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Abstract. Introduction: Blood vessels can be non-invasively visual-
ized from a digital fundus image (DFI). Several studies have shown an
association between cardiovascular risk and vascular features obtained
from DFI. Recent advances in computer vision and image segmentation
enable automatising DFI blood vessel segmentation. There is a need for a
resource that can automatically compute digital vasculature biomarkers
(VBM) from these segmented DFI. Methods: In this paper, we intro-
duce a Python Vasculature BioMarker toolbox, denoted PVBM. A total
of 11 VBMSs were implemented. In particular, we introduce new algorith-
mic methods to estimate tortuosity and branching angles. Using PVBM,
and as a proof of usability, we analyze geometric vascular differences
between glaucomatous patients and healthy controls. Results: We built
a fully automated vasculature biomarker toolbox based on DFI segmen-
tations and provided a proof of usability to characterize the vascular
changes in glaucoma. For arterioles and venules, all biomarkers were sig-
nificant and lower in glaucoma patients compared to healthy controls
except for tortuosity, venular singularity length and venular branching
angles. Conclusion: We have automated the computation of 11 VBMs
from retinal blood vessel segmentation. The PVBM toolbox is made open
source under a GNU GPL 3 license and is available on physiozoo.com
(following publication).

Keywords: Digital fundus images - Digital vascular biomarkers -
Glaucoma -+ Retinal vasculature

1 Introduction

According to the National Center for Health Statistics, cardiovascular diseases
(CVD), including coronary heart disease and stroke, are the most common cause
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of death in the USA [35]. Since the beginning of the 20th century, researchers
have shown that retinal microvascular abnormalities can be used as biomark-
ers of CVD [15,16,23]. Retinal vasculature can be non-invasively assessed using
DFTs, which can be easily obtained using a fundus camera. Consequently, retinal
vascular features obtained from DFI may be used to characterize and analyze
vascular health. In order to enable reproducible research, it is necessary to fully
automate the computation of these biomarkers from the segmented vasculature.
We developed a Python Vasculature Biomarker Toolbox (PVBM), based on DFI
segmentations made by expert annotators from the University Hospitals Leuven
in Belgium. PVBM enables a quantitative analysis of the vascular geometry
thereof with broad application in retinal research. In this paper we illustrate the
potential of PVBM by characterizing vascular changes in glaucoma patients.

1.1 Prior Works

Connection Between Retinal Vasculature and Cardiovascular Health:
As early as of beginning of the 20th Century research has been carried out to assess
the relationship between the retinal vasculature and cardiovascular health. Mar-
cus Gunn can be seen as one of the first to describe the relation between hyperten-
sion and retinal characteristics [15,16], and is followed by the work of H.G Scheie
[43] in 1953. In 1974, N.M Keith showed that hypertension and its mortality risk
is reflected in the retinal vasculature [23] and in 1999 Sharrett et al. [44] added
arterio-venous nicking and arteriole narrowing to the list of pathological findings.
Examples of retinal microvascular abnormalities in hypertensive patients can be
seen in Fig. 1. Witt et al. [50] concluded that vessel tortuosity significantly distin-
guished between patients with ischemic heart disease and healthy controls. Over
the years retinal vessel calibres were shown to change in hypertension [4], obesity
[18], chronic kidney disease [33,42], diabetes mellitus [4], coronary artery disease
[17] and glaucoma [22]. Fractal dimensions of the retinal vascular tree are among
the newest biomarkers to study cardiovascular risk. Monofractal dimension was
shown to change with age, smoking behaviour [24], blood pressure [27], diabetic
retinopathy [6], chronic kidney disease [45], stroke [9], and coronary heart disease
mortality [25], while Multifractal dimensions were found to be negatively associ-
ated with blood pressure and WHO /ISH cardiovascular risk score [49]. The estab-
lished association between vascular biomarkers and CVD prompts the develop-
ment of algorithmic solutions for automated computation thereof.

