
LiteDepth: Digging into Fast
and Accurate Depth Estimation

on Mobile Devices

Zhenyu Li1, Zehui Chen2, Jialei Xu1, Xianming Liu1, and Junjun Jiang1(B)

1 Harbin Institute of Technology, Harbin, China
{zhenyuli17,csxm,jiangjunjun}@hit.edu.cn, lovesnow@mail.ustc.edu.cn,

21B903029@stu.hit.edu.cn
2 University of Science and Technology of China, Hefei, China

Abstract. Monocular depth estimation is an essential task in the com-
puter vision community. While tremendous successful methods have
obtained excellent results, most of them are computationally expensive
and not applicable for real-time on-device inference. In this paper, we
aim to address more practical applications of monocular depth estima-
tion, where the solution should consider not only the precision but also
the inference time on mobile devices. To this end, we first develop an
end-to-end learning-based model with a tiny weight size (1.4MB) and
a short inference time (27FPS on Raspberry Pi 4). Then, we propose a
simple yet effective data augmentation strategy, called R2 crop, to boost
the model performance. Moreover, we observe that the simple lightweight
model trained with only one single loss term will suffer from performance
bottleneck. To alleviate this issue, we adopt multiple loss terms to provide
sufficient constraints during the training stage. Furthermore, with a sim-
ple dynamic re-weight strategy, we can avoid the time-consuming hyper-
parameter choice of loss terms. Finally, we adopt the structure-aware
distillation to further improve the model performance. Notably, our solu-
tion named LiteDepth ranks 2nd in the MAI&AIM2022 Monocular
Depth Estimation Challenge, with a si-RMSE of 0.311, an RMSE
of 3.79, and the inference time is 37ms tested on the Raspberry Pi 4.
Notably, we provide the fastest solution to the challenge. Codes and
models will be released at https://github.com/zhyever/LiteDepth.

Keywords: Monocular depth estimation · Lightweight network · Data
augmentation · Multiple loss

1 Introduction

Monocular depth estimation plays a vital role in the computer vision com-
munity, where a wide spread of various depth-depended tasks related to
autonomous driving [6–8,22,31,36,39,40], virtual reality [3,11], and scene under-
standing [13,35,37,46] provide strong demand for fast and accurate monocular
depth estimation methods that are applicable to portable low-power hardware.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13802, pp. 507–523, 2023.
https://doi.org/10.1007/978-3-031-25063-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25063-7_31&domain=pdf
https://github.com/zhyever/LiteDepth
https://doi.org/10.1007/978-3-031-25063-7_31

508 Z. Li et al.

Therefore, research along the line of accelerating depth estimation while reducing
quality sacrifice on mobile devices has drawn increasing attention [15,38].

As a classic ill-posed problem, estimating accurate depth from a single image
is challenging. However, with the fast development of deep learning techniques,
neural network demonstrates groundbreaking improvement with plausible depth
estimation results [5,9,20,24,25,42]. While engaging results have been presented,
most of these state-of-the-art (SoTA) models are only optimized for high fidelity
results while not taking into account computational efficiency and mobile-related
constraints. The requirements of powerful high-end GPUs and consuming giga-
bytes of RAM lead to a dilemma when developing these models on resource-
constrained mobile hardware [1,2,15].

In this paper, we aim to address the more practical application problem of
monocular depth estimation on mobile devices, where the solution should con-
sider not only the precision but also the inference time [15]. We first investigate a
suitable network design. Typically, the depth estimation network follows a UNet
paradigm [32] consisting of an encoder and a decoder with skip connections.
Regarding the encoder, we choose a variant version of MobileNet-v3 [14] as a
trade-off between performance and inference time, where we drop out the last
convolution layer to speed up inference and reduce the model size. Moreover,
we observe that the commonly used image normalization pre-process on input
images is also time-consuming (19ms on Raspberry Pi 4). To solve this issue,
we propose to merge the normalization into the first convolution layer in a post-
process manner so that the redundant overhead can be eliminated without bells
and whistles. Following [15], we adopt the fast downsampling strategy, which
could quickly downsample the resolution of input images from 480 × 640 to 4
× 6. A light decoder is introduced to recover the spatial details, consisting of a
few convolutional layers and upsampling layers.

After determining the model structure, we propose several effective train-
ing strategies to boost the fidelity of the lightweight model. (1) We adopt an
effective augmentation strategy called R2 crop. It not only adopts crop patches
on images with Random locations but also Randomly changes the size of crop
patches. This strategy increases the diversity of the scenes and effectively avoids
overfitting the training set. (2) We introduce a multiple-loss training strategy to
provide sufficient supervision during the training stage, where we propose a gra-
dience loss that can handle invalid holes in training samples and adopt the other
three loss terms proposed in previous works. Moreover, we install a dynamic
re-weighting strategy that can avoid the time-consuming weight selection of loss
terms. (3) We highlight that our work focuses on the model training strategies,
unlike previous solutions that adopt variant distillation methods [15,38]. How-
ever, model distillation can also be an effective way to boost the model fidelity
without any overhead. Therefore, we adopt the structure-aware distillation [27]
in a fine-tuning manner.

