
ExSwin-Unet: An Unbalanced Weighted
Unet with Shifted Window and External
Attentions for Fetal Brain MRI Image

Segmentation

Yufei Wen1(B), Chongxin Liang2, Jingyin Lin2, Huisi Wu2, and Jing Qin3

1 South China University of Technology, Guangzhou, China
201930034695@mail.scut.edu.cn

2 Shenzhen University, Shenzhen, China
{2060271074,2110276229}@email.szu.edu.cn, hswu@szu.edu.cn
3 The Hong Kong Polytechnic University, Hung Hom, Hong Kong

harry.qin@polyu.edu.hk

Abstract. Accurate fetal brain MRI image segmentation is essential
for fetal disease diagnosis and treatment. While manual segmentation is
laborious, time-consuming, and error-prone, automated segmentation is
a challenging task owing to (1) the variations in shape and size of brain
structures among patients, (2) the subtle changes caused by congeni-
tal diseases, and (3) the complicated anatomy of brain. It is critical to
effectively capture the long-range dependencies and correlations among
training samples to yield satisfactory results. Recently, some transformer-
based models have been proposed and achieved good performance in seg-
mentation tasks. However, the self-attention blocks embedded in trans-
formers often neglect the latent relationships among different samples.
Model may have biased results due to the unbalanced data distribu-
tion in the training dataset. We propose a novel unbalanced weighted
Unet equipped with a new ExSwin transformer block to comprehensively
address the above concerns by effectively capturing long-range depen-
dencies and correlations among different samples. We design a deeper
encoder to facilitate features extracting and preserving more semantic
details. In addition, an adaptive weight adjusting method is implemented
to dynamically adjust the loss weight of different classes to optimize
learning direction and extract more features from under-learning classes.
Extensive experiments on a FeTA dataset demonstrate the effectiveness
of our model, achieving better results than state-of-the-art approaches.

Keywords: Fetal brain MRI images · Transformer · Medical image
segmentation

1 Introduction

Infancy is the origination stage of everyone’s life, but some infants, unfortunately,
suffer from congenital diseases and severe congenital diseases may lead to the
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Fig. 1. Samples of fetal brain MRI segmentation dataset

death of infants [15]. In this regard, the timely discovery and treatment of infant
congenital diseases are significant. For those unfortunate fetuses with congenital
diseases, fetal brain MRI results are especially helpful to study the neuro devel-
opment of the fetus and aid fetal disease diagnosis and treatment [13,24,25].
When conducting fetal brain analysis, precise segmentation of crucial structures
in MRI images is essential. The fetal brain MRI images are complex and many
congenital diseases result in subtle changes in brain tissues [4,6,28]. Thus, accu-
rate segmentation of these tissues and structures plays a decisive role in diag-
nosis and treatment. Manual segmentation is quite laborious, time-consuming,
and error-prone. Therefore, automatic segmentation of fetal brain MRI images
is highly demanded in practice (Fig. 1).

Recent years, convolutional neural networks (CNNs) based segmentation
models have dominated in medical image computing and achieved remarkable
success [3,8,18,21,27]. They apply convolution kernel to perform convolution
operations and extract features from local input patches and modularize repre-
sentations while efficiently utilizing data. However, it is still difficult for these
models to precisely segment brain tissues from fetal brain MRI images to cap-
ture the subtle changes in different brain tissues. One of the main concerns is
the intrinsic locality of convolution operation, which causes CNN-based models
difficult to extract long-range semantic information to enhance the segmentation
performance in a global view [2]. On the other hand, a newly proposed architec-
ture, namely transformer [23], has achieved great success in the natural language
processing domain with its effective self-attention mechanisms. It has been intro-
duced to the vision domain [5] and is widely employed in many computer vision
tasks. It performs excellently in the CV area, surpasses the CNN-based model
in some areas, and shows that a vigorous model can be constructed with a
transformer. Recently, Swin transformer [17] has been proposed and performs
well in image classification and detection, while the Swin-Unet [1] has shown its
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powerful capability in image segmentation. However, the self-attention mecha-
nism embedded in transformers often ignores the correlations among different
samples, while correlations between different samples are essential for image
segmentation. And Swin transformer structure brings about training instability
when changing the window size of the transformer block. In addition, in medical
segmentation tasks, the model often confronts limited and biased labeled data
due to the limitation of the dataset, leading to unbalanced training and results.

