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Preface 

The annual scientific conference OR 2022 of the German Operations Research 
Society (GOR) was held at the Karlsruhe Institute of Technology on 6–9 September 
2022. The Operations Research Institute (IOR) hosted the conference together with 
the Institute for Industrial Production (IIP), the Institute for Automation and Applied 
Informatics (IAI) and the Institute for Material Handling and Logistics (IFL). 

After two years of COVID-19, the OR 2022 was held as an in-person conference 
again; the conference in 2020 was cancelled and in 2021 it was held as an online 
conference hosted at the University of Bern. The organization committee faced uncer-
tainty while preparing for the event; until about 6 weeks before the conference, we 
were preparing for both an online format and an in-person conference. 

Over 600 scientists from about 30 different countries have attended the OR 2022 
in Karlsruhe. Three plenary and nine semi-plenaries covered theoretical aspects of 
Operations Research, applications and real-world practices. In addition, more than 
400 contributed presentations were held over three days in up to 21 parallel sessions. 

This conference proceedings contains only papers presented at the OR 2022. All 
accepted papers have been reviewed by two domain experts, led by the corresponding 
stream chairs. All papers went through at least one round of revisions. In total, 
seventy-nine papers have been accepted for this proceedings. The papers are sorted 
by the corresponding streams as presented at the conference. This also includes the 
program committee stream which hosted the GOR master thesis award as well as the 
GOR PhD thesis award. 

We thank all participants for their contribution to OR 2022. In addition, we are 
grateful for our sponsors (Gurobi, Additive, FICO, GAMS, LocalSolver, Optano, 
Quantagonia, PTV Group, Springer, IBM, DB, Log-hub, EnBW, INFORMS), our
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x Preface

internal partner (MathSEE) and external partners (DFG and EURO), the stream chairs 
as well as the GOR. We also thank the program committee and all the many helpers 
from KIT at the conference. 

Karlsruhe, Germany 
November 2022 

Oliver Grothe 
Stefan Nickel 

Steffen Rebennack 
Oliver Stein
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Chapter 1 
A Two-Stage Stochastic Optimisation 
Model for Urban Same-Day Delivery 
with Micro-hubs 

Charlotte Ackva 

Abstract To compete with the rapid growth in e-commerce, many local shops pro-
vide a delivery service to their customers. To increase consolidation opportunities, 
shops start cooperating in local delivery by using shared vehicles and micro-hubs 
for joint transportation of parcels. Stores deposit their orders at close-by micro-hubs 
for further delivery by the shared vehicles, which conduct consistent routes between 
the micro-hubs. As long as it is in line with their schedule, the vehicles collect the 
parcels and drop them off close to customers’ locations. Hence, it is very important 
to find effective schedules which is particularly challenging since order placements 
vary from day to day. We propose a two-stage stochastic program. In the first stage, 
the vehicle schedules are determined. In the second stage, the realised orders are 
routed. The goal is to maximise the expected amount of fulfilled parcel orders with 
the shared vehicles. We solve the problem with the Progressive Hedging algorithm. 
We consider the optimal solution without consistency constraints and a practically-
inspired heuristic solution as benchmarks. We find that Progressive Hedging behaves 
rather poorly on random data, but performs particularly well on highly structured 
demand patterns. 

Keywords Micro-hubs · Same-day delivery · Routing consistency · Two-stage 
stochastic programming · Progressive hedging 

Motivation 

In view of the increasing volume of e-commerce, many local shops have started 
offering a delivery service to their customers. They are facing many challenges in 
the delivery process: low transportation volumes, frequent stops on busy roads, and 
access restrictions in inner city areas turn conventional delivery by motorised vans to 
be inefficient. At the same time, customer expectations regarding the reliability and 
speed of their delivery continue to increase. As a response to this, many local shops are 
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re-thinking their delivery concepts, integrate transshipment facilities into the supply 
chain, and start collaborating for more efficient delivery [ 2]. Both the integration 
of transshipment facilities, called micro-hubs, and the joint delivery of parcels to 
the same region increase consolidation opportunities in the delivery process. Local 
shops bring their orders to a near-by micro-hub for further transportation. The shared 
vehicles conduct consistent tours on a daily basis to pick up the parcels and drop 
them off at micro-hubs close to the parcels’ destinations. Each day, the vehicles 
visit the micro-hubs in the same order and at the same time. Such consistent tours 
are desirable by different stakeholders: They give planning security to storekeepers, 
provide operational stability for drivers, and allow reliable and punctual deliveries 
which increases customers’ trust and satisfaction. However, finding such a consistent 
tour is a difficult task given the daily variability in order placements. If orders cannot 
be fulfilled, they have to be outsourced or served the next day, which is expensive 
or may lead to dissatisfaction, respectively. Hence, we are looking for consistent 
tours maximising the expected number of fulfilled parcel orders per day. A survey 
on different concepts of consistent routing is given by [ 4]. 

The problem is stated as a two-stage stochastic program. It represents a special 
version of a 2-echelon vehicle routing problem, see Sluijk et al. [ 8] for a review, and is 
formulated as a team-orienteering problem [ 9]. The first stage concerns the long-term 
tactical planning of a consistent daily schedule between the micro-hubs before the 
actual demand is revealed. The second stage addresses the daily operational routing 
of realised parcel orders. The problem is solved with the Progressive Hedging (PH) 
algorithm [ 7], an approach particularly suited for two-stage stochastic programs. It 
considers a set of possible future demand scenarios to come up with a solution that 
can be expected to perform well under any realised demand setting. In the following, 
we provide a problem description of the two-stage model, and state the PH algorithm. 
We analyse the convergence behaviour of the algorithm, and show that PH performs 
well for highly structured demand, but rather poorly for random demand. 

Problem Description 

We assume one depot to be located at the outskirts of the city and a set of micro-hubs 
to be placed at fixed locations in the city. Micro-hubs may either be located in selected 
stores, or close to customer’s locations or shopping areas. We consider a finite fleet 
of vehicles each with a given, finite capacity and velocity. Vehicles start and end 
their service at the depot. While operating, vehicles are allowed to wait at micro-
hubs in order to include later parcels. Also, vehicles are allowed to perform pickup 
and delivery on the same route, and simultaneously at one micro-hub. Moreover, 
we consider a limited service time horizon within which the service is operated. We 
consider a duration of stay at each micro-hub a vehicle visits on its itinerary to load 
and unload parcels. 

Parcel orders are placed on a daily basis. We hence consider a set of several daily 
scenarios, each associated with a certain probability of occurrence. We assume that
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each parcel order has a homogeneous volume, and consists of a pickup location 
(store) with a release time, and a delivery location (customer). Further, we assume 
that each storekeeper brings a parcel to her closest micro-hub as soon as the order 
is placed. Similarly, when a parcel reaches its final micro-hub, the customer picks it 
up there directly. To represent this in our model, pickup and delivery locations are 
mapped to their closest micro-hubs such that each parcel has a pickup micro-hub and 
a delivery micro-hub. The release time of a parcel indicates the earliest time it can 
be picked up. We set a delivery time promise of four hours for all orders, restricting 
the delivery time at the parcel’s destination micro-hub to be not later than 4 h after 
the parcel’s release time. We do not have to serve all orders placed, but aim to pickup 
and deliver as many parcels as possible. Each parcel that is picked up must also be 
delivered on time. 

Decisions are made in two stages. The first stage concerns the long-term planning 
of vehicle routes. Although demand varies from day to day, vehicles are to follow a 
fixed, consistent schedule. The second stage concerns the operational daily planning 
of which parcels to serve and how to transport them given the vehicles’ schedule 
from the first stage. The objective of the model is to maximise the expected number 
of delivered parcels per day. A mathematical formulation of the described problem 
can be found in [ 1]. 

The Progressive Hedging Algorithm 

The PH approach is a scenario-based decomposition technique and especially suit-
able for two-stage programs. It is based on the optimal solution under each scenario, 
which allows us to capture the fact that demand is still unknown at time of planning 
while incorporating a-priori knowledge about different possible demand scenarios. 
It was introduced by Rockafellar and Wets in 1991 [ 7]. The greatest challenge in the 
algorithm lies in the question of how to consolidate the different scenario-dependent 
solutions into an overall decision policy. Since the vehicles’ schedules are deter-
mined before demand is revealed, the schedules must be independent of the resulting 
scenario. This property is called non-anticipativity – we have no foresight into the 
future. In the following, we specify in more detail how such a solution is generated. 

The complete algorithm for our two-stage program is stated in Algorithm 1. It  
assumes a set of different scenarios S with associated probabilities of occurrence ps , 
objective functions and feasible sets to be known for any s ∈ S. It further requires a 
penalty parameter ρ >  0, and a termination threshold ∈ >  0. To initialise the algo-
rithm, each scenario subproblem is solved to optimality, yielding scenario-dependent 
optimal first stage solutions x (0) 

s for any s ∈ S. 
In order to be meaningful, the final first stage solution should satisfy two prop-

erties. First, it should be non-anticipative, i.e. not depend on the realised demand 
scenario. Second, it should be feasible for any scenario s ∈ S. Non-anticipativity 
can be ensured by forcing the first stage decision variables xs to have the same value 
for every scenario s ∈ S. This common value is chosen as the weighted average sum



6 C. Ackva

of the first stage solutions of the scenario subproblems of the previous PH iteration, 
i.e.: 

xs = 
∑ 

s ,∈S 
ps , x (k−1) 

s , =: x (k) ∀s ∈ S. (1.1) 

To derive such a non-anticipative solution, Eq. (1.1) is included to the objectives of 
the subproblems in a Lagrangian sense through multipliers w(k) 

s : 

w(k) 
s := w(k−1) + ρ 

||||x (k) 
s − x (k)

||||
2 ∀s ∈ S, (1.2) 

where w(0) 
s , s ∈ S, can be chosen arbitrarily [ 7]. To lead to feasibility of x (k) , a second 

penalty term is added to the objective function of the subproblems: 

ρ 
2 

||||x − x (k)
||||2 

2 . (1.3) 

Altogether, the PH algorithm iteratively solves a modified version of each scenario 
subproblem with the two penalty terms Eqs. (1.1) and (1.3) added. To converge to 
a solution that is both non-anticipative and feasible, the Lagrangian weights w(k) 

s 
are adjusted over time according to Eq. (1.2). This way, the algorithm generates an 
improving sequence of policies x (k) , terminating when non-anticipativity is reached 
up to some threshold ∈. The resulting decision policy is the non-anticipative solution 
which can be expected to perform best for any demand realisation, and thus provides 
a consistent vehicle routing without knowing the future demand. 

Algorithm 1: Progressive Hedging Algorithm 
Input: A set of possible scenarios S with a probability of occurrence ps , an objective 

function and a feasible set for any s ∈ S; a penalty parameter ρ >  0, and a threshold 
∈ >  0. 

Initialisation: 
• ∀s ∈ S : find x (0) 

s as an optimal first stage decision of subproblem s. 
• ∀s ∈ S : w (0) s := 0. 
• k := 1. 

1. Determine current best first stage solution: x (k) := 
∑ 

s∈S ps x
(k−1) 
s . 

2. ∀s ∈ S : find x (k) 
s as an optimal first stage decision of modified subproblem s, where  two  

penalty terms are added for: 

a. non-anticipativity: w (k−1) 
s ||x||2, 

b. non-feasibility: ρ 
2 

||||x − x (k)
||||2 
2. 

3. Update weights: ∀s ∈ S : w (k) s := w (k−1) 
s + ρ 

||||||x (k) 
s − x (k) 

||||||
2 
. Set  k := k + 1. 

Repeat step 1 to step 3 until 
∑ 

s∈S ps 
||||||x (k) 

s − x (k) 
||||||
2 

< ∈. 
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Computational Study 

In a computational study we investigate whether the PH algorithm can successfully be 
applied to the team orienteering problem stated in Section “Problem Description”. We 
analyse the convergence behaviour of the algorithm for different parameter settings, 
and evaluate the solution quality for different demand distributions. 

Convergence Behaviour of PH 

In their paper, [ 7] prove that the algorithm converges with a linear convergence rate 
if the problem is convex. Since convergence is not guaranteed for integer problems, 
we analyse the behaviour of the algorithm on our problem for different choices of the 
penalty parameter ρ, the main influencing factor of the algorithm. According to Fan 
et al. [ 3], Listes and Dekker [ 5], and Mulvey and Vladimirou [ 6], there is no unique 
best choice of ρ, rather it has to be determined empirically. Testing different values 
for ρ, we find a trade-off between convergence and objective values. We observe that 
the algorithm does not converge if ρ is chosen too small. In this case, little importance 
is given to the non-anticipativity constraints in the modified subproblems such that no 
common average solution is found. In contrary, if ρ is chosen too large, the algorithm 
converges within a few iterations, but to solutions of very poor quality. Here, too much 
weight is given to the non-anticipativity constraints in the first iterations, leading to 
a local optimum too quickly. The best results are obtained with intermediate values. 
For such values, PH requires a few more iterations, but leads to solutions with better 
objective values. 

The PH algorithm is also driven by the number of scenarios used. While a higher 
number of scenarios better represents the variability in demand, they also increase 
computation time significantly since a modified version of each scenario-dependent 
problem is to be solved in each PH iteration. Hence, a trade-off between satisfying 
solution quality and runtime has to be found. In our experiments, we find that using 
20 scenarios leads to the best objective values in a computation time of 91.30 min 
on average. Using more scenarios does not improve the solution quality. Fewer 
scenarios (5, 10, or 15) in the algorithm lead to slightly worse objective values (1.68 
to 4.35% worse), while decreasing the computation time tremendously (from 28.10 
to 81.67%). 

Service Rates on Different Demand Patterns 

To assess the method’s performance, we evaluate the solutions obtained via PH 
for a practically inspired, fixed benchmark, and for a non-consistent upper bound 
where a new schedule is determined on a daily basis. We consider scenarios with
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Table 1.1 Average relative gaps of PH and fixed solution to non-consistent upper bound 

Demand pattern Gap PH solution (%) Gap fixed solution  (%) 

Highly structured 13.38 43.27 

Semi-structured 32.60 43.01 

Random 36.48 34.87 

highly structured, semi-structured, and random demand. For each demand pattern, 
we compute the average relative gap of the objective values obtained by PH and the 
fixed solution to the non-consistent upper bound, respectively, displayed in Table 1.1. 

Progressive Hedging is designed to uncover common trends among scenarios. 
It hence performs better if some common demand structure is available. On highly 
structured demand, PH derives solutions that increase the average service rates by 
more than 50% compared to the fixed solution. The average relative gap to the upper 
bound is notably lower for the PH than for the fixed solution. On semi-structured 
demand, PH still performs better than the fixed benchmark, although showing less 
improvement than on highly structured demand. Increasing the variability in demand, 
as on the random instances, the fixed solution even outperforms PH. In this case, 
demand fluctuates too much from day to day, making it hard to find an “average” 
schedule performing well for any demand realisation. Since the problem is formulated 
in a time-expanded network, there are many arcs not chosen in the solution. When 
determining the average solution in the PH algorithm, they tend towards zero, i.e. 
favour no movement. 

Conclusion and Future Work 

In this paper, we have set up a framework to find consistent schedules for shared 
vehicles between micro-hubs with the PH algorithm. We found that intermediate 
values for the penalty parameter and the number of scenarios have to be found to 
balance solution quality and computational time. The solutions produced by PH are 
closer to the upper bound the more structure is shared among the scenarios. Future 
work may convert the problem to a dynamic environment where parcel orders arrive 
over time. In this, the consistent tours between micro-hubs may be combined with 
dynamic couriers. This allows to incorporate the transportation of parcels from shops 
to micro-hubs, and from micro-hubs to customers.
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Chapter 2 
Computational Linear Bilevel 
Optimization 

Thomas Kleinert 

Abstract In this article, we summarize a subset of the findings of the cumulative 
dissertation “Algorithms for Mixed-Integer Bilevel Problems with Convex Follow-
ers”; see [ 4]. First, we present a result that renders the application of the well-known 
and widely used big-.M reformulation of linear bilevel problems infeasible for many 
practical applications. Second, we present valid inequalities and demonstrate that an 
SOS1-based approach is a competitive alternative to the error-prone big-.M method in 
case both approaches are equipped with these valid inequalities. Third, we introduce 
a penalty alternating direction method, which computes (close-to-)optimal feasible 
points in extremely short computation times and outperforms a state-of-the-art local 
method. 

Keywords Bilevel optimization · Computational optimization · Mixed-integer 
programming 

Introduction to Linear Bilevel Problems 

Hierarchical decision making processes naturally appear in an enormous amount of 
applications from areas including energy markets, revenue management, machine 
learning, critical infrastructure defense and many more. Such processes are formal-
ized by bilevel optimization problems, i.e., optimization problems for which a subset 
of variables is constrained to be an optimal solution of a follower optimization prob-
lem. The “easiest” bilevel optimization problems are linear bilevel problems, i.e., 
problems of the form 
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.

min
x∈Rn ,y∈Rm

cTx + dTy

s.t. Ax + By ≥ a,

y ∈ arg min
ȳ∈Rm

{eT ȳ : Cx + Dȳ ≥ b},
(2.1) 

with .c ∈ R
n , .d, e ∈ R

m , .A ∈ R
k×n , .B ∈ R

k×m , .C ∈ R
l×n , .D ∈ R

l×m , .a ∈ R
k , and 

.b ∈ R
l. Even linear bilevel problems are intrinsically nonconvex and strongly NP-

hard: see [ 3]. Note that in case of ambiguity in the follower problem, we assume 
the optimistic solution, in which the follower chooses the optimal solution. y most in 
favor of the leader’s objective. 

In practice, almost all global solution approaches for Problem (2.1) rely on a  
single-level reformulation that replaces the follower problem by its necessary and 
sufficient KKT conditions. This yields the following mathematical problem with 
complementarity constraints (MPCC) . 

min
x,y,λ

cTx + dTy (2.2a) 

s.t. (x, y) ∈ Ω := {(x, y) : Ax + By  ≥ a, Cx  + Dy ≥ b}, (2.2b) 

λ ∈ ΩD := {λ ≥ 0 : DTλ = e}, (2.2c) 

λT(Cx  + Dy − b) ≤ 0, (2.2d) 

in which the set of inequalities (2.2c) denotes the KKT nonnegativity and stationarity 
conditions and (2.2d) is the KKT complementarity condition of the follower problem. 

Branch-and-Bound Methods for Linear Bilevel Problems 

Due to the combinatorial nature of the KKT complementarity constraint (2.2d), it is 
reasonable to tackle Problem (2.2) in a branch-and-bound fashion. 

The Big-.M Approach: Not Your Everyday Friend 

The KKT complementarity constraint (2.2d) can be reformulated in a mixed-integer 
linear way by introducing additional binary variables .zi ∈ {0, 1}, .i = 1, . . . , l, suf-
ficiently large big-.M constants .MP and .MD , and the following conditions: 

.(Cx + Dx − b)i ≤ MPzi , λi ≤ MD(1 − zi ), i = 1, . . . , l. (2.3) 

This reformulation goes back to [ 2] and is by far the most-used approach to solve 
linear bilevel problems in practice. The reason is obvious: The single-level prob-
lem (2.1) with the complementarity conditions (2.2d) replaced by (2.3) can be easily
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implemented and the resulting model can be solved without further ado by ordinary 
mixed-integer solvers. 

However, this approach is problematic. On the one hand, large values .MP and 
.MD may cause numerical instabilities that, in the worst case, result in infeasible 
“solutions” for Problem (2.2). On the other hand, choosing these constants too 
small may cut off feasible solutions and global optimality may be lost. In fact, we 
show that verifying that given values .MP and .MD do not cut off bilevel-feasible 
points is as hard as solving the original bilevel problem (2.1); see Theorem 3 in 
the dissertation [ 4]. This result is also published in [ 6] and implies that the big-. M
approach should not be used in practice unless big-.M constants can be derived from 
problem-specific knowledge. 

The SOS1 Approach: A Lame Duck? 

Instead of reformulating Problem (2.2) to a mixed-integer problem at the cost 
of additional binary variables and big-.M constants, one can also branch on the 
complementarity constraints (2.2d); see [ 4] for more details. In Fortuny-Amat and 
McCarl [ 2], it is proposed to express the KKT complementarity condition (2.2d) as  
SOS1 conditions: 

.si = (Cx + Dy − b)i , {si , λi } is SOS1, i = 1, . . . , l. (2.4) 

This turns the MPCC (2.2) into a linear problem with SOS1 constraints. Such problem 
types can be handled by modern mixed-integer solvers in a way that guarantees 
the correctness of the obtained solutions—in contrast to the big-.M approach stated 
above. From a practical point of view, the SOS1-based reformulation is not more 
difficult to model and implement than the mixed-integer-based reformulation. Still, 
the latter is by far more popular in practice. One reason for this might be that it is 
regarded as computationally more effective. This is supported by an extensive and 
detailed computational study that we conducted in [ 4]; see also the next subsection. 

The Game Changer: Valid Inequalities Based on Strong 
Duality 

The dissertation [ 4] also contributes the following valid inequality for Problem (2.1), 
which is derived from the strong duality condition of the lower-level problem: 

.λTC− + eTy − λTb ≤ 0. (2.5)
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Fig. 2.1 Performance profile of running times of BigM-6 and SOS1 (left) and of BigM-6-R and 
SOS1-R (right) 

Here, .C− denotes the vector of lower bounds .C−
i ≤ Ci ·x . Such bounds exist, if 

the joint feasible set .Ω is bounded. Note that the derivation of the valid inequality 
along with a detailed computational evaluation on the effectiveness within the SOS1 
approach is published in [ 5]. There, we also generalize the valid inequality (2.5) to  
a family of inequalities by applying McCormick envelopes. In the dissertation [ 4], 
we further show that applying inequality (2.5) at the root node of each of the two 
branch-and-bound approaches yields surprising results, which are summarized in 
the performance profiles of running times in Fig. 2.1. For details on the test set, 
implementation, and hardware, we refer to [ 4]. Figure 2.1 (left) reveals that the plain 
big-.M formulation (with.MP = MD = 106) indeed outperforms the plain SOS1 for-
mulation and significantly “solves” more instances—at least if the big-.M constants 
would be provably correct. The story changes if we equip both formulations with 
the derived inequality at the root node. In this case, the SOS1 approach is the faster 
approach for 65% of the instances and solves almost as many instances as the big-
.M approach (see Fig. 2.1 (right)). We follow that whenever valid and tight values 
for .MP and .MD are available, one may use the big-.M-based approach. In all other 
cases, the SOS1-based approach constitutes an easy-to-use alternative that is very 
competitive in terms of computational performance if it is equipped with the valid 
inequality (2.5)—without requiring troublesome big-.M values. 

A Penalty Alternating Direction Method 

When facing NP-hard problems, it is quite common to develop heuristics that quickly 
deliver feasible points. In the cumulative dissertation [ 4], we propose a heuristic based 
on a penalty alternating direction method (PADM). The main idea is to reformulate 
Problem (2.1) to a single-level problem by replacing the follower problem by primal 
and dual feasibility as well as a single nonconvex inequality enforcing strong duality: 
.
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min 
x,y,λ 

cTx + dTy (2.6a) 

s.t. (x, y) ∈ Ω, λ ∈ ΩD, (2.6b) 

eTy ≤ (b − Cx)Tλ. (2.6c) 

Penalizing the single nonconvex constraint (2.6c) in the objective function with a 
penalty parameter .ρ > 0 yields the following problem with a nonconvex objective 
function over linear constraints: 

.

min
x,y,λ

h(x, y, λ) := cTx + dTy + ρ
(
eTy − (b − Cx)Tλ

)

s.t. (x, y) ∈ Ω, λ ∈ ΩD.
(2.7) 

Note that the constraint set decomposes into a.(x, y)-block and a.λ-block. In addition, 
.h(x, y, λ) is linear, if either one of the variable blocks is fixed. This motivates the 
PADM described in Algorithm 1. 

Please see [ 4] for a formal convergence result. The main takeaway is that Algo-
rithm 1 provides a stationary point of the single-level reformulation (2.7), if it termi-
nates. We note that the derivation, convergence analysis and a computational eval-
uation are also published in [ 7]. In the dissertation [ 4], we provide an additional 
computational analysis, in which we compare Algorithm 1 to an established local 
regularization method published in [ 1] as well as to the global SOS1 approach stated 
above; see Fig. 2.2 for the results and [ 4] for details on the setup. 

Algorithm 1 A Penalty Alternating Direction Method for Problem (2.7). 
1: Choose initial values λ0,0 ∈ ΩD and a penalty parameter ρ0 > 0. 
2: for j = 0, 1, . . .  do 
3: Set i = 0. 
4: while (x j,i , y j,i , λ  j,i ) is not a partial minimum of Problem (2.7) with  ρ = ρ j do 
5: Solve Problem (2.7) with fixed  λ = λ j,i and ρ = ρ j to obtain (x j,i+1, y j,i+1). 
6: Solve Problem (2.7) with fixed  (x, y) = (x j,i+1, y j,i+1) and ρ = ρ j to obtain λ j,i+1. 
7: Set i ← i + 1. 
8: end while 
9: Update the penalty parameter ρ j+1 > ρ  j . 
10: end for 

Figure 2.2 (left) is a performance profile of running times and shows that the 
PADM is by far the fastest method for every tested instance. Figure 2.2 (right) is an 
ECDF plot of relative gaps. We observe that PADM clearly outperforms the local 
method REG and that it solves 50% of the instances indeed to global optimality. 
Taking into account both the very fast running times and the good quality of the 
computed solutions—particularly also in comparison to the global approach SOS1-
R—PADM cannot only be used as a primal heuristic within global approaches for 
linear bilevel problems but also as a standalone method. In addition, Algorithm 1 
is extendable to a much broader class of bilevel problems. In [ 7], Algorithm 1 is
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Fig. 2.2 Left: Performance profile of running times of PADM, REG, and SOS1-R. Right: ECDF 
plot of relative gaps of PADM, REG, and SOS1-R 

successfully applied to convex MIQP-QP bilevel problems. Going further, even the 
class of MINLP-QP bilevel problems could be tackled with Algorithm 1 in case the 
involved MINLPs can be solved effectively. 

Conclusion 

In this article, we summarized some contributions of the dissertation [ 4]. We intro-
duced linear bilevel problems and discussed what might go wrong when applying the 
well-established and often used big-.M approach. Further, we derived a valid inequal-
ity applicable for the big-.M approach as well as the less popular SOS1 approach. 
The presented computational results show that applying these inequalities renders 
the SOS1 approach a very competitive alternative to the error-prone big-.M approach. 
Finally, we introduced a primal heuristic applicable for a broad class of bilevel prob-
lems, which is shown to be extremely fast and to provide close-to-optimal solutions. 

Overall, the presented techniques enhance the solution of linear bilevel problems 
significantly. Still, there are many directions for future research. For example, the 
derivation of additional valid inequalities or cutting planes could further strengthen 
the SOS1 approach. In addition, bilevel-specific presolving techniques may help to 
tackle even larger and more challenging instances.
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Chapter 3 
Faster Algorithms for Steiner Tree 
and Related Problems: From Theory 
to Practice 

Daniel Rehfeldt 

Abstract The Steiner tree problem in graphs (SPG) is a classic NP-hard problem. 
Many applications can be modeled as SPG or closely related problems. This article 
describes a state-of-the-art solver for finding optimal solutions to classic Steiner tree 
and 14 related problem classes. It was developed as part of the author’s doctoral 
dissertation. 

Keywords Combinatorial optimization · Steiner tree problems · Exact methods 

Introduction 

Given an undirected connected graph G = (V , E), edge costs c : E → Q≥0 and a 
set T ⊆ V of terminals, the  Steiner tree problem in graphs (SPG) is to find a tree 
S ⊆ G with T ⊆ V (S) such that c(E(S)) is minimized. The NP-hard SPG is one of 
the most studied problems in combinatorial optimization, and many applications can 
be modeled as SPG or closely related problems [ 13]. The SPGhas seen numerous 
theoretical advances in the last 10 years, bringing forth significant improvements 
in approximability, see e.g. [ 1, 6], and complexity, see e.g. [ 11, 14, 25]. However, 
the state of the art in (practical) exact SPG solving, set in the joint PhD theses 
of Polzin and Vahdati Daneshmand [ 2, 16], has remained largely unchallenged for 
almost 20 years. While the DIMACS Challenge 2014 [ 3] and the PACE Challenge 
2018 [ 15], both dedicated to Steiner tree problems, brought renewed interest into the 
solution of SPGs, even the best new solvers fall far short of reaching the state of the 
art. 

This article provides an overview of the algorithmic base and the implementation 
of a new SPG solver that finally manages to outperform the long-reigning state of 
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the art. The new Steiner tree solver is named SCIP- Jack 1, is freely available for 
academic purposes and comes with source code. In contrast, the previous state-of-
the-art SPG solver by Polzin and Vahdati Daneshmand is not publicly available. 
The new solver was developed as part of the author’s doctoral thesis [ 17]. For more 
theoretical underpinnings of this solver, we refer the reader to the articles [ 18– 21] 
or the thesis [ 17]. For a parallelization of SCIP- Jack see [ 22]. 

The directed equivalent of the SPG is called Steiner arborescence problem (SAP), 
see e.g. [ 8]. Given a directed graph D = (V , A), costs c : A → Q≥0, a set  T ⊆ V 
of terminals, and a root r ∈ T , the SAP is to find a directed tree S ⊆ D such that: 
First, for all t ∈ T the tree S contains exactly one directed path from r to t . Second, 
c( A(S)) is minimized. A classic integer programming (IP) formulation for SAP 
is given by [ 26] Associate with each arc a ∈ A a binary variable y(a), indicating 
whether a is contained in the Steiner arborescence (y(a) = 1) or not  (y(a) = 0). 

Formulation 1 Directed Cut Formulation (DCut) 

min cT y (3.1) 

y(δ−(W )) ≥ 1 for all W ⊂ V , r /∈ W, W ∩ T �= ∅, (3.2) 

y(a) ∈ {0, 1} for all a ∈ A. (3.3) 

Constraints 3.2 ensure that for each terminal t , there is a directed path from r 
to t in the solution. Any SPG can be readily transformed to an equivalent SAP by 
replacing each edge by two anti-parallel arcs of the same weight and choosing an 
arbitrary terminal as the root. We will refer to the DCut formulation applied to this 
transformed SAP as BDCut . In practice, the BDCut  formulation provides very tight 
LP bounds, although its theoretical strength remains an important open question, see 
e.g. [ 1], only an (almost trivial) upper bound of 2 is known. 

Finding Minimum Steiner Trees by Branch-and-Cut 

The three main algorithmic classes of our branch-and-cut framework for solving 
SPG are: 

• Reduction techniques, 
• Heuristics (primal and dual), and 
• IP formulation and cutting planes. 

Notably, the three algorithmic classes are deeply intertwined. For example, reduc-
tion methods are used within two primal heuristics, while the quality of the primal 
bound obtained by the heuristics determines the effectiveness of other reduction 
methods. Additionally, reduced problems usually show a smaller integrality gap for

1 https://scipjack.zib.de/. 

https://scipjack.zib.de/
https://scipjack.zib.de/
https://scipjack.zib.de/
https://scipjack.zib.de/
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the IP formulation, and require less time for solving the LP-relaxation. In turn, the 
reduced-costs from the LP-relaxation can be used for further reductions. 

In the following, we briefly list the main components of the branch-and-cut frame-
work. 

Presolving For presolving, the reduction methods described in the thesis are executed 
iteratively within a loop. This loop is reiterated as long as a predefined percentage 
of edges has been eliminated during the previous round. For computing reduced-
costs during presolving (which can be used for powerful reduction methods [ 16]), 
we employ a dual-ascent algorithm [ 26]. 

Domain propagation During branch-and-bound we use the reduced-costs from the 
LP-relaxations for fixing arcs of the BDCut  formulation to 0. To this end, we use a 
path-based criterion. Additionally, whenever a predefined percentage of all arcs has 
been newly fixed during the branch-and-bound procedure, further reduction tech-
niques are applied, and the achieved reductions are re-translated into arc fixing. 

Decomposition It is well-known that the biconnected components of the graph under-
lying an SPGinstance can be solved separately. Given the super-linear run time of 
most algorithms that we employ, such a decomposition can lead to significant speed-
ups. While SPG instances usually do not have articulation points in their original 
form, this property sometimes changes after the application of reduction techniques. 
Therefore, we use decomposition into biconnected components both during pre-
solving and during branch-and-cut. Additionally, we also use (more sophisticated) 
techniques to exploit triconnected components. 

Dynamic programming There have been notable efforts during the last years to 
make the classic SPG dynamic programming algorithms by Dreyfus and Wagner 
[ 4] and Erickson et al. [ 5] competitive in practice, see e.g. [ 7, 9] for prominent 
examples. Our dynamic programming implementation combines the node-separator 
concept from [ 9] with several reduction techniques. Unfortunately, however, our 
implementation is only competitive with branch-and-cut for instances with less than 
20 terminals—and these instances are usually solved quickly by either approach. 
Still, in the context of decomposition techniques, where we often obtain many small 
sub-problems, the dynamic programming algorithm has turned out to be useful. 

Primal heuristics We try to retain the best solution found during presolving, to 
provide it as an initial primal solution. During branch-and-bound, we periodically 
employ a classic construction heuristic [ 23] and a new recombination heuristic. We 
use the solution to the current LP-relaxation to guide the construction heuristic—an 
idea already utilized by other authors, e.g. [ 12]. Additionally, we use local heuristics 
from [ 24] to improve high-quality primal solutions. 

Separation After presolving, SCIP- Jack runs the dual-ascent heuristic to select a set 
of constraints from the BDCut  formulation to be included in the initial LP. Addition-
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ally, we use all 0 − 1 constraints. We separate the (remaining) constraints (3.2) of the  
BDCut  formulation by using a newly implemented maximum-flow algorithm with 
warm-start capabilities. We also (trivially) separate other classes of cuts, described 
in [ 12], to strengthen the LP-relaxation. 

Branching Classic variable branching for the BDCut  formulation often leads to a 
badly balanced branch-and-bound tree, since the inclusion of an arc has a far larger 
impact than its exclusion. Thus, a well-known strategy is to branch on vertices instead, 
see e.g. [ 8]: A selected vertex is made a terminal in one branch-and-bound child node, 
and is removed in its sibling. Such a change is reflected in the IP formulation by adding 
one additional constraint. We note, however, that branching is rarely required, due 
to the various powerful algorithms that we apply before. 

Computational Results 

Notably, SCIP- Jack significantly outperforms the long-reigning state-of-the-art 
solver by Polzin and Vahdati Daneshmand, see [ 19]. Here, we provide results on 
the instances from the 3rd Parameterized Algorithms and Computational Experi-
ments Challenge 2. The challenge was dedicated to fixed-parameter tractable SPGs 
and attracted 75 participants from 16 countries. A previous version of SCIP-
Jack reached first (Track B), second (Track A), and third (Track C) place in the 
three tracks of the challenge. The current version of SCIP- Jack is much faster, 
and would significantly outperform all competitors in each track. Figure 3.1 pro-
vides computational results on the exact tracks of the 3rd PACE Challenge. We use 
Gurobi 9.5 (Commercial), the best other solver from the PACE Challenge (SPDP), 
and SCIP- Jack with SoPlex (SCIP- Jack/spx) and Gurobi 9.5 (SCIP- Jack/grb) as  
LP-solver. A timelimit of one hour was set. Average times are given as arithmetic 
mean (as in the PACE Challenge) with time-outs counted as one hour. We note that the 
gap between SCIP- Jack and the leading commercial MIP solvers is usually much 
larger than shown in Fig. 3.1. However, the PACE Challenge benchmark set contains 
many small instances (with less than 1000 edges) that can be considered trivial for 
modern Steiner tree solvers and can also be solved quickly by state-of-the-art MIP 
solvers. 

From Classic Steiner Tree to Related Problems 

A central property of SCIP- Jack is its ability to not only solve the SPG, but also 14 
related problems. Also for these problems, including the prize-collecting Steiner tree 
and the maximum-weight connected subgraph problem, SCIP- Jack significantly

2 https://pacechallenge.org/2018/. 

https://pacechallenge.org/2018/
https://pacechallenge.org/2018/
https://pacechallenge.org/2018/
https://pacechallenge.org/2018/
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Fig. 3.1 Computational results on the 200 benchmark instances of tracks A and B of the PACE 
challenge 2018 

Table 3.1 Computational comparison of the solvers GeoSteiner (GeoS) and  SCIP- Jack (S.-J.) 

# Solved Mean time (sh. geo. mean) Maximum time 

Test-set # GeoSt. S.-J. GeoS. [s] S.-J. [s] Speedup GeoS. [s] S.-J. [s] Speedup 

R25 15 15 15 238.5 43.2 5.5 6250.6 54.6 114.4 

R50 15 8 15 54844.5 128.2 427.8 TL 196.5 3077.8 

R100 15 3 15 260311.5 477.9 544.7 TL 729.7 828.8 

TL signifies the time limit (of one week) 
Bold signifies a superior performance of the software 

outperforms specialized solvers. Particularly notable results are achieved for the 
Euclidean Steiner tree problem: Table 3.1 shows results on large-scale test-sets from 
the 11th DIMACS Challenge with 25,000, 50,000, and 100,000 points in the plane. 
We use a time-limit of one week and compare SCIP- Jack and the leading geometric 
Steiner tree solver GeoSteiner 5.1 [ 10]. Notably, we solve 19 of the instances for the 
first time to optimality. 

Conclusion 

This article has described several central components of the leading Steiner tree solver 
SCIP- Jack. Notably, SCIP- Jack is the faster solver for all 15 problem classes it 
can handle. Besides being freely available for academic use, SCIP- Jack has been 
employed in several industry projects. The arguably most successful employment is 
the planning of fiber-optic networks by Open Grid Europe in Germany. The company 
reports that the SCIP- Jack has been employed for hundreds of planning problems 
and estimates the monetary savings to be several hundred thousand euros per project.
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Chapter 4 
Prescriptive Analytics for Data-Driven 
Capacity Management 

Pascal M. Notz 

Abstract Prescriptive analytics approaches integrate machine learning prediction 
and optimization to directly derive decisions for planning problems from historical 
observations of demand and a large set of features (co-variates). This paper summa-
rizes the key results of the author’s dissertation and presents two prescriptive analytics 
approaches, kernelized empirical risk minimization and weighted sample average 
approximation, to solve complex capacity planning problems. It demonstrates the 
applicability of both approaches to a real-world two-stage capacity planning problem 
and evaluates their performance relative to traditional parametric approaches that first 
estimate a demand distribution and then solve a stochastic optimization problem, and 
a traditional non-parametric approach (sample average approximation). The results 
of numerical analyses demonstrate that the new prescriptive analytics approaches can 
lead to substantial performance improvements of up to 58% compared to traditional 
approaches. 

Keywords Prescriptive analytics · Machine learning · Data-driven operations 
management · Capacity planning 

Introduction 

Digitization and artificial intelligence are impacting many areas in business and 
society, and are leading to a newly emerging field of research within Operations 
Research: Prescriptive analytics (see, e.g., [ 5]). Prescriptive analytics approaches 
combine machine learning methods with optimization techniques to solve plan-
ning problems under uncertainty. Based on a large amount of historical observa-
tions of an uncertain quantity (e.g., demand) and corresponding features (covariates), 
they learn a prescription function that maps from a (future) feature vector directly 
to a decision, e.g., a capacity level for a specific week in the future. Therefore, 
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prescriptive approaches contrast traditional two-step approaches that first estimate 
the (unknown) distribution of demand, and then solve a stochastic optimization prob-
lem to arrive at a capacity decision. While first contributions to this new field of 
research studied approaches to solving comparatively simple planning problems in 
the area of inventory management (e.g., [ 1, 2]), this paper focuses on solving capac-
ity planning problems with a more complex structure. In particular, it proposes two 
prescriptive analytics approaches—kernelized empirical risk minimization (kERM) 
and weighted sample average approximation (wSAA)—to solve a two-stage stochas-
tic problem with recourse, requiring multiple interdependent decisions depending on 
matrix-valued observations of demand. 

The capacity planning problem studied in this paper is an adaptation of the two-
stage planning problem introduced in [ 4] and based on our work with a logistics 
service provider in Germany that collects, sorts, and delivers mail (letters, parcels), 
newspapers, and advertising material. Every day, the company receives mail items 
that need to be sorted manually (service line 3), semi-automatically (service line 
2), or on a fully automated line (service line 1)—with each service line requiring a 
certain staffing level and service line 1 staff capacity being most expensive, followed 
by service line 2 capacity. While the staffing levels need to be planned in advance 
for each week (stage 1 of the planning problem), the company has the option of 
upgrading after demand has realized on each day (stage 2 of the planning problem): 
staff of service line 1 can also operate service lines 2 and 3, and staff of service line 2 
can also operate service line 3. All mail items need to be sorted on the day of arrival, 
therefore the company uses costly overtime as required. A formal statement of the 
problem can be found in [ 6]. 

The remainder of the paper is structured as follows: The Section “Prescrip-
tive Analytics Approaches” introduces the approaches kERM and wSAA, and 
the Section “Numerical Evaluation Based on a Real-World Problem” presents an 
evaluation of both approaches using historical observations of demand from our 
case company and realistic cost parameters. The paper concludes that prescriptive 
approaches can lead to performance improvements of up to 58% compared to tradi-
tional approaches. 

Prescriptive Analytics Approaches 

Prescriptive analytics approaches learn a function.→q(→x) that directly maps from fea-
ture vectors. →x to decisions. →q, based on a data set of historical observations of demand 
and feature vectors. Assume historical observations of demand .dn ∈ D and feature 
vectors .→xn ∈ X ⊆ R

p, which constitute a data set .SN = {(d1, →x1), ..., (dN , →xN )}. 
The features that form the vector .→xn describe, for example, seasonality (day, month, 
week), weather conditions, or other quantities that are predictive of the demand val-
ues (for further details see [ 6]). In the following, we present two prescriptive analytics 
approaches: kERM and wSAA.
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Kernelized Empirical Risk Minimization 

One approach to learning a prescription function .→q(→x) is to minimize the true risk 
.R(→q(·)), defined as expected loss over the joint distribution of features and demand 
(as random vectors) . →X × D: 

. min
→q(·)∈F

R(→q(·)) := min
→q(·)∈F

E →X×D

[
L

(
→q( →X), D

)]
(4.1) 

with.L(→q, D) being the loss function of the planning problem and.F being a function 
space. . →X × D describes the underlying joint distribution of features and demand, 
from which our data set.SN is drawn. Because the distribution of. →X × D is unknown, 
and the decision maker only has a data set .SN available, we minimize the empirical 
risk to determine the prescription function .→q(·) (see, e.g., [ 1, 2, 6]): 

. min
→q(·)∈F

RN (→q(·)) := min
→q(·)∈F

1

N

N∑
n=1

L(→q(→xn), dn), (4.2) 

using the data set .SN . 
We solve (4.2) using a reproducing kernel Hilbert space with kernel function 

.K (→x, →x) as (nonlinear) function space .F and determine the prescription function of 
the kERM approach (as in [ 6]): 

.→qkERM(→x) =
N∑

n=1

→unK (→xn, →x) − →b, (4.3) 

with .→un defined as .unj = 1
2λ j

(∑T
t=1(β

tn
j ) + ∈nj − f j

)
, and .β tn

j , .∈
n
j being the optimal 

solution to the dual problem: 

. 

max
{αtn

i },{β tn
j },{∈nj }

Ld := −
I∑

j=1

λ j

N∑
p,q=1

(
u p
j u

q
j K (→x p, →xq)

)
+

N∑
n=1

I∑
i=1

T∑
t=1

(ci − αtn
i )dtn

i

s.t. αtn
i , β tn

j , ∈nj ≥ 0 ∀i, j, n, t

αtn
i + β tn

j ≥ ai j ∀i ≥ j, ∀n, t

N∑
n=1

unj = 0 ∀ j.

(4.4) 
We use a random forest-based kernel function (see, e.g., [ 3, 6, 7]), because this 

has lead to superior results in our numerical experiments:
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.KRF(→x1, →x2) := 1

L

L∑
l=1

1[Rl( →x1) = Rl(→x2)]∑N
j=1 1[Rl( →x1) = Rl(→x j )]

, (4.5) 

where .Rl(→x) is the terminal node of tree . l within the forest. We refer the reader to 
[ 6] for a more detailed description of the kERM approach. 

Weighted Sample Average Approximation 

The second approach defines the prescription function .→q(→x) point-wise by solving 

. min
→q∈Q

ED

[
L (→q, D)

||| →X = →x
]

(4.6) 

for each new feature vector . →x , assuming a conditional probability distribution of . D, 
given . →X = →x . The conditional distribution, however, is unknown, but the decision 
maker has a data set .SN available. Based on local learning techniques, [ 2] proposes 
the wSAA approach that aims at “optimizing the decision [. →q] against a reweighting 
of the data” ([ 2], p. 1030): 

.→qwSAA(→x) = argmin
→q∈Q

N∑
n=1

wn(→x)L(→q, dn), (4.7) 

with a weight function.wn(→x) ∈ [0, 1] that describes the similarity between the feature 
vectors .→xn and . →x . 

The performance of a wSAA approach is determined by the weight function, and 
a number of weight functions are introduced in [ 2], based on: k-nearest-neighbor 
regression, kernel regression, local linear regression, regression trees, and random 
forests. In our numerical experiments, we use a random forest-based weight function, 
which is similar to the random forest kernel. We refer the reader to [ 6] for a more 
detailed description of the wSAA approach. 

Numerical Evaluation Based on a Real-World Problem 

This section presents the numerical evaluation of the prescriptive approaches using 
the real-world capacity planning problem of our case company. We use realistic cost 
parameters that specify the planning problem and historical demand data of our case 
company to compare the performance of kERM and wSAA with that of traditional 
approaches.
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Data Set and Feature Engineering 

The data set.SN required for applying the prescriptive approaches consists of demand 
and feature data. The historical demand data was provided by the case company as 
daily demand for each of the three sorting lines for a total of.N = 209weeks between 
2014 and 2017. For constructing the corresponding feature vectors .→xn ∈ R

162, we  
determined 162 features including date-based features (e.g., year number, quarter, 
week number, and so on), lagged demand features (e.g., demand for the same service 
line and week one year ago), and features encoding information on public holidays. 
More details on the features used in our experiments can be found in [ 6]. 

Evaluation Procedure 

To evaluate the performance of the prescriptive and benchmark approaches, we split 
the data set .SN into a training data set (of .N = 157 weeks) and a test data set 
(of 52 weeks). For both prescriptive approaches—kERM and wSAA—we deter-
mine the prescription function using a random forest kernel or weight function, and 
derive capacity decisions for the test period. As benchmark approaches, we use the 
non-parametric sample average approximation (SAA) approach and two traditional 
parametric approaches that we call sequential estimation and optimization (SEO) 
approaches: Support Vector Regression (SVR, a machine learning-based approach), 
and ARIMA (a time series-based approach). Both SEO approaches first predict a 
demand distribution and then solve a stochastic optimization problem using Monte 
Carlo sampling, to determine the capacity decision. 

The performance of each approach is evaluated in terms of absolute gap to optimal 
profit (achieved profits based on the approach’s capacity decisions in comparison to 
the maximum achievable profit): 

.Δ∏,abs = ∏∗(d) − ∏(→q, d) (4.8) 

with the ex-post optimal profit .∏∗(d). 

Results and Discussion 

Figure 4.1 shows the absolute gap to optimal profit for all approaches for the test 
period. We observe that the prescriptive approaches (kERM, wSAA) lead to the best 
performance, while the traditional SEO approaches lead to the lowest performance. 
wSAA, which performs best in this particular setting, shows a gap to optimality that 
is 58% lower compared to ARIMA-SEO, the traditional time series-based approach.
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Fig. 4.1 Absolute gap to optimal profit, as shown in [ 6], p. 1769 

The largest performance improvement occurs between the traditional two-step 
approaches (SVR-SEO, ARIMA-SEO) and SAA, which is the most basic non-
parametric approach that does not explicitly estimate the underlying demand dis-
tribution. To explain this observation, we assume—in analogy to a newsvendor 
setting—that each prescription consists of a capacity to serve the mean demand 
and a safety buffer. Because in our particular case the cost parameters induce a high 
“optimal” service level (for service line 1), the importance of the prescribed safety 
capacity is high compared to that of the mean demand. Therefore, the results sug-
gest that the differences in performance are rooted primarily in how the approaches 
explicitly (SVR-SEO, ARIMA-SEO) or implicitly (SAA, kERM, wSAA) account 
for demand uncertainty (see [ 6] for further analyses and details that substantiate this 
conjecture). 

Conclusion 

This paper summarizes the key results of the author’s dissertation and presents 
two prescriptive analytics approaches to solve the real-world capacity planning 
problem of a logistics service provider. We evaluate the performance of both 
approaches (kERM, wSAA) in comparison with three traditional approaches using 
historical observations of demand and corresponding features, and observe that 
the prescriptive approaches lead to a lower gap to optimal profit than the tra-
ditional contenders. wSAA leads to the best performance in this particular set-
ting, with a performance improvement of up to 58% compared to the traditional 
approaches.
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One limitation of our work is related to the problem of generalization beyond 
a specific data set, as commonly observed in the field of machine learning: the 
(relative) performance of the approaches may be different when using other data 
sets. In addition, because the prescriptive approaches depend on the problem-specific 
loss function, their performance may also be sensitive to the specific choice of loss 
function. This should be addressed by future research. 
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Chapter 5 
Resident Scheduling in Teaching 
Hospitals 

Sebastian Kraul 

Abstract After graduation, physicians receive further training in a medical domain 
like anesthesiology. There are 57 medical specialties in Germany in total. The high 
cost pressures of hospitals and the changing view of the medical profession regarding 
the work-life balance have led to recruitment problems and low employee satisfac-
tion in many places. A promising approach to counter this problem is objective and 
structured training planning. This research project mainly deals with medical resi-
dents’ strategic and tactical-operative training scheduling. In addition to relieving 
the medical staff currently responsible for the planning process, this research project 
increases the predictability of structured training. This allows hospitals to increase the 
quality of their training and, consequently, their attractiveness to other hospitals. In 
addition, supervisors from different departments can better assess residents’ knowl-
edge and thus keep the level of service, which is particularly important in hospitals, 
permanently high even when changing residents. From the residents’ point of view, 
a well-structured training schedule enables a high degree of information. Therefore, 
residents are no longer surprised by a short-term change of department and have 
a direct insight into their training progress. A real-world case study evaluates the 
mathematical formulations and the solution approaches. 

Keywords OR in health services · Mixed integer programming · Real-world 
application · Stochastic optimization 

Motivation 

After graduation, physicians receive further training in a medical domain like anes-
thesiology or urology. There are 57 medical specialties in Germany in total, in which 
further training as a specialist is possible. Physicians are called residents in this 
special phase of training. In Germany, there are about 60,000 residents in specialist

S. Kraul (B) 
Department of Operations Analytics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands 
e-mail: s.kraul@vu.nl 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_5 

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_5&domain=pdf
http://orcid.org/0000-0002-8779-555X
mailto:s.kraul@vu.nl
https://doi.org/10.1007/978-3-031-24907-5_5


36 S. Kraul

training [1]. A characteristic of the German model—representative for many non-
English speaking countries in Europe—is the training and further education accom-
panying the work. Entirely in keeping with the “dual training” concept, the residents 
are deployed in regular hospital operations and are an essential part of the value 
chain. In contrast to the American or British rotation model, mainly considered in 
the current literature, the German specialist training lasts longer. It is tied to specific 
interventions (tasks), i.e., the possibility of training and further education depends 
on the hospital’s treatment spectrum. However, since the occurrence of interven-
tions relevant to the resident program cannot be planned with certainty in advance 
and therefore is not taken into account in personnel planning, this form of specialist 
training is subject to uncertainty concerning training duration [2]. The basic formu-
lation of the resident scheduling problem can be described as follows. A function f :I 
× J × T → {0, 1} is sought, which fulfills:

∑

i∈ I 
f (i, j, t) = D( j, t) ∀ j ∈ J, t ∈ T (5.1)

∑

t∈ T 
f (i, j, t) = M(i, j) ∀i ∈ I, j ∈ J (5.2)

∑

j∈J 
f (i, j, t) = 1 ∀i ∈ I, t ∈ T (5.3) 

Constraints (5.1) ensure that a teaching service D( j, t) must be fulfilled for all 
rotations j ∈ J and periods t ∈ T —in personnel planning problems this is often 
seen as a demand. Rotations can then be described as departments. Constraints (5.2) 
consider the training requirement M(i, j ) that must be met over the entire time 
horizon. This means that each resident i ∈ I must fulfill each rotation to a specified 
extent. Constraints (5.3) ensure that each resident should be assigned to exactly one 
rotation in each period. 

Personnel planning that is not appropriate to the resident training can have two 
economic consequences, both of which are based on the fact that every resident 
training provider (hospital) is obliged to guarantee the residents’ training in the time 
allocated. Suppose the resident can prove that the training program must be extended 
for reasons the provider is responsible. In that case, the hospital must pay a specialist’s 
salary despite the lack of specialist status. In this context, an initial judgment was 
made in 2015 by the State Labor Court of Baden-Württemberg. It was stated here 
that an objective training plan must already be available at the start of employment; 
otherwise, a time limit is not justified [3]. Even more important is the fact that 
departments that are repeatedly unable to offer the contents of the resident program 
within the specified time are threatened with restrictions on the authorization of 
further training by the medical associations. The departments concerned would then 
have to hire more expensive specialists instead of the more cost-effective residents 
if available on the market [4].
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The main contributions are the following. First, a strategic problem for deter-
mining the maximum number of residents is presented, which is able to consider 
an uncertain set of interventions via a robustness concept. Second, a possibility is 
described to deal with the uncertainty between annual planning and daily planning 
by introducing priorities in annual planning. Third, a model is presented to measure 
the training program’s impact on service quality in the departments. 

The remainder of this work is as follows. Next, the methodologies will be 
presented. Afterward, details of the results are discussed. Eventually, it will close 
with a conclusion. 

Methodology 

The interventions have an elementary role in the concept of task-related resident 
scheduling and are an essential innovation to the existing literature in resident 
scheduling [5]. Since the distribution of the interventions over the planning horizon 
of 5 years is difficult if at all, to determine, robustness concepts offer an excel-
lent possibility to consider the uncertainty. Historical data over 26 months makes 
it possible to determine the upper and lower limits of executable interventions per 
department quarterly. These limits allow the usage of the price of robustness [6] for  
the model formulation. One of the advantages of this concept is that the mapped 
uncertainty does not change the model, i.e., if the model is linear, it can also be 
formulated linear using the price of robustness. This is important because resident 
scheduling problems are NP-hard [7]. The same applies to this formulation with 
interventions, which can be seen as a task allocation and sequencing problem with 
upper and lower bound temporal constraints. Bertsimas and Sim [8] have proven that 
this type of problem is NP-hard and, therefore, not tractable. Since the problem’s 
block structure suggests using a decomposition based on a Dantzig-Wolfe reformula-
tion, the compact model is decomposed by residents. The result is a master problem 
that handles each department’s capacity and a subproblem that generates feasible 
training schedules for one generic resident. The decomposition’s unique feature is 
that the robustness concept is completely included in the subproblem, i.e., each solu-
tion of the subproblem is robust according to the defined parameters. A sophisticated 
column generation heuristic that detects near-optimal solutions (on avg. < 5% opti-
mality gap) within minutes is developed to solve the decomposition (see Fig. 5.1). 
In particular, a new pattern generation approach for cyclic problems is presented 
that further decreases solution times significantly. For each subproblem with nega-
tive reduced cost, multiple columns are generated by shifting the start period of the 
generic resident.

A second aspect of uncertainty is considered in the tactical problem of annual resi-
dent scheduling by taking absences into account. Due to absences, a resident might be 
assigned to a department deviating from the training schedule. One approach to take 
these types of changes into account in the training schedule is using backup schedules, 
i.e., a resident is assigned to more than one department. Setting different schedules
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Fig. 5.1 Illustrative flow chart of the column generation heuristic [5]

using priorities gives residents additional information about possible activity fields 
and ensures that they are not surprised by short-term changes. This kind of training 
schedule design is not yet considered in the current literature. Therefore, one of 
the main contributions is the novel mathematical formulation of the annual resident 
scheduling problem with priorities. The problem is set up as a two-stage stochastic 
program to map the previously identified absences of residents in the model. Since the 
deterministic resident scheduling problem is already NP-hard, the stochastic version 
causes several problems at once. On the one hand, the model cannot be solved with 
commercial solvers in a suitable time. On the other hand, it fails already because of 
a finite bound, i.e., the solver cannot determine a linear programming (LP) bound 
for realistic problem sizes within one hour. Therefore, an analytical bound is derived 
for the problem. The formulation is decomposed between the first and second stage 
and integrated into an iterative algorithm to solve the problem. 

The violation of continuity is considered in a quadratic formulation of the annual 
resident scheduling problem [9]. The quadratic formulation is necessary since more 
changeovers have a stronger effect on the service level. Since non-linear problems are 
usually more challenging to solve, a linearization of the model is presented. Good, 
feasible solutions cannot be found in the original quadratic or the linearized formu-
lation within 24 h with standard solvers. For this reason, a metaheuristic approach
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is used to solve the problem. The genetic algorithm has the advantage that several 
annual schedules can be made available for selection to the hospital management. 

Results 

The robustness concept and the integration in a column generation heuristic are 
tested in a real-world case study of a German university hospital with more than 
1,200 beds. The case study shows that the hospital takes a very liberal approach to 
uncertainty. The hospital trains 84 residents. This value corresponds to approximately 
a 5% occurrence of the lower limit of interventions per department. Consequently, 
the hospital is not able to finish the education of all residents on time. The algorithm’s 
performance is analyzed by using 60 instances divided into three different sizes. No 
significant difference in both the optimality gap and the solution time was found. 
A comparison of the pattern generation approach showed that the classical column 
generation took on average 6.1 times longer to solve than the newly developed cyclic 
approach (see Fig. 5.2). While an increase of the robustness level does not differ 
according to the problem size, the effect of a change of the robustness level is quite 
high across all problem sizes, with differences of up to 90%. 

The developed algorithm and the analytical bound for the annual resident 
scheduling problem with absences are analyzed in an experimental study based on 
the same data set as before. The bounds analysis shows that the analytical bound 
is superior to the LP bound by more than 8% on average. In addition, it is shown 
that superiority increases with a rising number of selectable priorities. Besides the 
analytical bound, an approximation of the upper bound based on the solution algo-
rithm is developed. A parameter is estimated based on numerical tests, which ensures 
that the approximate bound underestimates the upper bound by a maximum of 12%. 
However, this does not occur during the entire experimental study. In a further study, 
the performance of the solution algorithm is analyzed. For this purpose, the algorithm 
is tested using a cold and warm start as well as a batching approach to reduce the 
number of scenarios considered in parallel. This study shows that a warm start with 
the solution of the deterministic problem and in combination with a batching scheme

Fig. 5.2 Convergence cyclic pattern generation (left), convergence standard generation (right) [5] 
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is advantageous both in terms of solution quality and solution time. The results show 
that a training schedule with two priorities already eliminates almost all unexpected 
assignments, i.e., from initially over 10% to only 1%. Finally, the study shows that a 
training schedule with two priorities is already superior to traditional planning with 
only one priority. 

The genetic algorithm is evaluated and compared with standard software solu-
tions analyzing a German training hospital’s real-world situation from 2016. When 
comparing the real-world case with the genetic algorithm’s solutions, it becomes 
clear that the hospital has not exhausted all potentials concerning the objectives 
investigated. It would have been possible to improve continuity by 25% or improve 
fair training progress by up to 30%. The analysis of both models and the comparison 
of the genetic algorithm solutions with those of the standard solver shows that the 
standard solver solutions are always in the same solution region regardless of the 
selected objective function weights. This is because the solver often does not get 
beyond the heuristically constructed start solution within 24 h. It has been shown 
that the solver has problems finding and improving solutions concerning fair training 
progress. Even in small instances with only 20 residents, a standard solver could not 
solve the problem optimally. These results again underline the genetic algorithm’s 
strength compared to the solver for the problem under investigation. Nevertheless, 
the solver results show that there are possibilities for small instances to sharpen the 
MIP formulation further to get a good solution. In general, the study shows that the 
costs for continuity of care and fair training progress are very high in the respective 
extreme, i.e., improving continuity of care by a small amount has a high impact on 
the fairness level if the schedule has a good fairness level and vice versa. However, 
it is also possible to determine a medium range in which the relative improvement 
of fair training progress is associated with low costs of continuity. 

Conclusion 

The resident scheduling problem has a unique structure due to the simultaneous 
demands of departments and residents. According to specialization, hospital, and 
country, the individual characteristics provide for a large number of variations of the 
basic model. This work deals with a German case of the resident scheduling problem, 
which differs from the existing literature by its task-related structure. 

The overall goal of the work is to get a deeper understanding of the resident 
scheduling problem. Current problems such as non-compliance with the duration of 
training programs are considered. Besides, generalizable interconnections, such as 
continuity of care or differences between annual and daily planning, are analyzed. The 
Operations Management literature on resident scheduling can be divided into staffing 
and rostering decisions, as with other personnel planning problems. However, a large 
part of the literature deals with the American resident training system, which shows 
notable differences to the training system investigated in this work. The first contribu-
tion combines a column generation method with an existing robustness concept based



5 Resident Scheduling in Teaching Hospitals 41

on surgical data. An advantage of this approach is that decision-makers can define a 
suitable level of robustness independently. Interventions that are difficult to predict in 
this time horizon have a fundamental impact on the duration of the training program 
and the possible number of residents a hospital can employ. Uncertain events, such as 
absences, are another contribution. In addition, the loss of information due to opera-
tional processes’ aggregation on a tactical level is considered here. It is shown that the 
use of priority assignments positively affects adherence to the tactical schedule on an 
operational level. Planning processes often influence other areas, as well. Thus, the 
final study shows the influence of departmental changes within the training program 
and how to deal with them. 

To summarize, the socio-economic change on the one hand and medical progress 
on the other will increasingly present hospitals with new challenges. Residents will 
play a decisive role in this, representing a more cost-effective alternative to specialists. 
Therefore, it will become increasingly important to deploy residents effectively and 
efficiently. 
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Chapter 6 
Solving Customer Order Scheduling 
Problems with an Iterated Greedy 
Algorithm 

Julius Hoffmann 

Abstract In this paper, three configurations of the customer order scheduling prob-
lem are presented. In contrast to classical scheduling problems, the customer order 
scheduling problem considers the scheduling of jobs that belong to customer orders 
and each order is only completed when each job of the order has finished. The studied 
configurations are the minimization of the sum of order completion times and the 
minimization of the earliness-tardiness in a machine environment where each order 
places one job on each machine. Furthermore, the minimization of the sum of order 
completion times in a flow shop environment is investigated. This paper states prop-
erties of the three problem configurations and describes developed solution methods 
that performed well in a computational experiment. 

Keywords Customer order scheduling · Metaheuristics · Optimization · Iterated 
greedy algorithm · Manufacturing 

Introduction 

In classical scheduling problems, jobs are scheduled on machines for the purpose 
of minimizing or maximizing a job related objective. However, in many real life 
situations, multiple jobs belong to a customer order. To save transportation costs and 
execution time, it is reasonable to ship all jobs of an order at once [ 1]. Various studies 
address this issue by investigating the so-called customer order scheduling problem 
(COSP), see [ 1, 2] for examples. In the following, the COSP is defined as a problem 
in which several customers order multiple products. An order is completed when all 
jobs of the order are finished. The corresponding objective function of the problem 
is related to the completion times of the orders. 
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Fig. 6.1 Example Gantt chart of the COSP in a dedicated machine environment 

Recently, the COSP has been applied in the context of 3D printing [ 3]. Never-
theless, the concept of the COSP is not limited to the manufacturing context and 
can be transferred to other disciplines, e.g., parallel computing. Here, several tasks 
are processed independently on multiple processors and are gathered afterwards to 
finish the main task [ 4]. Various configurations of the COSP are studied in the lit-
erature, e.g., minimizing the sum of weighted completion times of the orders with 
multiple identical machines [ 5], or minimizing the sum of tardinesses of the orders 
in an environment with so-called dedicated machines [ 6]. 

The objective of this paper is to present three problem configurations of the COSP, 
with corresponding properties and solution methods of the configurations. 

General Problem Description 

To introduce the notation, the COSP is explained by an example which can be found 
in Fig. 6.1. In this example, the dedicated machine environment is considered where 
each customer places exactly one job on each machine. The number inside the sched-
uled job represents the order of the job. 

In the given example, the number of orders n is four, the number of jobs per order 
o is two, and the number of machines m is two. In this paper, the number of a job in 
an order corresponds to the machine number if the dedicated machine environment 
is considered. Each job j of an order i has a production time ti j  and a completion 
time Ci j  . An order is completed when all of its jobs are finished. Consequently, the 
completion time of an order is calculated by Ci = max1≤ j≤o{Ci j }. This property can 
be seen by C1, which equals C11. 

Furthermore, each order has a due date di if the problem configuration requires 
it. By the due date, the tardiness of an order is calculated by Ti = max{0, Ci − di }, 
see d4 and T4 as example. Furthermore, the earliness of a job is defined as Ei j  = 
max{di , Ci } −  Ci j  . The definition of the earliness here is based on the idea that each 
finished job must wait until shipping, which occurs when all jobs of an order are 
completed or the due date is reached, whichever is later. The earliness E12 is given 
as an example for the case when the completion time is lower than the due date
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of the order, E32 is shown for the opposite case. If idle times are considered, the 
decision maker can insert idle times i ti j  in front of jobs, e.g., i t21 in front of job 1 of 
order 2. 

Minimizing the Total Completion Time in a Dedicated 
Machine Environment 

In this problem configuration it is aimed to minimize 
∑n 

i=1 Ci in a dedicated machine 
environment. This configuration has already been studied in the literature, see [ 1, 2] 
for examples. The following lemma holds for this configuration [ 2]: 

Lemma 1 There exists an optimal schedule for each problem instance in which all 
orders are processed in the same sequence on each machine. 

Consequently, a solution π of this problem configuration is represented as a per-
mutation schedule of orders, e.g., π = {1, 3, 4, 2}. Idle times and preemptions are 
not considered for this configuration. The iterated greedy algorithm (IGA) was used 
for solving this problem configuration because it is a simple and effective metaheuris-
tic and has successfully solved permutation flow-shop scheduling problems [ 7]. The 
IGA consists of four or five functions, depending on the use of the local search func-
tion, and a termination criterion, each of which can be designed differently [ 7]. The 
pseudocode of the IGA can be found in Alg. 1. 

Algorithm 1 General procedure of the IGA (based on [ 7]) 
1: procedure IGA 
2: π ← I ni tiali zation() 
3: π ← Local Search(π) 
4: π∗ ← π 
5: while Termination Condition not met do 
6: πd , πn−d ← Destruction(π) 
7: π

, ← Construction(πd , πn−d ) 
8: π

, ← Local Search(π
, 
) 

9: π∗,π  ← Acceptance(π∗,π,π
, 
) 

10: end while 
11: return π∗, F(π∗) ▷ Best found solution π∗ and belonging value F(π∗) 
12: end procedure 

Four different IGAs were developed which differ in their initialization and con-
struction. Two IGAs use a modified NEH heuristic [ 8], the other IGAs the ECT 
heuristic [ 2] for the initialization. The ideas for the local search, destruction size and 
strategy, and acceptance of the four IGAs were based on the descriptions of mul-
tiple insertion, variable number based on VND, random selection, and simulated-
annealing-based acceptance with a solution-based temperature in [ 7]. For the con-
struction function, all IGAs use the idea of the greedy reinsertion [ 7]. However, the
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construction functions differ by their reinsertion sequence method. To obtain the 
reinsertion sequence, the idea of the greedy selection is used by two IGAs, while 
a heuristic selection according to the priority rule used during the modified NEH 
heuristic is performed by the other IGAs (see [ 7] for descriptions). 

Two important adjustments have been made to the mentioned functions. Both use 
the destruction size d , which represents the number of iterations no better solution 
was found, but at the same time is limited to the range [dmin, dmax]. The local search 
function uses d by removing and subsequently reinserting single orders 

| 
z ∗ d 

dmin 

| 

times and the acceptance function by setting the probability of accepting a worse 

solution to q ≤ e−y∗ dmin 
d ∗ F(π

, 
)−F(π) 

F(π) , where q is randomly drawn each iteration from 
U[0,1] and F(·) is the objective function value of a solution. The parameters y and 
z are determined experimentally and dmin = 1 and dmax = n 2 are adopted from the 
literature [ 9]. Consequently, the local search is intensified and it is more likely to 
accept a worse solution in order to escape local optima when no better solution was 
found during recent iterations. 

The proposed IGAs were compared with two IGAs from the literature [ 10] and 
a modeled MILP solved by Gurobi (version 9.0.3) in a computational experiment 
according to the criterion of the best found solution after given run times. In this 
experiment, the best performing method was the IGA which uses the modified NEH 
heuristic as initialization function and the priority rule of the modified NEH heuristic 
for determining the construction sequence. 

Minimizing the Total Completion Time in a Flow Shop 
Environment 

This section addresses the minimization of the sum of order completion times in a 
flow-shop environment with m stages (m ≥ 2) and one machine per stage. To the best 
of our knowledge, this particular problem configuration has not yet been studied. An 
example with two orders, three jobs per order, and two machines for this environment 
can be found in Fig. 6.2. The string inside the scheduled job (i, j ) represents the job 
j of order i . 
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Fig. 6.2 Example Gantt chart of the COSP in a flow-shop environment
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It can be shown by a counter example that there are instances of this problem 
configuration where it is not possible to schedule all jobs of an order one after 
another to obtain an optimal solution. Therefore, a solution of this configuration here 
is a permutation of all jobs of all orders which are processed in this sequence on each 
machine, e.g., π = {(1, 1), (2, 1), (2, 2), (2, 3), (1, 2), (1, 3)} in Fig. 6.2. 

Four algorithms were developed for this problem configuration. The algorithms 
were derived from the structure and the functions of the best performing IGA in 
Section “Minimizing the Total Completion Time in a Dedicated Machine Environ-
ment” and initialize a first solution with the same heuristic, which is based on the 
ideas of the NEH heuristic. The algorithm IGA-String has a lot of similarities with the 
mentioned IGA from Section “Minimizing the Total Completion Time in a Dedicated 
Machine Environment”. However, instead of moving orders, the jobs are moved in 
the permutation solution which has a size of n ∗ o. 

In contrast, the other algorithms, called IGA-Matrix algorithms, first modify the 
permutation of the jobs of each order separately and subsequently the sequence of 
the orders. There exists an additional acceptance function in IGA-Matrix1 and IGA-
Matrix2 which is directly executed after the job permutations of the single orders 
are determined. This function defines the job permutations of the single orders for 
the next iteration before the final solution of the iteration is generated. Because the 
jobs of an order do not have to be processed one after another, IGA-Matrix2 and 
IGA-Matrix3 perform an additional local search before the (last) acceptance step in 
each iteration. This local search function swaps adjacent jobs of the schedule and 
intends to check if a better solution is generated when not all jobs of an order are 
processed one after another. 

The four algorithms were compared with each other in a computational experi-
ment. Again, the comparison criterion was the best found solution after given run 
times. The best performing solution method was IGA-Matrix3. 

Minimizing the Earliness-Tardiness in a Dedicated Machine 
Environment 

The problem addressed here is to minimize 
∑n 

i=1 

∑m 
j=1 

( 
Ei j  + Ti 

) 
in a dedicated 

machine environment. To the best of our knowledge, this problem configuration 
has not yet been investigated. It can be shown by counterexamples that it may be 
necessary to insert idle times, and that for some problem instances it is not possible 
to schedule all orders in the same sequence on each machine, to obtain an optimal 
solution. 

Consequently, idle times are considered here, and each machine can have its own 
schedule. It can be shown that inserting or increasing an idle time before the first job 
of a job-group g, where the jobs are not separated by an idle time from each other 
(idle times between the jobs are zero) but separated from the following jobs by an
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idle time larger than zero or because they are the last scheduled jobs, decreases the 
objective value if the following equation holds: 

yg < 
ng 

2 ∗ m 
. (6.1) 

In Eq. (6.1), ng is the number of jobs in g, and yg the number of jobs in g which 
have an earliness of zero. An example for the described group g is the group of jobs 
from the orders 1, 3, and 4 on machine 2 in Fig. 6.1. 

Six IGAs were developed for this configuration. They follow the structure of 
the best performing IGA from Section “Minimizing the Total Completion Time 
in a Dedicated Machine Environment”. Additionally, each IGA has a refinement 
function that is executed after the local search. Five of the refinement functions start 
with setting an idle time before the first job on each machine. The value of this offset 
is either the minimum earliness on the machine (used by IGA2, IGA5) or a value  
determined according to the property that is related to Eq. (6.1) (IGA1, IGA3, IGA6). 
Subsequently, all IGAs except IGA1 and IGA4 use a method that swaps adjacent jobs 
on single machines if it results in a better solution. In a last step, IGA4, IGA5, and 
IGA6 check a possible idle time insertion before each job on each machine according 
to the property that is related to Eq. (6.1). 

In a computational experiment, the six IGAs were compared with each other 
and a MIP solved by Gurobi according to the criterion of the best found solution 
after given run times. The IGAs outperformed the Gurobi solver in this experiment. 
Furthermore, IGA6 was the best performing solution method. 

Conclusion 

This paper presents three problem configurations of the COSP. Properties are stated 
for these configurations and, based on these properties, algorithms are described. The 
first studied problem configuration was successfully solved with IGAs. Consequently, 
the structure of the best performing IGA for the first configuration was used for 
developing algorithms for the other COSP configurations. 

Future research could examine further COSP configurations with algorithms that 
are based on the proposed IGAs. Additionally, the performance of the presented 
algorithms could be compared with the performance of other solution methods, e.g., 
AI-based techniques.
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Chapter 7 
The Stochastic Bilevel Selection Problem 

Jannik Irmai 

Abstract We consider a bilevel continuous knapsack problem where the leader 
controls the capacity of the knapsack, while the follower chooses a feasible packing 
maximizing his own profit. The leader’s aim is to optimize a linear objective function 
in the follower’s solution, but with respect to item values that can be different from 
the follower’s item values. We address a stochastic version of this problem where 
the follower’s profits are uncertain and only a probability distribution is known. 
This problem is #P-hard for the case of independently and uniformly distributed 
follower profits. In this paper, efficient algorithms are developed for the special 
case where all items have unit weight, as is the case in the bilevel selection problem. 
Generalizing these results to the case of arbitrary weights leads to pseudo-polynomial 
time algorithms for the bilevel continuous knapsack problem. 

Keywords Bilevel optimization · Stochastic optimization · Complexity 

Introduction 

The classical 0–1 knapsack problem and variants thereof are much studied opti-
mization problems. The interpretation as a knapsack packing problem dates back to 
Dantzig [ 5]: Given a set of items, each associated with a weight and a value, and a 
capacity of the knapsack, the objective is to find a selection of the items such that the 
total weight of the selected items does not exceed the capacity, and the total value 
of the selected items is maximal. If all items have the same weight, i.e., unit weight, 
an optimal solution is easily obtained by selecting the most valuable items until the 
capacity is reached. This special case of the knapsack problem is called the selection 
problem. 

In the past decades, variants of the knapsack problem involving uncertainty and/or 
multiple levels have received increasing attention, see, for example, [ 4] for bilevel 
variants or [ 2, 7] for bilevel variants with uncertainty. In this paper we consider 
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the stochastic bilevel continuous knapsack problem with an uncertain follower’s 
objective (SKP), which is proposed in [ 1]. 

Definition 1 The stochastic bilevel continuous knapsack problem is defined as fol-
lows 

max Ec[dTxc] 
s.t. b− ≤ b ≤ b+ 

xc ∈ argmax cTx 
s.t. aTx ≤ b 

x ∈ [0, 1]n, 

(SKP) 

where n ∈ N is the number of items. The leader controls the knapsack’s capacity 
b ∈ R, which is limited by the lower and upper bounds b−, b+ ∈ R≥0. The follower’s 
variables are x ∈ [0, 1]n, the fractions determining how much of each item is packed. 
The items have weights a ∈ Zn 

>0 and different profits for the leader and follower. The 
leader’s profits are d ∈ Rn and the follower’s profits are the n dimensional random 
variable c that only takes positive values. The vector xc ∈ [0, 1]n denotes an optimal 
solution of the follower’s problem for follower profits c and can also be understood 
as a random variable. To emphasize the dependency on the capacity b, we may also 
write xc(b). 

The possibly negative leader profits d allow an interpretation where the leader 
pays, i.e., has negative profit, for providing capacity to the follower, for details see 
[ 1]. For deterministic follower profits c, the bilevel continuous knapsack problem 
can be solved efficiently, see, for example, [ 6]. In [ 1] it is shown that the SKP is 
already #P-hard for componentwise independently binary uniformly or component-
wise independently continuous interval uniformly distributed follower profits. In the 
following, for the sake of brevity, we just write componentwise instead of compo-
nentwise independent. 

In this paper, we present pseudo-polynomial time algorithms for the SKP for 
both componentwise finitely and componentwise continuous interval uniformly dis-
tributed follower profits. Both algorithms have a run time that is polynomial in the 
number of items and linear in the sum of the weights of the items, meaning they are 
efficient if the weights of the items are bounded by a constant. The main results from 
this paper have already been published in [ 3]. 

Problem Analysis 

For certain item values c ∈ Rn , the follower’s problem can easily be solved by sorting 
the items according to their relative profits ci ai and packing the most valuable items 
until the capacity is reached. As a result, the follower’s solution xc(b) is a piecewise 
linear monotonically increasing function. 

We denote the expected value of the follower’s solution with x̂(b) := Ec[xc(b)] 
and the leader’s objective function with f (b) := Ec[dTxc] =  dT x̂(b). Since there
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are only finitely many possible orderings of the items, the expected value x̂ is, as a 
sum of finitely many piecewise linear functions, also a piecewise linear function in 
b and so is f . Therefore, the SKP can be solved by evaluating the objective function 
f at all vertices between the linear segments. Furthermore, it is already #P-hard to 
evaluate the objective function for a given capacity. 

Theorem 1 Evaluating the expected value x̂(b) for a given b for independently 
binary uniformly or independently continuous interval uniformly distributed follower 
profits is #P-hard. 

Since the SKP is #P-hard (for componentwise finite and componentwise continu-
ous uniform follower profits) we cannot expect to find a polynomial time algorithm 
for the problem. However, the hardness is proven by a reduction from #Knapsack, 
which is only weakly #P-hard and leaves the possibility of a pseudo-polynomial time 
evaluation of the objective function. This motivates us to initially study the special 
case where all items have unit weight. 

Definition 2 The stochastic bilevel selection problem is the following optimization 
problem 

max Ec[dTxc] 
s.t. b ∈ {0, . . . ,  n} 

xc ∈ argmax cTx 
s.t. 

∑n 
i=1 xi ≤ b 

x ∈ {0, 1}n. 

(SSP) 

where d and c are the same parameters as for the SKP. 

The objective function of the leader in the stochastic bilevel selection problem is, 
as for the SKP, piecewise linear with at most n + 1 vertices in {0, . . . ,  n}. Therefore, 
an algorithm to evaluate x̂(b) in polynomial time for all b = 0, . . . ,  n would enable 
evaluating f (b) in polynomial time for all b = 0, . . . ,  n, which, in turn, would enable 
solving the SSP in polynomial time. For the SSP, the expected value x̂i (b) can be 
understood as the probability that the follower selects item i given the capacity b for 
i, b ∈ {1, . . . ,  n}. 
Remark 1 The SKP can be reduced to the SSP by splitting each item i of weight 
ai ∈ Zn into ai many individual items of weight 1 with leader profit di ai and follower 
profit ci ai . The derived SSP instance has 

∑n 
i=1 ai many items, and the described 

reduction is only a pseudo-polynomial time reduction. However, if the follower 
profits c of the SKP instance are distributed independently, the follower profits of the 
derived SSP instance are no longer independent (the follower profits of two items of 
the derived instance that were obtained by splitting an item of the original instance 
are correlated).
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The Selection Probability 

As discussed above, the SSP can be solved efficiently if the selection probabilities 
x̂i (b) can be computed efficiently for i, b ∈ {1, . . . ,  n}. Instead of computing these 
selection probabilities directly, it turns out to be easier to first compute the values 
ŷib  := x̂i (b) − x̂i (b − 1) for i, b ∈ {1, . . . ,  n}. For an item i and a capacity b, the  
value ŷib  is the probability that item i has the b largest follower profit. 

In the following, we present a method to efficiently compute the position proba-
bilities ŷ by means of dynamic programming. To formalize this dynamic approach, 
we introduce the following notation. 

Let N := {1, . . . ,  n} denote the set of items. For i ∈ N , I ⊆ N \ {i}, b ∈ {0, . . . ,  
|I |}, we define 

g(b, I, x) = g(b, I, x; i ) := P 
(| 
| { 
j ∈ I | c j > x 

}| 
| = b 

| 
| ci = x 

) 
, 

the probability that exactly b of the items in I have a larger follower profit than x 
when item i has follower profit x . 

With this notation we can compute for i, b ∈ N 

ŷib  = 
∑ 

x∈supp(ci ) 
P(ci = x) · g(b − 1, N \ {i}, x; i ) (1) 

for discretely distributed ci and 

ŷib  = 
( 

x∈supp(ci ) 
pi (x) · g(b − 1, N \ {i}, x; i ) dx (2) 

for continuously distributed ci where supp(ci ) is the support of ci and pi (x) is the 
probability density function of ci . 

In the following we assume that the follower profits are distributed component-
wise, i.e., for i, j ∈ N , i /= j the random variables ci and c j are independent. Then 
the function g can be computed, independently of i , with the following recursion: 

Proposition 1 For componentwise distributed follower profits, x ∈ R, I ⊆ N , I /= 
∅, b = 0, . . . ,  |I | and k ∈ I , the following holds: 

g(b, I, x) = P(ck > x) · g(b − 1, I \ {k}, x) + (1 − P(ck > x)) · g(b, I \ {k}, x) .  

Further, we have g(0, ∅, x) = 1. 

In other words, the probability that exactly b items in I have a larger follower 
profit than x equals the probability that item k has a larger follower profit than x and 
b − 1 items in I \ {k} have a larger follower profit than x or that item k has a smaller 
follower profit than x and b items in I \ {k} have a larger follower profit than x .
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Fig. 7.1 Dynamic 
computation of 
g(b, N \ {i}, x) according to 
Proposition 2. 
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Using the recursive formula according to the visualization in 7.1, the auxiliary 
values g(b, N \ {i}, x) from (1) and (2) can be computed efficiently: 

Proposition 2 For x ∈ R, i ∈ N and given P(c j > x) for j ∈ N \ {i}, one can com-
pute g(b, N \ {i}, x) for b = 0, . . . ,  n − 1 in time O(n2). 

For componentwise finitely distributed follower profits, the position probabilities 
ŷ can be computed efficiently with (1). From this, the selection probabilities x̂ can 
be computed and with those the objective function can be evaluated. Together, we 
obtain a polynomial time algorithm for solving the SSP: 

Theorem 2 For componentwise finitely distributed follower profits, the SSP can 
be solved in time O(m2n2 + mn3), where m = maxi∈N |supp(ci )| is the maximum 
number of different values that the follower profits take for each item. 

For componentwise follower profits distributed uniformly on continuous intervals, 
the auxiliary function g is a piecewise polynomial function in x and with (2), the 
SSP can be solved efficiently: 

Theorem 3 For componentwise continuous interval uniformly distributed follower 
profits, the SSP can be solved in time O(n5). 

The complexity of the SSP clearly depends on the type of the distribution that 
describes the follower profits. For a more complex distribution that is not compo-
nentwise, even the SSP where all items have unit weight is hard to solve. 

Theorem 4 1. Computing ŷ with follower profits that are uniformly distributed on 
a polytope, given by an outer description, is #P-hard. 

2. Computing ŷ for follower profits that are uniformly distributed on the vertices 
of a box that satisfy a linear inequality is #P-hard.
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Pseudo-polynomial Time Algorithms 

As described in Remark 1, the more general SKP can be reduced to the special case 
of the SSP by splitting each item into multiple items of unit weight. By adapting the 
dynamic computation of the position probabilities to handle the correlation of the 
follower profits of the derived instance, we obtain algorithms for solving the SKP in 
pseudo-polynomial time. More precisely, the runtime is linear in A = 

∑n 
i=1 ai , the  

sum of the weights of all items. 

Theorem 5 For componentwise finitely distributed follower profits, the SKP can 
be solved in time O(m2n2 + mn2 A), where m is the maximum number of different 
values that the follower profits take for each item. 

Theorem 6 For componentwise continuous interval uniformly distributed follower 
profits, the SKP can be solved in time O(n4 A). 

Conclusion 

This paper investigates the #P-hard SKP from an algorithmic perspective. For 
both componentwise finitely and componentwise continuous interval uniformly dis-
tributed follower profits, pseudo-polynomial time algorithms are developed. It is 
discussed how the SKP relates to the the SSP by splitting items into multiple items 
of unit weight. 

The algorithm for continuous uniform follower profits can easily be extended 
for continuous distributions with polynomial density functions. This enables the 
possibility of approximating arbitrary density functions with polynomials to obtain 
approximation algorithms for the SSP and the SKP. It remains to be investigated 
how the approximation error carries forward in the problem’s solution. 

An additive approximation scheme for the SKP that approximates any componen-
twise distributed follower profits with a componentwise finitely uniformly distributed 
random variable is presented in [ 3]. 

References 

1. Buchheim, C., Henke, D. (2020). The bilevel continuous knapsack problem with uncertain 
follower’s objective. Technical Report. https://arxiv.org/abs/1903.02810v2 

2. Buchheim, C., Henke, D., & Hommelsheim, F. (2021). On the complexity of robust bilevel 
optimization with uncertain follower’s objective. Operations Research Letters, 49(5), 703–707. 

3. Buchheim, C., Henke, D., & Irmai, J. (2022). The stochastic bilevel continuous knapsack 
problem with uncertain follower’s objective. Journal of Optimization Theory and Applications, 
194, 521–542. 

4. Caprara, A., Carvalho, M., Lodi, A., & Woeginger, G. J. (2014). A study on the computational 
complexity of the bilevel knapsack problem. SIAM Journal on Optimization, 24(2), 823–838.

https://arxiv.org/abs/1903.02810v2
https://arxiv.org/abs/1903.02810v2
https://arxiv.org/abs/1903.02810v2
https://arxiv.org/abs/1903.02810v2
https://arxiv.org/abs/1903.02810v2
https://arxiv.org/abs/1903.02810v2


7 The Stochastic Bilevel Selection Problem 57

5. Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations Research, 5(2), 266– 
288. 

6. Dempe, S., Kalashnikov, V., Pérez-Valdés, G. A., & Kalashnykova, N. (2015). Bilevel pro-
gramming problems. Berlin: Energy Systems. Springer. 

7. Özaltın, O. Y., Prokopyev, O. A., & Schaefer, A. J. (2010). The bilevel knapsack problem with 
stochastic right-hand sides. Operations Research Letters, 38(4), 328–333.