We evaluate our method on Mobile AI (MAI2022) dataset, and the results
demonstrate that each strategy can improve the accuracy of the lightweight
network. With a short inference time (37ms per image) on Raspberry Pi 4 and

ECCV-22 submission ID 51 509

a lightweight model design (totally 1.4MB), our solution named MobileDepth
achieves results of 0.311 si-RMSE and ranks second in the MAI&AIM 2022
Monocular Depth Estimation Challenge [18].

In summary, our main contributions are:

• We design a lightweight depth estimation model that achieves fast inference
on mobile hardware, where an image normalization merging strategy is pro-
posed to reduce the redundant overhead.

• We adopt an effective augmentation strategy called R2 crop that is adopted
at random locations on images with a randomly changed size of patches.

• We design a gradience loss that can handle invalid holes in training samples
and propose to apply multiple-loss items to provide sufficient supervision
during the training stage.

• We evaluate our method on MAI2022 dataset and rank second place in the
MAI&AIM2022 Monocular Depth Estimation Challenge [18].

Table 1. Ranking results in the MAI&AIM2022 Monocular Depth Estimation Chal-
lenge, which are evaluated on the online test server. We highlight our results in bold.

Rank Username si-RMSE RMSE log10 REL Runtime Score

1 TCL 0.277 3.47 0.110 0.299 46ms 297.79

2 Zhenyu Li 0.311 3.79 0.124 0.342 37ms 232.04

3 ChaoMI 0.299 3.89 0.134 0.380 54ms 187.77

4 parkzyzhang 0.303 3.80 12.189 0.301 68ms 141.07

5 RocheL 0.329 4.06 0.137 0.366 65ms 102.07

6 mvc 0.349 4.46 0.140 0.340 139ms 36.07

7 Byung Hyun Lee 0.338 6.73 0.332 0.507 142ms 41.58

2 Related Work

Monocular depth estimation is an ill-posed problem [9]. Lack of cues, scale ambi-
guities, translucent or reflective materials all leads to ambiguous cases where
appearance cannot infer the spatial construction [24]. With the rapid develop-
ment of deep learning, the neural network has dominated the primary workhorse
to provide reasonable depth maps from a single RGB input [5,20,24,25,43].

Eigen et al. [9] first groundbreakingly propose a multi-scale deep network,
consisting of a global network and a local network to predict the coarse
depth and refine predictions, respectively. Subsequent works focus on various
points to boost depth estimation, for instance, problem formulation [5,10,25],
network architecture [19,20,24], supervision design [4,30,43], interpretable
method [44], pre-training strategy [23,29], unsupervised training [12,45], etc.
Though achieving engaging fidelity, these methods neglect the limitation of
resource-constrained hardware and can be hard to develop on portable devices
or embedded systems.

510 Z. Li et al.

Block1
(16, 64, 80)

Block2
(16, 32, 40)

Block3
(24, 16, 20)

Block4
(48, 8, 10)

Block5
(96, 4, 5)

DeFeat5
(72, 4, 5)

DeFeat4
(24, 8, 10)

DeFeat3
(8, 16, 20)

Conv
1x1

Concate Conv
1x1

Concate Conv
1x1

DeFeat2
(24, 32, 40)

Concate Conv
3x3

Skip
Conn.

Skip
Conn.

Skip
Conn.

Conv
1x1

Upsample 2x

Upsample 2x

Upsample 2x

MobileNet v3

Resize
(3, 128, 160)

Resize
(1, 480, 640)

RGB (3, 480, 640)

Depth (1, 480, 640)

Fig. 1. Illustration of our proposed network architecture that follows the prevalent
Unet [32] design consisting of a MobileNet-V3 [14] encoder and a lightweight decoder
with skip connections.

Notably, there are also some methods that take the inference time and model
complexity into account, which makes them applicable on mobile devices [15].
FastDepth [41] deploys a real-time depth estimation method on embedded sys-
tems by designing an efficient model architecture and a pruning strategy to
further reduce the model complexity. In our paper, we follow FastDepth [41] to
choose MobileNet-v3 [14] as our encoder and design an even more lightweight
decoder (only consisting of four convolution layers) to achieve a trade-off between
fidelity and inference speed.

3 Method

In this section, we first present our network design in Sect. 3.1, where tons
of details should be considered to achieve the best trade-off between fidelity
and inference speed. Then, we introduce our proposed R2 Crop in Sect. 3.2
and Multiple Loss Training strategy in Sect. 3.3. Subsequently, we illustrate the
installation of the structure-aware Distillation strategy in Sect. 3.4.