Automated Biomarker Computation Based on DFIs: Several attempts
have been made to extract meaningful biomarkers to characterize cardiovascular
health based on DFI vasculature. In 2000, Martinez-Perez et al. [32] introduced a
semi-automated algorithms capable of computing vasculature biomarkers (VBMs)
such as vessel diameter, length, tortuosity, area and branching angles. In 2011,
Perez-Rovira et al. [38] created Vessel Assessment and Measurement Platform for
Images of the REtina (VAMPIRE), a semi-automatic software that can extract the
optic disk and compute vessel width, tortuosity, fractal dimension, and branching
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Fig. 1. Examples of retinal vascular signs in patients with cardiovascular diseases.
Reproduced with permission from Liew et al. [26]. Black arrow: focal arteriolar nar-
rowing, White arrow: arterio-venous nicking, Yellow arrow: haemorrhage, Blue arrow:
micro-aneurysm, Red arrow: cotton wool spot. (Color figure online)

coeflicient. RetinaCAD was developed in 2014 [8]. This automated system is able
to calculate Central Retinal Arteriolar Equivalent (CRAE), the Central Retinal
Venular Equivalent (CRVE), and the Arteriolar-to-Venular Ratio (AVR). Lastly,
many algorithmic approaches have been developed to estimate the blood vessel tor-
tuosity [14,19,36]. Last year, Provost et al. [40] used the MONA REVA software
which semi-automatically segments retinal blood vessels and measures tortuosity
and fractal dimension in order to analyze the impact of their changes on children’s
behaviour.

1.2 Research Gap and Objectives

Vasculature biomarkers have been previously proposed and implemented in a
semi or fully automated manner. However, these biomarkers were only analyzed
individually across multiple groups. Hence the need to use a combined, com-
prehensive set of VBM within a machine learning (ML) framework for disease
diagnosis and risk prediction. The large number of images needed to train ML
algorithms require a fully automated computation of these VBM. In this paper
we created a computerized toolbox, denoted PVBM, that enables the compu-
tation of 11 VBMs engineered from segmented arteriolar or venular networks.
A potential application of PVBM is demonstrated by comparison of VBM in
glaucoma patients versus healthy controls.

2 Methods

2.1 Dataset

A database provided by the University Hospitals of Leuven (UZ) in Belgium was
used. This database contains 108,516 DFIs, centered around the optic disc. The
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Table 1. Leuven A/V segmented database (UZFG) summary including the median
(Q1-Q3) age, the gender and the diagnosis for the glaucoma (GLA) patient and normal
ophthalmic findings (NOR) patient.

N DFIs Age Gender
NOR | 19 (43 60) | 42% M
GLA |50 8 (59-75) | 42% M
Total | 69 1 (57-70) | 42% M

resolution of 1444 x 1444 is higher than most public databases, which enables the
visualization of smaller blood vessels. Median age was 66 (Q1 and Q3 respectively
54 and 75 years old) and 52% were women. For a subset of the database, the blood
vessels were manually segmented by retinal experts using Lirot.ai on Apple iPad
Pro 11”7 and 13” [12]|. This subset is denoted UZFG and consists of 69 DFIs.
The patients included in UZFG were between 19 and 90 years old with a median
age of 61 (Q1 and Q3 were 57 and 70 years old), 58% were female. UZFG has
59% of left and 41% of right eye DFIs. Patients belonging to the UZFG are
separated into the classes: Normal ophthalmic findings (NOR) and Glaucoma
(GLA) (Table1).

Protocol for DFI Vasculature Segmentation by Experts: Arterioles carry
higher concentration of oxyhemoglobin than venules and therefore exhibit a
brighter inner part compared to their walls. This feature is known as the cen-
tral reflex and is more typical for larger arterioles [34]. The exact intensity of
this reflection is additionally influenced by the composition of the vessel wall
[21], the roughness of the surface, the caliber of the blood column, the indices
of refraction of erythrocytes and plasma, the pupil size, the axial length of the
eye and the tilt of the blood vessel relative to the direction of incident light.
Since the branching of arterioles and venules can be found inside the optic nerve
head, two arterioles or venules can be found adjacently at the optic disc rim
[5]. The image variability in term of color, contrast, and illumination, challenge
an accurate (automatic) arteriole-venule discrimination [3]. Vessel segmentation
was manually performed by a pool of ten ophthalmology students experienced in
microvascular research, using the software Lirot.ai [12] and afterwards corrected
by an UZ retinal expert. Arteriole-venule discrimination was carried out based
on the following visual and geometric features [34]:

— Venules are darker than arterioles.