Part II 
Analytics and Learning



Chapter 8 
A Combined Measure Based on 
Diversification and Accuracy Gains for 
Forecast Selection in Forecast 
Combination 

Felix Schulz, Thomas Setzer, and Nathalie Balla 

Abstract Recent innovations in the field of forecast combination include integrated 
methods for forecast selection, weighting and regularization. The methods proposed 
in related articles first label whether or not forecasters should remain in the selec-
tion using information criteria from statistical learning theory. Depending on the 
selection status, the optimal weights of all forecasters in the sample are then used 
as baseline to shrink the weights either toward zero or the mean, with the degree of 
regularization determining the final selection of forecasters. In this paper, we propose 
a new information criterion reflecting the importance of diversification and accuracy 
gains in the selection of forecasters for integrated methods. In an iterative proce-
dure motivated by forward feature selection, each forecaster is selected sequentially, 
while at each step the increase in accuracy and diversification due to the addition 
of a forecaster to the previous selection is measured. To quantify the increase in 
diversity, the multiple correlation coefficient is used, which captures the correlation 
between the previously selected forecasters and a candidate, where the lower the 
correlation between the candidate and the selection, the higher the gain in diversity 
for the combination. For the accuracy increase, the accuracy achieved by optimal 
weight combinations with the previously selected forecasters is compared with the 
accuracy after adding a candidate. A hyperparameter further enables the trade-off 
between accuracy and diversification gains in the criterion. Simulation-based studies 
show scenarios in which our presented information criterion achieves advantages in 
out-of-sample prediction accuracy over previous criteria for selection by accounting 
for accuracy and diversification gains. 

Keywords Forecast algorithms · Accuracy–Diversity · Forecast combination 
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Introduction 

Accuracy and diversity play crucial roles in forecasting. Accuracy, as the main goal 
in forecasting, refers to the actual predictive performance of a forecasting model and 
is usually measured by an error measure like the Mean Squared Error (MSE) [ 7]. 
Diversity, in turn, describes different expertise of forecasters and promotes learning 
from multiple perspectives. The latter is of special interest in the area of forecast 
combination, where forecasts from multiple forecast models are linearly combined 
into a single forecast by weighting each model. After Lichtendahl and Winkler [ 2], a 
key factor for efficient forecast combination is diversity among forecasts as diversity 
means low redundancy and more versatile knowledge. Atiya [ 1] similarly empha-
sizes that for successful forecast combination, the models must be either diverse or 
comparable in forecast ability. 
In this paper, we combine the importance of accuracy and diversity for forecast com-
bination in an information criterion called .Comb, usable for selecting forecasts in 
methods such as the Linear Hybrid Shrinkage (LHS) proposed in [ 3]. LHS combines 
forecast selection, weighting, and regularization by shrinking optimal weights of 
forecasters to either zero or the mean, depending on the selection status of a forecast 
given by an information criterion. .Comb trade-offs accuracy and diversity gains by 
including a forecaster in the selection, where the diversity score can be controlled by 
a hyperparameter. In an experimental setup, we benchmark.Comb against previously 
presented information criteria and show scenarios with advantages for our presented 
criterion. 
The paper is structured as follows. After the introduction in Sect. “Introduction”, 
Sect. “Forecast Combination” introduces forecast combination techniques. Section 
“Measure Based on Diversification and Accuracy Gains” proposes the new infor-
mation criterion, Sect. “Experimental Design” the experimental design, and Sect. 
“Experimental Evaluation” the experimental evaluation. The paper ends with a short 
conclusion in Sect. “Conclusion”. 

Forecast Combination 

In a combination of forecasts, the combined forecast . fc is calculated as . fc =∑
i wi fi , where . fi defines the forecast from forecast model . i with .i = 1, . . . , k and 

.wi the individual forecast model weight. .wi is usually constrained by . 
∑k

i=1 wi = 1
with.w ∈ R

k . Weights.wi can be estimated using the inverse of the covariance matrix 
.Σ̂−1

e of the prediction errors . e associated with the models on past data. With . ι as a 
column vector of .k . 1s, Optimal Weights (OW ) are defined in (8.1) [  6]. 

.ŵOW = Σ̂−1
e ι

ι'Σ̂−1
e ι

(8.1)
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Although the OW approach minimizes the inherent error in the sample (bias), OW 
are estimated on available data, which may lead to high variance in other data, e.g., 
in the case of sparse data and high uncertainty. Thus, a popular alternative approach 
is to use Equal Weights (EW ), .wEW = ι

k , which ignores available data (high bias) 
but reduces the sample-based error (low variance). 

Researchers have tested and demonstrated the benefits of combining the EW and 
OW weighting approaches into a formula via a regularization hyperparameter. λ tuned 
by cross-validation within a range between 0 and 1 to trade-off between bias and 
variance improvements. The so-called Linear Shrinkage (LS) approach can be found 
in (8.2) [  5]. 

.ŵLS = λwEW + (1 − λ) ŵOW (8.2) 

Newer methods in forecast combination unite the idea of forecast weighting and 
regularization with forecast selection [ 3, 4]. Using information criteria from statis-
tical learning theory, each forecaster . i is assigned a selection status, which is stored 
in vector . v and describes whether a forecaster should remain (1) or not remain (0) 
in the selection. The forecasters are selected sequentially which, given. k forecasters, 
results in . k different forms of . v. Depending on the selection status, the OW of all 
forecasters in the sample are then used as baseline to shrink the weights either toward 
zero or the mean, with the degree of regularization determining the final selection of 
forecasters. The so-called Linear Hybrid Shrinkage (LHS) approach can be found in 
(8.3). 

.ŵLHS = λwsel + (1 − λ) ŵOW (8.3) 

. λ again ranges from 0 to 1, emphasizing the reduction of bias at.λ = 0 and variance 
at .λ = 1. .wsel sets a new hyperparameter given by.

v
ι'v , containing either the values 0 

or . 1k ' , with . k ' denoting the final number of forecasters selected. The main advantage 
of LHS is that poor-performing forecasts are removed from the selection, while LS 
weights each forecast equally in case of maximum shrinkage. To define the shape 
of . v (and thus .wsel ), three selection criteria have been proposed based on forecaster 
performance, forecaster importance, and forward feature selection [ 3, 4]. While 
the first is simply ranking and selecting the forecaster based on their in-sample 
performance, the second defines the importance of a forecaster in a cross-validation 
process by randomly shuffling the validation data and evaluating through resulting 
MSE changes the forecaster with the highest contribution for the combination. In 
forward feature selection, a forecaster is incrementally included in the selection 
based on the largest accuracy gain cross-validated by forming OW combinations on 
the data. 

In the following chapter, we outline a new information criterion that explicitly 
reflects the importance of diversity in the selection of forecasters and can be seen as 
an extension of the forward feature selection approach proposed in [ 4].
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Measure Based on Diversification and Accuracy Gains 

We propose a new iteration-based information criterion that selects one forecaster 
at a time based on diversity and accuracy gains until all forecasters are selected. 
Let . s be the set of selected forecasters and . c the set of candidate forecasters. All 
forecasters in . s get the value of 1 and all forecasters in . c the value of 0 in . v, where 
the number of iterations. t depend on the number of forecasters, so.t = 1, ..., k. In the  
first iteration, all available forecasters are in . c, whereby the forecaster with the best 
forecast accuracy in-sample is selected and added to. s— forming the first shape of. v. 
In the next.k − 1 iterations, each forecaster in. c represents a candidate. j for. s, which 
is selected based on the diversity and accuracy gain of including . j in . s. To quantify 

the increase in diversity, the square root of the multiple correlation coefficient. 
/
R2

j,s

is calculated in-sample after linear regressing the errors of candidate forecaster . j by 
the selected forecaster(s) in . s. The diversity between. j and. s, .θ j,s , is then calculated 
as shown in (8.4). 

.θ j,s = 1 −
/
R2

j,s (8.4) 

As .R2
j,s is defined between 0 and 1, .θ j,s takes a value of 1 if there is no cor-

relation between . j and . s and 0 if the correlation is 1. For the accuracy increase, 
OW combinations are formed between the previously selected forecaster(s) in . s and 
. j and evaluated by calculating the MSE by cross-validation. The .MSEs∪ j,t , after  
including. j in. s, is being compared with the MSE achieved without. j in the previous 
iteration .MSEs,t−1. The resulting accuracy value .κ j,s is calculated in the following 
way, where .κ j,s leads to a value greater (less) than 1 if the addition of . j to . s results 
in a decrease (increase) in MSE: 

.κ j,s = MSEs,t−1

MSEs∪ j,t
(8.5) 

Finally, we multiply the diversity score .θ j,s and accuracy score .κ j,s to form our 
new criterion .Comb as in (8.6) which is being calculated in every iteration . t for all 
. j’s in . c whereby the higher the diversity or the higher the reduction in MSE, the 
higher the overall .Comb score. 

.Comb j,t (α) = θα
j,s × κ j,s (8.6) 

The candidate forecaster. j for which the criterion is maximized is added to. s and 
deleted from . c, defining a new shape of . v. This process is repeated until . c is . ∅ and 
all forecasters are selected. A further feature from our combined measure .Comb is 
hyperparameter . α which defines the importance of diversity over accuracy in the 
selection process. When. α is equal to 0, the diversity component has the value 1 and 
diversity is only implicitly considered in the formation of the OW combinations. In 
this case, the criterion leads to the same results as in forward feature selection and the
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candidate that leads to a higher MSE reduction is selected. When. α is increased, more 
diverse candidates can compensate for MSE deficits measured after the formation of 
OW combinations against candidates that would result in greater . κ . For . α, values of 
0, 0.5, 1 and 2 are tested in experiments as described in the following section. 

Experimental Design 

To test our new information criterion .Comb, we set up an experimental design by 
synthetically generating error data for .k = 8 forecasters following a multivariate 
normal distribution. The variance of forecaster . 1, .σ 2

1 , is thereby fixed to 1, while for 
forecaster . k, .σ 2

k takes one of the values 2.0, 3.5 or 5.0. For forecaster .i, 1 < i < k, 

.σ 2
i increases linearly from .σ 2

1 to .σ 2
k as .σ 2

i = σ 2
1 + (σ 2

k −σ 2
1 )(i−1)

k−1 . The correlations 
between forecasters . ρ are drawn from a uniform probability distribution in intervals 
of [0.3,0.6] and [0.6,0.9]. The. ρ values are then sorted in ascending order and stored 
in the correlation matrix such that worse-performing forecasters have lower. ρ values 
than better-performing forecasters, i.e..ρk−1,k is assigned the smallest. ρ value,. ρk−2,k

the second smallest, etc. A test set is given of 5,000 data points, while for training 
sets of .n = 30 and .n = 70 are available. Given the simulation parameters, every 
treatment combination is repeated 50 times. As benchmark, we use the methods 
OW, EW, LS and LHS as described in Sects. “Forecast Combination” and “Measure 
Based on Diversification and Accuracy Gains”. For  the.LHS approach, we consider 
selection by performance (LHS P), importance (LHS VI) as well as diversity and 
accuracy gains using the .Comb criterion (LHS C(.α = 0), LHS C(0.5), LHS C(1), 
LHS C(2)). 

Experimental Evaluation 

To evaluate the performance of the methods per treatment combination of the sim-
ulation parameters .k, σ 2

k , ρ, and . n, the MSE on the test set is calculated using the 
models’ learned weights and averaged over the 50 repetitions. We further compute 
the standard error (SE) per method and treatment combination. The results are shown 
in Table 8.1, where the model that resulted in the lowest average MSE in the test 
data for a given treatment combination is highlighted in bold and the SEs are given 
in parentheses after the MSE values. To assess the reliability of the results, a left-
tailed Wilcoxon signed rank test for a significance level of 0.05 is calculated pairwise 
between the best and the remaining methods. 

In low correlation ranges of .ρ ∈ [0.3, 0.6], for both training data sizes and a low 
variance of.σ 2

k = 2.0, EW achieves the lowest MSE, while only for.n = 30 the result 
is significant, whereas for .n = 70 the result is not significant compared to LS with a 
p-value of .304. For.σ 2

k = 3.5 and.n = 30, LHS P reaches the statistically significant
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Table 8.1 MSE (SE) on test data per method and treatment combination 

.n = 30 . n = 70

.σ 2
k = 2.0 .σ 2

k = 3.5 .σ 2
k = 5.0 .σ 2

k = 2.0 .σ 2
k = 3.5 . σ 2

k = 5.0

.ρ ∈ [0.3,0.6] 

OW 0.982 
(0.031) 

1.159 
(0.037) 

1.250 
(0.044) 

0.828 
(0.011) 

0.986 
(0.014) 

1.038 
(0.013) 

EW 0.762 
(0.004) 

1.106 
(0.006) 

1.441 
(0.007) 

0.762 
(0.004) 

1.106 
(0.006) 

1.441 
(0.007) 

LS 0.779 
(0.011) 

1.046 
(0.017) 

1.158 
(0.024) 

0.767 
(0.005) 

0.967 (0.01) 1.034 
(0.012) 

LHS P 0.841 
(0.018) 

1.001 
(0.015) 

1.084 
(0.025) 

0.800 
(0.007) 

0.977 (0.01) 1.024 
(0.012) 

LHS VI 0.810 
(0.016) 

1.040 
(0.023) 

1.114 
(0.031) 

0.788 
(0.007) 

0.979 
(0.012) 

1.022 
(0.013) 

LHS C(0) 0.880 
(0.019) 

1.075 
(0.029) 

1.093 
(0.032) 

0.837 
(0.009) 

0.986 
(0.013) 

1.015 
(0.011) 

LHS C(0.5) 0.876 
(0.019) 

1.111 
(0.027) 

1.107 
(0.036) 

0.827 
(0.012) 

0.994 
(0.014) 

0.991 
(0.009) 

LHS C(1) 0.877 
(0.018) 

1.117 
(0.027) 

1.086 
(0.034) 

0.811 
(0.012) 

0.990 
(0.015) 

0.992 
(0.011) 

LHS C(2) 0.869 
(0.018) 

1.118 
(0.027) 

1.083 
(0.033) 

0.806 
(0.012) 

0.967 
(0.014) 

0.986 
(0.009) 

.ρ ∈ [0.6,0.9] 

OW 1.269 
(0.043) 

1.019 (0.04) 0.823 
(0.029) 

1.088 
(0.016) 

0.869 
(0.018) 

0.704 
(0.018) 

EW 1.150 
(0.005) 

1.671 
(0.007) 

2.179 
(0.009) 

1.150 
(0.005) 

1.671 
(0.007) 

2.180 
(0.009) 

LS 1.114 
(0.018) 

1.010 
(0.038) 

0.839 (0.04) 1.055 
(0.011) 

0.869 
(0.019) 

0.700 
(0.017) 

LHS P 1.064 
(0.018) 

0.956 (0.03) 0.786 
(0.022) 

1.027 (0.01) 0.857 
(0.017) 

0.696 
(0.016) 

LHS VI 1.077 (0.02) 0.961 
(0.037) 

0.786 
(0.022) 

1.035 
(0.012) 

0.856 
(0.017) 

0.696 
(0.016) 

LHS C(0) 1.070 
(0.022) 

0.961 
(0.037) 

0.785 
(0.022) 

1.038 
(0.012) 

0.855 
(0.017) 

0.696 
(0.016) 

LHS C(0.5) 1.082 
(0.022) 

0.945 (0.03) 0.785 
(0.022) 

1.044 
(0.015) 

0.855 
(0.017) 

0.696 
(0.016) 

LHS C(1) 1.078 
(0.022) 

0.945 (0.03) 0.785 
(0.022) 

1.044 
(0.015) 

0.855 
(0.017) 

0.696 
(0.016) 

LHS C(2) 1.080 
(0.023) 

0.945 (0.03) 0.785 
(0.022) 

1.042 
(0.015) 

0.855 
(0.017) 

0.696 
(0.016) 

Models with the lowest average MSE values for a treatment combination are marked in bold
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best value with an MSE of 1.001, while, for .n = 70, this is the case for LS and LHS 
C(2). The best results of Comb are obtained for variances of .σ 2

k = 5.0. Here, for 
.n = 30, the  MSE of  LHS C(2) is not significant compared with LHS P, LHS VI, and 
LHS C(1), and, for .n = 70, compared with LHS C(0.5) and LHS C(1). Despite the 
non-significant results, the last observation indicates that when the amount of data 
is sufficient and the variance differences between forecasters are high, the deliberate 
selection of different forecasters is beneficial. In high correlation ranges of . ρ ∈
[0.6, 0.9], the integrated LHS methods outperform the classical OW, EW, and LS 
approaches with significant better MSE values across all treatment combinations. 
Thereby, the improvement is greatest when only a small amount of training data is 
available and uncertainty is high. For example, for .n = 30 and .σ 2

k = 5.0, the best 
classical method OW achieves an MSE of 0.823, while all LHS Cs achieve a 4.6% 
lower MSE of 0.785 in this treatment combination. Surprisingly, the test for statistical 
significance of the best LHS model(s) compared with the other LHS models shows 
that, over all variances for .n = 30, no selection criterion yields significantly better 
results than any other selection criterion. The same is true for .n = 70, with the 
exception of the MSE obtained by LHS P in .σ 2

k = 2.0 — the only significant result 
in high correlation ranges. Overall, the results for.ρ ∈ [0.6, 0.9] suggest that in areas 
of high correlation, the LHS selection criteria can be used largely interchangeably, 
and thus the selection of forecasters is independent of explicit diversity gains. 

Conclusion and Future Work 

Our proposed information criterion.Comb accounts for diversification and accuracy 
gains for forecast selection in integrated methods. The initial results are encour-
aging and open the direction of future research, like the review of more treatment 
combinations and the careful tuning of further . α values for low. ρ’s. 
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Chapter 9 
A Decision Support System Including 
Feedback to Sensitize for Certainty 
Interval Size 

Nathalie Balla 

Abstract In decision-making overconfidence and estimation biases can lead to sub-
optimal outcomes and accuracy loss. A debiasing strategy presented in this work is to 
use feedback based on the error pattern of own previous absolute and 90% certainty 
(confidence) interval estimates. This is comprised in a decision support system (DSS) 
and applied in an experiment, where results indicate support for the key assumption 
that subjects are able to selectively reduce their overconfidence and their estimation 
bias, if present, with the help of the provided feedback. 

Keywords DSS · Interval estimation · Overconfidence · Overprecision ·
Debiasing 

Introduction 

A key discussion in behavioral operations and information systems research is how 
to reduce overconfidence and other biases in order to achieve higher quality judg-
ments and decisions. Frequently, experts, for example in supply management, have 
a sense of control that can lead to too optimistic estimations and they often cannot 
assess their own performance accurately [ 1]. Research has found that experts are 
often overconfident in their judgments and that this leads to low performance and 
detrimental judgments [ 1– 3]. Moore and Healy [ 4] differentiate between three types 
of overconfidence: overestimation, overplacement, and overprecision. Overprecision 
denotes being too certain that one’s estimate is more accurate than it actually is, to 
which this work refers to. Ren and Croson [ 5] investigated the newsvendor problem 
in inventory decisions and found overprecision leading to underestimation of the 
variance of demand. They measured overprecision by letting subjects answer ten 
general knowledge questions each with a 90% confidence interval indicating their 
certainty of 90% that the true answer lies within this range. In case the true answer 
lies within the interval in nine out of ten questions, the subject is considered well 
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calibrated. A similar approach based on 90% certainty (confidence) intervals to mea-
sure overprecision is used in this work. In decision analysis, estimations regarding 
intervals are frequently used and Soll and Klayman [ 6] claim that decision makers’ 
90% intervals often include the true answer in under 50% of cases, which means 
they are too sure of themselves and not able to assess their own performance. 

For this reason it is worthwhile to concentrate on interval estimation and its 
improvement. The method of application of certainty intervals used here corresponds 
to a typical method identified by Klayman [ 2]: asking subjects for a single numerical 
estimate and a 90% confidence interval, that is an upper and lower bound, for which 
there is a 90% probability that the correct answer lies between them. 

In this short paper a novel design for a Decision Support System (DSS) is presented 
and applied, which aims at reducing overconfidence, particularly overprecision, and 
estimation biases (under- or overestimation, here meaning systematic too high or too 
low estimations). According to Ancarani, Di Mauro, and D’Urso [ 1], benchmarks 
should be available to experts to let them evaluate their relative performance and a 
decrease in overconfidence can be achieved by feedback regarding past judgments 
given in a timely manner. Following this notion, the subjects are provided with feed-
back regarding their mean percentage error (MPE) on previous absolute answers 
as well as feedback in which questions the correct answer lay inside the 90% cer-
tainty interval. The MPE feedback should give subjects an indication of their relative 
performance. 

Two aspects are mainly examined: the average broadening of the intervals before 
and after the feedback, presumably resulting from the feedback per question if the 
correct answer lay within the given interval; and the shift of the intervals before and 
after the feedback, presumably resulting from the MPE feedback, as the MPE points 
in a certain direction. The assumption is that if the average interval was too narrow 
to include the correct answer before the feedback, subjects broaden their average 
interval after the feedback, indicating a reduction of overprecision. The assumption 
regarding the shifts is that if the average interval was too far away to include the 
correct answer before the feedback, subjects shift their average interval in direction 
of the MPE feedback, indicating a reduction of estimation bias. Additionally, the 
questions come from different categories and it is examined if subjects are able to 
selectively apply the feedback to intervals in categories in which they performed 
poorly. The assumption here is that subjects are able to selectively reduce overpre-
cision as well as estimation bias, if present, with the help of the MPE and interval 
feedback provided. In the following, the experimental design and the assumptions 
are described. Subsequently, the results are presented and lastly discussed including 
a conclusion and an outlook. 

Experimental Design 

41 business students took part in the experiment (20 in treatment, 21 in control group), 
of which 21 are female and 20 male. Subjects were requested to answer point estimate 
questions and 90% certainty intervals from general knowledge categories: number
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of residents of a country, river length, and mountain height. Example questions are: 
“How many residents does France have?”, “How long is the Hudson River (in km)?”, 
“How high is the Mount Everest (in meters)?”. The experiment is composed of two 
sequences of each 15 questions, 30 questions overall. The mentioned categories are 
not communicated to subjects but easy to detect. All questions include visual cues for 
estimation support: a map of the respective country with the ten largest cities and an 
indication of a range of their size; a map of the river including a scale in the legend; 
a topographical map of the respective mountain and a reference mountain height. 
These cues are meant to reduce error variance. Subjects are randomly assigned to 
treatment or control group and the experiment starts with a welcome page and then 
requires subjects to answer estimation questions and to specify a 90% certainty 
interval by entering a lower and an upper bound. This certainty interval indicates 
the range of which subjects are 90% certain that the correct answer lies within it. 
As soon as the subject entered her answer, the next question is shown. After 15 
questions either feedback is provided for 30 s (treatment group) or a blank page 
inviting to a 30 s break is shown (control group). For the feedback, a subject’s MPE 
is computed and shown together with the correct answers. Additionally, the subject 
sees per question if the correct answer lay within her given interval. The MPE is 
calculated by taking the difference between the estimate and the actual (actually 
correct answer) per estimate, dividing this difference by the actual and multiplying it 
by 100. MPE is therefore the mean of these values. The MPE was selected as measure 
due to comprehensibility and simplicity to apply it for debiasing. For instance, a 
negative MPE would mean that the subject needs to place the estimation higher and 
to shift the certainty interval upwards. MAPE, the mean absolute percentage error, 
is used as performance criterion to determine improvement or deterioration between 
question sequences. Because the payouts depend on performance, the MAPE is also 
used to determine the winner subjects. In the briefing, subjects are given information 
on how to interpret and apply MPE for debiasing (without telling them they will 
receive feedback) together with information on MAPE used as performance measure. 
Moreover, subjects are told the meaning of the 90% certainty intervals. Following 
the feedback or the blank page, a subject is faced with another sequence of 15 
judgments. At the end of the experiment, subjects receive performance information, 
are debriefed, and their MAPE is calculated. Every subject receives a payout for 
participation and can additionally win one of two prizes per group. If the MAPE of 
a subject is lower, her chance is higher to win a prize, which is ought to incentivize 
subjects. 

Assumptions Studied 

The key assumption is that subjects are able to selectively reduce their overprecision 
and estimation bias, if present, with the help of MPE and interval feedback. This key 
assumption is divided into four sub-assumptions A1–A4.
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A1: The certainty intervals become broader after the feedback, if they were too 
narrow to include the correct answer before the feedback, more often in the treatment 
than in the control group. The presumption is that overprecision exists if subjects 
specify an interval that is too narrow to include the correct answer. A1 aims to 
investigate if overprecision can be reduced by, most likely, the feedback on the 
intervals of the questions. To test A1, the relative frequency of correct answers within 
the given intervals before the feedback is computed as well as the average relative 
size difference (between sequence one and two) of the intervals per user. This is 
done by dividing the average interval size in the second sequence by the one in the 
first sequence per category and then taking the mean over categories. It is assumed 
that if the correct answers lay in the given interval in less than 50% of a subject, 
the intervals are too narrow on average. Results for thresholds of under 33% and 
25% of correct answers lying inside the interval are also presented to demonstrate 
stability of results. If this is the case, the average interval after the feedback should be 
broadened as the subjects should realize that their intervals were too narrow and they 
may have been overprecise. For the control group the expectation is that around 50% 
of subjects make their average interval broader in the second sequence, if they did 
not include the correct answer in the first sequence (baseline in case of randomness). 

A2: The certainty intervals are shifted in the direction of the MPE feedback after 
the feedback more often in the treatment than in the control group. To test A2, it 
is analysed how the per category calculated average upper and lower bounds of the 
intervals are placed before and after the feedback per user. If both of the average 
bounds moved in the direction of the MPE feedback, that is if the MPE feedback is 
negative, the bounds should be larger than before the feedback and vice versa, then it 
can be assumed that the subject reduced her estimation bias by shifting her interval. 
Ratios are computed per category and treatment group from which the mean is taken 
over the categories per treatment group. 

A3: The certainty intervals become broader more often after the feedback espe-
cially in those categories, in which the intervals were too narrow to include the 
correct answer before the feedback compared to no feedback given. To test A3, the 
category with the minimum relative frequency of correct answers within the given 
intervals before the feedback is determined. Then the average interval size per cate-
gory and the difference of average interval size between sequence one and two per 
category is calculated by dividing the average interval per category of sequence two 
by that of sequence one. Therefore, we find the category with the maximum broad-
ening of the average interval. The relative frequency of the matches between these 
two categories (minimum and maximum) indicates how often subjects selectively 
applied the feedback to specific categories. The objective is to show a difference in 
frequency of matches between the treatment groups. 

A4: The certainty intervals are shifted in the direction of the MPE feedback after 
the feedback in those categories, in which the absolute MPE was the highest before 
the feedback more often in the treatment than in the control group. To test A4, the 
category with the maximum absolute MPE in the first sequence is determined per 
user and compared to the categories in which the average interval was shifted in 
the direction of the MPE in the second sequence. Then the relative frequency of
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matches between the category with the highest absolute MPE and the categories in 
which the average intervals were shifted in the direction of the MPE is computed. 
If the percentage value in the treatment group exceeds the one in the control group, 
selective application of the feedback to specific categories can be assumed. 

For all assumptions we conduct a one-sided Fisher’s exact test between the results 
of treatment and control group. 

Results 

In this section, results are presented per assumption. 
A1: 19 subjects in each treatment and control group had the correct answer inside 

their interval in the first sequence in less than 50%. In 70% of these cases in the 
treatment group the average interval became broader after the feedback compared 
to 57.1% in the control group. For a 33% threshold for correct answers lying inside 
the interval, 12 subjects were in the treatment and 10 in the control group. In the 
treatment group 65% of subjects broadened their certainty interval after the feedback 
compared to 52.4% in the control group. For a 25% threshold, 9 subjects were in the 
treatment and 8 in the control group. Here, in the treatment group 60% of subjects 
broadened their certainty interval compared to 52.4% in the control group. The p-
value of the Fisher’s exact test is 0.45, meaning the results are not significant at a 
10% level, likely due to the small sample size. 

A2: In the treatment group 55% of subjects shifted the certainty interval in the 
direction of the MPE feedback after the feedback compared to 34.9% in the control 
group. The p-value of the Fisher’s exact test is 0.14, which means the results are not 
significant at a 10% level, likely due to the small sample size. 

A3: In 70% of cases the subjects broadened their average interval in that category 
the most after the feedback in which the least correct answers lay inside the interval 
in the first sequence for the treatment group. In 47.6% of cases the subjects achieved 
this in the control group. The p-value of the Fisher’s exact test is 0.13, for which 
reason the results are not significant at a 10% level, again for the same reason. 

A4: In 60% of the treatment group the average intervals were shifted in those 
categories where the absolute MPE was the highest compared to 23.8% in the control 
group. The p-value of the Fisher’s exact test is 0.02, which means the results are 
significant at a 10% level. 

Discussion 

The shown results, despite the limited sample size, provide support for the key 
assumption of the combination of the feedback elements aiding subjects to reduce 
overprecision and estimation biases selectively. Regarding A1, it seems that the dif-
ference between treatment and control group becomes larger, when the threshold is
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higher, that is when the interval is set too narrow more often. This is consistent with 
expectations, because the more often subjects miss the correct answer, the stronger 
they are able to adapt their intervals after the feedback, whereas the control group 
does not have this chance. Most likely the broadening of the intervals, indicating a 
decrease in overprecision, originates from the interval feedback through which sub-
jects reflect on their previously given lower and upper bounds. By realizing they were 
too certain in setting their bounds and therefore setting them too close to one another, 
they became less certain through the feedback and the reflection lead to adaptation 
of their future bounds, that is a decrease in overprecision. Regarding A2, the ratio of 
subjects shifting their interval in the direction of the MPE is higher for the treatment 
group. This shifting behavior shows that subjects do not only consider the feedback 
of the correct answer lying in their interval but also the MPE feedback indicating if 
their interval was generally too low or high. Applying this feedback to their future 
upper and lower bounds means they also reflect on the general position of their cer-
tainty interval independent of its size, which leads to a reduction of estimation bias, 
either under- or overestimation. As A3 and A4 also show higher ratios for the treat-
ment group, subjects seem to be able to selectively apply the feedback to specific 
categories, where it is most necessary. Reducing overprecision and estimation bias 
selectively, leads to an overall error reduction. 

Conclusion and Outlook 

This work indicates that subjects are able to reduce their overprecision as well as their 
estimation bias, in general and for specific categories that performed poorly before 
the feedback. A selective consideration of feedback shows that subjects are able to 
recognize novel patterns and use this knowledge effectively. These two focal aspects 
in turn result in a general accuracy improvement in terms of MAPE reduction. This 
research has the limitation that, due to the Corona pandemic, it has been challenging to 
conduct experiments with large numbers of subjects, for which reason the sample size 
is rather small. However, this work is research in progress and more experiments will 
be conducted to support the findings. In addition, this experiment can be conducted 
with different categories and scenarios such as categories less obvious for subjects. 
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Chapter 10 
A Note on Matrix Reordering for Linear 
System Solutions by Iterative Methods 
in Interior Point Methods 

W. Rodrigues, Marta Velazco, and A. R. L. Oliveira 

Abstract The linear systems arising from interior point methods (IPM) for linear 
programming are solved using the preconditioned conjugate gradient method (PCG). 
Two preconditioners are adopted: the controlled Cholesky factorization (CCF) of the 
normal equations system and the splitting preconditioner. The CCF performance 
depends upon the previous reordering of the linear programming constraint matrix 
rows. A comparison among two different reordering methods is performed in order 
to verify the most suitable one for this approach. Variants of nested dissection (ND) 
and the minimum degree (MD) are among the considered heuristics. Computational 
experiments with large-scale linear programming problems from several collection 
sets are performed. 

Keywords Linear programming · Interior point methods · Preconditioner ·
Reordering · Nested dissection 

Introduction 

In [1], the authors studied the influence of matrix reordering on the solution of linear 
systems arising from IPMs using the PCG and the hybrid preconditioner [2]. The 
reordering using the MD improves the performance of the hybrid preconditioner. 
In [1], the nested dissection (ND) heuristic was not considered. This work presents 
the performance of the IPM when the ND is used for reordering, and a compar-
ison with the MD heuristic is performed. This work is organized in seven sections 
as follows. Section “Primal-dual Interior Point Methods” introduces the primal-dual 
interior point methods and the issues of the linear systems arising from such methods
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are discussed. The hybrid preconditioner is introduced in Section “Hybrid Precondi-
tioner”. Next, in Section “Reordering Heuristics”, the reordering heuristics that are 
used for the study are presented. In Section “Numerical Experiments”, the numerical 
experiments using the selected linear programming problems are shown. Finally, the 
conclusions are presented. 

Primal-dual Interior Point Methods 

The Karush-Kuhn-Tucker optimality conditions for the primal and dual linear 
programming problems are: 

Ax − b = 0 
At y + z − c = 0 

X Ze = 0 
, (x, y) ≥ 0 (10.1) 

where X = diag(x), Z = diag(z), A ∈ Rm×n , c, x, z ∈ Rn , b, y ∈ Rm and e ∈ Rn 

is a vector of ones. In IPM, the system (10.1) without non-negativity constraint is 
solved by the Newton method. The predictor-corrector primal-dual method computes 
the search direction in two steps: the predictor direction and the corrector direction. 
For each step, a linear system (10.2) is solved with the same coefficient matrix but 
different right-hand sides. 

⎡ 

⎣ 
A 0 0  
0 At I 
Z 0 X 

⎤ 

⎦ 

⎡ 

⎣
�x
�y
�z 

⎤ 

⎦ = r (10.2) 

The system (10.2) can be reduced to a system of a normal equation, by eliminating 
the variables�x and�z. The normal system equation obtained is:

(
A�−1At

)
�y = r, 

where � = X−1 Z . It is solved by the conjugate gradient method. Its convergence 
depends on the condition of the system matrix then, an appropriate preconditioner is 
necessary. The hybrid preconditioner [2] is used in this case. 

Hybrid Preconditioner 

In [2], the authors consider that the optimization process occurs in two phases, and 
a different preconditioner is used in each one. In the first phase at the beginning 
of the optimization process, the CCF is used. In the second phase at the end of the 
process, a specific preconditioner for the IPM is used. A heuristic that was proposed 
by Velazco et al. [3] determines the phase change.
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Controlled Cholesky Factorization (CCF): The controlled Cholesky factoriza-
tion [2] (CCF) is an incomplete Cholesky factorization of the matrix A�−1At with 
controlled fill-in. The fill-in of the factor is controlled by a parameter η. Define 
E = L − L̃ , where L is the factor of the complete Cholesky factorization, L̃ is the 
factor of the incomplete factorization. Thus, the minimization of E can be solved 
with two heuristics: increasing η, thereby allowing more fill-ins by the column and 
choosing, for a fixed η, the largest entries of L̃ (absolute values). The initial fill-in 
η0 depends on the average of the nonzero elements using column of AAt . 

The Splitting Preconditioner: The splitting preconditioner was proposed by 
Bocanegra et al. [2] for the symmetric indefinite augmented system. In this work, the 
splitting preconditioner version for the normal equation A�−1At is used. Consider 
the matrix AP  = [

B N
]
P , where P is a permutation matrix such that B ∈ Rm×m 

is nonsingular, and the remaining columns are in N ∈ Rm×n−m . The preconditioner 

for normal equations is �
1 
2 
BB

−1 . 

Reordering Heuristics 

Matrix reordering can improve the stability of incomplete factorization, and it can 
accelerate the convergence of iterative methods if some amount of fill-in, such as 
that which occurs in the CCF, is allowed in the incomplete factors [4]. The authors 
in [1] analyze the influence of matrix reordering on the solution of the linear system 
arising in IPMs using the PCG with the hybrid preconditioner. The reordering heuris-
tics reduce the fill-in during the incomplete factorization, and then the CCF will be a 
better approximation of the complete factor because fewer significant values will be 
discarded. Therefore, the computational costs of the solution are reduced. Moreover, 
the phase change is delayed when the efficiency of the CCF is improved; thus, the 
performance of the splitting preconditioner will also improve. The matrix A�−1 At 

can be reordered through the permutation of the rows and columns using a permu-
tation matrix P . P is computed using a reordering heuristic. A�−1 At conserves the 
same sparse pattern over all the optimization process because, although the diagonal 
matrix � changes at each iteration, all �i i  > 0. Consequently, reordering A�−1 At 

is equivalent to reordering A by rows. That is an advantage since the reordering of 
the matrix A’s rows is computed only once in the preprocessing step before the opti-
mization process starts. Two reordering heuristics are presented: the MD and ND. 
Both heuristics represent the matrix using an undirected graph G = (V , E), where 
V is the set of vertices, |V | = m, and E is the set of edges. The vertices vi are the 
i rows/columns of the matrix, and the edge between the nodes vi and v j exists if 
ai j  = a j i �= 0 and i �= j . 

Minimum Degree (MD): In this vertex reordering heuristic [5], the initial vertex 
will be the vertex with the minimum degree. The minimum degree vertex in the 
graph will be the row/column that has the largest number of zero entries. Reordering
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happens by swapping the less dense rows/columns with the first position that has not 
yet been changed from the matrix. An already reordered row/column will no longer 
be considered in the reordering process. Thus, in the representation of the matrix as 
a graph, the permuted vertex is eliminated from the graph. The elimination of the 
vertex will imply that its adjacent vertices become adjacent to each other, and new 
edges may appear. That is, fill-in occurs. 

Nested Dissection (ND): From the graph G, the algorithm finds a separator subgraph 
S. S is removed from G, and two disconnected graphs C1 and C2 remain. Next, the 
algorithm performs ND recursively on the subgraphs C1 and C2. In the final step, 
S is reordered using an reordering heuristic like MD [6]. Small separators result in 
low fill-in. The separator computing algorithm ensures the effectiveness of ND. The 
graph partitioning heuristic computes the vertex separator (NDV) or edge separator 
(NDE). The difference between the heuristic is that the NDE minimizes the number 
of edges between the sets, and the NDV minimizes the size of the separator S. 

Numerical Experiments 

This section presents the numerical experiments of the study of the performance 
of the predictor-corrector interior point method using the reordering heuristics. The 
reordering heuristics were integrated into the modified version of PCx [7] where the 
linear systems are solved using the PCG with the hybrid preconditioning [2] and the 
modification of [1]. The study addresses 63 large-scale linear programming prob-
lems from the following libraries: PDS, MNETGEN, KENNINGTON, QAPLIB, 
MESZAROS and NETLIB. Three reordering heuristics were used for the compar-
ison. The implementation of the MD of the original PCx code was used for the tests, 
as in [1]. The code Metis [8] was used for computing the fill-reducing orderings of 
sparse matrices based on ND with the two separators. Three modified versions of 
PCx are used: PCx-Modified with the MD (PCx-MD), PCx-Modified with ND and 
the edge separator (PCx-NDE) and PCx-Modified with ND and the vertex separator 
(PCx-NDV). 

Summary of the Results 

The MD was faster than the other heuristics in 15 problems and the differences 
are small. However, the ND was faster in 33 problems with large differences, and 
the methods were equal for 15 problems. In 15 problems in which the density of 
the matrix A�−1 At is smaller, the differences among the reordering heuristics is 
very significant, and the ND heuristic is better in all cases. However, as the density 
increases, the MD improves the reordering time. The comparison of the approaches
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considers the reordering time, the total number of PCG iterations and total time. The 
results are summarized below. 

PDS: Three large-scale and very sparse problems (sparsity bigger than 99.996%) are  
studied. For those problems, the CCF is used with the PCG for solving the linear 
systems over all the optimization processes. The ND heuristics reordered the matrix 
100 times faster than the MD decreasing the total time of the IPM (Table 10.1). 

MNETGEN: The problems are very sparse (bigger than 99.9936% and lower than 
99.97%. In those cases, the ND heuristics reordered the matrix faster than the MD, 
and the fill-in of the CCF was larger. The results concerning the inner iterations of 
the PCG and the outer iterations of the IPM are mixed (Table 10.2). 

KENNINGTON: Four large-scale and very sparse problems are studied. For those 
problems, the reordering times of the MD were smaller than those of ND (Table 
10.3).

QAPLIB: The selected problems of this library are less sparse (sparsity up to 97%. 
The reordering time of ND was lower than that of the MD, but the fill-ins were similar 
(Table 10.4).

MESZAROS: Thirteen problems with various sparsities are studied (sparsity lower 
than 99.8%. The reordering times of ND were equal or lower than those of the 
MD. The fill-in was similar for both; however, in all problems, the number of PCG 
iterations increased for ND, and thus the processing time increased too (Table 10.5).

NETLIB: Twenty-five problems were studied with various sparsities (sparsity lower 
than 99.7%. The reordering times of ND were equal or faster than those of the MD. 
The fill-in was larger or equal than that of the MD. The results of the inner iterations 
of the PCG, the outer iterations of the IPM and processing times were similar (Table 
10.6).

Table 10.1 Results for PDS 
problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 1047.692 8.752 9.284 

PCG iterations 129213 12432.9 129842 

IPM time 10285.07 7751.56 8246.55 

Table 10.2 Results for 
MNETGEN problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 4842 1.484 1.532 

PCG iterations 341055 386655 353513 

IPM time 39072.88 42136.05 39973.48 
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Table 10.3 Results for 
KENNINGTON problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 0.78 0.952 1.056 

PCG iterations 62242 59992 63604 

IPM time 2642.56 2363.77 2050.88

Table 10.4 Results for 
QAPLIB problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 1.9 0.708 0.796 

PCG iterations 95709 97687 94425 

IPM time 1560.91 1495.85 1468.39

Table 10.5 Results for 
MESZAROS problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 0.076 0.068 0.06 

PCG iterations 85029 93099 99111 

IPM time 349.05 402.69 394.34

Table 10.6 Results for 
NETLIB problems 

PCx-MD PCx-NDE PCx-NDV 

Reordering time 0.76 0.1 0.116 

PCG iterations 70918 92908 90769 

IPM time 130.15 147.97 146.93 

Conclusions 

This work studied the impact of matrix reordering using ND on the IPM with the 
systems solved using the PCG with the hybrid preconditioner. The research was 
carried out by comparing the results that were obtained in 63 problems from public 
domain libraries. Three versions of the PCx-Modified code were used: PCx-MG, 
PCx-NDA and PCx-NDV. In most problems, the ND reordering heuristics reduce 
the reordering time. The differences in the reordering times are more pronounced in 
larger and sparser problems, as seen in the problems of the PDS and MNETGEN 
libraries. However, reordering using ND has generally resulted in a larger fill-in with 
the CCF preconditioner. The performance of the PCG and the computational time 
of the predictor-corrector method have different results in the studied libraries. ND 
does not perform well for the MESZAROS library; however, it is the best choice for 
the PDS and QAPLIB libraries. The selection of the reordering heuristic depends on 
the sparsity of the coefficient matrix. In general, MD is a good option for generic 
problems.



10 A Note on Matrix Reordering for Linear System Solutions by Iterative … 85

Acknowledgements The authors are thankful for the financial support of the Brazilian National 
Council for Technological and Scientific Development (CNPq) and UNIFACCAMP. 

References 

1. Silva, D., Velazco, M., & Oliveira, A. (2017). Influence of matrix reordering on the performance 
of iterative methods for solving linear systems arising from interior point methods for linear 
programming. Mathematical Methods of Operations Research, 85(1), 97–112. 

2. Bocanegra, S., Campos, F., & Oliveira, A. (2007). Using a hybrid preconditioner for solving 
large-scale linear systems arising from interior point methods. Computational Optimization and 
Applications, 36, 149–167. 

3. Velazco, M., Oliveira, A., & Campos, F. (2010). A note on hybrid preconditioners for large-
scale normal equations arising from interior point methods. Optimization Methods and Software, 
25(2), 321–332. 

4. Benzi, M. (2002). Preconditioning techniques for large linear systems: A survey. Journal of 
Computational Physics, 182(2), 418–477. 

5. George, A., & Liu, J. (1980). A fast implementation of the minimum degree algorithm using 
quotient graphs. ACM Transactions on Mathematical Software, 6(23), 337–358. 

6. George, A. (1973). Nested dissection of a regular finite element mesh. SIAM Journal on 
Numerical Analysis, 10(2), 345–363. 

7. Czyzyk, J., Mehrotra, S., Wagner, M., & Wright, S. (1999). PCx an interior point code for linear 
programming. Optimization Methods and Software, 11(2), 397–430. 

8. Karypis, G. (2015) METIS: A software package for partitioning unstructured graphs, partitioning 
meshes, and computing fill-reducing orderings of sparse matrices, version 5.0. http://glaros.dtc. 
umn.edu/gkhome/metis/metis/download

http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://glaros.dtc.umn.edu/gkhome/metis/metis/download


Chapter 11 
A Tri-Level Approach 
for T-Criterion-Based Model 
Discrimination 

David Mogalle, Philipp Seufert, Jan Schwientek, Michael Bortz, 
and Karl-Heinz Küfer 

Abstract Model discrimination (MD) aims to determine the inputs, called design 
points, of two or more models at which these models differ most under the additional 
condition that the models are fitted to these points, in the case of T-optimal designs. 
On the one hand, nonlinear models often lead to nonconvex MD problems, on the 
other hand, the optimal number of design points must be determined, too. Thus, the 
computation of T-optimal designs is very arduous. However, if one considers finitely 
many design points, a well-solvable bi-level problem arises. Since the latter only 
represents an approximation of the original model discrimination problem, we refine 
the design space discretization using the equivalence theorem of MD. This yields a 
tri-level approach whose iterates converge to a T-optimal design. We demonstrate that 
the approach can outperform known solution methods on an example from chemical 
process engineering. 

Keywords Model discrimination · Multi-level optimization · Discretization 

Introduction 

When modeling real processes, often several different models fit. For being able to 
distinguish (discriminate) which model is best suited, several criteria were developed. 

A frequently used criterion is the so-called T-criterion. Let f1 and f2 be two 
competing models with at least continuously differentiable model functions fi :X × 
Θi → R, i = 1, 2, a compact design space X ⊆ Rn, and compact parameter 
spaces Θi ⊆ R pi . Assume that the first model f1 is the true model having fixed 
parameters θ1, f1(x) = f1(x; θ1). The alternative model f2 remains parametrized 
with parameters θ2 ∈ Θ2. Then, the T-criterion for model discrimination is defined 
as
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Fig. 11.1 A T-optimal 
design discriminating a 
linear alternative model from 
an exponential reference 
model. The size of the 
crosses corresponds to the 
weights, and the model 
differences at the design 
points are shown in the black 
lines 

T (ξ ) := min 
θ2∈Θ2

∫

X 

[ f1(x) − f2(x; θ2)]2 ξ (dx) = min 
θ2∈Θ2 

N∑ 

i=1 

wi [ f1(xi ) − f2(xi ; θ2)]2 , 

where ξ is a finite design ξ =
{
x1 . . .  xN 
w1 . . .  wN

}
with weights wi ∈ [0, 1], 

∑N 
i=1 wi = 1, 

and N ∈ N. A design ξ ∗ is called T-optimal if it is a (global) maximizer of 

TMD : max 
ξ ∈Ξ 

T (ξ ) = max 
ξ ∈Ξ 

min 
θ2∈Θ2

∫

X 

[ f1(x) − f2(x; θ2)]2 ξ (dx), 

where Ξ is the set of probability measure on X (see Fig. 11.1 for an illustration). 
One benefit of the T-criterion is its relative independence from (measurement) 

data. For a detailed overview on model discrimination, we refer to [1]. 
This paper is structured as follows: In the next section we give a literature overview 

on solution methods for model discrimination. Section “A Tri-Level Approach” 
sketches our novel tri-level approach, relying on a two-fold discretization, leading 
to well-structured subproblems. In Section “Numerical Example: PL Versus LHHW 
Reaction Rate”, the introduced algorithms are compared on a real-world example 
stemming from chemical process engineering. The paper ends with concluding 
remarks and future directions of research. 

Existing Solution Approaches 

For the computation of T-optimal designs, descent methods which were originally 
developed for experimental design problems (see, e.g., [1]) have been adapted. One 
well-known algorithm of this class is the adaptation of Fedorov’s Vector Direction 
Method [1]. These algorithms iteratively determine new design points as maximizers
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of the directional derivative and update the weights by combining the current design 
and the new design point convexly. This yields very robust methods for computing 
optimal designs but they converge slowly since bad points never completely lose 
their weight. 

On the other hand, (TMD) represents an infinite-dimensional min-max (bi-level) 
optimization problem which can be transformed into a semi-infinite optimization 
problem (SIP) via the epigraph reformulation: 

TMDepi : max 
t∈R,ξ ∈Ξ 

t s.t. 

Consequently, techniques from semi-infinite optimization have also been applied 
to solve T-criterion-based model discrimination problems. Kuczewski [2] and Duarte 
[3] consider a fixed number N of design points, as there always exists a finite 
optimal design (see [1]). The resulting SIP is solved via an adaptive discretization of 
the parameter space Θ2. The lower-level problem and the discretized (upper-level) 
problem are solved with the global solver BARON due to their general nonconvexity 
in the inputs and the parameters. This corresponds to two optimization problems 
which must be solved multiple times alternately to global optimality. As this is 
repeated for several values of N , these approaches are very time consuming. 

A different approach has been taken by Dette et al. [4]. They work with a discretiza-
tion of the design space X N = {x1, . . . ,  xN } ⊂ X and try to find an optimal design 
on this subset by linearizing the inner parameter estimation problem. The issue with 
Dette’s algorithm is that the linearization might not be a sufficient approximation for 
certain model functions and, thus, the algorithm might not converge at all. 

A Tri-Level Approach 

Model-based design of experiments (DoE), of which model discrimination is a sub 
class, is a non-convex problem in general, too. By considering the DoE problem on a 
finite subset of the design space, one obtains a convex non-linear program which can 
often even be reformulated as semi-definite or second-order cone program. Thereby it 
can be solved to global optimality very efficiently. However, by restricting ourselves 
to a subset of the design space, we only obtain an approximation of the solution 
for the original problem. By iteratively refining the considered subset, the obtained 
solutions will however converge to a global optimum on the whole continuous design 
space. For details we refer to [5]. 

This solution ansatz can also be transferred to model discrimination. For that 
purpose, we first consider the problem (TMD) on a finite subset Ẋ of the design 
space X 

TMD
(
Ẋ

) : max 
ξ ∈Ξ( Ẋ) 

min 
θ2∈Θ2 

N∑ 

i=1 

wi · [ f1(xi ) − f2(xi ; θ2)]2 ,
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with N being the cardinality of the set Ẋ . The semi-infinite epigraph reformulation 
of the problem TMD

(
Ẋ

)
(see (TMDepi)) can be solved, e.g., via a discretization 

approach. By considering a discrete subset Θ̇2,M =
{
θ2,j| j = 1, . . . ,  M

} ⊂ Θ2, the  
upper-level problem is a linear problem given by 

TMD
(
Ẋ , Θ̇2,M

) : max 
t∈R,w∈[0,1]N 

t s.t. 

The only drawback of the approach is that to refine (or adapt) the discretization 
Θ̇2, we must solve the lower-level problem 

TMD − LSQ
(
Ẋ , w,  t

) : min 
θ2∈Θ2 

N∑ 

i=1 

wi [ f1(xi ) − f2(xi , θ2)]2 − t 

to global optimality. This problem is in general non-convex and non-linear. However, 
it is a least-squares problem in θ2. Such problems are well studied and can often be 
solved efficiently. 

With this approach we obtain a (globally optimal) solution of the model discrimi-
nation problem with finitely many candidate experiments. In a second step, we must 
adaptively refine the discretization of the design space such that the designs obtained 
on the finite subsets converge to an optimal solution on the continuous design space 
X . For this we assume that every design ξ is regular, i.e., the corresponding least-
squares estimator θ̂2(ξ ) is unique. Based on the Equivalence Theorem for Model 
Discrimination (see [2]), a necessary and sufficient condition for a design ξ ∗ to be 
T-optimal is 

max 
x∈X

[
f1(x) − f2

(
x, θ̂2

(
ξ ∗

))]2 − T
(
ξ ∗

) ≤ 0, (OC − MD) 

where θ̂2(ξ ∗) is the best (weighted) least-squares estimator on the design points 
x1, . . . ,  xN with weights w1, . . . , wN . This gives us a criterion for deciding whether 
to further refine the current discretization Ẋ or whether the design ξ ∗ is already 
optimal on the continuous design space X . 

Starting with an initial discretization Ẋ0 ⊆ X , we iteratively solve the linear 
semi-infinite program TMD

(
Ẋk

)
, k ∈ N0, and check whether the returned design ξ ∗ 

k 

is optimal. We then either stop the routine or refine the discretization Ẋk by adding 
the globally optimal solution x∗ 

k of 

TMD − OC
(
ξ ∗ 
k , θ̂2

)
: max 

x∈X

[
f1(x) − f2

(
x, θ̂2

(
ξ ∗ 
k

))]2 − T
(
ξ ∗ 
k

)

to obtain Ẋk+1 = Ẋk ∪
{
x∗ 
k

}
. The problem TMD−OC

(
ξ ∗ 
k , θ̂2

)
is a global optimiza-

tion problem, too. Nevertheless, for some problem classes, e.g., polynomials, it can
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be solved efficiently. Additionally, if a sufficiently good initial discretization Ẋ0 is 
selected it must not be solved very often. 

This approach was developed in [6], where it was also proven that the iterates 
converge towards arbitrary good approximations of T-optimal designs. Notice that the 
inner loop basically solves a (linear) semi-infinite program by adaptive discretization. 
It is straightforward to show that the initial feasible set of this SIP is compact, so we 
have guaranteed convergence in the inner loop (see, e.g., [7]). However, in finite time 
we may only find an approximate solution. Nevertheless, one can control this error 
from the inner loop and extend the proofs by Fedorov [1] and Dette [4] to guarantee 
overall convergence towards an approximate T-optimal design. This approximation 
can be arbitrarily good depending on the convergence tolerance in the inner loop. 

Numerical Example: PL Versus LHHW Reaction Rate 

We now apply the tri-level approach 2-ADAPT-MD to a discrimination task in chem-
ical process engineering and compare it to two methods for model discrimination 
mentioned above, Fedorov’s and Dette’s algorithm. Further numerical examples can 
be found in [6]. 

First, we give some information on how we implemented the algorithms. We used 
Python such that we can use different solvers to solve the various subproblems: 

• We try to compute the global solutions of the least-squares problems using 
KNITRO in a multi-start approach.
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• For the determination of a new design point, we consider a fine reference 
discretization of the input space and evaluate the squared distance at each point. 

• We compute the optimal weights by solving the corresponding linear program 
using MOSEK via the Pyomo interface. 

• We check optimality of the current design (OC − MD) up to some given 
tolerances δ in the inner loop and ε in the outer loop. 

For a reaction of two gases A and B to a gas C, one can use either the power-law 
(PL) or the  Langmuir-Hinshelwood-Hougen-Watson (LHHW ) expression to model 
the reaction rate. They are given by 

rPL  = kpn A p
m 
B and rLH  H  W  = kK  A pA KB pB 

1 + K A pA + KB pB + KC pC 
, 

where pA, pB , and pC are the partial pressures of each component, k is the reaction 
rate constant, n and m are the orders of reaction, and K A, KB , and KC are adsorption 
coefficients. To discriminate rPL  and rLH  H  W  , we take the LHHW type expression as 
our reference model and the power-law expression as our alternative model. 

For the reference model, we set the parameters to k = 2, K A = 0.5, KB = 2, 
and KC = 1.2. The design space consists of the partial pressures which we assume 
to be the discretization of the set [1, 10] × [1, 10] × [0, 10] with step size 1, i.e., 
( pA, pB , pC ) ∈ X := {1, 2, . . . ,  10}×{1, 2, . . . ,  10}×{0, 1, . . . ,  10}. The parameter 
space for the power-law expression is assumed to be (k, n, m) ∈ Θ2 := [0.1, 1]3 , 
and we choose the initial design 

ξ (0) =
{

(1, 1, 0) (10, 1, 0) (1, 10, 0) (5, 5, 0) (10, 10, 10) (5, 5, 5) 
1/6 1/6 1/6 1/6 1/6 1/6

}
. 

As outer stopping tolerance we take ε = 10−4. All computations were performed 
on a laptop with an Intel Core i7-5600U CPU and 8 GB RAM. As Table 11.1 shows, 
our algorithm outperforms Fedorov’s and Dette’s algorithm in solution quality and 
run time. The “…” in the optimal designs hint at more design points with neglectable 
weight.

Conclusions 

We have introduced a novel tri-level algorithm to compute T-optimal experimental 
designs. The algorithm utilizes a two-fold adaptive discretization of the parameters 
space Θ2 as well as of the design space X . The main advantage of the 2-ADAPT-MD 
algorithm is that it converges under mild assumptions on the considered models. By 
using an increasing discretization in design points x and parameters θ , we obtain 
linear programs and least-square programs as most frequent sub-problems to solve. 
These problem classes are well studied, and specialized solvers can be used to
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Table 11.1 Comparison of algorithms 

Algorithm Reached accuracy Computed design ξ ∗ Run time 
[s] 

Fedorov 0.0048

{
(10, 5, 0) (10, 2, 10) (10, 10, 10) . . .  
0.4426 0.3077 0.2060 . . .

}
125.5 

Dette 52.16

{
(10, 1, 10) (10, 10, 10) 
0.9845 0.0155

}
25.37 

2-ADAPT-MD 2.65 × 10−5

{
(10, 5, 0) (10, 2, 10) (10, 10, 10) 
0.4835 0.3154 0.2011

}
17.82

compute corresponding solutions efficiently. Via an example from chemical engi-
neering, we have shown that 2-ADAPT-MD can compete and even outperform state 
of the art model discrimination methods. 

References 

1. Fedorov, V. V., & Leonov, S. L. (2013). Optimal design for nonlinear response models. CRC 
Press. 

2. Kuczewski, B. (2006). Computational aspects of discrimination between models of dynamic 
systems. Ph.D. Thesis, University of Zielona Góra. 

3. Duarte, B. P., Wong, W. K., Atkinson, A. C. (2015). A semi-infinite programming based algo-
rithm for determining T-optimum designs for model discrimination. Journal of Multivariate 
Analysis, 135. 

4. Dette, H., Melas, V. B., Guchenko, R. (2015). Bayesian T-optimal discriminating designs. Annals 
of Statistics, 43(5). 

5. Seufert, P., Schwientek, J., & Bortz, M. (2021). Model-based design of experiments for high-
dimensional inputs supported by machine-learning methods. Processes, 9, 508. 

6. Mogalle, D. (2021). Computing T-optimal designs for model discrimination by approximating 
the inner optimization problem. Master’s Thesis, TU Kaiserslautern. 

7. López, M., Still, G. (2007). Semi-infinite programming. European Journal of Operational 
Research, 180(2).



Part IV 
Decision Analysis and Support



Chapter 12 
A Decision Support Method to Assess 
Energy Policy Impacts on Different 
Household Types for a Socially Just 
Energy Transition in Germany 

Audrey Dobbins and Ulrich Fahl 

Abstract Households are responsible for a third of the final energy consumption 
in Germany in 2018 with the average household meeting 60% of household energy 
service needs with fossil fuels. Energy transition targets to increase renewables and 
energy efficiency will require high upfront capital investments into building reno-
vations, heater and appliance upgrades. Overall less than 17% of households have 
sufficient capital and are in the decision-making power to undertake investments. The 
household sector is disaggregated into 56 profiles by key socio-economic parame-
ters (income, building type, tenure status, urbanization) and, together with a budget 
constraint limiting the total available capital on all investments and consumption 
per profile, incorporated into an energy system optimization model to account for 
the differentiated needs and financial capabilities of diverse household types. This 
method provides a platform from which to evaluate the impact of various policies 
and measures. Selected scenarios include a comparison between a reference case and 
two carbon revenue redistribution schemes. The results yield insights into the energy-
related investment and consumption patterns for different household types empha-
sizing fuel types, emissions and quantification of suppressed demand (expressed 
through household budget deficit for unmet household service demands), and show 
that to evaluate the energy welfare of lower income households several aspects must 
be considered. 

Keywords Energy system model · Suppressed demand · Energy welfare 

Challenges for a Socially Just Energy Transition in Germany 

The household sector has a key role to play in achieving the German energy transition 
targets to decarbonize by 2045 since it is responsible for 27.5% of the total final 
energy consumption and 10.1% of direct greenhouse gas emissions in 2018 [1–3].
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Households are expected to contribute to targets by increasing renewable energy in 
heating and energy efficiency, but recent assessments have found that the building 
sector did not meet the 2020 targets nor is it expected they will meet the targets for 
2030 [4]. Around 60% of household energy service demands are met with fossil fuels 
[3] indicating that a shift towards increasing energy efficiency and renewable energy 
will require significant investments to changing the underlying household energy 
infrastructure. The challenge will be to mobilize investment in the lower income 
and rental sector, where there is often a lack of financial capital for the high upfront 
costs of investments and the decision-making power as tenants. Therefore, there is 
a need to consider the variation in investment capabilities of households undertaken 
in energy planning within the energy system modelling. 

Carbon taxes have long been implemented as a means to reflect the environmental 
damage incurred through the combustion of fossil fuels, but these can disproportion-
ately impact lower income households and tenants who lack the financial capacity 
or decision-making power to alter the structure designating the types of fuels and 
amount of energy necessary to meet household energy service demands. In pursuit of 
balancing social inequities experienced by some households as a result of the carbon 
tax, revenues derived from the carbon tax should fund the reduction of the EEG levy 
on electricity as a means to dampen these distributional impacts [4], or alternatively 
to redistribute to the population through a climate bonus [5]. General acceptance for 
the climate bonus is at risk if there is no steering mechanism in place to ensure that the 
funds go towards decreasing emissions [6]. Lower income households are prone to 
rebound when households invest in energy efficiency, or similarly consumption may 
increase by increasing income because households are now able to afford previously 
unmet household service demands (suppressed demand) [7]. Therefore, it is critical 
to understand the impacts policies aimed at discouraging fossil fuel consumption 
and the progressivity redistribution policies have on different households to better 
estimate the energy welfare of households in addition to the overall energy and 
emissions. 

Methods 

Characterization of the Household Sector 

To explore the realistic impacts of policies on households it is necessary to account 
for the differences in the investment and consumption patterns of various households 
according to socio-economic and built environment characteristics [8].  The share of  
income spent on energy is often used to measure the affordability of energy and is 
a key indicator for energy poverty [9]. In 2018, the average household in Germany 
spent 3.3% of their income expenditure on household energy, whereas a lower income 
household spent around 11.3% [10]. These disparities are further reflected in Fig. 12.1



12 A Decision Support Method to Assess Energy Policy Impacts … 99

which shows the monthly energy-related expenditures on consumption and invest-
ments expressed as magnitude per household and shares of income by income groups 
in Germany in 2018 [11]. The magnitude of expenditure increases with income due 
to increasing drivers of demand (e.g. size of the home, number of occupants), but the 
share of income spent decreases [11, 12]. For expenditures on investment, the magni-
tude increases with income with shares representing less than 1% of the total income 
across all income groups. However, such that consumption costs can be reduced. 
These expenditure patterns reveal that these increasing expenditures on investment 
enable higher income households to invest in more efficient and renewable thereby 
reducing energy bills. 

The potential to afford the high upfront investment costs is examined by compiling 
the potential monthly financial savings accumulated per income group. Less than a 
quarter (22.2%) of all households save more than the average household with approx-
imately 539e per month in 2018 which could be considered theoretically available 
for investments in renewable energy and energy efficient technologies or building 
upgrades [11]. While, the share of homeowners increases with income, only a total of 
16.7% of all households have higher-than-average savings and are at the same time 
homeowners with decision-making power. This underscores the limitations in the 
potential of the household sector to be able to undertake the necessary investments 
to shift the household energy infrastructure to achieve the energy transition targets.
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Fig. 12.1 Income and expenditure by income group per household in Germany, 2018 [own graph 
based on 11 as given in 12] 
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TIMES-Actors-Model-Households Energy System 
Optimization Model 

Energy system optimization models are applied to assess the least-cost path to 
achieving specific objectives, e.g. climate, energy. However, the household sector is 
typically represented in an aggregated manner with differentiation only by building 
type or location [13]. To better characterize the differentiated needs and capabilities 
of various households, the TIMES-Actors-Model-Households (TAM-HHs) disag-
gregates the population into 56 different profiles according to socio-economic and 
built environment parameters including building type (multi-family, single-family), 
tenure (owner, tenant), location (urban, rural) and income group (7 statistical groups 
according to [11]) (see [14, 15] for more details). Each profile has its own distinct 
energy demand profile based on the distribution of end-uses and fuel types according 
to the demand drivers unique to each [15]. A budget constraint is included to express 
the financial capacity of each of these defined profiles to afford all energy-related 
investment and consumption costs, which is [14, 15]. This addition converts the model 
into a dual objective model to maximize the benefits to the consumer in addition to 
minimizing the overall costs and is a tabulation of the total statistically available 
savings and actual energy-related investment and consumption expenditures for all 
households within a defined profile [11, 16]. 

Scenarios 

The scenarios are designed to explore the impact of policies on energy and emis-
sions as well as the energy welfare of households. The overarching scenario frame-
work includes common assumptions for the input data and projections of the 
socio-economic framework and the various techno-economic parameters. The socio-
economic parameters (population, number of households, household size, number of 
occupants, disposable income, floor area and climatic variables) are provided exoge-
nously to the model [15]. Additionally, the input data also takes into consideration 
the resource and technical potential for biomass, rooftop solar installations, district 
heating and heat pumps as these are limited by the feasible access of each defined 
profile according to their characteristics (e.g., location, building type, useful area) 
[15]. Further techno-economic assumptions include the consumer prices and include 
consideration for the development of EEG levy relief and other consumer taxes [3, 
17]. The carbon price is defined in line with current policy developments according 
to the tax scheme [18] with a CO2 tax in 2035 with an upper bound of 200e per 
ton of CO2-equivalent [4], and reaching 250e per ton of CO2-equivalent in 2050. 
This accounts for the expected damage cost for climate change, thereafter with a 
linear extrapolation to 260e per ton of CO2-equivalent in 2060. Two carbon revenue 
redistribution schemes are explored with either an annual climate bonus distributed
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Table 12.1 Scenario descriptions 

Scenario Description 

Reference (REF) Disaggregated, all expected policies implemented, budget constraints 

CB Climate bonus; 100e per capita annually; carbon tax; EEG surcharge 
without levy relief 

CBLI Climate bonus only for half the population (lower incomes); e200 per capita 
annually; carbon tax; EEG surcharge without levy relief 

as 100e given per capita (CB) or with a climate bonus of 200e provided to 50% of 
the lower income population (CBLI), see Table 12.1. 

Results 

Energy and Emissions 

Overall, the environmental impact varies little between the two distribution varia-
tions where in 2030 the final energy consumption across all households in the CB 
scenario results in 1781 PJ (52 Mt CO2-eq) and 1788 PJ (54 Mt CO2-eq) in the CBLI 
scenario, compared to the Reference scenario with 1736 PJ (54 Mt CO2-eq). This 
top-down (average) result is insufficient to understand the complexities of energy 
consumption in the household sector. Due to the disaggregation of the household 
sector in the TAM-HHs model, the results can also be analyzed from the household 
perspective. When comparing the average energy consumption per household in the 
lower four income groups, shifts in the total consumption can be observed with an 
average of 31 GJ, 34 GJ and 35 GJ per household in the REF, CB and CBLI scenarios, 
respectively, as shown in Fig. 12.2. The REF scenario incorporates shares of renew-
ables and fossil fuels of 7.2% and 63.2%, respectively, while in the CB scenario the 
shares are 5.6% and 62.1%, respectively, and 7.9% and 58.8% in the CBLI scenario, 
respectively. This indicates a greater shift for the lower income households in the 
CBLI scenario towards renewables and away from fossil fuels compared to both other 
scenarios. In 2030, the majority of space heaters reach the end of their technological 
lifetime and require replacing. However, since the lower four income groups have 
been unable to accumulate sufficient budget to afford investment into infrastructural 
changes, these households opt instead to extend the use of the existing infrastructure 
and technologies by instead shifting the types of fuels to supply demand in order to 
comply with climate objectives. For example, the key bridging solution is blending 
fuels such as hydrogen or biofuels into the existing infrastructure until such a time 
when sufficient budget is accumulated to afford new investments and the infras-
tructural changes. The magnitude of fossil fuel consumption is greater in both the 
CB and CBLI scenarios compared to the reference scenario, which runs counter to 
the mandate to fund emission reductions. To understand these underlying causes of
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Fig. 12.2 Average energy consumption per household for the lower four income groups, 2030 [own 
graph as given in 15] 

household energy consumption patterns, it is also necessary to assess the influence 
of suppressed demand on these different levels of consumption.

Suppressed Demand 

The inclusion of the budget constraints in the model allows the analysis of the 
suppressed, which can provide a more holistic picture of the energy welfare of house-
holds. In both the REF and the two Climate Bonus scenarios, energy consumption was 
suppressed in the lower four income groups of the population restricting consumption 
to varying degrees in 2030. In 2030 in the REF scenario, 11.4 million people require 
an additional 84e per capita. The addition of the climate bonus of 100e per person 
in the CB scenario yielded an increase in the short-term investment expenditure in 
lieu of consumption expenditure, reduced both the number of people affected and the 
budget deficit to 5.7 million people requiring an additional 52e per capita. For these 
households, the budget remains restricted despite the additional cash flow, and the 
cost-optimal solution is to continue to suppress demand and save budget for future 
investments. The investment and consumption patterns in higher income groups do 
not change with the addition of the climate bonus. By increasing the distribution to 
200e per capita to the lower 50% of the population (CBLI scenario), the suppressed 
demand is reduced to the equivalent of about 118e per capita for approximately 
131,000 people affected, such that the severity and the extent of suppressed demand 
is reduced significantly and focused to specific households.
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Discussion 

The debate about the types of policies to support a just energy transition is ongoing. In 
order to consider the energy welfare of households, it is also necessary to understand 
the implications and distributional impacts of policies. The carbon tax acts as a price 
signal to encourage a shift in investment towards renewable technologies and energy 
efficiency, however this can also result in negative consequences for lower income 
households and tenants, who lack either the capital or decision-making power to make 
structural changes to avert the effect of the carbon tax. An assessment of energy use 
and emissions, or expenditure on consumption alone do not provide a holistic view on 
the energy welfare of households. Lower income households already have negative 
savings and may suppress energy demands. The presented methodology allows the 
comparison of the expected suppressed demand experienced by households across 
the various scenarios in addition to an evaluation of the investment and consumption 
patterns across all households, or specific household types. This highlights that due 
to the existing suppressed demands, lower income households must decide between 
investments that will improve the long-term energy consumption patterns, or expen-
diture to meet current unmet needs. The more a lower income household can put 
towards their available budgets, the more they are able to do both of these as was 
shown with the CBLI policy approach. 

Conclusion 

This paper showed that an analysis of only the energy consumption does not give 
adequate insights into the energy welfare of households. By incorporating the budget 
constraint in the method, the suppressed demands can be monetized and deeper 
insights are given on the trade-offs between investment and consumption decisions, 
which can support the discourse on support schemes towards achieving the energy 
transition targets and the energy welfare of households. The methodology facilitates 
further assessments to find the right redistribution scheme, and can be expanded 
to include other socio-economic parameters, such as household composition (e.g. 
single-parent households, elderly). Due to the long-term nature of investment deci-
sions and how these affect consumption patterns, an assessment of the energy welfare 
of households should consider not only the affordability of energy, but also view this 
within the context of suppressed demands. Considering these multiple aspects will 
support the energy welfare of households for a socially just energy transition.
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Chapter 13 
A Multi-Perspective Approach 
for Exploring the Scenario Space 
of Future Power Systems 
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Shima Sasanpour, Jan Buschmann, Kai von Krbek, and Aileen Böhme 

Abstract There are many possible future energy systems. We explore the range of 
parameter uncertainty and quantify parameter interrelations to generate hundreds of 
scenarios for Germany. Only sensible parameter combinations remain as inputs to 
an energy system optimization and coupled models. In the past, computational limi-
tations have been a major obstacle to calculate such an enormous space of scenarios. 
In contrast, we use high-performance computing. To utilize high-performance 
computing (HPC) efficiently, the parallel solver for linear programs PIPS-IPM++ is 
applied. We integrate it into a tool chain of different components including scenario 
generation, energy system optimization and results evaluation and couple a large 
diversity of software packages in a fully automated HPC workflow. This enables the 
calculation of all scenarios in a matter of days. Furthermore, we use a set of 37 indi-
cators to provide a comprehensive assessment of the simulated energy systems. In 
this way, we cover multiple perspectives, such as system adequacy, security of supply 
or behavior of market actors. Whereas scenarios with already expanded capacities 
do not lead to clear results, a “green field” approach or higher spatial resolution do. 
Yet, we identified three clusters of scenarios. This allows to study disruptive events 
like price shocks in a vast parameter space and to identify countermeasures for the 
long-term. 
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The Three Challenges of Energy Scenario Analysis 

Despite great progress in energy systems analysis, three key challenges are still 
apparent in future energy system modelling. The first challenge are computational 
limitations. To analyze a multitude of scenarios, parallelization and high-performance 
computers (HPC) are necessary. Many projects have, in contrast, used shortcuts 
like analyzing only typical days instead of complete timeseries [1]. The second 
challenge is that future pathways are highly contingent on assumptions. Different 
assumptions have led to very different scenarios [2]. As a consequence, comparisons 
and evaluations are highly problematic. The traditional solution, while scientifically 
not satisfactory, has been to take a very selective set of assumptions. The last challenge 
is that, given a certain methodology, only certain aspects of future scenarios are 
typically analyzed. For example, optimization models tend to concentrate on system 
costs [3], whereas agent-based simulations focus on individual strategies of actors. 
Hence, there is a certain blindness to some aspects just by the methodology the 
researcher has chosen. 

Taken together, these problems substantially reduce the trust in energy systems 
modeling. Hence, this paper tries to address all three problems by answering: “If it 
would be possible to explore the full possibility space of future energy scenarios, 
could we select those that are near optimal from a multitude of perspectives?” This 
allows us to get nearer to our goal, a comprehensive assessment of future energy 
systems. 

Our contribution to addressing the first challenge is the further application of the 
parallel solver—PIPS-IPM++ [4]. It allows us to solve Energy System Optimization 
Models (ESOMs) on HPCs by exploiting the block-structure of the corresponding 
linear programs (LPs). Our solution to the second problem is to sample from a huge 
parameter space. The third problem is addressed by coupling different tools, e.g., the 
ESOM, REMix [5] and the agent-based simulation, AMIRIS [6]. The resulting indi-
cators provide a comprehensive assessment of energy scenarios including security of 
supply and market impact. Therefore, we are able to find points of interests (POIs), 
defined as a special space where many indicators evaluated are above average. 

Methods 

Our modeling goals require the integration of various complex steps. Therefore, we 
developed a workflow of multiple software packages within a HPC environment (see 
Fig. 13.1).

We start with a basic parameterization of REMix, which is already useable for 
energy scenario analysis without any uncertainty consideration. We automatically 
generate a large variety of scenarios with a newly developed parameter sampling 
tool (Scenario Generator) to describe the parametric uncertainty of various instances 
of the basic REMix model. These model instances are LPs generated by GAMS,
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Indicators 

Instance Generator 

REMix (.dmp) 

LP Solver 

PIPS-IPM++ 

Indicator Models 

• AMIRIS 
• Python Scripts 

Scenario Generator 

• Preprocessing 
• Sampling 

Raw Data 

Postsolve 

Scenario Result 

Fig. 13.1 Software components and data flow pipeline that is executed for each scenario on HPCs

which are passed to the parallel solver PIPS-IPM++ for scenario solving. The optimal 
solution of each LP can be interpreted as one possible scenario in terms of power 
infrastructure required in the future. Each can be evaluated by calculating numerous 
indicators. The HPC workflow consists of executing this process for each scenario, as 
well as providing the data structure to exchange data between individual components. 
Thus, we are able to evaluate all scenario indicators to observe the points of interests 
by statistical analyses. 

Basic Energy System Optimization Model and Scenario 
Generation 

The REMix parameterization represents a high-resolution network of the German 
power system on transmission grid level. The 479 nodes represent unique locations 
of transformer substations. Additionally, nine neighboring countries are included 
with fixed imports and exports to Germany. The model focuses on the power sector 
with several power plant, storage and grid technologies included. In the “green field” 
approach no pre-existing power plants are available. Lignite and coal power plants 
can be expanded with their current capacities as upper limit. Gas-fired power plants 
can be further expanded as transition technologies. CO2 prices drive investments into 
CO2-poor technologies. 

The input parameters include historical weather profiles for the dispatch of the 
renewable energies for the years 1995–2018. Additionally, techno-economic param-
eters such as capital expenditures, fuel cost, CO2 allowance cost, efficiencies, fixed 
and variable operations and maintenance costs are included, which have been subject 
to our parameter sampling approach. Drivers are varied randomly to create different 
instances of the model. For consistency reasons (e.g., coupled oil and gas prices), 
we need (i) a collection of possible parameter values, (ii) information about their 
probability distributions and (iii) information about possible interrelations. For this,
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we define pseudo-correlations (from negative to positive) of the drivers based on 
expert assessments. 

Thus, a literature research considering about 50 sources [7] including energy 
scenario studies on both Europe, e.g., [8] and Germany, e.g., [9] derives statistical 
descriptors of the drivers’ values. A statistical derivation of a probability distribution 
of parameter values from different studies is impossible. Instead, we use truncated 
normal distributions, which are defined by the collected statistical descriptors, which 
results in consistent REMix instances and thus, various scenarios to be passed to the 
solver. 

Parallel Computing of Multiple Optimization Models Using 
PIPS-IPM++ 

Each model instance to be solved by PIPS-IPM++ has to be annotated, which means 
that variables and constraints are assigned to independent blocks to be treated in 
parallel by the solver. Despite a large variety of conceivable criteria to define these 
blocks, we annotate each model instance into time blocks, which represent predefined 
time slices in the modeled operation horizon. We need to stress that the available 
computing hardware determines how model instances are annotated. In our case, 
the corresponding limitations are a maximal total wall-clock time of 24 h and a 
maximum of 192 GB RAM per compute node. We annotate the problem instances 
into 730 blocks to be solved in 216 MPI tasks distributed across 18 compute nodes 
with 4 cores per task. PIPS-IPM++ is executed using the hierarchical approach, which 
is for our application the best setup to avoid memory issues. As a result, we are able to 
solve model instances with about 94.6 M variables (including 3713 linking variables 
and thereof 3356 globally) and 91.2 M constraints (ca. 367 k locally and 693 linking 
globally) in about 14 h. After a successful solve, a post-solving process creates a 
solution as GDX file to be used by subsequent workflow steps (indicator models). 

Indicator Assessment 

To assess the various aspects of future energy system scenarios, we coupled several 
models (see Section “Workflow Automatization”) for a more comprehensive anal-
ysis of the solved ESOM instances. For that, indicators [10] are defined, which are 
computed by indicator models (e.g., an agent-based model that simulates the behavior 
of stakeholders at the electricity market for each scenario). For some indicators, the 
interpretation is clear, e.g., system costs or CO2 emissions—lower is better. However, 
for some indicators this is less clear. Therefore, indicators are scored in respect to 
the overall mean of all scenarios. If it is above or below one standard deviation in
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the desired direction (if possible), it is considered for further investigation. Scenarios 
that score on a lot of these indicators are selected and dubbed points of interest. 

Workflow Automatization 

The overarching goal of our workflow automatization is to provide a basis for 
analyzing a large number of scenarios, but also to allow massively parallel imple-
mentation on HPC with automatic data exchange. The challenge is to maintain a 
bug-free workflow consisting of dozens of scripts or program calls, which are linked 
in a serial manner and are subject to continuous development. Hence, any change 
in just one component might break the whole workflow. Parser scripts used for data 
transformation require exception handlings, which were not implemented initially. 
Nevertheless, replacing broken workflow components is not always possible, e.g., 
replacing PIPS-IPM++ by a commercial solver. 

To keep an overview of this complex workflow we extended the software JUBE 
[11], consisting of ~ 6.200 directories and ~ 140.000 files and ~ 1.8 TB of data in total, 
cumulative across several scenario runs. The JUBE extension introduces another 
layer of parallelism to the workflow besides the solver resulting in a reduction of 
the total workflow runtime. Implementing this exchange of independent and highly 
specialized software in a stable manner took a team of 10 about 1.5 years, calculations 
took about 1.100.000 core hours. 

Results 

First, we cluster indicators and inputs. For robustness reasons, both k-means and k-
medoids are employed, using both the BIC and GAP method to determine the optimal 
number of clusters. For 1000 scenarios with pre-existing power plant capacities and 
low spatial resolution this does not lead to discernible clusters. Hence, we evaluate a 
lower number of highly resolved and green field ESOMs. In both cases, we observe 
three clearly delineated clusters (nine indicators are collapsed into two dimensions 
via PCA, i.e. main correlations). Figure 13.2 shows the clusters for the green field 
approach. The first cluster (red) is in-between extremes for most indicators. The 
second cluster (green) subsumes power systems with higher shares of renewables 
(RE-share), low CO2-emissions and medium capability for flexible load-balancing. 
The third one (blue) is opposite to the first one with high dependency on natural 
gas, more CO2-emissions, a high electricity price and some shortages for providing 
enough energy reserves.

Correlations between indicators are as expected, e.g., a high RE-share corresponds 
to low CO2-emissions, etc. This lends credibility to the scenario analyses. 

Points of interest are all scenarios where a majority of indicators show values one 
standard deviation above (e.g. RE-share) or below (e.g., CO2-emissions) the mean
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Fig. 13.2 Scenario clusters 
for the two main dimensions

of all scenarios. Overall, there are few points of interest, i.e. systems where many 
indicators would point to a system that is satisfactory concerning system adequacy, 
security of supply, and economic performance. Differences between scenarios are 
small, i.e., t-tests between potential “good” and “bad” systems are not significant. 

Discussion 

This paper addresses three problems of current energy systems analysis, i.e. compu-
tational limitations, model results that are highly dependent on varying assumptions 
and the limited perspectives of single models on only some aspects. By implementing 
a complex and scalable HPC work flow through coupling a number of specialized 
models, application of PIPS-IPM++ , and a comprehensive set of indicators, this 
paper proposes a solution to these problems. However, some limitations remain. 
Initially, a high number of scenarios did not show distinguishable clusters due to low 
spatial resolution and limited options due to a large size of already available power 
plants capacities. With the green field approach or highly resolved ESOMs relevant 
bottlenecks could be identified. However, only a selected number of scenarios could 
be calculated, yet. Points of interests are defined statistically, not from a system 
perspective.
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Conclusion 

Our results pave the way to more robust energy system modeling since they cover a 
large range of assumptions and future pathways. We found a few scenarios that seem 
to satisfy a number of desiderata for a near-optimal energy system. Our indicator 
set is easily reusable and allows a comprehensive assessment of energy systems, 
most notably system adequacy, security of supply, sustainability, and economic 
performance. 

Thus, from an operations research perspective, lessons learned concern the scale-
up of the HPC workflow maintained by different developers. It is crucial to find a 
trade-off between (a) an early prototype and (b) the early preparation of all workflows. 

The established broad scale analysis can be reused for future analyses which 
evaluate new indicators (e.g., for sustainability assessments) and also put emphasis 
on systems beyond the power sector and solving of mixed-integer linear programs. 
Due to the HPC capability and automation this workflow provides full scalability, 
which can be further improved by making the parallel solver PIPS-IPM++ more 
robust and computationally more performant. 
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Chapter 14 
A Quantum Computing Approach 
for the Unit Commitment Problem 

Pascal Halffmann, Patrick Holzer, Kai Plociennik, and Michael Trebing 

Abstract Planning energy production is a challenging task due to its cost-sensitivity, 
fast-moving energy markets, uncertainties in demand, and technical constraints of 
power plants. Thus, more complex models of this so-called unit commitment problem 
(UCP) have to be solved more rapidly, a task that probably can be solved more 
efficiently via quantum computing. In this article, we model a UCP with minimum 
running and idle times as a quadratic unconstrained optimization problem to solve it 
on quantum computing hardware. First experiments confirm the advantages of our 
formulation in terms of qubit usage and connectivity and most importantly solution 
quality. 

Keywords Quantum computing · Unit commitment problem · Quadratic 
programming · Energy planning 

Introduction 

An energy supply that is both stable and environmentally sustainable is vital for viable 
economic growth and social welfare. However, with the recent substantial increases 
in energy market prices and price fluctuations, energy generation is a highly cost-
sensitive field comprising a complex system of power units and grids. The complexity 
of the so-called unit commitment problem (UCP) presents challenges when it comes 
to planning energy generation due to technical constraints regarding power units 
and the power grid—a task that, with increasing reliance on renewable energy, is 
exacerbated further by weather-induced uncertainties. In conclusion, there is a real 
incentive to calculate the optimal solution to a realistic UCP model in a short period 
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of time. However, solvers on classical computers often cannot accomplish this task, 
especially when uncertainties from renewable energy supply are considered. 

In contrast, quantum computing (QC) provides a new computational paradigm 
based on counterintuitive phenomena in quantum mechanics, such as considering 
all possible solutions at once in a state of superposition. This has the potential of 
rapidly solving various tasks, from optimization problems to simulations and even 
communication. Admittedly, in the current, so called noise intermediate scale quan-
tum (NISQ) era, only few quantum computers are available with a limited amount 
of qubits, a rather restricted number of connections between them, and low fault-
tolerance. Suitable use cases have just been discovered and algorithms are in devel-
opment. Nevertheless, QC is a promising technology of the near-term future and has 
already achieved some remarkable results for example in chemistry [ 3] and finance 
[ 10]. Therefore, the question arises whether QC will eventually be able to provide 
solutions to the UCP faster and, due to its inherent capability of coping with uncertain 
and stochastic parameters, has advantages when considering e.g. uncertain supply 
from renewable energies. 

Previous Work 

The unit commitment problem has been studied extensively in the last decades. There 
exist numerous versions with varying complexity and purpose. We refer to [ 9] for an 
overview. It is beyond the scope of this article to provide a full literature overview on 
the extensively published topic of quantum computing. So far, only two contributions 
try to solve the UCP via quantum computing: In [ 1], a UCP problem with quadratic 
cost function, demand satisfaction and minimum and maximum power generation is 
discussed. They use a generic method to transform this model to a quadratic uncon-
strained problem. A computational study with three to twelve power units shows that 
while D-Wave returns near-optimal solutions, the computation via Gurobi is 30,000 
times faster for the largest instance. Recently, the authors of [ 8] considered a quan-
tum computing approach for a distributed UCP, where power units are concentrated 
in a connected hub which allows a decomposition into subproblems. They apply a 
quantum version of the decomposition and coordination alternate direction method 
of multipliers (ADMM) to this problem. While they report that demand satisfac-
tion, minimum running and idle times, ramping, and power grid constraints among 
others are considered in the model using the same generic method for the problem 
transformation as before, a full formulation of their problem is not given. 

