise manner with an accuracy of 82.66
and F1-Macro of 79.46. Both the causal and acausal networks improve the
accuracy and F1-Macro scores, however, the acausal network has a significant
effect in both frame-wise metrics while in the causal case only the accuracy has
been improved significantly. The Causal case has the best results in all metrics.
Figure 5 shows a performance comparison study, where the trend is similar for
all metrics, where BF-MS-TCN++ outperforms RR-MS-TCN++, especially for
small delay values.

In the feature importance study (Fig. 6), wmax was found to have negligi-
ble importance. Other hyperparameters perform better when their values are
increased. Lastly, the Competitive analysis results are illustrated in Fig. 7. In
the global analysis (left) plot, it is evident that BF-MS-TCN++ has 80% of the
performance of the best offline algorithm after only one second and 90% after
2 1
3 s. In the local analysis (right) plot, it is seen clearly that for future windows

smaller than one second the BF-MS-TCN++ is significantly preferred over the
RR-MS-TCN++.
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Table 1. The Feature extractor EfficientNet v2, causal and acausal MS-TCN++ results
on a gesture recognition task. Bold denotes best results for metric.

F1-Macro Accuracy Edit distance F1@10 F1@25 F1@50

EfficientNet v2 79.46 ± 8.10 82.66 ± 6.03 – – – –

Causal MS-TCN++ 80.42 ± 8.67 85.04 ± 5.77 64.69 ± 12.36 74.30 ± 10.85 72.34 ± 12.04 64.96 ± 14.07

Acausal MS-TCN++ 83.85 ± 8.90 86.94 ± 6.50 84.65 ± 9.25 88.66 ± 7.79 87.13 ± 9.03 80.01 ± 13.21

Fig. 5. performance-delay trade-off. Comparison of best BF-MS-TCN++ and RR-MS-
TCN++ networks, in respect to future window size. The plots show the performance
in terms of Accuracy, Edit distance, F1-Macro, and F1@k, k ∈ {10, 25, 50}.

Fig. 6. fANOVA analysis of BF-MS-TCN++. Marginal importance (leftmost graph)
and estimated marginal F1@50 on architecture hyperparameters: number of refinement
stages, number of (D)DRLs in every stage, the Future Window of the network, and the
value of wmax.
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Fig. 7. Competitive ratio analysis between BF-MS-TCN++ and RR-MS-TCN++, for
best performing network (left) and best performing with respect to future window
(right) vs time [s] (X-Axis). Competitive ratio larger than 1 means that BF-MS-
TCN++ performs better than RR-MS-TCN++. The dotted black line denotes the
baseline (No competitive advantage).

5 Discussion and Conclusions

Automated workflow analysis may improve operating room efficiency and safety.
Some applications can be used offline after the procedure has been completed,
while other tasks require immediate responses without delay. Nevertheless, some
applications require real-time yet may allow a delayed response, assuming it
improves accuracy.

Studies showed that there is a performance gap between causal and acausal
systems [36]. To choose the optimal network that compromises between delay
and performance, it is necessary to investigate how the delay affects perfor-
mance. Funke et al. [8] investigated the effect of delay on a 3D neural network.
They found that adding delay improves the system’s performance, primarily in
segmentation metrics such as segmental edit distance and F1@10. Nevertheless,
today these networks are considered relatively weak compared to the newer activ-
ity recognition networks that are typically based on transformers and temporal
convolutional networks. In these algorithms, designing a future window is not
trivial as in the 3D convolutional case.

In this work, we developed and analyzed different variations of the MS-
TCN++, and studied the trade-off between delay and performance. This study
sought to verify the intuition that adding a relatively small delay in the causal
system’s response, which usually operates in real-time, could also help bridge the
causal-acausal gap in MS-TCN++. We examined this hypothesis in two meth-
ods. First, we tried to examine reducing the network’s depth, thus the receptive
field was reduced, with half of it being the future, namely Reduced Receptive
field MS-TCN++, RR-MS-TCN++. We expected that this method would not
work well for small future window sizes because reducing the window size in this
method means a significant decrease in the number of layers or even eliminating
of few refinement stages. Li et al. [19], showed these parameters have a crucial
effect on performance. Therefore we developed the BF-MS-TCN++. This net-
work involved applying a convolution in which the target point in the previous
layer is not in the middle of the convolution’s receptive field. This way, we bound
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the future window of the entire network even in large architectures with a small
delay. With this method, different architectures can be implemented for approx-
imately the same delay values. Thus in our analysis, several time intervals were
defined for both methods, and we selected the network with the best results to
represent each interval.

According to Fig. 5, the performance comparison study illustrates the trade-
off between performance and delay, considering all metrics in both methods.
As seen in Table 1, the gap between causal and acausal networks is much more
prominent in the segmentation metrics than in the frame-wise metrics. Similarly,
in Fig. 5 and Fig. 7, these metrics exhibit a stronger trade-off effect. Furthermore,
BF-MS-TCN++ outperforms RR-MS-TCN++ especially when small delays are
allowed. In the left image of Fig. 7, a future window of 21

3 s achieves more than
90% of the best offline network. Namely, getting close to an offline network’s
performance is possible even with a relatively small delay.

The fANOVA test showed, in Fig. 6, that the number of (D)DRLs and the
number of refinement stages are the most important hyperparameters for opti-
mizing performance, even more than the total delay. Where increasing these
hyperparameter values tends to improve estimated marginal performance. Thus
our BF-MS-TCN++, which allows the design of larger networks with that same
delay factor, takes advantage of this fact. Another interesting finding is that the
value of wmax barely affects the outcome (Fig. 6), whereas the total future delay
plays a pivotal role. Thus, we conclude that minimizing the value of wmax for
designing larger networks is an acceptable approach.

This study has a few limitations. First, it has been evaluated using only one
data set. In addition, only data from surgical simulators were analyzed. Larger
data sets, including data from the operating room, should be analyzed in the
future.

The algorithms presented in this study are not limited to the surgical domain.
Online with delay activity recognition is relevant to many other applications
that evaluate human performance, even outside the surgical field. Therefore,
this study lays the foundations for a broader study on the relationship between
accuracy and delayed response in video-based human activity recognition.
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