3.1 Network Design

As shown in Fig. 1, our proposed network consists of an encoder and a lightweight
decoder with skip connections. We sequentially introduce each component and
design detail.

Encoder plays a crucial role in extracting features from input images for
depth estimation. To achieve a trade-off between fidelity and inference speed,
we choose MobileNet-v3 [14] as our encoder. It is worth noticing that MobileNet
contains a dimension-increasing layer (1×1 convolution with an input dimension
of 96 and output dimension of 960) to facilitate training for a classification task.

ECCV-22 submission ID 51 511

We remove this layer to improve the inference speed and reduce the number
of model parameters. Following [15], we adopt the Fast Downsampling Strategy
in which a resize layer is inserted at the beginning of the encoder to resize the
high-resolution input image from 480 × 640 to 128 × 160. As a result, the
encoder can quickly downsample the resolution of feature maps, significantly
shorten the inference time. Typically, input images are normalized to align with
the pre-training setting. We discern the vanilla image normalization is time-
consuming (19ms of the image normalization v.s. 37ms of the whole model) on
the target device (i.e., Raspberry Pi 4). Therefore, we propose to merge the
image normalization into the first convolution layer in a post-process manner so
that we can avoid the redundant overhead without bells and whistles. Consider
the image normalization and the first convolution layer:

In =
Ir − m

s
, (1)

f = W ∗ In + b, (2)

where In and Ir ∈ R
3×H×W are normalized and raw input images. m ∈ R

3 and
s ∈ R

3 are the mean and standard deviation used in the image normalization. f ∈
R

C×Hf×Wf is the output feature map with C channels of the first convolution
in our network. W ∈ R

3×C×k2
and b ∈ R

C are the trained weight and bias of
the first k ×k convolution. ∗ denotes the convolution operation. Given a trained
model with parameters W and b of the first convolution, we update the them
based on the mean and standard deviation used in the image normalization
during the training stage:

W ′ =
W

s
, (3)

b′
i = bi −

3∑

d

⎛

⎝md

sd
×

k×k∑

j

Wdij

⎞

⎠ , i ∈ (1, 2, ..., C), (4)

b′ = Concat([b′
1, b

′
2, ..., b

′
C]), (5)

where the W ′ and b′ are the updated weight and bias of the first k×k convolution.
Concat is the element-wise concatenation. d is the index of RGB dimension.
Consequently, we discard the image normalization and apply the first convolution
directly on input images as:

f = W ′ ∗ Ir + b′. (6)

As a result, the trained network can directly receive the raw input images without
the time-consuming image normalization.

Decoder is adopted to recover the spatial details by fusing the multi-level
deep and shallow features. Unlike previous works [15,38,41] that utilize the sym-
metrical encoder and decoder, we drop out the last decoder layer to further
accelerate the model inference. Hence, the resolution of outputs is 4× down-
sampled (i.e., 32×64). At each decoding stage, we apply a simple feature fusion

512 Z. Li et al.

w/o crop random crop R2 crop

Fig. 2. Comparisons among different crop augmentations. As for R2 crop, we utilize
different colors to indicate that we adopt randomly selected size of crop patches.

RGB Depth

Invalid Depth
Valid Depth

40

40

40

39

-1

-1

40

-1

-1

-1

-1-1-1

3939

3736 38

39

39

-1

-1

-1

-1

-1

Fig. 3. Illustration of invalid depth GT pixels in the dataset. These pixels appear not
only in the sky areas but also in close positions where the sensor cannot provide reliable
GT value. We highlight a training sample for a clear Introduction of our valid mask in
gradloss in Fig. 4.

module to aggregate the decoded and skip-connected features, which consists of
a concatenation operation and a convolution layer (with ReLU as the activation
function). To achieve the best trade-off between fidelity and speed, we utilize
the 1×1 and 3×3 convolution for deep and shallow features, respectively. The
final feature map is projected to the predicted depth map via the 1×1 convolu-
tion, which is then passed by a ReLU function to suppress the plural prediction.
Finally, we insert a resize block at the end of the decoder to upsample the pre-
dicted depth map to the raw resolution 480×640. We highlight the lightweight
design of the decoder that only consists of five convolution layers but achieves
satisfactory fidelity.

3.2 R2 Crop

Data augmentation is crucial to training models with better performance.
Typically, the sequence of data augmentation for monocular depth estimation
includes random rotation, random flip, random crop, and random color enhance-
ment [21]. We propose the more effective crop strategy R2 crop, in which we
randomly select the size of crop patches and the cropped locations. We highlight
the discrepancy with other commonly used crop methods in Fig. 2. It increases
the diversity of the scenes and effectively avoids overfitting the training set.

