
24th International Conference, VMCAI 2023
Boston, MA, USA, January 16–17, 2023
Proceedings

Verification, Model Checking,
and Abstract InterpretationLN

CS
 1

38
81

AR
Co

SS
Cezara Dragoi
Michael Emmi
Jingbo Wang (Eds.)

Lecture Notes in Computer Science 13881

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Cezara Dragoi • Michael Emmi •

Jingbo Wang (Eds.)

Verification, Model Checking,
and Abstract Interpretation
24th International Conference, VMCAI 2023
Boston, MA, USA, January 16–17, 2023
Proceedings

123

Editors
Cezara Dragoi
Inria, Amazon Web Services
Courbevoie, France

Michael Emmi
Amazon Web Services
Seattle, WA, USA

Jingbo Wang
University of Southern California
Los Angeles, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-24949-5 ISBN 978-3-031-24950-1 (eBook)
https://doi.org/10.1007/978-3-031-24950-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2024
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-24950-1

Preface

This volume contains the proceedings of VMCAI 2023, the 24th International Con-
ference on Verification, Model Checking, and Abstract Interpretation. VMCAI 2023
was part of the 50th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2023), held at the Boston Park Plaza in Boston, USA, during
January 16–17, 2023. VMCAI is a forum for researchers working in verification, model
checking, and abstract interpretation. It attempts to facilitate interaction,
cross-fertilization, and advancement of methods that combine these and related areas.
The topics of the conference include program verification, model checking, abstract
interpretation, program synthesis, static analysis, type systems, deductive methods,
decision procedures, theorem proving, program certification, debugging techniques,
program transformation, optimization, and hybrid and cyber-physical systems.

VMCAI 2023 received a total of 34 submissions. After a rigorous single blind
review process, with each paper reviewed by at least three Program Committee
(PC) members, followed by an online discussion, the PC accepted 17 papers for
publication in the proceedings and presentation at the conference.

In addition to the contributed papers, the conference program included four key-
notes: Aws Albarghouthi (University of Wisconson–Madison), Eric Koskinen (Stevens
Institute of Technology), Sharon Shoham (Tel Aviv University), and Chao Wang
(University of Southern California).

By now, artifact evaluation is a standard part of VMCAI. The artifact evaluation
process complements the scientific impact of the conference by encouraging and
rewarding the development of tools that allow for replication of scientific results as well
as for shared infrastructure across the community. Authors of submitted papers were
encouraged to submit an artifact to the VMCAI 2023 artifact evaluation committee
(AEC). We also encouraged the authors to make their artifacts publicly and perma-
nently available.

All submitted artifacts were evaluated in parallel with the papers. We assigned three
members of the AEC to each artifact and assessed it in two phases. First, the reviewers
tested whether the artifacts were working, e.g., there were no corrupted or missing files
and the evaluation did not crash on simple examples. For those artifacts that did not
work, we sent the issues to the authors, for clarifications. In the second phase, the
assessment phase, the reviewers aimed at reproducing any experiments or activities and
evaluated the artifact based on the following questions: 1. Is the artifact consistent with
the paper and the claims made by the paper? 2. Are the results of the paper replicable
through the artifact? 3. Is the artifact available? We awarded a badge for each of these
question to each artifact that answered it in a positive way. Of the 14 accepted papers,
there were five submitted artifacts with five that passed the second phase and were thus
awarded one, two, or all three Artifact Evaluation Badges.

The VMCAI program would not have been possible without the efforts of many
people. We thank the research community for submitting their results to VMCAI and

for their participation in the conference. The members of the Program Committee, the
artifact evaluation committee, and the external reviewers worked tirelessly to select a
strong program, offering constructive and helpful feedback to the authors in their
reviews. The VMCAI steering committee provided continued encouragement and
advice. We warmly thank the keynote speakers for their participation and contribu-
tions. We also thank the general chair of POPL 2023, Andrew C. Myers, and the
organization team for their support. We thank the publication team at Springer for their
support, and EasyChair for providing an excellent conference management system.

December 2022 Cezara Dragoi
Michael Emmi
Jingbo Wang

vi Preface

Organization

Program Co-chairs

Cezara Dragoi AWS, Inria Paris, and ENS, France
Michael Emmi Amazon Web Services, USA

Artifact Evaluation Chair

Jingbo Wang University of Southern California, USA

Program Committee

Mohamed Faouzi Atig Uppsala University, Sweden
Ahmed Bouajjani IRIF, Université Paris Cité, France
Bor-Yuh Evan Chang University of Colorado Boulder and Amazon, USA
Jocelyn Chen The University of Texas at Austin, USA
Yanju Chen University of California, Santa Barbara, USA
Deepak D’Souza Indian Institute of Science, Bangalore, India
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany
Mihály Dobos-Kovács Budapest University of Technology and Economics,

Hungary
Rui Dong University of Michigan, USA
Cezara Dragoi AWS, Inria Paris, and ENS, France
Michael Emmi Amazon Web Services, USA
Constantin Enea IRIF, Université de Paris, France
Ferhat Erata Yale University, USA
Jerome Feret Inria Paris, France
Jean-Christophe Filliatre CNRS, France
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Arie Gurfinkel University of Waterloo, Canada
Liana Hadarean Amazon Web Services, USA
Ákos Hajdu Budapest University of Technology and Economics,

Hungary
Shaobo He Amazon Web Services, USA
Zunchen Huang University of Southern California, USA
Dejan Jovanović Amazon Web Services, USA
Joomy Korkut Princeton University, USA
Burcu Kulahcioglu Ozkan Delft University of Technology, The Netherlands
Akash Lal Microsoft, India
Yannan Li University of Southern California, USA

Anthony Widjaja Lin TU Kaiserslautern, Germany
Stephan Merz Inria Nancy, France
Shouvick Mondal Indian Institute of Technology, Madras, India
Suha Orhun Mutluergil Koc University, Turkey
Kedar Namjoshi Nokia Bell Labs, USA
Jorge A. Navas SRI International, USA
Amirmohammad Nazari University of Southern California, USA
Gennaro Parlato University of Molise, Italy
Corina Pasareanu CMU, NASA, and KBR, USA
Tatjana Petrov University of Konstanz, Germany
Felipe R. Monteiro Amazon Web Services, USA
Daniel Schwartz-Narbonne Amazon Web Services, USA
Subodh Sharma Indian Institute of Technology, Delhi, India
Mihaela Sighireanu LMF, ENS Paris-Saclay, Université Paris-Saclay, and

CNRS, France
Mandayam Srivas Chennai Mathematical Institute, India
Abhishek Tiwari University of Passau, Germany
Jingbo Wang University of Southern California, USA
Yuhao Zhang University of Wisconsin-Madison, USA
Zhen Zhang Utah State University, USA
Yaoda Zhou The University of Hong Kong, Hong Kong, China
Florian Zuleger TU Wien, Austria

Additional Reviewers

Aktas, Ethem Utku
Bajczi, Levente
Barbot, Benoit
Bilecen, Ali Enver
D’Souza, Meenakshi
Duflot, Marie
Garbi, Giulio
Habermehl, Peter
La Torre, Salvatore

Magara, Seyma Selcan
Majumdar, Rupak
Mukhopadhyay, Diganta
P., Habeeb
Schmitt, Frederik
Schoepe, Daniel
Stucki, Sandro
Szekeres, Dániel
Vediramana Krishnan, Hari Govind

viii Organization

Contents

Distributing and Parallelizing Non-canonical Loops 1
Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller

SMT-Based Modeling and Verification of Spiking Neural Networks:
A Case Study . 25

Soham Banerjee, Sumana Ghosh, Ansuman Banerjee,
and Swarup K. Mohalik

StaticPersist: Compiler Support for PMEM Programming. 44
Sorav Bansal

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard
Inference . 66

Nicolas Berthier and Narges Khakpour

Satisfiability Modulo Custom Theories in Z3 . 91
Nikolaj Bjørner, Clemens Eisenhofer, and Laura Kovács

Bayesian Parameter Estimation with Guarantees via Interval Analysis
and Simulation . 106

Michele Boreale and Luisa Collodi

A Pragmatic Approach to Stateful Partial Order Reduction 129
Berk Cirisci, Constantin Enea, Azadeh Farzan,
and Suha Orhun Mutluergil

Compositional Verification of Stigmergic Collective Systems 155
Luca Di Stefano and Frédéric Lang

Efficient Interprocedural Data-Flow Analysis Using Treedepth
and Treewidth . 177

Amir Kafshdar Goharshady and Ahmed Khaled Zaher

Maximal Robust Neural Network Specifications via Oracle-Guided
Numerical Optimization . 203

Anan Kabaha and Dana Drachsler-Cohen

A Generic Framework to Coarse-Grain Stochastic Reaction Networks by
Abstract Interpretation . 228

Jérôme Feret and Albin Salazar

CosySEL: Improving SAT Solving Using Local Symmetries 252
Sabrine Saouli, Souheib Baarir, Claude Dutheillet, and Jo Devriendt

Sound Symbolic Execution via Abstract Interpretation and Its Application
to Security . 267

Ignacio Tiraboschi, Tamara Rezk, and Xavier Rival

Result Invalidation for Incremental Modular Analyses 296
Jens Van der Plas, Quentin Stiévenart, and Coen De Roover

Synthesizing History and Prophecy Variables for Symbolic Model
Checking . 320

Cole Vick and Kenneth L. McMillan

Solving Constrained Horn Clauses over Algebraic Data Types 341
Lucas Zavalía, Lidiia Chernigovskaia, and Grigory Fedyukovich

ARENA: Enhancing Abstract Refinement for Neural
Network Verification . 366

Yuyi Zhong, Quang-Trung Ta, and Siau-Cheng Khoo

Correction to: ARENA: Enhancing Abstract Refinement for Neural
Network Verification . C1

Yuyi Zhong, Quang-Trung Ta, and Siau-Cheng Khoo

Author Index . 389

x Contents

Distributing and Parallelizing
Non-canonical Loops

Clément Aubert1(B) , Thomas Rubiano2, Neea Rusch1 ,
and Thomas Seiller2,3

1 School of Computer and Cyber Sciences, Augusta University, Augusta, USA
caubert@augusta.edu

2 LIPN - UMR 7030 Université Sorbonne Paris Nord, Villetaneuse, France
3 CNRS, Paris, France

Abstract. This work leverages an original dependency analysis to par-
allelize loops regardless of their form in imperative programs. Our algo-
rithm distributes a loop into multiple parallelizable loops, resulting in
gains in execution time comparable to state-of-the-art automatic source-
to-source code transformers when both are applicable. Our graph-based
algorithm is intuitive, language-agnostic, proven correct, and applicable
to all types of loops. Importantly, it can be applied even if the loop itera-
tion space is unknown statically or at compile time, or more generally if
the loop is not in canonical form or contains loop-carried dependency. As
contributions we deliver the computational technique, proof of its preser-
vation of semantic correctness, and experimental results to quantify the
expected performance gains. We also show that many comparable tools
cannot distribute the loops we optimize, and that our technique can be
seamlessly integrated into compiler passes or other automatic paralleliza-
tion suites.

Keywords: Program transformation · Automatic parallelization ·
Loop optimization · Abstract interpretation · Program analysis ·
Dependency analysis

This research is supported by the Transatlantic Research Partnership of the Embassy of
France in the United States and the FACE Foundation. Th. Rubiano and Th. Seiller are
also supported by the Île-de-France region through the DIM RFSI project “CoHOp”.
N. Rusch is supported in part by the Augusta University Provost’s office, and the
Translational Research Program of the Department of Medicine, Medical College of
Georgia at Augusta University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 1–24, 2023.
https://doi.org/10.1007/978-3-031-24950-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_1&domain=pdf
http://orcid.org/0000-0001-6346-3043
http://orcid.org/0000-0002-7354-5330
http://orcid.org/0000-0001-6313-0898
https://face-foundation.org/transatlantic-study-research/transatlantic-research-partnership/
https://face-foundation.org/
https://www.augusta.edu/mcg/medicine/research/trp/about-srp.php
https://doi.org/10.1007/978-3-031-24950-1_1

2 C. Aubert et al.

1 Original Approaches to Automatic Parallelization

1.1 The Challenge of Unknown Iteration Space

Loop fission (a.k.a. loop distribution) is an optimization technique that breaks
loops into multiple loops, with the same condition or index range, each taking
only a part of the original loop’s body. Such transformation creates opportunity
for parallelization and reduces program’s running time. For instance, the loop

while(t[i] != j){
s1[i] = j*j;
s2[i] = 1/j;
i++;}

would become

while(t[i1] != j)
{s1[i1] = j*j; i1++;}

while(t[i2] != j)
{s2[i2] = 1/j; i2++;}

under

this transformation. In the transformed program, variable i is substituted with
two copies, i1 and i2, and we obtain two while loops that can be executed
in parallel1 . The gain, in terms of time, results from the fact that the original
loop could only be executed sequentially, while the transformed loops can each
be assigned to one core. If we consider similarly structured loops that perform
resource-intensive computation or that can be distributed in e.g., 8 loops run-
ning on 8 cores, it becomes intuitive how this technique can yield measurable
performance gain.

This example straightforwardly captures the idea behind loop fission. Of
course, as a loop with a short body, it misses the richness and complexities
of realistic software. It is therefore very surprising that all the existing loop
fission approaches fail at transforming such an elementary program! The chal-
lenge comes from the kind of loop presented. Applying loop fission to “canonical”
(Definition 15) loops or loops whose number of iterations can be pre-determined
is an established convention. But our example of a non-canonical loop with a
(potentially) unknown iteration space cannot be handled by those approaches
(Sect. 4).

In this paper we present a loop fission technique that can resolve this limita-
tion, because it can be applied to all kinds of a loops2. The technique is applica-
ble to any programming language in the imperative paradigm, lightweight and
proven correct. The loop fission technique derives these capabilities from a graph-
based dependency analysis, first introduced in our previous work [33]. Now we
refine this dependency analysis and explain how it can be leveraged to obtain
loop-level parallelism: a form of parallelism concerned with extracting parallel
tasks from loops. We substantiate our claim of running time improvement by
benchmarking our technique in Sect. 5. The results show, in cases where itera-
tion space is unknown, that we obtain gain up to the number of parallelizable
loops, and that in other cases the speedup is comparable to alternative tech-
niques.

1 In practice, private copies of i are automatically created by e.g., the standard parallel
programming API for C, OpenMP. Its pragma directives are illustrated in Fig. 5.

2 We focus on while loops, but other kinds of loops (for, do...while, foreach) can
always be translated into while and general applicability follows.

Distributing and Parallelizing Non-canonical Loops 3

1.2 Motivations for Correct, Universal and Automatic
Parallelization

The increasing need to discover and introduce parallelization potential in pro-
grams fuels the demand for loop fission. To leverage the potential speedup avail-
able on modern multicore hardware, all programs—including legacy software—
should instruct the hardware to take advantage of its available processors.

Existing parallel programming APIs, such as OpenMP [25], PPL [32], and
oneTBB [22], facilitate this progression, but several issues remain. For exam-
ple, classic algorithms are written sequentially without parallelization in mind
and require reformatting to fit the parallel paradigm. Suitable sequential pro-
grams with opportunity for parallelization must be modified, often manually, by
carefully inserting parallelization directives. The state explosion resulting from
parallelization makes it impossible to exhaustively test the code running on par-
allel architectures [12]. These challenges create demand for correct automatic
parallelization approaches, to transform large bodies of software to semantically
equivalent parallel programs.

Compilers offer an ideal integration point for many program analyses and
optimizations. Automatic parallelization is already a standard feature in devel-
oping industry compilers, optimizing compilers, and specialty source-to-source
compilers. Tools that perform local transformations, generally on loops, are fre-
quently conceived as compiler passes. How those passes are intertwined with
sequential code optimizations can however be problematic [14]. As an example,
OpenMP directives are by default applied early in the compilation and hence
the parallelized source code cannot benefit from sequential optimizations such
as unrolling. Furthermore, compilers tend to make conservative choices and miss
opportunities to parallelize [14,21].

The loop fission technique presented in this paper offers an incremental
improvement in this direction. It enables discovery of parallelization potential
in previously uncovered cases. In addition, the flexibility of the system makes
it suitable to integration and pipelining with existing parallelization tools at
various stages of compilation, as discussed in Sect. 6.

1.3 Our Technique: Properties, Benefits and Limitations

Our technique possesses four notable properties, compared to existing tech-
niques:

Suitable to loops with unknown iteration spaces—our method does not
require knowing loop iteration space statically nor at compile time, making
it applicable to loops which are often ignored.

Loop-agnostic—our method requires practically no structure from the loops:
they can be while, do ... while or for loops, have arbitrarily complex
update and termination conditions, loop-carried dependencies, and arbitrar-
ily deep loop nests.

4 C. Aubert et al.

Language-agnostic—our method can be used on any imperative language, and
without manual annotations, making it flexible and suitable for application
and integration with tools and languages ranging from high-level to interme-
diate representations.

Correct—our method is easy to prove correct and intuitive, largely because it
does not apply to loop bodies with pointers or complex function calls.

All the approaches we know of fail in at least one respect. For instance,
polyhedral optimizations cannot transform loops with unknown iteration spaces,
since they work on static control parts of programs, where all control flow and
memory accesses are known at compile time [20, p. 36]. More importantly, all the
“popular” [35] automatic tools fail to optimize do...while loops, and require
for and while loops to have canonical forms, that generally require the trip
count to be known at compilation time. We discuss these alternative approaches
in detail in Sect. 4.

The main limitation of our approach is with function calls and memory
accesses. Although we can treat loops with pure function calls, we exclude treat-
ment of loops that contain explicit pointer manipulation, pointer arithmetic or
certain function calls. We reserve the introduction of these enhancements as
future extensions of our technique. In the meantime, and with these limitations
in mind, we believe our approach to be a good complement to existing approaches.
Polyhedral models [24]—that are also pushing to remove some restrictions [13]—,
advanced dependency analyses, or tools developed for very precise cases (such
as loop tiling [14]), should be used in conjunction with our technique, as their
use cases diverge (Sect. 6).

1.4 Contributions: From Theory to Benchmarks

We deliver a complete perspective on the design and expected real-time effi-
ciency of our loop fission technique, from its theoretical foundations to concrete
measurements. We present three main contributions:

1. The loop fission transformation algorithm—Sect. 3.1—that analyzes depen-
dencies of loop condition and body variables, establishes cliques between
statements, and splits independent cliques into multiple loops.

2. The correctness proof—Sect. 3.2—that guarantees the semantic preservation
of loop transformation.

3. Experimental results [8]—Sect. 5—that evaluate the potential gain of the pro-
posed technique, including loops with unknown iteration spaces, and demon-
strates its integrability with existing parallelization frameworks.

But first, we present and illustrate the dependency analysis that enables our
loop fission technique.

Distributing and Parallelizing Non-canonical Loops 5

2 Background: Language and Dependency Analysis

2.1 A Simple While Imperative Language with Parallel Capacities

We use a simple imperative while language, with semantics similar to C,
extended with a parallel command, similar to e.g., OpenMP’s directives [25],
allowing to execute its arguments in parallel3. Our language supports arrays
but not pointers, and we let for and do...while loops be represented using
while loops. It is easy to map to fragments of C, Java, or any other imperative
programming language with parallel support.

var ::=i | j | . . . | s | t | . . . | x1 | x2 | . . . | zn | var[exp] (Variables)

exp ::=var | val | op exp, . . . , exp) (Expression)

com ::=var = exp | if exp then com else com |
while exp do com | use(var, . . . , var) | skip |
com com parallel com com com (Command)

Fig. 1. A simple imperative while language

The grammar is given Fig. 1. A variable represents either an undetermined
“primitive” datatype, e.g., not a reference variable, or an array, whose indices
are given by an expression. We generally use s and t for arrays. An expression is
either a variable, a value (e.g., integer literal) or the application to expressions of
some operator op, which can be e.g., relational (==, <, etc.) or arithmetic (+, -,
etc.). We let V (resp. e, C) ranges over variables (resp. expression, command) and
W range over while loops. We also use combined assignment operators and write
e.g., x++ for x += 1. We assume commands to be correct, e.g., with operators
correctly applied to expressions, no out-of-bounds errors, etc.

A program is thus a sequence of statements, each statement being either an
assignment, a conditional, a while loop, a function call4 or a skip. Statements
are abstracted into commands, which can be a statement, a sequence of com-
mands, or multiple commands to be run in parallel. The semantics of parallel
is the following: variables appearing in the arguments are considered local, and
the value of a given variable x after execution of the parallel command is the
value of the last modified local variable x. This implies possible race conditions,
but our transformation (detailed in Sect. 3) is robust to those: it assumes given
parallel-free programs, and introduces parallel commands that either uni-
formly update the (copy of the) variables across commands, or update them in
only one command. The rest of this section assumes parallel-free programs,
that will be given as input to our transformation explained in Sect. 3.1.

For convenience we define the following sets of variables.
3 OpenMP’s pragma omp parallel directive is illustrated in Sect. 5.
4 The use command represents any command which does not modify its variables but

use them and should not be moved around carelessly (e.g., a printf). In practice,
we currently treat all function calls as use, even if the function is pure.

6 C. Aubert et al.

Definition 1. Given an expression e, we define the variables occurring in e by:
Occ(x) = x Occ(t[e]) = t ∪ Occ(e)

Occ(val) = ∅ Occ(op(e1, . . . , en)) = Occ(e1) ∪ · · · ∪ Occ(en)

Definition 2. Let C be a command, we let Out(C) (resp. In(C), Occ(C)) be the
set of variables modified by (resp. used by, occurring in) C as defined in Table 1.
In the use(x1, . . . , xn) case, f is a fresh variable introduced for this command.

Table 1. Definition of Out, In and Occ for commands

C Out(C) In(C) Occ(C) = Out(C) ∪ In(C)

x = e x Occ(e) x ∪Occ(e)

t[e1] = e2 t Occ(e1) ∪ Occ(e2) t ∪Occ(e1) ∪ Occ(e2)

if e then C1 else C2 Out(C1) ∪ Out(C2) Occ(e) ∪ In(C1) ∪ In(C2) Occ(e) ∪ Occ(C1) ∪ Occ(C2)

while e do C Out(C) Occ(e) ∪ In(C) Occ(e) ∪ Occ(C)

use(x1, . . . , xn) f {x1, . . . , xn} {x1, . . . , xn, f}
skip ∅ ∅ ∅
C1; C2 Out(C1) ∪ Out(C2) In(C1) ∪ In(C2) Occ(C1) ∪ Occ(C2)

Our treatment of arrays is an over-approximation: we consider the array as
a single entity, and that changing one value in it changes it completely. This is
however satisfactory: since we do not split loop “vertically” (e.g., distributing
the iteration space between threads) but “horizontally” (e.g., distributing the
tasks between threads), we want each thread in the parallel command to have
control of the array it modifies, and not to have to synchronize its writes with
other commands.

2.2 Data-Flow Graphs for Loop Dependency Analysis

The loop transformation algorithm relies fundamentally on its ability to analyze
data-flow dependencies between loop condition and variables in the loop body, to
identify opportunities for loop fission. In this section we define the principles of
this dependency analysis, founded on the theory of data-flow graphs, and how it
maps to the presented while language. This dependency analysis was influenced
by a large body of works related to static analysis [1,26,29], semantics [27,38] and
optimization [33]; but is presented here in self-contained and compact manner.

We assume the reader is familiar with semi-rings, standard operations on
matrices (multiplication and addition), and on graphs (union and inclusion).

Definition of Data-Flow Graphs. A data-flow graph for a given command C
is a weighted relation on the set Occ(C). Formally, this is represented as a matrix
over a semi-ring, with the implicit choice of a denumeration of Occ(C)5.
5 We will use the order in which the variables occur in the program as their implicit

order most of the time.

Distributing and Parallelizing Non-canonical Loops 7

Definition 3 (dfg). A data-flow graph (dfg) for a command C is a |Occ(C)| ×
|Occ(C)| matrix over a fixed semi-ring (S, +,×), with |Occ(C)| the cardinal of
Occ(C). We write M(C) the dfg of C and M(C)(y,x) for the coefficient in M(C)
at the row corresponding to x and column corresponding to y.

How a data-flow graph is constructed, by induction over the command, is
explained in Sect. 2.3. To avoid resizing matrices whenever additional variables
are considered, we identify M(C) with its embedding in a larger matrix, i.e.,
we abusively call the dfg of C any matrix containing M(C) and the multiplica-
tion identity element on the other diagonal coefficients, implicitly viewing the
additional rows/columns as variables not in Occ(C).

2.3 Constructing Data-Flow Graphs

The data-flow graph (dfg) of a command is constructed by induction on the
structure of the command. In the remainder of this paper, we use the semi-
ring ({0, 1,∞},max,×) to represent dependencies: ∞ represents dependence, 1
represents propagation, and 0 represents reinitialization.

Base Cases (assignment, Skip, Use). The dfg for an assignment C is com-
puted using In(C) and Out(C):

Definition 4 (Assignment). Given an assignment C, its dfg is given by:

M(C)(y,x) =

⎧
⎪⎨

⎪⎩

∞ if x ∈ Out(C) and y ∈ In(C) (Dependence)
1 if x = y and x /∈ Out(C) (Propagation)
0 otherwise (Reinitialization)

We illustrate in Fig. 2 some basic cases and introduce the graphical conven-
tions of using weighted relations, or weighted bi-partite graphs, to illustrate the
matrices. Note that in the case of dependencies, In(C) is exactly the set of vari-
ables that are source of a dependence arrow, while Out(C) is the set of variables
that either are targets of dependence arrows or were reinitialized.

Note that we over-approximate arrays in two ways: the dependencies of the
value at one index are the dependencies of the whole array, and the index at
which the value is assigned is a dependence of the whole array (cf. the solid
arrow from i to t in the last example of Fig. 2). This is however enough for our
purpose, and simplify our treatment of arrays.

The dfg for skip is simply the empty matrix, but the dfg of use function
calls requires a fresh “effect” variable to anchor the dependencies.

8 C. Aubert et al.

C Out(C), In(C) M(C) (as a graph) M(C)

w = 3
Out(C) = {w}
In(C) = ∅

w w
reinitialization

w

w 0

x = y
Out(C) = {x}
In(C) = {y}

x

y

x

y
depen

dence

propagation

x y

x 0 0
y ∞ 1

w = t[x+ 1]
Out(C) = {w}
In(C) = {t, x}

w

t

x

w

t

x

⎛

⎝

w t x

w 0 0 0
t ∞ 1 0
x ∞ 0 1

⎞

⎠

t[i] = u+ j
Out(C) = {t}
In(C) = {i, u, j}

t

i

u

j

t

i

u

j

⎛

⎜
⎜
⎝

t i u j

t 0 0 0 0
i ∞ 1 0 0
u ∞ 0 1 0
j ∞ 0 0 1

⎞

⎟
⎟
⎠

Fig. 2. Statement examples, sets, and representations of their dependences

Definition 5 (skip). We let M(skip) be the matrix with 0 rows and columns6.

Definition 6 (use). We let M(use(x1, . . ., xn)) be the matrix with coefficients
from each xi to f, and from f to f equal to ∞, and 0 coefficients otherwise, for
f a freshly introduced variable. Graphically, we get:

f

x1...
xn

f

x1...
xn

...

Composition and Multipaths. The definition of dfg for a (sequential) com-
position of commands is an abstraction that allows treating a block of statements
as one command with its own dfg.

Definition 7 (Composition). We let M(C1; . . . ; Cn) be M(C1) × · · · × M(Cn).

For two graphs, the product of their matrices of weights is represented in a
standard way, as a graph of length 2 paths; as illustrated in Fig. 3—where C1
and C2 are themselves already the result of compositions of assignments involving
disjoint variables, and hence straightforward to compute.

6 Identifying the dfg with its embeddings, it is hence the identity matrix of any size.

Distributing and Parallelizing Non-canonical Loops 9

C1 C2 C1; C2
w = w+ x; z = y+ 2 x = y; z = z ∗ 2
w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w

x

y

z

w x y z

w ∞ 0 0 0
x ∞ 1 0 0
y 0 0 1 ∞
z 0 0 0 0

×

w x y z

w 1 0 0 0
x 0 0 0 0
y 0 ∞ 1 0
z 0 0 0

=

w x y z

w ∞ 0 0 0
x ∞ 0 0 0
y 0 ∞ 1 ∞
z 0 0 0 0

Fig. 3. Data-flow graph of composition.

Correction. Conditionals and loops both requires a correction to compute their
dfgs. Indeed, the dfgs of if e then C1 else C2 and while e do C require more
than the dfg of its body. The reason for this is that all the modified variables
in C1 and C2 or C (e.g., Out(C1) ∪ Out(C2) or Out(C)) depend on the variables
occurring in e (e.g., in Occ(e)). To reflect this, a correction is needed:

Definition 8 (Correction). For e an expression and C a command, we define
e’ s correction for C, Corr(e)C, to be Et × O, for

– Et the (column) vector with coefficient equal to ∞ for the variables in Occ(e)
and 0 for all the other variables,

– O the (row) vector with coefficient equal to ∞ for the variables in Out(C) and
0 for all the other variables.

As an example, let us re-use the programs C1 and C2 from Fig. 3, to construct
w > x’s correction for C1; C2, that we write Corr(w > x)C1;C2 :

This last matrix represents the fact that w and x, through the expression
w > x, control the values of w, x and z if C1 and C2’s execution depend of it.

Conditionals. To construct the dfg of if e then C1 else C2, there are two
aspects to consider:

1. First, our analysis does not seek to evaluate whether C1 or C2 will get executed.
Instead, it will overapproximate and assume that both will get executed, hence
using M(C1) + M(C2).

10 C. Aubert et al.

2. Second, all the variables assigned in C1 and C2 (e.g., Out(C1) ∪ Out(C2))
depends on the variables occurring in e. For this reason, Corr(e)C1;C2 needs
to be added to the previous matrix.

Putting it together, we obtain:

Definition 9 (if). We let M(if e then C1 else C2) be M(C1) + M(C2) +
Corr(e)C1;C2 .

Re-using the programs C1 and C2 from Fig. 3 and Corr(w > x)C1;C2 , we obtain:

The boxed value represents the impact of x on itself: C1 has the value 1, since
x is not assigned in it. On the other hand, C2 has 0 for coefficient, since the value
of x is reinitialized in it. The correction, however, has a ∞, to represent the fact
that the value of x controls the values assigned in the body of C1 and C2—and
x itself is one of them. As a result, we have again the value ∞ in the matrix
summing them three, since x controls the value it gets assigned to itself—as it
controls which branch ends up being executed. On the other hand, the circled
value at (w, y) is a 0 since y’s value is not controlled by w, since neither C1 nor
C2 assign y: regardless of e’s truth value, y’s value will remain the same.

While Loops. To define the dfg of a command while e do C from M(C), we
need, as for conditionals, the correction Corr(e)C, to account for the fact that all
the modified variables in C depend on the variables used in e:

Definition 10 (while). We let M(while e do C) be M(C) + Corr(e)C7.

As an example, we let the reader convince themselves that the dfg of

while(t[i] != j){
s1[i] = j*j;
s2[i] = 1/j;
i++

}

. Intuitively, one can note that

7 This is different from our previous treatment of while loop [33, Definition 6],
that required to compute the transitive closure of M(C): for the transformation we
present in Sect. 3, this is not needed, as all the relevant dependencies are obtained
immediately—this also guarantees that our analysis can distribute loop-carried
dependencies.

Distributing and Parallelizing Non-canonical Loops 11

the rows for s1 and s2 are filled with 0s, since those variables do not control
any other variable and are assigned in the body of the loop. On the other hand,
t, i and j all three control the values of i, s1 and s2, since they determine if
the body of the loop will execute. The variables t and j are the only one whose
value is propagated (e.g., with a 1 on their diagonal), since they are not assigned
in this short example. The command i++ is the only command that has the
potential to impact the loop’s condition. We call it an update command:

Definition 11 (Update command). Given a loop W := while e do C, the
update commands Cu are the commands in C such that M(W)(y,x) = ∞ for
x ∈ Out(Cu) and y ∈ Occ(e).

3 Loop Fission Algorithm

We now present our loop transformation technique and prove its correctness.

3.1 Algorithm, Presentation and Intuition

Our algorithm, presented in Algorithm 1, requires essentially to

1. Pick a loop at top level,
2. Compute its condensation graph (Definition 13)—this requires first the depen-

dence graph (Definition 12), which itself uses the dfg,
3. Compute a covering (Definition 14) of the condensation graph,
4. Create a loop per element of the covering.

Even if our technique could distribute nested loops, it would require adjust-
ments that we prefer to omit to simplify our presentation. None of our examples
in this paper require to distribute nested loops. Note, however, that our algo-
rithm handles loops containing themselves loops.

Definition 12 (Dependence graph). The dependence graph of the loop
W := while e do {C1; · · · ; Cn} is the graph whose vertices is the set of commands
{C1; · · · ; Cn}, and there exists a directed edge from Ci to Cj if and only if there
exists variables x ∈ Out(Cj) and y ∈ In(Ci) such that M(W)(y,x) = ∞.

The last example of Sect. 2.3 gives i++s1[i] = j*j s2[i] = 1/j .
Note that all the commands in the body of the loop are the sources of depen-
dence edges whose target is the update commands: for our example, this means
that every command will be the source of an arrow whose target is i++. This
comes from the correction, even if the condition does not explicitly appear in
the dependence graph.

The remainder of the loop transforming principle is simple: once the graph
representing the dependencies between commands is obtained, it remains to
determine the cliques in the graph and forms strongly connected components
(sccs); and then to separate the sccs into subgraphs to produce the final paral-
lelizable loops that contain a copy of the loop header and update commands.

12 C. Aubert et al.

Definition 13 (Graph helpers). Given the dependence graph of a loop W,

– its strongly connected components (sccs) are its strongly connected sub-
graphs,

– its condensation graph GW is the graph whose vertices are sccs and edges are
the edges whose source and target belong to distinct sccs.

In our example, the sccs are the nodes themselves, and the condensation
graph is i++s1[i] = j*j s2[i] = 1/j . Excluding the update com-
mand i++, there are now two nodes in the condensation graph, and we can
construct the parallel loops by 1. inserting a parallel command, 2. duplicating
the loop header and update command, 3. inserting the command in the remain-
ing nodes of the condensation graph in each loop. For our example, we obtain, as
expected,

Formally, what we just did was to split the saturated covering.

Definition 14 (Coverings [16]). A covering of a graph G is a collection of
subgraphs G1,G2, . . . ,Gj such that G = ∪j

i=1Gi.
A saturated covering of G is a covering G1,G2, . . . ,Gk such that for all edge

in G with source in Gi, its target belongs to Gi as well. It is proper if none of
the subgraph is a subgraph of another.

The algorithm then simply consists in finding a proper saturated covering of
the loop’s condensation graph, and to split the loop accordingly. In our example,
the only proper saturated covering is

{ i++s1[i] = j*j , i++ s2[i] = 1/j }.

If the covering was not proper, then the i++ node on its own would be in it,
leading to create a useless loop that performs nothing but updating its own
condition.

Sometimes, duplicating commands that are not update commands is needed
to split the loop. We illustrate this principle with a more complex example that
involve function call and multiple update commands in Fig. 4.

3.2 Correctness of the Algorithm

We now need to prove that the semantics of the initial loop W is equal to the
semantics of ~W given by Algorithm 1. This is done by showing that for any
variable x appearing in W, its final value after running W is equal to its final value
after running ~W. We first prove that the loops in ~W has the same iteration space
as W:

Lemma 1. The loops in ~W have the same number of iterations as W.

Distributing and Parallelizing Non-canonical Loops 13

Algorithm 1. Loop fission
Input: A loop W := while e do {C1; · · · ; Cn} � Pick a loop W at top level

Compute the condensation graph GW of W, � cf. Def. 13
Compute the saturated covering G1, . . . , Gj of GW: � cf. Def. 14
while a node n in GW is not part of a subgraph Gl do

Create a new subgraph Gi containing n,
Recursively add to Gi the nodes targeted by edges whose source is in Gi,

Compute the proper saturated covering G1, . . . , Gk of GW:
for all Gi in the saturated covering do

If ∃Gl in the saturated covering s.t. Gi is a subgraph of Gl, then remove Gi

end for
Create one while loop per subgraph in the proper saturated covering:
for all Gi in the proper saturated covering do

Let Wi := while e do {Ci1 ; · · · ; Cim} where {Ci1 , . . . , Cim} are the vertices of Gi,
inserted in the same order as they are in W.
end for

Output: if k > 1, ~W := parallel{W1}{ . . . }{Wk}, else ~W := W.

Fig. 4. Distributing a more complex while loop

Proof. Let Wi be a loop in ~W. By property of the saturated covering, the update
commands are in the body of Wi: there is always an edge from any command to
the update commands due to the loop correction, and hence the update com-
mands are part of all the subgraphs in the saturated covering. Furthermore, if
there exists a command C that is the target of an edge whose source is an update
command Cu, then C and Cu are always both present in any subgraph of the satu-
rated covering. Indeed, since there are edges from Cu to C and from C to Cu, they
are part of the same node in the condensation graph.

14 C. Aubert et al.

Since the condition of Wi is the same as the condition of W, and since all the
instructions that impact (directly or indirectly) the variables occurring in that
condition are present in Wi, we conclude that the number of iterations of Wi and
W are equal. ��
Theorem 1. The transformation W � ~W given in Algorithm 1 preserves the
semantic.

Proof (sketch). We show that for every variable x, the value of x after the exe-
cution of W is equal to the value of x after the execution of ~W. Variables are
considered local to each loop Wi in ~W, so we need to avoid race condition. To do
so, we prove the following more precise result: for each variable x and each loop
Wi in ~W in which the value of x is modified, the value of x after executing W is
equal to the value of x after executing Wi.

The previous claim is then straightforward to prove, based on the property of
the covering. One shows by induction on the number of iterations k that for all
the variables x1, . . . , xh appearing in Wi, the values of x1, . . . , xh after k loop iter-
ations of Wi are equal to the values of x1, . . . , xh after k loop iterations of W. Note
some other variables may be affected by the latter but the variables x1, . . . , xh
do not depend on them (otherwise, they would also appear in Wi by definition
of the dependence graph and the covering). Since the number of iteration match
(Lemma 1), the claim is proven. ��

4 Limitations of Existing Alternative Approaches

In the beginning of this paper, we made the bold claim that other loop fis-
sion approaches do not handle unknown iteration spaces, which makes our
loop-agnostic technique interesting. In this section we discuss these alternative
approaches, their capabilities, and provide evidence to support this claim. We
also give justification for the need to introduce our loop analysis into this land-
scape.

4.1 Comparing Dependency Analyses

Since its first inception, loop fission [2] has been implemented using different
techniques and dependency mechanisms. Program dependence graph (PDG) [18]
can be used to identify when a loop can be distributed [3, p. 844], but other—
sometimes simpler—mechanisms are often used in practice. For instance, a patch
integrating loop fission into LLVM [28] tuned the simpler data dependence graph
(DDG) to obtain a Loop Fission Interference Graph (FIG) [30]. GCC, on the
other hand, build a partition dependence graph (PG) based on the data depen-
dency given by a reduced dependence graph (RG) to perform the same task [19].
In this paper, we introduce another loop dependency analysis, not to further
obfuscate the landscape, but because it allows us to express our algorithm sim-
ply and—more importantly—to verify it mathematically8.
8 This analysis also shares interesting links to a static analysis of values growth [9,10],

as discussed more in-depth in a first draft [7].

Distributing and Parallelizing Non-canonical Loops 15

We assume that the more complex mechanisms listed above (PDG, DDG
or PG) could be leveraged to implement our transformation, but found it more
natural to express ourselves in this language. We further believe that the way
we compute the data dependencies is among the lightest, and with a very low
memory footprint, as it requires only one pass on the source code to construct
a matrix whose size is the number of variables in the program.

4.2 Assessment of Existing Automated Loop Transformation
and Parallelization Tools

While we conjecture that other mechanisms could, in theory, treat loops of any
kind like we do, we now substantiate our claim that none of them do: in short,
any loop with non-basic condition or update statement is excluded from the
optimizations we now discuss. We limit this consideration to tools that support
C language transformations, because it is our choice implementation language
for experimental evaluation in Sect. 5. We also focus on presenting the kinds of
loops that other “popular” [35] automatic loop transformation frameworks do
not distribute, but that our algorithm can distribute. In particular, we do not
discuss loops containing control-flow modifiers (such as break; or continue;):
neither our algorithm nor OpenMP nor the underlying dependency mechanisms
of the discussed tools—to the best of our knowledge—can accommodate those.

Tools that fit the above specification include Cetus, a compiler infrastruc-
ture for the source-to-source transformation; Clava, a C/C++ source-to-source
tool based on Clang; Par4All, an automatic parallelizing and optimizing com-
piler; Pluto, an automatic parallelizer and locality optimizer for affine loop nests;
ROSE, a compiler-based infrastructure for building source-to-source program
transformations and analysis tools; Intel’s C++ compiler (icc), and TRACO, an
automatic parallelizing and optimizing compiler, based on the transitive closure
of dependence graphs. While these tools perform various automatic transforma-
tions and optimizations, only ROSE and icc perform loop fission [35, Section 3.1].

Based on our assessment, most of these tools process only canonical loops:

Definition 15 (Canonical Loop [25], 4.4.1 Canonical Loop Nest Form).
A canonical loop is a loop of the form

for (init-expr; test-expr; incr-expr) structured-block
for incr-expr a (single) increment or decrement by a constant or a variable, and
test-expr a single comparison between a variable and a variable or a constant.

Additional constraints on loop dependences are sometimes needed, e.g., the
absence of loop-carried dependency for Cetus. It seems further that some tools
cannot parallelize loops whose body contains e.g., if or switch statements [35,
p. 18], but we have not investigated this claim further. However, our algorithm
can handle if—and switch too, if it was part of our syntax—present in the
body of the loop seamlessly.

It is always hard to infer the absence of support, but we evaluated the lack
of formal discussion or example of e.g., while loop to be sufficient to determine

https://engineering.purdue.edu/Cetus/
https://github.com/specs-feup/clava
https://github.com/Par4All/par4all
http://pluto-compiler.sourceforge.net/
http://rosecompiler.org/
http://traco.sourceforge.net/

16 C. Aubert et al.

that the tool cannot process while loops, unless of course they can trivially be
transformed into for loops of the required form [39, p. 236]. We refer to a recent
study [35, Section 2] for more detail on those notions and on the limitations of
some of the tools discussed in Table 2.

Table 2. Feature support comparison of automated transformation and parallelization
tools.

Name Fission for loop while loop do . . .while loop ref.

Cetus − In canonical form − [17, p. 39] , [11, p. 761]

Clava − In canonical form − [6]

icc � Only if countable − [23, p. 2126]

Par4All − Unknown [4,5]

Pluto − Only static control structures [15]

ROSE � In canonical form − [36, p. 124]

TRACO − In canonical form − [34]

OpenMP − In canonical form − [25]

5 Evaluation

We performed an experimental evaluation of our loop fission technique on a suite
of parallel benchmarks. Taking the sequential baseline, we applied the loop fission
transformation and parallelization. We compared the result of our technique to
the baseline and to an alternative loop fission method implemented in ROSE.

We conducted this experiment in C programming language because it natu-
rally maps to the syntax of the imperative while language presented in Sect. 2.
We implement the parallel command as OpenMP directives. For instance, the
sequential baseline program on the left of Fig. 5 becomes the parallel version on
right9, after applying our loop fission transformation and parallelization.

The evaluation experimentally substantiated two claims about our technique:

1. It can parallelize loops that are completely ignored by other automatic loop
transformation tools, and results in appreciable gain, upper-bounded by the
number of parallelizable loops produced by loop fission.

2. Concerning loops that other automatic loop transformation tools can dis-
tribute, it yields comparable results in speedup potential. We also demon-
strate how insertion of parallel directives can be automated, which supports
the practicality of our method.

These results combined confirm that our loop fission technique can easily be
integrated into existing tools to improve the performances of the resulting code.

9 This example is inspired by benchmark bicg from PolyBench/C and
presented in our artifact.

http://rosecompiler.org/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/statycc/loop-fission/blob/a695aba2aeab2f4d68a67ab9633535210d930bc6/fission/bicg.c

Distributing and Parallelizing Non-canonical Loops 17

j = 0;

while (j<M)

{

s[j] += r[j]*A[j];

q[j] += A[j]*p[j];

j++;

}

#pragma omp parallel private(j)

{ // Each "pragma" block below
// have its own copy of j.
#pragma omp single nowait

{ // "nowait" lets the next
// block start in parallel.
j = 0;

while (j<M) {

s[j] += r[j]*A[j];

j++;

}

}

#pragma omp single

{

j = 0;

while (j<M) {

q[j] += A[j]*p[j];

j++;

}

}

} // Both blocks must be terminated
// before passing this point.

Fig. 5. Code transformation example

5.1 Benchmarks

Special consideration was necessary to prepare an appropriate benchmark suite
for evaluation. We wanted to test our technique on a range of standard prob-
lems, across different domains and data sizes, and to include problems containing
while loops. Because our technique is specifically designed for loop fission, we
also needed to identify problems that offered potential to apply this transfor-
mation. Finding a suite to fit these parameters is challenging, because standard
parallel programming benchmark suites offer mixed opportunity for various pro-
gram optimizations and focus on loops in canonical form.

We resolved this challenge by preparing a curated set, pooling from
three standard parallel programming benchmark suites. PolyBench/C is a
polyhedral benchmark suite, representing e.g., linear algebra, data mining
and stencils; and commonly used for measuring various loop optimizations.
NAS Parallel Benchmarks are designed for performance evaluation of paral-
lel supercomputers, derived from computational fluid dynamics applications.
MiBench is an embedded benchmark suite, with everyday programming appli-
cations e.g., image-processing libraries, telecommunication, security and office
equipment routines. From these suites, we extracted problems that offered poten-
tial for loop fission, or already assumed expected form, resulting in 12 bench-
marks. We detail these benchmarks in Table 4. Because these three suites are
not mutually compatible, we leveraged the timing utilities from PolyBench/C

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.nas.nasa.gov/software/npb.html
https://vhosts.eecs.umich.edu/mibench/

18 C. Aubert et al.

to establish a common and comparable measurement strategy. To assess perfor-
mance of other kinds of loops that our algorithm can distribute, but which do
not occur prevalently in these benchmarks, we converted a portion of problems
to use while loops.

Comparison Target. We compared our approach to ROSE Compiler. It is a
rich compiler architecture that offers various program transformations and auto-
matic parallelization, and supports multiple compilation targets. ROSE’s built-in
LoopProcessor tool supports loop fission for C-to-C programs. This input/output
specification was necessary to allow observation of the transformation results
and fit with the measurement strategy we defined previously. To our knowledge,
ROSE is the only tool that satisfies these evaluation requirements.

Experimental Setup. We ran the benchmarks using a Linux 5.10.0-18-amd64
#1 SMP Debian 5.10.140-1 (2022-09-02) x86 64 GNU/Linux machine, with 4
Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz processors, and gcc compiler ver-
sion 7.5.0. The evaluation was performed in a containerized environment on
Docker version 20.10.18, build b40c2f6. For each benchmark, we recorded the
clock time 5 times, excluded min and max, and averaged the remaining 3 times
to obtain the result. We constrained variance between recorded times not to
exceed 5%. We ran experiments on 5 input data sizes, as defined in PolyBench/C:
MINI, SMALL, MEDIUM, LARGE and EXTRALARGE (abbr. XS, S, M, L, XL). We also
tested 4 gcc compiler optimization levels -O0 through -O3. Speedup is the ratio
of sequential and parallel executions, S = TSeq/TPar, where a value greater than
1 indicates parallel is outperforming the sequential execution. In presentation
of these results, the sequential benchmarks are always considered the baseline,
and speedup is reported in relation to the transformed versions. Our open source
benchmarks, and instructions for reproducing the results, are available online [8].
It should be noted that some results may be sensitive to the particular setup on
which those experiments are run.

5.2 Results

In analyzing the results, we distinguish two cases: distributing and parallelizing
loops with potentially unknown iterations, and loops with pre-determined itera-
tions (typically while and for loops, respectively). The difficulty of parallelizing
the former arises from the need to synchronize evaluation of the loop recurrence
and termination condition. Improper synchronization results in overshooting the
iterations [37], rendering such loops effectively sequential.

Loop fission addresses this challenge by recognizing independence between
statements and producing parallelizable loops. Special care is needed when insert-
ing parallelization directives for such loops. This remains a limitation of auto-
mated tools and is not natively supported by OpenMP. We resolved this issue by
using the OpenMP single directive, to prevent overshooting the loop termina-
tion condition and need for synchronization between threads, enabling parallel

http://rosecompiler.org/

Distributing and Parallelizing Non-canonical Loops 19

execution by multiple threads on individual loop statements. The strategy is
simple, implementable, and we show it to be effective. However, it is also upper-
bounded in speedup potential by the number of parallelizable loops produced
by the transformation. This is a syntactic constraint, rather than one based on
number of available cores.

The results, presented in Table 3, show that our approach, paired with the
described parallelization strategy, yields a gain relative to the number of inde-
pendent parallelizable loops in the transformed benchmark. We observe this e.g.,
for benchmarks bicg, gesummv, and mvt, as presented in Fig. 6. We also confirm
that ROSE’s approach did not transform these loops, and report no gain for the
alternative approach.

Fig. 6. Speedup of selected benchmarks implemented using while loops. Note the
influence of various compiler optimization levels, -O0 to -O3 on each problem, and
how parallelization overhead tends to decrease as input data size grows from MINI to
EXTRALARGE. The gain is lower for mvt because it assumes fissioned form in the original
benchmark. bicg and gesummv obtain higher gain from applied loop distribution.

Comparison with ROSE. The remaining benchmarks, with known iteration
spaces, can be transformed by both evaluated loop fission techniques: ours and
ROSE’s LoopProcessor. In terms of transformation results, we observed rela-
tively similar results for both techniques. We discovered one interesting transfor-
mation difference, with benchmark gemm, which ROSE handles differently from
our technique.

After transformation, the program must be parallelized by inserting OpenMP
directives. This parallelization step can be fully automatic and performed with
e.g., ROSE or Clava, demonstrating that pipelining the transformed programs
is feasible. For evaluations, we used manual parallelization for our technique
and automatic approach for ROSE. However, we also noted that the automatic
insertion of parallelization directives yielded, in some cases, suboptimal choices,
such as parallelization of loop nests. This added unnecessary overhead to exe-
cution time, and negatively impacted the results obtained for ROSE, e.g., for
benchmarks fdtd-2d and gemm, as observable in the results. It is possible this
issue could be mitigated by providing annotations and more detailed instructions
for applying the parallelization directives. In other experiments with alternative

https://github.com/statycc/loop-fission/blob/ecbf4e42a438c783266e2f477eb927832b3ee903/alt/gemm.c#L72-L102
https://github.com/statycc/loop-fission/blob/8446e8dbe2e6ab11a392aa7dae64eb53dde4852c/fission/gemm.c#L88-L100
https://github.com/specs-feup/clava/

20 C. Aubert et al.

parallelization tools [7, Sect. 4.3], we have been successful at finding optimal par-
allelization directives automatically, and therefore conclude it is achievable. We
again refer to Table 3 for a detailed presentation of the experimental evaluation
results.

Table 3. Speedup comparison between original sequential and transformed parallel
benchmarks, comparing our loop fission technique with ROSE Compiler, for various
data sizes and compiler optimization levels. We note that the problems containing
only while loop (in bold) are not transformed by ROSE and therefore report no gain.
The other results vary depending on parallelization strategy, but as noted with e.g.,
problems conjgrad and tblshft, we obtain similar speedup for both fission strategies
when automatic parallelization yields optimal OpenMP directives.

Table 4. Descriptions of evaluated parallel benchmarks.

Benchmark Description for loop while loop Source

3mm 3D matrix multiplication � PolyBench/C

bicg BiCG sub kernel of BiCGStab linear solver � PolyBench/C

colormap TIFF image conversion of photometric palette � MiBench

conjgrad Conjugate gradient routine � NAS-CG

cp50 Ghostscript/CP50 color print routine � � MiBench

deriche Edge detection filter � PolyBench/C

fdtd-2d 2-D finite different time domain kernel � PolyBench/C

gemm Matrix-multiply C=alpha.A.B+beta.C � PolyBench/C

gesummv Scalar, vector and matrix multiplication � PolyBench/C

mvt Matrix vector product and transpose � PolyBench/C

remap 4D matrix memory remapping � NAS-UA

tblshift TIFF PixarLog compression main table bit shift � � MiBench

Distributing and Parallelizing Non-canonical Loops 21

6 Conclusion

This work is only the first step in a very exciting direction. “Ordinary code”, and
not only code that was specifically written for e.g., scientific calculation or other
resource-demanding operations, should be executed in parallel to leverage our
modern architectures. As a consequence, the much larger codebase concerned
with parallelization is much less predictable and offers more diverse loop struc-
tures. Focusing on resource-demanding programs led previous efforts not only
to focus on predictable loop structures, but to completely ignore other non-
canonical loops. Our effort, based on an original dependency analysis, leads to
re-integrate such loops in the realm of parallel optimization. This alone, in our
opinion, justifies further investigation in integrating our algorithm into special-
ized tools.

As presented in Fig. 6, our experimental results offer some variability, but
they need to be put in context: loop distribution is often only the first step in
the optimization pipeline. Loops that have been split can then be vectorized,
blocked, unrolled, etc. , providing additional gain in terms of speed. Exactly
as for loop fusion [31], a more global treatment of loops is needed to strike the
right balance and find the optimum code transformation. Such a journey will be
demanding and complex, but we believe this work enables it by reintegrating all
loops in the realm of parallel optimization.

Acknowledgments. The authors wish to express their gratitude to João Bispo for
explaining how to integrate AutoPar-Clava in the first version of their benchmark, to
Assya Sellak for her contribution to the first steps of this work, and to the reviewers
for their insightful comments.

References

1. Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. J. Funct.
Program. 12(1), 1–41 (2002). https://doi.org/10.1017/S0956796801004191

2. Abu-Sufah, W., Kuck, D.J., Lawrie, D.H.: On the performance enhancement of
paging systems through program analysis and transformations. IEE Trans. Comput.
30(5), 341–356 (1981). https://doi.org/10.1109/TC.1981.1675792

3. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley, Boston (2006)

4. Amini, M.: Source-to-source automatic program transformations for GPU-like
hardware accelerators. Theses, Ecole Nationale Supérieure des Mines de Paris,
December 2012. https://pastel.archives-ouvertes.fr/pastel-00958033

5. Amini, M., et al.: Par4All: from convex array regions to heterogeneous comput-
ing. In: IMPACT 2012 : Second International Workshop on Polyhedral Compila-
tion Techniques HiPEAC 2012. Paris, France, January 2012. https://hal-mines-
paristech.archives-ouvertes.fr/hal-00744733

6. Arabnejad, H., Bispo, J., Cardoso, J.M.P., Barbosa, J.G.: Source-to-source compila-
tion targeting OpenMP-based automatic parallelization of C applications. J. Super-
comput. 76(9), 6753–6785 (2019). https://doi.org/10.1007/s11227-019-03109-9

https://github.com/joaobispo
https://github.com/specs-feup/clava/issues/58
https://github.com/statycc/loop-fission
https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1109/TC.1981.1675792
https://pastel.archives-ouvertes.fr/pastel-00958033
https://hal-mines-paristech.archives-ouvertes.fr/hal- 00744733
https://hal-mines-paristech.archives-ouvertes.fr/hal- 00744733
https://doi.org/10.1007/s11227-019-03109-9

22 C. Aubert et al.

7. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: A novel loop fission technique
inspired by implicit computational complexity, May 2022. https://hal.archives-
ouvertes.fr/hal-03669387v1. draft

8. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: Loop fission benchmarks (2022).
https://doi.org/10.5281/zenodo.7080145. https://github.com/statycc/loop-fission

9. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: MWP-analysis improvement and
implementation: realizing implicit computational complexity. In: Felty, A.P. (ed.)
7th International Conference on Formal Structures for Computation and Deduction
(FSCD 2022). Leibniz International Proceedings in Informatics, vol. 228, pp. 26:1–
26:23. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022). https://doi.org/
10.4230/LIPIcs.FSCD.2022.26

10. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: pymwp: MWP analysis in Python,
September 2022. https://github.com/statycc/pymwp/

11. Bae, H., et al.: The Cetus source-to-source compiler infrastructure: overview and
evaluation. Int. J. Parallel Program. 41(6), 753–767 (2013). https://doi.org/10.
1007/s10766-012-0211-z

12. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

13. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The polyhedral
model is more widely applicable than you think. In: Gupta, R. (ed.) CC 2010.
LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11970-5 16

14. Bertolacci, I., Strout, M.M., de Supinski, B.R., Scogland, T.R.W., Davis, E.C.,
Olschanowsky, C.: Extending OpenMP to facilitate loop optimization. In: de Supin-
ski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.)
IWOMP 2018. LNCS, vol. 11128, pp. 53–65. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98521-3 4

15. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral Parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–
113 (2008). https://doi.org/10.1145/1379022.1375595

16. Chung, F.R.K.: On the coverings of graphs. Discret. Math. 30(2), 89–93 (1980).
https://doi.org/10.1016/0012-365X(80)90109-0

17. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.P.: Cetus: a source-
to-source compiler infrastructure for multicores. Computer 42(11), 36–42 (2009).
https://doi.org/10.1109/MC.2009.385

18. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Programm. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

19. gcc.gnu.org git - gcc.git/blob - gcc/tree-loop-distribution.c. https://
gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop-distribution.c;
h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39

20. Grosser, T.: Enabling Polyhedral Optimizations in LLVM. Master’s thesis, Uni-
versität Passau, April 2011. https://polly.llvm.org/publications/grosser-diploma-
thesis.pdf

21. Holewinski, J., et al.: Dynamic trace-based analysis of vectorization potential of
applications. In: Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2012, pp. 371–382. Associa-
tion for Computing Machinery, New York (2012). https://doi.org/10.1145/2254064.
2254108

22. Intel: oneTBB documentation (2022). https://oneapi-src.github.io/oneTBB/

https://hal.archives-ouvertes.fr/hal-03669387v1
https://hal.archives-ouvertes.fr/hal-03669387v1
https://doi.org/10.5281/zenodo.7080145
https://github.com/statycc/loop-fission
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://github.com/statycc/pymwp/
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1016/0012-365X(80)90109-0
https://doi.org/10.1109/MC.2009.385
https://doi.org/10.1145/24039.24041
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/tree-loop- distribution.c;h=65aa1df4abae2c6acf40299f710bc62ee6bacc07;hb=HEAD#l39
https://polly.llvm.org/publications/grosser-diploma- thesis.pdf
https://polly.llvm.org/publications/grosser-diploma- thesis.pdf
https://doi.org/10.1145/2254064.2254108
https://doi.org/10.1145/2254064.2254108
https://oneapi-src.github.io/oneTBB/

Distributing and Parallelizing Non-canonical Loops 23

23. Intel Corporation: Intel C++ Compiler Classic Developer Guide and Ref-
erence. https://www.intel.com/content/dam/develop/external/us/en/documents/
cpp compiler classic.pdf

24. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. J. ACM 14(3), 563–590 (1967). https://doi.org/10.
1145/321406.321418

25. Klemm, M., de Supinski, B.R. (eds.): OpenMP application programming inter-
face specification version 5.2. OpenMP Architecture Review Board, November
2021. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-
5-2.pdf

26. Kristiansen, L., Jones, N.D.: The flow of data and the complexity of algorithms.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
263–274. Springer, Heidelberg (2005). https://doi.org/10.1007/11494645 33

27. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: LICS, pp. 301–310. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.36

28. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE / ACM International Symposium on
Code Generation and Optimization (CGO 2004), 20–24 March 2004, San Jose,
CA, USA, pp. 75–88. IEEE Computer Society (2004). https://doi.org/10.1109/
CGO.2004.1281665, https://ieeexplore.ieee.org/xpl/conhome/9012/proceeding

29. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, 17–19 January 2001, pp. 81–92. ACM (2001). https://
doi.org/10.1145/360204.360210

30. [loopfission]: Loop fission interference graph (fig). https://reviews.llvm.org/D73801
31. Mehta, S., Lin, P., Yew, P.: Revisiting loop fusion in the polyhedral framework. In:

Moreira, J.E., Larus, J.R. (eds.) ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2014, Orlando, FL, USA, 15–19 Febru-
ary 2014, pp. 233–246. ACM (2014). https://doi.org/10.1145/2555243.2555250

32. Microsoft: Parallel patterns library (PPL) (2021). https://docs.microsoft.com/en-
us/cpp/parallel/concrt/parallel-patterns-library-ppl?view=msvc-170

33. Moyen, J.-Y., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk detection. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 91–108.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 7

34. Palkowski, M., Klimek, T., Bielecki, W.: TRACO: an automatic loop nest paral-
lelizer for numerical applications. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M.
(eds.) 2015 Federated Conference on Computer Science and Information Systems,
FedCSIS 2015, Lódz, Poland, 13–16 September 2015. Annals of Computer Science
and Information Systems, vol. 5, pp. 681–686. IEEE (2015). https://doi.org/10.
15439/2015F34

35. Prema, S., Nasre, R., Jehadeesan, R., Panigrahi, B.: A study on popular auto-
parallelization frameworks. Concurr. Comput. Pract. Exp. 31(17), e5168 (2019).
https://doi.org/10.1002/cpe.5168

36. Quinlan, D., et al.: Rose user manual: a tool for building source-to-source trans-
lators draft user manual (version 0.9.11.115). https://rosecompiler.org/uploads/
ROSE-UserManual.pdf

37. Rauchwerger, L., Padua, D.A.: Parallelizing while loops for multiprocessor systems.
In: Proceedings of the 9th International Symposium on Parallel Processing, IPPS
1995, pp. 347–356. IEEE Computer Society (1995)

https://www.intel.com/content/dam/develop/external/us/en/ documents/cpp_compiler_classic.pdf
https://www.intel.com/content/dam/develop/external/us/en/ documents/cpp_compiler_classic.pdf
https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/321406.321418
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5-2.pdf
https://doi.org/10.1007/11494645_33
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://ieeexplore.ieee.org/xpl/conhome/9012/proceeding
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://reviews.llvm.org/D73801
https://doi.org/10.1145/2555243.2555250
https://docs.microsoft.com/en-us/cpp/parallel/concrt/ parallel-patterns-library-ppl?view=msvc-170
https://docs.microsoft.com/en-us/cpp/parallel/concrt/ parallel-patterns-library-ppl?view=msvc-170
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.15439/2015F34
https://doi.org/10.15439/2015F34
https://doi.org/10.1002/cpe.5168
https://rosecompiler.org/uploads/ROSE-UserManual.pdf
https://rosecompiler.org/uploads/ROSE-UserManual.pdf

24 C. Aubert et al.

38. Seiller, T.: Interaction graphs: full linear logic. In: Grohe, M., Koskinen, E.,
Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2016, New York, NY, USA, 5–8 July 2016, pp.
427–436. ACM (2016). https://doi.org/10.1145/2933575.2934568

39. Vitorović, A., Tomašević, M.V., Milutinović, V.M.: Manual parallelization versus
state-of-the-art parallelization techniques. In: Hurson, A. (ed.) Advances in Com-
puters, vol. 92, pp. 203–251. Elsevier (2014). https://doi.org/10.1016/B978-0-12-
420232-0.00005-2

https://doi.org/10.1145/2933575.2934568
https://doi.org/10.1016/B978-0-12-420232-0.00005-2
https://doi.org/10.1016/B978-0-12-420232-0.00005-2

SMT-Based Modeling and Verification
of Spiking Neural Networks: A Case

Study

Soham Banerjee1, Sumana Ghosh1, Ansuman Banerjee1(B),
and Swarup K. Mohalik2

1 Indian Statistical Institute, Kolkata, India
ansuman@isical.ac.in

2 Ericsson Research, Bangalore, India

Abstract. In this paper, we present a case study on modeling and ver-
ification of Spiking Neural Networks (SNN) using Satisfiability Mod-
ulo Theory (SMT) solvers. SNN are special neural networks that have
great similarity in their architecture and operation with the human brain.
These networks have shown similar performance when compared to tra-
ditional networks with comparatively lesser energy requirement. We dis-
cuss different properties of SNNs and their functioning. We then use Z3,
a popular SMT solver to encode the network and its properties. Specif-
ically, we use the theory of Linear Real Arithmetic (LRA). Finally, we
present a framework for verification and adversarial robustness analysis
and demonstrate it on the Iris and MNIST benchmarks.

Keywords: Spiking neural networks · Satisfiability modulo theory ·
Verification · Adversarial robustness

1 Introduction

In recent times, Satisfiability Modulo Theory (SMT) solvers are being widely
used for modeling and verification of both hardware and software designs. SMT
solvers, being based on their SAT-counterparts, employ a wide arsenal of heuris-
tics and proof techniques that enable them to scale to large and complex pro-
grams. This work is an exploration case study of the usage of SMT for modeling
and verifying Spiking Neural Networks (SNNs). Specifically, we use it for prop-
erty verification and adversarial robustness analysis, and examine the scalability
issues.

Neural network based models, especially DNNs (Deep Neural Networks) are
becoming mainstream due to the rapid progress of their performance in many
application domains [22]. However, the large amount of energy consumed by
these models during their training and inferencing phases remains a major area
of concern, impacting their deployment on resource-constrained devices and on
the OPEX (operating expense) budget. Neuromorphic computing [28] - mimick-
ing the neuro-biological architecture and function in both hardware and software
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 25–43, 2023.
https://doi.org/10.1007/978-3-031-24950-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_2

26 S. Banerjee et al.

- seems to be a promising approach to address the energy challenge. Therefore,
recent times have seen tremendous growth in both neuromorphic hardware and
software models such as Spiking Neural Networks [26], which are showing per-
formance comparable to traditional DNNs with lesser energy requirements [21].

Due to comparable performance and better energy efficiency, it is envisaged
that the application scope of neuromorphic models will extend, even to safety
critical systems like self driving vehicles, automatic guidance and assistance sys-
tems like ADAS (Advanced Driver Assistance Systems) etc. Since these systems
have extreme safety requirements, rigorous verification of these systems becomes
indispensable to ensure that the models do not lead to critical failures or vio-
lation of their safety properties. Formal verification of neuromorphic models
against specified properties such as safety and robustness is a promising app-
roach to provide this level of rigor.

The main objective of the present work thus is to provide a framework [1] for
formal verification of SNNs which is the most well-known neuromorphic software
model. We show that a straightforward adaptation of Quantifier Free Linear
Real Arithmetic constraints (QF LRA) leads to a sound and complete model
for a given SNN. Additionally, we show how a standard definition of adver-
sarial robustness based on perturbations on pixel values in input images can
be adapted to the concept of input spike trains used in the SNN context and
encoded as a collection of SMT LRA constraints. Together, this gives us a novel
application of SMT solvers for modeling, analysis and robustness checking for
SNNs. Specifically, our framework has the following contributions:

– We present a method of encoding SNNs as Satisfiability Modulo Theory con-
straints that provides an expressive theory of the behaviour of SNNs.

– We use these encodings for verification and robustness analysis of SNNs.
– We finally demonstrate the verification framework on an SNN model trained

for the Iris [12] dataset. We also demonstrate the adversarial robustness
framework on the Iris and MNIST [7] datasets.

Though there exists a rich body of literature focusing on the modeling and
verification of traditional neural networks [10,14,16,18,19], very few efforts are
found focusing the same in the domain of SNNs [3,4]. To the best of our knowl-
edge, this is the first SMT-based verification framework to capture the behavior
and architecture of SNNs. An early work [4] has reported a Timed Automata [2]
based model for an SNN, however, the scale and diversity of the SNNs they can
handle is rather restricted. In contrast, we propose a generic framework that can
handle any SNN variant and property type that is expressible in linear real arith-
metic. We show experimental results on benchmark SNNs that demonstrates the
working of our framework. This paper is an attempt to examine the power of
SMT modeling on these new neural network variants.

The paper is organized as follows. Section 2 presents an overview of Spiking
Neural Networks. Section 3 puts forward our proposal of an SMT encoding of
SNNs, while Sect. 4 discusses the verification problem for these networks and our
formulation for the same. Section 5 presents details of our implementation and

SMT-Based Modeling and Verification of Spiking Neural Networks 27

experiments carried out on the Iris and MNIST benchmarks. Section 6 presents
related work and Sect. 7 concludes this paper along with some future directions.

2 Spiking Neural Networks

A Spiking Neural Network tries to mimic both the architecture and the function-
ing of the human brain. It consists of a set of interconnected neurons. The func-
tioning of these neurons is very different from those in traditional feed-forward
neural networks where they act only as an instantaneous functions. Each neu-
ron in SNN receives sequences of inputs through its input synapses, but only
when they spike, they produce spikes on the output synapses depending upon
the internal processing method. The inputs received by a neuron is modulated
by the weight of the synapses. Therefore, given the weight of the synapses, a
neuron can be modeled as a function which takes as input a sequence of spikes
(spike train) per input synapse, and produces a spike train on its output.

In general, the spike trains, operations of the neurons and the SNN are defined
in real time. However, for ease of presentation and for the feasibility of SMT
based modeling presented in this paper, we present the discretized versions of
these entities involved.

2.1 Discretized Simulation Time

Simulation time T and step size δ are hyperparameters of an SNN, which are used
for defining spike trains towards training and prediction of the SNN. T specifies
the length of the spike trains to be generated. Step size δ is chosen to be as large
as possible so that the number of steps is minimum, while ensuring that no two
spiking events occur within δ. For most systems, δ is considered as the length
of the clock cycle of the underlying hardware on which the SNN is realized. For
the rest of this discussion, we fix T and δ and define a discretized time domain
DI(�) = {0, 1, . . . , �} where � = �T/δ�, and ti − ti−1 = δ ∀i ∈ {1 . . . �}.

2.2 Spike Trains and Encoding from Feature Inputs

Intuitively, a spike train is just a finite sequence of binary values (0 or 1) in the
discretized time domain. Formally, we define a spike train as described below.

Definition 1 [Spike Train]. Given simulation time T and step size δ, a spike
train is defined as a mapping DI �→ {0, 1} denoting spiking-time instances of a
synapse. Given a spike train γ over DI, and t ∈ {0 . . . �}, γ[t] ∈ {0, 1} gives the
spike value at time t. �

Spike trains are either generated from external sources e.g. sensors or
encoders, or as output from other neurons. For real life applications where an
SNN based system consumes feature values that are either numeric or categori-
cal, the values need to be encoded as spike trains of specified length of time. In

28 S. Banerjee et al.

the literature, a number of different encoding functions have been suggested [15]
many of which are implemented in SNN platforms such as snnTorch [11]. For
the experiments in this paper, we have used rate encoding which is discussed in
Sect. 5.

2.3 Leaky Integrate and Fire (LIFR) Neuron

SNNs can greatly differ in their architecture and the types of constituent neurons.
The most common type of neurons for SNNs is the Leaky-Integrate-and-Fire
(LIFR) neurons. Formally, a LIFR neuron can be defined as in the following.

Definition 2 (LIFR Neuron). A LIFR neuron is a 6-tuple 〈Ψ,w, y, θ, λ, τ, p〉:
Ψ = {ψ1, .., ψn} is the set of input synapses, w : Ψ → R gives the weights of
the synapses, y : DI(�) → {0, 1} is the neuron output function, θ is the firing
threshold of the neuron, τ is the refractory period, λ is the leak factor, and
p : DI(�) → R

+ is the stored potential function initialized to 0. Given spike
trains γi corresponding to each synapse ψi, the stored potential function p is
evaluated at each t ≥ 1 as:

p(t) =
{

λ · p(t − 1) +
∑n

i=1 w(ψi) · γi[t] ; p(t − 1) < θ∑n
i=1 w(ψi) · γi[t] ; p(t − 1) ≥ θ

Finally, the neuron output function y is given as:

y(t) =
{

1; p(t) ≥ θ
0; p(t) < θ

Informally, in each timestep, the neuron collects the instant potential∑n
i=1 w(ψi) · γi[t] which is the sum of the weights of the synapses (w(ψi)) that

trigger at time t (γi[t] = 1). The instant potential is added to the stored potential
(decayed by λ) and the total is checked if it crosses the firing threshold θ. If yes,
then a spike is generated (y(t) = 1) and the stored potential is reset to 0, else,
there is no spike and the stored potential is held. In the classical definition of an
LIFR, after an output spike, the neuron waits for an amount of the refractory
period τ before starting to update the stored potential. Most implementations of
SNNs have a very small value of τ which is mostly ignored during computations.
In this work, we assume τ = 0.

We now define an SNN with LIFR neurons and define its behaviour based
on the execution semantics of LIFR neurons as above.

Definition 3 [SNN with LIFR neuron]. An SNN N with LIFR neurons is
defined as a weighted directed acyclic graph 〈Ninp, N, ψ,w〉 where, Ninp refers
to the set of input neurons and N refers to the set of LIFR neurons, ψ ⊆
(Ninp ∪ N) × N refers to the set of synapses, and w : ψ → R assigns a weight
wi,j to each synapse (Ni, Nj). �

The input neurons model the spike trains defined on DI(�) as their output, and
make it available for the LIFR neurons in N . Since the discretized domain is

SMT-Based Modeling and Verification of Spiking Neural Networks 29

identical for all the spike trains, the input neurons provide a complex spike train
from the space {0, 1}|Ninp|×�. We denote this as γ. Individual spike train for each
input neuron Ni is accessed as γi.

A subset of N is designated as the output neurons Nout. The output neu-
rons do not have any outgoing synapses. For the LIFR neurons Ni ∈ N , we
define inSynapse(Ni) = {(Nj , Ni) | (Nj , Ni) ∈ Ψ}, i.e., the incoming edges
of Ni in the SNN graph. Each neuron Ni ∈ N is then specifiable as a tuple
〈inSynapse(Ni), wi, yi, θi, λi, τi, pi〉, where wi is w restricted to inSynapse(Ni).

The execution semantics of the SNN N is as follows. Let the complex spike
train modeled by the input neurons be γ. Initially, the stored potential and
output of each neuron is set to 0. At each timestep t, each input neuron Ni

in Ninp produces γi[t] as output. Thereafter, each neuron in N executes in a
topological order and its output is propagated through the outgoing synapses.
Thus, at each timestep, each output neuron produces an output (spike value 1 or
0). As a result, by the end of processing of γ, there is one output spike train from
{0, 1}� per output neuron. The complete output of the SNN is then a complex
spike train in the space {0, 1}|Nout|×�. We denote it as η = N (γ). Therefore, the
SNN can be viewed as a function from {0, 1}|Ninp|×� to {0, 1}|Nout|×�.

Example 1 Consider the SNN shown in Fig. 1 with the threshold of all neurons
as 1 and initial potential as 0. We consider T = 4 s and δ = 1 s and let the input
spike trains for the two input neurons be γ0 = {1, 0, 1, 1} and γ1 = {1, 1, 0, 1}.
Each input spike train encodes the spiking behavior of an input neuron recorded
over 4 timesteps. The first input neuron spikes at time steps 1, 3, and 4, while
the second input spike at timesteps 1, 2, and 4 as shown in Columns 1 and 2
of Table 1. The spike execution behavior of the different neurons in the SNN in
response to the input spike trains are presented in other columns of Table 1. At
time 1, the stored potential of N2 is updated by the instant potential of −0.7,
which the sum of the weights of the synapses (N0, N2) and (N1, N2) (−0.3 and
−0.4 resp.). Since it is less than the threshold, N2 does not produce any spike at
time 1. Similarly, N3 and N4 update their stored potential to 0.4 each. Since they
also do not spike, the instant potential for N5 at time 1 sums to 0. Therefore,
the output neuron N5 also does not spike at time 1. Going through the table,
we find that only at time 4, N3 and N4 spike because their stored potentials
cross the threshold of 1. Then, the stored potential of N5 is updated to 2 and
it produces a spike at time 4. Hence, the spike train of the output neuron N5 is
{0, 0, 0, 1}. �

30 S. Banerjee et al.

Fig. 1. SNN graph

Table 1. Execution of SNN

Time Input Stored potential Spiking

neuronsN2 N3 N4 N5

t = 1 N0, N1 −0.7 0.4 0.4 0 None

t = 2 N1 −1.1 0.3 0.3 0 None

t = 3 N0 −1.4 0.8 0.8 0 None

t = 4 N0, N1 −2.1 1.2 1.2 2 {N3, N4, N5}

3 SMT Encoding of SNN

SMT encoding of a given SNN involves encoding the execution semantics of
the internal and output neurons using the spike trains generated by the input
neurons. Towards this, we first introduce the Boolean and real variables used
in our SMT encoding. For all input neurons Ni, let xi,t be the binary variable
denoting the value of the input spike train corresponding to Ni at time t. For all
other neurons Ni, let the variable xi,t denote the binary output of Ni, Si,t the
instant potential gained by Ni and Pi,t the stored potential at time t.

LRA Constraints

Recall from the definition of an SNN that λ ∈ R is the leak factor of the neurons,
wi,j ∈ R gives the weight of the synapse between the adjacent neurons (Ni, Nj),
and θi is the threshold of the neuron Ni.

ξ0: Initialization: At the 0’th timestep, the potential variables are initialized to
zero.

ξ0(i, 0) � (Pi,0 = 0)

ξ1: The instant potential of a neuron is computed from the weights of the incom-
ing synapses that are triggered. At every timestep, for a neuron Ni, if it receives
a spike from another neuron Nj , the weight wj,i of the synapse between Nj and
Ni is added to the potential of Ni. Formally, we encode the instant potentials
as,

ξ1(i, t) � (Si,t =
∑

j∈inSynapse(Ni)

xj,t · wj,i)

Note, the binary variable xj,t captures whether Nj has spiked or not at timestep
t and thus affects the instant potential Si,t of neuron Ni.

ξ2: A neuron spikes if its stored potential crosses its threshold. The stored poten-
tial of a neuron Ni at any timestep is the sum of the instant potential Si,t from
the input synapses and the previously stored potential Pi,t−1. Therefore, we have
the following LRA expression corresponding to ξ2,

ξ2(i, t) � ((Si,t + λ · Pi,t−1) ≥ θi =⇒ (xi,t = 1)).

SMT-Based Modeling and Verification of Spiking Neural Networks 31

As time passes, the neuron potential starts to leak causing the stored potential
to decay, hence, we use the leak factor λ in the formulation.

ξ3: A neuron does not spike if its potential does not cross its threshold. Similar
to ξ2, we have the LRA expression for ξ3 as,

ξ3(i, t) � ((Si,t + λ · Pi,t−1) < θi =⇒ (xi,t = 0)).

ξ4: On crossing the threshold, the stored potential of a neuron is reset. For a
neuron Ni, once its threshold is crossed, the neuron’s stored potential is set to
0. Hence, we have the LRA formula as,

ξ4(i, t) � ((Si,t + λ · Pi,t−1) ≥ θi =⇒ (Pi,t = 0)).

ξ5: If the total potential (stored + instant) of a neuron does not cross the thresh-
old, it is stored for the next timestep. This can be obtained by updating the
current (i.e., at the tth timestep) stored potential Pi,t of the neuron Ni. For-
mally, the LRA expression is,

ξ5(i, t) � (Si,t + λ · Pi,t−1) < θi,j =⇒ (Pi,t = Si,t + λ · Pi,t−1) .

Collecting the formulas ξ0, ξ1, ξ2, ξ3, ξ4 and ξ5, we define the SMT encoding FN
of the given SNN in the following.

FN �
(∧

i∈N

ξ0(i, 0)

)
∧

⎛
⎝ ∧

t∈{1...�}

∧
i∈N

ξ1(i, t) ∧ ξ2(i, t) ∧ ξ3(i, t) ∧ ξ4(i, t) ∧ ξ5(i, t)

⎞
⎠

(1)

As defined earlier, N denotes the set of LIFR neurons (ref. Definition 3). We
note certain properties of the SMT encoding which allows us to verify an SNN
through the SMT encoding.

Proposition 1. Let N be an SNN, γ be a complex spike train and FN be the
SMT encoding of N as in Eq. 1. Let σγ : xi,t = γi[t] be the instantiation of
the output variables for the input neurons Ni ∈ Ninp. Then, the formula FN is
satisfiable and there is a unique satisfying assignment for all the output variables.

Since the output variables corresponding to Nout can be compiled into a spike
train η ∈ {0, 1}|Nout|×�, we can think of FN as a function from {0, 1}|Ninp|×� →
{0, 1}|Nout|×�. In the following, we denote the output spike train η = FN (γ). The
one-to-one SMT-based encoding of the steps in the SNN execution semantics
ensures the following proposition leading to the final corollary.

32 S. Banerjee et al.

Proposition 2. For all input spike trains γ, N (γ) = FN (γ).

Corollary 1. Given an SNN N , its SMT encoding is sound and complete for
all properties defined on its inputs and outputs.

Thus, we are ensured of a sound and complete verification procedure for SNNs
based on SMT encoding. Note that the number of variables used for the SMT
encoding is O(n × �) where n refers to the number of neurons in the SNN, and
� = �T/δ� refers to the number of timesteps. The number of LRA constraints is
O(8 × n × �) (3 constraints from ξ0 and ξ1–ξ5).

4 The Proposed Framework

Our framework takes as input a given trained SNN and a property to be checked,
and either provides a formal guarantee that the SNN satisfies the property for all
inputs (either unconstrained or as constrained by the input constraints specified
as part of the property), or a counterexample showing an input for which the
property is violated. Through the SNN verification problem, one can check for
various system properties, such as adversarial robustness. This property essen-
tially says a minor perturbation to the input of an SNN does not affect its
output, and thereby, the SNN is robust to adversarial perturbations (details in
Sect. 4.3). Formally, the verification problem is defined as below.

Definition 4 [SNN Verification]. Given a 3-tuple 〈N , P,Q〉, with the follow-
ing N : {0, 1}|Ninp|×� → {0, 1}|Nout|×� as an SNN, P : {0, 1}|Ninp|×� → {0, 1}
and Q : {0, 1}|Nout|×� → {0, 1} respectively the input and output properties of N ,
the verification problem is to decide if there exists a γ ∈ {0, 1}|Ninp|×� for which
P (γ) ∧ (N (γ) = η) ∧ ¬Q(η) is satisfiable. �

Note, η ∈ {0, 1}|Nout|×� is the output spike train obtained by running the SNN
N for the input spike train γ. If there exists such an input spike train γ for which
η does not satisfy the output property Q, γ then acts as a counter-example to
the verification problem. Otherwise, we are ensured that for all γ satisfying the
input property, the corresponding output η = N (γ) satisfies Q. The verification
framework is enabled by the SMT encoding of SNNs. The SMT encoding of the
input and output properties are as follows.

4.1 Encoding of Input and Output Properties

The input properties define a subset of complex input spike trains γ from the
space {0, 1}|Ninp|×� for which the property is to be checked. Some of the com-
mon input properties and their respective encodings are given next. The SMT
encoding FP is over the set Xinp of input variables i.e. {xi,t | Ni ∈ Ninp

and t ∈ {1 . . . �}}. The SMT encoding, FQ, for output properties is sim-
ilar, except for the fact that FQ uses the set Xout = {xi,t | Ni ∈ Nout

and t ∈ {1 . . . �}}.

SMT-Based Modeling and Verification of Spiking Neural Networks 33

IP1: All Input Spike Trains: This property holds for all input spike trains. It
is most commonly used for property testing where independent of the input,
the system should satisfy the safety properties. The respective encoding is:
FP (Xinp) � �. Here, � refers to always true.

IP2: A Specific Input Spike Train: This property holds for a specific input
spike train from the entire input space. It is commonly used for properties based
on exceptions and corner cases. The encoding is done by assigning values to
variables in Xinp. The SMT encoding is fairly direct:

FP (Xinp) �
∧

Ni∈Ninp

∧
t∈{1...�}

(xi,t = γi[t])

For example, given the complex input spike train γ = {{1, 0, 1}, {1, 1, 0}} for an
SNN having two input neurons, the LRA expression is:

FP (Xinp) � (x0,1 = 1) ∧ (x0,2 = 0) ∧ (x0,3 = 1) ∧ (x1,1 = 1) ∧ (x1,2 = 1) ∧ (x1,3 = 0).

IP3: Bounded Spike Counts: This property defines a condition on the number of
spikes in the spike train for an input neuron Ni expressing the requirement that
the number of spikes is bounded by a lower (c1) and/or an upper (c2) bound.
The respective encoding is:

FP (Xinp) � c1 ≤
�∑

t=1

xi,t ≤ c2

For example, given an arbitrary SNN with 3 timesteps, its first input neuron N1

should have at least 2 and at most 5 spikes. The corresponding encoding is,

FP (Xinp) � 2 ≤ x1,1 + x1,2 + x1,3 ≤ 5

IP4: Compound Properties: The conjunction of multiple input properties can be
generically written as,

FP (Xinp) � FP1(Xinp) ∧ FP2(Xinp) ∧ · · · ∧ FPk
(Xinp)

4.2 Overall Verification Framework

Given a verification problem 〈N , P,Q〉, the verification framework generates the
SMT encodings FN , FP and FQ over the appropriate variables. It then calls
Algorithm 1 which presents the formula FN ∧ FP ∧ ¬FQ to an SMT-solver
(e.g. Z3). If the solver returns SAT, the satisfying assignment is processed to
extract the input and corresponding output spike trains as counterexample to
the verification problem. If the solver return UNSAT, the algorithm reports
that there are no violating instances and the verification problem is successful.
Consider the following example.

34 S. Banerjee et al.

N1

N2

N3

N4

0.6

0.7

0.5

-0.5

Fig. 2. A sample SNN

Example 2 Consider the SNN N shown in Fig. 2 and the input property P1 and
the output property Q1 as stated below.

P1: the number of spikes generated by the neuron N1 is more than the number
of spikes generated by the neuron N2. Formally,

FP1 �
�∑

t=1

x1,t >

�∑
t=1

x2,t.

Q1: the neuron N4 never spikes. Formally, FQ1 �
∑�

t=1 x4,t = 0.
We take the complement of Q1, i.e., ¬Q1: neuron N4 spikes at least once.

We then pass the SNN encoding FN along with FP1 and ¬FQ1 to the SMT-
solver, which returns SAT along with the input spike train γ1 = {0, 0, 1, 1, 1}
and γ2 = {1, 1, 0, 0, 0} for which the neuron N4 does spike. Thus, N violates Q1.
Consider another input property P2: the neuron N2 never spikes. On invoking
the SMT-solver for FN , FP2 , and ¬FQ1 , we get UNSAT. Hence, N satisfies Q1.

�

The algorithm for SNN verification problem is outlined in Algorithm 1.

Algorithm 1. Algorithm for Verification of SNNs
Input: Verification problem 〈N , P, Q〉
Output: SUCCESS or FAILURE(counterexample)

FN = SMTEncode(N)
FP = SMTEncode(P)
FQ = SMTEncode(Q)
F = FN ∧ FP ∧ ¬FQ

if Solver(F) returns SAT then
counterexample = getSolution(F)
return FAILURE

else if Solver(F) returns UNSAT then
return SUCCESS

end if

In [16], it has been shown that the verification problem for feedforward neural
networks is NP-hard. The proof contains a reduction of an instance of the 3-SAT

SMT-Based Modeling and Verification of Spiking Neural Networks 35

problem to an instance of the neural network verification problem. Since SNN
is a generalization of neural networks, the NP-hardness of the SNN verification
problem follows. Moreover, there exists state-of-the-art solutions for verification
of neural networks models (such as DNNs) using SMT [10,16], this motivated
us to look at SNN encoding in SMT.

4.3 Verifying Adversarial Robustness of SNNs

For a classification problem with n-classes, one can design an SNN N with n
output neurons. The SNN predicts a class y for a given complex input spike train
γ when y is the predicted class, i.e. the index of the neuron with the maximum
spikes. In other words,

η = N (γ) ∧ y = argmaxspike(η)

where

argmaxspike(η) � argmax
i∈{1...|Nout|}

(�∑
j=1

η[i][j]
)

An SNN N trained for classification is adversarially robust when small pertur-
bations to a given complex input spike train γ0 does not lead to a change in the
predicted class y0 = argmaxspike(η0) where η0 = N (γ0). In this section, we
describe how the proposed SMT based verification can be used to check if an
SNN is adversarially robust with respect to a given input γ0.

For the verification framework, we need to encode a formula P (γ) ∧ N (γ) =
η ∧ ¬Q(η), where P (γ) states that γ is a perturbation of a given γ0, and Q(η)
states that argmaxspike(η) = y0. Then, the corresponding SMT encoding and
verification will ensure that if the SMT encoding is unsatisfiable, for all pertur-
bations of γ0, the predicted class is argmaxspike(η0) where η0 = N (γ0). On the
other hand, when the SMT encoding is satisfiable, it produces an assignment to
the variables which encodes a perturbation of γ0 leading to a different prediction.
We now formally define P (γ) and Q(η) and their SMT encoding.

Definition 5 [Δ−Perturbation]. For a given non-negative integer Δ, the
Δ−perturbation of an input spike train refers to changing its spike counts by
at most Δ changes. If γ is obtained from the input spike train γ0 ∈ {0, 1}|Ninp|×�

after Δ-perturbation, we have

|Ninp|∑
i=1

�∑
j=1

| γ[i][j] − γ0[i][j] | ≤ Δ.

�

For most real-life applications, the spike trains generated by sensors are more
susceptible to errors where there are missing intended spikes or more spikes than
expected. Therefore, we prefer to use the notion of Δ−perturbation in terms of

36 S. Banerjee et al.

spike counts for adversarial robustness. The difference,
∑|Ninp|

i=1

∑�
j=1 | γ[i][j] −

γ0[i][j] | is the Manhattan distance between the two vectors since these vectors
consist of 0’s and 1’s only. Hence, we formally denote the Δ−perturbation as
‖γ −γ0‖1, where ‖..‖1 refers to the first norm or Manhattan norm. So, P (γ) can
be concisely specified as ‖γ − γ0‖1 ≤ Δ. The corresponding SMT encoding is:

FP �
|Ninp|∑

i=1

�∑
j=1

xi,j ⊕ γ0[i][j] ≤ Δ.

Note, the symbol ⊕ indicates the XOR operation and xi,j ⊕ γ0[i][j] will be 1
only when xi,j and γ0[i][j] have opposite values. In order to formalize Q(η), we
note that the function y = argmax(x1, x2, · · · , xn) can be encoded as below.

[n∧
j=1,j �=i

(xi > xj) ⇐⇒ (y = i)
]

Therefore, the encoding of Q(η) can be described as:

FQ �
|Nout|∧

j=1,j �=y0

(
�∑

t=1

xy0,t >

�∑
t=1

xj,t),

which when satisfiable ensures that y0 = argmaxspike(η). Finally, the SMT
encoding for verification of adversarial robustness of N for a given spike train
γ0 is produced as FP ∧ FN ∧ ¬FQ.

5 Implementation and Results

We implemented our approach as a tool [1] on top of Z3Py as the SMT solver.
The Z3Py framework is a binding of the Z3 theorem prover [24] for the Python
programming language. We carried out our work on some pre-trained SNN mod-
els on an Intel Core i7-10870H processor at 2.2 Ghz and 16 GB of RAM.

For our experiments, we considered the Iris dataset [12] and the MNIST
handwritten digits dataset [7]. These datasets are image classification use cases
of neural networks, used to classify flower types and handwritten digits respec-
tively. The Iris dataset is composed of 150 data points (instances), each instance
corresponding to the description of a type of Iris plant. Each row of the dataset
contains four input features corresponding to the sepal length, sepal width, petal
length and petal width of the instance. Each row also contains a classifica-
tion label from the set {Iris-Setosa, Iris-Versicolor, Iris-Virginica}. The MNIST
dataset contains 70,000 data points (image instances). Each row corresponds to
a 28 × 28 gray-scale image with pixel values in the range 0–255 and a corre-
sponding output label from the set of all single digit numbers (0 to 9). Since
the real valued vectors cannot be fed as input to the SNN, we use rate encoding
(discussed next) to convert them into spike trains.

SMT-Based Modeling and Verification of Spiking Neural Networks 37

Rate Encoding: Given a feature value v, normalized to v̄ ∈ [0, 1], the rate
encoding of v for the discrete time domain DI(�) generates a spike train
γ ∈ {0, 1}� by running a Bernoulli trial B(�, v̄). Thus, the probability of k num-
ber of spikes (spike value 1) in a generated spike train for v can be given by:
P (k) =

(
�
k

)
v̄k(1 − v̄)(�−k), 0 ≤ k ≤ �. Thus, an input value of 0 would produce

a spike train with no spikes and a value of 1 would generate a spike train with
spikes at each timestep. For the given datasets, we first normalize the values
corresponding to each input feature to the range [0, 1]. For each input, we have a
corresponding vector where all values are normalized. This input vector is then
used to create an encoded spike train using the spikegen module of snnTorch.

Our models were trained using the snnTorch [11] with varying accuracy lev-
els to see how networks with low/high accuracies perform when analyzed. An
interesting observation is made with respect to the low accuracy obtained for the
Iris models (Table 2 using snnTorch). This may be an artifact of the encoding
used, however, our framework can take in any SNN model as input with any
accuracy and carry out the analysis task.

Table 2. Verification experiments with Iris

Networks Accuracy of

model (%)

Properties

ϕ1 ϕ2 ϕ3 ϕ4

– Time (s) – Time (s) – Time (s) – Time (s)

SNN-5 40 SAT 0.1 SAT 1.3 UNSAT 0.1 SAT 0.28

SNN-10 47 SAT 4.2 SAT 1.3 UNSAT 0.9 SAT 0.9

SNN-15 56 SAT 89.5 SAT 5.1 UNSAT 494.2 SAT 42.7

SNN-20 58 SAT 35.4 SAT 7.4 SAT 793.2 SAT 125.7

SNN-25 64 SAT 60.0 SAT 35.8 SAT 3752.2 SAT 4816.8

5.1 Verification Results on the Iris Dataset

We considered a number of SNNs (Column 1 of Table 2), each with 4 input neu-
rons (corresponding to the input features), 1 hidden layer with 5 hidden neurons
and 3 output neurons (corresponding to the 3 output classes). The networks dif-
fer in the number of time steps (i.e., 5, 10, 15, 20, 25) for which they were trained
and thus, in their accuracy of predictions as reported in the Column 2 of Table 2.
These networks were then tested against 4 properties, ϕ1 to ϕ4. Table 2 lists the
properties satisfied by each network along with the time taken in seconds for
the verification task to be carried out by the SMT solver. We now explain the
encoding of the properties. Let N9 be the output neuron corresponding to the
label ‘Iris-Setosa’, N10 be the output neuron corresponding to the label ‘Iris-
Versicolor’, N11 the output neuron corresponding to the label ‘Iris-Virginica’
and � the number of timesteps. We considered the following properties.

38 S. Banerjee et al.

– ϕ1: There exists some input for which the network predicts the out-
put class as ‘Iris-Setosa’.
This property refers to the network’s ability to label a given input as ‘Iris-
Setosa’ for some input. If a network does not satisfy this property for any
input, we can say that the network can never output the label corresponding
to ‘Iris-Setosa’. We need to check that the total number of spikes correspond-
ing to the output Iris-Setosa is the highest. This property is a spike count
based property encoded as:

Fϕ1 �
(∑

t∈1···�
x9,t >

∑
t∈1···�

x10,t

)
∧

(∑
t∈1···�

x9,t >
∑

t∈1···�
x11,t

)
.

– ϕ2: There exists some input for which the network predicts the
output class as ‘Iris-Versicolor’.

– ϕ3: There exists some input for which the network predicts the
output class as ‘Iris-Virginica’.
ϕ2 and ϕ3 have encodings similar to Fϕ1 . While the above are properties
based on class labels, the following is an arbitrary property that formulates
a requirement on the bound on the number of spikes. We generated multiple
such properties as observations from the SNN traces and experimented with
the same to show how our framework performs. In Table 2, we only report our
findings on the above 4 properties. We could not find any standard property
suite for the Iris or MNIST benchmarks, so these simple properties were
created to check the sanity of the verification framework. The verification
was carried out without any constraints on the input space, i.e. for all inputs.

– ϕ4: The total number of spikes at the output should not be more
than 75% of the total number of spikes possible at the output.
This property refers to the network’s ability to generate the output label
without producing an excessive number of output spikes. The total number
of spikes refers to the output spike train containing a maximum of (number
of timesteps × number of output labels) spikes. This property is a spike count
based property that can be encoded as follows.

Fϕ4 �
(∑

t∈1···�
x9,t +

∑
t∈1···�

x10,t +
∑

t∈1···�
x11,t

)
≤ 0.75 × 3 × �

We use our verification framework as outlined in Algorithm 1 for Fϕ1 to Fϕ4 . The
satisfiability results along with the time (in seconds) taken by the SMT-solver
are reported in Table 2. The FAILURE flag returned by Algorithm 1 indicates
that the property is not satisfied by the model and is represented by ‘UNSAT’
in Table 2. Similarly, the SUCCESS flag returned by Algorithm 1 indicates that
the property is satisfied and is represented by ’SAT’ in Table 2. As we can see
from the table, more the number of timesteps for which the network is trained,
more is the accuracy and more is the time required for verification. This is due
to the fact that an increasing number of timesteps also increases the number of
variables in the network encoding.

SMT-Based Modeling and Verification of Spiking Neural Networks 39

5.2 Adversarial Robustness for Iris and MNIST

For carrying out experiments on the adversarial robustness of Iris, we took the
model with the highest (64%) accuracy. We then randomly selected a small sub-
set of instances from the Iris dataset. For each instance, we used our framework
to verify the adversarial robustness of the trained network for different values
of Δ, according to the notion of Δ-perturbation defined in Sect. 4.3. Table 3
presents the number of adversarially robust samples and the time taken for
checking robustness. For the adversarial robustness experiment, we considered
72000 s as the timeout for the solver. We can observe that with increasing values
of Δ (Column 1), the time taken for checking robustness also increases (Column
4). For larger values of Δ like 5 and 10, timeouts start to occur due to the large
size of the adversarial input space. In cases where an adversarial input is found,
the query finishes early (Column 6). For Δ = 1, 2, all of the 5 instances were
adversarially robust, whereas for Δ = 3, 4 out of 5 samples were adversarially
robust, and for one sample adversarial input was found in approximately 3.3 min.
Similarly, for Δ = 5, 2 out of 5 samples had adversarial inputs, one sample was
found as adversarially robust, and for other 2 samples solver reported timeout.
For Δ = 10, 2 of the 5 samples had adversarial inputs which took time in the
order of minutes to find.

Table 3. Adversarial robustness for SNN-Iris for different values of Δ

Δ Total instances #Robust instances #Non-robust instances Timeouts

#Instances Time (s) #Instances Time (s) #Instances

1 5 5 22.63 0 – 0

2 5 5 288.28 0 – 0

3 5 4 6104.51 1 198.45 0

5 5 1 30425.76 2 341.34 2

10 5 0 – 2 259.26 3

For MNIST, we trained multiple SNNs each with 3 layers, an input layer
with 784 neurons (28 × 28 is the MNIST input image dimension), an output
layer with 10 neurons (corresponding to each single digit number) and 1 hidden
layer with different numbers of neurons and trained for 5 timesteps. For these
different networks (differing in the number of hidden layer neurons), we checked
for adversarial robustness for Δ = 1 to observe how an increase in network size
can affect the time to check for robustness. Table 4 shows the time taken for the
robustness check. We can observe that the time taken for robustness checking
increases with increase in the number of neurons. However, increase in (a) the
value of Δ, (b) the number of hidden layer neurons beyond 500, (c) timesteps
for training – each led to scalability issues and timeouts in our experiments, for
which we do not present the results here.

40 S. Banerjee et al.

Table 4. Adversarial robustness for SNN-MNIST with Δ = 1

hidden
layer neurons

Accuracy of
model (%)

Timesteps Adv. robust Total time (s)

10 35.18 5 Yes 3109.05

50 68.07 5 Yes 16996.68

100 74.90 5 Yes 40397.20

500 91.31 5 Yes 419123.15

6 Related Work

In this section, we highlight some relevant existing works in the domain of mod-
eling and verification of traditional neural networks as well as SNNs.

Modeling and Verification of Traditional Neural Networks (NNs): There exists
a rich body of literature focusing on the modeling and verification of traditional
NNs [10,14,16,18,19]. In [18], authors have presented a modeling and verification
framework for DNNs using LRA. This paper also discusses the notion of scal-
able verification and how the different architectures can enable more verification
friendly networks. An abstraction-refinement based verification for traditional
NNs has been introduced in [10]. It has been shown that the proposed framework
is a more efficient and scalable verification model for traditional NNs. Another
popular framework for NN verification developed based on the simplex method
is Reluplex [16]. Reluplex can only handle the rectified linear unit activation
function, the most common activation functions used in traditional neural net-
works. A verification method developed based on mixed integer programming
has been proposed in [27] to determine the exact adversarial accuracy of an
MNIST classifier for some pre-specified perturbation measures.

Verification-Based Analysis of Traditional NNs: A significant amount of work
exists in the literature that uses verification as an oracle to get some further
improvised results on NNs. One such work [19] develops a sound framework
that can prune and slice NNs by identifying redundant neurons and eliminating
them. Another work [13] proposes a method for simplification of NNs by the
elimination of dead neurons (that do not contribute to the output) without
changing the behaviour of the original network. On the other hand, [14] presents
a framework that repairs a given NNs by allowing a minimal modification with
respect to a given counterexample of the input space. The verification framework
is used to find the minimal amount of changes required to the network in order
to account for the change in inputs and outputs.

Modeling and Verification of SNNs: There is a significant amount of literature
focusing on various aspects of SNNs such as training methods of SNNs [8,9,26],
variation of SNNs [6,17], hardware architectural development of SNNs [20,25].
However, very few efforts have been found in the formal modeling and verifi-
cation of SNNs. The work [4] proposes a timed automata based encoding for

SMT-Based Modeling and Verification of Spiking Neural Networks 41

modeling SNN functionalities and properties. Here, SNNs are formalised as sets
of automata, one for each neuron, running in parallel and sharing channels
according to the network structure. On the other hand, [3] translates a spik-
ing neural system with weighted synapses into a class of timed safety automata.
In both the papers, modeling and verification of system properties are done
using tools and techniques developed for timed automata. A model checking
approach to reduce a given SNN has been proposed in [23]. SNNs are modeled
as discrete-time Markov chains and PRISM is used as the underlying verifica-
tion tool. However, the effectiveness of both these frameworks is shown only on
synthetic small examples. Formal encoding and verification of SNNs using Lus-
tre programs (functional language operating on flows) has been proposed in [5].
Here, verification of temporal properties of neuronal archetypes are modeled as
synchronous reactive systems, and thus represented as Lustre programs. In con-
trast to all these existing works, our work presents an application of SMT-based
modeling and verification for SNNs.

7 Conclusion and Future Directions

In this paper, we propose an SMT-based encoding for Spiking Neural Networks
with LIFR neurons. We address the property verification problem and the adver-
sarial robustness problems for SNNs. We have implemented our methods into a
tool that builds on the Z3 theorem prover. Experiments are presented on the Iris
and MNIST benchmarks. As we can see from our experiments, the SMT-based
encoding does not scale well to SNNs of large sizes. This has been reported in
the context of traditional NNs as well. As one of the future directions, we plan
to extend our framework with safe abstractions such that the analysis can be
carried out in reasonable time. Another future direction to consider would be
the comparison of the proposed model with other frameworks which use different
mathematical formulations like Mixed Integer Linear Programming (MILP) for
verification of SNNs. Additionally, it is worth investigating the effect of different
encoding schemes (rate encoding versus other ones) and their effect on the scal-
ability and verification of SNNs. Along with the improvements to the models,
additional classes of properties can be studied further to improve the robustness
of the framework. As part of this initial case study, we have adopted the rate
encoding scheme with LIFR neurons, which has been reportedly one of the most
popular and simpler variants of SNNs. We plan to extend the support to other
variants going ahead. As future work, we also plan to extend the verification
framework to wider range of SNNs (in terms of neurons and architectures) such
as Convolutional SNNs and Recurrent SNNs.

References

1. Code and Benchmarks. https://github.com/Soham-Banerjee/SMT-Encoding-for-
Spiking-Neural-Network

https://github.com/Soham-Banerjee/SMT-Encoding-for-Spiking-Neural-Network
https://github.com/Soham-Banerjee/SMT-Encoding-for-Spiking-Neural-Network

42 S. Banerjee et al.

2. Alur, R.: Timed automata. In: Peled, D. (ed.) CAV 1999. LNCS, vol. 1633, pp.
8–22. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 3

3. Aman, B., Ciobanu, G.: Modelling and verification of weighted spiking neural sys-
tems. Theoret. Comput. Sci. 623, 92–102 (2016)

4. De Maria, E., Di Giusto, C., Laversa, L.: Spiking neural networks modelled as
timed automata with parameter learning (2018)

5. De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification
of temporal properties of neuronal archetypes modeled as synchronous reactive
systems. In: Cinquemani, E., Donzé, A. (eds.) HSB 2016. LNCS, vol. 9957, pp.
97–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47151-8 7

6. Demin, V., Nekhaev, D.: Recurrent spiking neural network learning based on a
competitive maximization of neuronal activity. Front. Neuroinf. 12, 79 (2018)

7. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

8. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

9. Ding, J., Yu, Z., Tian, Y., Huang, T.: Optimal ANN-SNN conversion for fast and
accurate inference in deep spiking neural networks (2021)

10. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

11. Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep
learning (2021)

12. Fisher, R.: Iris. UCI Machine Learning Repository (1988). https://archive.ics.uci.
edu/ml/datasets/Iris

13. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C., Katz, G.: Simplifying neu-
ral networks using formal verification. In: Lee, R., Jha, S., Mavridou, A., Gian-
nakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 85–93. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-55754-6 5

14. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural
networks using verification. In: LPAR23. LPAR-23: 23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, vol. 73, pp. 260–
278 (2020)

15. Guo, W., Fouda, M.E., Eltawil, A.M., Salama, K.N.: Neural coding in spiking
neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15, 638474 (2021)

16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a calcu-
lus for reasoning about deep neural networks. Formal Methods Syst. Design 1–30
(2021)

17. Kim, T., et al.: Spiking neural network (SNN) with memristor synapses having
non-linear weight update. Front. Comput. Neurosci. 15, 646125 (2021)

18. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks (2018)

19. Lahav, O., Katz, G.: Pruning and slicing neural networks using formal verification
(2021)

20. Li, S., Zhang, Z., Mao, R., Xiao, J., Chang, L., Zhou, J.: A fast and energy-efficient
SNN processor with adaptive clock/event-driven computation scheme and online
learning. IEEE Trans. Circuits Syst. I Regul. Pap. 68(4), 1543–1552 (2021)

https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/978-3-319-47151-8_7
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://doi.org/10.1007/978-3-030-55754-6_5

SMT-Based Modeling and Verification of Spiking Neural Networks 43

21. Liu, T.Y., Mahjoubfar, A., Prusinski, D., Stevens, L.: Neuromorphic computing
for content-based image retrieval. PLOS One 17(4), 1–13 (2022). https://doi.org/
10.1371/journal.pone.0264364

22. Malik, N.: Artificial neural networks and their applications (2005)
23. de Maria, E., Gaffé, D., Ressouche, A., Girard Riboulleau, C.: A model-checking

approach to reduce spiking neural networks. In: BIOINFORMATICS 2018 - 9th
International Conference on Bioinformatics Models, Methods and Algorithms, pp.
1–8 (2018)

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and efficient neural
simulator. eLife 8, e47314 (2019)

26. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.S.: Deep
learning in spiking neural networks (2018)

27. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017)

28. Yu, Z., Abdulghani, A.M., Zahid, A., Heidari, H., Imran, M.A., Abbasi, Q.H.: An
overview of neuromorphic computing for artificial intelligence enabled hardware-
based hopfield neural network. IEEE Access 8, 67085–67099 (2020). https://doi.
org/10.1109/ACCESS.2020.2985839

https://doi.org/10.1371/journal.pone.0264364
https://doi.org/10.1371/journal.pone.0264364
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ACCESS.2020.2985839
https://doi.org/10.1109/ACCESS.2020.2985839

StaticPersist: Compiler Support
for PMEM Programming

Sorav Bansal(B)

Indian Institute of Technology Delhi, New Delhi, India

sbansal@iitd.ac.in

Abstract. Persistent Memory (PMEM) programs present unique pro-
grammability challenges. An important challenge involves ensuring that
programs with mixed volatile-memory and persistent-memory ensure an
important reachability invariant: at no point in the program execution
should a persistent memory region contain a pointer to a volatile memory
region. Such invariants are difficult to detect through testing methodolo-
gies, as the corresponding failures show up only in the presence of crashes.
Prior work has leveraged runtime support in managed languages like Java
(e.g., AutoPersist [31]) to check these invariants at runtime. However,
such proposals incur a significant runtime cost. We propose a compile-
time analysis that checks and maintains such reachability invariants stat-
ically with high precision. We implement this compile-time analysis in
tool called StaticPersist which identifies such reachability-invariant vio-
lations and proposes fixes in C/C++ code.

Keywords: Persistent memory · Points-to analysis

1 Introduction

Fast byte-addressable persistent memory technologies, such as Intel 3D XPoint
[20], Phase Change Memory (PCM) [36], and Resistive RAM [1], have the poten-
tial to re-define the programming interfaces and OS abstractions. Unlike tradi-
tional stable storage technologies like magnetic disks and Flash devices, these
Persistent Memory (PMEM) technologies are nearly as fast as volatile DRAM
and thus it is no longer tenable to pay the overheads of system calls and other
traditional abstractions for stable storage. Instead, PMEM can now be managed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 44–65, 2023.
https://doi.org/10.1007/978-3-031-24950-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_3

StaticPersist: Compiler Support for PMEM Programming 45

simply using heap-allocated variables and existing load/store hardware instruc-
tions. This paradigm shift in the programming method opens a multitude of
new problems and innovation opportunities. For example, programming lan-
guage abstractions need to be adapted to allow easy and performant interfaces
for mixing persistent and volatile memory objects, while minimizing the chances
of programming mistakes. Some examples of PMEM programming frameworks
are Intel PMDK [25], Mnemosyne [33], NVHeaps [7], Espresso [37], AutoPersist
[31], Atlas [4], etc.

A major programmability issue associated with most of these programming
models (except AutoPersist [31]) is the programmer burden associated with
explicitly specifying PMEM objects and managing them separately from volatile
memory objects, which we will also refer to as volatile objects. This manual
disambiguation and management is both cumbersome and error-prone for the
programmer. AutoPersist [31] proposed a new programming model in which the
programmer only specifies the durable roots, i.e., the top-level named PMEM
objects that need to PMEM-allocated. AutoPersist is then able to automatically
mark all the other data structures that are reachable from the durable roots as
persistent. The rationale of this logic is that it should not be acceptable for a
program to have pointers to volatile memory within persistent objects—as such
a situation would result in dangling pointers upon power failures.

AutoPersist implements the identification of these PMEM objects through
a runtime reachability analysis implemented within a Java Virtual Machine.
Because Java provides transparent support for object movement in memory,
AutoPersist allows the JVM runtime to transparently and dynamically re-
allocate volatile objects in PMEM, upon identification of a reachability path
from a durable root to that object. AutoPersist implements optimizations that
leverage profile-guided object placement to minimize re-allocation and copying
at runtime. However, there are two primary drawbacks to the AutoPersist app-
roach: (1) it is quite unclear how this approach can be adapted to C/C++
where transparent object movement may not be feasible due to support for raw
pointers; (2) the runtime overheads of performing runtime reachability analy-
sis, re-allocation and copying can be significant even after all the optimizations
implemented in AutoPersist.

In our work, we are interested in designing compile-time analyses to automat-
ically distinguish persistent memory from volatile memory. We borrow AutoP-
ersist’s programming model where the programmer is only required to specify
the durable roots—the compiler then performs a static analysis to identify all
potentially reachable objects from the durable roots, and marks them persis-
tent. These persistent objects can then be allocated and accessed using PMEM-
specific abstractions, e.g., to cater to failure-atomicity requirements. In theory,
this problem of statically identifying all reachable memory objects from the
durable roots is undecidable. Thus, we are interested in an over-approximate
conservative solution. i.e., it is acceptable for our analysis to conservatively deem
more objects as persistent. This can be seen more clearly with the C code exam-
ple in Fig. 1. In this example, the pmem object is allocated in persistent mem-

46 S. Bansal

...

struct foo* pmem_object =

pmem_malloc(M*sizeof(struct foo));

struct foo* volatile_object =

malloc(N*sizeof(struct foo));

...

bool c = ...;

struct foo* p = c ? pmem_object

: volatile_object;

struct bar* reachable_object =;

p->child = reachable_object;

...

Fig. 1. Example showing the conservative nature of a static analysis.

ory (using pmem malloc()) and the volatile object is allocated in volatile
memory. In this example, the pmem object behaves like a durable root, as it
is explicitly specified by the programmer to be allocated in persistent memory.
The pointer p could potentially point to either the persistent object or the
volatile object. Further, another object reachable object could potentially
be reached from the pointer p. Now it may not be feasible to statically deter-
mine if the pointer p points to the persistent object or the volatile object; and so
the over-approximate analysis would conservatively mark reachable object as
persistent (because it could potentially be reached through a persistent object).

For correctness, the compile-time analysis needs to be sound, i.e., if a mem-
ory object O is potentially reachable at runtime from a persistent object, then
O must be marked persistent. A complete compile-time analysis would ensure
that only those objects are marked persistent that would actually be reachable
from persistent objects at runtime; in other words, the objects that would not
be reachable from persistent objects at runtime must be marked as volatile.
Because the general problem of identifying reachability at compile-time is unde-
cidable, it is not possible to develop an analysis that is both sound and complete.
Instead, we are interested in developing a compile-time analysis that is sound
and precise, i.e., the analysis must minimize the number of false-positives—here,
a false-positive is a situation where an object is marked persistent even though
it would not be reachable through a durable root. In our Fig. 1 example, if the
Boolean condition c always evaluated to false at runtime, then the identification
of reachable object as persistent would be a false-positive. A false-positive
does not compromise the correctness of the program (as it is always legal to
allocate a volatile object in persistent memory) but it hurts the performance of
the program (because the persistent memory object allocation and access would
likely be slower than the allocation and access of a volatile memory object).

We present a compile-time sound reachability analysis algorithm that auto-
matically identifies the persistent memory objects using the durable roots anno-
tated by the programmer. We implement our analysis in a tool called StaticPer-
sist that takes as input a C/C++ program annotated with durable roots, and

StaticPersist: Compiler Support for PMEM Programming 47

identifies the objects that need to be allocated in persistent memory as they may
potentially be reachable from the durable roots. A primary challenge in this line
of investigation is the precision and scalability of such a compile-time analy-
sis. We evaluate the precision and scalability of StaticPersist by testing it on
programs implementing common data structures with up to 1000 Source Lines
of Code (SLOC). In our current results, our algorithm and tool scales reason-
ably well and also produces usably precise results. Our current results indicate
that it is possible to significantly reduce programmer burden associated with
PMEM programming without incurring significant runtime overheads. Further,
our algorithm is the first to support C/C++ programs. StaticPersist can be
used either to automatically identify persistent objects, or to identify persistent-
to-volatile-reachability bugs in a manually-written persistent memory program.
Precision and scalability are paramount for both these applications. While we
make significant advances on both these fronts in our work, we also identify sev-
eral improvement opportunities in future work. Our tool is available for download
at https://github.com/compilerai/counter/tree/static-persist.

2 Motivating Example

Most current PMEM programming models, that require the programmer to
explicitly demarcate PMEM objects from volatile objects, are prone to both
correctness and performance errors. An example of a correctness error is a sit-
uation where a volatile memory object is reachable through persistent memory
object. Such an error would largely go undetected through traditional testing
frameworks, but would stand exposed in the face of a crash failure. When a
program would attempt to recover its state after a crash, it would observe a
dangling pointer (to volatile memory) during recovery time; such a situation
could potentially be catastrophic for security and safety critical programs.