Our Contribution 

In order to solve an optimization problem via a quantum computer it can be trans-
formed into a so-called Ising Hamiltonian, which is an operator measuring the total
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energy of a physical system. This operator has a one-to-one correspondence to a 
QUBO. Generically, a linear optimization problem with constraints is transformed 
into a QUBO by transforming inequality constraints to equality constraints via slack 
variables and adding equality constraints as quadratic penalty terms to the objective 
function. At last, continuous and integer variables are encoded and replaced by binary 
variables. Clearly, this method is not problem-specific and has some drawbacks: Each 
slack variable (or its binary encoding, if it is non-binary) requires additional qubits. 
The quadratic penalty term results in quadratic terms using every combination of 
variables used for this penalty term, thus, in an all-to-all connection between the 
corresponding qubits. Current NISQ devices have a limited number of qubits with 
restricted interconnectivity and in particular no all-to-all connectivity, which requires 
additional qubits to facilitate the connection. It is therefore crucial to avoid introduc-
ing large numbers of qubits with many interactions. Even in the future, the degree 
of interconnectivity between qubits can be expected to present a limiting factor. 

We propose a novel formulation for a unit commitment problem modeling minimal 
variable and starting costs, demand satisfaction as well as minimum running and idle 
times as a QUBO problem. This formulation is explicitly designed for reducing the 
number of and the connectivity between qubits, while ensuring that all constraints are 
satisfied even though they are transformed to penalty terms. This has been especially 
achieved by avoiding slack variables and, largely, squared sums of variables in our 
method. As pointed out, quantum computing is still in its infancy. We do not expect 
that solving a UCP with current QC hardware and algorithms can cope with real-
world sized problem instances or is competitive against classical approaches. We 
merely present a proof-of-concept for an alternative direction: given the current 
rapid development of QC and its present successes, our model may provide faster 
or better solving of the UCP in the future, especially for large instances with e.g. 
uncertain demand. 

The remainder of this article is organized as follows: In Section “Classicform”, 
we formally introduce the unit commitment problem and present a formulation as 
mixed-integer linear problem. In the next section, our formulation as quadratic uncon-
strained binary problem is given. An illustrative example of our formulation, together 
with a comparison to resource requirements for the generic method, and solving the 
model both via a quantum computer simulator and a quantum annealer, follows in 
Section “Example”. We conclude this article with an outlook on future directions of 
research. 

Linear Formulation of the Unit Commitment Problem 

In this section we present the classical mixed-integer linear formulation of the unit 
commitment problem. In general, the UCP deals with finding a cost-minimal oper-
ation schedule for a set of thermal units i ∈ {1, . . . ,  N } to meet a given demand for 
electricity over a distinct set of time steps t ∈ {1, . . .  T }. Further, technical properties 
of both the thermal units and the underlying power grid have to be respected. Take
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note that there does not exist one single UCP, but several variants are present in the 
literature. For an overview on different formulations, we refer to [ 6]. In the remainder 
of this article, we propose a model with the following assumptions. Each thermal unit 
i has the following properties: linear, production dependent costs varcosti and fixed 
costs startcosti for starting the unit, minimum and maximum power generation 
output, mingeni , maxgeni , and minimum running time and minimum idle time, 
minupi , mindowni . At each time step t the residual demand rdt , demand minus 
supply by renewable energies plus spinning reserve, has to be met. Limitations due 
to the power grid are omitted. This type of unit commitment problem is commonly 
modeled as follows: 

min 
T∑ 

t=1 

I∑ 

i=1

(
varcosti · gent,i + startcosti · startt,i

)

s.t. 
∑ 

i 

gent,i= rdt , ∀ t = 1, . . . ,  T , 

ont,i · mingeni≤ gent,i , ∀ t = 1, . . . ,  T , i = 1, . . . ,  I, 

ont,i · maxgeni≥ gent,i , ∀ t = 1, . . . ,  T , i = 1, . . . ,  I 

ont,i − ont−1,i≤ startt,i , ∀ t = 1, . . . ,  T , i = 1, . . . ,  I, 

t−1+minupi∑ 

τ=t 

onτ,i≥ startt,i · minupi , ∀ t = 1, . . . ,  T , i = 1, . . . ,  I, 

t∑ 

τ=t+1−mindowni 

star tτ,i≤ 1 − ont−mindowni ,i 
, ∀ t = 1, . . . ,  T , i = 1, . . . ,  I, 

ont,i , startt,i∈ B ∀ t = 1, . . . ,  T , i = 1, . . . ,  I, 

gent,i∈ R≥0 ∀ t = 1, . . . ,  T , i = 1, . . . ,  I. 

Here we have three sets of decision variables ont,i , gent,i and startt,i , t ∈ {1, . . .  T }, i ∈ 
{1, . . . ,  N }. The binary variable ont,i observes whether unit i is running at time t . 
With gent,i ∈ R≥0 we denote the power generated by unit i at time step t . The  
variables startt,i ∈ [0, 1] track the starting of power units. 

Quadratic Unconstrained Binary Formulation of the Unit 
Commitment Problem 

In quantum physics, the Hamiltonian, an operator corresponding to the total energy 
of the system it refers to, is used to calculate the energy-minimal state of that system. 
One of the most famous Hamiltonians is the Ising Hamiltonian describing the energy 
of a solid in a ferromagnetic field using n spins si = ±1: 

H(s1, . . . ,  sn ) = −  
∑ 

i < j 
Ji j  · si · s j − 

N∑ 

i=1 

hi · si .
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Due to its close resemblance to a quadratic unconstrained binary problem 
minx∈Bn xT Qx , optimization problems are transformed to QUBOs and then to Ising 
Hamiltonians in order to solve these problems on a quantum computer, see [ 5] for  
methods for the transformation. Spins can be transformed to binary variables via 
xi = (si+1)/2. We concisely state the UCP as QUBO as follows: 

min 
T∑ 

t=1 

I∑ 

i=1

(
varcosti · maxgeni · ont,i + startcosti · startt,i

)

+A · 
T∑ 

t=1 

⎛ 

⎝ 
I∑ 

i=1 

maxgeni · ont,i − rdt 

⎞ 

⎠ 
2 

+B · 
T∑ 

t=1 

I∑ 

i=1

(
ont,i · (1 − ont−1,i ) + 2 · startt,i ·

(
ont−1,i + 1 − ont,i

) − startt,i
)

+C · 
T∑ 

t=1 

I∑ 

i=1 

⎛ 

⎝startt,i · minupi − 
t−1+minupi∑ 

τ =t 

star tt,i · onτ,i 

⎞ 

⎠ 

+D · 
T∑ 

t=1 

I∑ 

i=1 

⎛ 

⎝ 
t−1+mindowni∑ 

τ =t

(
startt,i + ont−1,i − ont,i

) · onτ,i 

⎞ 

⎠ 

s.t. ont,i , startt,i∈ B ∀ t = 1, . . . ,  T , i = 1, . . . ,  I. 

The penalty terms are in the same order as the constraints for the classical formula-
tion. By a closer look one can identify that if the start-variable is not properly set (i.e. 
it is zero although it has to be one), the last penalty term provides a bonus for an infea-
sible solution. Hence the penalty for wrongly setting start-variables has to be higher: 
B > D · maxi=1,...,I mindowni . It is also possible to model a UCP with energy gener-
ation between mingeni and maxgeni using discrete power generation steps. Given a 
step size stepi , we need di := [log2 ((maxgeni−mingeni )/stepi )] +  1 variables using a log-
arithmic encoding of the steps ([ 7]). In total, our model needs T · I ·

(
2 + 

∑I 
i=1 di

)

variables. Then we can replace the power output maxgeni · ont,i by 

mingeni · ont,i + 

⎛ 

⎝ 
di −1∑ 

k=1 

2k · gent,i,k +
(
di + 1 − 2di

)
· gent,i,di 

⎞ 

⎠ · stepi . 

Further, we have to add a coupling constraint between the on-variables and the 
discrete power generation variables gent,i,k : 

A · 
T∑ 

t=1 

⎛ 

⎝(
1 − ont,i

) · 
di∑ 

k=1 

gent,i,k 

⎞ 

⎠ .
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Table 14.1 Input data of our example 

Name mingeni maxgeni minupi mindowni startcosti varcosti 

Unit 0 1 1 1 1 50 30 

Unit 1 1 1 2 1 25 45 

Fig. 14.1 The QUBO 
matrix corresponding to our 
example. The first index 
counts time steps, the second 
the unit 

Illustrative Example 

In order to illustrate our model, we have built the QUBO problem for an instance 
with two thermal units and five time steps. Further, we assume that each unit can 
only operate on maximal power generation if turned on. The parameter values are 
given in Table 14.1. Further, the residual demand is given by {1, 2, 1, 2, 1}. The  
upper triangular matrix of the QUBO problem with penalty factors A = 1900, B = 
97, C = 96, D = 96 is visualized in Fig. 14.1. 

Clearly, we have obtained a sparse matrix, as only 55 of 400 entries (13.75%) 
are nonzero. This number rapidly decreases to 1 to 2% for larger instances. Fur-
ther, the maximum number of nonzero entries per row/column is 5. Hence, corre-
sponding qubits are less connected and the embedding onto real hardware needs 
only few extra qubits. In contrast, for the generic formulation, we get the fol-
lowing penalty term controlling the relation between start- and on-variables:(
startt,i − (ont,i − ont−1,i + slackt,i )

)2 
. This results in an additional qubit for each 

start-variable with a necessary connection to the qubits responding to startt,i ,ont,i , 
and ont−1,i . The effect of one slack variable for every power plant and time step with 
only three interactions each may appear relatively harmless. Yet, for the minimum 
running time constraint this requires the introduction of at least [log2(minupi )] +  1 
slack variables for every unit and time step. Due to squaring, these interact with 
one start-variable and a number of on-variables each and also with each other. 
The same holds true for the minimum idle time. 1 In total, the generic model has 
50 variables with 106 interactions between different variables, while our tailor-made

1 Remark that in our example this parameter is set to 1 and does not need any binarization, increased 
parameter values worsen the generic model. 
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approach calls for only 38 interactions of 20 variables thus makes better use of system 
resources. 

We have solved this model using the Gurobi solver (Version 9.5.1) on classical 
hardware, the Quantum Approximate Optimization Algorithm (QAOA) with warm 
start [ 4] on the  IBM Qiskit 0.37.1 QASM simulator, and the D-Wave Quantum 
Annealer (Version Advantage_system 5.2 with over 5000 qubits) using 23 phys-
ical qubits instead of the 20 virtual qubits. The Gurobi solver used on the clas-
sical formulation finds the optimal solution {0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 
0, 0, 1, 0, 0} with objective value 370 (Ising objective value -20530). Here, unit 0 
is on in time steps 1 to 3. Unit 1 is running in time steps 0, 1, 3, and 4. For 1000 
shots, this is the solution occurring most often on D-Wave. The QASM simulator 
with warm started QAOA, however, does not find the optimal solution but finds 
{0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0} with objective value 410 (Ising 
objective value -20490). This solution is feasible and just switches the occupancy 
of the units in time step 2, which is also reflected in changed states for both start  
variables in time step 3. 

Conclusion 

In this article, we have presented a new formulation for the unit commitment problem 
as a QUBO such that it can be solved using quantum computers. Our model correctly 
penalizes infeasible solution while providing a compact matrix with fewer necessary 
qubits and connections between qubits than generic translation methods. First tests 
show the advantages of our model in practice. While our model still has a binary 
encoding of the continuous variables occupying valuable qubits, a recent publication 
show that it may possible to encode these variables without binary encoding on some 
QC devices [ 2]. 

Besides the introduction of uncertainty to the residual demand, immediate future 
research will obviously be to carry out an extensive computational study of our 
model on various systems (e.g. Gurobi vs. quantum computer) comparing solution 
quality and running times. Due to the limited availability of qubits and connectivity 
in gate-based quantum computers, we will focus on the quantum annealers from D-
Wave. This study promises to return answers to two important questions: can current 
quantum computing devices outperform classical solvers on classical hardware for 
practical problems and, if not, what is necessary in the future to ascertain “quantum 
supremacy” in practice? 

Acknowledgements This publication has been funded by the German Federal Ministry for Eco-
nomic Affairs and Climate Action (grant no. 03EI1025A).
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Chapter 15 
The Sales Force Deployment Problem 
for Teams of Sales Representatives 
Within Sales Territories 

Tobias Vlćek 

Abstract We address the sales force deployment problem and its four subproblems 
for teams of sales representatives within sales territories. We contribute by show-
ing that the problem can be reduced to the uncapacitated facility location problem 
under convex profit contribution functions with a unique maximum. In our numerical 
study, we show that instance sizes considered difficult for the sales force deployment 
problem of individual representatives can be solved optimally in minutes for teams 
of representatives. In our largest instance, with 2020 potential locations and sales 
coverage units, it took on average 140.73 s. 

Keywords Salesforce · Territory alignment · Uncapacitated facility location 
problem 

Introduction 

By addressing the sales force deployment problem (SFDP), decision makers are 
assigning customer accounts and their selling potential to sales representatives in 
order to maximize profit [ 7]. The SFDP is composed of four interrelated subprob-
lems: sales territory alignment, sales force sizing, sales resource allocation and sales 
force location. Solving these, decision makers are grouping small geographic sales 
coverage units (SCUs) in a preset area into sales territories according to managerial 
criteria while determining the size of the sales force, the allocation of the selling 
time to each individual SCU, and the location of a sales office for each territory [ 2]. 
Past literature considered sales representatives working independent of each other 
in separate territories. We contribute by solving the SFDP for teams of sales repre-
sentatives within sales territories. This can have benefits, as teams can support and 
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represent each other while sharing their knowledge to improve sales and the on-
boarding of new members. In addition, sales teams can lead to higher profits as they 
allow solutions with a lower number of office locations and their associated fixed 
costs. 

Related Research 

Due to the interrelatedness of the subproblems, past research has often focused on 
solving the subproblems of the SFDP separately. The profit was usually the central 
criterion, additional criteria included contiguity, equal profits and equal workloads 
per sales representative [ 6]. We refer interested readers to the overviews by [ 4] and [ 7] 
and subsequently focus on literature directly related to our work. Skiera and Albers 
[ 5] proposed an approach based on aggregated concave sales response functions to 
solve two of the four subproblems of the SFDP for individual sales representatives. 
Drexl and Haase [ 2] considered all four subproblems simultaneously. They developed 
a non-linear mixed-integer programming model and used a heuristic to approximate 
solutions. Later, [ 3] addressed the problem by solving the linear relaxation of the 
model with column generation combined with Branch-and-Price. We contribute to 
the literature by explicitly addressing all four subproblems of the SFDP for teams 
simultaneously, while showing that the problem can be reduced to the uncapacitated 
facility location problem (UFLP) under certain conditions. 

Profit Contribution 

Our aim is a maximization of the overall profit over all sales territories. We employ 
a known and widely accepted concave aggregated sales response function where 
the selling time is a constant proportion of the travel time within each SCU while 
considering the incurred selling costs [ 2, 3, 5]. We formalize the profit contribution 
function by defining the following sets and symbols: 

J : set of SCUs, indexed by j , 
I : set of potential office locations (I ⊆ J ) indexed by i , 
α : per-unit profit contribution of sales, 
t :  allocated selling time to SCU j , 
b :  calling time elasticity (0 < b < 1), 
n j : calling time profitability, e.g., potential accounts in j (n j > 0), 
βi j  : ratio of travel time to the selling time allocated to SCU j by the 

sales team located in SCU i (0 < βi j  < 1), 
μ : productivity scaling parameter of the salesforce (μ >  0), 
h :  cost per hour of travel time (e.g., gas, car insurance, ...) (h > 0),
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g :  hourly cost per sales representative (e.g., salary, 
variable location costs, ...) (g > 0) and 

fi : fixed costs of allocating a sales office in SCU i . 

Note, the hourly costs per sales representative g were integrated into the fixed costs 
associated with each opened office in former approaches [ 2, 3, 5]. Now, we can 
formulate the sales response function 

si j  (t) = μ × n j × ((1 − βi j  ) × t)b (15.1) 

and the selling cost function 

ki j  (t) = (h × βi j  + g) × t, (15.2) 

both of which are dependent on the associated sales team location i and the allocated 
selling time t to SCU j . The farther the travel distance between the sales team location 
i of a sales territory and the SCU j , the higher the ratio of the travel time to the selling 
time βi j  . Now, we can calculate the profit contribution of each allocated SCU j to a 
sales team location i with (15.3). 

pi j  (t) = α × si j  (t) − ki j  (t) (15.3) 

In contrast to [ 2, 3, 5] we don’t consider the selling costs as negligible. They comprise 
not only the hourly travel costs h, but also the hourly costs per sales person g (e.g., 
salary, variable costs of the office location, ...) to account for multiple representatives 
per location. This is important, as the profit in the application of the former approaches 
was only bound by the fixed costs fi associated with each realized location. Now, 
it is also bound by the selling costs in each SCU j . We use this characteristic and 
differentiate the profit contribution function (15.3) by  t while setting the derivate to p̂. 

∂pi j  (t) 
∂t 

= p̂ (15.4) 

Now, (15.4) is strictly monotonically decreasing; thus there exists a unique solution 
for each p̂. This allows us to solve (15.4) for  t to determine the selling time ti j  ( p̂) 
for all combinations of i and j for different marginal profits p̂ with (15.5). 

ti j  ( p̂) =
(

βi j  × h + g + p̂ 

α × μ × n j × b × (1 − βi j  )b

) 1 
b−1 

(15.5) 

As our selling time is unconstrained, the optimal selling time ti j  ( p̂) for each possible 
combination of i and j has marginal profits p̂ = 0. We know these selling times 
are finite, as limt→∞ 

∂ pi j  (t) 
∂t = −(βi j  × h + g). Hence, we can calculate the optimal 

selling time ti j  (0) with (15.5) to determine the maximal profit pi j  (ti j  (0)) of each 
possible allocation with equation (15.3).
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Model 

Based on the pre-calculated maximal profit pi j  (ti j  (0)), we can reduce the problem 
to the UFLP to solve the four interconnected subproblems. Note, that the UFLP is 
nonetheless NP-hard as it can be reduced from the set covering problem [ 1]. First, 
we define the decision variable: Xi j  = 1, if SCU  j is assigned to the office in SCU 
i , else  0. Now, we can maximize the overall profit P of our sales territories with the 
UFLP: 

maximize
∑
i∈I

∑
j∈J 

pi j  (ti j  (0)) × Xi j  −
∑
i∈I 

fi × Xii (15.6) 

subject to:

∑
i∈I 

Xi j  ≤ 1 ∀ j ∈ J (15.7) 

Xi j  ≤ Xii ∀i ∈ I, ∀ j ∈ J (15.8) 

Xi j  ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J (15.9) 

In our objective function (15.6), we maximize the total profit contribution. (15.7) 
ensures that each SCU j is allocated to at most one realized sales force location. 
(15.8) guarantees that SCUs can only be assigned to realized locations, while (15.9) 
defines the domain of our decision variable. Recall that βi j  describes the ratio of the 
travel time to the selling time by the team allocated in SCU i . Let  ai j  ∀i ∈ I, ∀ j ∈ J 
describe the air-distance between the centroids of all possible SCU combinations i 
and j in kilometres. As long as ai j  < aiv =⇒ βi j  < βi v ∀i ∈ I, ∀ j ∈ J , ∀v ∈ J 
and I ⊆ J , the consideration of contiguity constraints is not necessary, as each SCU 
will be allocated to the nearest realized sales-team location. In case these conditions 
do not hold, we can enforce contiguity by introducing additional constraints, but this 
is beyond the scope of this paper. 

After solving the model, we can answer all four subproblems: the sales territory 
alignment is represented by the optimal SCU assignment Xi j  . The sales force teams 
are located in each SCU i where Xii  = 1. The sales resource allocation si (expressed 
in selling time) of each location can be calculated with (15.10). 

si =
∑
j∈J 

ti j  (0) × Xi j  ∀i ∈ I (15.10) 

Note, that si = 0 ∀i ∈ I : Xii  = 0 as no sales team is allocated in these SCUs. The 
overall size of the sales force S (in selling time) is then just the sum of the sales 
resource allocations si of all sales team locations. If we consider the total available 
selling time T per sales person, the number of sales representatives per district ri can 
be calculated by ri = si /T ∀i ∈ I. Naturally, ri ∈ R≥0 ∀i ∈ I as we do not restrict 
the selling time to fixed intervals.
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Numerical Study 

To evaluate the solvability of our model, we implement it on an 8-Core AMD Ryzen 
5700G CPU with 32 GB RAM using Julia 1.72, JuMP 2.0 and the solver Gurobi 
9.5. We solve all instances till optimality. For our numerical study, we replicate the 
setting of [ 3] and assume a fictional company in the German market for medical 
products. Following their structure, the sales representatives have a ratio of travel 
time to selling time by 

βi j  = 0.1 + min{0.9, 2 × ai j  /800}. 

This assumes a travel time proportional to the air-distance ai j  , sales representatives 
with an average travel speed of 100 km/h by car and an average 8-h work day. Note, 
that the travel speed is 100 km/h, as representatives are driving on highways most of 
the time. This leads to the observation, that 90% of the selling time will be calling time 
in case i = j and that SCUs with an air-distance ai j  ≥ 360 km cannot be profitable 
due to the lack of calling time. To ensure that βi j  < 1 we enforce a maximal air-
distance R = 360 km and replace J by Ji where j ∈ Ji |ai j  < R. We benchmark 
per-unit profit contributions α ∈ {5, 10, 15, 20, 25} while setting μ = 1 and b = 0.3. 
To keep the data set public, we estimate the number of potential customer accounts 
n j by dividing the number of residents from the ZENSUS 2011 data set 1 by 1000, 
to approximate the number of medical practices within each SCU j . For the selling 
cost function, we vary the hourly cost per sales person g ∈ {40, 50, 60, 70, 80} and 
the costs per hour of travel time h ∈ {10, 20, 30, 40, 50}. Moreover, we assume the 
yearly fixed costs fi to be equal for all SCUs i while varying them between 10,000 
and 50,000 in steps of 10,000. The total available selling time T per sales person is 
1600 h per year if we assume an 8-h day and 200 working days per year. In addition, 
we vary the size of the SCU sets |J | between 401, 758, 1168 and 2020 and assume 
that all SCUs j represent a potential location, thus I = J . An example of a resulting 
territory alignment is shown in Fig. 15.1. In total, we benchmarked 3125 different 
variations. All data sets and our code is available on GitHub 2. 

Our benchmark shows that the number of territories and the number of sales 
representatives per territory depend a lot on the parameters of the profit contribu-
tion function. For example, high fixed costs per office location combined with low 
driving costs lead to a few office locations with multiple representatives per loca-
tion that make use of the entire maximal air-distance R. Moreover, we observe 
that the managerial criteria of equal profits and workload per sales representative 
compared across territories are fulfilled in all optimal solutions of the optimization 
due to the identical marginal profits. Table 15.1 shows the average computation 
time depending on the number of SCUs |J | and the fixed costs fi . It is appar-
ent, that the computation time depends on the problem size and the fixed costs.

1 https://atlas.zensus2011.de/ 
2 https://github.com/beyondatlas/salesforce 

https://atlas.zensus2011.de/
https://atlas.zensus2011.de/
https://atlas.zensus2011.de/
https://atlas.zensus2011.de/
https://github.com/beyondatlas/salesforce
https://github.com/beyondatlas/salesforce
https://github.com/beyondatlas/salesforce
https://github.com/beyondatlas/salesforce
https://github.com/beyondatlas/salesforce
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Fig. 15.1 Example of an 
optimal territory alignment 
in our numerical study for 
α = 20, g = 60, h = 20, 
fi = 40, 000 with 
|J | =  401 solved in 0.59 s 

Team location 

Table 15.1 Computation time (seconds) 

fi 
|J | 10,000 20,000 30,000 40,000 50,000 

401 2.1 2.3 2.4 2.4 2.5 

758 7.1 8.6 9.5 10.1 10.5 

1168 26.2 34.0 37.6 39.5 41.2 

2020 116.7 139.9 143.4 150.0 153.5 

Note: The time excludes the model-building time and shows the time Gurobi 9.5 needed to solve 
the instances with a gap of 0% 

Nonetheless, the solver could always determine the optimal solution within 2 min. 
Other parameters are not displayed, as they had no notable influence. This is an 
improvement compared to past SFDP implementations of individual sales repre-
sentatives. For example, in the computational study of [ 3] no solution on instances 
with |I| =  50 and |J | =  2140 could be proved to be optimal within two hours. 
Our lower computation time is the result of the reduced model formulation due 
to the pre-calculated profits and the allowance of fractional representatives ri per 
territory. 
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Conclusion 

Overall, our results are promising. By differentiating the profit contribution function 
and setting the marginal profits to 0, we could determine the optimal selling time in 
each SCU, since the utilised profit contribution function has a unique maximum by 
its structure if the selling costs are not neglected. This allowed us to reduce the sales 
force deployment problem for teams to the uncapacitated facility location problem. 
Moreover, we showed in our numerical study that optimal contiguous solutions for 
the SFDP for teams can be determined within minutes for problem sizes considered 
difficult in the past for the SFDP of individual representatives. Still, we also have to 
acknowledge the limits of our approach. First, the profit contribution function has to 
be convex with a unique maximum. Second, contiguous optimal solutions without 
explicit contiguity constraints can only be guaranteed if the ratio of the travel time to 
selling time βi j  fulfils certain, albeit realistic, conditions. Future research could look 
at the problem if the number of representatives per sales territory has to be integral 
and how the computation time changes if contiguity constraints have to be included. 
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Chapter 16 
A Heuristic Column Generation 
Approach for the Stochastic 
Bin Packing Problem 

John Martinovic, Nico Strasdat, Jean-François Côté, 
and Vinícius Loti de Lima 

Abstract The stochastic bin packing problem (SBPP) is an extension of the well-
studied classical bin packing problem with respect to imperfect information on the 
item sizes. From a practical point of view, the latter are typically represented by 
(stochastically independent) normally distributed random variables with given means 
and variances. In this scenario, the SBPP requires to determine the minimum number 
of bins needed to pack all the items, with the risk of overloading a bin not exceeding 
a certain tolerable limit. Such computations are of high relevance in server consoli-
dation applications, where decisions have to be made before witnessing the true item 
characteristics. The resulting integer optimization problems are generally nonlinear 
and therefore difficult to solve. For this reason, previous approaches from the litera-
ture can only handle small instance sizes exactly. In this work, we present a column 
generation algorithm using heuristic information and near-optimal solutions of the 
associated (challenging) pricing problems. Based on numerical tests, we show that 
in most cases this heuristic approach already leads to an optimal solution, so that 
much larger instance sizes can now be dealt with in reasonable time. 

Keywords Cutting and packing · Stochastic bin packing problem · Normal 
distribution · Column generation · Heuristics
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Introduction and Preliminaries 

In this article, we consider a single-stage stochastic optimization problem, hereinafter 
referred to as the stochastic bin packing problem (SBPP). The SBPP generalizes the 
classical BPP, see [ 3], in a sense that decisions have to be made based on imperfect 
information on the item sizes, which is the usual source of uncertainty [ 7], and cannot 
be changed later when the true characteristics have been revealed. Such problems (and 
generalizations of it) arise in data center workload management to keep operational 
costs low, see [ 1, 2, 9] for some application-oriented research. More formally, given a 
set.I := {1, . . . , n} of items (jobs), each being characterized by a random size. ci , the  
aim is to find the minimum number of unit capacity bins needed for a valid packing. 
In this context, an assignment is called feasible if the items of any bin respect its 
capacity with high probability (specified by some error bound .ε > 0). Here we just 
consider normally distributed item sizes.ci ∼ N (μi , σ

2
i )with given mean. μi ∈ (0, 1)

and variance.σ 2
i > 0,.i ∈ I . This does not represent an actual restriction, since many 

real-world workloads can be approximated well by that type of distribution, see [ 2, 
7, 9]. For completeness, we highlight that the problem we consider also appeared 
under different names in the literature, among which the bin packing problem with 
chance constraints is the most relevant, see [ 2, 5] for some publications. In addition, 
according to Perboli et al. [ 8], bin packing problems with other random input data 
can also be referred to as a stochastic BPP. 

Although having some obvious parallels to the well-studied BPP, an exact solution 
of the SBPP has not yet been addressed very successfully in the literature. This is due 
to the fact that associated compact (assignment) models generally possess nonlinear 
constraints, many symmetric solutions, and a very poor LP bound, leading to chal-
lenging integer programs even if additional information (like heuristic solutions) 
are available, see [ 7]. Moreover, transferring promising concepts like flow-based 
approaches did not lead to an efficient solution framework either, because of the 
exponential state space, see [ 6]. For these reasons, the optimal solution of many 
(even moderately-sized) benchmark instances is still unknown. However, given the 
substantial progress in terms of lower and upper bounds for the SBPP in recent years, 
see [ 2, 7], approximate solutions of reasonable quality are available in many cases. 
In this paper, we would therefore like to present a new heuristic approach based on 
column generation (CG) using the latter information. In that algorithm, the arising 
pricing problems (that are, stochastic knapsack problems) are very challenging and 
can only be dealt with approximately in reasonable time. Computational tests show, 
however, that numerous larger instances can be solved to proven optimality for the 
first time.
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Solution Approaches from the Literature 

Let .E = (n, c, ε) with .c := (c1, . . . , cn) denote an instance of the SBPP consisting 
of . n items with normally distributed workloads .ci ∼ N (μi , σ

2
i ), .i ∈ I , and an error 

bound.ε > 0 limiting the probability of overloading a bin. More generally, any vector 
a ∈ Bn (with B := {0, 1}) satisfying 

. P
[
cTa > 1

] ≤ ε or equivalently w(a) :=
∑

i∈I
μi ai + q1−ε ·

/∑

i∈I
σ 2
i ai ≤ 1,

(16.1) 
with P[·] referring to the probability of an event and .q1−ε denoting the .(1 − ε)-
quantile of a standard normal distribution .N (0, 1), is called a (feasible) pattern. 
The set of all patterns will be referred to as . P . To ensure solvability, we demand 
P[ci > 1] ≤  ε, that is, .μi + q1−ε · σi ≤ 1, for any .i ∈ I . 

Remark 1 Of course, real workloads cannot be negative, so that (ideally) truncated 
normal distributions should be used. However, for the benchmark sets appearing in 
Sect. “Computational Results”, the probability of negative workloads is considerably 
small (below.10−4), so that the normal distribution is an almost exact approximation. 

Let . u denote an upper bound for the number of bins required in an optimal solution 
and let .K := {1, . . . , u} denote the set of all bins, then we obtain the 

.Nonlinear Assignment Model for the SBPP (from [ 7]) 

z = 
∑ 

k∈K 
yk → min 

s.t. 
∑ 

k∈K 
xik  = 1, i ∈ I, (16.2) 

∑ 

i∈I 
μi xik  + q1−ε · 

/∑ 

i∈I 
σ 2 i xik  ≤ 1, k ∈ K , (16.3) 

xik  ≤ yk, i ∈ I, k ∈ K , (16.4) 

yk ∈ B, k ∈ K , (16.5) 

xik  ∈ B, (i, k) ∈ I × K . (16.6) 

In this formulation,.yk models the decision whether bin.k ∈ K is used or not, whereas 
the.xik are classic assignment variables stating which item will be packed into which 
bin. Besides the already known capacity constraints (16.3), any item has to be packed 
exactly once (see (16.2)) and the variable types have to be linked by (16.4) to obtain 
a consistent decision. 

Remark 2 As shown in [  6], for .0 < ε ≤ 0.5 and any .k ∈ K the nonlinear capacity 
constraint (16.3) can be expressed in a root-free manner by demanding
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. 

∑

i∈I

(
q2
1−ε · σ 2

i + 2μi − μ2
i

)
xik − 2

∑

i∈I

∑

j>i

μiμ j xik x jk ≤ 1,
∑

i∈I
μi xik ≤ 1.

A similar idea is given by converting (16.3) into  second-order cone constraints via 

. rk = 1 −
∑

i∈I
μi xik ≥ 0, q2

1−ε

∑

i∈I
σ 2
i x

2
ik ≤ r2k

for any.k ∈ K . Either way, these reformulations still possess lots of symmetries and a 
bad LP bound, so that even some instances with only.n ≈ 30 items cannot be solved 
to optimality within a time limit of ten minutes, see [ 7, Sect. 4]. 

Interestingly, the nonlinear model presented above can be solved in. O(n · log(n))

time if the integrality of the.x-variables is relaxed, leading to a lower bound lb★ ∈ Z+ 
satisfying .OPT ≤ 2 · lb★ − 1, see  [  7, Subsect. 3.1]. The solution of that relaxation 
can be obtained by a fractional next-fit decreasing (FNFD) algorithm, where the items 
are sorted with respect to non-increasing values of.σ 2

i /μi . Then, in a specific iteration 
(belonging to some fixed item.i ∈ I ), the largest possible portion .x ∈ [0, 1] of item 
. i is assigned to the current bin, so that (16.1) still holds. If the entire item does not fit 
into this bin, a new bin is opened to accommodate the remaining.1 − x units of item 
. i . As a second main result, a first-fit decreasing (FFD) heuristic based on the same 
sorting criterion is shown to establish an upper bound.ub★ with. ub★ ≤ 2 · OPT − 1
in .O(n · log(n)) time, see [ 7, Theorem 11]. Both these approximations are near-
optimal and time-efficient, and hence they will be part of the new solution approach 
presented in Sect. “A Column Generation Approach”. 

A Column Generation Approach 

For convenience, we identify each pattern with its unique subset of items, so that we 
have .P := {J ⊆ I | w(J ) ≤ 1} = {Jq | q ∈ Q}, where .w(J ) represents the “size” 
of the pattern, similar to (16.1). Let ξq ∈ B denote whether pattern.Jq is used or not, 
then a pattern-based model for the SBPP is given by 

.

∑

q∈Q
ξq → min s.t.

∑

q∈Q:i∈Jq

ξq ≥ 1, i ∈ I, ξq ∈ B, q ∈ Q. (16.7) 

The LP relaxation of (16.7) can be tackled by standard CG. More precisely, for some 
(already constructed) pattern pool.~P ⊂ P ,we let  π ∈ Rn+ denote the prices associated 
with the covering constraints (of (16.7)) in the restricted master problem (RMP) and 
consider the pricing problem .π★ := π(J ) → maxJ∈P with.π(J ) := ∑

i∈I πi for all 
.J ∈ P . A pattern .J ∈ P \ ~P should be added to the RMP if it has negative reduced 
costs, i.e., if .c(J ) := 1 − π(J ) < 0 or, equivalently, .π(J ) > 1 holds. If no such 
pattern exists the solution is optimal. Note that the pricing problem is a challenging 
stochastic knapsack problem, and classic dynamic programming (DP) will lead to an
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exponential state space. To overcome this issue, we will use the (inexact) dominance 
rule given in Alg. 1 to considerably reduce the number of states. 

Algorithm 1: DP-based heuristic 

1 Set S := {∅} and sort the items in non-increasing order of πi /μi . 
2 foreach i ∈ I do // try to pack items in a particular 
order 

3 foreach J ∈ S do // check every possible state 
4 Define J + := J ∪ {i} 
5 if w( J +) ≤ 1 then // check feasibility 
6 if J + is approx. dominated by some J̃ ∈ S then 
7 Ignore J +. 
8 else // remove approx. dominated states and add J + 

9 Define Snd := { J̃ ∈ S | J̃ is not approx. dominated by J +}. 
10 Update S := Snd ∪ {J +}. 
11 Add a suitable subset of patterns (from S) with π(J ) >  1 to the RMP.  

More precisely, a pattern .J ∈ P is approximately dominated by another pattern 
.~J ∈ P if .π(J ) ≤ π(~J ) and .w(J ) ≥ w(~J ) hold. By that, we no longer guarantee 
that all required patterns will be represented. Note that the set . S in Alg. 1 can be 
sorted because of the monotonicity of the values .(w(J ), π(J )). Thus, an efficient 
implementation is possible by means of sorted lists. 

Remark 3 Another heuristic way to deal with the pricing problems is given by using 
polynomial-time approximation schemes (PTAS), see  [  4] for an examplary algorithm 
and related theoretical results. However, for the instances considered later, the prac-
tical applicability of this specific approach (from [ 4]) is rather restricted, because 
an exponential number (in fact, .n1/δ) of subproblems has to be solved to obtain a 
certain bound (depending on some sufficiently small .δ > 0) for the optimal profit. 
Among others, this is also due to the fact that positive prices close to zero strongly 
increase the required number of iterations (see parameter . N1 := [log1+δ mini∈I πi]
in Algorithm.A proposed in [ 4]). 

Our overall algorithm now consists of two levels (L0 and L1), see Alg. 2. In the first 
one, we compute the best lower and upper bound from [ 7] and perform a simple 
optimality test. Effectively, for larger values of . n, this phase gathers all instances 
whose optimal solution was already known from previous results in the literature. 
As a preparation for L1, we use the columns obtained from the FFD heuristic and 
run CG with our inexact dominance rule. With the patterns generated during that 
procedure, in L1 we then solve the associated RMP with binary variables leading to 
a new heuristic solution. Afterwards, we again check for optimality by comparing its 
objective value to.lb★. However, the latter steps are only promising when. [zCG] ≤ lb★

holds after having performed CG, since in the opposite case the RMP with binary
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variables cannot generate a solution attaining .lb★. In addition, we cannot use the 
value .[zCG] as a lower bound either because the pricing problems in CG are just 
tackled heuristically. 

Algorithm 2: solution method 

1 Compute lb★ and apply the FFD heuristic to obtain ub★. 
2 if lb★ = ub★ then // Level 0 (L0) 
3 Stop: The packing is optimal. 

4 Perform CG (starting with patterns from the FFD heuristic) where the pricing 
problems are “solved” by Alg. 1 . Let  zCG  denote the objective value after CG 
has finished. 

5 if [zCG] ≤  lb★ then // Level 1 (L1) 
6 Solve the binary RMP to get a feasible solution with value ubRM  P . 
7 if lb★ = ubRM  P  then 
8 Stop: The packing is optimal. 

Computational Results 

We coded Alg. 2 in Python (with adding up to .100 promising patterns to the RMP 
per iteration of Alg. 1, if possible) and solved the appearing binary problems by 
Gurobi 9.5 on an AMD A10-5800K processor with 16 GB RAM with time limit. t̄ =
600 s. The benchmark set we consider consists of.320 randomly generated instances 
from [ 7] with parameter values.n ∈ {30, 50, 100, 200} and.ε ∈ {0.01, 0.05, 0.1, 0.2}, 
i.e., for each fixed pair .(n, ε) a total number of .20 instances is dealt with. The 
results are displayed in Table 16.1 and can be summarized as follows: Our heuristic 
approach is able to solve 292 (out of 320) instances to proven optimality, and even 
the hardest subset just requires less than seven minutes of computation time on 
average. In particular, 229 of these optimal solutions have been obtained by the new 
main component (that is, L1) of Alg. 2, which leads to convincing results even for 
large values of . n. Moreover, only nine instances (all with.n = 200) reached the time 
limit, two of these already during CG due to the time required to solve the pricing 
subproblems. For the remaining 19 instances, Alg. 2 was successfully applied, but 
optimality of the heuristic solution could not be manifested in L1. By and large, we 
also see that Alg. 2 needs more time for larger choices of . ε, because there we have a 
less restricted assignment policy and much more feasible patterns to check. Among 
other things, this is supported by the number of CG steps which averages roughly 
.1.5n, but increases slightly if . ε grows.
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Table 16.1 Number of instances solved in Level 0 and Level 1 (abbreviated by L0 and L1), as well 
as total number of optimally solved instances (.opt) and average runtime (. t) of Alg.  2 

.n .ε L0 no L1 L1 .opt . t

30 0.01 10 3 7 17 0.1 

0.05 9 0 11 20 0.2 

0.10 9 1 10 19 0.2 

0.20 12 1 7 19 0.2 

50 0.01 3 0 17 20 1.0 

0.05 4 2 14 18 1.1 

0.10 8 0 12 20 1.0 

0.20 6 1 12 18 1.7 

100 0.01 0 2 18 18 12.6 

0.05 0 1 19 19 19.3 

0.10 1 1 18 19 25.6 

0.20 1 0 19 20 38.9 

200 0.01 0 1 17 17 180.1 

0.05 0 2 18 18 200.3 

0.10 0 1 16 16 309.5 

0.20 0 0 14 14 406.7 

The column “no L1” counts the number of instances for which level 1 was not executed due to 
.[zCG] > lb★ (see line 7 in Alg. 2) 

Conclusions 

In this article, we presented a new CG-based heuristic for the SBPP which benefits 
from (i) recent theoretical and algorithmic progress in terms of lower and upper 
bounds, see [ 7], and (ii) a new idea to approximately solve the very challenging 
pricing problems. Although not representing an exact solution framework, numerical 
tests show that almost all instances can be solved to proven optimality (in reasonably 
short time) – about .75% of them for the first time ever. In the future, we will mainly 
focus on alternative strategies to (approximately) tackle the pricing problems, e.g., 
by appropriate state-space relaxations or some more tailored PTAS. 
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Chapter 17 
A Penalty Branch-and-Bound Method 
for Mixed-Integer Quadratic Bilevel 
Problems. Part I: Key Ideas and a Fixed 
Parameter Setting 

Andreas Horländer and Martin Schmidt 

Abstract We propose an algorithm for solving bilevel problems with mixed-integer 
convex-quadratic upper level as well as convex-quadratic and continuous lower level. 
The method is based on a classic branch-and-bound procedure, where branching is 
performed on the integer constraints and on the complementarity constraints resulting 
from the Karush–Kuhn–Tucker reformulation of the lower-level problem. However, 
instead of branching on constraints as usual, suitably chosen penalty terms are added 
to the objective function to create new subproblems in the tree. In this first part, we 
consider a fixed penalty parameter, derive the main ideas, and prove the correctness 
of the method for this setting. 

Keywords Bilevel optimization · Branch-and-bound · Penalty methods ·
Mixed-integer optimization 

Introduction 

Bilevel optimization gained increasing attention over the last years and decades 
mainly because bilevel models form a powerful tool for hierarchical decision making 
as it appears in the energy sector [ 8] or in security applications [ 7]. At the same time, 
bilevel problems are very hard to solve both in theory and practice [ 4]. Most of the 
solution techniques rely on branch-and-bound (B&B) or branch-and-cut techniques; 
see [ 3] for a state-of-the-art method and [ 6] for a recent survey. 

In [ 1], a novel algorithm has been developed for solving mixed-integer linear com-
plementarity problems (MILCPs). This B&B method uses penalizations of violated 
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constraints instead of constraint branching. It has been shown that this algorithmic 
idea leads to good numerical results for MILCPs. Since the latter class of problems 
is highly related to certain bilevel problems, the goal of this paper is to apply and 
extend the ideas in [ 1] to the case of bilevel optimization. To be more specific, we 
discuss bilevel problems with convex mixed-integer quadratic problems in the upper 
and convex-quadratic problems in the lower level, i.e., we consider mixed-integer 
bilevel problems of the form . 

min
x,y

Q(x, y) := 1

2
xTHxx + 1

2
yTHy y + cT

x x + cT
y y (17.1a) 

s.t. Ax + By  ≥ a, xi ∈ {0, 1}, i ∈ I ⊆ [nx ] := {1, . . . ,  nx }, y ∈ S(x), (17.1b) 

where .S(x) is the set of optimal solutions of the .x-parameterized lower level 

. min
y

1

2
yTGy y + xTGxy y + dT

y y s.t. Cx + Dy ≥ b (17.2) 

with .A ∈ R
m×nx , .B ∈ R

m×ny , .C ∈ R
l×nx , .D ∈ R

l×ny , .Gxy ∈ R
nx×ny , .cx ∈ R

nx , . cy , 
.dy ∈ R

ny , .a ∈ R
m , and .b ∈ R

l. The matrices .Hx ∈ R
nx×nx and . Hy,Gy ∈ R

ny×ny

are symmetric and positive semidefinite. The upper-level problem (17.1) thus has a 
convex-quadratic objective function, linear constraints, and mixed-integer variables. 
The objective function of the lower level is also convex and quadratic because the 
term .xTGxy y is linear in . y. The constraints of the lower level are linear and the 
variables are continuous. Since the upper level is a mixed-integer quadratic problem 
and the lower level is a quadratic problem, we call Problem (17.1) an MIQP-QP  
bilevel problem. 

We reformulate these problems using the classic Karush–Kuhn–Tucker (KKT) 
reformulation and tackle the integrality constraints as well as the KKT complemen-
tarity conditions using a novel penalty B&B method. By doing so, we introduce a 
new class of algorithms for solving bilevel optimization problems. In this first part 
of the paper, we consider the case of a fixed penalty parameter, develop the key 
ideas and prove the correctness of our method for this setting. The case of iteratively 
adapted penalty parameters, the respective convergence theory, and some preliminary 
numerical results are presented and discussed in the second part of the paper [ 5]. 

A Penalty Branch-and-Bound Method 

Main Ideas and Derivation of the Algorithm 

We first apply the KKT reformulation to the bilevel problem (17.1), i.e., we replace 
the lower level with its KKT conditions, which are necessary and sufficient for global 
optimality in our setup. They are given by



17 A Penalty Branch-and-Bound Method for Mixed-Integer… 141

.Gy y + GT
xy x + dy − DTλ = 0, 0 ≤ λ ⊥ Cx + Dy − b ≥ 0 (17.3) 

and the KKT reformulation of the bilevel problem (17.1) thus reads . 

. min
x,y,λ

Q(x, y) s.t. Ax + By ≥ a, Gy y + GT
xy x + dy − DTλ = 0, (17.4a) 

0 ≤ λ ⊥ Cx  + Dy − b ≥ 0, xi ∈ {0, 1}, i ∈ I. (17.4b) 

From Theorem 2.3 in [ 2], it follows that .(x∗, y∗) is a global optimal solution of 
the problem (17.1) if  .(x∗, y∗, λ∗) is a global optimal solution of (17.4). Hence, 
we will work with the latter problem in what follows. Note that Problem (17.4) 
contains two complicating aspects: the integrality and the KKT complementarity 
constraints. To address these two aspects, we again reformulate the problem. We 
remove the problematic constraints and penalize their violation by extending the 
objective function with additional piecewise-linear penalty terms and obtain the 
continuous problem . 

. min
x,y,λ

Q(x, y) + α
∑

i∈I
min{xi , 1 − xi } + β

l∑

j=1

min{λ j , (Cx + Dy − b) j },

(17.5a) 

s.t. Ax + By  ≥ a, Cx  + Dy ≥ b, (17.5b) 

Gy y + GT 
xy x + dy − DTλ = 0, λ  ≥ 0, 0 ≤ xi ≤ 1, i ∈ I, (17.5c) 

where .α, β > 0 are suitably chosen penalty parameters. For what follows, let 
.π(x, y, λ) denote the objective function of the penalty reformulation (17.5) and 
let .P denote its feasible set. Problem (17.5) can thus be written as . min{π(x, y, λ) :
(x, y, λ) ∈ P}. In order to measure the violation of the integrality and complemen-
tarity constraints, we make use of the following definition. 

Definition 1 For a given point .(x, y, λ) ∈ P , we call 

. Fw(x, y, λ;α, β) := α
∑

i∈I
min {xi , 1 − xi } + β

l∑

j=1

min
{
λ j , (Cx + Dy − b) j

}

the weighted infeasibility measure. Moreover, .Fu(x, y, λ) := Fw(x, y, λ; 1, 1) is 
called the unweighted infeasibility measure. 

The following theorem establishes the connection between the penalty reformula-
tion (17.5) and the bilevel problem (17.1). 

Theorem 1 Let .(x∗, y∗, λ∗) be a global optimal solution of the penalty reformu-
lation (17.5) for arbitrarily chosen .α, β > 0. If the solution is feasible for the KKT 
reformulation (17.4), i.e., .Fw(x∗, y∗, λ∗;α, β) = 0, then it is also globally optimal 
for Problem (17.4). Furthermore, .(x∗, y∗) is globally optimal for the bilevel prob-
lem (17.1).
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Proof Suppose that .(x∗, y∗, λ∗) is not a global optimum of the KKT reformulation 
(17.4), i.e., there exists a point .(x̄, ȳ, λ̄) with .Q(x̄, ȳ) < Q(x∗, y∗). Then, 

. π(x̄, ȳ, λ̄) = Q(x̄, ȳ) < Q(x∗, y∗) = π(x∗, y∗, λ∗)

holds, which contradicts the global optimality of.(x∗, y∗, λ∗) w.r.t. the penalty refor-
mulation (17.5). According to Theorem 2.3 in [ 2], .(x∗, y∗) is also globally optimal 
for Problem (17.1). ◻ 

According to Theorem 1, we can obtain globally optimal solutions of Problem (17.1) 
by solving the penalty reformulation (17.5). However, this problem is still hard to 
solve. Compared to the KKT reformulation (17.4), Problem (17.5) has only linear 
constraints but has a nonsmooth and nonconvex objective function due to the penalty 
terms. This seems to be obstructive w.r.t. Theorem 1, which requires a global solu-
tion of Problem (17.5). Fortunately, we will show that the method described in the 
following can tackle these aspects. 

A Branch-and-Bound Method For Fixed Penalty Parameters 

We now derive a B&B method for solving (17.5) that branches by adding suit-
ably chosen penalty terms instead of adding constraints or refining variable bounds. 
As in classic B&B, we first solve the root node relaxation of Problem (17.5), i.e., 
.min{Q(x, y) : (x, y, λ) ∈ P}, for which we assume that it is feasible and bounded 
from below. If integrality or complementarity constraints are violated in the obtained 
solution, we choose one among them for branching and construct the subproblems 

. S1(x, y, λ) := min
(x,y,λ)∈P

Q(x, y) + αxi ,

S2(x, y, λ) := min
(x,y,λ)∈P

Q(x, y) + α(1 − xi ),

if we choose an integrality constraint or 

. S̃1(x, y, λ) := min
(x,y,λ)∈P

Q(x, y) + βλ j ,

S̃2(x, y, λ) := min
(x,y,λ)∈P

Q(x, y) + β(Cx + Dy − b) j

otherwise. By doing so, the penalty terms in the objective of (17.5) are split in linear 
parts, which leads to convex-quadratic subproblems . S1, . S2, . S̃1, and . S̃2. An arbitrary 
node problem in the B&B tree is then defined as 

. min
(x,y,λ)∈P

πN (x, y, λ) (17.6)
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with 

. πN (x, y, λ) := Q(x, y) + α

(
∑

i∈Z
xi +

∑

i∈O
(1 − xi )

)

+ β

⎛

⎝
∑

j∈D
λ j +

∑

j∈P

(Cx + Dy − b) j

⎞

⎠

and the tuple .N := (Z , O, D, P) of index sets containing the indices for which 
binary variables are driven to 0 (. Z ) or to 1 (. O) as well as for which either the dual 
variable .λ j is driven to 0 (. D) or for which the primal constraint is driven to 0 (. P). 
The overall method is given in Algorithm 1. In Line 1 of Algorithm 1 the set.N of 

Algorithm 1: A penalty B&B method to solve Problem (17.5) 
Data: A bilevel problem of the form (17.1) and  α, β > 0. 
Result: A globally optimal solution (x∗, y∗, λ∗) of Problem (17.5). 

1 Set N ← {(∅, ∅, ∅, ∅)} and u ← ∞. 
2 while N /= ∅  do 
3 Choose an N ∈ N and set N ← N\{N }. 
4 Solve Problem (17.6) for  N and obtain the solution (xN , yN , λN ). 
5 if π(xN , yN , λN ) <  u then 
6 Set (x∗, y∗, λ∗) ← (xN , yN , λN ) and u ← π(xN , yN , λN ). 
7 if πN (xN , yN , λN ) <  u and (∃i ∈ I \(Z ∪ O) or ∃ j ∈ [l]\(D ∪ P)) then 
8 Choose either an i ∈ I \(Z ∪ O) and set 

N ← N ∪ {(Z ∪ {i}, O, D, P), (Z , O ∪ {i}, D, P)} or a j ∈ [l]\(D ∪ P) and set 
N ← N ∪ {(Z , O, D ∪ {  j}, P), (Z , O, D, P ∪ {  j})}. 

9 end 
10 return (x∗, y∗, λ∗). 

open nodes is initialized with the root node and the incumbent . u is set to infinity. 
Every time a node in the B&B tree is solved, the objective function of the penalty 
reformulation (17.5) is evaluated at the solution to check if a new incumbent is 
found (Line 5–6). The branching step is performed in Lines 7–8. Note that we, of 
course, only choose integer variables or complementarity constraints as branching 
candidates that are fractional or violated. 

The following two lemmas and the theorem are direct extensions of the cor-
responding results in [ 1] to the setting considered here. The proofs can be done 
analogously. To verify the correctness of the method, we first show that a complete 
evaluation of the B&B tree yields an optimal solution of Problem (17.5).
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Lemma 1 Let .(x∗, y∗, λ∗) be a globally optimal solution of Problem (17.5). Then, 
.π(x∗, y∗, λ∗) = min{πN (xN , yN , λN ) : N ∈ N '} holds, where the minimum is taken 
over all tuples in . N ' := {N = (Z , O, D, P) : Z ∪ O = I, Z ∩ O = ∅, D ∪ P =
[l], D ∩ P = ∅}. 
Furthermore, we state that the implicit pruning in Line 7 of Algorithm 1 is correct. 
To this end, we show that the optimal objective value of a node is not larger than the 
optimal objective value of any node below in the tree. 

Lemma 2 Let .N ' = (Z ', O ', D', P ') be a successor node of . N = (Z , O, D, P)

in the B&B tree, i.e., .Z ⊆ Z ', .O ⊆ O ', .D ⊆ D', and .P ⊆ P ' holds. For an opti-
mal solution .(xN , yN , λN ) of the problem in node . N, it holds . πN (xN , yN , λN ) ≤
πN '(xN ' , yN ' , λN '). 

We can now establish a correctness theorem for Algorithm 1. 

Theorem 2 Suppose that the root node relaxation of Problem (17.5) is feasible and 
bounded from below. Then, Algorithm 1 terminates after finitely many steps with a 
globally optimal solution of Problem (17.5). 

Conclusion 

We have just seen that Algorithm 1 computes globally optimal points for the penalty 
reformulation (17.5). However, the point is only optimal for the bilevel problem (17.1) 
if .Fu(x∗, y∗, λ∗) = 0 holds, i.e., if the solution satisfies all integrality and comple-
mentarity constraints. To address this issue, we will show in the second part of this 
paper [ 5] that we can set up an iterative penalty method so that we converge to 
points that satisfy all integrality and complementarity constraints and which are, 
thus, optimal solutions of the original bilevel problem. 
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Chapter 18 
A Penalty Branch-and-Bound Method 
for Mixed-Integer Quadratic Bilevel 
Problems. Part II: Penalty Updates 
and Numerical Results 

Andreas Horländer and Martin Schmidt 

Abstract In the first part of this paper, we propose a penalty branch-and-bound 
method for solving bilevel problems with mixed-integer convex-quadratic upper 
level as well as convex-quadratic and continuous lower level and analyze the method 
for a fixed penalty parameter. In this second part, we extend the algorithm and its 
analysis towards iteratively adapted penalty parameters, prove the correctness of this 
extended method, and show its applicability by some first numerical results. 

Keywords Bilevel optimization · Branch-and-bound · Penalty methods ·
Mixed-integer optimization 

Introduction 

In Part I of this paper, we studied bilevel problems of the form . 

min
x,y

Q(x, y) := 1

2
xTHxx + 1

2
yTHy y + cT

x x + cT
y y (18.1a) 

s.t. Ax + By  ≥ a, xi ∈ {0, 1}, i ∈ I ⊆ [nx ] := {1, . . . ,  nx }, (18.1b) 

y ∈ arg min 
y' 

⎧ 
1 

2 
(y')TGy y

' + xTGxy  y
' + dT 

y y
' : Cx  + Dy' ≥ b 

⎫ 
. (18.1c) 

We then used the KKT reformulation (see Problem (4) in [ 1]) to derive the penalty 
reformulation . 
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min 
x,y,λ 

Q(x, y) + α
∑ 

i∈I 
min{xi , 1 − xi } +  β 

l∑ 

j=1 

min{λ j , (Cx  + Dy − b) j } (18.2a) 

s.t. Ax + By  ≥ a, Cx  + Dy ≥ b, (18.2b) 

Gy y + GT 
xy x + dy − DTλ = 0, λ  ≥ 0, 0 ≤ xi ≤ 1, i ∈ I. (18.2c) 

Moreover, we derived a penalty B&B method for solving this reformulation and 
proved its correctness for the case of a fixed penalty parameter. However, the penalty 
parameter might not be large enough so that the resulting solution of the reformulation 
does not satisfy all integrality and complementarity constraints. In this part, we 
answer the question on how to adapt the penalty parameter so that we provably 
obtain a solution of the original bilevel problem. 

The key theorems and the resulting algorithm are presented and discussed in the 
Section “Iterative Penalty Parameter Updates”. Afterward, we discuss some prelim-
inary numerical results in the Section “Numerical Results”. 

Iterative Penalty Parameter Updates 

We first derive the result that the outcome of Algorithm 1 in [ 1] converges to points 
having an unweighted infeasibility measure .Fu of zero if . α and . β tend to infinity. 

Theorem 1 Let the root node relaxation of (18.2) be feasible and bounded from 
below and let the KKT reformulation of the original bilevel problem be solvable. 
Furthermore, let .(x̄(α, β), .ȳ(α, β), λ̄(α, β)) be a global solution of Problem (18.2) 
for given penalty parameters .α and . β. Then, . Fu(x̄(α, β), ȳ(α, β), λ̄(α, β)) → 0
for .α → ∞ and .β → ∞. Furthermore, for a given .t > 0, there exist finite penalty 
parameters . α and . β with .Fu(x̄(α, β), ȳ(α, β), λ̄(α, β)) ≤ t . 

Proof Let.(x∗, y∗) be a globally optimal solution of the KKT reformulation of (18.1). 
Due to optimality, it holds 

.

π(α, β, x̄(α, β), ȳ(α, β), λ̄(α, β))

≤ π(x∗, y∗, λ∗) = Q(x∗, y∗) + Fw(α, β, x∗, y∗, λ∗) = Q(x∗, y∗).
(18.3) 

Let .(xr , yr , λr ) be the optimal solution and .Qr := Q(xr , yr ) > −∞ be the optimal 
objective value of the root node relaxation. Note that the latter is independent of the 
penalty parameters . α and . β. Using Inequality (18.3), we get 

.Q(x∗, y∗) ≥ π(α, β, x̄(α, β), ȳ(α, β), λ̄(α, β))

= Q(x̄(α, β), ȳ(α, β)) + Fw(α, β, x̄(α, β), ȳ(α, β), λ̄(α, β))

≥ Qr + Fw(α, β, x̄(α, β), ȳ(α, β), λ̄(α, β)).
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The last inequality follows from the optimality of .(xr , yr , λr ) for the root node. By 
using the definition of .Fw, we get 

. α
∑
i∈I

min{x̄i , 1 − x̄i } + β
∑
j∈[l]

min{λ̄ j , (Cx̄ + Dȳ − b) j } ≤ Q(x∗, y∗) − Qr

with constant right-hand side .Q(x∗, y∗) − Qr . Now, we have  

.

∑
i∈I

min{x̄i , 1 − x̄i } ≤ Q(x∗, y∗) − Qr

α
,

∑
j∈[l]

min{λ̄ j , (Cx̄ + Dȳ − b) j } ≤ Q(x∗, y∗) − Qr

β

(18.4) 

and taking the limits yields 

. lim
α→∞,β→∞

( ∑
i∈I

min{x̄i , 1 − x̄i } +
∑
j∈[l]

min{λ̄ j , (Cx̄ + Dȳ − b) j }
)

= 0.

This proves the first claim. For the second claim, we use (18.4) to see that for 
.α, β ≥ 2(Q(x∗, y∗) − Qr )/t , we get 

. 

∑
i∈I

min{x̄i , 1 − x̄i } ≤ (Q(x∗, y∗) − Qr )t

2(Q(x∗, y∗) − Qr )
= t

2

as well as the analogous inequality for the complementarities and, thus, 
.Fu(x̄(α, β), ȳ(α, β), λ̄(α, β)) ≤ t . ∎ 

To make use of Theorem 1, we modify Algorithm 1 in [ 1] so that the penalty param-
eters are increased after every evaluation of the B&B tree. Furthermore, we relax the 
condition .Fu(x∗, y∗, λ∗) = 0 to .Fu(x∗, y∗, λ∗) ≤ t for a given tolerance .t > 0. 

Since the value of .Q(x∗, y∗) is unknown in practice, one can also use the value 
.Q(x̃, ỹ) of an already obtained point .(x̃, ỹ), which is feasible for the KKT reformu-
lation of the bilevel problem. This yields a valid and finite, but also worse, upper 
bound for the unweighted infeasibility .Fu since .Q(x∗, y∗) ≤ Q(x̃, ỹ) holds. 

We can now present a multi-tree penalty B&B method that computes an approx-
imate solution to the bilevel problem (18.1) by repeatedly applying Algorithm 1 
in [ 1] for increasing penalty parameters . α and . β; see Algorithm 1. Here, a point 
.(x∗, y∗, λ∗) ∈ P is called approximate solution of Problem (18.1) if it minimizes 
.Q(x, y) and if it satisfies the condition .Fu(x∗, y∗, λ∗) ≤ t . 

In Line 3, Algorithm 1 in [ 1] is applied to obtain a globally optimal solution 
of Problem (18.2) for  .αk and .βk . If the solution is not an approximate solution of 
Problem (18.1), the penalty parameters are increased and the procedure is repeated 
(Lines 10 and 11). Further steps are added in Lines 6–8, where every node solution 
that yields a better objective value than the incumbent is checked for feasibility
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Algorithm 1: A penalty B&B method for MIQP-QP bilevel problems 

Data: A bilevel problem of the form (18.1), α1 > 0, β1 > 0, t > 0, and τ >  0. 
Result: An approximate solution (x∗, y∗, λ∗) of the bilevel problem (18.1). 

1 Set umax ← ∞, αmax ← ∞, βmax ← ∞, and  k ← 1. 
2 while αk ≤ αmax, β

k ≤ βmax do 
3 Apply Algorithm 1 in [1] with  u ← umax + τ , α ← αk , and  β ← βk . 
4 if π k (xk N , y

k 
N , λ

k 
N ) <  u for any node N of the last execution of Algorithm 1 then 

5 Set (xk opt, yk opt, λk opt) ← (xk N , y
k 
N , λ

k 
N ) and u ← π k (xk N , y

k 
N , λ

k 
N ). 

6 if Fu (xk N , y
k 
N , λ

k 
N ) ≤ t then 

7 Set αmax, βmax ← 2(Q(xk N , y
k 
N ) − Qr )/t . 

8 if Fu (xk N , y
k 
N , λ

k 
N ) = 0 then set umax ← u. 

9 end 
10 if Fu (xk opt, yk opt, λk opt) >  t then 
11 Choose new penalty parameters αk+1 > αk and βk+1 > βk . 
12 else 
13 Set αk+1 > αmax and βk+1 > βmax to terminate the algorithm. 
14 end 
15 Set k ← k + 1. 
16 end 
17 return (x∗, y∗, λ∗) := (xk opt, yk opt, λk opt) 

w.r.t. the KKT reformulation of the bilevel problem. If the unweighted infeasibility 
measure .Fu for this point is within the tolerance . t , we update the upper bounds of 
the penalty parameters according to the proof of Theorem 1. Moreover, if . Fu = 0
holds, we update the upper bound of the incumbent, which can be used in further 
evaluations of the B&B tree to initialize the incumbent instead of setting it to infinity; 
see Line 3. Therefore, it has to be modified by the value . τ , which is also shown in 
the following theorem. 

Theorem 2 Let the KKT reformulation of the bilevel problem be solvable, the root 
node relaxation of (18.2) be feasible and bounded from below, and let . t, τ > 0
be given. Furthermore, suppose that .αk+1 − αk ≥ ε and .βk+1 − βk ≥ ε holds for 
a fixed .ε > 0 and every . k. Then, Algorithm 1 terminates after finitely many steps 
in an iteration .k∗ with a globally optimal solution .(xk

∗
opt, y

k∗
opt, λ

k∗
opt) of the penalty 

reformulation with .αk∗
and .βk∗

that satisfy the condition .Fu(xk
∗

opt, y
k∗
opt, λ

k∗
opt) ≤ t . 

Proof According to Theorem 1, the algorithm terminates with finite penalty param-
eters.αk ≤ αmax and.βk ≤ βmax with a solution that satisfies the condition of the theo-
rem. Using the assumption that the increase of the penalty parameters is not arbitrar-
ily small, we obtain .kmax ≤ max{(αmax − α1)/∈, (βmax − β1)/∈} < ∞, where . kmax

denotes the number of maximally required penalty parameter updates. According to 
Theorem 2 in [ 1], a complete evaluation of the B&B tree takes only finitely many 
steps so that Algorithm 1 also terminates in finite time. It remains to show that the 
update .u ← umax + τ at the end of iteration . k cannot lead to overlooking a globally
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optimal solution of Problem (18.2) with new penalty parameters .αk+1 and .βk+1 in 
Line 4 of the next iteration .k + 1. We obtain .umax in iteration . k by the objective 
value .π k of a node’s solution that satisfies all integrality and complementarity con-
ditions. Let .(x̃ k, ỹk, λ̃k) be this solution, i.e., .(x̃ k, ỹk, λ̃k) is the optimal solution of 
a node .N for iteration . k for which .umax = π k(x̃ k, ỹk, λ̃k) holds. Additionally, it is 
feasible for the KKT reformulation of (18.1), i.e., it holds 

. Fu(x̃
k, ỹk, λ̃k) =

∑
i∈I

min
{
x̃ ki , 1 − x̃ ki

} +
∑
j∈[l]

min
{
λ̃k
i , (Cx̃ + Dỹ − b)i

}
= 0.

Then, the point.(x̃ k, ỹk, λ̃k) is also feasible for the node.Ñ = (Z̃ , Õ, D̃, P̃)with. Z̃ :=
{i ∈ I : x̃ ki ≤ 1 − x̃ ki }, .Õ := {i ∈ I : x̃ ki > 1 − x̃ ki }, . D̃ := { j ∈ {1, . . . , l} : λ̃k

j ≤
(Cx̃k + Dỹk − b) j }, and.P̃ := { j ∈ {1, . . . , l} : λ̃k

j > (Cx̃k + Dỹk − b) j }. Further-
more, it holds 

. αk

⎛
⎝∑

i∈Ñ
x̃ ki +

∑
i∈Õ

(1 − x̃ ki )

⎞
⎠ + βk

⎛
⎝∑

j∈D̃
λ̃k
j +

∑
j∈P̃

(Cx̃k + Dỹk − b) j

⎞
⎠ = 0,

which is why the point .(x̃ k, ỹk, λ̃k) is also an optimal solution of the node . Ñ
for every other .αk+1 > αk and .βk+1 > βk . If we use the incumbent . u = umax +
τ > π k(x̃ k, ỹk, λ̃k) = π k

Ñ
(x̃ k, ỹk, λ̃k), in Algorithm 1 in iteration .k + 1, then for 

an optimal solution .(xk+1
opt , yk+1

opt , λk+1
opt ) of Problem (18.2) with penalty parame-

ters .αk+1 and .βk+1, it holds . π k+1(xk+1
opt , yk+1

opt , λk+1
opt ) ≤ π k+1

Ñ
(x̃ k+1, ỹk+1, λ̃k+1) =

π k
Ñ
(x̃ k, ỹk, λ̃k) < u, where the first inequality follows from Lemma 1 in [ 1]. Due 

to the strict inequality in the last estimation, the optimal solution . (xk+1
opt , yk+1

opt , λk+1
opt )

cannot be overlooked in Line 4 of iteration.k + 1 of Algorithm 1. To guarantee this, 
. τ has to be chosen strictly positive. ∎ 

Let us close this section with two remarks. First, we also derived a single-tree 
version of Algorithm 1 in which we check for every node if the obtained solution 
fulfills all constraints that have been added by branching so far, i.e., if 

.

∑
i∈Z

xN ,i +
∑
i∈O

(1 − xN ,i ) +
∑
j∈D

λN , j +
∑
j∈P

(CxN + DyN − b) j = 0 (18.5) 

holds. If this is not the case, we set.Q(x, y) = 0 and solve the node again to check if 
the node is infeasible w.r.t. the integrality and complementarity constraints. If it is, we 
prune the node and, otherwise, we increase the parameters until Condition (18.5) is  
satisfied in the associated solution. By doing so, we can prune nodes more efficiently 
and only a single B&B tree is required. However, we have to solve nodes multiple 
times so that it is not clear a priori if the single-tree is performing better. We will 
discuss this in more detail in the next section.
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Second, we derived a modified version of Algorithm 1 in which we do not branch 
on the integrality conditions but only on the complementarity constraints and let the 
MILP solver handle the other ones. We compare these two different variants in the 
next section as well. 

Numerical Results 

In this section, we present a brief and preliminary numerical comparison of the 
penalty B&B method with solving the classic KKT reformulation of the given bilevel 
problem, which is still the most frequently used approach to solve bilevel problems 
in practice. We choose Gurobi 9.5.1 (with cuts, presolve, and heuristics deactivated 
to get a fair comparison) as the solver applied to the KKT formulation, where we 
handle complementarity constraints via SOS1 conditions; see [ 2]. 

Our test set consists of a subset of the instance collections Denegre Denegre, Int0Sum, 
MIPLIB2010, MIPLIB2017, MIPLIB3, Small, and Xuwang as used in [ 3]. Moreover, we 
excluded all instances that all methods can solve in less than 1 s and all instances that 
no method can solve within the time limit of 1 h; leading to 157 remaining instances 
in total. Our algorithm has been implemented in Python 3.9.7 and all occurring sub-
problems have been solved using Gurobi 9.5.1. All computations were executed on 
the high performance cluster “Elwetritsch” at the TU Kaiserslautern, which is part of 
the “Alliance of High Performance Computing Rheinland-Pfalz” (AHRP). We used 
a single Intel XEON SP 6126 core with 2.6 GHz and 32 GB RAM. 

As discussed at the end of the last section, we tested both a multi-tree (MT) and 
a single-tree (ST) variant of our method as well as a version in which we branch on 
complementarity and integrality constraints (BOTH; in this case, we first branch on 
integrality constraints and then on complementarity constraints) and on complemen-
tarity constraints only (COMP). While doing so, we always choose the most violated 
integrality or complementarity constraint for branching in a depth-first search. More-
over, we set.α1 = β1 = 100 with update factor.100 and.τ = 10−1 and.t = 10−4. The  
results are given in Fig. 18.1. 

Fig. 18.1 Node counts (left) and running times (in s; right) versus percentage of instances
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Conclusion 

The numerical results show that the penalty B&B method is more effective if we 
only apply the penalty branching to complementarity conditions and let Gurobi han-
dle the integrality constraints. The proposed method is rather competitive w.r.t. the 
classic KKT reformulation when it comes to node counts, although it is still slightly 
outperformed by it. The running times are worse, which can be devoted to our pro-
totypical implementation that is not comparable to a commercial software. Based on 
the results for the node counts, we see a clear potential of the new method. However, 
it needs to be improved—both w.r.t. further algorithmic techniques (such as cutting 
planes or tailored heuristics) as well as w.r.t. its implementation—in order to obtain 
a method that is more powerful than the commercial state-of-the-art. 
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Chapter 19 
Aircraft Fleet Planning: An Optimization 
Model with Integrated CO2 Trading 
Systems 

Lisa-Marie Manke and Imke Joormann 

Abstract The pressure on airlines to reduce their emitted CO2 emissions is con-
tinuously increasing. Due to new fuel-efficient air frame and engine technologies, 
aircraft modernization offers an opportunity to reduce annual emissions. But with 
limited production capacities of the manufacturers and related costs, it is not possible 
to renew a whole fleet at once. At the same time, CO2 trading systems lead to higher 
costs for older fleets. Therefore, there needs to be long term planning regarding 
the fleet composition of an airline. For this, the fleet planning problem determines 
economically optimal replacement times for aircraft. The fleet planning problem 
can be formulated as a MILP and combines fleet composition and fleet assignment. 
The fleet composition problem considers different aircraft types as well as retrofits; 
here, retrofits are modifications of aircraft to lower the amount of emitted emissions 
without replacing the whole aircraft. These aircraft are then used within the fleet 
assignment problem to fulfill a given demand of flights. The emissions are then con-
sidered within CO2 trading systems as that is currently the only affecting restriction 
for airlines concerning CO2 emissions. 

Keywords Mixed-integer programming · Transportation · Airline applications 

Introduction 

In 2019, the aviation sector was responsible for at least 3% of the worldwide emitted 
CO2 emissions [ 2], and the pressure on airlines to reduce the emitted emissions is 
continuously increasing, as seen for example in the “Fit for 55”-initiative of the 
EU [ 1]. Due to new fuel-efficient air frame and engine technologies, see, e.g., [ 3], 
aircraft modernization offers an opportunity to reduce annual emissions. Moreover, 
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there are possibilities to retrofit an old aircraft so that the emitted CO2 emissions 
decrease. For example, it is possible to re-engining an aircraft which reduces the 
emitted emissions per flight by 12.5% or to reduce the cabin weight which would 
result in 1.2–2.1% reduced emitted emissions per life cycle, see [ 5]. With limited 
production capacities of the manufacturers and related costs, it is not possible to 
renew a whole fleet at once. At the same time, CO2 trading systems lead to higher 
costs for older fleets. Therefore, there needs to be long term planning regarding the 
fleet composition of an airline. For this, the fleet planning problem (FPP) determines 
economically optimal replacement times for aircraft. 

The FPP models the composition of the fleet under the restriction that the oper-
ation of the considered airline is not affected. For this purpose a given demand of 
flight-hours will be fulfilled under the restriction that the aircraft-specific working 
hours will not be exceeded. This model was first introduced in [ 4], but gets rather 
big even for small instances. We will introduce an alternative formulation for the 
FPP with beneficial properties for the computation of the solution: it is possible 
to decompose the FPP into two different optimization problems, the composition 
of the fleet and the assignment of aircraft to flights. Afterwards, we can model the 
fleet composition via a network flow problem, leaving the assignment of aircraft to 
flights as the only part adopted from [ 4]. Additionally, we model trading systems 
for CO2 emissions, as these are the current political instruments affecting airlines 
most regarding CO2 emissions; see [ 6] for a complete introduction of the considered 
systems. 

Model 

We will first introduce the two planning problems separately, describe the relevant 
trading systems for the CO2 emissions and then combine them to the mixed-integer 
programming formulation of the FPP. 

Fleet Composition 

The first problem contained in the FPP is the fleet composition over time (FCP). As 
movements in a fleet’s stock can be represented by flows in a graph, it is possible to 
describe the FCP as a network flow problem. For the FCP, we are given the number 
of considered periods T ∈ Z>0 and the set of different aircraft types C . The  set  C 
consists of base aircraft types B as they are available on the market, and retrofitted 
aircraft types R, so that C = B ∪ R. For retrofitted aircraft, some modification is 
done on a base type, leading to lower emitted CO2 emissions than for the original 
type. We consider a set of retrofit options ρ; if the retrofit r ∈ ρ is available for b ∈ B,
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there is a retrofitted aircraft type rb ∈ Rb so that R = 
⋃ 

b∈B Rb. In our computational 
study, we use different retrofit options where the emission reduction potential ranges 
from 1.2 to 12.5%. 

For each b ∈ B, the maximum service time is given by T b ∈ Z>0; retrofitted 
aircraft types have the same maximum service time as their original aircraft type. 
The first period in which b ∈ B is available for sale is tb ∈ Z, tr ∈ Z is the period 
from when on a retrofit r is available. A negative tb or tr here means that the market 
launch was before the beginning of the optimization. An aircraft bought in period t 
will be delivered in t + 1. 

For n ∈ Z, let  [n] := {0, 1, 2, . . . ,  n} if n ≥ 0 and [n] := ∅  otherwise. Let N = 
(V , A) be the network graph. To construct the graph, we add one vertex vb,θ,t to 
V for all base aircraft b ∈ B, t ∈ {max{0, tb}, . . . ,  T } and θ ∈ [min{T b, t − tb}]. 
Let T := {max{1, tr , tb}, . . . ,  T } with tr := 0 for terms without any retrofitted type. 
Let Θb := [min{T b, t − tb}] \ {0} and Θr := [min{T b, t − tb}] \ {0, 1}—note that a 
retrofit cannot take place in the same period as the purchase of an aircraft. Then, for 
the retrofit options, we add vertices vrb,θ,t for all rb ∈ Rb, t ∈ T and θ ∈ Θr . Lastly 
we add a vertex for the purchase market vpm and one for the retail market vrm to V . 

Each arc of the graph represents a different kind of movement within the fleet: 
purchasing, selling, retrofitting and owning. The integer flow of every arc is equal 
to the number of aircraft in stock performing this particular movement. Aircraft 
are bought at the purchase market, which offers only non-retrofitted aircraft types, 
leading, for each potential purchase action, to the arc apur b,t = (vpm, vb,0,t ) ∈ A for 
all b ∈ B and t ∈ T . Regarding aircraft sales, it is prohibited to sell any aircraft in 
period T , otherwise part of an optimal solution would always be to sell off the whole 
fleet in the last period. Furthermore, it is not possible to sell aircraft in the period 
directly after they were purchased; since normally, an airline has no reason to buy 
an aircraft only to resell it directly afterwards, this serves the purpose of complexity 
reduction. Hence, we add selling arcs asell c,θ,t = (vc,θ,t−1, vrm) to A for all c ∈ C , t ∈ T 
and θ ∈ Θc. Here  Θc := Θb when c = b ∈ B and Θc := Θr when c = r ∈ R. Since 
it is not allowed to retrofit a base aircraft type within its purchase period, this leads to 
the arcs aretro b,rb,θ,t = (vb,θ−1,t−1, vrb,θ,t ) ∈ A for all b ∈ B, rb ∈ Rb, t ∈ T and θ ∈ Θb. 
Older aircraft consume more fuel and the blocked time for a single flight increases 
due to wear and tear. Hence, we need to keep track of the aging process of the 
aircraft and add the aging arcs aown c,θ,t = (vc,θ −1,t−1, vc,θ,t ) ∈ A for all c ∈ C , t ∈ T 
and θ ∈ Θc. An example for the resulting graph is shown in Fig. 19.1. 

Let δ+ : V → P( A) and δ− : V → P(A) be the functions assigning each vertex 
its outgoing and incoming arcs, respectively, where P( A) is defined as the power set 
of A. Let  f : P(A) → Z≥0 be the function which assigns sets of arcs their summed 
up flow values. This enables us to formulate the IP for the FCP as
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min NPV ( f (asell ), f (apur ), f (aretro )) (19.1a) 

s.t. f (δ+(vc,θ,0)) = EFc,θ ∀c ∈ B ∀θ ∈ Θc (19.1b) 

f (δ−(vc,θ,t )) − f (δ+(vc,θ,t )) = 0 ∀c ∈ C ∀t ∈ T \ {T } ∀θ ∈ Θc (19.1c) 

f (apur b,t ) ≤ UBpur 
b,t ∀b ∈ B ∀t ∈ T (19.1d) 

∑ 

b∈B:∃rb∈Rr 

∑ 

θ ∈Θb 

f (aretro b,rb,θ,t ) ≤ UBretro 
r,t ∀r ∈ ρ ∀t ∈ T (19.1e) 

f (α) ∈ Z≥0 ∀α ∈ P(A) (19.1f) 

The objective function (19.1a) is the net present value (NPV) of future costs, com-
posed of the expenses for the purchase of new aircraft and for the implementation 
of retrofits (positive values) and the revenue from the sale of aircraft (negative val-
ues). Equation (19.1b) sets the aircraft in stock as initial flow, where EFc,θ is the 
number of aircraft of type c ∈ C and age θ ∈ Θc in stock. Equation (19.1c) are  the  
flow conversation constraints. Lastly (19.1d) and (19.1e) give upper bounds on the 
purchase of new aircraft and retrofits as there are limitations from the manufacturers 
side. Here UBpur 

b,t is the maximum number of aircraft of type b that can be purchased 
by an airline per period and UBretro 

r,t is the maximum number a retrofit r ∈ ρ can be 
done; Rr is the set of retrofitted aircraft types originating from r ∈ ρ. 

Flight Assignment Under CO2-Certificate Trading Systems 

The flight assignment problem (FAP) is the problem of assigning a set of aircraft to 
a given set of flights. As this might be very complicated when the numbers of flights 
and aircraft are large, we consider some flights and aircraft to be equivalent. For 

Fig. 19.1 Fleet composition graph with T = 3 periods, one base aircraft type B = {1} and two 
retrofitted aircraft types R = {2, 3} with θ as the age of the aircraft; name of nodes vc,θ,t given on 
the border of the network with c ∈ C = B ∪ R and t ∈ [T ]
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aircraft, the equivalence classes consist of all aircraft of the same type and age. For 
flights, the equivalence classes are called net classes L and a flight belongs to a certain 
net class l ∈ L if its length and seat demand is within the respective ranges of l. 

The main political instrument to limit the amount of emitted CO2 emissions within 
the aviation sector active currently are trading schemes, where airlines need to buy 
certificates for their emitted CO2. As of 2022, there are two main trading schemes 
relevant for European airlines, one from the European Union, applicable for all flights 
within the EU, and one from the International Civil Aviation Organisation (ICAO), 
applicable on flights between members states of the ICAO. To model this, we split 
L into the set L I , consisting of net classes considering international flights, and 
L E , the set of net classes considering flights within the European air traffic, so that 
L = L I ∪ L E holds. 

To provide a linear program (LP) for the FAP together with the trading systems, 
we need flight and emission variables. The flight variables are zc,θ,l ∈ R≥0, capturing 
the number of flights in net class l ∈ L to be operated by the aircraft c ∈ C at age 
θ ∈ Θc, where C and Θc are from the FCP formulation with t := 0 for the Θc formula. 
For complexity reduction we assume that the flight variables are continuous, as they 
are typically large so that the possible rounding error should be relatively small. The 
emission variables eI , eE ∈ R≥0 capture the amount of emitted CO2 emissions that 
must be compensated by certificates within the considered period on international 
flights (I ) and within Europe (E), respectively. 

The supply constraints ensure that the number of assigned flight hours does not 
exceed the number of flight hours given by the specific set of aircraft. For each aircraft 
of type c and age θ there is a fixed number of flight hours MUc,θ ∈ Z allowed per 
period. The number of aircraft in stock with these characteristics is given by Sc,θ . 
The time needed for a flight of net class l performed by an aircraft of type c and age 
θ is BTc,θ,l. The  set  Lc,θ,q ⊆ L is the subset of net classes which can be assigned to 
an aircraft of type c and age θ located in q ∈ {I, E}: 

∑ 

q∈{I,E} 

∑ 

l∈Lc,y,q 

BTc,θ,lzc,θ,l ≤ MUc,θ Sc,θ ∀c ∈ C ∀θ ∈ Θc. 

The demand constraints guarantee that the number of demanded flights dl in a 
net class l is not larger than the total number of flights assigned to this net class by 
the set of aircraft: ∑ 

c∈C 

∑ 

θ ∈Θc 

zc,θ,l ≥ dl ∀l ∈ L . 

The emission constraints collect the CO2 emissions emitted and to be compen-
sated in the considered period. Here we need to differentiate between the system of 
the EU and the one from ICAO. Within the EU, it is mandatory to compensate the 
whole amount of emitted CO2 emissions per period from 2027 on, while for the 
ICAO, airlines just need to compensate the amount of emitted CO2 emissions above 
the levels from 2019, so a smaller percentage of the whole amount. This difference 
leads to the constraints
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∑ 

c∈C 

∑ 

θ ∈Θc 

∑ 

l∈L E 
9.75FUc,y,lzc,θ,l = eE , 

pI 
∑ 

c∈C 

∑ 

θ ∈Θc 

∑ 

l∈L I 
9.75FUc,θ,lzc,θ,l = eI , 

where FUc,θ,l ∈ R is the amount of fuel needed to perform a flight of net class l 
with an aircraft of type c and age θ . The growth rate pI of the aviation emissions 
within the considered period relative to 2019 base values is a scalar, computed and 
published by the ICAO for the international aviation system. The amount of fuel use 
is multiplied by the CO2 emission factor of jet fuel, 9.75 kgCO2/(gallon jet fuel) and 
the number of assignments zc,θ,l to obtain the total emissions. 

Fleet Planning Problem 

Until now, we have described the flight assignment problem for one period in time. 
To obtain an integrated formulation for the FPP, the FAP needs to be solved for 
every period. To then be able to identify the corresponding period for the solutions, 
we add an additional index to the variables of the FAP. Hence, eq becomes eq,t and 
zc,θ,l becomes zc,θ,l,t for all t ∈ T . Furthermore, the data of the FAP depends on the 
solution of the FCP: the supply of available aircraft is given by the number of aircraft 
determined in the FCP. Therefore, Sc,θ from the supply constraints will be replaced 
by the incoming flow of the vertex vc,θ,t from the flow network describing the FCP. 
The new objective function is the sum of the costs from the FCP and FAP. 

Together, this yields the mixed integer formulation of the FPP: 

min NPV ( f (asell), f (apur), f (aretro), z, e) 

s.t. f (δ+(vc,θ,0)) = EFc,θ ∀c ∈ C ∀θ ∈ Θc 

f (δ−(vc,θ,t )) − f (δ+(vc,θ,t )) = 0 ∀c ∈ C ∀t ∈ T \ {T } ∀θ ∈ Θc 

f (a
pur 
b,t ) ≤ UBpur b,t ∀c ∈ B ∀t ∈ T 

∑ 

b∈B:∃rb∈Rr 

∑ 

θ∈Θb 

f (aretro b,rb,θ,t ) ≤ UBretro r,t ∀r ∈ ρ ∀t ∈ T 

∑ 

q∈{I,E} 

∑ 

l∈Lc,θ,q 

BTc,θ,lzc,θ,l,t ≤ MUc,θ f (δ
+(vc,θ,t )) ∀c ∈ C ∀t ∈ T ∀θ ∈ Θc 

∑ 

c∈C 

∑ 

θ∈Θc 

zc,θ,l,t ≥ dl,t ∀l ∈ L ∀t ∈ T 
∑ 

c∈C 

∑ 

θ∈Θc 

∑ 

l∈L E 
9.75FUc,θ,lzc,θ,l,t = eE,t ∀t ∈ [T ] 

∑ 

c∈C 

∑ 

θ∈Θc 

∑ 

l∈L I 
pI (9.75FUc,θ,lzc,θ,l,t ) = eI,t ∀t ∈ [T ] 

eq,t , zc,θ,l,t ∈ R≥0, f (α) ∈ Z≥0 ∀α ∈ P(A).
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Conclusion and Outlook 

After setting up the MILP formulation of the FPP we implemented the model via 
SCIP. For performance tests we also set up a random instance generator. Comparing 
the computational results with the original formulation from [ 4], we were able to solve 
small instances within about 1 s versus 30 s in the referenced paper. For some large 
instances, we were also able to cut the solving time to roughly 35 min from 450 min. 
These preliminary computational suggest that the reformulation as a flow problem is 
beneficial. Next steps in our work will be finding a specialized algorithm solving the 
FPP by analyzing the structure of the problem and doing a full computational study 
to verify the given preliminary results. 
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Chapter 20 
PaMILO: A Solver for Multi-objective 
Mixed Integer Linear Optimization and 
Beyond 

Fritz Bökler, Levin Nemesch, and Mirko H. Wagner 

Abstract In multi-objective optimization, several potentially conflicting objective 
functions need to be optimized. Instead of one optimal solution, we look for the set of 
so called non-dominated solutions. An important subset is the set of non-dominated 
extreme points. Finding it is a computationally hard problem in general. While solvers 
for similar problems exist, there are none known for multi-objective mixed integer 
linear programs (MOMILPs) or multi-objective mixed integer quadratically con-
strained quadratic programs (MOMIQCQPs). We present PaMILO, the first solver 
for finding non-dominated extreme points of MOMILPs and MOMIQCQPs. It can 
be found on github under https://github.com/FritzBo/PaMILO. PaMILO provides an 
easy-to-use interface and is implemented in C++17. It solves occurring subproblems 
employing either CPLEX or Gurobi. PaMILO adapts the Dual-Benson algorithm for 
multi-objective linear programming (MOLP). As it was previously only defined for 
MOLPs, we describe how it can be adapted for MOMILPs, MOMIQCQPs and even 
more problem classes in the future. 