ECCV-22 submission ID 51 513

3.3 Multiple Loss Training

Previous depth estimation methods [5,20,24,25] only adopt the silog loss to train
the neural network:

Lsilog = α

√√√√ 1
N

N∑

i

e2i − λ

N2
(

N∑

i

ei)2, (7)

where ei = log d̂i − log di with the ground truth depth di and predicted depth
d̂i. N denotes the number of pixels having valid ground truth values. Since we
discover that the lightweight model supervised by this simple single loss lacks
representation capability and is easily stuck in local optimal, we adopt diverse
loss terms to provide various targets for sufficient model training.

Motivated by [34], we first propose a gradience loss Lgrad formulated as:

Lgrad =
1
N

∑

i

(
Mxi

×
∥∥∥∇xd̂i − ∇xdi

∥∥∥
1

+ Myi
×

∥∥∥∇yd̂i − ∇ydi

∥∥∥
1

)
, (8)

where ∇ is the gradience calculation operation. Since the gradience loss is calcu-
lated in a dislocation subtraction manner and there are tremendous invalid depth
GT in the dataset as shown in Fig. 3, as presented in Fig. 4, simply applying gra-
dience calculation will blemish the information of invalid pixels and introduce
outlier values when calculating the loss term. Hence, it is necessary to carefully
design a strategy to calculate masks M to filter these invalid pixels in Lgrad. To
solve this issue, we first replace the invalid value with NaN and then calculate
the GT for gradience loss. Thanks to the numeral property of NaN and Inf,
invalid information can be reserved. Consequently, we can filter the NaN and
Inf when calculating the gradience loss.

Moreover, we also adopt the virtual norm loss Lvnl [43], and robust loss
Lrobust [4]. We formulate them as follows:

Lvnl =
1
N

N∑

i

‖n̂i − ni‖1 , (9)

where n is the virtual norm. We refer more details in the original paper [43].
Unlike the original implementation, we sample points from reconstructed point
clouds and adopt constraints on predictions to filter invalid samples instead of
ground truth. It helps the model convergence at the beginning of training.

Lrobust =
1
N

N∑

i

|α − 2|
α

((
(ei/c)2

|α − 2|
)α/2

− 1

)
, (10)

514 Z. Li et al.

-41

-41

-41

-40

0

0

0

0

0

0

000

00

11 1

1

1

40

40

40

39

-1

-1

40

-1

-1

-1

-1-1-1

3939

3736 38

39

39

-1

-1

-1

-1

-1

40

40

40

39

-1

-1

40

-1

-1

-1

-1-1-1

3939

3736 38

39

39

-1

-1

-1

-1

-1

40

40

40

39

nan

nan

40

nan

nan

nan

nannannan

3939

3736 38

39

39

nan

nan

nan

nan

nan

nan

nan

nan

nan

inf

inf

0

inf

inf

inf

infinfnan

00

11 1

1

1

0

0

0

0

0

0

1

0

0

0

000

11

11 1

1

1

Depth Sample

Depth Sample GT of Gradloss

GT of Gradloss Valid Mask

Valid pixel with correct GT

Invalid pixel with wrong GT

Invalid pixel with meaningless GT

Direction x

Calculate

Calculate Filter
NaN, Inf

Replace
Invalidation

Fig. 4. Illustration of valid mask calculation for gradience loss (x direction). First line:
vanilla calculation of gradience loss. Second line: we propose to first replace invalid
value with NaN and compute reasonable valid mask for gradience loss.

Block1
(192, 32, 40)

Block2
(384, 16, 20)

Block3
(768, 8, 10)

Block4
(1536, 4, 5)

DeFeat4
(768, 4, 5)

DeFeat3
(192, 8, 10)

DeFeat2
(48, 16, 20)

Conv
1x1

Concate Conv
1x1

Concate Conv
1x1

DeFeat1
(24, 32, 40)

Concate Conv
3x3

Skip
Conn.

Skip
Conn.

Skip
Conn.

Conv
1x1

Upsample 2x

Upsample 2x

Upsample 2x

Resize
(3, 128, 160)

Resize
(1, 480, 640)

RGB (3, 480, 640) Depth (1, 480, 640)

Swin Transformer

Fig. 5. Illustration of the teacher network.

where ei = d̂i − di. We experimentally set α = 1 and c = 2. In fact, the
loss reduces to a simple L2 loss, but which is proven to be more effective com-
pared with the proposed adaptive version in our task. More experiments can be
conducted to decide a better choice for α and c.

