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Abstract. Sketches make an intuitive and powerful visual expression
as they are fast executed freehand drawings. We present a method for
synthesizing realistic photos from scene sketches. Without the need for
sketch and photo pairs, our framework directly learns from readily avail-
able large-scale photo datasets in an unsupervised manner. To this end,
we introduce a standardization module that provides pseudo sketch-
photo pairs during training by converting photos and sketches to a stan-
dardized domain, i.e. the edge map. The reduced domain gap between
sketch and photo also allows us to disentangle them into two compo-
nents: holistic scene structures and low-level visual styles such as color
and texture. Taking this advantage, we synthesize a photo-realistic image
by combining the structure of a sketch and the visual style of a reference
photo. Extensive experimental results on perceptual similarity metrics
and human perceptual studies show the proposed method could gener-
ate realistic photos with high fidelity from scene sketches and outperform
state-of-the-art photo synthesis baselines. We also demonstrate that our
framework facilitates a controllable manipulation of photo synthesis by
editing strokes of corresponding sketches, delivering more fine-grained
details than previous approaches that rely on region-level editing.

Keywords: Sketch · Scene sketch · Photo synthesis · Unsupervised
learning

1 Introduction

Sketching is an intuitive way to represent visual signals. With a few sparse
strokes, humans could understand and envision a photo from a sketch. Addi-
tionally, unlike photos which are rich in color and texture, sketches are easily
editable as strokes are easy to modify. We aim to synthesize photos that pre-
serve the structure of scene sketches while delivering the low-level visual style of
reference photos.

Unlike previous works [15,24,32] that synthesize photos from categorical
object-level sketches, our goal in which scene-level sketches are used as input
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Fig. 1. Upper: Given a sketch and a style reference photo, our method is capable
of transferring low-level visual styles of the reference while preserving the content
structure of the sketch. We show synthesis results with different references. Lower:
Given an arbitrary photo, users could easily and interactively edit it by adding or
removing strokes on the synthesized sketch. (Color figure online)

poses additional challenges due to 1) Lack of data. There is no training data
available for our task due to the complexity of scene sketches. Not only the
insufficient amount of scene sketches, but the lack of paired scene sketch-image
datasets make supervised learning from one modality to another intractable. 2)
Complexity of scene sketches. A scene sketch usually contains many objects
of diverse semantic categories with complicated spatial organization and occlu-
sions. Isolating objects, synthesizing object photos and combining them together
[7] do not work well and are hard to generalize. For one, detecting objects from
sketches is hard due to the sparse structure. For another, one may encounter
objects that do not belong to seen categories, and the composition could also
make the synthesized photo unrealistic.

We propose to alleviate these issues via 1) a standardization module, and 2)
disentangled representation learning.

For the lack of data, we propose a standardization module, where input
images are converted to a standardized domain, edge maps. Edge maps can be
considered as synthetic sketches due to the high similarity to real sketches. With
the standardization, readily-available large-scale photo datasets could be used
for training by converting them to edge maps. Additionally, during inference,
sketches of various individual styles are also standardized such that the gap
between training and inference is narrowed.

For the complexity of scene sketches, we learn disentangled holistic content
and low-level style representations from photos and sketches by encouraging only
content representations of photo-sketch pairs to be similar. As a definition, con-
tent representations encode holistic semantic and geometric structures of a sketch
or photo. Style representations encode the low-level visual information such as
color and texture. A sketch could depict similar contents as a photo, but contain
no color or texture information. By factorizing out colors and textures, the model
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Fig. 2. Our method consists of two components, standardization and photo synthesis.
Left: The standardization module converts photos or sketches into a standardized
domain, edge maps, to reduce the domain gap between training and inference. Right:
From the standardized edge map, the photo synthesis module generates a photo with
a similar style as the given reference image.

could directly learn from large-scale photos for scene structures and transfer the
knowledge to sketches. Additionally, combining the content representation of a
sketch and a style representation of a reference photo could decode a realistic
photo. The decoded photo should depict similar contents as the sketch and shares
a similar style with the reference photo. This is the underlying mechanics of the
proposed reference-guided scene sketch to photo synthesis approach. Note that
the disentangled representations have been studied previously for photos [28,34]
and we extend the concept to sketches.