Keywords Software · Multi-objective · Non-dominated extreme points · Mixed 
integer linear programming · Mixed integer quadratically constrained quadratic 
programming · Dual-Benson 

Introduction 

Many optimization problems can be seen as multi-objective problems, where sev-
eral potentially conflicting objective functions need to be optimized. The solution 
of such a problem consists not of one single optimal solution value, but instead a 
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set of so called Pareto-optimal solution values. A solution is Pareto-optimal, if an 
improvement in one objective has to worsen at least one other objective. Subclasses 
of multi-objective problems include multi-objective linear programming (MOLP), 
multi-objective integer linear programming (MOILP), multi-objective mixed integer 
linear programming (MOMILP), and multi-objective mixed integer quadratically 
constrained quadratic programming (MOMIQCQP). In this paper, we are interested 
in the so-called extreme points of MOMILPs and MOMIQCQPs. As MOLPs and 
MOILPs are special cases of MOMILPs, this also covers finding extreme points for 
those. 

Especially MOMILPs are relevant problems in practice. For example in [ 1], a 
model for power generation expansion planning is formulated as a MOMILP. The 
objectives consider the economic cost of expanding the infrastructure, the environ-
mental impact and the cost of resulting economic damage. In [ 9], a MOMILP is used 
in a completely different field to optimize financial portfolios. A set of portfolios is 
calculated from which an investor can choose which one fits best to their preferences. 

Extreme points are an especially interesting subset of the Pareto-optimal solution: 
If a decision process mirrors reducing multiple criteria into one dimension through 
a concave function, an optimal solution can always be represented by exactly one 
specific extreme point [ 2]. Searching for extreme points can be seen as equal to 
parametric optimization, extreme points are called break points there. There are no 
extreme point solvers for MOMILPs or MOMIQCQPs and only few for MOLPs or 
MOILPs: bensolve [ 13] and inner [ 7] are solvers for MOLPs, PolySCIP [ 6] is able  
to find extreme points of both MOLPs and MOILPs. 

Contribution. We introduce PaMILO (Parametric Mixed Integer Linear Optimiza-
tion), a new solver for MOMILPs and MOMIQCQPs. It can read most common input 
formats and provides an easy-to-use console interface for practitioners. The only 
requirement is the existence of a tight lower bound for each objective, a so-called ideal 
point. The existence of it is an assumption also made by the aforementioned state-of-
the-art solvers for MOLPs and MOILPs. Which is reasonable, as practical instances 
usually have an ideal point. The algorithmic approach of PaMILO is based on the 
Dual-Benson algorithm. We explain, how the Dual-Benson algorithm is adapted for 
MOMILPs and MOMIQCQPs. Furthermore, through this technique the Dual-Benson 
algorithm can be adapted to all kinds of multi-objective optimization problems. 

Definitions 

In MOMIQCQP, problems are of the form: 

min fi (x) := xT Pi x + cT i x i  = 1, . . . ,  d 
s.t xT Q j x + aT j x≤ b j  = 1, . . . ,  m 

x ∈ Rl × Zl' 
,
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Fig. 20.1 Example of a MOMILP and its Edgeworth-Pareto hull 

where .d, l, l',m ∈ N and .n = l + l'. For an index .i = 1, . . . , d, we denote by 
.Pi ∈ Q

n×n the quadratic objective function matrix . i , and by .ci ∈ Q
n the objective 

function vector . i . For an index. j = 1, . . . ,m, we denote by.Q j ∈ Q
n×n the quadratic 

constraint matrix . j , and by .a j ∈ Q
n the constraint vector . j . A single solution . x is 

feasible if it fulfills all constraints, and we denote the set of all feasible solutions 
by . X . The set of all feasible solutions in objective space .{ f (x) : x ∈ X } is called 
. Y . For MOLP, MOILP and MOMILP all quadratic matrices .Pi=1,...,d and . Qi=1,...,m

are . 0. The objective function then becomes .Cx with .cTi=1,...,d as the rows of . C , and 
the constraints can be described through .Ax ≤ b with .aTj=1,...,m as the rows of . A. 
Furthermore, in MOLP all variables are continuous and in MOILP all variables are 
integers. Without loss of generality, we only consider minimization problems here. 
But PaMILO is also able to solve problems with maximization objectives. 

A point .y∗ ∈ Y is called non-dominated if there is no .y ∈ Y\{y∗} with . yi ≤
y∗
i ∀i = 1, . . . , d. In general, there is not a single non-dominated point, but a (not 
necessarily finite) set of non-dominated points. We call this the non-dominated set, 
or .YN . 

PaMILO searches for a subset of .YN , the non-dominated extreme points. To 
properly define an extreme point, we first define the Edgeworth-Pareto hull of a 
MOMIQCQP: .E := conv(Y) + R

d
≥0. Then, the non-dominated extreme points are 

the vertices of . E . A vertex of the (convex) set . E is a point .y ∈ E such that there is 
a valid hyperplane .H with .H ∩ E = {y}. PaMILO finds a finite representation of . E . 
If the number of extreme points is finite itself, this representation is the exact set of 
extreme points. In MOMILP, this set is always finite. But there are MOMIQCQPs in 
which it may be infinite. Figure 20.1 shows a MOMILP and its Edgeworth-Pareto hull. 

A special case of the Edgeworth-Pareto hull is the upper image for MOLPs. It 
is defined as .P := Y + R

d
≥0 [ 11]. In MOLP, .Y is convex by itself and, thus, every 

point of .YN lies on the boundary of . P . The same does not hold for MOMIQCQP, 
points of .YN can lie inside . E . 

The extreme points can also be characterized through the weighted-sum problem 
(WSP) of a MOMILP. Given a weight vector .w ∈ W = {w ∈ R≥0 : ∑d

i=1 wi = 1}, 
it is.WSP(w) := minx∈X wT f (x). An extreme point is a point.y ∈ Y where a. w ∈ W
exists, so that the weighted sum in objective space is only minimal for this point. 
Simply solving .WSP(w) might result in a dominated point in some special cases.
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While PaMILO is able to handle these special cases, here we simply assume they do 
not appear. 

Algorithm 

PaMILO adapts the Dual-Benson algorithm, which we briefly describe in this section. 
Originally, the Dual-Benson algorithm is only defined for MOLPs. In Sect. 20.3.1 we 
explain how to also apply it to MOMILPs and MOMIQCQPs. A detailed description 
of the algorithm and its theoretical preliminaries can be found in [ 8, 10, 11]. The 
algorithm operates on the lower image of the problem. The lower image. D is defined 
in [ 11] as  

D := 
{( 

w1, . . . , wd−1, bT u 
) : w ∈ W, AT u = CT w, u ∈ Rm 

≥0 

} 
. 

Heyde and Löhne showed in [ 11] that the lower image is geometrically dual to the 
upper image. Particularly, every facet in the lower image corresponds to an extreme 
point in the upper image and vice versa. Hence, by enumerating the facets of the 
lower image, we obtain the extreme points of the MOLP. 

The algorithm works by iteratively refining an outer approximation of . D. The  
initial outer approximation consists of one trivial facet of .D and the boundaries 
given by .w ∈ W . The algorithm then improves this approximation by subsequently 
enumerating unvisited vertices of the approximation. A vertex is unvisited if it was 
not previously used in an iteration. In each iteration, the algorithm picks an unvisited 
vertex. v of the approximation and shoots a ray down onto the boundary of. D. Shooting 
down a ray from. v is the same as solving .WSP(v1, . . . , vd−1, 1 − ∑d−1

i vi ). Either, 
the ray hits .D directly at . v and confirms that . v is an extreme point of . D, or the  ray  
hits a new point on the boundary of . D. If such a point is hit, a new facet supporting 
inequality of .D is constructed that cuts off . v. This improved approximation of . D
has new unvisited vertices for further iterations, so a vertex enumeration is done. 
When no unvisited vertex remains, the final approximation is the lower image itself. 
Because of geometric duality, this also gives us the vertices and facets of the upper 
image. Thus, we have found all non-dominated extreme points (Fig. 20.2). 

Generalizing the Dual-Benson Algorithm 

As mentioned before, we can adapt the Dual-Benson algorithm to also find extreme 
points of MOMILPs and MOMIQCQPs. A previous generalization to multi-objective 
combinatorial problems was done by Bökler and Mutzel in [ 5]. Our adaption is based 
upon the ideas developed in [ 4]. 

The Edgeworth-Pareto hull .EI of a MOMILP . I (under assumption of an ideal 
point) is a convex polyhedron with a recession cone equal to the positive orthant.
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The number of its vertices is finite. Thus, there is a MOLP .J so that its image . YJ
is equal to .EI . .J can be constructed by simply using the facets of .EI as constraints 
and making .CJ the identity matrix. This MOLP has an upper image .PJ and a 
corresponding lower image.DJ . As.PJ has the same vertices as .EI , a Dual-Benson 
algorithm operating on .J finds the extreme points of . I. 

There is a catch though, since we do not actually know. J . But we do not need to: 
The only time the Dual-Benson algorithm interacts with .J is when shooting down 
rays onto the boundary of.DJ . But ray shooting is the same as solving weighted-sum 
problems. Thus, a weighted-sum oracle for. I is sufficient to realize ray shooting onto 
.DJ . With such a weighted-sum oracle, the Dual-Benson algorithm is able to find the 
extreme points of the MOMILP. I. 

For MOMIQCQPs, the same arguments can directly be applied if the number of 
extreme points is finite. But there also are MOMIQCQPs with an infinite number of 
extreme points. In this case, the Dual-Benson algorithm would not terminate. This 
can be avoided by only adding dual facets when the length of the ray hitting them is 
above a threshold value.ε > 0. The resulting outer approximation of the lower image 
corresponds to an inner approximation of the actual Edgeworth-Pareto hull [ 14]. The 
extreme points of this inner approximation are a finite subset of the extreme points 
of . E . 

As we never use distinct characteristics of MOMILPs or MOMIQCQPs, this argu-
mentation can be generalized for all possible multi-objective problems. As long as a 
weighted-sum is computable, a Dual-Benson algorithm using a weighted-sum oracle 
is able to find the extreme points or at least the extreme points of an approximation 
of . E . 

Implementation 

PaMILO is implemented in C++17. Installation can be easily done by using 
cmake. After installation, PAMILO provides an easy-to-use command-line inter-

(a) A ray is shot down  
from a dual vertex and 
finds a new dual facet. 

(b) The new facet is added 
to the dual approxima-
tion. 

Fig. 20.2 Example of one iteration of the Dual-Benson algorithm. The approximation (red) of . D
(yellow) becomes more accurate with the new facet
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face. PaMILO can be found on github under https://github.com/FritzBo/PaMILO. 
For academic purposes, it can be used subject to the MIT software license. 

The weighted-sum problems are solved through CPLEX or Gurobi. Due to the 
need to solve multi-objective problems, recent versions of the solvers are required. 
For technical reasons, only the Gurobi version can handle MOMIQCQPs. 

To minimize numerical error, instances undergo preprocessing. If the value ranges 
of objectives in the non-dominated points differ strongly, the number of numerical 
errors increases. PaMILOs preprocessing tries to normalize these ranges for each 
objective function. Through this, we observe a significant decrease of numerical 
issues in practice. 

Many formats are supported for input files, the most well known are the .lp 
and the .mps formats. The output consists of three files, all beginning with a user 
defined output name as prefix. The *_sol file contains all extreme points and one 
solution corresponding to each in .json format, the *_log file contains logging 
information of PaMILO, and the *_(cplex|gurobi) file contains the logging 
output from the respective solver. 

Computational Results 

To get an impression of PaMILOs performance on established benchmark instances, 
we compared it to two other start-of-the-art solvers: bensolve [ 13] and PolySCIP [ 6]. 
PolySCIP is used with CPLEX internally and PaMILO with Gurobi, the best variant 
for the respective solver. We used the Dual-Benson algorithm as bensolves algorithm. 
Computations were done on an Intel Xeon GOLD 6134 CPU with 256 GB RAM, 
and all instances had a time limit of 30 minutes. 

Experiments for MOLPs use instances from [ 5]. They show a very clear superiority 
of bensolve over PolySCIP and PaMILO on all instances. For MOILPs, we generated 
instances according to the scheme for general MOILPs described in [ 12]. On those, 
PaMILO is often faster than PolySCIP while finding similar sets of extreme points. 
For MOMILPs, we generated instances according to the scheme described in [ 15]. 
The instances we generated were much bigger than the ones used in [15], but PaMILO 
is still able to find extreme points. A brief look on some of the computational results 
for MOILPs and MOMILPs is given in Table 20.1. 

In general, we observe that the most cost expensive part of the calculations are the 
vertex enumerations. In theory, the computational effort to enumerate the vertices 
can grow exponentially in the number of objectives. We observe such growth with 
PaMILO for many instances. But for a fixed number of objectives, we also observe a 
delay between subsequent outputs that is only incremental polynomial in the oracle 
calls consistent with [ 3]. 

To the best of our knowledge, there are no benchmark instance sets for MOMIQC-
QPs described in literature. Our experiments aim at giving a first impression. As there 
are now several extreme point solvers available, a comprehensive computational 
study on their capabilities is a goal for future research.

https://github.com/FritzBo/PaMILO
https://github.com/FritzBo/PaMILO
https://github.com/FritzBo/PaMILO
https://github.com/FritzBo/PaMILO
https://github.com/FritzBo/PaMILO
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Table 20.1 Computational results for MOILPs and MOMILPs 
Instances PaMILO PolySCIP 

Type .d .n Time [s] .|YEx| # Time [s] .|YEx| # 

MOILP .3 .100 .184.19 .(28) .(27/30) .712.66 .(24) . (22/30)

.4 .60 .191.8 .(90.5) .(18/30) .828.4 .(67.5) . (18/30)

.5 .50 .570.6 .(139) .(26/30) – .(61) . (13/30)

MOMILP .3 .300 .412.29 .10,074.5 .30 – – – 

.4 .200 .781.79 .(24,930.0) .(29/30) – – – 

.5 .40 .208.67 .21,546.0 .30 – – – 

Time and number of extreme points (.YEx) are median. Entries in .() are reduced data because of 
timeouts 
Bold entries indicate fastest time for the instance class 

Conclusion 

PaMILO is the first solver able to find the extreme points of MOMILPs and 
MOMIQCQPs and proves to be comparable to start-of-the-art solver PolySCIP for 
MOILPs. Thus, it can be an important new addition to the repertoire of practitioners. 
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Chapter 21 
Vehicle Routing with Heterogeneous 
Time Windows 

Petra Mutzel , Tim Niemann , Lukas Schürmann , Sebastian Stiller , 
and Andreas M. Tillmann 

Abstract We consider a novel variant of the heterogeneous vehicle routing problem 
(VRP) in which each customer has different availability time windows for every 
vehicle. In particular, this covers our motivating application of planning daily delivery 
tours for a single vehicle, where customers can be available at different times each 
day. The existing literature on heterogeneous VRPs typically distinguishes properties 
of the vehicle fleet such as costs or capacities, but apparently, windows of customers 
have only been regarded in a homogeneous fashion thus far. To solve the problem, 
we employ a branch-and-price framework based on a set partitioning formulation 
together with a parallelizable labeling algorithm. The heterogeneous time window 
structure yields notable computational gains by allowing to decompose the pricing 
problem as well as to utilize a customer-vehicle assignment branching rule. We show 
that this branching rule leads to more balanced search trees than the usual arc flow 
branching, and demonstrate its efficiency in numerical experiments. 

Keywords Vehicle routing problem · Heterogeneous time windows · Branch and 
price 

Introduction 

The vehicle routing problem (VRP) is a well-studied problem class with a long history 
and numerous variants inspired by practical applications, cf., e.g., [ 2, 7]. In the basic 
(capacitated) VRP, we are given a directed graph .G = (V, E) with .V = C ∪ {v0}, 
where . C represents customers and .v0 is the depot of a set of vehicles . K, each with 
capacity . Q. Each arc .e ∈ E has an associated cost .ce ≥ 0 (typically, driving time),
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and each customer .c ∈ C has a demand . qc. We are looking for a cost-minimal set 
of tours in . G that each start and end at the depot such that every customer .c ∈ C is 
visited exactly once and the sum of all demands on each tour does not exceed the 
vehicle capacity. 

We extend the palette of VRP variants by adding heterogeneous time windows: 
Customers can only be visited during individual availability time windows, which 
can be different for each vehicle. Our study of this model is motivated by a real-
world practical application in which we need to schedule delivery tours for one 
vehicle over a given time horizon (e.g., a few weeks) and a fixed set of customers 
whose availability times differ from day to day. Thus, each day, the vehicle travels a 
different route so that at the end of the time horizon, all customers have been visited. 
In our application, vehicles are tantamount to days, but it is conceivable that different 
availability times may also directly relate to delivery or vehicle types—for instance, 
while recipients can be assumed to handle small packages by themselves, they may 
need to coordinate with helpers when receiving large pieces of furniture. 

Time window constraints in VRPs have been well-known since the work of 
Solomon [ 6], but to the best of our knowledge, the case of time windows which 
differ for different vehicles (or days, or deliveries) has not been examined thus far. 
Previous works on heterogeneous VRP variants (cf. [ 3]) considered different aspects 
such as the cost and capacities on a vehicle-specific basis, but different time windows 
appear to be a novel concept. In particular, our approach also allows for customers 
to be completely unavailable for arbitrary time spans. Moreover, heterogeneous time 
windows not only enable addressing special customer needs, but also opens a way 
to reduce search tree sizes and runtime of dedicated VRP branch-and-price solvers. 
Notably, the heterogeneity gives rise to an effective branching rule that we shall call 
vehicle assignment branching and which compares favorably with the classical arc 
flow branching. 

We will briefly explain our model and the problem-specific branch-and-price 
solution procedure in Section “Model and Solution Method”, including a theoretical 
analysis of the two branching rules. In Section “Experimental Results”, we discuss 
computational experiments that illustrate the practical impact of heterogeneity-based 
model properties and branching on different test instances. Some final remarks in 
Section “Concluding Remarks” conclude the paper. 

Model and Solution Method 

For ease of presentation, we assume henceforth that each customer has (at most) 
one time window per vehicle. Nevertheless, we point out that it is possible to handle 
multiple (disjoint) time windows as well as, in case of daily route planning as in our 
motivating application, multiple vehicles per day; space limitations prevent us from 
providing the technical details of the corresponding modifications.



21 Vehicle Routing with Heterogeneous Time Windows 173

Model 

Let .P be the set of all feasible tours (w.r.t. time-window, capacity and possible 
further constraints), and.Pk ⊂ P those performed by vehicle.k ∈ K. For each tour. p, 
we define its cost.Cp := ∑

e∈p ce. With binary variables.xp to decide whether tour. p
partakes in the overall solution, the set-partitioning formulation of our VRP is then 
given by 

.

min
∑

p∈P
Cpxp

s.t.
∑

p∈P :i∈p

xp = 1 ∀i ∈ C,
∑

p∈Pk

x p = 1 ∀k ∈ K, xp ∈ {0, 1} ∀p ∈ P.
(SPF) 

The first constraint guarantees that each customer is visited exactly once, and the 
second one that each vehicle is used on at most one tour (for technical reasons, we 
include empty tours with cost . 0 in each .Pk to write this in equality form); the latter 
stems from our daily route planning application and may take a different form in 
other cases. 

Due to the exponential number of tours and the resulting impracticality of directly 
solving (SPF), we adopt the established VRP solution approach of branch-and-price 
with a dedicated labeling algorithm; see, e.g., [ 2]. 

Pricing Problem 

The general idea of branch-and-price is to start with few tours .P ' ⊂ P , and then 
iteratively add new tours to .P ' and re-optimize the reduced problem (with variables 
. xp, .p ∈ P ') until a provably optimal solution to the original problem is found. To 
find promising new tours.p ∈ P \ P ', we consider the following reduced-cost pricing 
problem: Given an optimal dual solution.(π∗, τ ∗) for the LP relaxation of the reduced 
problem, solve 

.r(π∗, τ ∗) = min
k∈K

{
− τ ∗

k + min
p∈Pk

∑

(i, j)∈p

ci j − π∗
i

}
. (RCPP) 

Since the depot node .v0 /∈ C has no dual variable, we define .π∗
v0

:= 0 to simplify 
notation. If we find a tour with negative reduced cost (.r(π∗, τ ∗) < 0), we add it 
to .P '; otherwise, the reduced LP was solved to optimality (w.r.t. all tours, including 
omitted ones). 

This pricing problem amounts to an elementary shortest path problem with 
resource constraints, which is strongly NP-hard and usually solved using a labeling 
algorithm, cf. [ 2]. Due to space limitations, we omit the relatively straightforward
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details on adapting the labeling scheme to our present setting, but note that vehicle 
capacities and customer time windows are translated to resource constraints. Since 
(RCPP) naturally decomposes into independent pricing subproblems for every vehi-
cle .k ∈ K , we only need to consider the customers who have a time window for the 
corresponding vehicle .k ∈ K for each subproblem. Depending on the instance, this 
significantly reduces the size of the relevant subgraph, which in turn speeds up the 
labeling algorithm. Furthermore, the subproblems can be solved in parallel. 

Branching Rules 

In a branch-and-price framework, branching on the standard problem variables often 
interferes with the pricing mechanism. Several alternative branching rules for VRPs 
have been proposed to deal with this issue, see [ 2] for an overview of the most 
common ones. Branching on arc flow variables .ye := ∑

p∈P :e∈p xp, .e ∈ E , appears 
to be the most popular strategy, even though the branching decisions, especially 
setting .ye = 0 (removing an arc), have a rather low overall impact. 

Our heterogeneous structure allows us adapt the branching idea originally intro-
duced by Ryan and Foster in [ 4], and formulated in [ 5] for the general assignment 
problem. The idea is to branch on assignment decisions; in the present setting, these 
translate to decisions whether to let specific customers get served by certain vehicles. 
To that end, we define auxiliary vehicle assignment variables 

. dk
i :=

∑

p∈Pk :i∈p

xp ∈ [0, 1], ∀ i ∈ C, k ∈ K.

Then, we can branch on a (fractional) . dk
i , setting it to . 0 or . 1, respectively. These 

vehicle assignment branching decisions can easily be accounted for in subsequent 
pricing steps: .dk

i = 0 leads to the exclusion of customer . i from pricing subproblem 
for vehicle. k, and.dk

i = 1 removes. i from all pricing subproblems except for vehicle. k. 
Moreover, any exact pricing scheme can be adapted to ensure the condition . dk

i = 1
remains valid, cf. [ 5], and in leaves of the resulting decision tree, there exists an 
integral optimal solution for the LP relaxation of (SPF). The latter arises from the fact 
that for each solution. x such that.dk

i ∈ {0, 1} for all.i ∈ C, k ∈ K, all tours in. P>0
k :=

{p ∈ Pk : xp > 0} visit the same set of customers for each.k ∈ K, as. 
∑

p∈Pk
x p = 1

must be satisfied. Consequently, the.Cp values are identical for each.p ∈ P>0
k , and any 

solution with.xp' = 1 for an arbitrary.p' ∈ P>0
k and.xp = 0 for each.p ∈ P>0

k \ {p'} is 
feasible and optimal. Applying this transformation for every.k ∈ K yields an integral 
optimal solution. We remark that the variables .dk

i are not actually included in the 
problem, but are handled implicitly during pricing. 

Table 21.1, which gives the potential branching tree depths for all previously 
mentioned branching rules, exhibits a theoretical advantage of our rule. Clearly, 
vehicle assignment branching leads to more balanced and possibly much smaller
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Table 21.1 Maximal number of branchings for different branching rules 

branching variables number of 0-branches number of 1-branches 

tour variables (xp) O 2|V|) |K| 
arc flow variables (ye) |E| − |V| |V| 
vehicle assignment variables (dk 

i ) (|K| − 1)|V| |V| 

tree, especially when the instance has many arcs but relatively few vehicles, as in 
this case.|K| × |V| ≪ |E |. The practical impact of our branching rule will be assessed 
by means of the computational experiments discussed in the following. 

Experimental Results 

To obtain test instances for our VRP variant, we modified Solomon’s data set [ 6], 
which includes only homogeneous time windows, for our purposes. Based on the 
three instances R101, C101 and RC101, we generated new instances by taking the first 
.|C| ∈ {40, 50, . . . , 100} customers and inheriting travel and service times, customer 
demands and vehicle capacities. We then add a time window for each customer-
vehicle pair .i ∈ C, k ∈ K with probability .αtw ∈ {0.25, 0.5, 0.75, 1}, retaining the 
lengths of time windows from the respective base instance but randomly choosing 
their starting times (such that all time windows lie within depot working hours), 
where the size of .K was set heuristically to ensure feasibility. 

We implemented our approach in C++ with SCIP 8.0 [ 1] and tested it on a 24-core 
machine; on average, parallelization of the pricing subproblems saved about half the 
computation time with this setup, compared to single-thread execution. We solved 
each instance twice: once with our vehicle assignment branching, and once using 
arc flow branching. In both cases, we chose the variable with value closest to.0.5 for 
branching. The results in Table 21.2 focus on the instances based on R101; those based 
on the other two base instances yielded similar results. Besides instance parameters, 
we report the runtime in seconds (“dnf” marks cases for which the solution process 
did not finish after one hour), number of branching nodes, and optimality gap at 
termination for both variants. We also state the best objective value found by the 
vehicle assignment branching variant; the objective value for the arc flow branching 
variant was mostly very similar, so differences in gap values are predominantly due 
to dual bounds. All decimals were rounded to two significant digits. 

From Table 21.2, we can make some key observations: Almost all instances can be 
solved faster and with fewer search nodes using vehicle assignment branching than 
with arc flow branching, especially those with many time windows per customer 
(larger . α). For instances with many customers, the vehicle assignment branching 
variant can solve more instances and often significantly reduce the final gap when
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Table 21.2 Results for test instances based on R101, comparing two branching rules 

vehicle assignment branching arc flow branching 

|C| |K| αtw best obj. time nodes % gap time nodes % gap 

40 11 0.25 1231.45 0.01 1 0 0.01 1 0 
40 8 0.50 1043.80 0.05 3 0 0.05 3 0 
40 7 0.75 811.64 0.96 37 0 1.19 59 0 
40 12 1.00 741.23 6.79 573 0 12.44 1239 0 

50 13 0.25 1604.27 0.01 1 0 0.01 1 0 
50 10 0.50 1271.13 0.06 1 0 0.06 1 0 
50 14 0.75 920.46 2.23 129 0 2.10 103 0 
50 12 1.00 853.98 14.28 265 0 14.80 299 0 

60 14 0.25 1724.36 0.08 13 0 0.13 25 0 
60 17 0.50 1119.48 0.54 43 0 1.16 70 0 
60 14 0.75 983.33 49.05 1490 0 125.34 4718 0 
60 15 1.00 943.59 1590.46 20503 0 dnf 69128 0.71 

70 16 0.25 2080.74 0.03 1 0 0.03 1 0 
70 17 0.50 1335.39 23.85 1286 0 67.52 4251 0 
70 17 0.75 1174.52 3527.82 51265 0 dnf 70380 1.15 
70 16 1.00 1096.63 dnf 7718 1.17 dnf 7294 8.35 

80 18 0.25 2213.67 3.65 265 0 12.33 1145 0 
80 21 0.50 1418.48 485.65 23473 0 2435.35 114433 0 
80 20 0.75 1221.76 dnf 26970 0.3 dnf 36499 1.27 
80 18 1.00 1148.86 dnf 2609 0.77 dnf 3010 0.91 

90 25 0.25 2024.82 68.85 8177 0 396.55 47164 0 
90 21 0.50 1534.87 dnf 68465 1.4 dnf 77536 2.21 
90 20 0.75 1602.31 dnf 8807 21.37 dnf 8744 21.86 
90 19 1.00 1504.87 dnf 360 24.71 dnf 397 24.80 

100 25 0.25 2124.97 263.48 18639 0 dnf 218423 0.76 
100 23 0.50 1540.94 508.18 6227 0 dnf 54166 0.57 
100 19 0.75 1570.67 dnf 2325 13.67 dnf 3637 13.69 
100 19 1.00 1581.19 dnf 16 25.89 dnf 15 25.97 

hitting the time limit. In general, solving times increase notably with the number of 
time windows; for example, with.70 customers, the instance with.αtw = 0.25 can be 
solved in well under a second, whereas more than an hour is needed if every customer 
has a (different) time window for each vehicle. However, increasing customer flexi-
bility naturally allows for more efficient routings, as reflected by the primal bounds 
decreasing significantly the larger .αtw gets. 

Finally, it is worth mentioning another empirical observation that is not apparent 
from Table 21.2: If a lot of customer-vehicle pairs have similar time windows, i.e., 
the instance “approaches” time-window homogeneity, then arc flow branching is 



21 Vehicle Routing with Heterogeneous Time Windows 177

preferable to vehicle assignment branching, which can likely be explained by the 
former then affecting several vehicles simultaneously. 

Concluding Remarks 

We introduced the concept of heterogeneous time windows for the VRP to account for 
modern-day customer availability requirements, and demonstrated that it allows for 
often significant computational gains by decomposition of pricing problems and the 
specialized vehicle assignment branching rule. In ongoing work, we also successfully 
adapted our approach to multiple time windows per day in a daily delivery tour 
planning application. As future research, we plan to assess the algorithmic efficiency 
in yet more general variants with, e.g., multiple vehicles per day and incorporating 
robustness w.r.t. travel delays. Furthermore, it is of interest to construct problem-
specific primal and pricing heuristics to further speed up computations and enable 
solving larger or more complicated instances. 
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Chapter 22 
A Bicriteria Almost Equal Minimum 
Cost Flow Model for Day-Ahead Trading 

E. Finhold, T. Heller, S. O. Krumke, and N. Leithäuser 

Abstract As the share of renewable energy and therefore the fluctuation in power 
generation increases, using a battery to market the power saved/used by a flexible 
process becomes more and more important and attractive. The charging and discharg-
ing process of a battery can be modeled as a flow model in a time-expanded graph. 
We model the costs for this process as edge costs between nodes that correspond to 
consecutive points in time. An optimal battery strategy be obtained by computing a 
minimum cost flow in the given network. If the charging and discharging of a battery 
takes place as a coupled process of a production process, a steady and even charging 
and discharging is often important. In this paper, we describe a bicriteria flow model 
based on the Almost-Equal-Minimum Cost Flow Problem (AEMCFP) in which both 
trading profits and a steady flow of energy are considered as the two objectives. In 
the AEMCFP one is given additional sets of edges on which the flow values differ 
at most by a given constant. We obtain a strongly polynomial algorithm based on a 
parametric search approach. Furthermore, we present a case study for bidding on the 
German day ahead market. 

Keywords Network flows · Minimum cost flow · Parametric search · Energy 
trading 

Introduction 

In the course of the transformation of the energy system towards a system with 
a high share of renewable energies, the marketing of flexible storage is becoming 
increasingly important. The flexibility should be used to be able to react to times of 
high or low energy—these are often reflected by price signals on different markets. 
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One way to market this flexibility is the day ahead (DA) market which is a daily 
auction where bids can be submitted for hourly products of the following day. The 
German DA market, the EPEX Spot, allows bidding on all hours of the following 
day, i.e. each participant can submit one bid per hour. 1 Trading strategies for the DA 
market are widely discussed and often arise from demand side management (e.g. [ 9]). 
In this paper we focus on bidding strategies that indicate in which hour energy is sold 
(or bought, respectively). Thus, a bidding strategy can be modeled as an inflow— 
outflow problem of the battery. Modeling energy flows as flows in a network graph 
has a rather long history (cf. [ 1]). If the charging and discharging of a battery takes 
place as a coupled process of a production process, a steady and even charging and 
discharging is often important. The Almost Equal Maximum Flow Problem (AEMFP) 
tries to find a maximum flow in a given network graph with the additional property that 
the flow value on edges of so called homologous edge sets do not differ by more than 
a given value, i.e. the minimum and maximum flow value are not too far apart. The 
allowed deviation can be either given by a constant, or depends on a function with the 
minimum flow value as input. This problem was formulated in [ 3] and generalized to 
the Almost Equal Minimum Cost Flow Problem (AEMCFP) the setting of minimum 
cost flows in [ 4]. In this work, we present a strongly polynomial algorithm for solving 
the AEMCFP as well as a numerical study on computed day ahead trading strategies. 

The Model 

The German DA market at the EPEX Spot allows the buying and selling of energy in 
hourly resolution of the following day. Besides the rule set allowing complex bids, 
we consider only one price forecast and are only interested in the exact amount to be 
traded in an hour. We call the maximal amount of energy that can be bought or sold in 
an hour the flexibility. Now, we are interested in finding an optimal trading strategy 
for the day ahead market under consideration of limitations from the ramp-up (or 
cool-down) process. Note that this problem can be formulated as a linear program 
and hence solved in polynomial time. However, we are interested in a formulation as 
a network flow model in order to obtain a combinatorial polynomial time algorithm. 

The Network Graph 

In order to construct the underlying network graph, we are given an initial battery 
level bin , a minimal battery level bmin, a maximal battery level bmax and a desired 
end battery level bout . Furthermore, the flexibility is denoted by δ. For each hour t , 
a price forecast pt is given. By adding an edge e from t to s with le = 0, ue = ∞

1 A more in-depth explanation of the rules on the German DA market can be found on www. 
epexspot.com. 

www.epexspot.com
www.epexspot.com
www.epexspot.com
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Fig. 22.1 An exemplary DA trading network graph for consecutive hours H0, H1, . . . ,  H23, a  
battery level b, minimum and maximum battery level bmin, bmax and a flexibility δ 

and c(e) = 0, we obtain a circulation network. Thus, by setting all the balances of 
nodes to zero, we can find the flow with minimum cost among all possible flows. 
We add homologous sets Ri := {(Hi−1, Hi ), (Hi , Hi+1)} for i = 1, . . . ,  22 and 
R0 := {(s, H0), (H0, H1}, R23 := {(H22, H23), (H23, t)} with deviation ∆. Note that 
by subdividing the edges which are contained in two homologous sets one can obtain 
disjoint homologous sets. We define the DA trading strategy dat for hour t as dat := 
f (B, Ht ) − f (Ht , S). See Fig. 22.1 for an example of the constructed network. 
Thus, a DA trading strategy can be computed by solving (22.8) on this network 

graph. 

The Almost Equal Minimum Cost Flow Problem 

We start with a formal definition of the AEMCFP. Let G = (V , E) denote a graph 
with a source s ∈ V and a sink t ∈ V . Furthermore, we are giving a balance for each 
node by b : V → Z, a cost ce for each edge e ∈ E and lower and upper bounds for 
each edge by l, u : E → N. In addition to that, so called homologous sets Ri ⊆ E as 
subset of the edge sets with a corresponding value ∆i ∈ N are given. The AEMCFP 
can be formulated as an optimization problem in the flow variables fe (e ∈ E) and 
fi , i, . . . ,  k: 

(AEMCFP) min 
∑ 

e∈E 
ce fe (22.1) 

s.t. 
∑ 

e∈δ+(v) 

fe − 
∑ 

e∈δ−(v) 

fe = bv ∀v ∈ V (22.2) 

le ≤ fe ≤ ue ∀e ∈ E (22.3) 

fi ≤ fri ≤ fi + ∆i ∀ri ∈ Ri , ∀Ri (22.4)
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Problem definitions of different variants of the AEMCFP as well as a complexity 
analysis can be found in [ 4]. For the rest of the section we consider only one homol-
ogous edge set R with a constant deviation ∆. Note that given a lower bound λ 
for the homologous edge set, one can find a flow that fulfills the homologous edge 
constraint (22.4) by solving the following problem: 

(AEMCFP(λ)) min 
∑ 

e∈E 
ce fe (22.5) 

s.t. 
∑ 

e∈δ+(v) 

fe − 
∑ 

e∈δ−(v) 

fe = bv ∀v ∈ V 

le ≤ fe ≤ ue ∀e ∈ E 
λ ≤ fe ≤ λ + ∆ ∀e ∈ R 

We obtain the dual problem of the problem (22.5) as  

(D-AEMCFP(λ)) max bT π − uT μ + λT α − (λ + ∆)T β (22.6) 

s.t. AT π − μ + α − β ≤ c. (22.7) 

Thus, this problem is equivalent to finding the maximum value of (22.6) over all 
nodes of the polyhedron defined by (22.7). Since polyhedra are convex and taking 
the maximum over convex functions is a convex function, the function (22.6) is  
convex in λ. Thus, the AEMCFP can be solved by computing the minimum of the 
function (22.6). 

Theorem 1 The function 

F(λ) := max 
(π,μ,α,β)∈P 

bT π − uT μ + λT α − (λ + ∆)T β 

is a piecewise convex function and the AEMCFP can be solved by solving 

min 

{ 
F(λ) : 0 ≤ λ ≤ min 

r∈R∆ 
ur 

} 
. (22.8) 

In the next section we will describe how to solve (22.8). 

A Parametric Algorithm Approach 

In order to obtain a strongly polynomial algorithm, we use the parametric search 
technique by Megiddo (e.g. [ 7]). The idea is to run an algorithm on a parametric 
instance, i.e. an instance where some input values are handled as parameters. Each 
time the algorithm has to solve a comparison on a term containing a parametric 
value, a subroutine has to resolve it. Given the optimal value λ, (22.8) can be solved
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by a minimum cost flow computation. We take λ as a parametric input value and 
denote the corresponding parametric network by Gλ. As base algorithm we take the 
minimum mean cycle canceling algorithm 2 which runs in O(n2m3 log(n)) time on a 
graph with n nodes, m edges and arbitrary real valued edge costs (cf. [ 2]). A minimum 
mean cycle can be found in O(n2) (cf. [ 5]). In a straight forward implementation, 
the minimum mean cycle algorithm runs in O(n2) iterations, and in each of these 
a comparison between two edge capacities has to be computed. Since we run the 
algorithm on a parametric instance, each of the comparisons has to be resolved, i.e. 
we have to decide for a given test value λ ⋚ λ∗. We consider the following problems. 

P(λ) min cT x P(λ + ⋲) min cT x(λ + ⋲) 
s.t. Nx(λ) = b s.t. Nx(λ + ⋲) = b 
0 ≤ x(λ) ≤ u 0 ≤ x(λ + ⋲) ≤ u 
λ ≤ x(λ) ≤ λ + ∆ λ  + ⋲ ≤ x(λ + ⋲) ≤ λ + ⋲ + ∆ 

where N denotes the incidence matrix and we deviate λ by ⋲. Let  y denote the 
change of the flow value, i.e. y := x(λ + ⋲) − x(λ). Thus, for a given x(λ), y can 
be computed by solving 

C(x(λ)) min cT y 

s.t. Ny  = 0 
0 ≤ x(λ) + y ≤ u 
λ + ⋲ ≤ x(λ) + y ≤ λ + ⋲ + ∆. 

This problem is a circulation problem in the residual network Gx(λ) and therefore 
can be solved by a minimum cost computation. With this, the problem of deciding 
whether λ ⋚ λ∗ can be solved in O(TMC(n, m)), where TMC(n, m) denotes the time 
needed for computing a minimum cost flow in a graph with n nodes and m edges. 
By keeping already computed comparison results, the total number of comparison 
calls is O(log(m)), and, thus, the parametric mean cycle canceling algorithm runs in 
O(n2 + log(m) · TMC(n, m)) time. We summarize this in the following theorem. 

Theorem 2 Given a graph G with n nodes and m edges, (22.8) can be computed in 
O(nm2 log(n) · {n2 + log(m) · TMC(n, m)}). ⊡ 

Note that the algorithm described above can be used iteratively to solve the AEM-
CFP for multiple disjoint homologous sets. While we aimed for a strongly polynomial 
algorithm one can use a binary search on the λ value in order to obtain a weakly 
polynomial algorithm with running time O(log(U ) · TMC(n, m)).

2 Note that there might be other, better suited algorithms for this. We will elaborate this in the future. 
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Fig. 22.2 Evaluation on absolute (left) and relative (right) flow values for different allowed devia-
tion values. On the x-axis the allowed deviation is represented, whereas on the y-axis the absolute 
(left) respectively relative (right) costs are represented 

Numerical Results 

In this section we present a case study based on the German DA market where we 
aim to market flexibility from a virtual battery. 3 We consider the trading strategy as a 
bicriteria problem. The first objective is given by the allowed deviation on consecutive 
hours, whereas the second objective is given by the forecasted 4 profit. We run our 
analysis on days between 01/01/2020 and 30/06/2020. For a given deviation, we 
defined a network model and iterate over different deviation values. The battery 
level at any point has to lie in the interval [0, 100 MWh]. The initial battery level is 
given as 50 MWh and the total flexibility at any point is 10 MW. See Fig. 22.2 for an 
evaluation. 

For the relative values as shown in the right chart, we observe that while the profit 
function for mean deviation values can be assumed to be linear, a difference from this 
behaviour is seen for deviations in the interval [0, 2] MW and [7, 10] MW where the 
maximal relative profits increase from 0 to 0.4 and only from 0.8 to 1 respectively. 
In this intervals, trade-offs between an allowed deviation and obtained profit allow a 
relatively large gain in profit with a relatively small additional deviation. With this, 
one can find trading strategies that incorporate the allowed deviation on consecutive 
points in time as second objective. For absolute values, we obtain similar results as 
shown in the left chart of Fig. 22.2. 

Conclusion 

In this paper we proposed a flow based model for DA trading strategies. By using the 
parametric search method of Megiddo, we obtained a strongly polynomial algorithm 
to solve the AEMCFP with one homologous edge set. The worst case running time

3 See [ 6] for a description of a similar setting. 
4 For the forecasted prices of the DA prices we use a neural network model which was trained on 
5 years of electricity prices as well as solar and wind forecasts. For more details we refer to [ 8] for  
an in-depth explanation of the neural network model. 
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of the algorithm could be further improved by using other minimum cost flow algo-
rithms and by using refinements of the parametric search approach e.g. as introduced 
in [ 10]. This is left open for future research. We gave a construction of a suitable 
network graph in which the trading strategy can be obtained by solving a related flow 
problem. By applying the Almost Equal Minimum Cost Flow Problem to this graph, 
we were able to incorporate additional properties regarding the charging (discharg-
ing) difference between consecutive hours into the flow model. We presented a case 
study on the German DA market in a bicriteria fashion where we considered both 
profits and allowed difference as separate objectives. 
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Abstract The German federal government has set up the goal of 10 million electric 
cars on German roads by 2030 and is aiming for the complete electrification of road 
traffic by 2050. Currently, the focus is particularly on the development of charging 
infrastructure for battery electric vehicles (BEVs), with 1 million publicly accessible 
charging stations to be built by 2030. However, the expansion of hydrogen infrastruc-
ture is also being supported with large subsidies. Although there are numerous studies 
on either the cost of charging infrastructure for BEVs or fuel cell electric vehicles 
(FCEVs), there are few comparative research results available so far. In this study, 
therefore, a model for the spatial distribution of charging infrastructure for BEVs 
and FCEVs is first developed for the district of Steinburg in the German federal state 
of Schleswig–Holstein. In a second step, the results and corresponding economic 
costs are compared in a real options analysis for the period 2021 to 2050, consid-
ering different charging infrastructure expansion curves. In addition to the hardware 
infrastructure costs, operations and maintenance and electricity or hydrogen costs 
for the charging infrastructure are explicitly taken into account. 
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Introduction 

The German federal government has set a target of having 10 million electric cars on 
German roads by 2030 and has decided to implement an extensive support program. 
Under this master plan, 50,000 public charging points for BEVs will be available by 
the end of 2022 and a total of one million by 2030 [1]. In September 2022, Germany 
had overachieved the 2020 target with 68,000 available public charging points [2]. 
In addition, the German federal government has launched the National Hydrogen 
and Fuel Cell Technology Innovation Program to nurture the market for FCEVs. The 
refueling process for hydrogen is similar to that for gasoline and is characterized 
by high throughputs at the pump, but it also features high costs for the construction 
of a single refueling station. In contrast, the charging process for battery vehicles 
takes longer. Additionally, the cost of a single charging point for BEVs is lower. To 
date, there is insufficient research regarding which technology a policy-maker should 
promote from an economic point of view. Technical drawbacks of FCEVs, such as 
high efficiency losses in the energy conversion, are typically not part of such analysis. 
Large efficiency losses imply a higher demand for renewable electricity, implying 
larger installed capacities than for BEV. Based on these caveats, some experts have 
rated FCEVs as non-competitive (e.g., [3]). 

To solve the above-mentioned policy-maker’s problem, the two competing tech-
nologies, BEV and FCEV charging infrastructure, are evaluated by means of a real 
options analysis with a focus on a model region in the district of Steinburg in the state 
of Schleswig–Holstein. In addition to the hardware infrastructure costs, operation and 
maintenance and electricity or hydrogen fuel costs for the charging infrastructure are 
explicitly taken into account. Cost projections were considered as well, but note that 
these input parameters need to be updated regularly in order to reflect the dynamic 
development. A decision tree is defined, considering learning/experience curves, 
economic data, capacity expansion pathways, and a stochastic cost function that is 
based on a β-PERT non-normal distribution, where the upper and lower quartiles are 
taken for the up- and down-factors in the binomial tree used for the real options anal-
ysis. The results of this decision tree can support policy-makers in deciding which 
alternative vehicle technology they should support, and to systematically re-evaluate 
their decisions over time. 

In the context of this evaluation, two research questions are addressed: 

1. What is an optimal spatial distribution of the public charging infrastructure for 
BEVs or FCEVs in the model region for different penetration rates of e-mobility? 

2. What economic costs and options for action result from the spatial distribution 
of the charging infrastructures for BEVs and FCEVs from the policy-maker’s 
perspective, considering the predefined policy goals for e-mobility?
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Spatial Distribution Modeling of Charging Infrastructure 

The developed spatial distribution model calculates the charging infrastructure 
demand for a node i such that the charging demand is covered within a maximum 
distance to the station and the costs for the charging infrastructure operator are mini-
mized. The maximum distance is based on the reachability of a conventional fuel 
station and the range of the vehicle type (BEV or FCEV). Node i represents the center 
of one of the 36 km2 of clustered squares in the district of Steinburg. To classify the 
results for the charging infrastructure for BEVs and FCEVs, the clustering of the 
district is shown in Fig. 23.1. 

The squares were divided into 4 categories, applying the single linkage method, a 
clustering algorithm based on the similarity coefficient method [4]: ‘country’, ‘small 
municipality’, ‘large municipality’, and ‘city’. As an example, the results from the 
developed model are shown below for four penetration shares: 5, 10, 50, and 100%. 
These penetration shares imply that the corresponding share of all vehicles in the 
Steinburg district is either a BEV (Fig. 23.2) or an FCEV  (Fig.  23.3). When looking 
at the results for BEVs, it is noticeable that the expansion is approximately linear. 
Hence, a doubling of the penetration share is accompanied by a doubling of charging 
stations. In addition, the highest charging infrastructure demand is in the squares of 
the “city” category. On the one hand, this is due to the high population density in 
these squares and, on the other hand, to the low proportion of home charging. The 
home charging share in this model is assumed to be 90% in the country and 45% in 
the city category. It should be noted, however, that a higher population density does 
not always go hand in hand with a higher need for charging infrastructure in the same 
square. This is mainly due to the fact that a conveniently located square can ideally 
cover the needs of several neighborhoods.

The spatial distribution results for public charging infrastructure for FCEVs are 
very different from those obtained for the charging infrastructure needs of BEVs. 
First, a significantly lower number of dispensers is required than charging points. 
On the one hand, this is due to the shorter charging time and the associated larger 
maximum dispensing quantity per hour. On the other hand, it is due to the higher 
usage rates for FCEV charging infrastructure, since a dispenser is generally only

Fig. 23.1 Clustered topology of the district of Steinburg in Schleswig Holstein 
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Fig. 23.2 Spatial distribution results for public charging at various penetration shares 

Fig. 23.3 Spatial distribution results for dispenser for various penetration shares

occupied when people are fueling their vehicles. A BEV charging station may be 
occupied by a parked car whose charging process was already completed several 
hours ago. 

In addition, the development of the required charging infrastructure is not linear. 
If the penetration share doubles from 5 to 10%, only one additional fuel pump is 
needed at one of the existing charging stations. This shows that at the 5% penetration 
level, the 5 charging stations are not fully utilized. However, they are necessary to 
meet the charging demand of users within the maximum distance. Thus, there is 
a high demand for charging infrastructure for FCEVs in this model, even at low 
penetration shares, to meet the user needs based on the accessibility to conventional 
fueling stations as a yardstick. 

Although the location of only one hydrogen refueling station is in a square of the 
‘city’ category, overall, the locations are found in the vicinity of the ‘city’ squares. 
This can be explained by the greater accepted maximum distance by the user to the 
nearest charging option for FCEVs. A FCEV has a higher range and, therefore the 
user accepts a greater distance to the next charging option. For example, the node 
with 24 fuel pumps in the 100% FCEV diagram can serve the two squares to its right 
and left in the city category. In total, there are 14 hydrogen fueling stations in the 
100% FCEV scenario. This corresponds to about half of the 30 conventional fueling 
stations currently available in the Steinburg district [5].
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A Real Options Analysis of BEV/FCEV Charging 
Infrastructures 

Based on a net present value (NPV) calculation, a decision tree for the real options 
analysis was calculated (cf. Fig. 23.4) for three defined scenarios based on a 50% 
target achievement by 2030, a 100% target achievement by 2030, and a 150% target 
achievement by 2030 (16 branches à 3 scenarios = 48 branches). On the basis of 
this decision tree the value of the real option to switch is calculated. It is assumed 
that depending on the stochastic price and cost developments the infrastructure tech-
nology built from 2021–2030 will either be retained from 2031–2050 or abandoned 
in favor of the alternative infrastructure option (i.e. not renewed at the end of the 
expected lifetime). 

A favorable “cost low” and an unfavorable “cost high” development were calcu-
lated using Monte Carlo simulation (for details cf. [6]). Figure 23.5 shows that the 
favorable cost development for charging infrastructure for FCEVs is always higher 
than the unfavorable one for charging infrastructure for BEVs. While for the period 
2021 to 2025 the favorable FCEV yearly cost is 136% larger than the unfavorable 
BEV yearly cost, this difference is only 30% for the period 2046 to 2050.

The total cost of BEV charging infrastructure considering annual cost and the 
costing interest rate of 0.7% is between e508 million and e598 million for the period 
2021 to 2050 in the 100% scenario. The total costs for FCEV charging infrastructures, 
on the other hand, amount to between e777 million and e874 million, depending on 
the assumed cost development. Note that due to the strict cost dominance of charging 
infrastructure for BEVs, exercising the option to switch the technology focus in 2030
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Fig. 23.4 Binomial decision tree for the real options analysis, 2021–2030 and 2030–2050 
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Fig. 23.5 Corridors for possible future cost development from ROA for the 100% scenario

from BEV to FCEV infrastructure is not a realistic one, as even the worst-case BEV 
infrastructure cost scenario is preferable to the best-case FCEV scenario. 

For using the developed real options model and calculating the value of the option 
to switch, the input parameter values are varied. As the costs are dominated by 
electricity and hydrogen costs, these two cost factors are crucial. Thus, the option to 
switch would be exercised if the electricity price from 2031 to 2050 were between 
64 and 70% higher than the specified input parameters. This would correspond to 
an electricity price of between e248 and e257 per MWh. Similarly, a significant 
decrease in the hydrogen price would make it worthwhile to exercise the option 
to switch. Thus, depending on the scenario, the hydrogen price would have to be 
between 36 and 40% lower from 2030 onwards, so that exercising the option would 
create value. This would correspond to a hydrogen price of between e2.80 and e3.00 
including production, transportation and distribution from 2030 onwards. 

As shown in Fig. 23.6 the costs of the charging infrastructure are dominated by 
electricity costs and hydrogen costs, respectively, and the shares of electricity and 
hydrogen costs both increase over time. Due to the high-cost shares of electricity 
and hydrogen, respectively, the model results react very sensitively to adjustments 
of the input parameters for electricity and hydrogen prices. In contrast, a change in 
the charging infrastructure requirements has only a minor impact on the results.

In summary, an expansion of charging infrastructure for BEVs has lower total costs 
than the expansion of charging infrastructure for FCEVs. However, the reason for 
this are not the investment costs for the charging infrastructure per se, but primarily 
the electricity and hydrogen prices. While at high penetration rates the charging 
infrastructure for FCEVs is even cheaper than the charging infrastructure for BEVs, 
the total costs are largely driven up by the hydrogen price.
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Fig. 23.6 Development of cost shares of BEV (upper plots) and FCEV (lower plots) charging 
infrastructure

Conclusion 

The discussion of results and insights gained from the developed spatial distribu-
tion model and real options analysis are reported in much more detail in [6], and 
summarized here only briefly by the following three key statements: 

1. Influence of penetration rates. The model for the spatial distribution of the 
charging infrastructure shows that high initial investments in FCEV charging 
infrastructure are necessary to sufficiently cover user needs even at low 
FCEV penetration rates. When considering public charging infrastructure, BEV 
charging infrastructure turns out to be always less expensive. Including the costs 
of private home charging points, however, the pure infrastructure costs for FCEVs 
are lower at high penetration rates. 

2. Electricity and hydrogen as cost drivers. The analysis of the cost composition 
reveals that with increasing penetration rates, electricity and hydrogen costs 
dominate the total costs for the charging infrastructure. The reasons for this 
can be found in the learning curve and the associated decreasing costs for the 
hardware. The cost composition shows that the research focus when assessing 
the total charging infrastructure costs should be especially on electricity and 
hydrogen cost developments. 

3. Necessary cost development of hydrogen. Finally, the analysis of the additional 
scenario provides evidence which factors can lead to the use of the option to 
switch being a real decision option. For this to happen, the average production
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costs for hydrogen must fall into the range from e1.2 to e1.7 per kg in the period 
2031 to 2050. In principle, selected optimistic studies consider this development 
to be realistic but, due to the long time horizon, such projections should be treated 
with caution [4]. 
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Chapter 24 
A Tabu Search Approach 
to the Short-Term Operational 
Planning of Power Systems 

Ionela Knospe, Roman Stainko, Anna Gattinger, Michael Bögl, 
Katharina Rafetseder, and Dominik Falkner 

Abstract The accelerating transition towards clean energy is raising the need to 
consider electric power systems with an increased integration of renewable energy 
sources, energy storage systems and flexible loads, in addition to the classical pro-
grammable generators and electricity demand. Within this setting, we consider the 
optimal day-ahead operational planning of power systems with a quarter-hourly time 
resolution and with the objective of minimizing its total operating cost. The electric-
ity demand and photovoltaic production data is provided by forecast models that are 
based on historical and real-world data sets. For solving this optimization problem 
we use a hierarchical approach based on tabu search. 

Keywords Metaheuristics · Prescriptive analytics · Optimal power flow 

Introduction 

Power system operational planning aims to provide a reliable and efficient supply of 
electricity at any time and deals with formulations of the Unit Commitment Problem 
(UCP) and Optimal Power Flow (OPF). An overview of UCP formulations, both 
deterministic and stochastic, can be found in [ 1] and for a study of OPF methods we 
refer to [ 2], both references containing also a comprehensive literature review. We 
study here the day-ahead operational planning of power systems with a 15 min time 
resolution, by considering the forecasts for the power consumption and renewable 
generation and the day-ahead market price. 

Overview of the components of the power system. We consider here power 
systems with the following components and technical details: 

• Programmable generators (G): minimum and maximum capacity, minimum up 
time and down time, ramp up and ramp down rates, maximum reserve limit, gen-
eration costs, startup costs, shutdown costs and reserve costs; 
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• Energy Storage Systems (S): maximum capacity, minimum and maximum charg-
ing and discharging power, minimum charging and discharging time, charging and 
discharging efficiency factors, initial and final state of charge (SOC); 

• Photovoltaics (PV): installed capacity per site; 
• Loads (D): power consumption; 
• Transmission lines (L): reactance, maximum flow, and the tap ratio if the branch 
is a transformer; they are modelled here by means of DC power flows. 

The load and photovoltaics generation is provided by forecast models, whose 
data basis consists of historical data and real-world datasets. The forecast models 
are based on non-linear regression like Gradient Boosting [ 3] utilizing state of the 
art clear sky models and additional features from weather forecast providers. 

Energy storage arbitrage is a technique where power is bought and stored during 
off-peak hours, when the grid prices are cheapest, and is then used during peak hours, 
when grid electricity prices are highest. The planning strategy used here for all energy 
storage units in the system is to achieve arbitrage. Furthermore, we assume that they 
have at most one charging/discharging cycle per day and that their initial and final 
state of charge is 0. 

In addition to the above components, two parameters are included in our model, 
which address and control the self-sufficiency of the system, see also [ 4]: 

• Seamless index (SI): indicates how much from the total load can be covered in 
a self-sufficient manner over the entire planning horizon. SI takes values in the 
interval [0, 1], with 1 meaning complete self-sufficiency from the external grid 
and respectively 0, complete dependency to it, see (24.17) below for its definition. 

• Reserve factor (RF): enables capacity reserve allocation for the programmable 
generators in each time step of the planning horizon, in order for the system to 
be able to manage the forecast errors for load and photovoltaic generation. RF 
takes values in the interval [0, 1), it influences the power output and creates an 
additional component in the total operational costs, see (24.18)–(24.20) below. 

Formulation of the model. For solving the operational planning of the power 
system we determine the commitment status of all i ∈ G and s ∈ S for all time steps 
t ∈ T , i.e., the values of the following binary and real variables: 

zi,t ∈ {0, 1} 1, if i is committed at time step t and 0, otherwise 
ui,t ∈ {0, 1} 1, if i is turned on at time step t and 0, otherwise 
vi,t ∈ {0, 1} 1, if i is turned off at time step t and 0, otherwise 
zch s,t ∈ {0, 1} 1, if s is charging at time step t and 0, otherwise 
zdch  s,t ∈ {0, 1} 1, if s is discharging at time step t and 0, otherwise 

Pi,t ≥ 0 the real power output of i at time step t 
Ri,t ≥ 0 the real power reserve allocation of i at time step t 

Pext,t the real power transfer from the external grid at time step t 
Pch 
s,t ≥ 0 the real power dispatch when charging of s at time step t 

Pdch  
s,t ≤ 0 the real power dispatch when discharging of s at time step t .
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We mention that Pext,t is ≤ 0 at export and ≥ 0 at import. Moreover, results are 
also the optimal power flows on all branches in the power system. With the above 
notations, we want to minimize the total operational costs of the system: 

f = 
∑ 

t∈T 

[ 
∑ 

i∈G 
(ai Pi,t ∆t + SUi ui,t + SDi vi,t ) + ρt Pext,t ∆t + 

∑ 

i∈G 
cres  i Ri,t ∆t 

] 

where ai are the generating costs, cres  i the reserve costs, SUi and SDi are the start 
up and the shut down costs of the generator i ∈ G, ρt is the hourly market price, ∆t 
is the time resolution, such that the technical constraints of the components and of 
the system are satisfied, see (24.2)–(24.6) and (24.8)–(24.20) below. 

The Solution Approach 

Meta-heuristics have been widely used in solving complex combinatorial optimiza-
tions problems, because they can provide acceptable solutions in reasonable com-
putational time and are thus good substitutes for exact algorithms, see [ 5]. In recent 
years there has been an increased research interest in integrating machine learning 
into meta-heuristics, in different parts like algorithm selection, initialization, evolu-
tion or parameter setting, see e.g. [ 6] and the references therein for a comprehensive 
review. 

Our solution approach to the problem described in Section “Introduction”, called 
the hierarchical approach, is based on tabu search with adaptive neighborhood selec-
tor, which learns the success rate of the neighborhood operators and applies it in 
subsequent iterations. As its name suggests, the solution approach is a hierarchical 
one, the generation of one solution involving three steps detailed in Sections “Assign-
ment of Commitment State”, “Energy Storage System Dispatcher” and “DC-OPF” 
below, see also [ 4]. The subproblems in the second and third step are linear programs, 
which we solve using the open-source LP solver CLP through Google’s optimization 
suite OR-Tools. The tabu search uses neighborhood operators tailored to the current 
problem formulation. Similarly to the ideas in [ 7], the operators are used in the first 
iterations without any special selection, in order to collect their initial experience. 
After the “ramp-up phase”, the operators are applied according to their success rate, 
measured by the decrease of the objective function value. The credit assignment has 
a fading memory, the credits assigned decreasing over time. According to the nomen-
clature in [ 6], this approach can be seen as a hybrid approach combining score-based, 
average and extreme value-based credit assignments. 

This hierarchical approach provides acceptable solutions in reasonable computa-
tional time, and although not necessarily optimal, they constitute a valuable alterna-
tive to the equivalent all-in-one formulation as mixed integer linear program, named 
here the integrated approach. The hierarchical approach was proposed with the inten-
tion that the underlying software becomes open-source, enabling thus other learning
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components to be integrated. The integrated approach with the use an open-source 
MIP solver turned out to be unsuccessful in most test instances for larger power sys-
tems, see also Section “Assessment of the Solution Approach”. Behind the proposed 
hierarchical approach was also the motivation of having a model which can be eas-
ily extended with other technical and operational constraints of the power systems, 
which are not necessarily linear. Thus, in the final step of generating a solution, the 
AC-OPF problem could be also solved with an external software, in case the more 
accurate solution of the AC version is needed. 

Assignment of Commitment State 

In this step, all programmable generators and energy storage systems are assigned 
a commitment state over the entire planning horizon, more precisely, values are 
assigned to the binary variables zi,t , ui,t , vi,t , for all i ∈ G and zch s,t , zdch  s,t for all s ∈ S 
and t ∈ T , see the formulation of the model in Section “Introduction”. 

Neighborhood operators change the commitment state of the programmable gen-
erators and of the energy storage systems during the tabu search, e.g., they introduce a 
commitment block for i ∈ G or shift it, extend or shorten the charging or discharging 
cycle of s ∈ S. All generated assignments take into consideration the minimum up 
time and down time of the programmable generators, the minimum and maximum 
charging/discharging times of the energy storage systems, as well as the fact that 
their charging interval precedes the discharging interval. 

Energy Storage System Dispatcher 

For each s ∈ S, we denote by SOCmax 
s its maximum capacity, by Pch,min 

s and Pch,max 
s 

the minimum and maximum charging power, by Pdch,min 
s , Pdch,max 

s the minimum 
and maximum discharging power and finally by ηch 

s , ηdch  
s ∈ (0, 1] the energy stor-

age system’s charging and discharging efficiency factors. In addition, we define the 
following real decision variables: Ps,t , ∀t ∈ T for the power dispatch of s, which is 
negative (charging), positive (discharging), or zero otherwise, and SOCs,t , ∀t ∈ T 
for the state of charge of s at each time step t for all s ∈ S. The energy storage system 
dispatcher solves for each s ∈ S the following linear optimization problem: 

Maximize f (s) = 
∑ 

t∈T 

[ 
ρt Ps,t z

dch  
s,t ∆t − ρt Ps,t z

ch 
s,t ∆t 

] 
(24.1)
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subject to 

Ps,t ≤ Pdch,max 
s zdch  s,t − Pch,min 

s zch s,t , ∀t ∈ T (24.2) 

Ps,t ≥ Pdch,min 
s zdch  s,t − Pch,max 

s zch s,t , ∀t ∈ T (24.3) 

SOCs,t = SOCs,t−1 − ηch 
s Ps,t z

ch 
s,t ∆t − 1 

ηdch  
s 

Ps,t z
dch  
s,t ∆t, ∀t ∈ T (24.4) 

0 ≤ SOCs,t ≤ SOCmax 
s , ∀t ∈ T (24.5) 

SOCs,0 = SOCs,T −1 = 0 (24.6) 

where zch s,t , zdch  s,t , for all t ∈ T are fixed inputs from Section “Assignment of Com-
mitment State”. 

DC-OPF 

In the final step of the solution generation, we solve for each time step t ∈ T a DC  
optimal power flow problem in order to obtain the real power output Pi,t for all i ∈ G, 
Pext,t and Fi, j,t , the power flows through the branches. The model of the DC-OPF 
problem can be summarized as minimization of 

ft = 
∑ 

i∈G 
(ai Pi,t ∆t + SUi ui,t + SDi vi,t ) + ρt Pext,t ∆t + 

∑ 

i∈G 
cres  i Ri,t ∆t (24.7) 

subject to 

Pmin 
i zi,t ≤ Pi,t ≤ Pmax 

i zi,t , ∀i ∈ G (24.8) 

Pi,t−1 − RDi ≤ Pi,t ≤ Pi,t−1 + RUi , ∀i ∈ G (24.9) 

θns ,t = 0 (24.10) 

Fi, j,t = BaseMV A × 1/xi, j (θi,t − θ j,t ), ∀(i, j ) ∈ L (24.11) 

Fj,i,t = −Fi, j,t , ∀(i, j ) ∈ L (24.12) 

Fi, j,t = 0, ∀i, j ∈ N , (i, j) /∈ L (24.13) 

Fi, j,t ≤ Fmax 
i, j , Fj,i,t ≤ Fmax 

j,i , ∀(i, j ) ∈ L (24.14) 
∑ 

i∈Gn 

Pi,t + 
∑ 

s∈Sn 
Ps,t + 

∑ 

j∈PVn 

Pj,t + δn,ns Pext,t (24.15) 

= 
∑ 

d∈Dn 

Dd,t + 
∑ 

(i,n)∈L 
Fn,i,t + 

∑ 

(n,i )∈L 
Fn,i,t , ∀n ∈ N (24.16) 

− (1 − SI  ) 
∑ 

d∈D 
Dd,t ≤ Pext,t ≤ (1 − SI  ) 

∑ 

d∈D 
Dd,t (24.17)
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∑ 

i∈G 
Ri,t ≥ RF  

∑ 

i∈G 
Pmax 
i (24.18) 

Ri,t ≤ min(Rmax 
i , RUi )zi,t , ∀i ∈ G (24.19) 

Pi,t + Ri,t ≤ Pmax 
i zi,t , ∀i ∈ G (24.20) 

In the above linear program ui,t , vi,t , i ∈ G, t ∈ T are obtained in Section “Assign-
ment of Commitment State” and Ps,t , s ∈ S, t ∈ T , are results of Section “Energy 
Storage System Dispatcher”. The other notations used are defined as follows: N 
denotes the set of nodes, ns is the slack bus or reference bus from which relative 
voltage angles at all other buses are calculated, θi,t is the voltage phase angle at bus i 
relative to the slack bus, Fi, j,t is the power flow on the line from bus i to bus j, δn,ns 
is equal 1 if the n is the slack bus and 0 otherwise, BaseMV A is the base power 
for the network, xi, j and Fmax 

i, j are the reactance and maximum allowable flow for 
the line connecting the nodes i and j, Pmin 

i , Pmax 
i the minimum and maximum real 

power output of i ∈ G and RUi and RDi the ramp up and ramp down rates. Finally, 
Gn, Sn, PVn, Dn are the subsets of G, S, PV  and D respectively connected to bus 
n ∈ N . 

Assessment of the Solution Approach 

The basis for testing our proposed approach for solution quality and performance is 
the IEEE 5-, 14-, 30- and 300-Bus Systems. In addition, we use as benchmark for our 
approach the objective function value of the integrated approach. We emphasise here, 
that a one-to-one comparison between the approaches is not in all cases possible, as 
by breaking down the generation of a solution in several steps in the first approach, the 
optimal solution from the equivalent MIP formulation may not always be obtained. 

The hierarchical approach starts from a configuration with all programmable gen-
erators committed over the entire planning horizon. Furthermore, the charging and 
discharging intervals of the energy storage systems are assigned with a sequence 
of consecutive time steps where in average the market price is lowest for charging 
and highest for discharging. The number of neighborhood operators used in the tabu 
search is equal to 8 and the tabu list size is set to 100. 

For the first three smaller test power systems, our proposed approach with tabu 
search is fast and generates good solutions in relatively few iterations. Figure 24.1 
shows the result of our solution approach on a test instance based on IEEE 5-Bus Sys-
tem with additionally one energy storage system and one photovoltaic unit. Without 
giving any details on the underlying test instance data, we just point here to the fact 
that the solution captures the change around noon in the relation between the genera-
tion costs of the programmable generators and the market price, and thus the system 
imports power from the external grid in the first half of the day and exports power 
in the second half of the day, as much as the value of the seamless index allows it.
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Fig. 24.1 Result of our approach for a test instance based on the IEEE 5-bus system 

Table 24.1 Numerical results for the IEEE 300-bus system 

Hierarchical 
approach 

Iterations Runtime 
(min) 

Integrated 
approach 

Relative 
gap (%) 

Absolute 
gap 

Test 1 137,608,164.69 720 82 137,607,524.78 0.0004 639.91 

Test 2 3,944,286.25 400 37 3,931,869.91 0.3147 12,416.34 

For the larger IEEE 300-Bus System, the proposed method also generates good 
solutions for the test instances considered. The benchmark values were obtained in 
this case with a commercial solver, as the open-source MIP solver SCIP did not 
converge satisfactorily after approximatively one hour. Table 24.1 contains some 
numerical results for this power system with additionally 5 energy storage systems 
and 5 photovoltaic units. The two test instances differ in the generating costs of 
the programmable generators, load and photovoltaic generation profiles and hourly 
market price. The financial benefits of the energy storage systems depend on their 
capacity and market price values, but they are absolutely necessary to shift energy 
horizontally. 

Conclusions 

We considered here the day-ahead operational planning of power systems with a basis 
of power system components and technical details which can be further extended, 
for example with other renewable energy sources like wind farms or with flexible 
loads. The proposed approach can be easily adapted to cover these cases and can thus
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find different applications, like in the planning of microgrids or energy communities. 
Furthermore, the adaptive neighborhood selector used within the tabu search gener-
ates good results on the larger test power system and proves thus to be a promising 
direction for future research, together with other ways of learning in the evolution 
of tabu search, or in the initialization and parameter setting, the classification being 
the one used in [ 6]. 
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Chapter 25 
Eco-Energy-Efficient Simultaneous 
Lot-Sizing and Scheduling: A Tri-criteria 
Problem 

Markus Hilbert, Andreas Dellnitz, and Andreas Kleine 

Abstract In the context of lot-sizing and scheduling, minimizing energy consump-
tion is a typical criterion for improving a company’s environmental footprint. In 
the literature, however, it is insufficiently questioned whether minimizing energy 
consumption actually also minimizes energy-related emissions. In this paper, we 
show that such a positive one-to-one relationship does not always hold. In fact, when 
energy prices fluctuate over time, energy costs may additionally conflict with these 
two goals. To demonstrate this, we develop a three-criteria lot-sizing and scheduling 
problem and derive the three-dimensional Pareto front using the elastic constraint 
method. 

Keywords Energy-efficiency · Multiobjective optimization · Elastic constraint 

Motivation 

In energy-efficient production planning, i.e., lot-sizing and/or scheduling, dynamic 
electricity price tariffs are well-established concepts to strive for a reduction in energy 
costs. Typically, Time-Of-Use tariffs (TOU) or Real-Time-Pricing (RTP) are con-
sidered, and tradeoffs between the cost of electricity and another criterion, such as 
makespan, are examined; cf. [ 1]. In this context, minimization of energy-related car-
bon emissions—so-called Scope 2 emissions (see https://ghgprotocol.org)—is rarely 
considered. In [ 2] and [ 3], for example, the authors minimize energy-related carbon 
emissions, multiplying electricity consumption by a constant emission factor; then, 
minimizing electricity consumption and energy-related carbon emissions essentially 
coincide. A recently conducted study in 2021 commissioned by the German Fed-
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eral Network Agency found that time-related carbon emission factors in the German 
electricity mix fluctuate significantly over the course of the year, in particular during 
the night; see [ 4]. A first step towards time-based emission optimization can be found 
in [ 5] and [ 6] under TOU and in [ 7] under RTP. These articles examined tradeoffs 
between carbon emissions and other criteria, but not electricity consumption.

To the best of our knowledge, no one has yet studied the tradeoffs between the 
three criteria—electricity consumption, electricity costs, and carbon emissions— 
under RTP. To this end, we develop a tri-criteria integrated lot-sizing and scheduling 
program and compute the corresponding Pareto fronts for selected instances using the 
elastic constraint method. This method is an extension of the well-known ε-constraint 
method, but significantly less frequently used to tackle multiobjective problems. 

After introducing the theoretical concepts in Section “Theoretical Concepts”, 
Section “Tri-criteria MIP” is devoted to model development and problem description. 
Section “Results” presents the results of the computational study. Section “Conclu-
sion and Road Ahead” summarizes and provides an outlook. 

Theoretical Concepts 

Real-Time-Pricing and Fluctuating Emission Factors 

Demand response (DR) can be understood as electricity demand that responds to 
economic signals. If these signals are electricity prices and an end-user, e.g. a com-
pany, reduces its electricity consumption in response to high market prices, we call it 
price-based DR. In the presence of an RTP-based DR program, the electricity price 
fluctuates on an hourly basis or even shorter, e.g. a quarter hourly basis; cf. [ 8]. As 
mentioned in the prior section, emission factors of the electricity mix vary greatly 
throughout the day, especially during nighttime hours. Moreover, emission factors 
and spot market electricity prices are not perfectly positive correlated. While corre-
sponding planning approaches that exploit fluctuating emissions [ 5– 7] also consider 
nighttime hours, we show that emission factors also fluctuate significantly during a 
weekday, e.g., between 8 AM and 8 PM. To justify this, we consider the electricity 
mix in the 6th calendar week of 2022 in Germany, corresponding trajectories of quar-
ter hourly electricity prices and emission factors of the electricity mix are illustrated 
in Fig. 25.1. 

Here, quarter hourly continuous intraday average spot market prices are used 
(Mon–Fri, 8 AM to 8 PM for each day) and the corresponding emission factors are 
calculated based on the data at https://www.ipcc.ch and www.uba.de. To illustrate 
the tradeoffs between electricity prices and emission factors, we normalize the data 
and present the transformed data in Fig. 25.2. A simple grid classification is used to 
cluster the data. It can be seen that many points are in the white areas, i.e., normalized 
electricity prices and normalized emission factors are similar: the smaller the price, 
the smaller the emission factors, and vice versa. However, this is not the case in the

https://www.ipcc.ch
https://www.ipcc.ch
https://www.ipcc.ch
https://www.ipcc.ch
www.uba.de
www.uba.de
www.uba.de
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Fig. 25.1 Price and factor trajectory 

Fig. 25.2 Normalized prices 
and factors

light gray shaded and dark gray shaded areas where many normalized data points 
are displayed. In these areas, there are significant tradeoffs between electricity prices 
and emission factors. In the dark gray shaded southeastern area, for example, we see 
high normalized electricity prices but the corresponding normalized emission factors 
are low. 
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Elastic Constraint Method 

The main idea of the elastic constraint method is to relax the ε-constraints by allowing 
these ε-bounds to be violated, but penalizing the violations in the objective function. 
Since we are dealing with a tri-criteria optimization problem and want to obtain a 
three-dimensional Pareto front by applying exact rather than heuristic approaches, 
the elastic constraint method might be less expensive from a computational point of 
view, which is also emphasized in [ 9]. The scalarization is as follows: 

min 
x∈S f j (x) + 

∑ 

k /= j 

μk · sk 

s.t. 
fk(x) + lk − sk = εk k /= j 
sk, lk ≥ 0 k /= j 

(25.1) 

where μk ≥ 0, ∀k /= j, are penalty factors, f j (x), fk (x) being the j th and kth objec-
tive functions, respectively, and S being the feasible region. In general, weakly effi-
cient solutions can be found using this scalarization approach. For further details, 
see [ 9]. 

Tri-criteria MIP 

In [ 1], it is pointed out that multicriteria planning approaches have been little inves-
tigated in the context of energy-efficient lot-sizing and/or scheduling considering a 
parallel machine environment. Therefore, we propose an integrated lot-sizing and 
scheduling program comprising energy costs, energy-related emissions and energy 
consumption—without involving setup costs and warehousing. Due to the ecological 
nature of the criteria—at least for energy consumption and emissions—we refer to the 
problem as eco-energy-efficient tri-criteria problem. As levers for energy consump-
tion, energy costs and energy-related emissions, we consider different machine states 
with different power levels and a speed-scaling approach for the machines, which 
are common concepts in the literature; see [ 1]. Table 25.1 contains the symbols used 
in our mixed-integer program (MIP) given by (25.2)–(25.11). For an overview of the 
setting, see Fig. 25.3. 

min 

{ 

C = 
T∑ 

t=1 

celec t · sbuy t ; E = 
T∑ 

t=1 

eelec t · sbuy t ; P = 
T∑ 

t=1 

sbuy t 

} 
(25.2) 

s.t. 
N∑ 

ν=1 

T∑ 

t=1 

M∑ 

m=1 

a prod ν j · x jmtν = d j ∀ j ∈ J (25.3)
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Fig. 25.3 Setting overview 

I∑ 

i=0 

δstate imt  = 1 ∀ m ∈ M , t ∈ T (25.4)

 ̂δstate_I mtν − 
J∑ 

j=1 

x jmtν = 0 ∀ t ∈ T , m ∈ M , ν  ∈ N (25.5) 

δstate Imt  − 
N∑ 

ν=1

 ̂δstate_I mtν = 0 ∀ t ∈ T , m ∈ M (25.6) 

δstate imt  + δstate hm,t+1 ≤ 1 + γ tran  ih ∀ i, h ∈ I , m ∈ M , t ∈ T \{T } (25.7) 
M∑ 

m=1 

( 
N∑ 

ν=1

 ̂aelec_I νm · ̂δstate_I mtν + 
I −1∑ 

i=0 

aelec im  · δstate imt  

) 

= sbuy t ∀ t ∈ T (25.8) 

δstate 0mt + δstate 1mt = 1 ∀ m ∈ M , t ∈ T ini t  (25.9) 

x jmtν, δstate imt  ,  ̂δstate_I mtν ∈ {0, 1} ∀  t ∈ T , j ∈ J , i ∈ I , m ∈ M , ν  ∈ N 
(25.10) 

sbuy t ≥ 0 ∀ t ∈ T (25.11) 

We minimize electricity costs C, emissions E, and consumption P simultaneously 
by multiplying the electricity cost rate celec t , emission factor eelec t or the neutral factor 
‘1’ for each period t by the energy consumption sbuy t in period t and aggregating 
accordingly, see (25.2). Using (25.3), we model equality conditions for demand 
fulfillment d j for each job j . Equation (25.4) ensure that a machine has only one 
state and never becomes stateless. (25.5) and (25.6) control the production state in 
tandem with the speed level, i.e., δstate_I mtν equals 1 if any x jmtν equals 1 in (25.5). 
The latter is only the case when a job j is assigned to machine m at speed level
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Table 25.1 Indices, parameters and variables 

Indices, parameters and decision variables 

m Machine m ∈ M = {1, . . . ,  M} 
j Job j ∈ J = {1, . . . ,  J } 
i, h Machine states i, h ∈ I = {0, . . . ,  I } 
t Period (a quarter hour) t ∈ T = {1, . . . ,  T }. t ∈ T ini t  serves as initialization and corresponds to 

the first quarter of an hour of each working day considered 

ν Production speed level ν ∈ N = {1, . . . ,  N } 
celec t Cost rate [e/kWh] of the electricity purchased in period t 

eelec t Carbon emission factor [kg/kWh] of the electricity mix purchased in period t 

a prod ν j Hourly production rate of job j on each machine at speed level ν 
d j Demand of job j 

γ tran ih Transition parameter from state i to h (1 if possible, 0 otherwise) 

aelec im Electricity consumption of machine m in state i without i = I
 ̂aelec_I νm Electricity consumption of machine m in production state I at speed level ν 
x jmtν Binary variable equals 1 if job j will be processed on machine m in t at speed level ν, otherwise 0 

δstate  imt Binary variable equals 1 if machine m has state i in period t , otherwise 0

 ̂δstate_I mtν Binary variable equals 1 if machine m is in production state I at speed level ν in t , otherwise 0 
sbuy t Nonnegative variable equals the amount of electricity [in kWh] to be purchased in period t 

C Free variable equals the energy costs to be minimized 

E Free variable equals the carbon emissions to be minimized 

P Free variable equals the total power consumption to be minimized 

ν in period t . Equalities (25.6) couple the production mode i = I of a machine 
to one speed level exclusively. Constraints (25.7) control the state transitions of 
a machine. Here, a machine can either maintain a state δstate imt  + δstate hm,t+1 = 2, with 
h = i and 1 + γ tran  ih  = 2, or it can change it by choosing h /= i if the transition from 
state i to h is feasible. (25.8) balance the electricity consumption and (25.9) serve as 
initialization. In the first period of each working day, a machine m is either in off mode 
(i = 0) or in ramp up mode (i = 1). (25.10)–(25.11) are binary and non-negativity 
conditions. 

Results 

We conduct a simulation study over five different demand scenarios (S1–S5) for  
four machines and five jobs. The quantities d j are randomly generated and the total 
demand of all jobs ranges from ≈ 50−90% of the machine utilization (= cap. ut.) at 
highest production speed. The calculations are performed via GAMS using CPLEX, 
applying both the elastic constraint method (= elCM) with μ1 = μ2 = 0.1 and the 
ε-constraint method (= εCM). Figure 25.4 shows a Pareto front plot for a selected
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Fig. 25.4 Pareto front representation 

scenario (‘S3’ for M = 4 and J = 5). The implications of the results are also repre-
sentative for the other scenarios. 

It can be seen that the three criteria are in conflict with each other, resulting in 
a Pareto front representation in three-dimensional space. This is also true if only 
the bi-criteria subproblems of the MIP are considered (the corresponding figures 
are skipped). In the context of the RTP, electricity costs are not only in conflict 
with energy-related emissions, but also with electricity consumption. Consequently, 
the question arises whether electricity costs are an environmental criterion, at least 
when considering dynamic price tariffs. Furthermore, minimizing both electricity 
consumption and carbon emissions are not concurrent when market-based emission 
factors are considered, i.e., these are in conflict with each other. It is therefore ques-
tionable whether approaches—that minimize emissions via the carbon cost of energy 
consumption using a constant emission factor—really minimize energy-related emis-
sions. Of course, one could add a more classical criterion such as makespan. How-
ever, the interactions shown between electricity costs, energy-related emissions, and 
energy consumption would still remain. 
As secondary results, we have compared the ε-constraint method with the elastic 
constraint method in terms of computational effort, see Table 25.2. For each sce-
nario, the elastic constraint method leads to significantly lower computation times 
for calculating a Pareto front representation (see the corresponding Δ-values in Table 
25.2). Thus, this method seems to be a real alternative in multiobjective settings when 
exact Pareto fronts are to be determined. 

Conclusion and Road Ahead 

In this paper, we have developed a tri-criteria lot-sizing and scheduling problem, 
minimizing electricity costs, energy-related emissions, and electricity consumption. 
We apply the elastic constraint method to obtain a three-dimensional Pareto front,
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Table 25.2 Computation times in seconds 

M = 4, J = 5 
Scenario; cap. ut. εCM elCM Δ 
S1; ≈ 93% 3154.69 1097.36 2057.33 

S2; ≈ 75% 2401.09 1055.67 1345.42 

S3: ≈ 88% 3147.04 1016.88 2130.16 

S4; ≈ 59% 2029.36 1100.95 928.41 

S5; ≈ 70% 2459.20 999.10 1460.10 

showing that all three criteria are in conflict. Our results show that focusing solely 
on energy consumption is not enough; at least energy-related emissions should be 
taken into account. However, considering additional criteria can lead to a significant 
increase in computational effort. Therefore, the development of heuristics could be 
fruitful research. 
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Chapter 26 
Energy-Efficient Driving Model 
by Clustering of GPS Information 

Michael Breuß, Ali Sharifi Boroujerdi, and Ashkan Mansouri Yarahmadi 

Abstract In this paper we propose a novel approach to distinguish the style of drivers 
with respect to their energy efficiency. A unique property of the proposed method 
is that it relies exclusively on Global Positioning System (GPS) data. This setting 
is highly robust and available in practice as these GPS logs can easily be obtained. 
To rely on positional data alone means that all possible derived features from it will 
be highly correlated, so we have to consider a single feature. Here, we propose to 
explore the use of acceleration differences of a movement. Our strategy relies on 
agglomerative hierarchical clustering. The approach can be easily implemented to 
perform fast, even on huge amount of real-world data logs. 

Keywords Energy efficiency · Driving style analysis · Clustering · GPS data 

Introduction 

The driving style significantly impacts the fuel consumption of a moving car. Intel-
ligent hybrid cars could be adapted to the driving style of a human to maximise their 
mileage. Such possibility of optimisation could be manifold, ranging from effectively 
utilizing the electric engine to suggesting energy-optimal paths [ 8, 10]. In current 
study we aim to provide a major step towards including the driving style as an addi-
tional constraint into this objective. Thus an automated way of classifying driving 
style concerning the energy consumption is presented in this work. This may lead to 
a data-oriented model to describe the efficiency of the driving styles. 
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To develop a robust method in terms of applicability, we solely rely on data that 
can be easily acquired in any vehicle, namely Global Positioning System (GPS) 
logs. These setups are also very popular due to their plenty of corresponding devices 
on consumer market with relatively affordable prices. However, one has to admit 
that benefits come with certain drawbacks, namely obtained noisy samples with 
insufficient accuracy or even total loss of the logs because of hardware failures. Our 
modeling is based on an unsupervised approach aiming to infer hidden structures 
from a large volumes of GPS logs. By the unsupervised approach, we avoid the 
labeling task to assign pre-defined driving style to GPS data as it is a cumbersome 
task concerning the huge volume of data. 