Further, when the onus of carefully managing PMEM objects rests solely with
the programmer, it is common for the programmer to choose code simplicity at
the cost of potentially low-performance. This can be seen through the C++
code example in Fig. 2. In this example, the callee() function, that allocates
and returns an object of type bar, is called twice by the caller() function: the
result of the first call is used to store a pointer in a volatile memory object (heap-
allocated variable referred-to by foo *f) while the result of the second call is
used to store a pointer in a persistent memory object (global variable pmem f). In
this example, if the callee() returns a volatile pointer ((1)), then this program
has a correctness bug, as the volatile object may be now reachable through
a persistent object. On the other hand, if the callee() returns a persistent
pointer, then this is a performance bug because we are unnecessarily storing
a persistent object pointer in f->child, where a volatile pointer would have
sufficed.

Our algorithm is capable of automatically transforming the program in Fig. 2
into the program shown in Fig. 3. In the transformed program shown in Fig. 3, a
Boolean persistent flag is passed into the callee() program; depending on the

https://github.com/compilerai/counter/tree/static-persist

48 S. Bansal

1 foo pmem_f;

2

3 bar* callee() {

4 //choose one

5 return new bar; //(1)

6 return pmem_new(bar); //(2)

7 }

8 void caller() {

9 foo* f = new foo;

10 f->child = callee();

11 pmem_f.child = callee();

12 ...

13 }

Fig. 2. Motivating example.

foo pmem_f;

bar* callee(bool persistent) {

if (persistent) {

return pmem_new(bar); //(2)

} else {

return new bar; //(1)

}

}

void caller() {

foo* f = new foo;

f->child = callee(false);

pmem_f.child = callee(true);

...

}

Fig. 3. Transformed version of the example in Fig. 2.

value of the flag, a persistent or a volatile object pointer is returned. Further,
our analysis transforms all call-sites to the callee() function to additionally
specify the value of the persistent flag. In this way, the transformed program
is both correct and performant.

Because our compile-time analysis is capable of automatically determining
such transformations, it relieves the programmer of complicating his/her code
while still achieving the desired correctness and performance properties. Notice
that because our analysis is compile-time, it incurs near-zero runtime overheads
(unlike AutoPersist). Also, it may be applied to any programming language,
irrespective of whether it is a managed language (like Java, Python, etc.) or
an unmanaged language (like C/C++); this is again unlike AutoPersist which
requires the language to support transparent object movement and thus limits
the potential languages to managed languages only.

StaticPersist: Compiler Support for PMEM Programming 49

3 Algorithm

3.1 Points-To Algorithm Based on Allocation-Site

We now discuss our compile-time sound data-reachability analysis algorithm.
The high-level algorithm resembles a points-to analysis algorithm [3] where, at
each program PC (flow-sensitive), for each program variable, it maintains the set
of memory locations that the variable could potentially point to. This points-to
analysis is implemented as a DataFlow Analysis (DFA) [23] where the value is
represented by a map from program variables to the set of memory locations.
Because the set of memory locations may increase or decrease arbitrarily at
runtime, it is not possible to precisely name all memory locations statically.
Thus, we abstract the set of memory locations using the well-known allocation-
site abstraction [2,5,21].

In the allocation-site abstraction, all memory objects allocated at a certain
program PC value are coarsely referred-to by a single name. The nature of this
coarsening can be seen through the example in Fig. 4. In this program, the
allocation-site abstraction would determine that the variable pmem p (a durable
root intended to hold pointers to persistent memory objects) could potentially
point to memory locations allocated at line 7. Similarly, the variable q may point
to memory locations allocated at line 7. A more precise analysis would have been
able to distinguish between objects allocated at line 7 in the first loop iteration
(which may be reachable from pmem p) from the objects allocated in subsequent
loop iterations (which are not reachable from pmem p but are reachable from q).
However, an allocation-site based abstraction would coarsely determine that all
objects allocated at line 7 are reachable from both pmem p and q. As a result,
the allocation-site based abstraction would conservatively determine that all
objects allocated at line 7 must be allocated in persistent memory. Further, all

1 ...

2 bool first = true;

3 char* pmem_p = nullptr;

4 char* q = nullptr;

5 while (...) {

6 ...

7 x = malloc(...);

8 if (first) {

9 pmem_p = x;

10 first = false;

11 } else if (...) {

12 q = x;

13 }

14 q->child = r;

15 }

16 ...

Fig. 4. Allocation site abstraction.

50 S. Bansal

objects reachable from the objects allocated at line 7 (e.g., r in line 14) are
also determined to be persistent memory objects, as shown in the points-to
graph for this example in Fig. 5. Even with these limitations, the allocation-site
based abstraction (and its derivative based on bounded allocation-stack based
abstraction) have been shown to be a practical abstraction as it often reflects
the programmer’s mental map for the program’s logic.

Fig. 5. Points-to graph for the C code example in Fig. 4.

3.2 Allocation-Stack with Bounded Depth

To make the allocation-site abstraction more precise, we use a bounded call-
stack, instead of a single PC, to represent a single allocation site. To see the
precision advantages of using a bounded call-stack abstraction, consider the moti-
vating example in Fig. 2, previously discussed in Sect. 2. The points-to graph for
this example, using the PC-based allocation-site abstraction is shown in Fig. 6.
However, this points-to graph in Fig. 6 is too coarse-grained and would result in
a conservative solution where the allocated in the callee() function is always
identified as a persistent object. Recall however that we are instead interested
in a more precise solution, as shown in Fig. 3.

Fig. 6. Points-to graph for the C++ code example in Fig. 2.

In the bounded call-stack abstraction, we further categorize the memory
objects allocated at line 5 into two mutually-exclusive sets:

1. Memory objects that were allocated at line 5 when the callee() function
was called from the caller() function at line 10.

StaticPersist: Compiler Support for PMEM Programming 51

2. Memory objects that were allocated at line 5 when the callee() function
was called from the caller() function at line 11.

Thus, in this abstraction, we are using a call-stack of depth-1 to further dis-
tinguish between memory objects by providing a finer-grained naming scheme.
The resulting points-to graph is shown in Fig. 7. The points-to graph in Fig. 7
shows that while the global variable pmem f may point to memory objects allo-
cated when the program’s callstack is represented by “Line 11; Line 5”, the local
variable f may point to memory objects allocated when the program’s callstack
is represented by “Line 10; Line 5”. Because the two call-stacks are mutually
exclusive, the corresponding sets of memory objects are disjoint, and thus we
can conclude that only the memory objects corresponding to “Line 11; Line 5”
need to be allocated on persistent storage (and it would be correct to allocate
the memory objects corresponding to “Line 10; Line 5” in volatile memory).
The corresponding code generation strategy involves passing a Boolean flag,
persistent to the callee() function which will be initialized to false at Line
10 and true at Line 11 (as shown in Fig. 3).

Fig. 7. Points-to graph for the C++ code example in Fig. 2 using the bounded call-
stack abstraction.

Call-Stack Depth Bound. In the presence of recursion, there could be a loop
in the function call-graph and so it becomes necessary to put a bound D on the
maximum depth of the call-stack context. Higher values of D would necessarily
yield more precise results at the cost of higher analysis time. In the worst-case,
the analysis time could grow exponentially with an increase in D; fortunately,
such worst-cases are relatively rare. We experiment with D ≤ 4 in our evaluation.

52 S. Bansal

Table 1. Inter-Procedural DFA for identifying the set of all bounded-depth allocation-
stacks.

Domain Bounded call-contexts × Sets of
Bounded-depth Allocation-stacks

Direction Forward

Intra-procedural transfer function fa(cc, s) = (cc, s ∪ GENa(cc))

Caller-to-callee transfer function fcallee(cc,s) = (cc � callee, s)

Callee-to-caller transfer function fcallerCtx(cc, s) = (callerCtx, s)

Meet operator ∧ (cc,s1) ∧ (cc,s2) = (cc, s1 ∪ s2)

Boundary condition outmain[nentry] = (main, {})

3.3 Inter-procedural DFA Specification

Our algorithm proceeds in three steps:

1. Identification of all bounded-depth allocation-stacks (Table 1).
2. Identification of the points-to function for each bounded call-context (Table

1). The points-to function conservatively identifies the objects that a program
variable may point-to, where an object is statically identified through the
bounded-depth allocation-stack at which it is allocated (as identified in Step
1).

3. Identifying reachability through transitive closure of the points-to function
for the durable-roots.

Table 2. Inter-Procedural DFA for identifying the per call-context points-to function.

Domain Bounded call-contexts × {v �→
{allocStack}}

Direction Forward

Intra-procedural transfer function fa(cc, m) = (cc, relax(m, a))

Caller-to-callee transfer function fcallee(cc,m) = (cc � callee,
retainMem(m))

Callee-to-caller transfer function fcallerCtx(cc, m) =
(callerCtx, retainMemAndRetVal(m))

Meet operator ∧ (cc,m1) ∧ (cc,m2) = (cc, meetMap(m1,
m2))

Boundary condition outmain[nentry] = (main, φ)

Identification of Bounded-Depth Allocation Stacks. The algorithm pro-
ceeds by first identifying the bounded-depth allocation-stacks that would be used
as static proxies for the objects allocated in the calling contexts represented by

StaticPersist: Compiler Support for PMEM Programming 53

those stacks. In Fig. 2, the allocation-stack (caller.L10; callee.L5) repre-
sents an allocation stack of depth 2 for example. To determine all such allocation
stacks up to a depth D, we run the inter-procedural DFA shown in Table 1.

The forward DFA starts from the top-level main function with an empty set of
allocation stacks (see boundary condition), and produces a set of bounded-depth
allocation stacks for each call-context it encounters. In the example shown in Fig.
2, if we use the maximum call-context depth D = 1, then we obtain the following
set of allocation stacks: {(caller.L10; callee.L5), (caller.L10; callee.L6),
(caller.L11; callee.L5), (caller.L11; callee.L6), (caller.L9)}. On the
other hand, if we use D = 0, then we obtain {(*; callee.L5), (*; callee.L6),
(caller.L9)}. Here, the ‘*’ represents an arbitrary string of call-sites.

At each step in the DFA algorithm, the value maintains both the current set
of bounded-depth allocation stacks and the current call-context. On encounter-
ing an allocation statement (such as new or malloc or pmem malloc), the DFA
analysis creates and adds a new bounded-depth allocation-stack to the output
value, as shown through the GENa function in the intra-procedural transfer func-
tion. Notice that the GENa function uses the current calling context to determine
the bounded-depth allocation stack. The meet operator for this DFA is set-union.

When the DFA encounters a function call, the caller-to-callee transfer func-
tion is used to obtain the value at the callee’s entry (using the value at the
caller’s function call site). The caller-to-callee transfer function changes the call-
context by appending the callee’s name to the current call-context using the �
operator. The � operator is sensitive to the maximum call-depth parameter D,
and if the call-context depth exceeds D after appending the callee’s name, it
truncates the call-context stack at the top and replaces it with the ‘*’ symbol.
The callee-to-caller transfer function is invoked upon function return; here, the
current call-context is updated to the caller’s context callerCtx.

Identification of per Call-Context Points-To Function. After we have
identified all the bounded-depth allocation stacks, we run an inter-procedural
points-to analysis to identify for each program variable, the subset of these allo-
cation sets that the variable may point-to. This points-to analysis DFA algo-
rithm’s specification is shown in Table 2. The DFA maintains the current call-
context along with the points-to function that maps a variable v to the potential
allocation stacks it may point-to {allocStk}.

The set of variables v chosen for this analysis are based on the 3-Address-
Code (3AC) Static Single Assignment (SSA) representation of the program—all
intermediate SSA registers are used as the domain v of this points-to function1.
Further, the domain of this points-to function includes a special variable Va

for each bounded-depth allocation-stack a that represents the memory region
belonging to all objects allocated at context a. For example, the domain of the

1 SSA Representation lends greater precision to the analysis as it avoids accumulating
the points-to information in cases where the same variable is assigned twice with
different values—the SSA representation uses two different variables in such cases
and our analysis computes distinct points-to sets for each of these two variables.

54 S. Bansal

Algorithm 1. Transitive closure of the durable roots in the points-to graph.
Input: droots, durable roots
Input: PointsToMaps, per call-context points-to maps
Output: PersistentAllocStacks representing the bounded-depth allocation-stacks

of objects that are determined to be allocated persistently.
1: PersistentAllocStacks ← droots

2: while (changed) do
3: changed ← false

4: for each (cc, m) ∈ PointsToMaps do
5: NewPersistentAllocStacks ← PersistentAllocStacks

6: for each pAllocStack ∈ PersistentAllocStacks do
7: if any pAllocStack object points to some aStack not already present in

PersistentAllocStacks then
8: NewPersistentAllocStacks ← NewPersistentAllocStacks ∪

aStack

9: changed ← true

10: end if
11: end for
12: PersistentAllocStacks ← NewPersistentAllocStacks

13: end for
14: end while

points-to function for the example in Fig. 2 (using D = 0) is: {f, f->child,
pmem f, pmem f.child, V(∗;callee.L5), V(∗;callee.L6)}. These special V... variables
are helpful in computing the transitive closure (step 3 of our overall algorithm).

The intra-procedural transfer function of the points-to DFA involves relax-
ing the points-to map based on the behaviour of the current statement a; for
example, if the statement is of the form v = *w, then we update the points-to
set of v to include the points-to set of *w. Similarly, if the statement is of the
form *v = w, then the special V... variables’ points-to information is updated to
include the points-to values of the variable w. This part of the algorithm is similar
to Andersen’s algorithm [30,32]. If a statement of the form v = malloc(...)
is encountered, the points-to set of v becomes the singleton set containing the
bounded-depth allocation-stack a associated with the malloc() call. For other
statements that do not de-reference memory, such as v = f(w,x), the points-to
sets of w and x are union-ed into the points-to set of v.

The caller-to-callee and the callee-to-caller transfer functions of the points-to
DFA update the current calling context. When going from the caller to the callee,
we retain the mappings for all the special variables V... but drop the mappings
for all other variables (which were local only to the caller). This is represented
through the retainMem construct in Table 2. Similarly, when returning from the
callee back to the caller, we retain the mappings for the special variables V...

and also set the mapping for the returned variable in the caller (based on the
corresponding mapping of the return value in the callee). This is represented
through retainMemAndRetval.

StaticPersist: Compiler Support for PMEM Programming 55

The meet operator for this DFA involves iterating over all the variables of the
points-to mapping function and taking a union of the sets of allocation-stacks
that the variable may point-to (meetMap). The points-to analysis starts at the
entry of the main function with the empty points-to function2.

Transitive Closure of Durable Roots. After the points-to information is
computed for each bounded-depth call-context, we finally compute the transi-
tive closure of the durable roots to identify the objects that need to be (conser-
vatively) allocated to persistent memory to avoid persistent-to-volatile dangling
pointers. This transitive closure algorithm involves a fixed-point computation, as
shown in Algorithm 1: at each step of the fixed-point procedure, we iterate over
each bounded-depth call-context to accumulate the reachable allocation-stacks
from the durable-roots. This fixed-point procedure is guaranteed to terminate
and its fixed-point solution will represent the over-approximate set of memory
locations that may be reachable from the durable roots.

Fig. 8. Implementation flowchart.

2 In the presence of global variables, we assume that the global variables may point
to each other at the entry to main. We omit this discussion for brevity.

56 S. Bansal

4 Evaluation

We have implemented our algorithm in a tool called StaticPersist, and we show
the flowchart of the tool in Fig. 8. We model the intra-procedural transfer func-
tions of almost all integer opcodes of LLVM that are generated from C/C++
code using clang. The identification of malloc and new functions is performed
by looking for the function call opcode in LLVM and matching the callee-name
with one of the library allocation routines. For C++, the Znwm is used to match
the new operator. Global variables are modeled both as variables (domain of the
points-to mapping function) and as the pointee (range of the points-to mapping
function). A global variable whose name begins with a special prefix pmem is
considered a durable root. Additionally, the user can use special pmem malloc
and pmem new functions to specify allocation sites that allocate persistent objects
only; such allocation sites also constitute the set of durable roots (see Fig. 2 for
example).

We run StaticPersist on C/C++ programs involving common data-structures
such as linked lists, binary trees, and hash tables (Table 3). These programs
include intrinsic data structure implementations (linked-list-intrinsic, red-black-
tree-intrinsic, hash-table-intrinsic). The smallest programs are around 50 SLOC
and the largest ones are as big as 1500 SLOC. In all these programs, we explicitly
created two or more data structures, and marked (the root of) only one of them as
a durable root. StaticPersist was then used to identify all the persistent allocation
sites (stacks) based on the annotated durable roots. The clickable links to the
full implementations of these programs (including the annotated durable roots)
are available in Table 3.

We answer the following questions through our evaluation:

– What is the precision of our static analysis, and how close does it come to a
runtime instrumentation-based approach on the data-structure benchmarks
used in our evaluation study?

– How does the precision improve with increase in the value of maximum call-
context depth D?

– What is the runtime of our static analysis and how does it scale with the size
of the program and with D?

– What kinds of programming patterns does our analysis work (im)precisely
for? What are some future algorithmic improvements that can help tackle
most such programming patterns?

Our evaluation represents an early-stage evaluation based on one year of research
effort. A more complete evaluation should show extensive results on larger bench-
marks. Our current evaluation points to future opportunities of improvement to
our algorithm, and should be treated as such.

Figure 9 presents the results of applying StaticPersist on the benchmarks
listed in Table 3. The X-axis represents the D value, ranging between 0 and 4,
and the Y-axis represents the analysis time. Green bars are used to represent
situations where the static analysis results are as precise as those possible with
dynamic analysis (with runtime overheads); red bars represent situations where

StaticPersist: Compiler Support for PMEM Programming 57

Fig. 9. Evaluation Results for the benchmarks listed in Table 3.

the static analysis results are imprecise compared to the results that could have
been obtained using a dynamic runtime analysis. Even in cases where the static
analysis produces imprecise results, the results are still often useful as they select
only a subset of all allocation stacks as persistent.

To summarize the results: the analysis tool can scale up to a thousand SLOC
with a call-context depth of 4, albeit it may have to run for hours. While for

58 S. Bansal

Table 3. Benchmark programs used to evaluate StaticPersist.

Language Name SLOC

C linked-list-extrinsic 43

C++ linked-list-extrinsic 54

C binsearch-tree-recursive 55

C++ binsearch-tree-recursive 60

C binsearch-tree-iterative 59

C++ binsearch-tree-iterative 73

C linked-list-intrinsic 1007

C red-black-tree-intrinsic 829

C hash-table-intrinsic 1515

some benchmarks, the running time may increase rapidly with the call-context
depth (e.g., binsearch-tree-recursive); this happens for programs where the
function call graph is deep and dense (e.g., in the presence of recursion). The
encouraging result is that for many common programming patterns, our tool is
able to produce precise results even for small call-context depths (e.g., linked-list
programs, iterative search tree programs, etc.). We next provide some intuition,
through simple examples, on why the analysis often produces precise results,
and the reasons for imprecision when it does not.

Extrinsic and Intrinsic Linked Lists. We use the linked-list programs as
canonical examples of iterative programs involving heap allocations.

1 struct Node {

2 int* data;

3 struct Node* next;

4 };

5 struct Node* pmem_head = NULL, *head2 = NULL;

6

7 void insert(struct Node**h, int d) {

8 struct Node* n = (struct Node*)malloc(sizeof(struct Node));

9 if (!n) {

10 return;

11 }

12 n->data = malloc(sizeof(int));

13 *n->data = d;

14 n->next = *h;

15 *h = n;

16 }

17 int main() {

18 insert(&pmem_head, 1);

19 ...

20 insert(&head2, 2);

https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/linked_list.c
https://github.com/iitd-plos/superopt-tests/blob/static-persist/cpp/linked_list.cpp
https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/binary_search_tree.c
https://github.com/iitd-plos/superopt-tests/blob/static-persist/cpp/binary_search_tree.cpp
https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/binary_search_tree_iter.c
https://github.com/iitd-plos/superopt-tests/blob/static-persist/cpp/binary_search_tree_iter.cpp
https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/mylist.c
https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/rbtree.c
https://github.com/iitd-plos/superopt-tests/blob/static-persist/malloc-tests/hash.c

StaticPersist: Compiler Support for PMEM Programming 59

21 struct Node* n = (...) ? &pmem_head : &head2;

22 insert(n, 3);

23 }

Consider the linked-list program shown above, where the insert() function
is used to insert into a linked-list. The pmem head global variable is marked
as a durable root, and so any node that is reachable from it should be allo-
cated in PMEM; on the other hand, head2 and nodes reachable from it should
ideally be allocated in volatile memory. Our program makes three calls to the
insert() funcction at lines 18, 20, and 22. The insert() function has two calls
to the malloc() function at lines 8 and 12. Our allocation-stack abstraction
thus creates six bounded-depth allocation stacks, namely 18-8, 18-12, 20-8,
20-12, 22-8, and 22-12 (a number represents a line number and the "-" repre-
sents a function call). Our points-to analysis identifies that the global variable
pmem head may point-to 18-8, 18-12, 22-8, and 22-12 (but not the remaining
two). Thus, the analysis can be used to appropriately transform the malloc calls
to pmem malloc calls, and a Boolean persistent flag can be used to distinguish
between different call contexts (just like it was done in Fig. 3).

As seen in our results, our analysis is also capable of correctly handling
intrinsic data structures (and other programming patterns where the point-
ers may point to the middle of an object). We show an excerpt from the
linked-list-intrinsic C program:

1 /* List element. */

2 struct list_elem {

3 struct list_elem *prev; /* Previous list element. */

4 struct list_elem *next; /* Next list element. */

5 };

6

7 /* List. */

8 struct list {

9 struct list_elem head; /* List head. */

11 struct list_elem tail; /* List tail. */

12 };

13 #define list_entry(LIST_ELEM, STRUCT, MEMBER) \

14 ((STRUCT *) ((uint8_t *) &(LIST_ELEM)->next \

15 - offsetof (STRUCT, MEMBER.next)))

16 struct node {

17 int data;

18 struct list_elem list_elem;

19 };

20

21 struct list ls;

22 struct list pmem_ls;

23

24 int

25 main(void)

26 {

27 list_init(&ls);

60 S. Bansal

28 int i;

29 for (i = 0; i < 10; i++) {

30 struct node* n = malloc(sizeof(struct node));

31 list_push_front(&ls /* or pmem_ls*/, &n->list_elem);

32 }

33 ...

34 }

In the program excerpt above, the list node that is malloc-ed at line 30 is added
to a list (using list push front) at line 31. Depending on whether the push
happened to the volatile list (ls) or the persistent list (pmem ls), the malloc
should be converted to a volatile (or persistent) malloc respectively. Notice that
the pointers in an intrinsic linked list are to the middle of allocated objects, and
our static analysis is able to identify the precise solutions at call-context depths
3 or higher.

Recursion. Consider the standard binary-search tree algorithm shown in the
code excerpt below:

1 struct Node {

2 int data;

3 struct Node* left, *right;

4 };

5 ...

6 void insert_helper(struct Node* h, struct Node* n)

7 {

8 if (h->data < n->data) {

9 if (!h->left) {

10 h->left = n;

11 } else {

12 insert_helper(h->left, n);

13 }

14 } else {

15 if (!h->right) {

16 h->right = n;

17 } else {

18 insert_helper(h->right, n);

19 }

20 }

21 }

The insert helper function is called recursively at line 12 and line 18. Assum-
ing that insert helper represents the top-level entry function of the pro-
gram, the corresponding call-contexts at depth-2 are 12-12, 12-18, 18-12,
and 18-18. Similarly, the call-contexts at depth-3 are 12-12-12, 12-12-18,
12-18-12, 12-18-18, 18-12-12, 18-12-18, 18-18-12, and 18-18-18. Thus, in
this example, the number of call-contexts grows exponentially with the number
call-context depth. This exponential blow-up is also evident in the increase in
running times of the recursive benchmarks with increasing call-context depth.

StaticPersist: Compiler Support for PMEM Programming 61

Further, because the recursion is potentially infinite, the bounded nature of
the call-context depth forces the static analysis algorithm to eventually over-
approximate the analysis results, causing imprecision.

Recursion in this form is a standard programming pattern, but our current
algorithm is not equipped to handle it in an elegant manner – we simply use the
standard bounded-depth call-context abstraction to deal with recursion currently
which results in sound-but-imprecise results. In future work, we intend to design
and implement more precise abstractions to handle such recursive programming
patterns.

Intrinsic Hash Table. Our analysis currently produces imprecise results on
the intrinsic hash table benchmark, which does not involve recursion. However,
this program is a large program with deep calling depths and the use of func-
tion pointers. Our analysis currently treats function pointers as arbitrary point-
ers, and conservatively causes imprecise transfer function across calls to them.
A more precise analysis should perform a value and type analysis on function
pointers. We leave this for future work.

More Future Explorations. In future work, we intend to generalize this allo-
cation stack approach to automatically identify interesting PCs which need not
necessarily be limited to the calls to the allocation functions like malloc() and
new. Based on our experience, we imagine that such an approach would drasti-
cally improve the precision generality of our approach.

5 Related Work

Programming models and frameworks for persistent memory has been a busy
area of research, especially because of its promise to potentially re-define the
hardware/software stacks vis-a-vis persistence.

Prior work on PMEM-based filesystems [11,22] discuss performant abstrac-
tions for filesystems based on direct-access persistent memory. The correctness
implications of the cache-flush clflush and fence (sfence) instructions, and the
resulting programmability and efficiency trade-offs, become apparent in these
designs. Simple design decisions like the use of redo-logging (in favour of undo-
logging) for PMEM have important performance implications (because it reduces
the number of writes in the common case). The book on programming per-
sistent memory [29] is an exhaustive resource for understanding the low-level
PMEM programming models in C and C++. The basic ideas include (a) over-
loading on the mmap system call interface; (b) having software facilities to convert
from virtual addresses to physical addresses, e.g., through macros; and (c) using
libraries to manage this space of persistent memory in a crash-consistent manner.
These abstractions are complex and cumbersome, and that is perhaps a primary
motivation for research in the space of compiler/runtime-based programmabil-
ity support for PMEM. Log-free concurrent data structures for persistent mem-
ory [9] involve the careful use of lock-free abstractions and hardware-supported

62 S. Bansal

cache-flush and fence instructions to allow the implementation of failure-atomic
data-structures without the need for redo/undo-logs. NVTraverse [16] proposes
a framework to automatically and efficiently transform simple lock-free data-
structures to a durably linearizable persistent data structure. Fragmentation in
persistent memory has received much attention [6,28]: the use of segregated-fit
algorithms for persistent memory could potentially benefit from more research as
the lifetimes of persistent memory objects are usually very different from those
of volatile memory objects.

Research work on higher-level programming models for persistent memory
includes efforts like go-pmem [17] (garbage-collected persistent heap and trans-
action blocks for failure-atomicity). The use of a compiler to automatically do
checkpointing and restore has also been much studied in the past [8,12]. Espresso
[37] discusses PMEM abstractions in the context of the Java programming lan-
guage: the traditional JPA (Java Persistence API) abstractions, based on the
ORM model, is too expensive for PMEM devices. In constrast, PCJ (Persis-
tent Collections for Java) store and manage persistent objects off the heap, i.e.,
the PMEM objects require their own synchronization and garbage collection.
Espresso however proposes a programming framework (Persistent Java Heaps, or
PJH) where the persistent objects can be managed on the heap, using the custom
pnew (persistent new) operator. While the Espresso model is higher-level, it still
has many complexities and leaves scope for several persistence bugs, including
the possibility of dangling pointers from persistent memory to volatile memory.

AutoPersist [31] proposes a higher level PMEM programming abstraction
for Java, compared to Espresso, where the programmer only needs to label the
durable roots in the program (in contrast to having to identify all persistent
objects manually). The runtime then uses a reachability analysis to automati-
cally label all objects reachable from the durable roots, as durable (or persistent).
This reachability analysis needs to be performed at runtime, and requires inter-
position on memory accesses. The paper develops efficient algorithms that do
not cause significant overheads: they rely on the strong type system provided
by Java (e.g., no pointer arithmetic, etc.) and on the fact that the JVM uses
well-defined object headers that can be manipulated to efficiently implement
incremental reachability analysis-based transformations. The paper shows that
the programmer effort required to mark persistent regions is often reduced by
over 10x. The execution and memory overheads of Autopersist are under 10%. In
constrast to the AutoPersist work, our approach is static compile-time (does not
incur any runtime overheads), can work for unmanaged languages like C/C++,
and can handle low-level operations like pointer arithmetic.

There exists rich literature on context-sensitive alias analysis and points-
to analysis [2,5,10,13–15,18,19,21,24,26,27,34,35]. Different approaches have
explored different design points to carefully balance precision, generality, and
scalability—for example, some of these approaches, such as DSA [24], exhibit
higher scalability when type annotations are available. We are interested in a
scalable analysis to conservatively disambiguate persistent memory pointers from
volatile memory pointers for type-unsafe languages, and we present our initial

StaticPersist: Compiler Support for PMEM Programming 63

algorithms and the associated results in this paper. Future work would involve
improving these algorithms to make them more scalable for the common-case
programming patterns.

6 Conclusions and Future Work

Our work suggests that a compile-time static reachability analysis to disam-
biguate persistent memory objects from volatile memory objects is a promising
approach. The programmer is only required to specify the durable roots and
the compiler automatically identifies all persistent objects in the program. Such
an analysis tool needs to be evaluated on both its precision and its scalabil-
ity. Our results demonstrate promise on both metrics, although there remains
scope for future improvements. In future work, we are interested in better sup-
port for recursion, function pointers, and generalization of the allocation-stack
abstraction to include non-allocation PCs as well.

Acknowledgements. This material is based upon work supported by Huawei Tech-
nologies Co. Ltd.

References

1. Akinaga, H., Shima, H.: Resistive random access memory (ReRAM) based on metal
oxides. Proc. IEEE 98(12), 2237–2251 (2010). https://doi.org/10.1109/JPROC.
2010.2070830

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

3. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. ACM SIGPLAN Not. 38(5), 103–114 (2003)

4. Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: leveraging locks for non-
volatile memory consistency. ACM SIGPLAN Not. 49(10), 433–452 (2014)

5. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, PLDI 1990, pp. 296–310. Association for Computing
Machinery, New York (1990). https://doi.org/10.1145/93542.93585

6. Chen, F., Luo, T., Zhang, X.: CAFTL: a content-aware flash translation layer
enhancing the lifespan of flash memory based solid state drives. In: Proceedings of
the 9th USENIX Conference on File and Stroage Technologies, FAST 2011, p. 6.
USENIX Association, USA (2011)

7. Coburn, J., et al.: NV-heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. ACM SIGARCH Comput. Archit. News 39(1),
105–118 (2011)

8. Dahiya, M., Bansal, S.: Automatic verification of intermittent systems. In: VMCAI
2018. LNCS, vol. 10747, pp. 161–182. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73721-8 8

https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1007/11823230_15
https://doi.org/10.1145/93542.93585
https://doi.org/10.1007/978-3-319-73721-8_8
https://doi.org/10.1007/978-3-319-73721-8_8

64 S. Bansal

9. David, T., Dragojević, A., Guerraoui, R., Zablotchi, I.: Log-free concurrent data
structures. In: Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC 2018, pp. 373–385. USENIX Association,
USA (2018)

10. Deutsch, A.: Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI 1994, pp. 230–241. Association for Computing
Machinery, New York (1994). https://doi.org/10.1145/178243.178263

11. Dulloor, S.R., et al.: System software for persistent memory. In: Proceedings of
the Ninth European Conference on Computer Systems, EuroSys 2014. Association
for Computing Machinery, New York (2014). https://doi.org/10.1145/2592798.
2592814

12. Elkhouly, R., Alshboul, M., Hayashi, A., Solihin, Y., Kimura, K.: Compiler-support
for critical data persistence in NVM. ACM Trans. Archit. Code Optim. 16(4), 1–25
(2019). https://doi.org/10.1145/3371236

13. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-
to analysis in the presence of function pointers. SIGPLAN Not. 29(6), 242–256
(1994). https://doi.org/10.1145/773473.178264

14. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. SIGPLAN Not. 35(5), 253–263 (2000). https://doi.org/
10.1145/358438.349332

15. Foster, J.S., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol.
1824, pp. 175–198. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-
540-45099-3 10

16. Friedman, M., Ben-David, N., Wei, Y., Blelloch, G.E., Petrank, E.: NVTraverse: in
NVRAM data structures, the destination is more important than the journey. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, pp. 377–392. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3385412.3386031

17. George, J.S., Verma, M., Venkatasubramanian, R., Subrahmanyam, P.: Go-pmem:
native support for programming persistent memory in go. In: USENIX Annual
Technical Conference (2020)

18. Ghiya, R., Hendren, L.J.: Connection analysis: a practical interprocedural heap
analysis for C. Int. J. Parallel Program. 24(6), 547–578 (1996)

19. Ghiya, R., Hendren, L.J.: Is it a tree, a DAG, or a cyclic graph? A shape analy-
sis for heap-directed pointers in C. In: Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 1996, pp.
1–15. Association for Computing Machinery, New York (1996). https://doi.org/10.
1145/237721.237724

20. Handy, J.: Understanding the intel/micron 3D XPoint memory. In: Proceedings of
the SDC, vol. 68 (2015)

21. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1982, pp. 66–74. Association for Computing Machinery, New York (1982). https://
doi.org/10.1145/582153.582161

22. Kadekodi, R., Lee, S.K., Kashyap, S., Kim, T., Kolli, A., Chidambaram, V.:
SplitFS: reducing software overhead in file systems for persistent memory. In: Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP

https://doi.org/10.1145/178243.178263
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/3371236
https://doi.org/10.1145/773473.178264
https://doi.org/10.1145/358438.349332
https://doi.org/10.1145/358438.349332
https://doi.org/10.1007/978-3-540-45099-3_10
https://doi.org/10.1007/978-3-540-45099-3_10
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/237721.237724
https://doi.org/10.1145/237721.237724
https://doi.org/10.1145/582153.582161
https://doi.org/10.1145/582153.582161

StaticPersist: Compiler Support for PMEM Programming 65

2019, pp. 494–508. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3341301.3359631

23. Kildall, G.A.: Global expression optimization during compilation. Ph.D. thesis,
USA (1972). aAI7228616

24. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. SIGPLAN Not. 42(6), 278–289
(2007). https://doi.org/10.1145/1273442.1250766

25. Lersch, L., Hao, X., Oukid, I., Wang, T., Willhalm, T.: Evaluating persistent mem-
ory range indexes. Proc. VLDB Endow. 13(4), 574–587 (2019). https://doi.org/
10.14778/3372716.3372728

26. Liang, D., Harrold, M.J.: Efficient points-to analysis for whole-program analy-
sis. SIGSOFT Softw. Eng. Notes 24(6), 199–215 (1999). https://doi.org/10.1145/
318774.318943

27. Liang, D., Harrold, M.J.: Efficient computation of parameterized pointer informa-
tion for interprocedural analyses. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 279–298. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47764-
0 16

28. Persistent allocator design - fragmentation. https://pmem.io/2016/02/25/
fragmentation.html

29. Scargall, S.: Programming Persistent Memory: A Comprehensive Guide
for Developers. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
1-4842-4932-1, https://library.oapen.org/bitstream/id/e234e601-6128-4ee4-be45-
32e8f2e417dd/1007325.pdf

30. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In:
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 1–14 (1997)

31. Shull, T., Huang, J., Torrellas, J.: Autopersist: an easy-to-use java nvm framework
based on reachability. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, pp. 316–332.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3314221.3314608

32. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 32–41 (1996)

33. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory.
ACM SIGARCH Comput. Archit. News 39(1), 91–104 (2011)

34. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, PLDI 2004, pp. 131–144.
Association for Computing Machinery, New York (2004). https://doi.org/10.1145/
996841.996859

35. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. SIGPLAN Not. 30(6), 1–12 (1995). https://doi.org/10.1145/223428.207111

36. Wong, H.S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010).
https://doi.org/10.1109/JPROC.2010.2070050

37. Wu, M., et al.: Espresso: Brewing java for more non-volatility with non-volatile
memory. In: Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2018, pp. 70–83. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3173162.3173201

https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/1273442.1250766
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.1145/318774.318943
https://doi.org/10.1145/318774.318943
https://doi.org/10.1007/3-540-47764-0_16
https://doi.org/10.1007/3-540-47764-0_16
https://pmem.io/2016/02/25/fragmentation.html
https://pmem.io/2016/02/25/fragmentation.html
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://library.oapen.org/bitstream/id/e234e601-6128-4ee4-be45-32e8f2e417dd/1007325.pdf
https://library.oapen.org/bitstream/id/e234e601-6128-4ee4-be45-32e8f2e417dd/1007325.pdf
https://doi.org/10.1145/3314221.3314608
https://doi.org/10.1145/3314221.3314608
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/223428.207111
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1145/3173162.3173201

Symbolic Abstract Heaps for Polymorphic
Information-Flow Guard Inference

Nicolas Berthier1,2(B) and Narges Khakpour3,4(B)

1 OCamlPro, Paris, France
m@nberth.space

2 University of Liverpool, Liverpool, UK
3 Newcastle University, Newcastle upon Tyne, UK

narges.khakpour@ncl.ac.uk
4 Linnæus University, Växjö, Sweden

Abstract. In the realm of sound object-oriented program analyses
for information-flow control, very few approaches adopt flow-sensitive
abstractions of the heap that enable a precise modeling of implicit flows.
To tackle this challenge, we advance a new symbolic abstraction app-
roach for modeling the heap in Java-like programs. We use a store-less
representation that is parameterized with a family of relations among ref-
erences to offer various levels of precision based on user preferences. This
enables us to automatically infer polymorphic information-flow guards
for methods via a co-reachability analysis of a symbolic finite-state sys-
tem. We instantiate the heap abstraction with three different families
of relations. We prove the soundness of our approach and compare the
precision and scalability obtained with each instantiated heap domain
by using the IFSpec benchmarks and real-life applications.

1 Introduction

Information Flow Control (IFC) mechanisms offer an effective approach to pre-
vent unwanted disclosure of confidential information, or illegal tampering of data.
Their task is to ensure confidentiality and/or integrity, which are usually for-
malized as noninterference baseline properties [1]. Confidentiality demands that
high-sensitive (secret) inputs do not influence low-sensitive (public) outputs.
This means that any change in the value of a secret input must not induce a
change in any public output. In other words, there must be no information flow
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 66–90, 2023.
https://doi.org/10.1007/978-3-031-24950-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_4

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 67

from any secret to any public output. In software programs, information may
flow explicitly via direct assignments, e.g., from y to x in x = y;, or implicitly
when the execution of statements is guarded by a condition, e.g., from c to x in
if (c > 0) x = 42;.

Many static analysis approaches to ensure noninterference have been
advanced, that rely on type-systems [2–6], self-composition [7–9], theorem-
proving [10], and abstract interpretation [11–14]. Flow-insensitive static anal-
yses (with “flow” as in “control-flow”) deal with a single set of facts that is valid
for all possible executions of the whole program, whereas flow-sensitive analyses
provide one set of facts for each statement. In general, flow-sensitivity increases
precision, yet comes with an additional computational cost. Heap abstractions
as computed by alias or points-to analyses obey the same principle [15]: a flow-
insensitive heap analysis provides a single, finite representation of the conceptu-
ally infinite set of memory locations manipulated by all entire executions of the
program, while a flow-sensitive variant gives an abstraction of the heap at each
statement. Note that a flow-sensitive analysis for object-oriented programs may
rely on a flow-insensitive heap abstraction; this means that the analysis must
remain imprecise when dealing with heap-allocated structures.

We consider a Java-style low-level object-oriented language whose syntax is
close to Jimple’s [16], and design a static IFC analysis that automatically decides
whether a program P implemented in this language is secure, i.e., P satisfies
a desired noninterference property. Several approaches have been proposed to
verify such properties for Java-style languages [4,5,10,14,17–21]. To the best of
our knowledge, however, none of the sound and scalable solutions rely on a flow-
sensitive heap abstraction. Our analysis is therefore the first of its kind, as it
is sound, shows potential for scalability since it supports modularity, and both:
(i) captures implicit flows; and (ii) relies on a flow-sensitive heap abstraction.
Achieving these goals in combination is challenging because the analysis must
track the information flows that result from manipulations of object fields and
references performed in the program branches that are taken as well as in any
program branch that is not taken: it must therefore reflect about the states of
the heap in both taken and non-taken branches simultaneously.

To do so, we use a security typing environment that associates each mem-
ory location manipulated by the program P with a security level. In the case
of confidentiality, such a level indicates whether the memory location may hold
high-sensitive (secret) data, and P is secure if no value from a high-sensitive
source flows to a sink statement. To deal with all information flows in the heap,
we introduce the notion of symbolic abstract heap domains, that combine a flow-
sensitive security typing environment for every object reachable from a given set
of reference variables R, with a flow-sensitive representation of a set of heap-
related relations pertaining to R (e.g., aliasing). The domains are parametric in
a family of heap-related relations, which defines the relations that are captured
flow-sensitively by the domain. This allows us to define multiple heap abstrac-
tions, each one with its level of precision. Abstract heaps in such a domain are
predicates in a propositional logic, that provide a store-less model of the heap

68 N. Berthier and N. Khakpour

where irrelevant details related to the behaviors of the memory allocator and
garbage collection are safely abstracted away. The semantics of reference and
object mutations are specified using predicate transformers. These can be used
to encode the security semantics of any method m of the program by means of
a symbolic transition system Sm, where the desired noninterference property is
reduced to a safety property ϕm [22].

Artifacts that we can infer for a method m include an information-flow guard,
that is a predicate expressed on propositions about security levels and heap-
related relations pertaining to m’s formal arguments. This guard describes (suf-
ficient) circumstances upon which m is secure, and it is polymorphic since it is
valid in any calling context. More elaborate artifacts that additionally describe
the effects of m on the heap enable sound inter-procedural analyses. In the
present paper, however, we focus on our approach for abstracting the heap and
concentrate our exposition on the inference of guards; we leave the inference of
polymorphic effects for a future publication. We compute the guard for a method
m via a co-reachability analysis of the system Sm w.r.t. its safety property ϕm.
A co-reachability analysis finds all states from which a given set of states may be
reached, and is typically solved using a fixed-point [23,24]. We have implemented
the guard inference algorithm in a prototype tool called Guardies, available at
http://nberth.space/symmaries, that is equipped with several instantiations of
symbolic abstract heap domains using various families of heap-related relations.

Summary of Contributions

– We introduce a novel notion of symbolic abstract heap domains that uses
a set of relations to represent the heap, and is the first flow-sensitive heap
model used for information-flow control analysis. We define three different
instances of this domain (deep, shal, dumb), each with a different set of
relations (Sect. 3), and show that deep constitutes a secure heap abstraction
(Sect. 4);

– We symbolically specify the security semantics of our input language to
capture explicit and implicit flows via the heap, and infer polymorphic
information-flow guards via a co-reachability analysis (Sect. 5). We prove
that our analysis under a secure heap abstraction guarantees termination-
insensitive noninterference [3];

– We empirically study the respective impacts of our three heap domains, in
terms of precision on IFSpec benchmarks [25], and in terms of scalability
with 60 real-life ABM applications [26] (Sect. 6). Our experiments show that
our approach offers the best precision, and the heap model precision has an
inverse relationship with scalability. The heap domains dumb and deep, that
are resp. the least- and most-precise heap model, improve the state-of-the-art
precision by 2.4% and 4.2% respectively;

– While the existing approaches use an ad hoc (flow-insensitive) heap model,
Guardies offers six different heap models, thereby allowing the user to choose
a suitable heap model based on her preferences for precision and scalability.

http://nberth.space/symmaries

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 69

2 Preliminaries

S ::= [lbl :] a;S | √
a ::= v = e | v = r.fp | r.fp = e

| r = r | r = r.fr | r.fr = r
| r = new c | r = null | r.m(w)
| goto lbl | if (e) goto lbl
| outputl(v) | outputl(r)

e ::= p | v | � e | e ⊕ e | r == r

Input Programs. We consider a Java-
style low-level language where the code of
a method is a non-empty finite semicolon-
separated sequence of statements built
according to S in the grammar on
the next page, where square brackets
denote optional constructs.

√
is an empty

sequence of statements, and lbl ∈ Labels
is a label that uniquely identifies a state-
ment. c is a class name, fp (resp. fr) is a primitive (resp. reference) field name,
p is a scalar constant, and e is an expression. v (resp. r) depicts any local prim-
itive (resp. reference) variable or formal argument used of the method in S.
outputl(v) sends data v over a channel with the security label l. The label l
belongs to a two-level security domain which is formalized as a lattice 〈L,�,�〉,
where L = {⊥,�} is the set of security levels, ⊥ is the low-sensitive label, �
is the high-sensitive label, � is a partial order defined over L with ⊥ � �, and
� gives the least-upper-bound1. Information may become public via sink state-
ments, that we denote output⊥(x). Therefore, output⊥(v) is a sink for the value
of v, and output⊥(r) is a sink for every object that is reachable in the heap via
the reference r.

Symbolic Control-Flow Graphs—SCFGs. The transition systems that we
use to encode the security semantics are traditional labeled transition systems
augmented with sets of state and input variables, respectively denoted X and I.
The values for input variables can be seen as coming from the environment of
the system.

Definition 1 (Symbolic Control-flow Graph). A symbolic control-flow
graph is a tuple S = 〈Λ,X, I,Δ, �0,X0〉 where: Λ is a finite non-empty set
of locations; X and I respectively denote state and input variables; Δ is a
set of transitions labeled with a guard that is a predicate on state or input
variables, and a possibly empty set of assignments to state variables, noted
[v0 := e0, . . . , vn := en], or ∅ if empty; �0 ∈ Λ is the initial location; and X0 is
a predicate that describes the entire set of possible initial valuations for all the
state variables.

Predicates and right-hand-side expressions in assignments are built using tra-
ditional logical connectives (i.e., ¬, ∨, ∧ and ⇒), along with a ternary con-
ditional construct “ if · then · else ·” with an obvious meaning. The symbolic
variables we make use of typically take their value in the security domain L,

1 As is traditional, we will present our work by focusing on a standard two-level
lattice L

def
= {⊥, �}; minor adaptations would be necessary to support more complex

lattices.

70 N. Berthier and N. Khakpour

or the set of Booleans B
def= {ff, tt}. We use a merge operation u� to merge

variable assignments. This operation is obtained as a union where multiple
expressions assigned to a variable v are combined using some connective �v.
The latter depends on the semantics of each variable: as we only use vari-
ables to hold over-approximations in our encoding, we use the disjunction ∨
for Booleans, and the least-upper-bound � for security levels. For instance,
{a := tt, b := ff} u� {b := tt} = {a := tt, b := ff ∨ tt}. S induces a model
�S� that is a finite-state automaton whose state-space QS is the Cartesian prod-
uct of the set of locations Λ and the set of all possible valuations for the state
variables, i.e., Val (X). �S� takes one transition whenever it receives a valuation
for all the input variables, i.e., an element in Val (I). In any location, there is
always exactly one transition whose guard is satisfied by the valuations for all the
variables. When this transition is taken, its assignments are applied to update
the state variables. An invariant ϕ for the SCFG S is a mapping from locations
to predicates on state variables. S satisfies ϕ iff every state q with location �
that is reachable by S is such that q |= ϕ(�).

3 Symbolic Abstract Heap Domains

We first detail our design of heap abstractions that are suitable for the symbolic
encoding of security semantics. In this approach, one predicate is used to model
a set of symbolic heaps. Each symbolic heap represents a parameterizable set of
heap-related relations between the portions of the heap that are reachable via
a given set of references R, along with a security typing environment for every
reachable portion of heap. Such predicates provide storeless representations since
object locations are not explicitly represented. Predicate transformers describe
the effects of heap and reference variable mutations on sets of symbolic heaps.

3.1 Families of Heap-Related Relations

Our definition of symbolic abstract heap domains is parameterized by a family
of heap-related relations. A typical example of a heap-related relation is the
aliasing relation, that we denote with the symbol ∼, and which is defined as
an equivalence relation where r∼s holds iff r and s point to the same object.
We define a family of heap-related relations as a pair hd

def= 〈RSen,RInsen〉 where
RSen is a set of flow-sensitive relations, and RInsen are constant flow-insensitive
relations (or facts). A relation is formally specified as a set of Boolean variables
that each indicates whether two references taken from R are in the relation or
not (i.e., we use predicate abstraction where a Boolean variable specifies whether
a relation between two references holds). For instance, we need four propositions
(therefore, as many Boolean variables) to represent the relation � defined over
R = {a, b}, i.e., a � a, a � b, b � a and b � b. The proposition x � y evaluates
to true if x is in the relation � with y. Further, a relation �= {(a, a), (b, a)} is
formalized as a� a ∧ ¬a� b ∧ b� a ∧ ¬b� b.

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 71

The propositions about flow-sensitive relations may be updated by the pro-
gram statements, while the propositions about constant flow-insensitive relations
are straightforwardly substituted with tt or ff, and serve the sole purpose of
improving the precision of the predicate transformers that manipulate symbolic
abstract heaps. For instance, in a heap domain that does not handle the aliasing
relation flow-sensitively, two references of incompatible types can never alias each
other. We formalize this with the pre-analysis function CanRelate, that returns
three-valued sound facts about the relations in R = RInsen ∪ RSen w.r.t. the
set of reference variables R. Given any relation �∈ R and a pair of references
(r, s) ∈ R2, CanRelate(r � s) returns yes if r � s always holds, no if it can-
not hold, or maybe otherwise. In its most trivial form, this pre-analysis function
operates on a purely lexical level, e.g., by returning yes if queried for r � r with
� a reflexive relation, maybe otherwise. It may additionally involve an analysis
of the class hierarchy and take the declared type of the reference variables into
account to give more precise facts. Note that CanRelate helps us simplify the
heap formulae by reducing the number of propositions used to represent heaps.
For instance, if � is a reflexive relation in our previous example, we don’t need
to consider the propositions a � a and b � b, and use the constant tt instead. We
leave further specifications of the pre-analysis open for the sake of modularity.

We need to differentiate between “flow-sensitive heaps” and “flow-sensitive
heap relations”. The first case means that the heap changes during the execu-
tion while the latter states that the relation used to specify the heap structure
changes during the execution (i.e., RSen). Therefore, a flow-sensitive symbolic
heap abstraction models at least one heap relation flow-sensitively.

3.2 Symbolic Abstract Heap Domain

Formally, a symbolic abstract heap domain for the family of heap-related relations
hd is defined as a pair HeapDomhd

def= 〈Hhd, Thd〉 where Hhd is the set of symbolic
abstract heaps, and Thd is a set of predicate transformers to manipulate the
abstract heaps. A symbolic abstract heap from this domain is a predicate h ∈ Hhd

defined on two sets of state variables V−→
L and VR. The set V−→

L associates a security
level variable −→rh with each reference r ∈ R, that represents an upper bound on
the security levels of any object that is reachable via r: these variables constitute
the security typing environment for the abstract heap h. In turn, the set VR
consists of Boolean variables that describe over-approximations of flow-sensitive
heap-related relations between the references in R, i.e., a variable r �h s ∈ VR
holds whenever (r, s) may be in the heap-related relation �:

VR
def=

{
r�h s

∣
∣ (r, s) ∈ R2,�∈ RSen,CanRelate(r � s) = maybe

}
.

Further, Vff and Vtt are sets of constants that capture all relations that never
hold and always hold according to the function CanRelate, respectively. (For the
sake of readability, we will omit the exponent h of security-level variables when
a single abstract heap h is involved, i.e.,−→rh will be denoted −→r .)

72 N. Berthier and N. Khakpour

Table 1. Denotations for symbolic abstract heaps
Two symbolic abstract heaps: h, h′ ∈ Hhd

Set of variables encoding a heap-related relation �∈ RSen: VR
Set of constants encoding non-membership facts, for any relation �∈ RSen ∪ RInsen: Vff

Set of constants encoding membership facts, for any relation �∈ RSen ∪ RInsen: Vtt

Set of variables encoding the security levels: V−→
L

Variables & Predicate Transformers (TR)
Security level variable: −→rh (or −→r) Reference assignment: �as�

Relation variable: r�h s Mutation and allocation: �mu, ↑ l�

Initialization: �null R′� Bulk upgrade: BulkUpgrh←h′

with as ∈ {r = s, r = s.fr, r = null}, mu ∈ {r.fp �,r.fr = s, r = new}, (s, r) ∈ R2,
R′ ⊆ R, and any security level expression l.

1

2

3

4

5

6

7

(a) Class definitions and method .

Statement Loc Heap Transformer
3
4
5
6

R

(b) Heap Transformers and Variables

Fig. 1. Method that manipulates references, with a representation of heap transform-
ers, heap-related relationships and variables.

Vff
def=

{
r�h s

∣
∣ (r, s) ∈ R2,� ∈ RSen∪RInsen,CanRelate(r � s) = no

}

Vtt
def=

{
r�h s

∣
∣
∣
∣ (r, s) ∈ R2,

(�∈ RSen,CanRelate(r � s) = yes)∨
(�∈ RInsen,CanRelate(r � s) �= no)

}
.

We summarize in Table 1 the main denotations that we use to represent and
manipulate symbolic abstract heaps. The leftmost column shows the variables
that represent security levels and heap-related relations, along with the operator
�null R′�. The right-hand side column lists the set of predicate transformers that
can be applied on a symbolic abstract heap to alter its representation. The two
first transformers in the column operate in accordance with a given reference
assignment (as) or mutation (mu). The expression l given to the latter gives
the security level of the information that flows to mutated objects. We give in
Fig. 2 the definitions of all transformers. These definitions make use of functions
specialized for each family of heap-related relations, detailed below. �null R′�
builds a predicate that constrains variables in V−→

L and VR to account for the
fact that a given set of references R′ ⊆ R is null—this notably entails that
every object reachable via R′ is low-sensitive. The bulk upgrade is a transformer
used to capture implicit flows through the heap by joining two distinct heap
abstractions h and h′ that belong to the same domain. More specifically, this
transformer assumes that −→rh′ � −→rh for all r ∈ R, and: (i) copies the heap-

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 73

r = null
def= UpdHpRel(r =) u� [r := ⊥]

r = s
def= UpdHpRel(r = s) u� [r := s]

r = s.fr
def= UpdHpRel(r = s.fr)

u� [r := s]

r = new, l
def= UpdHpRel(r =) u� [r := l]

r.fp , l
def= UpdHpLev(r, l)

r.fr = s, l
def= UpdHpRel(r.fr = s) u� UpdHpLev(r, l)

null R′ def= NullRefs R ∧
∧

r∈R′ r = ⊥

BulkUpgr def= CopyRels u� RstrLev

with CopyRels def=
u

s

r s := r s and NullRefs R
def=

s V , r,s R′=∅

r s = ff
)

Fig. 2. Definitions of generic transformers TR for any symbolic abstract heap domain
HeapDomhd. Note h and h′ belong to the same domain, i.e.,(h, h′) ∈ HR

2, and R′ ⊆ R.
See Fig. 3 for an example definition of UpdHpRel(·).

related relations from h′ to h; and (ii) upgrades the typing environment of h via
a pairwise join with the corresponding levels in h′.

Example 1. Consider method m given in Fig. 1(a). Figure 1(b) shows its refer-
ences R, heap-related relations R, references security levels V−→

L and variables
VR to specify the heap structure using relations RSen. Further, the table in this
Figure shows the heap transformers associated with each statement to update
the heap relations and reference security levels. As an example transformer, con-
sider �r = new, ↑ pc� that corresponds to the statement r = new B;. With a
heap domain that captures the aliasing relation flow-sensitively, the resulting
set of assignments includes (at least)

[
b∼hr := ff, −→r := l

]
where l is a security

level expression s.t l � pc.

3.3 Instances of Symbolic Abstract Heap Domains

Table 2. Variables and constants involved in represent-
ing h when analyzing m, for each domain. h exponents
have been omitted for readability.

deep shal dumb

V−→
L

{−→a,
−→
b, −→r}

VR{b∼r, b
.∗
↪→a, r

.∗
↪→a} {b∼r} ∅

Vff {a∼b, a∼r, a
.∗
↪→a, a

.∗
↪→b, a

.∗
↪→r, b

.∗
↪→b, b

.∗
↪→r, r

.∗
↪→b, r

.∗
↪→r}

Vtt {a∼a, b∼b, r∼r} {a∼a, b∼b, r∼r, {a∼a, b∼b, r∼r,

b
.∗
↪→a, r

.∗
↪→a} b∼r, b

.∗
↪→a, r

.∗
↪→a}

We present three
instances of the domain
introduced above. We first
define the transitive “field-
aliasing” relation, denoted
with the symbol

.∗
↪→,

which states for any
given pair of references r

and s, r
.∗
↪→s holds whenever a reference field of an object reachable via r is an

alias of s. This relation allows heap domains to capture some useful facts about

74 N. Berthier and N. Khakpour

UpdHpRel(r =) def=
u

d∈R

d∼r := ff, r
.∗

d := ff, d
.∗

r := ff

UpdHpRel(r = s) def=
u⊔

d∈R

[
d∼r := d∼s, r

.∗
d := s

.∗
d, d

.∗
r := d

.∗
s
]

UpdHpRel(r = s.fr)
def=

u⊔
d∈R

[
d∼r := s

.∗
d, r

.∗
d := s

.∗
d, d

.∗
r :=, d∼s ∨ d

.∗
s
]

UpdHpRel(r.fr = s) def=
u⊔

a
.∗

b∈VR

[
a

.∗
b := a

.∗
b ∨

(
(a∼r ∨ a

.∗
r) ∧ (b∼s ∨ s

.∗
b)

)]

UpdHpLev(r, l) def=
u⊔

s∈R

[
s := s � if s∼r ∨ s

.∗
r then l else ⊥

]

RstrLevh h′
def=

u

(r,s) R2
sh := sh � if s∼h′

r ∨ s
.∗ h′

r then rh′
else ⊥

Fig. 3. Specialized functions for updating security level and relation variables for each
domain defined with hd ∈ {deep, shal, dumb}; h exponents have been omitted when a
single abstract heap is involved.

the structure of the graph of objects when it comes to maintaining object types
such as security levels.

We now assume a sound pre-analysis function CanRelate over {∼,
.∗
↪→}, and

use the above relations to define the three families of heap-related relations based
on which we shall instantiate our symbolic abstract heap domains:

– HeapDomdeep, with deep
def= 〈{∼,

.∗
↪→}, ∅〉, uses symbolic variables to represent

over-approximations of aliasing and field-aliasing relations ;
– HeapDomshal, with shal

def= 〈{∼}, { .∗
↪→}〉, only maintains a flow-sensitive over-

approximation of the aliasing relation, yet makes use of field-aliasing facts to
improve the precision of transformers;

– HeapDomdumb, with dumb
def= 〈∅, {∼,

.∗
↪→}〉, does not represent any flow-

sensitive heap-related relation, yet makes use of flow-insensitive (field-)
aliasing relations.

Example 2. Consider method m given in Fig. 1(a), and assume a class hier-
archy pre-analysis. We instantiate the three symbolic abstract heap domains
as HeapDomhd and define an abstract heap h ∈ Hhd, for each hd ∈
{deep, shal, dumb}. Table 2 shows the sets of variables used by each one of these
domains to represent h (V−→

L and VR), along with the symbols that denote con-
stants involved in capturing relations flow-insensitively (Vff and Vtt).

Regarding transformers, we give in Fig. 3 the specialized functions used by
their definitions in Fig. 2. The domains defined with hd ∈ {deep, shal, dumb}
share these definitions. UpdHpRel(r = _) updates relation variables in h to reflect
the erasing of a given reference r to either nil or a fresh reference by clearing
variables from VR. In turn, UpdHpRel(r = s) updates the variables in VR to
encode the copy of a reference s to r. UpdHpRel(r = s.fr) makes any reference d

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 75

that may be an alias of one of s’s field a potential alias of r (when a corresponding
variable d∼hr belongs to VR), and updates any variable that represents the

.∗
↪→

relation to reflect that s becomes a field-alias of r. UpdHpRel(r.fr = s) makes
s a field-alias of r while maintaining transitivity of

.∗
↪→. Storing a reference may

only add elements in relation
.∗
↪→, hence the disjunction in every assignment

defined by this operation. Observe that, as can be seen in the definition of
UpdHpRel(r = s.fr) for hd = shal, instead of simply setting d∼r := tt for every
potential alias d of r (i.e., blindly assuming that no information is known about
the potential aliasing relation), a constant s

.∗
↪→d ∈ Vtt ∪ Vff is used instead to

further restrict the new potential aliases to the cases that have not been ruled
out by the pre-analysis. The dumb domain involves some pre-established facts
via a similar mechanism. UpdHpLev(r, l) takes a reference r and a security level
expression l, and upgrades the security level associated with the objects reachable
via r as well as that of every reference s that may transitively field-alias r (i.e.,
s

.∗
↪→r). RstrLevh←h′ upgrades the typing environment of h according to that of h′.

4 Secure Heap Abstraction

To specify the semantics of heap operations performed by a program, we define
a concrete heap domain that maintains the value of primitive fields in addition
to the precise heap-related relations. A concrete heap domain is defined similarly
to that of abstract heap domains introduced in Sect. 3, with the difference that
the heap maintains the primitive fields instead of security levels. The concrete

heap domain is defined as HeapDomcrt = 〈Hcrt, Tcrt〉 where crt
def= 〈{∼,

.f
↪→}, ∅〉,

the relation ∼ is an ordinary reference aliasing relation, and
.f
↪→ is a field-aliasing

relation, i.e., r
.f
↪→s holds iff the field f of the object referenced by r is an alias of

s. See [27] for the details of the heap transformers for the concrete heap domain.
The notation �op�� shows the predicate transformer that corresponds to the
operation op on a concrete heap � ∈ Hcrt.

Let h be a heap from an arbitrary heap domain and R′ ⊆ R be a set of
references. The reference graph over R′ induced by h is a labeled digraph Gh

R′
def=

(Nh, Eh) where Nh = R′ is the set of nodes, and the edges Eh show the heap-
related relations between them, i.e.,Eh = {(r,�, r′) | h |= r � r′, r ∈ R′ ∨ r′ ∈
R′}. Let h be an abstract heap and Gh

⊥ be a sub-graph of Gh
R containing the

low-sensitive references Rh
⊥ = {r | h |= (−→r = ⊥)}. We say two concrete heaps

are indistinguishable, if heap-related relations and primitive fields of their low-
sensitive references are identical, i.e., (i) the reference graphs corresponding to
their low-sensitive portions of the heaps are isomorphic, and (ii) the valuation
of primitive fields of their low-sensitive references are identical.

Definition 2 (Indistinguishable Heaps). We say two concrete heaps � and
�

′ from Hcrt, are indistinguishable w.r.t. an abstract heap h, noted by � =h �
′, iff

(i) G�

⊥ and G�
′

⊥ are isomorphic, denoted by G�

⊥ ∼= G�
′

⊥ , and (ii) ∀x. � |= r.fp =
x ⇔ �

′ |= r.fp = x, for all r ∈ Rh
⊥ where fp is a primitive field.

76 N. Berthier and N. Khakpour

Since we use an abstract heap domain to model and analyze information
flow via heap, we should ensure that the analysis under abstract heap domains
guarantees noninterference. To this end, we should show that the heap indistin-
guishability relation is preserved by the heap transformers. We define the concept
of secure heap abstraction, which states that two indistinguishable heaps should
remain indistinguishable after applying a heap operation and its corresponding
transformer at the abstract heap domain level:

Definition 3 (Secure Heap Abstraction). The concrete heap domain
HeapDomcrt is secure w.r.t. an abstract heap domain HeapDomhd, if and only if
it preserves the heap indistinguishability relation, i.e., given any concrete heaps
(�1, �2) ∈ Hcrt × Hcrt, and an abstract heap h ∈ Hhd s.t�1 =h �2, it holds that:

(a) for all pair (as, as ′) of reference assignment statements and their corre-
sponding operations on abstract heaps where as ∈ {⟪r = s⟫, ⟪r = s.fr⟫, ⟪r =
null⟫}, �

′
1 =h′ �

′
2 holds where �

′
i = �as��i

, i ∈ {1, 2}, and h′ = �as ′�;
(m) for all pair (mu,mu ′) of mutation statements and their corresponding oper-

ations on heaps where mu ∈ {⟪r.fp = e⟫, ⟪r.fr = s⟫, ⟪r = new c⟫}, for all
l ∈ L where −→s � l if mu is ⟪r.fr = s⟫, and e � l if mu is ⟪r.fp = e⟫, it
holds that �

′
1 =h′ �

′
2 where �

′
i = �mu��i

, i ∈ {1, 2}, and h′ = �mu ′, ↑ l�;

Theorem 1. The concrete heap domain HeapDomcrt is secure w.r.t. the deep
abstract heap domain HeapDomdeep according to Definition 3.

Proof. See [27].

1

2

3

4

5

6

(a) Method .

ϕf(�4)
def
= pc � l = ⊥

Grdf = pc � v = ⊥
(b) Invariant ϕf and guard
Grdf.

�1

�2�3

�0

�4

�5

tt, [l := pc � if Υ then l else ⊥]

¬Υ ∧ ¬ω,Brch

Υ ∧ ¬ω,∅

¬Υ ∧ ω,Brch

Υ ∧ ω,∅

tt,
[l := pc � if Υ then l else ⊥]

¬Υ ∧ hr = Pρ1 , Start-ua

Υ ∧ hr = Pρ1 ,End-uahr �= Pρ1 ,∅

tt, ∅

Brch =

[
pc := pc � v
hr := if v � pc then hr else Pρ1

]

Start-ua =[Υ := tt]
End-ua =[Υ := ff, pc := ⊥, hr := P⊥]

X =
{
v, l, pc, Υ, hr

}
I = {ω} hr ∈ {P⊥, Pρ1}

X0 = l = ⊥ ∧ ¬Υ ∧ hr = P⊥
)

(c) SCFG S.

Fig. 4. Example method with SCFG, invariant, and resulting guard.

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 77

5 Inferring Polymorphic Information-Flow Guards

Let us now put the heap abstraction aside, and focus on our approach for com-
puting guards and capturing implicit flows. We start by considering the method
f given in Fig. 4(a), that does not involve any reference variable. f implements
a canonical pattern used to illustrate implicit flows: if its argument v is high-
sensitive, then the information output on line 5 is also high-sensitive via an
implicit flow induced by the assignment guarded by the condition on line 3.
For this example, our requirement demands that executing the sink statement
on line 5 does not leak confidential information. Therefore, the guard that we
want to compute for f is a sufficient condition that allow us to decide whether
any call to the method satisfies the confidentiality requirement based on a set
of program facts available whatever the calling context. For f, the latter set of
facts includes, for instance, the security level of the effective argument for v, or
whether the call happens in a high context (i.e., if it is guarded by a condition
on high-sensitive information). To achieve this, we build the SCFG that specifies
the security semantics of any method in such a way that the set of all its poten-
tial initial states encodes all the possible calling contexts for the method. For
instance, when encoding f the variable v assigned to the argument v is left unini-
tialized (contrary to the level l of local variable l). Another state variable that is
left uninitialized is pc, as it denotes the security level of the calling context. We
then associate a safety property ϕ that expresses constraints on security levels
at states of the SCFG, and use a co-reachability analysis to find the set of all
initial states from which no run ever leads to a violation of ϕ. We graphically
represent in Fig. 4(c) the SCFG S obtained for f. The associated invariant is
given in Fig. 4(b), along with the inferred guard.

5.1 Security Semantics

Our encoding of security semantics captures implicit flows (i.e., flows induced
via the program control-flow structure) by constructing SCFGs that feature two
execution modes, encoded with the help of a state variable Υ : (i) in nominal mode
(Υ = ff), updates to security levels reflect explicit information flows, and (ii) in
upgrade analysis mode (Υ = tt), the information flow from the high execution
context pc to every variable updated in every possible execution path within
the Control Dependence Regions (CDRs) of the current context are captured.
A CDR ρ is a non-empty set of CFG (Control-Flow Graph) nodes that gathers
every instruction that is control-dependent on a given branching statement. This
use of CDRs is inspired by previous works [4,5,21,28]2. The code in Fig. 4(a)

2 The classical algorithm of Ball [29] for computing CDRs works by identifying as
a junction each dominating node in the post-dominator tree of the CFG. Such a
junction j is reached by every execution path that starts from any node in the set
ρ of nodes that j post-dominates. Further, one can always find a unique branching
node that precedes nodes in ρ and belongs to every path from the source of the CFG
to any node in ρ, and ρ is therefore a CDR.

78 N. Berthier and N. Khakpour

where:
p

def
= ⊥ �e

def
= e e ⊕ x

def
= e � x r == s

def
= r � s

l�Υ
def
= (if Υ then ⊥ else l) � pc x :=Υ l

def
= x := (if Υ then x else l) � pc

Junc (S, ψ)
def
= junc−1

(S) �= ∅ ∧ ψ = njb Brch (ρ)
def
=

[
hr := Pρ, pc := �, h

′ := h
]

Start-ua
def
= Υ := tt, h′ := h, h := h

′
End-ua

def
= [hr := P , Υ := ff, pc :=]

u
BulkUpgrh h

target

goto

target njb njb

Ta

¬Junc (�)

njb

¬Junc (�) � = (a; S goto

Junc (�) � = (S, njb) J = junc−1(S) PJ = {Pρ}ρ∈J

inducing

Junc (T = Effect Grd

¬Junc (�) ¬Junc (�) � = (outputl(x)

Fig. 5. Translation rules and safety properties for encoding the security semantics.

features a single conditional branching statement on line 3, which induces the
CDR ρ1. The junction of ρ1 is the statement output⊥(l). Two execution branches
are possible within ρ1: one branch executes no statement, whereas the other
performs the assignment l = 42 on line 4. This means that the execution of
the latter is dependent on the condition on line 3. In the SCFG S, the upgrade
analysis of ρ1 starts whenever the model reaches location �3, which represents
the junction of ρ1, if the branching statement that induces ρ1 (encoded by �1)
was subject to a high condition. We use a state variable hr to record the CDR
currently subject to a high-condition. We make use of the input variable ω to
abstract away the actual branch condition in nominal mode (since our security
semantics abstracts away the values of program variables). This is for instance
the case on location �1 in S when Υ = ff. The variable ω is also used to model
upgrade analyses for multiple possible program paths which can be taken non-
deterministically. In S, this is the case on location �1 as well, when Υ = tt.

We give in Fig. 5 the set of translation rules that specify the security seman-
tics of a program in terms of an SCFG. Each location of the resulting SCFG
corresponds to a semantic location, that is defined as a pair (S, ψ) where S corre-
sponds to a node in its CFG, and ψ is a behavior mode that belongs to {njb, nb}
(for nominal-or-junction and nominal behaviors, respectively). The junction step
ψ is used in our encoding to distinguish the nominal mode from the upgrade

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 79

analysis stage of junctions. Essentially, a semantic location that corresponds to
a statement a that is the junction of a CDR behaves as a junction when ψ = njb,
and according to a when ψ = nb. Thus, statements that are not junctions never
give rise to semantic locations where ψ = nb. To clarify the translation rules, we
define the helper predicate Junc(S, ψ) in Fig. 5 (where junc−1 is the retraction
of junc: junc−1(S) gives the set of CDRs of which S is the junction), that holds
iff a semantic location (S, ψ) represents an actual junction. We use target(l) to
denote the statement identified by a label l .

The Assign rule encodes the security semantics of assignments. We use e to
denote the security level of an expression e. from upgrade analyses in the rules.
In nominal mode, �l�Υ encodes the least upper-bound between l and the context
level pc, and x :=Υ l models a strong update of the security level assigned to x
with �l�Υ . In upgrade analysis mode, however, �l�Υ is equal to the context level
(i.e., �), and x :=Υ l encodes a weak update of x with pc. Then, a statement
v = r.fp that loads a primitive field translates into a transition that updates
v with: the upper-bound between pc, r, and the level of any object potentially
pointed to by r as maintained by the heap abstraction h (i.e.,−→r) when in nominal
mode; the upper-bound between pc and v otherwise.Branch and Junc encode
the alternation of nominal and upgrade analyses, and do so with the help of a
placeholder abstract heap h′ that belongs to the same abstract heap domain as
h, and is also represented with state variables. According to Branch, when a
high branch is reached, the transformer Brch (ρ): (i) sets the state variable hr
used to record the CDR currently subject to a high-condition to Pρ; (ii) updates
pc; and (iii) stores the current heap abstraction to h′ by copying the values of all
variables V−→

L (resp. VR) to V−→
L (resp. VR). The join of abstract heaps that ends

upgrade analyses is performed using a bulk upgrade. In effect, BulkUpgrh←h′ :
(i) upgrades the security typing environment for referenced portions of the heap
according to the result of the upgrade analysis in h, by joining every security level
from h with the corresponding level in h′; and (ii) restores every heap-related
relation as saved in h′ when entering the upgrade analysis mode. Call encodes
the security semantics of invocation of a method m based on its polymorphic
information-flow summary, which is a contract that consists of:

– an information-flow guard Grdm that specifies the invocation conditions
under which the method call is secure, i.e., there is no illegal information
flow in the method. This guard is described as constraints on the security
types and heap structure of the method’s formal arguments;

– an effect Effectm about its worst potential side-effects on security levels and
heap structure, that is in principle a transformer describing how the heap
structure and security labels may be updated by the method.

We use the guard to enforce the desired security properties upon an invocation
of m: this boils down to ensure that Inv. (ϕ-Call) holds for the location � in
which m is called. The effect is used in Call to update the typing environment
and the heap model. In detail, Grdr,w

m and Effectr,w
m correspond to the afore-

mentioned guard and effect—or a combination of several summaries in case of
virtual method dispatch, where guards are combined using a conjunction, and

80 N. Berthier and N. Khakpour

Algorithm 1: SynthesizeGuard
Input: Method to analyze m
Result: Polymorphic information-flow guard Grdm

{Encode the security semantics of m as an SCFG Sm where every state variable
related to the calling context is left uninitialized, and express the security
requirement as a predicate ϕm(�) on state variables for each location � of Sm: }

1 (Sm, ϕm) ← Encode(m)
2 B0 ← {� 	→ ¬ϕm(�) | � ∈ Λ(Sm)} {Define all known unsafe states }
3 B∞ ← Coreach(Sm, B0) {All states that are co-reachable to B0 }

{Factor out the state variables that are not part of the calling context: }
4 Grdm ← cofactor (¬B∞(�0(Sm)), X0(Sm))

transformers are merged—, and after substitutions w.r.t. m’s formal arguments.
Furthermore, e [v �→ l] denotes the substitution of security level expression l for
variable v in e: this is required to upgrade the context pc w.r.t. the receiver
object (the substitution in effects is performed in every expression on the right-
hand side of assignments). For the sake of concision, we leave the computation
of polymorphic effects out of the scope of this paper. In that respect, we want to
mention that this computation is achievable, even for the cases of recursion, via
an extension of our security semantics, accompanied by a dedicated processing of
the co-reachability analysis results. Also note that a sound application of effects
requires abstract heaps that capture object sharing relations, not just aliasing
relations.

5.2 Guard Inference Procedure

We summarize the overall analysis procedure in Algorithm 1, where Encode(m)
denotes the specification of the security semantics of a method m as an SCFG
Sm and invariant ϕm as described above. We represent sets of states as mappings
from locations to predicates on state variables, e.g., B0 is the set of all states
that violate the invariant ϕm. B0 associates every location that corresponds to
a sink statement with a predicate on security levels for program variables that
violate security requirements encoded in ϕm. Then, the set of insecure states is
back-propagated via a standard co-reachability analysis embodied by Coreach,
i.e., finding all states from which a given set of states may be reached, and is
typically solved using a fixed-point [23,24]. On a symbolic finite-state system
like S or Sm, this computation always terminates, and is traditionally performed
using the least fixed-point (lfp)

B∞
def= lfp λBi.B0∪pre(Bi), (1)

where pre(B) gives all predecessor states of B. B∞ associates each location with
a predicate that must not hold for every subsequent path in Sm to represent
secure executions. Therefore, the guard for m can be obtained by complementing
B∞(�0) and eliminating every state variable that does not represent a fact from
m’s calling context. This is done with the help of cofactor(f, g), which amounts

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 81

to a partial evaluation of f w.r.t. all variables bound in g, i.e., this gives a
predicate f ′ that does not involve any variable fully determined by g and s.t
(g = tt) ⇒ (f = f ′).

Example 3 (Guard inference for m). The analysis first builds the SCFG given in
Fig. 6, and associates the invariant pc � b�−→

b = ⊥ with location �3. This states
that, for m to be secure, this statement must be executed in a low context and
given a low-sensitive reference b (i.e., b = ⊥) that must only reach low-sensitive
objects (i.e.,−→b = ⊥). This gives the unsafe states shown in the first row of Table 3,
where we report a trace of the co-reachability analysis and the resulting guard
for each domain. The guard obtained with the dumb domain is the least precise
of all three, as it basically describes m as insecure if it is called in high context,
or whenever any of its effective arguments or objects they may reach in the heap
is high-sensitive. With this domain, the statement r.fa = a (location �2) may
raise the security level −→

b since r∼b ∈ Vtt (as CanRelate(r∼b) = maybe). On
the other hand, the inference with shal is able to distinguish whether b and r
may alias on location �2, and then rules this case out thanks to the statement
r = new B (location �0). However, the guard does not hold whenever i �= ⊥,
as the domain cannot distinguish whether b.fa aliases a or not: therefore, the
statement a.fi = i (location �1) always raises the level −→

b to that of pc � i. At
last, the domain deep distinguishes whether b.fa aliases a or not, and the guard
indicates that m may not be secure if i is high-sensitive and a and b relate to
each other via b.fa.

5.3 Soundness

We prove that any program guarded with a security guard inferred by our
method guarantees termination-insensitive noninterference [3]. This notion states
that, for any initial states q and q′ whose secret parts may only differ, the obser-
vations sequence of the program running from the states q and q′ will either be
the same, or one is a prefix of the other. The reason for the latter case is that
this notion is a termination-insensitive property. To prove soundness, we first
define the full semantics of a program by an SCFG that extends the security
semantics with its operational semantics [27].

Let S denote the (symbolic) full semantics of a program, and �S� = 〈Q, I,→
,Q0〉 be an automaton that describes its concrete semantics, where Q is the set
of states, I is the set of inputs, →⊆ Q × Q is the set of transitions and Q0 is
the set of initial states. A program state q is defined as 〈�,V, Ω,X ,h〉 where � is
the current location, V is the valuation for every one of the primitive program
variables P , Ω : P ∪ R → L is the security typing environment for the primitive
variables P and references R, and X is the current valuation of the state variables
in the security semantics except from the location and the typing environment
for the references. We use the notation Xh to show X ’s heap abstraction h, and
X−→

L to denote its security typing environment. Furthermore, h is the valuation
of the concrete heap’s variables. Let q

η−→∗ q′ be an execution of full semantics
with a non-zero length (i.e., the reflexive and transitive closure of the concrete

82 N. Berthier and N. Khakpour

Table 3. Polymorphic guard inference for method m, for
different heap domains.

with B0 =
{

�3
→ pc � b�−→
b �= ⊥}∪{

�i
→ ff
}
i∈{0,1,2,4}

d
ee

p

B1 =B0 ∪{
�2
→ pc � b�−→

b� (if b∼r then a�−→a else ⊥) �= ⊥}

B2 =B1 ∪{
�1
→ pc � b�−→

b� (if b∼r then a�−→a � i else ⊥)�
(if b

.∗
↪→a then i else ⊥) �= ⊥}

B∞ =B2 ∪{
�0
→ pc � b�−→

b� (if b
.∗
↪→a then i else ⊥) �= ⊥}

Grdm = pc � b�−→
b� (if b

.∗
↪→a then i else ⊥) = ⊥

sh
a
l

B1 =B0 ∪{
�2
→ pc � b� −→

b � (if b∼r then a�−→a else ⊥) �= ⊥}

B2 =B1 ∪{
�1
→ pc � b� i�−→

b � (if b∼r then a�−→a � i else ⊥) �= ⊥}

B∞ =B2 ∪{
�0
→ pc � b� i�−→

b �= ⊥}

Grdm = pc � b� i�−→
b = ⊥

d
u
m

b

B1 =B0 ∪{
�2
→ pc � b� a� −→

b � −→a �= ⊥}

B2 =B1 ∪{
�1
→ pc � b� a� i�−→

b � −→a �= ⊥}

B∞ =B2 ∪{
�0
→ pc � b� a� i�−→

b � −→a �= ⊥}

Grdm = pc � b� a� i�−→
b � −→a = ⊥

�0

�1

�2

�3

�4

tt, [r := pc] u�
r = new, pc

tt, a.fi �, i�pc

tt,
r.fa = a, a� a � pc

tt, ∅

Fig. 6. SCFG for m.

transition relation →) from the state q to the state q′, where η ∈ {o,⊥}. This
execution either ends by executing a statement that outputs on a channel (i.e.,
η = o) or makes no observation (i.e., η = ⊥). We denote an execution that never
reaches an observation point by q

⊥−→∗. We define noninterference based on a
low-equivalence relation, that states that the public parts of the two states q1
and q2 are indistinguishable.

Definition 4 (Indistinguishable Stores). We say two valuations V1 ∈
Val (P) and V2 ∈ Val (P) are low-equivalent w.r.t. the typing environment
Ω : P ∪ R → L, denoted by V1 =Ω V2, iff V1(v) = V2(v) for all v ∈ P where
Ω(v) = ⊥.

Definition 5 (Low-Bisimulation). We say two states qi = 〈�,Vi, Ωi,Xi,hi〉,
i ∈ {1, 2} are compatible, denoted by q1 ≈ q2, iff (i) Ω1 = Ω2, (ii) X1−→

L = X2−→
L,

(iii) V1 =Ω1 V2, and (iv) h1 =X1h
h2. They are called low-bisimilar, denoted by

q1 ∼low q2, iff q1 ≈ q2, and if q1
o−→∗ q′

1, then either (a) there exists q′
2 such that

q2
o−→∗ q′

2 and q′
1 ∼low q′

2, or (b) q2
⊥−→∗, and vice versa.

Theorem 2 (Noninterference). For any method m guarded by a security
guard Grdm, and any initial states q1 and q2 where q1 ≈ q2 and qi |= Grdm,
i ∈ {1, 2}, it holds q1 ∼low q2.

Proof. To prove this theorem, we show that there exists a witnessing bisimulation
relation for q1 ∼low q2. See [27].

6 Implementation and Evaluation

To empirically validate our approach, we assess the respective performances of
our three heap domains on actual code, both in terms of precision and scala-
bility. We have first implemented a tool that relies on soot [16] to obtain the

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 83

Jimple code of a program, and translates it into our input language. Jimple is an
intermediate language to represent Java byte-code at a higher level. The seman-
tics of its instructions and reference manipulations correspond to that of the
JVM. One Jimple statement roughly translates into one statement of our input
language. We have then implemented the guard inference algorithm in a pro-
totype tool called Guardies3, that features multiple instantiations of our heap
domains. Guardies’s pre-analysis relies on a naive analysis of the class hierar-
chy to construct a graph that allows us to compute facts about heap-related
relations (i.e., function CanRelate). This tool relies on ReaX [31] to solve the co-
reachability problems. ReaX uses (Multi-terminal) Binary Decision Diagrams—
(MT)BDDs—[32,33] to represent symbolic expressions and compute the underly-
ing fixed-points. To deal with guards and transformers that encode the semantics
of library methods, we rely on stubs, given to Guardies, that describe the effects
of these methods at a high level. We manually defined the security semantics of
methods from the standard Java and Android libraries (about 1200 methods in
total) in this way.

Table 4. IFSpec precision results

Category #Smpls deep shal dumb KeY Joana Cassandra

explicit-flows 143 80.4 79.7 78.3 70.6 77.6 72.7
implicit-flows 21 71.4 71.4 71.4 57.1 57.1 61.7
simple 51 72.5 72.5 72.5 64.7 76.4 68.6
high-cond. 10 80 80 80 60 60 60
arrays 26 73 73 69.2 65.3 76.9 69.2
library 69 88.4 88.4 86.9 76.8 76.7 79.7
aliasing 7 71.4 71.4 57.1 57.1 42.8 42.8
average 79.2 78.6 77.4 68.9 75 71

The #Smpls column shows the number of included samples for each
category; other figures are percentages.

Precision&Recall. We have employed the IFSpec benchmark suite [25] to
assess the precision of our different heap domains and compare our results to
KeY [34], Cassandra [21], and Joana [17]. The precision refers to a proportion
of test cases that are correctly classified. The recall is the fraction of true posi-
tive and false negative test cases that are categorized correctly. IFSpec provides
232 test cases that showcase various information-flow vulnerabilities in Java pro-
grams, with various forms of explicit and implicit information leaks. We report in
Table 4 the precision results that we obtain for different abstract heap domains
for the various categories of leaks and language features that IFSpec covers.
We have checked 164 out of 232 test cases supported by our sub-language: the
3 Available as a software artifact [30], with user documentation and source code at

http://nberth.space/symmaries.

http://nberth.space/symmaries

84 N. Berthier and N. Khakpour

excluded cases involve reflection, static class initializers, exceptions and method
calls (11, 10, 9, and 39 samples respectively—we have excluded all cases in the
latter category as they check the ability of the analysis to handle information-
flows across method calls, while we left the problem of computing method effects
aside). Note that a test case may belong to multiple categories.

Since our approach is sound, we obtain 100% recall, i.e., we correctly detect
every insecure flow. Regarding precision, our experiments show that all the
domains have close precision: the deep domain offers the highest precision of
79.2% and dumb offers the lowest precision of 77.4%. The false positives (i.e.,
the secure test cases that were restrictively classified as insecure) mainly occur
because our domains are field-insensitive, value-insensitive, do not distinguish
elements in some collections of data, or due to the over-approximations in heap-
related relations. The results for the aliasing category are rather similar; 3 test
cases in this category are insecure that are classified correctly by all three
domains, as our analysis is sound. Two of the remaining 4 secure test cases
are classified as insecure in all domains due to value- and field-insensitivity.

On average, the domain deep offers the best precision in five categories. It
slightly underperforms the state-of-the-art for simple and arrays test cases only,
notably due to value- and field-insensitivity. In some categories, the improvement
is noticeable, i.e., it improves the best precision of the aliasing category offered by
the existing tools by 14.3%, improves the library category by 8.7% and enhances
the implicit-flows category by 9.5%. We attribute these substantial results in part
to our precise handling of implicit flows across method calls (unlike Cassandra
which forbids method calls in high-contexts for instance), and in part to our heap
abstract domain, that is able to precisely track some intricate aliasing relations.
That most of our domains obtain similar precision results on the aliasing category
may indicate that these test cases are rather uniform in the facts about aliasing
that need to be discovered to detect secure cases. Our findings show that while
different domains had close precision results, they offer different computational
complexity though. Further, IFSpec only partially covers the set of IFC problems
one can encounter in practice; we therefore refrain from generalizing our results.
Yet, IFSpec is the most extensive benchmark available for IFC that we know of.

Scalability Evaluation. We have conducted experiments on real-life web appli-
cations to compare different heap abstract domains in terms of scalability. To
accommodate computationally intensive analyses, we interrupt any analysis after
5min or if it uses more than 4GB of memory. We have used applications from the
ABM benchmark [26], a collection of 139 open-source projects that is dedicated
to the evaluation of static analyzers for Java applications. Its content is deemed
representative of real-world software, and has already been used for evaluating
static taint analysis and dead code elimination approaches [26]. From this collec-
tion, we extracted the Java code from 60 applications with sizes ranging from 133
to 25K lines of Java. This provided us with a total of 22,512 analyzable methods.
Overall, the deep domain led to 146 analyses being interrupted due to the time-
outs or memory limitations (3 for shal, 0 for dumb). We plot in Fig. 7, for each

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 85

0 20 40

R

10
−2

10
−1

10
0

10
1

10
2

a
n
a
ly
si
s
ti
m
e
(s
)

deep
0 20 40

R

shal
0 20 40

R

dumb10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Fig. 7. Density plots showing the distributions of analyzed ABM methods w.r.t. both
the number of reference variables (horizontal axes) and the analysis time (vertical axes).
Note the shared log scales, including on the color-bars. (Color figure online)

domain, the distributions of successful analyses w.r.t. the number of reference
variables and analysis time. As expected, analysis times grow with the amount
of references, and by factors that depend on the heap-related relations captured
flow-sensitively by the domains, e.g.,deep is more expensive compared to dumb
and shal. Further, many methods have fewer than 10 reference variables, and as
a result most analysis times do not exceed 0.1s for every domain. Those figures
empirically support the applicability of our approach on real-life applications.

(1, 10] (10, 19] (19, 29] (29, 38] (38, 47]

R

0.0

0.2

0.4

0.6

0.8

1.0

u
n
sa

t
ra

ti
o

dumb

shal

deep

(1, 10] (10, 19] (19, 29] (29, 38] (38, 47]

R

ta
u
to

ra
ti
o

Fig. 8. Plots showing for each domain, the proportions of unsatisfiable (on the left)
and tautological (on the right) guards vs number of reference variables.

Note that an ideal study on the scalability of different heap domains would
compare the domains under different analysis techniques, provided by different
tools. This, however, requires the support of the existing tools for modeling dif-
ferent heap domains. To the best of our knowledge, there was no such tool, as
each implementation is typically tied with its own heap model, if any at all.
Otherwise, extending the tools to support different heap domains is virtually
infeasible since most existing tools rely on store-based models. To further com-
pare the respective precision of each domain, we also report in Fig. 8 the ratios
of unsatisfiable and tautological guards obtained for each domain. We observe
that the precision of all domains seems similar when the number of reference

86 N. Berthier and N. Khakpour

variables is low, and diverges with growing numbers of references. Moreover,
deep appears to be more permissive than dumb and shal for methods with many
references. However, that deep did not produce unsatisfiable guards for methods
with more than 29 references indicates that many analyses of such methods were
interrupted.

7 Discussions

Static analysis approaches to ensure noninterference have been studied exten-
sively in the community. The vast majority of suggested IFC solutions concen-
trates on type-systems [2–4], and various tools that target realistic programming
languages have been developed for verifying such properties. Prominent exam-
ples include JFlow JIF [3], FlowCaml [2], Cassandra [21], and KeY [34]. Albeit
sound, the aforementioned approaches often lack precision in practice (e.g., [21]),
or require user intervention, such as the specification of loop invariants (e.g., [3]).
Another line of research trades efficiency for soundness and/or precision, by
exploiting more generic techniques like interprocedural dataflow analysis [35]
or program slicing [36]. JOANA [17], DroidSafe [18] and FlowDroid [19] are
prominent frameworks in this category. Other solutions are dedicated to web
applications [37] or Android apps [38], although most of them do not handle
implicit flows or lack soundness (e.g., [17–19]). Tools that provide sound results
via other forms of global program analyses include HornDroid [39,40], which
does not capture implicit flows. In contrast to the above methods, our approach
is proven sound, captures implicit flows (via heap), and our experiments show
that it improves the state-of-the-art precision. Further, the above approaches
often rely on a simple store-based representation of the heap specified as a map-
ping from references (or abstract locations) to heap locations [4,21,41], or do not
rely on a flow-sensitive heap abstraction [21]. By contrast, we use a store-less
representation, where the structure of the heap is specified using a parameteriz-
able family of (possibly over-approximated) relations. This offers different levels
of over-approximation and complexity, enabling the user to easily trade-off per-
formance and scalability.

Few works have addressed the problem of capturing implicit flows while
exploiting flow-sensitive heap abstractions [14,42,43]. Khakpour [42] synthesizes
sound security monitors that enforce IFC by using a symbolic discrete control
algorithm. This work operates intraprocedurally on high-level programs and uses
an ad hoc field-sensitive heap abstraction that does not scale well. Zanioli et al.
[14] advance an abstract-interpretation-based analysis, where the construction
of the heap abstraction is delegated to a separate analysis. Their analysis can
operate on a flow-sensitive abstraction as produced by a TVLA-based shape anal-
ysis [44], yet it can only be applied to small, high-level programs. Other forms of
symbolic heap abstractions have already been used in static program analysis.
Separation logic [45] models a heap as a formula that comprises atomic predicates
combined using the separation operator. While we use a store-less representation
of the heap expressed using a proposition, symbolic heaps in separation logic are

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 87

store-based, more expressive, and consequently are more complex for verifica-
tion. Store-less heap abstractions are also polymorphic and enable us to operate
on each method of the program in isolation. This is to be contrasted with tra-
ditional data-flow analysis [35], where flow functions must be distributive and
expressed on finite domains (as typically provided by store-based abstractions).

We have introduced a generic abstract heap domain for modeling heaps and
information flow via heap for low-level object-oriented programs, and instan-
tiated it with different families of relations. Our experiments showed that our
instantiated heap models improve the state-of-the-art precision, and that the
precision has an inverse relationship with scalability. We are currently investi-
gating the computation of method summaries in order to obtain a fully modular
interprocedural IFC analysis. Guardies can be improved by implementing a more
advanced analysis to reduce the amount of symbolic variables involved to rep-
resent the heap, thereby improving scalability. Further, the instantiated heap
domains are field-insensitive, and a natural extension is introducing support for
field-sensitive analyses.

Acknowledgement. The first author was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) through grant EP/M027287/1, and the
second author was supported by the Swedish Knowledge Foundation (KKs) via the
grant No. 20160186.

References

1. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Los Alamitos, CA, USA, pp. 11–20. IEEE
Computer Society (1982). https://doi.org/10.1109/SP.1982.10014

2. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25(1), 117–158 (2003). https://doi.org/10.1145/596980.596983. http://
doi.acm.org/10.1145/596980.596983. ISSN 0164-0925

3. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003). https://doi.org/10.1109/JSAC.2002.806121.
ISSN 0733-8716

4. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–
140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_10.
http://dl.acm.org/citation.cfm?id=1762174.1762189. ISBN 978-3-540-71314-2

5. Liu, Y., Milanova, A.: Static information flow analysis with handling of implicit
flows and a study on effects of implicit flows vs explicit flows. In: Proceed-
ings of the 2010 14th European Conference on Software Maintenance and
Reengineering, CSMR 2010, USA, pp. 146–155. IEEE Computer Society (2010).
https://doi.org/10.1109/CSMR.2010.26. https://doi.org/10.1109/CSMR.2010.26.
ISBN 9780769543215

6. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: Pro-
ceedings of the 2012 IEEE 25th Computer Security Foundations Symposium, CSF
2012, Washington, DC, USA, pp. 3–18. IEEE Computer Society (2012). https://
doi.org/10.1109/CSF.2012.19. http://dx.doi.org/10.1109/CSF.2012.19. ISBN 978-
0-7695-4718-3

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-71316-6_10
http://dl.acm.org/citation.cfm?id=1762174.1762189
https://doi.org/10.1109/CSMR.2010.26
https://doi.org/10.1109/CSMR.2010.26
https://doi.org/10.1109/CSF.2012.19
https://doi.org/10.1109/CSF.2012.19
http://dx.doi.org/10.1109/CSF.2012.19

88 N. Berthier and N. Khakpour

7. Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

8. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11547662_24. ISBN 3-540-28584-9, 978-
3-540-28584-7

9. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product pro-
grams. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–
214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17.
ISBN 9783642214363

10. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3_20. ISBN 978-3-540-32004-3

11. Mizuno, M., Schmidt, D.: A security flow control algorithm and its denotational
semantics correctness proof. Form. Asp. Comput. 4(1), 754 (1992). https://doi.
org/10.1007/BF03180570

12. Zanotti, M.: Security typings by abstract interpretation. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 360–375. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45789-5_26. ISBN 3540442359

13. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, pp. 186–197. Association for Computing Machinery, New York (2004).
https://doi.org/10.1145/964001.964017. ISBN 158113729X

14. Zanioli, M., Ferrara, P., Cortesi, A.: Sails: static analysis of information leakage
with sample. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC 2012, pp. 1308–1313. Association for Computing Machinery, New
York (2012). https://doi.org/10.1145/2245276.2231983. ISBN 9781450308571

15. Kanvar, V., Khedker, U.P.: Heap abstractions for static analysis. ACM Comput.
Surv. 49(2), 29:1–29:47 (2016). https://doi.org/10.1145/2931098. http://doi.acm.
org/10.1145/2931098. ISSN 0360-0300

16. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot:
a Java bytecode optimization framework. In: CASCON First Decade High Impact
Papers, pp. 214–224 (2010)

17. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1. ISSN 1615-5262

18. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard,
M.C.: Information flow analysis of Android applications in DroidSafe.
In: 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, 8–11 February 2015. The Inter-
net Society (2015). https://www.ndss-symposium.org/ndss2015/information-flow-
analysis-android-applications-droidsafe

19. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2014,
pp. 259–269. ACM, New York (2014). https://doi.org/10.1145/2594291.2594299.
http://doi.acm.org/10.1145/2594291.2594299. ISBN 978-1-4503-2784-8

https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/BF03180570
https://doi.org/10.1007/BF03180570
https://doi.org/10.1007/3-540-45789-5_26
https://doi.org/10.1145/964001.964017
https://doi.org/10.1145/2245276.2231983
https://doi.org/10.1145/2931098
http://doi.acm.org/10.1145/2931098
http://doi.acm.org/10.1145/2931098
https://doi.org/10.1007/s10207-009-0086-1
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299

Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference 89

20. Johnson, A., Waye, L., Moore, S., Chong, S.: Exploring and enforcing security
guarantees via program dependence graphs. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, pp. 291–302. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2737924.2737957. ISBN 9781450334686

21. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
towards a certifying app store for Android. In: Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones & Mobile Devices, SPSM 2014, pp.
93–104. ACM, New York (2014). https://doi.org/10.1145/2666620.2666631. ISBN
9781450331555

22. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01465-9_2. ISBN 978-3-642-
01465-9

23. Ramadge, P.J.G., Murray Wonham, W.: The control of discrete event systems.
Proc. IEEE Spec. Issue Dyn. Discret. Event Syst. 77(1), 81–98 (1989). https://
doi.org/10.1109/5.21072

24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 179–190. Association for Computing Machinery, New
York (1989). https://doi.org/10.1145/75277.75293. ISBN 0897912942

25. Hamann, T., Herda, M., Mantel, H., Mohr, M., Schneider, D., Tasch, M.: A uni-
form information-flow security benchmark suite for source code and bytecode. In:
Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 437–453. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03638-6_27. ISBN 978-3-030-03638-6

26. Do, L.N.Q., Eichberg, M., Bodden, E.: Toward an automated benchmark manage-
ment system. In: Proceedings of the 5th ACM SIGPLAN International Workshop
on State of the Art in Program Analysis, SOAP 2016, pp. 13–17. Association
for Computing Machinery, New York (2016). https://doi.org/10.1145/2931021.
2931023. ISBN 9781450343855

27. Berthier, N., Khakpour, N.: Symbolic abstract heaps for polymorphic information-
flow guard inference (extended version). arXiv preprint arXiv:2211.03450 (2022)

28. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712.
ISSN 0001-0782

29. Ball, T.: What’s in a region? Or computing control dependence regions in near-
linear time for reducible control flow. ACM Lett. Program. Lang. Syst. 2(1–4),
1–16 (1993). https://doi.org/10.1145/176454.176456. ISSN 1057-4514

30. Berthier, N., Khakpour, N.: Artifact for Paper (Symbolic Abstract Heaps for
Polymorphic Information-flow Guard Inference) (2022). https://doi.org/10.5281/
zenodo.7103855

31. Berthier, N., Marchand, H.: Discrete controller synthesis for infinite state sys-
tems with ReaX. In: 12th International Workshop on Discrete Event Systems,
WODES 2014, pp. 46–53. IFAC (2014). https://doi.org/10.3182/20140514-3-FR-
4046.00099. ISBN 978-3-902823-61-8

32. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819.
ISSN 0018-9340

33. Billon, J.P.: Perfect normal forms for discrete programs. Technical report, Bull
(1987)

https://doi.org/10.1145/2737924.2737957
https://doi.org/10.1145/2666620.2666631
https://doi.org/10.1007/978-3-642-01465-9_2
https://doi.org/10.1109/5.21072
https://doi.org/10.1109/5.21072
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-03638-6_27
https://doi.org/10.1145/2931021.2931023
https://doi.org/10.1145/2931021.2931023
http://arxiv.org/abs/2211.03450
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/176454.176456
https://doi.org/10.5281/zenodo.7103855
https://doi.org/10.5281/zenodo.7103855
https://doi.org/10.3182/20140514-3-FR-4046.00099
https://doi.org/10.3182/20140514-3-FR-4046.00099
https://doi.org/10.1109/TC.1986.1676819

90 N. Berthier and N. Khakpour

34. Ahrendt, W., et al.: The KeY tool. Softw. Syst. Model. 4(1), 32–54 (2004). https://
doi.org/10.1007/s10270-004-0058-x

35. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995, pp. 49–61. ACM,
New York (1995). https://doi.org/10.1145/199448.199462. http://doi.acm.org/10.
1145/199448.199462. ISBN 0-89791-692-1

36. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7(3),
305–317 (1977). https://doi.org/10.1007/BF00290339. ISSN 0001-5903

37. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pp. 1663–1671. ACM (2014)

38. Li, L., et al.: Static analysis of Android apps: a systematic literature review. Inf.
Softw. Technol. 88, 67–95 (2017)

39. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: practical and sound static
analysis of Android applications by SMT solving. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 47–62 (2016). https://doi.org/10.
1109/EuroSP.2016.16

40. Calzavara, S., Grishchenko, I., Koutsos, A., Maffei, M.: A sound flow-sensitive
heap abstraction for the static analysis of Android applications. In: 30th Computer
Security Foundations Symposium, CSF 2017, pp. 22–36. IEEE (2017). https://doi.
org/10.1109/CSF.2017.19

41. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: Gregory Morrisett, J., Peyton Jones, S.L. (eds.) Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, Charleston, South Carolina, USA, 11–13 January 2006,
pp. 91–102. ACM (2006). https://doi.org/10.1145/1111037.1111046

42. Khakpour, N.: A field-sensitive security monitor for object-oriented programs.
Comput. Secur. 108, 102349 (2021). https://doi.org/10.1016/j.cose.2021.102349

43. Khakpour, N., Skandylas, C.: Synthesis of a permissive security monitor. In: Lopez,
J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 48–65.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_3

44. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002). https://doi.org/10.1145/
514188.514190. ISSN 0164-0925

45. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 2002, Washington, DC, USA, pp. 55–74. IEEE Computer Society (2002).
http://dl.acm.org/citation.cfm?id=645683.664578. ISBN 0-7695-1483-9

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
https://doi.org/10.1007/BF00290339
https://doi.org/10.1109/EuroSP.2016.16
https://doi.org/10.1109/EuroSP.2016.16
https://doi.org/10.1109/CSF.2017.19
https://doi.org/10.1109/CSF.2017.19
https://doi.org/10.1145/1111037.1111046
https://doi.org/10.1016/j.cose.2021.102349
https://doi.org/10.1007/978-3-319-99073-6_3
https://doi.org/10.1145/514188.514190
https://doi.org/10.1145/514188.514190
http://dl.acm.org/citation.cfm?id=645683.664578

Satisfiability Modulo Custom Theories
in Z3

Nikolaj Bjørner1 , Clemens Eisenhofer2(B) , and Laura Kovács2

1 Microsoft Research, Redmond, USA
nbjorner@microsoft.com
2 TU Wien, Wien, Austria

{clemens.eisenhofer,laura.kovacs}@tuwien.ac.at

Abstract. We introduce user-propagators as a new feature of the Z3
SMT solver. User-propagation allows users to write custom theory exten-
sions for Z3, by implementing callbacks via the Z3 API. These callbacks
are invoked by Z3 and eliminate eager processing and instantiation of
theory axioms with quantifiers. We report on application scenarios of
user-propagation and describe further use-cases.

Keywords: SMT solving · SMT theories · Automated reasoning ·
Program verification

1 Introduction

Satisfiability Modulo Theories (SMT) solving [3] has become a backbone in for-
mal verification, synthesis and optimization, see e.g. [12,18,23,34] One of the
reasons for the success of SMT solvers is their ability to produce solutions, that
is models or proofs, in fragments of first-order theories for data structures that
are of relevance to software. As SMT-based reasoning is effective for first-order
theories expressible in SMT-LIB logics [2], a challenging aspect in SMT solving
is to come up with efficient extensions towards new theories, in particular in the
presence of quantifiers.

A natural way to address this challenge is to extend SMT solvers with built-in
decision procedures for relevant theories. This approach requires, however, expert
knowledge about the functionalities and implementation choices of a respective
state of the art SMT solver, such as Z3 [26] and CVC5 [1], limiting thus the
general adaptation of this approach mainly to developers of the SMT solvers or
heroic researchers.

In this paper, we advocate Satisfiability Modulo Custom Theories for a flex-
ible approach towards improving SMT solving. We propose user-propagators to
ease on-demand theory reasoning by implementing callback functions outside
existing SMT solvers, and in particular in Z3. As such, user-propagators in Z3
allow users to write plugins through Z3’s API in order to support custom the-
ories. As the custom code is loaded dynamically, there is no need to recompile
Z3’s code base when having it extended with user-propagators. Moreover, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 91–105, 2023.
https://doi.org/10.1007/978-3-031-24950-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_5&domain=pdf
http://orcid.org/0000-0002-1695-2810
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-24950-1_5

92 N. Bjørner et al.

user is not confronted with the complexity of the whole system, but only has to
implement a small number of functions (see Fig. 1).

The preliminary results of our extended abstract from [7] hint already that
custom theory reasoning can strongly decrease Z3’s computational resources
(time and memory) on solving combinatorial problems. In this paper we go
beyond [7] and bring the following contributions. We describe the overall frame-
work of user-propagators in Z3, together with the supported callbacks to the
core of Z3 (Sect. 3). We argue that user-propagators may increase performance
by using a lazy problem encoding. We demonstrate how user-propagators can
be used to speed up Boolean/bit-vector based program verification problems, in
particular memory reasoning (Sect. 2 and Sect. 4), by lazily instantiating some of
the required axioms of the encoding on-demand. We finally also discuss applica-
tions of user-propagators (Sect. 5), opening up many new research avenues when
compared to [7].

2 Motivating Example

We motivate the benefits of user-propagators in Z3 by lazily instantiating
Boolean based axioms, in particular in the setting of alive2 [22].

The alive2 framework [22] aims to find errors in transformations/
optimizations applied to functions in LLVM intermediate representation [19].
Soundness of the applied LLVM optimizations is checked in alive2 by proving
that the original (unoptimized) program and the optimized program are equiv-
alent1. alive2 encodes the behaviour of finitely unrolled variants of the unop-
timized and optimized LLVM intermediate representations into a set of SMT
queries that are passed to Z3 for equivalence checking, via the Z3 API.

Generating the SMT encoding through the Z3 API, as well as proving in
Z3, may take a significant amount of time for some inputs. One major source of
such an inefficiency is that alive2 often has to compare all potential pairs of vari-
ables or functions, yielding a significant blow-up in the size of the SMT queries
passed to Z3. For example, the memory disjointness axiom used by alive2 has
a quadratic size with respect to the number of variables in the LLVM program;
this axiom asserts that the physical memory addresses of two different alloca-
tions may not intersect. We note that alive2 uses a multi-memory encoding that
assigns an array to each allocation, as well as a unique identifier [20]. In case
the program compares addresses, alive2 associates an additional bit-vector with
each memory block that represent their address. Thus, for encoding memory
disjointness, alive2 may generate the formula

∧

1≤i<j≤n

(addri + sizei ≤ addrj ∨ addrj + sizej ≤ addri), (1)

for n globally allocated memory blocks given by their physical starting addresses
(addr) and their sizes (size).
1 Modulo undefined values, where undefined values in the unoptimized program may

be replaced by any concrete value in the optimized program, but not vice-versa.

Satisfiability Modulo Custom Theories in Z3 93

The encoding (1) of memory disjointness can be seen as a generalization of the
following well-known problem in the constraint programming (CP) community:
assume we have a set of n variables x1, . . . , xn that should be assigned to distinct
values of a finite, but large, domain. Encoding this problem, and hence (1),
eagerly requires an at least quadratically sized assertion of the form

∧

1≤i<j≤n

xi �= xj . (2)

Using (2) is however problematic: Assume, for example, that we have 1, 000
bit-vector variables xi, each of them consisting of 32 bits. Encoding this eagerly2

would require roughly half a million disequalities, although the chance of at least
one conflicting assignment is below 1% in case of random variable assignments.

An alternative approach to eagerly encode and process the constraints (2)
is offered through user-propagators, as follows: (i) observe the (bit-vector value)
assignments to the variables xi and (ii) add the constraint xi �= xj of (2) only in
case xi and xj are assigned to the same value. We refer to such a conditional/on-
demand addition of constraints through user-propagators as a lazy approach. A
user-propagator encoding can naturally be adjusted to (1) to avoid generating
unnecessary constraints: in case two intersecting intervals are derived during
SMT solving, we propagate addri + sizei ≤ addrj ∨ addrj + sizej ≤ addri to
alert the SMT solver about the violation of (1).

3 User-Propagators in Z3

A user-propagator can be seen as a set of functions that correspond to actions
performed by the core of Z3. More precisely, each time a variable associated
with the theory modelled by the user-propagator is involved in one of the actions
covered by the user-propagator, the respective user-implemented function (“call-
back”) is invoked.

3.1 Workflow for User-Propagators

The overall workflow of Z3, extended with a user-propagator, is presented in
Fig. 1 and discussed in Sect. 3.2.

Most of the user-propagator callbacks listed in Fig. 1 already exist (directly or
in a similar variant) internally in Z3 for those theories for which built-in theory
reasoners are implemented. With user-propagator callbacks, such support can
be extended to theories that are not natively supported in Z3. Each term in
Z3 may be associated with a theory that is responsible for the semantics of the
respective term and whose callback will be triggered. In most cases, the core Z3
code base does not distinguish whether the callback belongs to a built-in theory
or is provided via the user-propagator, which is why user-propagators did not
require fundamental changes in Z3’s workflow.

2 The special case of (2) has mostly efficient built-in implementations.

94 N. Bjørner et al.

Main Loop

Pop

(Dis)Eq

Final

Decide

ConflictPropagate

Internalization

Sat

FreshMBQI

Created

Push

Fixed

Model Generation
[first time]

[subquery = Unsat]

Unsat

subquery with new propagator

[needs to branch]

NextSplit

[next branching]

[nothing propagated]

[som
ething propagated]

[user-function]

[everything assigned]

[subquery = Sat]

[Boolean/bit-vector assigned & term registered]

[term registered]

[term registered]

Analyze + Resolve
Propositional Conflict

clause and
variable

removal +
unassign
variable

[conflict]

[failed]

Register

Choose
Variable

Merge Equality
Classes

Clause Set +
Equality Graph +

Assignments

Internal to Z3 User-Propagator

Check Lazy
Theories

Quantifier Reasoning

Start
Formula

[equality atom]

Fig. 1. Schematized workflow for user-propagators in Z3.

Upon using user-propagators in Z3, an initial (SMT) formula φ is passed to
Z3 for satisfiability checking. As Z3 does not know which terms are relevant for
the theory the user wants to model, all relevant (ground) terms in φ have to be
registered by a Z3 API call. Registering a term in Z3 has two effects. (i) First,
the user theory is associated with the registered terms, such that the callbacks
of the user-propagator are called when one of the registered terms is processed.
(ii) Second, Z3 will eagerly internalize the registered terms of φ; that is, the
respective terms are translated into Z3 internal (normal form) representations
so that Z3 can further reason with them. Notably, terms are associated with a
union-find data-structure and for congruence closure reasoning, each term has
pointers to parent terms. Mostly, step (ii) is done right before starting the actual
reasoning process in Z3; for more details, see [25]. However, doing (ii) eagerly
already during formula construction ensures that Z3 processes registered terms
and does not eliminate it by some optimization. This way, even formulas that

Satisfiability Modulo Custom Theories in Z3 95

do not occur in the input formula φ can be registered, and hence also processed
by the user-propagator. An example where such a case can be useful comes with
registering a function application that extracts the kth bit of a bit-vector in φ:
this way, user-propagators can also reason on the kth bit, even if this bit alone
does not occur in the input formula φ.

3.2 Supported Callbacks

Currently, user-propagators in Z3 supports the following list of functions/call-
backs, that can be implemented by the user.

Push and Pop Each decision procedure in Z3 provides a Push and a Pop function.
In case Z3’s SAT core branches on a Boolean variable, the Push function
of each decision procedure is called. Theory solvers save their current state
such that a subsequent call of Pop resets the reasoner in the same or an
equisatifiable state. As theory solvers in Z3 may backjump multiple decision
levels, Pop may has to revert multiple pushes at once. The number of reverts
is passed as an argument to the Pop callback.

Fixed The Fixed callback is invoked whenever a registered Boolean or bit-vector
variable is fixed to a value. Boolean variables are considered as fixed as soon as
their values are assigned by e.g., branching or Boolean constraint propagation.
A bit-vector variable requires all its Boolean (bit) variables to be assigned
before triggering Fixed. As theory solvers based on CDCL(T) fix the values
of T -elements (e.g. integers, strings) mostly in a separate step after CDCL(T)
reasoning (model generation) [3], the Fixed callback cannot be used to observe
those values of T -elements.

Eq and Diseq In contrast to the Fixed callback, Eq and Diseq are not limited
to Booleans/bit-vector terms. Eq is called when two equivalence classes con-
taining registered terms are merged. The callback is guaranteed to report on
all equalities between registered terms, but is only issued for enough terms
to form a spanning tree of equal terms (for roots of an underlying union-find
structure). Similar, Diseq is called whenever Z3 infers that two equivalence
classes, both containing registered terms, are not equal. It does not report on
all disequalities; the user-propagator can instead infer these from the comple-
ment of the reported equalities.

Decide Similar to the Push callback, Decide is called if Z3 branches on a Boolean
variable. However, in contrast to Push, Decide is only called if Z3 decides
to branch on a registered expression. The Decide callback is invoked with
the variable Z3 will try to split on and the truth value that Z3 tried first as
arguments. To implement custom heuristics, the user may change the variable
to any other registered and unassigned Boolean term, as well as the truth
value of the variable.

Final This callback is invoked in case all Boolean variables are assigned by the
CDCL-based SAT solver [17,31]. The theory solvers are supposed to finally
check if the current Boolean assignments and (dis)equalities are consistent
with the theory. In case no decision procedure adds new variables, propagates

96 N. Bjørner et al.

new lemmas, or reports a conflict in this step, Z3 checks the relevant quan-
tifiers and returns satisfiable in case they are. The order in which the Final
functions of the decision-procedures are invoked is not fixed, so no assump-
tions can be made about being the first/last solver.

Fresh In case Z3 needs to spawn a new solver (e.g., for doing model based quanti-
fier instantiation (MBQI) subqueries [13], or solving subgoals in parallel) the
Fresh callback is called which returns a new user-propagator that receives the
callbacks issued by the sub-solver. MBQI reuses the same sub-solver across
different calls, so in typical use cases, Fresh is invoked at most once.

Created To track fresh terms created during search, such as by quantifier instan-
tiation, user-propagators can define user-functions. All instances of user-
functions are automatically registered and the Created callback is triggered
the first time a particular instance of a user-function is encountered by Z3.
This way, the user can additionally observe and register all (ground) argu-
ments of the function application that are relevant for the theory. User-
functions can be considered as an interpreted function/predicate symbols
whose semantic is given by the user-propagator by adding conflicts or by
propagating lemmas containing user-function instances.