As exemplified in Fig. 1, not only photo synthesis from scene sketch, our
model can promote also controllable photo editing by allowing users to directly
modify strokes of a corresponding sketch. The process is easy and fast as strokes
are easy and flexible to modify, compared with photo editing from segmentation
maps proposed by previous works [15,22,26,28]. Specifically, the standardization
module first converts a photo to a sketch. Users could modify strokes of the sketch
and synthesize a newly edited photo with our model. Additionally, the style of
the photo could also be modified with another reference photo as guidance.

We summarize our contribution as follows: 1) We propose an unsupervised
scene sketch to photo synthesis framework. We introduce a standardization
module that converts arbitrary photos to standardized edge maps, enabling a
vast amount of real photos to be utilized during training. 2) Our framework
facilitates controllable manipulation of photo synthesis through editing scene
sketches with more plausibility and simplicity than previous approaches. 3)
Technically, we propose novel designs for scene sketch to photo synthesis, includ-
ing shared content representations to enable knowledge transfer from photos to
sketches and model fine-tuning with sketch-reference-photo triplets for improved
performance.



276 J. Wang et al.

2 Related Work

Conditional Generative Models. Previous approaches generated realistic
images by conditioning generative adversarial networks [9] on a given input from
users. More recent methods extended it to multi-domain and multi-modal set-
ting [4,13,23], facilitating numerous downstream applications including image
inpainting [14,29], photo colorization [20,40], texture and geometry synthe-
sis [10,42]. However, naively adopting this framework to our problem is chal-
lenging due to the absence of paired data where sketches and photos aligned.
We address this by projecting arbitrary sketches and photo into the intermediate
representation and generating pseudo paired data to learn in an unsupervised
setting.

Disentanglement of Content and Style Representations. The disentan-
glement has been studied [31,44] prior to the surge of deep learning models,
where they show low-level style like texture can be modeled as statistics of an
image. Deep generative models [16,21,28,34] also achieved success in photo style
transfer by the disentanglement. We extend the disentanglement idea to sketches
and show its application in photo synthesis.

Sketch to Photo Synthesis. Following a seminal work, SketchGAN [3], several
efforts has been made on synthesizing photos [8,24,37] or reconstructing 3D
shapes [5,35,36] from sketches. They however mainly focused on categorical
single-object sketches without substantial background clutters, and thus have
difficulties when encountered with complicated scene-level sketches.

Scene sketch to photo synthesis is limited by lack of the data. SketchyScene
[45] is the only scene dataset with object segmentation and corresponding car-
toon images. However, their sketch is manually composited from multiple object
sketches with reference to a cartoon image. The composite sketch has a large
domain gap to real scene sketches with reference to a real scene. Their compo-
sition idea greatly impacts how researchers solve the photo synthesis. [7] detect
objects of composite sketches and generate individual photos as well as a back-
ground image and combine them together. Holistic scene structures are ignored
and the photo composition leads to artifacts and unrealism. We learn holistic scene
structures from massive photo datasets and transfer the knowledge to sketches.

Deep Image Editing. By the favor of powerful generative models [17], previous
works edited photos by modifying the extracted latent vector. Typically they
sampled the desired latent vector from a fixed distribution according to a user’s
semantic control [43], or let a user spatially annotate the region-based semantic
layout [27,28]. DeepFaceDrawing [2] enables user to sketch progressive for face
image synthesis. Our work differs in that we allow users to directly edit strokes
of a complicated scene sketch, thus enabling much more fine-grained editing.