Now we turn our attention to show the importance of utilizing GPS data in classi-
fication and recognition of the drivers in real world scenarios, namely public trans-
portation sector. The coal transportation pattern as shown in [ 14] is very much influ-
enced by behaviour of the truck drivers. The average velocity maintained by the truck 
drivers acquired based on their GPS logs was chosen as an index to model the truck 
movement patterns. The risky taxi drivers are identified in [ 7] after their velocities 
within the regions that they pass were analysed. Another study concerning reckless 
taxi driver identification is reported in [ 15], to label a cab with a highly deviated 
route compared to those traveled by his colleagues. The task to recognize individual 
drivers from a given set of drivers is also tackled in [ 2], making use of a ranking of 
statistically extracted features related to car movement yet obtained from a variety of 
sensor information. Let us also emphasis on the robustness of our chosen GPS logs 
in contrast to other data modalities, namely videos and pictures. More specifically, 
the law constraint that needs to be enforced on the collected data while the driver 
crosses the national borders of countries when it comes to the captured visual data 
by auto sensors is much more restricted compared to GPS data. Within the context 
of the already referred literature, let us highlight that we extract a single feature 
that statistically processes neighbor GPS logs of a moving car in contrast to [ 7, 14, 
15] with their focus to be solely on velocity or the traveled routes. Specifically, the 
practicability in number of used features comes to the picture, as we use only one 
against .137 features adopted in [ 2]. 

Nowadays modern vehicles are supplied with the necessary embedded hardware 
systems for the purpose of processing a collection of high volume acquired sensor 
data, especially cameras and radar [ 9]. One significant advantage of our GPS based 
method is a low volume of data as only few GPS logs are required to classify a 
driver on board. This consequently can be realized within the context of hybrid cars, 
allowing to switch the driving mode according to the analysis of the driving style of 
the operator [ 4]. 

On the Proposed Method to Analyse the GPS Data 

The spatio-temporal positions of a moving car are collected in form of coordinate 
pairs.(x, y) ∈ R

2, with each pair to be accompanied with a label containing the time
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stamp . t on which the position has been recorded. Such discrete set of collected 
samples is sufficient to describe the movement of a car. In context of current study, 
we speak of a movement pattern if the car does not stop during a considered time 
interval. 

In order to apply our method we remove all GPS logs with the same longitude and 
latitude values irrespective if they are sampled on a same or a varying time interval. 
Such cases may represent a hardware failure or a still standing car, respectively. 
To allow a meaningful and unbiased comparison we additionally drop movement 
patterns with less than 10 samples and split them if they exceed a length of 24. This 
is done to avoid an unbiased comparison among the drivers. After the preprocessing 
we obtain about 3225 movement patterns from the real-world data set [ 13]. 

Clustering of Movement Patterns and Novel Feature 

Feature construction The core of our proposed method is a refined formulation of 
differences in acceleration performed by a driver. We construct our feature as 

.ω (t) := exp
(
−1/

√
σ ( j (t))

)
(26.1) 

with . j (t) as the jerk value for each position in the movement pattern at the time of 
. t , and the function . σ to denote the standard deviation. We recall that the jerk . j of a 
movement can be deduced as.

...
x (t) = v̈ (t) = ȧ (t) = j (t), while the derivatives are 

taken from the position, velocity and acceleration with respect to the time . t . 
In practice and to obtain a measure of . j (t), we start by populating a one dimen-

sional discrete grid . Φ, with its point values representing the velocities between 
adjacent spatio-temporal coordinates .(x, y) ∈ R

2 of subsequent GPS logs. Let us 
note that it is not crucial by which value .Φt we start in this grid, since we will 
finally consider just differences in positions. Next we apply a second-order centered 
difference approximation to the computed velocities on . Φ

. | j (t)| ≈
/(

(Φt+1 − 2Φt + Φt−1)

Δt2

)2

(26.2) 

leading us to approximated jerk values. Note that, we used dummy grid points on both 
ends of . φ grid concerning each movement pattern to account for boundary points 
and while adopting the central finite difference operator. The dummy points have 
the same values equal to their corresponding boundaries. With this, we conclude the 
construction of our feature . ω. 

Feature properties The motivation for proposing this feature is as follows. The expo-
nential part of (26.1) discriminates those movement patterns having a very high 
amount of fluctuation rate around their mean jerk values. They occur due to the exis-
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tence of at least one noisy GPS log inside the movement pattern or a dubious driving 
style with a large number of strong accelerations and decelerations. Further, in order 
to discern drivers with lower jerk fluctuation rates we consider the square root of the 
standard deviation inside the exponential function. 

Small feature values correspond to those movement patterns representing drivers 
with less accelerations and decelerations in their driving patterns. An energy-saving 
driving style can therefore be identified by small feature values, whereas more racy 
drivers will usually exhibit larger feature values. 

Algorithmic details An agglomerative clustering method developed by The Math-
Works [ 11] finds the optimal number of clusters by taking singleton clusters at the 
lowest level and keeps on merging them pairwise to establish a bottom-up hierarchy 
of clusters. The Ward criterion proposed by Wishart [ 12] was used as the core of 
the agglomerative clustering. The criterion is used to decide if merging two clus-
ters .Ca and .Cb is optimal, in a sense of computing a standard sum of squared error 
(SSE) among each individual component .cax and all components .cbx from .Ca and 
.Cb, respectively: 

.
|Ca| |Cb|

|Ca| + |Cb|
l∑

ν=1

k∑
η=1

(
caν − cbη

)2
. (26.3) 

Since the cluster elements are comprised of (26.1), measuring the rate of accelera-
tion change, a harmonic mean type weighting term published by Aldous [ 1] between 
cardinalities.|Cx | of clusters.Ca and.Cb is used to weight the SSE difference between 
.Ca and .Cb in (26.3). The harmonic mean is near the arithmetic mean if the two 
numbers .|Ca| and .|Cb| are close, but smaller if they differ a lot. 

To have an insight about the optimal cluster numbers, an L-curve heuristic method 
was adopted according to [ 5, 6]. The L-curve method plots the WCSS as function of 
cluster numbers and suggests an optimum cluster number as WCSS reaches below 
a threshold value. In our case four number of clusters were found to be optimal. The 
WCSS is given by. :

.

M∑
a=1

∑
x∈Ca

||x − ca||22 (26.4) 

where .M is the total number of clusters and .ca is the centroid of cluster .Ca . 

Experimental Results and Validation 

Our dataset at hand contains 10,000 number of trajectories comprised of GPS logs 
obtained within a distinct areas of Beijing city [ 13]. Total number of logs in dataset is 
more than 17 million representing around 9 million kilometres of taxi travels across 
the city. Our expectation is to see a certain variety of driving styles by taxi drivers.
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Fig. 26.1 A whisker plot 
representation of. ω values 
and their distributions among 
different established clusters 
concerning the centre city 
areas. More precisely, 
Clusters 2 and 3 represent a 
spectrum of the drivers with 
an average fuel consuming 
driving style. The.1st cluster 
contains solely the energy 
saving drivers and the last 
cluster has the drivers with a 
high fuel consumption, 
containing also noisy 
patterns 

The region under current study is chosen to cover a vast area of Beijing city 
centre. The logs are preprocessed in accordance to the description in Section “On 
the Proposed Method to Analyse the GPS Data”, which resulted in 3225 number of 
movement patterns. All the feature values are obtained based on (26.1). 

Our clustering result based on agglomerative approach is visualized in Fig. 26.1. 
Here, each box marks the boundaries of the first and third quartiles of a cluster and 
the bars indicate the full extent of the feature values in that cluster. The horizontal 
line indicates the cluster median. As we expected, drivers are distributed across four 
distinct different clusters, concerning the chosen region. The energy saving drivers 
are located in first cluster, where as the fourth cluster contains mostly noise and also 
highly fuel consuming drivers. A majority of average fuel consuming drivers lies 
within the scope of second and third drivers. 

As WCSS did not have a major reduction after adding the .5th cluster, according 
to L-curve heuristic the optimal number of clusters is found to be four. We recall that 
the central city area might be enforced by maximum velocity limitations leading the 
reckless drivers also to drive more carefully. This means, the fourth cluster contains 
with a high probability only noisy samples. The other three clusters represent a 
spectrum of drivers from optimum to more fuel consuming ones. 

Conclusions 

In this paper, we proposed an approach to classify the drivers based on the energy 
consumption inherent to their driving styles. Our algorithm benefits from a novel 
feature developed based on jerk capable of discerning the style of car driving based
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on only GPS logs. As we perform an unsupervised classification, the cumbersome 
task of labeling is not required here, which means our method can build data-driven 
models on even huge amount of GPS logs. The more number of samples are provided, 
it will be more likely to clearly distinguish noise and classified individual drivers. 

At the technical level, let us comment that our jerk-based feature considers velocity 
differences but not the absolute size of the underlying velocities. To account for the 
absolute velocities, the GPS data needs to be augmented with their corresponding 
class of streets e.g. distinguishing highways from other streets where typically lower 
velocities are enforced. We refer to [ 3] as a more advanced and technically oriented 
work, that robustly clusters the driver style concerning different classes of streets. 
This is achieved by retaining the same feature setting explained in current work along 
with a boosted dataset collected on different streets enforced by different level of 
velocity limit. 

We also conjecture that within the scope of industry, our work is a realistic solution 
to be used in fuel consumption related scenarios and also as a measure to avoid other 
negative consequences, namely micro-particles emitted from tires as a concern for 
human health, because of driving in a not energy saving style. In a deeper perspective, 
our proposed work still stay relevant by the emerge of next generation of electric 
vehicles as they become more heavy and strong in terms of weight and power and 
their increased torque capabilities resulting to more produced airborne pollutants 
emanated from tires. 

In brief, our research aims to deduce deep insights from pure unlabeled data to 
model the driver behaviour. The model can consequently be brought in connection 
with environment friendly measures, namely dealing with airborne pollutants. 
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Chapter 27 
Identifying Critical Demand Periods in 
Capacity Planning for Networks 
Including Storage 

Andreas Bley and Philipp Hahn 

Abstract We consider a capacity planning problem for networks including storage. 
Given a graph and a time series of demands and supplies, we seek for integer link 
and storage capacities that permit a single commodity flow with valid storage in-
and outtakes over all time steps. This problem arises, for example, in power systems 
planning, where storage can be used to buffer peaks of varying supplies and demands. 
For typical time series spanning a full year at hourly resolution, this leads to huge 
optimization models. To reduce the model size, time series aggregation is commonly 
used. The time horizon is sliced into fixed size periods, e.g. days or weeks, a small 
set of representative periods is chosen via clustering methods, and a much smaller 
model involving only the chosen periods is solved. Representative periods, however, 
typically do not contain the situations with the most extreme demands and supplies 
and the strongest effects on storage. In this paper, we show how to identify such criti-
cal periods using principal component analysis (PCA) and convex hull computations 
and we compare the quality and solution time of the reduced models to the original 
ones for benchmark instances derived from power systems planning. 

Keywords Time series analysis · Capacity planning · Model reduction 

Introduction 

We consider a single-commodity capacitated network design problem with storage, 
which arises, for example, in the planning of power and transport networks where 
storage can be used to balance loads among consecutive load scenarios. Given a graph 
and a time series of load scenarios, the task is to find minimum cost edge and storage 
capacities that permit single-commodity flows in each time step without exceeding
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the edge and storage capacities. For instances with many time steps, the resulting 
models are huge and techniques to reduce their size are needed, c.f. [ 6]. As storage 
adds dependencies among consecutive time steps, reductions based on isolated time 
steps do not work well. Instead, short periods of consecutive time steps need to be 
considered. In practice, typically few representative periods are chosen via clustering 
techniques and then a model involving only these is solved [ 4, 6, 10]. Representative 
periods, however, often do not cover the extreme scenarios governing the capacity 
installation. In this paper, we extend the technique presented in [ 1], which is based 
on principal component analysis and convex hull computations, to find such extreme 
periods.

Formally, in the (single-commodity) capacitated network design problem with 
storage (CNDS) we are given a graph .G = (V, E) and, for each edge .i j ∈ E , a  
capacity unit.ui j , that can be installed in integer multiples at cost.ci j per unit. Storage 
capacity can be installed in integer multiples of.ui at cost. ci at each node.i ∈ VS ⊆ V . 
Let .A = {(i, j), ( j, i) | i j ∈ E}. All arcs in. A except for a subset.A0 ⊂ A can carry 
flow. Furthermore, we are given a collection of time periods, each containing several 
consecutive time steps. Time-dependencies exist only between time steps within 
the same period. Using this scheme, a full time series is given as a single period 
containing all time steps, while a reduced model contains only few short periods 
taken from the time series. We let .[k] := {1, . . . , k} for each .k ∈ N. We denote by 
.P the number of given periods and, for each .p ∈ [P], by  .Sp the number of time 
steps in period . p. The set of all time steps is .T = {(p, s) | p ∈ [P], s ∈ [Sp]}. Let  
.T 0 = T ∪ {(p, 0) | p ∈ [P]}. For each time step .(p, s) ∈ T , we are given a vector 
.d p,s = (d p,s

j ) j∈V , where .d p,s
j is the supply or demand at node . j in time step .(p, s). 

Our goal is to find minimum cost edge and storage capacities, such that, for each 
.(p, s) ∈ T , there are storage in- and outtakes and a flow that respect the storage and 
edge capacities and satisfy the resulting node balances. 

Using variables.xi j , yi ∈ Z+ for the number of capacity and storage units installed 
on edge.i j ∈ E and node.i ∈ V , variables.l p,s,+i , l p,s,−i , l̄ p,si , l̄ p,0i ∈ R+ for the storage 
in- and outtake and level at node.i ∈ V in time step.(p, s) ∈ T , and variable . f p,s

(i, j) ∈
R+ for the flow sent via arc.(i, j) ∈ A in time step.(p, s) ∈ T , we obtain the following 
MILP-model for CNDS: 

. min
∑

i j∈E
ci j xi j +

∑

i∈V
ci yi (CNDS-IP) 

.s.t. f p,s
(i, j) + f p,s

( j,i) ≤ xi j ui j i j ∈ E, (p, s) ∈ T (27.1) 

l̄ p,s i ≤ yi ui i ∈ V , (  p, s) ∈ T 0 (27.2) 

l p,s,+ 
i − l p,s,− 

i + l̄ p,s−1 
i = l̄ p,s i i ∈ VS, (  p, s) ∈ T (27.3) 

∑ 

( j,i)∈δ−(i ) 

f p,s ( j,i) − 
∑ 

(i, j)∈δ+(i) 

f p,s (i, j) − l p,s,+ 
i + l p,s,− 

i = d p,s i i ∈ V , (p, s) ∈ T 

(27.4)
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f p,s (i, j) = 0 (i, j ) ∈ A0, (p, s) ∈ T (27.5) 

l p,s,+ 
i , l p,s,− 

i , ̄l p,s i = 0 i ∈ V \ VS, (p, s) ∈ T (27.6) 

l p,s,+ 
i , l p,s,− 

i , ̄l p,s i ≥ 0 i ∈ V , (  p, s) ∈ T 
f p,s (i, j) ≥ 0 (i, j ) ∈ A, (p, s) ∈ T 
xi j  ≥ 0, xi j  ∈ Z i j  ∈ E 
yi ≥ 0, yi ∈ Z i ∈ VS 

Inequalities (27.1) and (27.2) ensure that in each time step the flow does not 
exceed the edge capacities and the storage levels do not exceed storage capacities. 
Constraints (27.3) link the storage levels of consecutive time steps within a period 
and the corresponding in- and outtakes. Equalities (27.4) ensure that the flow in each 
time step satisfies all node balances including storage in- and outtakes. For simplicity, 
flow and storage variables are defined for all arcs and nodes but fixed to zero for all 
non-flow arcs and non-storage nodes in (27.5) and (27.6), respectively. The objective 
is to minimize the sum of all capacity installation costs. 

Note that the capacity variables .xi j and.yi do not depend on the time steps, while 
flow and storage variables do. Also note that the initial storage level in each period 
is unrestricted. Thus, initially full storage can be used to help satisfy demands. The 
storage capacity needed for this, however, causes costs. 

Reducing the Model 

To model the CNDS problem for a full time series and all dependencies between 
consecutive time steps, a single period containing all time steps is given as input 
to the model (CNDS-IP). Our goal is to construct a smaller, approximate model 
that involves only few shorter periods and less time steps in total. For this, we first 
generate a large collection of short periods that cover the original time series and 
then pick a small sub-collection of these to remain in the reduced model. 

Generating Periods 

Assume the full time series is given as a single period containing all .m time steps 
and we are given a desired sub-period length . S, e.g.  .S = 168 for a period of 1  
week and hourly time steps, and a desired shift .Q between two consecutive periods, 
e.g. .Q = 24 for a shift of 1 day. For simplicity, assume that .P = (m − S)/Q ∈ N. 
We then construct .P sub-periods of size . S, each shifted by a multiple of . Q. More  
precisely, the. S consecutive time steps.(p − 1)Q + 1 to.(p − 1)Q + S of the original 
full time series are contained in period .p ∈ [P] and we have .d p,s = d1,(p−1)Q+s

orig ,
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where .dorig denotes the demand vectors indexed according to the original full time 
series and . d the demand (re-)indexed according to the time steps . s in the created 
period .p ∈ [P]. 

Passing the periods in .[P] (or a sub-collection thereof) with the corresponding 
demand vectors . d as input to (CNDS-IP), one obtains a relaxation of the model for 
the full time series. Edge and storage capacities that permit valid flows and storage 
in- and outtakes for the full times series’ model also permit valid flows and storage 
in- and outtakes for the model involving the periods in .[P] instead. 

Identifying Critical Periods 

In order to identify a small sub-collection of the generated periods, we extend the 
method presented in [ 1] to select critical isolated scenarios in robust network design 
(without dependencies among time steps) to periods spanning multiple time steps. 
That method first uses principal component analysis (PCA) to identify the directions 
of the statistically largest variation among the demand vectors. In the second step, 
all demand vectors are projected onto subspaces spanned by one or more of the 
most important principal components. For each of these subspaces, the vertex set 
of the convex hull covering the projected demand vectors is computed. Eventually, 
the scenarios corresponding to the vertices are selected as critical and chosen to 
remain in the reduced problem. In a symmetrized variant of this method, for each 
scenario . s both the original demand vector .ds and its negative .−ds are projected 
onto the subspaces, which may lead to fewer scenarios corresponding to vertices. 
For subspace dimension . b, we denote the non-symmetrized and the symmetrized 
variants by .CHb and .SCHb, respectively. 

To extend that method to time periods, we first apply a slicing procedure to 
the original demand vectors in order to create a new matrix whose rows represent 
the demands of periods of length . S. More precisely, with .n = |V |, the given node 
demands form a matrix .Dorig ∈ R

m×n , whose . sth row is the demand vector .d1,s
orig for 

time step . s. Concatenating the demand vectors .d p,s of all time steps .s ∈ [Sp] in 
a sub-period .p ∈ [P] to a single row, we obtain the matrix .D ∈ R

P×S·n . The  . pth 
row .Dp of .D can be regarded as the demand or ‘feature’ vector of the entire period 
. p. Eventually, we apply the methods described in [ 1] to the feature vectors .Dp for 
periods .p ∈ [P] to choose a small subset of extreme periods .P ' ⊆ [P], that will be 
finally kept in the reduced model. 

Time series, however, typically feature some natural periodicities, such as daily 
and weekly patterns. If the shift .Q is no multiple of these periodicities, seemingly 
strong variations among different periods’ demands are artificially introduced by the 
different offsets. To eliminate these artificial variations, we can realign the periods’ 
demand data to a uniform pattern before applying the PCA. For weekly periods, for 
example, we cyclically reorder the time steps .s ∈ [Sp] in each row . p in such a way 
that the time step corresponding to Sunday 0:00 is in the same column in each row.
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Note that, in contrast to the approach presented in [ 2], our approach does not 
require to first solve (CNDS-IP) for each period .p ∈ [P] in order to decide which 
ones to use in the reduced model. It solely relies on analyzing the extremality of the 
(adjusted) demand vectors, which is computationally much less demanding. 

Instances and Computational Experiments 

To assess the effectiveness of our approach, we compare the solution times and the 
objective values of (CNDS-IP) for the full time series and for the chosen subset 
of periods for some benchmark instances. The method is implemented in Python 
3.7. We use Gurobi 9.5.0 [ 3] as ILP solver, except for the Benders decomposition 
approach, where CPLEX 12.9 [ 5] with its built-in Benders algorithm is used. In 
both cases, we admit a mip-gap of 0.1% to keep solution times relatively small. The 
reported results are obtained on a machine with two 14-core Intel Xeon (R) E5-2690 
v4, 2.6 GHz processors and 256 GB of RAM. The presented plots are created using 
grblogtools [ 8] and plotly [ 9]. 

In the following, we report on two relatively small benchmark instances derived 
from a power grid planning problem including storage. In both instances, the network 
consists of a 6 node densely meshed bidirectional core, resembling countries and their 
exchange capacities, and 50 nodes representing 26 renewable and 24 thermal gener-
ators, which are unidirectionally connected to only one country node and an artificial 
sink each. The demands and supplies of the renewable generators and countries are 
given as a time series, while the thermal generators are flexible within their capacity 
bounds. The time series of the smaller instance I1 contains 8736 hourly time steps 
covering one year, that of instance I2 a total of 61,320 covering seven years. We 
generate periods of length 168 (1 week) and step size 168, so periods do not overlap. 
In the PCA-based period selection from Section “Identifying Critical Periods”, we 
always standardize the data prior applying PCA. This turned out to yield better results 
than using the unscaled demand values, contrarily to the results obtained in [ 1] for  
critical scenarios in robust network design. The reasons are not yet clear to us. 

Figure 27.1 shows the objective values obtained with the subset of periods chosen 
with our approach depending on the number of principle components (PCs) consid-

Fig. 27.1 Objective of reduced models for varying number of PCs for instance I1
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Fig. 27.2 Objective of reduced models for varying number of PCs for instance I2 

ered for the smaller instance I1. The left plot shows the results for method variant 
.CH1, which just chooses the two extreme periods per PC. The right plot shows the 
results for variants .CH2 and .SCH2. The horizontal line shows the objective for the 
full time series. Method .CH1 yields a very good approximation already for 4 PCs, 
choosing 8 periods. Unfortunately, considering more PCs with this variant does not 
close the remaining gap. Considering the first 4 PCs, variant .CH2 identifies 17 (out 
of 52) periods, leading to a reduced model that actually achieves the full model’s 
optimal value. With the symmetric variant we miss one of the critical periods. The 
model for the full time series needs 11,011 s to be solved to optimality, a gap of 0.1% 
is reached after 2180 s. The solution times for the reduced models range from 10 s 
for 2 periods to roughly 250 s for 17 and 500 s for 24 periods. The generation and 
selection of the periods, including PCA and convex hull computations, requires just 
a few seconds. 

The results for instance I2 are shown in Fig. 27.2. For this instance, the full time 
series model could not be solved in reasonable time. After 14,881 s the computation 
was aborted with a gap of.0.12%. Again, the non-symmetric variant for dimension 1 
is shown left and the symmetric variant for dimension 2 right. As before, we obtain 
a very good approximation with variant .CH1, choosing only 16 out of 365 periods 
when considering the first 8 PCs, but we cannot close the remaining gap. For .CH2, 
this gap closes almost with the first 6 and completely with the first 8 PCs considered, 
leading to 22 or 29 out of 365 periods chosen, respectively. The runtimes of the 
reduced models range from 17 s for 2 to roughly 1000 s for 29 considered periods. 

Using Benders algorithm with the 22 and 17 identified critical periods in the initial 
master problem and generating Benders cuts for the others, we solve the full models 
of I2 and I1 involving all 61,320 and 8736 time steps in 11,740 s and 3770 s while a 
gap of 0.1% is reached after 9400 s and 1200 s, respectively. 

Conclusion 

In this paper, the method from [ 1] for identifying critical demand scenarios has been 
extended to critical demand periods spanning multiple time steps. The method solely 
works on the raw demand data. Neither the topology, the capacity, nor any other struc-
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tural properties are considered. Also, the method is very fast. In relation to solving 
(the reduced) CNDS-IP the times for PCA and convex hull computations are negli-
gible. In our experiments, the resulting reduced models deliver good approximations 
of the original ones. Further, using the critical periods in the master problem of a 
Benders decomposition leads to a significant speed up for finding an exact solution. 
In the future, we plan to apply this method to a large scale sector coupled energy 
systems planning model where the model is reduced using both representative and 
critical periods. 
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Chapter 28 
Industrial Use or Storage of CO2? 
A Compound Real Options Valuation 
for the Retrofitting of Coal-Fired Power 
Plants 

Qinghan Yu and Reinhard Madlener 

Abstract We investigate sequential investment in carbon capture and storage (CCS), 
i.e., the case of retrofitting a coal-fired power plant, and then invest in carbon capture 
and utilization (CCU) for methanol production. A (nested) compound real options 
model based on a backward recursive dynamic programming algorithm is used for 
the analysis, which seems helpful for decision-makers who have to make capital-
intensive irreversible investments under high uncertainty regarding electricity and 
CO2 price. The options to invest in CCS and CCU are investigated individually 
first, and then sequentially, leading to a hybrid CCUS plant that enables both CO2 

storage and methanol production. The prices of electricity, carbon and methanol are 
considered as stochastic and correlated with each other. Managerial flexibility exists 
regarding a postponement of the investment decision and the real-time optimization 
between selling methanol to the market or storing CO2 for earning carbon credits 
after establishing the CCUS plant. We find that at CO2 prices of around 40 e/t, CCS 
investment is economically rational, whereas CCU for methanol is not. Combining 
CCS with CCU increases the overall investment probability and potential for larger 
profits. Since methanol is more valuable than CO2, CCU can be expected to dominate 
the value of the compound option for the case of favorable market conditions (i.e., 
sufficiently high methanol and CO2 prices). 
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Introduction 

In addition to fuel switching and energy efficiency improvements, carbon capture 
and storage (CCS) is expected to play an important role in achieving deep cuts in 
global CO2 emissions. This efficient technology captures CO2 from large emitters 
and stores it permanently in suitable geological reservoirs (e.g., saline aquifers, salt 
caverns, and depleted gas fields). It is worth considering adding CCS equipment 
to existing power plants as well, a procedure known as CCS retrofitting, given the 
enormous amount of CO2 emitted by power plants already in operation during their 
long lifespan. Although the savings in CO2 emissions from stored CO2 provide 
incentives for CCS retrofitting in countries with CO2 certificate trading schemes in 
place, the heavy investment burdens, geographical restrictions, and often lack of 
social acceptance challenge its widespread implementation. 

Captured CO2 can have many uses in various industries, ranging from sparkling 
beverages to urea production, and thus does not necessarily have to be permanently 
stored. In light of recent breakthroughs in catalysts, methanol (MeOH) synthesis 
using hydrogen (H2) and captured CO2 as feedstock is attracting growing attention 
as a carbon capture and utilization (CCU) case [1, 2]. On the one hand, as a versatile 
chemical of high economic value, MeOH has the potential to generate profits that 
offset the investment costs of CCS retrofitting. On the other hand, MeOH synthesis 
provides a possible intersection for CCU and power to gas (PtG), if the H2 used 
is produced from renewable energy via water electrolysis. Moreover, liquid MeOH 
serves as a more efficient medium for energy storage and fuel for transportation than 
gaseous H2 does. Several pilot plants have been put into place to demonstrate the 
economic feasibility of CCU MeOH production. The largest of these is the MefCO2 

project in Niederaussem (Germany), which produces 1 ton of methanol per day. As 
an EU-funded project, MefCO2 is jointly operated by various partners across Europe 
and aims to pave the way for industrial-scale deployment [3]. 

Since neither CCS retrofits nor CCU MeOH production has been deployed on 
a large scale to date, an interesting question is how these would interact with each 
other once they both became commercially available. Real options analysis (ROA; see 
[4]), which considers price uncertainties and the value of managerial flexibility, is an 
appropriate method to investigate this question. Several authors have conducted ROA 
to study the profitability of investments in CCS retrofits, but the existing literature 
has not determined whether the possibility of using captured CO2 for CCU MeOH 
production accelerates CCS retrofits and thus serves as a stepping stone to permanent 
storage. 

The original contribution of this paper is twofold: On the one hand, we model a 
complete CCUS MeOH production system based on ROA, which allows us to solve 
a path-dependent sequential investment problem. On the other hand, applying the 
proposed model, we identify the main factors that influence CCUS investments, and 
we determine how these affect option values and optimal operating policies.
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Methodology 

In answering our research questions, we consider an opportunity for a power plant 
owner to sequentially invest in both CCS and CCU MeOH production facilities. The 
investor has managerial flexibility in (i) how to proceed with the investment decisions 
and (ii) the subsequent real-time optimization, either by selling MeOH at the market 
price or storing CO2 for carbon certificates after acquiring such a hybrid system of 
this kind. Figure 28.1 illustrates the relevant boundaries used in our study, including 
two possible subsystems centered and overlapped at the power plant itself, and a 
simplified mass and energy balance. 

As the investor opts for profit-maximization by taking advantage of fluctuating 
market conditions, the investment opportunity can be viewed as a stochastic optimal 
control problem that is stated as follows: 

J0(s0) = max 
u1,...,uT 

E 

{
T−1∑ 
t=0 

(1 + r )−t g(st , ut ) + (1 + r )−T g(sT ) 
} 

(28.1) 

g(st , ut ) = π (st ) − I (ut ) (28.2) 

g(sT ) = π (sT ) (28.3) 

st+1 = f (st , ut ) (28.4) 

st ∈ Ωu,t ut ∈ Ωu,t (28.5)

Fig. 28.1 Flow diagram illustrating the system boundaries and the mass and energy balance. 
Superscripts indicate the associated components (CCS, T&S, CCU and plant) 
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where J0(s0) is the max. expected total profits over the planning horizon in the initial 
states, g(st , ut ) is the net profit (the immediate payoff) at time step t , πt (st ) is profit 
at time step t, g(sT ) is the net profit (terminal payoff) at time step T, πT (sT ) is the 
profit at time step T , It (ut ) is the investment costs incurred at time step t , st is state 
variable, ut is the decision variable, r is the risk-adjusted discount rate and Ωs,u 

are the discrete feasible sets for s and u. Hence, we formulate a discrete stochastic 
dynamic programming (SDP) model and apply Bertsekas’ [5] framework in order to 
tackle the sequential investment problem. 

Although we use a coal-fired power plant for illustrative purposes, the model can 
easily be modified and applied to other emission sources. For example, when used 
on a cement factory, electricity becomes an input to the system, and the opportunity 
cost of losses in electricity sales (a term in π (·), see [6] for details) turns into the 
energy cost of auxiliary equipment—the model can be thus simplified. 

Data 

Suppose that a modern baseload coal-fired power plant, which can later be retrofitted 
with a capture system, is built in 2021. For model applications, we first make state-
of-the-art technology specifications and collect various cost parameter values from 
previous studies [7–9]. Then the prices of electricity Pel,t , emission certificates 
PCO2,t , and methanol Pme,t are considered as uncertain and modeled as correlated 
geometric Brownian motion processes (GBMs): 

dPi,t 
Pi,t 

= μi t + σi d Zi,t (28.6) 

dZi,t d Z  j,t = ρi, j (28.7) 

where {μi ; i = el, CO2, me} and {σi ; i = el, CO2, me} are the drift and the 
volatility parameters, respectively, 

{
dZi,t ; i = el, CO2, me

} 
represent the incre-

ments of a standard GBM. As reported in Table 28.1, the price processes are 
parametrized to approximate the price scenarios given in [10] and the offset prices 
are set based on current market conditions. 

Table 28.1 Parametrization of the price processes 

Parameter Pi,2021 1 μi (%) σi ρi,el ρi,CO2 ρi,me 

P2 
el 56 e/MWh 3.00 0.05 1 0.579 0.405 

P3 
CO2 

43 e/t 5.00 0.20 0.579 1 0.315 

P4 
me 328 e/t 2.00 0.07 0.405 0.315 1 

Notes: 1 reflecting the market conditions of March 12, 2021, based on data from Datastream; 2 

base-load futures, F1BYc1; 3 EUA price, CFI2c1; 4 FOB Rotterdam, M2Tc1
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Results and Discussion 

In contrast to previous studies, such as [11], we find that CCS investments will be 
desirable by 2025, assuming there are low volatilities in the CO2 price and given the 
current CO2 price level of around 40 e/t (see Fig. 2a). Furthermore, we show that 
investments in CCU MeOH are economically not viable under the prevailing market 
conditions in Europe. The individual option to invest in CCU is, unsurprisingly, deep 
out-of-the-money. The prices of methanol and hydrogen are identified as the single 
most important factors that influence the profitability of CCU MeOH production. 
Investment costs and the opportunity costs of the losses in electricity sales caused 
by the retrofit are trivial compared to the huge profits that methanol sales are likely 
to generate. The base case study reveals that the critical threshold for investing in 
CCU is P∗

me = 680 e/t (see Fig. 2b). Otherwise, the price of hydrogen ought to drop 
below 1250 e/t to prompt investment in CCU (see Fig. 2c). However, we provide 
some evidence that CCU MeOH has the potential to fully outshine CCS in the case 
of high methanol prices (see Fig. 2d). 

As of October 20, 2022, the carbon price increased to 68 e/t, while the methanol 
price remained relatively stable at 344 e/t. A high CO2 price level dampens the

(a) NPV and option value for CCS as an individual 
option  

(b) Thresholds for CCU as an individual option 
( = 3000 €/t) 

(c) Methanol threshold price sensitivities for CCU as 
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discouraging effects of high volatility and investment costs by reducing the waiting 
region, thus leading to earlier investment.1 However, it is questionable how long 
the relatively high carbon price level will persist (given its volatile history) and 
whether the methanol price will remain low after the Russian-Ukraine war and the 
blow up of the North Stream Pipelines (as methanol is currently produced primarily 
from natural gas). A more detailed reporting of the results and discussion can be 
found in [6], and a similar analysis with a very different approach (fuzzy real options 
analysis) in a companion paper [12]. 

Conclusions and Outlook 

In this paper, we first investigate the individual options to invest in CCS and CCU 
MeOH production separately. The option values, as well as the optimal investment 
thresholds, are determined using current market data and price scenarios provided 
by [10]. Under the assumed model parameters, we find that the critical threshold is 
P∗ 
CO2 

= 41e/t, indicating that the currently rather high CO2 price level already makes 
investments in CCS technology attractive. However, the investment opportunity is 
very sensitive to changes in volatility and investment costs. Policymakers should, 
on the one hand, reduce the uncertainty in the CO2 price through consistent and 
rigorous climate policy if they aim to reduce CO2 emissions through CCS retrofits. 
On the other hand, financial support should be provided. Otherwise, CCS is only 
economically viable for geographically well-positioned power plants, as they benefit 
from low transport and storage costs, thus leaving much of the technical potential 
untapped. 

In the second part of the analysis, we assume that the power plant owner can invest 
in CCS and CCU MeOH production sequentially. And after the owner has invested 
in both, the power plant can operate in two modes, namely storage and utilization. 
The main conclusion is that combining CCS with CCU MeOH production increases 
the overall investment probability and the potential for larger profits. However, the 
additional value is somehow debatable as it stems from the uncertainty in the price 
of methanol. Since methanol is far more valuable than CO2, it is thus very likely 
that CCU will dominate the value of the compound option once market conditions 
become favorable (e.g., the price of hydrogen falls dramatically). 

In summary, we can conclude that CCU MeOH production will only accelerate 
CCS retrofits if the price of hydrogen decreases sharply. However, in that case, MeOH 
production, with its vast revenue potential, may outstrip carbon storage. Overall, it 
is therefore questionable whether CCU methanol production is a stepping stone to 
the permanent mitigation of CO2 emissions.

1 The same logic applies to the methanol price level as well. As the methanol price increases, the 
dashed line in Fig. 2c begins to rise and intersects the threshold lines at higher hydrogen prices, i.e., 
CCU becomes profitable at higher hydrogen prices. 
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In future work, some of the restrictive assumptions made in this paper could 
be relaxed. Decommissioning of the facilities, for instance, including the power 
plant itself, is an important aspect but is disregarded in our analysis. Another caveat 
is that we only considered the price uncertainty (Pel , PCO2 and Pme) and used a 
fixed and constant hydrogen price throughout the planning horizon. The technical 
specifications and the cost parameters assumed reflect the current state of knowledge, 
and we did not consider learning factors for emergent technologies. Finally, the 
proposed model can be applied to similar investment problems faced by other CO2 

producers, or it can be extended to include market competition. 
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Chapter 29 
Integration of Data Centers as Active 
Entities into Energy Systems Modeling 

Juan Jerez Monsalves , Juan Gea-Bermúdez , Claire Bergaentzlé , 
and Dogan Keles 

Abstract Energy system models allow exploring new interactions between energy 
supply and demand that new actors within the system enable. Data centers (DC) are 
such actors, becoming significant energy consumers in some regions while pressuring 
local energy systems, but also having the potential to contribute to the energy transi-
tion by providing demand response and waste-heat recovery. Yet, no past studies have 
investigated how these attributes can support energy system decarbonization. This 
article describes the integration of large DCs as an extension to the Balmorel energy 
system model, jointly optimizing their cooling portfolio along with the electricity 
and the district heating systems. The model allows DCs to invest in flexible-cooling 
and waste-heat technologies while competing freely with other traditional generators 
within the system. This article showcases a simplified example of DCs’ potential in 
the Danish energy system through 2035. The results show that waste heat accounts 
for 9% of the national heating supply, leading to system-wide emission reductions 
of 0.8% in 2025 and cost savings of up to 3.0% in 2035. In the future, this model 
will be used for policy research to align the incentives of DC operators and society. 

Keywords Energy system model · Data centers · Demand response · Waste heat 

Introduction 

The data center (DC) industry is expanding rapidly. However, this expansion has 
led to geographic clusters of large DCs in locations with favorable energy access, 
climate, and regulatory conditions, such as Dublin, the Netherlands, and Denmark 
[1]. These clusters put pressure on local energy systems through increased energy 
demand and grid congestion, potentially slowing down their energy transition [2]. 
Still, DCs also offer untapped opportunities to support the transition through their 
integration with the rest of the energy system. Integrated DCs can provide flexibility 
to electricity markets through demand response, while also recovering the waste heat
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produced by their servers for further use. Demand response allows higher penetra-
tion of non-dispatchable sources (such as wind power), thus reducing the carbon 
footprint associated with DC electricity use. Waste-heat recovery substitutes other 
heat generators, reducing fuel consumption, costs, and emissions, especially if that 
waste heat comes from servers consuming already decarbonized electricity thanks 
to demand response. 

Yet, policymakers face great uncertainty in assessing the industry’s future energy 
use due to potential and unforeseen project cancelations or long-term technological 
developments in hardware. This uncertainty underscores the importance of energy 
system models as tools for exploring the range of possible outcomes on energy supply 
derived from different industry development paths. 

The literature on energy use in DCs mainly focuses on individual facilities from 
the perspective of technical energy efficiency [3] or economic optimization of energy 
use [4]. In Petrović et al.  [5], the authors use an energy-system perspective, using the 
Times-DK model, to optimize the Danish energy system along with DCs recovering 
waste heat to district heating (DH) systems through heat pumps coupled to their 
existing cooling systems. It is shown that waste heat from DCs can provide from 4 to 
27% of DH after 2040. A similar analysis uses the Times-Ireland model to evaluate 
the impacts of DCs in Irish emissions [6]. To our knowledge, no study covers the 
energy value chain from flexible electricity consumption, to cooling generation, to 
waste-heat recovery. 

This paper extends the scope of [5] by developing a tool for the joint optimization 
of cooling generation in DCs and the rest of the energy system in terms of investment 
decisions and operational planning. This tool has been implemented as an extension 
of the Balmorel energy system model and is tailored to consider competing cooling, 
thermal storage, and waste-heat recovery technologies with potential use in DCs. 

This article is structured as follows: “Balmorel Energy System Model” introduces 
the Balmorel model. “Modeling of Integrated Data Centers” describes integrated 
DCs, the technologies considered, and the mathematical formulation. “Example 
Case” showcases an application example. “Concluding Remarks” concludes with 
a summary of its main contributions, limitations, and possible applications. 

Balmorel Energy System Model 

Balmorel is an open-source [7], deterministic, bottom-up energy system model that 
minimizes the socio-economic cost of energy supply. Investment decisions and oper-
ational scheduling of generation and transmission assets are optimized subject to 
resource-availability, technical, and policy constraints. Balmorel is tailored to repre-
sent closely connected DH and electricity systems with high detail. It also has a high 
degree of flexibility in spatiotemporal representation and extensibility. Although 
first developed for the Baltic Sea countries, Balmorel has been used worldwide by 
academia, authorities, and companies thanks to its modelling versatility: from hourly 
city-level dispatch to international long-term investment analyses. For a deeper
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Fig. 29.1 Diagram of 
spatial hierarchy and energy 
flows in Balmorel [9] 

Area 

Country 
Region 

Electricity flow 
Heat flow 

description of the model and its use cases, the reader is referred to the work of 
Wiese et al. [8]. 

The spatial and temporal dimensions are each represented by three hierar-
chical levels. Space is represented through a nested Country-Region-Area structure. 
Balmorel defines the balance and transmission of electricity at the regional level, 
whereas those of heat are defined in and between areas, as illustrated in Fig. 29.1. 
Similarly, time is represented through a Year-Season-Term structure, where Years are 
composed of Seasons, and Seasons are composed of Terms. Investment decisions are 
made each Year, while operational scheduling is determined at each Term. Seasons 
serve to represent intra-seasonal and inter-seasonal storages with different cycling 
patterns. 

Moreover, Balmorel can be extended through add-ons to enhance its modeling 
capabilities [9]. Add-ons allow for an improved representation of specific energy 
sectors, which this paper utilizes to optimize the cooling portfolio of DCs, instead 
of considering them as only an exogenous electricity demand. 

Modeling of Integrated Data Centers 

Demand Response and Waste-Heat Recovery in Data Centers 

Most of the electricity consumed by DCs is used for IT operation or tempera-
ture/humidity control, any of which can be modulated to provide demand response. 
Yet they have different characteristics. On the one hand, DCs can shut down servers or 
shift non-critical workloads within seconds, but these actions interfere with their core 
business. Batteries can provide flexibility, too; however, their capacity and degrada-
tion limit their potential. On the other hand, cooling-based demand response is limited 
due to tightly controlled DC temperatures. Reduction of cooling output is unaccept-
able for business-critical facilities where reliability is paramount, and impractical 
for facilities with high power densities. Moreover, thermal systems’ start-up costs 
and response times further limit this type of flexibility. However, cold storage units 
can overcome these issues, increasing operational reliability, and providing thermal 
inertia to accommodate flexibility from slow-reacting chillers. They are also cheaper
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and have larger capacities than batteries. For these reasons, the scope of this article 
is restricted to cooling-based demand response employing cold storage. 

Another benefit of integrated DCs comes from recovering the heat produced 
by their operation. Air-cooled DCs generate waste heat at a temperature of about 
30 °C, which is sufficient for direct use in space heating, but distribution losses limit 
this option to nearby buildings. Alternatively, DH networks can accept waste heat. 
However, a heat pump is required to bridge the temperature gap between them. Heat 
pumps can either be attached to existing cooling systems or replace them entirely, 
thereby providing cooling themselves. In this work, the latter approach is considered. 

Technology Portfolio 

The portfolio consists of several cooling technologies described by techno-economic 
parameters such as costs and efficiencies that are briefly described below as cooling 
generation capacities (G): 

• Cold storage (GSTO): Different types of thermal storage can be defined by their 
seasonal pattern, charge/discharge rates, and other techno-economic parameters. 

• Free cooling (GFC): Cooling systems that operate when outdoor temperatures 
are lower than those of the server room, allowing heat to flow naturally outwards. 
Auxiliary equipment such as fans can be accounted by their efficiencies and costs. 

• Electric chillers (GEL): Electricity-driven mechanical cooling systems discharging 
waste heat outdoors without further use. These systems are the most commonly 
used in DCs, along with free cooling when climate conditions allow it. 

• Absorption chillers (GABS): Heat-driven mechanical cooling systems discharging 
waste heat outdoors without further use. They use high-temperature heat and lower 
electricity consumption than electric chillers. 

• Heat pumps (GHP): Electricity-driven mechanical cooling systems providing 
waste heat for use in other Balmorel heat areas. 

Mathematical Formulation 

This work follows the modeling and data processing framework of Balmorel and uses 
features already present in the core model as much as possible. Therefore, only the 
changes and new additions made to the core model are highlighted in the following 
mathematical formulation, whose nomenclature is summarized in Table 29.1.

Figure 29.2 illustrates a DC within Balmorel, its energy flows, and relationship 
to the broader model. The cooling demand and allowed technologies are defined in 
areas specific to each type of DC where no other external technologies or demands 
are permitted. This approach separates cooling (inside the DC) from external DH 
flows, as both are modeled internally as heat. The core model handles the electrical 
aspect of DCs.
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Table 29.1 Data center model nomenclature 

Acronym Sets Parameters 

DC Data center G Technology x Generation 

STO Storage A Area x´ Storage 
consumption 

FC Free cooling T Term d Demand 

EL Electric chiller Indices β Free-cooling 
availability 

ABS Absorption 
Chiller 

c Cooling α Heat-to-cold ratio 

HP Heat pump h Heat v Heat transmission

Balmorel Region 

Demands (D)
- C : Cooling
- EL  : Electrical  

Other Balmorel areas Technologies (G)
- FC : Free cooling
- EL : Electric chiller
- ABS : Absorption chiller
- HP : Heat pump
- STO : Cooling storage 

Other Balmorel areas 

Fig. 29.2 Schematic representation of an integrated DC and its energy flows in Balmorel 

The balance between cooling generation xg from each technology g, storage 
loading x´g, and demand d is described by Eq. (29.1), where t and a stand for 
time steps and areas, respectively, and ADC is the set of all areas representing DCs.

∑

g∈G 
xc g,a,t −

∑

g∈GST O 

x ′c 
g,a,t = dc 

a,t ∀t, a ∈ ADC (29.1) 

The ability of free cooling to cover demand may be partial or non-existent at 
specific time steps, as it depends on external weather conditions. Therefore, the total 
production of free cooling technologies in each area is thus limited by the availability 
parameter β ∈ R ≥ 0, as shown in Eq. (29.2).

∑

g∈GFC 

xc g,a,t ≤ βa,t d
c 
a,t ∀t, a ∈ ADC (29.2)
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Heat production from heat pumps or consumption by absorption chillers is calcu-
lated through their heat-to-cold ratio, αg ∈ R, as shown  in  Eq. (29.3). Positive 
values denote heat production, i.e., waste-heat recovery, while negative ones denote 
consumption. 

xh g,a,t = αg,a,t x
c 
g,a,t∀t, a ∈ ADC , g ∈ G H P∨ABS (29.3) 

Finally, the heat production/consumption determined in the above equation is 
connected to other heat areas in Balmorel, a´, through Eq. (29.4). The left side of 
this equation is the total heat available for exchange from DC facilities, while the 
right side denotes heat transmission, v, to/from other areas.

∑

g∈G H P−ABS 

xh g,a,t =
∑

c′

(
vh 
a,c′,t − vh 

c′,a,t

)∀t, a ∈ ADC (29.4) 

Example Case 

The Danish energy system is optimized to analyze how DCs with flexible cooling 
and waste-heat recovery impact cost and emissions. Two scenarios are considered, 
each with different technologies allowed in DCs: “BAU” (Business as Usual) and 
“IDC” (Integrated DCs). The former allows free cooling and electric chillers only, 
while the latter allows all the technologies described in “Technology Portfolio”. All 
other parameters are kept constant so that “IDC” highlights the effects of integrated 
DCs. 

The energy system consists of the electricity and DH sectors, both being part of 
the core Balmorel model; as well as hydrogen demand and generation technologies, 
industrial heat, and individual heating users as indicated in [10] (all included as 
add-ons). Finally, the DC cooling systems are included but not their investments in 
IT equipment. The optimal set of investment and dispatch decisions that minimize 
energy supply costs is found from the following exogenously defined parameters: 
spatiotemporally defined energy demand (including DCs) and renewable potentials, 
existing generation capacity, technology costs and efficiencies, fuel costs, and carbon 
taxes [9]. No curtailment costs have been assumed to incentivize investments in 
non-dispatchable renewable sources. 

The optimization is run from 2025–2035, to account for all planned DC projects 
currently in the pipeline [10]. Each year consists of 192 time steps. For this 
example, a Balmorel version parametrized exclusively for Denmark is used, thereby 
excluding neighboring countries and cross-border electricity exchange. Denmark 
is then divided into several areas classified by their DH sizes or industrial heat 
temperature. DCs are assumed to be located next to the three largest DH areas. 

Figure 29.3 shows how cooling is produced in a DC area in 2030. It is observed that 
heat pumps operate consistently throughout the year, being complemented by free
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Fig. 29.3 Cooling balance of a data center in 2030 

Table 29.2 Summary of main results from IDC scenario, shown as differences to BAU 

Year 2025 2030 2035 

DC demand—TWhel [10] 3.39 7.49 9.63 

System costs—million e − 46.5 (− 1.7%) − 76.5 (− 2.7%) − 94.5 (− 3.0%) 

System emissions—ktons CO2 − 69 (− 0.8%) + 72 (+ 2.7%) + 78 (+ 5.8%) 

DC waste-heat share in heat supply 5.07% 9.13% 9.13% 

cooling during the winter and electric chillers during the summer when free cooling is 
less available. Intra-seasonal storage allows heat pumps to remain in operation even 
when other technologies meet all instantaneous demand. This way, DCs can provide 
waste heat when it is most needed in the system, thereby increasing its overall usage. 

Table 29.2 summarizes the system-wide results, including all sectors considered 
in the model. Waste heat from integrated DCs covers up to 9% of the national heat 
supply in 2035, mostly displacing investments in heat pumps and, thus, in solar PV 
that powers them. This is reflected in lower system-wide costs, with savings from 
1.7% in 2025 up to 3.0% in 2035, mostly in capital expenses. 

Carbon emissions are reduced in the short term but increase in the future. Closer 
inspection shows waste heat displacing biomass cogeneration in some DH networks, 
thereby increasing the use of existing natural gas peak units in other areas to compen-
sate for the lost electricity generation. Further analysis is required to verify if adding 
the effect of interconnectors reduces natural gas consumption, e.g., by importing 
cheaper electricity from hydropower-based Norway, or if it allows higher invest-
ments in non-dispatchable renewable electricity, made cost-competitive through the 
possibility of exporting electricity surplus and reducing curtailment. 

Concluding Remarks 

In the face of uncertain but disruptive developments, energy system models allow 
exploring the range of their potential impacts on energy supply. This article integrates
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DCs providing demand response and waste-heat recovery, supporting decarboniza-
tion, into the Balmorel energy system model. Investment decisions and operational 
planning of DC’s cooling systems are optimized from a socio-economic perspective. 

The main limitation of this work is the lack of electrical flexibility from batteries 
or workload management. Another drawback of this work is that the internal imple-
mentation of cooling as heat complicates the final user’s appropriate definition and 
use of the model. New energy carriers, however, cannot be implemented without 
significant modifications to the core Balmorel model. 

The illustrative example reveals gains of up to 3.0% in system-wide cost reductions 
that integrated DCs would reach in Denmark. Even though carbon emissions are 
reduced in 2025, there is a net increase in 2030–2035 due to higher natural gas 
consumption. This can be a counterargument to the integration of DCs; however, 
further analysis is required to better represent the Danish electricity system, including 
electricity exchange with neighboring countries. This modeling tool will serve as a 
platform for future scenario analysis and policy testing directed at DC’s integration 
and is adaptable to represent industries with similar energy uses as DCs. 
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Chapter 30 
Inventing and Assessing Simple 
Heuristics for Bidding in Wholesale 
Electricity Markets 

Jake Atkinson, Richard Allmendinger, and Joshua Knowles 

Abstract In areas of commerce, fast and frugal heuristics have a demonstrated 
history of forecasting as or more accurately than complex strategies in situations 
of uncertainty. Financial participation in the deregulated electricity market requires 
accurate forecasting and presents an opportunity for the implementation of heuristics 
by traders seeking to arbitrage. Developmental research was undertaken to invent and 
assess simple heuristics for bidding in wholesale electricity markets. Two heuris-
tic price-adjustment bidding strategies were developed, providing modest returns 
relative to existing strategies, greater risk aversion and reduced computational 
complexity. 

Keywords Heuristics · Optimisation · Bidding · Arbitrage 

Introduction 

In deregulated markets, the trade of electricity between generators and retailers is 
facilitated through a wholesale dual-market, operated by independent system opera-
tors (ISO) [ 1]. Market mechanisms allow participants to submit bids to supply (INC 
bid) and distribute (DEC bid) energy across regions through a day-ahead (DAM) and 
real-time market (RTM). The dual market facilitates economic dispatch, generation 
scheduling and supply and demand forecasting. 

Whilst the RTM represents a physical auction, the DAM is virtual and allows 
for participation by wholly financial entities. Entities may buy (sell) energy in the 
DAM with the obligation to sell (buy) it back in the RTM. INC bids are charged 
in the RTM and credited in the DAM and DEC bids charged in the DAM and 
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credited in the RTM [ 2, 3]. Prices in both markets reflect locational marginal 
pricing (LMP), which accounts for the cost of electricity at specific times and 
locations [ 4]. 

Methodology 

Data: Pricing data from the Pennsylvania-New Jersey-Maryland Interconnection 
(PJM) regional transmission organisation were used in the development and evalua-
tion of bidding strategies. Data contained DAM and RTM LMPs (USD/unit) for 346 
unique nodes, disaggregated by date and time throughout 2017. In forecasting, data 
were randomly divided, with 70% of forecasts reflecting values .± 5% of the LMP 
(within three standard deviations) and 30% of the forecasts reflecting historical mean 
prices, unique to the considered node. 

The Mathematics of Virtual Bidding: Consider the trade of options (node-time 
pair), for each hour in the forward market. For each option, market participants 
forecast the DAM and RTM prices. In this notation, for virtual bids submitted on 
day . d for option . i , let  .γd,i and .πd,i represent the DAM and RTM clearing prices 
respectively. Also, let .γ '

d,i and .π '
d,i represent the respective forecasts of such prices. 

Further, let .vd,i be the virtual bid submitted, as some function of .γ '
d,i or .π

'
d,i . 

DEC bids are cleared by the ISO iff the virtual supply bid is greater than or equal 
to the DAM clearing price, i.e. .vd,i ≥ γd,i . Conversely, INC bids are cleared by the 
ISO iff the virtual supply bid is less than or equal to the DAM clearing price, i.e 
.vd,i ≤ γd,i . 

As the distribution of prices is unknown, forecasts direct the value of virtual bids 
by market participants, such that submitted bids are representative of some function of 
the forecast. To maximise delta, where.γ '

d,i > π '
d,i , a DEC bid is submitted, otherwise 

where .γ '
d,i < π '

d,i , an INC bid is submitted. 
Profit is realised when cleared bids are confluent with a positive . δ. Such that for 

DEC bids: 
.δd,i = πd,i − γd,i , given that {vd,i ≥ γd,i } (30.1) 

Conversely for INC bids: 

.δd,i = γd,i − πd,i , given that {vd,i ≤ γd,i } (30.2) 

Hence, the cumulative . δ over period . s for cleared bids .vi,d is denoted: 

.

s∑

d=1

(πd,i − γd,i ), given that {vd,i ≥ γd,i } (30.3)
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In simulations, the required DAM and RTM prices as well as the submit-
ted bids, over time period . s, are passed as vectors .γd = [γd,1, . . . , γd,i ]s , . πd =
[πd,1, . . . , πd,i ]s and .vd = [vd,1, . . . , vd,i ]s respectively, producing a vector of 
returns: .δd = [δd,1, . . . , δd,i ]s . 

Price-Setting Adjustment Mechanism: It follows that an evaluation of original 
DAM and RTM LMP forecasts determine whether a DEC or INC bid is initialised. 
Once initialised, a price adjustment on the forecast DAM LMP sets the submitted 
bid price, such that: 

.vd,i = γ '
d,i (1 ± θ) (30.4) 

where, .(1 ± θ) is the price adjustment and . θ is a tuneable parameter. The operator 
is conditional on the nature of the bid, i.e., DEC(+) and INC(. −). Bid acceptance 
was contingent on the market clearing price as detailed in Eqs. (30.1) and (30.2). 
Strategies were compared on the number of bids cleared and the total market return 
achieved on a cumulative and per bid basis, following similar assessments in the 
literature [ 5]. Trading fees required by ISOs were not considered but may prevent 
the adoption of strategies benefiting from large bid volumes. 

Benchmarking 

Three distinct price-setting strategies used by dominant participants in the CAISO 
market were identified and replicated to establish benchmarks [ 5]. Strategies take 
advantage of the uncertainty of forecasts and volatility of the RTM. Following the 
replication of strategies, price adjustments were set in accordance with market par-
ticipant behaviour [ 6]. Bids submitted through Strategy 1 set the price such that for 
INC bids .vd,i < γ '

d,i and for DEC bids .vd,i > γ '
d,i . Strategy 1 represents the small-

est price adjustment out of all considered strategies at 5%. In practice, this results 
in an INC bid of .0.95γ '

d,i and a DEC bid of .1.05γ
'
d,i . Price adjustments such as 

those implemented through this strategy result in the award of almost all bids, given 
accurate forecasts. Strategy 2 is ignorant of market volatility and results in most 
submitted bids being awarded, given that DAM clearance prices are not negative 
or extremely high for INC and DEC bids respectively. Bid prices are set such that 
.vd,i = 0 for INC bids and .vd,i = 2γ '

d,i for DEC bids; this Strategy exposes bidders 
to entering the market when DAM prices are extreme. Strategy 3 is risk-averse and 
operates to exploit market volatility. As price distributions are unknown, this strategy 
offers an exceedingly lower bids clearance rate compared to other strategies, indeed, 
arbitrage is only realised on cleared bids. For INC bids: .vd,i = 3γ '

d,i , in contrast for 
DEC bids .vd,i = −γ '

d,i . Strategy 3 sets prices such that bids are almost always not 
awarded, securing bid clearance only in a volatile market. Strategy 1 and 2 produce 
a bid clearance greater than 80% and a return greater than 2.3m USD in simulation.
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Table 30.1 Performance in bidding of benchmark strategies in the PJM (2017) 

Strategy Clearance (%) Total delta ($) $/Unit 

(1) 89.60 2,333,090 0.95 

(2) 99.40 2,398,269 0.80 

(3) 1.60 33,036 18.66 

Despite a relatively lower bid clearance of 1.6%, Strategy 3 realises an average 20-
fold and 23-fold gain per accepted bid compared to Strategy 1 and 2 respectively 
(Table 30.1). 

Simple Heuristics for Bidding in Energy Markets 

As distributions are unknown and in lieu of complex forecasting, we present two 
heuristics with bid prices set as a function of price anchors (historical mean clearing 
prices on a per option basis). The use of historical means reduces time complexity and 
resource demand, inherent to existing bidding strategies [ 7, 8]. As the magnitude of 
the price adjustment can be adapted based on foreseen or known market conditions, 
heuristics may provide tools for use in the adaptive toolbox of market participants. 

Price anchors consisted of historical means discretised by each option. Let . γ̄d,i

and .π̄d,i be the historical mean clearing prices in the DAM and RTM respectively 
and let.N represent the number of historical observations of cleared node-time pairs. 
Historical means were used to determine the type of bid submitted in simulation to 
maximise delta, such that where .γ̄d,i > π̄d,i , a DEC bid was submitted and where 
.γ̄d,i < π̄d,i , an INC bid was submitted. 

Mean historical forward clearing prices were calculated (30.5), similarly, mean 
historical real-time clearing prices were set (30.6): 

.γ̄d,i =
∑s

d=1 γd,i

Nd,i
(30.5) 

.π̄d,i =
∑s

d=1 πd,i

Nd,i
(30.6) 

Zero-Adjustment Historical Average: The Zero-Adjustment Historical Average 
(ZAHA) heuristic omits the integration of a price adjustment, submitting bid prices 
exclusively reflecting the associated price anchor. Consequently, ZAHA requires 
relatively minimal understanding of its learning environment, similarly, bids are not 
made based on predictions and are only accepted given that DAM clearance prices 
are congruent with their historical averages, it is the most frugal heuristic developed 
in this research.
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The value of submitted bids is equal to the historical mean, such that: 

.vd,i = γ̄d,i (30.7) 

Some strategies reduce forecasting risk through the integration of a risk aversion 
parameter [ 7]. ZAHA may be considered risk averse given that submitted bids are 
reflective of historical means. The heuristic offers a compromise between high bid 
clearance, at risk of entering a volatile market, and higher cumulative returns com-
pared to the most risk averse strategies in the literature [ 5]. 

High Clearance Historical Average: For each option, the High-Clearance Historical 
Average (HCHA) heuristic determines the bid type and sets the bid price, based on 
historical means. Bid price is established through a price adjustment function. For 
INC bids, prices are set significantly lower than the mean, such that all INC bids are 
set at 0 (.vd,i = 0). As DEC bids are most likely to be cleared when a bid is offered 
relatively higher than other bids, bid prices are submitted such that they represent 
double the historical average for the considered option: .vd,i = 2γ̄d,i . The HCHA 
heuristic is not risk averse and only fails to achieve bid clearance if the relationship 
between the DAM and RTM historical means is inconsistent with the actual DAM 
price. Further, bids may not be cleared if the actual DAM price is extremely high 
(.γd,i > 2γ̄d,i ), or negative (.γd,i < 0). 

Discussion 

Table 30.2 details the clearance rate, total delta and average delta per unit cleared 
in simulation for developed heuristics. Whilst distinct in their mechanisms, both 
heuristics were successful in generating total returns in line with those of dominant 
participants in the CAISO market [ 5]. 

Whilst Strategies 1 and 2 generated the second highest cumulative delta amongst 
those considered, they are dependent on computationally intensive predictive algo-
rithms. Novel Heuristics ZAHA (4) and HCHA (5) are fast-and-frugal and whilst 
obtaining lower than average (.μδ,b = 1.50 × 106) returns compared to benchmarks, 
they required minimal computation in setting price anchors and for two of three 
benchmark strategies, provided greater risk-aversion. 

Figure 30.1 describes the cumulative delta versus bid clearance for all strategies. 
Given the implementation of frugal price anchors, the HCHA heuristic achieved 

Table 30.2 Performance in bidding of novel heuristics in the PJM (2017) 

Strategy Clearance (%) Total delta ($) $/Unit 

ZAHA (4) 73.00 520,833 0.33 

HCHA (5) 99.40 1,925,032 0.64
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Fig. 30.1 Delta versus bid 
clearance amongst 
benchmark and novel 
strategies 

cumulative returns of up to 80% that of Strategy 2 (the benchmark strategy with the 
highest clearance rate), without the associated forecasting expense. Similarly, the 
ZAHA heuristic, setting bid prices simply as historical means, achieved cumulative 
returns relative to 64% of that achieved through the deployment of Strategy 1. In the 
context of participation in the wholesale electricity market, price adjustment bidding 
strategies have the potential to provide traders with various methods to set bid prices 
dependent on the environment to which they are subjected. 

Limitations on the extent of market simulation in the replication of the function of 
ISOs constrained the effective representation of market behaviour. Similarly, fore-
casting methods applied in research to facilitate bidding processes, may not have 
accurately represented those used in industry, impacting the generalisability of the 
results obtained. 

Conclusion 

Fast and frugal heuristics have shown to lead to more robust and ecologically rational 
decisions than complex decision-making methods in uncertain environments. Bid-
ding (price-setting) in energy markets to maximize profits takes place in such an 
environment. We developed simple heuristics and validated them on pricing data 
from the Pennsylvania-New Jersey-Maryland Interconnection regional transmission 
organisation. Our experimental study concluded that simple heuristics are able to pro-
vide modest returns relative to existing strategies, greater risk aversion and reduced 
computational complexity. Future work can investigate the suitability of the proposed 
heuristics for other energy markets, consider the design of more advanced heuristics, 
and attempt simulating additional aspects of the energy market (such as trading fees).
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Mathematical Optimization 
for Analyzing and Forecasting 
Nonlinear Network Time Series 

Chapter 31 

Milena Petkovic and Nazgul Zakiyeva 

Abstract This work presents an innovative short to mid-term forecasting model 
that analyzes nonlinear complex spatial and temporal dynamics in energy networks 
under demand and supply balance constraints using Network Nonlinear Time Series 
(TS) and Mathematical Programming (MP) approach. We address three challenges 
simultaneously, namely, the adjacency matrix is unknown; the total amount in the 
network has to be balanced; dependence is unnecessarily linear. We use a nonpara-
metric approach to handle the nonlinearity and estimate the adjacency matrix under 
the sparsity assumption. The estimation is conducted with the Mathematical Opti-
misation method. We illustrate the accuracy and effectiveness of the model on the 
example of the natural gas transmission network of one of the largest transmission 
system operators (TSOs) in Germany, Open Grid Europe. The obtained results show 
that, especially for shorter forecasting horizons, proposed method outperforms all 
considered benchmark models, improving the average nMAPE for 5.1% and average 
RMSE for 79.6% compared to the second-best model. The model is capable to capture 
the nonlinear dependencies in the complex spatial-temporal network dynamics and 
benefits from both sparsity assumption and the demand and supply balance constraint. 

Keywords Nonlinear time series · Mathematical optimization · Energy networks 

Introduction 

Since the EU introduced market regulations in 2005, the natural gas market is becom-
ing increasingly competitive, moving towards short-term planning, e.g., day-ahead 
contracts, making the control of natural gas transmission networks even more chal-
lenging. The main task of TSOs is to fulfill all transport demands, ensuring the 

M. Petkovic (B) · N. Zakiyeva 
Applied Algoritmic Intelligence Methods Department, Zuse Institute Berlin,Takustraße 7, 
14195 Berlin, Germany 
e-mail: petkovic@zib.de 

N. Zakiyeva 
e-mail: zakiyeva@zib.de 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_31 

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_31&domain=pdf
petkovic@zib.de
mailto:petkovic@zib.de
zakiyeva@zib.de
mailto:zakiyeva@zib.de
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31
https://doi.org/10.1007/978-3-031-24907-5_31


254 M. Petkovic and N. Zakiyeva

security of supply safely and efficiently. Since gas in the pipes travels relatively 
slow with an average velocity of approximately 25 km/h [ 5], a high-precision short 
and mid-term forecast of supplies and demands is essential for the efficient and safe 
operation of the complex natural gas transmission networks and distribution systems. 

This work is part of a joint project within the Energy Lab of a research campus 
MODAL [ 6] with one of Germany’s largest transmission system operators, Open 
Grid Europe (OGE) [ 1]. Together with our industry partner, we develop a Network 
AutoRegressive Nonlinear model with a Balance constraint (NAR-NLB) model. The 
primary purpose of the proposed model is to provide a comprehensive understanding 
of the network dynamic and compute high-precision, multi-step, hourly forecasts for 
supply and demand nodes in the gas network. The focus is on forecasting shorter 
horizons (up to 8 h is the most relevant horizon in practice) to support the daily 
operations of the gas network. The results are used for optimizing gas transport, for 
example, routing the gas with compressors or valves and finding the optimal settings 
for these elements [ 9]. 

Methodology 

Let.N denote the number of nodes in a large-scale complex gas transmission network, 
and .yt,i is the continuous response collected from node . i at time point . t with . 0 ≤
t ≤ T and.1 ≤ i ≤ N . In the network, .N nodes are connected with pipelines but the 
flow connection is unknown. At any time point . t , the total sum of gas in-flow and 
out-flow in the network equals zero. To capture the network effect of the.N different 
nodes, we propose the NAR-NLB model, where the total gas in-flows and out-flows 
need to be balanced. Without loss of generality, we assume the demeaned process 
for the gas network and write the model without the intercept term. The NAR-NLB 
model with lag 1 is defined as: 

.yt,i = gi (
∑N

j=1 yt−1, j b j,i ) + ∈t,i , i, j = 1, . . . , N , (31.1) 

s.t. 
∑N 

i=1 gi ( 
∑N 

j=1 yt−1, j b j,i ) = 0 for all t = 1, . . . ,  T , 

where.g(·) is an unknown link function which is assumed to be smooth..∈t,i is a strong 
white noise with zero mean and finite second moment .E ||∈t,i ||2 < ∞. When. j = i , 
.b j,i controls the autoregressive dependence. When. j /= i, the parameter .b j,i tells us 
how the . j-th node influences the .i-th node; that is, the network influence of the past 
value of the . j-th node on the current value of the .i-th node. If .b j,i = 0 for all the 
.i = 1, · · · , N and .i /= j , then the . j-th node has no effect in the network. In (31.1), 
the constraint is imposed to the forecast of gas flows denoted as . 

∑N
j=1 g(yt−1, j b j,i )

for a balanced demand and supply.
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The model can be represented in a matrix form: 

.Y = g(Z B) + E, (31.2) 

s.t. g(Z B)1N = 0, 

where. Y is a.T × N matrix of the observed gas flow values. Let. yt = (yt,1, . . . , yt,N )

denote the gas values for all nods at time point . t , we then have .Y = (y1, . . . , yT )τ . 
.Z is a .T × N matrix containing the past values of .Y. Similarly, we have . Z =
(z1, . . . , zT )τ . The parameter matrix .B is a .N × N matrix with unknown param-
eters .b j,i . Given the autoregressive dependence reflected by .bi,i for . i = 1, . . . , N
in the diagonal elements of . B, let the non-diagonal elements of matrix .B define 
the weighted adjacency matrix. The column vector .Bi = (b1,i , . . . , bN ,i )

T of the 
weighted adjacency matrix represents the influence of other nodes in the network 
on the future value of the .i-th node. The weighted adjacency matrix is assumed to 
be sparse. There is, however, no prior knowledge of the sparse structure in terms of 
location and number of significant elements. Finally, .1N is a unit vector and .E is a 
.T × N matrix of white noise errors. 

Next, we show the estimation of the unknown nonlinear function and parametric 
coefficients with mathematical programming (MP). In semiparametric models, as 
in (31.1), it is popular to approximate the unknown nonlinear functions using the 
spline smoothing approach, see [ 2]. We apply this technique for estimating the non-
linear link function .g(·) for a given parameter value . B using B-splines, or so-called 
basis splines [ 3]. We estimate the unknown coefficient matrix by applying the fea-
ture selection technique developed by [ 4] for the weighted adjacency matrix, with 
additional balance constraints for the demand and supply as follows. 

.

min
B

∑T
t=1

∑N
i=1(yt,i − Zt Bi )

2

s.t. ||Bi ||0 ≤ L for i = 1, ..., N
∑N

i=1 Zt Bi = 0, for t = 1, ..., T

(31.3) 

where the upper bound . L for .l0-norm of a column vector .Bi given by 

N∑ 

j=1 

1(b j,i /= 0) 

ensures the number of nonzeros in .Bi to be less than integer .L , where . j /= i and 
.1(·) denotes the indicator function. We use the estimated coefficient matrix .B̂i for 
.i = 1, . . . , N to approximate the unknown nonlinear function.g(·) using the B-spline 
interpolation [ 2]. To estimate the function, the B-spline requires the hyperparameters 
such as knots, spline coefficients, and degree of a spline. 

.Bk,m(θ) = θ − θk

θk+m − θk
Bk,m−1(θ) + θk+m+1 − θ

θk+m+1 − θk+1
Bk+1,m−1(θ), (31.4)
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. Bk,0(θ) =
{
1, if θk ≤ θ < θk+1

0, otherwise
.

Finally, we estimate the B-spline coefficients .αk,i with MP. 

. min
αk,i

∑T
t=1

∑N
i=1(yt,i − ∑N

j=1

∑Pk
k=0 αk,i Bk,m(Zt B̂i ))

2, i = 1, . . . , N , (31.5) 

Experimental Setup 

In this paper, we study the nonlinear dependencies and dynamic patterns of natural 
gas flows in the high-pressure gas pipeline network of OGE [ 1]. The dataset consists 
of demand and supply nodes with an hourly time resolution for a period of one 
year. To demonstrate the effectiveness of the proposed model, we consider a small 
network of one supply (S1) and four demand nodes (D1-D4). Figure 31.1 illustrates 
the temporal dependence among the five observed nodes. As it can be seen in the 
diagonal, there is a strong positive autocorrelation of each node with its own past 
values, while off the diagonal, the cross-correlations represent the dynamic temporal 
dependency among different nodes. 

We calculate an out-of-sample forecast in real time starting from 05:00 and predict 
1 to 24 h ahead forecast. Multi-step forecasts are made for the next day, for a total of 3 
months. We use the training-validation technique to choose optimal hyperparameters 
in the NAR-NLB model for the sparsity estimation, spline order and number of knots. 
With the chosen parameters, we estimate the weighted adjacency matrix .B at each 
point by training the model on the past seven days of balanced network data. With 
a rolling window size of 168 h (i.e., seven days), we move forward one period at a 
time to update the sparse adjacency matrix and then forecast until we reach the end 
of the sample. 

Fig. 31.1 Sample 
cross-correlation heatmap for 
one supply and four demand 
nodes in gas network
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In order to evaluate the quality of the obtained results, we compare the perfor-
mance of NAR-NLB model with well-known benchmarks: Baseline forecast (repeat-
ing value for the same hour of the previous day) and ARIMA as well as with Net-
work Autoregressive Linear model with Balance constraint (NAR-LB) proposed by 
Zakiyeva and Petkovic in [ 8]. We determine the best ARIMA models for a univariate 
time series of five considered nodes according to an Akaike information criterion 
(AIC) using 28 days of the rolling window. The setup for NAR-LB model is identi-
cal to the proposed model. The performance of NAR-NLB model is measured and 
quantified by calculating the forecast accuracy for individual nodes, as well as the 
mean for the entire network. We use mean daily root mean squared error (RMSE) 
and mean daily normalized mean absolute percentage error (nMAPE) defined as: 

. RMSE =
∑

d∈Dtest

/
1
H

∑H−1
h=0 (qd,h − q̂d,h)2

|Dtest | ,

nMAPE =
∑

d∈Dtest
( 100%H

∑H−1
h=0 | qd,h−q̂d,h

max(q)
|)

|Dtest | ,

where.qd,h and.q̂d,h are the real and forecasted values of the natural gas flows on day 
. d and hour . h while .H is a forecasting horizon. 

Results 

We demonstrate the multistep-ahead out-of-sample forecasting results in a balanced 
network. Table 31.1 shows an average.RMSE and.nMAPE for three different fore-
casting horizons (1h, 12h and 24h ahead) comparing to the alternative models for five 
gas nodes of the balanced network. The results show that NAR-NLB consistently 
outperforms all benchmark models. It can be noted that the difference is the smallest 
between NAR-LB and NAR-NLB models, which strongly indicates that using the 
network dynamic information as well as balancing constraint benefits the forecasting 
accuracy. 

For shorter horizon, the NAR-NLB performs as the most accurate forecast model 
with the smallest forecast errors. This illustrates that modeling the nonlinear network 
dynamics improves the average forecast errors of the NAR-LB model from RMSE 
6.294 and nMAPE 13.4% to RMSE 4.293 and nMAPE 1%. The difference in predic-
tion performance with NAR-NLB is most significant for the shorter horizons, where 
nMAPE is improved for 5.1% and RMSE for 79.6% compared to the second best 
alternative model (ARIMA). As for the longer horizons (12h), NAR-NLB performs 
similar to NAR-LB model with the improvement of nMAPE by 1.4%. Similarly, for 
24 h ahead forecast, NAR-NLB provides similar second-best accurate prediction as
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Table 31.1 Comparison of the NAR-NLB model and the alternative time series models on multi 
step-ahead gas flow forecasts at five nodes in a balanced network. 

RMSE nMAPE 

H NAR-
NLB 

BAS ARIMA NAR-LB NAR-
NLB 
(%) 

BAS (%) ARIMA 
(%) 

NAR-LB 
(%) 

1 4.293 46.178 21.049 6.294 1 14.3 6.1 13.4 

12 3.804 48.002 50.585 42.671 8.5 13.1 12.1 9.9 

24 60.268 48.494 69.978 68.420 13.2 13.1 15.77 14.2 

the BAS with a difference of nMAPE around 0.01%. Note that for calculating muti-
step ahead forecast we are using recursive strategy, which can lead to accumulation 
of errors for longer horizons. The obtained results clearly show that proposed model 
benefits from modeling nonlinear temporal dependencies in the network. 

By taking into account both nonlinear dynamics and sparse dependent structure, 
the NAR-NLB model provides superior performance compared to the three alterna-
tive predictive models. The NAR-NLB is able to capture the nonlinear dependencies 
in the complex spatial-temporal network dynamics. It improves out-of-sample fore-
cast accuracy of individual nodes and consequently, there are fewer balancing errors 
in the network. Furthermore, the estimated adjacency matrix in NAR-NLB provides 
additional information on the cross-dependencies between the nodes, which shows 
the influential nodes that drive the network dynamics. In summary, it is useful to 
introduce both the nonlinearity and sparsity assumption together with the demand 
and supply balance constraint for accurate and stable forecasts in energy networks. 

Conclusion 

In this paper, we propose a network autoregression nonlinear model with balance 
constraint for robust short to mid-term forecasting and analyzing nonlinear com-
plex spatial and temporal dynamics in energy networks under demand and supply 
constraints. The results show that the proposed model consistently outperforms the 
alternative models, improving the nMAPE by up to 5.1% compared to the second-
best benchmark model, benefiting from modeling nonlinear dependencies between 
different nodes in the network and from implying balancing constraints on demand 
and supply. 
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Chapter 32 
Maximization of the Smart Readiness 
Indicator of Buildings Under Budget 
Constraints 

Tristan Emich, Shiva Faeghi, and Kunibert Lennerts 

Abstract The Smart Readiness Indicator (SRI) is a method proposed by the Euro-
pean Commission which calls for better use of the potential of smart technologies 
in the building sector. The introduction of the SRI is intended to raise awareness of 
smart building technologies and make the added value more available for building 
users, owners, and providers of smart services. The technological smart readiness of 
buildings can be determined with the SRI assessment method. The method has 54 
questions, which are divided into nine domains: heating, domestic hot water, cooling, 
ventilation, lighting, electricity, electric vehicles, dynamic envelope and monitoring 
& control. Each question is assessed with up to five different levels, representing 
incremental levels of technological equipment. These questions form the basis for 
the calculation of the SRI score. When improving the SRI score of a building, to 
choose the technologies that will provide the maximum SRI score improvement 
with a limited budget can be challenging. Therefore, the aim of this paper is to help 
the decision makers to come up with the correct choices that have the highest impact 
on the SRI score. The chosen solution method here is a specific non-dominated sort-
ing genetic algorithm (NSGA II) algorithm. The proposed method is then applied 
to a hypothetical building to demonstrate its applicability and capability. The results 
show which SRI domains and questions to focus on. This gives future directions 
regarding choosing technologies to be implemented. 

Keywords Combinatorial optimization · Energy policy and planning · Decision 
support systems 
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Introduction 

The European Union is the 3rd largest energy consumer – with 11% – after China 
(22%) and the United States (14%) [ 2], and it is very reliant on energy imports. There 
are environmental concerns and the urge to keep the global temperature increase to 
1.5°. Therefore, large efforts are being made to cut down on imported energy and to 
reduce the CO2 emissions. 

Buildings are responsible for 40% of energy consumption and 36% of total CO2 

emissions in the EU [ 3], which presently is about 1100 Mt CO2e [  6]. Hence, there is 
an urge to look for cost-efficient strategies like smart technologies to reduce energy 
consumption and accordingly CO2 emissions. The potential savings through digi-
tization can be estimated at around 30 Mt CO2e per year [ 6]. To reach this goal, 
the EU Energy Performance of Buildings Directive (EPBD) [ 4] recommends to 
make the buildings smart-ready by adopting controlling and automation systems. 
In this regard, the EPBD defines cost-effective measures to contribute to the above-
mentioned goals, facilitate using renewable energy sources and provide a healthy and 
comfortable environment for the occupants. This method is called Smart Readiness 
Indicators (SRI). SRI is a useful method to measure the smartness level of a building. 

With the EPBD, the European Commission calls for a better use of the potential of 
smart technologies in the building sector. Based on this directive, SRI was developed 
[ 5]. The introduction of such a uniform EU evaluation system is intended to assess 
the technological maturity of buildings, the extent to which interaction with the user 
as well as the energy network is possible and whether this enables more efficient 
management of a building. The intelligence capability indicator also aims to raise 
awareness of smarter building technologies and make their added value more tangi-
ble for building users, owners, tenants and smart service providers. It is intended to 
support technological innovation in the real estate industry and promote an incen-
tive system for the integration of modern, intelligent and innovative technology in 
buildings. 

The Smart Readiness Methodology categorises the building services, known as 
“Smart-Ready-Services” into nine domains: (1) heating, (2) cooling, (3) domestic hot 
water, (4) ventilation, (5) lighting, (6) dynamic building envelope, (7) electricity, (8) 
electric vehicle charging and (9) monitoring and control. The assessment of Smart-
Ready-Services are done based on seven impact criteria: (1) energy efficiency, (2) 
maintenance and fault prediction, (3) comfort, (4) convenience, (5) health, well-being 
and accessibility, (6) information to occupants and (7) energy flexibility and storage. 
The impact criteria are taken into account by an individual weight, depending on the 
domain, the location (northern, western, southern, north-eastern and south-eastern 
Europe) and the type of building (residential or non-residential)[ 5]. Each domain 
has a variable number of questions, which can have up to 5 different levels. There 
are two method options: the simplified method with 27 questions and the detailed 
method with 54 questions. Not all of the questions are mandatory. For example, a 
building that has no air conditioning can still achieve the highest SRI score (100%). 
Each level of each question has a different impact on the SRI score of the building
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and imposes different costs. This means that focusing on some measures is more 
cost-effective than others. 

At this point, the following question arises: Having calculated the smartness level 
of a building, on which domains and questions should be focused to maximise the 
smartness of a building considering budget limitations? In this paper, we propose a 
method to maximise the SRI score considering budget constraints. In this regard, we 
adopted the solution approach of genetic algorithms to search the decision scope. For 
the sake of simplicity, this paper assumes that all 54 questions have to be considered. 

The paper is outlined as follows: Section “Materials and Methods” discusses the 
material and methods, describes the calculation of the SRI score, defines the prob-
lem, the objective function and the solution approach. Section “Numerical Example 
and Results” provides the numerical example and analyses the results and finally 
Section “Conclusions” concludes the paper and suggests ideas for future investiga-
tions. 

Materials and Methods 

Calculation of the SRI Score 

Each level of each question has different impact value of each impact criteria. In 
addition, each domain and each impact criteria has an individual weighting that 
was defined by the European Commission: A distinction is made between a non-
residential building and a residential building, and the location of the building 
determines the Climate zones (Northern Europe, Western Europe, Southern Europe, 
Northeastern Europe, Southeastern Europe), which has also an influence[ 5]. After 
each individual question is evaluated and taken into account with the individual 
weighting, the SRI score [%] can be calculated by using the following equation: 

SR  I  = 
54∑ 

q=1 

7∑ 

i=1 

Ii (level) 
Ii(max) 

∗ ωi,q (32.1) 

where q is the question number, i the impact criteria, Ii(level/max) the highest Impact 
or the Impact of level, ωi,q is the weight for the individual impact criteria. 

Problem Definition 

This paper aims at maximising the SRI score constrained by budget limitations using 
the genetic algorithm. If the SRI should be improved for a given building, this can 
be done by increasing the level of each individual question. Since each of the 54 
questions of the SRI method can be evaluated independently, there is a wide range of 
possible combinations: 11 of the questions have 3 levels, 20 of the questions have 4
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levels and 23 of the questions can reach 5 independent levels. This means that there 
are 523 · 420 · 311 ≈ 2.3 · 1033 number of possible combinations in total. Therefore, 
the problem is a large combinatorial problem. 

In addition, the improvement of each level is associated with costs. Since normally 
only a limited budget is available for a project, it makes sense to use the budget in such 
a way that the highest SRI score is achieved. Here we assume that each and every 
level improvement of the SRI score is associated with a cost of 1 monetary unit. 
Therefore, the optimization problem, considered as a single objective constrained 
optimization one, can be described as followed: 

Maximize  S  R  I (32.2) 

Subject T o 
54∑ 

q=1 

Cq,∆level ≤ B (32.3) 

where ∆level is the difference between the current level and the improved level 
through implementation of SRI measures, Cq,∆level is the cost of ∆level in questions 
q, and B is the budget limit. 

Solution Approach 

Since the decision space of the described problem is very large, the chosen solution 
approach is a genetic algorithm. Here a modified version of non-dominated sorting 
genetic algorithm II (NSGA-II) [ 1] is presented. In this modified version there are two 
mutation functions and one crossover function. The first mutation function mutates 
the best 100 combinations of each population and the second one applies random 
mutation to the whole population. These two mutations are supposed to increase 
diversity in the population and avoid local optima. Every mutation part is iterated 
and after each iteration the population is sorted to simulate tournament selection 
and multiple-mutation. Further, the crossover function is also iterated on the best 
10 combinations. Here, there is a sorting after each iteration to simulate tournament 
selection and multi-crossover. We also added non-dominated sorting to each function 
to preserve elitism. The proposed algorithm is summarised in Fig. 32.1 and in the 
following steps:
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Fig. 32.1 Code flowchart 

1. Initial population: At the beginning, random combinations are created, where the 
number of repetitions of the iterations is n0. Each of the 54 questions is assigned a 
value between the existing value and the maximum value to be achieved for each 
question. A subsequent review of the budget provides information on whether the 
randomly created combination can be used further on. If the combination meets 
the budget constraint (Eq. 32.3), it is transferred to a new list. Then, the surviving 
combinations is sorted and passed to the next step. 

2. Create mutated population from top 100: A random combination of the best 100 
is chosen and proceeded analogously as in the first step, where the number of 
repetitions of the iterations is n1. The generated population form Step 2 is added 
to the population. 

3. Crossover: Two random combinations are chosen from the top 10 existing combi-
nations to generate off-springs. The crossover function here is a k-point crossover, 
where k is chosen randomly. The number of repetitions of the iteration describes 
n2. The generated population form Step 3 is added to the population.
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4. Mutation of the whole population: 100 combinations are chosen randomly from 
the whole population, mutated and proceeded as in the first step, where the number 
of repetitions of the iterations is n3. The generated population form Step 4 is added 
to the population. 

Step 2-4 are iterated until the convergence criteria is met. The convergence criteria 
is that the changes in SRI score in the last 5 iterations are less than 1%. As it can be 
understood from the above-mentioned steps, that the populations size is dynamic and 
changes after each iteration. To prevent an uncontrolled growth of the population, 
they are penalized according to Equation (32.3). 

Numerical Example and Results 

For the numerical example, a hypothetical non-residential building located in Ger-
many with the current SRI of 24.7% is chosen. To achieve a SRI of 100%, 130 
monetary units are needed. However, the budget available in the simulation is only 
10% of the 130 monetary units. 

In this paper we examine four scenarios, which are defined in Table 32.1. The dif-
ferent scenarios investigate the influence of the repetitions (n0-n3) of each algorithm 
section on the results and performance. As the results show, the individual graphs in 
Figs. 32.2 and 32.3 reflect the number of iterations of four steps of the algorithm and 
are plotted over the iteration n4. All experiments are run on a station with an Intel® 

CoreTM i7-8550U processor at 1.80 GHz and 16.0 GB RAM under Windows® 10 
environment. The algorithm was scripted in Python®. 