Finally, we adopt a combination of these loss terms to train our network. The
total depth loss is

Ldepth = w1Lsilog + w2Lgrad + w3Lvnl + w4Lrobust. (11)

We set w1 = 1, w2 = 0.25, w3 = 2.5, and w4 = 0.6 based on tremendous
experiments. Then, we apply a dynamic re-weight strategy in which the loss
weights w are set as model parameters and are automatically fine-tuned during
the training stage. Experimental results indicate that this strategy can achieve
similar results as tuning the weights by hand.

ECCV-22 submission ID 51 515

Fig. 6. Illustration of our multi-scale distillation strategy.

3.4 Structure-Aware Distillation

We apply the structure-aware distillation strategy [27,38] to further boost model
performance. For the teacher model, we choose Swin Transformer [28] as the
encoder and adopt a similar lightweight decoder to recover feature resolution
and predict depth maps. We present the network architecture in Fig. 5. The
teacher model is trained via the supervision of Ldepth and is then fixed when
distilling the student model. During the distillation, multi-level distilling losses
are adopted to provide supervisions on immediate features as shown in Fig. 6.
The distillation loss is formulated as

Ldistill =
L∑

l

⎛

⎝ 1
H × W

H∑

i

W∑

j

∥∥as
ij − at

ij

∥∥
1

⎞

⎠ , (12)

where a is the affinity map calculated via inner-product of L2 normalized fea-
tures. We refer to [27,38] for more details. s and t indicate the features are
from the student and teacher model, respectively. We choose three level (L = 3)
features for distill, which are DeFeat2, DeFeat3, and DeFeat4 in Fig. 1.

Consequently, the student model is trained via the total loss L:

L = Ldepth + wdLdistill, (13)

where wd = 10 in our experiments. Notably, unlike previous work [27,38], we
adopt a two-stage training paradigm. During the first stage, the student model
is only trained via Ldepth. In the second stage, we adopt the teacher model and
utilize the total loss L to further boost the performance of the student model.

516 Z. Li et al.

4 Experiments

In this section, we introduce our experiments to evaluate the effectiveness of
our solution. We first elaborate the dataset and define the evaluation metrics.
Then the detailed implementation and ablation studies are presented. We also
report the inference time on target devices (i.e., Raspberry Pi 4) to show that
our method can not only produce reasonable depth estimation but also achieve
real-time inference on resource-constrained hardware.

4.1 Setup

Dataset. We utilize the dataset provided by MAI&AIM2022 challenge to con-
duct experiments, which contains 7385 pairs of RGB and grayscale depth images.
The pixel values of depth maps are in uint16 format ranging from 0 to 40000,
which represent depth values from 0 to 40 m. We use 6869 pairs for training and
the rest 516 pairs as the local validation set.

Evaluation Metrics. In MAI&AIM2022 challenge [18], two metrics are con-
sidered for each submission solution: 1) The quality of the depth estimation. It
is measured by the invariant standard root mean squared error (si-RMSE). 2)
The runtime of the model on the target platform (i.e., Raspberry Pi 4). The
scoring formulation is provided below:

Score(si-RMSE, runtime) =
2−20 · si-RMSE

C · runtime
, (14)

where C = 0.01 on the online validation benchmark.

4.2 Implementation Details

We implement the proposed model via the monocular depth estimation tool-
box [21], which is based on the open-source machine learning library Pytorch.
The model is converted to TFLite [26] after training. We use Adam optimizer
with betas = (0.9, 0.999) and eps=1e–3. A poly schedule is adopted where the
base learning rate is 4e−3 and the power is 0.9. The total number of epochs is
600 with batch size = 32 on two RTX3090 GPUs, which takes around 4 h to
train a model. The encoder of our network is pretrained on ImageNet, and the
decoder part is trained from scratch.

4.3 Quantitative Results

As shown in Table 1, our proposed method achieves a score of 232.04 on the
challenge test set and ranks second place. Our solution achieves 0.311 si-RMSE
with 37ms on the Raspberry Pi 4. Notably, our runtime is lower than the other
methods and the performance is comparable.

ECCV-22 submission ID 51 517

Fig. 7. The visualization results of our proposed methods. One can observe that there
is noise in ground truth labels which we highlight with a red circle. (Color figure online)

4.4 Qualitative Results

We visualize the prediction results of our proposed methods as shown in Fig. 7,
which demonstrates that our methods can achieve reasonable depth estimation
results. However, the predicted depth maps are very rough around the edges due
to the excessive down-sampling.

4.5 Inference Time

In this section, we verify that our method can achieve high-throughput monoc-
ular depth estimation on mobile devices. We convert our model to TensorFlow-
Lite and test the inference time on various mobile devices, including smartphones
with Kirin 980 and Snapdragon 7 Gen 1. We test the model using AI Bench-
mark [16,17]. Following the challenge requirements, the resolution of input and
output images is 640×480. The data type is set to float (32 bit). As presented in
Table 2, our network can obtain extremely high-throughput inference. It achieve
162FPS on smart phones with Snapdragon 7 Gen 1 processor. Interestingly, we
can observe that the model is CPU-friendly, with an even faster inference on
CPU than GPU on mobile devices.