3 Methods

As illustrated in Fig. 2, our framework mainly consists of two components:
domain standardization and reference-based photo synthesis. For standardiza-
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Fig. 3. The standardization module converts photos and sketches to a standardized
domain, edge maps. After the standardization, edges of photos and sketches share
higher similarity, which makes the domain gap between training and evaluation nar-
rower. Within the test set, edges of sketches with different individual styles also a share
higher similarity, making the intra-sketch-set discrepancy smaller.

tion (details in Sect. 3.1), input photos and sketches are converted to standard-
ized edge maps, which bypass the lack of data issue. The second part is reference-
guided photo synthesis (details in Sect. 3.2), where synthesized photos are gen-
erated based on input sketches and style reference photos.

3.1 Domain Standardization

Due to the lack of paired sketch-photo datasets, it is intractable for supervised
models to synthesize photos from sketches. We adopt a similar idea as [35], where
they converted inputs to a standardized domain, and showed learning from such
domain has better performance compared to directly using unprocessed inputs.

As shown in Fig. 2L, the standardization can be considered as data prepos-
sessing and is different for training and inference. During training, we collect a
large scale photo dataset of a specific category, e.g., indoor scenes. Each photo
is converted to a standardized edge map for later use with an off-the-shelf deep-
learning-based edge detector [30]. During inference, unlike the training, the input
is a sketch. We use the same edge detector to convert it to the edge map for
later use. Figure 3 depicts examples of photo, sketches and their corresponding
edges. The standardized edge maps have small domain discrepancies. In addition
to narrowing the domain gap between the training and test data, the standard-
ization module during inference could narrow the gap of individual sketching
styles (e.g., stroke width), which was also similarly shown in [35]. Given that
edge maps serve as a proxy for real sketches, we slightly abuse the wording
of synthetic sketches (or omitted as sketches) hereinafter as they may refer to
standardized edge maps.

3.2 Reference-Guided Photo Synthesis

Previous works [28,34] show that photos can be encoded to two disentangled
representations: content and style representations. We extend the concept to
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Fig. 4. Disentangled representation encoding is the first stage of the sketch-to-photo
synthesis module. For each photo, we generate a standardized edge map and form an
image pair. Each image of the pair is encoded as content and style representations by
the encoder. We add content consistency loss to make content representations of the
photo and the edge to be similar. The representations are then decoded to a recon-
structed image by the decoder. The network learns the representations through the
auto-encoding process. For the performance of sketch to photo synthesis later, both
photos and their corresponding standardized edges are fed to the network for auto-
encoding.
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Fig. 5. Fine-tuning with sketch-reference-photo triplets is the second stage of the sketch-
to-photo synthesis module. The input is a standardized edge map and a reference photo.
The model is pre-trained in the representation encoding phase. Both the edge map and
the reference photo are encoded by the network for content and style representations.
The content and representations are fed to the decoder to reconstruct the synthesized
photo.

sketches and show that they can be encoded to disentangled representations.
Preserving content representation while replacing the sketch style with a real
photo style representation could generate a realistic synthesized photo.
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The module is trained in two stages. 1) Disentangled representation encoding
stage learns content and style representations from images via auto-encoding.
2) We further fine-tune the model with sketch-reference-photo triplets, with
regularization loss to guarantee the synthesizing quality. Our model is inspired by
and based on previous arts on disentangled representation learning [28] and style
transfer [34], with novel designs for the goal of scene sketch to photo synthesis.

Disentangled Representation Encoding. Figure 4 depicts the pipeline of the
disentangled representation encoding stage. Denote a pair of input images and its
corresponding edge as {x,x′}, the encoder as E, decoder as G, and discriminator
as D. The encoder encodes input pairs {x,x′} to two representation pairs, con-
tent {cx, cx′} and style {sx, sx′}, i.e., E({x,x′}) = {{cx, cx′}, {sx, sx′}}. From
the encoded representations, the decoder reconstructs a photo G(cx, sx) and
its edge G(cx′ , sx′). The auto-encoder ensures the reconstructed image pair is
similar to the input image pair by the following reconstruction loss in �1-norm:

Lrec1 = E x∼X,x′∼X′ [|x − G(cx, sx)| + |x′ − G(cx′ , sx′)|] (1)

Since the photo and the edge depict the same content, we ask their content
representations to be similar in �1-norm:

Lcontent = E x∼X,x′∼X′ [|cx − cx′ |] (2)

Further, the adversarial GAN loss [9] is required to train discriminator G for
realistic reconstructions:

LGAN1 = E x∼X,x′∼X′ [− log D(G(cx, sx)) − log D(G(cx′ , sx′))] (3)

The final loss is Lrec1 + θLcontent + αLGAN1 , where θ, α are both set to be 0.5.

Fine-Tuning with Sketch-Reference-Photo Triplets. Figure 5 depicts the
pipeline of the fine-tuning stage. Denote the sketch, reference photo and output
synthesized photo as xk,xr,xo, respectively. With the pre-trained model from
the previous representation learning stage, the encoder is able to encode content
and style representations of sketches and photos. The output image is generated
by the decoder from the content representation of the sketch cxk , and the style
representation of the reference sxr :

xo = G(cxk , sxr) (4)

As the model has been pre-trained in the previous stage for encoding content
and style representations, the model has a good starting point for synthesizing
photos from sketches. To ensure the output image has similar content as the
sketch and a similar style as the reference, however, we enforce the following
regularization loss on content and style representations in �1-norm:

Lreg = E xk∼Xk,xr∼Xr,xo∼G(c
Xk ,sXr )[|cxo − cxk | + |sxo − sxr |] (5)

Additionally, the adversarial GAN loss is required:

LGAN2 = E xk∼Xk,xr∼Xr [− log D(G(cxk , sxr))] (6)

The final loss is Lreg + βLGAN2 , where β is set to be 0.5 in the work.
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Fig. 6. The reconstruction results of our method and StyleGAN2 [34]. Images are
projected into embedding spaces for ours and StyleGAN2 [34]. Both photos and stan-
dardized edges are fed to the network for reconstruction. The high faithfulness in recon-
struction demonstrates that the learned content and style representations are effective.

Table 1. (a) Reconstruction performance measured in LPIPS (↓) [41]. Images are pro-
jected into embedding spaces for ours and StyleGAN2 [34]. We reconstruct photos and
edges with a similar performance as StyleGAN2 [34], demonstrating the disentangle-
ment to content and style representations is effective. (b) Reference-guided sketch to
photo synthesis performance measured in FID (↓) [12]. Our method outperforms other
baseline methods in all three categories.

(a)

input method indoor church mountain mean

photo
ours 0.254 0.214 0.221 0.229

StyleGAN2 0.256 0.220 0.224 0.233

edge
ours 0.180 0.166 0.171 0.172

StyleGAN2 0.161 0.188 0.173 0.174

(b)

FID (↓) indoor church mountain mean

ours 105.5 48.7 73.8 76.0

SAE [28] 107.7 52.4 74.1 78.1

ObjSketch [24] 136.5 62.1 95.4 98.0

SpliceViT [33] 204.2 119.7 140.7 154.9

DTP [18] 205.2 124.2 143.5 157.6

Style2Paints [39] 254.2 217.3 247.7 239.7

4 Experimental Results

4.1 Network Architectures and Training Details

Network Architectures. Images are fed to the encoder to obtain content and
style representations. First, images go through 4 down-sampling residual blocks
[11] to obtain an intermediate representation. The intermediate representation
is fed to another convolution layer to obtain the content representation with a
spatial size of 16 × 16. The intermediate representation is also fed to another
two convolution layers to obtain a style representation/vector dimension of 2048.
The decoder consists of 4 up-sampling residual blocks. The style representation
is injected to the decoder convolution layers with weight modulation techniques
described in StyleGAN2 [34]. The discriminator is the same as that of Style-
GAN2.
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Fig. 7. Various baseline photo syntheses from sketches with style guidance. Note that
SpliceViT [33] and DTP [18] are designed for test-time optimization and are not trained
on the full dataset, making them disadvantageous to other methods. All other meth-
ods are trained on the same dataset with a similar iteration as the proposed method.
Style2Paints is designed to synthesize painting, not realistic photos. Our model syn-
thesizes photos that share a similar content as the sketch and a similar visual style as
the style photo reference.