Table 32.1 shows the results of different iteration scenarios, the obtained SRI score, 
and gives the iteration number (n4) at which a meaningful SRI score is output and 
iterations can be theoretically terminated. In addition, Fig. 32.3 shows the average 
SRI score after each iteration step of all scenarios. It can be seen that all scenarios 
converge to approximately the same level of SRI Score. 

All graphs in Fig. 32.4 showing that all Random mutation (n3) has little influence 
on the 10 best combinations. In the future, it can be refrained from simulating this 
part or, if only, at the beginning. 

The biggest influence on the changes of the top 10 is always the Crossover (n2) 
combination of the best 10. However, this algorithm is also very time-intensive, 
because more often the costs are smaller than the budget. In contrast, one can see 
that the Mutation from top 100 gets less important with each successive iteration. 
This is the result of the budget check: if there are already combinations in the top 100 
with the marginal cost, the SRI score is not calculated for this combination, because 
each increase would lead to costs going over the budget. The scenario a gives a very 
good result after about 14 minutes and 9 iterations. Even after a high number of 
iteration steps, the SRI score is not changing, which means that this can also be used 
as a convergence criteria.
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Fig. 32.2 Run duration for different scenarios 

Analysis of the duration of the individual steps as a function of the number of rep-
etitions has shown that there is a proportional relationship no significant differences 

Table 32.1 Iteration scenarios, their characteristics and results 

Scenario a b c d 

Step 1: Initial population (n0) 100 1000 100 100 

Step 2: Mutation from top 100 (n1) 100 100 1000 100 

Step 3: Crossover (n2) 100 100 100 1000 

Step 4: Mutation of whole 
population (n3) 

100 100 100 100 

SRI score [%] 43.28 43.27 43.23 43.29 

No. iteration [-] 9 8 9 4 

Duration [min] 13.6 16.0 17.3 23.6 

Table 32.2 Probability in % of level distribution of all scenario results, where bold is the initial 
level 

level 
// question 

5 7 9 10 25 35 45 47 49 51 52 

0 20 0 34 14 0 0 95 0 0 0 0 

1 0 41 66 0 0 75 4,5 0 100 25 0 
2 0 0 0 0 98 25 0 91 0 75 100 

3 80 59 0 84 2,3 0 0 9,1 0 0 0 

4 0 0 0 2,3 0 0 0 0 0 0 0
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Fig. 32.3 SRI score changes in different scenarios 

(a) Scenario a (b) Scenario b 

(c) Scenario c (d) Scenario d 

Fig. 32.4 Number of newly added combination among the top 10 

as can be seen in Fig. 32.2. The duration per 100 steps is about 0.5 minutes, but the 
duration of the Mutation from top 100 decreases with each iteration step, which is 
due to the fact described above. 

Table 32.2 shows the probability of which question was changed and to what 
degree. The results were compiled from all simulation scenarios. The result presented 
here reflects the weighting since all costs were set to 1 monetary unit. It can be seen 
that some questions, for example 47, 49 and 52, are more effective than others. These 
three questions are in the domain of “Monitoring and Control”, which implies that 
for the case building we should focus on services like HVAC systems management
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(47), occupancy detection (49), and reporting information regarding demand side 
(52). 

Conclusions 

In this paper we proposed a modified version of NSGA-II algorithm to maximize 
the SRI score for an existing building considering budget constraints. A hypothet-
ical numerical example is solved using the proposes algorithm to demonstrate its 
performance and efficiency. 

There are limitations in this work which are elaborated here and will be investi-
gated in future work. The proposed algorithm is designed for the described single-
objective problem, and its behavior for multi-objective problems must be studied. 
Particularly, the behavior of the proposed tournament selection in dense decision 
areas should be studied. For the sake of simplicity, the cost changes according to 
level changes are considered to be uniform and linear, which does not correspond 
to the reality and should be investigated further. Moreover, in future works, practi-
cal indications regarding technologies that would lead to improved SRI scores will 
be investigated. Another important point which should be investigated regarding 
SRI improvements, is the contribution of such improvements on CO2 emissions. A 
research is planned to scrutinize this relationship. 
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Chapter 33 
Optimal Design and Operation 
of Community Hydrogen Generation 
and Storage Applications 

Manuel Katholnigg, Armin Golla, Frederik vom Scheidt, Sarah Henni, 
and Christof Weinhardt 

Abstract The European energy crisis and the global climate crisis call for a strong 
reduction of fossil fuel usage in the residential heating sector. Given the rising role of 
energy communities, we address this challenge by optimizing the design and oper-
ation of different energy community systems with a linear program and a genetic 
algorithm for rolling horizon control, respectively. In particular, we compare status 
quo systems that are based on natural gas, with purely electricity-based systems, and 
systems based on electricity as well as the local production, storage, and usage of 
green hydrogen in the respective community. Applying our method to a case study of 
a community with 19 households, across various regulatory scenarios, and two dif-
ferent objective scenarios, we find that including hydrogen can achieve considerable 
CO2 emission reduction, higher self-sufficiency, and lower costs than systems using 
natural gas for heating. Set-ups without hydrogen, but with larger electric heat pumps, 
achieve similar emission reductions at lower costs but enable less self-sufficiency in 
the community. 

Keywords Hydrogen economy · Hydrogen storage · Power-to-gas · Linear 
programming · Sustainable development 

Introduction 

With the introduction of a national hydrogen strategy, Germany aims to decrease 
its dependency on fossil natural gas and reach its climate targets. A key part of this 
strategy is the generation of green hydrogen from renewable electricity through elec-
trolysis. In energy communities, electrolysis can be combined with hydrogen storage 
and fuel cells. The combination offers the potential to reduce seasonal imbalances 
between electricity generation from solar photovoltaic plants, which occurs mainly 
in summer, and residential electricity and heat consumption, which is highest in win-
ter. With fuel cells, hydrogen systems can provide both heat and electricity, which 
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makes them attractive for meeting residential energy needs. While economic analyses 
regarding hydrogen are increasingly performed on a national level [ 1], few studies 
exist on hydrogen viability in energy communities. For these, seasonal hydrogen 
storage systems are discussed, which can be planned with linear optimization prob-
lems [ 2, 3]. In a linear optimization problem over one year, the full seasonal cycle is 
covered, which creates economic incentives for charging in summer and moderate 
discharging in winter. These incentives are absent in an operation strategy based on 
short-term rolling horizon forecasts, which is not addressed by previous studies. Fur-
thermore, there is a lack of comparisons with other technology options for residential 
sector coupling under different market and policy scenarios. 

Mathematical Energy Community Model 

The proposed energy community is mathematically modeled using Calliope, a multi-
level energy systems framework. To present the mathematical model in a compact 
way, we use binary variables and a mixed-integer linear program notation. Due to 
Calliope framework specifications, it is implemented as a linear program without 
binary variables. Furthermore, our mathematical representation includes only the 
components of the framework used in this study. The full framework-based mathe-
matical formulation can be found in the Calliope documentation [ 4]. 

A set of technologies .Θ is available that includes technologies for resource con-
version.Θρ , carrier conversion.Θζ , storage.Θs , transmission.Θ t and demand.Θd . A  
technology . θ is placed at a location .λ ∈ Ʌ. The location set .Ʌ consists of locations 
in the household set .H and the community hub (.Ʌ \ H ). A technology can interact 
with energy carriers .ζ ∈ Z produced in the community and with energy resources 
.ρ ∈ P given externally. The model operates with hourly time steps .t ∈ T . Cost  
variables have an index .k ∈ K , indicating monetary costs (.km) in  e and emissions 
(. ke) in kg CO2e. The community aims to minimize total costs or emissions, with 
feed-in revenue considered as negative costs. Depending on the scenario, the weight 
.wk ∈ {0, 1} ∀k ∈ K is  set to favor cost (.wkm = 1, .wke = 0) or emissions (.wkm = 0, 
.wke = 1). In the objective function (Eq. (33.1)), .ck corresponds to the technology-
related cost of cost class . k, . u is unsatisfied demand and .M is a factor by which 
unsatisfied demand is penalized. 

.min
∑

θ∈Θ

∑

λ∈Ʌ

∑

k∈K
ck(λ, θ) · wk +

∑

ζ∈Z

∑

t∈T
u(ζ, t) · M (33.1) 

The overall system is balanced, if the consumed carrier quantity .ζ c equals the 
sum of the produced and exported carrier quantity (.ζ p and . ζ x ) of a carrier in every 
time step and at every location (Eq. (33.2)). Carrier input is modeled by values .< 0, 
output by values.> 0. The energy capacity.ec limits the sum of all produced carriers 
by a technology (Eq. (33.3)). For demand, storage, and transmission technologies, 
the energy capacity also limits the consumed carrier quantity (Eq. (33.4)).
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. −
∑

θ∈Θ

ζ c(λ, θ, ζ, t) =
∑

θ∈Θ

(ζ p(λ, θ, ζ, t) + ζ x (λ, θ, ζ, t)) ∀ζ ∈ Z , λ ∈ Ʌ, t ∈ T

(33.2) 

. 

∑

ζ∈Z
(ζ p(λ, θ, ζ, t) + ζ x (λ, θ, ζ, t)) ≤ ec(λ, θ) ∀ζ ∈ Z , λ ∈ Ʌ, θ ∈ Θ, t ∈ T

(33.3) 

. − ζ c(λ, θ, ζ, t) ≤ ec(λ, θ) ∀ζ ∈ Z , λ ∈ Ʌ, θ ∈ {Θd ,Θs,Θ t }, t ∈ T (33.4) 

The maximum carrier quantity that can be consumed per household is limited by 
the household demand . d (modeled by values .≤ 0). 

.ζ c(λ, θ, ζ, t) ≥ d(λ, θ, ζ, t) ∀ζ ∈ Z , λ ∈ H, θ ∈ Θd , t ∈ T (33.5) 

The available resource quantity .ρav limits how much carrier quantity can be 
produced and exported using resource efficiency .ηρ (Eq. (33.6)). When a resource 
conversion technology is located at a household, the available resource quantity is 
determined by the time-dependent resource quantity per kW, energy capacity.ρ t and 
the used resource area .ρar (Eq. (33.7)). The roof area . r limits the resource area per 
household (Eq. (33.8)). 

. 
ζ p(λ, θ, ζ, t) + ζ x (λ, θ, ζ, t)

ηρ(λ, θ, ζ )
≤ ρav(λ, θ, t) ∀ζ ∈ Z , λ ∈ Ʌ, θ ∈ Θρ, t ∈ T

(33.6) 

. ρav(λ, θ, t) =
⎧

ρ t (λ, θ, t) · ρar (λ, θ), if λ ∈ H and θ ∈ Θρ

∞, else

. ∀λ ∈ Ʌ, θ ∈ Θ, t ∈ T (33.7) 
∑ 

θ ∈Θρ 

ρar (λ, θ ) ≤ r (λ) λ ∈ H (33.8) 

A carrier can be transported between two locations. λ and.λt through transmission 
technologies with an energy efficiency . η per distance . d (Eq. (33.9)). 

.
ζ p(λ, λt , θ, ζ, t)

ηd(λ, θ, t)
= − ζ c(λ, λt , θ, ζ, t) ∀λ, λt ∈ Ʌ, ζ ∈ Z , θ ∈ Θ t , t ∈ T (33.9) 

Carrier conversion technologies can have multiple inputs and outputs. The rela-
tionship between the first input carrier .ζ f i and the first output carrier .ζ f o under 
consideration of the conversion efficiency .ηζ is shown in Eq. (33.10). The input 
carrier ratio .ζ ri and the output carrier ratio .ζ ro describe relations between first and
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second input and output carriers .ζ si and .ζ so in Equations (33.11) and (33.12). 

. 
ζ p(λ, θ, ζ f o, t)

ηζ (λ, θ, ζ f i , ζ f o)
= −ζ c(λ, θ, ζ f i , t) ∀ζ f i , ζ f o ∈ Z , λ ∈ Ʌ, θ ∈ Θζ , t ∈ T

(33.10) 

ζ c(λ, θ, ζ  si  , t) 
ζ ri  (λ, θ, ζ  f i  , ζ  si  ) 

= ζ c (λ, θ, ζ  f i  , t) ∀ζ f i  , ζ  si  ∈ Z , λ  ∈ Ʌ, θ ∈ Θζ , t ∈ T 

(33.11) 

ζ p(λ, θ, ζ  so, t) 
ζ ro(λ, θ, ζ  f o, ζ  so) 

= ζ p (λ, θ, ζ  f o  , t) ∀ζ f o  , ζ  so ∈ Z , λ  ∈ Ʌ, θ ∈ Θζ , t ∈ T 

(33.12) 

The storage level. s at time. t is determined by the storage level at the previous time 
step.t − 1, the storage loss rate. l between.t − 1 and. t , and the charged and discharged 
energy (Eq. (33.13)). The charge and discharge efficiency are represented by . ηζ . 
The storage capacity .sc limits the storage level, as described through . s(λ, θ, t) ≤
sc(λ, θ),∀λ ∈ Ʌ, θ ∈ Θs, t ∈ T . A minimum state of charge .sd as a fraction of . sc

is ensured by.s(λ, θ, t) ≥ sd(λ, θ) · sc(λ, θ),∀λ ∈ Ʌ, θ ∈ Θs, t ∈ T . Charging and 
discharging speed is limited depending on the storage capacity through . ec(λ, θ) ≤
sc(λ, θ) · es(λ, θ), where .es is the maximum.ec per . sc. 

. s(λ, θ, ζ, t) = s(λ, θ, ζ, t − 1) · (1 − l(λ, θ, ζ )) + ζ c(λ, θ, ζ, t) · ηζ (λ, θ, ζ )

− ζ p(λ, θ, ζ, t)

ηζ (λ, θ, ζ )
∀λ ∈ Ʌ, θ ∈ Θs, ζ ∈ Z , t ∈ T (33.13) 

For all technologies besides.θ ∈ Θd , technology-related costs.ck consist of invest-
ment costs .cik and variable costs .cv

k (Eq. (33.14)). Investment costs include annual 
capacity-related costs .cck and annual fixed operation and maintenance costs .c f

k (Eq. 
(33.15)). Capacity-related costs depend on capacity-related costs per energy or stor-
age capacity (.cek or . c

s
k) and the yearly depreciation rate .dk (Eq. (33.16)). Depending 

on the technology, fixed operation and maintenance costs per energy capacity.cefkm or 
per storage capacity .cs fkm are assumed (Eq. (33.17)). 1

. ck(λ, θ) =
⎧
cik(λ, θ) + ∑

t∈T c
v
k (λ, θ, t), if θ ∈ {Θρ,Θζ ,Θ t ,Θs}

0, if θ ∈ Θd

∀k ∈ K , λ ∈ Ʌ, θ ∈ Θ (33.14)

1 Further mathematical formulations, such as equations for building energy demands and variable 
costs, are used to make the model executable. 
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.cik(λ, θ) = cck(λ, θ) + c f
k (λ, θ) ∀k ∈ K , λ ∈ Ʌ, θ ∈ Θ \ Θd (33.15) 

. cck(λ, θ) =
⎧
dk(λ, θ) · cek(λ, θ) · ec(λ, θ), if θ ∈ {Θρ,Θζ ,Θ t }
dk(λ, θ) · csk(λ, θ) · sc(λ, θ), if θ ∈ Θs

∀k ∈ K , λ ∈ Ʌ, θ ∈ Θ \ Θd (33.16) 

.c f
k (θ) =

⎧
cefk (θ) · ec(θ), if θ ∈ {Θρ,Θζ ,Θ t }
cs fk (θ) · sc(θ), if θ ∈ Θs

∀k ∈ K , θ ∈ Θ \ Θd (33.17) 

Case Study 

Based on the mathematical model, we investigate an energy community of 19 house-
holds as displayed in Fig. 33.1. Energy consumption data is derived from Edinburgh 
[ 5], according input data for photovoltaic and solar thermal systems is retrieved from 
[ 6]. We simulate an average year between 2020 and 2050 under German policy condi-
tions using price and emission forecasts. 2 To reflect uncertainty about future policies, 
we solve and compare six scenarios. In scenario A, we assume German subsidies, 
including a state-guaranteed feed-in tariff and a reduction of capacity-related mone-
tary costs for solar thermal (30%) and fuel cell technology (40%). Scenario B assumes 
a gas-covered heat supply. In response to the current energy crisis in Germany, Sce-
nario C analyzes a 50% higher electricity price compared to the average projected 
price until 2050. To investigate stronger independence from fossil energy, we allow 
25% less grid electricity consumption in scenarios D (planning optimization) and E 
(operation) compared to scenario A. To investigate the emission reduction potential 
of seasonal hydrogen storage, scenario F investigates purely ecological optimization. 

All scenarios, except for scenario E, are solved for a full-year horizon using 
Gurobi. In scenario E we develop an operation strategy with an 48-hour rolling 
horizon to demonstrate the real-world application of the energy system resulting 
from scenario D. The rolling horizon splits the year-round optimization problem 
into subproblems. Seasonal patterns of renewable energy production are not reflected 
within these subproblems. Therefore, there is a lack of economic incentives to charge 
hydrogen storage in the summer months or not to discharge it too quickly in the winter 
months. 

To evaluate the theoretical potential of an operating strategy that integrates such 
incentives, we first divide the analyzed year into charging and discharging periods of 
the seasonal storage based on the results from scenario D. Subsequently, two decision 
variables are added to the optimization problem: For the summer months, we add

2 The Calliope model as well as references for the parameter values are available at 
github.com/manuelkat/seasonal-storage. 

github.com/manuelkat/seasonal-storage.
https://github.com/manuelkat/seasonal-storage
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Fig. 33.1 Residential energy community model 

variable monetary cost .≤ 0 when using the electrolyzer, and in the winter months, 
we add variable monetary cost .≥ 0 for the fuel cell to the actual variable cost. To 
integrate these decision variables, an iterative two-stage optimization is necessary 
due to framework limitations. In the first stage, a genetic algorithm is used to set 
the two added decision variables to discrete values, which are passed to Calliope 
in the second stage to initiate the solution with Gurobi. The economic implications 
of the artificial incentives are removed from the economic result. The result serves 
the fitness function of the genetic algorithm, which minimizes monetary cost and 
iteratively repeats the two-stage process. The genetic algorithm originates from the 
open-source Python library PyGAD, and uses steady-state parent selection, random 
mutation, and one-point crossover [ 7]. To minimize computational cost, a grid search 
is then performed to systematically analyze promising value ranges of the decision 
variables determined by the genetic algorithm for new optima and robustness. 

We determine the addition of variable costs -0.06e/kWh for the electrolyzer and 
0.20e/kWh for the fuel cell for an optimal operation of the hydrogen storage. The 
economic result generated with the operation strategy for scenario D differs 4.2% 
from scenario E, which optimizes over 365 d without artificial incentives and embod-
ies the theoretical optimum. The resulting storage levels of the hydrogen storage tanks 
from the optimization of both scenarios are shown in Fig. 33.2 over one year. The
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Fig. 33.2 Hydrogen storage level curves 

Fig. 33.3 Scenario results 

economic and ecologic results, including the capacities of the components resulting 
from the optimization, are shown in Fig. 33.3. 
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Further investigations show that scenarios D and E, replacing the 30 bar hydrogen 
storage through a 300 bar storage with a compressor, undercut scenario A’s total 
emissions due to lower manufacturing emissions caused by smaller steel tanks. 

Conclusion 

This study investigates the optimized installation and operation of seasonal hydrogen 
storage for energy communities in different scenarios. Our findings indicate that 
community seasonal hydrogen storage is not yet economically viable compared to 
renewable generation without seasonal storage, even with increased subsidies or 
strongly increased grid electricity prices. However, we find that seasonal hydrogen 
storage can decrease the dependence of a community on external energy supply 
without increased costs compared to fossil energy supply. Assuming a perfect price 
forecast for one year and energy demand and consumption for 48 h, our operating 
strategy is economically inferior by 4.2% compared to a one-year perfect forecast 
on all data. We also show that when photovoltaic systems, a battery, heat pumps, and 
thermal storage systems are used, lifecycle emissions from hydrogen storage tanks 
are crucial in determining whether hydrogen systems contribute to an additional 
reduction of the community’s carbon footprint. This should be considered in potential 
subsidy policies. 
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Chapter 34 
Optimal Design of Building Energy 
Supply—A Case Study 

Elisabeth Halser, Elisabeth Finhold, Neele Leithäuser, and Karl-Heinz Küfer 

Abstract In this paper, we optimize the design of a new office building’s energy 
supply with respect to costs and carbon emissions for one example year. The aim is to 
gain an overview over the impact of the supply design decision. For that, we combine 
known concepts to one decision support workflow. We simulate the expected heating 
loads of the building with a thermal network and use them to set up a mixed-integer 
linear program for the problem, which we can solve with one or both objectives. 

Keywords Thermal network · Mixed-integer linear programming ·
Multi-objective decision making 

Introduction 

Energy supply of buildings is a significant driver of human caused carbon emissions 
[ 6] and hence of climate change. Therefore, significant emission reductions in this 
field are inevitable. As the Fraunhofer society wants to become carbon neutral by 
2030, its Institute for Industrial Mathematics (ITWM) wants to purchase devices for 
its new building which deal with uncertain future heating and cooling needs (called 
loads) in a money and carbon saving way. This case study answers the question what 
range of energy related costs and carbon emissions is achievable for the new building 
in an example year. In this, we are particularly interested in a thorough analysis of 
the trade-offs between the two objectives. In subsequent studies we will deal with 
uncertainty of prices and loads to definitely select one device configuration. 

The planned office building is located in Kaiserslautern as an annex to an already 
existing office complex, where heating and cooling loads of the past years are known 
in hourly resolution. Cooling loads in this case are almost exclusively caused by 
computing centers in the building. 

In our case study, we focus on the design and operation of the new office build-
ing’s energy supply. In order to find a suitable combination of heating and cooling 
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generators for the new building, we first need reasonable heating and cooling loads 
for at least one year. We start with a draft of the building cubature and its insulation 
properties and use the approach of a thermal network to simulate hourly heating loads 
for different climate scenarios. A network model of the already existing building is 
used for calibration. The generated hourly heating loads together with extrapolated 
cooling loads from the existing complex are then the data basis to find the optimal 
selection of generators (heating, cooling, electrical power), thermal storages and their 
dimensions for the new building. For that purpose, we model and solve the prob-
lem as a bicriteria mixed-integer linear program (MILP), where costs and carbon 
footprint are minimized simultaneously. 

The thermal network is a well-known approach and for example used in [ 8] and [ 4]. 
It exploits an electrical analogy [10] and is therefore also called resistance capacitance 
(RC) network. It can be derived as a finite difference approximation to the mono-
dimensional heat conduction equation [ 3]. 

MILP formulations for building energy supply are for example used in [ 1, 7, 9]. 
Ashouri et al. [ 1] also use a thermal network and consider the converter’s individual 
constraints to minimize costs. In contrast to this work, we simultaneously minimize 
CO2-emissions and solve the problem with the well-known.∈-constraint method [ 5]. 
A bicriteria optimization is for example also done in [ 9]. 

Thermal Network 

To obtain the building’s heating loads, we simulate the ambient-temperature depen-
dent thermal behavior of the building and add the energy that is required to heat 
the building to a time-dependent target temperature in each time step. The building 
is modeled as a network of 306 thermal capacitors, which are connected by 592 
thermal resistances. Every room corresponds to a capacitor. Walls, as the connection 
between two rooms, are modeled as a combination of one capacitor and two con-
necting resistances. In every time step there is temperature exchange between the 
capacitors through the resistances. We consider radiation through windows with a 
solar heat gain coefficient of 0.6 (60% of radiation energy passing a window stays 
in the building). 

For calibration, we visually compare the actual loads of the existing building from 
2016 to 2021 with the simulated loads of this building over the same period of time. 
To compensate for the closing of jalousies and the varying heat over the day, the target 
temperature of the rooms and the radiation area are slightly adjusted. Moreover, a 
factor is multiplied to the resistances, which compensates for the fact that in practice 
the air in the rooms is changed over time, which is not represented in the model. 
Results for one typical week can be seen in Fig. 34.1. As the reference data is very 
noisy in the warmer months, we were only able to archive a relative error of 32%, 
but the balance fits quite well with 7% error.
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Fig. 34.1 Heating loads of 
the existing building in the 
first week of 2017 

Table 34.1 Notation for the MILP 

.M Set of all possible devices 

.T Set of all hours of one year 

.bi 1 if converter i is bought, else 0 (binary variable) 

.di Dimension of converter i 

.si t Dimension-scaled load of converter i in time step t 

.dhs/dcs Dimension of heat/cold storage [kWh storage potential] 

.sht /s
c
t Heat/cold storage charge in time step t [kWh] 

.Ht/Ct Heating/cooling loads in time step t [kWh] 

.eit/kit/wi t/gi t Maximum electric/heat/wood/gas consumption of converter i in time step t 
[kWh] 

.elit/hit/cit Maximum electric/heat/cold production of converter i in time step t [kWh] 

.pe/ph/pw/pg Price of electricity/district heat/wood/gas [e/kWh] 

.ce/ch/cw/cg Carbon equivalent emissions of electricity/district heat/wood/gas 
[kg/kWh] 

.p f
i /c f

i Base depreciation costs/carbon emission of converter i [e]/[kg] 

.pdi /cdi Size dependent depreciation costs/carbon emission of converter i [e]/[kg] 

.phs/pcs Depreciated price factor of heat/cold storage [e] 

.chs/ccs Depreciated carbon emission factor of heat/cold storage [kg] 

.lhs/ lcs Loss rates of the heat and cold storage 

MILP Model for the Energy Supply Design 

The loads obtained in the last section can now be used as the basis of the device 
selection model. The problem is modeled as a MILP, where costs or carbon emissions 
shall be minimized. Not only operational costs/emissions are considered, but also the 
depreciated device costs, respectively, the device generation carbon emissions. For an 
overview over the notation of the model see (Table 34.1). For each converter type we 
have a representative of a certain size. The dimension can be understood as a scaling 
factor w.r.t. the representative device. If for example the representative district heat
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has 200 kW capacity and the model computes a dimension of 1.5, the district heat 
index. d in the building should have 300 kW capacity. If this upscaled district heating 
is operated with a load of 5/6, it therefore effectively receives .5/6 · 1.5 · 200 kW in 
this time step with.sdt = 1.25. The maximum energy in- and outputs of the converters 
are time-dependent, as they might depend for example on the ambient temperature or 
radiation. The depreciated costs and carbon emissions of the converters are modeled 
affine linear with respect to the converter size and linear over the converters’ lifetime. 
The affine linearity assumption is suggested by a dataset of real world converters. 
In contrast to the converters, we model the storages and their depreciation linearly 
without offset, as real world data suggested negligible offset in this case. 

Objective Functions The two objective functions are defined as follows, where . d
is the technical index for district heat. For the cost minimization we have for the 
optimization variables . si t , sct , s

h
t ,d

hs,dcs,bi ,di ∀i ∈ M, t ∈ T

.

min
∑

i∈M
i /=d

∑

t∈T
si t

(
eit p

e − elit p
el + wi t p

w + gi t p
g
) +

∑

t∈T
sdt kdt pd

+ dhs phs + dcs pcs +
∑

i∈M

(
bi p

f
i + di pdi

)
.

(34.1) 

For greenhouse gas minimization we have 

.

min
∑

i∈M
i /=d

∑

t∈T
si t

(
eit c

e + wi t c
w + gi t c

g
) +

∑

t∈T
sdt kdt cd

+ dhschs + dcsccs +
∑

i∈M

(
bi c

f
i + di cdi

)
.

(34.2) 

General Constraints There are constraints that are relevant for all devices. Only 
bought converters can have non-zero size (34.3). Storages are empty in the begin-
ning (34.4). Neither converters (34.5) nor storages ((34.6) and (34.7)) can work 
beyond their technical limits. Finally, (34.8) and (34.9) ensure that enough heating 
and cooling is available in every time step. This links the time steps via the storage 
states. Let .M be a sufficiently large number. 

.0 ≤ di ≤ M · bi ∀i ∈ M (34.3) 

sc 0 = sh 0 = 0 (34.4) 

0 ≤ si t  ≤ di ∀i ∈ M, t ∈ T (34.5) 

0 ≤ sc t ≤ dcs ∀t ∈ T (34.6) 

0 ≤ sh t ≤ dhs ∀t ∈ T (34.7) 

sc t+1 = lcs sc t + 
∑ 

i 

si t cit  − Ct ∀t ∈ T (34.8)
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sh t+1 = lhs sh t + 
∑ 

i 

si t  (hit  − kit  ) − Ht ∀t ∈ T (34.9) 

Almost all converters come with individual technical constraints, such as the fact 
that a cogeneration unit can only work between 40 and 100% if it is turned on or 
a heat pump can work in different modes. Listing all of them would go beyond the 
scope of this article, but they are implemented in the model. 

Single Objective Optimization Example 

If we solve the problem with climate data from 2017 with the single objectives 
(34.1) and (34.2), respectively, we obtain the device selections from Table 34.2. 
The proposed dimensions therein are realistic in comparison with the devices in the 
existing building. Determining all the model parameters was a challenging task. For 
carbon data we mainly used the ÖKOBAUDAT [ 2] and extrapolated this information 
to get estimates for devices missing in the data base. For the depreciated device costs, 
we applied linear regression to a data set of about 150 reference devices. These 
devices are also used to derive generic performance data such as efficiency factors 
which might depend on the outside temperature. The energy prices are from recent 
years. 

Table 34.2 Optimization results of either cost or carbon emission minimization—only devices 
selected by the optimization are included in the table. Further converter types are: gas boiler, 
reversible and non-reversible air-water and brine-water heat-pump, non-reversible water-water heat 
pump, adsorption chiller, compression chiller and district heating 

Device Cost optimization CO2 optimization 

Cogeneration unit 
(heating/electricity) 

334 kW/220 kW – 

Water-water heat pump 
(cooling/heating) 

243 kW/195 kW 305 kW/244 kW 

Absorption chiller 274 kW 262 kW 

Pellet boiler – 164 kW 

Photovoltaic 201.m2 – 

Solar thermal – 1050. m2

Free cooling – 116 kW 

Cold storage 11822 l 33,067 l 

Heat storage 6467 l 100,587 l
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Fig. 34.2 .∈-Constraint 
method results 2017 

Multiobjective Optimization Example 

For the multiobjective optimization we use the.∈-constraint method. For that, various 
strict upper limits are set for carbon emissions and then a cost optimization is exe-
cuted. To find a reasonable range for the emission values on the Pareto front, we run 
two lexicographic optimizations (i.e., we first minimize costs and then the emissions 
among all solutions with minimal costs and vice versa). Note that the solutions in 
Table 34.2 are chosen to be in fact lexicographically optimal and correspond to the 
endpoints of the Pareto front. We solve the problem with Gurobi. We allow for a 5% 
optimality gap, as computation time of one point even in this case exceeds 12 h on 
an intel CORE i7 vPro 8th Gen. Figure 34.2 shows the results. 

Figure 34.2 shows that the yearly costs differ by more than 100.000 e depending 
on the CO2-budget. The other way around, CO2 emissions can be reduced by up to 
95% when accepting higher costs. The relationship between costs and carbon emis-
sions seems almost linear for carbon values above 100 t. The negative cost values in 
the graph for CO2 higher than 300 t are due to electricity generated with a cogener-
ation unit and photovoltaic and sold on the market. 

Conclusion and Outlook 

In this paper, we gained an overview over Pareto-optimal energy supply configura-
tions for one sample year and observed that there is a large potential for trade-offs. 
However, we do not know whether these solutions are Pareto-optimal or even feasible 
in other years. Therefore, we have to find a way of making the solution more robust 
and at the same time not too conservative. We are currently working on an inverse 
robust approach, where we introduce a third dimension to the objective space, which 
measures the degree of undersupply of device selections over different years. 

Another possible field of research is to use the problem formulation with fixed 
design variables in a rolling horizon approach for controlling the converters once 
they are installed.
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Chapter 35 
Optimal Trading of a Hybrid Electric, 
Hydrogen and Gas Fueling Station 
in Day-Ahead and Intra-day Markets: 
Modeling Aspect 

Farnaz Sohrabi, Mohammad Rohaninejad, Mohammad Reza Hesamzadeh, 
and Július Bemš 

Abstract Energy crisis and environmental concerns encourage the adoptions of sub-
stitute transportation options instead of the conventional internal combustion engine 
vehicles. The electric, hydrogen and natural gas vehicles are promising alternatives, 
so more attention should be paid to the economic and operational features of their 
charging stations. This paper proposes a multifunction charging station to refill elec-
tric, hydrogen and natural gas vehicles which takes part in the day-ahead and intra-day 
markets. The objective of this station is to maximize its profit by attaining the optimal 
operation of the devices and bidding curves. Coordinated bidding is considered since 
this charging station participates in the sequential markets with different price scenar-
ios. The clearing prices and dispatched amounts in both markets are unknown at the 
time of bidding. This problem is formulated as a two-stage stochastic program since 
the markets are cleared sequentially and the prices are revealed gradually. Finally, the 
economic effectiveness of the proposed multifunction charging station is analyzed 
in different scenarios. 

Keywords Charging station · Electricity markets · Stochastic programming ·
Coordinated bidding 

Nomenclature 
Indices 

.h, ω, i Index for hours, scenarios and bidding prices. 

Constants 

.ηB,Ch, ηB,Dis Charging and discharging efficiency of battery. 

.ηE , ηF , ηM Efficiency of electrolyzer, fuel cell and methanation. 

.ηT,Ch, ηT,Dis Charging and discharging efficiency of tank. 
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.λDA, λI D Day-ahead and intra-day electricity market prices. 

.λE , λH , λM Electricity, hydrogen and methane selling prices. 

.π Probabilities associated with scenarios. 

.HCh,Max , HCh,Min Maximum and minimum charging capacity of tank. 

.HDis,Max , HDis,Min Maximum and minimum discharging capacity of tank. 

.HT,Max , HT,Min Maximum and minimum capacity of tank. 

.K Coefficient for converting hydrogen to power. 

.PB,Max , PB,Min Maximum and minimum capacity of battery. 

.PCh,Max , PCh,Min Maximum and minimum charging capacity of battery. 

.PDis,Max , PDis,Min Maximum and minimum discharging capacity of battery. 

.PE,Max , PE,Min Maximum and minimum capacity of electrolyzer. 

.PF,Max , PF,Min Maximum and minimum capacity of fuel cell. 

.PL , HL , ML Power, hydrogen and methane demand of station. 

.y Fixed bid prices for electricity market. 

Variables 

.HCh, HV , HM Produced hydrogen for tank, vehicles and methanation. 

.HF,Dis, HV,Dis, HM,Dis Discharged hydrogen for fuel cell, vehicles and methana-
tion. 

.PB, HT Inventory level of the battery and tank. 

.PDA, PI D Dispatched level in day-ahead and intra-day markets. 

.PF Produced power of fuel cell. 

.PV,Dis, PH,Dis Discharged battery power for vehicles and electrolyzer. 

.PV , PCh, PH Purchased power for vehicles, battery and electrolyzer. 

.uB, uH Selection of charging mode for the battery and tank. 

.uE Selection of working mode for the electrolyzer. 

.xDA, xI D Bidding volume to day-ahead and intra-day markets. 

Introdution 

The transportation sector has the largest share of total energy consumption growth 
in the world caused excessive pollution and energy crisis. One solution is using 
electric, hydrogen and natural gas vehicles as alternative transportation options. The 
demand of these environment friendly vehicles can be satisfied from the power grid. 
The hydrogen demand of the vehicles can meet through power to gas process which 
converts electricity to hydrogen through electrolyzer. The generated hydrogen can 
react with carbon dioxide to produce synthetic natural gas and provide the demand 
of vehicles [ 1]. 

There have been many studies about single refueling station; however, only few 
papers investigate the integration of electric and hydrogen refueling station. The 
multifunction charging station can also provide the flexibility as stated in [ 2] An  
autonomous hybrid hydrogen electricity charging station powered by photovoltaic 
in which the objective function maximizes the profit is modeled for a remote off-grid
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area in [ 3]. The flexible operation of a multi-product charging station to provide 
hydrogen and electricity for public transportation systems and private vehicles with 
the goal of profit maximizing is studied in [ 4]. A robust model for optimal design 
and planning of a standalone charging station for electric and hydrogen vehicles 
powered by the solar system and diesel generator is presented in [ 5]. Mehrjerdi 
addresses an optimal algorithm to design and set the off-grid electric and hydrogen 
charging station powered by the solar system and diesel generator with the aim of 
cost minimization [ 6]. A risk-oriented design and planning of a standalone hydrogen 
and electric refueling station based on information-gap decision theory is obtained 
in [ 7]. Beside previous studies, the combined electric, hydrogen and gas refueling 
station has been investigated recently by Xu et al. [ 8] for  the first  time in which  a  
risk-based scheduling of an off-grid station powered by renewable energy based on 
information gap decision theory is proposed. 

By far, a grid-connected solution has not been addressed in literature. Therefore, 
this study proposes a price-taker multifunction charging station to support electric, 
hydrogen and gas vehicles which is powered by the grid. A price-taking hybrid 
fueling station cannot affect the market price by changing its own actions [ 9]. Optimal 
volume allocation to the different markets is a complex task due to the sequential 
and stochastic nature of the power markets which has been not taken into account by 
previous works. The coordinated bidding process is considered based on [ 10], which 
employs a stochastic linear programming model for constructing piecewise-linear 
bidding curves. This study tries to obtain bidding curves of the charging station and 
optimal operation of devices by considering the uncertainty of market prices with 
the purpose of profit maximization. 

Problem Formulation 

The proposed multifunction charging station consists of a battery, electrolyzer, tank, 
fuel cell and methanation device as shown in Fig. 35.1. The electric vehicles demand 
is satisfied by the grid, battery and fuel cell. The hydrogen demand of the vehicles is 
met by the electrolyzer and tank. The demand of the natural gas vehicles is provided 
through methanation process. 

Equation (35.1) maximizes the profit of the charging station owner including 
the revenue of selling the power, hydrogen and methane to the vehicles minus the 
cost of purchasing power from the day-ahead and intra-day markets where the set 
of variables .Ξ includes .PDA, .PI D , .PV , .PCh , .PH , .PV,Dis , .PH,Dis , .PB , .HCh , .HV , 
.HM , .HT , .HF,Dis , .HV,Dis , .HM,Dis , .PF , .uB , .uH , .uE , .xDA and .xI D . Equation (35.2) 
specifies that the purchased power from markets should be equal to the devoted 
power for electric vehicles, battery and electrolyzer. Equation (35.3) indicates that 
the power level of the battery should be equal to the sum of its level in an hour 
ago and the bought power for charging the battery minus the discharged power for 
the electric vehicles and electrolyzer. Constraint (35.4) limits the inventory level of 
the battery by its capacity. Constraints (35.5) and (35.6) permit the battery to be in
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Fig. 35.1 Electric, hydrogen 
and gas charging station 
model 

charge, discharge and shut-down mode. Equation (35.7) affirms that the summation of 
purchased and discharged battery power for running the electrolyzer that is multiplied 
by the efficiency and divided to a constant should be equal to the devoted hydrogen 
for the tank, hydrogen vehicles and methanation device. Constraint (35.8) bounds 
the used power of the electrolyzer by its capacity where the binary variable avoids 
the simultaneous operation of the fuel cell and electrolyzer. Equation (35.9) states 
that the hydrogen level of the tank should be equal to its level in an hour ago and the 
charged volume minus the discharged amount for fuel cell, hydrogen vehicles and 
methanation device. Constraint (35.10) restricts the hydrogen level of the tank by 
its capacity. Constraints (35.11) and (35.12) let the hydrogen tank to be in charge, 
discharge or shut-down mode. Equation (35.13) asserts that the discharged hydrogen 
from the tank for the fuel cell that is multiplied by the constant and efficiency should 
be equal to its generated power. Constraint (35.14) bounds the generated power of the 
fuel cell by its capacity. Equation (35.15) states that the summation of the power from 
the market, battery and fuel cell for charging electric vehicles should be equal to the 
demand. Equation (35.16) expresses that the summation of the electrolyzer and tank 
hydrogen for refueling vehicles should be equal to the load. Equation (35.17) declares 
that the summation of the electrolyzer and tank hydrogen for the methanation process 
that is multiplied by the efficiency should be equal to the needed methane. Constraints 
(35.18) and (35.19) impose the required market rules that the bidding curves should 
be non-increasing. Equations (35.20) and (35.21) formulate the bidding curves in 
the day-ahead and intra-day markets, respectively. 
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. Maximize
Ξ

∑

hω

π (ω)
(
PL (h) λE + HL (h) λH + ML (h) λM

− PDA (h, ω) λDA (h, ω) − PI D (h, ω) λI D (h, ω)
)

(35.1) 

PDA  (h, ω) + PI D  (h, ω) = PV (h, ω) + PCh (h, ω) + PH (h, ω) ∀h, ∀ω (35.2) 
PB (h, ω) = PB (h − 1, ω) + ηB,Ch  PCh  (h, ω) 

− 
( 
PV,Dis (h, ω) + PH,Dis (h, ω) 

) 
/ηB,Dis ∀h, ∀ω (35.3) 

PB,Min  ≤ PB (h, ω) ≤ PB,Max  ∀h, ∀ω (35.4) 

PCh,MinuB (h, ω) ≤ PCh (h, ω) ≤ PCh,MaxuB (h, ω) ∀h, ∀ω (35.5) 

PDis,Min  (1 − uB (h, ω)) ≤ PV,Dis (h, ω) + PH,Dis (h, ω) 
≤ PDis,Max  (1 − uB (h, ω)) ∀h, ∀ω (35.6) 

HCh (h, ω) + HV (h, ω) + HM (h, ω) = ηE 
( 
PH (h, ω) + PH,Dis (h, ω) 

) 
/K 

∀h, ∀ω (35.7) 

PE,MinuE (h, ω) ≤ PH (h, ω) + PH,Dis (h, ω) ≤ PE,MaxuE (h, ω) ∀h, ∀ω 
(35.8) 

HT (h, ω) = HT (h − 1, ω) + ηT ,Ch  HCh  (h, ω) 
− 

( 
HF,Dis (h, ω) + HV,Dis (h, ω) + HM,Dis (h, ω) 

) 
/ηT,Dis ∀h, ∀ω (35.9) 

HT ,Min  ≤ HT (h, ω) ≤ HT,Max  ∀h, ∀ω (35.10) 

HCh,MinuH (h, ω) ≤ HCh (h, ω) ≤ HCh,MaxuH (h, ω) ∀h, ∀ω (35.11) 

HDis,Min  (1 − uH (h, ω)) ≤ HF,Dis (h, ω) + HV,Dis (h, ω) + HM,Dis (h, ω) 
≤ HDis,Max  (1 − uH (h, ω)) ∀h, ∀ω (35.12) 

PF (h, ω) = ηF HF,Dis (h, ω) K ∀h, ∀ω (35.13) 

PF,Min  (1 − uE (h, ω)) ≤ PF (h, ω) ≤ PF,Max  (1 − uE (h, ω)) ∀h, ∀ω (35.14) 

PL (h) = PV (h, ω) + PV,Dis (h, ω) + PF (h, ω) ∀h, ∀ω (35.15) 

HL (h) = HV (h, ω) + HV ,Dis (h, ω) ∀h, ∀ω (35.16) 

ML (h) = ηM 
( 
HM (h, ω) + HM,Dis (h, ω) 

) ∀h, ∀ω (35.17) 

xDA  (i + 1, h) ≤ xDA  (i, h) ∀h, i ∈ {1, ..., I − 1} (35.18) 

xI D  (i + 1, h, ω) ≤ xI D  (i, h, ω) ∀h, ∀ω ∈ ΩDA, i ∈ {1, ..., I − 1} (35.19) 

PDA  (h, ω) = 
λDA  (h, ω) − y (i ) 
y (i + 1) − y (i ) 

xDA  (i + 1, h) 

+ 
y (i + 1) − λDA  (h, ω) 

y (i + 1) − y (i ) 
xDA  (i, h) i f y  (i ) ≤ λDA  (h, ω) ≤ y (i + 1) 

∀h, i ∈ {1, . . . ,  I − 1} (35.20) 

PI D  (h, ω) = 
λI D  (h, ω) − y (i ) 
y (i + 1) − y (i ) 

xI D  (i + 1, h, ω) 

+ 
y (i + 1) − λI D  (h, ω) 

y (i + 1) − y (i ) 
xI D  (i, h, ω) i f y  (i ) ≤ λI D  (h, ω) ≤ y (i + 1) 

∀h, ∀ω ∈ ΩDA, i ∈ {1, . . . ,  I − 1} (35.21)
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Case Study 

The detailed parameters of the devices are given in Table 35.1. The coefficient of 
converting hydrogen to methane and power is considered 0.27 and 3.5 kWh/m. 

3, 
respectively. The electricity, hydrogen and gas selling prices are assumed to be 0.4 
EUR/kWh, 1.2 and 1.6 EUR/m. 

3, respectively. The bidding curves for selected hours 
in markets are shown in Fig. 35.2. The bidding curves for the day-ahead market are 
first stage variables and scenario independent while the bidding curves for intra-day 
market are second stage variables and scenario dependent. Consequently, different 
bidding curves are submitted to the second market based on the realized scenario in 
the first market which reveals the sensitivity of bidding curves in the intra-day market 
to the deviations in the day-ahead market prices. The profit of the charging station 
equals to 6610 EUR. The revenue of selling electricity, hydrogen and gas equals to 
5000, 4552 and 610 EUR, respectively. This illustrates that refueling electric vehicles 
and gas vehicles has the biggest and smallest share in gaining profit. 

Table 35.1 Detail specification of the devices. 

Parameter Value Parameter Value 

Battery Tank 

.ηB,Ch , .ηB,Dis 85%, 85% .ηT,Ch , .ηT,Dis 85%, 85% 

.PB,Min,.PB,Max 0, 400 (kWh) .HT,Min,.HT,Max 0, 300 (m. 3) 

.PCh,Min,.PCh,Max 0, 80 (kW) .HCh,Min,.HCh,Max 0, 60 (m. 3/h) 

.PDis,Min,.PDis,Max 0, 80 (kW) .HDis,Min,.HDis,Max 0, 60 (m. 3/h) 

Electrolyzer Fuel cell 

.ηE 85% .ηF 50% 

.PE,Min,.PE,Max 0, 2000 (kWh) .PF,Min,.PF,Max 0, 100 (kWh) 

Fig. 35.2 Bidding curves in the day-ahead and intra-day markets
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Conclusion 

A two-stage stochastic program is formulated for a grid-connected multifunction 
charging station participated in day-ahead and intra-day markets. The objective func-
tion maximizes profit by deciding on optimal operation of the devices and bidding 
curves under market price uncertainties. The outcomes prove the feasibility and 
states that different plans have to be taken to moderate impacts of uncertainties. The 
extended version of this paper with more contributions is currently under preparation 
to be published in near future. 
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Chapter 36 
Optimized Congestion Management 
in Balancing Markets for Electricity 
Transmission System Operator 

Sinan Eren and Ali Nezih Güven 

Abstract A core function of each Electricity Transmission System Operator (TSO) 
is the procurement of ancillary services in real time balancing markets, necessary 
for a stable and reliable operation of the system. TSO controls the active power to 
manage congestions in transmission network based on security criteria. Congestion 
management is achieved by rescheduling generation using mainly experience of oper-
ators. However, TSO has legal obligations to procure ancillary services in accordance 
with economic, transparent and non-discriminatory procedures. This work aims to 
develop an algorithm/software system for a TSO to decide on the optimum redis-
patch in the sense of economy and security. The redispatch problem is formulated as 
an optimal power flow (OPF) problem. The objective function of the optimization 
is the minimization of the total cost of the generation shifts necessary. The security 
constraints will be satisfied by power flow equations which are non-linear and non-
convex by nature. In order to obtain a robust solution due to the large scale nature 
of the problem, linearization techniques are applied to power flow equations. Com-
pared with the commonly used DC OPF methods, reactive power and bus voltages 
are taken into account in the formulation. The system developed is deployed as a real 
time running application for real large-scale networks. 

Keywords Power system security · Optimum power flow · Redispatch in 
balancing market 

S. Eren (B) 
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Introduction 

Diversified number of actors affect energy transfer in the electricity network such 
as generation companies, consumers, regulators and operators. Impacts of some of 
these participants are predictable but not determinable, such as consumers and renew-
able energy sources, and there are those that are manageable, such as conventional 
power plants. In this business, Electricity Transmission System Operator (TSO) is 
responsible for the secure, reliable and economic operation of the electricity grid. 

Market Operator (MO) is responsible for managing and operating electricity mar-
ket, where members send their bids to buy or sell energy in determined delivery 
platforms. Its task is to match all buy or sell orders in a transparent manner, accord-
ing to the regulations and to establish a reference price. However, majority of market 
designs aim for the economic operation of the system (i.e., price based unit commit-
ment) rather than security constrained unit commitment. 

This market design may result in security violations in the grid such as loading 
of one or multiple elements, bus voltage deviations and loss of stability. In real 
time operation, TSO manages transmission congestions via generation rescheduling 
or load shedding in a balancing market. In this work, an operational assistant is 
developed to determine the redispatch in accordance to economic, transparent, non-
discriminatory procedures for transmission system operation. 

Congestion Management 

In a deregulated environment, different methods of accomplishing the conges-
tion management have been implemented [ 1]. Price area congestion control and 
transaction-based control can be given as example models. For the market models 
considering transmission conditions in unit commitment (UC) processes, less num-
ber of violations of security is expected in real time operation. However, transmission 
bottlenecks can still be encountered in operation due to the dynamic nature of con-
sumption and renewable generation, any failure in an equipment or the complex 
security conditions such as stability, which may not be covered in UC. 

Moreover, generation scheduling procedures may be free of security constraints 
since they require complex business processes to integrate between the market model 
and the network model, robustness issues and non-deterministic designs. In this case, 
TSO has to deal with more corrective control actions in real time system operation. 
In most cases, congestion management is based on operator experience. Although 
their decisions are not based on analytical calculations and do not yield optimal 
solutions, this approach can be successful in solving congestion problems. In more 
systematic approaches, power transfer distribution factors (PTDF) are used to deal 
with the problem [ 2]. PTDF approach presents the relation between bus injections and 
branch flows so that the operator can decide on the generation reschedule. However, 
the solution obtained by this approach may not be the optimum solution, and is
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limited to cases that can be solved by single action. In most professional cases, the 
problem is defined as optimal power flow (OPF) and redispatch requirements are 
obtained from optimization results. 

Optimal Power Flow 

After the first formulation of OPF problem in 1970s,s, numerous solution techniques 
have been proposed [ 3]. In OPF methods with AC network model, original power 
flow equations are considered in the optimization problem. Nonlinear optimization 
methods (i.e., Successive Linear Programming, Interior Point Method) are used to 
solve the problem due to the non-convex and non-linear nature of the problem. 
Some methods linearize network model to approximate ones, also called DC-OPF 
models. They assume voltage angle differences of neighboring buses are close to 
zero, and voltage magnitudes are close to nominal values. This approach reduces 
the computational complexity, and guarantees the convergence; however, accuracy 
of the solution is sacrificed. There are also metaheuristic methods for OPF based on 
machine learning techniques (i.e., Genetic Algorithm, Particle Swarm Optimization) 
to overcome this complex problem [ 4]. 

There is always a trade off between speed of solution, risk of convergence and 
accuracy of results. In this study, AC linearized OPF model is preferred to meet the 
time and convergence requirements of the system operator in real time operation. 

Problem Formulation 

Problem Statement 

The main objective function of the problem is defined as minimization of total redis-
patch cost (1). Redispatch cost is calculated based on piecewise linear function of 
generation up/down bids, this formulation introduces integer variables into the prob-
lem. There exist penalty terms in the objective function such as bus voltage magni-
tude deviation from base case results, since voltage adaptations require lots of control 
actions which are not easily applicable in real time operation. 

min 
∑ 

p⊂P 

f (P p R ) + 
∑ 

i 

ε 
||v2 

i − v2 
i,0 

|| (1) 

where p is power plant index of plant set P, f(.) is piecewise linear function of 
redispatch cost, ε is penalty term for bus voltage magnitude deviation from base 
case results. Redispatch magnitude of a plant (P p R ) is summation of the redispatch of 
generators (Pg 

R ) related to that power plant (2). There exists a minimum value of plant
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redispatch (Pmin 
R ) in both up/down directions. After the redispatch, final active power 

generation of a generator should comply with the physical power limits (Pg,min 
P and 

Pg,max 
P ) unless the generator is shut-down. 

P p R = 
∑ 

g⊂G p 

Pg 
R , where |P p R | > Pmin 

R and Pg,min 
P ≤ Pg 

R + Pg,0 
P ≤ Pg,max 

P (2) 

The constraints of this problem are power flow and injection equalities, voltage and 
angle limits, generator power limits, supply - demand balance equality. And also 
there exist branch power flow limits which are quadratic inequalities based on active 
and reactive power flows (3). 

P2 
i j  + Q2 

i j  ≤ (Smax 
i j )2 (3) 

Linearization of Power Flow Equations 

OPF problem suggested in this work consists of network branch flow constraints as 
in (4) and (5), and nodal power balance equations as in (6) and (7). Pi j  /Qi j  represent 
active/reactive power flows from bus i to bus j; Pi /Qi represent active/reactive power 
injections at bus i; Gi j  /Bi j  are real/imaginary parts of Yi j  in the bus admittance 
matrix; gi j /bi j  are conductance/susceptance of branch (i, j); finally vi /θi are voltage 
magnitude/angle at bus i. 

Pi j  = gi j  
( 
v2 
i − vi v j cos θi j  

) − bi j  vi v j sin θi j (4) 

Qi j  = −bi j  
( 
v2 
i − vi v j cos θi j  

) − gi j  vi v j sin θi j (5) 

Pi = 
∑ 

(i, j)∈K 
Pi j  + 

⎛ 

⎝ 
N∑ 

j=1 

Gi j  

⎞ 

⎠ v2 
i (6) 

Qi = 
∑ 

(i, j)∈K 
Qi j  + 

⎛ 

⎝ 
N∑ 

j=1 

−Bi j  

⎞ 

⎠ v2 
i (7) 

These equations constitute a non-linear and non-convex problem. In order to trans-
form this problem into a linear problem, linearization techniques are utilized. Second 
order Taylor series expansions of sine and cosine functions are applied (8), assuming 
θi j  is generally low. To decouple v and θ , voltage magnitudes are assumed to close 
to 1 p.u. (9). 

sin θi j  ≈ θi j  , cos θi j  ≈ 1 − 
θ 2 i j  
2 

(8)
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vi v j θi j  ≈ θi j  , vi v j θ 2 i j  ≈ θ 2 i j (9) 

Problem still constitutes non-convex behaviour due to θ 2 i j  and v2 
i j  terms. These terms 

are linearized using first order Taylor series expansion (10) around operating point 
of base case load flow conditions (θi,0, vi,0). 

θ 2 i j  ≈ 2θi j,0θi j  − θ 2 i j,0, v2 
i j  ≈ 2 

vi,0 − v j,0 
vi,0 + v j,0 

( 
v2 
i − v2 

j 

) − 
( 
vi,0 − v j,0 

)2 
(10) 

When θi and v2 
i are chosen as independent variables, the problem becomes a linear 

optimisation problem, as given in (11) and (12). In the implementation, original 
approach stated in [ 5] is adhered. 

P L i j  ≈ gi j  θi j,0θi j  − 
1 

2 
gi j  θ 2 i j,0 + gi j  

vi,0 − v j,0 
vi,0 + v j,0 

(v2 
i − v2 

j ) − 
1 

2 
gi j  (vi,0 − v j,0)2 (11) 

QL 
i j  ≈ −bi j  θi j,0θi j  + 

1 

2 
bi j  θ 2 i j,0 − bi j  

vi,0 − v j,0 
vi,0 + v j,0 

(v2 
i − v2 

j ) + 
1 

2 
bi j  (vi,0 − v j,0)2 

(12) 

Solution Technique 

The stated problem formulation constitutes a Mixed Integer Quadratically Con-
strained Linear Programming problem. In order to solve the problem efficiently, 
IBM ILO CPLEX software package is utilized. CPLEX Optimizer has a modeling 
layer called Concert that provides interfaces to Java language. The problem is built 
in Analysis Server environment, then it is sent to the developed Optimization Server 
application which has installed CPLEX software. This optimization application is 
designed using features such as parallel execution and kernel management. Imple-
mentation experiences will be mentioned in the next section. 

Architecture of the Economic Redispatch Module 

Economic Redispatch Module operates periodically and automatically in every hour 
(it will be rescheduled as in every 15 min). Initially, this module obtains the net-
work model data, and performs pre-processing. Then it calculates network states 
by performing a load flow (LF) analysis. LF algorithm uses fully coupled Newton-
Raphson technique. Network states predicate voltage violations and overloadings in 
branches. If there is no congestion observed, system presents LF analysis results. 
If there is, redispatch candidates are obtained from Balancing Market. Generation
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Fig. 36.1 Workflow of the economic redispatch module 

up/down costs are based on the bids of generation companies. OPF problem finally 
is carried out to obtain the most economical solution for eliminating congestion. 
Workflow diagram is summarized in Fig. 36.1. 

Application of the Algorithm 

Turkish Electricity Market Structure 

Organized and physical Wholesale Power Market of Turkey is operated under two 
entities: TSO (TEİAŞ) and MO (EPİAŞ). EPİAŞ is responsible for the day-ahead 
and intra-day markets, and TEİAŞ is responsible for balancing and ancillary mar-
kets. Actions in the balancing market are conducted under two objectives: to restore 
frequency reserve and to eliminate congestion management. 

In the balancing market, producers can bid their redispatch offers up to maximum 
15 price levels in up/down direction. The offers are based on bidding units, which are 
converted and distributed to physical generators using market model - network model 
integration tool. The rules of balancing market are stated in Balancing and Settlement 
Regulation of Energy Market Regulatory Authority. The module considers all the 
related constraints of the Regulation.
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Implementation Results 

Dispatcher Information System (YTBS) is an Energy Management System (EMS) 
developed for the TSO of Turkey in order to meet the requirement of system mon-
itoring and analysis facilities [ 6]. The system has a network modelling component 
to construct a mathematical model of the grid for the EMS applications. Network 
information consists of more than 1400 substations, 2200 transmission lines, 2700 
transformers, 1800 power plants of 100 GW total installed capacity. The algorithm 
is developed as a part of this system. 

The application is designed to operate in real-time for real large scale electricity 
systems. For this purpose, it is deployed in National Load Dispatch Control Cen-
ter of Turkey. In the optimization model, only high voltage (≥ 36 kV) network is 
considered. After parallel bus aggregation, there has been an average of 1400 active 
buses. The number of integer variables changes between 750 and 1000. 

In test trials, the optimization process, which includes constructing the optimiza-
tion problem in Concert technology, solution and the communication between servers 
takes around 9 s. The computer processor is an Intel(R) Xeon(R) CPU E5-2699 v4 @ 
2.20 GHz. In addition, other processes such as querying the network model, acquir-
ing measurements, topology processing, load flow solution, market data correlation 
are observed to take about 30 s. 

Results of the analysis are presented via interfaces under the Dispatch Information 
System web application (Fig. 36.2). Operators monitor congestions in the base case 
condition and the final operating condition, and then report the suggested redispatch 
orders. The system has been in a process of monitoring and evaluating the results since 
May 2022. The system operator has been giving the operational feedbacks and based 
on these improvements have been done. The overall performance and the results 
are considered to be successful by the TSO. Tests on the historical congestion cases 
indicate that the algorithm can offer 30% more economical redispatch suggestions 
compared to the experience-based preferences. 

Fig. 36.2 Presentation of congestion and suggested redispatch orders
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Conclusion 

The congestion management is one of the critical tasks of the electricity system 
operation and requires a complicated business process. This work presents a method-
ological approach to determine generation up/down orders within a balancing market 
in order to eliminate transmission bottlenecks. Redispatch is considered as an OPF 
problem, and enriched with features to obtain practicable results such as the mini-
mization of the number of control actions. The redispatch calculations conducted for 
historical congested cases indicate that developed approach makes possible to obtain 
more economical operational results. 
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Chapter 37 
Quantifying Capacity Adequacy 
in Energy System Modelling Through 
Stochastic Optimization 

Shima Sasanpour and Karl-Kiên Cao 

Abstract Energy system optimization models (ESOMs) can be helpful tools to 
determine the optimal structure of future energy systems. They usually optimize the 
expansion and dispatch of the energy system’s components through a minimization 
of total system costs. The obtained energy systems are designed to cover the energy 
demand for the specific assumptions made within the underlying scenarios. However, 
if such energy systems are exposed to slight deviations, such as a lower availability 
of wind energy, situations of uncovered demand may occur. The uncertainties in 
the scenario assumptions can be indirectly captured via excess generation capaci-
ties. However, the required amount of these excess capacities is unclear. This study 
analyzes capacity adequacy by considering uncertainties in a decarbonized German 
power system through stochastic optimization within an ESOM. Different uncertain-
ties, such as technology investment costs, total annual demand and different weather 
conditions are considered and their influence on the power system is compared. 
Therefore, a variety of different assumptions for these uncertainties are extracted 
from literature and included in the stochastic optimization. As a result, the impact of 
the uncertainties on the structure of the energy system are identified and the excess 
capacity needed is estimated. 

Keywords Stochastic programming · Energy system optimization model ·
Decarbonized energy system 

Introduction 

The structure of our current energy system has to alter significantly in order to 
be decarbonized. Due to the usually applied cost-minimization approach, energy 
systems determined by ESOMs represent “minimum designs”, which can ensure 
security of supply only if real developments are congruent with the considered model 
inputs. However, these input parameters are subject to uncertainties. While these
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uncertainties are often not considered within the optimization, they can have a strong 
influence on the structure of the energy system. There are different possibilities to 
consider uncertainties in energy system modeling [1]. One method is stochastic 
optimization, which has the advantage that it provides one hedging strategy to cope 
with the possible risks. Usually, time varying inputs, such as demand and weather 
profiles are considered with stochastic optimization. Furthermore, Nadal et al. found 
that techno-economic parameter uncertainties can have a significant influence on the 
energy system as well [2]. 

This paper compares the influence of a variety of uncertainties on the structure 
of the energy system in a decarbonized energy system of Germany and gives an 
estimate on the excess capacities needed to achieve capacity adequacy. Additionally, 
two probability distributions and their impact on the energy system are compared. 

Method 

Model 

For our study, we use the ESOM REMix [3]. It optimizes the expansion and dispatch 
of technologies of the energy system by minimizing the total system costs. The input 
data consists of historic weather and demand profiles and techno-economic param-
eters, such as investment costs, fuel costs and efficiencies. REMix is written in the 
mathematical optimization language GAMS. For each random variable the stochastic 
optimization method is included with the Extended Mathematical Programming 
(EMP) feature which allows an implementation as add-on to the deterministic model 
[4]. 

Model Setup 

The considered model is based on [5] and consists of ten German regions and nine 
neighboring countries. The electricity imports and exports of the neighboring coun-
tries are fixed. The model considers the power sector with several power plant, storage 
and grid technologies and a green-field approach in terms of capacity expansion plan-
ning. We assume that no CO2 emissions are allowed within the power sector. There-
fore, only a limited number of power plant technologies can be expanded, such as 
renewable energy converters, biomass power plants and hydrogen-fueled gas power 
plants. Green hydrogen can be imported for a specific price.
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Uncertainties 

The analyzed uncertainties include weather, demand and parameter uncertainties. 
The demand is split up between the normalized demand profile and the annual 
demand, which allows the separate adjustment of each. The techno-economic param-
eter uncertainties include fuel and investment costs. The corresponding parameter 
values are collected through literature research, e.g. [6, 7]. Table 37.1 shows the 
standard deviation and the minimum, maximum, and median values of the param-
eter uncertainties. The weather and demand profile uncertainties are represented by 
several historic weather (2006–2012) and demand (2006–2015) years. 

For the weather and demand profile uncertainty the same probability is assigned to 
each historic year. For each parameter uncertainty the interval between the minimum 
and maximum value is divided into ten sections with an equal range. The mean of 
each section is used as value of the random variable, resulting in ten scenarios per 
random variable. 

Our approach to consider the probability of the parameter uncertainties is to use 
a truncated normal distribution. Due to the limited number of values from literature 
for each random variable, the median instead of the mean value is used as expected 
value μ for the normal distribution. The standard deviation σ is calculated by using 
a standard normal distribution. The minimum or maximum value x, that has a further 
distance to the expected value μ, is assigned to a z-value of − 3 or 3, which corre-
sponds to a probability of 99.87%. The standard deviation can then be calculated 
as 

σ = (x − μ)/z (37.1)

Table 37.1 Parameter uncertainties 

Random variable Min Max Median Standard deviation Unit 

Biomass cost 0.03 0.10 0.06 0.018 e/kWh 

Hydrogen cost 0.10 0.21 0.12 0.03 e/kWh 

BioPower invest 2589 7412 4161 1084 e/kW 

CCGT invest 574 1195 757 146 e/kW 

OCGT invest 300 568 453 51 e/kW 

HydroRoR invest 1040 3107 1665 481 e/kW 

LiIonBattery invest 17 50 26 8 e/kW 

PumpedStor invest 34 663 402 123 e/kW 

PV invest 216 1300 347 318 e/kW 

WindOff invest 1605 5202 2527 892 e/kW 

WindOn invest 870 2400 1160 413 e/kW 

Annual demand 459 841 535 101 TWh 
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The normal distribution is then cut off at the minimum and maximum value and 
normalized to receive a truncated normal distribution. Furthermore, as there exists 
no evidence about the real distribution of uncertain parameters, we benchmark this 
distribution function using an alternative uniform distribution, which assigns the 
same probability to each scenario. Therefore, the extreme values receive a higher 
weighting compared to the truncated normal distribution. 

For each uncertainty and probability distribution, a stochastic optimization model 
run is executed. The Base case serves as reference of a future German power system 
and is solved by deterministic optimization. Therefore, the median values of the 
parameter uncertainties and the weather and demand profile of 2006 are included. 

Indicators 

To analyze the impact of uncertainties on the structure of the energy system, two 
indicators are used. The relative root mean square error (RRMSE) 

RRMSE = 
/

1 
n 

∑n 
i=1(Si − Bi )

2 

B 
(37.2) 

compares the expanded capacities of the stochastic optimization Si with the capacities 
of the Base case Bi. It provides an indication of the impact of the uncertainty on the 
model results. 

For the weighted average of the deterministic scenarios (WADS), each stochastic 
scenario of the random variables is calculated with perfect foresight. The resulting 
capacities are then weighted with the same probabilities as the stochastic scenarios to 
receive the WADS. This can be compared to the results of the stochastic optimization. 

Results 

The results of all stochastic model runs are compared to the Base case with the 
RRMSE. The model runs with fuel cost and most investment cost uncertainties 
deviate from the Base case by less than 10%. Only the biomass power plant 
(BioPower), photovoltaic (PV) and wind offshore (WindOff) investment cost uncer-
tainties, as well as the annual demand (AnnDemand) and weather profile uncertainties 
show a higher deviation. 

Figure 37.1a shows the capacity differences of PV and WindOff investment cost 
uncertainties compared to the Base case. The capacities of the Base case are shown in 
Table 37.2 as reference. As PV investment cost uncertainties with a truncated normal
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Fig. 37.1 a Capacity differences of investment costs uncertainties compared to base case. b 
Probability distribution of investment costs 

Table 37.2 Capacities of Base case in GW 

BioPower CCGT OCGT Hydro LiIonBatt PV PumpedStor WindOff WindOn 

6.7 22.4 17.1 6.2 43.8 236.8 8.8 60.9 3.4 

distribution are included, significantly less PV and lithium-ion batteries (LiIonBat-
teries) are expanded. Similarly, with a WindOff investment cost uncertainty less 
WindOff capacities are available. 

The explanation for this effect can be found in Fig. 37.1b. In this figure, the 
truncated normal distributions of the investment costs are shown. For both PV and 
WindOff the median is close to the minimum value. As higher investment costs are 
considered in the stochastic optimization compared to the deterministic Base case, 
both technologies are expanded less. The uniform distribution amplifies the effect 
observed for the normal distribution, since high investment costs get an even higher 
probability. 

In Fig. 37.2a, capacity differences of the time-dependent profile uncertainties 
compared to the Base case are shown. The consideration of different demand profiles 
results in a stronger expansion of PV and LiIonBatteries while less WindOff is 
expanded. The availabilities of PV seem to better align with the different demand 
profiles. With different weather years considered, PV and wind onshore (WindOn) 
become partially replaced by WindOff capacities, which have a higher availability 
and seem to be less dependent on the weather years. For both the weather and demand 
profile uncertainties, the hydrogen-fueled combined cycle gas turbine (CCGT) and 
open cycle gas turbine (OCGT) power plants are built to a higher extend, since they 
provide flexibility and are independent of time-dependent uncertainties.
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Fig. 37.2 a Capacity difference of profile uncertainty compared to Base case. b Capacity difference 
of annual demand uncertainty compared to Base case 

Figure 37.2b illustrates the impact of annual demand uncertainties compared to 
the Base case. With a truncated normal distribution and a stochastic optimization 
approach, especially OCGT power plants with low investment costs are expanded, 
since the probability of extremely high annual demands is relatively low. As greater 
annual demands have a higher probability with a uniform distribution, technologies 
with higher investment costs but lower operational costs, such as CCGT, PV, and 
WindOn, are expanded to a higher extent. At the same time, the amount of excess 
capacities increases. In comparison, when the deterministic WADS approach is used, 
the additional CCGT and OCGT capacities are clearly smaller. Therefore, with the 
stochastic approach the hedging against the risk of higher demands is higher, since 
more secured capacities are available. 

Discussion and Outlook 

This paper analyzes the impact of different uncertainties on the structure of a decar-
bonized German power system with a stochastic optimization approach. While most 
parameter uncertainties have little impact on the results, others alter the structure of 
the energy system significantly. Especially for uncertainties concerning the future 
weather and annual demand, hydrogen-fueled power plants can provide risk hedging, 
almost independent from costs of green hydrogen. The consideration of the annual 
demand uncertainty can indicate the excess capacities needed to achieve capacity 
adequacy [8]. Depending on the assumed probability distribution, and therefore on 
the hedging strategy, 70 to 130 GW of additional capacities are required. A uniform 
distribution needs higher hedging than a normal distribution, since extreme scenarios 
have a higher probability. For each parameter and time-dependent profile uncer-
tainty other technologies become more attractive. This indicates that by including



37 Quantifying Capacity Adequacy in Energy System Modelling Through … 311

several random variables within the stochastic optimization, the energy system might 
become more diverse. The combined consideration of the uncertainties with the 
highest impact on the structure of the energy system could be analyzed in future 
research. 
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Chapter 38 
Soft-Coupling Energy and Power System 
Models to Analyze Pathways Toward 
a De-fossilized German Transport Sector 

Danial Esmaeili Aliabadi , Niklas Wulff , Matthias Jordan , 
Karl-Friedrich Cyffka, and Markus Millinger 

Abstract The transport sector is a major consumer of energy worldwide. Unfortu-
nately, there is no silver bullet to de-fossilize the transport sector due to its intricacy; 
therefore, many concepts and technologies should be combined to have a noteworthy 
impact on this hard-to-abate sector. As such, the required diverse set of expertise for 
making correct decisions cannot be achieved by merely utilizing one model. In this 
study, we connect multiple datasets and models that employ various methodologies 
with different purposes to exhibit a pathway to a green transport sector. The extended 
bioenergy optimization (BENOPTex) and renewable energy mix (REMix) models 
are coupled iteratively to produce coherent results while considering different sets 
of constraints. The combined effects of bioenergy and synthetic fuel—using renew-
able electricity—on the German transport sector are investigated via a scenario. Two 
demand models are also used to capture the specificities of the energy demands of 
the mainly behavior-driven road transportation as well as technology-driven aviation 
sector. The outcome of the resulted soft-coupled model respects biomass availability, 
regulatory circumstances, techno-economic properties, and power sector expansion 
for the production of synthetic fuels. 
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Keywords Soft-coupling · Bioenergy · Renewable energy · Transportation ·
Optimization models 

Introduction and Background 

The transport sector is considered as a major consumer of energy worldwide, and 
accounts for over 28% of the total final energy consumption in the EU [ 9]. Unfortu-
nately, this rapidly growing sector has the highest reliance level on fossil fuels [ 11]. 
These ratios also apply to Germany, where the renewable share in the transport sector 
is currently at only 6.8% [ 1]. 

In order to de-fossilize transport, experts from different disciplines should unite 
to capture the technological, social, and economical aspects. These disciplines may 
benefit from various modeling techniques in their studies. For instance, researchers 
may use agent-based models to simulate consumer behavior [ 14] or exploit opti-
mization models to minimize total system costs considering different transportation 
modes [ 8, 18]. 

The two main modeling perspectives are top-down macroeconomic and bottom-
up engineering approaches [ 2]. Energy system optimization and simulation models 
are members of the latter, while e.g. input-output, general equilibrium, and sys-
tem dynamics models are part of the former. There are pros and cons associated 
to these approaches. While top-down models account for macroeconomic feedback 
and microeconomic realism, they ignore technical aspects for the sake of tractabil-
ity, which makes them unreliable for making long-term future projections. On the 
other hand, bottom-up models can introduce new technologies and evaluate their 
impact on future energy market fundamentals. Although the technology explicitness 
of bottom-up models can assist researchers and policymakers to predict future trends, 
these models lack behavioral realism: they assume a perfect substitution of compet-
ing technologies. Figure 38.1 compares the contrasting approaches with respect to 
technology explicitness, behavioral realism, and macroeconomic feedback. 

To develop a comprehensive energy system model with the advantage of both 
approaches, a growing number of researchers began investigating hybrid models [ 5]. 
There are two well-known methods for combining models from different disciplines: 
soft-linking and hard-linking [ 2]. The hard-linking method attempts to embed one 
model into another and solve both models simultaneously, whereas soft-linked mod-
els are solved iteratively to reach an equilibrium (i.e., a consistent solution) across all 
models. Employing a soft-linking approach is suggested when the involved models 
exploit different techniques. 

The developed hybrid models can enrich results and discussions in sector- or 
technology-specific models via exchange. Also, the results of hybrid models often 
cover a broader set of stakeholders. Finally, the set of assumptions in different models 
can be reviewed, verified and harmonized while coupling. However, one should note 
that reaching an equilibrium solution is not guaranteed when soft-coupling models.
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Fig. 38.1 Top-down, 
bottom-up, and all the 
combinations in between. 
The bottom-up models are 
often on the green surface 
(i.e., #3) and top-down 
models on the blue surface 
(i.e., #2) 

Moreover, harmonizing models is a complex and time-consuming process; therefore, 
a subset of models might need to be streamlined. 

In this study, we generate a hybrid model by soft-linking the extended bioenergy 
optimization (BENOPTex) and the Renewable Energy Mix (REMix) models to find 
a sustainable pathway to de-fossilize the German transport sector. 

Methodology 

In this section, we first introduce the linked models. Then, we elaborate on our 
strategy to couple these models considering the data flow from external datasets. 
The termination condition is also defined at the end of this section. 

REMix 

The Renewable Energy Mix (REMix) [ 10] model is a deterministic linear optimiza-
tion model that optimizes capacity development and electricity dispatch, storage, and 
transmission in an hourly resolution. REMix consists of two components: the Energy 
Data Analysis Tool (EnDAT) and an optimization model, which is implemented in 
GAMS. REMix benefits from a high spatial and temporal resolution; nonetheless, 
the technological dimension of the REMix model can be improved [ 15].
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BENOPTex 

BENOPTex [ 4, 13] is a linear programming model which optimizes the allocation of 
dispatchable renewable energy carriers (e.g., hydrogen, energy crops, and residues) 
across energy sectors, including some parts of the wider bioeconomy (e.g., chemical 
industries). The model consists of two connected sections: a MATLAB module which 
digests inputs to generate scenarios, and an optimization model that is implemented 
in GAMS. BENOPTex enjoys a comprehensive set of technologies for transforming 
raw materials into fuel and power. It also utilizes the database provided in [ 12] to  
calculate the maximum possible capacity considering available biomass in Germany. 
The provided inputs to the model have been verified by experts to ensure high quality 
data is being used. 

Coupling Models 

Figure 38.2 illustrates the suggested methodology for soft-coupling the REMix and 
BENOPTex models. There are shared inputs for both models such as the energy used 
by the freight transport and the number of road passenger vehicles by fuel type, which 
are extracted from Vector21 [ 14]. We also use the forecasted consumed energy by 
the aviation sector as input from another tool developed by DLR (i.e., 4D-RACE) 
[ 17]. 

First, the REMix model optimizes the capacity expansion considering the elec-
tricity and energy demand in each sector. Accordingly, the optimal solution provides 
electricity spot price projections, the technology mix, and the excess renewable elec-
tricity given regional load. These pieces of information are sent to the BENOPTex 
model. Based on the spot price, we calculate the final electricity price considering 
announced taxes and levies (e.g., from the German Renewable Energy Act – EEG) in 
four categories: private households, trade and commerce, industries, and privileged 
industries. Also, the carbon intensity of electricity is calculated using the technology 
mix provided in the previous step. 

BENOPTex generates the scenario in MATLAB and calls the GAMS solver to 
solve the underlying model. The model delivers a Pareto optimality curve, by which 
the modeler can observe the GHG abatement level against the total system cost. The 
optimal solution indicates the amount of synthetic fuel that should be produced con-
sidering the available excess renewable electricity, the amount of produced biofuels 
(e.g., LNG, bioethanol, and biodiesel) considering regulations (e.g., EEG and RED 
II[ 16]) and available capacities, and the price of final products. To adjust inputs for 
the next round, the optimal values of decision variables (such as the installed capacity 
of each technology, the production from each technology at different time slices for 
each technology, and the consumed feed by each technology [ 13]) that maximize the 
GHG abatement level are sent to REMix.
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REMix 

Demands 

Other models’ 
parametrization 

• Surplus electricity 
. Electricity production costs 
. Electricity mix 

BENOPTex 

Vector 21 
Passenger vehicle and 
goods transportation 
vehicle constraints 

4D-RACE 

Aviation 
energy 

demands 

. H2, CH4, electrofuels, biofuels, 
electricity used in the transport and 
other sectors. 

. The final price of product 

. The maximum GHG abatement 
level. DBFZ 

Biomass 
potential 

Fig. 38.2 The proposed methodology to couple REMix and BENOPTex in an iterative manner. 
DBFZ: German biomass research center 

This process is repeated iteratively to reach an equilibrium, when the solution 
of the BENOPTex model does not change the REMix’s optimal solution consider-
ably and vice versa. The termination condition is determined to be a maximum 10% 
change of the sectoral fuel production from 2020 until 2050 between two consecu-
tive iterations. The termination condition is fulfilled in the fourth cycle with a 6.61% 
difference. Please note that, in general, there is no theoretical proof for the conver-
gence of soft-coupled models, as the involved models optimize different objective 
functions considering different sets of constraints [ 6]. 

Results and Discussions 

Figure 38.3 depicts the production of bio- and e-fuels for the transport sector consider-
ing RED II constraints. As one can see, the available excess renewable electricity and 
domestic biomass are not sufficient to de-fossilize the transport sector completely; 
hence, e-fuels need to be imported (the top most area in the total sub-plot, which is 
shown in light blue). The domestic production of e-fuels (i.e., PtL) also is not viable 
since Germany needs to utilize the excess renewable electricity in BEVs in order to 
satisfy the predetermined GHG quota. The reported results for the reference scenario 
are achieved after the fourth solving round between REMix and BENOPTex. Pas-
senger road transport can be thoroughly decarbonized thanks to the decarbonization 
of electricity and the higher efficiency of BEVs. However, decarbonization of other 
sectors require investments in technologies that do not exist yet. In maritime and 
freight transport by road vehicles (e.g., trucks), liquefied natural gas plays a vital 
role, while sustainable aviation fuel and e-fuels are major options in aviation. 

While integrating models for the BEniVer project, 1 we noticed that underlying 
parameters that depend on socio-political factors are changing frequently. We expect

1 https://www.ufz.de/index.php?en=46330. 

https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
https://www.ufz.de/index.php?en=46330
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Fig. 38.3 The produced fuels for each transport sector (in PJ) under the reference scenario. The dash 
lines illustrate the energy demand by each sub-sector considering energy efficiency improvement. 
PtL: Power-to-Liquid, FCEV: fuel cell electric vehicle, LCH4: liquefied biomethane, BtL: Biomass 
to liquids via Fischer-Tropsch, PBtL: Power-to-Hydrogen + BtL, LignoMeOH: Lignocellulose-
based methanol, LignoEtOH: Lignocellulose-based ethanol, HVO: Hydrotreated vegetable oil, 
FAME: Fatty-acid methyl ester, StarchEtOH: Starch-based ethanol, and BeetEtOH: Sugar beet-
based ethanol. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

to witness more rapid and frequent updates in declared regulations and directives 
to respond to socio-political shocks such as the pandemic and conflicts between 
countries. Consequently, the available time for scientists is expected to decrease to 
assist policymakers in designing suitable response strategies. The changing environ-
ment was a serious impediment to our harmonization process between the REMix 
and BENOPTex models; hence, we suggest creating an autonomous super-model in 
order to minimize the role of humans in interpreting, transferring, and transforming 
outputs and inputs between various models. 

Concluding Remarks 

In this paper, we explain the significance and the challenges of linking energy system 
models to support policymakers in making correct decisions. A new framework has 
been established by which the outputs of REMix and BENOPTex models converge 
in a scenario. Although the methodology is fixed, the presented results in this study 
are subject to change as the underlying models are constantly expanding to embrace 
higher spatial, technological, temporal, and institutional resolutions. Finally, we sug-
gest developing an autonomous interlinked model that acts as the first responder to 
the constantly changing environment. 

One future research direction can be to link climate and energy system models 
to incorporate changing meteorological parameters imposed by climate change [ 7]. 
Another avenue for future research is to analyze the strategic behavior of gener-
ating companies considering their techno-economic characteristics determined by 
BENOPTex and REMix [ 3].
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Chapter 39 
Towards Decentralized Models 
for Day-Ahead Scheduling of Energy 
Resources in Renewable Energy 
Communities 

Louise Sadoine, Martin Hupez, Zacharie De Grève, and Thomas Brihaye 

Abstract We address electricity consumption scheduling on a day-ahead basis 
within a community of prosumers that own renewable generation. We establish two 
market designs that enable coordination between members and where excess pro-
duction can be valued outside or inside the community. For each, we propose two 
formulations: centralized schemes where the common objective is optimized, while 
in decentralized schemes, each member optimizes its own objective. The natural 
interdependence between members sharing a common network leads to the formu-
lation of non-cooperative games. We solve some proposed models on a use-case by 
using distributed algorithms that ensure confidentiality. 

Keywords Energy communities · Optimization · Game theory 

Introduction 

Context. Introduced by the EU Commission in its Directive 2018/2001 [ 1], Renew-
able Energy Communities (RECs) are gaining an increasing momentum in the energy 
sector, as an important factor for accelerating the energy transition [ 2]. These consist 
in organised entities gathering electricity consumers and prosumers (i.e., consumers 
and producers of renewable electricity) who can exchange energy locally, without 
resorting to the classical market structure. They thus aim at fostering local investment 
in renewable generation and local flexibility. 

Related work. The energy exchanges rule inside the community may, however, vary 
depending on the authors: peer-to-peer exchanges communities [ 11], local markets 
communities [ 6] or cooperative communities [ 3, 4, 9, 10]. A review of models and 
solution concepts, together with an extensive bibliography can be found in [ 15]. 
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Contributions. This article focuses on the day-ahead scheduling of the demand in 
RECs based on a cooperative framework. We propose two market designs, inspired 
by [ 9, 10], which dictate the exchanges inside the RECs. The first design implements 
a cooperative demand management scheme inside a community, whereas the second 
model allows virtual mutualization of excess resources among community members. 
The contributions of this paper are threefold: 

1. we extend the formalism of [ 9] and [ 10] by modeling the selling of local excess 
renewable generation to the classical retail market, and assigning a non zero 
value to the energy exchanged locally, 

2. we develop a centralized and decentralized version of the proposed models, 
relying respectively on convex optimization and game theory, 

3. we solve the proposed models on a use-case, and highlight limitations that require 
further research effort. 

Community Framework 

We assume cooperative communities of prosumers connected to the same LV distri-
bution feeder. Each prosumer is equipped with a bi-directional metering device, or 
smart meter. 

Prosumer Load Profile 

Model 1. Let N = {1, . . . ,  N } be the set of community prosumers, and T = 
{1, . . . ,  T } the set of time steps of duration ∆t for a given day. The consumption 
profile of member i ∈ N divides into different load components. 

Let Ai be the set of flexible appliances (i.e. for which electricity consumption can 
be shifted in time, such as a washing-machine) of member i . For each device a ∈ Ai , 
we define the flexible load scheduling vector xi,a = (x1 i,a, . . . ,  xT i,a). 

The non-flexible load (e.g. fridge) of user i is modeled by di = (d1 
i , . . . ,  dT 

i ). A  
user i might also be equipped with non-dispatchable energy generation (e.g. pho-
tovoltaic panels), represented by gi = (g1 i , . . . ,  gT i ). Note that, in the context of a 
deterministic approach, the non-flexible load and local generation can be seen as 
state variables.
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Fig. 39.1 Cooperative demand-side models 

Then, the net load of prosumer i at time t ∈ T can be modeled: 

l t i = 
∑ 

a∈Ai 

x t i,a + dt 
i − gt i . (39.1) 

Net load is negative if the prosumer’s production exceeds his electrical needs, so 
he must inject this surplus into the network, and positive if the local generation 
doesn’t cover all the user’s consumption, so he will import energy to fill the gap. We 
define two distinct variables lt+ 

i = max(0, lt i ) and l
t− 
i = max(0, −lt i ) respectively 

the positive and negative net load, such as lt i = lt+ 
i − lt− 

i . 
Furthermore, flexible appliances are subject to different individual needs and 

physical constraints. The temporal flexibility consented to device a by individual i , 
is defined by a daily binary vector δi,a = (δ1 i,a, . . . , δT i,a). A value of 1 indicates that 
member i agrees to schedule a over time slot t ∈ T , otherwise it will be set to 0. 
Beside, the predetermined total amount of energy that application a must consume 
for the day is denoted Ei,a . Finally, for the sake of simplicity, we consider flexible 
devices with fully modular consumption cycles, i.e., each of them is limited only by 
maximum power Mi,a . These constraints are formalized as follows: 

δi,a .x
T 
i,a = Ei,a (39.2) 

0 ⋨ xt i,a ⋨ Mi,a . δ
t 
i,a . ∆t, ∀t ∈ T . (39.3) 

This article adapts a simplified grid model considering maximum injection and 
withdrawal connection power for each house: 

l t+ 
i ⋨ lmax 

i , ∀t ∈ T (39.4) 

l t− 
i ⋨ lmin 

i , ∀t ∈ T (39.5)
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where lmin 
i ⋨ 0 and lmax 

i > 0 are the lower bound and upper bound of the member’s 
capacities. 