— The central reflex is more recognizable in arterioles.

— Venules are usually thicker than arterioles.

— Venules and arterioles usually alternate near the optic disc.

It is unlikely that arterioles cross arterioles or that venules cross venules.

2.2 Digital Vasculature Biomarkers

A total of 11 VBMs were implemented in PVBM (Table 2). The biomarkers were
computed separately for arterioles and venules.
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Table 2. List of digital vasculature biomarker implemented in PVBM.

Number | Biomarker Definition Unit
1 OVLEN [32] | Overall length Pixel
2 OVPER [32] | Overall perimeter Pixel
3 OVAREA [32] | Overall area Pixel?
4 END [32] Number of endpoints -

5 INTER [32] Number of intersection points | —

6 TOR [28,32] | Median tortuosity %

7 BA [32] Branching angles °(degree)
8 Dy [7,46] Capacity dimension -

9 Dy [7,46] Entropy dimension -
10 Dy [7,46] Correlation dimension —
11 SL [29] Singularity Length -

(A) (8)

Fig. 2. Skeletonization process of a vascular network. (A): Example of a vascular net-
work yq, (B): Corresponding skeleton of yq.

Overall Length: The OVLEN biomarker refers to the sum of the length of a
vascular network, whether for arterioles or venules. To compute it, the first step
is to extract the skeleton of the vascular network, which can be seen in Fig. 2.
Then the number of pixels that belong to this skeleton are summed, and divided
by the image size (1444 x 1444), then multiplied by 1000 for scaling purposes. It
is computed using the following formula:

TpesV2* Ljo, p+10,p=0(P) + Lja,p|+]0,pl0(P) )
14442

OVLEN = le3 %

where S is the set of pixel inside the skeletonized image (Fig.2), and x/y repre-
sent the horizontal /vertical direction.

Overall Perimeter: The OVPER refers to the sum of perimeter’s length of
a vascular network. It is computed as the length of the border of the overall
segmentation. It required an edge extraction of the segmentation, which could
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Fig. 3. Border computation process of a vascular network. (A): Vascular network yq,
(B): Corresponding computed edge of yq.

be easily found by convolving the original segmentation by a Laplacian filter
(Fig. 3). It is computed using the following formula:

Spe V2 * Lo, pl+19,p=0(P) + Lja,p| +]0,pl0(P)

OVPER = 1e2+ Ve

(2)

where F is set of pixel inside the edge image of the vascular network (Fig. 3) and
x/y represent the horizontal/vertical direction.

Overall Area: OVAREA is defined as the surface covered by the segmentation.

In terms of pixels, it could be represented as the ratio of white pixels in the

segmentation to the overall number of pixels. It is computed using the following

formula:

Zpevli(p)
14442

where V is set of pixel inside the image of the vascular network (Fig. 3).

OVAREA = 1€2 * (3)

Endpoints and Intersection Points: The endpoints are the points at the
end of the vascular network, which means in the skeleton version of the network,
the points which have only one neighbor which belongs to the skeleton. The
intersection points are the points where a blood vessel is divided into more
than one blood vessel, which means in the skeleton version of the network, the
points which have more than two neighbors which belong to the skeleton. Their
automatic detection was done using a filter k of size (3 x 3) where k; ; = 10 if
i = j, or k; ; = 1 otherwise. The skeleton is then convolved with this filter to
obtain a new image. In this new image, the endpoints will be the pixels with
a value of 11, and the intersection points will be the pixels with a value of 13
or larger (Fig.4). We can represent the endpoints and the intersection points
according to the following equation:

111
END = {p = (i,j) € Skeleton|(Skeleton® [ 1101 |)[i,j] =11}  (4)
111
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(A) (B) (€

Fig. 4. Automatic detection of the particular points of a vascular network. (A): Vas-
cular network yq, (B): Automatic detection of the intersection points (INTER = 32) of
Ya, (C): Automatic detection of the endpoints (END = 40) of y,.