We propose a novel unbalanced weighted Unet equipped with a new ExSwin
transformer block for fetal brain MRI image segmentation in order to effectively
capture long-range dependencies and correlations among different samples to
enhance the segmentation performance. The ExSwin transformer block is com-
posed of the window attention block [16] and the external memory block based
on the external attention scheme [10]. The window attention block is responsible
for local and global feature representation learning, while the external memory
block combines different intra-samples’ features with its two external memory
units to reduce the information loss due to dimensional reduction and gain induc-
tive bias information of the dataset. Furthermore, we design a special unbal-
anced Unet structure where we adopt a larger encoder size to facilitate features
extracting and preserving deeper semantic information. In addition, an adaptive
weight adjusting method is implemented to dynamically adjust the loss weight of
different classes, which contributes to optimizing model learning direction and
extracting more features from the under-learning classes. Since our dataset is
from FeTA 2021 challenge, we implement comparison with several participators’
networks, such as Unet, Res-Unet, and Trans-Unet, where our model has a bet-
ter performance. Quantitative experiments and ablation studies on the dataset
demonstrate the effectiveness of the proposed model, achieving better results
than state-of-the-art approaches.

2 Method

The framework of our unbalanced ExSwin-Unet is as shown in Fig. 2. Our Ex-
Swin Unet mainly consists of encoder, bottleneck, decoder and skip connections
between encoder and decoder blocks. In our encoder module, input images are
divided into non-overlapping patches with patch size 4×4 and the feature dimen-
sion of each patch becomes 16 times. Moreover, the feature dimension is pro-
jected to a selected dimension C through a linear embedding layer. After that, we
continuously apply ExSwin blocks and patch merging layers alternately where
ExSwin blocks grasp feature representation and patch merging layers increase
feature dimension for down-sampling. Specifically, ExSwin block size is even since
it needs to perform window and shift window attention alternately to capture
local and global features of the image. Our ExSwin blocks are able to extract
high-level features from input images. Then we apply two ExSwin blocks as the
bottleneck block to enhance model convergence ability where the input feature
dimension and output feature dimension are the same. On the other hand, in
the decoder module, we apply patch expanding layers with multiple ExSwin
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Fig. 2. Overview of our proposed ExSwin-Unet. In ExSwin transformer block, W/SW-
A is window and shifted window attention module [17]; LN, DN BN represent layer
normlization, double normlization [9] and batch normlization respectively; Mk and Mv
are external learnable key and value memory respectively; Gelu is the Gaussian error
linear unit.

blocks to perform features up-sampling hierarchically. Skip connections between
same-level ExSwin blocks are applied to complement detailed information loss
during the down-sampling process and retain more high-resolution details con-
tained in high-level feature maps. At the end of the decoder, a particular patch
expanding layer is added to conduct 4× up-sampling where feature resolution is
mapped to input resolution. In the end, the up-sampled features will be mapped
to segmentation predictions through a linear projection layer.

2.1 Window-Based Attention Block

Based on the shifted window mechanism and hierarchical structure, the Swin
transformer is able to extract both local and global features of the input images.
Since our Feta dataset samples are 2D images generated from 3D images, spatial
information can be easily lost. In order to make up for the loss of spatial infor-
mation and improve the feature fusion among different samples, we propose a
new transformer block named as ExSwin transformer block. The ExSwin block
is constructed with window-based attention and external attention block. The
structure of our ExSwin block is shown in Fig. 2. The operation of the ExSwin
block can be formulated as follows:
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Xi1 = W/SW-A (LN (Xi)) + Xi,

X̂i = LN (Xi1) ,

X̂i1 = EA
(
Conv

(
X̂i

))
(1)

X̂i2 = BN
(
EA

(
Conv

(
X̂i1

)))
+ X̂i1,

Yi = LN
(
Gelu

(
X̂i2

))

where Xi, Yi ∈ R
C×H×W represent the input features and output features of the

ith ExSwin transformer block; W/SW-A represents window and shifted window
attention module; EA is the external attention module.