We further note that a user can also call special functions within callbacks
to participate in the solving process. We consider and support the following four
functions3 in this respect:

Propagate Recall that Eq yields equalities t � t′ and Fixed yields assignments
t � v that are true in the current branch, where t and t′ are (registered) terms
and v is a Boolean or bit-vector value. A propagation claim is

(E ∧ F) ⇒ G (3)

where E is a subset of the reported equalities of Eq, F a subset of Fixed, and
G an arbitrary formula constructed by Z3’s API. Z3 adds the propagation
claim (3) as a lemma to the current scope by transforming the claim into an
internal format, by resolving each of the premises in E and F with a set of
internal decisions or propagations that justify the premises E and F . Thus,
the equalities t � t′ or t � v are not treated as potentially fresh atoms, but
resolved with already existing literals in Z3.

Conflict A conflict is shorthand for a propagation claim (E ∧ F) ⇒ ⊥.
NextSplit Controlling branching steps in Z3 with the Decide callback is not suffi-

cient, as Decide is called only in case a registered term is chosen. NextSplit can
mark yet unassigned Boolean/bit-vector terms to be chosen next for splitting.
This way, Z3 uses these marked terms instead of choosing a potentially unreg-
istered term next. The Decide callback is subsequently called for a marked
term, as if the term was chosen by some internal Z3 heuristic.

Register This function registers a term to be processed by the user-propagator.
Register can be both called during callbacks and (as already discussed) before
starting the reasoning process.

3 Referring to the C++ API.

Satisfiability Modulo Custom Theories in Z3 97

Propagated lemmas and variables registered during reasoning may only be
considered as asserted/registered as long as the scope in which they were prop-
agated/registered has not been exited.

4 User-Propagators for Memory Reasoning in alive2

In this section, we reconsider the motivating example of Sect. 2 on proving mem-
ory disjointness in alive2. We detail our lazy approach based on user-propagators
and show generalizations of this approach.

User-Propagators for Memory Disjointness. We successfully used user-
propagators in Z3 to implement the lazy approach of Sect. 2 for proving (1).
That is, (i) we first observe the values Z3 assigned to the memory addresses
addri and sizes sizei by registering them. To this end, as alive2 uses bit-vectors,
the Fixed callbacks will be called whenever all bits of the addresses addri or the
sizes and sizes sizei are fixed. Further, (ii) in case both the address addri and
the size sizei of a block i is fixed, we can check if there is a collision with another
memory block j fixed so far. In case there is, we propagate a lemma to avoid
this. As the lemma is not a logical consequence of any previous assignment, we
choose E = F = ∅ in the propagation claim (3) and use the Propagate function.

Applying steps (i)-(ii) instead of an eager encoding has several advantages.
We save computational time and memory, as we might not need to generate the
whole disjointness constraint (1). Further, generating the constraints on-demand
(lazily) prevents Z3 from handling all constraints and putting too much focus
on unlikely relevant clauses. As the size of the memory blocks are mostly small
constants, the constraints do not have to be eagerly enforced, as the chance of a
collision is low. Using steps (i)-(ii) for the global case, our experiments show a
significant performance improvement in alive2’s performance. For benchmarking,
we used the single-file versions of some well-known C programs4. For example,
the gzip and bzip2 source codes contain each roughly 100 functions. However,
only about 20 of them make relevant use of pointer comparisons/arithmetic after
compilation to LLVM’s intermediate representation. With the lazy implementa-
tion of the global disjointness changes in alive2, 6 additional function verification
queries for the gzip source code and 3 for the bzip2 source code could be solved
within a 60 second timeout by Z3. (A single function query generated by gzip
could not be solved anymore with the changes.)

Further Generalizations. The lazy approach of steps (i)-(ii) can be further gen-
eralized to lazily instantiate arbitrary (quantified) parts of the formula at any
positions in the formula and not necessarily constraints that can be added as
conjunctions to the formula.

Consider for example the following (simplified) formula that is used as well
by alive2:

∀M̄(
∧

1≤i<j≤n

(addri + sizei ≤ addrj ∨ addrj + sizej ≤ addri) ⇒ G[M̄]) (4)

4 http://people.csail.mit.edu/smcc/projects/single-file-programs/.

http://people.csail.mit.edu/smcc/projects/single-file-programs/

98 N. Bjørner et al.

where M̄ is a sequence of n memory blocks (with addresses addri and sizes sizei)
and G is the encoding of the problem.

We can use user-propagation as well for lazy encoding the conjunction in the
body of the quantifier in (4): we replace the premise of (4) by a user-function
that is on-demand refined via user-propagator, similarly as in the case of the
memory disjointness property of (1). That is, we replace (4) by

∀M̄(disjoint(M̄) ⇒ G[M̄]), (5)

where disjoint(M̄) denotes that all memory blocks M̄ are disjoint.
Upon quantifier instantiation in (5), we receive Created callbacks notifying

the user-propagator about the new instances of (5). Note that (1) uses no quan-
tifiers and the part that should be lazily instantiated occurs top-level. Therefore,
unlike (1), the lazily instantiated part of (5) (i.e. the disjoint instances) may be
assigned both to true and to false. Therefore, we need to consider the following
two cases in (5): (a) a disjoint predicate instance is assigned to true but at least
two memory blocks intersect, and (b) the disjoint predicate instance is assigned
to false, but there is no intersection between any memory blocks. For case (a),
we propagate

disjoint(M̄) ⇒ disjoint↑(M̄) (6)

whereas for (b) we propagate

disjoint↓(M̄) ⇒ disjoint(M̄), (7)

where disjoint↑ and disjoint↓ are formulas (over- and under-approximations)
that respectively witness the (non-)violation of (5). As usual in SMT solving,
coming up with good witnesses/justifications is a crucial performance point.
To this end, in case Mi and Mj intersect, addri + sizei ≤ addrj ∨ addrj +
sizej ≤ addri can be used as disjoint↑ to witness a violation. A potential witness
disjoint↓ for the non-violation is a total ordering of the memory blocks addrπ(1)+
sizeπ(1) ≤ . . . ≤ addrπ(n), where π is the current ordering of the addresses
reported by Fixed.

5 Using User-Propagators

In this section, we discuss existing and potential applications for user propagators
and interface functionality of relevance.

Optimization Modulo Theories, Aggregates and Scheduling. It has long
been recognized that branch and bound functionality can be added to SMT
solvers as custom theories [27,29]. The custom theory maintains a running sum
and bounds branches when the current aggregate exceeds a (best) bound. User
propagators are used by [8] to implement multi-objective branch and bound
optimization. Aggregates are also used to express packing constraints, namely
to express that the sum of time spent on tasks at a given workstation does not

Satisfiability Modulo Custom Theories in Z3 99

exceed the maximal time assigned to it. The functionality relies on callbacks for
Fixed and Conflict.

Partial Orders. Runtime Verification Inc.5 encodes type constraints over an
order-sorted type system as a reflexive-transitive extension of a relation on a
finite (but large) set of sorts. Axiomatizations are possible, but grow quadrati-
cally in the size of the domain. User-propagators allow delaying the instantiation
until they are really needed. The functionality relies on the callbacks from Fixed,
Eq, Created, and the Conflict function.

CP Domains. Similarly, user-propagation can be used to model combinatorial
problems mostly dealt with in the constraint satisfaction problem (CSP) commu-
nity in a conflict-driven way. In our extended-abstract [7] we encode the n-queens
problem lazily with the user-propagator such that only those parts of the prob-
lem encoding are kept in memory that are relevant for the currently considered
part of the search space. It strongly reduces run-time and memory compared
to full encodings in Z3, where all constraints are eagerly encoded either by bit-
vector arithmetic or a direct propositional translation. We could also show that
we can speed up enumerating propositional solutions by adding conflicts in the
Final callback.

We hypothesize that user-propagators apply to other CSP domains as well,
such as graph colouring problems. Additionally, well-known CSP heuristics, such
as using least/most constrained values or minimum remaining values, and even
very domain-specific branching heuristics can be encoded easily by the Decide
and NextSplit. The core functionality relies on callbacks from Fixed and Conflict.

Quantifier Instantiation/Checking. Quantifier reasoning in Z3 is based on
two built-in strategies: E-matching [24], using matching modulo congruence clo-
sures to find instantiations, and MBQI [13], that uses model checking of quanti-
fiers. Controls for quantifier reasoning are provided as coarse grained knobs, such
as programming patterns for E-matching [10] or assigning priorities to quanti-
fiers. In one experiment, we used user-propagators to manually find instantia-
tions using a cheap check: We considered the encoding of sorting-networks

WiringConstraints[a1, . . . , an] ∧ (8)
∀x1, . . . , xn, y1, . . . , yn(ComparisonSwaps[a1, . . . , an, x1, . . . , xn, y1, . . . , yn]

⇒ y1 ≤ . . . ≤ yn)

that claims that there is some wiring (given by Booleans or bit-vectors
a1, . . . , an), such that every input sequence of bits (x1, . . . , xn) results in a cor-
rectly sorted output sequence y1, . . . , yn. Without user-propagation, Z3 will find
a wiring that satisfies the wiring constraints and then check if this assignment
can result in a non-sorted sequence in a subquery. However, doing this check
manually already in the Final callback by a small amount of random inputs
results in a counterexample in about 90% of all invalid cases. Thus, the MBQI
subquery can be omitted and the instantiation (or a generalization of it) can be
5 https://runtimeverification.com/.

https://runtimeverification.com/

100 N. Bjørner et al.

propagated already by the user-propagator. Using this approach instead of Z3’s
default behaviour for finding a correct wiring with 5 input variables resulted
in a 30% speed-up and with 6 variables in 65% on average (25.5 instead of 42
seconds). The described experiment requires the Fixed and Final callback as well
as the Propagate function. We hypothesize that this use case is just a teaser for
many creative ways to integrate domain specific heuristics for quantifier reason-
ing.

Algebraic Datatypes. Z3’s decision procedure for Algebraic Datatypes does
not build explicit values. For example, if t is of type (List (_ BitVec 8))6,
a list of 8-bit bit-vectors, the actual instantiation of t to (cons 0x00 (cons
0xF2 nil)) is only available implicitly when first t is constrained to be
a cons-cell, then (tail t) is also constrained as a cons-cell, and finally
(tail (tail t)) is nil. User-propagators can learn the shape of an algebraic
datatype term t by registering the recognizer predicates ((_ is nil) t) and
((_ is cons) t). If the predicate ((_ is cons) t) is assigned to true, dually
((_ is nil) t) is assigned to false, the propagator can register the recognizers
((_ is nil) (tail t)) or ((_ is cons) (tail t)) until the shape of t is
determined.

Strings. The solvers z3str [5] and S3 [33] were implemented on top of the old
user-theory API [6]. To support string reasoning, it is relevant to integrate string
with arithmetic reasoning. The z3str solver augmented Z3’s API for pluggable
theories with functions to query the current value (but not fixed) of integer
variables and integer bounds. String solvers also benefit from a control loop
around CDCL to explore finite bounded models by increasing string lengths
incrementally. To our knowledge, there are currently five string solvers based
on modified versions of Z3’s source code. The prior experiences indicate that
additional interfaces for current values, bounds and iterative deepening would be
relevant for supporting external string solvers.

6 Related Work

A user-propagator can be seen as a revised version of the user-theory inter-
face [6]. However, this interface was rather complicated: it was meant mainly
for developers digging deep into the internals of SMT solving and does not fit
smoothly in the overall Z3 reasoning process.

The OpenSMT solver [9] predates Z3’s earlier effort and provides an inter-
face with a similar custom theory reasoning motivation. The solver was mainly
designed to allow users to build their own theory extensions by a minimalis-
tic but easy to use interface. Users have to provide implementations similar to
Z3’s Push, Pop, Fixed, and Final to build their own decision procedures. While
Z3’s Conflict, Propagate, and NextSplit can arguably be realized by pushing the
respective elements on a dedicated list, they are more restricted. For example,
in contrast to OpenSMT, Z3 has also built-in support for more complex features
6 Using SMT-LIB syntax.

Satisfiability Modulo Custom Theories in Z3 101

in the user-propagator like quantifiers and bit-vectors without sacrificing Z3’s
overall good performance. As such and as argued in Sect. 5, we believe that our
user-propagator within Z3 provides many new features and application domains
compared to [9].

Injecting custom code into solvers is not limited to SMT solvers. The built-in
SAT core clasp of the clingo answer set programming solver supports a so-called
theory propagation [14] feature. Both clasp and Z3 allow watching assignments to
Boolean variables and propagating clauses. In contrast to Z3’s user-propagator,
clasp’s theory propagator works on a more basic level. Whereas Z3 users deal
with terms of their formula that are internally mapped to the underlying vari-
ables, clasp users directly interact with the solver’s clauses. Further, clasp’s fea-
tures are limited to those relevant for SAT solving, roughly corresponding to
Z3’s Fixed, Final, and Decide callbacks.

Within constraint programming/optimization, IBM’s iLOG CPLEX opti-
mization studio supports CP optimizer extensions [16]. This API allows the user
to manually define the domain of variables in the problem encoding, by consid-
ering variable ranges depending on the current bounds of other variables during
search and reporting conflicting assignments. The system also allows querying
the bounds and values of fixed integer variables. The implementation inherits
from the programmable propagator system in [28]. Callbacks are also available
for MIP solvers, such as Gurobi [21].

The first-order prover SNARK [32] allows custom inference by providing
procedural attachments. These are used to add new rewriting rules and define
custom rules for instantiating/unifying selected function symbols. As SNARK
operates on quantified terms directly by resolution and unification, their custom
reasoning technique cannot be compared directly with the user-propagator and
the other approaches, as all other solvers discussed here work (internally) on
ground expressions and integrate with backtracking. However, unification on
quantified clauses can be simulated by propagating quantified terms if needed.

7 Conclusions and Future Work

We introduced user-propagators to support satisfiability modulo custom theories
in Z3. We argue that user-propagators open up new venues in SMT solving, as
demonstrated by our discussed application domains. Custom theory reasoning is
however not restricted to SMT solving, and as such improving custom extensions
in other kind of reasoners, such as SAT solvers, constraint solvers or first-order
reasoners, is an interesting venue for further work as well.

When to Use User-Propagators. Although we are convinced that custom
reasoning via plugins can enrich the power of SMT solving, user-propagation
should not be misunderstood as an answer to every kind of problem: A lot of
problem classes can be already solved efficiently by the means of built-in Z3 fea-
tures and do not require any special customization. We encountered three main
reasons for using user-propagation: Defining custom theories that would require

102 N. Bjørner et al.

using (higher-order) quantification (e.g., strings and graph reachability), utiliz-
ing additional knowledge (e.g., heuristics and quantifier testing/instantiation),
and lazily instantiating lengthy constraints that are unlikely to be used by the
solver in their full form (e.g., disjointness axioms and conflict driven encoding
of combinatorial problems).

While we believe it is impossible to give a general recipe when user propagator
should (not) be used, we list a few issues that can favorably solved based on user
propagators. As most callbacks (Fixed, Decide, Eq, Push, Pop) are called quite
frequently during search, the overhead of each of these calls should be calibrated
against the overhead of Boolean propagation by the CDCL solver. This can be
achieved e.g., by postponing checks and propagations to Final. As Z3 ignores
all conflicts/lemmas reported as soon as the solver’s state becomes inconsistent,
the user-propagator should try to report conflicts as soon as possible and abort
the current callback early. Although custom heuristics/quantifier instantiations
can speed-up reasoning considerably, Z3 has built-in support for a lot of addi-
tional options (e.g., alternative variable selection/assignment heuristics, multiple
MBQI instantiations, pattern for E-matching) that should be considered before
trying to come up with custom extensions. Furthermore, lemmas with many lit-
erals are prone to be ineffective for propagation and new expressions introduced
in lemmas may amplify the search space of case splits.

Enabling Scenarios. User-propagators were primarily designed for encoding
simple Boolean-based constraints, as those presented in [8], and extended to
allow building general decision procedures for potentially complex, not necessar-
ily Boolean-based, theories by observing equalities and declaring user-functions.
However, the user-propagation may be diverted to extend Z3 in other ways:

Many software analysis tools use SMT solvers as logical cores for their own
special-purpose reasoners. The number of potential extensions for classical SMT
queries is huge (new reasoning problems, different logical semantics, . . .). User-
propagation could be used to help people to integrate Z3 much tighter in their
own solver without having to change the Z3 source. Recently developed solvers
that could potentially benefit from the user-propagator include MonoSAT [4] for
monotonic theories (utilizing the MiniSAT [11] SAT solver that is well known
for its simplicity and adaptability) and Zord [15] for partial order constraints for
multi-threaded program verification (using a fork of the Z3 source code).

Another potential use-case of the user-propagator might be monitoring the
solver. In most cases in which the solver does not terminate or timeout, the
user does not get any relevant information why Z3 could not prove a claim or
find a model. The reasons for Z3 to fail can be numerous, including that the
solver focused on a rather uninteresting part of the formula or made too many
unrewarding quantifier instantiations. User-propagation can be used here as well
to trace the solver in a rather understandable way.

Future Interfaces. There are many possible extensions to the user-propagator
API. The case of string reasoning suggested there is functionality that can be
exposed in addition to the feature set presented in this paper. Notably, as arith-
metic reasoning based on Simplex does not fix values to arithmetic terms until

Satisfiability Modulo Custom Theories in Z3 103

all Boolean decisions have been made, the Fixed method does not apply for inte-
ger and real valued terms. Instead, it is possible to query a current viable value
and lower and upper bounds. To support iterative deepening requires giving a
solver access to initializing search state with assumptions that can be retracted
and refined. The internal interface for decision procedures in Z3 can register
a callback that is invoked whenever a new term is created for a given sort. It
allows solvers, such as the bit-vector solver, to track all bit-vector sub-terms.
We have not yet encountered a scenario where surfacing a sort-Created callback
has been necessary, but it will likely be. A flexible approach for Propagate to
produce certificates that can be checked by a trusted core is a significant topic
in itself. The functions Decide and NextSplit provide one half of the functionality
required to support branch prediction using machine learning [30], the other half
of the functionality relies on inspecting the global search state (the current set
of clauses). Access to the current search state and low level clause information
like in [14] would also be required for user defined in-processing.

Acknowledgements. We thank Nuno Lopes for his support on the alive2 use-cases.
The work described in this paper was supported by the ERC Consolidator Grant
ARTIST 101002685, the TU Wien Doctoral College SecInt, and the FWF project
SpyCoDe SFB-F85.

References

1. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 24

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). https://www.SMT-LIB.org

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Appli-
cations, 2nd edn., vol. 336, pp. 1267–1329. IOS Press (2021)

4. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories.
In: AAAI, pp. 3702–3709. AAAI Press (2015)

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: FMCAD, pp. 55–59. IEEE (2017)

6. Bjørner, N.: Engineering theories with Z3. In: Yang, H. (ed.) APLAS 2011. LNCS,
vol. 7078, pp. 4–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25318-8 3

7. Bjørner, N.S., Eisenhofer, C., Kovács, L.: User-propagators for custom theories
in SMT solving. In: SMT. CEUR Workshop Proceedings, vol. 3185, pp. 71–79.
CEUR-WS.org (2022)

8. Bjørner, N., Nachmanson, L.: Navigating the universe of Z3 theory solvers. In:
Carvalho, G., Stolz, V. (eds.) SBMF 2020. LNCS, vol. 12475, pp. 8–24. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63882-5 2

9. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 12

https://doi.org/10.1007/978-3-030-99524-9_24
https://www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1007/978-3-642-25318-8_3
https://doi.org/10.1007/978-3-030-63882-5_2
https://doi.org/10.1007/978-3-642-12002-2_12

104 N. Bjørner et al.

10. Dross, C.: Generic decision procedures for axiomatic first-order theories. Ph.D.
thesis, University of Paris-Sud, Orsay, France (2014). (in French)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

12. Feser, J.K., Madden, S., Tang, N., Solar-Lezama, A.: Deductive optimization of
relational data storage. Proc. ACM Program. Lang. 4(OOPSLA), 170:1–170:30
(2020)

13. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP. OASIcs, vol. 52, pp. 2:1–2:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

15. He, F., Sun, Z., Fan, H.: Satisfiability modulo ordering consistency theory for
multi-threaded program verification. In: PLDI, pp. 1264–1279. ACM (2021)

16. IBM-Corporation: IBM ILOG CPLEX Optimization Studio CP Optimizer Exten-
sions User’s Manual (2017). Version 12.8

17. Bayardo, R.J., Jr., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: AAAI/IAAI, pp. 203–208 (1997)

18. Hari Govind, V.K., Shoham, S., Gurfinkel, A.: Solving constrained horn clauses
modulo algebraic data types and recursive functions. Proc. ACM Program. Lang.
6(POPL), 1–29 (2022)

19. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE Computer Society (2004)

20. Lee, J., Kim, D., Hur, C.-K., Lopes, N.P.: An SMT encoding of LLVM’s memory
model for bounded translation validation. In: Silva, A., Leino, K.R.M. (eds.) CAV
2021. LNCS, vol. 12760, pp. 752–776. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81688-9 35

21. LLC, GO: Gurobi Optimizer Reference Manual (2022). Version 9.5
22. Lopes, N.P., Lee, J., Hur, C., Liu, Z., Regehr, J.: Alive2: bounded translation

validation for LLVM. In: PLDI, pp. 65–79. ACM (2021)
23. Mariano, B., Chen, Y., Feng, Y., Lahiri, S.K., Dillig, I.: Demystifying loops in

smart contracts. In: ASE, pp. 262–274. IEEE (2020)
24. de Moura, L., Bjørner, N.: Efficient e-matching for SMT solvers. In: Pfenning, F.

(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

25. de Moura, L.M., Bjørner, N.S.: Proofs and refutations, and Z3. In: LPAR Work-
shops. CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008)

26. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

27. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 18

28. Puget, J., Leconte, M.: Beyond the glass box: constraints as objects. In: ILCP, pp.
513–527. MIT Press (1995)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-030-81688-9_35
https://doi.org/10.1007/978-3-030-81688-9_35
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11814948_18

Satisfiability Modulo Custom Theories in Z3 105

29. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 484–498. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 38

30. Selsam, D., Bjørner, N.: Guiding high-performance SAT solvers with unsat-core
predictions. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 336–
353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 24

31. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: ICCAD, pp. 220–227. IEEE Computer Society/ACM (1996)

32. Stickel, M.E., Waldinger, R.J., Chaudhri, V.K.: A guide to SNARK. Technical
report, SRI International Menlo Park United States (2000)

33. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection
in web applications. In: SIGSAC, pp. 1232–1243. ACM (2014)

34. Zhang, H., Gupta, A., Malik, S.: Syntax-guided synthesis for lemma generation in
hardware model checking. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI
2021. LNCS, vol. 12597, pp. 325–349. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-67067-2 15

https://doi.org/10.1007/978-3-642-31365-3_38
https://doi.org/10.1007/978-3-642-31365-3_38
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-67067-2_15
https://doi.org/10.1007/978-3-030-67067-2_15

Bayesian Parameter Estimation
with Guarantees via Interval Analysis

and Simulation

Michele Boreale(B) and Luisa Collodi

Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”,
Università di Firenze, Florence, Italy

{michele.boreale,luisa.collodi}@unifi.it

Abstract. We give a method to compute guaranteed estimates of
Bayesian a posteriori distributions in a model where the relation between
the observation y and the parameters θ is a function, possibly involving
additive noise parameters ψ, say y = f(θ)+h(ψ). This model covers the
case of (noisy) ode parameters estimation and the case when f is com-
puted by a neural network. Applying a combination of methods based
on uncertain probability (P-boxes), Interval Arithmetic (IA) and Monte
Carlo (MC) simulation, we design an efficient randomized algorithm that
returns guaranteed estimates of the posterior CDF of the parameters θ,
and moments thereof, given that the observation y lies in a (small) rect-
angle. Guarantees come in the form of confidence intervals for the CDF
values and its moments. Comparison with state-of-the-art approaches on
odes benchmarks shows significant improvement in terms of efficiency
and accuracy.

Keywords: Bayesian parameter estimation · Interval arithmetic ·
Monte Carlo · P-box · Ordinary differential equations · Neural networks

1 Introduction

We investigate the problem of estimating posterior parameter distributions given
an observation. The proposed framework encompasses a wide variety of systems,
including ordinary differential equations (odes) with noisy state observations,
and neural networks. We take a Bayesian standpoint, that is, we assume a known
prior distribution on the unknown parameter values. Computationally, the most
widespread approach to Bayesian posterior estimation relies on Monte Carlo
(MC) simulation, and specifically on Markov Chain Monte Carlo (MCMC) [18,
27,29] and on the particles-based Sequential Monte Carlo (SMC) [9]. The use of
these techniques is justified by asymptotic results, saying that in the limit of an
infinite number of simulation steps or particles, the samples produced by these
methods converge in distribution to the exact posterior [29]. If the simulation
is performed with only a finite number of steps or particles, which of course is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 106–128, 2023.
https://doi.org/10.1007/978-3-031-24950-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_6

Estimates of Bayesian a Posteriori Distributions 107

always the case in practice, formal guarantees of correctness for the obtained
samples are extremely hard to achieve.

In this paper, we explore a hybrid approach, which combines imprecise prob-
ability in the form of P-boxes [11] (see below) with MC simulation. The goal is
to obtain sharp estimates of posterior quantities, such as Cumulative Distribu-
tion Functions (CDFs), and their expectations and higher moments, equipped
with formal guarantees of correctness. At the same time, we aim at reducing
the computational effort required by the simulation phase, in comparison to the
above mentioned classical MC methods. Instrumental in achieving these goals
are the following three elements: (1) leveraging the power of Interval Arithmetic
(IA) [28] in order to drastically reduce the parameter search space; (2) accepting
a level of controlled uncertainty on the computed estimates, introduced by the
MC simulation phase of our method; (3) switching from conditioning on an indi-
vidual observation y∗ to conditioning on a (small) set of potential observations
S∗. We give a more detailed account of our approach below.

The proposed method consists of two phases. The first phase is entirely deter-
ministic. We assume a functional relation among observations y, parameters θ
and noise ψ, say y = g(θ, ψ) := f(θ) + h(ψ), for known, real vector valued
functions f, h. With this functional model, the problem of estimating the prob-
ability of θ given that y ∈ S∗ can be recast as a problem of volume—or better,
probability measure—estimation (Sect. 2). Rather then going for a direct MC
estimation of the involved measures, though, we first reduce the search space:
we compute a tight overapproximation of the set of feasible parameters θ, those
that can actually be mapped into S∗ by g for some instance of the noise vector ψ.
Such an overapproximation can be effectively computed by relying on an interval
extension of the function f : via IA, one can often determine at once if a whole
rectangular region of the parameter space is unfeasible and discard it right away.
This process can be repeated in a branch-and-bound fashion, and gives rise to
a well-known refinement algorithm [22] (Sect. 3). The reduced parameter space
obtained in this way can be significantly smaller than the original one. In any
case, as discussed below, even a moderate volume reduction brings significant
benefits in the subsequent phase of MC estimation. Moreover, the reduced space
comes partitioned into axis-aligned hyper-rectangles, from which it is easy to
draw samples.

In the second phase, we use a randomized algorithm A to actually compute
the confidence intervals of the wanted posterior quantities (Sect. 4). We start by
building a pair of lower and upper approximations of the true posterior CDF: this
pair is commonly referred to as a P-box [11], as the graphs of the approximate
CDFs form an envelope for that of the exact CDF. Being the outcome of a
randomized algorithm, unlike classical ones our P-boxes have a confidence level
attached: such objects are known in the literature as confidence bands [23]. From
confidence bands, confidence intervals for the posterior expectation and other
moments can be easily built (Sect. 5). The core algorithm A is very simple, and
involves the extraction of a number of independent samples (θ, ψ), with θ drawn
from the reduced parameter space, and considering the fraction of these pairs

108 M. Boreale and L. Collodi

that are mapped into S∗ by g. Confidence levels for the resulting estimates can be
established relying on an exponential tail inequality for the sum of independent
random variables, Hoeffding’s bound [19]. We show that, by sampling from the
reduced parameter space, the number of samples necessary to guarantee a given
confidence level drops to a fraction μ2 of the number necessary with the original
space, where μ ∈ [0, 1] is the measure of the reduced space (Sect. 6).

We have put our algorithm at work on a few problems of parameter esti-
mation from the literature (Sect. 7). Specifically, we have considered: the set of
benchmarks for noisy ode parameter estimation proposed in [5], where DSA, a
method based on imprecise probability, is put forward; and a problem of feature
relevance estimation for neural network classifiers proposed in [1]. For odes,
we also offer a comparison with the results obtained with the state-of-the-art
approaches (DSA, MCMC, SMC) from [5]. This comparison shows clearly the
benefits of our method. A few concluding remarks are contained in the final
section of the paper (Sect. 8).

Related Work. We shall limit our discussion on related work to Bayesian infer-
ence, a framework where a prior distribution on parameters is presupposed.
Bayesian parameter inference has found application in a variety of fields, rang-
ing from biological models [7,15,31] to linear hybrid dynamical systems [14] and
more recently probabilistic programming [17]; cf. the extensive literature review
in [5, Sect. 1]. As argued above, a problem of MCMC/SMC Bayesian inference
methods is the difficulty of establishing formal guarantees for the obtained esti-
mates. Moreover, these methods are computationally demanding (cf. our Table 1
in Sect. 7) and require an explicit expression of the likelihood, the function map-
ping θ to the probability of obtaining a certain observation given θ; this expres-
sion is often not available. An Approximate Bayes Computation (ABC) app-
roach [25] has been proposed in recent years that also works in the absence of an
explicit likelihood, and is more similar in spirit to ours. However, ABC shares
the same difficulties as MCMC and SMC about formal guarantees, and is even
more demanding from a computational point of view.

Closely related to ours is a method recently proposed by Chou and Sankara-
narayanan [5] for ode parameter inference. This method too is based on impre-
cise probability [8,11,13,30], which is a way of dealing with uncertainty. Like
in our case, the parameter space is divided into disjoint cells. Differently from
our approach, first likelihoods bounds for each cells are computed analytically;
then these bounds are normalized to obtain bounds on posterior probabilities.
The method of [5] avoids MC estimation, hence the computed bounds on prob-
abilities are certain. On the contrary, in our case the MC phase introduces a
level of controlled aleatoric uncertainty, hence our bounds come equipped with
confidence levels. As clearly shown by the comparison in Sect. 7, the MC phase
allows us to trade off a small level of (un)certainty for greater efficiency and
accuracy. Additional differences between [5] and our approach are discussed in
Sect. 7.

An important computational ingredient of our approach is the SIVIA refine-
ment algorithm [21,22], which has been used in several works on parameter

Estimates of Bayesian a Posteriori Distributions 109

estimation. Notably, Jaulin in [20] proposes the use of IA for Bayesian estima-
tion, in the following sense: given α ∈ [0, 1] and a posterior probability density
function, compute a minimal volume region whose probability w.r.t. the density
equals α. Note that this is very different from the problem considered here: we
apply SIVIA to the model function f , not to the posterior density function. In
fact, we do not even presuppose an explicit knowledge of the posterior density.
Another recent proposal is the application of SIVIA to feature relevance in neural
networks [1]; this is further discussed in Sect. 7.

A proposed method for obtaining confidence bands from empirical CDF func-
tions relies on the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [10,23,26].
This is an exponential tail inequality that bounds the probability that the empir-
ical CDF deviates from the exact CDF by more than a given ε. When compared
to our measure-based approach, a serious drawback of empirical CDFs in the
present setting is that they require exact sampling from the posterior, a nontriv-
ial problem in itself. General exact sampling schemes, like rejection sampling [29],
might turn out to be very expensive. We leave for future work an experimental
comparison with the DKW approach.

2 Problem Statement

Let f : Rn −→ R
m and h : R� −→ R

m be functions, with f continuous. Here,
y = g(θ, ψ) := f(θ) + h(ψ) will be interpreted as a functional relation among
the observations y, the parameters θ and the (independent) nuisance parameters
ψ. For instance, the parameters ψ might represent additive noise: � = m, h =
identity, hence y = f(θ) + ψ. A probability measure1 μ on the space of all
parameters Rn×R

� is given that factorizes as μ(A×B) = μ0(A)·μ1(B), where μ0

and μ1 are two probability measures over Rn and R
�, respectively. The functions

f, h are assumed to be measurable under μ0, μ1, respectively. This induces a
triple of random variables (Θ,Ψ, Y) where Y := g(Θ,Ψ) = f(Θ) + h(Ψ), and
Θ and Ψ are independent. Moreover, in all applications, we shall consider a
μ0 with a finite-diameter support2. Given a (typically, small) measurable set of
observations S∗ ⊆ R

m, for any t ∈ (R ∪ {+∞})n one is interested in computing
the quantity F (t|S∗) defined below, which is the a posteriori CDF of Θ given
Y ∈ S∗. Here, ≤ on vectors is taken componentwise, Rn

≤t := {θ ∈ R
n : θ ≤ t}

and Pt := R
n
≤t × R

�. Provided Pr(Y ∈ S∗) > 0, we define:

F (t|S∗) := Pr(Θ ≤ t |Y ∈ S∗)

=
μ(Pt ∩ g−1(S∗))

μ(g−1(S∗))
. (1)

We introduce a notion of correctness for randomized algorithms that approxi-
mate F (t|S∗).
1 All probability measures considered here are assumed to be absolutely continuous

w.r.t. the Lebesgue measure, hence admit a density.
2 supp(μ0) is the smallest closed measurable set T ⊆ R

n s.t. μ0(T) = 1.

110 M. Boreale and L. Collodi

Definition 1 (algorithms for confidence intervals). Let f, h, g, μ and S∗ be
fixed as specified above. Consider a randomized algorithm A that, taken as input
a tuple t ∈ (R∪{+∞})n, returns as output a pair a real valued random variables,
written A(t) = [A(t),A(t)]. For any δ ≥ 0, we say that A approximates F (·|S∗)
with confidence 1 − δ if for each t ∈ (R ∪ {+∞})n

Pr
(A(t) ≤ F (t|S∗) ≤ A(t)

) ≥ 1 − δ.

For each t, the probability Pr(·) is taken only on the internal random choices in
the execution of A(t).

In other words, for each t, [A(t), A(t)] is a confidence interval for F (t|S∗). In
the above definition, we do not impose requirements on the accuracy of the
approximation, that is on the width of the interval [A(t), A(t)]: this can only be
judged a posteriori.

Based on an algorithm A for F (t|S∗), one can easily build P-boxes. We
shall limit our discussion to the important special case of marginal CDFs. For
λ ∈ R, let F (λ|S∗) abbreviate F (t|S∗) with t = (λ,+∞, ...,+∞); similarly, let
A(λ) := A(t). Note that F (λ|S∗) = Pr(Θ1 ≤ λ|Y ∈ S∗) is the first marginal
posterior CDF of Θ (the same reasoning applies to the other marginals). Now
choose k + 1 ≥ 2 node points on the real line, say λ0 < λ1 < · · · < λk, such that
F (λ0|S∗) = 0 and F (λk|S∗) = 1. Based on A(λ1), ...,A(λk−1), we define F−

and F+, stepwise lower and upper approximations of F , as follows. Below, for
the sake of uniform notation, we convene that A(λ0) denotes 0, and that A(λk)
denotes 1. Moreover j = 0, ..., k − 1.

F −(λ|S∗) :=

⎧
⎨

⎩

0 if λ < λ0

A(λj) if λ ∈ [λj , λj+1)
1 if λ ≥ λk

F+(λ|S∗) :=

⎧
⎨

⎩

0 if λ < λ0

A(λj+1) if λ ∈ [λj , λj+1)
1 if λ ≥ λk.

(2)

Note that F−, F+ are in turn random variables, depending on the random vari-
ables A(λ1), ...,A(λk−1). Importantly from the computational point of view,
these k−1 calls to A are not required to be independent: as we shall see, there is
a way of computing them at essentially the same cost of a single call (see Sect. 4,
Remark 2). The next result says that, with high probability, the pair (F−, F+) is
a P-box for the exact marginal posterior CDF F (λ|S∗). Otherwise said, the pair
(F−, F+) is a confidence band [23] for F (λ|S∗). The proof of the proposition is
an immediate consequence of the previous definition of A and of a union bound
on probabilities.

Proposition 1 (confidence bands). Suppose A approximates F (·|S∗) with
confidence 1 − δ. Then, with probability at least 1 − (k − 1)δ, we have that for
all λ ∈ R:

F−(λ|S∗) ≤ F (λ|S∗) ≤ F+(λ|S∗). (3)

From the confidence band (F−, F+), confidence intervals for a variety of statis-
tics, including moments of the true posterior, can be easily computed. We will

Estimates of Bayesian a Posteriori Distributions 111

detail this point in Sect. 5. We will design a correct core algorithm A under
certain mathematical and computational assumptions, listed below. Mathemat-
ically, we assume the following.

1. S∗ = I1 × · · · × Im is an axis-aligned hyper-rectangle (from now on, rectangle
for short), where each Ij = [aj , bj] (aj < bj) is a closed interval of R. In typical
use cases, S∗ might be a small rectangle centered at a given observation
y∗ ∈ R

m;
2. there exists an interval extension f of the function f , see the next section for

the precise definition.

Computationally, we assume we have efficient algorithms to:

(a) compute f, f , and h;
(b) compute μ0(R) for any rectangle R ⊆ R

n;
(c) for any non-zero measure rectangle R ⊆ R

n, sample from the the random
variable Θ|R obtained by conditioning3 Θ on the event Θ ∈ R;

(d) sample from Ψ .

In the next section, we will review in detail these prerequisites and explore some
instances of the model where they are fulfilled.

3 Interval Arithmetic, Discretized odeS, Neural
Networks

We review the mathematical and computational prerequisites we will rely upon
and explore possible instances of the model.

3.1 Interval Arithmetic, Coverings, Set Inversion

Interval Arithmetic (IA) [28] offers a framework to compute rigorously with
abstract versions of functions, where individual points are replaced by intervals.
The abstract functions conservatively extend their concrete counterparts (see
below). IA can be used, for instance, to compute certified bounds on the error
of numerical operations. In what follows, we quickly introduce the terminology
of IA we need.

Formally, an interval I is a finite, closed interval [a, b] ⊆ R. A rectangle is a
cartesian product of intervals, R = I1 × · · · Ik. We let IR denote the set of all
intervals included in R. For J = (I1, ..., Ik) ∈ IRk a tuple of intervals, we define
the rectangle [J] := I1 × · · · × Ik ⊆ R

k. An interval extension of f : Rn → R
m

is a function f = (f1, ..., fn) : IRn −→ IRm that is compatible with f , that is:

1. whenever x ∈ [I1, · · · , In] then f(x) ∈ [f(I1, ..., In)]; and
2. whenever Ii ⊆ I ′

i for i = 1, ..., n then [f(I1, ..., In)] ⊆ [f(I ′
1, ..., I

′
n)].

3 Explicitly, Θ|R is the random variable induced by the measure on R
n defined by

μR(R′) := μ0(R ∩ R′)/μ0(R).

112 M. Boreale and L. Collodi

A basic fact about IA is that the set of interval extensions is closed under compo-
sition: if f and g are interval extensions of f, g respectively, where f : Rn → R

m

and g : Rm → R
p, then g ◦ f is an interval extension of g ◦ f . By slight abuse

of notation, for a rectangle R = I1 × · · · × In, we let f(R) := [f(I1, ..., In)]. The
volume of the difference f(R) \ f(R) is a measure of how accurate the interval
extension f is with respect to the concrete function f . Functions most commonly
found in applications, including all polynomials, exponentials and trigonometric
functions, do possess accurate interval extensions [28]. Moreover, every mono-
tonic function has an interval extension.

Given a set A ⊆ R
n, a covering of A is a finite set of rectangles C =

{R1, ..., RK} such that: (a) A ⊆ ⋃K
i=1 Ri, and (b) the rectangles R1, ..., RK

are almost-disjoint according to a fixed measure μ0(·) on R
n, that is for each

1 ≤ i < j ≤ K, μ0(Rj ∩Ri) = 0 4. Given a function f : Rn → R
m and rectangles

S ⊆ R
m and R0 ⊆ R

n, we will be interested in computing a covering of the set

f−1(S) ∩ R0 = {x ∈ R
n : f(x) ∈ S} ∩ R0.

This problem is referred to as set inversion in [21,22], where a practical branch-
and-bound algorithm based on IA is offered: SIVIA, standing for Set Inversion
Via Interval Analysis. In our application of SIVIA, S will be a suitable superset
of S∗, and R0 a superset of the support of μ0. We give a pseudocode description of
SIVIA as Algorithm 1. SIVIA maintains a set L of rectangles, each represented as
a n-tuple of intervals, initially containing only R0. At each iteration, a rectangle
R is extracted from L, and IA is used to check if the f -image of R is: (a) entirely
inside S (feasible), or (b) entirely outside S (unfeasible), or (c) indeterminate.
In case (a), R is inserted into a set of inner rectangles, Cin, and will not be
reconsidered; in case (b), R is simply discarded; in case (c), R is bisected5 and the
resulting halves R1, R2 are inserted into L for later consideration. An exception
to the last rule is when the width of R is less than a given resolution threshold,
ρ: in this case, R is inserted into a set of outer rectangles, Cout and will not be
reconsidered. Informally, outer rectangles are those found at the border of the
covering. The output of the algorithm is the pair (Cin, Cout). Note that the set
theoretic operations involving f(R) and S in lines 5 and 7 can be efficiently
implemented, as both sets are rectangles.

Lemma 1. Algorithm1 always terminates returning a pair (Cin, Cout) of sets of
rectangles. Moreover, (1) Cin ∪ Cout is a covering of f−1(S) ∩ R0; (2)

⋃ Cin ⊆
f−1(S) ∩ R0.

Remark 1 (complexity). The worst case time complexity of SIVIA is exponential
in n [22], not surprisingly given its branch-and-bound structure. This theoretical
complexity is less of a concern for our purposes than it may seem at first glance,

4 E.g. Ri and Rj might share part of a face.
5 Explicitly, if R = I1 × · · · × In and Ij = [a, b] is the largest among the intervals

involved in the product, we have: width(R) := b − a, R1 := I1 × · · · × [a, c]× · · · × In

and R2 = I1 × · · · × [c, b] × · · · × In, where c = a+b
2

.

Estimates of Bayesian a Posteriori Distributions 113

Algorithm 1. SIVIA [22]
Input: S ⊆ R

m, a rectangle to be inverted; R0 ∈ IRn, a rectangle; f : IRn −→ IRm,
an interval extension of function f ; ρ > 0, a resolution threshold.
Output: (Cin, Cout), sets of rectangles such that Cin ∪ Cout covers f−1(S) ∩ R0.

1: Cin, Cout ← ∅
2: L ← {R0}
3: while L
= ∅ do
4: R ← remove(L) � extract a rectangle from L
5: if f(R) ⊆ S then � if the rectangle is feasible
6: Cin ← Cin ∪ {R} � then insert it into Cin

7: else if f(R) ∩ S
= ∅ then � otherwise if the rectangle is indeterminate
8: if width(R) < ρ then � if its width less than resolution
9: Cout ← Cout ∪ {R} � then insert it into Cout

10: else
11: R1, R2 ← Bisect(R) � otherwise bisect the rectangle
12: L ← L ∪ {R1, R2} � insert the resulting halves into L
13: end if
14: end if
15: end while
16: return (Cin, Cout)

for two reasons. First, we can set a relatively large resolution threshold ρ, as the
subsequent Monte Carlo estimation of μ0(f−1(S)) can greatly benefit even from
a conservative covering; this point will be made precise in Sect. 6. Second, in our
application of SIVIA, the set S will be typically quite small: as a consequence,
one may expect that in roughly half of the iterations the rectangle R will be
unfeasible hence will not lead to further bisections.

3.2 Discretized odeS and Neural Networks

Ordinary differential equations (odes) and neural networks are models that nat-
urally fit in the framework introduced in Sect. 2.

Let us consider odes first. Let z = (z1, ..., zp) be a vector of distinct variables.
Consider an initial value problem defined by: a system of p (nonlinear) odes that
also depend on a tuple of n parameters θ, written ż(t) = φ(z(t), θ), and a fixed
initial condition z(0) = z0 ∈ R

p. Under suitable regularity assumptions on φ,
for any θ∗ ∈ R

n a unique solution z(t; z0; θ∗) to this problem exists in a time
interval containing 0. Assuming φ, z0 and a prior probability distribution μ0(θ)
are known, the goal is to estimate the posterior distribution of θ given a vector
y∗ of k observations, obtained by a measurement of the solution z(t; z0; θ∗) at
fixed time points t1 < ... < tk, say y∗ = (y∗

1 , ..., y
∗
k) ∈ R

m, with y∗
i ∈ R

p and
m = k · p. Such measurements will be assumed to be affected by an additive
noise ψ ∈ R

m, generated by an independent random variable Ψ , induced by a
known probability measure μ1 over R

m. To recast this in the setting of Sect. 2,
let us fix a tolerance threshold γ > 0, let θ ∈ R

n, ψ ∈ R
m and define:

114 M. Boreale and L. Collodi

S∗ = Πk
i=1Π

p
j=1[y

∗
i,j − γ, y∗

i,j + γ]

f(θ) = (z(t1; z0; θ), ..., z(tk; z0; θ))
g(θ, ψ) = f(θ) + ψ.

An interval version of f(θ) can be computed via set reachability techniques for
odes, see e.g. [2–4]; but this is quite expensive. In our experiments, from the
outset we will replace the original model with an accurate discretized version of
the ode, obtained by applying Euler’s scheme, which we now quickly introduce.
For a fixed z0 and time step τ > 0, consider the recurrence relation (s ≥ 0):
z̃0 := z0 and z̃s+1 = z̃s + τ · φ(z̃s, θ). It can be seen that z̃s ≈ z(s · τ ; z0; θ), and
this approximation can be made arbitrarily accurate by choosing τ sufficiently
small. Making the dependence on θ explicit in the notation, let us denote by
z̃s(θ) the elements of this sequence. Assuming that each si = ti/τ is an integer
for i = 1, ..., k, we will replace the above f(θ) with the following

f(θ) := (z̃s1(θ), ..., z̃sk
(θ)) .

If φ has an interval extension φ, it is easy to compute f , an interval extension
of f .

Example 1 (simple ball/1). We use a toy model also considered in [5] as a running
example. The vertical motion of a ball obeys the following ode, where in z =
(z1, z2), z1 is the position, z2 is the velocity, and the parameter θ, on which
we want to make inference, is gravity acceleration: ż = (ż1, ż2) = φ(z, θ) :=
(z2,−θ). We take z0 := (0,−4) as the initial condition. Although this ode is
trivial to solve analytically, for the purpose of illustration we will consider its
Euler’s discretization. We choose τ = 0.1 and consider the recurrence relation
for z̃s = (z̃1,s, z̃2,s) given by: z̃0 := z0 and z̃s+1 := z̃s + τ · (z̃2,s,−θ). Making the
dependence on the parameter θ explicit, let us write this as z̃s(θ). We choose to
observe the system once at time t = 1, hence set f(θ) := z̃10(θ). For θ∗ = 9.8,
one has f(θ∗) = (−8.4,−13.8): we choose this as our observation y∗ and fix the
tolerance γ = 0.5, hence S∗ = [−8.9,−7.9] × [−14.3,−13.3]. We assume a noise
vector ψ ∈ [−1, 1]2 and let h be the identity: consequently, g(θ, ψ) := f(θ) + ψ
is the functional description of our model. To complete the description, we have
to specify the probability measures μ0 and μ1: we choose μ0 to be the uniform
distribution on the finite support R0 := [7, 12], and μ1 to consist of a pair of
independent truncated gaussian distributions on [−1, 1] of standard deviation
0.1. Application of SIVIA to this example is postponed to Example 2.

Let us now consider neural networks. Generally speaking, a trained feedfor-
ward neural network with k hidden layers [16] implements a function f : Rn −→
R

m defined as

f(θ) = (fk+1 ◦ fk ◦ · · · ◦ f0)(θ)

where each layer fj has the structure fj(ξj) = αj(Wj · ξj + bj): here, ξj is a
column vector, Wj , bj are fixed and known weight matrix and bias vector of

Estimates of Bayesian a Posteriori Distributions 115

appropriate dimensions, respectively, while αj is an activation function, applied
componentwise to Wj · ξj + bj ; here ξ0 = θ is seen as a column vector. Provided
each of the activation functions αj possesses an interval extension αj , an interval
extension f exists and can be easily computed. Commonly encountered activa-
tion functions, such as various versions of Linear Unit (LU), hyperbolic tangent,
and in general monotonic activation functions, do possess interval extensions.
Recasting this in the framework of Sect. 2, one can be interested in inferring
a posterior distribution of θ given the result of an application of the function,
y∗ = f(θ∗). Noise is not considered in this setting. Moreover, one is often inter-
ested in the restriction of f to few selected components of θ. This is the case in
the application to feature relevance, that will be discussed in detail in Sect. 7.

4 The Core Algorithm A
Consider equality (1). We will first discuss how to estimate the denominator
μ(g−1(S∗)). Let R0 ⊆ R

n be a rectangle, R0 ⊇ supp(μ0), the support of μ0:
in the discussion in Sect. 1, R0 corresponds to the original space, the one from
which one would sample θ in the absence of further information. We take the
feasible space to be

F := pr1..n

(
g−1(S∗)

) ∩ R0.

This set6 contains all θ’s that can be sampled and mapped into S∗ for some
choice of ψ. Now assume we have a covering C = {R1, ..., RK} of F : the union of
the rectangles in C forms the reduced space. We will discuss later in the section
how to compute C.

Lemma 2. μ(g−1(S∗))= μ
(
g−1(S∗) ∩ (R1 × R

�)
)

+ · · · + μ
(
g−1(S∗)∩

(RK × R
�)

)
.

Proof. Let A = R1∪· · ·∪RK . We have g−1(S∗)∩(R0×R
�) = g−1(S∗)∩(A×R

�),
because for every θ ∈ R0 \ A ⊆ Fc we have (θ, ψ) /∈ g−1(S∗) for any ψ ∈ R

�.
Then by elementary set-theoretic reasoning

g−1(S∗) ∩ (R0 × R
�) =

(
g−1(S∗) ∩ (R1 × R

�)
) ∪ · · · ∪ (

g−1(S∗) ∩ (RK × R
�)

)
.

By assumption, the rectangles R1, ..., RK are almost disjoint w.r.t. μ0, which
implies the above union is almost disjoint w.r.t. μ. Moreover, R0×R

� ⊇ supp(μ).
Consequently:

μ(g−1(S∗)) = μ
(
g−1(S∗) ∩ (R0 × R

�)
)

= μ
(
g−1(S∗) ∩ (R1 × R

�)
)

+ · · · + μ
(
g−1(S∗) ∩ (RK × R

�)
)
.

6 pr1..n is projection on the first n coordinates. Elements of F outside the support of
μ0 play no role.

116 M. Boreale and L. Collodi

Now each of the summands in Lemma 2, μ
(
g−1(S∗) ∩ (Ri × R

�)
)

for i =
1, ...,K, can be estimated via a MC simulation: informally speaking, one draws
a number Ni of samples (θ, ψ) from Ri × R

� and computes the fraction ri of
them such that g(θ, ψ) = f(θ) + h(ψ) ∈ S∗. Then

μ
(
g−1(S∗) ∩ (Ri × R

�)
) ≈ ri · μ(Ri × R

�)
= ri · μ0(Ri) (4)

(the approximate equality above will rendered rigorously below). Note that, by
our assumption of independence, (θ, ψ) can be sampled by separately drawing θ
from R

n via μ0|Ri
, and ψ from R

� via μ1, which we assume we know how to do.
Overall, the more tightly the union of the Ri’s overapproximates F , the more
efficient this process is: this will made precise in Sect. 6.

Concerning the actual computation of a covering C of the feasible space, we
proceed as follows. Let h, h be the vectors of inf’s and sup’s values of h over R�,
taken componentwise, possibly equal to ±∞. That is, for i = 1, ...,m

hi := inf
ψ∈R�

hi(ψ) hi := sup
ψ∈R�

hi(ψ).

The following lemma is an easy consequence of the definition of F . We let A+B
denote the Minkowski sum of two subsets of Rm, A+B := {a+b : a ∈ A and b ∈
B}, with the sum taken componentwise, and [−h,−h] := Πm

i=1[−hi,−hi].

Lemma 3. F ⊆ X0 := f−1(S∗ + [−h,−h]) ∩ R0.

Therefore a covering C of X0 is also a covering
of F , cf. the figure on the right. Accordingly, we
will consider coverings of X0 from now on. Moreover,
will always consider cases where both h and h are
finite. Note that too large values of |h|, |h| will tend
to make X0 coincide with R0, trivializing the proposed
method. A covering C of X0 can be computed via the
SIVIA algorithm presented in Sect. 3: C := Cin ∪ Cout,
where (Cin, Cout) = SIVIA(S,R0, f , ρ), with S := S∗ + [−h,−h] and ρ > 0 a
chosen resolution threshold. Note that S too is a rectangle in R

m, since S∗ is by
assumption.

The estimation of the numerator μ(g−1(S∗) ∩ Pt) in (1) proceeds similarly,
but g−1(S∗) must be replaced with g−1(S∗) ∩ Pt, where Pt = R

n
≤t × R

�. Also,
one must ensure that C refines R

n
≤t (see details in Algorithm 2, step 1). The

summation in Lemma 2 is replaced by one that involves only the rectangles
contained in R

n
≤t.

Having identified the basic ingredients, we proceed now to a formal presen-
tation of the core algorithm A: see Algorithm 2. The algorithm consists of three
steps. Step 1 is entirely deterministic, and just consists in the refinement of C,
if required. Step 2 introduces the basic random variables. Step 3 introduces the
random variables that correspond to the actual simulation part, consisting in an

Estimates of Bayesian a Posteriori Distributions 117

Algorithm 2. core algorithm A
Input: t ∈ (R ∪ {+∞})n, a n-tuple of real numbers or +∞.
Output: A(t) = [A(t), A(t)], a pair of random variables defining a confidence
interval for F (t|S∗).
Fixed parameters: S∗, f, h, μ0, μ1, as in Section 2; C = {R1, ..., RK}, a covering
of X0 s.t. μ0(Ri) > 0 for each i = 1, ..., K; N = N1 + · · · + NK (Ni ≥ 1), an
integer number of samples to draw in the simulation step (budget); ε > 0, an error
threshold.

1: If necessary, split the rectangles of C to make it a refinement of Rn
≤t, that is: for each

R ∈ C, either R ⊆ R
n
≤t or μ0(R ∩ R

n
≤t) = 0. Let Ht := {j : 1 ≤ j ≤ K and Rj ⊆

R
n
≤t}.

2: For each i = 1, ..., K, recalling that Θ|Ri
is drawn from Ri according to μ|Ri

(·),
define the random variable

Xi := μ0(Ri) · 1{g(Θ|Ri
,Ψ)∈S∗}.

3: For each i = 1, ..., K, let Xi1, ..., XiNi be Ni i.i.d. copies of Xi. Let X :=
∑K

i=1
1

Ni

∑Ni
j=1 Xij and Xt :=

∑
h∈Ht

1
Nh

∑Nh
j=1 Xhj . Return the following, where

the right endpoint by convention is 1 if X − ε < 0.

A(t) =
[A(t), A(t)

]
:=

[
Xt − ε

X + ε
,

Xt + ε

X − ε

]

.

overall N independent samplings of the random variables defined in the previ-
ous step, and in the construction of the actual confidence interval. Here ε > 0
represents an error threshold, which has an impact on the width of the returned
confidence interval. Note that the quantity ri · μ0(Ri) in (4) of the informal
derivation above, corresponds in step 3 of the algorithm to a realization of the
random variable

∑Ni

j=1
1

Ni
Xij = (1

Ni

∑Ni

j=1 1{g(Θ
(ij)
|Ri

,Ψ(ij))∈S∗}) · μ0(Ri), with the

superscript (ij) used here to denote different i.i.d. copies of a random variable.
As part of the parameters, we presuppose a partition of the sampling budget over
the K rectangles of the covering C, N =

∑K
i=1 Ni: an optimal way of determining

this partition will be discussed in Sect. 6.
We proceed to prove the correctness of A, which is based on the following

well-known result. Note that the random variables considered in the statement
are required to be independent, but need not be identically distributed.

Lemma 4 (Hoeffding’s bound [19]). Let Z1, ..., Zk be independent random
variables such that ai ≤ Zi ≤ bi for i = 1, ..., k. Let Z :=

∑k
i=1 Zi and ε > 0.

Then Pr(|Z − E[Z]| > ε) ≤ 2 exp(− 2ε2∑k
i=1(bi−ai)2

).

Theorem 1 (correctness of A). For any t ∈ (R ∪ {+∞})n, let
C, N,Ni,X,Xt, ε and A(t) be as defined in Algorithm2.

1. E[X] = μ(g−1(S∗)) and Pr(|X − E[X]| > ε) ≤ δ0 := 2 exp

⎛

⎝− 2ε2

∑K
i=1

μ0(Ri)
2

Ni

⎞

⎠.

2. E[Xt] = μ(Pt ∩ g−1(S∗)) and Pr(|Xt − E[Xt]| > ε) ≤ δ1 :=

2 exp

⎛

⎝− 2ε2

∑
h∈Ht

μ0(Rh)2
Nh

⎞

⎠.

118 M. Boreale and L. Collodi

3. F (t|S∗) = E[Xt]
E[X] ∈ [A(t), A(t)] with probability at least 1 − δ, where δ =

δ0 + δ1 ≤ 2δ0. In other words, A approximates F (·|S∗) with confidence 1 − δ.

Proof. We consider the three parts separately.

1. Let i ∈ {1, ...,K} and consider the definition of Xi in step 2, Xi = μ0(Ri) ·
1{g(Θ|Ri

,Ψ)∈S∗}. Now Z := 1{g(Θ|Ri
,Ψ)∈S∗} is a Bernoulli random variable with

success (1) probability p equal to

p = E[Z] = Pr(g(Θ|Ri
, Ψ) ∈ S∗) =

μ(g−1(S∗) ∩ Ri × R
�)

μ0(Ri)
.

Hence, for each i, j: E[Xij] = E[Xi] = μ0(Ri)E[Z] = μ(g−1(S∗) ∩ Ri × R
�).

Applying the linearity of expectation, we have:

E[X] =
K∑

i=1

1
Ni

Ni∑

j=1

E[Xij] =
K∑

i=1

1
Ni

· Ni · μ(g−1(S∗) ∩ Ri × R
�) (5)

=
K∑

i=1

μ(g−1(S∗) ∩ Ri × R
�) = μ(g−1(S∗)) (6)

where the last step stems from Lemma 2. The upper bound on Pr(|X −
E[X]| > ε) is obtained by applying Hoeffding’s bound (Lemma 4) to X, seen
as the sum of the N independent random variables Xij

Ni
, for i = 1, ...,K and

j = 1, ..., Ni. Here we take into account the fact that, for each such i, j we
have 0 ≤ Xij

Ni
≤ μ0(Ri)

Ni
.

2. The derivation for E[Xt] is similar to the previous case, but only the variables
Xhj for h ∈ Ht, corresponding to rectangles contained in R

n
≤t, contribute to

the summation. Therefore in place of (5)–(6), we have

E[Xt] =
∑

h∈Ht

1
Nh

Nh∑

j=1

E[Xhj] =
∑

h∈Ht

1
Nh

· Nh · μ(g−1(S∗) ∩ Rh × R
�)

=
∑

h∈Ht

μ(g−1(S∗) ∩ Rh × R
�) = μ(Pt ∩ g−1(S∗)).

3. The previous two parts imply that F (t|S∗) = E[Xt]
E[X] (note that by assumption

E[X] = μ(g−1(S∗)) > 0). The event E[Xt]
E[X] /∈ [A(t),A(t)] can be decomposed

as: (E[Xt]
E[X] < A(t)) or (E[Xt]

E[X] > A(t)). We analyse these two events separately.

(a) E[Xt]
E[X] < A(t) = Xt−ε

X+ε implies E[Xt] < Xt − ε or E[X] > X + ε, given the
positivity of X+ε. In turn, this implies |E[Xt]−Xt| > ε or |E[X]−X| > ε.

(b) E[Xt]
E[X] > A(t) implies X − ε > 0 and E[Xt]

E[X] > A(t) = Xt+ε
X−ε (note that

X − ε ≤ 0 would imply A(t) = 1 by definition of A, but E[Xt]
E[X] ≤ 1).

Given the positivity of X − ε, this in turn implies E[Xt] > Xt + ε or
E[X] < X − ε. In turn, this implies |E[Xt] − Xt| > ε or |E[X] − X| > ε.

Estimates of Bayesian a Posteriori Distributions 119

We have therefore proved that

F (t|S∗) /∈ [A(t),A(t)] implies (|E[Xt] − Xt| > ε or |E[X] − X| > ε).

In terms of probability, by applying the bounds obtained in part 1 and 2 and
a union bound, we obtain:

Pr
(
F (t|S∗) /∈ [A(t),A(t)]

) ≤ Pr (|E[Xt] − Xt| > ε) + Pr (|E[X] − X| > ε)
≤ δ1 + δ0 = δ.

From this inequality, the thesis for this part immediately follows.

Example 2 (simple ball/2). Consider the model defined in Example 1. For the
additive noise Ψ , we have the range h = (−1,−1) and h = (1, 1), hence,
in the notation discussed in this section, we can set S = [−9.9,−6.9] ×
[−15.3,−12.3] and X0 = f−1(S) ∩ R0. A covering C of X0 can be
computed calling SIVIA(S,R0, f , ρ), where we set the resolution to ρ =
0.2 × 5, that is the 20% of the width of R0. After five bisections, we
obtain a covering of X0 composed of four rectangles, specifically: C =
{[8.25, 8.875], [8.875, 9.5], [9.5, 10.75], [10.75, 11.375]}; we have μ0(∪C) = 0.625.
Now, suppose we want to estimate F (t|S∗) for t = 8.8. We set ε = 0.01,
N = 15000, and the Ni’s proportional to μ0(Ri), getting δ0 < 0.001 hence
δ < 0.002. We run A(t). In step 1, we refine C by splitting [8.25, 8.875] into
[8.25, 8.8], [8.8, 8.875], thus obtaining five rectangles R1, ..., R5. In step 2, we
define the basic r.v.’s Xi. In step 3, we run the actual simulation, in which
a value for X and one for Xt are computed. In detail, X will take on the
value

∑5
i=1 ri · μ0(Ri), where ri the fraction of the Ni i.i.d. samples (θ, ψ) with

θ ∈ Ri that are mapped into S∗; and Xt will take on the value r1 · μ0(R1)
where R1 = [8.25, 8.8]. In a specific simulation, we have found X = 0.592 and
Xt = 0.095, so that, taking into account ε = 0.01, the r.v. A(t) = [A(t),A(t)]
takes on confidence interval [0.141, 0.181].

Remark 2 (enhancements of A). We outline two straightforward enhancements
of the core algorithm A.

1. It is sometimes possible to identify rectangles R ∈ C such that g(R× [h, h]) ⊆
S∗. In case C = Cin ∪ Cout is a set of rectangles obtained with SIVIA, one can
check the rectangles R ∈ Cin using an interval version of g, g := f + [h, h]. In
any case, let C0 be the set of identified rectangles that satisfy this property.
Letting v0 := μ0(

⋃ C0) and v0,t := μ0(
⋃{R ∈ C0 : R ⊆ R

n
≤t}), one defines

X̃ := v0 +
∑

Ri∈C\C0

∑N
j=1 Xij and X̃t := v0,t +

∑
i∈Hts.t.Ri∈C\C0

∑N
j=1 Xij . A

tighter interval confidence Ã(t) can then be obtained using X̃, X̃t in place of
X,Xt. The confidence 1 − δ itself is modified accordingly, and gets sharper.
We omit the rather obvious details.

2. Suppose one must compute A(t) for t ∈ {t1, ..., tk}, rather than for a single
point. By a slight modification of A, it is possible to return confidence intervals
for each of the F (ti|S∗) in a single run. The required modifications of the core

120 M. Boreale and L. Collodi

algorithm A are: first, the covering C is ensured to refine all the Rn
≤ti

’s; second,
in step 3, all the variables Xt1 ,,Xtk

are defined, and the corresponding
k confidence intervals are computed accordingly. We denote by A(t1, ..., tk)
a call to this modifed algorithm. By a union bound, the probability that
F (ti|S∗) ∈ A(ti) for all i = 1, ..., k is at least 1 − kδ. This algorithm can be
used to compute the confidence bands described in Sect. 2.

5 Confidence Intervals for Posterior Moments

We concentrate on the first marginal of the posterior distribution, denoted by
F (λ|S∗) according to the notation introduced in Sect. 2. The same arguments,
of course, apply to the other marginals. In Sect. 2, we have seen how to com-
pute stepwise approximations of F (λ|S∗), starting from confidence intervals for
F (λ|S∗) for a set of node points, say A(λ1),,A(λk), see (2). The computed
approximation forms a confidence band, (F−, F+). Starting from this band, we
can compute confidence intervals for various statistics of F (λ|S∗). We first exam-
ine in detail the case of the expected value, E[Θ1|S∗].

In the result below, the hypothesis λ0 ≥ 0 can be removed by resorting to a
slightly more complicated formula.

Corollary 1. Let (F−, F+) be the confidence band defined in (2). Assume λ0 ≥
0. Then E[Θ1|S∗] ∈ [v−, v+] with probability at least 1 − (k − 1)δ, where:

v− :=λ0 +

k−1∑

j=0

(1 − F+(λj |S∗))(λj+1 − λj) v+ :=λ0 +

k−1∑

j=0

(1 − F −(λj |S∗))(λj+1 − λj).

Proof. According to a well known formula [12], for a positively supported random
variable Z with CDF F , one has E[Z] =

∫ +∞
0

(1−F (z))dz. Below, we apply this
formula to F (λ|S∗).

We have

E[Θ1|S∗] =
∫ +∞

0
(1 − F (z|S∗))dz ≤

∫ +∞

0
(1 − F −(z|S∗))dz

=

∫ λ0

0
dz +

∫ λk

λ0

(1 − F −(z|S∗))dz = λ0 +

k−1∑

j=0

∫ λj+1

λj

(1 − F −(z|S∗))dz

= λ0 +

k−1∑

j=0

∫ λj+1

λj

(1 − F −(λj |S∗))dz = λ0 +

k−1∑

j=0

(1 − F −(λj |S∗))(λj+1 − λj)

= v+

where, thanks to Proposition 1, the ≤ in the first row above holds true with
probability at least 1 − (k − 1)δ. The other inequality is proven similarly.

Example 3 (simple ball/3). Consider again the simple ball model introduced
in Example 1. We build a confidence band (F−, F+) as specified in (2). We

Estimates of Bayesian a Posteriori Distributions 121

choose k = 25 evenly spaced points in R0: λ0 = 7, λ1, ..., λ25 = 12. Then we
compute A(λ1), ...,A(λ24) as specified in Remark 2(2), this time setting SIVIA’s
resolution to ρ = 0.1×5, and choosing ε, N in such a way that (k −1)δ ≤ 0.001.
The obtained F− and F+ are plotted in Fig. 1, left. Relying on (F−, F+), we
apply Corollary 1, and obtain the confidence interval [v−, v+] = [9.65, 9.85] for
E[Θ|S∗].

A similar confidence interval can be obtained for the variance σ2 =
Var[Θ1|S∗], relying on the formula E[Z2] = 2

∫ +∞
0

z(1 − F (z))dz, which
again holds for a nonnegative Z. One gets σ2 ∈ [σ2−, σ2+] with probability
≥ 1−2(k−1)δ, where σ2− = 2[λ0+

∑k−1
j=0 λj(1−F+(λj |S∗))(λj+1−λj)]−(v+)2

and σ2+ = 2[λ0 +
∑k−1

j=0 λj+1(1 − F−(λj |S∗))(λj+1 − λj)] − (v−)2.

6 Optimal Allocation of Computational Resources

Generally speaking, optimality in this section should be intended in the sense
of algorithmic choices that minimize the expression of the Hoeffding bound. In
the following analysis, we refer to the core algorithm of Sect. 4. Suppose that a
covering C of X0 is given. The next result says how to optimally allocate a budget
of N samples among the K rectangles of C, that is a strategy that minimizes
the quantity δ0 defined in Theorem 1(1), which bounds (up to a factor of 2) the
probability of error of A.

Theorem 2. Let C = {R1, ..., RK} be a covering of X0, A =
⋃K

i=1 Ri with
μ0(A) > 0, N = N1 + · · · + NK (Ni ≥ 1) and δ0 as in Theorem 1(1). Then

δ0 ≥ 2 exp
(

− 2Nε2

μ0(A)2

)
. (7)

Equality in (7) holds if Ni = N μ0(Ri)
μ0(A) for i = 1, ...,K.

Proof. Recall that δ0 = 2 exp
(

− 2ε2
∑K

i=1
μ0(Ri)

2

Ni

)
. Consider the denominator inside

the exponential. We have

K∑

i=1

μ0(Ri)2

Ni
= N

K∑

i=1

Ni

N

(
μ0(Ri)

Ni

)2

≥ N

(
K∑

i=1

Ni

N

μ0(Ri)
Ni

)2

= N

(
K∑

i=1

1
N

μ0(Ri)

)2

=
μ0(A)2

N

where in the second step we have applied Jensen’s inequality to the convex
function λ → λ2. Now (7) is a direct consequence of the inequality just proved.
Finally, by inspection, equality in (7) holds true under the stated condition.

122 M. Boreale and L. Collodi

Fig. 1. Left: confidence band (δ ≤ 0.001) for the posterior CDF of the simple ball
model in Example 3. Right: number N of samples necessary to achieve δ = 0.001 as a
function of 1 − μ0(A). Here ε = 0.001.

With reference to the expression of δ0 in Theorem 1, the preceding theorem
elucidates two important facts. First, an optimal allocation of a budget of N

samples can be obtained by drawing Ni = N μ0(Ri)
μ0(A) samples from each rectangle

Ri of the covering. As we have assumed we can sample efficiently from rectangles,
we will adopt this strategy. Note that we will actually draw Ni := �N μ0(Ri)

μ0(A) �
samples per rectangle, leading to an actual number of samples slightly larger
than the allocated budget of N , but still less than N + K. With the actual
sampling strategy, we will still have

δ0 ≤ 2 exp
(

− 2Nε2

μ0(A)2

)
. (8)

Second, with the above optimal strategy, δ0 will only depend on the volume of
the set A that encloses X0: hence coverings that yield tighter enclosures A of X0

should be preferred. Letting δ = 2δ0 (cf. Theorem 1(3)) and holding ε fixed, the
number N = ln(1/2δ)

2ε2 μ0(A)2 of samples necessary to guarantee a confidence level
δ decreases quadratically as μ0(A) decreases: see the plot in Fig. 1. This part of
the result also explains why a covering-based based algorithm is, typically, by
far more convenient than a crude MC sampling from a rectangle R0 containing
X0: switching from R0 to A, the number of samples drops from N0 = ln(1/2δ)

2ε2

(recall that μ0(R0) = 1) to N0 · μ0(A)2.
The above discussion on budget allocation presupposes that a covering C is

given. What if the cost of building C must explicitly be taken into account? The
costs of refinement and of simulation are not easily comparable on the same
scale, mainly because, depending on the function f , computing f(R) can be
much more expensive than drawing a sample θ and computing f(θ). A practical
strategy might be to allocate a time budget for the construction of C and stop
the iterations of SIVIA as soon as this time expires, returning the current C =
Cin ∪Cout ∪L as a covering. If the extraction policy in step 4 of SIVIA privileges
rectangles with the largest width, this C is, practically speaking, the best covering
that can be obtained with the allocated time budget.

Estimates of Bayesian a Posteriori Distributions 123

Table 1. Comparison of A, DSA and MCMC on the benchmarks from [5]. Legend.
nz: number of state variables of the ode; nθ: number of parameters of the ode; θ∗:
values of θ used to generate the observed data; EA, confidence interval: confidence
interval for the posterior expectations E[Θi|S∗] (i = 1, ..., nθ), built via A (Corollary
1); tA: execution time (s) of A, including SIVIA; γ: half-side of S∗ (tolerance) for A;
EDSA,EMCMC,ESMC: estimates of posterior expectations obtained via DSA, MCMC
and SMC; tDSA, tMCMC: execution times (s) of DSA and MCMC.

124 M. Boreale and L. Collodi

Fig. 2. Confidence bands (δ ≤ 0.001) for the marginal CDFs of the two parameter
Fitzhugh-Nagumo ode. Left: θ1. Right:θ2.

7 Experiments

We have put a proof-of-concept implementation7 of A at work on a number of
examples concerning odes models and neural network classifiers.

7.1 Discretized odeS

We have put A at work on the benchmarks8 in [5]. We describe our experi-
mental setting with reference to the notation introduced in Subsect. 3.2. In all
cases, we apply A to an Euler-discretized version of the ode. The timestep τ
is chosen small enough to guarantee that, over the considered time horizon, the
discretized solution is in very good agreement with the solution obtained via a
traditional numerical ode integrator—specifically, Python’s odeint(). In all cases,
the observed data y∗ consists of a single measurement of the trajectory, taken at
the end of the time horizon: multiple measurements do not bring any advantage
in terms of accuracy, and introduce unnecessary computational burden. We con-
sider an additive gaussian noise Ψ centered at the origin, with standard deviation
as specified in [5,6], but truncated at ≥ 5 standard deviations (only in one case,
3) to the left and to the right of the origin. The set S∗ is a hypercube centered
at y∗ of side 2γ chosen experimentally, with small volumes ranging from 10−1 to
10−10. Initial conditions and true parameter values are fixed as specified in [5,6].
In all cases, the sampling budget N , the error threshold ε and the number k + 1
of node points in the construction of the confidence bands via A (Proposition 1)
are chosen so as to ensure a confidence 1 − δ ≥ 0.999. We focus on computing
confidence intervals for the posterior’s marginal expectations, as per Corollary
1. The obtained results are reported in Table 1. By way of example, in Fig. 2 we
also report the confidence bands for the marginal CDFs of an instance of the
Fitzhugh-Nagumo model.

For comparison, we have also reported the results of the DSA algorithm of
[5] and of classical MCMC and SMC estimation; all these figures are taken from
7 Python code and examples available at https://github.com/Luisa-unifi/

Posterior estimates.
8 With one exception, the Analog model, which has switching control features not

easy to represent in our framework.

https://github.com/Luisa-unifi/Posterior_estimates
https://github.com/Luisa-unifi/Posterior_estimates

Estimates of Bayesian a Posteriori Distributions 125

[5, Table 1]. In comparing theses results, one should be aware of the differences
between the theoretical and experimental settings here and in [5]. First, while
considering non discretized odes, [5] relies on sensitivity analysis for the esti-
mation of rectangle measures, which can be regarded as a form of—in general,
unsound—discretization of the parameter space; on the contrary, we start from
the outset with a discretized ode model, and do not introduce further levels of
discretization or unsoundness. Second, [5] provides an estimate of the posterior
density given an individual observation y∗; we consider the posterior probability
distribution given an observation set S∗ of small but positive measure. Third,
the estimate intervals provided by [5] are certain—modulo the unsoundness dis-
cussed above; in our case, confidence intervals by definition introduce an extra
level of aleatoric uncertainty, however small. The case of MCMC/SMC is still
different, because no formal guarantee is provided. Despite these differences, we
note that the estimates of the posteriors’ expected value produced by the three
approaches are overall remarkably similar. The execution time of A is up to
three orders of magnitude smaller than DSA’s and MCMC’s9. A final caveat
concerns the comparison with the true value θ∗ used to generate the observation
y∗. Although θ∗ is often taken as a proxy of the exact posterior expectation
E[Θ|S∗], one should remark that these two values need not coincide. Indeed, in
a few experiments, it is observed that θ∗ lies outside the returned confidence
interval: this is not an indication that the computed interval is ‘wrong’.

7.2 Feature Relevance in Neural Network Classifiers

We discuss an application of our algorithm to neural networks, in particular to
the quantification of feature relevance in classifiers. We illustrate this method-
ology in the case of a classifier for images of the MNIST dataset [24]. Con-
sider a classifier that maps items x consisting of p real valued features, say
x = (x1, ..., xp), into one of s categories. Possibly after normalization of domain
and range, without loss of generality one can regard such a classifier as a func-
tion C : [0, 1]p → [0, 1]s, where C = (C1, ..., Cs). Here it is understood that
x ∈ [0, 1]p is classified as i ∈ {1, ..., s} if and only if i = argmaxj=1,...,sCj(x) and
Ci(x) > l0, for a chosen threshold 1 > l0 ≥ 1/2—in particular, ties are ruled
out. Assume a given x∗ = (x∗

1, ..., x
∗
p) ∈ [0, 1]p is classified as i by C. One is

often interested in assessing the relative importance of a certain feature, or set
thereof, in obtaining such a classification: one speaks of feature relevance. Here
we follow a recent proposal in [1]. Consider the k-th feature (k ∈ {1, ..., p}) and
the function Ci,k : [0, 1] → [0, 1] defined by

Ci,k(θ) := Ci(x∗
1, ..., x

∗
k−1, θ, x

∗
k+1, ...x

∗
p).

Let μ(·) denote the uniform probability measure on [0, 1]. The relevance of the
k-th feature in classifying x∗ to i is defined as:

ηk(x∗) := 1 − μ
(
C−1

i,k ([l0, 1])
)
.

9 [5] does not report execution times for SMC, but we expect them to be in line with
MCMC’s.

126 M. Boreale and L. Collodi

Note that ηk(x∗) ∈ [0, 1). According to [1], the value ηk(x∗) reflects how
sensitive the classification of x∗ is to changes in the k-th feature, other features
held constant: values closer to 1 indicate higher sensitivity.

We recast the problem of estimating ηk(x∗) with guarantees in the framework
of Sect. 2. In the notation of that section, we let f = Ci,k, hence let n = m = 1,
and � = 0, that is no noise, which implies f = g and μ = μ0; moreover, we
let S∗ = [l0, 1]. Then μ

(
C−1

i,k ([l0, 1])
)

= μ
(
f−1(S∗)

)
. Letting R0 = [0, 1], we

define the variable X as in Algorithm 2 in Sect. 4. Then apply the first item of
Theorem 1 to find that μ

(
C−1

i,k ([l0, 1])
)

= E[X]. The same theorem says that X
approximates E[X] with confidence 1−δ0. As a consequence, 1−X approximates
ηk(x∗) with confidence 1 − δ0.

We have applied the above outlined methodology to the estimation of the
feature relevance for a classifier of the MNIST image dataset [24]. The considered
classifier is implemented by a feedforward neural network with two hidden layers
of respectively 30 and 10 neurons, using eLU (exponential LU) as an activation
function for all layers. The trained network exhibits an accuracy of around 96%
on a test subset of the MNIST dataset. For a few selected pictures from the
dataset, we have computed the relevance of each of the 28 × 28 = 784 features
(pixels) composing the image, applying the above methodology. Each pixel is
represented by a grayscale value in the interval [0, 1]. This way, for each selected
picture, we have obtained a 28 × 28 matrix of feature relevance values in [0, 1).
We have set δ0 ≤ 0.001. The average computation time for each pixel is about 6 s.
For a better visualization and interpretation of the results, a feature relevance
matrix can be converted to a colormap, called relevance map in [1]: see Fig. 3.
While, as expected, most pixels have relevance 0, there are a few clusters of
highly relevant pixels, located approximately in the void zones of the original
image. These empirical findings differ slightly from those reported in [1], where
highly relevant features tend to reproduce the contours of the represented digit.
The experimental settings here and in [1] are not exactly comparable though, as
[1] considers a neural network with a different structure, with only one hidden
layer of neurons.

Fig. 3. Example of relevance map. Left: original image from the MNIST dataset,
correctly classified as ‘4’. Center: relevance map, with brighter colours representing
more relevant features (black = 0, white = 1). Right: overlay of the first and second
image. Clusters of highly relevant pixels tend to occupy void zones.

Estimates of Bayesian a Posteriori Distributions 127

8 Conclusion

Assuming a functional relation between observations and parameters, we
describe a method to estimate the Bayesian posterior parameters distribution,
given that the observation belongs to a small set. Guarantees for the estimated
a posteriori quantities, including CDFs and moments thereof, are given in the
form of confidence bands or confidence intervals. We leverage IA to drastically
reduce the computational cost of MC simulation. In terms of accuracy and exe-
cution time, the method compares very favourably to state-of-the-art techniques
on benchmarks for noisy ode parameter estimation. An application to relevance
feature in neural networks has also been proposed.

As for future research, we would like to further investigate the scalability
of the method, studying applications to more complex models and possibly to
probabilistic programming. Another direction is the relation with Approximate
Bayesian Computation (ABC) [25] and Importance Sampling [29], which, among
well-established techniques, appear to be closest in spirit to our approach.

Aknowlegments. We wish to express our gratitude to Dr. Yi Chou and Prof. Sri-
ram Sankaranarayanan for providing us with detailed data and assistance on their
experimental setting [5,6]. Thanks to Prof. Fabio Corradi and Dr. Cecilia Viscardi for
stimulating discussions on MC methods in Bayesian statistics.

References

1. Adam, S.P., Likas, A.C.: A Set Membership Approach to Discovering Feature Rel-
evance and Explaining Neural Classifier Decisions (2022). arXiv:2204.02241

2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)

3. Boreale, M., Collodi, L.: Linearization, model reduction and reachability in non-
linear ODEs. In: Lin, A.W., Zetzsche, G., Potapov, I. (eds.) RP 2022. LNCS,
vol. 13608, pp. 49–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19135-0 4

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

5. Chou, Y., Sankaranarayanan, S.: Bayesian parameter estimation for nonlinear
dynamics using sensitivity analysis. In: International Joint Conferences on Artifi-
cial Intelligence Organization, pp. 5708–5714 (2019)

6. Chou, Y.: Detailed experimental set up of [5]. Personal Communication (2022)
7. Coelho, F., Codeco, C., Gabriela, M., Gomes, M.: A Bayesian framework for param-

eter estimation in dynamical models. PLoS One 6 (2011)
8. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.

Ann. Math. Stat. 38(2), 325–339 (1967)
9. Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-

tice. Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-4757-3437-9

http://arxiv.org/abs/2204.02241
https://doi.org/10.1007/978-3-031-19135-0_4
https://doi.org/10.1007/978-3-031-19135-0_4
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-1-4757-3437-9

128 M. Boreale and L. Collodi

10. Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. Ann. Math.
Stat. 27(3), 642–669 (1956). https://doi.org/10.1214/aoms/1177728174

11. Faes, M.G.R., Daub, M., Marelli, S., Patelli, E., Beer, M.: Engineering analysis
with probability boxes: a review on computational methods. Struct. Saf. 93, 102092
(2021)

12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II
(2nd edn. of 1966 Original edn.). Wiley, New York (1971). MR 0270403

13. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing
probability boxes and Dempster-Shafer structures. Technical report, SAND2002-
4015, Sandia Laboratories (2003)

14. Fox, E.B.: Bayesian nonparametric learning of complex dynamical phenomena.
Ph.D. thesis, MIT (2009)

15. Girolami, M.: Bayesian inference for differential equations. Theor. Comput. Sci.
408(1), 4–16 (2008)

16. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

17. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic
Programming Languages (2014). http://dippl.org/

18. Hastings, W.: Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika 57, 97–109 (1970)

19. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301) (1963)

20. Jaulin, L.: Computing minimal-volume credible sets using interval analysis; appli-
cation to Bayesian estimation. IEEE Trans. Signal Process. 54(9), 3632–3636
(2006). https://doi.org/10.1109/TSP.2006.877676

21. Jaulin, L., Walter, E.: Guaranteed nonlinear parameter estimation via interval
computations. Interval Comput. 3, 61–75 (1993)

22. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-
error estimation. Automatica 29(4), 10531064 (1993)

23. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference.
Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-74978-5

24. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. https://
yann.lecun.com/exdb/mnist/

25. Lintusaari, J., Gutmann, M.U., Dutta, R., Kaski, S., Corander, J.: Fundamentals
and recent developments in approximate bayesian computation. Syst. Biol. 66(1),
66–82 (2017)

26. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann.
Probab. 18(3), 1269–1283 (1990). https://doi.org/10.1214/aop/1176990746

27. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations
of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092
(1953)

28. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
29. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg

(1999)
30. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,

Princeton (1976)
31. Vanlier, J., Tiemann, C.A., Hilbers, P.A.J., van Riel, N.A.W.: Parameter uncer-

tainty in biochemical models described by ordinary differential equations. Math.
Biosci. 246(2), 305–314 (2013)

https://doi.org/10.1214/aoms/1177728174
http://dippl.org/
https://doi.org/10.1109/TSP.2006.877676
https://doi.org/10.1007/978-0-387-74978-5
https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1214/aop/1176990746

A Pragmatic Approach to Stateful Partial
Order Reduction

Berk Cirisci1(B) , Constantin Enea2 , Azadeh Farzan3 ,
and Suha Orhun Mutluergil4

1 IRIF, Université Paris Cité, Paris, France
cirisci@irif.fr

2 LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris,
Palaiseau, France

cenea@lix.polytechnique.fr
3 University of Toronto, Toronto, Canada

azadeh@cs.toronto.edu
4 Sabanci University, Tuzla, Turkey
suha.mutluergil@sabanciuniv.edu

Abstract. Partial order reduction (POR) is a classic technique for deal-
ing with the state explosion problem in model checking of concurrent
programs. Theoretical optimality, i.e., avoiding enumerating equivalent
interleavings, does not necessarily guarantee optimal overall performance
of the model checking algorithm. The computational overhead required
to guarantee optimality may by far cancel out any benefits that an algo-
rithm may have from exploring a smaller state space of interleavings.
With a focus on overall performance, we propose new algorithms for
stateful POR based on the recently proposed source sets, which are less
precise but more efficient than the state of the art in practice. We eval-
uate efficiency using an implementation that extends Java Pathfinder in
the context of verifying concurrent data structures.

1 Introduction

Concurrency results in insidious programming errors that are difficult to repro-
duce, locate, and fix. Therefore, verification techniques that can automatically
detect and pinpoint errors in concurrent programs are invaluable. Model check-
ing [7,37] explores the state space of a given program in a systematic manner
and verifies that each reachable state satisfies a given property. It provides high
coverage of program behavior, but it faces the infamous state explosion problem,
i.e., the number of possible thread interleavings grows exponentially in the size
of the source code. In this paper, we consider shared-memory programs running
on a sequentially consistent memory model, for which interleavings of atomic
steps in different threads are a precise model of concrete executions.

Partial order reduction (POR) [8,16,34,40] is an approach that limits the
number of explored interleavings without sacrificing coverage. POR relies on an
equivalence relation between interleavings, where two interleavings are equivalent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 129–154, 2023.
https://doi.org/10.1007/978-3-031-24950-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_7&domain=pdf
http://orcid.org/0000-0003-4261-090X
http://orcid.org/0000-0003-2727-8865
http://orcid.org/0000-0001-9005-2653
http://orcid.org/0000-0002-0734-7969
https://doi.org/10.1007/978-3-031-24950-1_7

130 B. Cirisci et al.

if one can be obtained from the other by swapping consecutive independent (non-
conflicting) execution steps. It guarantees that at least one interleaving from
each equivalence class (called a Mazurkiewicz trace [30]) is explored. Optimal
POR techniques explore exactly one interleaving from each equivalence class.
Beyond this classic notion of optimality, POR techniques may aim for optimality
by avoiding visiting states from which no optimal execution may pass. There
is a large body of work on POR techniques that address its soundness when
checking a certain class of specifications for a certain class of programs, or its
theoretical optimality (see Sect. 6). The set of interleavings explored by some
POR technique is defined by restricting the set of threads that are explored from
each state (scheduling point). Depending on the class specifications, assumptions
about programs, or optimality targets, there are various definitions for this set
of processes, including stubborn sets [40], persistent sets [16], ample sets [8], and
source sets [3].

The design of a model checking algorithm based on POR has to consider sev-
eral computational tradeoffs. First, such an algorithm can be stateful or state-
less [17], which corresponds to a tradeoff between memory consumption versus
execution time. Stateful model checking records visited states, thereby consum-
ing more memory, but stateless model checking performs redundant exploration
from already visited states. Second, the computation of the set of threads that are
explored from some state can be more or less complex. Focusing on theoretical
optimality, e.g., exploring exactly one interleaving from each Mazurkiewicz trace,
may make this computation more complex. This complexity in turn may dimin-
ish the overall performance when the potential for reducing the state space is
not large, i.e., most Mazurkiewicz traces contain a small number of interleavings.
In such a case, exploring more interleavings can take less time than computing
more precise constraints on the explored schedules. Third, POR algorithms may
compute the information they use for the purpose of reduction statically, by some
kind of conservative static analysis of the source code, or dynamically, during
the exploration of interleavings. Static computation is usually cheaper and less
precise than dynamic computation.

In this work, we investigate the use of POR from a practical point of view.
In the context of verifying concurrent data structures, we investigate the fol-
lowing research question: what tradeoffs in POR families of algorithms may
lead to practical net gains in verification or bug-finding times? We focus on the
application domain of verification of Java concurrent data structures using a
tool like Violat [9]. Concurrent data structures provide implementations of com-
mon abstract data types (ADTs) like queues, key-value stores, and sets. Their
correctness amounts to observational refinement [22,23,35] which captures the
substitutability of an ADT with an implementation [29]: any combination of
values admitted by a given implementation is also admitted by the given ADT
specification. Violat can be used to generate tests of observational refinement,
i.e., bounded-size clients of the concurrent data structure that include assertions
to check that any combination of return values observed in an execution belongs
to a statically precomputed set of ADT-admitted return-value outcomes. Violat

A Pragmatic Approach to Stateful Partial Order Reduction 131

is integrated with the Java Pathfinder (JPF) model checker [41], which enables
complete systematic coverage of a given test program and outputting execution
traces leading to consistency violations, thus facilitating diagnosis and repair.
We investigate POR algorithms implementable in JPF.

We study several stateful model checking algorithms with POR in the con-
text of Violat’s test programs. This choice was inspired by experiments that
demonstrated that it is much faster than the stateless variation (see Sect. 5).
We introduce POR algorithms that combine static and dynamic computations
of sets of threads to explore from a given state. In the context of stateful model
checking, static techniques may seem like the better option. A dynamic compu-
tation usually requires re-traversing the state space starting in an already visited
state which can be time consuming. Note however that re-traversing the state
space that is already loaded in memory takes less time than generating that
state space in the first place, which involves executing program statements.

Our starting point is a simple static POR algorithm, called S-POR, that
makes use of invisible transitions. These transitions are independent of any
transition of another concurrently-executing thread (they correspond to the safe
actions introduced in [24]). Based on a syntactic analysis of the code, we iden-
tify shared and synchronization objects, and assume that every transition that
does not access such an object is invisible. For clients of concurrent data struc-
tures, such objects correspond to class fields accessed in a method of the data
structure. Invisible actions include starting and joining threads, and method
calls and returns, for instance. The POR algorithm prioritizes the exploration
of invisible transitions over visible ones, i.e., if an invisible transition is enabled
in a given state then this is the only explored transition from that state, and
otherwise, all enabled transitions are explored. We demonstrate that S-POR
has a small overhead and the potential for substantial reductions, and therefore
leads to significant speedups with respect to standard JPF which employs a very
conservative heuristic for its POR (see Sect. 5).

S-POR is effective, but by the nature of being lightweight, does not always
reduce the state space effectively. We introduce two new algorithms as exten-
sions of S-POR, with the idea of performing a more aggressive reduction while
keeping the overhead reasonably low. They dynamically compute source sets,
which restrict the set of threads explored from a state with only visible enabled
transitions. We focus on source sets since they are provably minimal, i.e., the set
of explored threads from some state must be a source set in order to guarantee
exploration of all Mazurkiewicz traces. Moreover, any superset of a source set
is also a source set, which makes their computation less sensitive to the order
in which transitions from a given state are enumerated. This property does not
hold for other definitions such as stubborn sets, persistent sets, or ample sets.

The design principle behind our algorithms is to favor efficiency over the-
oretical optimality. Our algorithms are not theoretically optimal. However, we
demonstrate that they are more efficient than the optimal algorithm [3] where
the overhead of source set computation subsumes any gains from not exploring
the redundant interleavings.

132 B. Cirisci et al.

In general, a dynamic computation of source sets relies on tracking depen-
dencies between actions in the already explored executions. Our two proposed
algorithms differ in the way in which the tracking is performed: one is eager and
called DE-S-POR, and the other is lazy and called DL-S-POR. Intuitively, DE-
S-POR advances the computation of source sets for predecessors in the current
execution in a style similar previous dynamic POR algorithms, e.g. [3,13], while
DL-S-POR advances the computation of the source set in a given state only
when the exploration backtracks to that state and one must decide if a new
transition has to be explored.

The thesis of this paper is that when there is a big enough potential for
reducing the state space of a concurrent program, i.e., many Mazurkiewicz traces
are large enough, non-optimal but carefully customized algorithms, like DE-
S-POR and DL-S-POR, can have the largest impact compared to the two
extremes of the spectrum, that is, S-POR or theoretically optimal algorithms
like [3]. If the potential for reduction is small, then a simple static algorithm like
S-POR provides the best overhead-gain tradeoff.

To support this thesis, we implemented these algorithms in JPF and evalu-
ated them on a number of clients of concurrent data structures from the Syn-
chrobench repository [21]. Our evaluation shows that they outperform (1) their
variations that are directly built on top of the standard setup of JPF, (2) their
stateless variations, and (3) a best-effort implementation of a stateful variation
of the optimal algorithm in [3]. The lazy algorithm DL-S-POR is more efficient
than the eager DE-S-POR, and more efficient than S-POR on clients with a
big enough potential for reducing the state space.

More details and experimental results can be found in a full version [6].

2 Preliminaries

We model a concurrent (multi-threaded) program with a bounded number of
threads as a labeled transition system (LTS) L = (S, sI , Γ). We assume that
programs run under sequential consistency. A state in S represents a finite set
of shared objects visible to all threads and a finite set of local objects visible
to a single fixed thread, and a program counter for each thread. The state sI ∈
S is the unique initial state. Γ is a set of labeled transitions (s, a, s′) where
s, s′ ∈ S and a is an action (transition label) representing the execution of an
atomic statement in the code. Action a records the executing thread, its program
counter, and shared object accesses. There are two types of actions: (1) invisible
actions: a = (t, pc, ε) where a thread t executes a statement at program counter
pc that accesses no shared object, and (2) visible actions: a = (t, pc, r/w, o) where
t executes a statement at pc that reads (r) or writes (w) the shared object o.
For an action a, tid(a) is the thread id t, and op(a) and obj (a) refer to the third
and fourth components when a is visible (otherwise they are undefined).

A transition labeled by a visible (resp. invisible) action is called visible (resp.
invisible). In the context of a full-fledged programming language, invisible tran-
sitions are related to local computations, control-flow manipulations (e.g., start-
ing/stopping threads and calling or returning from a method), or accesses to

A Pragmatic Approach to Stateful Partial Order Reduction 133

“low-level” shared objects that are irrelevant for the intended (functional) speci-
fication. Visible transitions correspond to the execution of a single atomic state-
ment that accesses a shared object followed by a maximal sequence of local
statements that only modify the local states of that thread.

We assume that LTSs are deterministic and acyclic. An action a is enabled
in state s if there exists s′ such that (s, a, s′) ∈ Γ . We use next(s, t) to denote
the transition (s, a, s′) ∈ Γ for some a and s′ with tid(a) = t, if it exists, and
succ(s, t) to denote the successor s′ in this transition. Otherwise, we say that t
is blocked in s. The set enabled(s) is the set of threads that are not blocked in
s. A state s is final if enabled(s) = ∅.

Two actions a and a′ of different threads are independent if they are both
enabled in a state s and either one of them is an invisible action, or they are
both visible and access different shared objects (obj (a) �= obj (a′)), or they both
perform a read access (op(a) = op(a′) = r). The actions a and a′ are called
dependent, denoted by a � a′, if they are not independent. We assume that if
an action a enables or disables another action a′, then a � a′. Two transitions
are (in)dependent iff they contain actions that are (in)dependent.

An execution from a state s is a sequence of alternating states and actions
E = s0, a0, s1, a1, . . . , sn with s0 = s and (si, ai, si+1) ∈ Γ for each 0 ≤ i ≤ n−1.
The set of execution starting from s in the LTS L is denoted by E(L, s). An
initialized execution is an execution from sI . Initialized executions that end
with a final state are called full executions. We assume absence of deadlocks,
i.e., a full execution E contains every action enabled in a state of E.

The happens-before relation in an execution E, denoted by →E , captures the
causal relation among actions in E (the program order between actions of the
same thread and the order between actions accessing the same shared object
where at least one of them is a write). Given two actions a and a′ labeling
transitions in E, a →E a′ holds iff a � a′ and the transition labeled by a occurs
before the transition labeled by a′ in E. Two executions E and E′ are called
equivalent if →E=→E′ . For a full execution E, we use [E] to denote the set of
full executions E′ that are equivalent to E.

Given an LTS L = (S, sI , Γ) that models a concurrent program, an LTS
Lr = (Sr, sI , Γr) with Sr ⊆ S and Γr ⊆ Γ is called sound for L if for each full
execution E of L, there exists a full execution E′ of Lr that is equivalent to E.

2.1 Partial Order Reduction

The set of executions explored by POR techniques is defined by restricting the
set of threads that are explored from each state. The algorithms discussed in this
paper fall into two categories in this respect: persistent sets and source sets. Both
guarantee soundness, i.e., at least one execution from each equivalence class is
explored.

Intuitively, a set of threads T is persistent for a state s if in any execution
starting from s, the first transition that is dependent on some transition starting
from s of some thread t ∈ T is taken by some thread t′ ∈ T (t and t′ may
be equal). A set of threads T is a source set for s if for any execution starting

134 B. Cirisci et al.

from s, there is some thread in T that can take the first step, modulo reorder-
ings of independent transitions. We define persistent and source sets as sets of
threads, which correspond to sets of transitions in the classical sense, under the
assumption of determinacy of individual threads.

Definition 1 (Persistent Set [16]). A set of threads T is called a persistent
set for a state s if for every execution E from s that contains only transitions
from thread t′ �∈ T , every transition in E is independent of every transition
next(s, t) with t ∈ T .

For an execution E from a state s that ends in a final state, a thread t is
called a weak initial of E if there exists an execution E′ that is equivalent to E
and starts with a transition of t.

Definition 2 (Source Set [3]). A set of threads T is called a source set for a
state s if every execution from s that ends with a final state has a weak initial
thread in T .

An exploration where each state is expanded w.r.t. the threads in a persistent
or source set is sound (when finished it produces an LTS which is sound for the
“full” LTS of the program). However, source sets guarantee a stronger notion
of optimality [3]. There exist programs where any persistent set (for the initial
state) is strictly larger than a source set [2], but every persistent set is also a
source set. Note that source sets are monotonic in the sense that any superset
of a source set is also a source set, but this is not true for other definitions such
as stubborn sets, persistent sets, or ample sets.

3 Eager Source Set POR (DE-S-POR)

We present a first stateful POR algorithm that selects a sufficient set of threads
to expand a state based on two criteria: (1) a static criterion based on (in)visible
actions, and (2) a dynamic criterion based on source sets computed on-the-fly
during the exploration. Source sets are maintained eagerly for each new transi-
tion that is explored, in a style similar to previous algorithms, e.g. [3,13]. For
presentation reasons, we start with a simplified version that includes only the
static criterion and continue with the full version afterwards.

3.1 Safe Set POR (S-POR)

Algorithm 1 presents a stateful DFS traversal of a concurrent program, repre-
sented by an LTS, which restricts the traversal to so called safe sets. Figure 1
illustrates the core idea of this algorithm. The safe sets prioritize the exploration
of invisible transitions over visible ones.

For a state s, if there is an enabled thread t ∈ enabled(s) whose enabled
transition is invisible, then safeSet(s) = {t}. Otherwise, safeSet(s) contains all
the threads enabled in s, and s is called an irreducible state. In Fig. 1, only state
s′ is irreducible since any other state has at least one enabled invisible transition,
and all other states are reducible.

A Pragmatic Approach to Stateful Partial Order Reduction 135

Algorithm 1: Safe Set POR (S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s ← Stack.top;
3 if notVisited(s) then
4 forall the t ∈ safeSet(s) do
5 (s, a, s′) ← next(s, t);
6 Stack.push(s′); // transition (s, a, s′) is added to Lr

7 Explore();
8 Stack.pop();

notV isited(s) holds if s is final in Lr but enabled(s) �= ∅

safeSet(s) =

{
{t}, ∃t ∈ enabled(s) : next(s, t) = (s, a, s′) and a is invisible
enabled(s), otherwise

s

s

Fig. 1. Full traversal vs.
partial S-POR (in blue).
(Color figure online)

In Algorithm 1, Stack represents the stack of the
DFS traversal and it is considered to be a global vari-
able, and Lr records transitions explored during the
traversal. Note that the DFS traversal stops the explo-
ration whenever it visits a state s that has been visited
in the past (see the condition at line 3). The choice of
safe sets then provides additional savings on top of the
standard DFS traversal strategy. When the traversal
ends, Lr is sound (for the “full” LTS of the program).

Observe that Algorithm 1 can reduce the number
of visited states in a significant way. The diagram in
Fig. 1 corresponds to a fully explored program LTS
while the path marked by the blue arrow is the result
of Algorithm 1. It is easy to observe that one can obtain an exponential reduction
(with the base of the number of consecutive invisible transitions and the exponent
of the number of threads) with this algorithm.

3.2 Full Algorithm

Algorithm 2 builds on top of Algorithm 1 by computing on-the-fly source sets
to limit exploration of transitions from the irreducible states. More precisely,
reducible states are traversed according to the strategy of Algorithm 1 (i.e., only
one enabled invisible transition is followed) and for irreducible states, source sets
determine what transitions are followed. Since safe sets are also source sets, the
overall algorithm remains sound if the new source sets are computed correctly.

Figure 2 provides a declarative description of the key components of Algo-
rithm 2. For a state s in the current execution (stored on the stack), the
s.current set may be updated every time a new visible transition is explored,
and the s.backtrack set may be updated every time the exploration backtracks
to s. The update of s.backtrack relies on the sets s.current computed while
traversing successors of s.

136 B. Cirisci et al.

Algorithm 2: Eager Source Set POR (DE-S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s ← Stack.top;
3 if notVisited(s) then
4 if ∃t ∈ safeSet(s) then
5 s.backtrack ← {t}; s.current ← ∅; s.done ← ∅;
6 while ∃t′ ∈ s.backtrack \ s.done do
7 (s, a, s′) = next(s, t′);
8 Stack.push(s′);
9 s.done = s.done ∪ {t′};

10 s.current[t′] ← {t′};
11 if a is visible then UpdateCurr(a) ;
12 Explore();
13 s.backtrack ← UpdateBack(s, a);
14 Stack.pop();

15 else
16 As ← {a′ : a′ occurs in an execution from E(Lr, s)};
17 foreach a′ ∈ As do UpdateCurr(a′);

18 UpdateCurr(a)
19 E is the initialized execution of Lr following states in Stack;
20 (s, a′, s′) is the last transition of E with a�a′∧tid(a) �=tid(a′)
21 if (s, a′, s′) �= null then
22 s.current[tid(a′)] = s.current[tid(a′)] ∪ {tid(a)};

UpdateBack(s, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

safeSet(s), ∃t ∈ s.current[tid(a)] \ safeSet(s)

s.done, ∃T ⊂ s.done : T =
t∈T

s.current[t]

t∈s.done
s.current[t], otherwise

s.current[t]: set of threads that execute a transition dependent on next(s, t) which
appears after it in an execution.
s.done: set of threads whose transitions have been fully explored from s.
s.backtrack: when equal to s.done, a source set for s.

Fig. 2. Description of important components in Algorithm 2.

When a new transition (s, a, s′) from a state s is traversed, the active thread
tid(a) is added to the current set sl.current[t], where sl is the last state from
which the current execution performs a transition that is dependent on a such
that t �= tid(a) is the thread of that transition. See line 11 and the UpdateCurr
function. When a transition is followed to a visited state s, the same update
is done for every transition that is reachable from s, as if these transitions
are traversed again. See lines 16–17 and note that the declarative definition of

A Pragmatic Approach to Stateful Partial Order Reduction 137

s s s s s s

(a) (b) (c) (d) (e) (f)

s.c[2] = {2}
s.b = {1, 2, 3}
s.d = {1, 2}

s.c[1] = {1, 2} s.c[1] = {1, 2, 3}
s.d = {1}

s.c[2] = {2}

s.d = {1, 2}
s.b = {1, 2}

s.d = {1}
s.c[1] = {1}
s.d = {1}

1, w, o1 1, w, o1 1, w, o1

3, w, o1

2, r, o
2

3,−
,−

1,
w
, o

1

1,
w
, o

1

2, r, o
2

2, r, o1

Fig. 3. An example for Algorithm 2. Solid grey circles represent states stored on
the stack, hollow dotted circles represent states on the top of the stack, and solid
black circles represent states from which the exploration has been completed, i.e. their
backtrack sets are equal to their done sets. Transitions follow the same pattern: dot-
ted transitions are the latest to have been explored, solid grey ones are between states
on the stack, and solid black ones are the ones taken in the past. Solid black triangles
represent completed explorations starting from some state. We omit program counters
from actions. backtrack, current, and done are abbreviated by the first letter.

As at line 16 corresponds to a traversal of all the executions starting from s.
This may be time-consuming, and yet, such updates are unavoidable in stateful
POR algorithms because the current execution reaching s (stored on the stack)
may belong to a different Mazurkiewicz trace compared to a previous execution
reaching s (whose sequence of transitions leading to s was different).

When backtracking to a state s, the set s.backtrack is updated to take into
account the transitions which are dependent on and occur after the last explored
transition starting from s, called τs. If τs is a transition of thread t, the threads
performing those dependent transitions are stored in s.current[t]. If there is a
dependent transition τ performed by a thread t′ that is not in the safe set of
s, then s.backtrack is updated conservatively to contain the safe set of s. This
situation occurs when τ becomes enabled after executing some other thread
t′′ enabled in s, and observing an execution where τs occurs after τ requires
first executing the transition of t′′. Otherwise, the algorithm checks to see if a
subset T of threads enabled in s which have already been explored are sufficient
to cover s.current[t], and that T ’s transitions in s are independent from future
transitions of threads not in T . In that case, s.backtrack is assigned with s.done
and the exploration from s is halted. The subset of threads T defines a persistent
set and a source set for s. Since source sets are monotonic, s.done is a source
set for s. If none of the previous conditions hold, then s.current[t] is simply
added to s.backtrack. This computation is defined by the macro UpdateBack
in Fig. 2.

We illustrate the algorithm using Fig. 3. In (a), s is reached for the first time
and the transition labeled by (1, w, o1) is selected first to be executed. This is

138 B. Cirisci et al.

a visible transition of thread 1 that writes to the shared object o1. After this
transition is taken, s.current[1] and s.done become {1}. In (b), from some state
which is reached later, the transition labeled by action (2, r, o1) is selected to be
followed next. Since this action is dependent on (1, w, o1), thread 2 is added to
s.current[1]. Then in (c), a transition of thread 3 with an action dependent on
(1, w, o1) is taken, and 3 is added to s.current[1]. After backtracking to s in (d),
s.backtrack is updated by simply copying s.current[1]. The next transition to
be taken from s belongs to thread 2 which is in s.backtrack\s.done. This entails
the initialization of s.current[2] = {2} and the addition of 2 to s.done. In (e),
we backtrack to s again and without having changed s.current[2]. This means
that (2, r, o2) is independent of any later action of another thread. Therefore, {2}
is a persistent set of s and s.done = {1, 2} a source set of s, and s.backtrack
is assigned with s.done to stop the exploration from s, as pictured in (f).

This example shows that Algorithm 2 explores sets of transitions from a given
state s that may correspond to a source set which is not a persistent set. The
exploration in Fig. 3 stops when s.backtrack = s.done = {1, 2}, but the only
persistent set that includes thread 1 is {1, 2, 3}.

Theorem 1. Given a program represented by an LTS L, Algorithm 2 terminates
with an LTS Lr that is sound for L.

Proof. Based on the soundness of source sets (see Sect. 2.1), it is enough to show
that for every state s in Lr,

s.backtrack is a source set for s in L when it becomes equal to s.done (1)

Due to the condition of while in line 6 of Algorithm 2, equality of s.backtrack
and s.done is the only condition for stopping an exploration from a state s.
Therefore, if some successor state s′ of s is already explored and the search is
backtracked to s, then s′.backtrack = s′.done, because otherwise, while loop
in line 6 wouldn’t be terminated for s′. Since s.done keep tracks of threads
whose enabled transitions from s is already executed, the proof is reduced to
showing that the following proposition holds:

For any state s, s.backtrack is a source set when the exploration from
s is finished

(2)

If s is a reducible state, then only one transition is explored from s which is an
invisible transition. The fact that the thread performing this invisible transition
is a persistent set and hence a source set follows directly from definitions as every
persistent set is also a source set. When s.backtrack = s.done is different from
safeSet(s) = enabled(s) (which is trivially a source set), it must be the case that
there exists T ⊂ s.done such that T =

⋃
t∈T

s.current[t] due to the definition of

UpdateBack method. Now we show that T is a persistent set for s in L. Assume
by contradiction that this is not the case, then due to the definition of persistent
set, L admits an execution E starting from s that contains only transitions of

A Pragmatic Approach to Stateful Partial Order Reduction 139

threads different from those in T and at least one of these transitions τ of a
thread t′ �∈ T is dependent on some transition next(s, t) with t ∈ T . For every
t ∈ T , the successor state s′ of s reached by next(s, t) must be in Lr. Due to
deadlock freedom assumption, some transition that has the same transition label
with τ must be enabled eventually in some successor state of s′. Let E′ ∈ Lr be
that execution from s which starts with next(s, t) and contains such transition
that shares the same label with τ . Now we will move forward by showing that
the following proposition is correct, which will be used in the rest of the proof:

If Lr admits an execution E′′ from s whose last transition that
depends on and occurs before τ ′ is next(s, t) where act(τ ′) = act(τ)

and tid(τ ′) = tid(τ) = t′, then t′ ∈ T

(3)

When τ ′ is executed from some successor state of s, t′ is added to s.current[t]
(and eventually will be added to T due to UpdateBack method) by invoking
the UpdateCurr function as next(s, t) will be the transition in line 20 of Algo-
rithm 2. This contradicts the assumption of t′ �∈ T and therefore, it is enough to
show that proposition below is correct for concluding the proof:

If Lr admits such an execution E′, then Lr admits such an execution E′′ (4)

To show that Proposition 4 holds, we proceed by induction on the order of
next(s, t) when we go backwards in E′. The base step is trivial since E′′ can be
E′ when next(s, t) is the first transition. Assuming by induction that next(s, t)
is the n-th transition that is dependent on and occurs before τ ′ in E′ and Lr

admits such execution E′′, we show that this also holds when next(s, t) is (n+1)-
th transition with the same properties. Let s′′ be the state that is reached from s
by executing E′

p which is the prefix of E′ until (not included) the last transition
τ ′′ that is dependent on and occurs before τ ′ and hence, τ ′′ is enabled in s′′. Using
Proposition 3, as tid(τ ′) must be in T of s′′, there must be another execution E′′′

from s′′ such that τ ′′′ occurs before τ ′′ where act(τ ′) = act(τ ′′′) and tid(τ ′) =
tid(τ ′′′) = t′. Since in the execution starting from s as E′

p and continues as E′′′,
next(s, t) is the n-th transition that is dependent on and occurs before τ ′′′ (when
we go backwards), Proposition 4 is correct by using induction assumption. As
mentioned, this contradicts the assumption of t′ �∈ T in proof of Proposition 2
and thus, T is a persistent set and a source set. By monotonicity of source sets,
s.backtrack is also a source set. 	

4 Lazy Source Set POR (DL-S-POR)

Algorithm 2 tracks dependencies between transitions in an eager manner, i.e.,
every new transition leads to updates of current sets. In this section, we present
a lazy variation that computes such dependencies only when the exploration
backtracks to a state. The incentive is to compute such dependencies only when
needed to decide if the exploration from a given state should continue or not.
Also, this enables several optimizations when traversing the state space to com-
pute such dependencies that are not possible in the eager version.

140 B. Cirisci et al.

Algorithm 3: Lazy Source Set POR (DL-S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s ← Stack.top;
3 s.backtrack ← ∅; s.done ← ∅; s.current ← ∅;
4 while true do
5 if ∃t1 ∈ s.backtrack\s.done then
6 t ← t1
7 else
8 choose t ∈ safeSet(s)\s.done
9 (s, a, s′) = next(s, t);

10 Stack.push(s′);
11 if notVisited(s′) then
12 Explore();

13 if IsComplete(s) then
14 Stack.pop();
15 return

16 Stack.pop();

17 IsComplete(s)
18 forall the (s, a, s′) ∈ {s′ ∈ Lr : t = tid(a) �∈ s.done} do
19 s.done = s.done ∪ {t};
20 T ← safeSet(s);
21 if s.done = T ∨ (∀t′ ∈ T : isVisited(succ(s, t′)) ∨ t′ ∈ s.done)

then
22 add transitions (s, a, s′) to Lr;
23 s.done ← T ;
24 s.backtrack ← s.done;
25 return true;

26 s.current[t] ← {t};
27 As′ ← {a′ : a′ occurs in an execution from E(Lr, s

′)};
28 s.current[t] = s.current[t] ∪ {tid(a′) : a′ ∈ As′ and a � a′});
29 s.backtrack ← UpdateBack(s, a);
30 if s.backtrack = s.done then
31 return true;

32 return false;

Algorithm 3 presents our POR algorithm based on a lazy computation of
source sets. Rather than updating the current sets on-the-fly for states on the
stack, this algorithm re-traverses part of the state space each time it backtracks
to a state s in order to update just current sets of s. This is done in the
function IsComplete. As a result, s.done is populated with a new thread t just
before computing dependencies with t’s transition in s and not after executing
that transition in the style of Algorithm 2 (see line 19). For every transition τ

A Pragmatic Approach to Stateful Partial Order Reduction 141

s

s s(a)

(b)

(c)s.c[1] = {1, 2, 3, 4, 5}
s.c[2] = {2, 3}

s.d = {1, 2}
s.b = {1, 2, 3, 4, 5}

s.c[1] = {1, 2, 3, 4, 5}

s.c[3] = {3, 4}
s.c[4] = {2, 3, 4}

s.b = {1, 2, 3, 4}
s.d = {1, 2, 3, 4}

s.c[2] = {2, 3}1 1

2 2
3 3

4 4

55

s1 s1

s2 s2
s3

s4s4

s5

s3

s5

Fig. 4. An example exploration of Lazy Source Set POR. We use the same conventions
as in Fig. 3.

of a thread t from s that has been followed since the last time the algorithm
backtracks to s (i.e., t is not already in s.done – see line 18), the algorithm
updates s.current[t] to include all threads t′ that later execute a transition that
is dependent on τ (see lines 26–28). Subsequently, the s.backtrack set is updated
exactly in the style of Algorithm 2 (see line 29). If s.backtrack becomes equal
to s.done then IsComplete returns true and the exploration from s stops.

We explain how Algorithm 3 works by an example. Figure 4(a) illustrates a
scenario in which the exploration backtracks to a state s for the second time.
After the first backtrack to s, the state space starting from the successor s1
(resulted from following a transition of thread 1) was re-traversed in order to
compute s.current[1]. We assume that s.current[1] is changed to {1, 2, 3, 4, 5}
due to the dependent transitions encountered during this traversal. The set
s.backtrack is set to s.current[1] as the latter contains all the enabled tran-
sitions. The exploration continues with a transition from s of thread 2 which
is possible because thread 2 is in s.backtrack\s.done. After backtracking to
s for the second time, the re-traversal of the state space starting in s2 leads to
s.current[2] = {2, 3}. The set s.backtrack remains the same after this com-
putation. Then, in Fig. 4(b), when backtracking to s for the fourth time, we
assume that s.current[3] = {3, 4} and s.current[4] = {2, 3, 4}. Since transi-
tions of threads 2, 3, and 4 starting in s are independent of transitions of other
threads that occur later, we can conclude that {2, 3, 4} is a persistent set and
{1, 2, 3, 4} is a source set, and update s.backtrack to s.done. Therefore, the
exploration from s stops, as pictured in Fig. 4(c). The set of transitions explored
from s corresponds to a source set which is not a persistent set. The only per-
sistent set that includes thread 1 is {1, 2, 3, 4, 5}.