111
INTER = {p = (i,j) € Skeleton|(Skeleton® | 1101 |)[¢,5] > 13}  (5)
111

Particular points is the name given to the combinated set of points resulting
from the union of the endpoints and intersection points. The number of endpoints
(END) and the number of intersection points (INTER) were computed as VBMs.

Median Tortuosity: The simplest mathematical method to estimate tortuos-
ity is the arc-chord ratio, defined as the ratio between the length of the curve
and the distance between its ends [19]. In our work, the median tortuosity was
computed using the arc-chord ratio based on the linear interpolation of all the
blood vessels. For that purpose, the skeleton is treated as a graph and particular
points are extracted. To compute the linear interpolation it is then required to
find all the particular points connected to a given particular point. The con-
nection between each particular point was stored in a dictionary according to
Algorithm 1; the output of this algorithm is a dictionary where the keys are the
particular points, and the values are the list of the connected particular points.
Having this dictionary, it is possible to generate the linear interpolation between
each connected particular point, as it is shown in Fig. 5. The tortuosity of each
blood vessel can be estimated by computing the ratio between the blood vessel’s
length (yellow curves in Fig.5) and the length of the interpolation of this blood
vessel (red lines in Fig. 5). The median tortuosity will then be the median value
of the tortuosity of all the blood vessels.

Algorithm 1
program Compute connected pixel dictionary ( S (= skeleton),
P (= particular point list))
initialize an empty dictionary: connected;
initialize an empty dictionary: visited;
for (i,j) in P:
if S[i,j] == 1 (White):
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recursive(i,j,S,i,j,visited,P,connected);
end.

program recursive(i_or, j_or, S (= skeleton),
i,j,visited, P(= particular point list) ,connected )
up = (i-1,3);
down = (i+1,j);
left = (i,j-1);
right = (i,j+1);
up left = (i-1,j-1);
up right = (i-1,j+1);
down left = (i+1,j-1);
down right = (i+1,j+1);
if up[0] >= 0 and visited.get(up,default = 0) == 0:
if up not in P:
visited[up] = 1;
if S[upl[0]][up[1]] == 1 (White):
point = up;
if point is in P:
connected[i_or,j_or] =
connected.get((i_or,j_or),default = []) + [up];
else:
recursive(i_or, j_or, S, point[0],
point[1],visited,P ,connected);

Do equivalent things for down, left, right, up left, up right,
down left, down right.

end.

(A) (B)

Fig. 5. Computing the linear interpolation of a vascular network. (A): Vascular network
Yo and (B): Linear interpolation between all the particular points of y,.
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Branching Angles: A vascular network’s branching angles (BA) can be defined
as the angle where a blood vessel is divided into smaller blood vessels. The
computation of BA is performed using the following steps: starting by extracting
all the angles of a vascular network using a simple modification of the linear
interpolation algorithm that we developed to compute the tortuosity (Fig.6).
To extract only the branching angles, all other angles need to be discarded.
For instance, in Fig.6 an ellipse has been drawn around a branching angle,
giving us the following four points A, B, C' and D. These points define the
following two segments: [A, C| and [B, D] with their intersection point C. Three
different angles can be computed from this branching: @7 ACB and BCD.
The branching angle corresponds to ACB. We need to define the centroid of the
graph in order to find the only relevant angle.

In a connected graph, we define a centroid as the closest point to any other
particular point of the graph. To compute the centroid, we will need to extract
a set of points S, which will be our particular points in a connected graph;

S = {p,p € skeleton, N(p) ¢ {2,0}} (6)

where N (p) is the number of neighbouring pixels of p which belong to the skele-
ton.