Adjustive Window Attention Block. In the window attention block, we
apply window-based multi heads self-attention (W-A) module and shift window-
based multi-head self-attention (SW-A) [17]. The window-based and shifted
window-based multi-head self-attention module are applied in the two successive
transformer blocks. Window-based multi-head self attention calculates attention
in each window to capture local window features. On the other hand, shifted
window-based multi-head self-attention, with its shifting mechanism, calculates
attention to mix cross-window features and capture global features. The local
self-attention can be formulated as:

Attention(Q,K, V ) = Softmax
(

QKT

√
d

+ B

)
V (2)

where Q,K, V ∈ R
M2×d represents the query, key and value matrices; M2

denotes the number of patches in a window and d denotes the dimension of
the query or key; B is the relative position bias and its values are taken from
the bias matrix B̂ ∈ R

(2M−1)×(2M+1) since the relative position along each axis
lies in the range of [−M + 1,M − 1].

Post Normalization. When training the window attention-based model, we
may probably encounter training instability since activation values in the net-
work deep layers are quite low [16]. To ease the unstable situation, post normal-
ization, shown in Fig. 3, is applied in attention blocks and adds an additional
layer normalization unit before the external attention block.

Scaled Cosine Attention. While calculating the self-attention in window
attention and shifted window attention module, the attention map in some blocks
or heads dominated other features, which leads to biased feature extraction.
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Fig. 3. The Pre-norm is transformed to Post-norm

We can replace the inner product similarity with cosine similarity to improve
the problem:

Similarity (qi,kj) = cos (qi,kj) /τ + Bij (3)

where Bij is the relative position bias between pixel i and j; τ is a learnable
scalar, non-shared across heads and layers. Since the cosine function is equiva-
lently normalized, the substitution can alleviate some inner product domination
situation.

2.2 External Attention Block

In the external attention block, we design a multi-head external attention mod-
ule that applies two convolution layers to grasp feature representation and two
external learnable memory units to capture spatial information and sample affin-
ity between different samples. The external attention block applies an exter-
nal attention mechanism, which adopts two external memory units Mk and
Mv to restore the spatial information between adjacent slices and store cur-
rent global information. The external attention module is designed for capturing
intra-sample features and it is capable of learning more representative features
from input samples. The external attention block structure is as shown in Fig. 4
and the pseudo-code of our multi-head external attention module is as shown in
Algorithm 1.

Since, multi-head attention and convolution mechanism are complementary,
we apply two convolution layers in the external attention block. The first con-
volution layer kernel size is 1 × 1 in order to aggregate cross-channel features.
In order to obtain a useful complement to the attention mechanism, the second
convolution layer kernel size is 3 × 3 with padding size 1. The 3 × 3 convolution
layer captures the local information with a larger receptive field and enhances
grasping the feature representation [11].
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Fig. 4. The framework of external attention block which applies multi-head calculation.
M1 and M2 are multiple convolution 1D kernels to store spatial information.

Algorithm 1. The pseudo code of the multi-head attention block.
Input: X̂in, a feature vector with shape [B, N, C] # (batch size, pixels, channels)
Parameter: H, the number of heads
Output: ˆXout, a feature vector with shape [B, N, C]

Query = Conv(X̂in) # kernel size = 1 × 1
Query = Query.view(B , N, H, C/H) # shape = [B,N,H,M ]
Query = Query.permute(0 ,2 ,1 ,3 ) # shape = [B,H,N,M ]
Attn = Mk(Query) # shape = [B,H,N,M ]
# Double normalization
Attn = Softmax(Attn, dim = 2)
Attn = L1Norm(Attn, dim = 3)
Out = Mv(Attn) # shape = [B,H,N,M ]
Out = Out.permute(0 ,2 ,1 ,3 ) # shape = [B,N,H,M ]
Out = Out.view(B , N, C) # shape = [B,N,C]

ˆXout = Conv(Out) # kernel size = 3 × 3, stride = 1

By utilizing two external memory units to recover and store the spatial infor-
mation of slices in a 3D sample, our external attention block can be viewed as
the dictionary for the whole dataset to calculate attention among 2D slices. The
external attention module benefits model learning representative features and
alleviates feature loss of dimension reduction process.