Model 2. This setup extends the first design by allowing the virtual mutualization of 
excess resources among community members (see Fig. 39.1). For billing purposes, 
we define virtual flow variables that deviate from grid physical flows. A prosumer i 
with production surplus can sell a quantity ecom,t 

i to the community. This variable is 
bounded as: 

ecom,t 
i ⋨ lt− 

i , ∀t ∈ T . (39.6) 

The allocation i com,t 
i of surplus locally produced renewable energy to member i is 

considered as a decision variable of the optimization problem. In addition, excess 
production is allocated only to members with an energy deficiency: 

i com,t 
i ⋨ lt+ 

i , ∀t ∈ T . (39.7) 

Moreover, the total excess production allocated to the community must equal the 
total quantity imported by members: 

∑ 

i∈N 
i com,t 
i = 

∑ 

i∈N 
ecom,t 
i , ∀t ∈ T . (39.8) 

Finally, the energy imported i DA,t 
i and exported eDA,t 

i on the retail market by 
individual i are obtained by: 

i DA,t 
i = lt+ 

i − i com,t , ∀t ∈ T (39.9) 

eDA,t 
i = lt− 

i − ecom,t 
i , ∀t ∈ T . (39.10) 

Cost Structure 

We suppose that members aim to minimize their electricity bill, which comprises 
different components: 

Gray energy costs. These are the costs charged by the electricity supplier. Each com-
munity member is free to choose an external supplier from the set M = {1, . . . ,  M} 
for the portion of consumption not covered by local energy. Every supplier j ∈ M 
has a set of customer N j ⊆ N . Recall that only the positive net load lt+ 

i of an 
individual i is charged. Thus, the supplier j applies for each customer i ∈ N j : 
C j (l

t+ 
i ) = λt 

imp, j .l
t+ 
i , with λt 

imp, j in e/kWh. 

Local energy costs (second model only). The electricity withdrawn from the REC 
pool is subject to a specific tariff λt 

i loc  e/kWh. For each user i ∈ N , we have  
Cl (i

com,t 
i ) = λt 

i loc.i
com,t 
i .
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Upstream grid costs. These are the costs of using the transmission grid and the distri-
bution network. Accounting for an accurate image of incurred costs implies to aggre-
gated net load of all members transiting the MV/LV transformer denoted as Lt =∑ 

i∈N l
t 
i . The network costs therefore amount to Cgr (Lt ) = α.(Lt )2 = α.( 

∑ 
i∈N l

t 
i )

2 

with α e/kWh2 the price for the upstream network use. 

Revenue from exported energy. Community members may receive income through 
the sale of excess local production directly on the day-ahead retail market at a fixed 
price λt 

exp, j e/kWh such that the electricity export is a benefit for the user i : R j (l
t− 
i ) = 

λt 
exp, j .l

t− 
i . In the second model, a prosumer could export his production surplus in the 

REC pool at a tariff λt 
eloc e/kWh. For each user i , we have  Rl (e

com,t 
i ) = λt 

eloc.e
com,t 
i . 

Day-Ahead Power Exchange Scheduling Problems 

The day-ahead power exchange scheduling problem minimizes the total cost of elec-
tricity consumption by a REC. In Section “Optiproblem”, we present an optimal but 
idealistic resolution while Section “GT” formulates a more realistic method. 

Centralized Optimization Formulations 

Assuming a central operator with some control over the REC’s flexible appliances, 
we formulate the centralized optimization problem as: 

F1 := 

⎧ 
⎨ 

⎩ 

min 
O 

∑ 
t∈T 

[ ∑ 
j∈M 

∑ 
i∈N j 

(C j (l
t+ 
i ) − R j (lt− 

i )) + Cgr (Lt ) 
] 

s.t. O ∈ Ω1 := {(xi , l+ 
i , l

− 
i )

N 
i=1 ∈ Rn : (39.1) − (39.5)}. 

(39.11) 

We also adopt a second design, in which a prosumer can share his excess energy 
production with other end-users. We have in that case: 

F2 := 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

min 
O 

∑ 
t∈T 

[ ∑ 
j∈M 

∑ 
i∈N j 

(C j (i 
DA,t 
i ) − R j (eDA,t 

i )) + Cl (i
com,t 
i ) 

−Rl (e
com,t 
i ) + Cgr (Lt ) 

] 

s.t. O ∈ Ω2 := {(xi , i com i , ecom i , i DA  
i , eDA  

i , l+ 
i , l

− 
i )

N 
i=1 ∈ Rn : (39.1) − (39.10)}. 

(39.12) 
These models are convex optimization problems with quadratic objective functions, 
convex inequality constraints and affine equality constraints. They can be solved in 
a centralized way by standard algorithms such as interior-point [ 5].
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Noncooperative Game Formulations 

Centralized models (39.11)–(39.12) do not take into account the fact that each mem-
ber has control over his load profile that impact his own aims, which may conflict 
with those of the other users. To model interactions between strategic prosumers 
competing for a common resource, we resort to non-cooperative game theory. 

Costs distributions. In this paper, the total cost is distributed among community 
members at each time slot t ∈ T [ 9]. The daily bill of user i for F1 and F2 is 
respectively: 

b1 i (O) = 
∑ 

t∈T 
C j (l

t+ 
i ) − R j (lt− 

i ) + lt i .αL
t ; (39.13) 

b2 i (O) = 
∑ 

t∈T 
C j (i 

DA,t 
i ) − R j (eDA,t 

i ) + Cl (i
com,t 
i ) − Rl (e

com,t 
i ) + lt i .αL

t .(39.14) 

There are many billing methods, each impacting the problem differently [ 9, 10]. 

Model 1. Each prosumer i ∈ N is a selfish player who chooses his individual strategy 
Oi to minimize his own daily bill bi (Oi ,O−i ) defined as in (39.13). We model 
the Problem (39.11) as a Nash equilibrium problem (NEP) where Ω := 

∏N 
i=1 Ωi 

and b := (b1 i )N i=1 is the billing vector. Each user i aims at solving the following 
optimization problem, given other players strategies O−i 

G := 

[ 
min 
Oi 

b1 i (Oi ,O−i ) ∀i ∈ N 
s.t. Oi ∈ Ωi . 

(39.15) 

A Nash equilibrium (NE) of the game G is a strategy profile O∗ such that for all 
i ∈ N and Oi ∈ Ωi , b1 i (O

∗ 
i ,O

∗ 
−i ) ≤ b1 i (Oi ,O

∗ 
−i ). 

Model 2. We add the sharing of excess local energy including global constraint 
(39.8). Hence, each player’s strategy set can depend on the rival player’s strategies 
O−i : Ωi (O−i ) ⊆ Rni , unlike a NEP. This is a generalized Nash equilibrium problem 
(GNEP) [ 7]. Each prosumer i minimize his individual function bi as in (39.14), 
depending of O−i : 

G := 

[ 
min 
Oi 

b2 i (Oi ,O−i ) ∀i ∈ N 
s.t. Oi ∈ Ωi (O−i ). 

(39.16) 

A generalized Nash equilibrium (GNE) of the game G is a strategy profile O∗ such 
that for all i ∈ N and Oi ∈ Ωi (O

∗ 
−i ), b

2 
i (O

∗ 
i ,O

∗ 
−i ) ≤ b2 i (Oi ,O

∗ 
−i ). The variability 

of the strategy sets makes GNEPs more complicated to solve than NEPs. Solution 
analysis is built on the variational inequalities theory [ 7, 8].
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Nash Equilibrium Computation. We attest the existence of a NE for game (39.15) 
and GNE for (39.16), where each user updates his strategy by minimizing bill function 
(39.13) or (39.14). For both games, we rely upon distributed algorithms such as 
proximal decomposition (PDA) [ 8, 14] to efficiently compute the equilibrium, while 
considering prosumer privacy. 

Case Study 

We illustrate the performance of proposed REC mechanisms, on a use-case made 
by N = 3 houses from New-York, US. We use hourly electricity consumption and 
production patterns extracted from the Pecan Street Project [ 12], and simulate for a 
whole day T = 24. The parameters considered can be found in [ 13]. 

The left graph of Fig. 39.2 compares the total costs without mutualization (39.11) 
and with mutualization (39.12), and depicts the total costs achieved by individual 
optimizations on commodity costs only [ 10]. The right side of Fig. 39.2 shows the 
split of the total costs among the REC members of model 1 (39.15). By jointly 
planning their flexible load, members can find the cost-optimal trade-off between 
arbitrage in the commodity (dynamic pricing) and the upstream grid costs, which 
are minimized by smoothing the total load over time. In comparison, users who 
minimize commodity costs individually concentrate their consumption at time slots 
with the lowest prices, leading to higher total costs. Model 2 allows members to share 
excess energy from non-dispatchable sources, hence decreasing the total costs. We 
see that total costs of decentralized model 1 are similar to the centralized case. We 
note a slight inefficiency for continuous billing, compensated by an allocation more 
representative of the real actions of individuals. 

Fig. 39.2 Comparison of the total costs division for different models (left) and individual costs for 
three considered billings of model 1 (right)
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Conclusion and Outlook 

We proposed two cooperating models for optimally scheduling day-ahead energy 
exchanges within communities of prosumers. Model 1 implements a coordinated 
demand-side management scheme, whereas model 2 extends model 1 by considering 
mutualization of local generation excess. Compared to the case where everyone 
acts individually, models 1 and 2 save 56.12% and 58.3% resp. on the whole REC 
bill, through an increased resort to local available flexibility for the same amount 
of mobilized resources. We showed that community mechanisms appear also as 
promising solutions to better manage the local grid via significantly lowered grid 
costs. We illustrated that the choice of the billing scheme can incentivize different 
prosumers’ behaviors, although the ideal scheme depends on political choices. 

Adequate parameters and a suitable termination criterion for the PDA algorithm 
of Problem (39.16) still need to be determined. The theoretical characterization of 
generalized Nash equilibria shall be addressed. Including storage systems may help 
to further reduce import and upstream grid costs. 
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FNRS under grant n◦T.0027.21. 
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Chapter 40 
Alternative Prize Money Distributions 
for Higher Gender Equity in Sports 

Maren Martens and Verena Starflinger 

Abstract In many sports, women receive less prize money than men. This issue 
has been discussed extensively over decades. While many people consider different 
prize structures for men and women as unfair, others argue, e.g., that men attract 
greater public interest or that the competition is harder among men than among 
women (in particular, when there participate more men than women). In this paper, 
we focus on the discussion of fairness in the distribution of prize money in endurance 
sports concerning the severity of the competition. We present two methods to dis-
tribute prize money across gender based on the individual performances w.r.t. gender 
specific records. We suppose these “across gender distributions” to be fair, as they 
suitably respect that women generally are slower than men. Furthermore, we compare 
commonly used prize distributions to our across gender distributions, introducing a 
statistical fairness measure. For our investigations, we focus on triathlon, but the 
results can easily be adapted to any other endurance sports. 

Keywords OR in sports · Statistics · Gender equity · Ethics 

Introduction 

Problem Definition. In sports it often happens that women receive less prize money 
than men. More and more disciplines are deciding to join the gender-equal prize 
distribution, but differences in the prize structure are still common, e.g., in soccer or 
golf. On first sight, it seems unfair to reward women less than men. Nevertheless, 
economic motives due to the number of spectators or physical differences between 
men and women in terms of absolute performance are often decisive for the amount 
of prize money. In this paper, we concentrate on triathlon, which by the majority 
of people is considered to be generally fair w.r.t. the prize structure, such as other 
endurance sports are as well. Triathlon is often selected as a positive example for not 
disadvantaging women, see, e.g., [ 11]. Though, it needs to be examined carefully 
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what can be called “fair”. For the reason that often there are competing way more 
male than female athletes, it still happens—even in triathlon—that there are more 
prize ranks for men than for women. So our core questions will be: What would 
be fair distributions of prize ranks across men and women? How fair are existing 
distributions of prize ranks? We will not discuss, however, what shall be fair amounts 
of prize money among the prize ranks. This leaves room for further research. Though, 
we assume that the prize money is decreasing for increasing ranks. 

Related Results from the Literature. To the best of our knowledge, there exist no 
scientific investigations on fair distributions of prize ranks across men and women. 
However, there exists literature presenting results on how athletes’ performances are 
related to the total amount of prize money and its spread over the prize money ranks. 
O’Toole [ 8] gives a good overview on those results and additionally investigates 
gender disparities in the incentive effects of different total amounts and structures of 
prizes in marathon races, but his samples show only insignificant differences between 
genders. However, O’Toole does not compare the spread of prize ranks between men 
and women w.r.t. fairness, which we will do in this paper. Brown [ 2] suggests ten 
ways to best distribute prize money w.r.t. the principles of stakes fairness in different 
situations and mentions performance-based proportionality, but also he does not 
elaborate the gender criterion. 

Contribution of this Paper. In this paper, we will first give an overview on existing 
methods of prize rank distributions and introduce prize rank distributions that are 
supposed to be fair w.r.t. gender equity (Section “Existing Versus Fair Prize Rank 
Distributions”). We further introduce a fairness measure for prize rank distributions 
using mathematical-statistical methods (Section “A Fairness Measure”) and finally 
use that function to assess which existing methods of prize rank distributions can 
be considered as fair (Section “Evaluation of Existing Prize Rank Distributions”). 
For the assessment we evaluate different competitions in triathlon, differentiating 
between amateurs (in triathlon usually called age groupers) and professionals. We 
restrict our approaches to the distribution of prize money ranks in triathlon, but the 
results can easily be adapted to other endurance sports. We are quite aware of the 
fact that in many countries there exists a third agency recognized gender, the diverse 
gender. However, since this gender is not considered in a separate category in sports 
yet, we omit it in our investigations. 

Existing Versus Fair Prize Rank Distributions 

Method 1. A method frequently used for prize rank distributions is to award the first w 
places in the men’s ranking as well as in the women’s ranking. E.g., the international 
organization “World Triathlon” and the “World Triathlon Corporation” (organizer of 
the “Ironman” event series) set up their competitions according to this guideline [ 5, 
11].
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Method 2. Another method of rewarding athletes’ performances is to distinguish 
between the number of prizes for men and women, thus allocating prize money for 
the first m men and the first w women, with m /= w. Generally this is done with 
m > w. Examples for this method are the Müritz-Triathlon [ 7] with m = 6, w  = 3 
or the Austria-Triathlon [ 1], which had m = 10, w  = 5 for many years (e.g., in 2019). 

In addition to Method 1, some organizers apply time limits for athletes to receive 
prize money (or bonuses). Per default none of these methods, in particular the most 
commonly applied Methods 1 and 2, can be considered as being fair. In most compe-
titions the number of male athletes is significantly higher than that of female athletes, 
e.g., in the “Ironman” series the average female participation only adds up to 21% of 
all entrants [ 6]. Therefore, in Method 1, men have a much harder time getting hold 
of the prize money, whereas in Method 2 high performing women seem to have a 
disadvantage from having fewer prize money ranks. 

To evolve alternative, supposedly fair models for gender equitable distributions 
of prize money, the idea is to take the world records of the considered discipline as 
an orientation to generate a gender-neutral ranking across men and women, in which 
the sequence of places is determined in ascending order w.r.t. the male world record 
for men or, respectively, the female world record for women. Here, we consider two 
options: 

Quotient Model (QM). The sequence of places is determined in ascending order 
according to the quotient of the finish time and the respective world record 
(male/female). Starting with place number one with the smallest quotient, every-
one until a predefined number gets prize money. The proportion of women and men 
who receive prizes is not predetermined. 

Difference Model (DM). The approach is the same as in the QM, but instead of the 
quotient of the finish time and the world record, the difference is taken. 

While the DM is easier to understand and to mentally calculate, the QM seems 
to be fairer w.r.t. different finish times for men and women. It is to be expected 
that higher finish times directly lead to higher differences to the world record and 
therefore disadvantage slower finishers (generally women). Variants of these models, 
e.g., with time limits for being rewarded or variable prize money w.r.t. finish time, 
are imaginable, but will not be discussed in this paper. 

A Fairness Measure 

In order to compare typical methods for prize rank distribution like the ones in 
Section “Existing Versus Fair Prize Rank Distributions” to the fair QM and DM, we 
introduce an unfairness factor. For all prize ranks (across gender) given in the method 
that is to be evaluated, we compute the “error” in ranking w.r.t. the fair ranking taken 
from the QM or DM. I.e., in a competition with m prize money ranks for men and 
w for women, we compare the ranks of the first m men and the first w women to
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the ranks that they would reach in the across gender ranking (AGR). Adapting the 
standard error from statistics, we define, e.g., for a woman placed on rank i ≤ w in 
the split ranking (SR) and on rank Wi > i in the AGR, the error value as (i − Wi )

2. 
Though we do not consider the actual spread of prize money, we surely assume that 
the prize money is strictly decreasing for increasing ranks (up to w and m, resp.) and 
therefore define the ranking error to be higher for higher differences between i and 
Wi . For the unfairness factor, this “standard error” is scaled such that its minimum is 
1. In the following we introduce the unfairness factor w.r.t. the QM, but all definitions 
and proofs apply the same way w.r.t. other models, in particular the DM. 

Throughout the rest of this paper, we assume, w.l.o.g., that w ≤ m. For a given 
competition with given finish times, let 1, . . . ,  m be the prize money ranks for men 
and 1, . . . , w  those for women (in their gender specific rankings). We define the 
AGR (M, W ) as the pair of the two functions M : {1, . . . ,  m} →  N, i '→ Mi , and 
W : {1, . . . , w} →  N, i '→ Wi , such that M1 < .  .  .  <  Mm and W1 < .  .  .  <  Ww are 
the ranks of the first m men and the first w women w.r.t. the QM. We assume, 
also w.l.o.g., that there participate at least m men and at least w women in the 
competitions under consideration. (Otherwise m (or w) can be reduced to the number 
of participating men (or women).) 

Definition 1 For w >  0, the  unfairness factor F(M, W ) of an across gender ranking 

(M, W ) is defined as F(M, W ) := 
∑m 

i=1(i−Mi )2+∑w 
i=1(i−Wi )2 

w2m+ 1 
3 w− 1 

3 w
3

/
. 

One issue might be irritating at first sight: Assuming we have m  w prize ranks in + 
the AGR, it seems like F(M, W ) accounts for those athletes i ≤ m (or w, resp.) who 
receive prize money in the SR, but not in the AGR, whereas it does not account for 
those who receive prize money in the AGR, but not in the SR (they are not considered 
in F(M, W )). However, this is not true as the ones mentioned secondly push back 
others (from the other gender), thus causing an increment in their ranking errors. 
Note that F(M, W ) is not defined for w = 0. For now we assume w ≥ 1, but we will 
discuss this again in Section “Evaluation of Existing Prize Rank Distributions”. 

Theorem 1 The minimum of F(M, W ) is 1. This is attained exactly for those across 
gender rankings (M, W ) with Mi = 2i and Wi = 2i − 1 or vice versa, for all i = 
1, . . . , w, and Mi = w + i , for all i = w + 1, . . . ,  m. 

The mentioned ranking property of minimum AGRs can be proven switching 
ranks for any (M, W ) that does not meet the property, thus constructing a ranking of 
smaller F(M, W ). It is then easy to compute F(M, W ) for a minimum (M, W ) to 
show this to be 1. We omit the detailed proof for brevity. 

Evaluation of Existing Prize Rank Distributions 

We evaluate Methods 1 and 2 from Section “Existing Versus Fair Prize Rank Dis-
tributions” w.r.t. fairness compared to the QM and the DM, using F(M, W ). For
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this purpose, we consider the rankings from 26 long-distance triathlon competitions 
between 2011 and 2020. We distinguish between rankings of professional athletes 
(16 races) and amateurs (26 races), as it is also done in most major competitions. 
After an extended search for races, which provide both good access to complete 
ranking lists and a good mixture of professionalism and amateurism, we decided for: 
Ironman World Championship Professionals 2011–2019 [ 4], Ironman World Cham-
pionship Amateurs 2011–2019 [ 4], Ironman Texas Professionals 2011–2015, 2017, 
2019 [ 3], Ironman Texas Amateurs 2011–2015, 2017, 2019 [ 3], Austria-Triathlon 
Ironman Distance 2011–2020 [ 10]. (For Ironman Texas, we cleaned the data from 
the competitions in 2016 and 2018 to account for their shortened bike tracks.) In 
2020 and 2021 competitions were very limited due to the corona pandemic. 

To have a standard evaluation method, all comparisons were done with m = 10. 
Thus, for Method 1, also w = 10. For Method 2, we ran our analyses for w = 
1, . . . ,  9. We chose 10 as standard m, as on the one hand 10 seems to be widely-used 
for the number of prize ranks in triathlon and on the other hand there participated at 
least 10 women in all competitions we considered (which is not the case for num-
bers bigger than 10). Actual proportions between prize ranks for men and women 
have already been discussed in Section “Existing Versus Fair Prize Rank Distribu-
tions”, but note that for us primarily the finish times are relevant rather than actual 
proportions, as we aim for a general consideration of what distribution would be 
fairest. 

Figure 40.1 shows the average unfairness factors over all considered competitions. 
It can be seen that, for amateurs, Method 1 on average provides the highest unfairness. 
For the QM the unfairness is minimal at w = 2, while for the DM the unfairness is 
minimal at w = 1. Having a smaller w at minimum and generally higher unfairness 
factors for the DM is not surprising. We already discussed in Section “Existing Versus 
Fair Prize Rank Distributions” that the higher value of the women’s world record— 
compared to men—would let you expect to generally have higher finish times with 
a bigger bandwidth and therefore also have higher differences to the world record. 
Therefore, the differences between the women’s ranks in the SRs and in the AGRs 
are bigger. 

In Section “A Fairness Measure” we mentioned the difficulty to define a standard-
ized unfairness factor for w = 0. Nevertheless, the question arises whether it would 
be even fairer to have no prize ranks for women at all. One could say that if and 
only if no woman was among the first 11 across gender ranks, it would be fairer to 

Amateur competitions 
w 1 2 3 4 5 6 7 8 9 10 

QM # 20 24 25 25 25 26 26 26 26 – 
F 2.30 2.06 2.09 2.22 2.40 2.62 2.86 3.12 3.41 3.71 

DM # 22 26 26 26 26 26 26 26 26 – 
F 2.62 2.90 3.12 3.45 3.72 4.04 4.40 4.74 5.11 5.47 

Professional competitions 
w 1 2 3 4 5 6 7 8 9 10 

QM # 2 4 9 8 10 12 13 14 14 – 
F 2.85 1.84 1.52 1.39 1.33 1.33 1.34 1.35 1.39 1.44 

DM # 2 7 12 13 13 14 15 15 15 – 
F 2.52 1.80 1.60 1.51 1.47 1.51 1.54 1.58 1.63 1.68 

Fig. 40.1 Number of competitions where Method 2 is fairer (#) and approximate average unfairness 
factors (F), for w = 1, . . . ,  9. The unfairness factors for w = 10 are those of Method 1
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have w = 0. However, in the 26 competitions, it happens only in 1 for the QM and 
4 for the DM that there is no woman among the first 11 across gender ranks. So we 
conclude that on average it is not fairer to have w = 0. 

For professionals, the highest unfairness factors are reached at w = 1, while the 
minimum is reached at w = 5. Generally, the unfairness factors are lower than those 
of amateur races. This and the higher value of w at minimum indicate that in pro-
fessional competitions the difference between highly performing men and highly 
performing women is not as big as in amateur races. 

Figure 40.1 also shows the numbers of competitions where Method 2 is fairer 
than Method 1. Those prove that the average values of F are not a product of single 
peaks, but that for the big majority of the competitions it is fairer to have w <  m. 
Interestingly, for professionals, the number of competitions, in which Method 2 is 
fairer, is not constantly growing for the QM. The troublemaker is Ironman World 
Championship 2015, where Method 2 is fairer for w = 1, 2, 3, but not for w = 
4, . . . ,  7. This can be explained by its specific AGR, but we omit a detailed analysis 
for brevity. However, note this setting to be unique. 

Conclusion and Future Work 

We introduced a fair measure evaluating athletes’ performances across gender. The 
analyses of numerous triathlon competitions revealed that, w.r.t. this measure, it 
would be fairer to have less prize ranks for women than for men. As we analyzed 
quite a high number of competitions, we claim that our results can be extended 
to generality, with few exceptional competitions. However, the situation differs a 
bit between amateurs and professionals. Whereas for amateurs it would be fairest to 
award only the best one or two women, while ten men are awarded, for professionals, 
the fairest would be to award the best five women. As already discussed above, we 
consider the QM to be the fairer choice for AGRs, but the DM has the advantage that 
it is easier to compute the ranking relevant times. Therefore, we would see the DM 
as a considerable option, if AGRs were introduced in reality. However, we want to 
mention that there are still good reasons not to use AGRs, e.g., athletes might feel 
being robbed of medals (or trophies in general), as the number of awarded medals 
would drop from six to three. (Check [ 9] for discussions on this issue w.r.t. horse-
riding competitions.) Also there are strong arguments to stick to Method 1 (instead of 
applying Method 2). E.g., it might discourage (high potential) women from pushing 
their limits or, even worse, from participating at all. In summary, it stays open what 
shall be considered best. An idea to combine the advantages of the different schemes 
could be to choose the classical way with the same number of prize ranks for men 
and women, but then add rewards based on the fictitious AGR.
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Chapter 41 
Explainable Machine Learning 
and Economic Panel Data 

Theo Berger 

Abstract We apply boosted trees and Shapley values to analyze economic spillover 
effects within a customer-supplier network and assess economic interpretability. We 
translate conditional volatility into a Value-at-Risk universe and generate innovative 
economic features based on Natural Language Processing. Our results provide evi-
dence for the economic relevance of spillover within a customer-supplier network 
for applied risk measurement. Furthermore, we demonstrate that the application of 
machine learning to panel data leads to innovative insights. 

Keywords Boosted trees · Interpretable machine learning · Economic data 

Introduction 

In this paper, we focus on the interpretability of black box machine learning 
approaches. We apply large panel data set as discussed in [ 1], fit boosted regres-
sion trees and assess interpretability via Shapley values and discuss the results in 
comparison to interpretable econometric benchmark, namely pooled OLS. 

Specifically, we translate conditional volatility into a Value-at-Risk (VaR) uni-
verse, generate innovative features (i.e. we identify economic links via SFAS 131) 
and analyze economic spillover effects within the built customer-supplier network. 
We examine whether the VaRs of companies’ customer help to explain their own 
VaR. 

Instead of looking at aggregate equity market volatility, we investigate conditional 
stock return volatility from the perspective of individual firms. We also focus on one 
special channel of volatility—the transferring of volatility along the supply chains. 
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Fig. 41.1 The goal of our study is to assess interpretability of complex machine learning algorithms 
in the context of economic data 

The contribution of our study is the application of tree based ML techniques to 
economic panel data. Moreover we apply SHAP values to assess the local inter-
pretability of ML based predictions and compare the results with an econometric 
benchmark as published in [ 1]. 

Figure 41.1 provides an overview of the applied approaches. The study is part of 
our research that deals with competing machine learning algorithms and the assess-
ment interpretability within a Big Data framework. As presented in [ 3], boosted trees 
describe a sensible choice in the context of financial data. Therefore, we assess the 
precision of boosted trees and discuss explainability via Shapley values as described 
in [ 6]. Up to now, Shapley values are the only concept of explainable machine learning 
which draws on solid theoretical foundation from game theory. Therefore, predic-
tions are fairly distributed among the feature values. For an in-depth discussion on 
Shapley values, we refer to [ 7]. 

The remainder of this paper is structured as follows. Section “Methodology” 
provides a brief overview about the methodology and Section “Empirical Findings” 
presents the investigated data and preliminary results of the empirical assessment. 
Conclusion and Outlook are in Section “Conclusion”. 

Methodology 

In this section, we introduce the notation used throughout the paper, we define the 
desirable properties of the linear model and tree ensembles, specify boosting for trees 
and present SHAP as our interpretable machine learning setting.
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Boosted Trees 

We apply an ensemble approach, which sums the prediction of multiple trees together: 

ŷi = 
K∑ 

k=1 

fk(xi ), f j ∈ F, (1) 

where K is the number of trees, f is a function in the functional space F , and F is 
the set of all possible CARTs. 

We follow [ 2]: Let the regularized learning objective function be defined as fol-
lows: 

obj = 
n∑ 

i=1 

l(yi , ŷ(t) 
i )

︸ ︷︷ ︸
training  loss  

+ 
K∑ 

k=1 

Ω( fk)

︸ ︷︷ ︸
regulari zation  

, (2) 

with 

Ω( f ) = γ T + 
1 

2 
λω2 . (3) 

Here l is a differentiable convex loss function that measures the difference between 
prediction ŷi and target variable yi . Ω penalizes the complexity of the model. Each fk 
corresponds to an independent tree structure and leaf weights ω and T is the number 
of leaves in tree. 

Then, we perform gradient tree boosting. The model consists of functions instead 
of parameters, therefore it is trained in an additive manner: Let ŷ(t) 

i be the prediction 
of the i th instance at the t th iteration, we need to add ft in order to minimize the 
following objective: 

obj t = 
n∑ 

i=1 

l(yi , ŷ(t−1) 
i + ft (xi )) + Ω( ft ). (4) 

Chen and Guestrin [ 2] provide a scalable algorithm to tackle this issue: namely, 
XG-Boost. For a thorough introduction to boosting we refer to [ 4, 5]. 

Model Interpretability: Shapley Values 

As described in [ 8], the Shapley value is the average marginal contribution of a fea-
ture value across all possible coalitions. The SHAP (SHapley Additive exPlanation) 
framework describes a model agnostic approach, which allows to estimate Shapley 
values expressing predictions as linear combinations [ 6].
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Shapley value φ j of j th feature is defined as follows: 

φ j = 
∑ 

S⊆{1,..., p}\{ j} 

|S|!(p − |S| −  1)! 
p! ( fS∪{ j}(xS∪{ j}) − fS(xS)) (5) 

With xS as a subset of the input features in the set S, fS∪{ j} is the trained model with 
feature j and fS without. Hence, the Shapley value is the feature contribution to the 
prediction. 

Empirical Findings 

We apply the data set as discussed in [ 1]. That is, we study daily data ranging from 
January 2010 to December 2019, which is 2608 days. Our sample comprises 594 
companies and 6216 economic links. Once a link is identified, we assume that the 
link is valid for one year prior to the reporting data. We weight each customer link 
by its sales normalized by the total amount of sales (as reported by the supplier). 
We assess 95% Value-at-Risk forecasts. Then, we apply competing XGBoost and 
SHAP-Values and discuss the results in comparison to pooled OLS, the interpretable 
benchmark, which is given as follows: 

ΔVa  Ri,t = α + β customeri,t−1 + γ controlt−1 + ϵ i,t−1 (6) 

with 
customeri,t−1 = {(Gt−1 · ΔVa  Rt−1)i , (Gt−1 · Hitt−1)i } (7) 

and 

controlt−1 ={Hiti,t−1, RV 1mi,t−1, RV 3mi,t−1, RV 6mi,t−1, RV 12mi,t−1, 
SP500t−1, V I  Xt−1, Baa − Aaat−1, YCt−1, YCSlopet−1}. (8) 

The results of the applied XG-boost algorithm in combination with Shapley values 
are illustrated in Fig. 41.2. 

The applied XG-boost approach provides a better in-sample fit than the pooled 
OLS approach as described in [ 1]. Via Shapley values, we are able to identify relevant 
determinants for the investigated target variable. In contradiction to the finding pro-
vided by the interpretable benchmark, Shapley values identify the realized variance 
for 3 months and 1 month (i.e. RV3m and RV1m) as the most important variables 
to describe a companies’ VaR. In line with the interpretable benchmark, volatility 
spillover, gvar, are also characterized as a relevant determinant. Hence, the applied 
black box algorithm in combination with Shapley values allows to unbox black box 
ML approach and provides economic insights.
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Fig. 41.2 Shapley values. This figure presents a ranked list of explanatory variables on the y-axis 
and the Shapley value for each observation on the x-axis. The values on the y-axis are the averaged 
Shapley values for each variable and describe the average marginal contribution of each feature to 
the target variable 

Conclusion 

We applied competing machine learning algorithms to a large panel data set and 
discussed interpretability via Shapley values. We compared results with pooled OLS 
and find that XGBoost in combination with SHAP describes a sensible choice. We 
have modeled economic links as described in [ 1] and can confirm the findings, 
there is empirical evidence that changes in customers’ VaR spill over to suppliers’ 
VaR. 

In this vein, this study presents an initial step towards a deeper understanding of 
explainable ML in the context of financial data. Based on our preliminary method-
ological framework, our results indicate that explainable ML allows for the identifi-
cation of relevant economic explanatory variables. However, this study draws on data 
as presented in [ 1], and therefore an in-depth discussion on theoretical and empirical 
robustness as well as a comparison of competing ML techniques present fruitful next 
steps.
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Chapter 42 
Considering Short and Long Term 
Fairness in Recurrent Auctions 
with an Application to Collaborative 
Rostering 

T. Heller and S. Velten 

Abstract Collaborative duty rostering can increase the satisfaction of employees 
in healthcare. For the acceptance of a final rostering, a fair selection of included 
wishes is essential. As in rostering problems various constraints must be respected, 
it is generally not possible to accept all bids (wishes for a single free time slot) in 
a planning period and fairness is important. In this paper we present a weighted 
Vickrey-Clarke-Groves (VCG) mechanism approach where past auction results are 
incorporated by a fairness factor and where the underlying winner determination 
problem is given by a hitting set problem (HSP). We present numerical results of 
simulation runs over several planning periods. 

Keywords Auctions/competitive bidding · Game theory · Health care 

Motivation 

The shortage of skilled nursing staff is enormous in many regions of Germany and 
throughout Europe. The lack of attractiveness of the profession, which is limited 
by various factors, is often cited as a reason for this. On the one hand, there are 
the physical and psychological demands of the job, which often must be performed 
under high time pressure and is relatively poorly paid. On the other hand, shift work 
significantly impairs the compatibility of work and private life. 

Collaborative duty rostering can increase the satisfaction of employees in health-
care and, in particular, improve the compatibility of work and private life. This was 
demonstrated, for example, in the research project GamOR (see [ 3]), in which, among 
other things, Constraint Programming based models and algorithms were developed 
for decision support collaborative duty rostering (see [ 2]). 

A key aspect in [ 2] is the determination of conflicting employee requests for 
shifts or free time before the roster is actually created. In the GamOR approach, 
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these conflicts are communicated to the employees concerned, e.g., via app, so that 
they can be resolved within the team. This approach is evaluated positively by both 
employees and managers (see [ 3]), but it also has several drawbacks: 

• In large planning groups and with many requests, resolving conflicts can be very 
complex. 

• It cannot be expected that employees will always be able or willing to agree on 
conflict resolution. 

• When conflicts are resolved in a team, some employees are better at asserting 
themselves than others. 

In these cases, automatically generated conflict resolutions based on objective criteria 
can help the planner, or the manager who ultimately must make the decision, resolve 
the conflicts. 

A Recurrent Auction Framework 

To generate proposals for conflict resolutions that take decisions of previous plan-
ning periods into account, we propose a recurrent auction framework in which bids 
are wishes for a single free time slot and weights as well as fairness factors are con-
sidered. We assume that the time span of a wish is the minimum free time that the 
employee needs so that granting the wish is beneficial for her or him (e.g., to keep 
an appointment). Therefore, a partial fulfillment of bids is not considered. 

In general, auction models are widely used for distributing units among a group 
of participating players (see e.g. [ 5]). Each of the players can place points on each of 
the goods, reflecting their valuation. In a classical auction setting, one is interested 
in solving the winner determination problem, i.e. finding the subset of all submitted 
bids such that the sum of individual valuations is maximized (see [ 5]). In recurrent 
auctions, the same group of players participates in several auctions where the same 
or equal units are distributed (see e.g. [ 4]). 

In some sense we deviate from this setting. Instead of focusing solely on finding 
an optimal auction solution, we are interested in subsets of bids which cannot be 
fulfilled at the same time, i.e. a set of bids of which at least one has to be a losing 
bid. Since we are considering recurrent auctions, we want to incorporate past auction 
results into the decision on the winning bids. 

We start with introducing some definitions. A set of bids that cannot be fulfilled 
together is called conflict set. A conflict set is called minimal if no contained bid 
can be removed and the resulting set is still a conflict set. A bid .bi contained in a 
conflict set is called conflict bid. The  fairness factor . f j of a player is a measure on 
past auction results and lies in the interval .[0, 1]. The  weight .wi of a bid (or wish) 
is defined as the product of the points .πi placed on the bid and the fairness factor . f j
of the submitting player: .wi = πi ∗ f j .



42 Considering Short and Long Term Fairness … 351

Computing fairness factors, budgets and updating step The fairness factor . f j of 
a player is a measure on the individual past auction results. We define the number-
based fairness factor as 1 minus the quotient of the number of accepted bids divided 
by the number of submitted bids, and the point-based fairness factor as 1 minus the 
quotient of the sum of points placed on accepted bids divided by the sum of points 
over all submitted bids. For both of these definitions it holds: the more bids accepted 
in the past, the smaller the fairness factor. 

Each player starts with a budget .B of points which can be used to weight the 
bids. Depending on the result of the auction, invested points must be paid or not (see 
below). After each period, the players gain a fixed number of points, regardless of the 
auction results. This allows players to place bids in the upcoming planning period 
even if they spent all their points in the last planning periods. 

Computing winning bids Given the set of bids and the set of minimal conflicts, 
the task is to find a subset of bids with minimal weight such that at least one bid 
from each minimal conflict is chosen. This can be formulated as a weighted hitting 
set problem (weighted HSP) (see [ 1]). In the weighted HSP, one is given a set of 
elements .U with a corresponding weight and a collection . C of subsets .Ci ⊆ U . The  
task is to find a minimal weighted selection of elements such that in each of the 
subsets .Ci at least one is chosen. 

Let .U denote the set of all submitted bids and let . C denote the set of minimal 
conflicts . C . Recall that the weight of a bid is defined as the product of the fairness 
factor of the submitting player and the spent points on said bid. We introduce a binary 
decision variable.xi for every bid. i which is equal to 1 if the bid is not accepted. The 
weighted HSP is then defined by: 

. min
∑

i∈U
wi · xi (1) 

s.t. 
∑ 

i∈C 
xi ≥ 1 ∀ C ∈ C (2) 

xi ∈ {0, 1} (3) 

Remark 1 The formulation as a weighted HSP is used because by the time the 
conflicts need to be resolved in the collaborative duty rostering process developed 
in GamOR, the set of minimum conflicts is already known (see [ 2]). However, the 
size of . C, and therefore the number of constraints in (2) may be exponentially large. 
If this is the case, (2) and (3) may be replaced by a formulation of the feasibility 
constraints of the duty rostering problem (like the CP formulation given in [ 2]) and 
some additional constraints connecting the variables .xi (.i ∈ U ). 

A solution of this problem is denoted by. x and the set of possible outcomes by. X . 
The valuation of.x ⊆ X for each bid. i is given by a bid valuation function from.X to 
.R+ denoted by.vb

i (x). Note that we evaluate a solution by the bid valuation function. vb
i

for each bid and not by the selection of winning bids, that yields the optimal solution.
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In some sense, the valuation function is “reversed”—being a selected bid in the hitting 
set problem means that the bid is in fact a losing bid and vice versa. The bid valuation 
function .vb

i is therefore defined by 

.vb
i (x) := wi (1 − xi ). (4) 

For bid . i the valuation of a solution is equal to zero, if it is contained in the solution 
of the weighted HSP. Conversely, it is equal to its weight, if it is not part of the 
optimal solution. With this, the hitting set problem above can be reformulated as an 
equivalent welfare maximization problem: 

. max
∑

i∈U
vb
i (x) (5) 

s.t. (2) and (3) (6) 

We assume here that the player valuation function.v
p
j of a player. j does not depend 

on the fairness factor and is defined as 

.v
p
j (x) := 1

f j

∑

i is a bid of j

vb
i (x), (7) 

i.e. the sum over all evaluations .vb
i (x) of the submitted bids divided by the fairness 

factor . f j . Note that additional constraints can be incorporated into the optimization 
problem, e.g. a bounded number of winning bids for each player. 

Computing costs After solving the weighted HSP, the mechanism has to update the 
available points and the fairness factor of each player. We distinguish the following 
cases after a solution to the weighted HSP is computed. 

• If a bid is not a conflict bid, then no second bid on the same good exists. The bet 
is returned and the bid is a winning bid. 

• If a bid is a conflict on its own, it violates the feasibility conditions. The submitted 
points will be returned and the bid cannot be granted. 

• If a bid is a conflict bid and another bid on the same good exists, the hitting set 
computation from above has to determine the winning bids and, thus, their costs 
have to be computed. 

The set .X of computed solutions of the HSP is called considerable solution set, a  
solution.x ∈ X is called (considerable) solution and the set of all bids is denoted by 
. N . Since every bid. i is associated with a player. j , the fairness factor of a bid is given 
by the fairness factor of the associated player. 

The Vickrey payments is a famous payoff measure for auction solutions which 
is based on results from Vickrey, Clarke and Groves (see e.g. [ 6]). For an optimal 
solution .x∗ of the weighted HSP, we define the payment .pi for a bid . i by
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.pi := max
x∈X

∑

j∈N\i
vb
j (x) −

∑

j∈N\i
vb
j (x

∗), (8) 

i.e. the maximum over the sum of valuations of others when bid. i is considered minus 
the sum of valuations of bids other than . i when bid . i is missing. Note that if bid . i
is not chosen in the optimal solution . x∗, the payment .pi is zero. Given a solution . x , 
the utility .ui of a bid is defined by 

.ui := vb
i (x) − pi . (9) 

Note that in general the computation of a single payment requires to solve 

. max
x∈X

∑

j∈N\i
vb
j (x), (10) 

which again requires the solution of a (smaller) weighted HSP. However, we can 
construct a feasible solution as follows. Set variable .xi to 1. When bid . i is not 
considered in the objective function, the corresponding decision variable .xi can 
be set to 1 without changing the solution value. All decision variables .x j that are 
contained only in conflict sets with. xi can be set to 0, since all conflict sets containing 
.xi are resolved. All other decision variables are set accordingly to their value from 
. x∗. Thus, we obtain a feasible solution for (10) and the payment as in (8) is always 
non-negative. 

Furthermore, it holds that there are no positive transfers, i.e. the payment to a bid 
is at least zero, and individual rationality for bids holds as well, i.e. the utility of a 
winning bid is non-negative. The following two results are direct consequences of 
VCG mechanisms (see e.g. [ 5]). 

Lemma 1 (Truthfulness on a bid basis) Bidding the true value of a bid is an optimal 
strategy under the consideration of the utility function in (9). 

We consider the utility of a player as follows: 

.u j := v
p
j (x) − 1

f j

∑

i is a bid of j

pi . (11) 

Lemma 2 (Truthfulness on player basis) Assume each player only submits one bid. 
Then, bidding the true value of a bid is an optimal strategy under the consideration 
of the utility function (11). 

Simulation Results 

For our simulation, we run for both fairness factor variants 10 randomly generated 
planning processes which consist of 100 periods each. In each planning process, 20
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Fig. 42.1 Evaluation on the difference between minimal and maximal FF for the different FF cases 

participants are present. Their initial budget of points to spend is 100. In each period, 
each participant places a random number of wishes and spends a random percentage 
of its available points in an arbitrary way on all of its wishes. After each period, each 
participant gets 20 additional points. 

In Fig. 42.1 the evaluation of the difference between the maximal and the minimal 
fairness factor among all participants is shown. Besides the mean value, also the 
95% confidence interval is shown in the charts. We distinguish different fairness 
factors (FF), i.e. no FF, the number-based FF and the point-based FF. For the case 
of no FF, the number-based FF is used for the evaluation. We see that the difference 
shrinks quickly after only a few planning periods. Due to the random behaviour of 
the agents, we see a spike in the difference for the number-based FF in the first few 
periods. Overall we see that the difference gets smaller for all cases. Also due to 
the randomness in the bidding behaviour of the different participants, these fairness 
factors always differ by a small margin. However, in the case of no FF, the 95% 
confidence interval is considerably larger than in the other cases. In total we see that 
incorporating a FF into the underlying conflict resolving process, leads faster to a 
more ’fair’ distribution of winning bids (with respect to the considered FF). 

Conclusion and Outlook 

In this paper we describe a mechanism for finding fair solutions in an auction within a 
group of players over the course of many auction runs. This allows a decision support 
for duty rostering where past planning results are included in the optimization. We 
experimentally show that with this approach a convergence to a fair distribution of
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wishes can be achieved. Moreover, applying the defined fairness factor leads to a 
faster and more stable convergence. Our further research includes the extension to a 
bi-criteria model, in order to find trade-offs between short term and long term fairness 
aspects. 
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Chapter 43 
Coopetition and Knowledge Sharing 
in Dynamic Business Environments 

Ayesha Alhosani, Richard Allmendinger, and Mercedes Bleda 

Abstract Strategic alliances among competitors are increasingly gaining relevance 
as business organizations recognize the benefits of learning and sharing resources 
to succeed in dynamic environments. In an increasingly interconnected business 
world, it is crucial for companies to reap the benefits that arise from this type of 
collaboration. We use multi-agent simulation coupled with principles from operations 
research to study how learning and knowledge sharing within alliances can impact 
the performance of competing firms in an endogenously changing environment. We 
consider two types of competing firms: ones that search for business solutions in 
the business landscape (searchers), and ones that search and also have the power 
to endogenously change or reshape the landscape to their advantage (shapers). Our 
model allows us to analyze under which circumstances strategic alliances can help 
firms to successfully adapt to these endogenously generated changes by allowing 
them to learn and build up an enhanced knowledge base of the business landscape. 

Keywords Coopetition · NK model · Endogenously-changing landscape ·
Shaping · Searching · Adaptation 

Introduction 

A strategic alliance is a collaboration between two or more business organizations 
to share resources, exchange products and co-develop or co-provision services in an 
effort to pursue a commonly beneficial goal for a defined period [ 5]. We focus on 
a specific type of alliance where the collaborating companies are also competitors, 
in a phenomenon known as coopetition [ 1]. A recent example of coopetition is the 
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collaboration and knowledge sharing between competitors, Pfizer and BionTech to 
produce a COVID-19 vaccine which allowed the two companies to release their 
vaccine first and outperform other pharmaceuticals. 

A critical factor that influences an organization’s decision to form or join an 
alliance is the ability to access resources, information, and knowledge otherwise 
inaccessible. Alliances grant companies with resources and knowledge that can be 
utilized to improve their competitive position [ 5]. In highly dynamic environments, 
forming alliances with competitors might be crucial for survival, particularly if these 
environments change in an endogenous way. Changes in an industry’s environment 
are endogenously generated by companies that have the ability to change the business 
landscape. These companies are known in the management literature as shapers [ 2]. 
Shapers are companies that are not only able to search for business solutions in the 
landscape to improve their performance but also to change the landscape to their 
advantage endogenously. Existing work has shown that these companies tend to 
outperform competitors which are only able to search (searchers). Strategic alliances 
in this setting can, however, influence these dynamics, as they may provide firms and 
searchers in particular, with the necessary information and knowledge to improve 
their performance and successfully adapt to these changes. 

In this work, we build a simulation model where competing companies search-
ing for solutions in an endogenously changing landscape also collaborate within 
alliances. The model allows us to analyze how knowledge sharing among alliance 
members affects their performance and under which circumstances searchers can 
successfully adapt to changes that shapers generate in the business landscape. The 
following section presents the description of the simulation model. Next, the experi-
mental study is shown in Section “Experimental study”, followed by conclusions in 
Section “Conclusions”. 

Model Description 

The model extends an NK co-opetition simulation model developed by the authors [ 4] 
to incorporate the influence of alliances and explicit memory approaches on the 
performance of firms. As in the standard NK model [ 3], the complexity (rugged-
ness) of the landscape is represented by the parameter K . The business solutions 
in the landscape are represented by strings of 0s and 1s of length N + Z , i.e. 
x = (x1, . . . ,  xN , xN+1, . . . ,  xN+Z ). Searchers companies search the landscape by 
modifying one of the N dimensions of the solutions at each time step (one-step hill 
climbing), while shapers can choose to search (in the same manner) or to shape, that is, 
change one of the Z solutions’ dimensions; we explain below how a searcher/shaper 
decides which option to commit to. An important to note is: that the values of Z 
solutions’ dimensions are the same for all solutions (i.e., we can think of them as 
global variables). Hence, shaping will impact the fitness of the solutions for all com-
panies in the landscape, i.e., as a result of a shaping action, some companies will be 
better or worse off in terms of their performance. The parameter E defines the inter-
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dependency between searching and shaping solutions dimensions and the degree of 
the malleability of the environment. 

To analyze the influence of alliances on these search and shape dynamics, we group 
agents of the same type into alliances, i.e., alliances are formed by searchers or shapers 
only. For the sake of simplicity, we do not include heterogeneity in group compo-
sition. Companies within an alliance share knowledge through a central unbounded 
memory, accessible to all alliance members at all times. Companies are randomly 
grouped into alliances, and throughout the simulation, each company takes a turn to 
improve its current solution. Once each agent has had its turn, each alliance adopts 
the solution found by its members with the highest fitness or performance and stores 
it in the alliance knowledge base (memory) for later use. 

At each turn, searchers can: (a) search the landscape (by flipping a randomly 
selected bit out of the N bits) and find a new solution; (b) Adopt the decision variables 
values of a solution from the alliance’s memory that has the same values of the Z 
shaping bits; or (c) not take action. Searchers will choose the new business solution 
(a) or (b) that has the higher fitness or will not take action (c) if the found or shared 
solutions are of inferior fitness to their current one. At each turn, shapers have the 
same options as a searcher, plus they can (d) change a shaping dimension (one of 
the Z variables) in their current solution (shape the environment). Shapers then will 
choose the new business solution (a), (b) or (d) that has the highest fitness, or will 
not take action (c) if the found, shared, and “shaped” solutions are of inferior fitness 
to their current one. If shaping (d) is selected, then the fitness of all other agents is 
recomputed as a change in the (global) Z variables affects the bit strings and hence 
the fitness of all solutions. 

To analyse how alliances influence the dynamics and performance of searchers 
and shapers, we compare our simulation results with the results of a simulation model 
in which agents do not form alliances (our baseline model). 

Experimental Study 

This section covers the experimental setup, followed by an analysis of the experi-
mental results. 

Experimental Setup 

We run simulations for N = 12, Z = 12, and low, medium, and high levels of com-
plexity (K = {1, 2, 3, 4, 5}) in high malleability environments (E = 5). As the focus 
of this initial study is to isolate and understand the impact of alliances on agents 
(companies), we have decided to fix the alliance group size and group composi-
tion as follows: The agent population is composed of 16 firms—8 searchers and 8 
shapers—with firms being grouped into two alliances of 4 per group—one alliance
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with 4 searchers, and another alliance with 4 shapers; the remaining firms do not 
join alliances and thus operate individually in the same manner as in the baseline 
model. Future work will look at varying alliance group sizes and group compositions. 
Simulations were run for 200 generations (one generation involves iterating over all 
agents) across 100 runs to compare the performance between searchers, shapers 
within alliances, and those operating outside alliances (on the same landscape). We 
then compare the results to the data collected from the baseline model; in which the 
experiment is ran separately with the same parameters and for the same number of 
generations and runs. 

Experimental Analysis 

The first finding we observe from Fig. 43.1 is that alliances boosts the performance 
for all types of firms, specifically in environments characterized by low complexity. 
In a business context, alliances enable companies to share and access knowledge they 
otherwise would not have access to. This phenomenon resembles innovative com-
panies (alliances) developing new technologies that improves operations if known 
and adapted by them. An example in the telecom industry is when google develops 
a new version of its Android operating system (OS) for mobile devices. The new 
version will give all partnering and competing telecom companies that use the same 
OS, a kick in terms of their devices’ performance and potential sales. This is visible 
in Fig. 43.1, where shapers in an alliance are always the highest performers in a 
setting of low complexity. However, as confirmed in [ 2], shaping is a powerful tool, 
but the agents lose the advantage of shaping as K increases. As shown in Fig. 43.1, 
when K = 3, shapers lose the advantage of shaping and knowledge sharing. The 
figure shows that shapers from the baseline model catch up to the shapers alliance, 
and both groups perform at the same level. This finding aligns with the observation 
made in [ 2] for environments with high complexity and high malleability. 

In comparison to less complex (rugged) landscapes, K = 1, a shapers alliance has 
a short-lived advantage over its competition, which they lose as everyone converges 
to the optima mid-way through the optimization run, as shown in Fig. 43.1. The  jus-
tification for the phenomenon of this short-lived advantage is explained by Fig. 43.2: 
shapers are able to identify the best strategy (shaping policy) early on, and they only 
need to tune the searching parameters to identify the best location in the landscape. 
As they have identified the shaping policy ahead of everyone else, and since they 
are sharing the knowledge with each other, they are able to reach the highest fitness 
possible. Furthermore, since the shaping policy is a global strategy that will impact 
everyone in the landscape (even companies from other alliances), the other compa-
nies will eventually catch up as the landscape is simple. Other agents/alliances will 
try different search solutions until they find the optimum solution for this shaping 
policy. This is also apparent from Fig. 43.2, where one can see that the total changes 
to the shaping policy drastically subsides at about T = 36.
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Fig. 43.1 Comparison of average fitness values for agents in a population that are in alliances 
(Searcher and Shaper Alliance) and not in an alliance (No Alliance Shapers and Searchers). 
Searchers and Shapers-Baseline are average fitness values for searchers and shapers in a popu-
lation without alliances. Results are shown for K = 1 (left) and  K = 3 (right) 

Fig. 43.2 Number of times when agents mutated search policy (num of search policy updates), 
shaping policy (num of shaping policy update), or learnt from group knowledge (num of alliance 
search policy updates) over 100 generations when K = 1 

Furthermore, as shown in Fig. 43.1, in the case of K = 3, the shapers are still 
able to maintain their competitive advantage temporarily as compared to the Shapers 
from the baseline model who catches up to the same level of performance later on. 
The justification for this behavior is: in addition to the above reasoning, a shapers 
alliance can evaluate up to three solutions (corresponding to options (a), (b) and (d)) 
in one step and pick the solution with the highest performance giving them more 
options to scan the landscape more widely and thus encounter better solutions faster
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Fig. 43.3 average policy updates per alliance; average number of times of policy (search/shaping 
policy) were mutated by agents in a population that are in alliances (searcher and shaper alliance) 
and not in an alliance (no alliance shapers and searchers); compared to “no update”. i.e. when an 
agent decides to remain in the same location, when K = 1 

compared to their competition. Figure 43.3 supports this justification as it shows the 
number of changes to search and shaping policy by agents in a population that are in 
alliances (Searcher and Shaper Alliance) and not in an alliance (No Alliance Shapers 
and Searchers). The figure shows the “no Update” data referring to the instances in 
which an agent decides that their current solution yields higher fitness than if it were 
to change search/shaping policies or learn from the alliance’s experience. For the 
shapers alliance, the number of times the alliance members chose not to update any 
policy is lower than for the searchers’ alliance and the agents acting individually (no 
alliance). This indicates that members of the shapers alliance are the least prone to 
stay in one place and not take action compared to the other alliances. 

Another interesting observation from Fig. 43.1 is that the searchers in an alliance 
will outperform searchers and shapers in the baseline model. This is justified by 
the searchers’ alliance sharing the knowledge, which provides accessibility to more 
superior solutions through the alliance memory. So even if the shapers in the base-
line model have the power to change the landscape, the searchers in an alliance can 
exceed an individual shaper’s performance if searchers collaborate and share knowl-
edge. As shown in Fig. 43.3, searchers in an alliance are less likely to remain idle 
than individual shapers, allowing them to explore more and reach areas with higher 
performance in the landscape. 

Conclusions 

We proposed a simulation model to investigate the influence of alliances on the 
performance of firms competing in an endogenously changing environment. In the 
model, firms within an alliance share knowledge and information (via explicit mem-
ory) they acquire about superior solutions with their peers in the alliance. We found
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that the presence of alliances in dynamic environments improves the performance of 
all firms in the landscape, regardless of whether they are in an alliance or not. The 
average performance of companies in industries with alliances is higher than in indus-
tries without alliances. This performance improvement, however, is less significant 
in more complex environments. Searchers (in principle, less powerful organizations) 
can benefit significantly from being in an alliance in low-complexity environments, 
allowing them to exceed the performance of shapers that are not in an alliance. Future 
research can consider environments where agents are part of multiple alliances and 
can exit/enter alliances during search. Studying different alliance sizes and compo-
sitions is also important. 
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Chapter 44 
Decreasing Viability of Tychastic 
Controlled Systems 

Sigifredo Laengle and Tomás Laengle-Aliaga 

Abstract The viability kernel in Viability Theory depends on control variables and 
usually also on uncontrolled ones. Control variables try to increase viability, and 
uncontrolled ones instead destroy it. Tyches are uncertainties without statistical reg-
ularity that diminish viability. We progress in the study of both effects. We use a nec-
essary condition of the system viability and apply it to the linear case by introducing 
the Minkowski difference between sets. We also find such a difference interprets the 
problem adequately. 

Keywords Viability theory · Viability kernel · Decreasing viability 

Introduction 

The Viability Theory (VT) has aroused enormous practical interest in areas such as 
electronics [ 7] and natural resources [ 10]. Also, the applications to Economic The-
ory represent another essential development [ 1]. However, few systematic studies 
of the viability kernel of controlled tychastic systems. Exceptionally we find iso-
lated developments that are theoretical [ 3] or applied to ecological problems [ 4] and 
finance [ 5]. However, much other management and economic problems are tychastic 
systems. Moreover, many of them are also linear. This article is part of a research 
project on the economic and managerial applications of VTs with the presence of 
tychastic variables, that is, disturbers with an unknown probabilistic description. In 
a previous article [ 9], we formulated the classic distributive bargaining problem as a 
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controlled linear tychastic system. The main result of this article generalizes such a 
previous work. 

The following section introduces the Viability Theorem and a lemma we need to 
solve our problem. Section “The Viable Fund Management” solves an example of 
viable fund management that the Viability Theorem can only solve. Section “General 
Solution of the Controlled Linear Tychastic System” contains the main result, and 
Section Conclusion” presents the conclusion with an interpretation of such result. 

Viability Theorem and a Previous Result 

Let.T ∈ R++, the  time-space interval be.[0, T ], and.(H, ⟨· | ·⟩) be the state space, a  
Euclidean space with induced norm.|| · ||. Now consider the set of absolutely contin-
uous functions 1 on.[0, T ]. Let .ϕ : H → 2H be a set-valued operator that defines the 
following differential inclusion with the initial conditions.ẋ ∈ ϕx and x(0) = x0.We 
then say that . x is an evolution for . ϕ starting at .x0 if . x is a solution of the differential 
inclusion .ẋ ∈ ϕx and x(0) = x0. 

An environment is a nonempty subset . C of . H. The  support function of . C is . σC :
H → [−∞,+∞] : u |→ sup ⟨C | u⟩. Letting.x ∈ H and. C be a non-empty convex 
subset, we define the normal cone of. C at. x as. NCx

.= {u ∈ H : sup ⟨C − x | u⟩ ≤ 0}
in case that .x ∈ C and .NCx

.= ∅ otherwise. Now let .x ∈ C and .u ∈ H \ {0}. If  
.sup ⟨C | u⟩ = ⟨x | u⟩, then .{y ∈ H : ⟨y | u⟩ = ⟨x | u⟩} is a supporting hyperplane 
of .C at . x , and . x is a support point of .C with normal vector . u. The set of support 
points of. C is denoted.spts C and its closure.spts C . Given a normal vector. u, the  set  
of support points wrt that vector is .sptsu C . Also let .bdry C be the boundary of . C . 

The following lemma is used in the proof of Proposition 1: 

Lemma 1 Let . C be a nonempty convex set of . H. Then the following equality holds: 

. {(x, u) : x ∈ bdry C and u ∈ NCx} = {
(x, u) : u ∈ H \ {0} and x ∈ sptsuC

}
.

Proof First, let .(x, u) ∈ bdry C and u ∈ NCx . Then .u ∈ H \ {0} and . u ∈ NCx ↔
sup ⟨C − x | u⟩ ≤ 0 ↔ sup ⟨C | u⟩ ≤ ⟨x | u⟩, that is, .x ∈ sptsu C . Second, let 
.u ∈ H \ {0} and.x ∈ sptsu C . Then.u ∈ NCx and.sptsu C ⊂ spts C ⊂ spts C , and by 
the Bishop-Phelps Theorem [ 6, p. 134] we obtain .x ∈ bdry C . ⬜ 

We say that the environment .C is viable under the set-valued map . ϕ if for each 
.x0 ∈ C , . x is the trajectory for. ϕ starting at .x0 that lies within. C (that is, .x(t) ∈ C for 
each.t ∈ [0, T ]). We now state the Viability Theorem, which gives the sufficient and 
necessary conditions for the viability of. C under. ϕ in the case where. C is convex [ 8, 
p. 8] and [ 2, p. 152].

1 Functions.x : [0, T ] → H such that.||x|| and.||ẋ|| are integrable. 
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Theorem 1 (Viability Theorem) Let .C be a non-empty closed convex subset of . H
and. ϕ an upper semi-continuous set-valued operator with non-empty compact convex 
values. The following assertions are then equivalent: (a) .C is viable under . ϕ; (b)  
.(∀x ∈ C)(∀u ∈ NCx) sup ⟨ϕx | − u⟩ ≥ 0; and (c) .(∀x ∈ C)(∃y ∈ C) y − x ∈ ϕy. 

Reference [ 2, p. 152] proves that (c) is a necessary condition for the viability of 
. C under . ϕ. There also exists a proof, not given here, that (c) is also sufficient. 

The Viable Fund Management 

The fund management example evolves in time-space, and is explained in what 
follows. Assume first of all that an agent controls the fund flow . x through the rate of 
cash flow . p, such that .ẋ = p where .ẋ = d

dt x . Also assume that the reserve fund is 
subject to a demand rate defined by an uncontrollable variable. q that determines the 
fund reserve . y according to the differential equation .ẏ = x − q. Thus, the system’s 
dynamic is described by the equations .ẋ = p and .ẏ = x − q. 

Now assume further that the fund . y is greater than . 0 but not greater than a value 
.a ∈ R++. Thus, the environment . C is the set of admissible values of variables. x and. y, 
that is, .(x, y) ∈ C

.= R × [0, a]. The uncontrollable variable. q satisfies. q ∈ [−ν, ν]
where .ν ∈ R++, while the control variable .p ∈ [−μ,μ], where .μ ∈ R++. 

However, solutions can lead to collapse. Consider, for example, the case where 
the external situation imposes a maximum demand for funds, say,.q

.= ν. At the  same  
time, the controller estimates that the capacity to generate funds will be insufficient 
to avoid shortages, and therefore injects a maximum flow of .p

.= μ. Suppose also 
that the state of the system has an initial flow given by 2 .x(0)

.= ν − √
2aμ and an 

initial fund of.y(0)
.= 1

2a. In this situation, the regulator will calculate whether there 
is enough time to avoid collapse. This is done by solving the following system of 
differential equations: .ẋ = μ, ẏ = x − ν, with initial states .x(0) and.y(0). Thus, he  
integrates the first equation and then the second one, both with respect to. t obtaining 

. x(t) = μt + ν − √
2aμ and y(t) = 1

2
μt2 − √

2aμt + 1

2
a.

Next, the controller calculates the time to collapse. After a number of algebraic 
manipulations it can be seen that at any time. t , if.0 ≤ t ≤ √

aμ(
√
2 − 1)/μ the fund 

reserve . y will be non-negative, and if .t >
√
aμ(

√
2 − 1)/μ it will be negative (see 

the blue flow in Fig. 44.1). 
In what follows, we solve analytically the problem. According to the Viabil-

ity Theorem 1 (equivalent assertion (b)), the computation of the fund management 
example’s viability kernel proceeds as shown in the following proposition:

2 We will see later why this quantity was chosen. 
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Fig. 44.1 The tychastic 
viability kernel is given by 
.D = ∩i∈I lev≤0 gi with 
.I

.= {1, . . . , 4}, where each 
.gi is given in Table 44.1. The  
blue arrow is the unique 
solution derived in 
Section “The Viable Fund 
Management” that inevitably 
reaches a non-viable state 

D 

x 

y 

g4 

g1 

g2 

g3 

−νν − √2aμ 

1 
2 a 

0 ν −ν + 
√
2aμ 

a 

Table 44.1 The tychastic viability kernel is.D = ∩i∈I lev≤0 gi with. I
.= {1, . . . , 4}

.i . gi (x, y)

1 . y − a

2 . 
1
2 (x + ν)2 + μy − aμ

3 . −y

4 . 
1
2 (x − ν)2 − μy

These functions are obtained by Proposition 1, which uses the Viability Theorem 1 condition (b). 
Thus, we obtain Fig. 44.1 

Proposition 1 Let .C
.= R × [0, a] be the environment, where .a ∈ R++, 

.P
.= [−μ,μ] × {0}and.Q .= {0} × [−ν, ν]where.μ, ν ∈ R++. The set-valued oper-

ators for every .(0, q) ∈ Q, are given by . (ẋ, ẏ) ∈ ϕq(x, y)
.= (0, x) + P − (0, q).

Then the tychastic viability kernel of. C for the family.{ϕq}q∈Q is given by 3.
∩

i∈I lev≤0 gi , 
where .I = {1, . . . , 4} and each continuous convex function .gi is given by . gi : R2 →
R as shown in Table 44.1. 

Proof In this case,.H .= R
2. The proof consists in determining the largest non-empty 

subset .D ⊂ C that satisfies Condition (b) in Theorem 1. We proceed in three steps. 
(1) Suppose a priori that .D is a closed convex non-empty subset of . C . Since 

.(x, y) ∈ int D ↔ ND(x, y) = {0}, Condition (b) of Theorem 1 is equivalent for all 

.q ∈ Q to 

.(∀(x, y) ∈ bdry D)(∀(u, v) ∈ ND(x, y)) sup ⟨ϕq(x, y) | − (u, v) ≥ 0.

3 Let.X be a set,.g : X → [−∞,+∞] be a function, and.ξ ∈ R. The  lower level set of. g at height 
. ξ is the set.lev≤ξ g

.= {x ∈ X : g(x) ≤ ξ} . 



44 Decreasing Viability of Tychastic Controlled Systems 369

Then, by Lemma 1, the above inequality is equivalent to 

. (∀(u, v) ∈ H \ {0})(∀(x, y) ∈ spts(u,v) D) sup ⟨ϕq(x, y) | − (u, v) ≥ 0.

Therefore, if we take.(u, v) ∈ H \ {0} and.(x, y) ∈ spts(u,v) D, then for all. (0, q) ∈ Q
we have 

0 ≤ sup ⟨ϕq (x, y) | −  (u, v)⟩ =  sup ⟨(0, x) + P − (0, q) | −  (u, v)⟩ 
= −xv + qv − inf 

p 
pu. 

or equivalently,.xv + inf p pu − infq qv ≤ 0. Considering this inequality, the prob-
lem is to find, for all .(u, v) ∈ H \ {0}, all points .(x, y) ∈ D such that .(x, y) is an 
optimum of.supx,y (xu + yv) subject to (a).xv + inf p pu − infq qv ≤ 0; (b). ẋ = p
and.ẏ = x − q; (c).(x, y) ∈ R × [0, a]; and finally, (d).(p, q) ∈ [−μ,μ] × [−ν, ν]. 

(2) To solve the foregoing problem, we consider separately the eight possible com-
binations of values of .(u, v), numbered (2.1) through (2.8), depending on whether 
the values of each are positive, negative or zero. 

(2.1) .u > 0 and .v
.= 0. In this case, .inf p pu = −μu and Restriction (a) is then 

equivalent to .−μu ≤ 0 or .μ ≥ 0, which is a tautology. 
(2.2) .u > 0 and .v > 0. In this case, .inf p pu = −μu and .infq qv = −νv. The  

problem is then to find.(x, y) ∈ D such that.(x, y) is an optimum of. supx,y (xu + yv)

subject to (a) .xv − μu + νv ≤ 0; (b) .ẋ = −μ and.ẏ = x + ν; and (c) . (x, y) ∈ R ×
[0, a]. Upon solving the system of differential equations (b) by the first integral 
method, we obtain .μy + 1

2 (x + ν)2 = k, where . k is a constant to be determined. 
(2.3) .u .= 0 and .v > 0. Here, .inf p pu = 0 and .infq qv = −νv. The objective 

function is.sup yv = av. Observe that for any value of.(x, y), Restriction (b) is. ẋ = p
and .ẏ = x + ν so .ẏ ≤ 0 if .x ≤ −ν, which is satisfied if .(x, y) ∈] − ∞,−ν] × {a}. 
At this point we return to (2.2) to determine the value of constant . k subject to the 
condition that .y(−ν) = a, which gives a value of .k

.= μa. 
(2.4) .u < 0 and.v > 0. In this case, .inf p pu = μu and.infq qv = −νv. We again  

observe that for any value of.(x, y), Restriction (b) is.ẋ = μ and.ẏ = x + ν, so. ẏ ≤ 0
if .x ≤ −ν. This is satisfied if .(x, y) ∈] − ∞,−ν] × [0, a]. Therefore, considering 
cases (2.1)–(2.4) we can define.g1(x, y)

.= y − a and. g2(x, y)
.= 1

2 (x + ν)2 + μy −
aμ. 

(2.5)–(2.8). These cases are treated symmetrically with (2.1)–(2.4), obtaining . g3
and . g4. The various .gi functions are all set out in Table 44.1 and set .D is shown in 
yellow in Fig. 44.1. 

(3) The third step consists in proving that .D is the largest viable subset of . C . The  
proof itself involves a number of trivial algebraic manipulations that add nothing to 
the key arguments in steps (1) and (2) so is not given here. ⬜



370 S. Laengle and T. Laengle-Aliaga

General Solution of the Controlled Linear Tychastic System 

Now we will calculate the viability kernel assuming the presence of tychastic vari-
ables when . ϕ has a linear form. 

Proposition 2 Let .C be a nonempty compact convex subset of . H, .A ∈ B(H), and 
both .P and .Q be nonempty compact convex subsets of . H. Let . ϕq

.= A + P − q
be a family of set-valued operators indexed by the tychastic variables .q ∈ Q. Then 
.(∀x ∈ C)(∃y ∈ C) y − x ∈ Ay + (P Θ Q) holds. 

Proof Since .C and .ϕq satisfy the conditions of the Viability Theorem 1, then .C is 
viable for.ϕq , i.e., according to the equivalent assertion (c):. (∀x ∈ C)(∃y ∈ C)(∀q ∈
Q) y − x ∈ ϕq y. Let us take any point .x ∈ C , then there exists a point .y ∈ C such 
that 

. (∀q ∈ Q) y − x ∈ ϕq y = Ay + P − q or (∀q ∈ Q) (y − Ay − x) ∈ P − q,

and, since .P − q is a closed convex subset, we have for all . u ∈ H

. (∀q ∈ Q) ⟨y − Ay − x | u⟩ ≤ sup ⟨P − q | u⟩ = sup ⟨P | u⟩ − ⟨q | u⟩,

or 
. ⟨y − Ay − x | u⟩ ≤ sup ⟨P | u⟩ + inf ⟨−Q | u⟩ = σP(u) − σQ(u),

which it is equivalent to 

. (∀x ∈ C)(∃y ∈ C) y − x ∈ Ay + (P Θ Q),

the wished expression. ⬜ 

Conclusions 

Consider the following interpretation of Proposition 2, where .Q represents the sets 
of values of the tychastic variables and .P of the controlled variables ones. Thus, 
the larger the volume of the set .P or the smaller the volume of . Q, the velocity 
.y − x belongs to a larger set .P Θ Q (note that .Ay only displaces the set .P Θ Q). 
Therefore, the volume of the viability kernel increases as the volume of.Q decreases 
or the volume .P increases.
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Chapter 45 
Locating Relief Trains for Patient 
Transports in Case of Mass-Casualty 
Incidents 

Florentina Hager and Melanie Reuter-Oppermann 

Abstract In case of a mass-casualty incident with several hundred or even thousands 
of patients, providing fast medical treatments is one of the main goals. If close-by 
hospitals cannot provide sufficient capacities to treat all victims, they need to be 
transported to more remote hospitals. In these cases, mass transportation modes 
such as trains or ships could assist to promote faster transportation. However, to be 
useful, they must arrive at the site of the incident as fast as possible. Therefore, we 
present a stochastic mathematical model that simultaneously determines the optimal 
fleet size of relief trains to be stationed as well as the optimal locations to prepare 
for patient transport after mass-casualty events. We test our model in a case study in 
the German state of Bavaria. 

Keywords Mass-casualty incidents · Patient transportation · Relief trains 

Introduction 

Mass-casualty incidents with several hundred or even thousands of patients are often 
very complex and time-critical. Then, ensuring the survival of as many patients as 
possible is the main goal. In order to achieve that, patients need to receive the first 
treatment as soon as possible and if necessary, must be transported to a hospital. In 
these scenarios, close-by hospitals might not be able to treat all patients, but patients 
might need to be transported to hospitals in other parts of the country. Then, different 
modes of transport like trains or ships would be necessary for transporting them. In 
order to start transport fast, the means of transport should be available as soon as 
possible. Therefore, countries should prepare for those incidents by strategically 
locating appropriate modes of transport. 
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In this work, we present a stochastic programming model to determine the optimal 
fleet size as well as the optimal locations for relief trains to be stationed to prepare for 
patient transport after mass-casualty incidents. We use the German state of Bavaria 
as a case study in this work and build a set of scenarios with varying demands. 

The remainder of this paper is structured as follows. In the next section, we present 
the relevant literature. We present our model in Section “Problem Description and 
Mathematical Formulation” followed by the case study in Section “Case Study”. We 
conclude this paper in Section “Conclusion” with a short summary and outlook. 

Foundations 

Over the past years, literature has extensively addressed disasters management (e.g., 
[ 1]). While several authors illustrate the importance of considering relief trains, 
pointing out that “a significant portion of the population will need to be evacuated 
by mass-transportation vehicles” [ 2], relatively few authors address train location 
and allocation in their models. Bababeik et al. present a multi-objective model that 
maximises link exposure while minimising travel times [ 3]. Another model dealing 
with relief train location and allocation is presented by Tripathi et al. [ 4]. Similar 
to [ 3] they include link exposure (link importance) in their multi-objective model. 
Besides maximising link exposure, the objective aims to minimise travel times, while 
maximising overall coverage and node assignment. However, both models only con-
sider locating facilities and do not incorporate upstream decisions. The literature for 
determining the minimal number of facilities in emergency cases (e.g., relief trains) 
dates back to 1971 when the set covering problem (SCP) was introduced by [ 5]. 
More recent models have been extended to also account for stochasticity as done 
by [ 6, 7], for example. Literature reviews on emergency facility locations have been 
provided by [ 8, 9], for example. This paper extends current literature by strategically 
locating relief trains while simultaneously considering the actual allocation of trains 
to potential mass casualty incidents. 

Problem Description and Mathematical Formulation 

For the problem description, we assume a specified region with potential demand 
points for relief trains. These demand points can be larger cities or other locations 
with a high number of injured people. The demand in each potential demand point 
depends on whether the location is hit by a disaster (which we assume with a certain 
probability), and if hit, by the number of injured patients to be transported out of the 
original location. Each location is weighted by a factor that should reflect a location’s 
expected demand and medical resources. If a demand location shall be served by a 
relief train, the location must be reached within a specified threshold, otherwise, we 
assume that other transport modes are chosen. Both, the number of available relief



45 Locating Relief Trains for Patient Transports … 377

trains as well as their location before the disaster occurs must be made before the 
demand is known (here-and-now). Once a disaster hits the region, the demand can 
be observed and the trains can be allocated to the demand points (wait-and-see). 

To formulate the problem, we use the following notation. The set of potential 
locations for positioning relief trains is noted as I , while J describes the set of 
demand locations to be covered by relief trains. As described above, we assume the 
demand for relief trains to be stochastic. Following [ 7], we address this problem by a 
random variable ξ j indicating the demand in each location j , and ζi j  as the ride time 
between location i and j . We define a scenario as the full realisation of ξ as well 
as ζ , with the given probability for each scenario. Ω describes the set of potential 
scenarios, each scenario occurs with a probability of πω and results in a demand 
of relief trains d j ω in location j ∈ J . The scenario depending ride time from i ∈ I 
to j ∈ J is noted as ti j  ω to account for potential track damages or closures as part 
of the incident. We use the following notation for the remaining parameters and the 
decision variables: T describes the maximum acceptable ride time, Tr  the maximum 
number of trains located at a certain location. The weight of city j ∈ J is denoted 
as w j and M is an arbitrary high number. Decision variable xi jω takes the value of 1 
if location j ∈ J is covered by a relief train located at i ∈ I in scenario ω ∈ Ω, else  
0, while decision variable yi j  ω describes the number of relief trains located at i ∈ I 
covering location j ∈ J in scenario ω ∈ Ω. The number of relief trains located at 
i ∈ I is described by zi . 

The model can be formulated as follows: 

maximise f1 : 
∑ 

i∈I 

∑ 

j∈J 

∑ 

ω∈Ω 
yi jω · w j · πω (1) 

minimise f2 : 
∑ 

i∈I 
zi (2) 

subject to xi jω × ti j  ω ≤ T i  ∈ I, j ∈ J, ω  ∈ Ω (3) 
∑ 

i∈I 
yi jω ≤ d j ω j ∈ J, ω  ∈ Ω (4) 

xi jω ≤ yi j  ω i ∈ I, j ∈ J, ω  ∈ Ω (5) 

yi jω ≤ xi j  ω · M i  ∈ I, j ∈ J, ω  ∈ Ω (6) 
∑ 

j∈J 

yi jω ≤ zi i ∈ I, ω  ∈ Ω (7) 

zi ≤ Tr i  ∈ I (8) 

xi jω ∈ {0, 1}, yi jω, zi ∈ N0 i ∈ I, j ∈ J, ω  ∈ Ω (9) 

Thereby, the objective function f1 maximises the weighted number of allocations, 
while the second objective function f2 minimises the total number of relief trains. 
Constraints (3) ensure that each location is only covered if it can be reached within the 
specified threshold in each scenario, while by constraints (4) we restrict the number
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of allocated trains by the demand. A location is only considered as covered if at least 
one relief train is allocated (constraints (5)) and the location is admissible (constraints 
(6)), and the sum of allocated relief trains originating in location i must not exceed 
the number of relief trains positioned at location i (constraints (7)). Moreover, the 
maximum number of trains located at a potential location is restricted by constraints 
(8). Constraints (9) are domain constraints. 

To deal with the multi-objective problem by applying the ∈-constrained method, 
we solve the model iteratively only with objective f1, start with one train to be located 
and add the following constraint, with f2 representing the number of trains located 
in the previous run: 

∑ 

i∈I 
zi ≥ f2 + ∈ (10) 

Case Study 

Data 

To test the model in a case study, we assume all cities with a population of more 
than 100,000 inhabitants located in the state of Bavaria to be both, locations to be 
covered by a relief train as well as potential locations for positioning. According 
to the Statistisches Bundesamt (Federal Statistical Office), by the end of 2020, 8 
cities fulfilled these conditions, thereof two cities with a population of more than 
500,000 inhabitants [ 10]. We assume twelve different scenarios and approximate the 
travel time for relief trains by the travel time for freight trains according to [ 11], with 
additionally accounting for the required time to transport the casualties to the relief 
train. We estimate the demand for relief trains for each city based on the scenario 
(whether a city is hit by an emergency), the city’s population and available hospital 
beds. For estimating the probability for each scenario, we consider a city’s political 
exposure, logistical and industrial relevance and its population [ 12]. Except for the 
population, we approximate the four factors by the gross value added in the respective 
sectors. For the whole of Germany, a relief train should arrive within 24 hours from 
the beginning of the incident, including making the decision about using the trains and 
preparing them, leading to a maximum ride time of about 6 hours. In this work, the 
maximal acceptable ride time is set to 90 minutes due to the smaller area considered 
in this work. Depending on the number of wagons and the configuration, a relief train 
can transport between 42 critically injured and up to 1000 slightly injured patients. 
To calculate the weights for each city, we follow the equation for the risk index [ 13]: 

Risk I  ndex = P(Likelihood) × I (Impact) (11) 

Thereby, we approximate the impact by the number of inhabitants per hospital bed 
[ 14], while we estimate the likelihood by the city’s population [ 10].
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Results 

The problem was implemented in Julia 1.7.3 and solved using GLPK Solver 5.0.0 on 
a Intel Core i7-1185G7 with 3 GHz and 16 GB RAM. The results were obtained after 
a maximal total computational time of 0.07 CPU seconds. The results are presented 
in Table 45.1. Note that Ingolstadt(2) means that 2 trains are located in Ingolstadt in 
that solution. 

Sensitivity Analysis 

To test the model’s sensitivity to its parameters, we additionally ran the model with the 
following modifications: (1) Weighting each city equally (EqW), (2) weighting each 
city only based on its population (this modification equals the objective function of 
maximising the covered population, PopW), and (3) with equal probability for each 
scenario (EqProb). 

In all sensitivity tests the same results are obtained for one to three relief trains, 
slight modifications can be observed when locating and allocating four to five relief 
trains (Table 45.2). 

Table 45.1 Results with 1–5 relief trains 

# of trains Locations Weighted pop. covered 

1 {Ingolstadt} 1,365,705 

2 {Ingolstadt(2)} 2,681,447 

3 {München, Ingolstadt(2)} 3,993,742 

4 {München, Augsburg, Ingolstadt(2)} 4,154,648 

5 {München, Nürnberg, Augsburg, Ingolstadt(2)} 4,219,725 

Table 45.2 Sensitivity analysis 

4 relief trains 

Modification Locations Weighted pop. covered 

EqW {München, Nürnberg, Ingolstadt(2)} 3,687,499 

PopW {München, Augsburg, Ingolstadt(2)} 4,155,682 

EqProb {München, Augsburg, Ingolstadt(2)} 3,670,425 

5 relief trains 

Modification Locations Weighted pop. covered 

EqW {München, Regensburg, Ingolstadt(2), Fürth} 3,783,700 

PopW {München, Regensburg, Ingolstadt(2), Augsburg} 4,224,779 

EqProb {München, Augsburg, Ingolstadt(2), Fürth} 3,728,037 



380 F. Hager and M. Reuter-Oppermann

Conclusion and Outlook 

In this paper, we proposed a stochastic programming model in order to determine the 
optimal fleet size of relief trains and the optimal locations and allocations of relief 
trains to disaster sites. Thereby, we aimed to maximise the demand locations cov-
ered while keeping the fleet size moderate. To account for uncertainty, we proposed 
a scenario-based two-stage model, and tested the model for the German state of 
Bavaria. In the case study, we performed a sensitivity analysis with different weights 
and scenario probabilities. 

Addressing the strategic planning level in this work, the presented model is based 
on the assumption of sufficient local transportation resources such that all casualties 
can be transported from the disaster site to the relief train. Also, the model does not 
account for any other transportation modes such as air crafts or busses. In reality, the 
complete casualty transport from the disaster site to the final destination (such as hos-
pitals) must be considered, with efficient solutions incorporating multiple transport 
modes. 

In the next step, we will build an instance for the whole of Germany and analyse 
the scenarios and results within a discrete-event simulation. Moreover, we plan to 
extend the model by considering the complete patient transport chain to address these 
limitations to better reflect reality. In addition, we aim to extend the model to include 
multiple transportation modes, e.g. airplanes, busses and ships, in order to provide 
decision support for decision makers in Germany where to locate which modes of 
transport in order to prepare for mass-casualty incidents. 
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Chapter 46 
A Hybrid Metaheuristic for the Clustered 
Travelling Salesman Problem 

Abtin Nourmohammadzadeh and Stefan Voß 

Abstract In this work, a special type of the travelling salesman problem (TSP), 
namely the clustered TSP (CTSP), is addressed. In the CTSP, the cities are already 
divided into clusters and the salesman seeks to find the shortest tour through all the 
cities which includes each city exactly once while being restricted to visit the cities of 
each cluster contiguously. Due to the NP-hardness of the focused problem, a hybrid 
metaheuristic consisting of the artificial bee colony (ABC) and the tabu search (TS) 
algorithm is proposed to deal with it. The results of our solution approach on two 
sets of benchmark instances are presented and compared with those of two other 
methods from the literature. 

Keywords Clustered travelling salesman problem · Hybrid metaheuristic ·
Artificial bee colony algorithm · Tabu search 

Introduction 

The clustered travelling salesman problem (CTSP) is a very practical variant of the 
TSP, in which the cities are pre-clustered and presented in some groups. Like in 
the TSP, the salesman has to find the shortest tour which includes each city exactly 
once. However, the difference is that the salesman must visit the cities of each cluster 
directly after each other. 

The CTSP has found applications in many fields such as automated warehouse 
routing, emergency vehicle dispatching, production planning, disk defragmentation, 
and commercial transactions with supermarkets, shops and grocery suppliers [ 13]. It 
means that finding efficient approaches to this problem provides precious solutions 
for the important analogous industrial problems. 
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Although there has been a huge amount of research on the TSP leading to many 
powerful methods, available works on the CTSP are still limited. The CTSP is firstly 
introduced, modelled and solved by a branch and bound approach in [ 4]. Some other 
examples using exact solution approaches are [ 9, 16], while [ 1, 2] are two examples 
of applying approximation algorithms to the problem. A trend to use heuristics and 
metaheuristics for the CTSP is also evident. Some related works are: [ 7, 11, 15, 
17]. Reference [ 13] is a recent work, which transforms the CTSP to the TSP by 
defining very high costs for edges with vertices belonging to different clusters, and 
then, applies a GA-EAX algorithm. By an overview of the related literature, one 
can notice that there is a considerable room for further research in the CTSP field, 
specially to develop fast efficient alternative metaheuristics. Therefore, in this work, 
we aim at investigating this problem and propose an efficient hybrid metaheuristic 
to provide good quality fast solutions. 

The problem can be easily shown to be NP-hard based on the already proved NP-
hardness of the TSP. This is due to the fact that the CTSP is equivalent to the TSP if 
it has only one cluster or if each of its clusters includes exactly one city (vertex). 

We design a hybrid metaheuristic algorithm, which consists of an artificial bee 
colony algorithm (ABC) [ 10] as its framework and embedded local searches based 
on the tabu search (TS) [ 8] concept. The reason behind choosing this combination 
is the promising performance of the swarm intelligence algorithms on the efficient 
path finding problems in networks [ 14] and the verified searching ability of the TS 
for the CTSP [ 11]. Our method is examined on two sets of benchmark instances. The 
results of our hybrid approach are compared with a state-of-the-art metaheuristic 
called GA-EAX presented in [ 13], which has been proved to outperform its prior 
counterparts, and also with the exact Concorde solver [ 5], which is able to provide 
optimal solutions for the instances. 

The organisation of the rest of this paper is as follows: Our solution methodology 
is explained in Section “Solution Methodology”. Subsequently, Section “Computa-
tional Results” shows the numerical results and the related comparisons. Finally, the 
conclusions of this work and future directions are drawn in Section “Conclusions”. 