Hyper-Parameters and Training Schedules. For representation encoding,
the initial learning rate is 2e−3. We use Adam optimizer [19] with β = (0, 0.99).
For fine-tuning, we start from the previously pre-trained model. The training
schedule stays the same with the initial learning rate being 4e−4. The entire
training time for the 3D-front indoor scene dataset is 7 days on 4 V100 GPUs.

Baselines. We follow the released code and the same settings of all baseline
methods and retrain on datasets used in the paper. Specifically, some baselines
[18,24,28,33] only work on photos, but not sketches. We use a gray-scale images
as a proxy to ensure the photo synthesis quality. Specifically, we first train a
sketch to gray-scale photo model using the same setting as step 1 of [24], where
the input to the model is a standardized sketch. The generated gray-scale photo
is then used to train a gray-scale to color photo model with the same setting
of the baseline methods. SpliceViT [33] and DTP [18] are designed for test-
time optimization and are not trained on the entire dataset. All other baseline
methods are trained on the same dataset as the proposed method with a similar
iteration.

4.2 Datasets

We train on the following scene photo datasets: 1) 3D-Front Indoor Scene [6]
consists of 14,761 training and 5,479 validation photos. They are rendered with
Blender from synthetic indoor scenes including bedrooms and living rooms. Pho-
tos are resized to 286 and randomly cropped to 256 during training. 2) LSUN
Church [38] consists of 126,227 photos of outdoor churches. We randomly sam-
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Fig. 8. The indoor scene, church and mountain sketch to photo synthesis with different
references. We synthesize high-fidelity scene photos with similar content as the sketch
and similar style as the reference photos.

ple 25,255 photos as the validation set. Photos are resized to 286 and randomly
cropped to 256 during training. 3) GeoPose3K Mountain Landscape [1]
has 3,114 mountain landscape photos. 623 photos are randomly sampled for
validation. Training photos are resized to 572 and randomly cropped.

For evaluation, we collect a Scene Sketch Evaluation Set. For each cat-
egory (indoor scenes, mountain and church), we collect 50 sketches from the
Internet, respectively. The sketches are collected with an intention to cover var-
ious sketching styles, e.g. different levels of line width, geometric distortion, use
of shading, etc.

4.3 Representation Encoding

With effective learned representation, the model could reconstruct photos or
sketches with high quality. We evaluate reconstruction performance in LPIPS
[41].

Table 1a reports the LPIPS distance of reconstructed and input photos and
synthetic sketches of our stage 1 model and StyleGAN2 [34]. Figure 6 depicts
several examples of the input and reconstruction. Our representation encoding
model has a slightly better reconstruction performance compared to StyleGAN2,
indicating the learned content and style representations are adequate and ready
for further fine-tuning with sketch-reference-photo pairs.

4.4 Photo Synthesis

We evaluate the photo synthesis performance of our method and baselines in
terms of photo-realism. We calculate the Fréchet inception distance (FID) [12]
between the synthesized photo set and the training photo set for each cate-
gory (Table 1b). Our method outperforms other baselines under the FID metric.
Figure 7 depicts synthesis results of our method and baselines. Note that Splice-
ViT [33] and DTP [18] designed for test-time optimization and was not trained
on the full dataset, making it disadvantageous to other methods. Style2Paints
is designed to synthesizing painting, not realistic photos. We however include it
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Table 2. A human perceptual study of the synthesized photos. (a) The fooling rate
of our synthesized model over real photos measures the realism of the generation. (b)
User preference on which method synthesizes photos that depicts more similar content
to the sketch. (c) User preference on which method synthesizes photos that depicts
more similar visual style to the reference photo. Compared with [28], we have a higher
fooling rate over real photos, better content and style matching preference rate.