2.3 Unbalanced Unet Architecture

In the encoder-decoder unet structure, the sizes of Ex-Swin blocks in the encoder
and decoder are different. The Ex-Swin blocks size are [2, 2, 6] and [2, 2, 2] for the
encoder and decoder module, respectively. The idea of hyper-parameters setting
is inspired by Swin-T model and our experimental results also have proven its
effectiveness against balanced Unet structure. The encoder block with deeper size
Ex-Swin blocks is able to obtain a better feature extraction and enhance model
ability of preserving broad contextual information. The decoder block with a
thinner size saves calculation resources and also benefits model convergence.

2.4 Adaptive Weighting Adjustments

In medical segmentation tasks, we may encounter a biased data segmentation
training result due to the limited and unbalanced labeled data situation. To
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alleviate the biases and increase model performance, we propose an adaptive
weighting adjustment strategy on loss function, which conducts model learning
on under-learning samples and also prevents the model from overwhelming the
well-perform samples during the model training process. In our adaptive weight-
ing adjustment mechanism, the weight value vc for the class c is calculated by:

vc =
1

Nc

Nc∑
i=1

|prec|
|truc| (4)

where |prec| is prediction pixels that match the ground truth pixels for class c
and the |truc| is the total number of class c in the corresponding ground truth.
And the adaptive weight wc can be calculated by the weight value:

wc = Softmax(1 − vc) (5)

where the class-wise weight will be updated for every epoch training process. In
that case, a suitable weight is generated to enable model adjusting its learning
direction and alleviating the biased segmentation result.

2.5 Dual Loss Functions

In order to improve segmentation accuracy and learning speed, we define a
dual loss function. Since we adopt an adaptive weight adjusting method, loss
is obtained by calculating weighted loss for each class by taking the average
value. Assume that wc is the weight for each class and C is the total number of
classes.

Multi-class Cross Entropy Loss. Cross entropy loss measures the difference
between two probability distributions. It fastens model convergence and reduces
model training resource consumption.

Lce = − 1
C

×
C∑
i=1

wc × lc log (pc) (6)

where pc is the segmentation probability for class c in the output, lc is the
identification for class c which ranges 0 or 1 and wc is adaptive weight for class c.

Square Dice Loss. Dice loss measures similarity of two distributions and we
apply it to calculate the similarity between output prediction and the ground
truth. It conduces to improve model performance and increase accuracy.

Ldice =
1
C

×
C∑
i=1

wc ×
⎛
⎝1 − 2 × ∑

pixels ypred ytrue
∑

pixels

(
y2
pred + y2

true

)
⎞
⎠ (7)

where
∑

pixels represents the sum of pixel value, ypixels and ytrue are segmenta-
tion prediction and segmentation ground truth respectively and wc is adaptive
weight for class c.
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Table 1. Quantitative comparison results of segmentation results on feta2021 dataset.
The table shows different methods segmentation prediction with % unit. All methods
are evaluated by Dice, Jaccard, Sensitivity and Specificity coefficient.

Method Year Dice Jaccard SE SP Para(M) Flop(GMac)

Attn-Unet [19] 2018 88.6 80.5 88.9 99.7 34.9 66.6

Segmenter [22] 2021 87.5 78.6 87.3 99.7 102.3 25.8

Swin-Unet [1] 2021 88.7 80.7 89.1 99.7 34.2 9.6

Utnet [7] 2021 89.1 81.1 88.9 99.8 35.1 49.7

Trans-Unet [2] 2021 89.2 81.3 89.3 99.8 105.3 35.2

Ours 2022 90.1 82.3 90.2 99.8 50.4 11.3

Fig. 5. Segmentation visual results of different methods on FeTA2021 dataset.