518 Z. Li et al.

Table 2. Inference time of our network (AI Benchmark).

SoC Device Average/ms STD/ms

Kirin 980 CPU 6.85 0.77

Kirin 980 GPU Delegate 9.84 0.66

Snapdragon 7 Gen 1 CPU 6.16 1.71

Snapdragon 7 Gen 1 GPU Delegate 7.17 1.00

4.6 Ablation Studies

Effectiveness of Network Design. Encoder selection is crucial to the trade-off
between fidelity and runtime. We recommend refering [15,38] for more compar-
isons among various encoders. Following these works, we choose the MobileNet-
v3 as the default encoder. We then present comparisons among different decoder
designs as shown in Table 3. Typically, previous methods [5,15,20,24,38] utilize
the 3×3 convolution to fuse features. While the quantitative results are good, the
runtime can be longer. However, when we replace all the 3×3 convolution with
1×1 convolution, the model performance drops drastically while the runtime gets
short. Hence, we adopt a mix version as presented in our Sect. 3.1 and Fig. 1. We
utilize a 3×3 convolution at the highest resolution and adopt 1×1 convolutions
at other places, which makes the best trade-off between fidelity and runtime,
getting the highest score on the benchmark. We then present the importance of
the merging image normalization. It significantly reduces the runtime without
any performance drop.

Table 3. Ablation study about the network architecture design. Dec and MIN are the
short for decoder and merge image normalization, respectively.

Architecture MIN si-RMSE Runtime/ms Score

Full 3×3 @ Dec 0.295 62 27.01

Full 1×1 @ Dec 0.308 53 26.38

Mix Convs @ Dec 0.301 56 27.51

Mix Convs @ Dec ✓ 0.301 37 41.64

Effectiveness of R2 Crop We present the ablation study of various crop strate-
gies. In these experiments, we only adopt the single sigloss (Eq. 7) for simplicity.
As shown in Table 4, our proposed R2 crop indicates an engaging improvement
on performance compared with the baseline methods. When we adopt the vanilla
random crop, the model cannot learn the knowledge of full-area images. However,
the model infers on full-area images during the validation stage. This discrepancy
leads to significant performance degradation. If we do not apply any crop strat-
egy, the diversity of training samples is limited, also leading to a performance

ECCV-22 submission ID 51 519

limitation. When we adopt our proposed R2 crop, during the training stage,
the model can not only learn the knowledge of full-area images but also ensure
the diversity of training samples. When increasing the variety of crop sizes, the
model performance can be improved simultaneously. However, too small patches
cannot bring performance gains but lead to a slight degradation (e.g., (144, 256)
patches in our ablation study). We infer that the small patches do not contain
sufficient structure information for facilitating the model training. As a result,
we adopt patches with a size of [(240, 384), (384, 512), (480, 640)] in our solution.

Table 4. Ablation study of crop strategies. (h, w) represents the size of crop patches.

Method si-RMSE RMSE

w/o crop 0.335 4.25

Random crop with (384, 512) 0.377 4.62

R2 crop with [(384, 512), (480, 640)] 0.327 4.15

R2 crop with [(240, 384), (384, 512), (480, 640)] 0.323 4.11

R2 crop with [(144, 256), (240, 384), (384, 512), (480, 640)] 0.325 4.13

Effectiveness of Multiple-Loss Training. This section evaluates the effec-
tiveness of each loss term used in our solution. The results are presented in
Table 5. Each loss term can bring performance gains for the model. We also
highlight that if we do not apply the invalid mask in gradience loss, the model
convergence will be hurt as described in Sect. 3.3. Moreover, our dynamic weight
strategy can also achieve satisfactory results without fine-tuning loss weights by
hand. We utilize the handcrafted weights as a default setting to achieve a better
score in the challenge.

Table 5. Ablation study of the multiple loss strategy.

Sig Loss (Eq. 7) Grad Loss (Eq. 8) VNL Loss (Eq. 9) Robust Loss (Eq. 10) Dynamic Weight si-RMSE

✓ 0.323

✓ ✓ 0.316

✓ ✓ ✓ 0.309

✓ ✓ ✓ ✓ 0.303

✓ ✓ ✓ ✓ ✓ 0.306

Effectiveness of Distillation. We first present the results of the teacher model.
As shown in Table 6, the teacher model achieves much better fidelity compared to
the student model. It indicates that there is improvement room for the student
model to learn from the teacher model via the distillation. We also present
qualitative results in Fig. 7 for intuitive comparisons. As we can observe from the
predicted depth maps, the teacher model provides more reasonable and sharper
depth estimation results.