In both DE-S-POR and DL-S-POR, we optimize re-traversals after some
state s (computing As at line 16 and line 27, respectively) by not traversing all
the executions after s but just traversing each transition after s only once. DL-S-
POR is also amenable to other optimizations that are not possible or difficult to
implement for DE-S-POR. These optimizations for DL-S-POR either prevent

142 B. Cirisci et al.

some re-traversals inside the IsComplete method (see the if block at line 21)
or provide early exit conditions for them. All these optimizations are explained
in detail in the full version [6].

The soundness of Algorithm 3, stated in the following theorem, is also based
on proving that every state is expanded according to a source set. As in Theo-
rem 1, it can be shown that s.backtrack is a source set for s when it becomes
equal to s.done. When backtracking to a state, the current sets satisfy the
same specification as in the eager version.

Theorem 2. Given a program represented by an LTS L, Algorithm 3 terminates
with an LTS Lr that is sound for L.

Proof. Similar to the proof of Theorem 1, it is enough to show that Proposition 1
holds. To end an exploration from a state s, while loop in line 4 of Algorithm 3
must be terminated. For this, return statement in line 15 must be reached
and therefore, IsComplete in line 13 should return true. First, we show that
IsComplete method eventually returns true. Due to to method UpdateBack , we
know that s.backtrack can not contain a thread t �∈ safeSet(s). Hence, all the
transitions of s that can be executed are only from threads in safeSet(s) because
of lines 5–8. Each time a transition of s is executed and then the search backtracks
to s, IsComplete(s) is initiated. By the for loop in line 18, every transition
from s that is executed is considered and by line 19, we know that all these
transitions will be added to s.done. Thus, s.done eventually becomes equal to
safeSet(s) which satisfies the condition in line 21 and as a result, IsComplete
method returns true.

For IsComplete method to return true, either condition in line 21 or line 30
should be satisfied, where in both conditions s.backtrack must be equal to
s.done before the return statement. That’s why, equality of s.done and s.back-
track is the only condition for stopping an exploration from a state s. Similar to
Algorithm 2, since s.done keep tracks of threads whose enabled transitions from
s is already executed, the proof is deduced to showing that Proposition 2 holds
for Algorithm 3 as well. The part between Proposition 2 and Proposition 3 in the
proof of Theorem 1 applies totally the same and we show that T is a persistent
set for s in L using the fact that Lr admits such an execution E′ as it is concluded
in the same proof. Assume by contradiction that T is not a persistent set for s.
But as a result of backtracking to s after executing E′ and invoking IsComplete
method, t′ will be added to s.current[t] (and eventually to T due to UpdateBack
method) in line 28 of Algorithm 3 since the transition label of τ ′ is an element of
As′ (t′ �∈ T and act(τ) � act(τ ′)) in line 27. Since it contradicts the assumption,
T (and also s.backtrack by monotonicity of source sets) is a persistent set and
a source set. 	

5 Experimental Evaluation

We evaluate an implementation of the three algorithms S-POR, DE-S-POR,
and DL-S-POR, presented in Sect. 3 and Sect. 4, in the context of the Java
Pathfinder (JPF) model checker. As benchmark, we use bounded-size clients of
Java concurrent data structures.

A Pragmatic Approach to Stateful Partial Order Reduction 143

Implementation. We implement our algorithms as an extension of the
DFSHeuristic class in JPF. To identify (in)visible actions (for computing safe
sets), the only manual input is a list of class names that constitute the implemen-
tation of the concurrent data structure. The (in)visible transitions are automat-
ically inferred from these class names and Java synchronization-related native
methods used to implement compare-and-swap (CAS) for instance, which are
all known. Every action reading or writing a field of an object in one of these
classes, or which corresponds to a native method call are marked as visible (JPF
makes it possible to parse the Bytecode instructions executed in a transition
and determine the read/written object fields). Calls to the lock and unlock
methods of a lock object are both considered as writes to the lock object, and
therefore, visible. Any other action is considered as invisible. The dependency
relation between visible actions is defined as usual, i.e., two actions that access
the same object field, one of them being a write, are considered dependent. The
way we define (in)visible actions is sound because the clients we consider do not
contain additional computation. They simply call methods of the data structure
(from different threads), the verification goal being related to combinations of
return values observed in their executions.

Benchmarks. Our benchmark consists of bounded-size clients of 7 concurrent
data structures from JDK8 or Synchrobench [21]: two set implementations based
on coarse-grain and fine-grain locking, respectively (RWLockCoarseGrainedList-
IntSet and OptimisticListSortedSetWaitFreeContains), a set implementation
based on a binary search tree and CAS, a wrapper on top of java.util.concurrent.
ConcurrentLinkedQueue, java.util.concurrent.ConcurrentHashMap and a wrap-
per on top of it, and a hash map implementation based on coarse-grain locking.
Since these implementations update shared memory using compare-and-swap
or guarded by locks, they are data-race free and the restriction to sequential
consistency is sound.

To evaluate our algorithms, we sampled 75 clients of these data structures
where each client calls add and remove methods from 3 threads. Each thread
contains up to 5 calls. We varied the contention on shared objects using less or
more distinct inputs for add and remove methods.

We also use a number of buggy variations of the lock-based sets, RWLock-
CoarseGrainedListIntSet and OptimisticListSortedSetWaitFreeContains. We
used Violat to generate client programs of these variations that admit consis-
tency violations. Violat generates these client programs in three steps. First,
Violat enumerates arbitrary test programs of a given data structure based on
other inputs such as number of threads, maximum number of programs and
so on. Next, it computes expected (adt-admitted return-value) outcomes for
each test program by computing and then recording the outcomes of all possible
sequential executions. Finally, it runs the threads of each test program in par-
allel (using a stress testing tool or JPF), checks if the results are as expected,
and reports the test programs that violates linearizability which is witnessed by
observing an unexpected outcome.

144 B. Cirisci et al.

To introduce bugs in the selected data structures before inputting them to
Violat, we modify the placement of locks dynamically under certain conditions in
certain methods (e.g., when the set contains a specific element). These conditions
make it possible to control the difficulty of a bug. We consider four different
classes of clients based on the number of invocations to methods that lead to
bugs: (1) all of the invocations, (2) half of the invocations, (3) just a single
invocation and (4) none of the invocations. We sampled 310 clients of these
buggy variations with 3 threads and up to 4 calls per thread using Violat.

Results. We use S-POR, DL-S-POR, DE-S-POR to denote the three algo-
rithms presented in this paper. For the same algorithms, we use JPF, DL-JPF,
DE-JPF to represent the standard setup of JPF, and variations of the DL-S-
POR and DE-S-POR when the safe set of a state s contains all the enabled
threads in s (safeSet(s) = enabled(s)). The latter are used to evaluate the per-
formance of the eager and lazy approaches while disabling the benefit of the
static S-POR method. We compare implementations of S-POR, DL-S-POR
and DE-S-POR between them, with JPF, DL-JPF and DE-JPF, with their
stateless variations, and with a stateful variation of the optimal source set algo-
rithm in [3] (called O-DPOR). For a fair comparison, we implement O-DPOR
on top of S-POR without wakeup trees as their operations are quite expensive.
The experiments were run on a 2,3GHz Dual-Core Intel Core i5 processor with
8GB of RAM. We consider a timeout of 30min.

Fig. 5. Quantile plot of running times for S-POR, DL-S-POR, DE-S-POR and JPF
(for each algorithm, clients are ordered w.r.t. time in ascending order). The top left
part shows a scatter plot for comparing S-POR and DL-S-POR.

A Pragmatic Approach to Stateful Partial Order Reduction 145

Fig. 6. Quantile plot of running times for DL-JPF, DE-JPF, DL-S-POR and DE-
S-POR (for each algorithm, clients are ordered w.r.t. time in ascending order as in
Fig. 5).

Execution Time Comparison. Figure 5 and Fig. 6 present a comparison in
terms of execution time between different sets of algorithms. In Fig. 5, we com-
pare JPF, S-POR, DL-S-POR and DE-S-POR to observe the advantages of
using our algorithms against the standard setup of JPF. In Fig. 6, we compare
DL-S-POR, DE-S-POR, DL-JPF and DE-JPF for investigating the gain by
applying static filtering using S-POR as a baseline in dynamic algorithms. To
ease the interpretation of the results, for each algorithm, we order clients accord-
ing to execution time in ascending order. The numbers in the legend represent the
number of clients on which a given algorithm terminates before the timeout. We
omit O-DPOR because it times out for a large part of the benchmark, i.e., 39 out
of the 46 clients on which it was run (our implementation of the algorithm in [3]
does not support programs using locks which makes it inapplicable to the rest
of the clients). This optimal algorithm manipulates happens-before constraints
between steps in an execution, which results in a large overhead compared to
our simpler tracking of pairwise dependencies. We also omit stateless variations
of our algorithms since none of them finished before the timeout for any client.
Note that stateless versions are obtained by disabling the state matching1 in
JPF, which also disables storing the full reachability graph.

Results based on Fig. 5 show that the lazy source set computation in DL-S-
POR gives a significant speedup w.r.t. DE-S-POR (and intuitively O-DPOR)

1 JPF uses hashing for state matching which is theoretically imperfect and can lead
to incomplete results on rare occasions.

146 B. Cirisci et al.

while outperforming JPF. While S-POR processes few more clients faster w.r.t.
DL-S-POR, the scatter plot on the top-left of Fig. 5 shows that it is mostly in
favor to DL-S-POR when clients are observed individually (this plot is given in
logarithmic scale). DL-S-POR performs better than S-POR if there is a high
potential for reduction, i.e., the ratio between the number of states explored by
DL-S-POR over S-POR is smaller, and otherwise, S-POR is the best. This
supports the hypothesis that if the potential for reduction is high enough then a
carefully customized dynamic computation of source sets has a significant impact
on performance. DL-S-POR gives an average speedup (average of speedups for
each client) of 2.6 compared to S-POR. Overall picture suggests using a portfolio
model checker where S-POR and DL-S-POR are run in parallel.

Similar to Fig. 5, Fig. 6 illustrates a comparison in terms of time between
DL-S-POR, DE-S-POR, DL-JPF and DE-JPF. It shows that our algorithms
outperforms their variations that are directly built on top of JPF (DL-S-POR
against DL-JPF and DE-S-POR against DE-JPF). It also highlights the fact
that the lazy approach is still better than the eager one even when the lazy
approach is not based on S-POR.

Fig. 7. Quantile plot of memory consumption for S-POR, DL-S-POR, and JPF (for
each algorithm, clients are ordered w.r.t. memory in ascending order). The top left part
shows a scatter plot for comparing S-POR and DL-S-POR.

Memory Consumption Comparison. Figure 7 presents a comparison in
terms of memory consumption between S-POR and DL-S-POR, the most effi-
cient algorithms according to Fig. 5 and Fig. 6, against the standard setup of
JPF. We compared the maximum heap sizes using 74 clients that terminate
before timeout for all algorithms. In all the experiments, the highest allocated

A Pragmatic Approach to Stateful Partial Order Reduction 147

Fig. 8. Quantile plot of memory consumption for DL-JPF, DE-JPF, DL-S-POR and
DE-S-POR (for each algorithm, clients are ordered w.r.t. memory in ascending order
as in Fig. 7).

heap size is 4.2 GB. S-POR and DL-S-POR consume more memory than JPF
because they have to store the transition labels which are used to reduce the
explored state space. This overhead is unavoidable for any form of dynamic par-
tial order reduction. However, this memory consumption overhead is counterbal-
anced by significant speedups in terms of time. There is some memory overhead
also due to storing the sets of transition labels manipulated by the algorithms,
e.g., s.current. But since these sets are maintained only for irreducible states
and they are deleted for a state s when s.done equals s.backtrack, their effects
are not significant as storing transition labels.

For 32% of the clients, S-POR and DL-S-POR consume at most twice the
memory consumed by JPF. For these clients, the average memory overhead is
1.00 for S-POR and 1.34 for DL-S-POR while the average speedup against
JPF is 2.54 and 6.67, respectively. For 50% of the clients, S-POR and DL-S-
POR consume in between 2 and 4 times the memory used by JPF. The average
memory overhead for these clients is 2.20 for S-POR and 2.63 for DL-S-POR
while the average speedup is 2.86 and 7.81, respectively. For the rest of the
clients, the memory overhead is at most 7.79 and in average 4.11 for S-POR
and 5.39 for DL-S-POR while the average speedup 3.28 and 5.31, respectively.

The top-left part of Fig. 7 shows a pair-wise comparison of allocated maxi-
mum heap sizes in S-POR and DL-S-POR. These algorithms are incomparable
in general. After investigating the clients individually, the results confirm that
DL-S-POR consumes less memory than S-POR when there is a high potential
for reduction. The memory consumed for computing source sets is compensated
by the reduction in the state space.

148 B. Cirisci et al.

Fig. 9. Time comparison between the sequential and random strategies when DL-S-
POR enumerates all states, using clients with a single buggy invocation.

When we take a look at to Fig. 8, it illustrates a comparison between DL-
S-POR, DE-S-POR, DL-JPF and DE-JPF as in Fig. 5, but in terms of mem-
ory consumption. As in Fig. 7, we compared the maximum heap sizes of clients
that finished before it timed out for all algorithms, which are 58 of them. It
demonstrates that our algorithms are slightly better than their variations that
are directly built on top of JPF. This memory overhead is mainly because of
the additional transition labels that are not removed by the static filter. The
overhead is also due to storing the sets of transition labels manipulated by the
algorithms for all of the states rather than just for the irreducible ones but as
mentioned previously, this overhead is negligible. This figure also shows that
tracking dependencies with an eager approach does not increase the heap size
as much as the lazy approach, although they explore the same state space. This
difference in the memory overhead can not be explained by the memory that is
used for storing the sets of transition labels or LTSs as they are all the same
for both algorithms and they are kept in the same data structures. We suspect
that this overhead can be due to low-level, internal details of JPF or due to the
garbage collection process which might not keep up.

Transition Enumeration. The performance of dynamic POR algorithms is
generally affected by the order in which transitions starting in a certain state
are enumerated. This order influences the size of the computed persistent/source
sets. This order is also important when enumerating states only until the first
error is detected. We evaluate two strategies for defining this order, called sequen-
tial and random. For both of these strategies, the algorithm first selects a tran-
sition that leads to an already visited state, if one exists. We made this choice
because it leads to better performance (this is adopted by the standard setup
of JPF as well). In the sequential strategy, if there is no such transition, then
the algorithm picks a transition by respecting a pre-defined order between the
thread ids. In random, the next transition is selected uniformly at random.

A Pragmatic Approach to Stateful Partial Order Reduction 149

Fig. 10. Time comparison (log scale) between the sequential and random strategies
when DL-S-POR enumerates states only until the first error, using clients in which
all the invocations are buggy.

We ran S-POR and DL-S-POR, the best algorithms as shown above, with
all 6 permutations of the 3 threads for sequential and 3 different seeds for ran-
dom. For each strategy, we report the average and minimum time over different
instances.

We report on the impact of these enumeration strategies for DL-S-POR
when computing all reachable states (up to POR) in Fig. 9 and only until the
first error in Fig. 10. For S-POR, the enumeration strategy is not important for
the first case (since there is no dynamic computation of persistent/source sets)
and it has a similar effect as for DL-S-POR in the second case. These figures
consider clients of buggy libraries where a single or all method invocations are
buggy. The rest of the cases are presented in the full version [6] and are similar.

The results show that the random strategy performs better in average, shown
on the left of Fig. 9 and 10, but worse w.r.t. minima, shown on the right of Fig. 9
and 10.

The differences are more significant when enumerating states only until the
first error. Figure 10 reporting on this case is given in logarithmic scale. Thus,
the sequential strategy should be preferred when using a portfolio model checker,
i.e., parallel runs for each permutation of thread ids, and otherwise, the random
strategy is better. This follows also from the average standard deviation being
28 s for random and 60 s for sequential, where the means are 17 and 20 s, resp.
Note that, there is no significant impact observed from changing the algorithms
or the number of buggy method invocations in the clients.

6 Related Work

Over the years various different techniques have been introduced to deal with
the state explosion problem in model checking. For concurrent programs specifi-

150 B. Cirisci et al.

cally, depth bounding [17], delay bounding [10], context bounding (bounding the
number of context switches) [36], preemption bounding [32] and phase bounding
[5] bring tractability to the model checking problem and have been shown to be
effective for bug finding. These techniques are all incomplete, in the sense that
lack of bugs does not guarantee the correctness of the system.

POR techniques reduce the search space by not exploring multiple executions
from the same equivalence class, and are complete. Early techniques like ample
sets [7,24] and stubborn sets [15,20] were based on static analysis. Sleep sets
[15] were the first to guarantee optimality (one execution from each equivalence
class) [18] by keeping track of information from the history of the exploration.
However, they only prune transitions and cannot eliminate any state when used
alone. Persistent sets [19,25] generalized stubborn and ample sets and enabled
development of dynamic POR (DPOR) methods.

In [13], an efficient stateful algorithm is proposed for computing persistent
sets dynamically by considering currently explored parts of the state space. This
algorithm needed large memory for keeping discovered states and the happens-
before relation. The algorithm is improved in [42] with a more efficient state
representation, and in [43] with a summary-based representation of the happens
before.

In [28,39], stateless dynamic POR techniques were introduced. Source sets
[3] were introduced in the context of dynamic POR techniques such that the
state space can be reduced up to the limit that is theoretically possible. They
are generalizations of persistent sets and their relation with persistent sets are
investigated in [2]. Our DE-S-POR and DL-S-POR algorithms are relying on
source sets but operate in the context of stateful model checking. The technique
from [33] is similar to our S-POR algorithm for the GPU setting, but their
choice of invisible actions is different than ours.

While we focus on shared-memory programs running on top of a sequential
consistency memory model, POR techniques have been also investigated in the
context of weak memory models such as TSO or C11, e.g., [1,4,26,27].

7 Conclusions

We proposed two algorithms for stateful model checking based on POR which
build on the recently proposed source sets. Our algorithms focus on overall per-
formance instead of theoretical optimality. Their evaluation in the context of
JPF shows that they outperform a theoretically optimal algorithm [3], and a
simple static POR algorithm when there is a big enough potential for reducing
the state space. This suggests that an effective model checker would have to
run S-POR and DL-S-POR in parallel, and depending on the amount of par-
allelism resources available, with different instances of the sequential or random
strategies for enumerating transitions starting in a certain state.

Reductions based on Mazurkiewicz trace equivalence [30] has also been used
in proof simplification for concurrent verification [12] hypersafety verification
[11]. A relevant problem of interest is the automatic inference of inductive invari-
ants [14,31,38] that prove the correctness of concurrent libraries. The sound

A Pragmatic Approach to Stateful Partial Order Reduction 151

LTS’s that are computed in this paper for the verification of individual instances,
each provide a data point in what the inductive invariant for a most general client
may look like. The key observation is that the inductive invariant for a most gen-
eral client under some reduction scheme may be substantially simpler than an
inductive invariant for all executions of the most general client. An interesting
direction of future work is to investigate if the results of a sequence of individ-
ual client tests can be generalized to the discovery of a complete invariant (and
hence a complete proof) under an appropriate reduction scheme. DL-S-POR
provides an efficient way to produce data for a data-driven inference algorithm.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. Acta Inform. 54(8), 789–818 (2017).
https://doi.org/10.1007/s00236-016-0275-0

2. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Comparing source sets and per-
sistent sets for partial order reduction. In: Aceto, L., Bacci, G., Bacci, G., Ingólfs-
dóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools.
LNCS, vol. 10460, pp. 516–536. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63121-9_26

3. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation
for optimal dynamic partial order reduction. J. ACM 64(4), 25:1–25:49 (2017).
https://doi.org/10.1145/3073408

4. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA),
135:1–135:29 (2018). https://doi.org/10.1145/3276505

5. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_31

6. Cirisci, B., Enea, C., Farzan, A., Mutluergil, S.O.: A pragmatic approach to stateful
partial order reduction (2022). https://arxiv.org/abs/2211.11942

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications: a practical approach. In:
Wright, J.R., Landweber, L., Demers, A.J., Teitelbaum, T. (eds.) Conference
Record of the Tenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 1983, pp. 117–126. ACM Press (1983).
https://doi.org/10.1145/567067.567080

8. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

9. Emmi, M., Enea, C.: Violat: generating tests of observational refinement for con-
current objects. In: Dillig, I., Tasiran, S. (eds.) CAV 2019, Part II. LNCS, vol.
11562, pp. 534–546. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25543-5_30

10. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 411–422. ACM (2011). https://doi.org/10.1145/1926385.1926432

https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1145/3073408
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-642-28756-5_31
https://arxiv.org/abs/2211.11942
https://doi.org/10.1145/567067.567080
https://doi.org/10.1007/978-3-030-25543-5_30
https://doi.org/10.1007/978-3-030-25543-5_30
https://doi.org/10.1145/1926385.1926432

152 B. Cirisci et al.

11. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019, Part I. LNCS, vol. 11561, pp. 200–218. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_11

12. Farzan, A., Vandikas, A.: Reductions for safety proofs. Proc. ACM Program. Lang.
4(POPL), 13:1–13:28 (2020). https://doi.org/10.1145/3371081

13. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model check-
ing software. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, 12–14 January 2005, pp. 110–121. ACM (2005).
https://doi.org/10.1145/1040305.1040315

14. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Bodík, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January
2016, pp. 499–512. ACM (2016). https://doi.org/10.1145/2837614.2837664

15. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided Verification, Proceedings of
a DIMACS Workshop 1990, New Brunswick, New Jersey, USA, 18–21 June 1990.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
3, pp. 321–340. DIMACS/AMS (1990). https://doi.org/10.1090/dimacs/003/21

16. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem. Lecture Notes in Computer Science,
vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7_31

17. Godefroid, P.: Model checking for programming languages using verisoft. In: Lee,
P., Henglein, F., Jones, N.D. (eds.) Conference Record of POPL 1997: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, Paris, France, 15–17 January 1997, pp. 174–
186. ACM Press (1997). https://doi.org/10.1145/263699.263717

18. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. Formal
Methods Syst. Des. 7(3), 227–241 (1995). https://doi.org/10.1007/BF01384077

19. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
56922-7_36

20. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of
deadlock freedom and safety properties. Formal Methods Syst. Des. 2(2), 149–164
(1993)

21. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: Cohen, A., Grove, D. (eds.) Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, 7–11 February 2015, pp. 1–10. ACM (2015). https://doi.org/
10.1145/2688500.2688501

22. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1_14

23. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf.
Process. Lett. 25(2), 71–76 (1987)

24. Holzmann, G.J., Peled, D.A.: An improvement in formal verification. In: Hogrefe,
D., Leue, S. (eds.) Formal Description Techniques VII, Proceedings of the 7th

https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1145/3371081
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1090/dimacs/003/21
https://doi.org/10.1007/3-540-60761-7_31
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/BF01384077
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1145/2688500.2688501
https://doi.org/10.1145/2688500.2688501
https://doi.org/10.1007/3-540-16442-1_14

A Pragmatic Approach to Stateful Partial Order Reduction 153

IFIP WG6.1 International Conference on Formal Description Techniques, Berne,
Switzerland, 1994. IFIP Conference Proceedings, vol. 6, pp. 197–211. Chapman &
Hall (1994)

25. Katz, S., Peled, D.A.: Verification of distributed programs using representative
interleaving sequences. Distrib. Comput. 6(2), 107–120 (1992)

26. Kokologiannakis, M., Vafeiadis, V.: HMC: model checking for hardware memory
models. In: Larus, J.R., Ceze, L., Strauss, K. (eds.) ASPLOS 2020: Architectural
Support for Programming Languages and Operating Systems, Lausanne, Switzer-
land, 16–20 March 2020, pp. 1157–1171. ACM (2020). https://doi.org/10.1145/
3373376.3378480

27. Kokologiannakis, M., Vafeiadis, V.: GenMC: a model checker for weak memory
models. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021, Part I. LNCS, vol. 12759, pp.
427–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_20

28. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuris-
tics for dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer,
G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12029-9_22

29. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

30. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986, Part II. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-17906-2_30

31. Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of rep-
resentation invariants. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, 15–20 June 2020, pp. 1–15. ACM
(2020). https://doi.org/10.1145/3385412.3385967

32. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation, San Diego, California, USA, 10–13 June 2007, pp. 446–455. ACM
(2007). https://doi.org/10.1145/1250734.1250785

33. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3_23

34. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7_34

35. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

36. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_7

37. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7_22

38. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. Formal Methods Syst. Des. 48(3), 235–256 (2016)

https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-642-12029-9_22
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22

154 B. Cirisci et al.

39. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: a novel dynamic partial-order reduction technique for testing actor
programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol.
7273, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30793-5_14

40. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1_36

41. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2004, Boston, Massachusetts, USA, 11–14 July 2004, pp. 97–107. ACM
(2004). https://doi.org/10.1145/1007512.1007526

42. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic
partial order reduction. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 288–305. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85114-1_20

43. Yi, X., Wang, J., Yang, X.: Stateful dynamic partial-order reduction. In: Liu, Z.,
He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 149–167. Springer, Heidelberg
(2006). https://doi.org/10.1007/11901433_9

https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/11901433_9

Compositional Verification of Stigmergic
Collective Systems

Luca Di Stefano1,2(B) and Frédéric Lang1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France
2 University of Gothenburg, Gothenburg, Sweden

luca.di.stefano@gu.se

Abstract. Collective adaptive systems may be broadly defined as
ensembles of autonomous agents, whose interaction may lead to the emer-
gence of global features and patterns. Formal verification may provide
strong guarantees about the emergence of these features, but may suffer
from scalability issues caused by state space explosion. Compositional
verification techniques, whereby the state space of a system is generated
by combining (an abstraction of) those of its components, have shown
to be a promising countermeasure to the state space explosion problem.
Therefore, in this work we apply these techniques to the problem of
verifying collective adaptive systems with stigmergic interaction. Specif-
ically, we automatically encode these systems into networks of LNT pro-
cesses, apply a static value analysis to prune the state space of individual
agents, and then reuse compositional verification procedures provided by
the CADP toolbox. We demonstrate the effectiveness of our approach by
verifying a collection of representative systems.

1 Introduction

In a collective adaptive system, autonomous individuals or agents interact with
each other according to simple local rules, which may lead to the emergence of
global features and patterns despite the lack of centralized coordination [32].
Using these systems as a modelling framework to study complex phenomena,
such as the spread of diseases through a social network [14], the role of spatial
constraints in an economy [40], or the evolution of an ecosystem [30], appears to
be a trending research methodology. Depending on the field of application, the
resulting models are variously referred to as individual- or agent-based models,
in silico cell models, or multi-agent systems, but they all share the essential traits
of collective adaptive systems.

This increasing popularity owes to the fact that, under such a framework,
one can easily specify heterogeneous agents with stateful, nonlinear or discontin-
uous behavioural rules [3]; additionally, one can easily refine these specifications
if they turn up to be incomplete or incorrect, e.g., if undesired behaviour is

Work partially funded by ERC consolidator grant no. 772459 D-SynMA (Distributed
Synthesis: from Single to Multiple Agents).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 155–176, 2023.
https://doi.org/10.1007/978-3-031-24950-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_8&domain=pdf
http://orcid.org/0000-0003-1922-3151
http://orcid.org/0000-0002-5221-3353
https://doi.org/10.1007/978-3-031-24950-1_8

156 L. Di Stefano and F. Lang

observed when simulating the model. However, simulations are unsuitable to
achieve strong confidence in the correctness of a model of this kind. In fact,
even small collective adaptive systems may evolve in a multitude of different
ways, which increases exponentially in the number of agents and the complexity
of their behaviour. This state space explosion problem means that simulations
and testing may only cover a small portion of all feasible evolutions that such
models can exhibit: therefore, attempts at uncovering unexpected or problematic
behaviour by these means are likely to fail.

Formal verification techniques, in principle, may provide the correctness guar-
antees that are out of the reach of simulation-based analysis, but they also suffer
from complexity issues related to the state space explosion problem. Composi-
tional techniques, essentially based on a divide-and-conquer strategy to break
down the analysis of large systems, appear to be a general, effective approach to
mitigate the state space explosion problem [18]. To support this claim, in this
work we introduce a fully-automated workflow to perform compositional verifi-
cation of stigmergic collective systems specified in a high-level language called
LAbS [7]. In these systems, agents do not interact directly with each other,
but rather share information by manipulating a shared medium called a virtual
stigmergy [41]. The concept of stigmergies originates from biology, where it has
been used to explain the collective behaviour of social insects such as ants, ter-
mites, and bees [47], but appears well-suited to describe a much wider range
of phenomena, including the creation and curation of content on the Wikipedia
collaborative encyclopedia [6], or the development of open-source software [45].
The indirect and asynchronous nature of this interaction mechanism induces vast
state spaces even in modestly-sized systems, making their verification challeng-
ing [10,12]. However, by combining compositional state space generation with a
static value analysis that allows us to prune the state space of individual agents,
we are able to verify a collection of example systems with significant gains over
a non-compositional model checking procedure.

The rest of this paper is organized as follows. Section 2 outlines the specifi-
cation language that we intend to verify, and provides the necessary background
about verification tools, techniques, and abstract domains that are relevant to
our work; it also includes an example of a stigmergic system that we will recur-
ringly use to illustrate our approach. Section 3 discusses the encoding of LAbS
agents into LNT processes, and how these processes are composed into a parallel
program that emulates the agents’ evolution and interactions. Section 4 intro-
duces a static value analysis that helps us prevent state-space explosion as we
generate the state space of individual agents. Section 5 describes the implemen-
tation of our approach and its experimental evaluation over a collection of LAbS
examples. Section 6 discusses related work. Lastly, Sect. 7 contains our conclu-
sions and potential directions for future work.

2 Background

In this section, we provide an overview of concepts that will be referred to in
the rest of the paper. First, we will introduce the LAbS language for stigmergic

Compositional Verification of Stigmergic Collective Systems 157

collective systems, as well as a running example to demonstrate the peculiarities
of these systems. Then, we will describe the Intervals and Powerset of Intervals
abstract domains; the CADP analysis platform and the LNT process calculus;
and some notions related to compositional state space generation.

Stigmergic Collective Systems and LAbS. The LAbS language [7] is a high-level
formalism to specify stigmergic collective systems. Agents in a LAbS system
cannot explicitly exchange messages with each other: rather, they assign values
to specific local variables, which we call stigmergic variables. After an assign-
ment to one of these variables, an agent will asynchronously diffuse the assigned
value among its neighbours by sending out a put-message. All assignments are
timestamped, and the receivers of a put-message with a newer value will update
their own local copy of the variable to that value. Upon receiving a more recent
value, agents also help propagate it by forwarding the put-message to their own
neighbours. Similarly, after accessing the value of a stigmergic variable, an agent
will asynchronously check whether someone among its neighbours has a newer
value for that variable, by sending a qry-message. Neighbours react to the query
by sending out a new put-message containing either their own value for the
variable or the received one, depending on which is newer. These simple mech-
anisms allow local information to spread from one agent to the others, and new
information to replace older data.

In LAbS, the definition of an agent’s neighbourhood is not fixed: in fact, the
language allows to equip stigmergic variables with link predicates to customize
this concept. A link predicate is a Boolean function over the state of a sender
and a (potential) receiver. Whenever an agent sends a message regarding a given
variable x, this message will be received by all the agents that (together with the
sender) satisfy x’s link predicate. These agents are the neighbours of the sender
with respect to x’s predicate. This feature makes LAbS quite flexible, as it allows
modelling different capabilities among the agents, such as their communication
range, or having privileged access to some variables, and so on; it also induces
neighbourhoods that may vary as the system evolves.

Running Example: Stigmergic Bully Election. A bully election is a simple pro-
tocol to elect a leader in a distributed system [24]. The protocol assumes that
each node in the system has a fixed, unique numeric identifier (id) in the range
0..N − 1, where N is the number of nodes. Intuitively, each node in the system
initially considers itself the leader, and advertises this by broadcasting its id to
the rest of the system. However, a node that receives a message with an id i
lower than their own will instead regard node i as its new leader. When this
happens, the node also stops advertising itself, but keeps changing the leader
every time it receives a message with a lower id. This protocol eventually makes
all nodes agree that the one with the lowest id is the leader.

Replicating such a protocol in a stigmergic system is not immediate, as agents
have no primitive to explicitly exchange messages with one another. However,
we can let them manipulate a stigmergic variable leader until they reach a
consensus on its value. Essentially, each node only needs to check whether leader
is currently higher than its own id. If it is, it means that the node still has a

158 L. Di Stefano and F. Lang

Listing 1. A sketch of a stigmergic election system in LAbS.
1 system {
2 spawn = Node: N
3 }
4 stigmergy Election {
5 link = true
6 leader: N
7 }

8 agent Node {
9 stigmergies = Election

10 Behavior =
11 leader > id ->
12 leader <~ id;
13 Behavior
14 }

chance of becoming the leader: so, the node assigns its own id to leader. As the
link predicate for leader, we use the one that is always satisfied: this induces
a broadcast communication model, i.e., every time a node assigns a value to
leader, this will be (asynchronously) diffused to every other node in the system.
Every time a value j gets diffused in this way, it immediately puts all nodes with
id i > j out of the race. We can speculate that, eventually, every node gets out
of the election except the one with the lowest id, and all nodes have that id
assigned to leader.1

Listing 1 shows how such a protocol can be expressed in LAbS. The code
specifies that the system is composed of N agents of type Node; declares a
stigmergy (i.e., a collection of stigmergic variables with the same link predicate)
Election, equipped with the always-satisfied link predicate true and containing
a single variable leader, which is initialised to N ; and finally specifies the Node
type. Namely, each Node participates in the Election stigmergy, meaning that
it will have a local copy of the leader variable. Its behaviour is a guarded
recursive process: a guard blocks the agent until the value of leader is greater
than its identifier id. When this is the case, the agent assigns id to leader
and then starts over. (The <~ operator denotes an assignment to a stigmergic
variable).

Intervals and Their Powersets. For our purpose, an interval is either the empty
interval ⊥ or a pair [a, b], with a ∈ R ∪ {−∞}, b ∈ R ∪ {∞}, and a ≤ b; we do
not need open-bounded intervals, which are excluded from our definition. Intu-
itively, an interval-based value analysis [5] starts from an initial abstract state
s0 of the program under analysis, i.e., a mapping from program variables to
intervals. The precise way in which s0 is computed depends on the semantics of
the language; generally, variables that are initialized to a constant κ are mapped
to the singleton interval [κ, κ], while nondeterministic variables, e.g., those rep-
resenting inputs to the program, are mapped to [−∞,∞], meaning that they
may initially assume any value. The analysis then explores the abstract states
that are reachable from s0 by performing an abstract interpretation of the pro-
gram. As an example, Fig. 1a shows a function �e�(s), defined by induction on
the structure of a very simple expression language, to evaluate an expression e
on an abstract state s. An integer constant κ evaluates to the single-element
interval [κ, κ]. A reference to a variable x evaluates to the interval s(x). For a
binary operation e1 ◦ e2, one evaluates e1, e2 to obtain two intervals, and then

1 In Sect. 5, we will prove by model-checking that this speculation is correct.

Compositional Verification of Stigmergic Collective Systems 159

x (s) = s(x)

κ (s) = [κ, κ], κ ∈ Z

e1 ◦ e2 (s) = e1 (s) ◦ e2 (s)

(a) Abstract evaluation of expressions.

[a, b] + [c, d] = [a + c, b + d]

[a, b] − [c, d] = [a − d, b − c]

[a, b] × [c, d] = [min(ac, bc, ad, bd),

max(ac, bc, ad, bd)]

(b) Examples of abstract operators.

x e (s) = s [x e (s)]

(c) Abstract evaluation of assignments.

[a, b] [c, d] = [min(a, c), max(b, d)]
[a, b] = [a, b]

[a, b] = [a, b]
= ⊥

(d) The join operator.

[a, b] ∩ [c, d] =
⊥ iff a > d or b < c

[max(a, c), min(b, d)] otherwise
⊥ ∩ [a, b] = [a, b] ∩ ⊥ = ⊥

⊥ ∩ ⊥ = ⊥

(e) The intersection operator.

Fig. 1. Definitions related to the interval abstraction.

composes the intervals according to an abstract version ◦� of the operation. As
a minimal example, in Fig. 1b we show the usual definition of abstract addition,
subtraction, and multiplications over integers. Lastly, we can slightly abuse our
notation and write �x ← e�(s) to denote the abstract evaluation of an assign-
ment statement on state s, where variable x will receive the result of expression
e. This operation returns a new abstract state that is identical to s, except that
x maps to the abstract evaluation of e on s (Fig. 1c).

Interval-based reasoning provides a rather coarse approximation of the con-
crete set of values that a variable may assume. For instance, interval [0, 10] is
a sound abstraction of the concrete set {0, 3, 10}, but includes several elements
that do not belong to the set. To enjoy a tighter approximation while still relying
on the (computationally cheap) domain of intervals, we consider the powerset of
intervals [5,16] domain, commonly denoted by P (I). Intuitively, an element in
P (I) is a set of disjoint intervals; we say that two intervals i, j are disjoint when
their intersection i∩ j, as defined in Fig. 1e, is the empty interval. Given any set
of intervals S, possibly including non-disjoint intervals, we can find its normal
form n(S) ∈ P (I), defined by Eq. 3 below, which replaces subsets of continuous
(Eq. 1) intervals disjoint (Eq. 2) from the rest by their join, where the join of
two intervals i
 j is the smallest interval that entirely contains both i and j,
and is computed as shown in Fig. 1d. Lastly, we can use P (I) as a domain for
abstract interpretation of expressions by lifting the abstract operators already
defined over intervals. Namely, if S1, S2 are elements of P (I) and ◦ is a binary

160 L. Di Stefano and F. Lang

operator, one can soundly define S1 ◦� S2 as in Eq. 4 below, by evaluating the
operation pairwise over the elements of S1 and S2, and then finding the normal
form of the resulting set.

cont(S) = (∀x ∈
⊔

S) (∃i ∈ S) x ∈ i (1)

disj (S, S′) = (∀i ∈ S, j ∈ S′) i ∩ j = ⊥ (2)

n(S) = {
⊔

S′ | S′ ⊆ S ∧ cont(S′) ∧ disj (S′, S \ S′)} (3)

S1 ◦� S2 = n({i1 ◦� i2 | i1 ∈ S1, i2 ∈ S2}) (4)

Compositional State Space Generation. The systems we are interested in
analysing may be imagined as trees of parallel processes, branching out from
a root parallel composition and whose leaves correspond to sequential processes.
To generate the state space of these systems, we may apply a divide-and-conquer
approach where we first generate the state spaces of each leaf, and then com-
pose them together [49]. What makes this approach appealing is that, under
appropriate assumptions and depending on our goals (e.g., on which properties
we want to verify on the system), we can also perform hiding and minimization
steps on the components, facilitating their composition.

Several compositional strategies have been put forward to outline the order
in which these steps are carried out [18]. In this work we exploit one such strat-
egy, namely root leaf reduction. Under this strategy, first, hiding operators are
propagated as far down the tree as allowed; then, the state spaces of the leaves
are generated and minimized modulo some equivalence relation R; lastly, the
state spaces are composed together according to the structure of the tree and
the resulting state space is further minimized modulo R.

The CADP Toolbox and LNT. CADP [19] is a software toolbox for the analysis
of asynchronous concurrent systems. It provides a wide range of tools for sim-
ulation, test generation, verification, performance evaluation, etc., and accepts
system descriptions in several languages whose semantics can be expressed in
the form of an LTS (labelled transition system). CADP provides efficient model-
checking procedures for a data-aware extension of the modal μ-calculus called
MCL [37], and allows declaring complex verification tasks by means of an ad-hoc
scripting language called SVL [17]. SVL natively supports several compositional
strategies, including root leaf reduction.

In this work we will use LNT [21] to describe networks of processes that inter-
act by means of offers. We will use the following subset of LNT communication
actions: G(x1, . . . , xn) denotes an output offer, i.e., an action by which a process
is willing to output the values x1, . . . , xn through a gate G; on the other hand,
G(?x1, . . . , ?xn) denotes an input offer, i.e., an action where a process is will-
ing to receive any n values from gate G and bind them to variables x1, . . . , xn.
Finally, G(?x1, . . . , ?xn) where p(x1, . . . , xn) is also an input offer, but the pro-
cess is only willing to receive those values that satisfy a given Boolean predicate

Compositional Verification of Stigmergic Collective Systems 161

p. The semantics of a process is an LTS in which each label corresponds to an
offer.

To make LNT processes synchronize on offers, we have to compose them in
parallel and specify a synchronization set for the composition. Specifically, the
syntax par G1, . . . , Gm inP1‖ · · · ‖Pn end par denotes a parallel composition of
n processes where an offer on any of the gates G1, . . . , Gm may only take place
if all processes are willing to perform it simultaneously; all other offers may
happen freely. Partial synchronization sets may also be defined by using the
syntax par Γ1→P1‖ · · · ‖Γn→Pn end par, where Γ1, . . . , Γn are sets of gates. In
this case, synchronization over a gate G is only required among those processes
that have G in their set of gates [23].

Notice that an input offer is semantically equivalent to an output offer of
a nondeterministic value. For instance, if x is a Boolean variable, G(?x) is the
same as a choice between G(true) and G(false), followed by an assignment
of the offered value to x. Thus, even though the LNT syntax might suggest
asymmetrical interactions (á la CCS [39]), its synchronization semantics makes
no difference between senders and receivers, and naturally supports multi-party
rendezvous.

3 Parallel Emulation Programs

Given a specification S of a collective system, an emulation program P for it is a
program, written in some target programming language, that may reproduce all
feasible executions of S without introducing spurious ones. Thus, one may check
whether a given temporal property holds in S by verifying an adequate encoding
of the property against P. A sequential emulation program replaces agent con-
currency with nondeterminism, essentially applying sequentialization [43] to S.
Sequential emulation programs may be written in any imperative language and
enable verification of collective systems by means of several analysis techniques
for sequential programs [9]. In this section, instead, we show how we can exploit
LNT’s native constructs for parallelism to construct a parallel emulation pro-
gram, where each agent is encoded into a separate process and communication
is described via process synchronization. This encoding preserves the structure
of the original system and enables compositional analysis.

The structure of an Agent LNT process is summarized in Fig. 2. We assume
that each agent has a unique identifier, denoted by id . First, the agent performs
an initialization (init), where its (potentially nondeterministic) internal state is
set up according to the specifications. This state is entirely contained into two
arrays Lid (the local stigmergy of id) and Iid (the interface of id), which respec-
tively contain the values of stigmergic variables and of other internal variables.

After the initialization, the agent enters a loop during which it may repeat-
edly choose between six alternative behaviours. Namely, it may perform an indi-
vidual action itself (step), signalled by an offer tick(id), or let another agent
do the same (yield), signalled by an input offer tick(?j) for some j �= id . It
may also send one of its pending stigmergic messages, if any (send-put, send-
qry); or it may react to a message sent by another agent (react-put, react-qry).

162 L. Di Stefano and F. Lang

id

?j j = id

is pending
id, k, Lid , Iid

put k

qry k is pending
id, k, Lid , Iid

?j, ?k,?Lj,?Ij j = id
(receive or ignore message)

?j, ?k,?Lj,?Ij j = id
(receive or ignore message)

Lid := . . . ;
Iid := . . .

yield

step

send-put

react-put

send-qry

react-qry

init

Fig. 2. Structure of an Agent process with identifier id .

By reacting to a message, we mean that the agent either accepts or ignores it,
based on the semantic rules outlined in Sect. 2. To take this decision, we need
the sender to evaluate the link predicate for the variable k within the message.
To do so, it needs to know the state of the sender j, which is why Lj and Ij

are part of the input offers (and Lid , Iid are part of the corresponding output
offers).

Note that, while the definition of most blocks depends only on the variables of
the input LAbS agent, the step block is the only one whose definition depends on
its behaviour: generating the step block essentially amounts to transforming the
LAbS behaviour into LNT fragments, by means of an automated procedure [9].
All other blocks simply implement the semantic rules of LAbS and are the same
for every specification.

To model a LAbS system of n agents, we construct an LNT parallel emulation
program following the structure shown in Listing 2. Specifically, we instantiate
n Agent processes, each with a unique identifier from 0 to n − 1 (lines 3–7).
These processes are composed in parallel, with a global synchronization set con-
taining gates tick, put, and qry, so that all agents must synchronize in order
to perform an input/output offer over these gates. This ensures that individual
actions never overlap with each other nor with message-passing steps, and also
that messages are always visible to all agents (which then decide whether to
accept or ignore them). These restrictions are necessary to avoid spurious exe-
cutions, i.e., computations of the programs that do not correspond to a trace
in the original specifications. The program also features a Timestamps process
(line 8) that tracks timestamping information about stigmergic variables. This
information, in turn, determines how agents will react when they receive a stig-

Compositional Verification of Stigmergic Collective Systems 163

Listing 2. A parallel emulation program
for a system of n agents.

1 process Main [...] is
2 par refresh, request in
3 par tick, put, qry in
4 Agent [...] (0)
5 || · · ·
6 || Agent [...] (n − 1)
7 end par
8 || Timestamps [refresh, request]
9 end par

10 end process

Listing 3. An emulation program with
round-robin scheduling.

1 process Sched [tick] is loop
2 tick(0); tick(1); . . . ;
3 tick(n − 1)
4 end loop end process
5
6 process Main [...] is
7 par
8 tick, refresh, request ->
9 par tick, put, qry in

10 Agent [...] (0)
11 || · · ·
12 || Agent [...] (n − 1)
13 end par
14 || refresh, request ->
15 Timestamps [refresh, request]
16 || tick -> Sched [tick]
17 end par

Listing 4. Sketch of the LNT translation
of the Node process from Listing 1.

1 process Agent [...] (id: Nat) is
2 -- init
3 L[0] := N; -- leader
4 pending := ∅;
5 . . .;
6 loop
7 select
8 -- step
9 tick(id);

10 if L[0] > id then
11 L[0] := id;
12 updateTimestamp(0);
13 addPendingMsg("put", 0)
14 else loop spurious end loop
15 end if
16 []
17 -- yield
18 tick(?j) where j <> id
19 []
20 -- other behaviours
21 -- (react-put, react-qry,
22 -- send-put, send-qry)
23 end select
24 end loop
25 end process

mergic message. Each agent may independently contact this process through two
gates: namely, they can either refresh their timestamp for a variable (which
they do after assigning a new value to it), or request a comparison between
their timestamp for a variable and the one of another agent (which they do when
they process an incoming message).

Round-Robin Scheduling. In the emulation program shown so far, agents can
freely interleave their actions. In some cases, however, it makes sense to only
consider round-robin executions, i.e., those where agents perform one step at
a time, in a fixed sequence given by their identifiers. (Message passing actions
can still happen at any time). We may enforce this restriction by adding to
our program a scheduler process that constrains tick offers, so that the agent
with identifier 0 is forced to act first, followed by the one with id 1, and so on
(Listing 3).

Correctness of the Encoding. Our argument for the correctness of the LAbS-to-
LNT encoding is essentially the same as the one we put forward for generic emu-
lation programs [9], the main difference being that the sequentializing scheduler
in that work is now replaced by multi-party synchronizations where the agents

164 L. Di Stefano and F. Lang

decide who should act next. First, we assume there exists a translation from each
LAbS action α (e.g., as an assignment) to an LNT fragment that respects the
operational semantics of α. By forcing synchronizations over the tick gate, we
prevent agents from overlapping their actions with other actions or with mes-
sage exchanges. Therefore, for every sequence of actions allowed by the original
specification S, the emulation program P features some execution in which the
corresponding LNT code fragments are invoked in the correct order. Vice versa,
if P allows a sequence of code fragments to be executed, then there is a feasible
execution of S where agents perform the corresponding LAbS actions in the same
order.

Running Example. Listing 4 contains a simplified sketch of how the Node agent
from Listing 1 would get translated into LNT. First, the agent’s stigmergic vari-
able leader (stored in L[0]) and its set of pending messages are initialized to N
and to the empty set, respectively. We omit the rest of the initialization. Then,
the agent enters the loop we graphically depicted in Fig. 2. For sake of brevity,
we only include a simplified version of the step and yield behaviours. We encode
the guarded action of Listing 1 by means of an if statement. If the guard is not
satisfied, we send the agent to a sink state where it repeatedly performs a special
spurious action (line 14). We will use this action to detect and ignore invalid
traces during our analysis. If the guard holds, the agent can proceed with the
stigmergic assignments, which consists of three steps: updating the value, set-
ting its timestamp to the current instant, and adding a put-message to the list
of pending messages (lines 11–13).

Notice that, for an agent with a more elaborate behaviour, the step block
would be a nondeterministic choice over the feasible actions that the agent can
perform at the present time. This also requires keeping track of the agent’s
execution point: for instance, an agent whose behaviour is a sequence of two
actions a; b must necessarily perform a before it is able to perform b. To maintain
track of this information, we constrain the agent’s choice of actions by a dedicated
variable that acts as a program counter, and is updated after every action [9].

4 Value Analysis of LAbS Specifications

As seen in Fig. 2, the exchange of stigmergic messages requires the sender to offer
its local stigmergy and interface to all other agents, so that they can perform a
corresponding input offer to receive this information and evaluate whether they
should receive or ignore the message. These input offers make generating the
state space of individual agents problematic. In fact, each agent may expect to
receive any possible Lj and Ij over the put and qry gates, meaning that its tran-
sition system has to enumerate all potential offers. This easily makes the agent’s
state space explode, even when we assume that variables range over relatively
modest intervals, such as the 8-bit representation range (−128, . . . , 127).

We work around this issue by observing that, in typical systems, agents will
only ever see a rather small subset of those offers. We can over-approximate this
subset by performing an automated value analysis on the input specifications,

Compositional Verification of Stigmergic Collective Systems 165

1 ς0 initial abstract state of S
2 A all assignments within S

3 σ {ς0}
4 while do
5 σ { a (ς) | ς ∈ σ, a ∈ A}
6 if σ ⊆ σ then
7 break
8 else
9 σ σ ∪ σ

10 end
11 end
12 return σ

Fig. 3. Value analysis of a LAbS spec-
ification S.

file
PASS

or
(FAIL + cex)

LAbS frontend Counterexample
translator

Value analysis
+

LNT generator

MCL encoder

SVL generator

SLiVER

SVL interpreter (CADP)

Temporal
property

System
specification

MCL query

LNT program

SVL script Verification
outcome

Fig. 4. Our compositional verification
workflow.

and then constrain input offers based on the result of this analysis. Notice
that this over-approximation will not lead our procedure to produce spurious
counterexamples: during composition, spurious input offers will find no matching
output offers, and will therefore be pruned away.

Given a specification S, let us denote by V the set of its variables. From now
on, we define an abstract state for S as a mapping from V to P (I). Furthermore,
we define the merge of two abstract states ς1
ς2 as the state ς such that, for every
x ∈ V, ς(x) = n(ς1(x) ∪ ς2(x)). Our value analysis (Fig. 3) is straightforward.
Initially, we compute the initial abstract state ς0 for the given specification,
and create a set σ that only contains this state. Computing ς0 is immediate, as
every LAbS specification must specify one or more feasible initial values for each
declared variable.2 We also extract from S a set A of all assignment statements
that appear in it (lines 1–3). Then, we run a loop in which we abstractly evaluate
every assignment a ∈ A on every state ς ∈ σ and add the resulting states to σ
(lines 4–11). If, at some point, we fail to find any new states, then we break out
of this loop, and return as the final value analysis the merge of all states in σ
(line 12).

The result of running this algorithm is an abstract state ς̄, mapping every
variable name x to a powerset of intervals ς̄(x). We can easily see that ς̄(x) over-
approximates the set of all values that x may actually assume across all feasible
executions of S. In fact, our analysis simply performs every possible assignment
at every iteration, without considering the order in which they appear in the

2 LAbS allows variables with an undefined initial value undef, but we currently do
not support that feature in our analysis.

166 L. Di Stefano and F. Lang

specifications, or whether they are guarded or not. Thus, we may say that we
are considering the chaos automaton chaos(A), i.e., the automaton that can
always perform any of the assignments in S. Every sequence of assignments from
A, including those that are actual executions of S, is a feasible execution in
chaos(A). Therefore, the set of values that a variable x can ever assume in the
state space of chaos(A) is a superset of those it may assume in the state space
of S, meaning that our analysis is sound but potentially over-approximating.

It is also nonterminating on infinite-state specifications, which are out of the
scope of this work. This over-approximation also takes into account the exchange
of values through stigmergic messages. To understand this, it suffices to notice
that a value (say, κ) may be sent in a message only if it has been previously
computed and stored in a stigmergic variable (say, x) by some agent. That
is, messages cannot include values that are not the result of some sequence of
assignments. But then, chaos(A) will necessarily allow every agent to perform
that same sequence of assignments and assign κ to x. Thus, there is no need to
explicitly model message passing within our algorithm.

After computing ς̄, we can easily derive a Boolean function goodL that takes
a local stigmergy L and returns true if and only if, for every stigmergic variable
x, L(x) is in ς̄(x). Likewise, we can derive a function goodI that does the same
for interfaces. Then, we force agents to only consider these objects as valid by
constraining all their input offers, such as put(?j, ?k, ?Lj , ?Ij) (as in the recv-put
block of Fig. 2), by the predicate j �= id ∧ goodL(Lj) ∧ goodI(Ij).

Running Example. Our bully election system (Listing 1) contains one variable
leader, initialized to N for every agent. Plus, it refers to a special variable id
that stores the agent’s identifier. LAbS guarantees that identifiers are unique,
contiguous and start at 0: so, the initial abstract state for our analysis will be
ς0 = {leader �→ [N,N]; id �→ [0, N − 1]}. Then, interpreting the assignment
leader <~ id over ς0 yields a new abstract state ς1 = {leader �→ [0, N −
1]; id �→ [0, N − 1]}. It is plain to see that our analysis cannot find any other
states beyond this, since �a�(ς1) = ς1. Thus, the result of the analysis is just the
merge ς0
 ς1 = {leader �→ {[0, N − 1], [N,N]}; id �→ [0, N − 1]}.

5 Compositional Verification Workflow

In this section, we describe how we combined the contributions described so far
into an automated workflow for the compositional verification of LAbS systems.
The workflow is implemented as a module within the SLiVER analysis tool,3
and it is depicted in Fig. 4.

First, a frontend parses a LAbS file and extracts the temporal property to
verify, as well as the system specification. The former is transformed into an
equivalent MCL query [10]; the latter, instead, is fed to a code generator to
construct a parallel emulation program as described in Sect. 3. The code gen-
erator also runs the value analysis described in Sect. 4 and uses the results to

3 https://github.com/labs-lang/sliver.

https://github.com/labs-lang/sliver

Compositional Verification of Stigmergic Collective Systems 167

constrain all input offers on gates put, qry. Then, we generate an SVL script
that describes the compositional verification task, and submit it to CADP; when
the task is completed, we interpret its verdict (e.g., if a counterexample is found,
we translate it into the syntax of LABS) and show the result to the user.

Listing 5 shows the structure of a verification script generated by our work-
flow. Intuitively, we ask CADP to generate the state space of the parallel emu-
lation program of Listing 2 by means of root leaf reduction, minimizing modulo
divergence-preserving sharp bisimulation [35], and then to verify our MCL query
against the resulting transition system using the Evaluator4 model checker.
Notice that the program is wrapped in a hiding and a priority operator.

Hiding (hide G in P end hide) replaces all offers over gate G that occur in
P with internal actions, denoted by τ . When generating our script, we determine
all labels that are relevant to our query, denoted as gates("query.mcl"), and
then hide all other gates. This reduces the state space (as sharp bisimulation
compresses sequences of τ -transitions) and thus accelerates model-checking.

The priority operator (prio Ω in P end prio) allows to specify a partial
order of labels so that, when the state space of P is generated, transitions with
a low-priority label are cut from every state that also features at least one tran-
sition with a higher-priority label. We use priorities to prune some sections of
our programs where agents are free to interleave their actions in any order (e.g.,
when they have to react to an incoming message). These sections are not part of
the semantics of LAbS, where message exchanges are treated as atomic events,
but are rather an artefact of the encoding into parallel LNT programs. Further-
more, in these sections, each agent only affects its internal state, so reordering
their actions does not affect the satisfaction of properties we are interested in
verifying. Thus, we can analyse all orderings by only considering a representa-
tive one. Specifically, we give decreasing priorities to offers over gates refresh,
request, and l (which agents use to signal a new assignment to a stigmergic
variable); additionally, when multiple agents are willing to perform an action
over one of these gates, the agent with lowest id is prioritized. This prioritiza-
tion is independent of the specification being analysed, as it concerns the LNT
encoding of stigmergic messaging regardless of the actual data being exchanged.

Lastly, our choice of sharp bisimulation is motivated by our use of the prior-
ity operator. In fact, applying sharp minimization under an appropriate set of
strong actions, as we do here, preserves priorities (like strong minimization does),
but also results in smaller LTSs than the one obtained through strong minimiza-
tion. Minimizing modulo divergence-preserving branching bisimulation [27] (also
known as divbranching bisimulation, for short) or weaker equivalences could in
principle lead to even smaller LTSs, but would not preserve the semantics of
the system. In fact, divbranching bisimulation and weaker equivalences are not
congruences for the priority operator [11]. To see this, it suffices to consider the
process τ.a which is divbranching bisimilar to a (Eq. 5), and observe that we can
easily find a context with priorities, e.g., C[P] = prio a>b in P ‖ b end prio,
such that replacing P with either τ.a or a gives us non-bisimilar terms (Eq. 8).

168 L. Di Stefano and F. Lang

Listing 5. Structure of an SVL script for our verification workflow

1 "system.bcg" = root leaf divsharp reduction
2 hold "refresh", "request", "l"
3 in (
4 hide all but gates("query.mcl") in
5 prio
6 "refresh" > "request" > "l"
7 "refresh i .*" > "refresh j .*", i < j
8 "request i .*" > "request j .*", i < j
9 "l i .*" > "l j .*", i < j

10 in
11 ... (* Parallel emulation program (Listing 2 or 3) *)
12 end prio
13 end hide);
14
15 property CHECK is
16 verify "query.mcl" with evaluator4
17 in "system.bcg"
18 expected TRUE
19 end property;

τ.a ∼db a (5)
C[τ.a] = prio a > b in τ.a ‖ b end prio = (τ.a.b + b.τ.a) (6)

C[a] = prio a > b in a ‖ b end prio = a.b (7)
(τ.a.b + b.τ.a) �∼db a.b (8)

Experimental Evaluation. To demonstrate our approach, we carry out a col-
lection of verification tasks [10] in two different ways: first, we use a baseline
workflow that generates a sequential LNT program, constructs its state space,
minimizes it modulo divergence-preserving branching bisimulation,4 and finally
model-checks the reduced state space; then, we apply the compositional pro-
cedure proposed above. We then measure and compare the time and memory
requirements of the two approaches.

We now provide a short overview of each system along with the properties
to verify. The reader may refer to [10] for a detailed description. Systems whose
name ends in -rr were verified assuming round-robin scheduling of agents. All
properties are checked under fairness assumptions that exclude unfair loops from
the verification [44].

4 We use this relation because it preserves all the properties that we are interested in
checking.

Compositional Verification of Stigmergic Collective Systems 169

Table 1. Experimental results for compositional verification. Values in bold are better.
–a: theoretical, based on Compositional measurements.

System Baseline [10] Compositional Parallela

Time (s) Memory (MiB) Time (s) Memory (MiB) Time (s) Memory (MiB)

flock-rr 1875 12000 4461 11805 4426 11805
flock 4787 30865 4071 11113 4038 11113
formation-rr 1670 1657 2511 1938 1558 5875

leader5 10 41 34 117 18 212

leader6 77 147 104 225 65 258

leader7 1901 2038 374 404 326 404
twophase2 9 50 67 93 34 210

twophase3 500 209 233 322 131 560

The flock and flock-rr systems describe a simplified flocking behaviour.
The systems feature 3 agents in a 5×5 arena. Each agent is initially given a
nondeterministic position and direction of movement, with the latter stored as a
pair of stigmergic variables. The agents move by following this direction vector.
When two agents are sufficiently close (5 spaces apart or fewer), one of them
may imitate the other’s direction by receiving a stigmergic message. We check
that, eventually, all agents move in the same direction.

In the formation-rr system, 3 agents are placed on a line segment of length
10. They use stigmergic variables to signal their presence to nearby agents. If
an agent detects that it is too close to another, it moves one step away from it,
unless it is at either end of the segment. We check that, eventually, all agents
are at least 2 spaces apart from each other.

The leader<N> systems are three instances of our running example (List-
ing 1), respectively with 5, 6, and 7 nodes. We verify that all nodes eventually
choose the one with id 0 as the leader.

The twophase<N> systems describe a two-phase commit scenario [29] with N
workers and one coordinator. The coordinator initiates a voting session where all
workers must decide whether a transaction should be committed. If all workers
agree, the coordinator commits the transaction and starts a new voting round.
We implemented the workers so as they always agree to commit, and all com-
munication happens through stigmergy variables. We check that the coordinator
commits transactions infinitely often.

All the experiments were performed on the Grid’5000 testbed, specifically on
a node of the Dahu cluster. The node is equipped with two Intel Xeon Gold 6130
CPUs and 192 GiB of physical memory, and runs Debian 11 with version 5.10.0 of
the Linux kernel.5 We used CADP version 2022-h, and set a timeout of 3 h and a
memory limit of 32 GiB for all experiments. We collected the raw experimental
data into a persistent replication package [13], which also includes the input
LAbS specifications as well as binaries and scripts to facilitate reproducing the
experiments.

5 https://www.grid5000.fr/w/Grenoble:Hardware#dahu.

https://www.grid5000.fr/w/Grenoble:Hardware#dahu

170 L. Di Stefano and F. Lang

We summarize the experimental results in Table 1. Columns from left to right
report the name of the system and the time and memory required to verify it
by the baseline and compositional approaches, respectively. In the last column,
called Parallel, we show the time and memory it would take to perform the
compositional workflow if we generated the individual state spaces simultane-
ously, e.g., on separate machines, or on separate cores of a multi-core machine.
These are hypothetical measurements, derived from the Compositional ones.
Specifically, each compositional verification experiment is made of several tasks,
namely: k tasks T1, . . . , Tk that construct the individual state spaces of the n
agents, plus those of the processes Timestamps and (for round-robin systems)
Sched; a task TP that assembles these state spaces into the one of the whole emu-
lation program; and lastly, a model-checking task T|=. Let us denote the time
and memory required to execute a task T by time(T) and mem(T), respec-
tively. We can gather these measurements by executing an experiment with the
Compositional workflow. Under this workflow, tasks are carried out sequentially:
thus, the time required by the experiment is the sum of time(T) for each task T .
For the same reason, the memory footprint is just the maximum of the memory
requirements of every task. However, if the tasks Ti are carried out in parallel,
then we would only have to wait for the task with the maximum time(Ti) before
we are able to begin TP. At the same time, we would need to satisfy the memory
requirements of all individual tasks at the same time, so we have to take into
account the sum of all mem(Ti). We summarize these simple computations in
Table 2. Notice that, on smaller systems, the memory requirements of SLiVER
itself (around 400 MiB) would dominate that of the actual memory used for
model checking. To better focus on comparing the performance of the two veri-
fication workflows, the table omits this overhead; we reserve the implementation
of a more memory-efficient SLiVER for future work.

We can see that the baseline method is more time-efficient than the compo-
sitional one on some specific cases, e.g., when the overall system is rather small
(leader5, leader6, twophase2) or round-robin scheduling has to be enforced
(flock-rr, formation-rr). Full interleaving has an opposite effect: with the
baseline procedure, verifying flock takes longer than flock-rr, whereas the
compositional one can verify it faster. This may sound counterintuitive, since
the former system only considers a subset of the latter’s traces. Our explanation
is that, for the compositional procedure, it is much easier to just freely compose
agents rather than having to take the scheduling constraints into account. In
other words, the scheduler acts as a sort of bottleneck to the compositional task,
even though the resulting state space is smaller.

On small systems, namely leader5, leader6, and twophase2, the perfor-
mance of the compositional procedure is likely affected by the overhead brought
about by the component-wise state space generation. Furthermore, we are aware
that CADP currently invokes the LNT compiler multiple times, i.e., for each
component process, compounding this overhead. In conclusion, under specific
conditions, the baseline approach may still produce a verdict faster than the
compositional one. At the same time, the compositional approach appears to

Compositional Verification of Stigmergic Collective Systems 171

Table 2. Time and memory requirements for the Compositional and Parallel work-
flows.

Compositional Parallel

Time
∑

Tasks

time(T) max
i

{time(Ti)}+ time(TP) + time(T|=)

Memory max
Tasks

mem(T) max

{
∑

i

mem(Ti),mem(TP),mem(T|=)

}

scale better than the baseline as the size of the systems grows. This is most evi-
dent in the leader systems, where every additional agent severely impacts the
time and memory required by the baseline workflow; instead, the compositional
approach shows a much less explosive, though still super-linear, progression.

The (theoretical) parallel procedure is, by definition, always faster than
the compositional one. This speedup is most noticeable when the system
involves many agents (leader7), or complex behavioural rules (formation-rr,
twophase3). In some experiments, parallelization also incurs an increased mem-
ory usage, a rather obvious consequence of generating all individual state spaces
at once. At the same time, it typically allows enjoying greater memory capaci-
ties (especially when done across multiple machines), so we do not expect this
drawback to be significant. In others, however, both workflows have the same
memory footprint, as the memory required to generate all state spaces simulta-
neously does not exceed the amount used by the other tasks (TP or T|=). Thus,
in these cases the speedup from parallelization actually comes for free, i.e., it
does not impact the overall memory usage.

6 Related Work

Compositional verification has been successfully applied in several domains,
ranging from hardware systems to communication protocols and service chore-
ographies [18,20]. From a recent, extensive experimental evaluation, it appears to
be effective under diverse network topologies, and its benefits generally become
more evident as the size of the system under verification grows [8].

In this work, we exploit compositionality of state space generation. A some-
what related approach to fight state space explosion is modular (or composi-
tional) reasoning [26], whereby a program is analysed by splitting it into com-
ponents, for instance according to rely-guarantee conditions [34]. This form of
compositionality has proved effective in several use cases, such as multi-robot
and multi-agent systems [4,33], railway networks [15], smart contracts [48], and
authentication protocols [50]. All these applications, like our own work, exploit
fully automated verification procedures; other frameworks, such as IVy [38], com-
bine rely-guarantee reasoning with semi-automated procedures. LNT does pro-
vide constructs to express pre- and post- conditions on procedures (respectively
denoted by require and ensure), but CADP does not use them in a composi-
tional fashion yet.

172 L. Di Stefano and F. Lang

Some classes of collective adaptive systems may be expressed in the form
of population protocols [1], for which efficient parameterized verification proce-
dures are known [2]. These may prove that a protocol satisfies a given property
regardless of its size, but the properties of interest typically concern its eventual
convergence to certain configurations, as the focus is to verify whether the pro-
tocol is able to carry out a desired computation. Our workflow checks systems
of fixed size, but may support arbitrary branching-time temporal properties.

Preprocessing techniques to speed up program analysis by excluding invalid
or infeasible values have also been proposed in the context of symbolic model
checking. For instance, bounded model checking of programs featuring dynamic
data structures may get more efficient by precomputing tight field bounds based
on the structures’ type invariants [42].

7 Conclusion and Future Work

In this work, we have argued that collective adaptive systems, being collections
of autonomous and mutually interacting components, are naturally amenable to
compositional techniques that can palliate state space explosion and thus aid
in their verification. To support our claim, we have presented an encoding from
high-level specifications into networks of LNT processes, introduced a simple
value analysis to over-approximate the set of feasible offers between these pro-
cesses, and demonstrated an automated workflow that exploits these ingredients
to compositionally verify a collection of representative systems. Our experimen-
tal results do indicate that this procedure brings significant advantages over
plain model checking. Besides evident gains in terms of absolute time and mem-
ory requirements, the proposed workflow appears to scale better in the number
of agents, and can deal with freely-interleaved systems without particular effort
compared to round-robin ones.

As future work, we intend to pursue several lines of research. For instance, the
value analysis presented in this work is just a prototype and may be improved
in several ways. Its approximation may be tightened by preserving some of the
original behavioural structure and adding sensitivity to LAbS control constructs,
such as guards. In general, powerset domains have well-known scalability issues
that we could overcome by switching to more advanced abstract domains, such
as Boxes [31] or donut domains [25], which may also track relations between
variables. Our analysis only exploits data restriction; interfaces [28] could com-
plement that with behavioural constraints, allowing to prune the state space of
agents by cutting sequences of actions that are impossible under a given context.
Thus, synthesizing such interfaces could enhance our compositional approach.

We also plan to actually implement the Parallel workflow theorized in Sect. 5,
so that the generation of individual state spaces is distributed across multiple
machines. This could be integrated with existing procedures for distributed state
space generation [22], to further exploit parallelism; it would also allow us to
measure how other factors, e.g., networked storage latency and transfer times,
may affect the theoretical measurements presented in this work. An imple-
mentation of lighter-weight formal techniques, such as runtime verification [36]

Compositional Verification of Stigmergic Collective Systems 173

or statistical model-checking [46], could also provide some degree of assurance
about the behaviour of very large collective systems.

Acknowledgements. Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see https://
www.grid5000.fr). Preliminary experiments were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at Umeå University partially
funded by the Swedish Research Council through grant agreement no. 2018-05973.
The authors wish to thank Wendelin Serwe and Hubert Garavel for their assistance in
installing and running CADP on these machines.

References

1. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007). https://doi.org/10.
1007/s00446-007-0040-2

2. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of popula-
tion protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3_34

3. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating
human systems. Proc. Natl. Acad. Sci. 99(Suppl. 3), 7280–7287 (2002). https://
doi.org/10.1073/pnas.082080899

4. Cardoso, R.C., Dennis, L.A., Farrell, M., Fisher, M., Luckcuck, M.: Towards com-
positional verification for modular robotic systems. In: 2nd Workshop on Formal
Methods for Autonomous Systems (FMAS). EPTCS, vol. 329, pp. 15–22 (2020).
https://doi.org/10.4204/EPTCS.329.2

5. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: 2nd International Symposium on Programming, pp. 106–130. Dunod (1976)

6. Crowston, K., Rezgui, A.: Effects of stigmergic and explicit coordination on
Wikipedia article quality. In: 53rd Hawaii International Conference on System Sci-
ences (HICSS), pp. 1–10. ScholarSpace (2020)

7. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.
102345

8. de Putter, S., Wijs, A.: To compose, or not to compose, that is the question: an
analysis of compositional state space generation. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 485–504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_29

9. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via
sequential emulation. ACM Trans. Softw. Eng. Methodol. 31(3) (2022). https://
doi.org/10.1145/3490387

10. Di Stefano, L., Lang, F.: Verifying temporal properties of stigmergic collective
systems using CADP. In: Margaria, T., Steffen, B. (eds.) ISoLA 2021. LNCS, vol.
13036, pp. 473–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89159-6_29

11. Di Stefano, L., Lang, F.: Compositional verification of priority systems using sharp
bisimulation. Research report, INRIA (2022). https://hal.inria.fr/hal-03640683

https://www.grid5000.fr
https://www.grid5000.fr
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.4204/EPTCS.329.2
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1007/978-3-319-95582-7_29
https://doi.org/10.1145/3490387
https://doi.org/10.1145/3490387
https://doi.org/10.1007/978-3-030-89159-6_29
https://doi.org/10.1007/978-3-030-89159-6_29
https://hal.inria.fr/hal-03640683

174 L. Di Stefano and F. Lang

12. Di Stefano, L., Lang, F., Serwe, W.: Combining SLiVER with CADP to analyze
multi-agent systems. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020.
LNCS, vol. 12134, pp. 370–385. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50029-0_23

13. Di Stefano, L., Lang, F.: Replication Package for the paper: Compositional Veri-
fication of Stigmergic Collective Systems (2022). https://doi.org/10.5281/zenodo.
7043353

14. El-Sayed, A.M., Scarborough, P., Seemann, L., Galea, S.: Social network analysis
and agent-based modeling in social epidemiology. Epidemiol. Perspect. Innov. 9
(2012). https://doi.org/10.1186/1742-5573-9-1

15. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of inter-
locking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1_15

16. Filé, G., Ranzato, F.: The powerset operator on abstract interpretations.
Theor. Comput. Sci. 222(1–2), 77–111 (1999). https://doi.org/10.1016/S0304-
3975(98)00007-3

17. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001. IIFIP, vol. 69, pp.
377–392. Springer, Boston (2002). https://doi.org/10.1007/0-306-47003-9_24

18. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52 (2015). https://doi.org/10.
1007/s00236-015-0226-1

19. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transfer
15 (2013). https://doi.org/10.1007/s10009-012-0244-z

20. Garavel, H., Lang, F., Mounier, L.: Compositional verification in action. In: Howar,
F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 189–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00244-2_13

21. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_1

22. Garavel, H., et al.: DISTRIBUTOR and BCG_MERGE: tools for distributed
explicit state space generation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006.
LNCS, vol. 3920, pp. 445–449. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691372_30

23. Garavel, H., Sighireanu, M.: A graphical parallel composition operator for process
algebras. In: Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE) and Protocol Specifi-
cation, Testing and Verification (PSTV). IFIPAICT, vol. 156, pp. 185–202. Kluwer
(1999)

24. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. 31(1), 48–59 (1982). https://doi.org/10.1109/TC.1982.1675885

25. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut
domains: efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_16

26. Giannakopoulou, D., Namjoshi, K.S., Păsăreanu, C.S.: Compositional reasoning.
In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 345–383. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_12

https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.5281/zenodo.7043353
https://doi.org/10.5281/zenodo.7043353
https://doi.org/10.1186/1742-5573-9-1
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1016/S0304-3975(98)00007-3
https://doi.org/10.1016/S0304-3975(98)00007-3
https://doi.org/10.1007/0-306-47003-9_24
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/11691372_30
https://doi.org/10.1007/11691372_30
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1007/978-3-642-27940-9_16
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1007/978-3-319-10575-8_12

Compositional Verification of Stigmergic Collective Systems 175

27. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43 (1996)

28. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0023732

29. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). https://doi.org/10.1007/3-540-08755-9_9

30. Grimm, V., Railsback, S.F.: Agent-based models in ecology: patterns and alter-
native theories of adaptive behaviour. In: Billari, F.C., Fent, T., Prskawetz, A.,
Scheffran, J. (eds.) Agent-Based Computational Modelling: Applications in Demog-
raphy, Social, Economic and Environmental Sciences, pp. 139–152. Physica-Verlag,
Heidelberg (2006). https://doi.org/10.1007/3-7908-1721-X_7

31. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_18

32. Hillston, J.: Challenges for quantitative analysis of collective adaptive systems.
In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 14–21.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2_2

33. Jones, A.V.: Model checking and compositional reasoning for multi-agent systems.
Ph.D. thesis, Imperial College London, UK (2014). https://doi.org/10.25560/32695

34. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5 (1983). https://doi.org/10.1145/69575.
69577

35. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with tempo-
ral logics combining weak and strong modalities. In: Biere, A., Parker, D. (eds.)
TACAS 2020. LNCS, vol. 12079, pp. 57–76. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45237-7_4

36. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

37. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0_12

38. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_12

39. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

40. Olner, D., Evans, A.J., Heppenstall, A.J.: An agent model of urban economics:
digging into emergence. Comput. Environ. Urban Syst. 54 (2015)

41. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for het-
erogeneous swarm robotics. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)

42. Ponzio, P., Godio, A., Rosner, N., Arroyo, M., Aguirre, N., Frias, M.F.: Efficient
bounded model checking of heap-manipulating programs using tight field bounds.
In: Guerra, E., Stoelinga, M. (eds.) FASE 2021. LNCS, vol. 12649, pp. 218–239.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71500-7_11

43. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Conference on Pro-
gramming Language Design and Implementation (PLDI), pp. 14–24. ACM (2004).
https://doi.org/10.1145/996841.996845

https://doi.org/10.1007/BFb0023732
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-7908-1721-X_7
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-319-05119-2_2
https://doi.org/10.25560/32695
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-030-71500-7_11
https://doi.org/10.1145/996841.996845

176 L. Di Stefano and F. Lang

44. Queille, J.P., Sifakis, J.: Fairness and related properties in transition systems - a
temporal logic to deal with fairness. Acta Informatica 19 (1983). https://doi.org/
10.1007/BF00265555

45. Robles, G., Merelo, J.J., Gonzales-Barahona, J.M.: Self-organized development in
libre software: a model based on the stigmergy concept. In: 6th International Work-
shop on Software Process Simulation and Modeling (ProSim). Fraunhofer (2005)

46. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9_16

47. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5 (1999).
https://doi.org/10.1162/106454699568700

48. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
Compositional verification of smart contracts through communication abstraction.
In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol. 12913, pp.
429–452. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88806-0_21

49. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra.
In: Symposium on Testing, Analysis, and Verification (TAV), pp. 49–59. ACM
(1991). https://doi.org/10.1145/120807.120812

50. Zhang, Z., de Amorim, A.A., Jia, L., Pasareanu, C.S.: Automating compositional
analysis of authentication protocols. In: 20th Conference on Formal Methods in
Computer Aided Design (FMCAD), pp. 113–118. IEEE (2020). https://doi.org/
10.34727/2020/isbn.978-3-85448-042-6_18

https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1162/106454699568700
https://doi.org/10.1007/978-3-030-88806-0_21
https://doi.org/10.1145/120807.120812
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_18
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_18

Efficient Interprocedural Data-Flow
Analysis Using Treedepth and Treewidth

Amir Kafshdar Goharshady(B) and Ahmed Khaled Zaher(B)

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
{goharshady,akazaher}@cse.ust.hk

Abstract. We consider interprocedural data-flow analysis as formal-
ized by the standard IFDS framework, which can express many widely-
used static analyses such as reaching definitions, live variables, and null-
pointer. We focus on the well-studied on-demand setting in which queries
arrive one-by-one in a stream and each query should be answered as fast
as possible. While the classical IFDS algorithm provides a polynomial-
time solution for this problem, it is not scalable in practice. More specifi-
cally, it will either require a quadratic-time preprocessing phase or takes
linear time per query, both of which are untenable for modern huge code-
bases with hundreds of thousands of lines. Previous works have already
shown that parameterizing the problem by the treewidth of the pro-
gram’s control-flow graph is promising and can lead to significant gains
in efficiency. Unfortunately, these results were only applicable to the lim-
ited special case of same-context queries.

In this work, we obtain significant speedups for the general case of
on-demand IFDS with queries that are not necessarily same-context.
This is achieved by exploiting a new graph sparsity parameter, namely
the treedepth of the program’s call graph. Our approach is the first to
exploit the sparsity of control-flow graphs and call graphs at the same
time and parameterize by both the treewidth and the treedepth. We
obtain an algorithm with a linear preprocessing phase that can answer
each query in constant time wrt the size of the input. Finally, our exper-
imental results demonstrate that our approach significantly outperforms
the classical IFDS and its on-demand variant.

Keywords: Static analysis · Data-flow analysis · IFDS ·
Parameterized algorithms

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 177–202, 2023.
https://doi.org/10.1007/978-3-031-24950-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_9

178 A. K. Goharshady and A. K. Zaher

1 Introduction

Data-Flow. Data-flow analysis is a catch-all term for a wide and expressive
variety of static program analyses that include common tasks such as reaching
definitions [30], points-to and alias analysis [74,76,77,80–82], null-pointer deref-
erencing [32,55,58], uninitialized variables [61] and dead code elimination [43],
as well as several other standard frameworks, e.g. gen-kill and bit-vector prob-
lems [47,49,50]. The common thread among data-flow analyses is that they con-
sider certain “data facts” at each line of the code and then try to ascertain which
data facts may/must hold at any given point [69]. This is often achieved by a
worklist algorithm that keeps discovering new data facts until it reaches a fixed
point and converges to the final solution [48,69]. Variants of data-flow analy-
sis are already included in most IDEs and compilers. For example, Eclipse has
support for various data-flow analyses, such as unused variables and dead code
elimination, both natively [35] and through plugins [31,63]. Data-flow analyses
have also been applied in the context of compiler optimization, e.g. for register
allocation [52] and constant propagation analysis [17,42,73]. Additionally, they
have found important use-cases in security [18], including in taint analysis [4]
and detection of SQL injection attacks [41]. Due to their apparent importance,
data-flow analyses have been widely studied by the verification, compilers, secu-
rity and programming languages communities over the past five decades and are
also included in program analysis frameworks such as Soot [9] and WALA [1].

Intraprocedural vs Interprocedural Analysis. Traditionally, data-flow
analyses are divided into two general groups [46]:

– Intraprocedural approaches analyze each function/procedure of the code in
isolation [31,47]. This enables modularity and helps with efficiency, but the
tradeoff is that the call-context and interactions between the different proce-
dures are not accounted for, hence leading to relatively lower precision.

– In contrast, interprocedural analyses consider the entirety of the program,
i.e. all the procedures, at the same time. They are often sensitive to call
context and only focus on execution paths that respect function invocation
and return rules, i.e. when a function ends, control has to return to the correct
site of the last call to that function [29,69]. Unsurprisingly, interprocedural
analyses are much more accurate but also have higher complexity than their
intraprocedural counterparts [66,69,72,75].

IFDS. One of the most classical and widely-used frameworks for interprocedural
data-flow analysis is that of Interprocedural Finite Distributive Subset problems
(IFDS) [68,69]. IFDS is an expressive framework that can perform all the anal-
yses enumerated above by assigning a set D of data facts to each line of the
program and then applying a reduction to a variant of graph reachability with
side conditions ensuring that function call and return rules are enforced. For
example, in a null-pointer analysis, each data fact di in D is of the form “the
pointer pi might be null”. See Sect. 2 for details. Given a program with n lines,

Efficient Data-Flow Analysis 179

the original IFDS algorithm in [69] solves the data-flow problem for a fixed start-
ing point in time O(n · |D|3). Due to its elegance and generality, this framework
has been thoroughly studied by the community. It has been extended to vari-
ous platforms and settings [4,10,57], notably the on-demand setting [45] and in
presence of correlated method calls [65], and has been implemented in standard
static analysis tools [1,9].

On-Demand Data-Flow Analysis. Due to the expensiveness of exhaustive
data-flow analysis, i.e. an analysis that considers every possible starting point,
many works in the literature have turned their focus to on-demand analysis [6,22,
34,45,67,77,81,82]. In this setting, the algorithm can first run a preprocessing
phase in which it collects some information about the program and produces
summaries that can be used to speedup the query phase. Then, in the query
phase, the algorithm is provided with a series of queries and should answer each
one as efficiently as possible. Each query is of the form (�1, d1, �2, d2) and asks
whether it is possible to reach line �2 of the program, with the data fact d2 holding
at that line, assuming that we are currently at line �1 and data fact d1 holds1. It
is also noteworthy that on-demand algorithms commonly use information found
in previous queries to handle the current query more efficiently. On-demand
analyses are especially important in just-in-time compilers and their speculative
optimizations [7,22,28,37,53], in which having dynamic information about the
current state of the program can dramatically decrease the overhead for the
compiler. In addition, on-demand analyses have the following merits (quoted
from [45,68]):

– narrowing down the focus to specific points of interest,
– narrowing down the focus to specific data-flow facts of interest,
– reducing the work in preliminary phases,
– side-stepping incremental updating problems, and
– offering on-demand analysis as a user-level operation that helps programmers

with debugging.

On-Demand IFDS. An on-demand variant of the IFDS algorithm was first pro-
vided in [45]. This method has no preprocessing but memoizes the information
obtained in each query to help answer future queries more efficiently. It outper-
forms the classical IFDS algorithm of [69] in practice, but the only theoretical
guarantee is that of same worst-case complexity, i.e. the on-demand version will
never be any worse than running a new instance of the IFDS algorithm for each
query. Hence, the worst-case runtime on m queries is O(n·m·|D|3). Recall that n
is the number of lines in the program and |D| is the number of data facts at each
line. Alternatively, one can push all the complexity to the preprocessing phase,
running the IFDS algorithm exhaustively for each possible starting point, and
then answering queries by a simple table lookup. In this case, the preprocessing
will take O(n2 · |D|3). Unfortunately, none of these two variants are scalable

1 Instead of single data facts d1 and d2, we can also use a set of data facts at each of
�1 and �2, but as we will see in Sect. 2, this does not affect the generality.

180 A. K. Goharshady and A. K. Zaher

enough to handle codebases with hundreds of thousands of lines, e.g. standard
utilities in the DaCapo benchmark suite [8] such as Eclipse or Jython.

Same-Context On-Demand IFDS. The work [22] provides a parameterized
algorithm for a special case of the on-demand IFDS problem. The main idea
in [22] is to observe that control-flow graphs of real-world programs are sparse
and tree-like and that this sparsity can be exploited to find faster algorithms
for same-context IFDS analysis. More specifically, the sparsity is formalized by
a graph parameter called treewidth [70,71]. Intuitively speaking, treewidth is a
measure of how much a given graph resembles a tree, i.e. more tree-like graphs
have smaller treewidth. See Sect. 3 for a formal definition. It is proven that struc-
tured programs in several languages, such as C, have bounded treewidth [78] and
there are experimental works that establish small bounds on the treewidth of
control-flow graphs of real-world programs written in other languages, such as
Java [44], Ada [16] and Solidity [19]. Using these facts, [22] provides an on-
demand algorithm with O(n · |D|3) preprocessing time and O

(
� |D|
lg n�

)
time per

query2. In practice, |D| is often tiny in comparison with n and hence this algo-
rithm is considered to have linear preprocessing and constant query time. Unfor-
tunately, the algorithm in [22] is not applicable to the general case of IFDS and
can only handle same-context queries. Specifically, the queries in [22] provide a
tuple (�1, d1, �2, d2) just as in standard IFDS queries but they ask whether it is
possible to reach (�2, d2) from (�1, d1) by an execution path that preserves the
state of the stack, i.e. �1 and �2 are limited to being in the same function and the
algorithm only considers execution paths in which every function call returns
before reaching �2.

Our Contribution. In this work, we present a novel algorithm for the general
case of on-demand IFDS analysis. Our contributions are as follows:

– We identify a new sparsity parameter, namely the treedepth of the program’s
call graph, and use it to find more efficient parameterized algorithms for
IFDS data-flow analysis. Hence, our approach exploits the sparsity of both
call graphs and control-flow graphs and bounds both the treedepth and the
treewidth. Treedepth [14,60] is a well-studied graph sparsity parameter. It
intuitively measures how much the graph resembles a star, i.e. a shallow
tree [59, Chapter 6].

– We provide a scalable algorithm that is not limited to same-context queries
as in [22] and is much more efficient than the classical on-demand IFDS
algorithm of [45]. Specifically, after a lightweight preprocessing that takes
O(n · |D|3 · treedepth2) time, our algorithm is able to answer each query in
O(|D|3 ·treedepth). Thus, this is the first algorithm that can solve the general
case of on-demand IFDS scalably and handle codebases and programs with
hundreds of thousands or even millions of lines of code.

– We provide experimental results on the standard DaCapo benchmarks [8]
illustrating that:

2 This algorithm uses the Word-RAM model of computation. The division by lg n is
obtained by encoding lg n bits in one word.

Efficient Data-Flow Analysis 181

• our assumption of the sparsity of call graphs and low treedepth holds in
practice in real-world programs; and

• our approach comfortably beats the runtimes of exhaustive and on-
demand IFDS algorithms [45,69] by two orders of magnitude.

Novelty. Our approach is novel in several directions:

– Unlike previous optimizations for IFDS that only focused on control-flow
graphs, we exploit the sparsity of both control-flow graphs and call graphs.

– To the best of our knowledge, this is the first time that the treedepth param-
eter is exploited in a static analysis or program verification setting. While
this parameter is well-known in the graph theory community and we argue
that it is a natural candidate for formalizing the sparsity of call graphs (See
Sect. 3), this is the first work that considers it in this context.

– We provide the first theoretical improvements in the runtime of general on-
demand data-flow analysis since [45], which was published in 1995. Previ-
ous improvements were either heuristics without a theoretical guarantee of
improvement or only applicable to the special case of same-context queries.

– Our algorithm is much faster than [45] in practice and is the first to enable
on-demand interprocedural data-flow analysis for programs with hundreds
of thousands or even millions of lines of code. Previously, for such large pro-
grams, the only choices were to either apply the data-flow analysis intraproce-
durally, which would significantly decrease the precision, or to limit ourselves
to the very special case of same-context queries [22].

Limitation. The primary limitation of our algorithm is that it relies on the
assumption of bounded treewidth for control-flow graphs and bounded treedepth
for call graphs. In both cases, it is theoretically possible to generate pathological
programs that have arbitrarily large width/depth: [44] shows that it is possible
to write Java programs whose control-flow graphs have any arbitrary treewidth.
However, such programs are highly unrealistic, e.g. they require a huge number
of labeled nested while loops with a large nesting depth and break/continue
statements that reference a while loop that is many levels above in the nesting
order. Similarly, in Sect. 3, we construct a pathological example program whose
call graph has a large treedepth. Nevertheless, this is also unrealistic and real-
world programs, such as those in the DaCapo benchmark suite, have both small
treewidth and small treedepth, as shown in Sect. 5 and [16,19,44,78].

Organization. In Sect. 2, we present the standard IFDS framework and formally
define our problem. This is followed by a presentation of the graph sparsity
parameters we will use, i.e. treewidth and treedepth, in Sect. 3. Our algorithm
is then presented in Sect. 4, followed by experimental results in Sect. 5.

2 The IFDS Framework

In this section, we provide an overview of the IFDS framework following the
notation and presentation of [22,69] and formally define the interprocedural
data-flow problem considered in this work.

182 A. K. Goharshady and A. K. Zaher

Model of Computation. Throughout this paper, we consider the standard
word RAM model of computation in which every word is of length w = Θ(lg n),
where n is the length of the input. We assume that common operations, such
as addition, shift and bitwise logic between a pair of words, take O(1) time.
Note that this has no effect on the implementation of our algorithms since most
modern computers have a word size of at least 64 and we are not aware of any
possible real-world input to our problems whose size can potentially exceed 264.
We need this assumption since we use the algorithm of [22] as a black box. Our
own contribution does not rely on the word RAM model.

Control-Flow Graphs. In IFDS, a program with k functions f1, f2, . . . , fk

is modeled by k control-flow graphs G1, G2, . . . , Gk, one for each function, as
well as certain interprocedural edges that model function calls and returns. The
graphs Gi are standard control-flow graphs, having a dedicated start vertex si

modeling the beginning point of fi, another dedicated end vertex ei modeling
its end point, one vertex for every line of code in fi, and a directed edge from
u to v, if line v can potentially be reached right after line u in some execution
of the program. The only exception is that function call statements are modeled
by two vertices: a call vertex cl and a return site vertex rl. The vertex cl has
only incoming edges, whereas rl has only outgoing edges. There is also an edge
from cl to rl, which is called a call-to-return-site edge. This edge is used to pass
local information, e.g. information about the variables in fi that are unaffected
by the function call, from cl to rl.

Supergraphs. The entire program is modeled by a supergraph G, consisting of
all the control-flow graphs Gi, as well as interprocedural edges between them. If
a function call statement in fi, corresponding to vertices cl and rl in Gi, calls the
function fj , then the supergraph contains the following interprocedural edges:

– a call-to-start edge from the call vertex cl to the start vertex sj of the called
function fj , and

– an exit-to-return-site edge from the endpoint ej of the called function fj back
to the return site rl.

Call Graphs. Given a supergraph G as above, a call graph is a directed graph
C whose vertices are the functions f1, . . . , fk of the program and there is an edge
from fi to fj iff there is a function call statement in fi that calls fj . In other
words, the call graph models the interprocedural edges in the supergraph and
the supergraph can be seen as a combination of the control-flow and call graphs.

Example. Figure 1 shows a program consisting of two functions (left) and its
supergraph (right).

Valid Paths. The supergraph G potentially contains invalid paths, i.e. paths
that are not realizable by an actual run of the underlying program. The IFDS
framework only considers interprocedurally valid paths in G. These are the paths
that respect the rules for function invocation and return. More concretely, when a
function’s execution ends, control should return to the correct return-site vertex

Efficient Data-Flow Analysis 183

1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int(42);

8 g(a, b);

9 *b = 0;

10 }

call-to
-start

exit-to-return-site

Fig. 1. A C++ program (left) and its supergraph (right).

in its parent function. Formally, consider a path Π in G and let Π∗ be the sub-
sequence of Π that is obtained by removing any vertex that was not a call vertex
cl or a return-site vertex rl. Then, Π is called a same-context interprocedurally
valid path if Π∗ can be generated from the non-terminal S in the following
grammar:

S → ε | cl S rl S.

In other words, any function call in Π that was invoked in line cl should end by
returning to its corresponding return-site rl. A same-context valid path preserves
the state of the function call stack. In contrast, the path Π is interprocedurally
valid or simply valid if Π∗ is generated by the non-terminal S′ in the following
grammar:

S′ → S | S′ cl S.

A valid path has to respect the rules for returning to the right return-site vertex
after the end of each function, but it does not necessarily keep the function call
stack intact and it is allowed ot have function calls that do not necessarily end
by the end of the path. Let u and v be vertices in the supergraph G. We denote
the set of all same-context valid paths from u to v by SCVP(u, v) and the set of
all interprocedurally valid paths from u to v by IVP(u, v). In IFDS, we only focus
on valid paths and hence the problem is to compute a meet-over-all-valid-paths
solution to data-flow facts, instead of the meet-over-all-paths approach that is
usually taken in intraprocedural data-flow analysis [69].

IFDS Arena [69]. An arena of the IFDS data-flow analysis is a tuple
(G,D,Φ,M,�) wherein:

– G = (V,E) is a supergraph consisting of control-flow graphs and interproce-
dural edges, as illustrated above.

184 A. K. Goharshady and A. K. Zaher

– D is a finite set of data facts. Intuitively, we would like to keep track of which
subset of data facts in D hold at any vertex of G (line of the program).

– The meet operator � is either union or intersection, i.e. � ∈ {∪,∩}.
– Φ is the set of distributive flow functions over �. Every function ϕ ∈ Φ is of

the form ϕ : 2D → 2D and for every pair of subsets of data facts D1,D2 ⊆ D,
we have ϕ(D1 � D2) = ϕ(D1) � ϕ(D2).

– M : E → Φ is a function that assigns a distributive flow function to every
edge of the supergraph. Informally, M(e) models the effect of executing the
edge e on the set of data facts. If the data facts that held before the execution
of the edge e are given by a subset D′ ⊆ D, then the data facts that hold
after e are M(e)(D′) ⊆ D.

We can extend the function M to any path Π in G. Let Π be a path consisting of
the edges e1, e2, . . . , eπ. We define M(Π) := M(eπ) ◦ M(eπ−1) ◦ · · · ◦ M(e1).
Here, ◦ denotes function composition. According to this definition, M(Π) mod-
els the effect that Π’s execution has on the set of data facts that hold in the
program’s current state.

Problem Formalization. Consider an initial state (u,D1) ∈ V × 2D of the
program, i.e. we are at line u of the program and we know that the data facts
in D1 hold. Let v ∈ V be another line, we define

MIVP(u,D1, v) :=
�

Π∈IVP(u,v)

M(Π)(D1).

We simplify the notation to MIVP(v), when the initial state is clear from the
context. Our goal is to compute the MIVP values. Intuitively, MIVP corresponds
to meet-over-all-valid-paths. If the meet operator is intersection, then MIVP(v)
models the data facts that must hold whenever we reach v. Conversely, if we use
union as our meet operator, then MIVP(v) is the set of data facts that may hold
when reaching v. The work [69] provides an algorithm to compute MIVP(v) for
every end vertex v in O(n · |D|3), in which n = |V |.
Same-Context IFDS. We can also define a same-context variant of MIVP as
follows:

MSCVP(v) :=
�

Π∈SCVP(u,v)

M(Π)(D1).

The intuition is similar to MIVP, except that in MSCVP we only consider same-
context valid paths that preserve the function call stack’s status and ignore other
valid paths. The work [22] uses parameterization by treewidth of the control-flow
graphs to obtain faster algorithms for computing MSCVP. However, its algorithms
are limited to the same-context setting. In contrast, in this work, we follow
the original IFDS formulation of [69] and focus on MIVP, not MSCVP. Our main
contribution is that we present the first theoretical improvement for computing
MIVP since [45,69].

Dualization. In this work, we only consider the cases in which the meet operator
is union. In other words, we focus on may analyses. IFDS instances in which the

Efficient Data-Flow Analysis 185

meet operator is intersection, also known as must analyses, can be reduced to
union instances by a simple dualization. See [48,69] for details.

Data Fact Domain. In our presentation, we are assuming that there is a
fixed global data fact domain D. In practice, the domain D can differ in every
function of the program. For example, in a null-pointer analysis, the data facts
in each function keep track of nullness of the pointers that are either global
or local to that particular function. However, having different D sets would
reduce the elegance of the presentation and has no real effect on any of the
algorithms. So, we follow [22,69] and consider a single domain D in the sequel.
Our implementation in Sect. 5 supports different domains for each function.

Graph Representation of Functions [69]. Every union-distributive function
ϕ : 2D → 2D can be succinctly represented by the following relation Rϕ ⊆
(D ∪ {0}) × (D ∪ {0}) :

Rϕ := {(0,0)} ∪ {(0, d) | d ∈ ϕ(∅)} ∪ {(d1, d2) | d2 ∈ ϕ({d1}) \ ϕ(∅)}.

The intuition is that, in order to specify the union-distributive function ϕ, it
suffices to fix ϕ(∅) and ϕ({d}) for every d ∈ D. Then, we always have

ϕ({d1, d2, . . . , dr}) = ϕ({d1}) ∪ ϕ({d2}) ∪ · · · ∪ ϕ({dr}).

We use a new item 0 to model ϕ(∅), i.e. 0 Rϕ d ⇔ d ∈ ϕ(∅). To specify ϕ({d}),
we first note that ϕ(∅) ⊆ ϕ({d}), so we only need to specify the elements that are
in ϕ({d}) but not ϕ(∅). These are precisely the elements that are in relation with
d. In other words, ϕ({d}) = ϕ(∅) ∪ {d′ | d Rϕ d′}. We can further represent the
relation Rϕ as a bipartite graph Hϕ in which each part consists of the vertices
D ∪ {0} and Rϕ defines the edges.

Example. Figure 2 shows the graph representation of several union-distributive
functions.

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

λx.{a, b} λx.(x − {a}) ∪ {b} λx.x λx.x ∪ {a} λx.
{a}x �= ∅

x =

Fig. 2. Graph representation of union-distributive functions with D = {a, b} [22].

Composition of Graph Representations [69]. What makes this graph rep-
resentation particularly elegant is that we can compose two functions by a sim-
ple reachability computation. Specifically, if ϕ1 and ϕ2 are distributive, then
so is ϕ2 ◦ ϕ1. By definition chasing, we can see that Rϕ2◦ϕ1 = Rϕ1 ;Rϕ2 =
{(d1, d2) | ∃d3 (d1, d3) ∈ Rϕ1 ∧(d3, d2) ∈ Rϕ2}. Thus, to compute the graph rep-
resentation Hϕ2◦ϕ1 , we simply merge the bottom part of Hϕ1 with the top part of

186 A. K. Goharshady and A. K. Zaher

Hϕ2 and then compute reachability from the top-most layer to the bottom-most
layer.

Example. Figure 3 illustrates how the composition of two distributive functions
can be obtained using their graph representations. Note that this process some-
times leads to superfluous edges. For example, since we have the edge (0, a) in
the result, the edge (b, a) is not necessary. However, having it has no negative
side-effects, either.

0 a b

0 a b

0 a b

0 a b

λx.{a}
λx.x ∪ {a}

λx.

{{a}x �= ∅
∅ x = ∅

Fig. 3. Composing two distributive functions using reachability [22].

Exploded Supergraph [69]. Consider an IFDS arena (G = (V,E),D, Φ,M,∪)
as above and let D∗ := D ∪ {0}. The exploded supergraph of this arena is a
directed graph G = (V ,E) in which:

– V = V ×D∗, i.e. we take |D∗| copies of each vertex in the supergraph G, one
corresponding to each data fact in D∗.

– E = {(u1, d1, u2, d2) ∈ V × V | (u1, u2) ∈ E ∧ (d1, d2) ∈ RM(u1,u2)}. In
other words, every edge between vertices u1 and u2 in the supergraph G is
now replaced by the graphic representation of its corresponding distributive
flow function M(u1, u2).

Naturally, we say a path Π in G is interprocedurally (same-context) valid, if the
path Π in G, obtained by ignoring the second component of every vertex in Π,
is interprocedurally (same-context) valid.

Reduction to Reachability. We can now reformulate our problem based on
reachability by valid paths in the exploded supergraph G. Consider an initial
state (u,D1) ∈ V × 2D of the program and let v ∈ V be another line. Since the
exploded supergraph contains representations of all distributive flow functions,
it already encodes the changes that happen to the data facts when we execute
one step of the program. Thus, it is straightforward to see that for any data fact
d2, we have d2 ∈ MIVP(u,D1, v) if and only if there exist a data fact d1 ∈ D1

such that the vertex (v, d2) in G is reachable from the vertex (u, d1) using an
interprocedurally valid path [69]. Hence, our data-flow analysis is now reduced
to reachability by valid paths. Moreover, instead of computing MIVP values, we
can simplify our query structure so that each query provides two vertices (u, d1)
and (v, d2) in the exploded supergraph G and asks whether there is a valid path
from (u, d1) to (v, d2).

Example. Figure 4 shows the same program as in Fig. 1, together with its
exploded supergraph for null-pointer analysis. Here, we have two data facts: d1
models the fact “the pointer a may be null” and d2 does the same for b. Starting

Efficient Data-Flow Analysis 187

1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int(42);

8 g(a, b);

9 *b = 0;

10 }

Fig. 4. A program (left) and its exploded supergraph (right).

from line 5, i.e. the beginning of the main function, and knowing no data facts,
i.e. D1 = {0}, we would like to see if either a or b might be null at the end of the
main function. Using a reachability analysis on the exploded supergraph, we can
identify all vertices that can be reached by a valid path (green) and conclude
that neither a nor b may be null by the end of the program.

On-Demand Analysis. As mentioned in Sect. 1, we focus on on-demand anal-
ysis and distinguish between a preprocessing phase in which the algorithm can
perform a lightweight pass over the input and a query phase in which the algo-
rithm has to respond to a large number of queries. The queries appear in a
stream and the algorithm has to handle each query as fast as possible. Based on
the discussion above, each query is of the form (u1, d1, u2, d2) ∈ V ×D∗ ×V ×D∗

and the algorithm should report whether there exist an interprocedurally valid
path from (u1, d1) to (u2, d2) in the exploded supergraph G.

Bounded Bandwidth Assumption. Following previous works such as [22,45,
69], we assume that the “bandwidth” in function calls and returns is bounded.
More concretely, we assume there exists a small constant β such that for every
interprocedural call-to-start or exit-to-return-site edge e in our supergraph G,
the degree of each vertex in the graph representation HM(e) is at most β. This
is a classical assumption made in IFDS and all of its extensions. Intuitively, it
models the idea that every parameter in a called function depends on only a few
variables in the call site line c of the callee, and conversely, that the return value
of a function is only dependent on a few variables at its last line.

3 Treewidth and Treedepth

In this section, we provide a short overview of the concepts of treewidth and
treedepth. Treewidth and treedepth are both graph sparsity parameters and we

188 A. K. Goharshady and A. K. Zaher

will use them in our algorithm in the next section to formalize the sparsity of
control-flow graphs and call graphs, respectively.

Tree Decompositions [13,70,71]. Given an undirected graph G = (V,E), a
tree decomposition of G is a rooted tree T = (B, ET) such that:

i. Every node b ∈ B of the tree T has a corresponding subset Vb ⊆ V of
vertices of G. To avoid confusion, we reserve the word “vertex” for vertices
of G and use the word “bag” to refer to nodes of the tree T . This is natural,
since each bag b has a subset Vb of vertices.

ii. Every vertex appears in some bag, i.e.
⋃

b∈B Vb = V .
iii. For every edge {u, v} ∈ E, there is a bag that contains both of its endpoints,

i.e. ∃b ∈ B {u, v} ⊆ Vb.
iv. Every vertex v ∈ V appears in a connected subtree of T . Equivalently, if b

is on the unique path from b′ to b′′ in T, then Vb ⊇ Vb′ ∩ Vb′′ .

When talking about tree decompositions of directed graphs, we simply ignore
the orientation of the edges and consider decompositions of the underlying undi-
rected graph. Intuitively, a tree decomposition covers the graph G by a number
of bags3 that are connected to each other in a tree-like manner. If the bags are
small, we are then able to perform dynamic programming on G in a very similar
manner to trees [11,21,39,40,54]. This is the motivation behind the following
definition.

Treewidth [71]. The width of a tree decomposition is defined as the size of its
largest bag minus 1, i.e. w(T) := maxb∈B |Vb| − 1. The treewidth of a graph G is
the smallest width amongst all of its tree decompositions. Informally speaking,
treewidth is a measure of tree-likeness. Only trees and forests have a treewidth
of 1, and, if a graph G has treewidth k, then it can be decomposed into bags of
size at most k + 1 that are connected to each other in a tree-like manner.

Example. Figure 5 shows a graph G on the left and a tree decomposition of
width 2 for G on the right. In the tree decomposition, we have highlighted the
connected subtree of each vertex by dotted lines. This tree decomposition is
optimal and hence the treewidth of G is 2.

Fig. 5. A graph G (left) and one of its tree decompositions (right).

3 The bags do not have to be disjoint.

Efficient Data-Flow Analysis 189

Computing Treewidth. In general, it is NP-hard to compute the treewidth
of a given graph. However, for any constant k, there is a linear-time algorithm
that decides whether the graph has treewidth at most k and, if so, also computes
an optimal tree decomposition [12]. As such, most treewidth-based algorithms
assume that an optimal tree decomposition is given as part of the input.

Treewidth of Control-Flow Graphs. In [78], it was shown that the control-
flow graphs of goto-free programs in a number of languages such as C and Pascal
have a treewidth of at most 7. Moreover, [78] also provides a linear-time algo-
rithm that, while not necessarily optimal, always outputs a tree decomposition
of width at most 7 for the control-flow graph of programs in these languages by
a single pass over the parse tree of the program. This algorithm is implemented
in [24], and is the algorithm we use for obtaining our tree decompositions in
Sect. 5. Alternatively, one can use the algorithm of [12] to ensure that an opti-
mal decomposition is used at all times. The theoretical bound of [78] does not
apply to Java, but the work [44] showed that the treewidth of control-flow graphs
in real-world Java programs is also bounded. This bounded-treewidth property
has been used in a variety of static analysis and compiler optimization tasks to
speed up the underlying algorithms [2,3,5,20,23,25–27,36,38,62]. Nevertheless,
one can theoretically construct pathological examples with high treewidth.

Balancing Tree Decompositions. The runtime of our algorithm in Sect. 4
depends on the height of the tree decomposition. However, [15] provides a linear-
time algorithm that, given a graph G and a tree decomposition of constant
width t, produces a binary tree decomposition of height O(lg n) and width O(t).
Combining this with the algorithms of [78] and [12] for computing low-width
tree decompositions allows us to assume that we are always given a balanced
and binary tree decomposition of bounded width for each one of our control-flow
graphs as part of our IFDS input.

We now switch our focus to the second parameter that appears in our algo-
rithms, namely treedepth.

Partial Order Trees [60]. Let G = (V,E) be an undirected connected graph.
A partial order tree (POT)4 over G is a rooted tree T = (V,ET) on the same set
of vertices as G that additionally satisfies the following property:

– For every edge {u, v} ∈ E of G, either u is an ancestor of v in T or v is
ancestor of u in T.

The intuition is quite straightforward: T defines a partial order ≺T over the
vertices V in which every element u is assumed to be smaller than its parent pu,
i.e. u ≺T pu. For T to be a valid POT, every pair of vertices that are connected
by an edge in G should be comparable in ≺T . If G is not connected, then we will
have a partial order forest, consisting of a partial order tree for each connected
component of G. With a slight abuse of notation, we call this a POT, too.
4 The name partial order tree is not standard in this context, but we use it throughout

this work since it provides a good intuition about the nature of T . Usually, the term
“treedepth decomposition” is used instead.

190 A. K. Goharshady and A. K. Zaher

Example. Figure 6 shows a graph G (left) together with a POT of depth 4 for
G (right). In the POT, the edges of the original graph G are shown by dotted
red lines. Every edge of G goes from a node in T to one of its ancestors.

Fig. 6. A graph G (left) and a POT of depth 4 for G (right).

Treedepth [60]. The treedepth of an undirected graph G is the smallest depth
among all POTs of G.

Path Property of POTs [60]. Let T = (V,ET) be a POT for a graph G =
(V,E) and u and v two vertices in V . Define Au as the set of ancestors of u in
T and define Av similarly. Let A := Au ∩ Av be the set of common ancestors of
u and v. Then, any path that goes from u to v in the graph G has to intersect
A, i.e. it has to go through a common ancestor.

Sparsity Assumption. In the sequel, our algorithm is going to assume that
call graphs of real-world programs have small treedepth. We establish this exper-
imentally in Sect. 5. However, there is also a natural reason why this assumption
is likely to hold in practice. Consider the functions in a program. It is natu-
ral to assume that they were developed in a chronological order, starting with
base (phase 1) functions, and then each phase of the project used the functions
developed in the previous phases as libraries. Thus, the call graph can be par-
titioned to a small number of layers based on the development phase of each
function. Moreover, each function typically calls only a small number of previ-
ous functions. So, an ordering based on development phase is likely to give us
a POT with small depth. The depth would typically depend on the number of
phases and the degree of each function in the call graph, but these are both
small parameters in practice.

Pathological Example. It is possible in theory to write a program whose
call graph has an arbitrarily large treedepth. However, such a program is not
realistic. Suppose that we want a program with treedepth n. We can create n
functions f1, f2, . . . , fn and then ensure that each function fi calls every other
function fj (j �= i). In this strange program, our call graph will simply be a
complete graph on n vertices. Since every two vertices in this graph have to be
comparable, its POT will be a path with depth n. So, its treedepth is Θ(n).

Efficient Data-Flow Analysis 191

Computing Treedepth. As in the case of treewidth, it is NP-hard to compute
the treedepth of a given graph [64]. However, for any fixed constant k, there is a
linear-time algorithm that decides whether a given graph has treedepth at most
k and, if so, produces an optimal POT [56]. Thus, in the sequel, we assume that
all inputs include a POT of the call graph with bounded depth.

4 Our Parameterized Algorithm

In this section, we present our parameterized algorithm for solving the general
case of IFDS data-flow analysis, assuming that the control-flow graphs have
bounded treewidth and the call graph has bounded treedepth. Throughout this
section, we fix an IFDS arena (G,D,Φ,M,∪) given by an exploded supergraph
G and assume that every control-flow graph comes with a balanced binary tree
decomposition of width at most k1. We also assume that a POT of depth k2 over
the call graph is given as part of the input. All these assumptions are without loss
of generality since the tree decompositions and POT can be computed in linear
time using the algorithms mentioned in Sect. 3. Before presenting our algorithm,
we should first define a few useful notions.

Algorithm for Same-Context IFDS. The work [22] provides an on-demand
parameterized algorithm for same-context IFDS. This algorithm requires a bal-
anced and binary tree decomposition of constant width for every control-flow
graph and provides a preprocessing runtime of O(n · |D|3), after which it can
answer same-context queries in time O

(
� |D|
lg n�

)
. A same-context query is a query

of the form (u1, d1, u2, d2) ∈ V × D∗ × V × D∗ which asks whether there exists
a same-context valid path from (u1, d1) to (u2, d2) in the exploded supergraph
G. Below, we use [22]’s algorithm for same-context queries as a black box.

Stack States. Let F be the set of functions in our program. A stack state is
simply a finite sequence of functions ξ = 〈ξi〉s

i=1 ∈ F s. We use a stack state to
keep track of the set of functions that have been called but have not finished
their execution and returned yet.

Persistence. Consider an interprocedurally valid path Π = 〈πi〉p
i=1 in the super-

graph G and let Π∗ = 〈π∗
i 〉s

i=1 be the sub-sequence of Π that only includes call
vertices cl and return vertices rl. For each π∗

i that is a call vertex, let fi be
the function called by π∗

i . We say the function call to fi is temporary if π∗
i is

matched by a corresponding return-site vertex π∗
j in Π∗ with j > i. Otherwise,

fi is a persistent function call. In other words, temporary function calls are the
ones who return before the end of the path Π and persistent ones are those that
are added to the stack but never popped. So, if the stack is at state ξ before
executing Π, it will be in state ξ · 〈fi1 · fi2 · · · fir 〉 after Π’s execution, in which
the fij ’s are our persistent function calls. Moreover, we can break down the path
Π as follows:

Π = Σ0 · Σ1 · πi1 · Σ2 · πi2 · · · Σr · πir · Σr+1 (1)

in which Σ0 is an intraprocedural path, i.e. the part of Π that does not leave
the initial function. Note that we either have Π = Σ0 or Σ0 should end with a

192 A. K. Goharshady and A. K. Zaher

function call. For every i �= 0, Σi is a same-context valid path from the starting
point of a function and πij is a call vertex that calls the next persistent function
fij . We call (1) the canonical partition of the path Π.

Exploded Call Graph. Let C = (F,EC) be the call graph of our IFDS
instance, in which F is the set of functions in the program. We define the exploded
call graph C = (F ,EC) as follows:

– Our vertex set F is simply F × D∗. Recall that D∗ := D ∪ {0}.
– There is an edge from the vertex (f1, d1) to the vertex (f2, d2) in EC iff:

• There is a call statement c ∈ V in the function f1 that calls f2;
• There exist a data fact d3 ∈ D∗ such that (i) there is a same-context valid

path from (sf1 , d1) to (c, d3) in the exploded supergraph G, and (ii) there
is an edge from (c, d3) to (sf2 , d2) in the exploded supergraph G.

The edges of the exploded call graph model the effect of a valid path that starts
at sf1 , i.e. the first line of f1, when the function call stack is empty and reaches
sf2 , with stack state 〈f2〉. Informally, this corresponds to executing the program
starting form f1, potentially calling any number of temporary functions, then
waiting for all of these temporary functions and their children to return so that
we again have an empty stack, and then finally calling f2 from the call-site
c, hence reaching stack state 〈f2〉. Intuitively, this whole process models the
substring Σ · c in the canonical partition of a valid path, in which Σ is a same-
context valid path, and f2 is the next persistent function, which was called at c.
Hence, going forward, we do not plan to pop f2 from the stack.

Treedepth of C. Recall that we have a POT T of depth k2 for the call graph
C. In C, every f ∈ C is replaced by |D∗| vertices (f,0), (f, d1), . . . , (f, d|D|). We
can obtain a valid POT T for C by processing the tree in a top-down order and
replacing every vertex that corresponds to a function f with a path of length
|D∗|, as shown in Fig. 7. It is straightforward to verify that T is a valid POT of
depth k2 · |D∗| for C.

Fig. 7. Obtaining T from T by expanding each vertex to a path.