Total Loss. The total loss is linear combination of average weighted CE loss
and average weighted DICE loss with coefficient α.

Ltotal = α × 1
N

×
N∑
i=1

Lce + (1 − α) × 1
N

×
N∑
i=1

Ldice (8)

3 Experimental Results

3.1 Datasets

The dataset is Fetal Brain Tissue Annotation and Segmentation Challenge
released in 2021 [20]. The fetal brain MRI was manually segmented into 8 dif-
ferent classes with in-plane resolution of 0.5mm × 0.5mm. Dataset includes 80
3D T2-weighted fetal brain and reconstruction methods were used to create a
super-resolution reconstruction of the fetal brain. We divided the dataset into 60
training set and 20 testing set. In order to save time and energy consumption,
we transform dataset to about 2D images with size 256 × 256.
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3.2 Implement Details

We train and test our model on a single NVIDIA RTX 2080Ti (11 GB RAM).
The ExSwin-Unet model is trained on Python 3.7 and Pytorch 1.7.0. In order
to increase data diversity and avoid data overfitting, we applied simple data
augmentation flipping and rotation on dataset. We adopt weighted dual loss
function and employ lookahead optimizer [26] with Adam optimizer [12] as inner
optimizer. Moreover, we experimentally set the coefficient of total loss α = 0.4
to obtain a relatively better performance. During the model training period, the
initial learning rate is 1e−4 and loss decay for each epoch. We trained the model
for 200 epochs with a batch size of 16.

3.3 Comparison with SOTA Methods

To evaluate the performances of our method, we compared our network with
five state-of-the-art methods including Segmenter [22], Attn-Unet [19], Utnet [7],
Swin-Unet [1] and Trans-Unet [2]. The compared models consist of four trans-
former based model structures and a CNN based models, namely Attention Unet.
We implemented the comparison under the same computational environments
without using any pre-trained models. Both visual and statistical comparisons
are conducted using the same datasets and with same data processing method.
The statistical comparison results are shown in Table 1 and visualization results
are shown in Fig. 5.

Our model with its unique features generally outperforms other SOTA meth-
ods on dice and jaccard score and cost less calculation consumption. We save 50%
parameters than Trans-Unet and achieve a better segmentation performance.
Visually compared with other segmentation methods in the Fig. 5, our model
also outperforms on segmenting fetal tissue with different scales and irregular
shapes. Demonstrating that the proposed ExSwin-Unet is capable to improve
the segmentation performance.

3.4 Ablation Studies

In order to demonstrate the effectiveness of the proposed components, we con-
duct ablation studies with different components and unbalanced structure. The
component ablation experiment results are as shown in Table 2 and the attention
hotspots of different methods are as shown in Fig. 6. To illustrate the effectiveness
of our unbalanced structure, we conducted ablation studies on the unbalanced
structure as shown in Table 4.

As shown in the Table 2, unbalanced Unet structure benefits feature learning
process with its larger encoder size. The model with the external attention unit is
able to combine different intra-sample features and mitigate spatial information
loss. The adaptive loss alleviates model imbalance class under-learning problems.

As shown in Table 3, we further implement comparison with focal loss [14],
a typical class imbalance loss, to verify the effectiveness of our adaptive loss
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Table 2. Ablation studies result on FeTA2021 dataset. The table shows different meth-
ods segmentation prediction dice level with % unit. ECF, GM, WM, Ve, Ce, DGM
and Br are 7 segmented brain tissues representing External Cerebrospinal Fluid, Grey
Matter, White Matter, Ventricles, Cerebellum, Deep Grey Matter, Brainstem, respec-
tively. Specially, except for the first Swin-Unet method is balanced, others structure are
unbalanced Unet structure version with encoder size [2, 2, 6] and decoder size [2, 2, 2].