520 Z. Li et al.

We then evaluate different distillation strategies in this section. Motivated
by previous work, we try to apply L2 distillation [15], structure-aware distilla-
tion [27,38], and channel-wise distillation [33]. Interestingly, all strategies cannot
directly work well for our lightweight student model as presented in Table 6. One
possible reason is that we adopt multiple loss terms, leading to difficulty in bal-
ancing the loss weights. However, we also conduct experiments in which we only
adopt the single sigloss and apply the distillation strategies. The results are
similar without improvement in model performance. Moreover, some distillation
strategies conflict with the two-stage fine-tuning, leading to a convergence issue.
These experimental results indicate that more effective distillation strategies
should be designed for monocular depth estimation. In this solution, we propose
to adopt structure-aware distillation. It brings a slight improvement to the si-
RMSE of our lightweight student model but a degradation on RMSE, indicating
there is still huge room to improve the distillation strategy.

Table 6. Ablation study of distillation strategies. Two-Stage indicates applying the
distillation in a fine-tuning manner. ∅ denotes that the fine-tuning process does not
converge.

Method Two-Stage si-RMSE RMSE

Teacher Model 0.228 3.025

Baseline Student Model 0.303 3.785

L2 Distillation 0.307 3.978

L2 Distillation ✓ ∅

Channel-Wise Distillation 0.311 4.045

Channel-Wise Distillation ✓ ∅

Structure-Aware Distillation 0.306 3.994

Structure-Aware Distillation ✓ 0.301 3.839

5 Conclusion

We have introduced our solution for fast and accurate depth estimation on mobile
devices. Specifically, we design an extremely lightweight model for depth estima-
tion. Then, we propose R2 crop to enrich the diversity of training samples. To
facilitate the model training, we design a gradience loss and adopt multiple-loss
items. We also investigate various distillation strategies. Extensive experiments
indicate the effectiveness of our proposed solution.

Acknowledgments. The research was supported by the National Natural Science
Foundation of China (61971165, 61922027), and also is supported by the Fundamental
Research Funds for the Central Universities.

ECCV-22 submission ID 51 521

References

1. HUAWEI HiAI engine introduction. https://developer.huawei.com/consumer/en/
doc/2020315 (2018)

2. Snapdragon neural processing engine SDK. https://developer.qualcomm.com/
docs/snpe/overview.html (2018)

3. Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception
in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsy-
chol. Behavior 11(1), 9–15 (2008)

4. Barron, J.T.: a general and adaptive robust loss function. In: CVPR, pp. 4331–4339
(2019)

5. Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive
bins. In: CVPR, pp. 4009–4018 (2021)

6. Chen, Z., et al.: AutoAlign: pixel-instance feature aggregation for multi-modal 3D
object detection. arXiv preprint arXiv:2201.06493 (2022)

7. Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: AutoAlignv2: deformable
feature aggregation for dynamic multi-modal 3D object detection. arXiv preprint
arXiv:2207.10316 (2022)

8. Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: Graph-DETR3D:
rethinking overlapping regions for multi-view 3D object detection. arXiv preprint
arXiv:2204.11582 (2022)

9. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: NeurIPS (2014)

10. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: CVPR, pp. 2002–2011 (2018)

11. Gerig, N., Mayo, J., Baur, K., Wittmann, F., Riener, R., Wolf, P.: Missing depth
cues in virtual reality limit performance and quality of three dimensional reaching
movements. PLoS ONE 13(1), e0189275 (2018)

12. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: ICCV, pp. 3828–3838 (2019)

13. Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth
into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lep-
etit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5 14

14. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

15. Ignatov, A., Malivenko, G., Plowman, D., Shukla, S., Timofte, R.: Fast and accu-
rate single-image depth estimation on mobile devices, mobile AI 2021 challenge:
Report. In: CVPR, pp. 2545–2557 (2021)

16. Ignatov, A., et al.: AI benchmark: running deep neural networks on android smart-
phones. In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops (2018)

17. Ignatov, A., et al.: AI benchmark: all about deep learning on smartphones in 2019.
In: ICCVW, pp. 3617–3635. IEEE (2019)

18. Ignatov, A., Timofte, R., et al.: Efficient single-image depth estimation on mobile
devices, mobile AI & aim 2022 challenge: report. In: ECCV (2022)

19. Kim, D., Ga, W., Ahn, P., Joo, D., Chun, S., Kim, J.: Global-local path net-
works for monocular depth estimation with vertical cutDepth. arXiv preprint
arXiv:2201.07436 (2022)

https://developer.huawei.com/consumer/en/doc/2020315
https://developer.huawei.com/consumer/en/doc/2020315
https://developer.qualcomm.com/docs/snpe/overview.html
https://developer.qualcomm.com/docs/snpe/overview.html
http://arxiv.org/abs/2201.06493
http://arxiv.org/abs/2207.10316
http://arxiv.org/abs/2204.11582
https://doi.org/10.1007/978-3-319-54181-5_14
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2201.07436