Then we create a metric f such that for any point p in the skeleton of the
segmentation:

f(p) = mams&skeletondiSt(p, 3) (7)

where dist is the distance, measured as the number of pixels required to reach s
from p by staying inside the skeleton. The centroid will naturally be the point
with the lowest value according to this function. And for a random point p, the
higher the value of f(p), the farther p is from the centroid. A simple example
can be seen in Fig.7. This also generalizes to segmentation with multiple dis-
connected parts, assuming that each part has a centroid. The branching angle
between A, B, C, and D is the angle between the 3 points that are the far-
thest from the centroid of the blood vessel in terms of pixel distance when you
navigate through the graph of the vascular network which is equivalent to our
challenge of deleting the closest point to the centroid of the blood vessel. It is
possible to delete the irrelevant point thanks to this centroid detection, and to
compute the set of the branching angles I' = {BA; };—1.,, automatically (Fig.?8).
The BA biomarker is defined by the median of all the found angles.

BA = median{a € I'} (8)

where I is the set of the detected branching angles.

Fractal Dimensions: The retinal blood vessels form a complex branching pat-
tern that can be quantified using fractal dimension (monofractal) [11,30,31]. In
fractal geometry, the fractal dimension is a measure of the space-filling capacity
of a pattern that tells how a fractal scales differently from the space it is embed-
ded in. Fractal dimension can be thought of as an extension of the familiar
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Fig. 7. Computation of the centroid of a simple graph. (A): Original graph, (B): Par-
ticular point detection, (C) Value of the f(.) function for each pixel of this graph,
(D): Heatmap where the centroid is the point with the lowest value according to the

function f(.).

(B)

Fig. 8. Automated computation of the branching angles of the vascular network. (A):
Original segmentation, (B): Branching angles detected automatically.
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Euclidean dimensions allowing intermediate states. The fractal dimension of the
retinal vascular tree lies between 1 and 2, indicating that its branching pattern
fills space more thoroughly than a line, but less than a plane [30]. The fractal
dimension measures the global branching complexity, which can be altered by
the vessel rarefaction, proliferation and other anatomical changes in a patholog-
ical scenario. The simplest and most common method used in the literature for
monofractal calculation is the box-counting method [31].

However, a single monofractal is limited in describing human eye retinal
vasculature. It has been observed that retinal vasculature has multifractal prop-
erties which are a generalized notion of a fractal dimension [46-48]. Multifractal
dimensions are characterized by a hierarchy of exponents which can reveal more
complex geometrical properties in a structure [47]. The most common multifrac-
tal dimensions for measuring retinal vasculature are Dy, D1, Dy which satisfy
the inequality Dy > D; > Dy [39,46] and also called the capacity dimension
(a monofractal), entropy dimension and correlation dimension respectively. Fol-
lowing [49], we have implemented Dy, D1, D2 and Singularity length in a similar
manner to Chhabra et al. [7] and the commonly used plugin FracLac [20] for
ImageJ software [41]. The generalized multifractal dimensions are defined as:

2 Pi(e) log Pi(€)

—lime Toge yq=1
D, = (9)
19 log 3°; P(e)
ﬁ hme_,o T o0.W.

where P;(¢) is the pixel probability in the i*" grid box sized €, and ¢ is the order
of the moment of the measure. In addition, multifractals can be described by a
singularity spectrum f () — o which is related to the D, — ¢ spectrum by the
Legendre transformation. In order to calculate f () — a spectrum, we use an
alternative approach described by [7]:

> i (q,€)log u; (g, €)

f(q) = lim o w0
a(g) = lim 2t <qla06g) iog P (¢) .
wi (g, €) = ﬂ )

> P9
The f (o) — a spectrum is characterized by a bell shaped curve with one maxima

point. From this curve, an additional biomarker is computed - the spectrum range
A« which is also called Singularity Length (SL).