Method Mean ECF GM WM Ve Ce DGM Br

Swin-Unet(Balanced) 88.7 89.9 79.9 92.7 91.3 88.4 88.3 89.5

Swin-Unet(Unbalanced) 89.2 90.7 80.8 93.3 91.7 89.3 88.9 89.8

Swin-Unet+Adaptive 89.5 90.5 82.5 93.6 91.5 89.0 89.2 89.7

ExSwin-Unet 89.7 91.3 81.4 93.8 92.1 89.4 89.6 90.4

ExSwin-Unet+Adaptive 90.1 91.2 82.9 94.2 92.3 89.8 89.9 90.2

Table 3. Ablation studies result on FeTA2021 dataset. The table shows different meth-
ods segmentation prediction dice level with % unit. ECF, GM, WM, Ve, Ce, DGM and
Br are 7 segmented brain tissues representing External Cerebrospinal Fluid, Grey Mat-
ter, White Matter, Ventricles, Cerebellum, Deep Grey Matter, Brainstem, respectively.

Method Mean ECF GM WM Ve Ce DGM Br

Swin-Unet+Focal 88.6 90.1 81.7 93.3 90.8 87.3 87.9 89.4

Swin-Unet+Adaptive 89.5 90.5 82.5 93.6 91.5 89.0 89.2 89.7

ExSwin-Unet+Focal 89.3 90.6 82.0 93.5 91.7 88.7 89.0 89.9

ExSwin-Unet+Adaptive 90.1 91.2 82.9 94.2 92.3 89.8 89.9 90.2

Fig. 6. Multiple classes attention hotspot of different methods. (a)–(e) are the ablation
experiment methods balanced Swin-Unet, unbalanced Swin-Unet, unbalanced Swin-
Unet+Adaptive, unbalanced ExSwin-Unet and unbalanced ExSwin-Unet+Adaptive
correspondingly.
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Table 4. Ablation studies on unbalanced Unet architecture. The mean dice is calcu-
lated through five-fold cross-validation to verify our method’s effectiveness.

Method Encoder size Decoder size Mean Dice ± std

ExSwin-Unet [2, 2, 6] [2, 2, 6] 89.5 ± 0.349

ExSwin-Unet [2, 2, 2] [2, 2, 2] 89.7 ± 0.193

ExSwin-Unet [2, 2, 6] [2, 2, 2] 90.1± 0.252

Fig. 7. Visual segmentation results of some failure predicting cases.

method. The results demonstrate the our method effectiveness, where our adap-
tive weighted loss function benefits model learning ability by grasping informa-
tion of under-learning classes and improving overall performance.

The ablation studies on unbalanced Unet structure is shown in the Table 4,
demonstrating the effectiveness of unbalanced Unet structure. With a lager
encoder size, our model can achieve a better performance than two other bal-
anced models. The experiment indicates that the unbalanced structure benefit
model feature extraction process and improve segmentation result.

4 Discussions and Limitations

Through the above ablation studies and comparative experiments, we design an
effective 2D-based segmentation network with external attention to implement
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segmentation tasks on 3D image slices. Our purpose is to discover intra-sample
relationships to alleviate spatial information loss and benefit the feature learn-
ing process. The external attention module achieves this goal, and experiments
demonstrated its effectiveness. Moreover, we discover that balanced Unet struc-
ture may not be necessary for Unet framework where unblanced Unet can obtain
a better performance than balanced Unet. On the other hand, our method still
has some limitations. As shown in Fig. 7, our model fails to achieve correct pre-
dictions on some small scales.

5 Conclusion

In this paper, we present a novel unbalanced weighted Unet equipped with a new
ExSwin transformer block to improve fetal brain MRI segmentation results. The
ExSwin transformer is composed of shift-window attention and external atten-
tion module. The ExSwin transformer block not only can grasp essential sample
features representation, but it also is able to capture intra-sample correlation
and spatial information between different 3D slices. And the Unet is unbalanced
where the encoder has a larger size to facilitate the feature extracting process.
Furthermore, we introduce an adaptive weight adjustment strategy to improve
biased data segmentation situations. The quantitative comparison experiments
and ablation studies demonstrate the well performance of our proposed model.
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