522 Z. Li et al.

20. Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local
planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326
(2019)

21. Li, Z.: Monocular depth estimation toolbox. https://github.com/zhyever/
Monocular-Depth-Estimation-Toolbox (2022)

22. Li, Z., Chen, Z., Li, A., Fang, L., Jiang, Q., Liu, X., Jiang, J.: Unsupervised domain
adaptation for monocular 3D object detection via self-training. arXiv preprint
arXiv:2204.11590 (2022)

23. Li, Z., et al.: SimIPU: Simple 2D image and 3D point cloud unsupervised pre-
training for spatial-aware visual representations. arXiv preprint arXiv:2112.04680
(2021)

24. Li, Z., Chen, Z., Liu, X., Jiang, J.: DepthFormer: exploiting long-range correlation
and local information for accurate monocular depth estimation. arXiv preprint
arXiv:2203.14211 (2022)

25. Li, Z., Wang, X., Liu, X., Jiang, J.: BinsFormer: revisiting adaptive bins for monoc-
ular depth estimation. arXiv preprint arXiv:2204.00987 (2022)

26. Lite, T.: Deploy machine learning models on mobile and IoT devices (2019)
27. Liu, Y., Shu, C., Wang, J., Shen, C.: Structured knowledge distillation for dense

prediction. IEEE TPAMI (2020)
28. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-

dows. In: ICCV (2021)
29. Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for

monocular 3d object detection? In: ICCV, pp. 3142–3152 (2021)
30. Patil, V., Sakaridis, C., Liniger, A., Van Gool, L.: P3depth: monocular depth esti-

mation with a piecewise planarity prior. In: CVPR, pp. 1610–1621 (2022)
31. Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution

network for monocular 3D object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8555–8564 (2021)

32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

33. Shu, C., Liu, Y., Gao, J., Yan, Z., Shen, C.: Channel-wise knowledge distillation
for dense prediction. In: ICCV, pp. 5311–5320 (2021)

34. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. NeurIPS 33, 7462–7473 (2020)

35. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: DADA: depth-aware domain
adaptation in semantic segmentation. In: ICCV, pp. 7364–7373 (2019)

36. Wang, T., Pang, J., Lin, D.: Monocular 3D object detection with depth from
motion. arXiv preprint arXiv:2207.12988 (2022)

37. Wang, W., Neumann, U.: Depth-aware CNN for RGB-D segmentation. In: Ferrari,
V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215,
pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 9

38. Wang, Y., Li, X., Shi, M., Xian, K., Cao, Z.: Knowledge distillation for fast and
accurate monocular depth estimation on mobile devices. In: CVPR, pp. 2457–2465
(2021)

39. Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D:
3D object detection from multi-view images via 3D-to-2D queries. In: Conference
on Robot Learning, pp. 180–191. PMLR (2022)

http://arxiv.org/abs/1907.10326
https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox
https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox
http://arxiv.org/abs/2204.11590
http://arxiv.org/abs/2112.04680
http://arxiv.org/abs/2203.14211
http://arxiv.org/abs/2204.00987
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2207.12988
https://doi.org/10.1007/978-3-030-01252-6_9

ECCV-22 submission ID 51 523

40. Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-lidar point cloud.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops (2019)

41. Wofk, D., Ma, F., Yang, T.J., Karaman, S., Sze, V.: FastDepth: fast monocular
depth estimation on embedded systems. In: ICRA, pp. 6101–6108. IEEE (2019)

42. Yang, G., Tang, H., Ding, M., Sebe, N., Ricci, E.: Transformers solve the limited
receptive field for monocular depth prediction. In: ICCV (2021)

43. Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual
normal for depth prediction. In: ICCV, pp. 5684–5693 (2019)

44. You, Z., Tsai, Y.H., Chiu, W.C., Li, G.: Towards interpretable deep networks for
monocular depth estimation. In: ICCV, pp. 12879–12888 (2021)

45. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and
ego-motion from video. In: CVPR, pp. 1851–1858 (2017)

46. Zhu, S., Brazil, G., Liu, X.: The edge of depth: explicit constraints between seg-
mentation and depth. In: CVPR, pp. 13116–13125 (2020)

	LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile Devices
	1 Introduction
	2 Related Work
	3 Method
	3.1 Network Design
	3.2 R2 Crop
	3.3 Multiple Loss Training
	3.4 Structure-Aware Distillation

	4 Experiments
	4.1 Setup
	4.2 Implementation Details
	4.3 Quantitative Results
	4.4 Qualitative Results
	4.5 Inference Time
	4.6 Ablation Studies

	5 Conclusion
	References