(a) Fooling rate (↑)

(%) indoor scene church mountain mean

ours 25.00 44.3 48.9 39.4

SAE [28] 10.0 6.6 20.0 12.2

(b) Content matching (↑)

(%) indoor scene church mountain mean

ours 80.1 92.1 75.0 82.4

SAE [28] 19.9 7.9 25.0 17.6

(c) Style matching (↑)

(%) indoor scene church mountain mean

ours 61.9 90.9 71.0 74.6

SAE [28] 38.1 9.1 29.0 25.4

as it is one of the few works that study synthesizing from scene sketches. Our
synthesis result outperforms all other methods, with SAE [28] being the second.
As for if the content of the output photo matches with the input sketch or if the
style matches with the reference photo, we provide human perceptual evaluation
in Sect. 4.5.

We also provide more visualization of our synthesis results of indoor scenes,
churches and mountains in Fig. 8.

4.5 Human Perceptual Study

We conduct a human perceptual study to evaluate the realism of synthesized
photos, and if synthesized photos match contents and styles as desired. We only
evaluate our method and SAE [28], the second best-performing synthesis method,
due to limited resources.

We create a survey consisting of three parts: photorealism, content matching
with sketches and style matching with reference photos. As guidance to the
participants, we state our research purpose at the beginning of the survey. For
each part, a detailed description and an example question with answers and
explanations are provided for the participant’s reference. The order of our results,
baseline results, and real images are randomly shuffled in the survey to minimize
the potential bias from the participant. Each part consists of 13 questions, with
one question being a bait question with an obvious answer. The bait question is
designed to check if the participant is paying attention and if the answers are
reliable. There are in total 51 participants, with 1 being ruled out due to failing
one of the bait questions. Thus we finally collect 1,950 valid human judgments.

To evaluate the photorealism, we randomly select synthesized photos of ours
and SAE evenly from three categories. Both methods use the same input sketch
and reference photo. For each synthesized photo, we use Google’s search by
image feature to find the most similar real photo and ask participants which
one they think looks more like a real photo. We then calculate the percentage of
participants being fooled. Note that the fooling rate of random guessing is 50%.
Table 2a reports the fooling rate of our method and SAE. Ours is 27% higher
than SAE. Specifically, for churches and mountains, ours achieves a fooling rate
over 44%: the generated photos are almost indistinguishable from real photos.
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Fig. 9. The style representations of sketches and photos are well separated, while
the content representations of sketches and photos are tangled together. We visual-
ize learned content and style representations of sketches and photos with T-SNE [25].
The results show that sketches and photos share the content space and it is appropriate
to train on photos and transfer knowledge to sketches.

Fig. 10. Sketch to photo synthesis with combined style representations of two refer-
ences. We encode style representations from two photos, e.g. a winter photo and a
summer photo. By increasing the weight of the summer image and decreasing that of
the winter image, the synthesized photo from the sketch gradually changes from winter
appearance to summer appearance.

To evaluate if the synthesized photos match the content of the input sketch,
we show participants an input sketch and two synthesized results from our
method and SAE, and ask them to pick one that has the most similar con-
tent as the sketch. Table 2b reports the preference rate of ours over SAE. We
achieve 82% on average preference rate, well outperforming the baseline.

To evaluate if the synthesized photos match the style of the reference photo,
we show participants a reference photo and two synthesized results from our
method and SAE, and ask them to pick one that has the most similar style to
the sketch. Table 2c reports the preference rate of ours over SAE. We achieve a
75% average preference rate, well outperforming the baseline.