Efficient Data-Flow Analysis 193

Preprocessing. The preprocessing phase of our algorithm consists of the fol-
lowing four steps:

1. Same-context Preprocessing: Our algorithm runs the preprocessing phase
of [22]’s algorithm for same-context IFDS. This is done as a black box. See [22]
for the details of this step.

2. Intraprocedural Preprocessing: For every vertex (u, d) ∈ G, for which u is a line
of the program in the function f , our algorithm performs an intraprocedural
reachability analysis and finds a list of all the vertices of the form (c, d′) such
that:

– c is a call-site vertex in the same function f.
– There is an intraprocedural path from (u, d) to (c, d′) that always remains

within f and does not cause any function calls.
Our algorithm computes this by a simple reverse DFS from every (c, d′).
Intuitively, this is so that we can later handle the first part, i.e. Σ0, in the
canonical partition in 1. Note that this step is entirely intraprocedural and
our reverse DFS is equivalent to the classical algorithms of [48]. Moreover, we
can consider Σ0 to be a same-context path instead of merely an intraproce-
dural path. In this case, we can rely on queries to [22] to do this step of our
preprocessing.

3. Computing Exploded Call Graph: Our algorithm generates the exploded call
graph C using its definition above. It iterates over every function f1 and
call site c in f1. Let f2 be the function called at c. For every pair (d1, d3) ∈
D∗ × D∗, our algorithm queries the same-context IFDS algorithm of [22] to
see if there is a same-context valid path from (sf1 , d1) to (c, d3). Note that we
can make such queries since we have already performed the required same-
context preprocessing in Step 1 above. If the query’s result is positive, the
algorithm iterates over every d2 ∈ D∗ such that (c, d3, sf2 , d2) is an edge in
the exploded supergraph G, and adds an edge from (f1, d1) to (f2, d2) in C.
The algorithm also computes the POT T as mentioned above. Intuitively,
this step allows us to summarize the effects of each function call in the call
graph so that we can later handle the control-flow graphs and the call graph
separately.

4. Computing Ancestral Reachability in T : For every vertex u in T , let T
↓
u be

the subtree of T rooted at u and F
↓
u be the set of descendants of u. For every

u and every v ∈ F
↓
u, our algorithm precomputes reach(u, v), i.e. whether u

is reachable from v in C and also reach(v, u). Informally, the idea is that
every path from a vertex a in our exploded call graph to a vertex b has to
go through one of the ancestors of a and b (See Sect. 3). Thus, it is natural
to precompute the reachability relations between every vertex and all of its
ancestors.
To compute this, for every vertex u and every descendant v of u, we define:

up[u, v] :=

{
1 there is a path from v to u in C[F

↓
u]

0 otherwise
,

194 A. K. Goharshady and A. K. Zaher

down[u, v] :=

{
1 there is a path from u to v in C[F

↓
u]

0 otherwise
.

Note that in the definition above, we are only considering paths whose every
internal vertex is in the subtree of u. We can find the values of down[u, v]
by simply running a DFS from u but ignoring all the edges that leave the
subtree T

↓
u. Similarly, we can find the values of up[u, v] by a similar DFS in

which the orientation of all edges are reversed.
By the path property of POTs, every path ρ from v to u in C either has all of
its vertices in the subtree T

↓
u or visits some ancestors of u as internal vertices.

Let w be the highest ancestor of u that is visited by ρ. Then, we must have
up[w, v] = down[w, u] = 1. Similarly, if there is a path from u to v, we must
have up[w, u] = down[w, v] = 1. Our algorithm simply sets:

reach(u, v) =
∨
w

(up[w, u] ∧ down[w, v]) ,

and
reach(v, u) =

∨
w

(up[w, v] ∧ down[w, u]) .

Query. After the end of the preprocessing phase, our algorithm is ready to accept
queries. Suppose that a query q asks whether there exists a valid interprocedural
path from (u1, d1) to (u2, d2) in G. Suppose that Π is such a valid path and Π
is its trace on the supergraph G, i.e. the path obtained from Π by ignoring the
second component of every vertex. We consider the canonical partition of Π as

Π = Σ0 · (Σ1 · πi1) · (Σ2 · πi2) · · · (Σr · πir) · Σr+1

and its counterpart in Π as

Π = Σ0 · (
Σ1 · πi1

) · (
Σ2 · πi2

) · · · (Σr · πir

) · Σr+1.

Let Σj [1] be the first vertex in Σj . For every j ≥ 1, consider the subpath

Σj · πij · Σj+1[1].

This subpath starts at the starting point sf of some function f and ends at the
starting point sf ′ of the function f ′ called in πij . Thus, it goes from a vertex of
the form (sf , d1) to a vertex of the form (sf ′ , d2). However, by the definition of
our exploded call graph C, we must have an edge ej in C going from (f, d1) to
(f ′, d2). With a minor abuse of notation, we do not differentiate between f and
sf and replace this subpath with ej . Hence, every interprocedurally valid Π can
be partitioned in the following format:

Π = Σ0 · e1 · e2 · · · er · Σr+1.

In other words, to obtain an interprocedurally valid path, we should first take an
intraprocedural path Σ0 in our initial function, followed by a path e1 ·e2 · · · er in

Efficient Data-Flow Analysis 195

the exploded call graph C, and then a same-context valid path Σr+1 in our target
function. Note that Σr+1 begins at the starting point of our target function.

Our algorithm uses the observation above to answer the queries. Recall that
the query q is asking whether there exists a path from (u1, d1) to (u2, d2) in G.
Let f1 be the function of u1 and f2 the function containing u2. Our algorithm
performs the following steps to answer the query:

1. Take all vertices of the form (c, d3) such that c is a call vertex in f1 and (c, d3)
is intraprocedurally reachable from (u1, d1). Note that this was precomputed
in Step 2 of our preprocessing.

2. Find all successors of the vertices in Step 1 in G. These successors are all of
the form (sf ′ , d4) for some function f ′, and their corresponding nodes in the
exploded call graph are of the form (f ′, d4).

3. Compute the set of all (f2, d5) vertices in C that are reachable from one of
the (f ′, d4) vertices obtained in the previous step. In this case, the algorithm
uses the path property of POTs and tries all possible common ancestors of
(f2, d5) and (f ′, d4) as potential internal vertices in the path.

4. For each (f2, d5) found in the previous step, ask the same-context query from
(sf2 , d5) to (f2, d2). For these same-context queries, our algorithm uses the
method of [22] as a black box.

5. If any of the same-context queries in the previous step return true, then our
algorithm also answers true to the query q. Otherwise, it answers false.

Intuition. Figure 8 provides an overview of how our query phase breaks an
interprocedurally valid path down between G (red) and C (blue). Note that we
do not distinguish between the vertex (f2, d5) of C and vertex (sf2 , d5) of G.
Explicitly, any path from (u1, d1) to (u2, d2) should first begin with an intrapro-
cedural segment in the original function f1. This part is precomputed and shown
in red. Then, it switches from the exploded control-flow graph to the exploded
call graph and follows a series of function calls. This is shown in blue. We have
already precomputed the effect of each edge in the call graph and encoded this
effect in the exploded call graph. Hence, the blue part of the path is simply a
reachability query, which we can answer efficiently using our POT. We would
like to see whether there is a path from a = (f ′, d4) to b = (f2, d5). However, any
such path should certainly go through one of the common ancestors of a and b
in the POT. Since the treedepth is bounded, a and b have only a few ancestors.
Moreover, we have already computed the reachability between any vertex and
all of its ancestors. So, a few table lookups can tell us whether there is a path
from a to b. Finally, when we reach the beginning of our target function f2, we
have to take a same-context valid path to our target state (u2, d2). To check if
such a path exists, we simply rely on [22] as a black box.

Runtime Analysis of the Preprocessing Phase. Our algorithm is much
faster than the classical IFDS algorithm of [69]. More specifically, for the pre-
processing, we have:

– Step 1 is a black box from [22] and takes O(n · |D|3).

196 A. K. Goharshady and A. K. Zaher

Fig. 8. An overview of the query phase. (Color figure online)

– Step 2 is a simple intraprocedural analysis that runs a reverse DFS from every
node (c, d) in any function f . Assuming that the function f has α lines of code
and a total of δ function call statements, this will take O(α·δ ·|D|3). Assuming
that δ is a small constant, this leads to an overall runtime of O(n · |D|3). Note
that this assumption is in line with reality since we rarely, if ever, encounter
functions that call more than a constant number of other functions.

– In Step 3, we have at most O(n · |D|) call nodes of the form (c, d3). Based
on the bounded bandwidth assumption, each such node leads to constantly
many possibilities for d2. So, we perform at most O(n · |D|2) calls to the same-
context query procedure. Each same-context query takes O(�|D|/ lg n�), so
the overall runtime of this step is O(n · |D|3/ lg n).

– In Step 4, the total time for computing all the up and down values is O(n ·
|D|3 · k2). This is because C has at most O(n · |D|) vertices and O(n · |D|2)
edges and each edge can be traversed at most O(|D| · k2) times in the DFS,
where k2 is the depth of our POT for C. Note that the treedepth of C is a
factor |D| larger than that of C. Finally, computing the reach values takes
O(n · |D|3 · k2

2) time.

Therefore, the total runtime of our preprocessing phase is O(n · |D|3 · k2
2), which

has only linear dependence on the number of lines, n.

Runtime Analysis of the Query Phase. To analyze the runtime of a query,
note that there are O(δ · |D|) different possibilities for (c, d3). Due to the
bounded bandwidth assumption, each of these correspond to a constant number
of (f ′, d4)’s. For each (f ′, d4) and (f2, d5), we should perform a reachability query
using the POT T . So, we might have to try up to O(k2 · |D|) common ancestors.
So, the total runtime for finding all the (f2, d5)’s is O(|D|3 · k2 · δ). Finally, we
have to perform a same-context query from every (sf2 , d5) to (u2, d2). So, we
do a total of at most O(|D|) queries, each of which take O(|D|). So, the total
runtime is O(|D|3 · k2 · δ), which is O(|D|3) in virtually all real-world scenarios
where k2 and δ are small constants.

Efficient Data-Flow Analysis 197

5 Experimental Results

Implementation and Machine. We implemented our algorithm, as well as
the algorithms of [69] and [45], in a combination of C++ and Java, and used the
Soot [79] framework to obtain the control-flow and call graphs. Specifically, we
use the SPARK call graph created by Soot for the intermediate Jimple represen-
tation. To compute treewidth and treedepth, we used the winning open-source
tools submitted to past PACE challenges [33,51]. All experiments were run on
an Intel i7-11800H machine (2.30 GHz, 8 cores, 16 threads) with 12 GB of RAM.

Benchmarks and Experimental Setup. We compare the performance of
our method against the standard IFDS algorithm [69] and its on-demand vari-
ant [45] and use the standard DaCapo benchmarks [8] as input programs. These
are real-world programs with hundreds of thousands of lines of code. For each
benchmark, we consider three different classical data-flow analyses: (i) reach-
ability analysis for dead-code elimination, (ii) null-pointer analysis, and (iii)
possibly-uninitialized variables analysis. For each analysis, we gave each of the
algorithms 10 min time over each benchmark and recorded the number of queries
that the algorithm successfully handled in this time. The queries themselves were
randomly generated5 and the number of queries was also limited to n, i.e. the
number of lines in the code. We then report the average cost of each query,
i.e. each algorithm’s total runtime divided by the number of queries it could
handle. The reason for this particular setup is that [69] and [45] do not distin-
guish between preprocessing and query. So, to avoid giving our own method any
undue advantage, we have to include both our preprocessing and our query time
in the mix.

Treewidth and Treedepth. In our experiments, the maximum encountered
treewidth was 10, whereas the average was 9.1. Moreover, the maximum
treedepth was 135 and the average was 43.8. Hence, our central hypothesis that
real-world programs have small treewidth and treedepth holds in practice and
the widths and depths are much smaller than the number of lines in the program.

Results. Figure 9 provides the average query time for each analysis. Each dot
corresponds to one benchmark. We use PARAM, IFDS and DEM to refer to our algo-
rithm, the IFDS algorithm in [69], and the on-demand IFDS algorithm in [45],
respectively. The reported instance sizes are the number of edges in G.

Discussion. As shown in Sect. 4, our algorithm’s preprocessing has only linear
dependence on the number n of lines and our query time is completely indepen-
dent of n. Thus, our algorithm has successfully pushed most of the time complex-
ity on the small parameters such as the treewidth k1, treedepth k2, bandwidth b
and maximum number of function calls in each function, i.e. δ. All these param-
eters are small constants in practice. Specifically, the two most important ones
5 For generating each query, we randomly and uniformly picked two points in the

exploded supergraph. Note that none of our queries are same-context. Even when
the two points of the query are in the same function, we are asking for reachability
using interprocedurally valid paths that are not necessarily same-context.

198 A. K. Goharshady and A. K. Zaher

Fig. 9. Comparison of the average cost per query for our algorithm vs [69] and [45].

are always small: The treewidth in DaCapo benchmarks never exceeds 10 and
the treedepth is at most 135. This is in contrast to n which is the hundreds of
thousands and the instance size, which can be up to around 2 · 106. In contrast,
both [69] and [45] have a quadratic dependence on n. Unsurprisingly, this leads
to a huge gap in the practical runtimes and our algorithm is on average faster
than the best among [69] and [45] by a factor of 158, i.e. more than two orders
of magnitude. Moreover, the difference is much starker on larger benchmarks,
in which the ratio of our parameters to n is close to 0. On the other hand, in
a few small instances, simply computing the treewidth and treedepth is more
time-consuming than the previous approaches and they outperform us.

6 Conclusion

In this work, we provided a parameterized algorithm for the general case of
the on-demand data-flow analysis as formalized by the IFDS framework. We
exploited a novel parameter, i.e. the treedepth of call graphs, to reduce the
runtime dependence on the number of lines of code from quadratic to linear. This
led to significant practical improvements of more than two orders of magnitude in
the runtime of the IFDS data-flow analysis as demonstrated by our experimental
results. Moreover, this is the first theoretical improvement in the runtime of the
general case of IFDS since the original algorithm of [69], which was published in
1995.

Efficient Data-Flow Analysis 199

Acknowledgments. The research was partially supported by the Hong Kong
Research Grants Council ECS Project Number 26208122, the HKUST-Kaisa Joint
Research Institute Project Grant HKJRI3A-055 and the HKUST Startup Grant R9272.
Author names are ordered alphabetically.

References

1. T.J. Watson libraries for analysis, with frontends for Java, Android, and JavaScript,
and many common static program analyses. https://github.com/wala/WALA

2. Ahmadi, A., Daliri, M., Goharshady, A.K., Pavlogiannis, A.: Efficient approxima-
tions for cache-conscious data placement. In: PLDI, pp. 857–871 (2022)

3. Aiswarya, C.: How treewidth helps in verification. ACM SIGLOG News 9(1), 6–21
(2022)

4. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: PLDI, pp. 259–269 (2014)

5. Asadi, A., Chatterjee, K., Goharshady, A.K., Mohammadi, K., Pavlogiannis, A.:
Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth.
In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 253–270.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 14

6. Babich, W.A., Jazayeri, M.: The method of attributes for data flow analysis: Part
II. Demand analysis. Acta Informatica 10, 265–272 (1978)

7. Bebenita, M., et al.: SPUR: a trace-based JIT compiler for CIL. In: OOPSLA, pp.
708–725 (2010)

8. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA, pp. 169–190 (2006)

9. Bodden, E.: Inter-procedural data-flow analysis with IFDS/IDE and soot. In:
SOAP, pp. 3–8 (2012)

10. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.:
SPLLIFT: statically analyzing software product lines in minutes instead of years.
In: PLDI, pp. 355–364 (2013)

11. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
ICALP, pp. 105–118 (1988)

12. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: STOC, pp. 226–234 (1993)

13. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21
(1993)

14. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discret. Math. 11(1), 168–
181 (1998)

15. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

16. Burgstaller, B., Blieberger, J., Scholz, B.: On the tree width of Ada programs. In:
Llamośı, A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 78–90.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24841-5 6

17. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural constant
propagation. In: CC, pp. 152–161 (1986)

18. Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement using
dynamic data flow analysis. In: CCS, pp. 39–50 (2008)

19. Chatterjee, K., Goharshady, A.K., Goharshady, E.K.: The treewidth of smart con-
tracts. In: SAC, pp. 400–408 (2019)

https://github.com/wala/WALA
https://doi.org/10.1007/978-3-030-59152-6_14
https://doi.org/10.1007/978-3-540-24841-5_6

200 A. K. Goharshady and A. K. Zaher

20. Chatterjee, K., Goharshady, A.K., Goyal, P., Ibsen-Jensen, R., Pavlogiannis, A.:
Faster algorithms for dynamic algebraic queries in basic RSMs with constant
treewidth. TOPLAS 41(4), 23:1–23:46 (2019)

21. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Pavlogiannis, A.: Algorithms
for algebraic path properties in concurrent systems of constant treewidth compo-
nents. In: POPL, pp. 733–747 (2016)

22. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Pavlogiannis, A.: Optimal
and perfectly parallel algorithms for on-demand data-flow analysis. In: ESOP, pp.
112–140 (2020)

23. Chatterjee, K., Goharshady, A.K., Okati, N., Pavlogiannis, A.: Efficient parame-
terized algorithms for data packing. In: POPL, pp. 53:1–53:28 (2019)

24. Chatterjee, K., Goharshady, A.K., Pavlogiannis, A.: JTDec: a tool for tree decom-
positions in soot. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS,
vol. 10482, pp. 59–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 4

25. Chatterjee, K., Ibsen-Jensen, R., Goharshady, A.K., Pavlogiannis, A.: Algorithms
for algebraic path properties in concurrent systems of constant treewidth compo-
nents. TOPLAS 40(3), 9:1–9:43 (2018)

26. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for quantita-
tive verification in constant treewidth graphs. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 140–157. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21690-4 9

27. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A.: Quantitative verification on
product graphs of small treewidth. In: FSTTCS, pp. 42:1–42:23 (2021)

28. Chen, T., Lin, J., Dai, X., Hsu, W.-C., Yew, P.-C.: Data dependence profiling for
speculative optimizations. In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp.
57–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24723-4 5

29. Chow, A.L., Rudmik, A.: The design of a data flow analyzer. In: CC, pp. 106–113
(1982)

30. Collard, J.F., Knoop, J.: A comparative study of reaching-definitions analyses
(1998)

31. Dangel, A., Fournier, C., et al.: PMD Eclipse plugin. https://github.com/pmd/
pmd-eclipse-plugin

32. Das, A., Lal, A.: Precise null pointer analysis through global value numbering. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 25–41.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 2

33. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
IPEC, pp. 30:1–30:12 (2018)

34. Duesterwald, E., Gupta, R., Soffa, M.L.: Demand-driven computation of interpro-
cedural data flow. In: POPL, pp. 37–48 (1995)

35. Eclipse Foundation: Eclipse documentation, Java development user guide. http://
help.eclipse.org/2022-06/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/
preferences/java/compiler/ref-preferences-errors-warnings.htm

36. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: local vs. global. In:
Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 489–
503. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191 34

37. Flückiger, O., Scherer, G., Yee, M., Goel, A., Ahmed, A., Vitek, J.: Correctness of
speculative optimizations with dynamic deoptimization. In: POPL, pp. 49:1–49:28
(2018)

https://doi.org/10.1007/978-3-319-68167-2_4
https://doi.org/10.1007/978-3-319-68167-2_4
https://doi.org/10.1007/978-3-319-21690-4_9
https://doi.org/10.1007/978-3-319-21690-4_9
https://doi.org/10.1007/978-3-540-24723-4_5
https://github.com/pmd/pmd-eclipse-plugin
https://github.com/pmd/pmd-eclipse-plugin
https://doi.org/10.1007/978-3-319-68167-2_2
http://help.eclipse.org/2022-06/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm
http://help.eclipse.org/2022-06/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm
http://help.eclipse.org/2022-06/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-errors-warnings.htm
https://doi.org/10.1007/11591191_34

Efficient Data-Flow Analysis 201

38. Goharshady, A.K.: Parameterized and algebro-geometric advances in static pro-
gram analysis. Ph.D. thesis, Institute of Science and Technology Austria,
Klosterneuburg, Austria (2020)

39. Goharshady, A.K., Hooshmandasl, M.R., Meybodi, M.A.: [1, 2]-sets and [1, 2]-total
sets in trees with algorithms. Discret. Appl. Math. 198, 136–146 (2016)

40. Goharshady, A.K., Mohammadi, F.: An efficient algorithm for computing network
reliability in small treewidth. Reliab. Eng. Syst. Saf. 193, 106665 (2020)

41. Gould, C., Su, Z., Devanbu, P.T.: JDBC checker: a static analysis tool for
SQL/JDBC applications. In: ICSE, pp. 697–698 (2004)

42. Grove, D., Torczon, L.: Interprocedural constant propagation: a study of jump
function implementations. In: PLDI, pp. 90–99 (1993)

43. Gupta, R., Benson, D., Fang, J.Z.: Path profile guided partial dead code elimination
using predication. In: PACT, pp. 102–113 (1997)

44. Gustedt, J., Mæhle, O.A., Telle, J.A.: The treewidth of Java programs. In: Mount,
D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45643-0 7

45. Horwitz, S., Reps, T.W., Sagiv, S.: Demand interprocedural dataflow analysis. In:
FSE, pp. 104–115 (1995)

46. Khedker, U., Sanyal, A., Sathe, B.: Data Flow Analysis: Theory and Practice. CRC
Press, Boca Raton (2017)

47. Kildall, G.A.: A unified approach to global program optimization. In: POPL, pp.
194–206 (1973)

48. Kildall, G.A.: Global Expression Optimization During Compilation. University of
Washington (1972)

49. Knoop, J., Steffen, B.: Efficient and optimal bit-vector data flow analyses: a uniform
interprocedural framework. Institut für Informatik und Praktische Mathematik
Kiel, Bericht (1993)

50. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. TOPLAS 18(3), 268–299 (1996)

51. Kowalik, �L., Mucha, M., Nadara, W., Pilipczuk, M., Sorge, M., Wygocki, P.: The
PACE 2020 parameterized algorithms and computational experiments challenge:
treedepth. In: IPEC, pp. 37:1–37:18 (2020)

52. Kurdahi, F.J., Parker, A.C.: REAL: a program for register allocation. In: DAC,
pp. 210–215 (1987)

53. Lin, J., et al.: A compiler framework for speculative optimizations. TACO (3),
247–271 (2004)

54. Meybodi, M.A., Goharshady, A.K., Hooshmandasl, M.R., Shakiba, A.: Optimal
mining: maximizing Bitcoin miners’ revenues from transaction fees. In: Blockchain,
pp. 266–273. IEEE (2022)

55. Meyer, B.: Ending null pointer crashes. Commun. ACM 60(5), 8–9 (2017)
56. Nadara, W., Pilipczuk, M., Smulewicz, M.: Computing treedepth in polynomial

space and linear FPT time. CoRR abs/2205.02656 (2022)
57. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-

rithm. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11970-5 8

58. Nanda, M.G., Sinha, S.: Accurate interprocedural null-dereference analysis for
Java. In: ICSE, pp. 133–143. IEEE (2009)

59. Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms.
Springer, Cham (2012)

60. Nesetril, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

https://doi.org/10.1007/3-540-45643-0_7
https://doi.org/10.1007/978-3-642-11970-5_8

202 A. K. Goharshady and A. K. Zaher

61. Nguyen, T.V.N., Irigoin, F., Ancourt, C., Coelho, F.: Automatic detection of unini-
tialized variables. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 217–231.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36579-6 16

62. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In:
Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 7

63. Pessoa, T., Monteiro, M.P., Bryton, S., et al.: An eclipse plugin to support code
smells detection. arXiv preprint arXiv:1204.6492 (2012)

64. Pothen, A.: The complexity of optimal elimination trees. Technical report (1988)
65. Rapoport, M., Lhoták, O., Tip, F.: Precise data flow analysis in the presence of

correlated method calls. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291,
pp. 54–71. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-
9 4

66. Reps, T.: Undecidability of context-sensitive data-dependence analysis. TOPLAS
22(1), 162–186 (2000)

67. Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases. SECS, pp. 163–196.
Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-2207-2 8

68. Reps, T.W.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11–
12), 701–726 (1998)

69. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

70. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

71. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

72. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the
presence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol.
3923, pp. 2–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11688839 2

73. Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167, 131–170 (1996)

74. Shang, L., Xie, X., Xue, J.: On-demand dynamic summary-based points-to analy-
sis. In: CGO, pp. 264–274 (2012)

75. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis
using synchronized pushdown systems. In: POPL, pp. 48:1–48:29 (2019)

76. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI, pp. 387–400 (2006)

77. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analysis
for Java. In: OOPSLA, pp. 59–76 (2005)

78. Thorup, M.: All structured programs have small tree-width and good register allo-
cation. Inf. Comput. 142(2), 159–181 (1998)

79. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a Java bytecode optimization framework. In: CASCON, p. 13. IBM (1999)

80. Xu, G., Rountev, A., Sridharan, M.: Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 98–122. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03013-0 6

81. Yan, D., Xu, G., Rountev, A.: Demand-driven context-sensitive alias analysis for
Java. In: ISSTA, pp. 155–165 (2011)

82. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: POPL, pp. 197–208
(2008)

https://doi.org/10.1007/3-540-36579-6_16
https://doi.org/10.1007/978-3-540-45069-6_7
http://arxiv.org/abs/1204.6492
https://doi.org/10.1007/978-3-662-48288-9_4
https://doi.org/10.1007/978-3-662-48288-9_4
https://doi.org/10.1007/978-1-4615-2207-2_8
https://doi.org/10.1007/11688839_2
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6

Maximal Robust Neural Network
Specifications via Oracle-Guided

Numerical Optimization

Anan Kabaha(B) and Dana Drachsler-Cohen

Technion, Haifa, Israel

anan.kabaha@campus.technion.ac.il, ddana@ee.technion.ac.il

Abstract. Analyzing the robustness of neural networks is crucial for
trusting them. The vast majority of existing works focus on networks’
robustness in ε-ball neighborhoods, but these cannot capture complex
robustness specifications. We propose MaRVeL, a system for computing
maximal non-uniform robust specifications that maximize a target norm.
The main idea is to employ oracle-guided numerical optimization, thereby
leveraging the efficiency of a numerical optimizer as well as the accuracy of
a non-differentiable robustness verifier, acting as the oracle. The optimizer
iteratively submits to the verifier candidate specifications, which in turn
returns the closest inputs to the decision boundaries. The optimizer then
computes their gradients to guide its search in the directions the specifica-
tion can expand while remaining robust. We evaluate MaRVeL on several
datasets and classifiers and show that its specifications are larger by 5.1x
than prior works. On a two-dimensional dataset, we show that the aver-
age diameter of its specifications is 93% of the optimal average diameter,
whereas the diameter of prior works’ specifications is only 26%.

1 Introduction

Neural networks are susceptible to adversarial examples [14,15,21,37,46,48]. To
understand the robustness level of neural networks, many works verify local
robustness [3,18,28,31,34,38,41,43]. These works focus on analyzing the net-
work’s robustness at an ε-ball centered at a given input, where every input entry
can be perturbed by up to ±ε. However, focusing only on this kind of neighborhood
hinders the overall robustness level of the network. To illustrate, consider Fig. 1
showing the decision boundaries of a small network (the black curves), taking two-
dimensional inputs, and an input (the red dot). Its maximal ε-ball is bounded by
the closest decision boundary and thus it is quite small (the blue square). This is
because an ε-ball uniformly bounds all perturbations by the same ε.

This gave rise to works that compute maximal non-uniform robust neigh-
borhoods [25,26]. These neighborhoods are defined by interval specifications,
generalizing ε-balls, where each input entry is bounded by an interval. A robust
interval specification is maximal if expanding any interval results in including

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 203–227, 2023.
https://doi.org/10.1007/978-3-031-24950-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_10&domain=pdf
http://orcid.org/0000-0002-0969-6169
http://orcid.org/0000-0001-6644-5377
https://doi.org/10.1007/978-3-031-24950-1_10

204 A. Kabaha and D. Drachsler-Cohen

Non-uniform [25]

Optimal uniform

Ours

Optimal non-uniform

Fig. 1. A comparison of MaRVeL’s maximal non-uniform specification to the max-
imal (uniform) ε-ball, the optimal non-uniform specification (computed by a naive
approach), and the maximal non-uniform specification computed by [25].

an adversarial example. In other words, every interval is approaching a deci-
sion boundary. To pick among the multiple maximal robust specifications, it
is common to maximize a given size metric (e.g., the L1 or L2 norm). Com-
puting maximal non-uniform specifications is challenging because (1) the search
space is exponentially large and (2) determining whether an interval specifica-
tion belongs to this space, i.e., whether it is robust, requires to call a robustness
verifier, which takes non-negligible time. A naive optimal approach begins by
computing all decision boundaries around the given input using a grid search.
Accordingly, it computes all maximal robust interval specifications and returns
the specification maximizing the size metric. However, this approach is highly
time-consuming and impractical if the input dimension is high. Figure 1 shows
an optimal non-uniform specification (the dashed yellow rectangle).

Existing works propose efficient approaches to compute maximal non-uniform
specifications [25,26]. These approaches rely on numerical optimization, to search
in the large space, and on an incomplete robustness analysis, to determine robust-
ness of candidate specifications. This analysis overapproximates the network’s
computation with differentiable linear functions and thus it scales well to large
networks and is amenable to first-order optimization. However, incomplete anal-
ysis suffers from precision loss. Hence, their specifications are not always maximal
and are quite small. Figure 1 shows the maximal non-uniform specification com-
puted by [25] (the dashed green rectangle). It is significantly smaller than the
optimal specification and it does not reach any decision boundary. This raises
the question: Can we efficiently compute optimal maximal robust specifications?

We present MaRVeL (Maximal Robustness Verification of IntervaL spec-
ifications). Like prior works, MaRVeL relies on a numerical optimizer to look
for a robust specification maximizing a given size metric. Unlike prior works,
it relies on a MILP robustness verifier [38], which provides a more accurate
analysis but is not differentiable. To employ first-order optimization, we pro-

Maximal Robust Neural Network Specifications 205

pose a novel way to compute the analysis’ gradient from the set of weakest
points. These are inputs contained in the specification that are the closest to
the decision boundaries, and they are computed during the robustness analy-
sis. Based on this idea, MaRVeL employs oracle-guided numerical optimization.
At each iteration, it submits a specification to the robustness MILP verifier to
obtain the weakest points. Accordingly, it computes the gradient and constructs
the next specification. MaRVeL also employs counterexample-guided synthesis
(CEGIS) to prune the search space based on non-robust specifications. If the
verifier determines a specification is non-robust (i.e., it contains an adversar-
ial example), then MaRVeL prunes the search space by restricting the relevant
interval bounds. Figure 1 shows the specification computed by MaRVeL (the red
rectangle), which is maximal and its average diameter is only 7% smaller than
that of the optimal specification.

We evaluate MaRVeL on several benchmarks and compare to prior works [25,
26]. First, we consider the two-dimensional synthetic dataset of [26] and show
that MaRVeL’s specifications are maximal and their average diameters is 93% of
the average diameters of the optimal specifications, whereas the average diame-
ters of prior works’ specifications are at most 26%. Second, we consider popular
datasets (MNIST, Fashion-MNIST, CIFAR-10, and Contagio/Virustotal [7,40])
and several networks, including convolutional networks. Results show that the
average diameter of MaRVeL’s specifications is 5.1x larger than that of prior
works’ specifications. We further show that the CEGIS component leads to 1.8x
larger average diameters. The execution time of MaRVeL is 19.9x longer than
that of prior works and 6.5x longer if MaRVeL terminates upon the first non-
robust specification. The longer execution time is mostly because MaRVeL relies
on a more accurate verifier. Lastly, we show that MaRVeL’s specifications iden-
tify robustness attributes of the networks that ε-balls cannot identify and even
prior works’ specifications do not identify.

2 Preliminaries

In this section, we provide background on network classifiers and local robustness.

Neural Network Classifiers. Given an input domain R
d and a set of classes

C = {1, . . . , c}, a classifier maps inputs to a score vector over the possible
classes D : R

d → R
c. We focus on classifiers in which every input entry has

a minimum and maximum domain value. A fully-connected network consists of
L layers. The first layer z0 takes as input a vector from R

d, denoted x, and it
passes the input as is to the next layer (i.e., z0,k = xk). The last layer outputs a
vector, denoted D(x), consisting of a score for each class in C. The classification
of the network for input x is the class with the highest score, c′ = argmax(D(x)).
The layers are functions, denoted h1, h2, . . . , hL, each taking as input the out-
put of the preceding layer. The network’s function is the composition of the
layers: D(x) = hL(hL−1(· · · (h1(x)))). The function of layer m is defined by
a set of processing units called neurons, denoted zm,1, . . . , zm,km

. Each neuron

206 A. Kabaha and D. Drachsler-Cohen

takes as input the outputs of all neurons in the preceding layer and outputs
a real number. The output of layer m is the vector (zm,1, . . . , zm,km

)T con-
sisting of all its neurons’ outputs. A neuron zm,k has a weight for each input
wm,k,k′ and a single bias bm,k. Its function is computed by first computing the
sum of the bias and the multiplication of every input by its respective weight:
ẑm,k = bm,k +

∑km−1
k′=1 wm,k,k′ · zm−1,k′ . This output is then passed to an acti-

vation function σ to produce the output zm,k = σ(ẑm,k). Activation functions
are typically non-linear functions. In this work, we focus on the ReLU activation
function, ReLU(ẑ) = max(0, ẑ). We note that, for simplicity’s sake, we explain
our approach for fully-connected networks, but it extends to other architectures,
e.g., convolutional networks.

Local Robustness. A safety property for neural networks that has drawn a lot of
interest is local robustness. A network is locally robust at a given input if it does
not change the classification under a given type of perturbation. Formally, given
a classifier D, an input x and a neighborhood containing x, I(x) ⊆ R

d, we say D
is robust at I(x) if: ∀x′ ∈ I(x). argmax(D(x′)) = argmax(D(x)). There are many
robustness verifiers for neural networks. Most of them can analyze hyperrectan-
gular neighborhoods, where each input entry (i.e., pixel, if the input is an image)
is bounded in an interval [l, u], where l, u ∈ R. These neighborhoods capture
popular robustness neighborhoods, e.g., ε-balls. Among the robustness verifiers,
some are complete, i.e., for every neighborhood, they return robust or non-robust,
while others are incomplete, i.e., they may also return unknown. Many complete
verifiers rely on constraint solvers, e.g., SAT-solvers [10], SMT-solvers [18], or
mixed-integer linear programming (MILP) solvers [38]. Incomplete verifiers often
employ linear or convex relaxations to the network’s non-linear computations to
scale the analysis [1,3,13,28,29,31–34,41,43]. While complete verifiers tend to
be slower than incomplete verifiers, today’s MILP solvers are very efficient and
can reason about relatively large networks. They also provide a natural way to
trade-off accuracy with scalability, as we explain in Sect. 5.1.

3 Problem Definition

In this section, we define the problem of maximal robust specifications for neural
networks. We then discuss the challenges, prior work and the current gap.

Robustness Specifications. We focus on interval specifications defining hyper-
rectangular neighborhoods. An interval specification is a sequence of intervals,
each corresponding to an input entry and constraining its possible values. For-
mally, interval specifications are parameterized by an input x and take the form
of: Il1,u1,...,ld,ud

(x) = [l1, u1], . . . , [ld, ud], where li ≤ xi ≤ ui, for every i ∈ [d].
The specification’s neighborhood contains all inputs bounded by the intervals:
NIl1,u1,...,ld,ud

(x) = {x′ | ∀i ∈ [d]. x′
i ∈ [li, ui]}. When it is clear from the context,

we write I. If x′ ∈ NI(x), we write x′ ∈ I and say x′ is contained in I. We say I
is a robustness specification for a classifier D if D is robust at NI(x). Our goal is
to compute maximal robust specifications maximizing a given norm. Formally:

Maximal Robust Neural Network Specifications 207

Definition 1 (Problem Definition). Given a classifier D, a correctly classified
input x and its class cx, and a differentiable almost everywhere p-norm || · ||p (e.g.,
p = 1, 2, . . .), the goal is to compute a specification Il1,u1,...,ld,ud

(x) satisfying:

1. D is robust at NIl1,u1,...,ld,ud
(x).

2. For every interval specification I ′ expanding I, D is not robust at NI′(x).
3. Il1,u1,...,ld,ud

(x) maximizes || · ||p, among specifications meeting 1 & 2.

This problem is challenging for several reasons. First, it involves searching
in high-dimensional space: a specification is a vector in R

2d. Second, deter-
mining whether a specification belongs to the search space (namely, whether
it is robust) involves querying a robustness verifier, which takes non-negligible
time. Third, it involves identifying the decision boundaries of the classifier to
determine that the specification is maximal. We note that for (uniform) ε-ball
neighborhoods, computing the maximal neighborhood is significantly simpler.
An ε-ball specification allows perturbations of each input entry by up to a given
ε: Bε(x) = [x1 − ε, x1 + ε], . . . , [xd − ε, xd + ε]. Namely, an ε-ball is defined by
a real number ε. Thus, computing the maximal ε-ball of a given x is a search
in a one-dimensional space. It can be done using a binary search, where each
candidate ε′ is submitted to a robustness verifier. Determining whether an ε-ball
specification is maximal is also simpler and does not require estimating the deci-
sion boundaries: the maximal robust ε-ball is the one maximizing ε. However,
as we demonstrate later, considering the more expressive interval specifications
leads to revealing a more accurate perspective on the classifier’s robustness level.

Prior Work and Current Gap. Two works address the problem of maximal robust
interval specifications [25,26]. These works assume an incomplete robustness veri-
fier that relies on linear relaxations to bound each neuron by linear bounds. They
leverage the linear bounds to overapproximate the classifier’s function D(x) as
a linear function of the inputs D̃(x). This allows them to search for a maximal
specification using numerical optimization guided by the gradient of D̃. While
these approaches compute larger specifications than their counterpart maximal
ε-ball specifications (as we show in Sect. 6), they suffer from precision loss. The
precision loss stems both from the accumulated overapproximation error of the
incomplete verifier’s analysis and the inaccuracy of computing the gradient based
on D̃(x) and not the actual classifier’s function D(x). As a result, the computed
specifications are not maximal. As demonstrated in Fig. 1, existing approaches
compute non-maximal specifications, which are also significantly smaller than the
optimal specification. We note that although Fig. 1 demonstrates one of the exist-
ing approaches, similar results are obtained for the other one. In this work, we
propose a new approach for computing maximal robust specifications.

4 Key Idea: An Oracle-Guided Numerical Optimization

In this section, we present our key idea for computing maximal robust specifi-
cations, on which we later build to design MaRVeL. Our goal is to compute a

208 A. Kabaha and D. Drachsler-Cohen

maximal robust specification I(x) maximizing a given norm ||·||p. To this end, we
rely on a MILP verifier, which loses less precision than verifiers relying on linear
relaxations. However, the computation of this verifier is not differentiable and
thus not amenable to numerical optimization, as proposed by prior works [25,26].
On the other hand, numerical optimization is very efficient for (differentiable)
maximization problems, and thus we wish to leverage it for searching for candi-
date specifications. We draw inspiration from program synthesis and propose to
rely on oracle-guided numerical optimization.

In oracle-guided numerical optimization, we have two entities: the numerical
optimizer and the verifier, which interact iteratively. At every iteration, the
numerical optimizer computes a new candidate specification and then submits
it to the verifier. The verifier checks whether the specification defines a robust
neighborhood and returns information to the optimizer that guides it in which
directions the current specification can expand (if it is robust) or should shrink
(if it is not robust). The process terminates when the optimizer does not have
more directions to expand. It then returns the last candidate specification that
is robust, according to the verifier. We next formalize the optimization problem
that the optimizer solves to compute a maximal robust specification. We then
explain at a high-level how the optimizer solves the optimization problem and
describe the information provided by the verifier to guide the optimization.

4.1 The Optimization Problem

Ideally, we would like the optimizer to solve a constrained optimization problem
over specifications, where the maximization function is the p-norm of the specifi-
cation and the constraints are that the specification is valid (i.e., contains x) and
robust. We note that, in this section, we ignore the domain constraints, bounding
the input entries by minimum and maximum values, because they are enforced
differently (explained in Sect. 5.3). Expressing that the specification is valid is
straightforward: we require xi ≥ li and xi ≤ ui, for every i ∈ [d]. Expressing that
the specification is robust is more subtle because it requires to enforce that the
network classifies every input contained in the specification as cx (i.e., x’s class):

∀x′ ∈ I(x). class(D(x′)) = cx

However, this constraint is not differentiable, because we rely on a MILP-based
encoding of the network’s computation, to avoid precision loss. Thus, we rewrite
this constraint into a term, which is easier for differentiation, preserving the con-
straint’s semantics. We begin with an equivalent constraint requiring that the dif-
ference between cx’s score and the maximal score of any other class is positive:

∀x′ ∈ I(x). D(x′)cx − max{D(x′)c′ | c′ �= cx} > 0

Next, to eliminate the for-all operator, which is generally not supported by
numerical optimizers, we rewrite this constraint by requiring that the minimum
value of the above difference is positive:

min{D(x′)cx − max{D(x′)c′ | c′ �= cx} | x′ ∈ I(x)} > 0

Maximal Robust Neural Network Specifications 209

This constraint has the same semantics: if the minimal value of this difference
is positive, then the specification is robust, and otherwise, it is not robust. We
call the minimal difference the robustness level. We next define it formally.

Definition 2 (Robustness Level). Given a classifier D, a correctly classified
input x and its class cx, and a specification I(x), the robustness level of I(x) is
RL(I(x)) = min {D(x′)cx − max{D(x′)c′ | c′ �= cx} | x′ ∈ I(x)}.

Lastly, since such constraint is challenging for a numerical optimizer, we
relax it by adding the robustness level as an additional term to the maximiza-
tion function (such relaxation is common, for example, to compute adversarial
examples [4,6,37,39]). By aiming to maximize the robustness level, the optimizer
guides its search towards robust specifications. Overall, the optimizer computes
a maximal robust specification by solving the following optimization problem:

max
Il1,u1,...,ld,ud

||Il1,u1,...,ld,ud
||p + λ · RL(Il1,u1,...,ld,ud

)

subject to
xi ≥ li ∀i ∈ [d]
xi ≤ ui ∀i ∈ [d]

(1)

Here, λ is the balancing term, which we define in Sect. 5.2. This constrained
problem aims to maximize both the specification’s size and its robustness level.

We note that although an optimal solution to this problem may be a non-
robust specification, this does not affect the overall soundness of our approach.
This is because every candidate is submitted to a sound verifier, and eventually
we return the maximal specification that is robust, according to the verifier.

4.2 Solving the Optimization Problem

To solve the optimization problem, the optimizer runs stochastic gradient descent
(SGD). At every SGD iteration, the optimizer computes the gradient of the
maximization problem and accordingly updates the current specification by a
small step: I 	→ I + η ·∇(||I||p +λ ·RL(I)). Afterwards, it clips the specification
to respect the validity constraints xi ≥ li and xi ≤ ui. The main question is
how to compute the gradient of the maximization function. Since the norm is
differentiable almost everywhere, the challenge is only in computing the gradient
of RL(I). Our idea is to rely on the robustness level that the MILP verifier
computes as part of its analysis, and in particular on the inputs defining the
robustness level. That is, the inputs minimizing the difference between the score
of cx and the maximal score of any other class. We call these inputs the weakest
points. We next define them formally.

Definition 3 (Weakest Points). Given a classifier D, a correctly classified
input x and its class cx, and a specification I(x), the weakest points of I(x) is
the following set of inputs Ŵ ⊆ R

d: Ŵ = {x′ ∈ I(x) | RL(x′) = RL(I(x))},
where for every x′ ∈ R

d, we define RL(x′) = D(x′)cx − max{D(x′)c′ | c′ �= cx}.

210 A. Kabaha and D. Drachsler-Cohen

We next explain how the weakest points enable the optimizer to compute
the gradient of RL(I). By the definition of robustness level, we have RL(I) =
RL(Ŵ). In particular, their gradients are equal: ∇RL(I) = ∇RL(Ŵ). Thus, to
compute the gradient of RL(I), the optimizer computes the gradients of the
weakest points, which is typically a very small set. Computing the gradient at a
single point x′ ∈ Ŵ is a simple standard computation involving a forward pass
and a backward pass over the classifier D. The gradient of Ŵ is the average
of the weakest points’ gradients. In practice, the gradient of the weakest points
may direct to other decision boundaries, which are close to inputs with a low
robustness level, but not the lowest. To avoid it, we identify the set of classes
with a low robustness level C ′ ⊆ C \ {cx} and obtain from the verifier’s analysis
the weakest points of every class c′ ∈ C ′, namely the inputs minimizing the
robustness level for every class in C ′. Formally, given the set of classes with
a low robustness level C ′, its set of weakest points is W = {Wc′ | c′ ∈ C ′},
where for c′ ∈ C ′, Wc′ = {x′ ∈ I(x) | D(x′)cx − D(x′)c′ = RLc′(I(x))} and
RLc′(I(x)) = min {D(x′)cx − D(x′)c′ | x′ ∈ I(x)}. The optimizer constructs a
weighted gradient from all the points in

⋃
W (defined in Sect. 5.2).

5 MaRVeL: Computing Maximal Robust Specifications

In this section, we present MaRVeL, our algorithm to compute maximal robust
interval specifications. MaRVeL builds on oracle-guided numerical optimization
(Sect. 4). Figure 2 shows its operation. MaRVeL takes as arguments a classifier
D, an input x and its class cx. Throughout execution, it maintains three specifi-
cations: the current specification I, the last verified robust specification Ir, and
the termination specification If , keeping the maximal bounds. Initially, I is the
specification containing only x, and Ir and If are undefined. MaRVeL operates
iteratively to maximize the optimization problem of Eq. (1). It begins at the Ver-
ify step. This step begins with a call to a fast incomplete verifier to identify the
set of classes with low robustness levels C ′. For every c′ ∈ C ′, it encodes the veri-
fication task as a MILP and submits it to a MILP solver. The solver returns, for
every class c′ ∈ C ′, the weakest points and their robustness level Wc′ . MaRVeL
then continues to the Progress step to decide how to advance the computation.
If I is robust, Ir is updated. Otherwise, MaRVeL resets I to the previous Ir and
updates If using CEGIS, to prevent expanding in the maximal directions. It fur-
ther updates the balancing factor λ0 (described later), if I is not sufficiently larger
than the previous Ir or if I is not robust. Then, MaRVeL checks the termination
conditions. MaRVeL terminates in one of the following cases: (1) if x is misclassi-
fied (in which case, I is set to an undefined Ir and thus has ⊥), (2) all bounds are
maximal (If has no ⊥), or (3) the balancing factor λ0 is below a predetermined
threshold (λ0 < λmin). If MaRVeL does not terminate, it continues to the Opti-
mize step. This step first computes the specification size’s gradient, the robust-
ness level’s gradient (from the weakest points), and the value of λ. Accordingly, it
updates I. Lastly, it employs clipping to I based on the validity constraints (i.e.,

Maximal Robust Neural Network Specifications 211

Fig. 2. MaRVeL: system description.

li ≤ xi ≤ ui) and enforces the bounds in If . When one of the termination con-
ditions is true, the last robust specification Ir is returned. We next explain these
steps, show an example, and discuss correctness.

5.1 The Verify Step

For the verifier, MaRVeL relies on the MILP encoding of an existing MILP-
based robustness verifier [38]. We begin with a short background on its encoding,
which is necessary to understand MaRVeL’s encoding and optimizations, and
then describe MaRVeL’s call to the fast incomplete verifier and the optimizations
that MaRVeL employs.

Background: A MILP Robustness Verifier. The MILP verifier [38] encodes the
robustness analysis as MILPs, which are then submitted to a MILP solver. We
begin by describing the encoding of the network’s computation. Given a network,
the encoding associates to each neuron zm,k the following (we abuse notation,
for simplicity’s sake): (1) a real-valued variable ẑm,k for the affine computation,
(2) a real-valued variable zm,k for the ReLU computation, (3) concrete lower and
upper bounds lm,k, um,k ∈ R, and (4) a boolean variable am,k ∈ {0, 1}. For every
neuron, it adds the following constraints, capturing the neuron’s computation:

212 A. Kabaha and D. Drachsler-Cohen

ẑm,k = bm,k +
km−1∑

k′=1

wm,k,k′ · zm−1,k′ zm,k ≥ 0 zm,k ≥ ẑm,k

zm,k ≤ um,k · am,k zm,k ≤ ẑm,k − lm,k(1 − am,k)

The concrete bounds are computed before encoding the network, for example
using interval arithmetic or a fast incomplete verifier (which, as mentioned, MaR-
VeL runs before the MILP verifier). These constraints capture the network’s com-
putation precisely, without any approximation. Note that because the encoding
relies on boolean variables, the overall function is a step function, and thus not
differentiable. Given an interval specification Il1,u1,...,ld,ud

(x), the encoding adds
the constraints: z0,k ≥ lk and z0,k ≤ uk, for every k ∈ [d]. To encode robustness
of cx with respect to class c′ �= cx, i.e., show that the score of cx is higher than
that of c′, it adds a minimization function: min(zL,cx − zL,c′). An optimal solu-
tion to this MILP is the robustness level of c′. The set of inputs obtaining this
robustness level is the set of weakest points of c′, Wc′ . Overall, to show local
robustness, i.e., show robustness of cx with respect to every class c′ �= cx, the
verifier submits to a MILP solver |C| − 1 MILPs. If all optimal solutions (i.e.,
robustness levels) are positive, the classifier is locally robust at the given interval
specification. Otherwise, it is not robust. That is, this encoding provides a sound
and complete local robustness analysis [38]. In addition to the robustness levels,
the MILP solver can also return the sets of weakest points.

The Fast Verifier. The MILP verifier is generally an efficient approach for exact
analysis. However, since MaRVeL invokes it at every iteration, it becomes highly
time consuming, especially for large networks. Thus, at every iteration, MaRVeL
attempts to reduce the number of MILPs by pruning classes whose robustness level
is not low. Thus, before the MILP encoding, MaRVeL runs DeepPoly [33]. Deep-
Poly is an incomplete robustness verifier, relying on linear relaxations to scale the
analysis. As part of its analysis, DeepPoly computes, for every output neuron,
real-valued lower and upper bounds bounding the possible values. MaRVeL relies
on these bounds to compute, for every class c′ �= cx, a lower bound on the robust-
ness level. Then, it constructs the set C ′ of all classes whose robustness level’s
lower bound is not positive. Note that the MILP verifier need not check the other
classes to determine local robustness. If C ′ = ∅ (it may happen for very small
specifications), it adds to C ′ the class with the minimal robustness level.

The MILP Verifier. MaRVeL encodes a MILP for each class in C ′, as described,
and submits them to a MILP solver. To reduce execution times, it employs two
optimizations. First, it employs a partial MILP encoding. That is, it encodes only
part of the neurons using boolean variables, and the rest are overapproximated
with DeepPoly’s linear constraints (which lose precision). This allows MaRVeL
to trade-off precision with scalability. Specifically, MaRVeL limits the number of
neurons that are encoded precisely at every layer to nm (a hyper-parameter).
There are several heuristics to determine which neurons require precise encod-
ing [34,41–43]. MaRVeL employs a common heuristic. It picks for every layer the

Maximal Robust Neural Network Specifications 213

nm neurons with the largest overapproximation error, i.e., the largest difference
between their upper bound and lower bound, as determined by DeepPoly. Sec-
ond, many MILP solvers support anytime computations. Thus, MaRVeL runs
the MILP solver with a predetermined timeout TMILP. If the solver reaches this
timeout, it returns the current optimal solution. We note that these optimiza-
tions do not affect the soundness of MaRVeL, but may reduce its accuracy.

5.2 The Optimize Step

The Optimize step begins by computing the gradient of the maximization func-
tion: ||Il1,u1,...,ld,ud

||p+λ·RL(Il1,u1,...,ld,ud
). This computation follows the descrip-

tion at Sect. 4.2, and we next explain it in detail. The gradient is a vector in R
2d,

defining for every li and ui its derivative. Computing the gradient of ∇||I||p is
straightforward, for p ≥ 1. For example, if p = 2, namely ||I||2 =

∑d
i=1(ui − li)2,

then ∇||I||2 = (2l1 − 2u1, 2u1 − 2l1, . . . , 2ld − 2ud, 2ud − 2ld)T . To compute the
gradient of the robustness level ∇RL(I), MaRVeL computes ∇RL(W). To this
end, it computes for each input x′ ∈ Wc′ , where Wc′ ∈ W, the gradient of
RL(x′). This gradient is ∇x′(zL,cx − zL,c′), and it can be computed as stan-
dard, using a forward pass and a backward pass over the classifier D. Given
the gradient of RL(x′), which is a vector (ẋ′

1, . . . , ẋ
′
d)

T ∈ R
d, MaRVeL defines

for every i ∈ [d] the derivative of li and ui to be ẋ′
i. Theoretically, the gradi-

ent of the points in
⋃
W is the component-wise average. However, the weakest

points of different classes have different robustness levels. Taking the average
gradient assigns the same importance to all points, even if some are closer to
a decision boundary than others. Instead, MaRVeL computes a weighted aver-
age: ∇RL(W) = 1

| ⋃
W|

∑
x′∈⋃

W
exp(−RL(x′))∑

x̄∈⋃
W exp(−RL(x̄)) · ∇x′RL(x′). This weighted

average assigns higher weights to the gradients of inputs with lower robustness
levels. Having defined the gradients of each component, the overall gradient is
the sum ∇||I||p + λ · ∇RL(I). This is then normalized, as standard, by divid-
ing it by its norm: ||∇||. Our balancing term λ is a function of the gradients’
ratio: λ = λ0 · ||(∇||I||p)||

||(∇RL(I))|| , where λ0 is initialized to a predetermined factor
and decreases during the optimization. To allow the specifications expand at a
reasonable rate, if I is not robust or ||I||p − ||Ir||p < tsize, for a threshold tsize,
MaRVeL multiplies λ0 by a constant α ∈ (0, 1). This update directs the optimizer
to assign more weight to the specification’s size term in the next iterations.

Specification Update. After computing the gradient, the specification update is
a standard SGD step: I 	→ I + η · (∇||I||p + λ · ∇RL(I)), where η is a small
constant. The intuitive meaning of a single step is that MaRVeL updates the
specification with the goal of increasing its size while expanding the bounds
away from the current weakest points. After that, the specification is clipped to
satisfy the validity constraints. Namely, every ui that is smaller than xi is set
to xi, and every li that is greater than xi is set to xi. Then, the specification
is aligned with the maximal and minimal bounds in If . Namely, every ui or li

214 A. Kabaha and D. Drachsler-Cohen

that has a value in If is set to its value in If . The domain constraints bounding
the input entries by minimum and maximum values are enforced through If , as
we next explain.

5.3 CEGIS at the Progress Step

Lastly, we explain the CEGIS operation at the Progress step. Its goal is to
leverage non-robust specifications to identify when MaRVeL reaches maximal
bounds and thereby prevent the optimizer from proposing non-robust specifica-
tions. This operation draws inspiration from counterexample-guided inductive
synthesis (CEGIS), where a program synthesizer prunes its search space after
obtaining a counterexample from the oracle or user [17,36]. As described, if
a specification is not robust, MaRVeL discards it and continues from the last
robust specification. However, before discarding it, MaRVeL computes a set of
maximal bounds and updates If accordingly. The maximal bounds are com-
puted from the weakest points that are adversarial examples (if a specification is
not robust, some of the weakest points are adversarial examples). By restricting
these bounds, future specifications will not include these adversarial examples.
Moreover, a clever restriction will also eliminate very close adversarial examples
that otherwise will be discovered in the following iterations, thereby slowing
down the computation.

We begin with several observations and afterward explain how MaRVeL lever-
ages them to construct If . Consider two consecutive specifications Ir

lr1,ur
1,...,lrd,ur

d

and Il1,u1,...,ld,ud
, where Ir is robust and I is not. The MILP verifier computes

for I the set of weakest points. Because I is not robust, at least one of them is
an adversarial example, denoted x′ = (x′

1, . . . , x
′
d)

T . For every i ∈ [d], one of the
following holds: (1) x′

i ∈ (ur
i , ui], (2) x′

i ∈ [li, lri), or (3) x′
i ∈ [lri , u

r
i]. Because x′

is an adversarial example and Ir is robust, there exists i ∈ [d], for which cases
(1) or (2) hold. We define Bx′ to be the set of bounds satisfying cases (1) or (2):

Bx′ = {Ui | x′
i ∈ (ur

i , ui]} ∪ {Li | x′
i ∈ [li, lri)}

Our first observation is that if, for future specifications, we prohibit any bound in
Bx′ from reaching its respective value in I, then x′ is not part of future specifica-
tions’ neighborhoods. To eliminate all weakest points, it is sufficient to eliminate
a single bound for each of them. Thus, the most permissive restriction on future
specifications is a minimal hitting set over all Bx′ -s. Namely, B = argminB∈B|B|,
where B = {B ⊆ {L1, U1, . . . , Ld, Ud} | ∀x′ ∈ ⋃

W. Bx′ = ∅ ∨ Bx′ ∩ B �= ∅}. We
can prove that if MaRVeL removes the most permissive restriction B at every
iteration in which I is not robust, then MaRVeL returns a maximal robust spec-
ification (Sect. 5.5, Theorem 1).

Our second observation is that, in practice, the most permissive restriction
results in high execution times, especially for high-dimensional specifications.
This is because adversarial examples are not sporadic and often multiple adver-
sarial examples appear in the same region [8]. Thus, while eliminating a sin-
gle bound removes a particular adversarial example, it does not eliminate the

Maximal Robust Neural Network Specifications 215

adversarial region. Although eventually all adversarial examples in this region
are removed, it requires many iterations in which Ir is not updated, causing a
time waste.

Computing a minimal set of bounds defining adversarial regions is not trivial.
Instead, we overapproximate it with the union of the bounds: B̃ =

⋃
x′∈⋃

W Bx′ .
While this is the most restrictive approach, we empirically observe that among
all approaches we experimented with, it leads to a minimal number of iterations
until the optimizer again computes a candidate specification which is discovered as
robust. We believe the reason is that the SGD’s step size is very small, and thus
if a bound is included in any Bx′ , it should be restricted. When experimenting
with less restrictive approaches (e.g., computing a minimal hitting set or restrict-
ing bounds based on their frequencies), MaRVeL required many more iterations
to restrict all necessary bounds. During these iterations, Ir remains the same,
because the specifications are not robust. Consequently, when limiting MaRVeL
with a one hour timeout, the average diameter of the less restrictive approaches
is at best 80% of the average diameter of the specifications computed with B̃.

MaRVeL builds on these observations to compute the maximal bounds. As
described, it maintains a termination specification If , keeping for each bound a
maximal or a minimal value. Initially, all bounds in If are undefined. At every
iteration in which the verifier determines that I is not robust, If is updated based
on the weakest points that are adversarial examples. To this end, MaRVeL first
computes B̃. Then, for every Ui ∈ B̃, it sets in If at index ui the value Ir

ui
, and

for every Li ∈ B̃, it sets in If at index li the value Ir
li
. While we could set the

bounds in If to the respective values in I minus a small constant, in practice
this does not eliminate the adversarial region. Additionally, because MaRVeL
advances I by small steps, the difference between Ir

ui
and Iui

is very small.
We note that If is also updated when bounds reach their maximal or minimal

domain value. For example, assume the input domain is [0, 1]d. If the verifier
determines a specification I is robust, then for every ui = 1 and li = 0 in I,
their respective value in If is updated to 1 or 0 (respectively). This is required
to guarantee termination (Sect. 5.5, Lemma 1).

5.4 An End-to-End Example

We next exemplify MaRVeL for the specification presented at Fig. 1. In this
example, the classifier D is a fully-connected network, taking two-dimensional
inputs in the range [−1, 1] and consisting of three layers, each with ten neurons.
The input is x = (0.075, 0.93)T and its class is cx = 7. Given these arguments,
MaRVeL computes a maximal robust specification with respect to the L1 norm
(p = 1). Figure 3 visualizes the key steps in MaRVeL’s verification process. Every
figure shows the following. The black curves show the decision boundaries. The
blue square shows the input x. The red rectangle shows the current specifica-
tion I. The green dots show the weakest points, and the light blue stars show
the weakest points that are adversarial examples. The gradient is shown as two
arrows (to simplify its visualization): the green arrow shows the gradient of the
upper bounds and the dashed red arrow shows the gradient of the lower bounds.

216 A. Kabaha and D. Drachsler-Cohen

Fig. 3. A running example for computing MaRVeL’s specification at Fig. 1.

At step 1, MaRVeL initializes the specification I to contain only the input x:
I1 = [0.075, 0.075], [0.93, 0.93]. It also initializes Ir = If = [⊥,⊥], [⊥,⊥]. The
Verify step runs DeepPoly and determines that only c′ = 8 has to be checked
by the (MILP) verifier. That is, instead of nine MILPs, only one is encoded and
submitted to the verifier. The verifier returns W8 = {x} and its robustness level,
which is positive. Namely, I is robust. No termination condition is true, and
so MaRVeL computes the gradient of W8 = {x}. Accordingly, it expands the
specification. Then, it clips to ensure that the specification contains x. Step 15
shows a very similar scenario only that there are two weakest points for c′ = 8.

At step 25, the verifier returns that I = [0.075, 0.32], [0.75, 1] is robust.
Because one of the bounds reaches its maximal domain value, its respective value
in If is updated: If = [⊥,⊥], [⊥, 1]. The specification is expanded as before.

At step 55, I = [0.075, 0.61], [0.65, 1] and it approaches the decision boundary
of class 8. The weakest point is (0.075, 0.66)T . The gradient of this point directs
to expand I only in the right-up direction (demonstrated also in step 60).

At step 86, I approaches the decision boundary of class 6. The verifier returns
W = {{(0.065, 0.65)T }8, {(0.87, 0.64)T }6}. The first point corresponds to c′ = 8
and the second point to c′ = 6. At step 89, I is not robust and one of the
weakest points is an adversarial example: (0.88, 0.649)T . MaRVeL constructs
B̃ = {U1, L2} and updates their respective values in If based on their values
in the last Ir: If = [⊥, 0.878], [0.649, 1]. At step 90, I is not robust and one
of the weakest points is an adversarial example: (0.055, 0.649)T . MaRVeL con-
structs B̃ = {L1} and updates its respective bound in If based on the last Ir:

Maximal Robust Neural Network Specifications 217

If = [0.065, 0.878], [0.649, 1]. At this point, there is no direction that MaRVeL
can expand. Thus, MaRVeL terminates and returns the last robust specification
Ir = [0.065, 0.878], [0.649, 1]. The figure shows that the specification is maximal:
expanding any bound results in including an adversarial example. Figure 3(i)
compares MaRVeL’s specification with the optimal one (the dashed yellow rect-
angle), whose average diameter is larger by only 7%.

5.5 Correctness and Running Time

In this section, we discuss correctness and running time analysis.

Correctness. By MaRVeL’s operation, it is sound because if it returns a defined
specification (without ⊥), it must have been verified by the MILP verifier, which
provides a sound robustness analysis [38]. Under the following conditions the
returned specification is maximal: (1) MaRVeL relies on the minimal hitting
set B, (2) the step sizes are small enough (as standard in numerical optimiza-
tion), (3) the MILP verifier is precise (i.e., the optimizations of the partial MILP
and the anytime computations do not reduce its accuracy), and (4) MaRVeL ter-
minates because If has no ⊥. We next formalize this in a theorem.

Theorem 1. Let D, x and cx be arguments to MaRVeL. If MaRVeL relies on
the minimal hitting set, the step sizes are small, the MILP verifier is precise,
and MaRVeL completes because If has no ⊥, then its specification is maximal:
expanding any bound that has not reached its maximal or minimal possible value
results in including an adversarial example.

Proof (Sketch). Assume MaRVeL’s maximization function was max ||I||p. Then,
at every iteration, the gradient is positive for any upper bound and negative
for any lower bound, because an Lp norm is a monotonically increasing func-
tion1. Thus, at every iteration, the SGD step updates the current specification
by increasing every ui and decreasing every li that are not limited by If or the
validity constraints. Thus, if a bound ui stops increasing (or a bound li stops
decreasing) and if it is not because of the validity constraints or because ui has
reached its maximal domain value, then it is because ui prevents an adversar-
ial example. This is guaranteed since the MILP verifier is precise. Because the
step sizes are small, the bound of ui is maximal (or the bound of li is mini-
mal). Because MaRVeL relies on the minimal hitting set B, every adversarial
example is prevented by limiting a single bound and no bound can be omitted
from B without including an adversarial example. Thus, if the optimization is
completed, it must be that every bound is preventing an adversarial example or
has reached the maximal or minimal possible value. A similar reasoning applies
to our maximization function with the robustness level, thanks to the adaptive
1 There is an edge case where li = ui, in which case the gradient is zero. There are

standard corrections to guarantee that the gradient is monotonically increasing. For
example, for the L1 norm, which is the one currently supported in our implementa-
tion, the correction replaces the zero gradient by 1 (for ui) or −1 (for li).

218 A. Kabaha and D. Drachsler-Cohen

definition of λ0. Recall that if the specification size increases too slowly or the
specification is not robust, then λ0 decreases. Thereby, MaRVeL assigns more
weight to the specification’s size term. Thus, the optimization process cannot
terminate without attempting to increase every bound, due to the gradient of
||I||p. Hence, if the optimization is completed, it must be that every bound is pre-
venting an adversarial example or has reached the maximal or minimal possible
value.

If MaRVeL relies on B̃, we provide a lower bound on the number of dimensions
in which the specification is maximal. Every time the specification If is updated,
at least one of Ir’s bounds is maximal, because B̃ is a hitting set. Given all
(disjoint) sets B̃1, . . . , B̃k throughout the execution, the number of maximal
bounds is at least k. This is a very loose lower bound, since in practice, several
bounds tend to be maximal together, thereby inducing an adversarial region.

Running Time. Next, we analyze the running time of MaRVeL. We start with a
lemma guaranteeing termination. Then, we analyze the running time of a single
iteration of MaRVeL.

Lemma 1. For every D, x and cx, MaRVeL terminates.

Proof (Sketch). At every iteration, one of the following holds:

– The current specification is robust: In this case, in most iterations, the size of
the current specification is larger than previous specifications. We note that
it may be that for a small number of iterations it is not the case, but then λ0

decreases until the specification’s size becomes large enough.
– The current specification is not robust: In this case, at least one of the bounds

is set to a value (if it was ⊥) or is tightened by the respective value in Ir.
We note that a bound can be tightened in case MaRVeL relies on a more
permissive set of bounds than B̃.

Because at every update of If at least one bound is set or tightened and because
the step size is a discrete number, the number of iterations in which If is updated
is finite. If at some iteration, If has no ⊥, then MaRVeL terminates. Otherwise,
it must be that at least one bound can continue increasing or decreasing. In this
case, MaRVeL continues expanding the specification (by the definition of λ0).
If MaRVeL does not terminate because of If , even though every input entry is
bounded by a minimum and maximum values, it must be that the specification’s
size increases too slowly, even when λ0 continues decreasing. In this case, at some
iteration, λ0 decreases below λmin and MaRVeL terminates.

The maximal running time of a single iteration of MaRVeL is the sum of
TDeepPoly + |C − 1| · TMILP + |⋃W| · TD, where TDeepPoly is the execution time of
the incomplete verifier DeepPoly, TMILP is the execution time of the MILP verifier
(recall that MaRVeL sets a timeout to the solver), and |⋃W| · TD is the time to
compute the gradient of the weakest points, involving a forward pass and a back-
ward pass to each over the classifier D. The other computations take a negligible

Maximal Robust Neural Network Specifications 219

time. Note that because W is computed by a MILP solver,
⋃
W is finite. The dom-

inant factor of the running time is TMILP (under reasonable choices). To mitigate
it, MaRVeL solves the MILPs parallelly. Naturally, advances in complete robust-
ness verification or MILP solvers can reduce MaRVeL’s execution time.

6 Evaluation

In this section, we evaluate MaRVeL. We begin by describing our experiment
setup and baselines and then present our experiments.

Experiment Setup. We implemented MaRVeL2 in Python, as a module in ERAN3,
to easily integrate with DeepPoly and the MILP-based verification. MaRVeL
leverages ERAN’s RefinePoly domain that runs DeepPoly and then the MILP
verifier as described in Sect. 5.1. The MILP solver is Gurobi. Experiments ran on
an Ubuntu 20.04.1 OS on a dual AMD EPYC 7713 server with 2TB RAM. We
evaluated MaRVeL over several datasets. First, image datasets: MNIST [24] and
Fashion-MNIST [44], consisting of 28× 28 gray-scale images, and CIFAR-10 [20],
consisting of 32 × 32 × 3 colored images. Second, Contagio/Virustotal [7,40], a
malware dataset consisting of malicious and benign PDF files, each with 135 fea-
tures. Table 1 shows the different networks we used. Their activation function was
ReLU. The Conv2 architecture comprised of two convolutional layers followed by
two fully-connected layers, while Conv3 comprised of three convolutional layers
followed by three fully-connected layers. We also used a toy synthetic dataset con-
sisting of two-dimensional inputs [26], described later, to visualize the size of the
specifications with respect to the decision boundaries. In our experiments, the
norm is L1 (p = 1), the balancing factor is λ0 = 0.99, the number of precise
neurons is nm = 200, and the MILP timeout is TMILP = 100 seconds.

Baselines. We compare MaRVeL to existing works on computing maximal robust
specifications [25,26]. Both approaches rely on CROWN [49], an incomplete
robustness verifier, which overapproximates ReLU with linear constraints. They
differ in the kind of specifications they compute. Liu et al. [26] compute non-
uniform, symmetric robust specifications, defined by a non-negative vector ε:
Iε(x) = [x1 − ε1, x1 + ε1], . . . , [xd − εd, xd + εd]. Li et al. [25] build on [26] to
compute non-uniform, asymmetric robust specifications, like our specifications.
We used Liu et al.’s code4, which supports only fully-connected networks, and
extended their code to support Li et al.’s approach. We compare MaRVeL and
these works by measuring the specifications’ average diameter εavg =

∑d
i=1 ui−li

d .
Since MaRVeL and these works rely on different robustness verifiers, for a fair
comparison, we also report the diameter εu of the maximal robust (uniform)
ε-ball of CROWN and the MILP verifier. This is computed by a binary search
running 15 steps and starting from ε0 = 0.1.
2 https://github.com/ananmkabaha/MaRVeL.git.
3 https://github.com/eth-sri/eran.
4 https://github.com/liuchen11/CertifyNonuniformBounds.

https://github.com/ananmkabaha/MaRVeL.git
https://github.com/eth-sri/eran
https://github.com/liuchen11/CertifyNonuniformBounds

220 A. Kabaha and D. Drachsler-Cohen

Table 1. The networks used in our experiments.

Dataset Name Architecture #Neurons

MNIST 3 × 50 Fully-connected 100

3 × 100 Fully-connected 200

Conv2 Convolutional 2948

Fashion-MNIST 3 × 50 Fully-connected 100

3 × 250 Fully-connected 500

Conv2 Convolutional 2948

Conv3 Convolutional 3664

CIFAR-10 3 × 400 Fully-connected 800

Conv2 Convolutional 1188

Conv3 Convolutional 4368

Contagio/virustotal 3 × 50 Fully-connected 100

3 × 100 Fully-connected 200

Synthetic Dataset. We start by considering the toy synthetic dataset, presented
by [26]. This dataset consists of two-dimensional inputs x1, x2 ∈ [−1, 1] and ten
classes C = [1, . . . , 10]. We create training and test sets by randomly generating
9000 inputs and 1000 inputs, respectively. We consider a fully-connected network
with two hidden layers, each with 10 ReLU neurons. After training, it reaches
over 99% accuracy on the test set. Figure 4(a) shows the network’s decision
boundaries (the black curves). We run MaRVeL and both baselines on ten inputs.
We further compare to a (highly impractical) optimal approach that computes
all decision boundaries around the given input using a grid search, accordingly
computes all maximal robust specifications, and returns the specification maxi-
mizing the L1 norm. Figure 4(a) shows the maximal robust specifications of each
approach. It shows that MaRVeL’s specifications reach the decision boundaries
and cannot be expanded in any dimension. In contrast, both prior works com-
pute significantly smaller specifications. Part of the difference is attributed to
the underlying verifier (MILP-based vs. CROWN). To illustrate this, Fig. 4(b)
shows the average diameter, over 100 inputs, of the specifications computed by
the non-uniform approaches and of the maximal uniform ε-ball computed by the
verifiers. The results show that the average diameter of MaRVeL is 93% of the
optimal approach’s average diameter, while the diameter of the prior works is
only 26%. The average diameter of the maximal uniform ε-balls computed by
CROWN is only 50% of that computed by the MILP verifier. On average, the
execution time of MaRVeL is 12.1 s and the execution time of prior works is 7.8 s.

Real Datasets. We next evaluate MaRVeL over the image datasets and the mal-
ware dataset. We compare MaRVeL to our two baselines over the fully-connected
networks, because their code does not support other architectures. For every net-
work, we run each approach over 50 inputs with a one hour timeout. We measure

Maximal Robust Neural Network Specifications 221

Fig. 4. A comparison of the maximal specifications computed by MaRVeL, by prior
works, and by an impractical optimal approach, over a 2D synthetic dataset.

Table 2. A comparison of MaRVeL to the baselines over fully-connected networks.

Dataset Network MaRVeL Li et al. Liu et al. εu

T f [m] εfavg T [m] εavg εu T [m] εavg T [m] εavg

Contagio 3× 50 23.1 0.74 41.8 0.91 0.35 0.14 0.17 0.11 0.16 0.16

3× 100 11.9 0.31 28.2 0.40 0.26 0.24 0.15 0.22 0.15 0.14

MNIST 3× 50 14.0 0.172 42.2 0.196 0.073 0.52 0.027 0.48 0.026 0.024

3× 100 12.4 0.093 32.6 0.10 0.068 4.2 0.025 3.12 0.022 0.020

F-MNIST 3× 50 10.2 0.147 47.0 0.191 0.066 3.9 0.029 2.40 0.0295 0.024

3× 250 4.9 0.031 21.7 0.037 0.028 1.3 0.015 0.9 0.014 0.010

CIFAR-10 3× 400 0.7 0.015 21.3 0.047 0.015 3.2 0.007 2.8 0.007 0.002

the execution time in minutes T and the average diameter εavg. To understand
the advantage of the CEGIS step, we compare to a variant of MaRVeL that ter-
minates at the first iteration that I is not robust (its results are denoted by f).
We note that the variant that simply removes the CEGIS step and runs MaRVeL
as described (in particular, it continues to run even if it encounters non-robust
specifications) obtains very close results to the variant we consider, given a one
hour timeout, but it always reaches the timeout. We also report, for each app-
roach’s verifier, the average diameter of the maximal ε-ball εu. Table 2 shows the
results. The results indicate that MaRVeL’s average diameter is larger by 5.2x
compared to Liu et al. and by 5x compared to Li et al. Without the CEGIS
step, MaRVeL’s average diameter is larger by 3.8x compared to Liu et al. and
by 3.7x compared to Li et al. The average diameter of the maximal ε-ball is 3.3x
larger for the MILP verifier. MaRVeL’s average execution time is 34 min, and
if it terminates upon encountering the first non-robust specification, it is 8 min.
Table 3 shows the results for the convolutional networks. The results show that
MaRVeL’s average diameter is larger by 3.1x than the average diameter of the
maximal ε-balls, and without CEGIS, it is larger by 1.4x.

222 A. Kabaha and D. Drachsler-Cohen

Table 3. A comparison of MaRVeL to uniform ε-balls over convolutional networks.

Dataset Network MaRVeL

T f [m] εfavg T [m] εavg εu

MNIST Conv2 2.7 0.010 51.9 0.041 0.007

F-MNIST Conv2 4.2 0.032 30.1 0.063 0.016

Conv3 6.0 0.008 25.0 0.011 0.009

CIFAR-10 Conv2 4.6 0.005 39.2 0.008 0.003

Conv3 3.45 0.003 32.2 0.005 0.003

Fig. 5. The heatmaps of the specifications computed by MaRVeL and the baselines.

Robustness Interpretability. We next show how our maximal specifications can
expose interpretable robustness attributes of the network. We focus on networks
for MNIST and Fashion-MNIST, consisting of gray-scale images with a single cen-
tered object (a digit or a fashion item). For each network, we run MaRVeL and
both baselines on 50 images of different classes. For each approach, given the 50
specifications I, we generate a heatmap image yI ∈ R

d. A pixel in yI is the average
diameter of its interval: yI

i =
∑

I∈I ui−li
|I| . A heatmap shows which pixels are more

robust: the brighter the pixel the larger its average interval. Figure 5 shows the
heatmaps of four networks, the first two are trained without defense and the other
two are trained with the PGD defense [27]. The heatmaps demonstrate the follow-
ing. First, MaRVeL computes larger diameters than the baselines, for all pixels.
Second, the baselines’ heatmaps suggest that the maximal robust diameters are
obtained for the background pixels. In contrast, MaRVeL’s heatmaps suggest that
some object pixels have the largest diameters. This shows that MaRVeL’s maximal
specifications provide a better perspective on the network’s robustness. Third, all
approaches show that, as expected, networks trained with PGD are more robust
than their undefended counterparts. However, MaRVeL provides a clearer distinc-
tion between the robustness of object pixels and background pixels.

Hyper-parameters. Lastly, we discuss the effect of the hyper-parameters: (1)
the balancing factor λ0 and (2) nm, the number of precise neurons at every
layer, affecting the verifier’s accuracy. In these experiments, we focus on

Maximal Robust Neural Network Specifications 223

Fig. 6. The effect of the hyper-parameters of MaRVeL.

the 3 × 50 MNIST network. We begin with the effect of λ0. Recall that a
very small value leads to ignoring the robustness level, while a very large
value leads to ignoring the specification size. We consider the values: λ0 ∈
{0.01, 0.25, 0.5, 0.75, 0.99, 2, 10}. For each value, we run MaRVeL on 50 images.
Figure 6(a) shows the average diameter as a function of λ0. The figure shows that
the largest diameters are obtained for λ0 ≈ 1. Next, we study the effect of the
number of precise neurons nm. The larger its value, the more accurate the verifier,
but the execution time is longer. We consider the values: nm ∈ {10, 20, 30, 40, 50}
(note that for nm = 50 all neurons are precisely encoded). For each value, we
run MaRVeL on 50 images. Figure 6(b) and (c) show the average diameter and
execution time as a function of nm. The results show that the higher the value
of nm, the larger the average diameter. Naturally, the higher the value of nm,
the longer the execution time.

7 Related Work

In this section, we discuss the closest related work to ours.

Robustness Verifiers and Specifications. Most existing robustness verifiers focus
on ε-ball neighborhoods but can be easily extended to analyze interval speci-
fications. These verifiers rely on various techniques, including overapproxima-
tion analysis [1,29,41] and in particular overapproximation by linear relax-
ations [3,13,28,31–33,43], simplex [11,18,19], mixed-integer linear programming
(MILP) [23,34,38], and duality [9,30]. The closest works to ours present algo-
rithms for computing non-uniform robust neighborhoods [25,26]. These works
focus on image classification tasks, where one work computes non-uniform, sym-
metric robust specifications [26], and the other work computes non-uniform,
asymmetric robust specifications [25]. Both works rely on the CROWN veri-
fier [49], employing linear relaxations to the network’s computation. Based on
CROWN’s linear constraints, they define a gradient to search for maximal robust
specifications. The gradient computation is integrated as part of CROWN’s anal-
ysis. In contrast, MaRVeL relies on a MILP verifier, providing a more accurate
analysis, and the optimizer and verifier take turns. Another work focuses on

224 A. Kabaha and D. Drachsler-Cohen

non-uniform specifications that are defined by a transformation matrix, lever-
aging data correlations [12]. It relies on linear relaxations and duality to com-
pute maximal non-uniform robust specifications for malware classification and
spam detection tasks. In contrast, MaRVeL focuses on interval specifications.
A different line of research computes adversarial regions, i.e., neighborhoods of
adversarial inputs [8].

Optimization-Guided Search. MaRVeL and prior works [25,26] rely on numeri-
cal optimization to compute maximal non-uniform robust specifications. Many
works rely on optimization to solve other robustness-related tasks. For exam-
ple, for computing adversarial examples with uniform perturbation budgets [4–
6,22,27] or non-uniform perturbation budgets [12,47], defending a network by
adversarial training [27,35,45], or improving a verifier’s precision by looking for
spurious adversarial examples added during analysis [1,2].

Program Synthesis. MaRVeL builds on two common program synthesis tech-
niques. First, it relies on oracle-guided synthesis [16,17], introduced for synthe-
sizing programs by interaction with an oracle (e.g., a solver). Second, it leverages
counterexample-guided inductive synthesis (CEGIS) [17,36], where a program
synthesizer checks candidates with a solver, which either confirms or provides a
counterexample. In the latter case, the synthesizer prunes the search space.

8 Conclusion

We present MaRVeL, an approach and a system for computing maximal non-
uniform robust interval specifications, maximizing a target norm. The key idea
is to rely on oracle-guided numerical optimization. This allows MaRVeL to rely
on an accurate MILP verifier and thereby compute larger specifications than
prior works. At each iteration, the optimizer submits a candidate specification
to the MILP verifier. The verifier returns the weakest points, inputs minimizing
the robustness level. Accordingly, the optimizer defines a gradient and computes
a new candidate specification. To avoid wasting time on non-robust candidates,
MaRVeL relies on CEGIS and restricts bounds that are part of non-robust speci-
fications. We evaluate MaRVeL on several datasets and networks, including fully-
connected and convolutional networks. We show it computes specifications with
5.1x larger average diameters compared to prior works, for fully-connected net-
works, and 2.6x larger average diameters compared to uniform ε-balls, computed
with an accurate MILP verifier. We further show that CEGIS allows MaRVeL to
compute specifications with 1.8x larger average diameters. We demonstrate that
MaRVeL’s specifications can identify input regions for which networks tend to be
more robust or vulnerable as well as compare the robustness of different networks.

Acknowledgements. We thank the reviewers for their feedback. This research was
supported by the Israel Science Foundation (grant No. 2605/20).

Maximal Robust Neural Network Specifications 225

References

1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri., S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: PLDI, pp. 731–
744 (2019)

2. Balunovic, M., Vechev, M.T.: Adversarial training and provable defenses: bridging
the gap. In: ICLR, pp. 1–18 (2020)

3. Boopathy, A., Weng, T., Chen, P., Liu, S., Dani., L.: Cnn-cert: an efficient frame-
work for certifying robustness of convolutional neural networks. In: AAAI, pp.
3240–3247 (2019)

4. Carlini, N., Wagner., D.A.: Towards evaluating the robustness of neural networks.
In: SP, pp. 39–57 (2017)

5. Chen, P., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.: EAD: elastic-net attacks to
deep neural networks via adversarial examples. In: AAAI (2018)

6. Chen, P., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.: ZOO: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: AISec Workshop, pp. 15–26 (2017)

7. Contagio: Contagio, pdf malware dump (2010). http://contagiodump.blogspot.de/
2010/08/malicious-documents-archivefor.html

8. Dimitrov, D.I., Singh, G., Gehr, T., Vechev, M.T.: Provably robust adversarial
examples. In: ICLR (2022)

9. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI, p. 3 (2018)

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

11. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

12. Erdemir, E., Bickford, J., Melis, L., Aydöre, S.: Adversarial robustness with non-
uniform perturbations. In: NeurIPS (2021)

13. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: SP, pp. 3–18 (2018)

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

15. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: NeurIPS (2019)

16. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE, pp. 215–224 (2010)

17. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

http://contagiodump.blogspot.de/2010/08/malicious-documents-archivefor.html
http://contagiodump.blogspot.de/2010/08/malicious-documents-archivefor.html
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26

226 A. Kabaha and D. Drachsler-Cohen

20. Krizhevsky, A.: Learning multiple layers of features from tiny images. In: CoRR,
abs/1708.07747 (2009)

21. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: ICLR Workshop, pp. 99–112 (2017)

22. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale.
In: ICLR, pp. 99–112 (2017)

23. Lazarus, C., Kochenderfer, M.J.: A mixed integer programming approach for ver-
ifying properties of binarized neural networks. In: IJCAI Workshop (2021)

24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

25. Li, C., et al.: Towards certifying the asymmetric robustness for neural networks:
quantification and applications. In: TDSC (2021)

26. Liu, C., Tomioka, R., Cevher, V.: On certifying non-uniform bounds against adver-
sarial attacks. In: ICML, pp. 4072–4081 (2019)

27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

28. Müller, C., Serre, F., Singh, G., Püschel, M., Vechev, M.: Scaling polyhedral neural
network verification on GPUs. In: MLSys (2021)

29. Qin, C., et al.: Verification of non-linear specifications for neural networks. In:
ICLR (2019)

30. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: ICLR (2018)

31. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier
to tight robustness verification of neural networks. In: NeurIPS (2019)

32. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex
barrier for neural network certification. In: NeurIPS (2019)

33. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. In: POPL, pp. 1–30 (2019)

34. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: ICLR (2019)

35. Sinha, A., Namkoong, H., Duchi, J.C.: Certifying some distributional robustness
with principled adversarial training. In: ICLR (2019)

36. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415 (2006)

37. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
38. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. In: ICLR (2019)
39. Tu, C., et al.: Autozoom: autoencoder-based zeroth order optimization method for

attacking black-box neural networks. In: AAAI, pp. 742–749 (2019)
40. VirusTotal: Virustotal, a free service that analyzes suspicious files and urls and

facilitates the quick detection of viruses, worms, trojans, and all kinds of malware
(2004). https://www.virustotal.com/

41. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NeurIPS (2018)

42. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX, pp. 1599–1614 (2018)

43. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. In: NeurIPS (2021)

44. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

https://www.virustotal.com/
http://arxiv.org/abs/1708.07747

Maximal Robust Neural Network Specifications 227

45. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for
improving adversarial robustness. In: CVPR, pp. 501–509 (2019)

46. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

47. Zeng, H., Zhu, C., Goldstein, T., Huang, F.: Are adversarial examples created
equal? A learnable weighted minimax risk for robustness under non-uniform
attacks. In: AAAI, pp. 10815–10823 (2021)

48. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples
from the mutual influence of images and perturbations. In: CVPR, pp. 14521–14530
(2020)

49. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: NeurIPS (2018)

A Generic Framework to Coarse-Grain
Stochastic Reaction Networks
by Abstract Interpretation

Jérôme Feret1,2 and Albin Salazar1,2(B)

1 DI ENS, École normale supérieure, Université PSL, CNRS, INRIA,
75005 Paris, France

albin.salazar@ens.fr
2 INRIA, Paris, France

Abstract. In the last decades, logical or discrete models have emerged
as a successful paradigm for capturing and predicting the behaviors of
systems of molecular interactions. Intuitively, they consist in sampling
the abundance of each kind of biochemical entity within finite sets of
intervals and deriving transitions accordingly. On one hand, formally-
proven sound derivation from more precise descriptions (such as from
reaction networks) may include many fictitious behaviors. On the other
hand, direct modeling usually favors dominant interactions with no guar-
antee on the behaviors that are neglected.

In this paper, we formalize a sound coarse-graining approach for
stochastic reaction networks. Its originality relies on two main ingre-
dients. Firstly, we abstract values by intervals that overlap in order to
introduce a minimal effort for the system to go back to the previous
interval, hence limiting fictitious oscillations in the coarse-grained mod-
els. Secondly, we compute for pairs of transitions (in the coarse-grained
model) bounds on the probabilities on which one will occur first.

We illustrate our ideas on two case studies and demonstrate how tech-
niques from Abstract Interpretation can be used to design more precise
discretization methods, while providing a framework to further investi-
gate the underlying structure of logical and discrete models.

Keywords: Abstract interpretation · Stochastic reaction networks ·
Logical modeling · Coarse-graining

1 Introduction

The field of Systems Biology is driven by the development of tools to investi-
gate emergent behaviors in populations of biological molecules from single entity
interactions. Among these tools, mathematical models of systems of interactions
have been critical in identifying hidden mechanisms by perturbation studies,
drivers of disease phenotypes and in generating new hypotheses. Consequently,
a major interest underlies the ability for modeling tools to recapitulate biological
phenomenon and its repurposing for predictive studies.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 228–251, 2023.
https://doi.org/10.1007/978-3-031-24950-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_11

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 229

In retrospect, developing modeling tools is a continuous field of investigation
as it provides means to gain understanding of biological systems through in
silico studies. A common battle to derive an ideal representation for a system
process is the descriptive trade-off between the simplicity and accuracy. On one
hand, too simple models are prone to reproduce only a priori knowledge. On
the other hand, too descriptive models result in behaviors too difficult to parse,
or even yet compute. In both cases, gaining new insights is hampered. Thus, it
is arguably important in generating tools to measure the impact model selection
has in capturing biological phenomena, especially those which can be verified. For
example, an overview of various formal modeling frameworks for Systems Biology
have been reviewed in [4]. In this paper, we assess the impact of discretization
in the study of biological systems.

Logical models are a popular class of discretized models. Recent develop-
ment have made it an ideal modeling tool to perform perturbation studies for a
myriad of biochemical interactions. For example, some logical models have been
developed to study iron metabolism in breast cancer cells [7] and a cell division
process in mammalian cells [11]. A key feature of logical models is in obtaining
knowledge about a process while only partial information is available about some
particular interactions and their kinetics. Albeit their success in recapitulating
experimental observations and predicting local system properties, their underly-
ing modeling assumptions are often kept implicit. There is indeed a gap between
hand-written logical models and the models that can be formally derived from
a more concrete level of representation (such as a stochastic reaction network).

One popular approach to design logical models has been proposed by René
Thomas [16,19]. With this method, each dimension is associated with a unique
attractor state (or focal point), which may depend on the current state of the
system. Then the transitions of the system are obtained by assuming that on
each dimension, the system may get closer to its focal point. Reverse transitions
may also occur (but at low probabilities), but in practice they are neglected.
Such simplifications of the model is usually justified by some time-scale sep-
aration principles [11] (that are mainly asymptotic reasonings providing con-
vergence results when scales are infinitely separated). Two critical observations
emerge about this modeling process. Firstly, it is unclear to which extent these
simplifications actually impact the behaviors of the systems they try to repre-
sent. Secondly, considering all reverse transitions, without any information about
their potential likelihood, would lead to inaccurate models with many fictitious
non-deterministic behaviors.

In order to increase confidence in the modeling process, we would like to
derive formally discrete models from more precise representations (such as reac-
tion networks). For this purpose we use the abstract interpretation framework to
coarse-grain reaction networks into discrete models of abstract regions of states
while preserving formal relationships between the respective behaviors of both
models. Yet we have to face several issues. Firstly, several behaviors that are usu-
ally neglected in the logical models may occur with a low probability in the ini-
tial reaction network. Thus a non-deterministic abstraction would be unhelpful,

230 J. Feret and A. Salazar

because non-deterministic models provide no means to distinguish rare events
from more the common ones. Instead we propose to propagate the probabilities
of transitions from the reference reaction network to the coarse-grained model,
so that bounds to the probability of unlikely behaviors can be indeed computed.
For this purpose, we equip each transition in the abstract model with an interval
for their probabilities which is formally derived from the underlying reaction net-
work. Secondly, even with probabilities, naive abstractions lead to very imprecise
models. This means that we have to adapt our abstraction in order to highlight
the main behaviors of interest. Consequently, we obtain a Discrete-time Markov
chain (DTMC) whereby the exclusion of probabilities would structurally mimic
logical models, yet providing an accessible tool to quantify differences between
logical models and the discrete models obtained from our formalizations. One
may be tempted to use Continuous-time Markov chains (CTMC) rather than
DTMCs. Yet, the additional information provided by the continuous setting is
not relevant in our context. On one hand, we want to obtain models comparable
to logical models where the notion of time has already been abstracted away. On
the other hand, the exact moment when each event occurs does not affect the
computation of the probabilities of transitions between abstract regions in our
coarse-grained models. What matters is only the relative order between these
events, not the exact moment when they have happened. Yet, abstracting away
the notion of time of a CTMC while only keeping the relative order between
events induces a DTMC, which justifies our choice thoroughly. Lastly, using
DTMCs instead of CTMCs deeply simplifies the underlying mathematics. For
instance, in the continuous setting, probability density functions are required to
define when events are likely to occur and a topology is necessary to define the
probability of which set of model executions can be computed [13]. In contrast, in
the discrete setting, only discrete probabilities are necessary and the probability
of each execution with a finite amount of steps can be computed.

Ideally, the upper bounds computed for the probabilities of transitions that
correspond to less likely behaviors should be very low. To achieve this goal, it
is important to refine the abstraction process and to distinguish the abstract
regions of states according to which transitions have been taken to enter them.
Furthermore, it is also important that every transition between abstract regions
corresponds to sequences composed of at least a few concrete transitions. This
motivates the use of overlapping intervals to coarse-grain models. In the for-
mal discretization process, an interval is composed of a pair of boundary values
that enclose a concrete value. Thus, for each concrete value, an abstract inter-
val computation is sensitive to whether a concrete value has exited a visited
interval. In the abstraction, we consider that a value changes to another interval
only when it actually leaves its current interval (hence leaving the overlapping
region between its previous and current intervals). This way, when entering a
new region of states, going in the reverse direction requires crossing through the
overlap between two consecutive intervals, which is likely to have low probability
when it is against the main trend of the dynamics of the system. The so-obtained

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 231

abstraction ignores small fluctuations while strengthening the sequences of tran-
sitions that follow the main trend of the system dynamics.

Related Work. Value sampling is widely used to simplify dynamical systems. In
piece-wise linear systems [9], the dynamics are approximated by one system of
linear equations per equivalence class of states. In [15], an abstract interpretation
based on support functions makes the computation of their trajectories scale
while ensuring a sound over-approximation of any potential behavior. In the
context of discrete modeling, the Boolean semantics of BIOCHAM [10] is also
an abstract interpretation of the stochastic semantics, but it is too conservative.
In [1,2], value sampling is refined by exploiting some formal properties of the
initial model. But this abstraction relies on some informal time-scale separation
arguments. We propose to compute conservative bounds on the probabilities on
unlikely transitions in the coarse-grained model rather than ignoring them.

Our abstraction of states is history sensitive. In [3], the abstraction of each
state of a reaction network also depends on the previous state in its trajectory.

As noticed in [6], refining the sampling intervals further in a discretiza-
tion process does not necessarily reduce the amount of potential behaviors.
This is why a new update policy has been introduced to recover this lack of
monotonicity—at the cost of considering more fictitious behaviors. We do not
think that non-monotonicity is an issue: when discretizing a system, refining
sampling intervals introduces new check-points. Thus it provides the obtained
model more opportunities to change its trajectories. We think that it is more
important to relate the behaviors of the discretized models to the ones of the
initial system, that is to say to ensure that every behavior of the initial system is
reflected in the abstraction, would they be some additional fictitious behaviors.
This is why, we prove formally that the potential behaviors of each coarse-grain
model over-approximate the ones of a reference system (would it be known or
not).

Lastly, our goal is also to compare different modeling paradigms in order
to understand their underlying assumptions. Building a landscape of different
semantics is one of the initial motivations behind the abstract interpretation
framework [8].

Outline. The rest of the paper is organized as follows. In Sect. 2, we introduce
a unidimensional case study to motivate and illustrate our general framework.
Section 3 generalizes this approach to coarse-grain arbitrary stochastic reaction
networks. In Sect. 4, we apply this framework on a tridimensional case study.
We conclude in Sect. 5.

2 First Case Study: Birth and Death Model

In order to motivate our framework, we introduce a well-studied unidimensional
system: a birth and death (BD) model.

232 J. Feret and A. Salazar

Fig. 1. A logical BD model. A directed graph (left) displays A as a self-regulator, while
the logical function (center) is derived to reflect the expected BD system behaviors.
The transition system (right) is the result of applying the logical function to a state
xA ∈ {0, 1, 2}, each representing an interval of values of molecule A: low (0), medium
(1) and high (2). Note that the notion of time is discrete.

2.1 Reaction Network

The BD system is characterized by two reactions having opposite behaviors.
Both reactions are given as follows:

r1 : ∅ kA−−→ A r2 : A
kA′−−→ ∅.

The reactions represent production and consumption events of molecules of
A. The first reaction, r1, is a birth event with kinetic constant kA, while the
second, r2, is a death event with kinetic constant kA′ . We denote as q the state
of the system. The state of the system maps the components of the system to
their copy numbers. In this model, A is the unique component.

By assuming stochastic mass-action kinetics law, we can obtain the propen-
sity kA for the production event and the propensity kA′ ·q(A) for the death event.
Then, the probabilities λr1(q) and λr2(q) that the next event is an instance of
the reaction r1 or an instance of the reaction r2 are defined as follows:

λr1(q) =
kA

kA + kA′ · q(A)
and λr2(q) =

kA′ · q(A)
kA + kA′ · q(A)

.

A probability for an event type is the ratio between its propensity and the
sum of all possible propensities for this system. We can observe that these prob-
abilities are non-constant, as the quantity of A, q(A), may vary.

2.2 Logical Model

A logical model can be provided regardless of the exact structure of the reac-
tions and the effective values of the kinetic parameters. Following René Thomas’s
principles, what matters is the general trend for the evolution of the copy num-
bers of each kind of components. In our case study, we can indeed distinguish
three kinds of states: when the amount of A is such that the state of the system
is likely to be stable; when (below this amount) the quantity of A is likely to
increase; and when (above this amount) the quantity of A is likely to decrease.

These observations lead to the logical model that is described in Fig. 1.
Firstly, a directed graph summarizes the potential regulations (or dependen-
cies) between the components. Here a self arrow on the component A stipulates

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 233

that the component A auto-regulates itself. We assume that the potential quan-
tities of A are partitioned into three intervals, denoted as 0, 1, and 2. They
stand respectively for below the steady state (low/(0)), for around the steady
state (medium/(1)), and for above the steady state (high/(2)). Consequently,
we derive a logical function that reflects how the system is expected to evolve:
below the steady state, the amount of A increases; around the steady state, it
remains constant; above the steady state, it decreases. Then, the logical function
induces a transition system that captures the integrated process. Note, however,
that at this level of abstraction stochastic fluctuations cannot be observed since
reversible interval transitions are not permitted. Thus, the logical model is capa-
ble of capturing only the most expected behaviors.

2.3 Formal Derivation of a Coarse-Grained Model

Now that a logical model for the BD system has been proposed, we would like to
compare its behaviors to those obtained by a formal discretization. We use the
same BD reaction network and formally discretize its state space. Then we show
that it is possible to restore information on probabilities in this new model.

A common discretization method uses a non-overlapping interval schema.
This means that the state space of chemical values are partitioned into intervals
that do not share any common values. For example, in the logical BD model
interval partitioning are qualitative states with implicit meaning. We can obtain
a similar representation in the formally derived model by explicitly choosing a
sequence of contiguous intervals (with no intersecting values). It is worth noting
that we expect this new model to cope with many more behaviors than the logical
model. A question then rises as to whether these behaviors are consequence of
the imprecision of the formal abstraction, or whether they reveal important
behaviors that are missing in the logical models.

To answer this question, we use information about the stochastic behaviors
of the reaction network to recover the probabilities to navigate between intervals
(see Fig. 2). More precisely, when entering an interval, we compute the proba-
bility that the process will cross this interval or go back to the previous one. It
is worth noting that whether an interval is entered from below or from above
matters. So we duplicate each interval accordingly. We expect to observe the con-
vergence of the process towards the interval containing the steady state, which
is a stable behavior observed by a system. This is the main qualitative behav-
ior of the reaction network and it should be reflected in the discretize model
independently of the choices of the discretization intervals.

We call the transitions between intervals macro-transitions. Macro-transition
probabilities are computed as follows. Given an interval with lower bound l ∈ N

and upper bound u ∈ N, we consider for every state q such that l ≤ q(A) ≤ u,
the probability P (q) such that the quantity of A will reach the upper bound u
before reaching the lower bound l, knowing that the system starts in the state
q. By reasoning on the potential BD events stemming from the state q and their
probabilities, we obtain the following relation:

234 J. Feret and A. Salazar

P (q) =

⎧
⎪⎨

⎪⎩

0 whenever q(A) = l,

1 whenever q(A) = u,

λr1(q)·P ([A �→ q(A) + 1]) + (1 − λr1(q))·P ([A �→ q(A) − 1]) otherwise.

As boundary conditions, the probabilities P ([A �→ l]) and P ([A �→ u]) are set
respectively to 0 and 1. The last case combines the contribution of two pro-
cesses: the potential increase in the amount of A with probability λr1(q) and the
potential decrease with probability 1 − λr1(q).

Finite unfolding of the previous recurrence relation converges to a lower
bound on the probability P (q). In Sect. 3.3, we discuss how one can exploit recur-
rence relations to bound an exact probability by an interval of probabilities. Yet,
in the BD model, a closed form equation can be derived. The probability P (q)
is indeed defined by the following equality:

P (q) =
Aux(q(A))
Aux(u)

(1)

where Aux(j) =
∑

l≤s′<j

(∏
l<s≤s′

(
kA′ ·s
kA

))
, for each j ∈ {u, q(A)}. We can

use Eq. 1 to compute the probability to reach first an upper (and by complement,
first a lower) bound.

We show in Fig. 2 the macro-transition system that we derive this way. Under-
lying each rectangular region are the dynamics stemming from the BD process
with kinetic constants kA = 20 and kA′ = 1. Thus, the intervals displayed are
chosen according to the steady state of the system, which is when the quantity
of A is equal to 20, or q(A) = 20, and in this example it is contained in the
interval [20, 24]. Each macro-transition is composed of a source interval, an edge
labeled with a probability and a target interval. To trigger a macro-transition
type, a BD event (birth or death) must push the value q(A) through an interval
upper or lower bound value. Thus, it is possible to enter a target interval from
below (via an upper bound) or above (via a lower bound). Intervals are dupli-
cated accordingly. The one on the left side of the transition system denotes those
entered from below and the one on the right side, those entered from above. Also
the exact position of the source (resp. target) of each macro-transition indicates
from which border of the interval the macro-transition starts (resp. ends).

We then want to observe whether the trend of the system will proceed
upwards or downwards. Since abstraction loses all information about the proba-
bilities of individual reactions, we recover them using Eq. 1. As a result, the prob-
ability to exit from the upper bound 19 when starting from the value q(A) = 15
is equal to 0.27, and its complement 0.73 is the probability to exit from the
lower bound 15. Putting these pieces of information together results in the
macro-transition [15, 19] 0.73−−→ [10, 14] in Fig. 2. Namely, after going up to the
interval [15, 19], the system has a higher tendency to return to a lower interval.
Note that this behavior is opposite in direction to the stable interval [20, 24].
Actually, the general trend of a majority of macro-transitions opposes the direc-
tion of the interval containing the steady state point. Mainly this is because it

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 235

Fig. 2. A non-overlapping macro-transition system for the BD system. Each rectangle
is a range of values for the molecule A and a labeled edge is a transition from a source
to a target interval. Intervals are duplicated to distinguish whether they are entered
from below or above. (Color figure online)

Fig. 3. An overlapping macro-transition for the BD system. The interpretation is sim-
ilar to the non-overlapping case in 2 with the exception that intervals overlap (denoted
by a gray region) (Color figure online)

requires only one transition in the initial reaction network to go back to the
previous interval, whereas several ones are required to cross an interval entirely.
Hence border effects give too much importance to backwards macro-transitions.

236 J. Feret and A. Salazar

To cope with this artifact of the abstraction, we introduce a minimal effort
for the system to perform fluctuations between consecutive intervals by using
overlapping intervals instead. In Fig. 3, we compute a macro-transition system
for the same BD system as in Fig. 2 but with overlapping intervals (overlaps
are indicated in gray). The meaning of macro-transitions has to be defined care-
fully: we consider a macro-transition between a first interval and a second one,
only when the system leaves the first interval (hence crossing the overlapping
region). We adjust the position of the source and target of the macro-transitions
accordingly in the drawing.

Now, the stable interval is [14, 23]. Starting from the value q(A) = 10, the
probability to exit from the upper bound 16 of the interval [7, 16] is equal to 0.95
while the probability to exit from its lower bound 7 is equal to 0.05. Consequently,
we obtained the macro-transition [7, 16] 0.95−−→ [14, 23] which shows the tendency
to move towards the stable interval. Similar observations can be made about the
other macro-transitions leading to the interval [14, 23].

We notice two major features from our overlapping interval design. Firstly,
quantities of molecule A contained in overlapping regions must surpass a buffer
region to be able to go back into the previous interval, thus limiting border
effects. And, secondly, the general trend of the system reflects a greater likelihood
towards the stable interval which was not the case for non-overlapping intervals.

Altogether, we show how our framework is capable of coarse-graining the
behaviors emerging from the BD reaction network using a more formal approach.
Whereas discretization with non-overlapping intervals was not enough to keep
only the likely behaviors as done in the logical models, the use of overlapping
intervals introduces a minimal effort for the system to go back after entering an
interval. The result is an abstract transition system when unnatural behaviors
are assigned low probabilities, hence allowing to quantify the probability of the
behaviors that are neglected in the hand-written logical model.

3 General Case

In the previous section, we introduced as an example a logical model of the
BD system and compared this hand-written model to a formally derived coarse-
grained model from the same underlying reaction network. In this section, we
generalize this approach to coarse-grain arbitrary reaction networks. More specif-
ically, we build a concrete semantics to capture all the behaviors that may emerge
from a system of reactions, and an abstract semantics to approximate these
behaviors with intervals (overlapping or not). After which, we bridge the two
semantics to restore information on probabilities to the abstract semantics.

3.1 Concrete Semantics

Firstly we define the syntax for reactions and reaction networks.

Definition 1 (Chemical Reaction). Given a finite set V of chemical species,
a reaction over the set of species V is defined as a triple r = (M,V, k) such that:

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 237

1. M : V → N,
2. V : V → Z,
3. k : VN → R≥0.

In Definition 1, the function M stands for the (multi-)set of reactants, V
denotes the reaction vector (which cumulates the production (positively) and the
consumption (negatively) of each chemical species), and k is a function mapping
a vector of chemical quantities to a real number which denotes a kinetic term.

Definition 2 (Chemical Reaction Network). A reaction network R is
defined as a pair (V, (rj)1≤j≤n) such that:

1. V is a set of chemical species;
2. (rj)1≤j≤n is a set of n reactions over the set V indexed with an integer j

between 1 and n.

For each integer j between 1 and n, the reaction rj is also denoted as
(Mrj

, Vrj
, krj

).

A chemical state encodes the values of each chemical species.

Definition 3 (Chemical State). A chemical state is defined as a function
q : V → N. The set of all the chemical states is denoted as Q.

Additionally, a chemical state is an input to a kinetic function to obtain a kinetic
term for each reaction that involves this state.

For example, we apply our definitions to the reaction network made of both
following reactions:

r1 : A
kB−−→ B r2 : 2A

kC−−→ C.

Here, the set of chemical species is {A,B,C}. This reaction network is made
of two reactions r1 and r2, with respective multiplicity vectors Mr1 = [A �→
1, B �→ 0, C �→ 0] and Mr2 = [A �→ 2, B �→ 0, C �→ 0] and with respective
reaction vectors Vr1 = [A �→ −1, B �→ 1, C �→ 0] and Vr2 = [A �→ −2, B �→
0, C �→ 1]. Furthermore, assuming the stochastic mass-action kinetics law, the
kinetic functions are defined as kr1 = [q �→ kB · q(A)] for the reaction r1 and
kr2 =

[
q �→ kC ·q(A)·(q(A)−1)

2

]
for the reaction r2.

Until the rest of Sect. 3, we assume that we are given (V, (rj)1≤j≤n) a generic
reaction network that we also denote as R. The set {r1, . . . , rn} is also written
as R. This is the set of the reactions of the network R.

Furthermore, a system is updated via a reaction application, which is called
a chemical transition. This is formalized in the following definition.

Definition 4 (Chemical Transition). A chemical transition is a triple
(q, r, q′) ∈ Q × R × Q relating two chemical states q, q′ ∈ Q by a reaction r
such that for all chemical species v ∈ V:

238 J. Feret and A. Salazar

1. Mr(v) ≤ q(v)
2. q′(v) = q(v) + Vr(v).

The set of all the chemical transitions is denoted as T .

A chemical transition captures an application of a reaction rule. Criterion 1
ensures that there are enough reactants available for a reaction to occur, while
criterion 2 applies a reaction rule to update a predecessor value to obtain a
successor value. Additionally, each chemical transition is given a probability.
The probability that the transition will be the next one, given the current state,
is defined as follows:

Definition 5 (Transition probability). Let (q, r, q′) ∈ T be a chemical tran-
sition. The probability λr(q) for a chemical state q ∈ Q involved in a chemical
transition is defined as:

kr(q)
∑

r′∈R kr′(q)
.

In Definition 5 the probability that a given chemical transition is applied
next, is equal to the ratio of its kinetic term to all kinetic terms of the reaction
network.

For example, an instantiation of this definition used on the previous reaction
network results in the following transition probabilities:

λr1 (q) =
2 · kB · q(A)

q(A) · (2 · kB + kC · (q(A)− 1))
andλr2 (q) =

kC · q(A) · (q(A)− 1)

q(A) · (2 · kB + kC · (q(A)− 1))

whenever q(A) > 0. Note that when q(A) = 0, no reaction is enabled and the
system is deadlocked.

Starting from an initial chemical state, it is possible to chain chemical tran-
sitions. This leads to the notion of a chemical trace.

Definition 6 (Chemical Trace). A trace of length k ∈ N is a pair
(q′

0, ((qi, ri, q
′
i), μi)1≤i≤k) ∈ Q × (T × [0, 1])k that satisfies both conditions:

1. for every integer i between 0 and k − 1, we have q′
i = qi+1;

2. for every integer i between 1 and k, we have μi = λri
(qi).

Such a trace is usually written as q1
r1−→
μ1

. . .
rk−−→
μk

q′
k.

The set of all the chemical traces of a reaction network defines all the potential
long-term behaviors of its underlying system. Given an initial chemical state
q′
0 = [A �→ 6, B �→ 0, C �→ 0] and the kinetic constants kB = 20 and kC = 1, an

example of a chemical trace for the previous reaction network is given as follows:

(6, 0, 0) r1−−→
0.8

(5, 1, 0) r1−−→
0.83

(4, 2, 0) r2−−→
0.13

(2, 2, 1) r1−−→
0.95

(1, 3, 1) r1−→
1

(0, 4, 1),

where a state q is denoted as the triple (q(A), q(B), q(C)). At the end of this
trace, no transition is available.

Finally, the following definition associates a probability to each chemical
trace.

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 239

Definition 7. Let (q′
0, ((qi, ri, q

′
i), μi)1≤i≤k) be a chemical trace that we denote

as τ . The probability P (τ | q′
0) of the chemical trace τ , knowing that the system

starts in the state q′
0 is defined as

∏

1≤i≤k

μi.

For example, the probability for the previous trace is: P (τ | (6, 0, 0)) = 0.08
(since 0.80 · 0.83 · 0.13 · 0.95 · 1 = 0.08).

3.2 Abstract Semantics

The goal of the abstract semantics is to over-approximate the behaviors emerging
from chemical reaction networks. Namely, it is obtained by sampling the value
domains by the means of a set of intervals.

Definition 8 (Intervals). We consider a family
(
q�

p, q
�
p

)

1≤p≤n
of n pairs of

values in N ∪ {+∞} (where n is a natural number in N) such that both of the
following properties are satisfied:

1. for every natural number p between 2 and n, q�
p−1 < q�

p ≤ q�
p−1 < q�

p;
2. q�

n = +∞.

We denote by D� the set of intervals {
(
q�

p, q
�
p

)
| 1 ≤ p ≤ n}.

An interval
(
q�

p, q
�
p

)
denotes the set of values {k ∈ N | q�

p ≤ k < q�
p}. There

are finitely many of them. Each of them is well-formed. Their lower bounds form
an increasing sequence, as well as their upper bounds. Also every natural number
occurs in at least one of them.

Conversely, an abstraction of a value is an interval in the domain D� that
contains this value. There may be several such intervals. To decide which one, the
abstraction function is parameterized by a context made of a reference interval.
The following definition specifies that the so-contextualized abstraction function
selects the interval nearest to the reference one among the potential ones.

Definition 9 (Value Abstraction Function). Let (q�
p�

, q�
p�

) be an interval
in D�. The value abstraction function βD

(q�
p� ,q�

p�)
: N → D� maps each value

k ∈ N to the unique interval (q�
p, q

�
p) ∈ D�, such that both following properties

are satisfied:

1. q�
p ≤ k < q�

p;
2. for any (q�

p′ , q
�
p′) ∈ D� such that q�

p′ ≤ k < q�
p′ , we have: |p� − p| ≤ |p� − p′|.

Definition 9 is well-formed thanks to the hypotheses in Definition 8. More
precisely, the existence of an interval in D� containing a given value follows
from the fact that the elements of D� forms a covering of N, then thanks to the
monotonicity of the lower and upper bounds of the intervals, the set of intervals
that contain a given value are contiguous elements in the domain. It follows the
uniqueness of the interval that is the closest to the reference interval.

Now we lift the notions of values and value abstraction to all the chemical
species of a reaction network.

240 J. Feret and A. Salazar

Definition 10 (Abstract State). An abstract state is a function q� : V → D�.
The set of all abstract states is denoted Q�.

An abstract state contains all the interval values approximating the quantities
of each chemical species.

Definition 11 (State Abstraction Function). Let q�
∗ be an abstract state

in Q�. The abstract state function βS
q�

∗
: Q → Q� maps each chemical state q to

the abstract state
[
v ∈ V �→ βD

q�
∗(v)

(q(v)) ∈ D�
]
.

Similarly to the value abstraction function, the state abstraction function
is parameterized by a reference abstract state. An equivalent definition can be
obtained by interpreting each abstract state as the box delimited on each chem-
ical species in V by its corresponding intervals, and then by abstracting each
concrete state by the unique box that contains this concrete state and that is at
minimal Gaussian distance from the reference abstract state.

It is worth noting that we have used the same family of intervals to abstract
the quantity of every chemical species. Using different families of intervals is
also possible and it would have raised no further technical difficulties. Indeed, it
would have been even useful in practice since there is no reason why the quantity
of each component of the system should be abstracted the same way. Yet making
this simplification deeply lighten the presentation of the framework and this is
why we have proceeded this way.

We can now define the abstraction of a chemical trace. Each abstract trace
is obtained by lifting point-wise the state abstraction function to each chemi-
cal state along a chemical trace, taking respectively for reference the previous
abstract state. For the moment, we discard probabilities. Restoring information
about the probabilities of abstract transitions is the purpose of Sect. 3.3.

Definition 12 (Abstract Trace). An abstract trace is an element of the set
Q� × (Q� × R × Q�)�.

Definition 13 (Trace Abstraction Function). The trace abstraction func-
tion βT maps each chemical trace (q′

0, ((qi, ri, q
′
i), μi)1≤i≤k) to the abstract trace

that is defined inductively as follows:

1. βT (q′
0, ()) = (βS

q�
0
(q′

0), ());

2. By induction, if βT (q′
0, ((qi, ri, q

′
i), μi)1≤i<k) = (q�′

0 , (q�
i , r

�
i , q

′
i)1≤i<k), the

abstract trace βT (q′
0, ((qi, ri, q

′
i), μi)1≤i≤k) is defined as (q�′

0 , (q�
i , r

�
i , q

′
i)1≤i≤k)

where (q�
k, r�

k, q�′
k) = (q�′

k−1, rk, βS
q�′

k−1
(q′

k)).

where q�
0 is the abstract state mapping every component to the interval (q�

0, q
�
0).