Omin = lim « (q) y Omax = lim o (q) (13)
q—0o0 q——00
Ao = Omax — Qmin (14)

SL quantifies the multifractality degree [29] of an image.
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The calculation of Egs.9, 10, 11 was done by linear regression with a linear
set of box sizes € for every q. The values of these graphs are sensitive to grid
placement on the segmented DFI image, as they depend on pixel distribution
across the image. We followed a similar optimization method as used by the
FracLac plugin [20], which is to change the sampling grid location by rotating the
image randomly, and to choose the measurement which satisfies the inequality
Dy > D1 > D5 and has the highest value of Dgy. In addition, to overcome
numerical issues saturated grid boxes and grid boxes with low occupancy of
pixels were ignored. auin and amax were estimated by apin &~ a (¢ = 10) and
Qmax ~ a (¢ = —10).

Benchmark Against Existing Software: In order to validate the implemen-
tation of some of the biomarkers we implemented in PVBM we benchmarked
their values against two ImageJ plugins, namely AnalyzeSkeleton [2| and Fra-
cLac [20]. The benchmark was performed for the arterioles from the entire UZFG
dataset. A direct benchmark could be performed for the following biomarkers:
OVAREA, TOR, Dg, D1, Dy and SL. An extrapolated comparison could be per-
formed for the OVLEN. Indeed, these were not directly outputted by the plugin,
but could be derived from the AnalyzeSkeleton [2] plugin. No benchmark could
be performed for OVPER, END, INTER and BA because of the lack of open
source available benchmark software.

3 Results

Table 3 shows that the VBMs benchmarked against reference software had very
close values with normalized root mean square errors ranging from 0 to 0.316.

Tables4 and 5 provide summary statistics and a statistical analysis of the
VBMs for the GLA NOR groups. The statistics were presented as median and
interquartile (Q1 and Q3), and the p-value from the Wilcoxon signed-rank. The
arteriolar OVAREA, OVLEN, and END were the most significant in distinguish-
ing between the two groups. Figure 9 presents qualitative examples of three DFIs
with arteriolar OVAREA, OVLEN, BA, END and Dy VBM values.

4 Discussion and Future Work

The first contribution of this work is the creation of a toolbox for VBMs, which
is made open source under a GNU GPL 3 license and will be made available
on physiozoo.com (following publication). In particular, novel algorithms were
introduced to estimate the tortuosity and branching angles.

The second contribution of this work is the application of the PVBM tool-
box to a new dataset of manually segmented vessels from DFIs. The statistical
analysis that we have performed showed that the arterioles-based biomarkers are
the most significant in distinguishing between NOR and GLA. For arterioles and
venules, all biomarkers were significant and lower in glaucoma patients compared
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Arterioles

N\

OVAREA.: 6.55
OVLEN.: 5.54
BA.: 87.06
END.: 40
Doa: 1.44

NOR

OVAREA.: 5.96
OVLEN.: 5.08
BAa: 75.35
END.: 26
Doa: 1.40

GLA

Fig. 9. Example of biomarkers computed from the arterioles of two DFIs. The first row
is a DFI of a healthy control (NOR) and the second column is from a glaucoma patient
(GLA). The OVAREA biomarker shows a larger vascular area in the NOR images.
The BA biomarker shows that the branching of the NOR image are bigger than the
one of the GLA image. Finally, the END biomarker indicates that the GLA image had
less arteriolar branching compared to healthy controls, leading to a lower number of
endpoints.

to healthy controls except for tortuosity, venular singularity length and venular
branching angles.

A limitation of our experiment is that although the images were taken with
the same procedure, which includes the disk being centered, there is some vari-
ation in the exact location of the disk due to the non-automated operation. In
future work, we need to consider the detection of the disk to delineate a circular
frame centered on the disk to engineer the vasculature biomarkers more consis-
tently. Furthermore, other biomarkers may be implemented such as the vessel

Table 3. PVBM benchmark against reference ImageJ plugins using the arterioles of
the UZFG dataset. pu: mean, o: standard deviation, RMSE: root mean square error,
NRMSE: normalized root mean square error.