4.6 Photo Editing Through Sketch

As depicted in Fig. 11, given an input photo, we convert it to a standardized
edge map (where we refer as sketch for simplicity). Users could add and remove
strokes to edit the photo. We also show the possibility of sequential editing
in the figure. We evaluate the photo editing performance for the indoor scene
validation dataset, and the FID [12] of edited images to the training set is 69.2.
One limitation is that the content in the unmodified region of a given photo may
not be well preserved as the edited photo is solely generated from the edge map.
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Fig. 11. Photo editing and style transfer via sketches. Upper: Given an input image,
we first convert it to a standardized edge map. We then add or remove strokes in the
edge map and convert it back to a photo. The visual style of the photo could also
be changed with a reference photo (top right). Lower: Sequential editing by gradually
removing strokes. (Color figure online)

4.7 Analysis and Ablation Studies

Analysis of Style Representations. We visualize the learned content and
style representations of photos and sketches using T-SNE [25] in Fig. 9: style
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Table 3. Ablation studies on the fine-tuning stage, content and style regularization
loss for indoor scenes in FID (↓) [12] distance. Having both stage 2 fine-tuning and the
regularization loss gives the best result.

no fine-tune fine-tune+style loss fine-tune+content loss fine-tune+all loss

107.9 107.0 106.1 105.5

representations of sketches and photos are well separated, while content repre-
sentations of sketches and photos are not separable. This verifies the grounding
of the method: the content representations of sketches and photos can be shared,
while the style representations for the two are different. Thus, combining the con-
tent representation of a sketch and style representation of a photo could decode
a realistic synthesized photo.

Style Interpolation. We study if the reference style can be a combination
of style of two different reference images xr1 and xr2 . Suppose their style
representations are sxr1 and sxr2 . The combined representation scombined =
γsxr1 +(1−γ)sxr2 , where γ ∈ [0, 1]. By adjusting γ, we synthesize photos with a
combined style from both reference images. Figure 10 depicts examples of moun-
tain sketch to photo synthesis with combined styles from two different reference
images. By adjusting γ, the synthesized photos have a continuous interpolation
from winter to summer, and afternoon to dusk.

Fine-Tuning Model. One of the novelty is that we propose the fine-tuning
with sketch-reference-photo triplets for the task. We evaluate if the fine-tuning
is necessary by removing the fine-tuning stage. As reported in Table 3, removing
the model fine-tuning leads to 2.4 worse results in the FID metric.

Content and Style Regularization Loss. We study if the regularization loss
at the fine-tuning stage is effective. We study the function of the content loss
(|cxo−cxk |) and style loss (|sxo−sxr |) respectively. As reported in Table 3, remov-
ing the content regularization loss leads to 1.5 worse results in FID metric, and
removing the style loss leads to 0.6 worse results. This verifies the effectiveness
of the proposed regularization loss.

5 Summary

We propose a reference-guided framework for photo synthesis from scene
sketches. We first convert all input photos and sketches to standardized edge
maps, allowing the model to learn in unsupervised setting without the need of
real sketches or sketch-photo pairs. Sequentially, the standardized input and ref-
erence image are disentangled into content and style components to synthesize
new hybrid image that preserves the content of standardized input while trans-
ferring the style of reference image. Extensive experiments demonstrate that our
method can generate and edit a realistic photo from a user’s scene sketch with a
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reference photo as style guidance, surpassing the previous approaches on three
benchmarks.

A major insight of this work is that, we learn to synthesize scene structures
directly from the vast amount of readily-available photos, rather than synthe-
sizing and combining individual objects. Rather than worrying about the accli-
mated errors from sketch-based object detection, photo synthesis and spatial
combination for the final output, we treat the scene sketches as a whole and
learn the holistic structures for photo synthesis.

One limitation is that the deep-learning based standardization step could
eliminate strokes that reflect the details of the scene, or misinterpret the strokes
as textures. Future work could study a sketch-to-edge standardization process
that preserves higher fidelity of the sketch. Another limitation lies in the sketch-
based photo editing - the unchanged regions of a given photo may not be well
preserved. This is due to the model takes sketch as the only input. Future work
could improve the performance by taking the original photo into consideration.
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