The trace abstraction function starts by abstracting the initial state of a
chemical trace by using the abstract state q�

0 as a reference; then it abstracts

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 241

each chemical transition by abstracting the successor chemical state of the cor-
responding chemical transition while referencing the last encountered abstract
state. For example, we apply our definition on the following chemical trace:

3 r1−−→
0.87

4 r1−−→
0.83

5 r2−−→
0.20

4 r1−−→
0.83

5 r2−−→
0.20

4 r1−−→
0.83

5 r1−−→
0.80

6

for the BD model introduced in Sect. 2.3 with several interval samplings.
With the following choice of non-overlapping intervals: ((0, 4), (5, 9)), we

obtain the following abstract trace:

(0, 4) r1−→� (0, 4) r1−→� (5, 9) r2−→� (0, 4) r1−→� (5, 9) r2−→� (0, 4) r1−→� (5, 9) r1−→� (5, 9),

whereas with the following choice of overlapping intervals: ((0, 5), (2, 7)), we
obtain the following one:

(0, 5) r1−→� (0, 5) r1−→� (0, 5) r2−→� (0, 5) r1−→� (0, 5) r2−→� (0, 5) r1−→� (0, 5) r1−→� (2, 7).

We notice that with the second choice, the system remains in the first inter-
val until finally exiting via its final chemical state of the chemical trace. By
emphasizing the effort to go back and forth between consecutive intervals, the
abstraction has abstracted away the fluctuations. This is not the case with the
first choice of intervals. Please observe that no concrete behavior has been lost
in the process. Then, we will see in Sect. 3.3, how to recover some information
about the probabilities of the behaviors of the initial chemical networks. In that
context, not only, as in a non-deterministic setting, any potential behavior in
the concrete is reflected in the abstraction, but also the probability attached to
each potential concrete behavior is over-approximated in the abstraction: tran-
sitions between abstract regions come with an upper bound on their probability
to occur. In particular, in case of a rare event that may occur in the concrete
only at a very small probability, by construction, this event is taken into account
in the abstraction, but its likelihood may be over-estimated.

Furthermore, each choice of sampling intervals comes with a different inter-
pretation for the abstract traces, which may highlight or hide different infor-
mation accordingly. When the initial system is complex, the process of inter-
val parameterization may proceed heuristically. Our framework provides a tool
to tune granularity: too coarse interval abstractions can mask the underlying
dynamics; however, upon refining the intervals one will be able to identify the
behavioral trend of a system. In practice, it is enough to pick intervals that are
fine-grained enough to separate the main regimes of the system.

3.3 Recovering Information About Transition Probabilities

In Sect. 3.3, we refine the abstract semantics with some quantitative information
to compare the likelihood of transitions between abstract states, the macro-
transitions. This basically means that knowing that the system has just entered
a new abstract state, and a given pair of potential macro-transitions, we would

242 J. Feret and A. Salazar

like to know with which probability the first macro-transition (in the pair) will
occur before the second one.

By construction of our abstract domain, macro-transitions are triggered when
a given chemical species reaches a particular copy number. We introduce target
regions accordingly in the following definition.

Definition 14 (Target region). A target region is a set of concrete states of
the form {q ∈ Q | q(v) � b}, where v is a chemical species in V, � a binary
relation in the set {≤,≥}, and b a natural number in N.

This target region is denoted as gv,�,b.

Until the end of Sect. 3.3, we consider q• ∈ Q a state, G a set of target regions,
and g a specific target region in the set G. We want to define, the probability
that the system when starting from the state q•, will enter the specific region g
before entering any other target regions of the set G. In order not to overcount
the probabilities, we cut chemical traces as soon as they enter the region g and
we ignore the traces that enter another region in the set G before.

Definition 15 (Minimum successful traces). We denote as χ(q•,G,g) the set
of the chemical traces (q′

0, ((qi, ri, q
′
i), μi)1≤i≤k) such that the following conditions

are satisfied:

1. q′
0 = q•;

2. q′
k ∈ g;

3. ∀i ∈ N, such that 0 ≤ i < k, q′
i /∈

⋃
G.

In Definition 15, the set χ(q•,G,g) contains all the chemical traces that start
in the state q• (Cond. 1), reach the target region g in their final state (Cond. 2),
and have reached no other target regions before (Cond. 3).

We are now ready to integrate the probability of minimal successful traces.

Definition 16 (Probability to reach a specific goal first). The probability
PG

g (q•) that the system reaches the target region g before any other target regions
in G when starting in the state q• is defined as:

∑
τ∈χ(q•,G,g)

P (τ | q•).

Namely, the probability to reach a specific goal first is computed by summing
the probability of all corresponding minimum successful traces.

The following proposition provides an easier way to compute this probability.

Proposition 1 (Inductive definition). The probabilities PG
g (q) for every

state q ∈ Q are related by the following three conditions:

1. PG
g (q) = 1 whenever q ∈ g;

2. PG
g (q) = 0 whenever q ∈

⋃
G \ g;

3. PG
g (q) =

∑

q
ri−→q′ λri

(q) · PG
g (q′) whenever q �∈

⋃
G.

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 243

Proposition 1 provides an iterative scheme that computes for every state
q a sequence of values that converges from below to the value of PG

g (q). By
complementing, we can also obtain an upper bound to this probability.

We can go further by the means of matrix computations. We consider one
dimension for each potential state. Each function that maps states to real num-
bers is interpreted as a vector, whereas each function that maps pairs of states
to real numbers is interpreted as a matrix. We define the vector B, and both
matrices I and A as follows:

B(q) =

{
1 whenever q ∈ g,

0 otherwise;
I(q, q′) =

{
1 whenever q = q′,

0 otherwise;

A(q, q′) =

⎧
⎪⎨

⎪⎩

0 when q ∈
⋃

G,
∑

q
ri−→q′

λri
(q) · PG

g (q′) otherwise.

Then, the sequence (Xk)k∈N of vectors that is defined by:

1. X0 = B;
2. Xk+1 = A · Xk + B for every k ∈ N;

converges component-wise to the probability PG
g (q). It follows that PG

g =
(
∑

j∈N
Aj) · B. Or even, PG

g = (I − A)−1 · B, whenever the matrix (I − A)
is invertible.

The computation of the probabilities PG
g (q) can be proceeded by using any

available linear algebra library. This is indeed what the model checker PRISM
[14,17] is doing. Yet, having unfolded the computation offers several advantages.
For instance, in our setting, the probabilities can be approximated from below
by finitely approximating the formal expansion of the sums of the powers of the
sparse matrix A. Secondly, when dealing with high dimensional models, expres-
sions with scalar coefficients can be symbolically simplified into expressions over
interval coefficients [18] in order to eliminate some dimensions and to tune the
trade-off between accuracy and efficiency. This would not be possible with a
black box approach.

In Sect. 3, we have refined our non-deterministic abstract semantics with
probabilities, hence providing information about the general trend for the
dynamics of models. In Sect. 4, we apply this approach on a case study taken
from [2], which consists of two reactions competing for a common resource at
different time-scales according to the availability of this resource. In [2] a precise
coarse-grained system has been derived, but at the cost of neglecting some slow
reactions. We would like to assess this assumption from a formal perspective.

4 Second Case Study: Competition for Resources

In Sect. 2, we compared a logical model and a formally discretized one of the BD
process. In this section, we will follow a similar strategy for a model of a system
of reactions which compete for a common resource taken from [2].

244 J. Feret and A. Salazar

Fig. 4. A logical model for a system of resource competition. A directed graph (left)
displays how molecule B and C have a common regulator, molecule A. Moreover, each
kind of molecules auto-regulates it-self. Each logical function (center) is a Boolean rule
which reflects the update scheme for a given chemical species. They can take values in
the domain {0, 1}. The value 0 stands for low, 1 for high. The transition system (right)
reflects the system dynamics from the logical functions.

4.1 Reaction Network

The second case study is composed of two reactions:

r1 : A
kB−−→ B r2 : 2A

kC−−→ C

where two chemical species, B and C are produced and each consume a common
resource, A. In reaction r1, a quantity of B is produced with a kinetic constant
kB . In reaction r2, a quantity of C is produced with kinetic constant kC . The
production of molecule B consumes a quantity of A, while C requires two.

As in the first case study, we assume stochastic mass-action kinetics law
to obtain the propensities kB · q(A) and kC ·q(A)·(q(A)−1)

2 for, respectively, the
reactions r1 and r2. Consequently, we derive a probability function for each
reaction:

λr1 (q) =
2 · kB · q(A)

q(A) · (2 · kB + kC · (q(A)− 1))
andλr2 (q) =

kC · q(A) · (q(A)− 1)

q(A) · (2 · kB + kC · (q(A)− 1))

.

Contrary to the first case study, this reaction system does not have reversible
reactions and the quantities of B and C are strictly increasing up to the point
at which all resources become depleted.

4.2 Logical Model

As in the first case study, we can write by hand a logical model for this second
example. The property of interest is the competition between the production of
the molecules B and C. Namely, depending on the quantity of the resource A,
either B or C is produced more abundantly. When the quantity of A is under a

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 245

certain value, the quantity of B increases more; and when it is above this value,
the quantity of C increases more.

Using this knowledge we obtain the logical model that is described in Fig. 4.
The directed graph shows different kinds of regulations. Firstly, A regulates B
and C because it may be consumed to produce them. Secondly, each component
auto-regulates itself since whatever it increases or decreases, its quantity at the
next time step depends on the one at the current state. Lastly, A auto-regulates
itself negatively (since it is consumed to produce B and C). We can abstract
quantities by Boolean values. Namely, the state is a triple of Boolean variables
(xA, xB , xC) ∈ {0, 1}3, here 0 stands for low quantity and 1 for high quantity.
The logical (Boolean) functions are derived to capture the main feature of the
reaction network. A gets consumed, while either B or C is produced according
to the qualitative abundance of A.

Several update policies exist to define the operational semantics. Our transi-
tion system is derived by assuming the synchronous one, where the value of each
chemical species is updated at each time step. It induces the eight transitions
that are described in Fig. 4. It is worth mentioning that similar results can be
achieved in the asynchronous mode by taking into account mass preservation
of invariants and using priorities [2]. The model indicates that starting with a
low amount of the molecule A, the system produces some B, but no C; whereas
with a high amount, the system produces firstly some C, then some B. One may
wonder whether more behaviors may occur in the underlying reaction system
that have been discarded by the simplification into a logical model.

4.3 Formal Discretization of the Reaction Network

This motivates the formal discretization of the reaction network with overlap-
ping intervals to compare the behaviors of the so-obtained model to the ones
of the logical model. Specifically, we wonder whether our framework is capable
of highlighting both main behaviors (production of B, or production of C fol-
lowed by production of B), and provides low upper bounds for the probability
of behaving differently.

Firstly, in order to simplify the computation, we would like to eliminate
the variable q(A) which stands for the quantity of A in the system. We denote
as q ∈ Q the chemical state, which contains copy numbers of molecules A,
B, and C. The system is constrained by the following mass invariant q(A) =
q0(A) − (q(B) − q0(B)) − 2·(q(C) − q0(C)), where q0 stands for the initial state
and is fixed once for all. We can safely replace each occurrence of the variable
q(A) with the right hand side of this equality in any expression.

As in the first case study, the domain of values can be sampled into overlap-
ping intervals. This way, chemical states are gathered into rectangular regions
(we are left with only two dimensions since we have eliminated the quantity of
A), that are called abstract states. Our goal is then to derive some quantitative
information about the macro-transitions in the so-obtained discretized model.
More specifically, when a chemical state enters a new abstract state, the goal is

246 J. Feret and A. Salazar

to compute the probability that the system will cross the corresponding rectan-
gular region and exit along the same axis, or via the alternate axis. Note that
when entering a new abstract state, we do not know precisely the chemical state
of the system. Thus, any potential position on the entering side must be con-
sidered (e.g., the system may be arbitrary close to the corner of the rectangular
region so that exiting the rectangle via the alternate axis may require only one
step in the concrete). Consequently, in order to retain a minimal effort strat-
egy, we do not consider the next consecutive interval in the alternate axis, but
the subsequent one. For instance, when an event drives molecule B into a new
abstract interval, we consider as target goals the next consecutive interval for
molecule B and the next two consecutive abstract values for molecule C, since
we do not know precisely the concrete amount of C). The initial abstract state
receives particular treatment: we can safely compute by which rectangular face
a chemical state will exit, since the initial state is known perfectly.

The general framework described in Sect. 3 provides for any pair of thresholds
for the quantities of molecules B and C and for any chemical state q ∈ Q, the
probability that the quantity of the molecule B reaches its threshold before
the molecule C, and conversely. We denote by (mB ,MB) (resp. (mC ,MC))
an interval for the quantity of the molecule B (resp. C). We introduce PG

g1
(q)

(resp. PG
g2

(q)) as the probability for a chemical state where the quantity of B
(resp. C) reaches the threshold MB (resp. MC) before that the quantity of C
(resp. B) reaches the threshold MC (resp. MB) when starting from a state with
q(B) and q(C) instances of the molecule B and C. Therefore, the probability
PG

g1
(q) satisfies the following relation:

PG
g1

(q) =

⎧
⎪⎨

⎪⎩

1 whenever q(B) = MB ,

0 whenever q(B) < MB and q(C) = MC ,

λr1(q) · PG
g1

(q′) + λr2(q) · PG
g1

(q′′) otherwise.
(2)

for every q(B), q(C) ∈ N, such that mB ≤ q(B) ≤ MB and mC ≤ q(C) ≤ MC .
A similar expression can be obtained for PG

g2
(q) by switching the base cases for

the alternate axis. First two cases stand for the boundary conditions (where
thresholds are reached) whereas the third cases captures an increase in molecule
B with probability λr1(q) or C with probability λr2(q).

As seen in Sect. 3.3, in general, Eq. 2 can be computed exactly by means
of inverting a matrix (or equivalently solving a linear system of equations) or
approximated, from below, by using a finite expansion of the sequence of the
powers of a sparse matrix. Here, since the quantities of the molecules B and C
never decrease, the recurrence relation can be solved exactly (up to rounding
errors) in a finite amount of iterations.

In the logical version of the reaction network, the unlikely behaviors when C
is produced at low abundance of A and when B is produced at high abundance
of A have been discarded. We thus test our framework in capturing a low upper
bound on the probability of the corresponding macro-transitions in the formal
discretization of the underlying reaction network. As a result, in Fig. 5, we com-
puted a macro-transition system for two scenarios: when the copy number of A

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 247

Fig. 5. The derived coarse-grained transition systems for different initial quantities of
the molecule A. In the first case (left), the initial amount of A is equal to 15 whereas
it is equal to 100 in the second case (right). The states of both systems are related
by edges with one source and two targets, with the following meaning: upon entering
a new state (the source), the range of probabilities reflects the probability to reach a
target before the other one. (Color figure online)

is low (Fig. 5, left) or high (Fig. 5, right). As kinetic constant, we took kB = 20
and kC = 1 and parameterize intervals to reflect the system steady state, which
is again when q(A) = 20. We tune the initial values q0(A) respectively to 15
and 100. In Fig. 5, a rectangular region represents an abstract state and is com-
posed each of a respective range of values for molecules B and C. A labeled edge
connects a source abstract state to a target abstract state. Each time, a dashed
edge, that describes an increase in the quantity of the molecule B, competes
with a solid edge, that describes an increase in the quantity of the molecule C.

Let us take an example by considering, in the first scenario, when q0(A) = 15,
the sequence of chemical reactions that starting from the initial state (where
q(B) = 0 and q(C) = 0) drives the system out of the region ([0B, 5B], [0C, 5C]
into the region ([3B, 11B], [0C, 5C]. To recover the probability for this macro-
transition, by Eq. 2 we can compute the probabilities to reach each next target
abstract state. As such, the probability to exceed, from the initial state, the
upper bound q(B) = 5 (resp. upper bound q(C) = 5) first is equal to 0.94
(resp. 0.05). The remaining 0.01 probability corresponds to the case where the
system reaches the state where q(B) = 5 and q(C) = 5 (that is to say that the
molecule A is completely depleted before having left the initial abstract state).
This describes precisely the directional tendency of the behavior of the underly-
ing reaction network. Combining these elements results in the macro-transition
([0B, 5B], [0C, 5C]) 0.94−−→ ([3B, 11B], [0C, 5C]) (indicated by a dashed edge on
the left in Fig. 5). Given a low resource environment, this macro-transition high-

248 J. Feret and A. Salazar

lights the tendency towards a regime where the molecule B is created abundantly.
Additionally, macro-transitions towards creation of the molecule C either occur
with low probability or are not possible due to limited resources (indicated by
red crosses).

In the second scenario (Fig. 5, right) we tune the initial resource pool
to q0(A) = 100 and retain the same kinetic conditions. We immediately
observe that there are many more macro-transitions than in the first sce-
nario, a consequence to the abundance in the common resource. As an exam-
ple, we detail the computation for the bounds on the probability of the
macro-transition ([0B, 5B], [3C, 10C]) −→ ([0B, 5B], [8C, 15C]), when the region
([0B, 5B], [3C, 10C]) has been entered from below (i.e. by increasing the abun-
dance of C). Before starting any computation, it is worth noting that when enter-
ing the region ([0B, 5B], [3C, 10C]) from below, q(B) ranges arbitrarily between
0 and 5, while q(C) is equal to 6. Thus in the computation of the probabilities of
macro-transitions we have to consider any potential value for q(B) between 0 and
5. Then we compute the minimal probability that the quantity of the molecule
C exceeds 10 before the quantity of the molecule B exceeds the quantity 11. By
applying Eq. 2, we obtain 0.99 (it is indeed obtained when entering the region
for ([0B, 5B], [3C, 10C]) with the state [B �→ 5, C �→ 6], the maximal probability
that we obtain is 1.00 (when entering this region with the state [B �→ 0, C �→ 6]).
Indeed the value is not exactly 1 but it is conservatively rounded to 1 because
of floating point arithmetics. This highlights that the molecule C is abundantly
created with very high probability at the begin of the system execution, and
then eventually some B is synthesized.

Reflecting on the two scenarios, it becomes clear that one can bound accu-
rately the probabilities on the likelihood for macro-transitions. Our coarse-
graining approach has the following benefits. Firstly, our framework provides a
means to compute lower and upper bounds on the probabilities of the transitions
between abstract states by formally relating the semantics of reaction networks
to its abstract counterpart. Hence providing formal confidence in the formally
derived discretized models. Secondly, by enforcing a minimal effort for the sys-
tem to perform any transition between abstract states, we were able to observe
the expected dynamics, the same as in the logical model but without relying on
arguments on concentration- and time-scale separation. This has been obtained
by twisting the abstraction function instead. This way, the interpretation of the
behaviors of the abstract model is less intuitive, but it is still rigorously formally
specified. Finally, it is possible to assess the validity of logical models by provid-
ing upper bounds to the probabilities of the transitions that has been discarded
during the modeling process without any formal justification.

5 Conclusion

We have proposed a generic framework to coarse-grain stochastic reaction net-
works by sampling the quantity of each kind of molecules within a set of intervals.
Instead of neglecting unlikely transitions between abstract regions of states, we

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 249

compute conservative bounds on their probability. Our goal is indeed to check
whether we can derive as accurate models as hand-written ones while ensur-
ing a formal relationship between the potential behaviors in the initial and the
derived models. We expect to gain new insights to understand the underlying
assumptions behind logical modeling.

Getting formal—but accurate—coarse-grained models requires a specific
treatment of boundary effects. It is indeed important not to amplify the impor-
tance of some unlikely behaviors. In particular we ensure that every chemical
transition between abstract regions of states corresponds to a minimal number of
steps. For transitions induced by reverse reactions, we use overlapping intervals.
When a chemical state can be arbitrary close to the boundary of an interval, we
examine the capacity to cross the next interval instead of just entering it. This
induces a non-standard interpretation of the dynamics of the coarse-grained
systems. Fewer trajectories are considered in the abstract, while soundness is
still ensured (by construction). As in a non-deterministic setting, every concrete
behavior is reflected in the abstract, but additionally an upper bound on their
probability is computed. Hopefully, rare events are assigned a small upper bound
on their probability to occur.

An additional advantage of our framework is the ability to perform and
combine numerical abstractions, such as finite expansions of infinite increasing
series and include their overall impact as a unique bound on the numerical errors
made on the computation of probability values. However, scaling the framework
to more complex systems would require one to formally parse intricate rela-
tions between numerous variables. For example, to deal with higher dimensional
models, symbolic simplification of expressions [18] is possible. Another avenue
of thought is to use exact model reduction methods based on the structure of
the components of an initial reaction network [12]. Yet, in practice, exact model
reduction techniques are not very efficient, especially in a stochastic setting [13].
Still, in our context, we can be more optimistic since, on the one hand not all
the properties of the underlying stochastic system have to be preserved and
because on the other hand, we can admit numerical approximations on proba-
bility values as any other sources of numerical imprecision and include them in
the computation of sound over-approximations.

In our paper, we have dealt only with very small case studies. Our motivation
was to be able to explain them thoroughly and to focus on minimal difficulties
that occur pervasively in models. Ideally we would like to target bigger—but still
reasonable—models such as the one for the early events of the EGFR cascade
presented in [5]. These models already cope with around three hundred kinds
of molecular species. To scale up to this kind of model, we will restrict our
study to the competition between pairs of macro-transitions. Yet special care
will have to be taken to deal with the denominator of probability functions.
These denominators involve the sum over the propensities of each potential event
which make them particularly tricky to abstract. Instead of using numerical
approaches, we plan to use marginalization to isolate independent subnetworks
and reduce the number of terms in denominators accordingly. Yet, here again

250 J. Feret and A. Salazar

perfectly independent reaction sub-networks are very unlikely to occur, thus
we plan to propose a relaxed version, at the cost of including an additional
component in the computation of bounds of probability values.

References

1. Abou-Jaoudé, W., Feret, J., Thieffry, D.: Derivation of qualitative dynamical mod-
els from biochemical networks. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS,
vol. 9308, pp. 195–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23401-4 17

2. Abou-Jaoudé, W., Thieffry, D., Feret, J.: Formal derivation of qualitative dynam-
ical models from biochemical networks. Biosystems 149, 70–112 (2016). https://
doi.org/10.1016/j.biosystems.2016.09.001

3. Adéläıde, M., Sutre, G.: Parametric analysis and abstraction of genetic regula-
tory networks. In: Proc. 2nd Workshop on Concurrent Models in Molecular Biol-
ogy (BioCONCUR 2004), London. Electronic Notes in Theor. Comp. Sci., Else-
vier (2004). http://www.labri.fr/∼sutre/Publications/Documents/Adelaide:2004:
BioCONCUR.ps.gz

4. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput. Biol. 12(1), 1–22 (2016). https://doi.org/10.1371/
journal.pcbi.1004591

5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of
early events in epidermal growth factor receptor signaling that accounts for combi-
natorial complexity. Biosystems 83(2), 136–151 (2006). https://doi.org/10.1016/j.
biosystems.2005.06.014

6. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: beyond generalized asyn-
chronicity. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol.
10875, pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92675-9 3

7. Chifman, J., et al.: Activated oncogenic pathway modifies iron network in breast
epithelial cells: a dynamic modeling perspective. PLoS Comput. Biol. 13(2),
e1005352 (2017). https://doi.org/10.1371/journal.pcbi.1005352

8. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (2002). https://
doi.org/10.1016/S0304-3975(00)00313-3

9. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bull. Math. Biol. 66(2), 301–340 (2004). https://doi.org/10.1016/j.bulm.2003.08.
010

10. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano,
P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68894-5 3

11. Faure, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14),
e124–e131 (2006). https://doi.org/10.1093/bioinformatics/btl210

12. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Natl. Acad. Sci. 106(16), 6453–6458 (2009). https://
doi.org/10.1073/pnas.0809908106

https://doi.org/10.1007/978-3-319-23401-4_17
https://doi.org/10.1007/978-3-319-23401-4_17
https://doi.org/10.1016/j.biosystems.2016.09.001
https://doi.org/10.1016/j.biosystems.2016.09.001
http://www.labri.fr/~sutre/Publications/Documents/Adelaide:2004:BioCONCUR.ps.gz
http://www.labri.fr/~sutre/Publications/Documents/Adelaide:2004:BioCONCUR.ps.gz
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1016/j.biosystems.2005.06.014
https://doi.org/10.1016/j.biosystems.2005.06.014
https://doi.org/10.1007/978-3-319-92675-9_3
https://doi.org/10.1007/978-3-319-92675-9_3
https://doi.org/10.1371/journal.pcbi.1005352
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/S0304-3975(00)00313-3
https://doi.org/10.1016/j.bulm.2003.08.010
https://doi.org/10.1016/j.bulm.2003.08.010
https://doi.org/10.1007/978-3-540-68894-5_3
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1073/pnas.0809908106

A Generic Framework to Coarse-Grain Stochastic Reaction Networks 251

13. Feret, J., Koeppl, H., Petrov, T.: Stochastic fragments: a framework for the
exact reduction of the stochastic semantics of rule-based models. Int. J. Softw.
Inform. 7(4), 527–604 (2013). http://www.ijsi.org/ch/reader/view abstract.aspx?
file no=i173

14. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

15. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 31

16. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22(3), 437–467 (1969). https://doi.org/10.1016/0022-
5193(69)90015-0

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

18. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 23

19. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973). https://doi.org/10.1016/0022-5193(73)90247-6

http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i173
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i173
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/11609773_23
https://doi.org/10.1016/0022-5193(73)90247-6

CosySEL: Improving SAT Solving Using
Local Symmetries

Sabrine Saouli1(B), Souheib Baarir2, Claude Dutheillet1, and Jo Devriendt3

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{Sabrine.Saouli, Claude.Dutheillet}@lip6.fr

2 Université Paris Nanterre (now at EPITA, LRE), 92000 Nanterre, France
Souheib.Baarir@lip6.fr

3 KU Leuven, Department of Computer Science, Celestijnenlaan 200A,
3001 Heverlee, Belgium

jo.devriendt@kuleuven.be

Abstract. Many satisfiability problems exhibit symmetry properties.
Thus, the development of symmetry exploitation techniques seems a nat-
ural way to try to improve the efficiency of solvers by preventing them
from exploring isomorphic parts of the search space. These techniques
can be classified into two categories: dynamic and static symmetry break-
ing. Static approaches have often appeared to be more effective than
dynamic ones. But although these approaches can be considered as com-
plementary, very few works have tried to combine them.

In this paper, we present a new tool, CosySEL, that implements
a composition of the static Effective Symmetry Breaking Predicates
(esbp) technique with the dynamic Symmetric Explanation Learning
(sel). esbp exploits symmetries to prune the search tree and sel uses
symmetries to speed up the tree traversal. These two accelerations are
complementary and their combination was made possible by the intro-
duction of Local symmetries.

We conduct our experiments on instances issued from the last ten sat
competitions and the results show that our tool outperforms the existing
tools on highly symmetrical problems.

Keywords: Boolean satisfiability · Symmetry · Dynamic symmetry
breaking · Static symmetry breaking · Local symmetries

1 Introduction

The Boolean satisfiability (sat) problem is the problem of determining whether
or not a solution that satisfies a Boolean formula exists, i.e., by assigning true

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 252–266, 2023.
https://doi.org/10.1007/978-3-031-24950-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_12

CosySEL: Improving SAT Solving Using Local Symmetries 253

or false values to the variables of a given Boolean formula, the latter can be
evaluated as true. If such a solution exists, it is called a model.

Boolean satisfiability is a research area with application in fields such as
cryptology [22], modal logic [15], decision planning [19], and hardware and soft-
ware verification. Actually, sat-based verification techniques have been widely
explored [7,26–28,31].

Since sat problems often exhibit symmetries, developing techniques to han-
dle them prevents solving algorithms from needlessly exploring isomorphic parts
of the search space. One common method to exploit symmetries is the static
symmetry breaking method [1,10]. It consists in precomputing Symmetry Break-
ing Predicates (sbps) and adding them to the original problem before starting
the search process. These sbps invalidate symmetrical solutions, so that the
solver avoids exploring branches of the search tree symmetrical to the already
explored ones. This method has been implemented in tools such as Shatter [2]
and Breakid [12]. Even though these approaches are the most efficient on many
symmetrical problems, highly symmetrical problems generate a large number of
sbps and this can affect the performance of the used solver.

Dynamic symmetry breaking techniques operate during the search process.
Most of them are based on learning symmetric images of already learned clauses.
The main such approaches are Symmetric Learning Scheme (sls) [6], Symmetry
Propagation (sp) [13] and Symmetric Explanation Learning (sel) [11]. Even if
these techniques are less effective than the static ones in general, they perform
very well on some problems that static approaches fail to solve.

Hence the question of combining both approaches arises naturally, and has
already been tackled in some studies: Effective Symmetry Breaking Predicates
method (esbp) [23], that uses the same principle as static methods, but operates
dynamically, has been combined with sp in [24]. In [29], the authors generate
sbps in the preprocessing phase and apply the sel method afterwards.

The tool we present in this paper combines esbp with sel. Our experiments
show that it improves the capacity of the conflict-driven clause learning (cdcl)
like algorithm to handle some classes of symmetrical sat problems.

The paper is structured as follows: Sect. 2 gives the basic definitions relevant
to this work. Section 3 recalls the notion of local symmetries and presents the
combo algorithm. In Sect. 4, we discuss the implementation of the tool and the
experimental results.

2 State of the Art and Some Definitions

We recall here some basic definitions and the main ideas of esbp and sel.

2.1 Basics on Boolean Satisfiability

Boolean satisfiability aims at checking whether a Boolean formula ϕ is satisfiable
or not, i.e., whether there exists an assignment α of the Boolean variables for
which the formula is true. If so, ϕ is said to be satisfiable (sat), otherwise ϕ is
unsatisfiable (unsat).

254 S. Saouli et al.

A formula ϕ in Conjunctive Normal Form (cnf) is a finite conjunction of
clauses, each clause being a disjunction of (possibly negated) variables. The set
of variables of a formula ϕ is denoted by Vϕ.

An assignment α is a function α : Vϕ → {�,⊥} and can be represented by the
subset of its true literals. We call a true literal x if α(x) = � or ¬x if α(x) = ⊥.
An extension of α is any α′ such that α ⊂ α′. Assignment α is said to be complete
if it contains one literal over each variable in Vϕ; it is partial otherwise. The set
of all (possibly partial) assignments to Vϕ is denoted Ass(Vϕ).

An assignment α satisfies a clause ω, denoted α |= ω, if α contains at least
one true literal from ω. An assignment α satisfies a formula ϕ, denoted α |= ϕ,
if α satisfies all the clauses in ϕ. Such an assignment α is said to be a model
of ϕ. The formula ϕ is unsatisfiable (unsat) otherwise. For more details, the
interested reader can refer to the very complete handbook [8].

Example. Let ϕ = {{x1, x2, x3}, {x1, x2}, {¬x1, x3}} be a formula. The partial
assignments {¬x1, x2} and {x1, x3} satisfy ϕ, so ϕ is satisfiable. Extending ϕ
with the unit clauses {¬x2} and {¬x3} would make it unsatisfiable.

2.2 Symmetry Group of a Formula

Let ϕ be a formula and let S(Vϕ) be the group of permutations of Vϕ under
composition. We say that g ∈ S(Vϕ) is a symmetry of ϕ if and only if for every
complete assignment α such that α |= ϕ, g.α |= ϕ, with g.α = {g(x) | x ∈
α} ∪ {¬g(x) | ¬x ∈ α}. We denote S(ϕ) ⊆ S(Vϕ) the symmetry group of ϕ and
we call generator the elements of a generating set of S(ϕ). A variable x is said
to appear in a generator g if g(x) 	= x.

Let G be a subgroup of S(Vϕ). The orbit of α under G is the set [α]G =
{g.α | g ∈ G}. The set of orbits {[α]G | α ∈ Ass(Vϕ)} partitions Ass(Vϕ) into
equivalence classes, called symmetry classes of ϕ when G = S(ϕ). We introduce
an ordering relation between assignments in order to identify a unique represen-
tative for each symmetry class.

Definition 1. [23] We assume a total order ≺ on Vϕ. Given two assignments
α, β ∈ Ass(Vϕ), α ≺ β, if there exists a variable v ∈ Vϕ such that:

– for all v′ ≺ v, either v′ ∈ α ∩ β or ¬v′ ∈ α ∩ β,
– ¬v ∈ α and v ∈ β.

Moreover, ≺ is a total order on complete assignments. For a complete assign-
ment α we define the lexicographic leader (lex-leader) of an orbit [α]G as the
minimum of [α]G w.r.t. ≺.

2.3 (Effective) Symmetry Breaking

From the above presentation, it is clear that either all the assignments within
the same symmetry class satisfy the formula, or none do. Adding a Symmetry
Breaking Predicate (sbp) to a symmetric sat formula aims at limiting the search

CosySEL: Improving SAT Solving Using Local Symmetries 255

tree exploration to only one assignment per symmetry class, e.g., the lex-leader.
However, finding the lex-leader of a class is computationally hard [20] and best-
effort approaches are commonly used [2,12].

sbps were first introduced as pre-generated predicates (i.e., in a static app-
roach) but they required auxiliary variables, making the size of the formulas often
intractable in practice. Effective sbps (esbps) were then proposed to tackle the
problem with a dynamic approach [23], where the solver detects on-the-fly when
the current assignment cannot be extended to a lex-leader. Actually, assignment
ordering is monotonic, i.e., whenever α < β, any extension α′ of α (resp. β′ of β)
are such that α′ < β′. Hence, if g.α < α, any possible extension α′ of α is such
that g.α′ < α′, because g.α′ is an extension of g.α. In this case, we can define
a predicate contradicting α that still preserves the satisfiability of the formula.
Such a predicate will be used to discard α and all its extensions from further
exploration, thus pruning the search tree.

Definition 2. [23] Let α ∈ Ass(Vϕ), and g ∈ S(Vϕ). We say that the formula
ψ is an Effective Symmetry Breaking Predicate (esbp) for α under g if:

α 	|= ψ and for all β ∈ Ass(Vϕ), β 	|= ψ ⇒ g.β < β

.

The equi-satisfiability of ϕ and ϕ ∪ ψ is guaranteed by the fact that ψ will
not prune the branch of the lex-leader. This approach avoids the pre-generation
of a large sbp that could have a negative effect on the overall performance of the
classical static symmetry breaking approaches. The extensive experiments con-
ducted in [23] show that it outperforms other state-of-the-art symmetry break-
ing techniques, both dynamic and static, when considering the total number of
solved instances. However, this technique fails to solve some problems that have
been trivially solved by other dynamic symmetry breaking techniques such as
sel developed in [13]. We give an overview of sel in the following section.

2.4 Symmetric (Explanation) Learning

An orthogonal approach to symmetry breaking is symmetric learning. The idea
here is not to remove the symmetric assignments by posting extra constraints,
but to add implied symmetric clauses to a sat solver’s internal learned clause
database. Symmetric learning hinges on the following theorem:

Theorem 1. [6] Let ϕ be a formula, g ∈ S(ϕ) a symmetry for the formula,
and ω a clause. Then, ϕ |= ω implies ϕ |= g.ω.

As a result, for any implied clause derived by a sat solver, any of its sym-
metric images can safely be derived as well, which, through unit propagation,
discourages the solver from visiting symmetric search branches [13].

The crucial question when implementing symmetric learning is how to avoid
overloading the solver with exponentially many symmetric clauses, while retain-
ing effective pruning of the search tree. One answer is symmetric explanation

256 S. Saouli et al.

learning (sel), which was shown to be competitive to (but not better than)
state-of-the-art static symmetry breaking [11]. The idea behind sel, given a
small set1 of symmetries G, is to keep track of all clauses {g.ω | g ∈ G} sym-
metric to the clauses ω that triggered a currently propagated literal. Only the
symmetric clauses that propagate in turn will be added to the learned clause
database. When they propagate, all their symmetric images will be tracked, in
effect composing the symmetries in G. If the propagation explained by a clause is
cancelled (when backtracking the search), sel will quickly forget the symmetric
images that did not propagate.

3 The Proposed Technique

Our first attempt to combine static and dynamic approaches was proposed in
[24], where we combined esbp with sp. However, as it appears that sel is theoret-
ically more effective than sp, we decided to investigate the integration of esbp
with sel. This work can also be considered as a generalization of [29], where
the combination was purely static and did not take advantage of the upcoming
notion of local symmetries [24].

The idea of the sel approach is to derive and efficiently use symmetrical
clauses using a subset of S(ϕ), the symmetry group of ϕ (the correctness is thus
guaranteed by Theorem 1). If ϕ is extended by a set of clauses ψ, preserving equi-
satisfiability, then sel can be applied, as long as S(ϕ ∪ ψ) is known. Therefore,
the effectiveness of the composition of sel and esbp strongly depends on how
hard it is to compute the elements of S(ϕ ∪ ψ).

The notion of local symmetries was introduced as the theoretical framework
materializing the computation of the aforementioned elements in [24]. In this
section, we recall the definition and properties of local symmetries and invite
the interested reader to consult the original work [24] for more details.

3.1 Theoretical Foundations and Practical Considerations

Local symmetries of a clause of a formula are defined as follows.

Definition 3. Let ϕ be a formula. We define Lω,ϕ, the set of local symmetries
for a clause ω with respect to a formula ϕ, as follows:

Lω,ϕ = {g ∈ S(V) | ϕ |= g.ω}

Through this definition, it is straightforward to derive the next proposition.

Proposition 1. Let ϕ be a formula. Then,
⋂

ω∈ϕ
Lω,ϕ ⊆ S(ϕ).

1 Such a small set typically does not form a group, i.e., is not closed under composi-
tion, but closing it under composition generates a detected symmetry group for the
formula.

CosySEL: Improving SAT Solving Using Local Symmetries 257

Fig. 1. Workflow of the esbp sel algorithm.

A direct consequence is that the intersection of the sets of local symmetries
of all the clauses of a formula ϕ are symmetries of S(ϕ). Hence, when adding a
symmetry breaking predicate ω to ϕ, a set of valid symmetries for ϕ ∪ {ω} can
be computed on-the-fly as the intersection of Lω,ϕ and

⋂

ω′∈ϕ

Lω′,ϕ.

However, full Lω,ϕ sets are hard to compute in general, hence our tool only
computes subsets based on the following considerations. While solving a formula
based on a symmetry breaking approach, three sets of clauses are manipulated:
the original formula ϕ, the set of SBP clauses ϕe and the set ϕd of clauses derived
from ϕ ∪ ϕe. Our computation of the local symmetries of a clause ω takes into
account the fact that symmetries S(ϕ) of ϕ are already known, and depends on
which of the three sets ϕ,ϕe, or ϕd, ω belongs to.

Let ϕ′ = ϕ ∪ ϕe ∪ ϕd. There are three cases:

1. if ω ∈ ϕ, then by definition S(ϕ) ⊆ Lω,ϕ′ , so we take S(ϕ) as a representative
for Lω,ϕ′ .

2. if ω ∈ ϕe, this is an esbp clause, and we choose the set of stabilizing symme-
tries: Stab(ω) = {g ∈ S(V) | ω = g.ω} ⊆ Lω,ϕ′ .

3. if ω ∈ ϕd, this is a derived clause, and we choose the set (
⋂

ω′∈ϕ1

Lω′,ϕ′), where

ϕ1 is the set of clauses that derived ω.

3.2 Algorithm

In this section, we describe how we combined sel and esbp.
Figure 1 gives an overview of the integration of esbp and sel in the cdcl

algorithm.

258 S. Saouli et al.

1 function ESBP SEL(ϕ: cnf formula, symCtrl: symmetry controller)
2

3 dl ← 0 ; // Current decision level

4 while not all variables are assigned do
5 isConflict ← unitPropagation() ∧ selPropagation();
6 symCtrl.updateAssign(crtAssignment());
7 isReduced ← symCtrl.isNotLexLeader(crtAssignment());
8 if isConflict ∨ isReduced then
9 if dl = 0 then

10 return unsat; // ϕ is unsat

11 if isConflict then

12 〈ω, L =
⋂

ω′∈ϕ1

Lω′,ϕ1

⋃
Stab(ω)〉 ← analyzeConflictEsbpSel();

13 else

14 〈ω, L = Stab(ω)〉 ← symCtrl.genEsbpSel(crtAssignment());

15 dl ← backjumpOrRestart();
16 ϕ ← ϕ ∪ {ω} ;
17 symCtrl.updateCancel(crtAssignment());

18 else
19 assignDecisionLiteral();
20 dl ← dl + 1;

21 return sat; // ϕ is sat

Algorithm 1: The esbp sel algorithm. Instructions derived from esbp
and sel algorithms are reported in blue and red (respectively). Instructions
derived from the combination are reported with a grey background.

The integration of sel in the cdcl algorithm operates the same way as a
basic cdcl, except for the unit propagation function (sel in Fig. 1). With sel,
the algorithm keeps symmetrical versions of propagated literals’ explanation
clauses in a different database and in addition to regular unit propagation over
the regular clauses, when a symmetrical clause is asserting, sel adds it to the
learnt clauses and the asserting symmetrical literal is propagated.

The integration of esbp then consists in controlling the behaviour of the
previous algorithm by introducing a symmetry controller component that oper-
ates all symmetry-based actions. It inspects all partial assignments and detects
non-minimal ones as soon as possible. In this case, it generates an esbp clause
and injects it into the original problem (see esbp in Fig. 1).

The details of the aforementioned approach are given in Algorithm 1. The
algorithm first executes the unitPropagation() and selPropagation functions (line
5). In propagation phase, regular and symmetrical unit clauses are propagated
until a conflict is detected or fixed point is reached. Next, the symmetry con-
troller updates the current assignment and checks if it can still be extended
to a lex-leader (lines 6 − 7). When a conflict is detected, function analyzeCon-

CosySEL: Improving SAT Solving Using Local Symmetries 259

flictEsbpSel() (line 12) analyses the conflict and generates a learnt clause ω.
With respect to a classical analysis function of a basic cdcl algorithm, analyze-
ConflictEsbpSel() will generate the set of local symmetries associated with ω.
This is done by computing the intersection of the sets of symmetries of all the
clauses used to derive ω (as explained in Sect. 3.1), augmented with the stabi-
lizers set. If the current assignment is conflict free but can not be extended to a
lex-leader, function genEsbpSel() (line14) is called. It generates the esbp clause
to inject, along with its set of stabilizers. Function updateCancel() (line17) is
the counterpart of function backjumpOrRestart but for symCtrl, the symmetry
controller.

4 Tooling and Evaluation

In this section, we first present the tooling support of our combined approach
esbp sel combining esbp and sel. Then, we compare it to the vanilla sat solver
Glucose2 [5] and to the implementations of esbp, sel on top of Glucose and
discuss the results.

4.1 Tool Usage

Cosy3 is a C++ library offering all the functionalities necessary for the imple-
mentation of the esbp method. This library can easily be integrated to any
cdcl-like solver.

The implementation of esbp approach on top of Glucose is available at
https://github.com/lip6/cosy/tree/master/solvers/glucose-3.0. In the remain-
ing of this paper, this implementation is simply called Cosy. The implementation
of sel approach on top of Glucose is available at https://bitbucket.org/krr/
glucose-sel. Our implementation, CosySEL, of the combined approach esbp sel
is available at https://github.com/sabrinesaouli/CosySEL. It integrates Cosy in
the already mentioned implementation of sel according to Algorithm 1.

CosySEL can be used with two symmetry generator tools: Bliss [17] or
Saucy [18]. These are two of the best graph automorphism tools, that compute
a set of symmetries for a given graph.

In our tool-chain, a given cnf formula is first encoded as a colored graph into
a file that is given to Bliss or Saucy to obtain the set of symmetry generators as
a file in the corresponding format (.bliss or .sym respectively). The obtained
file is then given along with the .cnf file to the CosySEL solver (Fig. 2).

This workflow is encapsulated in a script cosysel.sh that we can execute
with bliss or saucy options.

$./cosysel.sh bliss <\cnf>
$./cosysel.sh saucy <\cnf>

2 https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz.
3 Cosy library is released under GPL v3 license at https://github.com/lip6/cosy.

https://github.com/lip6/cosy/tree/master/solvers/glucose-3.0
https://bitbucket.org/krr/glucose-sel
https://bitbucket.org/krr/glucose-sel
https://github.com/sabrinesaouli/CosySEL
https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz
https://github.com/lip6/cosy

260 S. Saouli et al.

Fig. 2. Workflow of the CosySEL tool.

4.2 Evaluation

Among all the instances from the last ten sat competitions (from 2012 to
2021) [16], we selected the 1362 for which Bliss detects at least one symme-
try generator in at most 1000 s of CPU time.

All experiments were conducted using the following settings: each solver ran
once on each problem, with a memory limit of 15 GB and a time-out of 7200 s
seconds (this time limit includes symmetry detection time for all the solvers
except for Glucose which does not compute symmetries). Experiments were
executed on a computer with an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz
and 1500 GB of memory, running Linux 5.0.16.

All the approaches dealing with symmetries are built on top of a cdcl-like
solver. Therefore, for a fair comparison, the solver must not introduce side effects.
As our tool combines sel and esbp, we must at least prove that it outperforms
both. sel is built on top of Glucose, and there is also a version of esbp on
Glucose, so we chose Glucose [5] to avoid solver-induced side effects.

To be complete in our study, it seems natural to compare our new approach
with the combination of esbp and sp presented in [24] and implemented on top of
MiniSAT (in a tool referred here as CosySP). However, although it was shown in
[11] that sel approach is theoretically more efficient than sp, no available imple-
mentation supports this claim. Nevertheless, as sp is built on top of MiniSAT,
we decided to implement sel on top of MiniSAT and compare the approaches on
the whole benchmark. The results are given in Table 1 and confirm that sel is
by far better than sp. Therefore, considering that implementing a combination
of esbp and sp on top of Glucose is not simple and would require a great effort,
we relied on these results to consider it is not relevant.

We computed the symmetries of each instance with Bliss and Saucy. Bliss

is known to compute a larger number of generators for the symmetry group
compared to Saucy. As shown in [23], in an sbp-like approach, this influences
the results since it allows to cut branches of the search tree early.

Table 2 compares the use of Saucy and Bliss for computing symmetry gen-
erators. The values represent the number of sat, unsat, and the total number

Table 1. Comparison of the number of instances solved by MiniSAT-sel and Min-
iSAT-sp using Bliss.

MiniSAT-sel MiniSAT-sp

sat 304 271

unsat 402 378

TOTAL(1362) 706 649

CosySEL: Improving SAT Solving Using Local Symmetries 261

Table 2. Comparison of different approaches when using Saucy and Bliss.

None Saucy Bliss
Glucose Cosy sel CosySEL Cosy sel CosySEL

sat 238 227 255 229 235 253 240

unsat 473 452 505 474 497 503 553

TOTAL(1362) 711 679 760 703 732 756 793

Table 3. Comparison of instances solved by each approach according to the percent-
age of the variables in the symmetries, using Bliss to detect symmetry (the table is
restricted to instances solved by at least one solver).

(a) sat instances

% sym vars Glucose Cosy sel CosySEL

0% - 25% (195) 152 149 174 165

25% - 50% (28) 19 23 19 16

50% - 75% (14) 14 14 13 12

75% - 100% (62) 53 49 47 47

Total (299) 238 235 253 240

(b) unsat instances

% sym vars Glucose Cosy sel CosySEL

0% - 25% (250) 242 211 233 218

25% - 50% (21) 20 19 21 20

50% - 75% (11) 8 7 9 9

75% - 100% (330) 203 260 240 306

Total (612) 473 497 503 553

of instances solved. It shows that our tool performs poorly with Saucy. Actually
it computes too few symmetries to allow CosySEL to detect early non-lex-leader
assignments, hence the overhead of keeping track of local symmetries is not coun-
terbalanced. The effectiveness of Cosy, and thus the combined tool, is largely
relying on the number of observed (tracked) literals while solving the problem
and because of the reduced number of generators given by Saucy, this can be
an issue for these approaches.

The results in Table 2 confirm that CosySEL is more effective using Bliss

than Saucy. Globally, we notice that CosySEL, when used with Bliss, is the
most effective, especially when considering unsat instances. It solves 50 more
unsat and 13 fewer sat instances than the second-best method (sel).

After establishing that our tool works better with Bliss, we compared its
effectiveness against the three others in each class of problems. In Table 3, results
are split according to the percentage of variables appearing in at least one gen-
erator computed by Bliss, with the first column giving the intervals of percent-
ages. Table 3a (respectively 3b) shows the number of sat (respectively unsat)
instances solved by each approach in each interval.

unsat problems are exceptionally difficult to solve as they require traversing
the entire search space, but our tool is particularly effective for highly sym-
metrical unsat problems. As far as sat problems are concerned, the loss of
performance can be explained by the fact that Cosy can stop the exploration of
a satisfying branch of the search space because it is not a lex-leader, even though
this branch could still contain a non-lex-leader solution.

It is essential to mention that (as shown in Table 4a), CosySEL increased the
VBS(Virtual Best Solver)—which represents the best performances combined,
i.e. the number of instances that at least one solver can solve—with 35 problems

262 S. Saouli et al.

Table 4. Virtual Best Solver (VBS) results with and without CosySEL.

(a) Comparing the VBS when using Glucose,
Cosy and sel only and when adding CosySEL to
the set of solvers.

without CosySEL with CosySEL

sat 297 299 (+2)

unsat 579 612 (+33)

TOTAL(1362) 876 911 (+35)

(b) Comparing the VBS when using Kissat-MAB only
and when adding CosySEL.

Kissat-MAB Kissat-MAB+CosySEL

sat 436 443 (+7)

unsat 570 680 (+110)

TOTAL(1362) 1006 1123 (+117)

that the other methods failed to solve. We also compared it to the best solver of
the sat contest 2021 Kissat-MAB [9] (see Table 4b). We noted that even though
our CosySEL tool is overall less effective, it managed to solve 117 problems
(mainly unsat) that Kissat-MAB could not handle. Upon taking a closer look
into the classes of problems exclusively solved by CosySEL, we further confirm
that our tool is more effective at handling highly symmetrical unsat problems:

– unsat and fully symmetrical: 40/117 are several variations of the pigeon hole
problem, 30/117 are Tseitin formulas [30], and 2/117 belong to the class of
n-queens problem.

– unsat with more than 90% of the variables being in the symmetry generators:
17/117 from the clique colouring class.

– The remaining 25/117 instances are of diverse classes of problems including
6 from the sat-based Bitcoin mining problems (Satcoin4 [21] which are sat
with ∼ 0.15% of variables being in the symmetry generators.

Out of those 117 instances and according to the publicly available sat com-
petition results, our proposal is the only tool having succeeded at solving some
problems that were previously unsolved: 29 Tseitin formulas (28 from sat 2016
and 1 from sat 2019), 4 relativised pigeonhole problems [3,4,14] from sat com-
petition 2016 and 2 classic pigeonhole problems from sat competition 2021.

To push our experiments even further, we compared our tool to the previ-
ously mentioned solvers (including CosySP)5 on fully symmetrical problems (all
the variables are involved in symmetries). We collected 282 problems (Table 5)
from the last sat competitions, from [11] and from [25]. The instances represent
different classes of problems like the pigeon hole, the clique colouring and the
channel routing problems. We plotted the results in Figs. 3a and 3b for sat and
unsat instances respectively.

Figure 3a shows that Kissat-MAB is more effective on sat problems com-
pared to the other tools, which solve more or less the same number of instances.
However, Fig. 3b shows that CosySEL stands out when it comes to unsat
instances and even Kissat-MAB cannot compete with the tools exploiting sym-
metries except for CosySP that solves two fewer instances.

4 github.com/jheusser/satcoin.
5 We recall that CosySP is based of MiniSAT, and the comparison with the other

tools is not totally fair!.

CosySEL: Improving SAT Solving Using Local Symmetries 263

Fig. 3. Comparison of different approaches on fully symmetrical instances.

Table 5. Comparison of approaches on fully symmetrical instances using Bliss.

Glucose Cosy sel CosySEL CosySP Kissat-MAB

sat 64 63 62 65 66 72

unsat 100 155 129 184 118 120

TOTAL(282) 164 218 191 249 184 192

In Table 5, we observe that CosySP is slightly more effective than the other
solvers exploiting symmetries on sat instances. Nevertheless, on unsat prob-
lems, it solves fewer instances than almost all the other solvers. It is hard to
identify whether this relatively low performance is due to the fact that sp is over-
loading the solver by keeping track of the status of all symmetries, or because
it is embedded in an older cdcl solver (MiniSAT). Either ways, it is clear that
our implementation of CosySEL outperforms the publicly available version of
CosySP by solving 65 more instances. This is consistent with previously made
observation regarding sel and sp (see Table 1).

5 Conclusion

We presented in this paper CosySEL: a tool that combines esbp, which dynam-
ically adds symmetry breaking predicates to the formula, with sel, which is
based on learning symmetrical clauses only when they are useful.

This combination relies on the definition of local symmetries for a clause,
which makes it possible to efficiently compute a subset of the symmetries of the
formula each time symmetry breaking predicates are added to it. Our experi-
ments investigate the effectiveness of the combined approach.

They show that CosySEL can solve a significant number of highly symmet-
rical problems that state-of-the-art solvers fail to handle. We believe that Cosy-

SEL works better with Bliss than Saucy because Bliss detects a more significant

264 S. Saouli et al.

number of symmetries, which helps esbp cut symmetrical branches earlier. It is
also more efficient when the problem is unsat and highly symmetrical because
esbp allows the solver to visit only few (partial) assignments per symmetrical
class. Moreover, the more symmetries, the more branches esbp cuts, and the
more symmetrical clauses sel learns. However, CosySEL seems to be less effec-
tive on sat problems. This may be due to esbp stopping the exploration of a
sat branch of the search tree just because it is not a lex-leader.

As a future work, we plan to implement esbp sel in a more recent and effec-
tive sat solver than Glucose, such as the winner of the 2021 sat competition
Kissat-MAB [9], or the best scoring Maple-like solver [32], which derives most
of its code-base from Glucose and hence may be easier to port CosySEL to.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat
instances in the presence of symmetry. In: Proceedings 2002 Design Automation
Conference (IEEE Cat. No. 02CH37324) pp. 731–736. IEEE (2002)

2. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

3. Atserias, A., Lauria, M., Nordström, J.: Narrow proofs may be maximally long.
ACM Trans. Comput. Logic (TOCL) 17(3), 1–30 (2016)

4. Atserias, A., Müller, M., Oliva, S.: Lower bounds for DNF-refutations of a rela-
tivized weak pigeonhole principle. J. Symbolic Logic 80(2), 450–476 (2015)

5. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI 2009, pp. 399–404 (2009)

6. Benhamou, B., Nabhani, T., Ostrowski, R., Säıdi, M.R.: Enhancing clause learning
by symmetry in sat solvers. In: 2010 22nd IEEE International Conference on Tools
with Artificial Intelligence, vol. 1, pp. 329–335. IEEE (2010)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press, Amsterdam (2009)

9. Cherif, M.S., Habet, D., Terrioux, C.: Kissat MAB: combining VSIDS and CHB
through multi-armed bandit. SAT Competition 2021, 15 (2021)

10. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. KR 96(1996), 148–159 (1996)

11. Devriendt, J., Bogaerts, B., Bruynooghe, M.: Symmetric explanation learning:
effective dynamic symmetry handling for SAT. In: Gaspers, S., Walsh, T. (eds.)
SAT 2017. LNCS, vol. 10491, pp. 83–100. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66263-3 6

12. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 8

13. Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., Mears, C.: Symmetry prop-
agation: Improved dynamic symmetry breaking in SAT. In: 2012 IEEE 24th Inter-
national Conference on Tools with Artificial Intelligence, vol. 1, pp. 49–56. IEEE
(2012)

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8

CosySEL: Improving SAT Solving Using Local Symmetries 265

14. Elffers, J., Nordström, J.: Documentation of some combinatorial benchmarks. Proc.
SAT Competition 2016, 67–69 (2016)

15. Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from
propositional decision procedures—the case study of modal K. In: McRobbie, M.A.,
Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 583–597. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61511-3 115

16. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international sat solver
competitions. AI Mag. 33(1), 89–92 (2012)

17. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.)
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, pp. 135–149.
SIAM (2007)

18. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: an update.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 113–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 11

19. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI, vol. 92, pp.
359–363 (1992)

20. Luks, E.M., Roy, A.: The complexity of symmetry-breaking formulas. Ann. Math.
Artif. Intell. 41(1), 19–45 (2004)

21. Manthey, N., Heusser, J.: Satcoin-bitcoin mining via SAT. SAT Competition 2018,
67 (2018)

22. Massacci, F., Marraro, L.: Logical cryptanalysis as a sat problem. J. Autom. Rea-
soning 24(1), 165–203 (2000)

23. Metin, H., Baarir, S., Colange, M., Kordon, F.: CDCLSym: introducing effective
symmetry breaking in SAT solving. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10805, pp. 99–114. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89960-2 6

24. Metin, H., Baarir, S., Kordon, F.: Composing symmetry propagation and effective
symmetry breaking for SAT solving. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2019. LNCS, vol. 11460, pp. 316–332. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20652-9 21

25. Sabharwal, A.: Symchaff: exploiting symmetry in a structure-aware satisfiability
solver. Constraints 14(4), 478–505 (2009)

26. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Hei-
delberg (2000). https://doi.org/10.1007/10722167 36

27. Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking
problem. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144,
pp. 58–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9 4

28. Tang, D., Malik, S., Gupta, A., Ip, C.N.: Symmetry reduction in SAT-based model
checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
125–138. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 12

29. Tchinda, R.K., Tayou Djamegni, C.: Enhancing static symmetry breaking with
dynamic symmetry handling in CDCL SAT solvers. Int. J. Artif. Intell. Tools
28(03), 1950011 (2019)

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of reasoning, pp. 466–483. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1 28

https://doi.org/10.1007/3-540-61511-3_115
https://doi.org/10.1007/978-3-642-14186-7_11
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-030-20652-9_21
https://doi.org/10.1007/978-3-030-20652-9_21
https://doi.org/10.1007/10722167_36
https://doi.org/10.1007/3-540-44798-9_4
https://doi.org/10.1007/11513988_12
https://doi.org/10.1007/978-3-642-81955-1_28

266 S. Saouli et al.

31. Wang, C., Jin, H., Hachtel, G.D., Somenzi, F.: Refining the SAT decision ordering
for bounded model checking. In: Proceedings of the 41st Annual Design Automa-
tion Conference, pp. 535–538 (2004)

32. Zhang, X., Cai, S., Chen, Z.: Improving cdcl via local search. SAT Competition
2021, 42 (2021)

Sound Symbolic Execution via Abstract
Interpretation and Its Application

to Security

Ignacio Tiraboschi2(B), Tamara Rezk1, and Xavier Rival2

1 INRIA, Université Côte d’Azur, Sophia Antipolis, France
2 INRIA Paris, DI ENS, Ecole normale supérieure, Université PSL, CNRS,

Paris, France
{ignacio.tiraboschi,xavier.rival}@inria.fr

Abstract. Symbolic execution is a program analysis technique com-
monly utilized to determine whether programs violate properties and, in
case violations are found, to generate inputs that can trigger them. Used
in the context of security properties such as noninterference, symbolic
execution is precise when looking for counter-example pairs of traces
when insecure information flows are found, however it is sound only
up to a bound thus it does not allow to prove the correctness of pro-
grams with executions beyond the given bound. By contrast, abstract
interpretation-based static analysis guarantees soundness but generally
lacks the ability to provide counter-example pairs of traces.

In this paper, we propose to weave both to obtain the best of two
worlds. We demonstrate this with a series of static analyses, including a
static analysis called RedSoundRSE aimed at verifying noninterference.
RedSoundRSE provides both semantically sound results and the ability
to derive counter-example pairs of traces up to a bound. It relies on a
combination of symbolic execution and abstract domains inspired by the
well known notion of reduced product. We formalize RedSoundRSE and
prove its soundness as well as its relative precision up to a bound. We
also provide a prototype implementation of RedSoundRSE and evaluate
it on a sample of challenging examples.

1 Introduction

Security properties are notoriously hard to verify. In particular, many secu-
rity properties are not single-execution properties but hyperproperties [13] (also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 267–295, 2023.
https://doi.org/10.1007/978-3-031-24950-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_13

268 I. Tiraboschi et al.

Fig. 1. Relation between different SE analyses. SE [9] is conventional symbolic exe-
cution and RSE [32,34] is its extension to relational properties. Except for RSE with
invariants [23], SE and RSE are unsound in general. The rest of the analyses are sound
and are our contributions: SoundSE and SoundRSE do not use abstract interpreta-
tion whereas RedSoundSE and RedSoundRSE can be combined with different abstract
domains. A red dashed line represents a dependency: a relational analysis depends on
a single trace analysis. A blue dashed line represents an enhancement of the analysis.
(Color figure online)

referred to as relational properties), which means that refuting them some-
times requires several executions traces to be provided as a counter-example.
In particular, noninterference [26] states that high clearance information should
not impact the observation of low clearance users in any execution of the pro-
gram. It has been the subject of many verification method proposals and tools
(e.g. [4,7,8,23,24,33,36–38]).

Symbolic execution [9,31] (SE) is typically used to find property violations,
and can be applied for policies like noninterference provided some adaptation
for relational properties. SE boils down to an execution where variables initially
hold symbolic values and get updated with expressions of these symbolic val-
ues whereas conditions are evaluated into symbolic path guards. The analysis
involves an external tool such as an SMT solver that prunes infeasible paths and
attempts to discharge verification conditions on remaining ones. SE attempts to
exhaustively cover all executions paths, which is feasible only up to a bound and
quickly turns out costly in presence of unbounded loops.

Conventional SE does not over-approximate executions after a fixed bound
of iterations. This implies that soundness is lost when the program exceeds the
exploration bound. Soundness ensures that, when the analysis concludes that
the property of interest holds, the concrete semantics of the analyzed program is
guaranteed to satisfy it. Since there is no over-approximation, when the property
is violated by traces shorter than the exploration bound, tools like SMT solvers
can provide instances for the symbolic values and enable the reconstruction of
counter-example traces. This is of particular importance to security in order to
confirm security violations. We refer to such counter-examples as refutation
models.

The adaptation of SE to handle relational properties [32,34] requires to track
several traces instead of just one. In the following, we will call this adaptation
relational symbolic execution (or RSE). Previous work [23] has shown how to

Sound Symbolic Execution via Abstract Interpretation 269

combine RSE with loop invariants, provided by the developer, in order to recover
soundness at the cost of annotations and loss of precision when invariants are
not strong enough.

Abstract interpretation based static analyses [14] (AI) rely on an abstrac-
tion defined as a logical approximation relation between concrete behaviors and
abstract predicates and produce sound over-approximations of program seman-
tics at the cost of completeness. However, the over-approximation entails that the
analysis may fail to conclude positively even when analyzing correct programs.
Moreover, most static analysis implementations lack the ability to synthesize
counter-example traces.

In this paper, we formalize a combined analysis technique, which aims at
bringing together advantages of both symbolic execution and abstract interpre-
tation, in a security setup. We first show how to over-approximate SE in order
to keep soundness, and call this analysis SoundSE (see Fig. 1). We use SoundSE
to show the combination for conventional SE and different abstract domains,
calling the resulting analyses RedSoundSE. Our analysis for relational proper-
ties is called RedSoundRSE and targets noninterference. It borrows path explo-
ration from relational symbolic execution, parameterized by RedSoundSE, and
relies on abstract interpretation based static analysis to report a sound result
for all programs. Abstraction enables the early pruning of infeasible paths and
the computation of sound over-approximations for program behaviors when the
exploration bound is exhausted. To achieve this, RedSoundRSE automatically
injects loop invariants computed by abstract domains into a relational store.
Not only dependence analysis results can be used to fill security related infor-
mation where the symbolic execution cannot explore paths fully but also (e.g.,
numerical) state abstraction information allows to improve the symbolic infor-
mation extracted from the dependency analysis. Moreover, our analysis allows
switching between different abstractions, and tuning specific settings, e.g., loop
unroll depth (depth up to which SE is kept precise), which allows the user to
change the balance between cost and precision. To summarize, we propose sym-
bolic execution based verification methods that are sound and precise, providing
refutation models up to a bound. Our contributions, illustrated in Fig. 1, are the
following:

1. SoundSE and RedSoundSE: We define a sound SE analysis, and we integrate
numerical abstract domains into it to prune reachable paths. As a result, we
make SE [9] sound while keeping the ability of the analysis to find counter-
examples.

2. SoundRSE and RedSoundRSE: We define a sound relational SE, and we com-
bine it with dependence analysis [4] to enhance the precision of the latter
while preserving soundness.

3. We prototype RedSoundRSEtogether with RedSoundSE in OCaml and show,
using a series of challenging examples, that it is able to both soundly decide
noninterference for secure programs and synthesize counter-examples of a size
up to a given bound for insecure ones.

270 I. Tiraboschi et al.

The structure of the paper is as follows. Section 2 defines a basic language and
the noninterference notion used throughout the rest of the paper. Section 3 pro-
vides an overview on already defined analyses and highlights the main prin-
ciples of RedSoundRSE. Section 4 defines SoundSE, a sound single trace sym-
bolic execution that serves as a basis for RedSoundRSE and Sect. 5 presents
RedSoundSE, a new combination of SoundSE with state abstraction. Section 6
presents SoundRSE and Sect. 7 extends it with a dependence abstraction to
obtain RedSoundRSE. Section 8 evaluates our framework on small but challeng-
ing examples. Finally, Sect. 9 discusses related work and Sect. 10 concludes. The
appendix contains all rules of analyses in the paper.

2 Language and Noninterference Security Notion

In this section, we introduce the language and security notion for which we for-
malize our analyses. We let V and X be the set of values and program variables
respectively, and ⊕, � be binary operators. A boolean expression b is a com-
parison operator � applied to two expressions and evaluates to a boolean value
B = {tt,ff}. A statement s is either a skip, an assignment, a condition, or a
loop. Finally, a command c is a finite sequence of statements. A program P is a
pair (c, L) made of a command c (the body of the program), and a set of low
variables L ⊆ X, hence publicly observable (the other variables occurring in the
program are high).

e ::= v (v ∈ V) | x (x ∈ X) | e ⊕ e b ::= e � e
s ::= skip | x := e | if b then c else c | while b do c c ::= s | s; c

Semantics. Given a program (c, L), a state is a pair (c, μ), where c is a command
and μ is a function from X to V, namely a store. In particular, a state of the form
(skip, μ) is final. We write M and S for the set of stores and states respectively.
We use [x �→ x, y �→ y, . . .] to explicitly enumerate a store’s contents, where
x, y, . . . are concrete values. Let (→) ⊆ S × S denote the small step operational
semantics (which is standard) and →∗ be its reflexive transitive closure.

Noninterference. Let =L be the set equality of stores restricted to low variables
in L. In the rest of the paper, we focus on termination-insensitive noninterference:

Definition 1 (Termination-insensitive noninterference). A program
(c, L) is termination-insensitive noninterferent, written as NIT .I

P , if and only if,
for all stores μ0, μ1, μ

′
0, μ

′
1 ∈ M, μ0 =L μ1 ∧ (c, μ0) →∗ (skip, μ′

0) ∧ (c, μ1) →∗

(skip, μ′
1) =⇒ μ′

0 =L μ′
1.

3 Overview

In this section, we demonstrate the principle of the combination of symbolic
execution and abstraction performed by RedSoundRSE so as to overcome the
limitation of these two approaches taken separately. As in the rest of the paper,
we focus on noninterference (NI), although the same principle would apply to
other security properties as well.

Sound Symbolic Execution via Abstract Interpretation 271

Fig. 2. Example programs. All variables are of type int, where variable is priv is
secure.

Examples. We consider the programs displayed in Fig. 2. Essentially, programs
(a) and (b) are secure with respect to the noninterference policy, where priv is
high and all other variables are low, whereas (c) is not secure.

In program 2(d), variable y gets assigned 5 independently of priv, therefore
the program is secure. For Program 2(b), let μ0, μ1 be two stores such that μ0 =L

μ1. Since μ0 and μ1 are low-equal executions cannot take different paths, and the
loop will be executed the same amount of times. Therefore, the program is secure.
Lastly, Program 2(c) is insecure, meaning that it does not satisfy noninterference.
We need to provide a counter-example consisting of two executions starting
from low-equal stores μ0, μ1 such that the corresponding output stores μ′

0, μ
′
1

are not low-equal. We consider the following stores: μ0 = [i �→ 0, priv �→ 0],
and μ1 = [i �→ 0, priv �→ −1]. Finally, calculated output stores are such that
μ′
0(i) = 0 	= μ′

1(i) = 1, thus the program violates noninterference.
In the next paragraphs we study the result of verification methods for these

three programs.

Verification Based on Relational Symbolic Execution. A symbolic store, referred
to as ρ, maps variables to symbolic expressions of the initial values of the vari-
ables. To avoid confusion, we use an italic typewriter font for these symbolic
values while program variables appear in straight typewriter font. For instance,
y denotes the initial value of y. Relational symbolic execution describes pairs
of executions using symbolic conditions over the initial values of variables and
pairs of symbolic stores. Symbolic stores are not enough to abstract executions,
since they cannot express constraints. Constraints are then provided by a sym-
bolic path π that contextualizes the store. A pair (ρ, π) of a symbolic store and
a symbolic path is referred to as a symbolic precise store.

As an example, we consider Program 2(a). Relational symbolic execution
uncovers four pairs of paths depending on the sign of the initial values of priv in
both executions. For instance, one of the diverging paths produces π = (priv0 >
0 ∧ priv1 ≤ 0) =⇒ ([y0 �→ 5, . . .], [y1 �→ 5, . . .]), where y0 and y1 denote the
program variable y in both executions and priv0, priv1 the initial symbolic
values of priv. This symbolic precise store shows no information flow to y since
any SMT solver can prove y0 = y1. The other three pairs of paths lead to a
similar result, thus the program is proved secure.

272 I. Tiraboschi et al.

Table 1. Analysis results compared. Symbol ✓ (resp., ✗) denotes a semantically correct
(resp., incorrect) analysis outcome, with either a proof of security, a (possibly false)
alarm, or a refutation model.

Secure? RSE Dependence analysis RedSoundRSE

Program 2(a) Yes ✓ Secure ✗ False alarm ✓ Secure

Program 2(b) Yes ✗ False alarm ✓ Secure ✓ Secure

Program 2(c) No ✓ Refutation model ✓ Alarm ✓ Refutation model

For Program 2(b), the loop has an unbounded number of iterations, but
relational symbolic execution can only cover finitely many unrollings of the loop.
This prevents RSE to prove that Program 2(b) is secure.

For Program 2(c), RSE will only explore the loop up to a bound. Assuming
the bound is one (any positive value would prove similar), it can determine that
the program does not satisfy NI by calculating a concrete trace that violates the
property. This counter-example trace is calculated by an SMT solver, for instance
i0 = i1 = 0, priv0 = 1 and priv1 = −1 corresponds to the counter-example
given previously.

Verification Based on Dependence Abstraction. Many static analyses that work
for noninterference rely on some form of dependence abstraction as formalized
in, e.g., [4] or [28]. We briefly summarize the abstraction of [4]. We assume an
ordered set of security levels {L,H} and that each value fed into a program via
an input variable is given a security level. A dependency, noted as l � x with
l ∈ {L,H}, expresses the agreement of x in both executions when observing from
level l. This analysis, based on abstract interpretation, is sound.

We now discuss the analysis of some programs in Fig. 2. For Program 2(a),
the analysis determines that the assignments are conditioned by the value of
priv, which is initially high. Then, the dependency L � y is dropped, indicating
that y can potentially disagree between executions. In Program 2(b), the loop
condition is only influenced by i and z, which are low. Then, the assignment
of low variables is not affected, and i and z remain low, allowing to prove
noninterference.

Lastly, Program 2(c) is not secure, and since dependence analysis is sound,
the analysis discards dependency L � i based on the illicit flow of information.

Combination of Relational Symbolic Execution and Dependence Abstraction. As
observed in Table 1, relational symbolic execution fails to handle precisely pro-
gram 2(b) whereas dependence abstraction fails to verify program 2(a) and pro-
vides no counter-example for program 2(c). The purpose of RedSoundRSE is to
use both techniques in an alternating manner in order to increase precision and
prune branches.

To achieve this, RedSoundRSE borrows from relational symbolic execution the
precise analysis of assignment and condition commands, as well as the unrolled
iterates of loop commands. In particular, the analysis of programs 2(a) and 2(c)

Sound Symbolic Execution via Abstract Interpretation 273

is carried out as shown above. However, when the unrolling bound is reached,
dependence analysis is used as a means to compute in finite time sound informa-
tion about any number of further loop iterations. Indeed, when the dependence
information proves that a loop induces no dependency of a given low variable
on any high variable, it is possible to assume the equality of the variable in the
symbolic store. This new value may not be expressed precisely in terms of the
initial values, hence it may be approximated with a fresh symbol. This occurs
for variable i in program 2(b).

As seen, RedSoundRSE analyzes the first three examples of Fig. 2 precisely.

Refinement of Symbolic Execution Based on State Abstraction. Program
Fig. 2(d), previously not considered, cannot be proved NI by just using symbolic
execution and dependence analysis. This program is secure since the assignment
of i does not depend on priv, and y is conditioned by priv which is always
positive after the loop.

As in Program 2(b), the loop causes the symbolic execution to stop at the
unrolling bound. Dependence information allows to prove that there is no infor-
mation flow to i and also that the value of y at line 8 does not depend on priv.
However, the condition at line 9 depends on priv, thus dependence analysis will
not prove that the assignments at lines 10 and 12 do not leak information. Sym-
bolic execution does not succeed either as it lacks the ability to reason over the
value of priv at the loop exit.

Such information may be computed using a reachability static analysis. In
particular, a classical static analysis based on the abstract domains of inter-
vals [14] computes ranges for all numeric variables and concludes in this case
that priv is positive, hence only the true branch of the condition may be taken.
Integrating non-relational abstract domains allows the analyzer to increase pre-
cision by automatically pruning paths.

This combination of AI and SE is referred to as RedSoundSE, defined in
Sect. 5, and is later integrated into the final analysis RedSoundRSE.

4 SoundSE: Sound Symbolic Execution

We now define a type of symbolic execution, named SoundSE, as it serves as
a basis for not only SoundRSE but also RedSoundSE—the product of SoundSE
with abstract domains.

Symbolic Execution States. The core principle of symbolic execution is to map
program variables into expressions made of symbolic values that denote the ini-
tial value of the program variables. We let V = {x, y, . . .} denote the set of
symbolic values and note for clarity x the symbolic value associated to program
variable x (not to be confused with concrete values). A symbolic store is a func-
tion ρ from program variables to symbolic expressions the set of which is noted
E, namely expressions defined like the programming language expressions using
symbolic values instead of program variables. We write M = P(X → E) for the

274 I. Tiraboschi et al.

set of symbolic stores and write [x � 〈x〉, . . .] for an explicitly given symbolic
store. To tie properly symbolic stores and concrete stores, we need to relate sym-
bolic values and concrete values. To this end, we let a valuation be a function
ν : V −→ V. Moreover, given a symbolic expression ε, we let �ε� be a partial
function that maps a valuation ν to the value obtained when evaluating the
expression obtained by replacing each symbolic value x in e with ν(x). We can
now express the concretization of symbolic stores:

Definition 2 (Symbolic store concretization). The symbolic store con-
cretization, γM : M −→ P(M × (V → V)), maps a symbolic store to the set of
pairs made of a store and a valuation that realize it, i.e. γM(ρ) = {(μ, ν) | ∀x ∈
X, μ(x) = �ρ(x)�(ν)}.
To precisely characterize the outcome of an execution path, a symbolic store
is too abstract. Hence, SE also utilizes a symbolic expression to constrain the
store, referred to as symbolic path, that accounts for the conditions encountered
during a path. A symbolic precise store is a pair κ = (ρ, π) where ρ ∈ M and
π is a symbolic path. We write K for the set of symbolic precise stores. Their
meaning is defined as follows:

Definition 3 (Symbolic precise store concretization). The symbolic pre-
cise store concretization, γK : K −→ P(M × (V → V)), is defined by γK(ρ, π) =
{(μ, ν) ∈ γM(ρ) | �π�(ν) = tt}.
Example 1 (Symbolic precise store). We consider Program 2(a). Symbolic exe-
cution needs to cover two paths corresponding to each of the branches of the
condition statement, i.e., depending on the sign of priv. Therefore, symbolic
execution should produce the precise stores (ρ0, priv > 0) and (ρ1, priv ≤ 0),
where ρ0 = ρ1 = [y � 〈5〉, priv � 〈priv〉].

Symbolic Execution Step. The main piece of the symbolic execution algorithm is
the step relation, which closely follows the small step semantics of the programs.
We define it by a transition relation ⇀s between symbolic execution states that
are made of a program command and a symbolic precise store. Before we write
down the analysis ⇀s, we need a few definitions.

First, we define the symbolic evaluation of an expression or condition in a
symbolic store, which produces a symbolic expression. We note (e, ρ) �s ε the
evaluation of e into symbolic expression ε in symbolic store ρ. Usually, this
evaluation step boils down to the substitution of the variables in e with the
symbolic expressions they are mapped to in ρ, possibly with some simplifications.

Second, we define the conservative satisfiability test of a symbolic path. This
step is usually performed by an external tool such as an SMT solver, so we do
not detail its internals here. We note that this test may conservatively return as
a result that a symbolic path may be satisfiable. We note may(π) when π may
be satisfiable.

Sound Symbolic Execution via Abstract Interpretation 275

Fig. 3. Symbolic execution step relation: a few selected rules

We now turn to the rules in Fig. 3. Rule s-assign simply updates the symbolic
store with a new symbolic expression for the assigned variable. In rule s-if-t, if
the guard evaluation β is satisfiable, the true branch is accessed and β is added to
the symbolic path. Finally, rules s-loop-t and s-loop-f follow similar principles
as rule s-if-t in the case of loops. We formalize the soundness of execution steps:

Theorem 1 (Soundness of a single symbolic execution step). Let (c, μ)
and (c′, μ′) ∈ S be two states such that (c, μ) → (c′, μ′), κ ∈ K a symbolic precise
store, and ν be a valuation such that (μ, ν) ∈ γK(κ). Then, there exists a symbolic
precise store κ′ such that (μ′, ν) ∈ γK(κ′) and (c, κ) ⇀s (c′, κ′).

Sound Depth Bounded Symbolic Execution. Clearly, the exhaustive application of
the symbolic execution step relation defined in Fig. 3 would not terminate. There-
fore, common symbolic execution tools typically abort the exploration when they
reach some sort of bound on execution lengths. This result is clearly unsound
as longer executions are simply ignored. Alternatively, it is possible to over-
approximate the set of precise stores that may be reachable when the bound is
met. We formalize this approach here.

Essentially, symbolic states need to be augmented with two additional pieces
of information, namely a boolean so-called precision flag which states whether
symbolic execution has performed any over-approximation due to exhausting the
bound, and a bound control field, called counter. We define set W as the set of
counters, with a special element w0 ∈ W that denotes the initial counter status
with respect to bound control. To operate over counters, we require a function
step which inputs two commands c, c′, and a counter w. It produces a result of
the form (b, w′) where b is a boolean, and w′ is the next counter. Value b is tt
if and only if a step from c to c′ can be done without exhausting the iteration
bounds, and with the new counter w′. If b is ff, the iteration bound has been
reached and the state needs to be over approximated.

To perform the over approximation, a function modif is required. The function
inputs a symbolic store and a command, and returns a new symbolic store ρ′

such that:

276 I. Tiraboschi et al.

Fig. 4. SoundSE: Sound bounded symbolic execution step relation

– ρ′ maps each program variable that is considered to be “modified” (by a
sound over approximation of the set) in c to a fresh symbolic value;

– ρ′ maps all the other program variables to their image in the original store.

Example 2 (Loop iteration bounding). The most typical way to bound symbolic
execution limits the number of iteration of each loop to pre-defined number k.
Then, W consists of stacks of integers, w0 is the empty stack, and step adds a
zero on top of the stack when entering a new loop and pops the value on top of
the stack when exiting a loop. More importantly, it increments the value n at the
top of the stack when n ≤ k and moving to the next iteration (rule s-loop-t);
on the other hand, when n > k, it pops n and returns the ff precision flag.

To ensure termination, W and step should satisfy the following well-foundedness
property: for any infinite sequence of commands (ci)i the infinite sequence (wi)i

defined by step(ci, ci+1, wi) = (tt, wi+1) should be stationary, which we assume
here.

Based on these definitions, depth bounded symbolic execution is defined by
a transition relation over 4-tuples made of a command, a symbolic state, an
element of W, and a boolean, referred to as symbolic state. We overload the
notation ⇀s for this relation, which is defined based on the previously defined
⇀s. The rules are provided in Fig. 4:

– Rule s-next carries out an atomic step of symbolic execution that requires
no over approximation; function step returns the precision flag b and a new
counter;

– Rule s-approx-many carries out a global approximation step; indeed, as
step returns ff, the function modif is applied to the symbolic state to over-
approximate the effect of an arbitrary number of steps of execution of c;
alongside with the new counter state the ff precision is propagated forward.

Under the well-foundedness assumption, exhaustive iteration of the available
symbolic execution rules from any initial symbolic state will terminate and pro-
duce finitely many symbolic states. To express the soundness of this algorithm,
we need to account for the creation of symbolic values by function modif, which
means that valuations also need to be extended. To this end, we note ν � ν′

when the domain of valuation ν is included into that of ν′ and when both ν
and ν′ agree on the intersection of their domains. We now obtain the following
soundness statement:

Sound Symbolic Execution via Abstract Interpretation 277

Theorem 2 (Soundness of any sequence of single symbolic execution
steps). Let (c, om, μ) ∈ S be a state and μ′ be a store such that (c, μ) →∗

(skip, μ′). Let κ ∈ K be a symbolic precise store and ν be a valuation such that
(μ, ν) ∈ γK(κ). Let w ∈ W be a counter. Then, there exists a symbolic precise
store κ′, a valuation ν′, and a counter w′ ∈ W such that ν � ν′, (μ′, ν′) ∈ γK(κ′),
and (c, κ, w, b) ⇀∗

s (skip, κ′, w′, b′).

The proof of this theorem follow from Theorem 1 (steps where step returns tt),
and a global induction on the command c when rule s-approx-many applies.

Example 3 (Symbolic execution). For program 2(a), symbolic execution returns
the symbolic stores shown in Example 1. We assume the bounding of Example 2
and consider program 2(b). Then, symbolic execution generates the symbolic
store [z � 〈z〉, i � 〈i′〉, priv � 〈priv′〉] with precision flag ff, and where i′,
priv′ are fresh symbolic values generated by rule s-approx-many.

Refutation up to a Bound. A very desirable feature of symbolic execution is the
ability to produce counter-examples up to a bound. This feature stems from a
bounded refutation result, which states that, when symbolic execution produces
a final state for which the final precision flag is tt, and such that the symbolic
path is satisfiable, then a matching concrete execution can be found. From the
final state, the SMT solver can compute a refutation model.

Theorem 3 (Refutation up to a bound). Let c be a command, κ, κ′ ∈ K be
two precise stores, w,w′ ∈ W, such that (c, κ, w, tt) ⇀∗

s (skip, κ′, w′, tt). Then,
for all (μ′, ν′) ∈ γK(κ′), it exists (μ, ν) ∈ γK(κ) such that (c, μ) →∗ (skip, μ′).

This result follows from the fact that rule s-approx-many is never applied in
the symbolic execution and from an induction on the sequence of s-next steps.

Example 4 (Symbolic execution completeness up to a bound). We consider the
cases discussed in Example 3. Using the bounding of Example 2, the result
produced for program 2(a) is complete whereas that for program 2(b) generates
some final symbolic state with precision flag ff, hence for which Theorem 3 does
not apply.

5 RedSoundSE: Sound SE Combined with Abstract States

We now extend SoundSE with the ability to use the properties inferred by
abstract interpretation. This combined symbolic execution is referred to as Red-
SoundSE, making reference to the reduced product between SoundSE and an AI
based analysis.

278 I. Tiraboschi et al.

Fig. 5. Abstract execution step and product with symbolic execution

Abstraction of Store and Static Analysis. In the following, we assume that an
abstract domain [14] A describing sets of stores is fixed, together with a con-
cretization function γA : A −→ P(M). We assume the existence of an element
⊥ ∈ A such that γA(⊥) = ∅. Additionally, we require the two following sound
abstract post-condition functions for basic operations. Function � � will be over-
loaded to replace any variable x for its mapped value in a store μ(x):

– abstract assignment assignx,e : A −→ A is parameterized by a variable x and
an expression e and is such that ∀a ∈ A, {μ[x �→ �e�(μ)] |μ ∈ γA(a)} ⊆
γA(assignx,e(a)).

– abstract condition guardb : A −→ A is parameterized by a boolean expression
b and is such that ∀a ∈ A, {μ ∈ γA(a) | �b�(μ) = tt} ⊆ γA(guardb(a)).

Based on these operations, the definition of a sound abstract execution step
relation ⇀A is straightforward. We show two rules in Fig. 5(a). The rules match
those of → (Sect. 2) and are sound with respect to it. In the following, A is
assumed to be a parameter of the analysis. It may consist of any numerical
abstraction, such as the interval abstract domain [14] or the domain of convex
polyhedra [16]. Moreover, the application of standard widening technique [14]
allows to define a static analysis function �c��

A : A −→ A that is sound in the sense
that, for all command c and all abstract state a, {μ′ ∈ M | ∃μ ∈ γA(a), (c, μ) ⇀∗

s

(skip, μ′)} ⊆ γA(�c��
A(a))

Reduced Product of Symbolic Precise Stores and Abstract States. Reduced prod-
uct [15] aims at expressing precisely conjunctions of constraints expressed in dis-
tinct abstract domains. We let a precise product store be a pair (κ, a) ∈ K × A.
In our case, the definition needs to be adapted slightly as symbolic execution
and abstract domain A do not abstract exactly the same objects:

Sound Symbolic Execution via Abstract Interpretation 279

Definition 4 (Product domain). The product abstract domain consists of
the set K × A and the concretization function γK×A : K × A −→ P(M × (V → V))
defined as follows: γK×A : (κ, a) �−→ {(μ, ν) ∈ γM(κ) |μ ∈ γA(a)}
In a precise product store (κ, a), the goal is to enhance precision by exchang-
ing information between κ and a. This is done through a reduction func-
tion, which rewrites an abstract element with another of equal concretiza-
tion, but that supports more precise analysis operations. This implies that
(γK×A ◦ reduction)(κ, a) = γK×A(κ, a). This requires the abstract domain A to
support a function constr that maps an abstract state a to a logical formula
over program variables and entailed by a, namely such that, if μ ∈ γA(a) then
μ satisfies formula constr(a). Some abstract domains—specifically intervals and
abstract polyhedra—utilize an internal representation based on conjunction of
constraints, in which case constr is trivial. Then, reduction : K × A −→ K × A is
defined by:

reduction((ρ, π), a) � ((ρ, π′), a) where π′ � π ∧ constr(a)[x �→ ρ(x)]

Note that [x �→ ρ(x)] in the above definition, symbolizes the replacement of
each program variable present in constr(a) into its definition in ρ; this step
follows from the fact that a constrains program variables whereas π constrains
valuations. This general reduction function may be refined into a more precise
one, where the resulting symbolic path is simplified, possibly to the ff formula.
Furthermore, this reduction only modifies the symbolic path π, but it is possible
to define a reduction operation that also rewrites the abstract state a.

Reduced Product Symbolic Execution. The product analysis, namely Red-
SoundSE, takes the form of an extension of the symbolic execution function
of Fig. 4. The new states are still 4-tuples, but the symbolic precise store compo-
nent κ is now replaced with a precise product store (κ, a). The transition relation
⇀s×A between such states consists of two rules that are shown in Fig. 5(b) and
that extend those in Fig. 4. In rule s-a-many (applied when exploration bound
is met) aside from modif, the loop is calculated over the abstract state and then
the reduction function is applied.

In both cases, the sound reduction operator may be applied. In practice, for
the sake of efficiency, it can be computed and applied in a lazy manner that is,
only for specific steps (typically s-a-many and for branching commands).

Example 5 (Product analysis). For program 2(d), assuming i < 10, and then
when exiting the loop, an intervals abstract state will hold two constraints a =
{i = 10; priv ≥ 2}. Assuming a symbolic precise store κ = (ρ, π) with ρ =
[i → i; priv → priv], the abstract constraints can be fitted to a symbolic path
π′ as follows: π′ � π ∧ i = 10 ∧ priv ≥ 2. A more detailed execution trace
is given in Appendix A.

Soundness and Refutation Property. The RedSoundSE analysis defined in the
previous paragraph satisfies the same soundness (Theorem 2) and refutation
(Theorem 3) properties as standard symbolic execution, so we do not give the
theorems again.

280 I. Tiraboschi et al.

6 SoundRSE: Sound Relational Symbolic Execution

As discussed in Sect. 3, security properties like noninterference require to reason
over pairs of execution traces thus we now set up a sound relational symbolic
execution technique that constructs pairs of executions. This analysis will be
regarded as SoundRSE.

Assumption. To keep notations lighter, we assume in this section and the
next that the bounding counter step function step only affects loops, namely
step(c, c′, w) = w whenever c is not a loop command. Moreover, we do not
include the product with the numerical abstract state (as in Sect. 5) in the fol-
lowing definitions. Since it can be added in a seamless manner, we omit it here
to keep formal statements lighter.

Precise Relational Stores. We first define the notions of relational expression,
relational store, and precise relational store.

Definition 5 (Relational and precise relational stores). A relational sym-
bolic expression is an element defined by the grammar: ε̃ ::= 〈ε〉|〈ε | ε〉 where ε
ranges over the set E of symbolic expressions. We write E2 for the set of rela-
tional symbolic expressions. A relational symbolic store ρ̃ is a function from
variables to relational symbolic expressions. We let M2 = X → E2 stand for their
set. Finally, a precise relational store κ̃ is a pair (ρ̃, π) ∈ K2.

Before we define concretizations of M2 and K2, we need to introduce two opera-
tions:

– The projections Π0,Π1 map relational symbolic stores into symbolic stores.
They are defined in a pointwise manner, as follows: if ρ̃(x) = 〈ε〉 then
Π0(ρ̃)(x) = Π1(ρ̃)(x) = ε and if ρ̃(x) = 〈ε0 | ε1〉, then Π0(ρ̃)(x) = ε0 and
Π1(ρ̃)(x) = ε1. We overload the Π0,Π1 notation and also apply it to dou-
ble symbolic expressions: Π0(〈ε〉) = Π1(〈ε〉) = ε and if ε̃ = 〈ε0 | ε1〉, then
Π0(ε̃) = ε0 and Π1(ε̃) = ε1.

– The pairing �ρ0 | ρ1� of two symbolic stores ρ0 and ρ1 is a relational symbolic
store defined such that, for all variable x,

�ρ0 | ρ1�(x) =

{ 〈ε〉 if ρ0(x) and ρ1(x) are provably equal to ε ∈ E
〈ρ0(x) | ρ1(x)〉 otherwise

where the notion of “provably equal” may boil down to syntactic equality of
symbolic expressions or involve an external proving tool.

We can now define the concretization functions:

Definition 6 (Concretization functions). The concretization of relational
stores γM2

and concretization of precise relational stores γK2 are defined by:

γM2
: M2 −→ P(M × M × (V → V))
ρ̃ �−→ {(μ0, μ1, ν) | ∀x ∈ X, ∀i ∈ {0, 1}, μi(x) = �Πi(ρ̃)(x)�(ν)}

γK2 : K2 −→ P(M × M × (V → V))
(ρ̃, π) �−→ {(μ0, μ1, ν) ∈ γM2

(ρ̃)|�π�(ν) = tt}.

Sound Symbolic Execution via Abstract Interpretation 281

Fig. 6. SoundRSE: a few selected rules of the relational symbolic execution step relation.

Example 6. We consider program 2(d) (SoundSE was discussed in Example 1).
To cover pairs of executions that start with the same value for low variable y
but possibly distinct values for high variable priv, relational symbolic execution
should cover four pairs of paths. These four paths have the same relational
symbolic store [priv � 〈priv0 | priv1〉, y � 〈5〉] and differ only in the symbolic
path components. For instance, when the first execution takes the true branch
of the condition and the second the false branch, the symbolic path is priv0 >
0 ∧ priv1 ≤ 0.

Relational Symbolic Execution Algorithm. Since SoundRSE aims at describing
pairs of executions, it should account for the case where the two executions follow
different control flow paths. Thus, a relational symbolic state may consist of a
single command when both executions follow the same path, or two commands
when they diverge. We respectively note these two kinds of states (c, κ̃, w, b) and
((c0 �� c1); c2, κ̃, w, b); in the latter, c0 (resp., c1) denotes the control state of
the first (resp., second) execution, which they later meet in c2. The components
w and b have the same meaning as in Sect. 4. Initial states are of the former sort.

We write ⇀sr for the relational symbolic execution step relation. A represen-
tative selection of the rules are shown in Fig. 6. Rule sr-approx-many describes
a case where approximation is performed so as to ensure termination and uses
the straightforward extension of modif to relational symbolic states.

Soundness and Refutation Property. SoundRSE inherits similar soundness and
refutation properties as SoundSE, as shown in the following theorems.

Theorem 4 (Soundness). Let κ̃ ∈ K2, w ∈ W, and b ∈ B. We let (μ0, μ1, ν) ∈
γK2(κ̃) and assume that stores μ′

0, μ
′
1 are such that (c, μ0) →∗ (skip, μ′

0) and
(c, μ1) →∗ (skip, μ′

1). Then, there exists κ̃′ ∈ K2, a valuation ν′, and a counter
state w′ ∈ W such that ν � ν′, (μ′

0, μ
′
1, ν

′) ∈ γK(κ̃′), and (c, κ̃, w, b) ⇀∗
sr

(skip, κ̃′, w′, b′).

282 I. Tiraboschi et al.

Theorem 5 (Refutation up to a bound). Let c be a command, κ̃, κ̃′ ∈ K2 be
two precise stores, w,w′ ∈ W, such that (c, κ, w, tt) ⇀∗

sr (skip, κ′, w′, tt). Then,
for all (μ′

0, μ
′
1, ν

′) ∈ γK2(κ
′), it exists (μ0, μ1, ν) ∈ γK2(κ) such that (c, μ0) →∗

(skip, μ′
0) and (c, μ1) →∗ (skip, μ′

1).

SoundRSE -Based Analysis and Noninterference. We now assume a program
(c, L), and show the application of SoundRSE analysis to attempt proving non-
interference. The analysis proceeds according to the following steps:

1. Construction of the initial store ρ̃0 such that, for all variables x present in c,
ρ̃0(x) = 〈x〉 (resp., ρ̃0(x) = 〈x0 | x1〉) if x ∈ L (resp., x 	∈ L), and where x is
a fresh symbolic value (resp., x0, x1 are fresh symbolic values).

2. Exhaustive application of semantic rules from initial state (c, (ρ̃0, tt), w0, tt);
we let O stand for the set of final precise relational stores with their precision
flags: O � {(κ̃, b) | ∃w ∈ W, (c, (ρ̃0, tt), w0, tt) ⇀sr (skip, κ̃, w, b)}.

3. Attempt to prove noninterference for each symbolic path in O using an exter-
nal tool, such as an SMT solver; more precisely, given ((ρ̃, π), b) ∈ O,

– if π is not satisfiable, the path is infeasible and can be ignored;
– if it can be proved that for all variables x ∈ L, there is a unique value,

i.e., Π0(ρ̃)(x) = Π1(ρ̃)(x), then the program is noninterferent;
– if a valuation ν can be found, such that �π�(ν) = tt (the path is sat-

isfiable), and there exists a variable x ∈ L such that �Π0(ρ̃)(x)�(ν) 	=
�Π1(ρ̃)(x)�(ν), and b = tt, then ν provides a counter-example refuting
noninterference;

– finally, if b = ff and neither of the above cases occurs, no conclusive
answer can be given for this path.

To summarize, the analyser either proves noninterference (when all paths are
either not satisfiable or noninterferent), or it provides a valuation that refutes
noninterference (when such a valuation can be found for at least one path), or it
does not conclude. When a refutation is found, this refutation actually defines a
real attack.

Example 7 (Noninterference). In the case of program 2(a), all paths are low-
equal. The analysis of program 2(c) computes at least one interferent path if
the unrolling bound is set to any strictly positive integer; in that case, a model
such as the one presented in Sect. 3 can be synthesized by even basic SMT
solvers. Finally, the program of Fig. 2(d) can be proved noninterferent with rela-
tional symbolic execution combined with a reduced product with a value abstract
domain such as intervals (Sect. 5).

7 RedSoundRSE: Product of SoundRSE with Dependence
AI

As observed in Sect. 3 some programs like that of Fig. 2(b) can be analyzed more
precisely using conventional dependence analysis than by bounded symbolic exe-
cution (Sect. 4). In this section, we set up a novel form of product of abstractions,

Sound Symbolic Execution via Abstract Interpretation 283

so as to benefit from this increase in precision. This notion of product is generic
and does not require to fix a specific dependency abstraction. We refer to the
final analysis presented in this section as RedSoundRSE.

Dependence Abstraction and Static Analysis. Although dependence abstrac-
tions may take many forms, they all characterize information flows that can
be observed by comparing pairs of executions. For instance, [4] uses a lattice of
security levels and abstract elements map each level to a set of variables. These
variables are left unmodified when the input value of variables of higher levels
change. Other works use relational abstract domains, where relational means
that relations are maintained across pairs of executions. Therefore, we can char-
acterize such analyses with an abstraction of pairs of stores:

Definition 7 (Dependence abstraction and analysis). A dependence
abstraction is defined by an abstract lattice D from security levels to variables
and a concretization function

γD : D −→ P(M × M)
d �−→ {(μ0, μ1) ∈ M × M |μ0 =d(L) μ1}

A sound dependency analysis is defined by a function �c�
�
D : D → D such that,

for all d ∈ D, (μ0, μ1) ∈ γD(d), {(μ′
0, μ

′
1) ∈ M × M | ∀i ∈ {0, 1}, (c, μi) →

(skip, μ′
i)} ⊆ γD ◦ �c�

�
D(d).

Example 8 (Standard dependence based abstraction [4]). The abstraction of [4]
is an instance of Definition 7. Let {L,H} be the set of security levels. Assume an
initial abstract state d that captures pairs of concrete stores that are low equal
for some program (c, L). By applying the dependence analysis, if the final depen-
dence state has a low dependency for each initially low variable, the program is
noninterferent.

In practice such information is computed by forward abstract interpretation,
using syntactic dependencies for expressions and conditions, and conservatively
assuming conditions may generate (implicit) flows to any operation that they
guard.

We note that Definition 7 accounts not only for dependence abstractions such
as that of [4]. In particular, [22] proposes a semantic patch analysis which can
also be applied to security properties by using a relational abstract domain to
relate pairs of executions; such analyses use an abstraction that also writes as in
Definition 7. In the following, we assume a sound dependence analysis is fixed.

Product of Symbolic Execution and Dependence Analysis. We now combine
dependence analysis and symbolic execution. For most statements, SoundRSE
rules defined in Fig. 6 introduce no imprecision. The notable exception is the
case where the execution bound is reached as in rule sr-approx-many. There-
fore, the principle of the combined analysis is to replace this imprecise rule with
another that uses dependence analysis results to strengthen relational stores.

284 I. Tiraboschi et al.

Fig. 7. RedSoundRSE: Symbolic execution approximation and product with depen-
dence information.

First, we introduce two operations to transport information in a sound manner
into and from the dependence abstract domain:

Definition 8 (Information translation and dependence abstraction).
The translation from symbolic to dependence is a function τs→D : M2 → D
that is sound in the following sense: ∀ρ̃ ∈ M2, ∀(μ0, μ1, ν) ∈ γM2

(ρ̃), (μ0, μ1) ∈
γD ◦ τs→D(ρ̃). The extraction of dependence information is a function λD→L :
D → P(X) that is sound in the following sense: ∀d ∈ D, ∀(μ0, μ1) ∈
γD(d), μ0 =λD→L(d) μ1

Intuitively, τs→D should compute a dependence abstract domain element that
expresses a property implied by the relational symbolic store it is applied to. In
the set-up of Example 8, a straightforward way to achieve that is to map ρ̃ to
an element d that maps L to the set: {x ∈ X | may(Π0(ρ̃)(x) = Π1(ρ̃)(x))}

When ρ̃(x) = 〈ε〉, this equality is clearly satisfied; when ρ̃(x) = 〈ε0 | ε1〉, the
equality ε0 = ε1 needs to be discharged by an external tool such as an SMT
solver. Similarly, the function λD→L extracts a set of variables which are proved
to remain low by the its argument. In the setup of Example 8, this boils down
to returning d(L).

We now present the combined analysis. The symbolic execution step sr-
approx-many-dep is shown in Fig. 7 and replaces rule sr-approx-many
(Fig. 6). When the execution bound is reached for a loop statement, it performs
the dependence analysis of the whole loop from the dependence state derived by
applying τs→D to the relational symbolic store. Then, it applies λD→L to derive
the set of variables that are proved to be low by the dependence analysis. Finally,
it computes a new relational symbolic store by modifying the variables according
to the set of variables determined low:

– if variable x is low based on the λD→L output, modifD synthesizes one fresh
symbolic value xnew and maps it to 〈xnew〉;

– if variable x cannot be proved low, modifD synthesizes two fresh symbolic
values xnew0, xnew1 and maps x to 〈xnew0 | xnew1〉.

Remark 1 (Reduced product property). We stress the fact that the rule sr-
approx-many may be applied multiple times during the analysis, essentially
whenever a loop statement is analyzed, which is generally many times more
than the number of loop commands in the program due to abstract iterations.
Therefore, our analysis cannot be viewed as a fixed sequence of analyses. Such
a decomposition (e.g., where dependence analysis is ran first and SE second)
would be strictly less precise than our reduced product based approach.

Sound Symbolic Execution via Abstract Interpretation 285

Fig. 8. Programs illustrating different properties of the analyzer. Variable priv is high.

Soundness and Refutation Properties. Under the assumption that the depen-
dence analysis and translation operations are sound, so is the combined sym-
bolic execution, thus Theorem 4 still holds. Moreover, the refutation property of
Theorem 5 also holds.

Example 9 (Combined analysis). We consider program 2(b). As discussed in
Sect. 3, the loop statement may execute unboundedly many times, thus relational
symbolic execution applies rule sr-approx-many-dep. The initial dependence
abstract element computed for the loop by τs→D maps L to {i, z} and H to
all variables. The dependence analysis of the loop returns the same element.
Thus, the set of low variables returned by λD→L is {i, z}, which allows to com-
pute a precise relational symbolic store and to successfully verify the program is
noninterferent.

8 Comparison

In this section we compare our analyses among them as well as with the depen-
dency analysis of Assaf et al. [4]. To do so, we implemented prototypes of all
the analyses. Our goal is not to evaluate the analyses in large code bases but
to assess their differences based on programs that are small but challenging for
typical noninteference analysers.

Implementation. We prototype the analyses proposed in this work as well as the
dependency analysis, intervals and convex polyhedra analysis. The prototype is
implemented in around 4k lines of OCaml code, using the Apron library [29]
for the numerical domains and the Z3 SMT solver [21]. By defining a shared
interface for SoundSE and RedSoundSE, the implementation of RedSoundRSE is
parameterized by these. An artifact of the implementation has been provided.

Evaluation. We compare the 3 different relational techniques using different
single-trace analyses by evaluating them on a set of challenging examples. Our
results are shown in Table 2. In the following, we split NI programs from non NI
ones. For the latter we look at the refutation capabilities of the analysis.

286 I. Tiraboschi et al.

Table 2. Evaluation and comparison of analyses combination. D denotes the depen-
dency analysis of [4]. Symbol ✓ (resp., ✗) denotes a semantically correct (resp.,
incorrect) analysis outcome, with either a proof of security, a (possibly false) alarm,
or a refutation model. For RedSoundSE columns, when the analyses succeed to prove
NI, we mark the result with I (resp. P) to indicate that the intervals (resp. polyhedra)
domain is being used.

Relational Analysis D SoundRSE RedSoundRSE (D)

relational analysis input: None SoundSE RedSoundSE SoundSE RedSoundSE

Program Secure?

Fig. 2(a) Yes ✗ False alarm ✓ Secure ✓ Secure (I,P) ✓ Secure ✓ Secure (I,P)

Fig. 2(b) Yes ✓ Secure ✗ False alarm ✓ Secure (P) ✓ Secure ✓ Secure (I,P)

Fig. 2(d) Yes ✗ False alarm ✗ False alarm ✓ Secure (I,P) ✗ False alarm ✓ Secure (I,P)

Fig. 8(a) Yes ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure ✓ Secure (I,P)

Fig. 8(b) Yes ✗ False alarm ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure (I,P)

Fig. 8(c) No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model

Fig. 8(c) No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model

Fig. 8(d) No ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm

Comparison of the Verification Capabilities of Different Relational Analyses.
Programs of Fig. 2 were already explained in Sect. 3 and our prototype confirmed
these results, which are summarized in Table 2.

In Program 8(a), the first condition renders dependence analysis useless as
it will consider variable i high. This program will also fail to be verified by
SoundRSE if the iteration bound is lower than 10: in this case, i will be assigned
a fresh symbolic value and hence be deemed high. In contrast, RedSoundRSE can
determine that the value of i in the loop does not depend on priv.

Program 8(b) is more convoluted. The analysis requires both numerical and
dependence abstractions in order to prove its NI. The analysis will determine
(conservatively) that three variables are modified in the loop: x, i and w. Depen-
dence analysis can determine that variable i and x are low even if both are
modified. However, since w depends on x, and the exact value of x is unknown,
it is not possible to determine that w is low. By adding a numerical domain, it
is easy to track that the value of x is always positive, which implies that the if
statement can never be executed.

Comparison of the Refutation Capabilities of Different Relational Analyses.
Since SoundRSE and RedSoundRSE unroll loops a bounded number of times,
there are insecure programs for which a refutation model can be found, and pro-
grams where this is not possible. Notice that, to refute a program with a model,
it is required that the symbolic execution did not perform any over approxi-
mation, i.e. that the precision flag is set to false when the analysis finds the
violation. Therefore, the results for insecure programs of SoundRSE are sim-
ilar to those of the different combinations that rely on symbolic execution, as
reflected on Fig. 2. For Program 2(c), a valuation can be found by doing one iter-
ation: ν(i0) = ν(i1) = 1 and ν(priv0) = 0, ν(priv1) = 1. For Program 8(c), a
model can be found if the bound of iterations is set to 4 or higher. The valuation
ν just needs to map variable priv to two different values: ν(priv0) 	= ν(priv1).

Sound Symbolic Execution via Abstract Interpretation 287

In Program 8(d), for any user-set bound lower than 100 the execution will have
to overapproximate, losing refutation capabilities.

Conclusion of the Evaluation. We have evaluated and compared our analyses
among them and with the state-of-the-art on dependency analyses [4] on a set of
8 challenging examples. Our results show that, in contrast to dependencies [4],
analyses inherit the capacity of providing a refutation model up to a bound
from symbolic execution. Moreover, RedSoundRSE instantiated with RedSoundSE
is capable of soundly verifying all the examples, in contrast to all the other
compared analyses, as summarized in Table 2.

Limitations. As RedSoundSE is sound and automatic, it necessarily fails to
achieve completeness (by Rice’s Theorem [3,30]). In return, we provide complete-
ness up to a bound. Another more subtle limitation is that the numerical abstrac-
tion are applied at the level of the single symbolic execution (RedSoundSE). This
means that these abstractions cannot track down relations between executions,
but just local constraints.

9 Related Work

Hyperproperties. Noninterference was first defined by Goguen and Meseguer [26],
and also generalized to more powerful attacker models under the property name
of declassification. We refer the reader to a survey on declassification policies [37]
up to 2005. As discussed in the introduction, noninterference is not a safety
property but a safety hyperproperty [13], a.k.a. hypersafety. Several works in the
literature have shown that hypersafety verification can be reduced to verification
of safety properties [7,13,20,39], however this reduction is not always efficient
in practice [39]. In our work, we do not reduce noninterference to verification
of safety but rather apply relational analyses. We only show our results using
noninterference but the methodology can be easily generalized to more relaxed
declassification properties, provided sound abstract domains exist.

Symbolic Execution. SE is a static analysis technique that was born in the 70s [9,
31] and that is now deployed in several popular testing tools, such as KLEE [11]
and NASA’s Symbolic PathFinder [35], to name a few. A primary goal and
strength of SE is to find paths leading to counter-examples to generate concrete
input values exercising that path. This is of particular importance to security in
order to debug and confirm the feasibility of an attack when a vulnerability is
detected.

Alatawi et al. [2] use AI to enhance the precision of a dynamic symbolic exe-
cution aimed at path coverage. Their approach consists of first doing an analysis
of the program with AI to capture indirect dependences in order to enhance path
predicates. Furthermore, their analysis does not maintain soundness (nor com-
pleteness). Meanwhile, our approach continuously alternates between abstract
domains and symbolic execution, keeping soundness and completeness up to a

288 I. Tiraboschi et al.

bound. Lastly, Alatawi et al. [2] do not analyze relational properties such as
noninterference but just safety properties.

We focus the rest of the related work on static analysis techniques for rela-
tional security properties: for a broader discussion on symbolic execution we refer
the interested reader to a survey [10] up to 2011 and an illuminating discussion
on SE challenges in practice up to 2013 [12].

Relational Symbolic Execution. In order to apply SE to security properties such
as noninterference, Milushev et al. [32] propose a form of relational symbolic
execution (RSE) to use KLEE to analyze noninterference by means of a tech-
nique called self-composition [7,20,39] to reduce a relational property of a pro-
gram p to a safety property of a transformation of p. More recently, Daniel et
al. have optimized RSE to be applicable to binary code to analyze relational
properties such as constant time [17] and speculative constant time [18,19] and
discovered violations of these properties in real-world cryptographic libraries.
All these approaches are based on pure (relational) SE static techniques and,
as such, they are not capable of recovering soundness beyond a fixed bound as
in our case. The closest work to RedSoundRSE is RelSym [23] which supports
interactive refutation, as well as soundness. In order to recover soundness, Chong
et al. [23] propose to use RelSym on manually annotated programs with loop
invariants. Precision of refutation is guaranteed only if the invariants are strong
enough, which cannot be determined by the tool itself. Precision is not guaran-
teed in any other cases. In contrast, our invariants are automatically generated
via AI and precision of refutation is always guaranteed up to a bound, which is
automatically computed by our tool.

Sound Static Analyses for Hyperproperties. As discussed in the introduction,
many sound verification methods have been proposed for relational security prop-
erties. We refer the reader to an excellent survey on this topic [36] up to 2003.
After 2003, several sound (semi-) static verification methods of noninterference-
like properties have been proposed by means of type systems (e.g. [6,24]), hybrid
types, (e.g. [38]), relational logics (e.g. [1]), model checking (e.g. [5,27]), and
pure AI [4]. We expand on the ones based on AI since they are the closest to our
work. Giacobazzi and Mastroeni [25] define abstractions for attacker’s views of
program secrets and design sound automatic program analyses based on AI for
sets of executions (in contrast to relational executions). Assaf et al. [4] are the
first to express hyperproperties entirely within the framework of AI by defining
a Galois connection that directly approximates the hyperproperty of interest.
We utilize the abstract domain of Assaf et al. [4] combined with SE to obtain
RedSoundSE. Notice that because the framework of Assaf et al. [4] relies on
incomplete abstraction, their analysis is not capable of precise refutation nor
provide refutations models. To the best of our knowledge, no previous work has
combined abstract domains and SE to achieve soundness.

Sound Symbolic Execution via Abstract Interpretation 289

10 Conclusion

In this work, we propose a series of analyses, summarized in Fig. 1, combining SE
and AI. Our analyses are sound, precise, and able to synthesize counter-examples
up to a given bound. We prototype these analyses as well as several AI domains
and a dependency analysis to verify noninterference. Our results, summarized
in Table 2, show that on a set of challenging examples for noninterference, our
analysis performs better than the dependency analysis and is able to precisely-
blank and soundly conclude on whether programs are noninterferent or not and
provide refutation models up to a bound. Given these encouraging results, we
plan to generalize the target security property and make the analyses scale to
other languages as future work.

Acknowledgements. The authors thank the anonymous reviewers for their com-
ments, helpful for improving the paper. This project was funded by INRIA Challenge
SPAI and by the VeriAMOS ANR Project. This research was partially supported by
the ANR17- CE25-0014-01 CISC project We would also like to thank Josselin Giet and
Adam Khayam for their observations.

A Trace of Program 2(d) with RedSoundSE Using
Intervals

This section aims to show the execution of one symbolic trace of program 2(d).
Initial precise store κ will capture the initial low-equality of variables i and y.
The abstract state is a. Changes to the product store are marked in red.

κ =

⎧
⎪⎨

⎪⎩

ρ = [i → 〈i0〉, y → 〈y0〉, priv → 〈priv0〉]
π = tt
al = []

In line 3, since priv is unconstrained, the semantics can choose either path.
Let us assume that our trace follows rule s-if-t. Then, by line 5 the state is as
follows.

κ =

⎧
⎪⎨

⎪⎩

ρ = [i → 〈i0〉, y → 〈y0〉, priv → 〈0〉]
π = priv0 < 0
a = [priv = 0]

Since this loop has an unbounded amount of iterations, we know that an over
approximation will happen. Let us assume that the iteration bound is 1 (meaning
that the semantics will execute the loop once at most before over approximating),
and that i < 10. By executing one full iteration the following symbolic state is
reached.

κ =

⎧
⎪⎨

⎪⎩

ρ = [i → 〈i0 + 1〉, y → 〈y0〉, priv → 〈2〉]
π = i0 < 10 ∧ priv0 < 0
a = [priv = 0; i < 11]

290 I. Tiraboschi et al.

Since now the limit of iterations is reached, next step is over approximating
the loop. For the example we will next show the state just before the reduction.
Notice that the new constraints in π are the result of negating the guard.

κ =

⎧
⎪⎨

⎪⎩

ρ = [i → 〈i1〉, y → 〈y0〉, priv → 〈priv1〉]
π = i1 ≥ 10 ∧ i0 < 10 ∧ priv0 < 0
a = [priv ≥ 2; i = 10]

Because variables i and priv were modified, new symbolic values are assigned.
This generates a big inaccuracy, but abstract states can compensate. By reducing
we add the constraints of a to π.

κ =

⎧
⎪⎨

⎪⎩

ρ = [i → 〈i1〉, y → 〈y0〉, priv → 〈priv1〉]
π = priv1 ≥ 2 ∧ i1 = 10 ∧ i1 ≥ 10 ∧ i0 < 10 ∧ priv0 < 0
a = [priv ≥ 2; i = 10]

Thanks to the reduction, we get information allowing for the low equality of
i but also we get information about priv being positive. Finally, the last if
statement will not be executed.