Biomarker | Benchmark Benchmark results | This work | Difference
m o m o RMSE | NRMSE

OVLEN | AnalyzeSkeleton [2]| | 4.687 | 0.928 4.8680.974 1 0.194 |0.060
OVAREA | ImageJ [41] 4.939|0.011 4.9390.011 |0 0

TOR AnalyzeSkeleton [2] | 1.081 | 0.007 1.084 | 0.007 | 0.003 |0.11
Do FracLac [20] 1.37310.035 1.42510.026 | 0.054 |0.301
D1 FracLac [20] 1.367 | 0.034 1.390 1 0.027 | 0.028 |0.155
D» FracLac [20] 1.361 | 0.033 1.375/0.028 | 0.021 |0.115
SL FracLac [20] 0.626 | 0.104 0.645|0.076 | 0.128 |0.316
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Table 4. Summary of the biomarkers analyzed for arterioles (o) and extracted with
the PVBM toolbox with their median (Q1-Q3). Refer to Table2 for the definition of
the VBM acronyms. P-values are provided using the Wilcoxon signed-rank test.

NOR (n=19) GLA (n=50) p
OVAREA, |5.82 (5.26-6.23) | 4.52 (3.76-5.44) | 4de-4
OVLEN, |5.53 (5.28-6.21) 4.85 (4.33-5.37) le-4
OVPER, |3.94 (3.74-4.33) |3.44 (3.01-3.80) | 2e-4
BA, 87.29 (81.88-93.28) | 81.93 (75.41-87.87) | 2e-2
END, 37.0 (28.5-43.5) | 27.0 (21.0-32.75) | Te-4
INTER, |36.0 (28.5-43.0) | 24.5 (20.0-30.0) | 8e-4
TOR, 1.08 (1.08-1.09) | 1.08(1.08-1.09) le—1
Do 144 (1.42-1.45) | 1.42 (1.40-1.44)  5e-3
Dia 141 (1.38-1.42) | 1.38 (1.37-1.40) | 3e-3
Daa 1.39 (1.37-1.40) 1.37 (1.35-1.38) 4e-3
SLa 0.62 (0.59-0.64) | 0.64 (0.62-0.78) | 9e-3

Table 5. Summary of the biomarkers analyzed for venules (,) and extracted with the
PVBM toolbox with their median (Q1-Q3). Refer to Table2 for the definition of the
VBM acronyms. P-values are provided using the Wilcoxon signed-rank test.

NOR (n=19)

GLA (n=50)

p

OVAREA,

6.3 (5.82-6.71)

9e-4

OVLEN,

5.42 (4.82-5.67)

5.28 (4.59-6.01)
4.69 (4.21-5.13)

le-3

OVPER,

3.77 (3.36-3.99)

3.26 (2.96-3.59)

3e-3

BA,

84.14 (78.74-86.9)

85.1 (81.52-91.08)

le—1

END,

339.0 (31.5-43.0)

28.5 (23.0-34.0)

le-3

INTER,

36.0 (31.5-42.5)

le-3

TOR,

1.08 (1.08-1.09)

1.08 (1.08-1.09

4e — 1

DO’U

1.40 (1.38-1.42

4e-3

Dlv

1.38 (1.36-1.40)

1.37

8e-3

D2’U

1.36 (1.34-1.39)

1.35 (1.33-1.36

le-2

SL,

(
(
1.43 (1.4-1.44)
(
(
(

0.61 (0.58-0.66)

(
(
(
(
(

27.0 (21.0-33.0)
( )
( )
(1.35-1.38)
( )
( )

0.63 (0.59-0.66

2e — 1

diameter [13], CRAE [37], CRVE [37], branching coefficients [10] which is the
ratio of the sum of the cross-sectional areas of the two daughter vessels to the
cross-sectional area of the parent vessel at an arteriolar bifurcation [10]. Finally,
it is to be studied to what extent VBMs may be evaluated from vasculature
obtained using an automated (versus manual) segmentation algorithm as well as

the effect of DFI quality [1] on the results.
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