B SE Step Relation

This section shows the full set of rules of SE, the standard not-sound symbolic
execution.

s-assign
(e, ρ) �s ε

(x := e, (ρ, π)) ⇀s (skip, (ρ[x � 〈ε〉], π))

s-seq-exit
(skip; c1, κ) ⇀s (c1, κ)

s-seq
(c0, κ) ⇀s (c′

0, κ
′)

(c0; c1, κ) ⇀s (c′
0; c1, κ′)

s-if-t
(b, ρ) �s β π′ � π ∧ β may(π′)

(if b then c0 else c1, (ρ, π)) ⇀s (c0, (ρ, π))

s-if-f
(b, ρ) �s β π′ � π ∧ ¬β may(π′)

(if b then c0 else c1, (ρ, π)) ⇀s (c1, (ρ, π))

s-loop-t
(b, ρ) �s β π′ � π ∧ β may(π′)

(while b do c, (ρ, π)) ⇀s (c; while b do c, (ρ, π))

s-loop-f
(b, ρ) �s β π′ � π ∧ ¬β may(π′)
(while b do c, (ρ, π)) ⇀s (skip, (ρ, π))

C SoundSE Step Relation

This section shows the full set of rules of SoundSE by using SE, in Appendix B.

s-next
(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (tt, w′)

(c, κ, w, b) ⇀s (c′, κ′, w′, b)

s-approx-many
(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (ff, w′) ρ′′ = modif(ρ, c)

(c, (ρ, π), w, b) ⇀s (skip, (ρ′′, π), w′,ff)

Sound Symbolic Execution via Abstract Interpretation 291

D Abstract Step Relation

This section shows the full set of rules of the abstract analysis used in Red-
SoundSE.

a-assign
a′ � assignx,e(a)

(x := e, a) ⇀A (skip, a′)
a-if-t

a′ � guardb(a) a′ �= ⊥
(if b then c0 else c1, a) ⇀A (c0, a

′)

a-if-f
a′ � guard¬b(a) a′ �= ⊥

(if b then c0 else c1, a) ⇀A (c0, a
′)

a-seq-exit
(skip; c1, a) ⇀A (c1, a)

a-seq
(c0, a) ⇀A (c′

0, a
′)

(c0; c1, a) ⇀A (c′
0; c1, a

′)

a-loop-f
a′ � guard¬b(a) a′ �= ⊥

(while b do c0, a) ⇀A (skip, a′)

a-loop-t
a′ � guardb(a) a′ �= ⊥

(while b do c0, a) ⇀A (c; while b do c0, a
′)

E RedSoundSE Step Relation

RedSoundSE is defined by rules of Appendix B, Appendix C and Appendix D.

s-a-next

(c, κ, w, b) ⇀s (c′, κ′, w′, b)
step(c, c′, w) = (tt, w′) (c, a) ⇀A (c′, a′) (κ′′, a′′) � reduction(κ′, a′)

(c, κ, a, w, b) ⇀s×A (c′, κ′′, a′′, w′, b)

s-a-approx-many

(c, κ) ⇀s (c′, κ′) step(c, c′, w) = (ff, w′) κ′′ = modif(κ, c)

a′ = �c��
A(a) (κ′′′, a′′′) � reduction(κ′′, a′)

(c, (κ, a), w, b) ⇀s×A (skip, (κ′′′, a′′′), w′,ff)

F RSE and SoundRSE Step Relations

This section shows the full set of rules for SoundRSE. RSE is a subset of
SoundRSE, by removing rule sr-approx-many, and removing the counter and
boolean flag.

292 I. Tiraboschi et al.

sr-assign
(e, ρ̃) �sr ε̃

(x := e, (ρ̃, π), w, b) ⇀sr (skip, (ρ̃[x � 〈ε̃〉], π), w, b)

sr-seq-exit
(skip; c1, κ̃) ⇀sr (c1, κ̃)

sr-seq
(c0, κ̃) ⇀sr (c′

0, κ̃′)
(c0; c1, κ̃) ⇀sr (c′

0; c1, κ̃′)

sr-if-tt
(b, ρ̃) �sr β̃ π′ = π ∧ Π0(β̃) ∧ Π1(β̃) may(π′)
(if b then c0 else c1, (ρ̃, π), w, b) ⇀sr (c0, (ρ̃, π′), w, b)

sr-if-tf
(b, ρ̃) �sr β̃ π′ = π ∧ Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(if b then c0 else c1, (ρ̃, π), w, b) ⇀sr (c0 	
 c1, (ρ̃, π′), w, b)

sr-if-ft
(b, ρ̃) �sr β̃ π′ = π ∧ ¬Π0(β̃) ∧ Π1(β̃) may(π′)

(if b then c0 else c1, (ρ̃, π), w, b) ⇀sr (c1 	
 c0, (ρ̃, π′), w, b)

sr-if-ff
(b, ρ̃) �sr β̃ π′ = π ∧ ¬Π0(β̃) ∧ ¬Π1(β̃) may(π′)
(if b then c0 else c1, (ρ̃, π), w, b) ⇀sr (c0, (ρ̃, π′), w, b)

sr-loop-tt

step(c, c′, w) = (tt, w′)
(b, ρ̃) �sr β̃ π′ = π ∧ Π0(β̃) ∧ Π1(β̃) may(π′)

(while b do c0, (ρ̃, π), w, b) ⇀sr (c0; while b do c0, (ρ̃, π), w′, b)

sr-loop-tf

step(c, c′, w) = (tt, w′)
(b, ρ̃) �sr β̃ π′ = π ∧ Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(while b do c0, (ρ̃, π), w, b) ⇀sr ((c0; while b do c0) 	
 skip, (ρ̃, π′), w′, b)

sr-loop-ft

step(c, c′, w) = (tt, w′)
(b, ρ̃) �sr β̃ π′ = π ∧ ¬Π0(β̃) ∧ Π1(β̃) may(π′)

(while b do c0, (ρ̃, π), w, b) ⇀sr (skip 	
 (c0; while b do c0), (ρ̃, π′), w′, b)

sr-loop-ff

step(c, c′, w) = (tt, w′)
(b, ρ̃) �sr β̃ π′ = π ∧ ¬Π0(β̃) ∧ ¬Π1(β̃) may(π′)

(while b do c0, (ρ̃, π), w, b) ⇀sr (skip, (ρ̃, π′), w′, b)

sr-exit
(skip 	
 skip, (ρ̃, π), w, b) ⇀sr (skip, (ρ̃, π), w, b)

sr-comp-r
(c1, (Π1(ρ̃), π), w, b) ⇀s (c′

1, (ρ′
1, π′), w′, b′)

(skip 	
 c1, (ρ̃, π), w, b) ⇀sr (skip 	
 c′
1, (�Π0(ρ̃) | ρ′

1�, π′), w′, b′)

sr-comp-l
(c0, (Π0(ρ̃), π), w, b) ⇀s (c′

0, (ρ′
0, π′), w′, b′)

(c0 	
 c1, (ρ̃, π), w, b) ⇀sr (c′
0 	
 c1, (�ρ′

0 | Π1(ρ̃)�, π
′), w′, b′)

sr-approx-many

step(while b do c, (c; while b do c), w) = (ff, w′)
ρ̃′′ = modif(ρ̃, c) (b, ρ̃′′) �sr 〈β0, β1〉 π′ � π ∧ ¬β0 ∧ ¬β1

(while b do c, (ρ̃, π), w, b) ⇀sr (skip, (ρ̃′′, π′), w′,ff)

G RedSoundRSE Step Relation

RedSoundRSE is defined by rules of Appendix F plus rule sr-approx-many-
dep.

sr-approx-many-dep

step(while b do c, (c; while b do c), w) = (ff, w′)
d = �while b do c��

D(τs→D(ρ̃))
ρ̃′′ = modifD(ρ̃, c, λD→L(d))

(b, ρ̃′′) �sr 〈β0, β1〉 π′ � π ∧ ¬β0 ∧ ¬β1

(while b do c, (ρ̃, π), w, b) ⇀sr×D (skip, (ρ̃′′, π′), w′,ff)

Sound Symbolic Execution via Abstract Interpretation 293

References

1. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.Y. : A relational logic
for higher-order programs. Proc. ACM Program. Lang. 1(ICFP), 1–29 (2017)

2. Alatawi, E., Søndergaard, H., Miller, T.: Leveraging abstract interpretation for effi-
cient dynamic symbolic execution. In: Rosu, G., Penta, M.D., Nguyen, T.N., (eds.),
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, Urbana, IL, USA, 30 October - 03 November 2017,
pp. 619–624. IEEE Computer Society (2017)

3. Asperti, A., Armentano, C.: A page in number theory. J. Formaliz. Reason. 1(1),
1–23 (2008)

4. Assaf, M., Naumann, D. A., Signoles, J., Totel, É., Tronel, F.: Hypercollecting
semantics and its application to static analysis of information flow. In: Symposium
on Principles of Programming Languages (POPL), pp. 874–887. ACM (2017)

5. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 30th IEEE Symposium on Security and Privacy (S&P 2009),
17–20 May 2009, Oakland, California, USA, pp. 141–153 (2009)

6. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: IEEE Symposium on Security and Privacy
(S&P 2008), 18–21 May 2008, Oakland, California, USA. IEEE Computer Society
(2008)

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the IEEE Computer Security Foundations Workshop (CSF) vol.
17, pp. 100–114 (2004)

8. Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46–67. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49635-0 3

9. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a formal system for testing and
debugging programs by symbolic execution. In: Proceedings of the International
Conference on Reliable Software 1975, Los Angeles, California, USA, 21–23 April
1975, pp. 234–245. ACM (1975)

10. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 1066–1071.
ACM (2011)

11. Cadar, C., Nowack, M.: KLEE symbolic execution engine in 2019. Int. J. Softw.
Tools Technol. Transf. (2021)

12. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

13. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the IEEE
Computer Security Foundations Symposium (CSF), pp. 51–65. IEEE (2008)

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages (POPL), pp. 238–252. ACM (1977)

15. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Symposium on Principles of Programming Languages (POPL). ACM (1979)

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Symposium on Principles of Programming Languages (POPL),
pp. 84–97. ACM (1978)

https://doi.org/10.1007/978-3-662-49635-0_3

294 I. Tiraboschi et al.

17. Daniel, L.A., Bardin, S., Rezk, T.: Binsec/rel: efficient relational symbolic execu-
tion for constant-time at binary-level. In: 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, 18–21 May 2020, pp. 1021–1038 (2020)

18. Daniel, L., Bardin, S., Rezk, T.: Hunting the haunter - efficient relational symbolic
execution for spectre with haunted relse. In: 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, 21–25 February 2021. The
Internet Society (2021)

19. Daniel, L., Bardin, S., Rezk, T.: Reflections on the experimental evaluation
of a binary-level symbolic analyzer for spectre. In: Post-proceedings of the
LASER@NDSS 2021. The Internet Society (2022)

20. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Delmas, D., Miné, A.: Analysis of software patches using numerical abstract inter-
pretation. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 225–246.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 12

23. Farina, G.P., Chong, S., Gaboardi, M.: Relational symbolic execution. In: Komen-
dantskaya, E., editor, Proceedings of the 21st International Symposium on Prin-
ciples and Practice of Programming Languages, PPDP 2019, Porto, Portugal, 7–9
October 2019, pp. 10:1–10:14. ACM (2019)

24. Fournet, C., Planul, J., Rezk, T.: Information-flow types for homomorphic encryp-
tions. In: Chen, Y., Danezis, G., Shmatikov, V., (eds.), Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, 17–21 October 2011, pp. 351–360 (2011)

25. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, 14–16 January 2004, pp. 186–197. ACM (2004)

26. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, Oakland, pp. 11–20. IEEE Computer Society
(1982)

27. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: 19th IEEE Computer Security Foundations Workshop
(CSFW 2006) (2006)

28. Hunt, S., Sands, D.: On flow-sensitive security types. In: Symposium on Principles
of Programming Languages (POPL), pp. 79–90. ACM (2006)

29. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

30. Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability
(Reprint from 1967). MIT Press, Cambridge (1987)

31. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

32. Milushev, D., Beck, W., Clarke, D.: Noninterference via symbolic execution. In:
Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 152–
168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30793-5 10

https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-30793-5_10

Sound Symbolic Execution via Abstract Interpretation 295

33. Ngo, M., Bielova, N., Flanagan, C., Rezk, T., Russo, A., Schmitz, T.: A better
facet of dynamic information flow control. In: Champin, P., Gandon, F., Lalmas,
M., Ipeirotis, P.G., (eds.), Companion of the The Web Conference 2018 on The
Web Conference 2018, WWW 2018, Lyon, France, 23–27 April 2018, pp. 731–739
(2018)

34. Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a doubt: testing for divergences
between software versions. In: Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016, pp. 1181–
1192. ACM (2016)

35. Pasareanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M.R.,
Person, S., Pape., M.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: Ryder, B.G., Zeller, A., (eds.),
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2008, Seattle, WA, USA, 20–24 July 2008, pp. 15–26. ACM
(2008)

36. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

37. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22 June
2005, Aix-en-Provence, France, pp. 255–269. IEEE Computer Society (2005)

38. Fragoso Santos, J., Jensen, T., Rezk, T., Schmitt, A.: Hybrid typing of secure
information flow in a Javascript-like language. In: Ganty, P., Loreti, M. (eds.)
TGC 2015. LNCS, vol. 9533, pp. 63–78. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-28766-9 5

39. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

https://doi.org/10.1007/978-3-319-28766-9_5
https://doi.org/10.1007/978-3-319-28766-9_5
https://doi.org/10.1007/11547662_24

Result Invalidation for Incremental
Modular Analyses

Jens Van der Plas(B) , Quentin Stiévenart , and Coen De Roover

Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
{jens.van.der.plas,quentin.stievenart,coen.de.roover}@vub.be

Abstract. To reduce the running time of static analysis tools upon
program changes, incremental static analyses reuse and update pre-
existing results. Such analyses must efficiently detect and remove out-
dated results. We introduce three novel, complementary result invalida-
tion strategies for incremental modular analyses. The core idea of our
work is to alternate invalidation with computation. We apply our strate-
gies to a recent, state-of-the-art incremental modular analysis that suffers
from imprecision, and evaluate them on soundness, precision, and per-
formance. Our strategies lead to precision improvements compared to
an incremental analysis without invalidation, though the precision of a
full reanalysis is not yet matched. On most benchmarks, our incremental
analysis performs well. However, on some benchmarks our analysis per-
forms poorly as the changes drastically change program behaviour, for
which the changes are difficult for an incremental analysis to handle.

Keywords: Static program analysis · Incremental program analysis ·
Modular program analysis

1 Introduction

Static analysis is an approach to computing properties of programs without
running them. It is the foundation of code smell, bug, and vulnerability detection
tools (e.g., [14,15,21,28,35]) used in modern software engineering processes such
as continuous integration pipelines [31]. An analysis that is fast in the presence
of small and frequent code changes can even be incorporated into a development
environment. To meet these demands, incremental static analyses have been
proposed [2,8,13,24,27]. Given the results of an initial analysis, an incremental
analysis updates the results given the code changes. The goal of an incremental
analysis is to produce results faster than a full reanalysis by reusing and updating
previous results.

Recently, Van der Plas et al. [18] introduced a general approach to render-
ing any modular static analysis incremental. Modular analyses divide a program
into parts which are (re-)analysed separately but whose analyses may be inter-
dependent. The authors posit that modularity facilitates bounding the impact
of changes. While the evaluation shows that incremental updates are often faster
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 296–319, 2023.
https://doi.org/10.1007/978-3-031-24950-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_14&domain=pdf
http://orcid.org/0000-0002-7475-576X
http://orcid.org/0000-0001-9985-9808
http://orcid.org/0000-0002-1710-1268
https://doi.org/10.1007/978-3-031-24950-1_14

Result Invalidation for Incremental Modular Analyses 297

than a full reanalysis, incremental updates may be less precise than a full reanal-
ysis as the presented analysis cannot delete outdated results. In this paper, we
improve upon the approach by Van der Plas et al. [18] as follows:

– We introduce three complementary strategies to regain lost precision. The
idea is to interleave invalidation with recomputation, to maximise reuse of
previously computed results. Our strategies can be applied to modular static
analyses that employ global-store widening and infer dependencies amongst
components.

– We implemented these strategies and evaluate their impact on the precision
and performance of the incremental analysis, when used alone or in combi-
nation.

2 Background

We now introduce modular static analysis, following a recent formulation by
Nicolay et al. [16]. We obtain an incremental version of this formulation by
applying the incrementalisation approach by Van der Plas et al. [18].

2.1 Modular Static Analysis

A modular static analysis [5] divides a program into static parts, e.g., function
definitions, referred to as modules. A module may have multiple runtime instan-
tiations, e.g., function calls, which the analysis might discern as well. We refer to
their reification in the analysis as components. A component consists of a module
and a context used to discern the different instantiations. Depending on the defi-
nition of contexts, more instantiations may be discerned, increasing the analysis
precision (and complexity). A modular analysis analyses its components in iso-
lation. The analysis of one component may however trigger the (re-)analysis of
another. The remainder of this paper focuses on function-modular analyses. All
examples use a lattice representing each value as a set of its possible types, and
empty contexts, i.e., every module will correspond to at most one component.

Effect-Driven Modular Static Analysis. Recently, ModF, an effect-driven
formulation of function-modular analysis has been introduced [16]. ModF is a
control-flow analysis also computing value information. It reifies the computa-
tional dependencies between components and uses these to drive a fixed-point
computation, alternating between an inter-component analysis, scheduling com-
ponents for analysis, and an intra-component analysis, analysing individual com-
ponents. The inter-component analysis, referred to as Inter and shown in Algo-
rithm 1, uses a worklist of components to be analysed. Initially, this worklist con-
tains a Main component1, representing the program’s entry point (line 1). Every
analysis step removes a component from the worklist (lines 6–7) and analyses it
(line 8); the analysis terminates when the worklist is empty.
1 In formalisms, lowercase Greek letters denote components (e.g., α and β). Otherwise,

we denote them by their corresponding name in small caps (e.g., Main and fib).

298 J. Van der Plas et al.

Algorithm 1: The inter-component analysis (Inter) of ModF.
1 WL := {Main}; // The work list, initially containing the Main component.
2 V := ∅; // The visited set.
3 D := λr.∅; // Set of dependencies (read effects).
4 σ := λa.⊥; // Global value store, initially all addresses map to bottom.
5 while WL �= ∅ do
6 α ∈ WL;
7 WL := WL \ {α};
8 (C,′ R′, W ′, σ′) = intra(α, σ); // Intra-component analysis.
9 σ := σ′;

10 V := V ∪ {α};
11 WL := WL ∪ (C′ \ V);
12 foreach r ∈ R′ do D := D[r �→ D(r) ∪ {α}];
13 foreach w ∈ W ′ do WL := WL ∪ D(w);
14 end
15 return (σ, V, D);

The store, mapping abstract addresses to abstract values, abstractly rep-
resents the heap. ModF uses global-store widening [30], i.e., there is a single
global value store σ within the analysis [16]. For every component, σ contains an
abstract return value. Upon a function call, ModF does not step into the func-
tion, but retrieves the stored return value (or ⊥ if no value had been stored).

A component’s analysis returns a set of effects reifying its computational
dependencies, together with an updated store (line 8). Dependencies are function
calls (generating call effects) and reads/writes in the store (generating resp.
read/write effects – the latter is only generated when σ actually changes).2 These
effects are used to determine the component(s) to be added to the worklist,
causing components depending on updated information to be reanalysed.

A ModF analysis results in (line 15): (1) the store σ, (2) the set of components
created, and (3) the set of dependencies (read effects). We consider all parts of
the result equally relevant, though in practice one might only be interested in σ.

Example. We illustrate how ModF computes the control-flow and value infor-
mation of the Scheme3 program in Listing 1. ModF analyses it as follows (omit-
ting some effects for brevity):

1. The analysis starts with Main. Binding x generates a write effect for this
variable. Then, a call effect to fun is generated, and the corresponding com-
ponent, fun, is added to the worklist. As no return value had been computed
for fun, ⊥ is read from the store; a read effect on this return value is regis-
tered.

2. fun is analysed, producing a call effect for inc and read effects for x and for
the return value of inc. The new component inc is added to the worklist,

2 For brevity, in pseudocode, the set C represents the set of all components corre-
sponding to the emitted call effects, and the sets R and W represent the addresses
corresponding to the emitted read and write effects respectively.

3 In this work, we use Scheme, a dynamically-typed dialect of Lisp with support for
higher-order functions. Its dynamic nature makes it difficult to analyse as control
and data flow are intertwined, precluding the computation of a call graph ahead of
time. Scheme is representative for a whole class of languages such as JavaScript.

Result Invalidation for Incremental Modular Analyses 299

1 (define x 0) ; Definition of a variable x.
2 (define (fun) (inc) x) ; Function that reads x.
3 (define (inc) (set! x (+ x 1)) #t) ; Function that reads and writes x.
4 (fun)

Listing 1. Example Scheme program of two functions.

as is Main because fun’s return value is updated to Int, generating a write
effect.

3. Either Main or inc can now be analysed. Assuming inc is analysed (the
order does not affect the result [16]), inc reads x, generating a read effect,
and also writes to this variable. As the value in the store is not updated, no
write effect is generated. As the return value of inc is updated to Bool, a
write effect is generated and fun is added to the worklist again.

4. The analysis continues until the worklist is empty.

The principle of effect-driven flow analysis is applicable to different mod-
ule granularities, e.g., thread-modular analyses [22], and can be used with
any abstract domain without infinite ascending chains and with any context-
sensitivity.

The Component Graph. The analysis of a component generates call effects, each
corresponding to a component discovered by the analysis. After the analysis of
a component α, Inter collects the set of components called by α, denoted Cα.
This gives rise to a cyclic directed graph, the component graph, representing how
components are created: for every component β ∈ Cα there is an edge from α to
β. Figure 1 depicts the component graph from previous example.

Fig. 1. The component graph corresponding to the analysis of the program in Listing 1:
inc is called from fun, which is called from the program’s entry point.

2.2 Incremental Modular Static Analysis

Van der Plas et al. [18] present an approach to rendering an effect-driven modular
static analysis incremental. It requires the analysed program to be annotated
with change expressions, which are akin to the patch annotations of Palikareva et
al. [17]. A change expression specifies how a given expression is updated. Its first
argument represents the original expression; its second argument represents the
expression that replaces the original. Change expressions can be added manually,
or be inserted by a change distiller (e.g., [6,7]) or change logger (e.g., [10,12,32]).
In the following function, the predicate is updated from (= n 0) to (< n 2):
1 (define (factorial n)
2 (if (<change> (= n 0) (< n 2))
3 n
4 (* n (factorial (- n 1)))))

300 J. Van der Plas et al.

For a given set of change expressions, Van der Plas et al. [18] compute the
affected analysis results and update them accordingly. Their analysis tracks
which change expressions within the source code of a module were encountered
during the analysis of the corresponding components. Every component whose
analysis encountered a change expression is considered to be directly affected. If
an expression in a module changes, only the components that encountered this
expression during their analysis are affected. All directly affected components are
added to the worklist and the fixed-point computation is restarted. The modular
analysis design ensures that indirectly affected components are reanalysed too.

Sources of Imprecision. Table 1 shows the three parts of the result of a ModF
analysis. The approach by Van der Plas et al. [18] only updates prior results
monotonically: no outdated information can be removed; the result of the analy-
sis over-approximates the behaviour of both the updated and original program.
All parts of the result may suffer from imprecision, as shown in Table 1. This
means that components and dependencies no longer representing the program’s
behaviour cannot be removed. In σ, values cannot become more precise. Impre-
cision in one part of the result may cause imprecision in other parts. E.g., when a
value in σ is imprecise, the analysis may explore more paths and thus infer more
components and dependencies, which may in turn degrade the store’s precision.

3 Strategies for Precision Recovery

We now introduce three complementary strategies that improve the precision of
an incremental analysis result by invalidating the information that corresponds
to outdated program behaviour. The aim is to minimise the precision loss caused
by monotonic updates to a prior analysis result, without increasing analysis time.

3.1 Invalidation Principle

The presented strategies treat the intra-component analysis as a black box and
do not put any restrictions on the lattice nor on the context-sensitivity used by
the analysis. The intra-component analysis must only compute a set of effects.

The aim is to invalidate as few valid results as possible, so that results not
impacted by a change need not be needlessly recomputed. Related work [2,13]
often consist of an invalidation phase, which over-approximates and clears out-
dated results, and a recomputation phase, which updates the analysis results.
To avoid over-approximating outdated results, we interleave invalidation with
recomputation, maximising reuse. After an intra-component analysis, Inter
computes which parts of the results have become obsolete and removes them;
information is only removed when it is no longer computed by an intra-
component analysis. Mapping this onto Algorithm 1, invalidation happens after
line 8. Our approach leads to a recompute-and-invalidate cycle: the analysis of
a component may lead to a result invalidation, which in turn can lead to more
analyses of components.

Result Invalidation for Incremental Modular Analyses 301

Table 1. Overview of the parts of the analysis result, of the sources of imprecision for
each part, and of the corresponding strategies to invalidate outdated results.

Components
Explanation Set of components created during the analysis, each abstractly

representing an aspect of the runtime behaviour of the program,
e.g., a function call

Imprecision Components no longer representing the program’s behaviour
cannot be removed

Solution Component Invalidation (CI): remove components that are
no longer created

Dependencies
Explanation Set of inter-component dependencies (read effects) computed

during the analysis, each marking a link between a component
and an address in the global value store σ. Using these
dependencies, the analysis of one component takes into account
information computed by the analysis of other components

Imprecision Dependencies that are no longer valid cannot be removed
Solutions Dependency Invalidation (DI): remove dependencies that are

no longer computed by the reanalysis of an impacted component
CI: removing a component clears its dependencies

Value Store σ

Explanation Over-approximates the heap. Mapping of abstract addresses to
abstract values

Imprecision Values in σ are updated monotonically, since they are joined
upon updates

Solutions Write Invalidation (WI): improve the precision of values in
the store σ by removing values that are no longer written
CI: when WI is enabled, the removal of a component may allow
σ to be refined.

Table 1 outlines the developed strategies, one for each part of the analysis
result: component invalidation, dependency invalidation, and write invalidation.
Though, invalidations in one part of the result may impact the other parts.

3.2 Component Invalidation (CI)

Component invalidation (CI) removes components from the analysis result that
are no longer created by any other component, plus the dependencies related to
these components. Consider e.g., the program in Listing 2. The initial analysis
creates four components, shown by the component graph on top of Fig. 2. The
change expression replaces the call to fac-loop by a call to fac; fac-loop (and
transitively loop) are no longer called. The reanalysis of Main now finds that
fac-loop is no longer called: fac-loop and loop can both be removed.

302 J. Van der Plas et al.

1 (define (fac n)
2 (if (< n 2)
3 n
4 (* n (fac (- n 1)))))
5 (define (fac-loop n) ; Executes the ‘fac ‘ function in a loop.
6 (define (loop i)
7 (if (< i n)
8 (begin
9 (display (fac i))

10 (display " ")
11 (loop (+ i 1)))))
12 (loop 0))
13 (<change> (fac-loop 10) (fac 10)) ; Updated to call ‘fac ‘ directly.

Listing 2. A change causing components to be removed.

Fig. 2. ModF components for the program in Listing 2. On top, the components after
the initial analysis of the program; at the bottom, the components after the incremental
update. Arrows depict generated call effects.

CI uses the component graph to detect outdated components: all components
no longer transitively reachable from Main, i.e., the entry point of the program,
can be removed. Algorithm2 extends Inter with CI. For every component α,
Inter caches Cα, the set of components called by α’s last analysis, using a
cache C. The set of dependencies Rα, cached in R, allows the efficient removal
of the dependencies of deleted components (R holds the same information as D
but in the reverse order, avoiding a full traversal of D). After the analysis of a
component α, the set of components called by the analysis of this component,
C ′

α, is returned. Inter then retrieves Cα, the set of components called during the
previous analysis of α, and updates the cache C (lines 12–13). It then computes
the set containing all components that are no longer called by α. If this set is non-
empty, one or more edges were removed from the component graph and some
components may have become outdated (line 14). In this case, the transitive
closure of C is computed, starting from Main; all components that are not
part of it are removed (lines 15–16). All dependencies of these components are
removed too, avoiding the existence of dependencies to non-existent components.
The transitive closure is needed because a component can only be removed if it
is no longer created by any other component. Finally, R is updated (line 18).
Note that lines 15 and 16 will never be executed during the initial analysis of
the program. To avoid the needless but possibly expensive computation of set

Result Invalidation for Incremental Modular Analyses 303

differences in the condition, we first check whether an incremental update is
taking place (line 14). For similar reasons, we do the same for DI and WI.

Algorithm 2: Inter extended with component invalidation (in blue) and
dependency invalidation (in purple).

// Assumes the existence of a cache for the sets C, C, initialised as C := λα.∅ before
the initial analysis, and the existence of a cache for the sets R, R, initialised
as R := λα.∅ before the initial analysis.

1 Function deleteComponent(β) is
2 foreach r ∈ R(β) do D := D[r �→ D(r) \ {β}]; // Delete dependencies.

// Remove β from all data structures.
3 V := V \ {β}; WL := WL \ {β}; R := R \ {β}; C := C \ {β};
4 end
5 while WL �= ∅ do
6 . . . // Ditto Alg. 1.
7 foreach w ∈ W ′ do WL := WL ∪ D(w);
8 if incremental update then
9 R := R(α);

10 foreach r ∈ (R \ R′) do D := D[r �→ D(r) \ {α}];
11 end
12 C := C(α);
13 C := C[α �→ C′]; // Update C immediately to use the updated C′.
14 if incremental update and C \ C′ �= ∅ then
15 reachable := C(Main) ∪ {β|γ ∈ reachable ∧ β ∈ C(γ)};
16 foreach β ∈ (V \ reachable) do deleteComponent(β);
17 end
18 R := R[α �→ R′]; // Both for component invalidation and dependency invalidation.
19 end
20 return (σ, V, D);

3.3 Dependency Invalidation (DI)

The second strategy, dependency invalidation (DI), removes outdated dependen-
cies. This ensures that components are not spuriously reanalysed. Consider, e.g.,
the program in Listing 3. Initially, read has a dependency on ax. During the
incremental update, the analysis of read will find a new dependency on ay,
whilst the dependency on ax can be removed.

Algorithm2 also extends Inter with DI. The set of dependencies computed
during the last analysis of every component α, Rα, is cached using the cache R

(also used by CI). After the (re-)analysis of a component α, Inter collects the
computed dependencies, R′

α. It then fetches the dependencies computed during
the previous analysis of α from R and computes the set of outdated dependencies
which are then removed (lines 9–10). Finally, as for CI, R is updated (line 18).

304 J. Van der Plas et al.

1 (define x 1)
2 (define y 2)
3 (define (write) (<change> (set! x 7) (set! y 7)))
4 (define (read) (<change> x y))
5 (read)
6 (write)

Listing 3. Example program with changing dependencies. Initially read has a depen-
dency on the address of variable x, ax. In the new version of the program, read solely
has a dependency on ay, the address of variable y.

1 (define (fromBool b)
2 (if b
3 (<change> ’aSymbol "aString")
4 (<change> ’anotherSymbol "anotherString")))
5 (define x (fromBool (some-complicated-predicate)))
6 (display x)

Listing 4. Example program. Initially, x only holds a symbol, whereas after the update
it can only contain a string.

3.4 Write Invalidation (WI)

Write invalidation (WI) aims to increase the precision of abstract values in the
store. It is motivated by Listing 4. Variable x is changed from storing symbols to
strings. A strong update would overwrite the abstract value Symbol by String
in σ. A monotonic update instead joins the values together, resulting into the
less precise value {Symbol, String}. Clearly, a strong update is desired.

The values in σ are part of an abstract domain, forming a complete lattice.
The higher a value resides in the lattice, the less precise information it represents.
WI aims to lower all values as much as possible by monitoring the values com-
puted for every address in σ, and by lowering values that no longer correspond
to the program’s behaviour. We first describe the required monitoring.

Provenance Tracking. Values in σ result from one or more writes, each mono-
tonically updating the value. In this process, the analysis loses information w.r.t.
the constituents and origins of the values. E.g., when α writes 1 to a and β writes
-1 to a, σ(a) contains {Int}, without information about the values written by α
and β, nor about which components wrote these values. We introduce provenance
tracking to regain this information. For every component and address in dom(σ),
the analysis maintains the contribution of the component to the address, i.e., the
join of all values written to the address during the analysis of the component.
This requires intercepting to write operations to the store.

Consider the case in Fig. 3: components α and β read and write two variables,
x and y: both write y, α reads x, and β reads y. When α writes Int to y and β
writes Boolean to y, σ holds join of these values, {Int, Boolean}, for y.

Result Invalidation for Incremental Modular Analyses 305

Fig. 3. Interaction of intra-component analyses with variables and their values in σ
illustrated. On the right, the provenance and contributions of ay are shown.

During the analysis of a component α, we track, for each written address
a, the join of all values written to that address. We call this joined value the
contribution of α to a, denoted Pa,α. For every address, the contributions of all
components are cached. We call this cache the provenance of the address, Pa.
We define the provenance value of an address a as the join of all values in its
provenance. Figure 3 depicts this information on the right in grey.

Non-monotonic Store Updates. The intra-component analyses perform all
updates monotonically. Inter thus has to restore precision after it has been
lost. Provenance tracking enables WI to perform non-monotonic updates to σ,
improving its precision. This is possible when a previously-written address is
no longer written by a component, and when the contribution of a component
to an address changes in a non-monotonic way.4 The code for WI is shown in
Algorithm3.

Outdated Writes. The analysis of a component tracks all addresses written to.
For every component α, Inter caches this set, Wα, using a cache W. After the
analysis of a component α, Inter collects the set of written addresses, W ′

α, and
computes the set containing all addresses previously written by the component
that are no longer written (line 26). Finally, the cache W is updated (line 28).

When the contribution Pa,α of α to an address a is removed, its provenance
value, no longer influenced by Pa,α, is used as the new value for the address (lines
2–3). If the provenance value equals the value at σ(a), deletion is completed.
Else, the provenance value replaces the value σ. All dependent components are
scheduled for reanalysis (line 5), allowing the new value to be taken into account
during their reanalysis, possibly leading to further refinements of the result.
When an address is no longer written by any component, all information in the
analysis’ data structures related to this address can be removed (line 6).

More Precise Writes. After every intra-component analysis, Inter compares
the contribution of the component for every written address, to the correspond-
ing contribution computed by the component’s previous analysis. Based on this
comparison, the value at the given address in σ may be updated, in which case

4 Conceptually, the first case corresponds to the second case for which the contribution
of the component to an address has become ⊥. We treat it separately since no write
to the address is performed any more.

306 J. Van der Plas et al.

all dependent components are added to the worklist (line 29). The comparison
may yield one of three possible results:

Pa,α = P ′
a,α The analysis did not compute new information, no information can

be discarded (line 11).
Pa,α � P ′

a,α The update is monotonic, no information can hence be discarded.
The updated contribution is stored (line 12).

Pa,α �� P ′
a,α The contribution changes non-monotonically. The value for a can

be replaced by the new provenance value (computed on line 14), now taking
into account the updated contribution P ′

a,α (stored in P on line 12).

The second and third case may not lead to an update of σ as the value computed
on line 14 can be the same as the value already in σ. Only when the new value
is different, dependent components need to be scheduled for reanalysis.

Reinforcing Component Invalidation. Section 3.2 introduced CI. However,
CI does not allow for the removal of information from σ: values written by
removed components cannot be deleted, a limitation that can be remedied by
combining CI with WI. When a component α is removed, all addresses in the
set W(α) are treated as outdated writes, described in Sect. 3.4. This allows σ to
become more precise, which may in turn invoke the analysis of other components.
The updated code for component deletion is shown in Algorithm 4.

4 Evaluation

We evaluated the presented strategies to answer the following research questions:

RQ1 How well do the three invalidation strategies improve the precision of the
analysis, both when applied individually and when applied in combination?

RQ2 What is the impact of the invalidation strategies on the time needed to
perform an incremental update?

RQ3 How much does the incremental analysis reduce the analysis time compared
to a full reanalysis of the program?

We tested soundness of the initial analysis and the incremental update exper-
imentally (1) by ensuring that the analysis over-approximates multiple runs of
a concrete interpreter [1,29], and (2) by comparing the incremental analysis
results to the results of a non-incremental analysis. We performed these tests for
a thread-modular analysis for a concurrent Scheme, for a function-modular anal-
ysis, for all possible combinations of the invalidation strategies, and for a constant
propagation and a type abstract domain; no unsound results were encountered.

Result Invalidation for Incremental Modular Analyses 307

Algorithm 3: Inter extended with write invalidation (in teal).
// Assumes the existence of a cache for the sets W, W, initialised as W := λα.∅

before the initial analysis, and the existence of a cache P, the provenance,
initialised to P := λa.(λα.⊥) before the initial analysis.

1 Function deleteContribution(α, a) is
2 P := P[a �→ (P(a) \ {α})];
3 v :=

⊔
β∈dom(P(a)) P(a)(β);

4 if v �= σ(a) then
5 WL := WL ∪ D(a);

// If an address is no longer written by any component, it is deleted.
Otherwise, the store is updated.

6 if P(a) = ∅ then σ := σ \ {a}; P := P \ {a}; D := D \ {a}; else σ := σ[a �→ v];
7 end
8 end

// updateAddressIncremental compares the new contribution v′ of α to a to the previous
contribution v, and improves the store if possible.

9 Function updateAddressIncremental(α, a, v′) is
10 v := P(a)(α); // Previous contribution of α to a, Pa,α.
11 if v = v′ then return false; // Identical contribution: no precision gain.
12 P := P[a �→ (P(a)[α �→ v′])];
13 old := σ(a);
14 new := if v � v′ then old � v′else

⊔
β∈dom(P(a)) P(a)(β);

15 if old = new then return false;
16 σ := σ[a �→ new]; // Update the store.
17 return true;
18 end
19 while WL �= ∅ do
20 . . . // Ditto Alg. 1.
21 σ := σ′; // This line can now be omitted.
22 . . . // Ditto Alg. 1.
23 foreach w ∈ W ′ do WL := WL ∪ D(w); // This line can now be omitted.
24 if incremental update then
25 W := W(α);
26 foreach w ∈ (W \ W ′) do deleteContribution(α, w);
27 end
28 W := W[α �→ W ′];

// P computed during the intra-component analysis. P maps every written address
to the join of all values written to it during the component’s analysis.

29 foreach (a, v) ∈ P do if updateAddressIncremental(α, a, v) then WL := WL ∪ D(α);
30 end
31 return (σ, V, D);

4.1 Experimental Design

Our evaluation uses a context-insensitive ModF analysis for Scheme, with a
LIFO-ordered worklist and a product lattice5. We implemented our contributions
in the open-source MAF framework6 [29]. Our evaluation is run on a 2015 Dell

5 The lattice represents primitive values by their possible types, except booleans which
are represented as their respective value when possible. Pointers are represented as
sets of addresses (in dom(σ)); closures and primitives are represented using sets as
well. A join of two values is the pointwise join of the corresponding elements of the
product, where the join of two sets is their union.

6 A repository containing our implementation can be found online: https://github.
com/softwarelanguageslab/maf (branch incremental-experiments).

https://github.com/softwarelanguageslab/maf
https://github.com/softwarelanguageslab/maf

308 J. Van der Plas et al.

Algorithm 4: deleteComponent (in blue) reinforced with WI (in teal).
1 Function deleteComponent(β) is
2 foreach r ∈ R(β) do D := D[r �→ D(r) \ {β}]; // Delete dependencies.

// Remove β from all data structures.
3 V := V \ {β}; WL := WL \ {β}; R := R \ {β}; C := C \ {β};
4 W := W(β);
5 forall w ∈ W do deleteContribution(β, w);
6 W := W \ {β};
7 end

PowerEdge R7307 running OpenJDK 1.8.0_312 and Scala 3.1.0. The JVM was
given a maximum of 32GB RAM, and all analyses used a timeout of 30min.

To evaluate the precision of the incremental update (RQ1), we inspect the
store σ at the end of the analysis. For each address, we measure the precision of
the incremental update by comparing its value to its counterpart in the store of a
full reanalysis. The proportion of addresses in the final store that contain values
equally or less precise than the values obtained by a full reanalysis shows us how
much precision can still be improved. We also compare to the store resulting
from an incremental analysis without result invalidation. Here, the proportion
of addresses in the final store that contain values equally or more precise than
the values obtained by an incremental update without invalidation shows us how
many addresses have an improved precision thanks to our strategies. We perform
these comparisons for all possible combinations of the invalidation strategies.

To evaluate the performance of our strategies (RQ2 & RQ3), we measure the
time needed to (1) analyse the initial program, (2) fully analyse the updated
program, and (3) perform the incremental update given a set of enabled strate-
gies. For (1) and (2), no strategy is enabled; the analysis will not maintain the
caches required by any strategy. For (3), the initial analysis initialises all caches
used by the strategies. Each measurement is repeated 15 times preceded by a
warm-up of 3 repetitions or of maximally 30min. Garbage collection is forced
prior to each analysis.

Comparing the precision and performance of an incremental update using
all strategies to (1) an (imprecise but fast) update without invalidation, (2) an
update using only one or two strategies, and (3) a (precise but slow) full reanal-
ysis, allows us to investigate a trade-off between precision and performance.

Benchmarking Suites. Our evaluation uses two benchmarking suites.8 Each
benchmark program is a Scheme program containing real-world code, annotated
with change expressions. As such, a benchmark corresponds to program changes.

Curated Benchmarks. We curated a suite of 32 programs to which we man-
ually added changes resembling possible developer edits, shown in Table 2. The

7 The computer has 2 Intel Xeon 2637 processors and 256 GB of RAM.
8 In our online repository, the curated benchmarks can be found in the folders
/test/changes/scheme and /test/changes/scheme/reinforcingcycles. The gen-
erated benchmarks can be found in the folder /test/changes/scheme/generated.

Result Invalidation for Incremental Modular Analyses 309

programs originate from different sources, e.g., a university course with pro-
gramming exercises in Scheme, together with the solutions for solving particular
exercises, and benchmarking suites used by other researchers. Example edits
include changing representations of data structures (e.g., replacing lists by vec-
tors in nbody-processed), or updating a meta-interpreter (e.g., adding the abil-
ity to make variables immutable in freeze or making procedures dynamically
scoped in mceval-dynamic). In programs like slip-0-to-1, slip-1-to-2, and
slip-2-to-3, edits convert the program to a later version. A new abstraction is
introduced and used throughout peval. Some edits were constructed to be tricky
for an incremental update to process accurately, as they trigger cyclic reinforce-
ment of lattice values [23,24] (see Sect. 4.2). Also, certain programs contain the
same changes but use a different granularity of change expressions; this is e.g.,
the case for multiple-dwelling (coarse) and multiple-dwelling (fine),
and for satFine, satMiddle, and satCoarse. The runtimes of the initial anal-
yses of programs the curated suite vary from 0 s to 117 s.

Table 2. The curated suite, retrieved from various sources. For every benchmark, we
list the lines of code as counted with cloc and the number of change expressions.

Benchmark LOC #Chg Benchmark LOC #Chg

baseline 6 1 primtest 43 11

browse 164 1 cycleCreation 3 1

collatz 18 1 higher-order-paths1 4 2

fact 5 1 higher-order-paths2 4 1

fib-loop 15 1 implicit-paths 3 1

fib 5 2 ring-rotate 32 2

freeze 327 11 sat 16 4

gcipd 9 2 satCoarse 17 1

leval 379 11 satFine 13 3

matrix 617 3 satMiddle 16 3

mceval-dynamic 246 4 satRem 20 2

multiple-dwelling (coarse) 434 1 slip-0-to-1 123 6

multiple-dwelling (fine) 404 3 slip-1-to-2 117 3

nbody-processed 1252 10 slip-2-to-3 397 9

nboyer 636 2 tab-inc 317 3

peval 507 38 tab 307 3

Generated Benchmarks. We automatically generated 5 mutations for each of
190 programs, originating from various sources, obtaining 950 programs. We use
a set of edit patterns of one or more change expressions that are inserted ran-
domly, with a certain probability and at an arbitrary depth in the program. We
consider the following patterns: expression deletion (7.5%), inserting a random
sub-expression (5%), swapping expressions (10%), wrapping an expression with

310 J. Van der Plas et al.

a call to the identity function (7.5%), negating the predicate of an if (7.5%),
and swapping the branches of an if (7.5%). A valid mutation has at least one
edit, is unique, and does not lead to an error after running it with a Scheme
interpreter for one minute. The runtimes of the initial analyses of programs the
generated suite vary from 0 s to 148 s, most programs complete in under 10 s.

4.2 Precision Evaluation (RQ1)

We evaluate the precision improvement caused by our invalidation strategies as
follows. On every benchmark program, and for all possible configurations, we
count the percentage of addresses in σ that is less precise than a full reanalysis.
Figure 4 depicts the results of our precision evaluation. These allow us to (1)
evaluate the precision improvement caused by the application of the presented
strategies, and (2) to see whether additional opportunities for precision improve-
ment are possible. As a precision improvement of σ can only be expected when
WI is enabled, we only show results for an incremental update without result
invalidation, with WI, and with all strategies enabled (where CI reinforces WI).

Precision Improvements over Naive Incremental Analysis. For the
curated suite, in some cases such as higher-order-paths1, we observe a big
precision improvement. On other programs, the improvement remains minor.
fib-loop shows that reinforcing CI can lead to additional precision improve-
ments. On benchmarks such as browse and nbody-processed, the benefit is
smaller, though browse now reaches full precision. Unexpectedly, and only on
slip-0-to-1, reinforcement decreases precision (this is not visible on the figure).
The reason for this seems to be that, although sound, the obtained fixed-point
depends on the analysis order of the components. On the generated suite, the
number of imprecise values in the store is reduced by 15%–20% on average (geo-
metric mean over all generated benchmarks): there is an improvement of about
10% with WI and an additional improvement of about 10% using all strategies.

Table 3 shows the quartiles of the distribution of the store’s precision among
all benchmarks in the generated suite for the same configurations. Without inval-
idation, more than 50% of all benchmark programs do not achieve full precision.
However, using all strategies, the analysis reaches full precision on most bench-
marks. The table shows the added benefit of reinforcing CI.

Remaining Imprecision in the Analysis Result. Figure 4 also shows
remaining possibilities for precision improvement. On 13 curated benchmarks
for which the incremental update without invalidation did not achieve full preci-
sion, the update with all strategies now does (indicated by a bar reaching 100%).
However, on other benchmarks, more improvements remain possible.

The precision of σ influences the control flow explored by the analysis, and
so the number of components and dependencies: precision gains due to WI can
lead to the invalidation of components and dependencies when all strategies are

Result Invalidation for Incremental Modular Analyses 311

Fig. 4. Precision of values in σ after an incremental update compared to a full reanal-
ysis. Bars represent the percentage of addresses in σ of an incremental update whose
values match a full reanalysis. In grey, precision of an incremental update without
invalidation is shown. In dark green, the additional percentage of matching addresses
due to WI is shown. In light green, the further additional percentage of matching
addresses using all strategies is shown. The rightmost bar shows the geometric mean
of all benchmarks in the generated suite. (Color figure online)

enabled. Of course, CI and DI can also be beneficial in without WI, though only
WI can propagate precision gains to other components.

The imprecision in σ is worsened by our change representation: change
expressions always require an old and new expression. For example, to intro-
duce a new variable in a program, a placeholder value for the old program needs
to be used, e.g., #f (false): (define x (<change> #f 10)). As this value will
reside in σ and cannot be removed by the incremental update when WI is not
enabled, some values in σ may be artificially imprecise. However, imprecision still
remains for some benchmarks when WI is enabled. One reason we found is cyclic
reinforcement of lattice values [23,24], which arises when, due to the abstrac-
tions in the analysis, the computation of a value at an address is influenced by
the value at that address itself, thereby influencing its own provenance.9 WI
cannot restore the precision of values in such a cycle. We also believe that this
phenomenon causes the result to depend on the exploration order, e.g., when

9 Some programs in our curated suite, such as cycleCreation and implicit-paths,
are explicitly created to contain this behaviour.

312 J. Van der Plas et al.

Table 3. Precision of values in σ after an incremental update compared a full reanalysis.
Percentages indicate the number of addresses in σ of an incremental update whose
values match a full reanalysis. The table shows the quartiles of the distribution of these
percentages among all programs in the generated suite, for an incremental analysis
without invalidation, with WI, and with all strategies.

Configuration Q1 Q2 Q3

No invalidation 73% 98% 100%
WI 97% 100% 100%
CI-DI-WI 100% 100% 100%

a value is refined before being introduced into a cycle, the cycle will be more
precise than when refining would have taken place afterwards.

Answer RQ1. Only WI can improve the precision of σ. WI significantly
improves the precision of values for a limited number of curated bench-
marks. Maximal precision is reached for 13 extra benchmarks when using
all strategies, i.e., using reinforced CI. For other curated benchmarks, a
large percentage of addresses remains less precise. We also observe a big
improvement on the generated suite, though several addresses still remain
imprecise. Once again, the combination of CI and WI leads to a substantial
additional precision improvement.

4.3 Performance w.r.t. No Invalidation (RQ2)

Figure 5 shows the results of the performance evaluation for RQ2. Times are
shown relative to an incremental update without invalidation. CI and DI do not
cause a significant slowdown of the incremental analysis. A slowdown appears
when using WI, but, overall, the incremental update remains faster than a full
reanalysis (see Sect. 4.4). This slowdown can be explained as follows. As WI
refines σ, updates may trigger the reanalysis components, leading to further
reanalyses and impacting performance. On the curated benchmarks, this increase
in running time is more moderate for the combination of CI and WI.

CI and WI combined reduce, in some cases, the analysis time as outdated
components are not analysed anymore. Also, WI may create more opportuni-
ties for CI: when values become more refined, this may lead to more outdated
components, which may in turn lead to an improvement of values in σ.

Answer RQ2. CI and DI have no substantial negative impact on the running
time of an incremental update. Only WI causes a slowdown: as WI regains
precision, changes to σ may cause components to be scheduled for reanalysis.

Result Invalidation for Incremental Modular Analyses 313

Fig. 5. Analysis time of the incremental update relative to an incremental update
without invalidation. Benchmarks for which the incremental update completed in 0 ms
are omitted in the graphs, because a relative time cannot be computed.

4.4 Performance w.r.t. Full Reanalysis (RQ3)

Figure 6 shows the results of our performance evaluation for RQ3. Times are
shown relative to the time needed by a full reanalysis.

For the curated suite, overall, the incremental update is faster than a full
reanalysis. The medians are consistently under 0.2, meaning that on more than
half of the benchmark programs, the incremental update is more than 5 times
faster. When both CI and WI are used, we see one outlier which corresponds
to the primtest benchmark for which the running times are very low, meaning
that there is no opportunity for the incremental analysis to gain time.

The results of the generated suite are grouped based on the time taken by
the initial analysis and the full reanalysis. The slowdown caused by WI is most
outspoken for short-running generated benchmark programs, where the overhead
of the strategies may be relatively high. When both the initial analysis and full
reanalysis complete in under a second, and when both analyses run a second
or longer, overall, the incremental update remains faster than a full reanalysis.
Although WI may cause minor slowdowns, the incremental update remains more
than 10× faster compared to a full reanalysis. On programs that have an initial
analysis taking a second or more but a shorter full reanalysis, the incremental
update is slower: for almost all configurations, the incremental analysis takes at
least as long as a full reanalysis for most benchmarks, with median slowdowns
of up to 100 and outliers showing slowdowns larger than 1000. It is difficult to
pinpoint the exact root cause for each performance difference. We list several
possible reasons that may explain this behaviour:

– The change representation may cause less result reuse. In our implementation,
change expressions cannot be placed at all program points. Some changes
must be represented with coarse-grained change expressions. E.g., to rename
a function parameter, the change expression must wrap around the entire

314 J. Van der Plas et al.

Fig. 6. Analysis time of the incremental update relative to a full reanalysis. Benchmarks
for which the full reanalysis completed in 0 ms are counted but omitted in the graphs
because a relative time cannot be computed.

function definition, thus components corresponding to the function cannot
be reused.

– The generated programs may contain too many changes, leading to many
impacted components: 25 programs have over 30 changes and 79 programs
have over 20 changes. On almost half of the programs, more than 20% of
the components is directly affected. As many components are affected, the
incremental analysis may not benefit from its modularity to bound the impact
of the changes.

– Changes may significantly alter program behaviour. 33 benchmarks had a
long-running initial analysis and short-running full reanalysis. In these cases,
the incremental analysis performs very poorly. It is possible that the randomly
inserted changes prune away a lot of program functionality, leading to a very
fast reanalysis, whereas an incremental update needs to propagate informa-
tion deletion. Although we haven’t verified the behaviour of all benchmarks
individually, the reduced running time of the full analysis indicates that in

Result Invalidation for Incremental Modular Analyses 315

these cases, an incremental update is inadequate due to the nature of the
program changes.

– No dedicated worklist algorithm is used. Components may be scheduled for
analysis due to newly inferred information or due to invalidation, but neither
is prioritised. By intertwining recomputation by invalidation, information may
be added or removed in an unspecified order; information may be removed
that is later readded, or vice versa. We assume that the analysis of components
in an unordered way may negatively impact the analysis performance.

To improve performance, future work should consider imposing an order on
the worklist. It may also be useful to investigate heuristics to determine which
changes would better be processed by a full reanalysis, e.g., when a program
update leads to a big removal of program functionality.

Answer RQ3. On the curated suite, on the short-running generated bench-
marks, and on the generated benchmarks with a long-running initial analysis
and reanalysis, overall, the incremental update is faster. Yet, on the gen-
erated benchmarks with a long-running initial analysis but with a short-
running full reanalysis, almost all incremental updates are slower. The
nature of the changes may be to blame for this: a very fast reanalysis
may indicate a serious reduction in program behaviour, in which case the
incremental update has to invalidate many results, causing high relative
runtimes.

5 Related Work

Nichols et al. [13] introduce fixpoint reuse to incrementally analyse JavaScript
programs. They map program points to corresponding program points in the
new program, allowing reuse of analysis results for mapped points. The mapping
function plays a key role: more mapped points lead to more reuse and a faster
analysis, but incorrect matches can cause the analysis to lose precision.

IncA [24–27] is a Datalog-based analysis framework that produces the same
results as a full reanalysis. It uses an incremental Datalog with a semi-naïve,
stratified evaluation strategy [25]. For every tuple, a support count indicating the
number different derivations of the tuple is maintained and used to invalidate
tuples after program updates. Contrary to IncA, our approach does not require
programs and analyses to be converted into a Datalog-like representation.

Andromeda [28] is an incremental, demand-driven taint analysis. Its relies on
a support graph to find taint facts that are outdated. In contrast, our analysis
is not tailored to a specific client analysis. Saha and Ramakrishnan [20] also use
support graphs in their framework for implementing incremental, demand-driven
analyses. They require analyses and programs under analysis to be specified as
Horn clauses and represent changes by means of the addition or deletion of facts.

Reviser [2] is an incremental, inter-procedural data-flow analysis for analyses
expressible in the IDE or IFDS frameworks. Its results match a full program
analysis but it requires a static call-graph; dynamic languages are unsupported.

316 J. Van der Plas et al.

Our approach is not limited to specific analyses and does not require a static call
graph. Other incremental approaches relying on static call graphs comprise a.o.
alias analyses [33], interval analyses [3], dataflow analyses [4,19,34], and analyses
tailored to specific client tools, such as race detection [35]. Liu et al. [11] present
an incremental points-to analysis not requiring a prebuilt call graph. It preserves
precision but is limited to flow-insensitive analyses, unlike ours.

Garcia-Contreras et al. [8] present a context-sensitive incremental modular
analysis which achieves incrementality at the inter-modular and intra-modular
level. The analysis requires an encoding of the program in constrained Horn
clauses. Contrary to ours, the analysis does not divide the program into modules
itself and does not use components but a programmer-defined lexical module
partitioning is used, but it is claimed that any partitioning is possible. Thus,
their analysis can, e.g., not be used with thread-modular analyses, in contrast
to ours. Later work [9] presents an updated approach, also capable of handling
external modules, together with a formal description and a further evaluation.

6 Conclusion

We presented three complementary invalidation strategies to improve the preci-
sion and performance of the incremental modular analysis approach presented by
Van der Plas et al. [18]. Our approach interleaves reanalysis of components with
invalidation. Component invalidation removes outdated components and their
dependencies, and, when combined with write invalidation, can also improve the
precision of the values in the store σ. Dependency invalidation removes outdated
dependencies. Write invalidation uses provenance tracking to retract and replace
outdated contributions from components to σ, enabling non-monotonic updates.

We tested our strategies for unsoundness and evaluated their precision and
performance empirically on real-world programs using a small suite of 32 pro-
grams with possible developer edits and a large corpus 950 of programs with
generated edits. Our strategies allow the incremental analysis to reach the same
result as a full reanalysis on 13 more programs in the curated suite in comparison
to when none of the proposed strategies is used. On other programs, the precision
loss is reduced, yet the results did not match the precision of a full reanalysis. For
the generated suite, using all strategies, on average, the number of less precise
addresses in σ is reduced from 30% to about 10%. The best improvements were
realised by the combination of write invalidation with component invalidation.

Performance-wise, overall, the incremental analysis scores well. We did find
some benchmarks with particular program changes for which the incremental
update proved to be slower than a full reanalysis, e.g., in 33 of the 950 programs
in the generated suite where the changes removed a big part of a program’s func-
tionality. Future work includes handling cyclic reinforcement of lattice values,
stratifying the worklist of the analyses, and investigating heuristics for triggering
a full reanalysis rather than an incremental update.

Result Invalidation for Incremental Modular Analyses 317

Acknowledgements. This work was partially supported by the Research Founda-
tion – Flanders (FWO) (grant number 11F4822N) and by the Cybersecurity Initiative
Flanders.

References

1. Andreasen, E.S., Møller, A., Nielsen, B.B.: Systematic approaches for increasing
soundness and precision of static analyzer. In: Proceedings of the 6th ACM SIG-
PLAN International Workshop on State of the Art in Program Analysis, SOAP
2017, pp. 31–36. Association for Computing Machinery, New York (2017). https://
doi.org/10.1145/3088515.3088521

2. Arzt, S., Bodden, E.: Reviser: efficiently updating IDE-/IFDS-based data-flow
analyses in response to incremental program changes. In: Jalote, P., Briand, L.C.,
van der Hoek, A. (eds.) Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 288–
298. ACM Press, New York (2014). https://doi.org/10.1145/2568225.2568243

3. Burke, M.G.: An interval-based approach to exhaustive and incremental inter-
procedural data-flow analysis. ACM Trans. Program. Lang. Syst. 12(3), 341–395
(1990). https://doi.org/10.1145/78969.78963

4. Carroll, M.D., Ryder, B.G.: Incremental data flow analysis via dominator and
attribute updates. In: Ferrante, J., Mager, P. (eds.) Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages, San
Diego, California, USA, 10–13 January 1988, pp. 274–284. ACM Press (1988).
https://doi.org/10.1145/73560.73584

5. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5_13

6. Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: Crnkovic, I., Chechik, M., Grünbacher, P.
(eds.) ACM/IEEE International Conference on Automated Software Engineering,
ASE 2014, Vasteras, Sweden, 15–19 September 2014, pp. 313–324. ACM, New York
(2014). https://doi.org/10.1145/2642937.2642982

7. Gall, H.C., Fluri, B., Pinzger, M.: Change analysis with evolizer and changedistiller.
IEEE Softw. 26(1), 26–33 (2009). https://doi.org/10.1109/MS.2009.6

8. Garcia-Contreras, I., Caballero, J.F.M., Hermenegildo, M.V.: An Approach to
Incremental and Modular Context-Sensitive Analysis (2018). http://oa.upm.es/
53067/

9. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Incremental and modular
context-sensitive analysis. Theory Pract. Logic Program. 21(2), 196–243 (2021).
https://doi.org/10.1017/S1471068420000496

10. Hattori, L., Lanza, M.: Syde: a tool for collaborative software development. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering, ICSE 2010, vol. 2, p. 235–238. Association for Computing Machinery, New
York (2010). https://doi.org/10.1145/1810295.1810339

11. Liu, B., Huang, J., Rauchwerger, L.: Rethinking incremental and parallel pointer
analysis. ACM Trans. Program. Lang. Syst. 41(1), 6:1–6:31 (2019)

12. Negara, S., Vakilian, M., Chen, N., Johnson, R.E., Dig, D.: Is it dangerous to use
version control histories to study source code evolution? In: Noble, J. (ed.) ECOOP
2012. LNCS, vol. 7313, pp. 79–103. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31057-7_5

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/78969.78963
https://doi.org/10.1145/73560.73584
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/MS.2009.6
http://oa.upm.es/53067/
http://oa.upm.es/53067/
https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1145/1810295.1810339
https://doi.org/10.1007/978-3-642-31057-7_5
https://doi.org/10.1007/978-3-642-31057-7_5

318 J. Van der Plas et al.

13. Nichols, L., Emre, M., Hardekopf, B.: Fixpoint reuse for incremental JavaScript
analysis. In: Grech, N., Lavoie, T. (eds.) Proceedings of the 8th ACM SIGPLAN
International Workshop on State of the Art in Program Analysis, SOAP@PLDI
2019, Phoenix, AZ, USA, 22 June 2019, pp. 2–7. ACM (2019). https://doi.org/10.
1145/3315568.3329964

14. Nicolay, J., Noguera, C., De Roover, C., De Meuter, W.: Determining dynamic
coupling in JavaScript using object type inference. In: 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 126–135. IEEE (2013)

15. Nicolay, J., Stiévenart, Q., De Meuter, W., De Roover, C.: Purity analysis for
JavaScript through abstract interpretation. J. Softw.: Evol. Process 29(12), e1889
(2017)

16. Nicolay, J., Stiévenart, Q., De Meuter, W., De Roover, C.: Effect-driven flow anal-
ysis. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 247–274.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_12

17. Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a doubt: testing for divergences
between software versions. In: Dillon, L.K., Visser, W., Williams, L. (eds.) Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, 14–22 May 2016, pp. 1181–1192. ACM, New York (2016).
https://doi.org/10.1145/2884781.2884845

18. Van der Plas, J., Stiévenart, Q., Van Es, N., De Roover, C.: Incremental flow anal-
ysis through computational dependency reification. In: 20th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2020, 27–
28 September 2020, pp. 25–36. IEEE Computer Society (2020). https://doi.org/
10.1109/SCAM51674.2020.00008

19. Pollock, L.L., Soffa, M.L.: An incremental version of iterative data flow analysis.
IEEE Trans. Softw. Eng. 15(12), 1537–1549 (1989). https://doi.org/10.1109/32.
58766

20. Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analy-
sis using logic programming. In: Barahona, P., Felty, A.P. (eds.) Proceedings of
the 7th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, Lisbon, Portugal, 11–13 July 2005, pp. 117–128. ACM
(2005). https://doi.org/10.1145/1069774.1069785

21. Stievenart, Q., Nicolay, J., De Meuter, W., De Roover, C.: Detecting concurrency
bugs in higher-order programs through abstract interpretation. In: Proceedings
of the 17th International Symposium on Principles and Practice of Declarative
Programming, pp. 232–243 (2015)

22. Stiévenart, Q., Nicolay, J., De Meuter, W., De Roover, C.: A general method for
rendering static analyses for diverse concurrency models modular. J. Syst. Softw.
147, 17–45 (2019). https://doi.org/10.1016/j.jss.2018.10.001

23. Szabó, T.: Incrementalizing static analyses in datalog. Doctoral dissertation,
Johannes Gutenberg-Universität Mainz, Mainz, Germany (2021). http://doi.org/
10.25358/openscience-5613

24. Szabó, T., Bergmann, G., Erdweg, S., Voelter, M.: Incrementalizing lattice-based
program analyses in Datalog. Proc. ACM Program. Lang. 2(OOPSLA), 1–29
(2018). https://doi.org/10.1145/3276509

25. Szabó, T., Erdweg, S., Bergmann, G.: Incremental whole-program analysis in dat-
alog with lattices. In: Freund, S.N., Yahav, E. (eds.) Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, PLDI 2021, pp. 1–15. ACM, New York (2021). https://doi.org/10.1145/
3453483.3454026

https://doi.org/10.1145/3315568.3329964
https://doi.org/10.1145/3315568.3329964
https://doi.org/10.1007/978-3-030-11245-5_12
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1109/SCAM51674.2020.00008
https://doi.org/10.1109/SCAM51674.2020.00008
https://doi.org/10.1109/32.58766
https://doi.org/10.1109/32.58766
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1016/j.jss.2018.10.001
http://doi.org/10.25358/openscience-5613
http://doi.org/10.25358/openscience-5613
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/3453483.3454026

Result Invalidation for Incremental Modular Analyses 319

26. Szabó, T., Bergmann, G., Erdweg, S.: Incrementalizing inter-procedural program
analyses with recursive aggregation in Datalog, p. 3 (2019). Presented at the Second
Workshop on Incremental Computing, IC 2019, Athens, Greece, 21 October 2019

27. Szabó, T., Erdweg, S., Voelter, M.: IncA: a DSL for the definition of incremental
program analyses. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, pp. 320–331. ACM, New York (2016). https://doi.org/10.1145/2970276.
2970298

28. Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: Andromeda: accurate
and scalable security analysis of web applications. In: Cortellessa, V., Varró, D.
(eds.) FASE 2013. LNCS, vol. 7793, pp. 210–225. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37057-1_15

29. Van Es, N., Van der Plas, J., Stiévenart, Q., De Roover, C.: MAF: a framework
for modular static analysis of higher-order languages. In: 20th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2020,
Adelaide, Australia, 27–28 September 2020. IEEE Computer Society (2020)

30. Van Horn, D., Might, M.: Abstracting abstract machines. In: Hudak, P., Weirich, S.
(eds.) Proceedings of the 15th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2010, Baltimore, MD, USA, 27–29 September 2010, pp.
51–62. ACM, New York (2010). https://doi.org/10.1145/1863543.1863553

31. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A.: How
developers engage with static analysis tools in different contexts. Empir. Softw.
Eng. 25(2), 1419–1457 (2019). https://doi.org/10.1007/s10664-019-09750-5

32. Yoon, Y., Myers, B.A.: Capturing and analyzing low-level events from the code
editor. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and
Usability of Programming Languages and Tools, PLATEAU 2011, pp. 25–30.
Association for Computing Machinery, New York (2011). https://doi.org/10.1145/
2089155.2089163

33. Yur, J., Ryder, B.G., Landi, W.: An incremental flow- and context-sensitive pointer
aliasing analysis. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceedings of the
1999 International Conference on Software Engineering, ICSE 1999, Los Angeles,
CA, USA, 16–22 May 1999, pp. 442–451. ACM (1999). https://doi.org/10.1145/
302405.302676

34. Zadeck, F.K.: Incremental data flow analysis in a structured program editor. In:
Deusen, M.S.V., Graham, S.L. (eds.) Proceedings of the 1984 SIGPLAN Sympo-
sium on Compiler Construction, Montreal, Canada, 17–22 June 1984, pp. 132–143.
ACM (1984). https://doi.org/10.1145/502874.502888

35. Zhan, S., Huang, J.: ECHO: instantaneous in situ race detection in the IDE. In:
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp.
775–786 (2016). https://doi.org/10.1145/2950290.2950332

https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1145/2089155.2089163
https://doi.org/10.1145/2089155.2089163
https://doi.org/10.1145/302405.302676
https://doi.org/10.1145/302405.302676
https://doi.org/10.1145/502874.502888
https://doi.org/10.1145/2950290.2950332

Synthesizing History and Prophecy
Variables for Symbolic Model Checking

Cole Vick and Kenneth L. McMillan(B)

UT Austin, Austin, USA

cvick@cs.utexas.edu

Abstract. Introduction of history and prophecy variables can allow a
proof to be expressed in a weaker logic or a more localized form. This
fact has been used, for example, to allow purely propositional, quantifier-
free, invariant generators to produce proofs for parameterized systems
requiring universal quantification in the inductive invariant. However,
automatic synthesis of history and prophecy variables remains an open
problem. We introduce counterexample-guided heuristics for this pur-
pose based on property-driven refutation of counterexamples and Craig
interpolation. The approach is evaluated on a set of benchmarks based
on array manipulating programs with multiple loops.

1 Introduction

The addition of auxiliary variables is a common tactic in program verification.
These can be history variables that record some information about past program
state, or prophecy variables that predict some aspect of future program state.
In some cases auxiliary variables may be necessary for (relative) completeness
of a proof system. For example, in the Owicki/Gries system, history variables
are necessary [27], while prophecy variables are needed to prove program refine-
ment using refinement maps [1]. In other cases, auxiliary variables are used to
simplify a proof, allowing it to be constructed in a less expressive language.
For example, history and prophecy variables are used in [25] in a scheme that
reduces the proofs of parameterized protocols to a propositional invariant gen-
eration problem. More subtly, we can think of automated compositional proof
using grammatical inference [5] as inference of a history variable (the state of
an automaton) that reduces the inductive invariant to a conjunction of local
invariants.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 320–340, 2023.
https://doi.org/10.1007/978-3-031-24950-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_15

Synthesizing History and Prophecy Variables 321

Fig. 1. Array scattering program, original and instrumented. The function f(i) returns
a non-deterministically chosen index of a.

Eliminating Quantifiers with Auxiliary Variables. A particularly impor-
tant application of auxiliary variables is to eliminate the need for quantifiers in
an inductive invariant (or to eliminate quantifier alternation). This can allow us
to apply a model checker to the invariant generation problem, even if the model
checker cannot handle quantifiers. The key question is how to introduce auxil-
iary variables in an automated way. This might provide an important advantage,
as the direct synthesis of quantified inductive invariants has proved challenging,
even for problems of modest size.

As an example, consider the program of Fig. 1(a), a fragment in a notional
C-like language. In this program, the array a is first filled with non-negative
values. Then the array b is filled with values from a chosen by an unknown
function f . We then assert that all elements of b are non-negative. In the proof
of this program, we need universal quantifiers over array indices. For example,
a suitable invariant between the loops would be ∀ 0 ≤ j < N. a[j] ≥ 0. We
can’t express the invariant in the array theory without quantifiers, because a
quantifier-free invariant can only reference a bounded number of elements of the
arrays, while the property depends on all N elements and N is arbitrarily large.

On the other hand, by adding auxiliary variables we can reduce the depen-
dence of the property to only a single element of a and b. Figure 1(b) shows
the program instrumented in this way. In this program π1 and π2 are prophecy
variables and η2 is a history variable. Variable π1 predicts an index of b for which
the assertion fails. It replaces the quantified variable j in the assertion (using
a process called Herbrandization). Prophecy variable π2 predicts the index of a
that is assigned to this element of b. The history variable η2 records the index
of this element of a so the prophecy can be validated when the assertion fails. A
suitable quantifier-free inductive invariant of the second loop in this program is
0 ≤ i ≤ N and 0 ≤ π2 < N → a[π2] ≥ 0 and π2 = η2 ∧ π1 < i → b[π1] ≥ 0. In
effect, the prophecy variables have replaced the quantifiers, allowing us to write
the invariant in a way that refers to only one element each of the arrays a and b.

322 C. Vick and K. L. McMillan

History Variables from Counterexamples. Apart from [5], little attention
has been paid to the problem of automated generation of auxiliary variables.
Recently, Mann, et al., have considered automated generation of auxiliary vari-
ables for array-manipulating programs such as Fig. 1(a) [20]. This method allows
the programs to be proved by an invariant generator that does not handle quan-
tifiers or even implement the theory of arrays.

The method works by abstracting away the array theory, effectively replac-
ing the array operations by uninterpreted functions. It then uses a CEGAR
approach to refine the abstraction by adding ground instances of the array the-
ory axioms to the program’s transition relation. A false counterexample is one
that violates an array axiom instance. If this violation spans only a single tran-
sition in the counterexample, the counterexample is easily eliminated by adding
a single instance of the axiom to the transition relation. The trick is to handle
axiom instances that span multiple transitions. In this case, we replace symbols
in the violated axiom with prophecy variables until it spans only a single transi-
tion. As an example, this instance of an array theory axiom results in prophecy
variable π2:

i2 = i0 → select(store(a0, i0, i0), i2) = i0.

Here the superscripts represent states in a counterexample where each loop is
executed once, i.e. N = 1. That is, if in the second loop (at state 2) we read the
same index of a that was written in the first loop (at state 0) then we obtain
the value written. To make this instance span a single transition, we replace i2

by a prophecy variable π2 that predicts its value. Thus we obtain:

π2 = i0 → select(store(a0, i0, i0), π2) = i0.

The method then synthesizes a history variable η2 that captures the value of i2.
We then implement the prophecy variable π2 by conditioning the assertion on
π2 = η2.

Unfortunately, the method of [20] does not synthesize the conditional his-
tory variable shown in Fig. 1(b). It generates instead a variable that stores the
value of i unconditionally, effectively delaying it by one iteration. This eliminates
counterexamples with N = 1, resulting in a new counterexample with N = 2,
giving a new history variable with a delay of two steps, and so on to infinity. In
this paper, we introduce a method of synthesizing a history variable that stores
a value conditionally, as shown in the figure. This allows the method to converge
in cases of unbounded loops. Our method is based on searching for a property-
directed refutation of the counterexample, using the array axioms. From this
proof, we extract both the relevant axiom instance and the capture condition of
the history variable (i = π1 in the Fig. 1(b)).

Capture Conditions from Invariants. Although this approach is effective in
some instances, we encounter many problems for which the appropriate capture
condition involves reasoning beyond the array theory. Consider the program
in Fig. 2(a) that sums up an array of non-negative integers, asserting that the

Synthesizing History and Prophecy Variables 323

Fig. 2. Array summing program, original and instrumented.

sum is non-negative. The second loop maintains an invariant that the sum j is
non-negative. To prove this program with a quantifier-free invariant, we need to
capture the loop index i at a point when the invariant goes from true to false,
which implies that a[i] is negative. One suitable capture condition is shown in the
instrumented program of Fig. 2(b). The history variable captures i at the last
moment when the invariant is true. We can prove the instrumented program
using the following inductive invariant for the second loop: 0 ≤ i ≤ N and
a[π1] ≥ 0 and π1 = η1 ∧ π1 < i− > j ≥ 0.

To discover this capture condition, we need a way to synthesize relevant
invariants of the program (though not necessarily an inductive invariant). We
will present a way to do this using sequence interpolants [14].

Contributions. The primary contributions of this paper are (1) a method of
inferring conditional history variables from counterexamples, based on property-
directed refutations of abstract counterexamples, (2) a method of inferring cap-
ture conditions from sequence interpolants and (3) a benchmark evaluation,
showing that this approach is substantially more effective than the uncondi-
tional approach of [20] and that it out-performs state-of-the-art CHC solvers
that produce quantified invariants on small-scale benchmarks.

Limitations. We abstract only the array theory. Our implementation handles
only prenex-universal assertions. We do not consider recursive programs. We do
not consider the question of scalability to large programs.

2 Related Work

We can divide the related work into two categories. Methods in the first cate-
gory differ from the current approach in that they construct and verify a quan-
tified inductive invariant [10,11,15,16,19,28]. Some of these restrict the veri-
fication conditions to decidable fragments. These include the Invisible Invari-
ants method [28] which relies on a small model theorem, and UPDR [15] which

324 C. Vick and K. L. McMillan

uses the decidable EPR fragment. Other methods (e.g, [19]) rely on incomplete
heuristic quantifier instantiation.

In the second category, we have methods that, like the current method, trans-
form the problem in some way, allowing verification without the use of quantifiers
and reusing an existing invariant generator or CHC solver. The most common
approach is to transform the problem into a non-linear CHC satisfiability prob-
lem [2,12,26]. These methods differ from the present method in two ways: they
require a non-linear CHC solver and they are pre-processing techniques (eager
abstraction) while our method is a CEGAR (lazy abstraction) approach.

Many works use manually-introduced auxiliary variables to eliminate the
need for quantifiers [3,21–23,25]. We are aware of only one approach, however,
that automates this process, that of Mann, et al. [20], which is the starting point
for this work. That approach is strongly limited by the restriction to uncondi-
tional history variables, a limitation that we address here.

3 Preliminaries

Logic. Let FO=(S,V) be standard sorted first-order logic with equality, where
S is a collection of first-order sorts and V is a vocabulary of sorted non-logical
symbols. We assume a special sort B ∈ S that is the sort of propositions. Each
symbol f :S ∈ V has an associated sort S of the form D1 × · · · × Dn → R, where
Di, R ∈ S and n ≥ 0 is the arity of the symbol. If n = 0, we say f :S is a constant,
and if R = B it is a relation. We write vocab(t) for the set of non-logical symbols
occurring in term t.

Given a set of sorts S, a universe U maps each sort in S to a non-empty set
(with U(B) = {tt,ff}). An interpretation of a vocabulary Σ ⊆ V over universe
U maps each symbol f :D1 × · · · × Dn → R in Σ to a function in U(D1) × · · · ×
U(Dn) → U(R). A Σ-structure is a pair M = 〈U, I〉 where U is a universe and
I is an interpretation of Σ over U . The structure is a model of a proposition φ in
FO=(S,V) if φ evaluates to tt under I according to the standard semantics of
first-order logic. In this case, we write M |= φ. An extension of structure M to
vocabulary Σ̂ ⊇ Σ is a Σ̂-structure 〈U, Î〉 such that Î(x) = I(x) for all symbols
x ∈ Σ. Given an interpretation J with domain disjoint from I, we write M,J
to abbreviate the structure 〈U, I ∪ J 〉.

Vocabularies. We divide V into several disjoint classes. The background symbols
VB are used to represent the signature of a background theory such as linear
integer arithmetic or the theory of arrays. A background theory (theory in the
sequel) is a collection of formulas over the background symbols VB . The state
symbols VS are used to represent the state of a system. A state formula is a
formula over VB ∪ VS . The primed symbols V′

S contain, for each state symbol s,
a distinct symbol s′. For any term t in the logic, we denote by t′ the result
of replacing every state symbol occurring in t with the corresponding primed
symbol s′. A transition formula is a formula over VB ∪ VS ∪ V

′
S . We write

unprime(t) for the result of replacing every primed symbol s′ in t with s. We

Synthesizing History and Prophecy Variables 325

also distinguish a sequence of disjoint vocabularies Vi
S , for i = 0, 1, . . ., such that

V
i
S contains a distinct symbol denoted si for every state symbol s. For term t,

we write ti for the result of replacing every state symbol s with si and s′ with
si+1 in t. We write unindexi(t) for the result of replacing si with s and si+1 with
s′ in t, for every state symbol s. For any Σ ⊆ V, we write ΣB for Σ ∩ VB , ΣS

for Σ ∩ VS , Σ′
S for Σ ∩ V

′
S and Σi

S for Σ ∩ V
i
S .

Transition Systems. A Σ-trace, for vocabulary Σ, is a pair 〈n,M〉 where
n ≥ 0 and M is a structure over ΣB ∪ Σ0 ∪ · · · ∪ Σn. An extension of τ is a Σ̂-
trace τ̂ = 〈n,M̂〉, for some vocabulary Σ̂ ⊇ Σ, such that M̂ is an an extension
of M.

A transition system is a triple M = 〈Σ, I, T 〉 where Σ ⊂ V is a vocabulary,
I is a state formula over Σ and T is a transition formula over Σ. For theory T ,
a T -trace of M is a Σ-trace 〈n,M〉 such that:

– M |= T and
– M |= I0, and
– for 0 ≤ i < n, M |= T i.

A safety problem (problem in the sequel) Π = 〈Σ, I, T, φ〉 is a system M =
〈Σ, I, T 〉 equipped with a safety condition φ over ΣS . A T -counterexample to
Π is a T -trace 〈n,M〉 of M such that M �|= φn. A problem is T -valid if it has
no T -counterexamples.

The bounded model checking unfolding BMC(Π,n) is the sequence of formu-
las I0, T 0, . . . , Tn−1,¬φn. We note that the T -counterexamples of Π are exactly
the T -models of BMC(Π).

In the sequel, we assume without loss of generality that the safety conditions
of all problems are prenex-existential. This can be achieved by Herbrandization,
the dual process of Skolemization. In particular, this replaces leading universal
quantifiers with fresh background constants (as π1 replaces ∀j in Fig. 1).

4 Theory Abstraction and Refinement

As in [20], our procedure begins by abstracting away the array theory, effectively
treating the array operators as uninterpreted functions. In the sequel, we fix a
background theory T , an abstract theory TA and a refinement theory TR such
that T = TA ∪ TR. In practice, TA is EUFLIA (uninterpreted functions with
equality and linear integer arithmetic) while TR is the array theory. The following
theorem states that model checking with TA is sound:

Theorem 1. If problem Π is TA-valid, then Π is T -valid.

Proof Sketch. A T -counterexample of Π is also a TA-counterexample of Π
since T implies TA. �

326 C. Vick and K. L. McMillan

4.1 Refinement

After theory abstraction we may obtain false counterexamples. A refinement
preserves the set of concrete counterexamples, and hence is sound. However, it
may eliminate abstract counterexamples. We employ three classes of refinements:
theory refinements, prophecy refinements and history refinements.

Formally, a refinement is a partial function R from problems to problems
such that, if problem Π is in dom(R), then for every T -counterexample τ of Π,
there exists a T -counterexample τ̂ of R(Π) that is an extension of τ .

The composition of two partial functions f ◦ g is the partial function such
that (f ◦ g)(x) = f(g(x)) when x ∈ dom(g) and g(x) ∈ dom(f). We say f � g
if for all x ∈ dom(f) we have x ∈ dom(g) and g(x) = f(x). We write 1 for the
identify function over any domain.

Lemma 1. Refinements are closed under composition.

A refinement R is said to kill TA-counterexample τ of problem Π if no
extension of τ is a TA-counterexample of R(Π).

Theory Refinement. A theory refinement adds some validity of T to the
initial condition or the transition relation. As these formulas are equivalent to
tt modulo T , this leaves the concrete traces unchanged.

Formally, a theory refinement is a problem transformer we denote R =
TheoryRef(ψI , ψT) where ψI is a ground state formula and ψT is a ground
transition formula such that T |= ψI , ψT . If problem Π = 〈Σ, I, T, φ〉 is such
that vocab(ψI , ψT) ⊆ Σ, then R(Π) = 〈Σ, I ∧ ψI , T ∧ ψT , φ〉.

Theorem 2. TheoryRef(φI , φT) is a refinement.

Prophecy Refinement. A prophecy refinement introduces a fresh background
constant that predicts the value of some expression at the end of a trace. Since
it is a background symbol, it is invariant over time.

A prophecy refinement is a problem transformer we denote R =
ProphRef(x, t) where x is a background constant and t is a state term. If
Π = 〈Σ, I, T, φ〉 is a problem such that x �∈ Σ and vocab(t) ⊆ Σ, then R(Π) =
〈Σ ∪ {x}, I, T, x = t → φ〉.

Theorem 3. ProphRef(x, t) is a refinement.

Proof Sketch. Let τ be a T -counterexample of Π and let n be the length of τ .
Extend τ such that x = tn. This is a T -counterexample of R(Π). �

History Refinement. A history refinement is a problem transformer we denote
HistRef(x, ψ, t) where x is a state constant, t is a state term and ψ is a transition
formula. If Π = 〈Σ, I, T, φ〉 is a problem such that x �∈ Σ and vocab(t, ψ) ⊆ Σ,
then HistRef(x, ψ, t)(Π) = 〈Σ ∪ {x}, I, T ∧ x′ = ite(ψ, t, x), φ〉.

Synthesizing History and Prophecy Variables 327

N.B. Our class of refinements differs from that of [20] in that the history vari-
able x stores the value of t conditionally, while in the prior work t is delayed
unconditionally.

Theorem 4. HistRef(x, ψ, t) is a refinement.

Proof Sketch. Let τ be a T -counterexample of Π. Extend τ with a fresh
variable x such that xi+1 = ite(ψ, t, x) for i = 1 . . . n. This is a T -counterexample
of R(Π). �

We use history refinements to store the value of term t at some given time j
until the end of the trace, so that xn = tj . The storage time j is the last time such
that the capture condition ψ holds. With respect to a trace τ = 〈n,M〉, we say
that refinement HistRef(x, ψ, t) captures tj if M |= ψj and for all j < i < n,
M �|= ψi.

Lemma 2. If τ is a trace of problem Π and refinement R = HistRef(x, ψ, t)
captures tj in τ , then for every extension τ̂ of τ in R(Π), τ̂ |= xn = tj.

Proof Sketch. By the definition of history refinement, in τ̂ we have xj+1 = tj

and for all j < k < n, xk+1 = xk. By induction on k we have xn = tj . �

5 Counterexample-Guided Refinement

The algorithms we present are non-deterministic, with non-deterministic choice
indicated by the “choose” keyword. Choice could be implemented by backtrack-
ing, but in practice we use heuristics that are detailed in Sect. 8.

We introduce refinements lazily with counterexample-guided abstraction
refinement (CEGAR). The general refinement loop is shown in Fig. 3. If model
checking determines that the property is true modulo the abstract theory, we
return true. Else, we obtain an abstract counterexample τ . If τ is a concrete
counterexample, we return false. Else, we call Refinements, which generates a
sequence of refinements that kill τ . We choose a refinement among those found
(or abort if none are found). Then we apply CEGAR to the refined problem.

Theorem 5 (Soundness). Assume Refinements(Π,τ) is a set of refinements
for all problems Π and counterexamples τ to Π. If CEGAR(Π) terminates, the
result is true iff Π is valid.

Proof Sketch. Refinements preserve concrete counterexamples. Thus, if we
return true, by Theorem 1 there are none. Moreover, if we return false, τ is
a T -counterexample of the original Π. �

If the refinements returned by Refinements always kill τ , and if it always
returns a refinement, then we say that CEGAR makes refinement progress in
the sense that each refinement eliminates at least one abstract counterexample.
This is a heuristically useful property, but it does not guarantee termination.

328 C. Vick and K. L. McMillan

Fig. 3. Counterexample-guided refinement

5.1 Refinement with Local Axiom Instances

Figure 4 shows our general algorithm for refinement. It is similar to [20], except
in that the history variables are conditional. We are given a ground instance
ψ of an axiom in TR that is false in abstract counterexample τ and a set Γ of
potential history variable conditions. If the counterexample is of length n = 0, we
kill it by conjoining unindex0(ψ) to the initial condition. If the vocabulary of the
axiom instance ψ spans a single transition from time i to time i + 1, we kill the
counterexample by conjoining unindexi(ψ) to the transition relation. Otherwise,
we localize ψ to a single transition from time i to time i + 1 by replacing each
state symbol not indexed by either i or i+1 with a prophecy variable. Formally,
we replace xj for j �= i, i + 1 by a fresh prophecy variable that captures xj in
the trace. We capture the value of xj by introducing a history variable η that
uses a Boolean combination of predicates in Γ as the storage condition. We then
introduce a prophecy variable π that predicts η at time n, i.e. the time when the
property is checked.

We now argue correctness of this procedure. Say that formula φ is initial if
vocab(φ) ⊆ VB ∪ V

0
S and i-local for i ≥ 0 if vocab(φ) ⊆ VB ∪ V

i
S ∪ V

i+1
S .

Lemma 3. If τ is a TA-counterexample for problem Π and ψ is an initial for-
mula such that T |= ψ and τ �|= ψ, then TheoryRef(unindex0(ψ), tt) kills τ .

Proof Sketch. Since τ �|= unindex0(ψ)0 it follows that no extension of τ can be
a TA-trace of the refinement. �

Lemma 4. If τ is a TA-counterexample for problem Π and ψ is an i-local for-
mula such that T |= ψ and τ �|= ψ, then TheoryRef(tt, unindexi(ψ)) kills τ .

Proof sketch Since τ �|= unindexi(ψ)i it follows that no extension of τ can be
a TA-trace of the refinement. �

Theorem 6. If τ is a TA-counterexample to problem Π, and T |= ψ and τ �|= ψ
then every refinement in AxiomRefine(τ, ψ, Γ) kills τ .

Synthesizing History and Prophecy Variables 329

Fig. 4. Refinement with an axiom instance

Proof Sketch. Let n be the length of τ . If n = 0 we apply Lemma 3. Else,
construct a trace τ̂ by extending τ at each iteration of the loop in AxiomRefine
such that ηk = xj for all j < k ≤ n and π = xj . The loop maintains the invariant
that τ̂ �|= ψ and, by Theorems 3 and 4, that τ̂ is a TA-counterexample to R(Π).
Moreover, on termination of the loop, ψ is i-local, thus by Lemma 4, the returned
refinement kills τ̂ and hence τ .

6 Proof-Based Prophecy Heuristic

To use the above algorithm to eliminate a counterexample, we must find a suit-
able axiom instance violation and predicates from which to construct the capture
condition. Heuristically, we wish to find ground instances of TR axioms that are
violated by the abstract counterexample and are causally related to the prop-
erty failure. That is, we seek axiom violations that do not depend on accidental
aspects of the counterexample that are unrelated to the property. In this way, we
hope to produce refinements that kill a large space of abstract counterexamples.

We achieve this by constructing a property-driven refutation of the counter-
example. We start with a goal term whose value in the counterexample we wish
to contradict. We then use trigger-based quantifier instantiation, as introduced
in the Simplify theorem prover [8] to match the goal term against a trigger
pattern in one of the axioms. This gives us a ground axiom instance in which
the trigger term is equal to the goal term. If this axiom instance is false in the
counterexample, we use it to generate a refinement. Otherwise, we extract from
the axiom instance a new goal term and try to contradict the value of this term.

330 C. Vick and K. L. McMillan

We also extract relevant predicates to use in history variable conditions from the
axiom instances in the refutation.

A trigger-form axiom is of the form ∀V. ψ → tt = tg where V is a set of
variables, quantifier-free formula ψ is the precondition, term tt is the trigger and
term tg is the goal. Each variable in V must occur in the trigger tt exactly once.
In the sequel, we assume the refinement theory TR is a set of trigger-form axioms.

Here are the array theory axioms in trigger form:

∀A,X, Y, V. (X = Y) → select(store(A,X, V), Y) = V (1)
∀A,X, Y, V. (X �= Y) → select(store(A,X, V), Y) = select(A, Y) (2)

∀X,V. tt → select(constArr(V),X) = V (3)

Example of Property-Driven Counterexample Refutation. Suppose the
following sub-formulas appear in the BMC unfolding:

a1 = store(a0, i0, x0) (4)
a2 = a1 (5)

b3 = store(b2, j2, select(a2, k2)) (6)
¬p(select(b3, l3)) (7)

The last of these represents the failure of the safety property. Let us take
select(b3, l3) as our goal term. By substitution with (6), this term is equal to
select(store(b2, j2, select(a2, k2)), l3). Thus, modulo equality, we can match
it against the trigger term select(store(A,X, V), Y) of axiom (1) with the
assignment A = b2, X = j2, V = select(a2, k2), Y = l3. This gives us the
following axiom instance:

(j2 = l3) → select(store(b2, j2, select(a2, k2)), j2) = select(a2, k2)

Suppose that the precondition j2 = l3 of this instance is true. In this case we
consider the axiom instance to be relevant to the goal. If the instance is false,
we use it as a refinement. It is 2-local (referring only to symbols at times 2
and 3) therefore we can add it directly to the transition relation to kill the coun-
terexample. On the other hand, suppose the instance is true. This implies our
goal term is equal to select(a2, k2), the goal term of the axiom. We therefore
take this as our new goal, attempting to contradict its value in the counterex-
ample. Moreover, we consider the precondition j2 = l3 as a potential history
variable condition. Intuitively, this is the condition under which the new goal
term influences the property.

The new goal select(a2, k2) again matches axiom (1) yielding this axiom
instance:

(i0 = k2) → select(store(a0, i0, x0), k2) = x0

Again supposing that the precondition is true but the axiom instance is false,
we can use this instance to refine. This instance, however, is not local because
it contains k2. We can localize it by capturing the value of k2 with a history

Synthesizing History and Prophecy Variables 331

variable η under the condition j2 = l3 derived from our first inference. This adds
η′ = ite(j = l′, k, η) to the transition relation and rewrites the safety property
to π = η → p(select(b, l)). Substituting the non-local term k2 by π we add the
following axiom instance to the transition relation, killing the counterexample:

(i = π) → select(store(a, i, x), π) = x

E-Graphs. We now describe our algorithm for refinement based on property-
driven counterexample refutations.

An E-graph [8] is a structure that maps a set of terms to equality classes.
If we are given a model of a formula, the corresponding E-graph is a partial
interpretation of the symbols over the universe that is sufficient to evaluate all
the sub-terms of the formula. In our case, the formula is a BMC unfolding and
the model is a counterexample to the safety property. As in Simplify, we match
triggers to goal terms by substituting the free variables with terms occurring
in the E-graph. Heuristically, by using existing terms in the BMC formula we
hope to obtain axiom instances that are generally useful and not specific to one
counterexample.

A partial Σ-interpretation over a universe U maps each symbol
fD1×···×Dn→R in Σ to a partial function U(D1) × · · · × U(Dn) → U(R). For
partial Σ-interpretations I, Î, we say I � Î if f [I] � f [Î] for all f ∈ Σ. An
E-graph over symbols Σ is a pair E = 〈U, I〉 where U is a universe and I is a
partial Σ-interpretation over U . For E-graphs E = 〈U, I〉 and Ê = 〈U, Î〉 over Σ,
we say E � Ê if I � Î.

We assume a special value ⊥ not present in any universe. The interpretation
t[E] of a term t in an E-graph E = 〈U, I〉 is defined as follows:

– x[E] = I(x) if x is a constant in dom(I) else ⊥,
– f(t1, . . . , tn)[I] = I(f)(t1[I], . . . , tn[I]) if f ∈ dom(I) and (t1[I], . . . , tn[I]) ∈

dom(I(f)) else ⊥.

Given a Σ-structure M and a set of terms L over Σ, let EGraph(M,L) denote
the least E � M such that t[E] �= ⊥ for all terms t ∈ L.

Matching Modulo Equality. Given an E-graph E , a term tt with free variables
V and a ground term tm, a match modulo equality tt → tm is an assignment σ
of ground terms to variables in V such that E |= tt[σ] = tm.

Given a Σ-structure τ , an E-graph E , a term tm and a set of trigger-form
axioms T , a trigger match for tm is φ[σ] for any φ ∈ T of the form ∀V.ψ → tt = tg
such that σ is a match tt → tm modulo equality and τ |= ψ[σ].

The algorithm shown in Fig. 5 generates a stream of trigger matches given
τ , E and tm. It is described as a generator (as in [8]) in which each “yield”
statement appends an element to the stream. We rely on a procedure Ematch
that yields a stream of matches tt → tm in a given E-graph. This is implemented
in the same way as in [8].

332 C. Vick and K. L. McMillan

Fig. 5. Trigger matching algorithm

Fig. 6. Property-guided search for counterexample refutations

Figure 6 shows a procedure that searches for a refutation of a counterexam-
ple. A violation is a pair consisting of an axiom instance that is false in the
counterexample, and a set of preconditions for the instance to be relevant to the
goal. The procedure searches for trigger matches against the goal term. For each
match found, if the axiom instance is false, it returns a violation. If the axiom
instance is true, it recurs on the instance’s goal term, adding its precondition to
the list of preconditions.

Finally, Fig. 7 shows our procedure for generating refinements from a coun-
terexample. We begin by building the E-graph E for the terms in the BMC
formula. We call a procedure MineConditions to collect a set of predicates
from the problem that are heuristically likely to be useful history variable con-
ditions. Similarly MineTerms returns a stream of terms that are likely to be
causally related to the property, ordered from most to least relevant. See Sect. 8
for details of these functions in our implementation. For each term, we call Vio-
lations to search for relevant axiom violations, and for each of these, we call
AxiomRefine to generate refinements.

Theorem 7. If τ is an abstract TA-counterexample for problem Π then every
refinement in Refinements(Π, τ) kills τ .

Synthesizing History and Prophecy Variables 333

Fig. 7. Procedure for generating refinements

Proof Sketch. Every φ generated by Violations is an axiom instance false
in τ . Thus by Theorem 6 every generated refinement kills τ . �

7 Capture Conditions from Interpolants

Consider the program of Fig. 2. In this program, non-negative values from array a
are added to variable j, initially zero. The safety property requires that j is non-
negative on termination. Suppose that, as before, we capture the last index
of array a that flows to j with prophecy variable π1. This refinement can kill
a counterexample in which the last write to j causes it to become negative.
However, it does not kill a counterexample in which j is already negative at the
last time it is written. In this case, we need a more nuanced notion of causality.
That is, the second loop maintains the invariant that j ≥ 0. The cause of the
property failure is actually the last write that turned the invariant from true to
false. A suitable condition for capturing the index x would thus be j ≥ 0, or
perhaps j ≥ 0 ∧ ¬(j′ ≥ 0).

The question is how to guess the invariant that the loop maintains. In simple
cases such as this, it is just the safety condition. However it is easy to construct
examples where this is not the case (for example, with multiple loops). A common
approach to guessing an invariant of a loop is to construct a sequence interpolant
for the BMC unfolding.

If β = β0, . . . , βn, for n ≥ 2, is a formula sequence, formula sequence I =
I0, . . . , In−1 is a sequence interpolant modulo T if:

– T |= β0 → I0, and
– for i = 1 . . . n − 1, T |= βi ∧ Ii−1 → Ii, and
– T |= In−1 ∧ βn → ff, and
– for 0 ≤ i < n, vocab(Ii) ⊆ (vocab(β0, . . . , βi) ∩ vocab(βi+1, . . . , βn)) ∪ VB .

A sequence interpolant can be constructed from an unsatisfiable sequence of
formulas using an interpolating theorem prover [24] such as SMTInterpol [4].
Figure 8 shows a modified version of MineConditions that adds predicates
derived from an interpolant for the BMC unfolding of the problem. This makes

334 C. Vick and K. L. McMillan

Fig. 8. Capture conditions from interpolants

it possible to handle problems such as Fig. 2 in which an array holds aggregate
values from another array. Note that we extract from the interpolant only atomic
predicates and their negations. In principle, we could use a larger class of Boolean
combinations, at the expense of a more expensive search for a refinement.

8 Evaluation

In our evaluation, we consider looping programs using arrays that require quanti-
fiers in the inductive invariant to prove safety properties. We address two research
questions: (1) Does our approach to synthesizing conditional history variables
effectively allow a quantifier-free model checker to verify the programs, and (2)
are conditional history variables more effective than unconditional history vari-
ables. We use two baselines: the algorithm of [20] and an ablation that uses our
property-driven refutation method to find axiom violations, but uses uncondi-
tional history variables.

8.1 Implementations

We implemented our algorithm in the Python programming language. We will
call this implementation CondHist1. We use the tool IC3ia [6] for model check-
ing in CEGAR, Fig. 3. As in [20], we chose this tool because it supports uninter-
preted function symbols, which we need for the abstract theory. For counterex-
ample generation, we use Z3 [7] to solve the BMC unfolding at the depth of the
IC3ia counterexample. This is needed to obtain the values of the uninterpreted
function symbols. For satisfiability and interpolation in algorithm MineCondi-
tionsItp we use SMTInterpol [4].

1 The code and instructions for reproducing our results is available at https://github.
com/cvick32/ConditionalHistory. Including our tool code and the benchmark trans-
formation code there are roughly 3800 SLOC in Python.

https://github.com/cvick32/ConditionalHistory
https://github.com/cvick32/ConditionalHistory

Synthesizing History and Prophecy Variables 335

Input and Preprocessing. We take input in the form of linear CHC solv-
ing problems in the SMTLIB2 format using the Z3 fixpoint convention or the
HORN logic convention. These problems can have multiple uninterpreted pred-
icates corresponding to program control locations. We translate this form to a
simple transition system by adding an integer control location symbol pc. We
also Herbrandize the safety condition by replacing leading universals with back-
ground symbols. As in [20], we replace large numeric constants with free symbols,
which helps to prevent IC3ia from diverging. If we obtain a false counterexam-
ple, we run again without this abstraction. Additionally, we replace any reference
to a primed variable in a transition with an equivalent unprimed expression if
possible. These preprocessing tactics are held constant across the ablation exper-
iments.

Heuristics. There are a few nondeterministic choices in the algorithm. Here,
we detail the heuristics we use to make each of these choices. These heuristics
are primitive, and we expect that they can be significantly improved.

In CEGAR we choose the first refinement obtained. In algorithm Axiom-
Refine we chose the time i in which to localize the axiom instance as the least
time index occurring in the instance. Intuitively, this is because our refutations
chain backward in time from select operations to corresponding store opera-
tions. The heuristic places the axiom instance in the transition with the store,
with the result that the address of the select becomes a prophecy variable.
The Boolean combination ρ is the conjunction of all of the predicates in Γ that
are j-local and true in the counterexample. Intuitively, making the history con-
dition as strong as possible makes it more likely that the desired term xj will
be captured. We try this first without using interpolant-derived predicates and
then add them if this fails to achieve capture of xj . This is done to avoid the
overhead of the interpolant computation if possible. We could perhaps improve
this by greedily removing predicates as long as capture is maintained.

In MineConditions we produce a set of predicates of the form pc = i
where pc is a special symbol representing the program control location and i is
an integer. We also produce p and ¬p for every program branch condition p.
We found this control flow information to be useful in constructing capture
conditions. In MineTerms we list all of the terms in the BMC unfolding in
reverse time order. In this way, we prioritize refutations of counterexamples that
are causally connected to the safety property.

Baseline Implementations. The implementation of the algorithm of [20] by
its authors is called ProphIC3. Unfortunately, we found that this tool produced
incorrect instrumented programs in some cases. Because of this, we implemented
their algorithm as described in [20], using the same underlying tools and prepro-
cessing as CondHist. We will call this implementation UncondHist1. It differs
from CondHist in several ways. First, it captures a value xj at time n using a
sequence of n − j unconditional history variables each delaying the value by one
step. Second, it produces axiom violations by enumerating and evaluating all of

336 C. Vick and K. L. McMillan

the axiom instances that can be constructed using index terms, select terms
and constArr terms in the BMC formula. This process continues until all BMC
counterexamples at depth n are eliminated, at which point the UNSAT core is
used to select a sufficient set of instances. Additionally, for each BMC counterex-
ample, we select just the i-local violations if there are any, to avoid generating
unnecessary prophecy. We implemented only one version of the algorithm, the
so-called “strong abstraction”, which abstracts only the array theory and not
the “weak abstraction” which also abstracts the equality axioms for equality
between arrays. This version gives a more direct comparison to CondHist.

We also implemented a version of our algorithm UnCondHist2 that is iden-
tical to CondHist except that it generates unconditional history variables in
the same way as UnCondHist1.

8.2 Experiments

For evaluation, we use as a benchmark a set of 193 problems from the distribution
of the FreqHorn tool [9]. These represent properties of small array manipulating
programs that typically have from one to three loops. Single loop benchmarks are
grouped in the Single category, totaling 118 benchmarks, while all other bench-
marks are grouped in the Multi category, totaling 75 benchmarks. All require
quantifiers in the inductive invariant. This tests the ability of the algorithm to
avoid divergence by introducing suitable history and prophecy variables, though
it does not address the question of scalability.

On this benchmark set, we compare against the performance of the algo-
rithm of [20]. This tests the hypothesis that conditional history variables are
more effective in preventing divergence than unconditional history variables.
We should note, however, that even in cases where the generated history and
prophecy variables allow an unquantified inductive invariant, the underlying
model checker (IC3ia) may still diverge. Improvements in the model checker
could improve the performance of all of the algorithms that we compare.

We applied the tools on a AWS EC2 instance, with 8 GB of physical memory,
using a timeout of 120 s and no limit on memory usage.

Results. Table 1 shows the benchmark results. For each tool we show the num-
ber of solved problems and the number of timeouts. In both “Solved” columns
the number to the left represents the total number of benchmarks solved and
the number to the right, the number of those solutions which required auxiliary
variables. We observe that the new algorithm solves a substantially larger num-
ber of problems than either baseline. This supports a positive answer to research
question 2. We noted that, of the 30 problems solved by UnCondHist1 using
history and prophecy variables, all 30 were solved by UnCondHist2 with no
history and prophecy variables (not counting prophecy variables introduced by
Herbrandization). A possible explanation of this is that history variables in the
method of [20] are serving only to compensate for poor choices of axiom viola-
tions. We note that all the single-loop probems that we solved can be handled
by Herbrandization alone.

Synthesizing History and Prophecy Variables 337

Table 1. Comparison of tools on benchmark problems. Here, “single” refers to single-
loop benchmarks and “multiple” to multiple-loop benchmarks. The notation x | y means
that x problems were solved, and among those, y problems used history and prophecy
variables.

Tool Single
solved

Single
timeouts

Multi
solved

Multi
timeouts

CondHist 95 | 0 23 66 | 29 9

Freqhorn 81 37 60 15

Quic3 81 37 36 39

GSpacer 59 59 30 45

UnCondHist1 59 | 23 59 28 | 7 47

UnCondHist2 95 | 0 23 28 | 0 47

The table also shows results for two existing tools that generate quantified
invariants without auxiliary variables. These are Freqhorn [9], Quic3 [13] and
GSpacer [18], two versions of Spacer [17] extended with universally quantified
predicates. These tools have both performed well recently in the arrays category
of CHC-COMP [29], the CHC solving competition. We observe that Cond-
Hist outperforms state-of-the-art CHC solvers, supporting a positive answer to
research question 1.

On the 29 problems solved by CondHist using at least one auxilary vari-
able, there were on average 3.89 refinements, with 1.24 history and prophecy
variables. On the 30 benchmarks solved by UnCondHist1 using at least one
auxiliary variable, there were on average 6.7 refinements, using 5.5 history and
prophecy variables2. This suggests that the property-driven refutation heuris-
tic produces more relevant refinements than the UNSAT core-based heuristic of
ProphIC3 [20].

9 Conclusion and Future Work

We introduced an approach to the introduction of auxiliary variables that can
allow array-manipulating programs to be verified using quantifier-free invariants.
This makes it possible to apply existing model checkers and CHC solvers that
cannot generate quantified invariants. The two key aspects of this approach are
conditional history variables and property-directed refutations of counterexam-
ples.

Experimentally, we observed that the prior approach using unconditional
history variables (i.e., fixed delays) is not effective for verifying programs with
arrays when prophecy is actually required. This is not surprising, since most
loops in such programs are unbounded. This means that for any finite delay,

2 For a benchmark-by-benchmark comparison of all the tools that were evaluated, see.
https://github.com/cvick32/ConditionalHistory/tree/main/paper-results.

https://github.com/cvick32/ConditionalHistory/tree/main/paper-results

338 C. Vick and K. L. McMillan

we can construct a long enough loop execution that the finite-delay history
variable becomes irrelevant. In our observation, with more relevant choices of
axiom violations, unconditional history variables were almost never helpful. On
the other hand, the conditional history variable approach can effectively use
prophecy to solve problems like the examples in Sect. 1 that the unconditional
approach cannot solve.

There are several limitations of the current approach to be addressed in future
work. The method applies to theories that can be axiomatized in what we called
“trigger form”. This applies to the array theory but other theories will likely
require some generalization of the method. Also, for properties with quantifier
alternation, we will have to instantiate quantifiers in the property. The current
method does not handle this. Moreover, it is easy to construct problems for which
history and prophecy are insufficient to eliminate quantifiers from the invariant.
For these cases, auxiliary variables may still be helpful, but we cannot make
do with a quantifier-free invariant generator and the current approach will not
work with a quantified invariant generator. Despite this, it is interesting that the
method outperforms theoretically more capable quantified invariant generators
on small programs. More engineering work is needed to test the scalability of
the approach on problems of realistic size.

Finally, of course, conditionally storing the value of an existing term in the
program is common in manual proofs, but still represents a small class of possi-
ble history variables. Synthesizing history variables from a richer template may
present difficult heuristic challenges.

From a broader perspective, the synthesis of new terms in a proof is a key
strategy (perhaps the key strategy) in decomposing proofs into simpler lemmas
and is known to reduce proof complexity for propositional logic. However, it
has proven very challenging to automate. Despite limitations in the form of
history variables, we consider the general approach of ProphIC3 [20] to be
significant and promising. We believe that history variable synthesis in general
is an important topic for future research.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.
Sci. 82(2), 253–284 (1991)

2. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 8

3. Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized veri-
fication of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD
2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30494-4 27

4. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0 19

https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1007/978-3-642-31759-0_19

Synthesizing History and Prophecy Variables 339

5. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

6. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4 15

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

9. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 14

10. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Log. Methods Comput. Sci. 6(4)
(2010)

11. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to ver-
ify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8 9

12. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized
systems. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp. 338–348.
ACM (2016)

13. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. CoRR,
abs/2106.00664 (2021)

14. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, 14–16 January 2004, pp. 232–244. ACM (2004)

15. Karbyshev, A., Bjørner, N.S., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM 64(1),
7:1–7:33 (2017)

16. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quantified sepa-
rators. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, New York, NY, USA, pp. 703–
717. Association for Computing Machinery (2020)

17. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs (2014)

18. Krishnan, H.G.V., Gurfinkel, A.: CHC-COMP 2020 submission (2020)
19. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstrac-

tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 22

20. Mann, M., Irfan, A., Griggio, A., Padon, O., Barrett, C.: Counterexample-guided
prophecy for model checking modulo the theory of arrays. In: TACAS 2021. LNCS,

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-76384-8_9
https://doi.org/10.1007/978-3-540-24622-0_22

340 C. Vick and K. L. McMillan

vol. 12651, pp. 113–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72016-2 7

21. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L.,
Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2 30

22. McMillan, K.L.: Verification of infinite state systems by compositional model check-
ing. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 17

23. McMillan, K.L.: Parameterized verification of the FLASH cache coherence protocol
by compositional model checking. In: Margaria, T., Melham, T. (eds.) CHARME
2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44798-9 17

24. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

25. McMillan, K.L.: Eager abstraction for symbolic model checking. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 191–208. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 11

26. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 18

27. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

28. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 7

29. Rümmer, P.: Competition report: CHC-COMP-20. Electron. Proc. Theor. Comput.
Sci. 320, 197–219 (2020)

https://doi.org/10.1007/978-3-030-72016-2_7
https://doi.org/10.1007/978-3-030-72016-2_7
https://doi.org/10.1007/3-540-48153-2_30
https://doi.org/10.1007/3-540-48153-2_17
https://doi.org/10.1007/3-540-44798-9_17
https://doi.org/10.1007/3-540-44798-9_17
https://doi.org/10.1007/978-3-319-96145-3_11
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/3-540-45319-9_7

Solving Constrained Horn Clauses
over Algebraic Data Types

Lucas Zavalía , Lidiia Chernigovskaia , and Grigory Fedyukovich(B)

Florida State University, Tallahassee, FL, USA
lrzavalia@fsu.edu, lidiya.chernigovskaya@gmail.com, grigory@cs.fsu.edu

Abstract. Safety verification problems are often reduced to solving the
satisfiability of Constrained Horn Clauses (CHCs), a set of constraints
in first-order logic involving uninterpreted predicates. Synthesis of inter-
pretations for the predicates, also known as inductive invariants syn-
thesis, is challenging in the presence of Algebraic Data Types (ADTs).
Defined inductively, ADTs describe possibly unbounded chunks of data,
thus they often require synthesizing recursive invariants. We present a
novel approach to this problem based on functional synthesis: it attempts
to extract recursive functions from constraints that capture the semantics
of unbounded computation over the chunks of data encoded in CHCs.
Recursive function calls are beneficial since they allow rewriting the con-
straints and introducing equalities that further can be simplified away.
This largely simplifies the problem of generating invariants and lets
them have simple interpretations that are recursion-free at the highest
level and have function calls. We have implemented the approach in a
new CHC solver called AdtChc. Our algorithm relies on an external
automated theorem prover to conduct proofs by structural induction, as
opposed to a black-box constrained solver. With two alternative solvers
of choice, AdtInd and Vampire, the new toolset has been evaluated on a
range of public benchmarks, and it exhibited its strengths against state-
of-the-art CHC solvers on particular benchmarks that require recursive
invariants.

1 Introduction

The trend in programming languages to organize data recursively originates from
the fundamentals of logics, and it was first proposed as an alternative to pointers
by Hoare [21] almost half a century ago. Since then, algebraic data types (ADTs)
found their use as a modeling language in various software verification prob-
lems and enjoy tailored decision procedures [3,45–47,55]. With recursive func-
tions over ADTs, verification conditions have a compact and elegant structure
and can be handled by structural induction. However, induction-based meth-
ods often require adding helper lemmas that themselves require proofs [48,59].
Recent approaches to lemma synthesis are based on Satisfiability Modulo The-
ories (SMT) and suggest using proof-failure generalization and Syntax Guided

The second author is currently employed at JetBrains N.V., The Netherlands.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 341–365, 2023.
https://doi.org/10.1007/978-3-031-24950-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_16&domain=pdf
http://orcid.org/0000-0003-0549-2238
http://orcid.org/0000-0002-1037-9056
http://orcid.org/0000-0003-1727-4043
https://doi.org/10.1007/978-3-031-24950-1_16

342 L. Zavalía et al.

Synthesis (SyGuS) [1]. It still needs improvements both in terms of scalability
and expressiveness of the supported formulas.

Constrained Horn clauses (CHCs) over ADTs serve as a model for recursive
computation and enable formulating safety verification tasks. CHCs make use of
uninterpreted predicate symbols and a set of first-order logic implications that
can use these predicates either in their left-hand side, right-hand side, or in
both. Cyclic logic relations, formulated this way, correspond to loops and recur-
sive functions. Interpretations to predicate symbols that satisfy all implications,
can be treated as inductive invariants. In fact, the applicability of CHCs goes
far beyond deductive verification conditions over traditionally defined recursive
data structures. In software model checking [25], ADTs might encode strings,
in synthesis problems [32] – the unrealizability, in relational verification [16] –
simulation relations. That is, a CHC solver gradually becomes a push-the-button
technique applicable in many domains, and thus it exempts the user from doing
any specific preparation of the code and providing insights to the solver. A
richer arsenal of low-level approaches that a CHC solver might employ is there-
fore required, e.g., new approaches to functional synthesis that are capable of
extracting a function definition from a declarative specification.

Although there are many CHC solvers [2,5,8,9,13,19,28,29,34,38,40,41,44,
51,57,61] available for various SMT theories (e.g., integer/real arithmetic, bitvec-
tors, and/or arrays), only a few solvers, e.g., [11,24,52], can actually support
ADTs. In fact, there is a big challenge while solving CHCs for ADTs. Because
ADTs are defined inductively, all the functions that process them need to be
recursive too. To capture the behavior of these recursive functions over ADTs,
invariants often need to describe properties over all elements of these ADTs.
Specifically, this often requires the invariant to be recursive itself, thus allowing
one to express properties over potentially unbounded data structures. However,
when validating such invariants, a (set of) universally quantified formula(s) over
ADTs needs to be constructed, and an automated proof checker should conduct
the validity proofs by structural induction.

Our contribution lies in the approach to generate recursive invariants over
inductively defined data structures that capture the semantics of recursive func-
tions precisely. In particular, our approach seeks to extract a functional repre-
sentation from the CHC constraints and exploit an automated theorem prover
to validate this functional representation with respect to the given safety prop-
erty. Our solver called AdtChc builds on top of recent advances of automated
theorem proving [36,59] that are capable of validating the interpretations con-
structed by the invariant synthesizer on the fly. Provers split a goal into a base
case and an inductive step, prove each of them separately, generate and exploit
inductive hypotheses. Whenever needed, provers can also generate a set of helper
lemmas to be used for future subgoals.

Our secondary contribution in this paper is in the amendments to the
AdtInd [59] prover that is the primary backend solver of AdtChc. We present
two new features of AdtInd that help in its proving process: generation of helper
lemmas from common subterms and filtering possibly invalid lemmas. These fea-

Solving CHCs over ADTs 343

tures are needed when a current subgoal requires an additional induction, which
could be expensive. We thus synthesize a candidate lemma and attempt to prove
it by induction, such that if it is successful then the lemma helps to prove the ulti-
mate goal. However, during the synthesis, there are often many invalid lemma
candidates. Our approach thus relies on a filtering procedure to remove some
lemma candidates quickly.

AdtChc and AdtInd are built on top of the Z3 SMT solver [12]. In addition
to ADTs, they support constraints in linear arithmetic and uninterpreted func-
tions. We have evaluated AdtChc on a range of public benchmarks originated
from the safety verification tasks written in functional programming languages.
We have compared AdtChc to the top of CHC solvers presented in the CHC-
COMP [50], namely Eldarica [24], HOICE [8], PCSat [52] and Racer [27]
(implemented on top of GSpacer [37]). The experiments show that our tool is
able to solve more benchmarks than competitors.

2 Preliminaries

A many-sorted first-order theory is defined as a tuple 〈S ,F , P 〉, where S is a set
of sorts, F is a set of function symbols, and P is a set of predicate symbols,
including equality. A formula ϕ is called satisfiable if there exists a model where
ϕ evaluates to true. If every model of ϕ is also a model of ψ, then we write
ϕ =⇒ ψ. A formula ϕ is called valid if true =⇒ ϕ.

Definition 1 (ADT). An ADT is a tuple 〈s, C〉, where s is a sort and C is a
set of uninterpreted functions (called constructors), such that each c ∈ C has
some type A → s for some A. If for some s, A is s-free, we say that c is a base
constructor denoted bcs (otherwise, an inductive constructor denoted ics).

In this paper, we assume that all ADTs are well-defined in the sense that
for each a of sort s, if a is constructed using some ci ∈ C, i.e., ∃b . a = ci(b) is
true, then for all other constructors cj ∈ C \ {ci}, ∀b . a 	= cj(b) is true. Well-
definedness allows for pattern matching, which is the key vehicle for defining
recursive functions over the ADT.

Example 1. A single-linked list L over elements of sort Z is defined as nil (i.e.,
a base constructor) or cons (i.e., an inductive constructor that takes as input an
integer, called the head, and another list, called the tail). Examples of recursive
functions over lists include the length, append, and reverse. We use a mnemonic
notation to represent lists as sequences of elements, i.e., 〈1, 2〉 stands for a list
constructed by cons(1, cons(2,nil)).

For proving the validity of a formula ∀x.ϕ(x), where variable x has sort s,
we follow the well-known principle of structural induction. That is, we prove
independently the base case (i.e., that ϕ(bcs) holds), then generate inductive
hypotheses (i.e., formulas of form ϕ(xi) for fresh variables xi, which correspond
to sort s) and prove the inductive step, (i.e., that all ϕ(x1), . . . , ϕ(xn) imply
ϕ(ics(y1, . . . , yk, x1, . . . , xn, yk+1, . . . , ym))), where yi has sort si.

344 L. Zavalía et al.

Throughout the paper, we are interested in determining the validity of for-
mulas of the form ∀x.ϕ(x), where ϕ may have nested universal quantifiers:

∀x.
(
∀y.ψ(y)

)
∧ . . . ∧

(
∀z.γ(z)

)
=⇒ θ(x) (1)

Formulas ψ, . . . , γ on the left side of the implication (1) are called assump-
tions. If an assumption is not implied by any combination of other assumptions,
it is called an axiom (otherwise, a lemma). The formula θ on the right side of
the implication is called a goal.

Definition 2 (CHC). Assume that X is a countable set of variables associated
with a sort S . A first-order language A of quantifier-free formulas over F , P ,
and X is called a constraint language. A formula ϕ ∈ A is called a constraint. A
constrained Horn clause (CHC) is a formula in first-order logic of the form:

ϕ ∧ r1(x1, . . . , xn) ∧ . . . ∧ rp(y1, . . . , yk) =⇒ H

where we consider a fixed set R of uninterpreted relation symbols, such that
R ∩ (F ∪ P) = ∅. Expression H, called the head of the clause, is either an
application r0(z1, . . . , zm) or constant ⊥. Each ri is an uninterpreted relation
symbol (ri ∈ R) and ϕ is a constraint. Each xi, yj , and zk is a variable from X .

The left side of a CHC C is called the body. If there are no symbols from R in the
body of C, then C is called a fact. If the head of C is ⊥, then it is called a query.
Otherwise, C is called inductive. If an inductive CHC contains one application of
an uninterpreted relation symbol in the body, it is called linear, and non-linear,
if more than one.

Definition 3. Given a set S of CHCs and r ∈ R , the definitive rules (denoted
just rules) of r is a subset of S, such that:

rules(S, r) def= {C ∈ S | head(C) = r(·)}
Definition 4. A system of CHCs S over R is called satisfiable if there exists an
interpretation I for each uninterpreted relation symbol from R in A, that make
all CHCs from S valid. It defines a solution of the system, also referred to as
inductive invariant.

Technically Definition 4 needs substitutions defined as follows. Let ϕ be a
formula, and I be an interpretation for R . Then a substitution is the formula
ϕ[I/R] obtained from ϕ by replacing each occurrence of a formula of the form
r(x1, . . . , xn) by I (r)(x1, . . . , xn), where r ∈ R . We naturally generalize this
notation to sets of formulas (e.g., CHCs).

Systems of CHCs serve as compact representations of symbolic program
encodings (i.e., for any number of loop iterations and any recursive depth).
Automated verification is then reduced to determining the satisfiability of the
corresponding systems of CHCs, and their solutions represent safe inductive
invariants, i.e., formulas that over-approximate the sets of reachable states, but

Solving CHCs over ADTs 345

precise enough to prove unreachability of the error state. In this paper, we focus
on finding recursive invariants for CHC systems, having no assumptions about
the programming language used for writing the original program (thus, the app-
roach can be used at the backends of verification tools such as [25,39]).

3 Recursive Functional Synthesis

The problem of functional synthesis (FS) is intuitively formulated as extract-
ing a function implementation from its declarative specification. More formally,
the problem is concerned with determining the satisfiability of a second-order
formula ∃f.∀�x.p(f, �x) over the uninterpreted function symbol f .

3.1 From CHC to FS

When it comes to representing declarative specification over ADTs, it is con-
venient to rely on CHCs over auxiliary uninterpreted predicates to represent
unbounded computation over the structure of these ADTs. At the same time,
if we assume that interpretations of predicates can only involve equalities and
uninterpreted function symbols, then conjunctions of (universally quantified)
CHCs can be rewritten to FS tasks that, if solved, provide solutions to the ini-
tial CHC tasks. In general, answering FS queries is difficult (undecidable), but if
the structure of formulas is known, some successful heuristics can apply. In the
rest of the section, we formulate a syntactic fragment and a tailored heuristic
for solving FS problems over ADTs.

Definition 5. Given a set of CHCs S over a single relational symbol r, we say
that a set of (universally quantified) first-order formulas Sf,�x,y is CHC-inspired
if Sf,�x,y

def= {c | c[r/λ�x, y . y = f(�x)] ∈ S}.

That is, a CHC-inspired set of formulas can be constructed from CHCs after
replacing all uninterpreted predicates by equalities involving uninterpreted func-
tions. In the following, we assume we are given a set of CHCs S over some r, all
the CHCs are definitive (recall Definition 3), and the are implicit syntax assump-
tions about the shape of CHCs (which we overcome in Sect. 3.2). Then, we show
how we can mechanically construct a CHC-inspired set after some analysis and
transformation of the CHCs.

Definition 6. Let,

– r be a relation with arity n,
– i be a natural number such that i < n,
– C be a set of constructors such that T = 〈s, C〉 is an ADT, and
– D = {B =⇒ r(a1, ..., an)} be a set of definitive CHCs.

We define Ci to be the set of i-th arguments of heads of CHCs in D. That is,

Ci = {ai | (
B =⇒ r(a1, ..., aN)

) ∈ D}.

We say that the set D is 〈T, r, i〉 − complete if:

346 L. Zavalía et al.

1. |Ci| = |C|,
2. For each constructor c ∈ C there is an element c(·) ∈ Ci.

Note: this means there is a bijection between the set Ci and the set of construc-
tors C for the ADT, T = 〈s, C〉.
We call such argument position i an inductive input argument position. Intu-
itively, a set of implications should have a representative for each constructor of
some ADT among arguments of the head, and the argument position should be
the same for all the implications. It is useful in the next phase of our functional
synthesis procedure: since targeting the construction of recursive definitions, we
need to separately construct the base and inductive cases to satisfy all construc-
tors of the inductive input argument.

Example 2. The CHCs below over the relational symbol p represent the com-
putation of the length and the sum of a linked list using a single traversal of the
data structure.1

� = 0 ∧ s = 0 =⇒ p(nil , �, s)
p(xs ′, �′, s′) ∧ � = �′ + 1 ∧ s = s′ + x =⇒ p(cons(x, xs ′), �, s)

This set is a set of definitive CHCs since the head of each implication has a
relation symbol. Now we define the set C1 = {nil , cons(x, xs ′)}. Since C is defined
as C = {nil , cons} it is clear that |C1| = |C|. Similarly it is clear to for all
elements of C0 there is a corresponding element in C. Thus we say that this set
of CHCs is 〈L, p, 1〉-complete.

The corresponding CHC-inspired set Sf,xs,s allows us to embed a recursive
function for computing a sum into the relation p:

� = 0 ∧ s = 0 =⇒ s = f(nil)
s′ = f(xs ′) ∧ � = �′ + 1 ∧ s = s′ + x =⇒ s = f(cons(x, xs ′)) (2)

Similarly, we can define another CHC-inspired set Sg,xs,� for a g function for
computing the length of the list. Functions f and g can then be discovered
separately and they do not contradict each other in a sense that the conjunction
s = f(xs) ∧ � = g(xs) is an invariant for the initial CHC system. Solutions for
the FS problems ∃f .

∧
i

Sf,xs,s and ∃g .
∧
i

Sg,xs,�, respectively, are as follows:

f = λxs.

{
0 if xs = nil
f(xs ′) + x if xs = cons(x, xs ′)

g = λxs.

{
0 if xs = nil
g(xs ′) + 1 if xs = cons(x, xs ′)

(3)

1 Although it is conventional in practice to compute the length and the sum in different
traversals, it is not necessarily more efficient to do it this way. Also, combining
traversals might be needed in verification purposes, see e.g. [42].

Solving CHCs over ADTs 347

3.2 The Eq-Prop Transformation

Our approach to recursive functional synthesis is driven by a transformation
of the formulas originated from the given CHCs. The key idea is to ultimately
rewrite the head by as many equalities from the body, aiming to produce a
recurrence relation. We introduce an eq-prop transformation whose purpose
is twofold: by moving constraints from left to right, we 1) aim at constructing
an equality having two (or more) applications of the function symbol f (but
with different arguments), and 2) normalize the given CHCs with respect to the
Definition 6, thus facilitating the inductive input arguments detection.

More formally, if the head H has an instance of term b, and the body has
equality a = b, then the transformation replaces b by a in H and removes a = b
from the body:

(a = b) ∧ C =⇒ H(b, ·)
C =⇒ H(a, ·) [eq-prop]

Example 3. Applying eq-prop once to the formulas below would replace xs
in the heads of both implications and yield (2):

xs = nil ∧ � = 0 ∧ s = 0 =⇒ s = f(xs)
s′ = f(xs ′) ∧ xs = cons(x, xs ′) ∧ � = �′ + 1 ∧ s = s′ + x =⇒ s = f(xs)

Further, applying eq-prop two more times sequentially replaces s and then s′

in the heads, yielding:

� = 0 =⇒ 0 = f(nil)
� = �′ + 1 =⇒ f(xs ′) + x = f(cons(x, xs ′))

The remaining formulas in the bodies are then removed by quantifier elimination,
and the resulting recurrence relation for f (also, an interpretation for the function
symbol) can be used to extract function interpretation (3).

Theorem 1. Given a 〈T, r, i〉-complete set of CHCs S for some r, let Sf,xs,s be
its CHC-inspired set of formulas. If applying eq-prop (possibly, multiple times)
to Sf,xs,s yields a recurrence relation for f , then a solution for the functional
synthesis problem ∃f .

∧
i

Sf,xs,s can be extracted from the recurrence relation.

The proof of the theorem follows from definitions and the soundness of eq-

prop: by propagating equalities and rewriting the formula at the right, we essen-
tially perform quantifier elimination, thus preserving the satisfiability of the for-
mula. When checking the validity of the functional synthesis solution on the
initial CHCs, the bodies of CHC will compensate for the equalities that were
eliminated during eq-prop application. Lastly, Definition 6 guarantees that the
constructed recurrence relation is well-formed and its branches do not contradict
each other.

348 L. Zavalía et al.

4 Recursive Invariants

Solving arbitrary CHCs over ADTs is challenging. Because of the unbounded
nature of data structures, the creation, modification, or folding of them requires
the introduction of multiple recursive functions, as well as proving inductive
properties about them. In particular, CHC may not only represent function
definitions, but also assumptions/assertions about data and reachability infor-
mation.

Example 4. A CHC system below gives a number of constraints over the theory
of L:

xs = nil =⇒ app(xs, ys, ys)

xs = cons(x, xs ′) ∧ zs = cons(x, zs ′) ∧ app(xs ′, ys, zs ′) =⇒ app(xs, ys, zs)

app(xs, ys, rs) ∧ app(ys, zs, ts) ∧ app(xs, ts, us) =⇒ app(rs, zs, us)

xs = nil =⇒ rev(xs, xs)

xs = cons(x, xs ′) ∧ rev(xs ′, ys ′) ∧ app(ys ′, cons(x,nil), ys) =⇒ rev(xs, ys)

rev(xs, xs ′) ∧ rev(ys, ys ′) ∧ app(xs ′, ys ′, zs ′)∧
app(ys, xs, rs) ∧ rev(rs, rs ′) ∧ ¬(zs ′ = rs ′) =⇒ ⊥

The first two CHCs define the append of one list xs to another list ys. The first
CHC gives the base case of app, i.e., if xs is empty then the result equals ys.
(Technically, predicate app has arity three, and the first two arguments of each
app(·, ·, ·) represent inputs, and the last one represents the output. Note that
the last two arguments in the head of the first CHC are the same, indicating
that appending nil to any ys does not change ys.) The second CHC gives the
inductive case of app, i.e., to append some cons(x, xs ′) to some ys, we first need
to append xs ′ to ys and then to cons x to the result.

The third CHC gives an additional associativity-like constraint over app.
Note that this can be derived from the previous CHCs and does not affect the
satisfiability of the CHC system. We give it mainly for the following reasons: 1)
the provided CHC system is syntactically a feasible input to our algorithm, and
it still needs to be handled, and 2) our algorithm is capable of separating such
CHCs from the remaining definitive CHCs for app and further solving the FS
problem.

The next two CHCs describe the process of reversing a list using app. Again,
the base rule applies to an empty list, and the inductive rule applies to some
cons(x, xs ′), i.e., xs ′ needs to be reversed first and then placed in the resulting
list before x. Lastly, the query CHC gives a constraint on both app and rev:
given lists xs and ys, and their reverses xs ′ and ys ′, then appending xs ′ to ys ′

yields the same result as reversing the append of ys and xs.

We target the invariant generation via recursive functional synthesis. Note
that this is different from a direct way of generating recursive invariants, i.e.,
where an interpretation of the predicate has applications of the same predicate
(see e.g., [16]). Finding such interpretations, however, could be tricky in the cases

Solving CHCs over ADTs 349

of nonlinear or nested recursion. We propose to extract function definitions from
CHCs and extend the syntax of the underlying constraint language for each CHC
problem by these functions, thus allowing us to formulate invariants using the
recursive functions.

Example 5. Recall Example 4. The CHC system is satisfied by the following
invariants:

app �→ λxs, ys, zs . zs = fapp(xs, ys)
rev �→ λxs, ys . ys = frev (xs)

where:

fapp = λxs, ys.

{
ys if xs = nil
cons(x, fapp(xs ′, ys)) if xs = cons(x, xs ′)

frev = λxs.

{
nil if xs = nil
fapp(frev (xs ′), cons(x,nil)) if xs = cons(x, xs ′)

5 Solving CHCs over ADTs

In this section we introduce our main contribution: an algorithm to solve CHCs
over ADT using functional synthesis.

5.1 Challenges of Recursive Functional Synthesis When Dealing
with Arbitrary CHCs

When dealing only with a subset of definitive rules, Recursive Functional Syn-
thesis (RFS) is straightforward. In general, CHC solving may provide additional
challenges due to 1) presence of multiple relations, 2) additionally provided lem-
mas (syntactically, in the form of definitive rules, but outside of any 〈T, r, i〉-
complete sets) that need to be validated, and 3) queries that need to be vali-
dated.

However, the first obstacle for applying any RFS reasoning is the possible
uncertainty when deciding which argument of an uninterpreted relation symbol
should be picked as a return argument. We can however apply eq-prop multiple
times and eliminate as many equalities from the body of a CHC as possible,
and then proceed to guessing an equality such that eq-prop could be applied
again. This is achieved by introducing a fresh uninterpreted function symbol
and using it to replace an uninterpreted relation symbol, thus posing an RFS
query. Rule new-fun formulates precisely how this transformation is applied to
a CHC with applications of predicate r in the body and in the head. Additionally,
to guarantee that eq-prop can be applied afterwards, our algorithm picks a
common subterm ai (if it exists) among arguments of r:

[r(a1, .., ai, .., an)∧]B =⇒ r(b1, .., bi, .., bn)

[ai=fr,i(a1, .., ai−1, ai+1, .., an)∧]B =⇒ bi=fr,i(b1, .., bi−1, bi+1, .., bn)
[new-fun]

350 L. Zavalía et al.

Here, n = arity(r) and fr,i is a fresh symbol from F . Note that this transfor-
mation does not guarantee success, i.e., it may make the system of constraints
imposed by the CHC system unsatisfiable. However, the opposite claim is more
optimistic: if after applying this transformation, all implications in the CHC
system are valid, then the synthesized predicate interpretation:

λx1 . . . xn . xi = fr,i(x1 . . . xi−1, xi+1, . . . xn)

for some interpretation of fr,i can be used in the rest of the CHC solving process.
In other words, after applying new-fun, we update the current solution of the
CHC system to map I(r) = λx1 . . . xn . xi = fr,i(x1 . . . xi−1, xi+1, . . . xn), then
apply eq-prop again and substitute the interpretations from I to predicates in
the whole CHC system.

5.2 Core Algorithm

Our algorithm takes a system of CHCs S and a set of uninterpreted relation
symbols R as input and determines the satisfiability of S. The main idea behind
creating a recursive interpretation for an uninterpreted predicate is to replace it
with an uninterpreted function, and then derive the definition for these functions.
We require identifying the inductive input argument and the return argument
among the arguments of the uninterpreted predicate. To well-define a recursive
function, the inductive input argument should have the ADT sort, and we should
select enough CHCs to cover functionality for the base and recursive cases.

The first step of the algorithm (line 1) is the ordering of uninterpreted pred-
icates R so that if ri will be processed before rj , then ri must not depend on rj .
This partial ordering enables us to use the already discovered interpretations of
dependent predicate.

Definition 7 (Predicate Dependency Ordering). Let rules(S, r) be as
defined in Definition 3, given ri, rj ∈ R , we say that ri depends on rj (writ-
ten ri ≺ rj) if:

– ri 	= rj , and
– rj ∈ rules(S, ri), or there exists another rk ∈ R , such that ri ≺ rk and

rk ≺ rj , and
– ri 	∈ rules(S, rj), and 	 ∃ rk ∈ R such that rj ≺ rk and rk ≺ ri.

Example 6. The system of CHCs in Example 4 has two uninterpreted relation
symbols, app and rev, and the inductive CHC for rev applies app in the body,
making rev ≺ app. The algorithm thus finds an interpretation for app first and
then proceeds to rev.

If all predicates in the CHC system can be ordered, the algorithm then pro-
ceeds to synthesizing an implementation for every relation symbol, beginning
with the ones that do not have any dependencies (line 2). At each iteration of
this loop, the algorithm aims at synthesizing an interpretation for a single rela-
tion r ∈ R . It maintains an invariant (line 4) that all relation symbols except

Solving CHCs over ADTs 351

Algorithm 1: ADT-CHC: Solving CHCs over ADTs.
Input: CHC system S, uninterpreted predicates symbols R
Output: res ∈ {sat,unknown}, interpretations I for R

1 order ← OrderPredicates(R);
2 for (r ← top(order); r ∈ order ; r ← next(order)) do
3 rules ← {C ∈ S | head(C) = r(·)};
4 assert ∀r′ ∈ R \ {r} . if r′ is used in rules then I (r′) is defined;

5 rules ← rules[I/R];
6

(
rules ← eq-prop(rules)

)∗;
7 if i ∈ ∅ then
8 return unknown;
9 let rulesT be a 〈T, r, i〉-complete subset of rules for some T ;

10 for j ∈ [1, i) ∪ (i, arity(r)] do
11 let C′ be the result of applying eq-prop ◦ new-funj

to some C ∈ rulesT such that C′ �= C;
12 if C′ ∈ ∅ then continue;

13 sol ← λx1 . . . xn . xj = fr,j(x1 . . . xj−1, xj+1, . . . xn);
14 if I (r) is not defined then I (r) ← sol ;
15 else I (r) ← λx1 . . . xn . I (r)(x1 . . . xn) ∧ sol ;
16 rules ′ ← rules[I (r)/r];
17 let rules ′

T be a 〈T, r, i〉-complete subset of rules ′ for some T ;
18 D ← ∧

C∈rules′
T

∀vars(C) . C;

19 if isValid(Lemmas ∧ D =⇒ rules ′) then
20 Lemmas ← Lemmas ∧ D;
21 else
22 return unknown;
23 assert ∀r ∈ R =⇒ I(r) is defined;

24 if isValid
(
Lemmas =⇒ apply

({C ∈ S | head(C) = ⊥}, I
))

then
25 return sat;
26 return unknown;

r that occur in the definitive rules of r are already mapped to their interpre-
tations, i.e., that all previous iterations of the loop succeeded. This enables us
to use all interpretations (line 5): we simply replace all predicate symbols in all
CHCs with the corresponding interpretations.

For the further processing of rules of r, we require the rules to determin-
istically identify the branches of the recursive function, denoted fr,i, that cor-
responds to r. To precisely determine that, the algorithm first identifies the
inductive input argument of fr,i. It applies rule eq-prop (line 6 which uses the
Kleene star notation to reflect the continuous nature of the rule application until
a fixedpoint is reached) for every rule in rules. If no inductive input argument
is found (line 7), the algorithm cannot proceed. Otherwise, it attempts to find a
return argument.

352 L. Zavalía et al.

The nested loop in lines 10–15 approaches various possible return arguments
of r (i.e., excluding the inductive input arguments). It searches for an implica-
tion C if rulesT where the composition of new-fun and eq-prop successfully
applies, i.e., the body permits a replacement of some relation symbol by a new
equality. This gives a new interpretation of r as a conjunction of equalities over
new function symbols fr,i (line 15) that is recorded in I. A definition of fr,i is
created by rewriting this interpretation in all rulesT (line 18) and universally
quantifying all free variables. To check the correctness of the constructed defini-
tions and interpretations for r, the algorithm uses all the remaining rules after
the substitution and check their actual validity using a theorem prover (line 19).

Example 7. In order to confirm that the third CHC in rules(S,app) is valid
after the substitution of the interpretation that uses the definition of fapp in
Example 5, we prove the validity of the following formula (which succeeds by
induction on xs):

∀ys . fapp(nil , ys) = ys∧
∀xs, ys, x . fapp(cons(x, xs), ys) = cons(x, fapp(xs, ys)) =⇒

∀xs, ys, rs, zs, ts, us, fapp(xs, ys) = rs ∧ fapp(ys, zs) = ts∧
fapp(xs, ts) = us =⇒ fapp(rs, zs) = us)

Interestingly, this query can be recycled in the remainder of the algorithm to
accelerate the solving process of the query.

A successful ending of the algorithm is when the theorem prover returns
valid for all the queries.

Theorem 2. If the algorithm terminates with the sat result (line 25), the input
CHC system is satisfiable.

The theorem can be proved by observing that the algorithm succeeds when
all interpretations are found and a recursive function is synthesized for each
predicate in R . The soundness of interpretations with respect to intermediate
goals is captured in the nested loop (line 19), and if the theorem prover does
not succeed for some goal, the next possible return argument is considered. If no
suitable return argument is found, then the algorithm does not find an interpre-
tation: it either terminates with an unknown, or violates either of assertions in
lines 4 or 23 (and thus, terminates with an unknown too).

Lastly, note that the backtracking in our pseudocode is simplified away for
demonstration reasons. In fact, it could be the case that for a couple of relations
rk ≺ rj , there are two valid return arguments (or inductive input arguments)
for an interpretation of rj , but only one of them works for rk. In this case,
the algorithm needs to backtrack from processing rk to rj and re-synthesize
the interpretation and the recursive function w.r.t. another argument(s). In our
pseudocode, this can be simulated by running the algorithm again and making
different decisions in lines 19, and/or 11, or being more selective in the loop in
line 10. Evidently, in practice, it can be implemented in a more efficient way.

Solving CHCs over ADTs 353

6 Automated Induction with AdtInd

In this section, we give an overview of our AdtInd prover that handles quantified
formulas over ADT. It is specifically applied to prove the validity of formulas
that arise at different stages of Algorithm 1, in this paper. However, it can also
be used as a standalone tool and attempt user-given inputs.

6.1 Overview

The prover is a partial reimplementation of the work initially published in [59]
and extended with new features. It follows the structural induction principle: it
picks one quantified ADT-variable at a time and generates the base-case subgoal,
inductive hypotheses, and the inductive-step subgoal. It then either uses an
SMT solver to derive the subgoals directly from the assumptions (i.e., inductive
hypotheses, recursive function definitions, or automatically generated lemmas),
rewrites subgoals using the assumptions, or splits subgoals into a series of smaller
subgoals to be solved recursively.

We refer the reader to the high-level presentation in [59] for a precise pseu-
docode. To simplify the presentation, we demonstrate the flow of AdtInd on
a particular example of validating the synthesized interpretation on the query
from Example 4.

Example 8. AdtInd begins with posing a quantified query and then simplifies
it:

∀ys . fapp(nil , ys) = ys∧
∀xs, ys, x . fapp(cons(x, xs), ys) = cons(x, fapp(xs, ys))∧

frev (nil) = nil∧
∀xs, x . frev (cons(x, xs)) = fapp(frev (xs), cons(x,nil)) =⇒

∀xs, ys . frev (fapp(xs, ys)) = fapp(frev (ys), frev (xs))

Structurally, the formula above is a logical implication, and the conjunction
on its left consists of recursive definitions of fapp and frev . These are the uni-
versally quantified formulas that initially form the set of assumptions. Further,
on the right of the formula, there are two quantified ADT variables xs and ys,
and AdtInd initiates a proof by induction over one of them, xs. The base case
is just:

∀ys . frev (fapp(nil , ys)) = fapp(frev (ys), frev (nil))

After rewriting the base cases of the definitions of fapp and frev , the goal
becomes:

∀ys . frev (ys) = fapp(frev (ys),nil)

The description of the steps to prove it is deferred to Example 9. Then, AdtInd

generates an inductive hypothesis for a fixed xs that is added to the assumptions:

∀ys . frev (fapp(xs, ys)) = fapp(frev (ys), frev (xs))

354 L. Zavalía et al.

and formulates a new subgoal over the same xs which is further proved valid:

∀ys, x . frev (fapp(cons(x, xs), ys)) = fapp(frev (ys), frev (cons(x, xs))).

Two important features that AdtInd relies on are lemma generation (see
Sect. 6.2) and filtering lemma candidates (Sect. 6.3). Both of them are designed
for situations when a current subgoal does not immediately follow from the
current assumptions (e.g., it may require a proof by induction). Our strategy is
to synthesize a lemma, the validity of which is substantially easier to be proved
than the validity of the goal. However, during the synthesis, we may end up
with invalid lemma candidates. In this case, our approach leverages a filtering
procedure that helps to remove some lemma candidates quickly.

6.2 Extracting Common Subterms for Helper Lemmas

Our approach generates auxiliary lemmas by replacing common subterms in the
subgoal by fresh variables. An important condition for soundness of this method
is that such newly introduced lemmas should themselves follow from the given
assumptions. In particular, AdtInd separates the failure formula from the con-
text, universally quantifies the variables, picks a subset of assumptions, and
initializes the new solving process. If succeeded, this newly discovered assump-
tion is added to the set of existing assumptions, and the solving process of the
initial formula resumes.

Recall our motivating example. We demonstrate how the query can be proved
using the recursive definitions of fapp and frev .

Example 9. Recall Example 8 and the following subgoal:

∀ys . frev (ys) = fapp(frev (ys),nil)

At this point, AdtInd needs a helper lemma that can be discovered by proving
the current goal by induction. However, the presence of frev unnecessarily com-
plicates the process. In this case, AdtInd finds a common subterm, frev (ys),
replaces it by a fresh quantified variable and gets a new goal which is easily
provable by induction:

∀zs . zs = fapp(zs,nil).

AdtInd then adds this quantified formula as a new assumption, and the
restarted proof process immediately concludes that this assumption implies the
base case.

AdtInd has a systematic way for finding helper lemmas, demonstrated in
the example above. Specifically, at the point when no assumption is applicable,
our solver explores the parse tree of the goal and finds common patterns. Of
particular interest are the applications of the same functions to the same tuples
of arguments, as well as arithmetic and Boolean constraints. AdtInd then ranks
them (more common patterns are considered first) and attempts to prove them
one-by-one until either something is proved, or everything tried. In the latter
case, the solver performs backtracking.

Solving CHCs over ADTs 355

6.3 Filtering Procedure

As shown in the previous subsection, AdtInd implements a procedure to expand
its own search space by generating helper lemmas from a set of candidate expres-
sions. Each of these candidate formulas should be verified by an instance of
AdtInd before it can be used. However, AdtInd is not designed to deal with
invalid formulas, i.e., the ones for which no proving strategy could succeed, and
thus AdtInd diverges. To resolve this problem, we present a filtering procedure
that we call Disproof which quickly tries to filter potentially invalid lemmas.

The filtering procedure begins by enumerating ADT literals up to a certain
depth. Then, the filtering procedure substitutes each quantified variable in the
current goal for ADT literals to create a set of quantifier-free formulas. Finally,
the filtering procedure rewrites the quantifier-free formulas to eliminate func-
tions and sends the negations of the resulting formulas to an SMT solver. The
Disproof procedure returns filter when the SMT solver finds at least one sat-
isfiable negation, and thus the candidate formula is not considered in the process
any longer. Otherwise Disproof returns unknown, and AdtInd attempts to
prove it. Note that the procedure may filter a valid candidate formula that could
be potentially useful. However since we use this procedure only to accelerate the
search of lemmas (i.e., whenever a candidate lemma is filtered, AdtInd quickly
jumps to another candidate), the soundness of the entire procedure is not com-
promised.

Algorithm 2 gives a pseudocode of this procedure. It receives a formula
∀x1, . . . , xn . G(x1, . . . , xn) over n universally quantified ADT variables. The
algorithm begins with generating n sets of ADT literals (line 4) for each of the
ADT variables x1, . . . , xn, where each literal has depth at most k. Intuitively,
this procedure is recursive:

– At level 0, ADTlitGen(xi, 0) returns a singleton set T0 consisting of an
application of the base constructor of variable xi.

– At level k, it assumes a set Tk−1 is generated for level k − 1. Then, for the
inductive constructor ic for the sort of xi with arity m that uses p arguments
of the sort of xi, and each subset of p literals �1, . . . , �p ∈ Tk−1, ADTlit-

Gen(xi, k) generates m − p fresh variables v1, . . . , vm−p and applies ic to
�1, . . . , �p, v1, . . . , vm−p. The resulting literal is added to Tk.

Importantly, ADTlitGen does not generate concrete literals, except of the
one at level 0. We let the literals to use fresh variables and use an SMT solver
to evaluate them, if possible, such that the resulting concrete literals violate the
goal.

The algorithm further substitutes each combination of the generated ADT
literals for all x1, . . . , xn in G (line 6) and proceeds to rewriting the resulting
formula using the given assumptions. For each substitution, the algorithm per-
forms rewriting using assumptions until no more rewrites are possible (for more
information, see [59]). Finally, if a rewritten term does not have occurrences of
any functions or predicates defined in the assumptions, then its negation can be
checked for the satisfiability with an SMT solver (line 9). If it is satisfiable, then

356 L. Zavalía et al.

Algorithm 2: Disproof: Fitering candidate expressions.
Input: candidate expression of form ∀x1, . . . , xn . G(x1, . . . xn),
set of assumptions A, exploration depth: k
Output: res ∈ {filter,unknown}

1 for i ∈ [1, n] do
2 litsi ← ∅;
3 for j ∈ [0, k] do
4 litsi ← litsi∪ ADTlitGen(xi, j);
5 for 〈�1, . . . , �n〉 ∈ lits1 × . . . × litsn do
6 t ← G[�1/x1, . . . �n/xn];
7

(
t ← rewrite(t, A)

)∗;
8 if t has occurrences only of constructors and equality then
9 if isSAT(¬t) then

10 return filter;
11 return unknown

the violation of goal G is found (and a concrete ADT literal is extracted from
the model generated by the solver for the variables we introduced).

Example 10. Suppose AdtInd generates the following helper lemma with frev
defined as in previous examples:

∀x.frev (x) = x

The filtering procedure then instantiates variable x with three ADT literals,
enumerated up to depth 2, where v0 and v1 are fresh variables: nil , cons(v0,nil),
and cons(v1, cons(v0,nil)), resulting in the following list of formulas:

frev (nil) = nil
frev (cons(v0,nil)) = cons(v0, nil)

frev (cons(v1, cons(v0,nil))) = cons(v1, cons(v0, nil))

Next it unrolls each of these formulas by applying the definition of frev , resulting
in:

nil = nil
cons(v0,nil) = cons(v0,nil)

cons(v0, cons(v1,nil)) = cons(v1, cons(v0,nil))

Finally, our procedure tests the negation of each of these terms using an SMT
solver and determines that for v0 �→ 0 and v1 �→ 1, the negation of the last
equality is true. The procedure then returns filter, and AdtInd jumps to
another candidate.

Note that when doing filtering the procedure does not send any assumptions
to the solver, and the constructors are treated as uninterpreted functions. With-
out any extra axiomatization, some of the solver’s sat results might be spurious.

Solving CHCs over ADTs 357

Fig. 1. CHC solving process with AdtChc with AdtInd or Vampire at the backend.

In principle, our procedure can be extended to become a sound refutation pro-
cedure, if a sufficient number of constraints about constructors are supplied. In
our application, we trade precision for the speed of lemma generation, so even if
we miss some potentially useful lemmas, the procedure continues with the next
candidates and still has a chance to prove the main goal valid.

7 Implementation and Evaluation

In this section we present the overview of the implemented CHC solver and
provide its evaluation compared to state-of-the-art.

7.1 Framework

Figure 1 gives an overview of the flow of the solving process. The tool takes a
CHC file (in the conventional SMT-LIBv2 format) as input. In addition to ADTs,
the inputs may have constraints over Linear Integer Arithmetic (LIA). During
the solving process, AdtChc tightly communicates with its backend solvers,
AdtInd (as was described in Sect. 5.2) and Vampire [36]. While posing ADT
queries and receiving the confirmations of their validity, AdtChc converts a
subset of CHCs to recursive functions and makes their definitions available for
future use.

While solving for the validity, AdtInd relies on the recursive definitions of
functions over ADT produced by AdtChc and successfully proved queries, and
AdtInd automatically generates some helper lemmas on the fly. Lemmas are
then shared among AdtChc and backend solver and can be observed by the
user. On the lower level, AdtInd reduces the reasoning over ADTs to equality
and uninterpreted functions (EUF), and uses the Z3 SMT solver [12] to discharge
auxiliary formulas. Vampire, to the best of our knowledge, has its own satisfia-
bility and theory solvers and it uses a portfolio approach for solving formulas.

The source code of AdtChc and its benchmarks are available at https://
github.com/grigoryfedyukovich/aeval/tree/adt-chc.

7.2 Experiments

We have considered publicly available CHC benchmarks that encode well-known
verification problems. Our ultimate goal is to find invariants to prove safety

https://github.com/grigoryfedyukovich/aeval/tree/adt-chc
https://github.com/grigoryfedyukovich/aeval/tree/adt-chc

358 L. Zavalía et al.

properties in these benchmarks. Because many tools are not designed to recursive
invariant synthesis, they have a hard time to solve benchmarks. But we show that
AdtChc is effective and outperforms the competitors on many benchmarks.

We have compared AdtChc to state-of-the-art CHC solvers participated in
the CHC-COMP [50], namely Eldarica

2 [24], PCSat
3 [52], HOICE [8], and

Racer
4 [27] – the extension of GSpacer [37]. We considered three sets of bench-

marks in the CHC format complying with the CHC-COMP rules converted to
the CHC format from benchmarks used by various theorem provers: the first set,
contains 28 problems, is derived from benchmarks for AdtInd [59], the second
one with 17 problems comes from CLAM [26], and the last with 26 problems is
taken from LEON [56]. The safety verification properties are concerned about
the correctness of various operations on lists, amortized queues and binary trees.

We configured AdtChc to run in four different modes (that correspond to
four first columns of Table 1 and Table 2): the first two use AdtInd as the
backend solver, and the last two use Vampire as the backend solver. In the
first configuration of AdtInd (denoted w/A(1)), the backend solver performs
exactly as described in Sect. 6 but without the candidate filtering method, so
it tries to prove valid all candidate lemmas that are generated. In the second
configuration (denoted w/A(2)), we added the candidate filtering method, and
thus, the solver finds potentially invalid lemmas first and skips them (if the
filtering is unsuccessful, then the solver tries to prove the candidate). It allows
the solver to save time and proceed to discovery of new lemmas. For Vampire,
in its first configuration (denoted w/V(1)) we use the default setting, and in
the second configuration of Vampire (denoted w/V(2)), we force it conduct
the proofs by structural induction.

We used a timeout of 300 s CPU time for each tool and configuration. Overall,
there are 71 benchmarks, and 41 of them were solved by either the configuration
of AdtChc +AdtInd. 42 benchmarks were solved by either the configuration of
AdtChc +Vampire. More importantly, in total by either of four configurations
of AdtChc, our tool solved 52 benchmarks. Among them, 31 benchmarks were
not solved by any other other competing tool. Eldarica solved 24 benchmarks,
Racer solved 16 and PCSat solved 9, and HOICE solved 19.

Comparing backends of AdtChc, it is apparent that AdtInd is on average
significantly faster than Vampire. It could be attributed to the fact that the
latter uses the portfolio mode. However, both tools have they strengths since
there are benchmarks solely solved only with AdtInd and only with Vampire.

For benchmarking, we used a workstation equipped with 2.8GHz Intel Core
i7 4-Core (11th generation) and 12 GB of DDR4 RAM running Ubuntu 21.04.

2 version 2.0.6.
3 https://github.com/hiroshi-unno/coar.
4 https://github.com/hgvk94/z3/tree/racer.

https://github.com/hiroshi-unno/coar
https://github.com/hgvk94/z3/tree/racer

Solving CHCs over ADTs 359

Table 1. Results (sec); “—” stands for “unknown”.

AdtChc

Benchmark w/A(1) w/A(2) w/V(1) w/V(2) Eldarica Racer PCSat HOICE

ADTIND/heap_size 0.65 0.62 84.12 80.62 1.31 0.01 0.89 0.09
ADTIND/list_append_ass 0.48 0.4 119.93 0.06 — — — —
ADTIND/list_append_len 1.1 1.03 120.5 0.1 24.1 — — —
ADTIND/list_append_min 1.97 2.3 120.47 120.45 — — — —
ADTIND/list_append_min2 0.55 0.5 60.31 60.29 — — — —
ADTIND/list_append_nil 0.71 0.67 60.28 0.06 1.38 0.02 — 0.1
ADTIND/list_append_sum 0.64 0.58 74.63 0.11 — — — 0.13
ADTIND/list_interleave — — 60.22 60.22 — — — 0.22
ADTIND/list_len_butlast 0.57 0.51 60.3 60.29 4.81 — — —
ADTIND/list_len_stren 4.09 5.53 — — 1.36 0.01 1.21 1.12
ADTIND/list_len 0.35 0.31 66.32 0.08 1.11 0.02 0.96 0.08
ADTIND/list_min_max 0.76 0.72 60.31 15.91 1.66 0.02 1.53 —
ADTIND/list_min_sum_len 3.22 3.28 66.65 15.71 1.52 0.02 1.57 —
ADTIND/list_min_sum 1.72 1.75 74.74 73.89 — — — —
ADTIND/list_rev_append 6.36 — 284.61 282.75 — — — 0.01
ADTIND/list_rev_len 1.87 1.69 126.6 66.12 — — — —
ADTIND/list_rev — — — — — — — —
ADTIND/list_rev2_append 0.95 0.86 — 120.44 — — — —
ADTIND/list_rev2_len — — 120.7 120.75 — — — —
ADTIND/queue_amort 137.05 — — — 1.15 0.02 1.3 0.15
ADTIND/queue_len — — — — — — — —
ADTIND/queue_popback — — — — 49.11 — — —
ADTIND/queue_push_to_list — — — — — — — —
ADTIND/queue_push — — — — — — — —
ADTIND/tree_insert_all_size 3.22 3.18 217.8 213.72 — — — —
ADTIND/tree_insert_size 0.33 0.25 — — — — — —
ADTIND/tree_insert_sum 0.34 0.26 — — — — — —
ADTIND/tree_size 0.64 0.58 77.69 0.1 1 0.01 0.78 0.07
CLAM/goal10 — — 238.76 239.38 — — — —
CLAM/goal11 — — 240.36 239.98 — — — —
CLAM/goal12 — 5.06 120.64 119.92 — — — —
CLAM/goal17 — — 238.32 239.82 — — — —
CLAM/goal18 — — 247.09 243.21 — — — —
CLAM/goal19 — — 238.4 239.56 — — — —
CLAM/goal2 74.49 9.45 127.41 1.19 2.04 — — —
CLAM/goal21 — — — — — — — —
CLAM/goal27 — — 241.2 240.97 — — — —
CLAM/goal3 1.29 1.02 120.52 0.12 — — — —
CLAM/goal4 — — 124.06 123.77 8.67 — — —
CLAM/goal5 — 5.2 126.74 126.58 — — — —
CLAM/goal6 — — 241.15 241.06 — — — —
CLAM/goal7 2.76 2.7 120.78 120.75 — — — —
CLAM/goal72 0.49 0.41 60.3 0.06 — — — —
CLAM/goal8 — 31.15 206.28 205.47 — — — —
CLAM/goal9 — 31.32 205.37 204.55 — — — —
LEON/amortize-queue-goal1 0.6 0.54 66.28 0.11 — — — —
LEON/amortize-queue-goal10 0.93 0.81 186.23 185.46 — — — —
LEON/amortize-queue-goal11 0.47 0.41 120.38 60.2 — — — —
LEON/amortize-queue-goal12 — — — — — — — —
LEON/amortize-queue-goal13 — — — — — — — —
LEON/amortize-queue-goal14 — — — — — — — —
LEON/amortize-queue-goal15 — — — — — — — —
LEON/amortize-queue-goal3 — — — — — — — —
LEON/amortize-queue-goal4 — — — — 2.33 — — 0
LEON/amortize-queue-goal5 — — — — 4.14 — — —
LEON/amortize-queue-goal6 — — — — — — — 0
LEON/amortize-queue-goal8 0.8 0.71 120.43 60.18 1.49 0.01 — 0.08
LEON/amortize-queue-goal9 — — — — — — — —

360 L. Zavalía et al.

Table 2. Results (cont).

AdtChc

Benchmark w/A(1) w/A(2) w/V(1) w/V(2) Eldarica Racer PCSat HOICE

LEON/bsearch-tree-goal1 198.64 — — — — — — —

LEON/bsearch-tree-goal10 — — — — 2.81 0.05 — 0.29

LEON/bsearch-tree-goal11 67.1 — — — 0.84 0.01 — 0.52

LEON/bsearch-tree-goal12 17.92 15.56 — — 1.01 0.01 — 0.29

LEON/bsearch-tree-goal13 30.73 34.32 — 180.62 — — — —

LEON/bsearch-tree-goal14 — — — — 0.56 0 0.91 0.09

LEON/bsearch-tree-goal2 — 127.23 271.82 263.31 — — — —

LEON/bsearch-tree-goal3 — — 278.39 281.68 — — — —

LEON/bsearch-tree-goal4 — — — — — — — —

LEON/bsearch-tree-goal5 — — — — — — — —

LEON/bsearch-tree-goal6 — 273.95 — — 0.94 0.01 — 0.4

LEON/bsearch-tree-goal8 89.45 — — — 0.63 0 0.79 0.07

LEON/bsearch-tree-goal9 — 280.87 — — 0.66 0.01 — 0.23

8 Related Work

Existing CHC solvers [2,5,8,9,13,19,24,27–29,34,38,40,41,44,51,57,61] are
utilized by the software model checkers for imperative languages [20,22],
object-oriented languages [30,31], dataflow languages [17,18], and func-
tional programming languages [7,15,33,43,58]. Algorithmically, solvers are
based on Counterexample-Guided Abstraction Refinement (CEGAR) [10],
Counterexample-Guided Inductive Synthesis (CEGIS) [52,54], Property
Directed Reachability (PDR) [6,14], Machine Learning [53], but currently, there
is no clear witness that any of these approaches are, in general, better than
others. Furthermore, with the exception of [24], solvers are limited to relatively
lightweight SMT theories and not ADT.

There is a plethora of proposed quantifier elimination algorithms and decision
procedures for the first-order ADT fragment [3,45–47,55] and for an extension
of ADT with constraints on term sizes [60]. As often useful for solving, the
Craig interpolation procedure for ADT constraints has been proposed by [23].
Such techniques are being incorporated by various SMT solvers, like Z3 [12],
CVC4 [4], and Princess [49]. Our SMT-based approach to handling ADTs uses
a new functional synthesis approach: it works by rewriting CHCs and obtaining
new definition from declarative CHC constraints. Lastly, there are approaches
for CHC-based relational verification over ADTs [11,42] that effectively reduce
reasoning to CHCs over lightweight SMT theories. These approaches do not
generate inductive invariants over ADTs, while our approach does.

There is an approach where inductive invariants are represented by finite
tree automata implemented in RingGen [35]. A system of CHCs over ADTs
is rewritten into a formula over uninterpreted function symbols by eliminat-
ing all disequalities, testers, and selectors from the clause bodies. Then they
reduce the satisfiability modulo theory of ADTs to satisfiability modulo EUF
and apply off-the-shelf finite model finder to build a finite model of the reduced

Solving CHCs over ADTs 361

verification conditions. The automaton representing the safe inductive invariant
are derived using the correspondence between finite models and tree automata.
Unfortunately, RinGen works only on pure ADT (i.e., it defines natural numbers
inductively as zero and +1, but we make use of Presburger arithmetic).

9 Conclusion and Future Work

We have presented a new approach to solve CHC problems over ADT using recur-
sive function synthesis. Instead of generating recursive predicates, the approach
generates recursive functions by applying semantics-preserving transformations
to a subset of given CHCs determined on the fly. The remaining CHCs are used
to validate the solutions and the approach reduces this problem to an off-the-
shelf theorem prover that is expected to prove the validity of each universally
quantified formula following the principle of structural induction. Our imple-
mentation called AdtChc exploits the Z3 SMT solver to process a number
of quantifier-free queries over arithmetic, uninterpreted functions, and arrays.
While AdtChc outputs a number of recursive definitions of functions that are
used in interpretations of predicates, theorem provers AdtInd and Vampire

automatically discharge the validity checks, often generating a number of useful
lemmas that can be exchanged among queries and accelerate the solving process.
We also presented two new features of AdtInd that help in its proving process:
generation of helper lemmas from common subterms and filtering potentially
useless candidate lemmas. We experimentally compared our tools with state-of-
the-art, and it shows promising results. In the future, we plan to extend the set
of features of the tools, and in particular support solving queries with nested
(and possibly, alternating) quantifiers.

Acknowledgments. The work is supported in parts by a gift from Amazon Web
Services.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–17. IEEE (2013)
2. Bakhirkin, A., Monniaux, D.: Combining forward and backward abstract inter-

pretation of horn clauses. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp.
23–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_2

3. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. J. Satisfiability, Boolean Model. Comput. 3, 21–46 (2007)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

5. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_61

6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

https://doi.org/10.1007/978-3-319-66706-5_2
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-642-18275-4_7

362 L. Zavalía et al.

7. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2_20

8. Champion, A., Kobayashi, N., Sato, R.: HoIce: an ICE-based non-linear horn clause
solver. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275, pp. 146–156. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02768-1_8

9. Chen, Y.-F., Hsieh, C., Tsai, M.-H., Wang, B.-Y., Wang, F.: Verifying recursive
programs using intraprocedural analyzers. In: Müller-Olm, M., Seidl, H. (eds.) SAS
2014. LNCS, vol. 8723, pp. 118–133. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10936-7_8

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167_15

11. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Solving horn clauses on
inductive data types without induction. TPLP 18(3–4), 452–469 (2018)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

13. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate TreeAu-
tomizer. In: HCVS/PERR, vol. 296 of EPTCS, pp. 42–47 (2019)

14. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. IEEE (2011)

15. Fedyukovich, G., Ahmad, M.B.S., Bodík, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: PLDI, pp. 572–585. ACM
(2017)

16. Fedyukovich, G., Ernst, G.: Bridging arrays and ADTs in recursive proofs. In:
TACAS 2021. LNCS, vol. 12652, pp. 24–42. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72013-1_2

17. Garoche, P., Gurfinkel, A., Kahsai, T.: Synthesizing modular invariants for syn-
chronous code. In: HCVS, vol. 169 of EPTCS, pp. 19–30 (2014)

18. Garoche, P. Kahsai, T., Thirioux, X.: Hierarchical state machines as modular horn
clauses. In: HCVS, vol. 219 of EPTCS, pp. 15–28 (2016)

19. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012)

20. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4_20

21. Hoare, C.A.R.: Recursive data structures. Int. J. Parallel Program. 4(2), 105–132
(1975)

22. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A ver-
ification toolkit for numerical transition systems. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9_21

23. Hojjat, H., Rümmer, P.: Deciding and interpolating algebraic data types by reduc-
tion. In: SYNASC, pp. 145–152. IEEE (2017)

24. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: FMCAD, pp. 158–164.
IEEE (2018)

https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-319-10936-7_8
https://doi.org/10.1007/978-3-319-10936-7_8
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-72013-1_2
https://doi.org/10.1007/978-3-030-72013-1_2
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-32759-9_21

Solving CHCs over ADTs 363

25. Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model checking.
In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 19–30. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34175-6_2

26. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. In: Zhang,
H. (ed.) Automated Mathematical Induction, pp. 79–111. Springer, Cham (1996).
https://doi.org/10.1007/978-94-009-1675-3_3

27. Hari Govind, V.K., Shoham, S., Gurfinkel, A.: Solving constrained horn clauses
modulo algebraic data types and recursive functions. Proc. ACM Program. Lang.
6(POPL), 1–29 (2022)

28. Kafle, B., Gallagher, J.P., Ganty, P.: Solving non-linear Horn clauses using a linear
Horn clause solver. In: HCVS, vol. 219 of EPTCS, pp. 33–48 (2016)

29. Kafle, B., Gallagher, J.P., Morales, J.F.: Rahft: a tool for verifying horn clauses
using abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 261–268. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4_14

30. Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap invariants for
object-oriented programs. In: LPAR, vol. 46 of EPiC Series in Computing, pp.
368–384. EasyChair (2017)

31. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_19

32. Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proc. ACM
on Program. Lang. 5(POPL), 1–32 (2021)

33. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: ACM, pp. 222–233. ACM (2011)

34. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2

35. Kostyukov, Y., Mordvinov, D., Fedyukovich, G.: Beyond the elementary represen-
tations of program invariants over algebraic data types. In: PLDI, pp. 451–465
(2021)

36. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

37. Vediramana Krishnan, H.G., Chen, Y.T., Shoham, S., Gurfinkel, A.: Global guid-
ance for local generalization in model checking. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12225, pp. 101–125. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53291-8_7

38. Krishnan, H.G.V., Fedyukovich, G., Gurfinkel, A.: Word level property directed
reachability. In: ICCAD, pp. 1–9. IEEE (2020)

39. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
rust programs. In: ESOP 2020. LNCS, vol. 12075, pp. 484–514. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44914-8_18

40. McMillan, K.L.: Lazy annotation revisited. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 243–259. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9_16

41. McMillan, K.L., Rybalchenko, A.: Solving constrained Horn clauses using interpo-
lation. In Technical report MSR-TR-2013-6 (2013)

42. Mordvinov, D., Fedyukovich, G.: Synchronizing constrained horn clauses. In:
LPAR, vol. 46 of EPiC Series in Computing, pp. 338–355. EasyChair (2017)

https://doi.org/10.1007/978-3-030-34175-6_2
https://doi.org/10.1007/978-94-009-1675-3_3
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-319-08867-9_16
https://doi.org/10.1007/978-3-319-08867-9_16

364 L. Zavalía et al.

43. Mordvinov, D., Fedyukovich, G.: Verifying safety of functional programs with roset-
te/unbound. CoRR, abs/1704.04558 (2017). https://github.com/dvvrd/rosette

44. Mordvinov, D., Fedyukovich, G.: Property directed inference of relational invari-
ants. In: FMCAD, pp. 152–160. IEEE (2019)

45. Oppen, D.C.: Reasoning about recursively defined data structures. J. ACM
(JACM) 27(3), 403–411 (1980)

46. Pham, T., Gacek, A., Whalen, M.W.: Reasoning about algebraic data types with
abstractions. J. Autom. Reason. 57(4), 281–318 (2016)

47. Reynolds, A., Blanchette, J.C.: A decision procedure for (co) datatypes in SMT
solvers. J. Autom. Reason. 58(3), 341–362 (2017)

48. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

49. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_20

50. Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-21. In: Hojjat,
H., Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification
and Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021. EPTCS, vol. 344,
pp. 91–108 (2021). https://doi.org/10.4204/EPTCS.344.7

51. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_24

52. Satake, Y., Unno, H., Yanagi, H.: Probabilistic inference for predicate constraint
satisfaction. In: AAAI, pp. 1644–1651. AAAI Press (2020)

53. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_6

54. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

55. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. ACM Sigplan Not. 45(1), 199–210 (2010)

56. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7_23

57. Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses
via sampling. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
149–163. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_10

58. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_30

59. Yang, W., Fedyukovich, G., Gupta, A.: Lemma synthesis for automating induction
over algebraic data types. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol.
11802, pp. 600–617. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30048-7_35

https://github.com/dvvrd/rosette
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.4204/EPTCS.344.7
https://doi.org/10.1007/978-3-642-39799-8_24
https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-662-46681-0_10
https://doi.org/10.1007/978-3-662-46681-0_10
https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.1007/978-3-030-30048-7_35
https://doi.org/10.1007/978-3-030-30048-7_35

Solving CHCs over ADTs 365

60. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for recursive data struc-
tures with integer constraints. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS (LNAI), vol. 3097, pp. 152–167. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25984-8_9

61. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI, pp.
707–721. ACM (2018)

https://doi.org/10.1007/978-3-540-25984-8_9
https://doi.org/10.1007/978-3-540-25984-8_9

ARENA: Enhancing Abstract Refinement
for Neural Network Verification

Yuyi Zhong(B), Quang-Trung Ta, and Siau-Cheng Khoo

School of Computing, National University of Singapore, Singapore, Singapore
{yuyizhong,taqt,khoosc}@comp.nus.edu.sg

Abstract. As neural networks have taken on a critical role in real-
world applications, formal verification is earnestly needed to guaran-
tee the safety properties of the networks. However, it remains chal-
lenging to balance the trade-off between precision and efficiency in
abstract interpretation based verification methods. In this paper, we
propose an abstract refinement process that leverages the convex hull
techniques to improve the analysis efficiency. Specifically, we introduce
the double description method in the convex polytope domain to detect
and eliminate multiple spurious adversarial labels simultaneously. We
also combine the new activation relaxation technique with the iterative
abstract refinement method to compensate for the precision loss during
abstract interpretation. We have implemented our proposal into a verifi-
cation framework named ARENA, and assessed its effectiveness by con-
ducting a series of experiments. These experiments show that ARENA
yields significantly better verification precision compared to the existing
abstract-refinement-based tool DeepSRGR. It also identifies falsification
by detecting adversarial examples, with reasonable execution efficiency.
Lastly, it verifies more images than the state-of-the-art verifier PRIMA.

Keywords: Abstract refinement · Double description method · Neural
network verification

1 Introduction

As neural networks have been proverbially applied to safety-critical systems, for-
mal guarantee about the safety properties of the networks, such as robustness,
fairness, etc., is earnestly needed. For example, researchers have been working
on robustness verification of neural networks, to ascertain that the network clas-
sification result can remain the same when the input image is perturbed subtly
and imperceptibly during adversarial attacks [1,2].

There exists sound and complete verification techniques where the robustness
property can be ascertained but regrettably at high complexity and execution
cost [3,4]. For better scalability, several incomplete verifiers have been proposed
to analyze larger networks with abstract interpretation technique while bearing

The original version of the chapter has been revised. The acknowledgment section have
been corrected. A correction to this chapter can be found at
https://doi.org/10.1007/978-3-031-24950-1 18

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, corrected publication 2024

C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, pp. 366–388, 2023.

https://doi.org/10.1007/978-3-031-24950-1 17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_18
https://doi.org/10.1007/978-3-031-24950-1_17

ARENA: Enhancing Abstract Refinement for Neural Network Verification 367

exactness sacrifices [5–7]. To mitigate this shortcoming, there have been inves-
tigations into better convex relaxation [8,9] or iterative abstract refinement [10]
to make up with the precision loss in abstract interpretation techniques.

This work is inspired by the counterexample guided abstraction refinement
(CEGAR) method [11] in program analysis, aiming to improve the precision of
abstract interpretation results by identifying spurious counterexamples: these are
examples which appear to have violated desired analysis outcome – due to over-
approximated calculation inherent in the abstract interpretation computation –
but can be shown to be fake by the refinement method. Proof of the existence
of spurious counterexamples can diminish the range of inconclusive results pro-
duced by abstract interpretation. In the context of neural network verification,
such spurious counterexamples can be conceptualized as adversarial regions that
are perceived to have lent support (spuriously) on certain adversarial labels; ie.,
labels which differ from the designated label in the robustness test.

An existing work that has successfully employed abstract refinement tech-
nique to improve the precision of the abstract-interpretation based verification
tool is DeepSRGR [10]. That work repetitively selects an adversarial label and
attempts to eliminate the corresponding spurious region progressively through
iteration of refinements. Technically, it encodes a spurious region as a linear
inequality, adds it to the constraint encoding of the network, and employs linear
programming with the objective set to optimize the concrete bounds of selected
ReLU neurons in the network. This process is repeated until either the spurious
region is found to be inconsistent with the encoded network, or time out.

In this paper, we enhance the existing effectiveness of DeepSRGR by intro-
ducing convex hull techniques (ie., techniques that observe and conform to con-
vex property) to abstract refinement computation. Together, these techniques
facilitate simultaneous elimination of multiple spurious regions, and capitalize
the dependencies among ReLU neurons. Specifically, we tighten the looseness of
ReLU approximation during abstract refinement process through a mutli-ReLU
convex abstraction technique (cf. [9]) that captures dependencies within a set of
ReLU neurons. Moreover, we leverage a double-description method (cf. [12]) used
in convex polytope computation to eliminate multiple spurious regions simulta-
neously; this circumvents the challenges faced with the application of linear
programming technique to optimize disjunction of linear inequalities.

We have implemented our proposed techniques in a CPU-based prototypical
analyzer named ARENA (Abstract Refinement Enhancer for Neural network
verificAtion). In addition to verifying the robustness property of a network with
respect to an image, ARENA is also capable of detecting adversarial examples
that ascertain the falsification of the network property. We conducted experi-
ments to assess the effectiveness of ARENA against the state-of-the-art tools,
including the CPU-based verifiers DeepSRGR [10] and PRIMA [9], and the GPU-
based verifier α, β-CROWN [13]. The results show conclusively that ARENA
returns an average of 15.8% more conclusive images compared with DeepSRGR
while terminates in comparable amount of time; and it also outperforms PRIMA
by returning 16.6% more conclusive images. Furthermore, ARENA can verify or

368 Y. Zhong et al.

falsify 79.3% images of that of the state-of-the-art complete tool α, β-CROWN
on average for selected networks.

We summarize our contributions below:

� We adapt the double description method proposed in the convex polytope
domain [12] to solve disjuncts of constraints in Linear Programming (LP)
encoding, allowing us to prune multiple adversarial labels together to increase
overall efficiency.

� We leverage the multi-ReLU convex abstraction in PRIMA [9] to further refine
the abstraction in the analysis process to increase verification precision.

� We utilize the solutions returned by the LP solver to detect adversarial exam-
ples and assert property violation when counter-examples are discovered.

� We conducted experiments comparing our prototypical analyzer ARENA
against state-of-the-art verification tools, and demonstrate high effectiveness
in our verification framework. To the best of our knowledge, ARENA outper-
forms the current state-of-the-art approximated methods that run on CPU.

In the remaining part of the paper, we give an illustrative example showing
the overall process of our method in Sect. 2, followed by a formal description
of our methodologies in Sect. 3. We demonstrate our evaluation process and
experimental results in Sect. 4. Section 5 discusses the current limitation, plan
for future work and the generalization of our work. We give a literature review in
Sect. 6, which contains closely related works with respect to our research scope.
Finally, we summarize our work and conclude in Sect. 7.

2 Overview

In this section, we first describe the abstract refinement technique implemented
in DeepSRGR [10]. Then, we discuss its limitations and introduce our approach
to overcome them. Table 1 displays the notations we use throughout this section.

Table 1. Notations and descriptions of Sect. 2

Π The network constraint set/encoding

Υ A potential adversarial region

P The over-approximate convex hull

2.1 Spurious Region Guided Refinement

DeepSRGR is a sound but incomplete verification method that relies on the
polyhedral abstract domain in DeepPoly [7], where the abstract value of each
network neuron xi is designed to contain four elements (li, ui, l

s
i , u

s
i). The con-

crete lower bound li and upper bound ui pair forms a closed interval [li, ui] that
over-approximates all the values that neuron xi could take. The symbolic con-
straints lsi , u

s
i are linear expressions of xi defined over preceding neurons with

the requirement that lsi ≤ xi ≤ us
i .

ARENA: Enhancing Abstract Refinement for Neural Network Verification 369

In the following, we illustrate the verification process where the abstract
domain is used to verify the robustness property of a fully-connected network
with ReLU activation (Fig. 1) w.r.t the input space I = [−1, 1] × [−1, 1] of 2
input neurons x1, x2. This network has 3 output neurons y1, y2, y3, correspond-
ing to the three labels L1, L2, L3 that an input in I can be classified as. Here,
the robustness property which we aim to verify is that the neural network can
always classify the entire input space I as label L1, which corresponds to the
output neuron y1. More specifically, the verifier should be able to prove that the
conditions y1 − y2 > 0 and y1 − y3 > 0 always hold for the entire input space I.

Fig. 1. The example network to perform DeepPoly abstract interpretation

Through the abstract interpretation technique, as deployed by DeepPoly, we
can compute the abstract values for each neuron; these are displayed near the
corresponding nodes. Specifically, the computed value for the lower bound of
y1 − y2 and y1 − y3 are both −0.2 (the process of the lower bound computation
is provided in Appendix A in our technical report), which fails to assert that
y1 − y2 > 0 and y1 − y3 > 0. In other word, DeepPoly cannot ascertain the
robustness of the network for the given initial input space I. Given the over-
approximation nature of abstract interpretation technique, it is not clear if the
robustness property can be verified.

In order to further improve the robustness verification of the considered neu-
ral network, DeepSRGR conducts a spurious region guided refinement process
that includes the following steps:

1. Obtain the conjunction of all linear inequities that encode the network,
including the input constraint x1, x2 ∈ [−1, 1] and the constraints within
the abstract values of all neurons (i.e., the constraints in Fig. 1). We denote
this network encoding constraint set as Π.

https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf

370 Y. Zhong et al.

2. Take the conjunction of the current network encoding and the negation of the
property to solve a potential spurious region. For example, the feasible region
of Π ∧ (y1 − y2 ≤ 0) refers to a potential adversarial region (denote as Υ)
that may contain a counterexample with adversarial label L2 (corresponding
to output neural y2); whereas the region outside of Υ is already a safe region
that will not be wrongly classified as L2. However, the region Υ may exist
only due to the over-approximate abstraction but does not contain any true
counterexample. Therefore, this region is spuriously constructed and could
be eliminated. If we successfully eliminate Υ , then we can conclude that label
L2 will not be a valid adversarial label since y2 never dominates over y1.

3. To eliminate the region Υ , DeepSRGR uses the constraints of the region to
refine the abstraction using linear programming (LP). For instance, we take
Π and y1 − y2 ≤ 0 as the constraint set of linear programming. To obtain
tighter bounds for input neurons and unstable ReLU neurons1, we set the
objective function of LP as min(xi) and max(xi) where i ∈ [1, 2, 4]. The new
solved intervals are highlighted in red in Fig. 2, where all the current neuron
intervals now specify the region Υ .

Fig. 2. The effect of applying LP-based interval refinement (in red marked by ∗) (Color
figure online)

4. DeepSRGR leverages those tighter bounds to guide the abstract interpre-
tation of the region Υ in the next iteration. It performs a second run on
DeepPoly and makes sure that this second run compulsorily follows the new

1 Unstable ReLU neuron refers to a ReLU neuron whose input range can be both
negative and positive (like y2, y3).

ARENA: Enhancing Abstract Refinement for Neural Network Verification 371

bounds computed in the previous step. As shown in Fig. 3, the blue colored
part refers to the updated abstract values during the second execution of
DeepPoly, where the abstraction of all neurons are refined due to the tighter
bounds (red colored part) returned by LP solving. Now the lower bound of
y1 − y2 is 0.7, making y1 − y2 ≤ 0 actually infeasible within the region Υ .
Therefore, we conclude that Υ is a spurious region that does not contain any
true counterexample, and we can eliminate adversarial label L2.

5. If we fail to detect y1−y2 ≤ 0 to be infeasible, DeepSRGR iterates the process
from step 2–4 where it calls LP solving and re-executes DeepPoly on the new
bounds until it achieves one of the termination conditions: (i) It reaches the
maximum number of iterations (DeepSRGR sets it to be 5 by default); or (ii)
it detects infeasibility for the spurious region.

Fig. 3. Results of the second run of DeepPoly (in blue marked by †) (Color figure
online)

Similarly, after eliminating the adversarial label L2, DeepSRGR will apply
the same process to eliminate the spurious region defined by Π ∧ (y1 − y3 ≤ 0),
which corresponds to the output neural y3 and the adversarial label L3.

In summary, DeepSRGR uses iterative LP solving and DeepPoly execution
to attempt to eliminate spurious regions which do not contain counterexamples.
Assuming the ground-truth label to be Lc, DeepSRGR runs this refinement
process for each region Π ∧ (yc − yt ≤ 0) where t �= c. If DeepSRGR is able to
eliminate all adversarial labels related to output neurons yt where t �= c, then
it successfully ascertains the robustness property of the image. If DeepSRGR
fails to eliminate one of the adversarial labels within the iteration boundary, the
robustness result remains inconclusive.

372 Y. Zhong et al.

2.2 Scaling up with Multiple Adversarial Label Elimination

We mention three contributions in Sect. 1 including efficiency improvement, pre-
cision improvement and adversarial example detection. In this section, we only
give an overview of our multiple adversarial label elimination method which aims
to improve the analysis efficiency; we defer the discussion of the remaining part
of our system to Sect. 3.

As mentioned in Sect. 2.1, DeepSRGR invokes the refinement process to
sequentially eliminate each spurious region Π ∧ (yc − yt ≤ 0), which corresponds
to the adversarial label Lt (t �= c). For an n-label network, it requires n−1 refine-
ment invocations in the worst case, with each invocation taking possibly several
iterations. To speed up the analysis, we eliminate multiple spurious regions at
the same time in one refinement process.

For example, we aim to detect infeasibility in Π ∧ ((y1 − y2 ≤ 0)∨ (y1 − y3 ≤
0)) so as to eliminate both adversarial labels L2 and L3 simultaneously. The
technical challenge behind this multiple adversarial label elimination is that linear
programming does not naturally support the disjunction of linear inequalities.
To address this challenge, we compute the over-approximate convex hull P of
(y1−y2 ≤ 0)∨(y1−y3 ≤ 0) under network encoding Π. As P will be represented
as a set of linear inequalities, linear programming is amenable to handle Π ∧ P .

Fig. 4. The convex polytopes under network encoding, with respect to (y1, y2, y3).

ARENA: Enhancing Abstract Refinement for Neural Network Verification 373

In detail, the initial convex polytope associated with y1, y2, y3 is a 3-D cube
pictured in Fig. 4a, where y1 ∈ [0.8, 4.8], y2 ∈ [0, 2], y3 ∈ [0, 2] after we perform
DeepPoly as shown in Fig. 1. The convex polytope for the constraint y1 − y2 ≤
0 under the network encoding Π corresponds to the shape in Fig. 4b where
y1 − y2 ≤ 0 is a cutting-plane imposed on the initial cube in Fig. 4a. Similarly,
the projection of y1 − y3 ≤ 0 to a convex polytope can be visualized in Fig. 4c.
We further compute the over-approximate convex hull P of the union of the two
polytopes as in Fig. 4d.

We can observe that P is defined by 8 vertices (annotated as eight black
extreme points). It is worth-noting that these 8 vertices actually come from
either vertices in Fig. 4b or vertices in Fig. 4c. We will provide the explanation
and the theory on how to compute the convex hull of the union of two polytopes
in Sect. 3.2. Explicitly, P can also be represented by the following constraint
set (1), which correspond to the 7 red-colored surfaces in Fig. 4d:

−y1 + y2 + y3 ≥ 0 y2 ≥ 0 y3 ≥ 0 −1 + 1.25y1 ≥ 0
2 − y1 ≥ 0 2 − y2 ≥ 0 2 − y3 ≥ 0 (1)

We take the network encoding Π and constraint set of P as the input to
the LP solver, and conduct interval solving as in Sect. 2.1. We annotate the new
bounds obtained through LP solving as red color, and the updated abstract
values after the second abstract interpretation as blue color in Fig. 5. The lower
bounds of both y1 − y2 and y1 − y3 now become 0.2, making it infeasible to
achieve y1 − y2 ≤ 0 or y1 − y3 ≤ 0. Therefore, we successfully do the verification
with just one refinement process invocation.

Fig. 5. The new intervals (in red with ∗) with two-adversarial labels encoding and new
abstraction introduced by the second run of DeepPoly (in blue with †) (Color figure
online)

374 Y. Zhong et al.

3 Methodologies

As described in Sect. 2, we identify the feasible region of the network encoding
and the negation of a property (i.e. Π ∧ (yc − yt ≤ 0) : t �= c) as a potential
spurious region and leverage the refinement process to ascertain and possibly
eliminate such spurious regions. To further improve the precision and efficiency,
we propose three techniques as we have summarized in Sect. 1:

1. We update the negation of the property encoding to capture multiple spurious
regions at the same time, as we demonstrate the example on (y1 − y2 ≤
0) ∨ (y1 − y3 ≤ 0) in Sect. 2.2. This method allows us to reuse the linear
programming part among several spurious regions and improve efficiency.

2. We leverage the multi-ReLU convex abstraction proposed in PRIMA [9] to
obtain a more precise network encoding Π, which helps to increase the veri-
fication precision.

3. We detect adversarial examples to falsify robustness property. In particular,
as the LP solver finds the conjunction of the network encoding and the nega-
tion of the property to be feasible, its optimization solution could actually
ascertain a property violation and help us conclude with falsification.

We will discuss the three methodologies in separate subsections, and conclude
this section with an overall description of our verification framework ARENA.
Table 2 shows the notations we use in the main text of this section.

Table 2. Notations and descriptions of Sect. 3

Π The network constraint set/encoding

Ω The multi-ReLU constraint set

Λ The involved variable set during convex computation

Θ The initial multidimensional octahedra during convex computation

PH
i The convex polytope in H-representation

PV
i The convex polytope in V-representation

3.1 Multi-ReLU Network Encoding

As mentioned before, the constraint set subject to linear programming resolution
is a conjunction of the network encoding and the negation of the property. In
this subsection, we describe our network constraint construction. In the next
subsection, we will describe the encoding of the negated property. Particularly,
we capture the dependencies between the ReLU neurons in the same layer in our
network encoding by leveraging the multi-ReLU convex relaxation in PRIMA.

ARENA: Enhancing Abstract Refinement for Neural Network Verification 375

Fig. 6. The triangle approximation of a single ReLU neuron

As depicted in Fig. 6, DeepSRGR uses a triangular shape to encode each
ReLU neuron independently, where the ReLU node y = max(0, x) with x ∈
[lx, ux]. The triangular shape is defined by three linear constraints:

y ≥ x y ≥ 0 y ≤ ux

ux−lx
(x − lx)

This looseness of ReLU encoding can inhibit precision improvement in Deep-
SRGR. As a matter of fact, it has been reported that, when they increase the
maximum number of iterations from 5 to 20, only two more properties can be
verified additionally, and no more properties can be verified when they further
increase from 20 to 50 [10].

To break this precision barrier, we deploy the technique of multi-ReLU relax-
ation in PRIMA [9] where they compute the convex abstraction of k-ReLU
neurons via novel convex hull approximation algorithms. For instance, if k = 2
and the ReLU neurons in the same layer are denoted by y1, y2, and the inputs to
these two ReLU neurons are x1, x2 respectively, PRIMA will compute a convex
hull in (y1, y2, x1, x2) space to capture the relationship between the two ReLU
neurons and their inputs. An example of the convex hull is defined as:

Ω = { x1 + x2 − 2y1 − 2y2 ≥ −2, 0.375x2 − y2 ≥ −0.75,
−x1 + y1 ≥ 0, −x2 + y2 ≥ 0, y1 ≥ 0, y2 ≥ 0 }

As we can see, Ω contains the constraint x1 + x2 − 2y1 − 2y2 ≥ −2 that
correlates (y1, y2, x1, x2) all together, which is beyond the single ReLU encoding.
In general, PRIMA splits the input region into multiple sub-regions and then
computes the convex hull of multiple ReLU neurons. For example, splitting the
input region along x1 = 0 results in two sub-regions where y1 = x1 (y1 is
activated) and y1 = 0 (y1 is deactivated). In each sub-region, the behavior of
y1 is determinate and this yields a tighter or even exact convex approximation.
Finally, PRIMA computes a joint convex over-approximation (as in Ω) of the
convex polytopes computed for each sub-region.

For deployment, we consider 3-ReLU neurons in our paper. We filter out the
unstable ReLU neurons in each ReLU layer, and divide them into a set of 3-ReLU
groups with one overlapping neuron between two adjacent groups as shown in
Fig. 7, where a dashed box identifies a 3-ReLU group. We then leverage PRIMA
to compute the constraints for each 3-ReLU group, and add those additional
constraints into the original network encoding in order to obtain a more precise
network abstraction and better verification precision.

376 Y. Zhong et al.

Fig. 7. The 3-ReLU grouping for unstable ReLU neurons in the same layer i, where
we use PRIMA to compute the convex relaxation for each group.

3.2 Multiple Adversarial Label Elimination

We now explain how we encode the negated property, especially when we take
multiple spurious regions into consideration. As demonstrated in Sect. 2.2, to
make it amenable for LP encoding, we need to compute the over-approximate
convex hull of the union of multiple convex polytopes like in Fig. 4d. To explain
the theory behind, we first introduce the required knowledge with respect
to convex polytope representation. The convex polytope in this paper refers
to a bounded convex polytope that is also a convex region contained in the
n−dimensional Euclidean space Rn. There are two essential definitions of a con-
vex polytope: as the intersection of half-space constraints (H-representation) and
as the convex hull of a set of extremal vertices (V-representation) [14].

H-Representation. A convex polytope can be defined as the intersection of
a finite number of closed half-spaces. A closed half-space in an n-dimensional
space can be expressed by a linear inequality:

a1x1 + a2x2 + · · · + anxn ≤ b (2)

A closed convex polytope can be taken as the set of solutions to a linear
constraint set, just like the constraint set (1) shown in Sect. 2.2.

V-Representation. A closed convex polytope can also be defined as the convex
hull with a finite number of points where this finite set must contain the set of
extreme points of the polytope (i.e. the black-colored dots in Fig. 4d).

Double Description. The Double description method [12] aims to maintain
both V-representation and H-representation during computation. This “dupli-
cation” is beneficial because to compute the intersection of two polytopes in
H-representation is trivial since we only need to take the union set of the half-
space constraints. On the other hand, to compute the convex hull of the union of
two polytopes is trivial in V-representation as we take the union set of the ver-
tices. The program cddlib2 is an efficient implementation of the double descrip-
tion method, which provides functionalities that enable transformation from
V-representation to H-representation (named as convex hull problem); and vice
versa (named as vertex enumeration problem).

We leverage this V-H transformation in cddlib to compute the convex hull of
the union of multiple convex polytopes. We set up a batch size δ to be in [2, 5]3,
which defines the number of spurious regions to be considered simultaneously.

2 https://github.com/cddlib/cddlib.
3 We explain our parameter range setting in Sect. 5 and also provide the batch size

study experiments in Sect. 4.4.

https://github.com/cddlib/cddlib

ARENA: Enhancing Abstract Refinement for Neural Network Verification 377

Assume that the ground truth label is Lc, the related adversarial labels are
L1, · · · , Lδ, the convex-hull computation of (yc − y1 ≤ 0) ∨ · · · ∨ (yc − yδ ≤ 0) is
conducted as follows:

Polytope Computation for Each Spurious Region. We compute the H-
representation of the polytope for each spurious region in the (δ+1)-dimensional
space with respect to the variable set Λ = yc, y1, · · · , yδ. Intuitively, we obtain
the H-representation of polytope (yc − yi ≤ 0) by taking the interval constraints
of Λ (which is a multidimensional cube) conjunct with yc−yi ≤ 0, as our example
in Fig. 4. But this encoding is coarse as we neglect the dependencies between Λ
that are in the same layer. For a more precise encoding, we follow the idea of [8]
and compute the multidimensional octahedra Θ of yc, y1, · · · , yδ, which yields
3δ+1 − 1 constraints defined over Λ. Therefore, the H-representation of polytope
(yc − yi ≤ 0) will be the constraint set Θ and yc − yi ≤ 0.

Union of Convex Polytopes. We obtain the H-representation of the δ poly-
topes in the previous step and denote them by PH

1 , · · · , PH
δ respectively. Since

the union of polytopes is trivial in V-representation – as mentioned earlier, we
use the H-V transformation in cddlib to generate these V-representations of the δ
polytopes (referred to as PV

1 , · · · , PV
δ). As illustrated in Fig. 8, we then produce

the union set PV
u of these vertices sets and transform it to its H-representation

PH
u , which is the convex hull of the union of δ polytopes. As PH

u is represented
by a set of linear inequalities, we conjunct it with the network encoding Π and
submit the constraints for LP solving.

Fig. 8. The convex hull computation of the union of δ convex polytopes

3.3 Adversarial Example Detection

As mentioned previously, we take the conjunction of the network encoding and
the negation of the property as the input constraint set to the LP solver and aim
to eliminate spurious region(s) when detecting infeasibility. On the other hand,
when the constraint set is feasible, we can set the input neurons and the unstable
ReLU neurons as objective function and try to resolve for tighter intervals. In
fact, a feasible constraint set indicates the possibility of a property violation.
The LP solver not only returns the optimized value of the objective function, it
also returns a solution that leads to the optimization, which could be a potential
counter-example of robustness. Therefore, we include a supplementary procedure
that takes each optimal solution obtained from the LP solver and checks if it
constitutes an adversarial example.

378 Y. Zhong et al.

This process brings forth two benefits: (1) it detects counter-examples and
asserts the violation of robustness; (2) it enables the process to terminate early
with falsification (once a counter-example is discovered) instead of exhausting
all the iterations.

3.4 The Verification Framework ARENA

We now present an overview of our verification framework ARENA. In addition
to the implementation of the three main technical points covered earlier, our
framework includes the following optimizations as well.

Algorithm 1: Overall analysis procedure in ARENA
Input:

– N : input neural network with input layer γin, and output neurons y1, ..., yn

– yc: the output neuron corresponding to the ground truth label Lc (1 ≤ c ≤ n)
– δ is the refinement batch size (the number of adversarial labels to be

eliminated by batch in each iteration).

Output: Verification result (Verified for robustness verified, Falsified for
robustness violated, Inconclusive for inconclusive result).

1: (res, AN) ← VerifyByDeepPoly(N) // Result and network abstraction
2: if res = Verified then
3: return Verified
4: else
5: Π ← GetConstraintsInNetwork(N , AN)
6: Ladv ← {Li |IsFeasible(Π ∧ yc − yi ≤ 0), ∀i �= c} // All adversarial labels
7: Ladv ← SortByEstimatedSpuriousRegionSize(Ladv) // Sort decreasingly
8: Lelim ← ∅; i ← 0; iter num ← 999 // Initialization
9: while i < Length(Ladv) do

10: if iter num > 2 then
11: status, iter num ← RefineWithKReLU(N, Π, Lc, Ladv[i], Lelim)
12: if status = Falsified or status = Inconclusive then
13: return status
14: else // status = Verified
15: Lelim ← Lelim ∪ {Ladv[i]}
16: i ← i + 1
17: else
18: L′ ← GetNextAdversarialLabelBatch(Ladv, δ)
19: status ← EliminateAdversarialLabels(N, Π, Lc, L′, Lelim)
20: if status = Falsified or status = Inconclusive then
21: return status
22: else // status = Verified
23: Lelim ← Lelim ∪ {L′}
24: i ← i + SizeOf(L′)
25: if Lelim = Ladv then
26: return Verified
27: else
28: return Inconclusive

ARENA: Enhancing Abstract Refinement for Neural Network Verification 379

Optimization 1: Prioritising elimination of larger spurious regions. We choose
to order the sequence of the spurious regions according to the descending order
of the respective regions’ sizes, by eliminating the “toughest” spurious region
first. Since robustness only holds when all spurious regions are eliminated, we
terminate the refinement process early if we fail to prune a larger spurious region.
As it is difficult to compute the actual size of the spurious region, we deploy the
metric in DeepSRGR where they take the lower bound of expression yc−yi given
by DeepPoly as the estimation of the region size, i.e. the smaller this value is, the
larger the region is likely to be and thus it would be tougher for us to eliminate
the region.

Optimization 2: Cascading refinement. Our system is designed to apply
increasingly more scalable and less precise refinement methods. We hereby define
process RefineWithKReLU as the refinement method with multi-ReLU encoding
for the network and multi-adversarial label pruning feature disabled. Similarly,
process EliminateAdversarialLabels(δ) is the refinement method with multi-ReLU
encoding, and taking into consideration δ spurious regions simultaneously. With
additional over-approximation error potentially being introduced by computing
the union of polytopes, EliminateAdversarialLabels(δ) is less precise method com-
pared to RefineWithKReLU but more scalable as it eliminates δ spurious regions
simultaneously. We first use RefineWithKReLU to eliminate the larger spurious
regions and record the number of iterations ς required to prune the current
spurious region. If ς ≤ 2, this indicates that it is rather amiable to prune the
current spurious region, and affordable to call upon EliminateAdversarialLabels(δ)
to eliminate the remaining smaller spurious regions.

We present the overall analysis procedure in Algorithm 1. To begin with,
we only apply the refinement process to images that fail to be verified by
DeepPoly (lines 4). For refinement, we first obtain all the network constraints
generated during abstract interpretation (line 5) and all potential adversarial
labels (line 6). Then we call upon the processes RefineWithKReLU (line 11)
or EliminateAdversarialLabels(δ) (line 19) to eliminate one or multiple spurious
regions as stated in optimization 2 mechanism. The analyzer returns “Falsified”
value if it detects an adversarial example (lines 13, 21); or it returns “Inconclu-
sive” value if it fails to eliminate one of the adversarial labels and fails to find
a counter-example (lines 13, 21, 28). We declare verification to be successful if
and only if we can eliminate all the adversarial labels (lines 25–26).

Details of the two refinement processes are presented in Algorithms 2 and
3 (in Appendix B in our technical report). These two algorithms only differ in
the property encoding (line 3–4 in Algorithm 3 vs lines 3–4 in Algorithm 2).
Reading Algorithm 2 more closely: it first computes the convex hull of the union
of the spurious regions according to Sect. 3.2 (line 3). Next, it conjuncts the
convex hull with the network encoding in line 4, and add constraint yc − yt > 0
for each of the previously eliminated adversarial label Lt (lines 5–6); this helps
to reduce the solution space further. If the combined constraint set Σ is found
to be infeasible, the process returns “verified” since violation of the property
cannot be attained (lines 7–8). But if Σ is feasible, the process leverages it to

https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf

380 Y. Zhong et al.

further tighten the bounds for input and unstable ReLU neurons and updates
the network (lines 9, 14). Moreover, the process checks if each LP solution is
a valid counter-example; if so, it returns “Falsified” (lines 10–11, 15-16). With
the newly solved bounds, the process then re-runs DeepPoly to obtain a tighter
network encoding (lines 17–18) that is more amenable to encounter infeasibility
in the latter iterations. Finally, the process returns “inconclusive” if it fails to
conclude within the maximum number of iterations (line 20).

Algorithm 2: The refinement procedure EliminateAdversarialLabels

Function Name: EliminateAdversarialLabels(N, Π, Lc, L′, Lelim)
Input:

– N : input neural network with input layer γin, and output neurons y1, ..., yn

– Π: the constraint set of N
– yc: the output neuron corresponding to the ground truth label Lc (1 ≤ c ≤ n)
– L′, Lelim: the batch of adversarial labels to be refined, and the list of

previously eliminated labels

Output: the refinement status

1: counter = 0
2: while counter < τ do // τ is an iteration threshold
3: PH

u ← ComputeConvexHull(N, L′) // PH
u is the convex hull of polytopes

4: Σ ← Π ∧ PH
u // Initialize constraint set

5: for all Lt ∈ Lelim do
6: Σ ← Σ ∧ (yc − yt > 0)
7: if IsInfeasible(Σ) then
8: return Verified
9: N ← LPSolveInputInterval(Σ, γin) // Update network with new bounds

10: if ExistsAnAdversarialExample(N) then
11: return Falsified
12: for all ReLU layer γ′

k in N do
13: γk ← GetPrecedingInputAffineLayer(γ′

k)
14: N ← LPSolveUnstableReLUs(Σ, γk) // Update new bounds
15: if ExistsAnAdversarialExample(N) then
16: return Falsified
17: A ← RecomputeNetworkAbstractionByDeepPoly(N)
18: Π ← GetConstraintsInNetwork(N, A)
19: counter = counter + 1
20: return Inconclusive

4 Experiments

We implemented our method in a prototypical verifier called ARENA in both C
and C++ programming languages (C++ is used for the k-ReLU computation
feature, while the rest of the system is implemented in C). Our verifier is built on
top of DeepPoly in [15]: it utilizes DeepPoly as the back-end abstract interpreter

ARENA: Enhancing Abstract Refinement for Neural Network Verification 381

for neural networks. Moreover, it uses Gurobi4 version 9.5 as the LP solver for
constraints generated during abstract refinement.

We evaluate the performance of ARENA with state-of-the-art CPU-based
incomplete verifiers including DeepSRGR [10], PRIMA [9], and DeepPoly [7].
Furthermore, we compare with a complete verifier α, β-CROWN [13], which
is GPU-based and the winning tool of VNN-COMP 2022 [16]. The evaluation
machine is equipped with two 2.40 GHz Intel(R) Xeon(R) Silver 4210R CPUs
with 384 GB of main memory and a NVIDIA RTX A5000 GPU. The implemen-
tation is 64-bit based.

Note that DeepSRGR [10] was purely implemented in Python, while the
main analysis in ARENA, PRIMA and DeepPoly were implemented in C/C++.
Furthermore, this original version of DeepSRGR does not support convolutional
networks nor the ONNX network format in our benchmark. Therefore, to avoid
any runtime discrepancy introduced by different languages and to support our
tested networks, we re-implemented the refinement technique of DeepSRGR in
C, and conducted the experiment on the re-implemented DeepSRGR, where we
release our re-implementation of DeepSRGR at this link: https://github.com/
arena-verifier/DeepSRGR. The source code of our verifier ARENA is available
online at: https://github.com/arena-verifier/ARENA.

4.1 Experiment Setup

Evaluation Datasets and Testing Networks. We chose the commonly used
MNIST [17] and CIFAR10 [18] datasets. MNIST is an image dataset with hand-
written digits, containing gray-scale images with 28×28 pixels. CIFAR10 includes
RGB three-channel images with size 32 × 32. Our testing image set consists of
the first 100 images of the test set of each dataset, which is accessible from [15].

We selected fully-connected (abbreviated as FC) and convolutional (abbre-
viated as Conv) networks from [15] as displayed in Table 3, with up to around
50k neurons. We explicitly list the number of hidden neurons, the number of
activation layers, trained defense5, and the number of candidate images for each
network. Here, the candidate images refer to those testing images that can be
correctly classified by the network and we only apply robustness verification on
the candidate images.

Robustness Analysis. We conducted robustness analysis against L∞ norm
attack [19] with a perturbation parameter ε. Assuming that each pixel in the test
image originally takes an intensity value pi, it now takes an intensity interval
[pi − ε, pi + ε] after applying L∞ norm attack with a specified constant ε.

This naturally forms an input space defined by
�n

i=1[pi − ε, pi + ε], and all
the tools attempt to verify if all the “perturbed” images within the input space
will be classified the same as the original image by the tested network. If so, we

4 https://www.gurobi.com/.
5 A trained defense refers to a defense method against adversarial samples, with the

purpose of improving the robustness property of the network.

https://github.com/arena-verifier/DeepSRGR
https://github.com/arena-verifier/DeepSRGR
https://github.com/arena-verifier/ARENA
https://www.gurobi.com/

382 Y. Zhong et al.

claim that the robustness property is verified. On the contrary, if we detect a
counter-example with a different classification label, we assert the falsification
of the robustness property. Finally, if we fail to conclude with verification or
falsification, we return unknown to the user, meaning that the analysis result is
inconclusive. We set up a challenging perturbation ε for each network and show
in Table 3.

Table 3. Experimental fully connected and convolutional networks

Network Dataset Type ε #Layer #Neurons Defense Candidates

M 3 100 MNIST FC 0.028 3 210 None 98

M 5 100 MNIST FC 0.08 6 510 DiffAI 98

M 6 100 MNIST FC 0.025 6 510 None 99

M 9 100 MNIST FC 0.023 9 810 None 97

M 6 200 MNIST FC 0.016 6 1,010 None 99

M 9 200 MNIST FC 0.015 9 1,610 None 97

M convSmall MNIST Conv 0.11 3 3,604 None 100

M convMed MNIST Conv 0.1 3 5,704 None 100

M convBig MNIST Conv 0.306 6 48,064 DiffAI [20] 95

C 6 500 CIFAR10 FC 0.0032 6 3,000 None 56

C convMed CIFAR10 Conv 0.006 3 7,144 None 67

4.2 Comparison with the CPU-Based Verifiers

We present the robustness analysis results for ten networks in Table 3 and we
describe the parameter configurations of our tool ARENA in Appendix C in
our technical report. To execute PRIMA, we use the “refinepoly” domain in
ERAN [15]. We report the experiment results drawn from different tools for
MNIST and CIFAR10 networks in Table 4. For ARENA, we report the number
of verified images, the number of falsified images and the average execution time
for each testing image. DeepSRGR does not detect adversarial examples, neither
does it attempt to assert violation of the property. PRIMA, on the other hand,
returns two unsafe image for one MNIST network only (the detailed results
and parameter setting are given in Appendix E in our report). Thus we omit
the falsification column from the report for these two methods. Due to time
limitation, for networks M 9 200, C 6 500 and C convMed, we set a 2 h timeout
for each image. If the refinement process fails to terminate before timeout, we
consider the verification as inconclusive.

We observe from Table 4 that ARENA returns significantly more conclusive
images (including both verified and falsified images) for all the networks than
DeepSRGR, with comparable or even less execution time than that of Deep-
SRGR. ARENA also returns more conclusive images for all the networks than
PRIMA, except for the subject MNIST 3 100, where ARENA returns less veri-
fied images than PRIMA. Our in-depth investigation reveals that it is because

https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf
https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf

ARENA: Enhancing Abstract Refinement for Neural Network Verification 383

Table 4. The number of verified/falsified images and average execution time (in sec-
onds) per image for MNIST and CIFAR10 network experiments

Neural Net ARENA DeepSRGR PRIMA DeepPoly

Verify Falsify Time Verify Time Verify Time Verify Time

M 3 100 63 5 87.65 54 68.76 69 123.73 24 0.105

M 5 100 77 7 250.39 67 153.75 53 19.15 25 0.522

M 6 100 45 6 650.10 38 324.14 38 173.03 23 0.280

M 9 100 44 10 1527.2 34 1004.4 34 191.60 30 0.587

M 6 200 48 3 1514.2 35 1312.3 34 222.45 25 0.313

M 9 200 43 6 3857.8 35 3536.7 29 238.63 29 0.536

M convSmall 69 7 176.93 66 251.27 70 84.23 31 0.605

M convMed 66 5 2054.9 60 2826.6 59 125.88 24 1.646

C 6 500 31 9 2703.3 24 3985.2 20 269.96 16 12.22

C convMed 31 7 3417.1 30 4385.4 30 230.74 21 3.87

two out of the three hidden layers have their ReLU neurons being encoded exactly
with MILP in PRIMA.

These analysis results are better visualized in Fig. 9 and 10 in Appendix
D in our technical report. As can be seen in Appendix D, ARENA generally
returns more conclusive images than the rest of the tools. On average, ARENA
returns 15.8% more conclusive images than DeepSRGR and 16.6% more con-
clusive images than PRIMA respectively for the testing networks. In summary,
to the best of our knowledge, ARENA outperforms the current state-of-the-art
approximated methods that run on CPU.

4.3 Comparison with the GPU-Based Verifier α, β-CROWN

Furthermore, we compare with the state-of-the-art tool α, β-CROWN (alpha-
beta-CROWN) [13]. Note that this is a complete verification tool in the sense
that it will produce a conclusive answer given sufficient amount of time.

We started our experiments with the version of α, β-CROWN available in
August 2022. We report in detail here the average execution time for each image,
the number of verified images and falsified images in Table 5 with five networks.
We rerun our experiments with the availability of the November 2022 version of
α, β-CROWN for all tested networks and present the results in Table 6. In terms
of execution speed, we observe that α, β-CROWN is much superior to ARENA,
mainly due to the deployment of GPU acceleration. In terms of the numbers of
verified and falsified images, we note that ARENA can verify or falsify 79.3% of
that of α, β-CROWN on average, for the upper seven subject tests. For the last
four subject tests, α, β-CROWN introduces MIP encoding in their solution to
capture exact ReLU functionality, and thus further enhancing the number of veri-
fied images. We are currently investigating techniques for implementing ARENA
on GPU, with the goal to improve the number of verified/falsified images with
reasonable time bound.

https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf

384 Y. Zhong et al.

Table 5. The number of verified/falsified images and average execution time for
ARENA and α, β-CROWN (version dated Aug 2022), time is presented in seconds

Neural Net ARENA α, β-CROWN

Verify Falsify Average time Verify Falsify Average time

M 3 100 63 5 87.65 54 11 25.15

M 5 100 77 7 250.3 53 10 48.67

M convSmall 69 7 176.9 39 16 3.06

M convMed 66 5 1625.9 30 18 2.90

M convBig 53 30 589.52 49 24 4.21

Table 6. The number of verified/falsified images and average execution time of all
tested networks for ARENA and α, β-CROWN (version dated Nov 2022), time is pre-
sented in seconds

Neural Net ARENA α, β-CROWN

Verify Falsify Average time Verify Falsify Average time

M 3 100 63 5 87.65 81 13 40.81

M 5 100 77 7 250.3 87 12 30.89

C 6 500 31 9 2703.3 21 20 600.2

C convMed 31 7 3417.1 36 22 283.7

M convSmall 69 7 176.9 83 16 9.10

M convMed 66 5 1625.9 82 18 7.24

M convBig 53 30 589.52 60 29 109.17

M 6 100 45 6 650.1 82 8 182.44

M 6 200 48 3 1514.2 87 4 313.37

M 9 100 44 10 1527.2 77 13 278.45

M 9 200 43 6 3857.8 79 9 455.53

4.4 Multi-adversarial Label Parameter Study

In this experiment, we selected three networks from Table 3 to assess how the
batch size parameter δ may impact the verification precision and execution time.

Theoretically, a larger value of δ may lead to a more efficient analysis process
as it allows more adversarial regions to be eliminated at the same time. However,
setting the parameter to be δ requires the computation of the union of δ convex
polytopes. This in turn may introduce more over-approximation error and may
jeopardize the analysis precision.

As δ aims to speed up the refinement process, we present the number of
images that are verified through iterative refinement process and the average
verification time for those refined images. As we only apply the refinement pro-
cess to those testing images that DeepPoly fails to verify, the refined images

ARENA: Enhancing Abstract Refinement for Neural Network Verification 385

Table 7. The number of verified images through the refinement process (VTR) and
average verification time per refined image for different δ setting.

Network ARENA

(disabled) (δ = 2) (δ = 3) (δ = 4) (δ = 5)

VTR Time(s) VTR Time(s) VTR Time(s) VTR Time(s) VTR Time(s)

M 3 100 41 142.91 39 144.67 39 135.62 39 124.99 38 127.77

M 6 100 22 1414.4 22 1312.6 22 1250.5 22 1202.4 22 1047.9

M 6 200 26 4809.7 23 2552.2 23 1828.2 23 1663.2 23 1297.0

refer to those images that are successfully verified through our refinement pro-
cess, NOT through the original DeepPoly process. The experimental results are
shown in Table 7 where we compare among parameters δ = 2, 3, 4, 5 and with
multi-adversarial label feature being disabled (the same as setting δ = 1).

The experiment results show that the choice of a larger δ still allows us to
achieve closely comparable precision while requires less execution time. Since an
appropriate set-up of parameters leads to a better combination of precision and
efficiency, we describe our configuration of each tested network in Appendix C
in our technical report.

5 Discussion

We now discuss the limitation of our work. As described in Sect. 3.2, our batch
size parameter δ is bounded to 5 at maximum for both precision and time-
efficiency concern. In consideration for precision solely, as we compute the over-
approximate convex hull of the union of multiple convex polytopes, the process
will inevitably introduce additional over-approximate error into the LP encoding,
yielding coarser neuron intervals. Thus we bound the value of δ to mitigate the
degree of precision sacrifice. For time-efficiency issue, the transformation between
V-representation and H-representation (refer to Sect. 3.2) – in either direction – is
generally NP-hard, thus incurring exponential overhead with larger dimensions.
As the parameter δ yields a (δ + 1)-dimensional space, it is advisable to keep
δ-value small so that the convex hull computation process will not become an
execution bottleneck. For future work, we will explore the possibility of assigning
δ dynamically for different networks to strike a better trade-off between speed
and precision.

Our proposed refinement process could be applied to other verification tech-
niques for improved precision, as long as they use linear constraints to approxi-
mate the underlying network [6,8,9].

6 Related Work

Network verification methods can be generally categorized as complete or incom-
plete methods. Complete methods conduct exact analysis over the network,

https://jacksonzyy.github.io/homepage/files/VMCAI_tech_report.pdf

386 Y. Zhong et al.

especially for ReLU-activated networks. Given adequate time and resources, the
complete methods return deterministic verification or violation of the robust-
ness property to the user. Typical existing works are usually SMT (satisfiability
modulo theory) based, MILP (mixed integer liner program) based or branch and
bound (BaB) based [3,4,21,22]. For instance, β-CROWN [22] is a GPU-based
verifier which uses branch and bound method to enable exact reasoning over the
ReLU activation function. Furthermore, β-CROWN could also perform as an
incomplete verifier with early termination.

On the other hand, the incomplete methods choose to over-approximate the
non-linearity of the network using abstract interpretation or bound propagation
etc. [6,7,23,24]. They are faced with precision loss due to the over-approximation
of network behaviour. Consequently, the analysis result becomes inconclusive
when the incomplete verifiers fail to verify the property. To rectify this defi-
ciency, researchers have proposed various techniques like [8–10]. The work in [8]
presents a new convex relaxation method that considers multiple ReLUs jointly
in order to capture the correlation between ReLU neurons in the same layer. This
idea has been further developed in PRIMA [9] which reduces the complexity of
ReLU convex abstraction computation via a novel convex hull approximation
algorithm. In comparison, DeepSRGR [10] elects to refine the abstraction in an
iterative manner, where it repeatedly uses the spurious regions to stabilize the
ReLU neurons until the abstraction is precise enough to eliminate the adversar-
ial label linked to that specified spurious region. In our work, we combine both
these refinement methods [9,10] to break the precision barrier and also leverages
the double-description method to retain efficiency as well.

7 Conclusion

We leverage the double description method in convex polytope area to com-
pute the convex hull of the union of multiple polytopes, making it amenable for
eliminating multiple adversarial labels simultaneously and boosting the analysis
efficiency. Furthermore, we combine the convex relaxation technique with the
iterative abstract refinement method to improve the precision in abstract inter-
pretation based verification system. We implemented our prototypical analyzer
ARENA to conduct both robustness verification and falsification. Experiment
results show affirmatively that ARENA enhances abstract refinement techniques
by attaining better verification precision compared to DeepSRGR, with reason-
able execution time; it also competes favourably in comparison with PRIMA.
Finally, it is also capable of detecting adversarial examples.

We believe that our proposed method can positively boost the effectiveness of
sound but incomplete analyses and be applied to other methods that use linear
constraints to approximate the network for effective precision enhancement.

Acknowledgement. This research is supported by a Singapore Ministry of Education
Academic Research Fund Tier 1 T1-251RES2103 and the National Research Founda-
tion, Singapore under its Emerging Areas Research Projects (EARP) Funding Ini-
tiative. Any opinions, findings and conclusions or recommendations expressed in this

ARENA: Enhancing Abstract Refinement for Neural Network Verification 387

material are those of the author(s) and do not reflect the views of National Research
Foundation, Singapore. We are grateful to Julian Rüth saraedum and Komei Fukuda
for their prompt answer to our queries on cddlib. And we appreciate Mark Niklas
Müller’s assistance to our queries on PRIMA.

References

1. Ren, K., Zheng, T., Qin, Z., Liu, X.: Adversarial attacks and defenses in deep
learning. Engineering 6(3), 346–360 (2020)

2. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

3. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR). OpenReview.net (2019)

4. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

5. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
Computer Society (2018)

7. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019)

8. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex
barrier for neural network certification. In: Wallach, H.M., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC,
Canada, pp. 15072–15083 (2019)

9. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA:
general and precise neural network certification via scalable convex hull approxi-
mations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022)

10. Yang, P.: Improving neural network verification through spurious region guided
refinement. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651,
pp. 389–408. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-
2 21

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

12. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler,
R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61576-8 77

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-61576-8_77

388 Y. Zhong et al.

13. CMU. Alpha-Beta-CROWN: a fast and scalable neural network verifier with
efficient bound propagation (2022). https://github.com/huanzhang12/alpha-beta-
CROWN. Accessed 11 Aug 2022

14. McMullen, P.: Convex polytopes, by Branko Grunbaum, second edition (first edi-
tion (1967) written with the cooperation of V. L. Klee, M. Perles and G. C. Shep-
hard. Comb. Probab. Comput. 14(4), 623–626 (2005)

15. ETH. ETH Robustness Analyzer for Neural Networks (ERAN) (2022). https://
github.com/eth-sri/eran. Accessed 11 Aug 2022

16. 3rd International Verification of Neural Networks Competition (VNN-COMP’22)
(2022). https://sites.google.com/view/vnn2022. Accessed 11 Aug 2022

17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
18. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian institute for advanced

research)
19. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:

IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)
20. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for

provably robust neural networks. In: International Conference on Machine Learning
(ICML), pp. 3575–3583 (2018)

21. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, 7–12 February 2020, pp. 3291–3299. AAAI Press (2020)

22. Wang, S.: Beta-crown: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. CoRR,
abs/2103.06624 (2021)

23. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Bengio, S., Wal-
lach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., (eds.)
Advances in Neural Information Processing Systems Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018,
Montréal, Canada, vol. 31, pp. 4944–4953 (2018)

24. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Enck, W., Felt, A.P., (eds.) 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–
17 August 2018, pp. 1599–1614. USENIX Association (2018)

https://github.com/huanzhang12/alpha-beta-CROWN
https://github.com/huanzhang12/alpha-beta-CROWN
https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://sites.google.com/view/vnn2022

Correction to: ARENA: Enhancing Abstract
Refinement for Neural Network Verification

Yuyi Zhong, Quang-Trung Ta, and Siau-Cheng Khoo

Correction to:
Chapter 17 in: C. Dragoi et al. (Eds.): Verification,
Model Checking, and Abstract Interpretation, LNCS 13881,
https://doi.org/10.1007/978-3-031-24950-1_17

In the originally published version of chapter 17, the acknowledgment section had been
rendered incorrectly. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-24950-1_17

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Dragoi et al. (Eds.): VMCAI 2023, LNCS 13881, p. C1, 2024.
https://doi.org/10.1007/978-3-031-24950-1_18

https://doi.org/10.1007/978-3-031-24950-1_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24950-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-24950-1_17
https://doi.org/10.1007/978-3-031-24950-1_18

Author Index

Aubert, Clément 1

Baarir, Souheib 252
Banerjee, Ansuman 25
Banerjee, Soham 25
Bansal, Sorav 44
Berthier, Nicolas 66
Bjørner, Nikolaj 91
Boreale, Michele 106

Chernigovskaia, Lidiia 341
Cirisci, Berk 129
Collodi, Luisa 106

De Roover, Coen 296
Devriendt, Jo 252
Di Stefano, Luca 155
Drachsler-Cohen, Dana 203
Dutheillet, Claude 252

Eisenhofer, Clemens 91
Enea, Constantin 129

Farzan, Azadeh 129
Fedyukovich, Grigory 341
Feret, Jérôme 228

Ghosh, Sumana 25
Goharshady, Amir Kafshdar 177

Kabaha, Anan 203
Khakpour, Narges 66
Khoo, Siau-Cheng 366
Kovács, Laura 91

Lang, Frédéric 155

McMillan, Kenneth L. 320
Mohalik, Swarup K. 25
Mutluergil, Suha Orhun 129

Rezk, Tamara 267
Rival, Xavier 267
Rubiano, Thomas 1
Rusch, Neea 1

Salazar, Albin 228
Saouli, Sabrine 252
Seiller, Thomas 1
Stiévenart, Quentin 296

Ta, Quang-Trung 366
Tiraboschi, Ignacio 267

Van der Plas, Jens 296
Vick, Cole 320

Zaher, Ahmed Khaled 177
Zavalía, Lucas 341
Zhong, Yuyi 366

	Preface
	Organization
	Contents
	Distributing and Parallelizing Non-canonical Loops
	1 Original Approaches to Automatic Parallelization
	1.1 The Challenge of Unknown Iteration Space
	1.2 Motivations for Correct, Universal and Automatic Parallelization
	1.3 Our Technique: Properties, Benefits and Limitations
	1.4 Contributions: From Theory to Benchmarks

	2 Background: Language and Dependency Analysis
	2.1 A Simple While Imperative Language with Parallel Capacities
	2.2 Data-Flow Graphs for Loop Dependency Analysis
	2.3 Constructing Data-Flow Graphs

	3 Loop Fission Algorithm
	3.1 Algorithm, Presentation and Intuition
	3.2 Correctness of the Algorithm

	4 Limitations of Existing Alternative Approaches
	4.1 Comparing Dependency Analyses
	4.2 Assessment of Existing Automated Loop Transformation and Parallelization Tools

	5 Evaluation
	5.1 Benchmarks
	5.2 Results

	6 Conclusion
	References

	SMT-Based Modeling and Verification of Spiking Neural Networks: A Case Study
	1 Introduction
	2 Spiking Neural Networks
	2.1 Discretized Simulation Time
	2.2 Spike Trains and Encoding from Feature Inputs
	2.3 Leaky Integrate and Fire (LIFR) Neuron

	3 SMT Encoding of SNN
	4 The Proposed Framework
	4.1 Encoding of Input and Output Properties
	4.2 Overall Verification Framework
	4.3 Verifying Adversarial Robustness of SNNs

	5 Implementation and Results
	5.1 Verification Results on the Iris Dataset
	5.2 Adversarial Robustness for Iris and MNIST

	6 Related Work
	7 Conclusion and Future Directions
	References

	StaticPersist: Compiler Support for PMEM Programming
	1 Introduction
	2 Motivating Example
	3 Algorithm
	3.1 Points-To Algorithm Based on Allocation-Site
	3.2 Allocation-Stack with Bounded Depth
	3.3 Inter-procedural DFA Specification

	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Symbolic Abstract Heaps for Polymorphic Information-Flow Guard Inference
	1 Introduction
	2 Preliminaries
	3 Symbolic Abstract Heap Domains
	3.1 Families of Heap-Related Relations
	3.2 Symbolic Abstract Heap Domain
	3.3 Instances of Symbolic Abstract Heap Domains

	4 Secure Heap Abstraction
	5 Inferring Polymorphic Information-Flow Guards
	5.1 Security Semantics
	5.2 Guard Inference Procedure
	5.3 Soundness

	6 Implementation and Evaluation
	7 Discussions
	References

	Satisfiability Modulo Custom Theories in Z3
	1 Introduction
	2 Motivating Example
	3 User-Propagators in Z3
	3.1 Workflow for User-Propagators
	3.2 Supported Callbacks

	4 User-Propagators for Memory Reasoning in alive2
	5 Using User-Propagators
	6 Related Work
	7 Conclusions and Future Work
	References

	Bayesian Parameter Estimation with Guarantees via Interval Analysis and Simulation
	1 Introduction
	2 Problem Statement
	3 Interval Arithmetic, Discretized odeS, Neural Networks
	3.1 Interval Arithmetic, Coverings, Set Inversion
	3.2 Discretized odeS and Neural Networks

	4 The Core Algorithm A
	5 Confidence Intervals for Posterior Moments
	6 Optimal Allocation of Computational Resources
	7 Experiments
	7.1 Discretized odeS
	7.2 Feature Relevance in Neural Network Classifiers

	8 Conclusion
	References

	A Pragmatic Approach to Stateful Partial Order Reduction
	1 Introduction
	2 Preliminaries
	2.1 Partial Order Reduction

	3 Eager Source Set POR (DE-S-POR)
	3.1 Safe Set POR (S-POR)
	3.2 Full Algorithm

	4 Lazy Source Set POR (DL-S-POR)
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Compositional Verification of Stigmergic Collective Systems
	1 Introduction
	2 Background
	3 Parallel Emulation Programs
	4 Value Analysis of LAbS Specifications
	5 Compositional Verification Workflow
	6 Related Work
	7 Conclusion and Future Work
	References

	Efficient Interprocedural Data-Flow Analysis Using Treedepth and Treewidth
	1 Introduction
	2 The IFDS Framework
	3 Treewidth and Treedepth
	4 Our Parameterized Algorithm
	5 Experimental Results
	6 Conclusion
	References

	Maximal Robust Neural Network Specifications via Oracle-Guided Numerical Optimization
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	4 Key Idea: An Oracle-Guided Numerical Optimization
	4.1 The Optimization Problem
	4.2 Solving the Optimization Problem

	5 MaRVeL: Computing Maximal Robust Specifications
	5.1 The Verify Step
	5.2 The Optimize Step
	5.3 CEGIS at the Progress Step
	5.4 An End-to-End Example
	5.5 Correctness and Running Time

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	A Generic Framework to Coarse-Grain Stochastic Reaction Networks by Abstract Interpretation
	1 Introduction
	2 First Case Study: Birth and Death Model
	2.1 Reaction Network
	2.2 Logical Model
	2.3 Formal Derivation of a Coarse-Grained Model

	3 General Case
	3.1 Concrete Semantics
	3.2 Abstract Semantics
	3.3 Recovering Information About Transition Probabilities

	4 Second Case Study: Competition for Resources
	4.1 Reaction Network
	4.2 Logical Model
	4.3 Formal Discretization of the Reaction Network

	5 Conclusion
	References

	CosySEL: Improving SAT Solving Using Local Symmetries
	1 Introduction
	2 State of the Art and Some Definitions
	2.1 Basics on Boolean Satisfiability
	2.2 Symmetry Group of a Formula
	2.3 (Effective) Symmetry Breaking
	2.4 Symmetric (Explanation) Learning

	3 The Proposed Technique
	3.1 Theoretical Foundations and Practical Considerations
	3.2 Algorithm

	4 Tooling and Evaluation
	4.1 Tool Usage
	4.2 Evaluation

	5 Conclusion
	References

	Sound Symbolic Execution via Abstract Interpretation and Its Application to Security
	1 Introduction
	2 Language and Noninterference Security Notion
	3 Overview
	4 SoundSE: Sound Symbolic Execution
	5 RedSoundSE: Sound SE Combined with Abstract States
	6 SoundRSE: Sound Relational Symbolic Execution
	7 RedSoundRSE: Product of SoundRSE with Dependence AI
	8 Comparison
	9 Related Work
	10 Conclusion
	A Trace of Program [f:1:ex]2(d) with RedSoundSE Using Intervals
	B SE Step Relation
	C SoundSE Step Relation
	D Abstract Step Relation
	E RedSoundSE Step Relation
	F RSE and SoundRSE Step Relations
	G RedSoundRSE Step Relation
	References

	Result Invalidation for Incremental Modular Analyses
	1 Introduction
	2 Background
	2.1 Modular Static Analysis
	2.2 Incremental Modular Static Analysis

	3 Strategies for Precision Recovery
	3.1 Invalidation Principle
	3.2 Component Invalidation (CI)
	3.3 Dependency Invalidation (DI)
	3.4 Write Invalidation (WI)

	4 Evaluation
	4.1 Experimental Design
	4.2 Precision Evaluation (RQ1)
	4.3 Performance w.r.t. No Invalidation (RQ2)
	4.4 Performance w.r.t. Full Reanalysis (RQ3)

	5 Related Work
	6 Conclusion
	References

	Synthesizing History and Prophecy Variables for Symbolic Model Checking
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Theory Abstraction and Refinement
	4.1 Refinement

	5 Counterexample-Guided Refinement
	5.1 Refinement with Local Axiom Instances

	6 Proof-Based Prophecy Heuristic
	7 Capture Conditions from Interpolants
	8 Evaluation
	8.1 Implementations
	8.2 Experiments

	9 Conclusion and Future Work
	References

	Solving Constrained Horn Clauses over Algebraic Data Types
	1 Introduction
	2 Preliminaries
	3 Recursive Functional Synthesis
	3.1 From CHC to FS
	3.2 The Eq-Prop Transformation

	4 Recursive Invariants
	5 Solving CHCs over ADTs
	5.1 Challenges of Recursive Functional Synthesis When Dealing with Arbitrary CHCs
	5.2 Core Algorithm

	6 Automated Induction with AdtInd
	6.1 Overview
	6.2 Extracting Common Subterms for Helper Lemmas
	6.3 Filtering Procedure

	7 Implementation and Evaluation
	7.1 Framework
	7.2 Experiments

	8 Related Work
	9 Conclusion and Future Work
	References

	ARENA: Enhancing Abstract Refinement for Neural Network Verification
	1 Introduction
	2 Overview
	2.1 Spurious Region Guided Refinement
	2.2 Scaling up with Multiple Adversarial Label Elimination

	3 Methodologies
	3.1 Multi-ReLU Network Encoding
	3.2 Multiple Adversarial Label Elimination
	3.3 Adversarial Example Detection
	3.4 The Verification Framework ARENA

	4 Experiments
	4.1 Experiment Setup
	4.2 Comparison with the CPU-Based Verifiers
	4.3 Comparison with the GPU-Based Verifier , -CROWN
	4.4 Multi-adversarial Label Parameter Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Correction to: Chapter 17 in: C. Dragoi et al. (Eds.): Verification, Model Checking, and Abstract Interpretation, LNCS 13881, https://doi.org/10.1007/978-3-031-24950-1_17
	Author Index