Solution Methodology 

Our solution methodology consists of an ABC algorithm, in which the moves of bees 
are according to the TS principles. Therefore, it is denoted as ABC-TS. 

The ABC algorithm is inspired by the behaviour of three types of bees namely 
employees, onlookers and scouts while searching for better food sources. The pro-
cedure of this algorithm is so that a number of food sources are randomly initialised 
at the beginning. Consequently, one employee bee is responsible for each source and 
searches around it. If it finds a better solution, it memorises the solution and forgets 
the previous one. The onlookers, whose number is equal to the number of employ-
ees, choose each a source (solution) from the best sources located by the employees 
probabilistically based on the quality of solutions. They also make some changes in
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the chosen solutions to improve them. If a source is not improved after a number of 
consecutive iterations, it is abandoned and replaced by a new random solution. This 
act is associated with scouts. The best found solution of the system is saved upon 
completing each iteration and the overall best is reported at the end of the algorithm 
as the final result. 

The TS algorithm is a kind of guided local search to improve the solutions. The TS 
works based on two major rules at each step: 1. Worsening moves can be accepted in 
the case that no improving move is possible in order to avoid local optima, and 2. Some 
moves are prohibited or put in the tabu list in order to avoid returning to already visited 
solutions. Our hybridisation approach is to embed the TS concept in each iteration of 
the ABC algorithm for the neighbourhood search attempts of employee and onlooker 
bees. The termination condition of the overall hybrid algorithm is stagnation over a 
number of consecutive iterations. 

The solution encoding structure is a string containing a permutation of the labels 
of all cities. This structure is translated to a feasible solution in a way that the 
salesman visits, firstly, the clusters, and then, their cities according to their order in 
the string. It means that the salesman begins from the first city of the string and its 
cluster, then completes visiting that cluster by passing through its other cities based 
on their order in the string. After this step, all the elements belonging to the visited 
cluster are removed from the structure and the previous procedure is repeated with 
the first city of the remaining structure and its cluster, which is the next cluster in the 
solution. This continues until all of the clusters and cities are visited. As a simple 
example, if there are six cities, the clusters are {2, 3, 5}, {1, 6}, {4}, and the encoding 
structure is 6-3-1-4-2-5, then it is converted to this order of visiting the cities (tour): 
6-1—3-2-5—4 (— means cluster change). 

A neighbourhood move of a bee in the ABC is exchanging the contents of two 
positions in the encoding structure and as it happens, the same pair of positions is 
not tried by that bee until a number of other moves are done. The main parameters 
of the whole hybrid algorithm are set by the response surface method (RSM) [ 3] 
specifically for each instance. As an example, the number of moves that a specific 
exchange remains in the tabu list (denoted as C) is an important parameter, which 
has an initial interval of [5, 50] in our parameter setting. The RSM determines a 
suitable integer value for this parameter within this interval once for each instance. 
The pseudocode of our hybrid ABC-TS approach is shown as Algorithm 1. 

Computational Results 

Two sets of test instances are used. Set 1 includes 15 CTSP instances which are built 
according to the data of benchmark TSP instances obtained from TSPLIB [ 18]. The 
number of clusters is ┌|V |/10⏋ and the cities are clustered based on their coordinates 
by the K-means algorithm [ 12]. Other than by our ABC-TS algorithm, the instances 
are also processed by the Concorde solver [ 5] and GA-EAX [ 13], which has been 
already proved to be the best metaheuristic alternative for the CTSP. Concorde and 
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Algorithm 1: The proposed hybrid ABC-TS metaheuristic 
Data: Problem inputs, parameters of the algorithm 
Result: A good quality feasible solution 

1 Generate F random candidate solutions as initial food sources. 
2 Assign one employee bee e (e ∈ E A, E A: the  set of employed bees,  |E A| =  F) to each food source. 
3 I t  = 0, saves the number of consecutive iterations without improvement. 
4 T L  = ∅, tabu list. 
5 while I t  ≤ ST I (ST I :The maximum allowable number of stagnant iterations) do 
6 for e ∈ E A  do 
7 while i ≤ M, M: the number of moves of the employee bees do 
8 Move e by exchanging the contents of two positions (genes) g1 and g2, (g1, g2) /∈ T L  in the solution encoding 

structure, and then, include (g1, g2) in T L . 
9 Evaluate the objetive value of the new solution. 

10 if the new solution is better than the previous one then 
11 The new solution is the new position of e. 
12 Memorise the best solution of e so far. 
13 Update T S  by eliminating the pair which was executed C moves (rounds) ago. 
14 i = i + 1 
15 else 
16 Go back to Line 8 
17 end 
18 if There has not been any improving move then 
19 Choose one of the moves randomly 
20 i = i + 1 
21 Go to Line 8 

22 end 

23 end 
24 Choose for each onlooker bee o (o ∈ ON  , |ON  | = |F |) a solution from the best results of all employee bees 

probabilistically according to the quality of solutions. 
25 for o ∈ ON  do 
26 while j ≤ N , N : the number of moves of the onlooker bees do 
27 Move o by exchanging the contents of two positions (genes) g1 and g2, (g1, g2) /∈ T L  in the solution 

encoding structure, and then, include (g1, g2) in T L . 
28 Evaluate the objetive value of the new solution. 
29 if the new solution is better than the previous one then 
30 The new solution is the new position of o 
31 Memorise the best solution of o so far. 
32 Update T L  by eliminating the pair which was executed C moves (rounds) ago. 
33 j = j + 1 
34 else 
35 Go back to Line 27 
36 end 
37 if There has not been any improving move then 
38 Choose one of the moves randomly 
39 j = j + 1 
40 Go to Line 27 

41 end 

42 end 

43 end 
44 Update the food sources by eliminating those which are not improved over FSE  consecutive iterations. 
45 Replace the eliminated food sources by new random solutions (the act of scout bees). 
46 if No improvement is observed in the whole iteration then 
47 I t  = I t  + 1 
48 end 
49 else 
50 I t=0 
51 end 

52 end 

53 end 
54 Report the overall best solution. 
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Table 46.1 The results of Set 1 (best values regarding the comparison between GA-EAX and 
ABS-TS are shown in bold) 
Instance |V | m Concorde GA-EAX ABC-TS 

Opt. Time LG AG Time LG AG Time 

bayg29 29 3 1610 0.8 10T 0 1.5 10T 0 1.3 

att48 48 5 10,628 0.9 10T 0 1.5 10T 0 1.3 

brazil58 58 6 25,395 1.0 10T 0 1.6 9T 0.0010 1.4 

gr96 96 10 55,209 1.1 10T 0 1.7 8T 0.0017 1.5 

gr120 120 12 6942 1.3 9T 0.0011 1.8 9T 0.0008 1.6 

ch130 130 13 6110 1.4 8T 0.0018 1.9 10T 0 1.7 

ch150 150 15 6528 1.6 7T 0.0032 2.1 8T 0.0026 1.8 

d198 198 20 15,780 2.7 8T 0.0037 2.3 7T 0.0043 1.9 

a280 280 28 2579 4.5 7T 0.0046 2.6 9T 0.0012 2.2 

fl417 417 42 11,861 22.3 10T 0 3.0 10T 0 2.5 

d493 493 50 35,002 28.9 8T 0.0020 3.2 7T 0.0028 2.9 

d657 657 66 48,912 35.6 7T 0.0036 3.4 8T 0.0030 3.2 

d1291 1291 130 50,801 72.8 6T 0.0061 5.5 6T 0.0055 5.2 

fl1400 1400 140 20,127 126.7 7T 0.0072 5.7 6T 0.0084 5.4 

fl1577 1577 158 22249 150.4 6T 0.0098 5.8 7T 0.0090 5.6 

Average 30.1 8.2 0.0029 2.9 8.3 0.0027 2.6 

GA-EAX are re-implemented by us for the instances of Set 1 through manipulating 
the edge weights and converting them to their equivalent TSP (see the method in 
[ 13]). All the algorithms are programmed in Python and some computers with a 
Core(TM) i7 processor, 3.10GHz CPU and 16GB of RAM are used. 

Concorde is applied once to each instance, while GA-EAX and ABC-TS are run 
ten times for each instance due to the possibility of a different result in each run. Table 
46.1 shows the obtained results. Its columns contain the instance name, number of 
cities, number of clusters, optimum result obtained by Concorde, its execution time 
in seconds, and the least and average optimality gap (LG and AG) as well as the 
average execution time (s) for the GA-EAX and ABC-TS, respectively. In case that 
the best result of the metaheuristic methods is equal to the optimal result (Opt.), the 
number of runs which reached the optimal result is shown in column “LG” and after 
that comes the letter “T”. For example, 10T means that the optimal result is found 
by all of the 10 runs. Therefore, the related average gap (LG) is 0. 

Set 2 contains the same instances solved in [13]. For this set, the available results of 
Concorde and GA-EAX reported in [ 13] are used and our ABC-TS is implemented. 
The results of this set are summarised in Table 46.2. 

As it is evident from the results of the two sets, ABC-TS and GA-EAX can provide 
promising results. Except for one case with GA-EAX, both metaheuristics can find 
the optimal solutions obtained by the Concorde solver within their ten runs for all 
instances. The solution quality of GA-EAX and ABC-TS is quite the same, although 
the overall average gap of all instances is slightly lower for the ABC-TS. To better 
clarify this, the Wilcoxon signed-rank test [ 6] is conducted based on all runs of all
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Table 46.2 The results of Set 2 (best values regarding the comparison between GA-EAX and 
ABS-TS are shown in bold) 
Instance |V | m Concorde GA-EAX ABC-TS 

Opt. Time LG AG Time LG AG Time 

49-
pcb1173 

1173 49 61,600 5638.3 4T 0.0326 35.0 5T 0.0274 32.7 

100-
pcb1173 

1173 100 63,382 588.3 8T 0.0013 32.5 6T 0.0041 31.3 

144-
pcb1173 

1173 144 62,142 38.4 10T 0 18.6 9T 0.0011 15.2 

10-
nrw1379 

1379 10 58,783 562.9 6T 0.0070 26.8 8T 0.0051 23.9 

12-
nrw1379 

1379 12 59,129 58.5 9T 0.0007 27.6 10T 0 25.8 

1500-
10-503 

1500 10 1116 65.5 10T 0 28.4 10T 0 26.5 

1500-
20-504 

1500 20 15,698 40.7 5T 0.0172 34.5 7T 0.0091 31.7 

1500-
50-505 

1500 50 22,900 67.0 5T 0.0044 35.1 6T 0.0036 33.4 

1500-
100-506 

1500 100 29,799 108.7 8T 0.0020 39.5 7T 0.0021 38.0 

1500-
150-507 

1500 150 34,068 114.7 10T 0 32.3 9T 0.0007 30.1 

2000-
10-a 

2000 10 105,360 7214.3 0.0826 0.1167 45.3 1T 0.1150 43.7 

2000-
10-h 

2000 10 33,708 812.7 10T 0 35.6 10T 0 33.5 

2000-
10-z 

2000 10 33,509 200.9 9T 0.0003 37.3 10T 0 35.3 

2000-
10-x1 

2000 10 33,792 1325.4 6T 0.0136 35.6 8T 0.0061 32.6 

2000-
10-x2 

2000 10 33,509 170.9 10T 0 39.6 9T 0.0005 37.1 

Average 1133.81 7.33 0.0131 33.58 7.66 0.0117 31.4 

instances with the initial hypothesis that the average gaps of the two metaheuristics 
are equal. This hypotheses cannot be rejected at the significance level of 0.05 due 
to the obtained p-value of 0.56. Regarding the required computation time, we do 
not observe a sharp increase by larger instances with the metaheuristics. However, 
the execution time of the Concorde increases rapidly as it copes with instances 
containing more cities and clusters. Comparing the GA-EAX and ABC-TS in terms 
of the computation time, it can be stated that the latter is moderately faster in dealing 
with all of the instances. Here again the same statistical test is done, which results 
in the rejection of the hypothesis of the equal average execution times of the two 
methods due to a very low related p-value (= 0.003). 
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In general, it is deduced that our hybrid ABC-TS performs on the investigated 
CTSP instances at least as good as the best state-of-the-art metaheuristic. In addition, 
it is a little faster. The good performance of this hybrid algorithm is due to the 
compatibility of the ABC and TS algorithm with the CTSP and the hybridisation, 
which enables us to benefit from the advantages of both algorithms. 

Conclusions 

In this work, a very practical variant of the TSP called CTSP is investigated and a 
hybrid metaheuristic is devised for it. The results of numerous instances of different 
sizes indicate that our proposed solution methodology is capable of finding good 
quality solutions when they are compared with the known optimal results and the 
results of the previous best metaheuristic. Furthermore, its execution times are mod-
erately shorter. This success owes to the agent-based searching mechanism, which 
is used in a swarm intelligence algorithm like ABC, and its suitability for the CTSP 
as well as the practicability of TS for efficient local search. For the continuation of 
this research direction, applying our method to larger CTSP benchmark instances 
and also other variants of the TSP can be considered. 
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Chapter 47 
A Study of Scalarisation Techniques 
for Multi-objective QUBO Solving 

Mayowa Ayodele, Richard Allmendinger, Manuel López-Ibáñez, 
and Matthieu Parizy 

Abstract In recent years, there has been significant research interest in solving 
Quadratic Unconstrained Binary Optimisation (QUBO) problems. Physics-inspired 
optimisation algorithms have been proposed for deriving optimal or sub-optimal 
solutions to QUBOs. These methods are particularly attractive within the context of 
using specialised hardware, such as quantum computers, application specific CMOS 
and other high performance computing resources for solving optimisation problems. 
Examples of such solvers are D-wave’s Quantum Annealer and Fujitsu’s Digital 
Annealer. These solvers are then applied to QUBO formulations of combinato-
rial optimisation problems. Quantum and quantum-inspired optimisation algorithms 
have shown promising performance when applied to academic benchmarks as well 
as real-world problems. However, QUBO solvers are single objective solvers. To 
make them more efficient at solving problems with multiple objectives, a decision 
on how to convert such multi-objective problems to single-objective problems need 
to be made. In this study, we compare methods of deriving scalarisation weights 
when combining two objectives of the cardinality constrained mean-variance port-
folio optimisation problem into one. We show significant performance improvement 
(measured in terms of hypervolume) when using a method that iteratively fills the 
largest space in the Pareto front compared to a naïve approach using uniformly gen-
erated weights. 
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Introduction 

In recent years, there has been significant research interest in solving Quadratic 
Unconstrained Binary Optimisation (QUBO) formulations of optimisation problems. 
This is a common formulation used by hardware solvers classified as quantum or 
quantum-inspired machines. They have been shown to achieve a speed up compared 
to classical optimisation algorithms implemented on general purpose computers [ 2]. 
Ising machines such as Fujitsu’s Digital Annealer (DA) [ 7] and D-wave’s Quan-
tum Annealer [ 9] are single objective solvers. Many optimisation problems however 
have more than one objective, e.g. the Cardinality Constrained Mean-Variance Port-
folio Optimisation Problem (CCMVPOP) [ 5] considered in this study entails select-
ing assets that maximise returns while minimising the associated risks. Typically, 
multi-objective problems are converted to single objective problems before the Ising 
machines are applied to them. For example, the ∈-constraint approach was used in 
the Quantum Annealer to solve a portfolio optimisation problem [ 11]. Scalarisation 
has also been used when solving multi-objective QUBO in previous work [ 4, 12]. 
One of the main challenges to using scalarisation is how to define a set of weights 
resulting in a diverse set of solutions on the Pareto front (PF). A common approach 
is to generate weights uniformly using, for example, the simplex lattice design [ 12]. 
However, a uniform choice of weights does not necessarily translate to a diverse set 
of Pareto-optimal solutions [ 8, 12]. Previous studies have therefore also considered 
iterative method which uses a dichotomic procedure to derive new weights perpendic-
ular to two solutions that have the largest distance between them [ 6, 8]. In this study, 
we propose a method for deriving scalarisation weights which targets less explored 
regions of the PF. The proposed method utilises the weights used during previous 
scalarisations in addition to the relative position of the corresponding solutions in 
the PF and relies less on the weights and fitness being perfectly correlated. 

The following section presents the problem description of the CCMVPOP. 
Methods of generating scalarisation weights used in this study are described in 
Section “Scalarisation Methods”. Results and conclusions are presented in Sec-
tions “Results” and “Conclusion”. 

Cardinality Constrained Mean-Variance Portfolio 
Optimisation Problem 

Portfolio Optimisation entails selecting assets that maximise returns while minimis-
ing the associated risks. In the CCMVPOP [ 5], cardinality constraints on the number 
of asset types to be considered are imposed. Given the number of asset types to 
consider (n), the fixed number of assets a portfolio must contain (K ), the expected 
return of asset i (μi ) and the covariance between assets i and j (σi, j ), the minimum 
(∈i ) and maximum (δi ) proportion of a chosen asset i , we aim to find the proportion 
of each asset i to hold (wi ∈ [0, 1]). Binary variables zi are used to indicate whether 
an asset i is selected or not. The CCMVPOP is formally defined as follows.
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minimise λ1 

⎛ 

⎝ 
n∑ 

i=1 

n∑ 

j=1 

wi w j σi, j 

⎞ 

⎠ + λ2 

( 

− 
n∑ 

i=1 

wi μi 

) 

(1) 

subject to 
n∑ 

i=1 

wi = 1, 
n∑ 

i=1 

zi = K (2) 

∈i zi ≤ wi ≤ δi zi , zi ∈ {0, 1}, i = 1, . . . ,  n (3) 

The first objective is the first term in Eq. (1) and minimises the risk (sum of 
covariance between all pairs i , j of chosen assets) of the chosen assets of the portfolio. 
The second objective is the second term in Eq. (1) and maximises returns (sum of 
expected return of each asset i) of chosen assets. A negative sign is appended to the 
second objective to convert it to a minimisation problem. λ = (λ1, λ2) is a set of 
scalarisation weights. The cardinality constraint (Eq. 2) forces the number of chosen 
assets to be equal to K , and Eq. (3) ensures the proportion of a chosen asset wi to be 
within given bounds. The QUBO formulation of the CCMVPOP (K = 10, ∈i = 0.01 
δi = 1) used is based on the binary representation presented in [ 10]. 

Scalarisation Methods 

In [ 4], a scalarisation framework, Scalarisation Based DA (SB-DA), was proposed for 
obtaining multiple non-dominated solutions for the bi-objective quadratic assignment 
problem formulated as QUBO. A CPU implementation of the 1st generation DA 
algorithm [ 1] was used in that study. However, in this study, we use the 3rd generation 
DA [ 7] which is designed to be faster and more efficient than previous generations 
of the DA, it also benefits from hardware speedup [ 7]. For simplicity, we use DA to 
refer to 3rd generation DA in the rest of this work. 

We propose two extensions of the SB-DA, which we call SB-DAs and SB-DAi 
(Algorithm 1). Parameters B, D and G are QUBO matrices representing the first 
objective, second objective and constraint functions, respectively. The number of 
scalarisation weights is denoted by k and time is the total time allowed for all DA 
executions. To allow more solutions to be considered for non-dominance, n_top is 
a parameter used to define the number of top solutions (solutions with the lowest 

Algorithm 1 SB-DA Algorithm 
Require: B, D, G, k, time, n_top, s_t ype  
1: ⌃ ← {(0, 1), (1, 0)  
2: if s_t ype  in {random 

} 
, uniform} then Mode  static else Mode  iterative 

3: if s_t ype  is random then add k o 
←

 2 sets f r 
← 
andom weights to ⌃ 

4: if s_t ype  is uniform then ⌃ 
− 

← SLD(H = k, m 
5: if Mode is static then A execute SB-DAs else 

= 2) 
← A ← execute SB-DAi 

6: return all non-dominated solutions from archive A 
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Algorithm 2 SB-DAi 
Require: B, D, G, k, time, n_top, ⌃ 
1: A ← ∅, W  Initialise archive and mapping between weights and solutions 
2: for each i 

← {} ▷ 
∈ {1, . . . ,  k } do 

3: if i ≤ 2 then 
4: λ = (λ1, λ2) ← ⌃i R, S ← B, D 
5: else 
6: R, S ← rescale(B, D) 
7: λ ← ∅, max_d ← 0 
8: 

▷ Initialise weights and maximum distance 
for j ∈ [1, i 

9: d Dist 
− 2] do 

← ance(W j , W j 1) Manhattan distance 
10: [ sol1 sol1 

+ ▷ 
(λ , λ ),1 2  sol1], [ sol2 sol2 (λ , λ ),1 2  sol2] ←  W j , W j+1 

11: λ_temp ← 
(
avg sol1 sol2 sol1 sol2 (λ , λ ),1 g(λ , λ )1  av 2 2 

12: if (d > 

)
 max_d) and (λ_temp ∈/ W ) then λ ← λ_temp, max_d ← d 

13: end for 
14: if λ == ∅ then λ 
15: end if 

← Random weights ▷ each set of weights sums to 1 

16: Q ← (λ1 · R + λ2 
17: 

· S) + α  G 
Y ← ExecuteDA(Q, n_top, 

· 
time_limit = T 

k ), add all solutions in Y to A 
18: Wi ← [λ, Y0] ▷  save weight and best solution in Y 
19: end for 
20: return A 

Algorithm 3 SB-DAs 
Require: B, D, G, k, time, n_top, ⌃ 
1: A ← ∅ ▷  Initialise archive 
2: for each i ∈ {1, . . . ,  k} do 
3: λλλ = (λ1, λ2) ← ⌃i 
4: if i > 2 then R, S ← rescale(B, D) else R, S ← B, D 
5: Q ← (λ1 · R + λ2 · S) + α · G 
6: Y ← ExecuteDA(Q, n_top, time_limit = T 

k ), add all solutions in Y to A 
7: end for 
8: return A 

energies) to be returned during each DA execution. In this study, we compared 
three methods of deriving scalarisation weights, s_t ype  set to random, uniform or 
iterative. Where s_t ype  is set to random, k sets of randomly generated weights are 
pre-computed. For each set of weights λ = (λ1, λ2), λ1 is a random value between 
range [0, 1] while λ2 = 1 − λ1. For  s_t ype  set to uniform method, k sets of evenly 
distributed weights are pre-computed. In this study, we use the Simplex Lattice 
Design (SLD) (Line 4 of Algorithm 1) to generate evenly distributed weights. Where 
s_t ype  is iterative, weights are derived with the aim of finding solutions that fall 
within the less crowded region of the Pareto front. To achieve this aim, a mapping 
between each set of weights and the best solution found by the DA using such set of 
weights are stored as W . W is sorted in ascending order of λ1. For any two adjacent 
solutions in W , the Manhattan distance between the solutions are recorded. Solutions 
sol1 and sol2 that correspond to the largest gap in the Pareto front are saved. A 
set of scalarisation weights used to derive sol1 and sol2 are λsol1 = (λsol1 

1 , λsol1 
2 )
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and λsol2 = (λsol2 
1 , λsol2 

2 ) respectively. An average of λsol1 and λsol2 becomes the 
scalarisation weights used in the new iteration (Lines 9–11). The new set of weights 
is however only used if this has not been used in previous iterations (Line 12). If 
there is no unique set of weights that can be derived using this procedure, randomly 
generated weights are used. 

SB-DA can be executed in one of two modes. It is executed in static mode (SB-
DAs: Algorithm 3), if s_t ype  is random or uniform and in iterative mode (SB-DAi : 
Algorithm 2) if s_t ype  is set to iterative. In SB-DAs, scalarisation weights are 
pre-computed while in SB-DAi , a set of scalarisation weights at a given iteration is 
influenced by the set of scalarisation weights used in previous iterations. An iteration 
of SB-DA refers to a run of the DA with a given set of scalarisation weights. In both 
modes of the SB-DA, each objective is optimised independently (λ = (0, 1) and 
λ = (1, 0)) before other weights are used. This is because QUBO matrices B and D 
are rescaled using information about the Lower Bound (LB) and Upper Bound (UB). 
These bounds are achieved by minimising each objective independently. LB of B (or 
D) is derived by minimising B (or D) independently. Conversely, UB of B (or D) is  
derived by minimising D (or B) independently. The LB or UB are updated if smaller 
or larger energies are found for any individual objective at any iteration of the SB-DA. 
In Line 4 of Algorithm 3 and Line 6 of Algorithm 2, rescale(B, D) is computed 
such that R = max1≤i≤k(UBi )/(UB1 − LB1) · B and S = max1≤i≤k(UBi )/(UB2 − 
LB2) · D. This is done to reduce bias towards any of the objectives, allowing the 
algorithm to control the bias using the scalarisation weights only. QUBO matrix Q 
(Algorithm 3: Line 5, Algorithm 2: Line 16) is an aggregate of QUBO matrices 
representing the objectives and constraint, penalty weight (α) is set using Maximum 
change in Objective function divided by Minimum Constraint function of infeasible 
solutions (MOMC) originally proposed in [ 3]. ExecuteDA (Algorithm 3: Line 6, 
Algorithm 2: Line 17) runs DA on Q for time_limit seconds, returning the non-
dominated solutions found amongst the best n_top solutions. 

Results 

To generate the results presented in this section, default parameters of the DA are used. 
Table 47.1 shows that the uniform method consistently found the highest number of 
non-dominated solutions while the iterative method consistently found the lowest 
number of non-dominated solutions across all problem instances. However, using 
the proposed iterative method consistently led to the highest hypervolume. Higher 
hypervolume values were reached because the iterative method was able to find 
weights that allowed the algorithm to focus on harder and more extreme regions of 
the search space.
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Conclusions 

This study compared three simple methods of generating scalarisation weights within 
the context of bi-objective QUBO solving. The methods were applied to QUBO 
formulation of the CCMVPOP. We show that considering more than one best solution 
during each scalarisation can lead to finding more non-dominated solutions. We also 
show that for this problem, higher hypervolume can be reached by using adaptive 
methods of generating scalarisation weights when compared to random or evenly 
distributed weights. 
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Chapter 48 
Low Budget Traveling: The Orienteering 
Problem with Hotel Selection and Budget 
Constraint 

Paul Päprer and Benedikt Zipfel 

Abstract In this paper, we consider the orienteering problem with hotel selection 
(OPHS) and introduce an additional cap on the available budget, frequently expe-
rienced in practice but neglected in the literature. We present a heuristic solution 
approach for the modified problem configuration, which comprises the construction 
of initial solutions and the improvement of those solutions using a multi-start VNS 
heuristic with adaptive adjustment. Within computational studies on adjusted bench-
mark data, we evaluate the impact of the considered budget constraint by comparing 
the results of the original OPHS with the results of its budget constraint extension. 
Further, we show the efficiency of the proposed metaheuristic. 

Keywords Routing · Orienteering problem · Capacity restricted · Multi-trip 

Introduction 

The orienteering problem with hotel selection (OPHS) represents a variant of the 
classical orienteering problem (OP) that considers planning multi-day tours with 
consecutive trips. Given a complete graph G = (V, E), the set of vertices V can be 
split into two disjoint subsets. There are H + 1 hotels (i = 0, . . . ,  H ) and N nodes 
(i = H + 1, . . . ,  H + N ), which represent the attractions to be visited. While each 
of the latter vertices has a score si that reflects the preferences, hotels have no score. 
Attractions can only be visited once, whereas hotels can be included multiple times. 
The tour consists of D connected trips, which start and end at one of the available 
hotels. The maximum trip length for each trip d is defined by parameter Td . Within 
this context, the problem aims to find the tour with the maximum total score in 
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(a) Exemplary solution of the OPHS 
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Total Score: 23 
Budget Restriction: 49, Used Budget: 48 

(b) Exemplary solution of the OPHSBC 

Fig. 48.1 Illustration of exemplary tours of the OPHS and the OPHSBC 

accordance with the individual trip lengths [ 1]. Initially motivated by tourists’ travel 
planning, who try to include as many points of interest as possible in their time-
limited itinerary, the problem can be applied to other decision problems like routing 
for maintenance technicians or truck drivers. To give a better understanding of the 
problem configuration, Figure 48.1a presents an exemplary tour with two trips in a 
graph with four hotels and nine attractions. 

Given this problem configuration for the original OPHS, we consider a new vari-
ant, which introduces a cap on the available budget B for the overall tour. Conse-
quently, every hotel and attraction gets assigned a price pi . We refer to this variant 
as the orienteering problem with hotel selection and budget constraint (OPHSBC). 
The extension does not only increase the applicability of the OPHS in the context of 
travel planning but also its practicality in other applications. For example, mainte-
nance technicians may have limited capacity for operating resources and materials 
in their vehicles. Figure 48.1b shows a tour resulting from the OPHSBC based on 
the previous example. The budget cap is set to 49, which makes the solution of the 
OPHS in Figure 48.1a infeasible. Accordingly, the tour gets adjusted in both trips to 
meet the required budget restriction. 

The OPHSBC has not yet been studied in the literature. In [ 1], Divsalar et al. con-
sider the basic OPHS for the first time. The authors propose an algorithm to construct 
initial solutions and a variable neighborhood search. Further, a memetic algorithm 
for the OPHS is presented in [ 2]. Sohrabi et al. present a Greedy Randomized Adap-
tive Search Procedure (GRASP) and an Ant Colony Optimization Procedure in [ 3] 
and [ 4], respectively. To the best of our knowledge, only one extension to the origi-
nal OPHS exists today, which takes into account the opening hours of attraction by 
considering time windows [ 5]. 

Similar approaches to the considered OPHSBC exist in the area of the Team 
Orienteering Problem (TOP), where all trips have the same start and end point [ 6]. 
Thus, the resulting tour does not consist of consecutive trips. In this research field, 
capacitated TOP (CTOP) is probably the problem with most similarities [ 7]. Based 
on the presented observations, the contribution of this study is as follows:
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• We present a new budget constraint for the OPHS, which enforces the trade-off 
between profit and the consumption of resources. 

• We propose a multi-start variable neighborhood search (MSVNS) with adaptive 
sorting procedures, which is inspired from the relevant literature. 

• We analyze the impact of budget variations on the objective value. 

A Multi-start Variable Neighborhood Search 

A mathematical model for the OPHS is given in [ 1]. To model the OPHSBC, we 
adapted this formulation and add Eq. (1), which ensures that the cumulated prices of 
all attractions and hotels visited does not exceed the budget limit. 

p0 + 
D∑ 

d=1 

H+N∑ 

i=0 

H+N∑ 

j=0 

xi jd  · p j ≤ B (1) 

The OPHSBC is a variant of the original OPHS and therefore builds a generalization 
of the common OP. Due to the NP-hardness of the OP, OPHSBC is also NP-hard 
[ 6]. Based on the complexity of the considered problem configuration, we propose 
a heuristic solution approach presented to generate good solutions with appropriate 
computational effort. Our algorithm consists of two phases: a construction phase and 
an improvement phase. 

Algorithm 1: Overall Solution Approach 
1 function ConstructionPhase(data) 
2 rate all possible hotel pairs 
3 evaluate all feasible hotel sequences 
4 build feasible solutions 
5 return Set S of starting solutions 
6 function ImprovementPhase(S, data) 
7 S∗ = ∅  
8 for s ∈ S do in parallel 
9 s∗ = VariableNeighborhoodSearch(s, data) 

10 S∗ = S∗ ∪ s∗ 

11 return best solution s∗ ∈ S∗ 

Construction Phase. The construction phase is built based on the algorithm of [ 1] with 
problem-specific adjustments. As can be seen in lines one to five of Algorithm 1, 
it is a three-step process that tries to find good, feasible, and diversified starting 
solutions. First, we rate all possible hotel pairs to hint at how good a trip between 
those hotels can presumably be in terms of the score. In contrast to [ 1], we refer to
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a virtual trip with an average value for the available time and budget when solving 
the classical orienteering problem between two hotels. Furthermore, our heuristic 
orders all attractions by a rating. Using this rating, nodes with the best trade-off 
between score, distance, and price get inserted first. As a result, all hotel pairs have 
a potential score. Second, we evaluate all feasible hotel sequences by adding up the 
potential scores of the previous step to receive an estimated score for each sequence. 
Afterward, the best hotel sequences are passed to the last step. Here we build feasible 
solutions by ordering the attractions by score and inserting them in the best possible 
positions of the tour with regards to the time consumption. Finally, the outcome 
of the construction phase is set S of feasible starting solutions. Each solution is a 
permutation of numbers, each of which represents an attraction or a hotel. 

Improvement Phase. After constructing initial solutions, we aim to improve these 
solutions with a multi-start variable neighborhood search (MSVNS). The procedure 
of the MSVNS is shown in lines six to eleven of Algorithm 1. By multi-start, we mean 
that we initiate an independent run of the VNS for each s ∈ S. The best found solution 
for each run is stored within set S∗. VariableNeighborhoodSearch represents 
the function of our VNS procedure. The heuristic is developed using several differ-
ent shaking mechanisms and neighborhoods. Regarding the latter, we consider three 
different neighborhoods, which are all based on the Extract-k-Insert principle. In this 
neighborhood, we first remove k connected attractions from the solution. Afterward, 
we try to insert as many previously excluded nodes as possible. Within the VNS, 
we consider the neighborhoods with k = 1, 2, 3. In every iteration, the procedure 
randomly considers one of the neighborhoods Extract-2-Insert and Extract-3-Insert, 
calculating the probabilities for the choice adaptively depending on the success rate. 
After this, neighborhood Extract-1-Insert always tries to improve the solution by 
applying smaller changes. When inserting the excluded attractions, they are ordered 
by score. In case several nodes have the same score values, it is necessary to break the 
ties. Therefore, we use another adaptive procedure, which analyses the current tour’s 
tightness regarding its trip length and budget consumption. If the time condition is the 
bottleneck, attractions with the same score are ordered by increasing distances to the 
current tour. If the current cost consumption prevents a better score, we sort the attrac-
tions with identical scores by increasing prices. In the shaking step, we consider three 
procedures, one of which is randomly applied to the current solution in each iteration. 

1. Make a random move in one Extract-k-Insert neighborhoods (k = 1, 2, 3). 
2. Reverse a random partial chain of three attractions and delete excess nodes. 
3. Remove all attractions, change one hotel, and refill the tour with attractions. 

After each iteration, a solution has been changed using one shaking mechanism 
as well as two local search neighborhoods. If the objective value of the resulting 
new solution is better than the objective value of the current solution, it is always 
accepted to become the new base solution for the next iteration. To enable new 
solution space areas in further iterations, we also accept solutions that are slightly 
worse compared to the current objective value. This is handled by multiplying a 
factor r to the current best objective value. The VNS terminates, if there are imax 

iterations without improving the overall best solution.
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Computational Experiments 

We implement the MIP formulations of the OPHS by [ 1] and the MIP formulation 
of the OPHSBC with Gurobi 9.5.1 using its Python API. We also use  Python for 
the implementation of the proposed MSVNS. All tests are run on an Intel® Xeon® 

Gold 6136 with 3.00 GHz clock speed and 128 GB RAM. As test data, we use 
SET1, SET2, and SET3 from [ 1], who provide their data online. To obtain suitable 
problem instances for the OPHSBC, we choose an integer price pi ∈ [0, 100] for each 
attraction, and a price pi ∈ [100, 150] for each hotel. Further, we solve each instance 
of the original OPHS and calculate the consumed budget using the aforementioned 
prices. Then we reduce this budget by 20%. 

We split our computational experiments into two parts. First, we compare the 
solutions of the original OPHS and the OPHSBC that result from solving the Gurobi 
model with a time limit of 7200 s. Table 48.1 presents the aggregated test results for 
each set of data. The table shows the properties of the data first. Furthermore, we 
distinguish in column opt. whether instances were solved optimally or not. Columns 
#, Gap, and RT describe the number of optimally and not optimally solved instances, 
the average Gap compared to the upper bound, and average runtime. For every data 
set the number of non-optimally solved instances for the OPHSBC is higher than for 
the OPHS. Furthermore, the average computational runtime for the optimally solved 
instances of the OPHSBC is higher in five out of seven sets. These facts indicate that 
the additional restriction of the OPHSBC may make the problem harder to solve. 
However, a general statement about the solution behavior needs more evaluation 
since introducing a budget constraint can also reduce the solution space and thus 
make the problem easier to solve. 

Second, we evaluate the performance of the proposed MSVNS in comparison with 
the MIP. Deduced from preliminary testing, we choose parameter values r = 0.85 
and imax = 100 for the MSVNS. The number of starting points is set to 4. Table 48.2 
displays again aggregated results for both solution approaches. To compare the pro-
cedures, the table describes for the MIP in columns z, RP  D, and RT the average 
values for the objective value, the relative percentage deviation, and the wall clock 
runtime, respectively. In terms of the MSVNS, we show the same values, additionally 
distinguishing the best and average results with stars and bars, respectively. It can be 
seen that the MSVNS yields in better results than the MIP with lower computational 
effort for all sets. By using a more runtime-efficient programming language than 
Python, the computational effort of MSVNS may even be reduced by a factor of up 
to 30 [ 8].
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Table 48.1 Comparison of the original OPHS and the extended OPHSBC 

Data set |H | D opt. OPHS OPHSBC 

# Gap RT 
(in s) 

# Gap RT 
(in s) 

SET1 1-2 3 2 True 27 0.00 110.75 24 0.00 197.88 

False 8 0.08 7200.00 11 0.07 7200.00 

SET1 2-3 4 3 True 28 0.00 467.09 23 0.00 1010.41 

False 7 0.04 7200.00 12 0.07 7200.00 

SET1 3-4 5 4 True 27 0.00 657.06 22 0.00 926.31 

False 8 0.04 7200.00 13 0.09 7200.00 

SET2 5-3 7 3 True 27 0.00 781.65 26 0.00 847.17 

False 8 0.06 7200.00 9 0.06 7200.00 

SET2 6-4 8 4 True 28 0.00 1282.94 18 0.00 968.12 

False 7 0.02 7200.00 17 0.08 7200.00 

SET3 10-4 12 4 True 5 0.00 1377.34 4 0.00 2073.01 

False 17 0.15 7200.00 18 0.10 7200.00 

SET3 12-5 14 5 True 3 0.00 2668.76 2 0.00 876.85 

False 19 0.17 7200.00 20 0.12 7200.00 

Table 48.2 Aggregated results of the computational study 
Dataset |H | D MIP MSVNS 

z RP  D  
(in %) 

RT 
(in s) 

z∗ z RP  D∗ 

(in %) 
RP  D  
(in %) 

RT ∗ 

(in s) 
RT 
(in s) 

SET1 1-2 3 2 670.11 0.00 2398.55 671.63 670.63 0.20 0.10 14.38 18.30 

SET1 2-3 4 3 659.63 0.00 3132.56 660.46 659.62 0.12 0.04 18.01 23.66 

SET1 3-4 5 4 642.17 0.00 3256.54 652.97 650.14 1.25 0.94 18.68 24.36 

SET2 5-3 7 3 666.77 0.00 2480.75 667.69 665.46 0.07 −0.20 17.18 24.02 

SET2 6-4 8 4 641.57 0.00 3995.03 651.74 643.69 1.33 0.04 19.58 25.39 

SET3 10-4 12 4 924.41 0.00 6267.82 952.91 942.28 2.97 1.81 116.41 166.24 

SET3 12-5 14 5 896.00 0.00 6625.17 927.00 915.33 3.66 2.21 120.10 162.24 

Conclusion 

This study extends the classical OPHS with an additional budget constraint and pro-
poses a new MSVNS to solve adjusted benchmark instances. Our computational test 
results indicate that the problem may become harder to solve due to the additional 
budget constraint. Future work should investigate this observation more precisely. 
Further, the evaluations show that we can achieve better results than the commer-
cial solver Gurobi with less computational effort with our heuristic. Future stud-
ies can take this work as a base for additional extensions with practical relevance. 
Another interesting point would be developing other neighborhoods that simultane-
ously address all restrictions.
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Chapter 49 
A Generalized Approach for Train 
Marshalling 

Elias Dahlhaus 

Abstract In a distributer freight train, its cars have to be sorted in such a way that 
during the trip of the train, only cars on the rear the train are left at any interme-
diate stop. The sorting requirements of the freight cars of a distributer train will be 
described in this paper. Then an algorithm is introduced that minimizes the number 
of tracks that are necessary to get the freight cars sorted in a hump yard, such that the 
sorting requirements are fulfilled. The algorithm is a dynamic programming approach 
and generalizes the algorithm of Falsafain and Tamannaei. 

Keywords Train marshalling · Dynamic programming · PQ-tree 

Introduction 

The train marshalling problem in hump yards is a quite important problem to sort 
the cars of a distributer train that serves several stations to deliver cars. In the mathe-
matical literature, the following problem is considered [2, 4, 7, 11]. We are given an 
inbound sequence of cars and, for each such car, its final destination. The problem 
is to transfer the inbound sequence into an outbound sequence, such that cars of the 
same destination appear consecutively and the number of classification tracks that 
are needed to transfer the inbound sequence to the outbound sequence in one sorting 
step are minimized. 

The problem is also interesting if the number of available tracks is fixed. In 
Hansmann [9] and Jacob et al. [10] it has been shown, how to transfer an inbound 
sequence to an outbound sequence in logarithmically many steps dependent on the 
number of tracks that would be needed for sorting in one step. 

Above train marshalling problem is only a special case of the real problems one 
has to deal with. 

1. Each car has to be left in a final destination track
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2. Some customers would like that the cars left in the destination track appear in a 
fixed sequence 

3. Destination stations are served in a fixed sequence and when a destination is 
reached, cars determined for that destination have to appear at the rear of the 
train. 

These aspects show that. 

1. Groups of cars may be divided into subgroups that should appear consecutively 
2. Subgroups of a group may have to appear in a fixed sequence. 

In Dahlhaus [3] (and mentioned also in [5]) it has been shown how to model the 
sorting requirements as described above by directed PQ-trees. They are root directed 
trees with P-nodes and Q-nodes. Children of P-nodes may be permuted in any how. 
The sequence of children of Q-nodes is fixed. Originally, PQ-trees were introduced 
by Booth and Lueker [1] to model different representations of interval graphs. 

In this paper, we show how to extend the algorithm of [7] (that considers only 
disjoint subsets of cars that have to be grouped) to directed PQ-trees to transfer 
an inbound sequence into an outbound sequence that satisfies the sorting require-
ments with a minimum number of classification tracks. In “Transfering the Inbound 
Sequence of Cars into the Required Outbound Sequence” its is described, how to 
transfer an inbound sequence to an outbound sequence in a hump yard. In “Modelling 
the Sorting Requirement”, it is described, how the sorting requirements are modelled 
by directed P-Q-trees. In “The Optimization Algorithm”, the algorithm to find an 
optimal outbound sequence is introduced. In “Conclusions”, the applicability of the 
algorithm will be discussed. This includes also the possible integration of known 
heuristics into the algorithm. An extension or a use of the approach in [2] and [8] to  
directed PQ-trees might also be of interest. 

Transfering the Inbound Sequence of Cars into the Required 
Outbound Sequence 

Here we assume that each car has a fixed inbound position and a fixed outbound 
position. To transfer the inbound sequence of cars into the outbound sequence of 
cars, cars to be put into a certain track have to have consecutive outbound positions 
and increasing inbound positions. Let π be the permutation that maps the outbound 
position of each car to its inbound position. Then we consider the maximal subinter-
vals of outbound positions where π is monotonically increasing, These subintervals 
are also called chains. Two consecutive chains are separated by a pair (i, i + 1), 
where π(i) > π(i + 1). Such a pair is called a jump. Note that the number of tracks 
that are needed to transfer the inbound sequence of cars into its outbound sequence 
is the number of the chains of the corresponding permutation and that the number of 
jumps is the number of chains–1.
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Modelling the Sorting Requirement 

Grouping Freight Cars by Their Final Destination Tracks, 
Final Destination Station etc 

At the lowest level, cars are grouped by their final destination tracks. The customer 
might require or not require that the cars are ordered in a fixed sequence. Next any 
harp of destination tracks that is served from one direction is collected to one group. 
The tracks of a harp of parallel tracks can be served in any how. One level higher, 
one has to distinguish between harps or tracks to be served in the direction of the 
distributer train and those harps or tracks to be served against the direction of the 
distributer train. Since cars are pushed (and not drawn) into their final destination 
tracks, the group of cars to be pushed in direction of the distributer train has to appear 
behind the group of cars to be pushed against the direction of the distributer train. In 
the next level above, there is the group of cars that have a certain destination station. 
Destination stations have to be ordered in the reversal sequence as they are served by 
the distributer train if there are no branchings. In the level above, cars are grouped 
by the branches of the destination stations. 

Modelling the Sorting Requirements by Directed PQ-Trees 

There might be even more complicated structures. But in any how, 

1. Two groups are either disjoint or one group is contained in the other 
2. The immediate subgroups of a group are in a fixed order or they can be ordered 

in any how. 

That means that the groups are ordered tree like. The children of any group are 
its immediate subgroups. The leaves are the single cars. There are two kinds of inner 
nodes. 

1. The P-nodes: children are ordered in any how 
2. The Q-nodes: the ordering sequence of children is fixed. Note that the orderings of 

the children of all nodes induce an ordering of the leaves. Following the notation 
of [1], P-nodes are expressed by cycles and Q-nodes are expressed by boxes. 

We consider the following toy example (Figs. 49.1 and 49.2). 

Marshalling yard A-town B-town 

C-town D-town 

E-town F-town 

Fig. 49.1 A toy  example
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      Track 2       Track 1 
       F-town        E-town 

       D-town 
C-town

       to F-town       to D-town        B-town A-town 

P-node 
Q-node 

Fig. 49.2 The directed PQ-tree 

There is a train from the marshalling yard to B-town and a connecting train to 
D-town via C-town and a connecting train to F-town through E-town. D-town has 
two parallel destination tracks. All other stations have one destination track. One 
gets the following PQ-tree. 

A less trivial example can be found in [3]. 

The Optimization Algorithm 

There are several papers considering the case that the directed PQ-tree consists of 
a P-node with P-nodes as children that have leaves as children. Note that finding 
the optimal outbound ordering compatible with the given directed PQ-tree is NP-
complete [4]. There are several dynamic programming approaches that are exponen-
tial in the number of the children of the upper P-node, i.e. exponential in the number 
of car groups to be put together. One approach is that of [7] as sketched below. 

We are given a set {1,…,n} of cars (1, … n, are the inbound positions) and a 
set B of pairwise disjoint subsets of {1,…,n} representing the groups of cars that 
have to be put together. It is to remark that this corresponds to a PQ-tree that has 
a P-node as root and each child is again a P-node that correspond to a set B ∈ B. 
The children of such a P-node are the elements of B. For each B ‘  ⊂ B and for 
each i = 0,1,…,n, we determine the minimum number F(B ‘,i) of tracks (chains), 
that is needed to transfer i together with the cars of B ‘  to a sequence starting with 
i, such that all elements(cars) belonging to the same BE B ‘  appear consecutively. 
For formal reasons, a car at position 0 is provided that does not belong to any B 
in B and remains at the beginning also of the outbound sequence. The algorithm of 
Falsafain and Tamannaei [7] determines F(B ‘,i), i.e. the minimum number of tracks 
to transfer i together with the cars of. B ‘  to a sequence starting with i, such that all 
elements(cars) belonging to the same BE B ‘  appear consecutively, as follows. 

All B ‘  ⊂ B are sorted with respect to the size in increasing order and F(B ‘,i) is 
determined for all B ‘  in sorted order and for all inbound positions I as follows. If B 
‘ = Ø then F(B ‘,i) = 1. Otherwise, for any B ∈ B ‘, the last element i ‘ = i ‘(B,i) 
of the best outbound sequence starting with i followed by B is determined. That is 
either the last element in B if i is smaller than all elements of B or the last j ≤ i that 
is in B. Afterwards the number of tracks is determined that are needed to have first 
I, then B and then B ‘-{B}, i.e. F(B ‘-{B}, i ‘(B,i)) if i is smaller than all elements
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of B, otherwise it is F(B ‘-{B}, i ‘(B,i)) + 1. The B E B ‘  is selected such that the 
number of tracks is minimum. 

For PQ-trees in general, we proceed as follows. 
Nodes are denoted by N, N1, N2. Inbound positions are denoted by i, j, k. Subsets 

of the children of a certain node are denoted by B ‘. 

1. We always can transform a directed PQ-tree into a directed PQ-tree with the 
property that each Q-node has only two children 

2. For each node N and each i, we consider any sorting starting with i and followed 
by the leaves being descendents of N, such that the sequence of leaves is appro-
priate to the PQ-subtree with N as its root. We pick a such a sorting, such that 
in the first range, the number of tracks (jumps) is minimized and in the second 
range, the inbound position of the last element of the resulting outbound sequence 
is minimized. These parameters are denoted by Track(N,i) and Last(N,i) respec-
tively. We can also minimize the number of jumps instead to minimize the number 
of tracks. The minimum number of jumps for N and i is denoted by Jump(N,i). 
We denote the pair (Jump(N,i), Last(N,i)) by F(N,i) 

3. If N is a P-node, we proceed in the same spitit as in the algorithm of Falsafain 
and Tamannaei [7] and consider any subset B‘ of the children of N and extend F 
to pairs (B‘,i). 

The algorithm is now as follows. 

• Sort the nodes of the PQ-tree in reverse order with respect to the distance of the 
root or determine a postorder sorting on the nodes of the PQ-tree 

• Execute, for each PQ-tree node in sorted order and for each i = 0,…..,n (each 
outbound position including 0). 

1. For a leaf node N in inbound position j, Jump(N,i) = 0, if i < j and Jump(N,i) 
= 1 otherwise. In both cases, Last(N,i) = j. F(N,i) is set to be (Jump(N,i), 
Last(N,i)) 

2. For a Q-node N with children N1 and N2, Jump(N,i) = Jump(N1,i) + 
Jump(N2,Last(N1,i)) and Last(N,i) = Last(N2,Last(N1,i)). F(N,i) is set to 
be (Jump(N,i), Last(N,i)) 

3. For each subset B‘ of the children of the P-node N in sorted order with respect 
to the size, and each inbound position i, we proceed as follows. 
a. If B‘ = {N‘} has only one element then F(B‘,i) = (Jump(B‘,i), Last(B‘,i) 

= F(N‘,i). 
b. Otherwise, for each N‘ E B‘, execute c.-f. 
c. we provide a new Q-node N“(N‘) with N‘ as its first child and a Q-node 

NB‘-{N‘}with the elements of B‘-{N‘}as its children as its second child. 
d. We determine as in 2. F(N“(N), i) = (Jump(N“(N), i), Last(N“(N), i)), 

where Jump(N“(N), i) = Jump(N‘,i) + Jump(B‘-{N‘}, Last(N‘,i)) and 
Last(N“(N), i) = Last(B‘ –{N‘},Last(N‘,i))). 

e. F(B‘,i) is the F(N“(N), i) = (Jump(N“(N), i), Last(N“(N), i)), such that 
Jump(N“(N), i) is minimal in the first range and Last(N“(N), i) is minimal
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in the second range. chosen, such that Jump(B‘, i) is minimal in the first 
range and the value of Last(B‘,i) is minimal in the second range. 

f. If B‘ is the set of all children of N, F(N,i) = F(B‘,i). 
We observe the following. 
Lemma 1 F(N,i) as computed by the algorithm is the optimum. 
Sketch of proof Consider any optimal outbound sequence. When we consider a 

node N, we assume that all nodes left from N have been transformed into an outbound 
sequence that is determined by the algorithm. If the number of jumps under N does 
not decrease then the inbound position of the last car under N does not increase. 
Otherwise the number of jumps of the next node to be considered might increase by 
1. In both cases, the overall number of jumps does not increase. Q.E.D. 

The algorithm runs in time exponentially dependent on the maximum number of 
children of a P-node and polynomially dependent on the number of cars (leaves) if 
the number of children of any P-node is bounded by a fixed number. 

Conclusions 

The last algorithm becomes efficient if the number of children of any P-node is 
restricted by a small number. In practice, P-nodes with a large number of children 
appear only in the case that final destinations are harps of many parallel tracks or 
if many cars have to be left at the same track. That means that these P-nodes are of 
level at most two from the bottom. In so far it appears to be possible that heuristics 
as in [6] can be adapted to the PQ-tree model. This has to be considered in a separate 
paper. 
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Chapter 50 
A Genetic Algorithm for the 
Multi-compartment Vehicle Routing 
Problem with Stochastic Demands 
and Flexible Compartment Sizes 

Shabanaz Chamurally and Julia Rieck 

Abstract The multi-compartment vehicle routing problem (MC-VRP) consists of 
designing a set of routes to perform the collection of different product types from 
customer locations with minimal costs. The MC-VRP arises in several practical 
situations, such as selective waste collection or different color of glass collection. 
Compartment sizes can be either set as fixed or as flexible. Often in practice, the 
collection quantity from customers is stochastic in nature, that is, the exact value is 
not available during route planning and is known only once the vehicles are at the 
customers’ locations. Our work introduces the MC-VRP with stochastic customer 
demands and with flexible compartment sizes. We propose a genetic algorithm (GA) 
to solve this problem and investigate the benefits of setting the compartment sizes 
to be flexible instead of fixed with pre-defined sizes. By using flexible compartment 
sizes, the GA shows an overall average improvement of 7.8%, compared to the state-
of-the-art approach for fixed compartment sizes. 

Keywords Multi-compartment · Stochastic demands · Flexible compartment 
sizes · Genetic algorithm 

Introduction 

In the multi-compartment vehicle routing problem (MC-VRP), supplies of different 
product types have to be collected from a set of customers and transported to a central 
depot. The problem consists of designing a set of routes to perform the collection 
of different product types from the customers with minimal costs. The products in 
this problem are incompatible with each other (e.g., different-colored of glass waste, 
temperature sensitive food or building materials) and must be transported separately. 
Vehicles with multiple compartments allow products to be transported together and 
thus offer a greater flexibility in routing decisions. Using multi-compartment vehicles 
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has particular advantages when products of different types have to be picked up from 
individual customers (see [ 4], for a more recent review). 

Compartment sizes in the MC-VRP can be either fixed or flexible [ 1]. If flexible 
compartment sizes are used, the vehicle can be divided into multiple compartments. 
Thus, the number of compartments also remains flexible. To solve such problems, 
[ 2] developed a genetic algorithm (GA) which showed promising results. In practice, 
the collection quantity from customers is most often stochastic in nature, that is, the 
exact value is not available during route planning and is known only once the vehicles 
are at the customers’ locations. Therefore, there is a strong motivation to extend the 
MC-VRP to handle this type of uncertainty, since neglecting this stochastic aspect 
can lead to substantial increase in cost. Incorporating the uncertainty in the customer 
demands to MC-VRP leads to the MC-VRP with stochastic demands (MC-VRPSD). 
One common way to handle the uncertainties in customers’ request quantity is to 
implement a-priori policies, where the vehicles visit customers in a pre-defined order 
and return to the depot for replenishment or unloading of products, when a route 
failure occurs. Particularly, a route failure happens when the capacity of a vehicle is 
inadequate to fully collect the product quantities from the next customer. Mendoza 
et al. [ 3] explored methods to approximate the expected cost of an a-priori policy for 
the MC-VRPSD and reported that a take-all approximation yields good estimates of 
the expected cost. The take-all approximation assumes that even if a route failure 
occurs while servicing a customer i , the whole demands for all products of i are 
picked up before returning to the depot. However, after unloading the compartments 
at the depot, the vehicle must return back to i before travelling to the next customer. 

In what follows, we consider the MC-VRPSD and for practical as well as econom-
ical reasons, we also take the flexible compartment sizes (MC-VRPSD-FCS) into 
account. Previous research has shown the successful application of GA in solving 
the MC-VRP-FCS and, hence, we solve our problem using a GA as in [ 2]. Moreover, 
we analyse the benefits of using flexible compartment sizes over fixed compartment 
sizes. 

Problem Description and Formulation 

The MC-VRPSD-FCS can be formally defined as follows: Let an undirected, 
weighted graph G = (V , E) be given, where V = {0, . . . ,  n} is the vertex set consist-
ing of the depot (node 0) and n customer locations, and E = {(i, j ) : i, j ∈ V , i < j} 
represents the set of edges which can be traversed between locations. A travel cost 
ci j  ≥ 0, (i, j) ∈ E , and a distance di j  ≥ 0 are assigned to each edge. There exists a 
set P which contains the different product types that must be transported in indepen-
dent compartments. For product p, customer v has an independent stochastic demand 
ξv,p that follows a known probability distribution with mean μv, p and standard devi-
ation σv, p. The actual demand realizations are non-negative and less than the vehicle 
capacity Q. However, the exact values of the demands are only known when the 
vehicle arrives at the customer location. All vehicles are identical in capacity and
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the fleet size is unlimited. Each vehicle can be further divided into a limited number 
of compartments m ≤ |P| and the size of each compartment can be set arbitrarily 
between 0 and Q. The vehicles can carry all the different types of products, but in 
separate compartments, which is decided based on the assignment of the customer 
demands to vehicles. Since a vehicle might not carry all product types at the same 
time, a customer can be visited by more than one vehicle. Moreover, the total length 
of each route should not exceed a maximum distance L . We assume that the variable 
travel costs are strongly correlated with the travel distance. 

The MC-VRPSD-FCS can be formulated as a two-stage stochastic programming 
with recourse (SPR) model. In the first stage (planning stage), a set R of a-priori 
routes is designed, where each route r consists of a sequence of customers and starts 
and ends at the depot. In addition, it must be determined which vehicle serves which 
customers and which product types are assigned to which vehicle. 

In the second stage (execution stage), each route r is executed until a route failure 
occurs, that is, until the capacity of the vehicle is exceeded. Then, the vehicle is 
loaded up to its capacity at the current customer v and afterwards a recourse action 
takes place. Here, the vehicle drives back to the depot, is unloaded there and returns 
to customer v empty. The solution of the second-stage is defined as the set of routes 
traveled by the vehicles and consists of the costs for the planned routes and the 
recursive trips. 

The objective of the considered MC-VRPSD-FCS is to assign all supplies to 
multi-compartment vehicles and to determine a set of routes so that the expected 
costs of the transportation plan E[C(R)] in the first stage is minimized. Thus, we 
obtain: 

E[C(R)] =
∑

r∈R 

lr +
∑

r∈R 

E[Gr (
−→
ξ )], (1) 

where lr is the planned route length (planned cost) which is the sum of the distance 
covered by the arcs traversed, 

−→
ξ is the demand realization, and Gr (

−→
ξ )  is the length 

of the recourse trips caused by route failures. Since the total travel distance of a route 
r is a random variable, the maximum distance constraints are thus modelled as: 

lr + E[Gr (
−→
ξ )] ≤  L ∀r ∈ R (2) 

The expected cost of recourse E[Gr (
−→
ξ )] of route r can be computed from the 

distance between the respective customer vi ∈ r and the depot and then back to vi 
multiplied by the probability of failure Pr (vi ) while servicing customer vi : 

E[Gr (
−→
ξ )] =  

nr∑

i=1 

2 · dvi ,0 · Pr (vi ) (3) 

Similar to the multi-compartment scenario as in [ 3], the failure probability while 
servicing customer vi in the MC-VRPSD-FCS depends on the location where the last 
failure occurred and the sum of demands collected since then. As the compartment
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sizes are flexible in this problem, we need to ensure that the total expected demand 
collected does not exceed the vehicle capacity. Let xr, p be a binary variable that 
represents whether route r has a vehicle carrying product p. Using  the  take-all policy 
(TAP) as in [  3], Pr(vi ) can be computed in terms of the failure probability before 
servicing customer vi and after servicing customer vi and is given as follows: 

Pr(vi ) = 
i−1∑

j=0

[ ∏

p∈P 

Pr  

⎛ 

⎝ 
i∑

k= j+1 

ξvk , p ≤ Q 

⎞ 

⎠ · xr, p 

−
∏

p∈P 

Pr  

⎛ 

⎝ 
i−1∑

k= j+1 

ξvk , p ≤ Q 

⎞ 

⎠ · xr, p
]

· Pr(v j ), ∀vi ∈ r 

(4) 

The TAP assumes that even if a route failure occurs at customer vi , the entire 
demand of vi is fulfilled before the vehicle performs the return trip to the depot. 
Moreover, once the vehicle leaves the depot again, it proceeds to vi before continuing 
its planned route. However, the underlying SPR is hard to compute and, hence, is 
computationally expensive, but as shown in [ 3], the objectives remain meaningful. In 
order to solve the MC-VRPSD-FCS, a GA is used, which will be further described 
in the next section. 

Genetic Algorithm 

In our GA, a population n pop of individuals (solutions) is generated and each indi-
vidual has a cost as described in Eq. (1), which has to be minimized. To achieve 
a high level of diversity, we do not allow duplicates within the population. Two 
individuals are marked as duplicates if they have the same fitness value. At every 
generation t , nmat individuals are selected to be part of the mating pool using a tour-
nament selection process. Then, two individuals from the mating pool are chosen, 
a crossover operator as well as a mutation operator are applied with probabilities 
pc and pm , respectively. The new offsprings are integrated in the current generation 
with an elitism procedure. The GA terminates once a stopping criteria (e.g., num-
ber of generation) is satisfied and the fittest individual with the minimum expected 
transportation costs is selected as the best solution. A minimum expected cost, here, 
indicates that the solution not only found routes with minimal costs but also routes 
with minimal number of failures. The following subsections describe the insights of 
the GA in more detail.
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Solution Encoding and Initial Population 

The MC-VRPSD-FCS solutions are represented as a multipermutation genotype as 
in [ 5], where each permutation contains an ordered set of customers forming a route. 
Each gene represents a demand of a specific product type at a specific customer 
location. Due to the flexible compartment sizes of the fleet in this problem, the 
chosen representation allows a straightforward application of the different crossover 
and mutation operators. For each demand, it must be identified in which vehicle it will 
be transported as well as in which order it will be served. The solutions determined 
which product will transported by which vehicle as well as the capacity that will 
be allocated to the respective compartments. To accelerate convergence, the initial 
population is generated based on a randomized best insertion approach as in [ 3]. For 
each customer that has not been assigned to a vehicle yet, it is firstly ascertained 
whether a vehicle exists that has already opened a compartment for the respective 
product type or whether a new compartment can be opened. Then, the insertion costs 
of adding the new request to the vehicle are determined in two phases. We first 
calculate the best K insertions based on the fixed costs lr . Second, the insertion costs 
of the K insertions are computed using Eq. (1) to identify the best insertion position. 

Crossover Operator 

In the crossover phase, genetic materials are exchanged between two parents p1 
and p2. A route is randomly selected from p1 and p2, respectively. Then, random 
subsets of customers s1 and s2 from each route are chosen and integrated into the 
other parent. Before including the donated parts in either p1 or p2, it must be decided 
if the inclusion of all genes from either s1 or s2 might lead to violations of certain 
constraints, such as the distance constraints. This indicates whether the whole subsets 
(s1 or s2) or only parts can be added to the other parent. Any customer from the subsets, 
where no available compartment can be opened in the recipient parent, are discarded. 
The remaining subsets are added to the cheapest insertion point. An example of the 
crossover operator is displayed in Fig. 50.1, where genetic materials are chosen from 
the first route in Solution 1 and from the second route in Solution 2. Each demand 
from the substring from Solution 1 is included in the best position in the second 
route of Solution 2 and vice-versa provided that the distant constraints are respected 
in each route. 

Mutation Operator and Population Management 

In the proposed GA, three mutation operators are considered: request swap, inver-
sion, and cheapest reinsertion which are applied with probabilities pswap, pinv , pre,
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Fig. 50.1 Crossover between two solutions 

respectively. In the request swap operator, two genes are randomly selected and, 
if possible, swapped. In the inversion operator, a sub-string from a route is chosen 
randomly and the sequence of genes within this sub-string is reversed, while in the 
cheapest reinsertion operator, a random gene is chosen and reinserted into the solu-
tion at the cheapest insertion position. If no crossover occurred between p1 and p2, 
the mutation is performed on p1 and p2, otherwise, it is conducted with a probability 
pm . To select new individuals for the new generation, an elitism procedure is used. 
Here, the best xold% from the current generation and the best xnew% of the newly 
created individuals are added and the remainder of the next generation is filled up 
with randomly selected individuals. 

Parameter Tuning 

We performed an extensive grid-search parameter tuning approach and found that 
the GA performs best with the following parameters: n pop = 80, t = 100, nmat = 
0.6, pc = 0.6, pmut = 0.2, pswap = 0.3, pinv = 0.3, pre  = 0.4%, xold = 5%, and 
xnew = 5%. 

Evaluation and Conclusion 

In order to show the benefit of using flexible compartment sizes over fixed compart-
ment sizes, we ran the presented GA five times over the 180 instances proposed by 
[ 3]. The instances consist of 50, 100, and 200 customers each with three different 
product types. Moreover, the instances can be grouped into six different groups of 30 
problems according to their size and coefficient of variation of the demands (CV). 
We compared the GA for the MC-VRP-FCS to the results reported in [ 3] which
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Table 50.1 Performance metrics of MC-VRPSD-FCS 

Instance Customers CV MA-Fixed GA-Fixed GA-FCS 

Avg. costs Avg. costs # Best sol.  Avg. costs Avg. impr 
(%) 

Set 1 50 0.1 700.5 712.7 30 602.6 13.8 

Set 2 50 0.3 727.4 742.9 30 618.4 14.8 

Set 3 100 0.1 1198.5 1262.4 23 1136.4 4.7 

Set 4 100 0.3 1196.9 1278.4 25 1127.0 5.2 

Set 5 200 0.1 2007.7 2050.9 23 1937.1 3.6 

Set 6 200 0.3 2081.2 2147.7 27 1979.5 4.6 

solved the MC-VRPSD with fixed compartment sizes (MA-Fixed) using a memetic 
algorithm. Additionally, we also measured the performance of the GA when setting 
the compartment sizes as fixed. 

Table 50.1 shows the benefit of using flexible compartment sizes (GA-FCS) over 
fixed compartment sizes (MA-Fixed and GA-Fixed). Compared to the average costs 
of the MA-Fixed approach, we get an improvement of 7.8% on average and an 
improvement of up to 14.8% in Set 2 in the GA-FCS. The improvement is particularly 
visible for instances with a low number of customers and CV = 0.3. Furthermore, 
the table shows that with the GA-FCS, best solutions can be found in most cases 
(see # Best sol.). The results also demonstrate that the GA we implemented still has 
room for improvement. But it performs well nevertheless, with an average positive 
deviation of 3.7% from the MA-Fixed approach and within acceptable computation 
time. 

Conclusion and Outlook 

This paper introduces the MC-VRP with stochastic customer demands and with flex-
ible compartment sizes which we solved using a genetic algorithm. Our results show 
that we can reduce the expected transportation costs if we use flexible compartment 
sizes over fixed sizes. In some instance settings, using flexible compartment sizes 
can have improvements of up to 14.8% in the expected transportation costs. Research 
currently underway will address more robust optimization techniques for the multi-
compartment vehicle routing problem with demand uncertainty in practical settings 
as well as more data-driven approaches to solve such problems.
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Chapter 51 
Benefits of Proactive Transshipments 
for an Automotive Manufacturer Under 
Emission Constraints 

Bastian Vorwerk, Christian Weckenborg, and Thomas S. Spengler 

Abstract The high number of transports in industry causes a significant proportion 
of the emissions that need to be reduced regarding global warming. A part of the 
transports is caused by lateral transshipments, which occur when parts are distributed 
among different locations within one echelon for various reasons. To be able to 
reduce the number of transports, proactive transshipments can be used. In proactive 
transshipments, parts are transshipped at predetermined points in time before their 
demand occurs. In the scientific literature, the consideration of emissions, as well 
as a differentiation of vehicle types, are neglected in planning models to proactive 
transshipments. Our planning model adopts emission limits and provides a detailed 
consideration of different vehicle types for the execution of transshipments. We 
decide about the types and amount of vehicles used between locations in different 
periods. An illustrative example is presented, comparing the costs and emissions 
between proactive and reactive transshipments with and without emission limits. We 
find that emission limits can influence vehicle type selection and the products to be 
transshipped during proactive transshipments. 

Keywords Lateral transshipments · Multi-location inventory · Proactive ·
Reactive 

Introduction 

In recent years, the societal and economic focus has continued to shift towards 
reducing emissions due to their impact on climate change. The transport sector can 
be identified as one of the major drivers of emissions, as it accounted for around 21.6% 
of all emissions globally in 2018, of which 29.4% result from freight transport by
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road [1, 2]. For this reason, emissions reduction plays a decisive role in logistics. In 
transport logistics, there are repeated cases of poorly utilized transports, which are not 
only detrimental to the environment but also economically disadvantageous for the 
companies. Without including empty transports, the average load capacity utilization 
of all transports in Germany was 55.9% in 2021 [3]. In traditional systems, items are 
transshipped from one echelon to the next, while more flexible systems also allow 
transshipments within an echelon in form of lateral transshipments. These trans-
shipments are intended to ensure that stockout situations can be quickly eliminated 
and demand can be satisfied by transshipping items from warehouse locations or 
retailers to other warehouse locations or retailers. These lateral transshipments are 
supposed to result in a lower inventory level, lower costs, and a higher satisfaction 
of demand [4]. However, such lateral transshipments can also be driven by changes 
in demand or limited capacity at the warehouse locations, and cause both emissions 
and costs for the company [5]. Costs and emissions are largely dependent on the type 
of vehicle carrying out the transshipment. Consequently, they should be considered 
in the associated planning models. For this reason, we develop a model for plan-
ning proactive and reactive lateral transshipments considering multiple vehicle types 
and emission limits and investigate the effect of proactive and reactive transship-
ment as well as emission limits on costs and emissions using an illustrative example. 
To this end, we will introduce the characteristics of reactive and proactive lateral 
transshipments and refer to the associated literature in Sect. “Lateral Transship-
ments”. Section “Model” discusses our modeling approach and in Sect. “Illustrative 
Example” we provide insights through an illustrative example. The paper ends with 
a conclusion in Sect. “Conclusion”. 

Lateral Transshipments 

In the review article by Paterson et al., lateral transshipments are differentiated into 
reactive and proactive transshipments. Reactive transshipments react to demand that 
causes real or potential stockout situations by transshipping items from warehouses 
with sufficient stock [4]. This type of transshipment can take place at any time when 
actual or potential stockout situations occur [4]. Proactive transshipments, on the 
other hand, are restricted to take place at predetermined times, where items can be 
redistributed within an echelon before their demand occurs, to avoid future stock-
out situations [4, 6]. Due to the predetermined time, such transshipments can be 
organized in advance with the lowest possible costs by transshipping all items that 
will be needed in the future together and not, as in the case of reactive transshipments, 
carrying out several individual transports after an actual or potential stockout situation 
occurs, which can, for example, save transportation cost [4, 5]. 

In both reactive and proactive transshipments, decisions must be made about the 
time of transshipment, the quantity of items as well as the location from which the 
items are to be transshipped, while taking into account the capacity of the vehicles 
to execute the transshipment [4].
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There is a lot of research already, investigating different settings of lateral trans-
shipments, with different objectives such as reducing costs or improving service 
levels, but mostly without taking environmental aspects into account [4–6]. The 
existing models differ in the number of echelons, items, and locations or the cost 
structure of transshipments, as in some cases a distinction is made between flex-
ible item-dependent and fixed vehicle-dependent costs [4, 5]. Furthermore, hardly 
any other model takes up the capacities of vehicles and examines the advantages of 
a heterogeneous fleet [7]. According to the current literature, however, there is no 
model that takes both vehicle and location capacities into account while allowing 
transshipments with a heterogeneous fleet within an echelon in order to examine their 
environmental impact [7–9]. In the next section, we present our model considering 
the addressed characteristics. 

Model 

This section discusses the required sets, indices, parameters, decision variables, 
constraints, and the objective function of our mathematical model. In total, the model 
consists of four sets. The set i, j ∈ N indicates the warehouse locations occurring in 
the model. Each location i has a specific capacity cL i for storing items (in m3). The 
set x ∈ P represents the set of all item types. Each item type is assigned a volume vx 
applicable per unit. The holding cost rates hix  depend on the location i and the item 
type x and apply per period. The set l ∈ V specifies the transport vehicle types. The 
vehicle types l differ in their volume cV l , fixed emissions Efix 

j il , and fixed costs R
fix 
j il  

between two locations j and i . In addition to the fixed costs for the vehicles, there are 
handling cost rates Ru 

j i  x  in which costs for picking and storing items are included. 
The handling cost rate depends on the item type x and the starting and destination 
locations j and i . The fourth set t ∈ T represents the progression of time in periods. 
The incoming goods Aixt  and the demand Dixt  depend on the location i , item type 
x , and the period t . 

The decision variables zx ji t  ∈ N0 indicate the number of items of type x that 
are transshipped between locations j and i within a period t . The decision variables 
w j ilt  ∈ N0 indicate the number of vehicle types l operated between locations j and i 
in period t . The decision variables sixt  ∈ N0 show the stock level for each item type x 
at the respective locations i within a period t before the transshipments were realized 
in the period and the decision variables yixt  ∈ N0 show the stock level for each item 
type x at the respective locations i within a period t after the transshipments were 
realized. 

The objective function shown in Formula (51.1) minimizes the total costs resulting 
from transportation cost RT 

t ∈ R+ 
0 and holding cost R

H 
t ∈ R+ 

0 over all periods t . The  
transportation cost RT 

t and the emissions ET 
t ∈ R+ 

0 are based on the types and amount 
of vehicles used between locations in different periods shown in Formula (51.2) and 
(51.4). The transportation cost RT 

t are additionally influenced by the handling cost 
rates per transshipped item Ru 

j i  x . The holding cost R
H 
t are defined by the number of
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parts in the warehouse location and the specific holding cost rate hix  for the item 
type x at location i for each period t shown in Formula (51.3). The consideration of 
emissions is given by a constraint, in which the maximum emissions output over all 
periods EL  is defined. In the case of reactive transshipments, the timing and items of 
transshipments are fixed, as only items are allowed to be transshipped in the period 
in which they are needed at another location, which is why there is no freedom to 
decide on the transshipment of further items. 

min

(∑
t∈T 

RT 
t +

∑
t∈T 

RH 
t

)
(51.1) 

RT 
t =

∑
x∈P

∑
u∈U

∑
j∈N

∑
i∈N |i �= j 

zxu  j i t  R
u 
j i  x  +

∑
j∈N

∑
i∈N |i �= j

∑
l∈V 

w j ilt  R
fix 
j il  ∀t = 1, . . . ,  |T | 

(51.2) 

RH 
t =

∑
i∈N

∑
x∈P

∑
u∈U 

si xut  hi x  ∀t = 1, . . . ,  |T | (51.3) 

ET 
t =

∑
j∈N

∑
i∈N |i �= j

∑
l∈V 

w j ilt  E
fix 
j il  ∀t = 1, . . . ,  |T | (51.4) 

Overall, there are three categories of constraints. In the first category, it is ensured 
that the demand at each location can be satisfied in every period. For this purpose, 
a constraint set ensures that the stock of an item type x at location i is greater than 
the demand for the item type x in that period t shown in Formula (51.5). In the 
second category, a stock balance equation is used to determine the stock level of 
the respective periods. If the demand cannot be satisfied without transshipment, the 
model is forced to transship items. The demand Dixt , incoming goods Aixt , and the 
number of items that are transshipped zx ji t  are deducted or added to the stock level of 
each location i in every period t . In the third category, capacity compliance is ensured. 
The sum of the volumes of all items in a location i must not exceed the capacity of 
the locations cL i . For the vehicles, the volume of all items vx to be transshipped must 
be less than the sum of the capacity of the vehicles cV l used between two locations i 
and j within the respective period t . 

yixut  = sixut−1 +
∑
j∈N 

zxu  j i t  + Aixut  −
∑
j∈N 

zxui  j t  

∀i ∈ N |i �= j; x ∈ P; u ∈ U ; t = 1, . . . ,  |T | 
(51.5) 

In the proactive transshipment model, items that are required at a location in 
later periods can already be transshipped in earlier periods. To cover for reactive 
transshipments in the model, however, additional constraints are introduced only in 
the reactive model ensuring that only those items whose demand cannot be satisfied in 
a location and period can be transshipped in exactly the quantity required for demand
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fulfillment. The additional conditions result in the model for reactive transshipments 
being a quadratically constrained model, as seen in Formula (51.6), (51.7), and (51.8). 
It can be seen that the Big M method was introduced to limit the transshipment 
behavior. 

0 ≥ (sixut−1 + Aixut  − Dixut  ) · qixut  
∀i ∈ N ; x ∈ P; u ∈ U ; t = 1, . . . ,  |T | (51.6) 

qixut  · Big_M ≥
∑

j∈N | j �=i 

zxu  j i t∀i ∈ N ; x ∈ P; u ∈ U ; t = 1, . . . ,  |T | (51.7) 

( Dixut  − sixut−1 − Aixut  ) · qixut  ≥
∑

j ∈ N | j �=i 

zxu  j i t  

∀i ∈ N ; x ∈ P; u ∈ U ; t = 1,  . . . ,  |T | 
(51.8) 

The resulting model covering proactive transshipments classifies as a mixed-
integer linear programming model and the model covering reactive transshipments 
as a mixed-integer quadratically-constrained model. They are implemented in Python 
and solved using the Gurobi 9.5.1 Python API on a standard machine with i5-8250U 
@ 1.60 GHz CPU and 8 GB RAM. For the illustrative example reported in the 
next section, the reactive model comprises around 6,000 quadratic and 12,270 linear 
constraints with 15,554 integer and 2,222 binary variables. The proactive model 
includes 8271 linear constraints with 11,554 integer variables. Both models have 30 
continuous variables. The models are solved optimally in less than 1 s. 

Illustrative Example 

In this section, we present an illustrative example where the data for warehouses 
and items is derived from an example in the automotive industry. In total, there are 
100 different item types with different initial stock levels in the example, which 
are divided between two warehouse locations. The locations differ in capacity and 
holding cost rates for the different items, the first location having a lower capacity 
than the second location. A general overview of the illustrative example is shown in 
Fig. 51.1.

Three different types of vehicles are available for lateral transshipments between 
the two locations, which differ in their capacity and emissions. The emissions and 
costs for transportation are based on real data and increase with the available capacity 
of the vehicles. Based on the average fuel consumption for the individual vehicle 
types, the emissions output is calculated with the help of a conversion factor [3, 10]. 
Both the demand and the incoming goods of items to the respective locations are 
given deterministically over the periods. The majority of demand and incoming goods 
occur in the first location. Overall, a planning horizon of 10 periods is considered.
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Warehouse location 1 (capacity: 450 m3) DemandIncoming goods 

Vehicle choice only for 
lateral transshipment 

Warehouse location 2 (capacity: 1,000 m3) DemandIncoming goods 

Item 
type 

Volume Holding cost 
rate location 1 

Holding cost 
rate location 2 

1 1.0 m3 1.5 EUR/d 0.75 EUR/d 

2 0.5 m3 1.0 EUR/d 0.50 EUR/d 

… …  …  …  

100 1.0 m3 1.5 EUR/d 0.75 EUR/d 

Vehicle type Capacity Emissions 
CO2 

Fix cost 

1 (small) 7 m3 55 kg 300 EUR 

2 (medium) 40 m3 124 kg 400 EUR 

3 (large) 100 m3 198 kg 500 EUR 

Item and location key figures:Vehicle key figures: 

Fig. 51.1 Illustrative example

We use the models from Sect. “Model” to calculate the cost-optimal satisfaction 
of demand by reactive and proactive transshipments. The solutions with and without 
an emission limit are compared. The emission limits correspond to the lowest level 
of emissions for which feasible solutions were found. An overview of the results can 
be found in Table 51.1. 

Table 51.1 Results of the illustrative example 

Restriction Total 
cost 
(EUR) 

Transshipment 
cost (EUR) 

CO2 emissions 
(kg) 

Choice of 
transportation 
vehicles 

Number of 
transshipped 
items 

Average 
utilization 
of 
vehicles 
(%) 

Reactive 
no E L 

14,935 6,230 1,086 11 (small) 
4 (medium) 
0 (large)  

133 48 

Reactive 
EL  < 1, 042 

15,577 6,830 1,041 17 (small) 
1 (medium) 
0 (large)  

133 69 

Proactive 
no E L 

11,504 2,780 450 1 (small) 
0 (medium) 
2 (large)  

148 53 

Proactive 
EL  < 430 

11,586 2,860 429 2 (small) 
1 (medium) 
1 (large)  

136 74 

The result in Table 51.1 shows the significant cost savings through proactive 
transshipment compared to reactive transshipment. The total costs consist of the 
transport and holding costs as described in Formula (51.1). As the holding costs 
remain almost the same in all four variants and the transport costs vary greatly, Table 
51.1 specifically shows the transport costs as part of the total costs. This shows that the 
transport costs are the decisive factor for the cost savings. The difference in emissions 
between the four experiments is particularly interesting. Given the strictest feasible 
emission limits, the emissions can be reduced by 4.1% and 4.6% compared to the
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unrestricted cases for reactive and proactive transshipments, respectively. However, 
the associated costs increase by 4.3% and 0.7%, respectively. The emissions savings 
can be explained by the choice of vehicle types. For example, to transport a volume 
of 45 m3, one large or one small and one medium vehicle can be selected. In the 
proactive transshipment without emission limits, a large vehicle was chosen because 
it is cheaper than a small and a medium vehicle in combination. In this example, 
however, the emissions of the small and medium-sized vehicles are lower in total 
than those of a large vehicle. Therefore, this variant is selected when the emission 
limit is introduced. Another effect is that the average utilization increases. Instead of 
a large vehicle with low utilization, smaller vehicles with higher utilization are used. 
The division of the items between two vehicles as well as the capacity limitation 
and the high utilization of Location 1 have an impact on the number of items to be 
transshipped. In this example, all items that are needed from Location 2 in Location 
1 over all periods are already in Location 2 at the beginning of the planning horizon 
and could therefore already be transshipped in the first period in the case of proactive 
transshipment. However, the capacity of Location 1 is not sufficient to accommodate 
all items from Location 2 in the first period. To release capacity, items that are not 
needed at Location 1 are transshipped together with the items that are needed from 
Location 1 at Location 2. 

Conclusion 

In conclusion, the illustrative example shows that proactive transshipment can lead 
to significant cost savings and emission reductions compared to reactive transship-
ments. It also shows that an emission limit can decisively change the decision on 
vehicle types and the decision on when to transship items. In this context, a conflict of 
objectives between cost savings and emissions savings can be identified. These find-
ings were reached with deterministic knowledge of future demand. In practice, the 
incoming goods and the demand are usually unknown, therefore a suitable procedure 
for demand forecasting must be introduced in the future to be able to realistically 
depict the conditions from practice. In addition, the conflict of objectives between 
cost savings and emission limits should be examined in more detail in the future. In 
the illustrative example, it is assumed that no influence can be taken on inventory 
levels and incoming goods. This assumption could be changed in further research so 
that the best trade-off between the number of transports and inventory levels can be 
analyzed. 
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Chapter 52 
Different MIP Formulations 
for a Dynamic Lot-Sizing Model 
with Rework of Defectives 

Steffen Rudert 

Abstract This paper discusses a basic dynamic lot-sizing model for a single item 
with rework of defectives. Due to the imperfect production process, some fraction of 
the generated items is not of sufficient quality. After rework, these goods serve the 
same demand as the initial perfect quality items; both are called serviceables.The 
internal processes production and rework are conducted independently from another 
at different or same periods. The basic model is proven to be NP-hard. We present 
three main unique characteristics that describe the specific model behavior observed 
in the optimal solutions: production only, multiple rework, and overproduction of 
serviceables. Different MIP formulations are derived to analyse the effects of these 
three characteristics on the optimal solutions that exclude each of these characteristics 
from the basic model. Afterward, computations for given data sets are conducted, 
using all different MIP formulations. It can be shown that production only occurs 
most frequently and has the highest effect on the total cost. 

Keywords Dynamic lot-sizing · Defectives · Rework · MIP formulations 

Introduction 

Nowadays, companies face a drastic scarcity of resources while at the same time 
are confronted with stricter government regulation and increased public awareness 
regarding environmental issues. One way to reduce their ecological footprint is to 
consider product returns in their manufacturing systems explicitly. While there are 
vast activities in the scientific literature to incorporate external returns under the term 
of remanufacturing, only little attention is paid to internal returns that can arise from 
an imperfect production process that produces perfect quality items and defectives. 

Since the seminal work of [ 1], many extensions of the single-item dynamic lot-
sizing problem have been published [ 2]. Teunter et al. [ 3] introduced the economic 
lot-sizing problem with remanufacturing for the case of joint and separate setups 
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for new production and remanufacturing. [ 4] showed that both problems are NP-
hard. A multicommodity formulation for the same problem and new additional valid 
inequalities were presented by Cunha and Melo [ 5]. Kilic and van den Heuvel [ 6] 
used a decomposition approach to develop a polynomial-time heuristic. 

For internal returns, [ 7] examined a multiple-product model with limited capacity. 
[ 8] proposed a late acceptance hill-climbing matheuristic for another model that 
also considers rework and lifetime constraints for defective items. [ 9] incorporated 
internal and external returns and applied a Wagner/Whitin-based solution procedure. 

This paper introduces the basic lot-sizing model, including the corresponding MIP 
formulation in Section “The Basic Model and the Specific Characteristics of the Opti-
mal Solutions”. Afterward, the three specific characteristics of the optimal solutions 
are presented and followed by additional MIP conditions to exclude each from the 
basic model. This is used in Section “Numeric Study” to show each characteristic’s 
frequency and cost effect by using a commercial solver, and Section “Conclusions” 
completes the paper by providing conclusions. 

The Basic Model and the Specific Characteristics 
of the Optimal Solutions 

Our model represents an imperfect production process where some fraction of the 
generated items do not meet the quality requirements. Perfect quality items store at the 
serviceables inventory and the others at the defectives inventory. After rework, these 
goods serve the same demand as the initial perfect quality items. Both processes, 
production and rework, are carried out internally on different machines. Thus, no 
capacity restrictions apply. The MIP for the basic model reads as follows: 

min 
T∑ 
t=1 

hs · Is,t + hd · Id,t + yt · Rp + zt · Rr (52.1) 

subject to 

Is,t = Is,t−1 + (1 − β) · pt + rt − dt ∀t = 1, . . . ,  T (52.2) 

Id,t = Id,t−1 + β · pt − rt ∀t = 1, . . . ,  T (52.3) 

pt ≤ dt,T · yt ∀t = 1, . . . ,  T (52.4) 

rt ≤ dt,T · zt ∀t = 1, . . . ,  T (52.5) 

Is,0 = Id,0 = Id,T = Is,T = 0 (52.6) 

pt , rt , Is,t , Id,t ≥ 0, dt > 0 ∀t = 1, . . . ,  T (52.7) 

yt , zt ∈ {0; 1} ∀t = 1, . . . ,  T (52.8)
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The basic model minimises the total cost that comprises the holding and the setup 
costs (52.1). Holding a serviceable for one period is associated with costs of hs and 
for a defective item hd . The setup cost for production is Rp, and for rework, Rr . 
The stock levels for serviceables Is,t and for defectives Id,t at the end of each period 
t are determined by the inventory balance equations (52.2, 52.3) and are empty at 
the beginning and the end of the planning horizon (52.6). If there is production at 
period t (pt > 0), the binary variable is yt = 1 and yt = 0 otherwise. The same is 
true for the rework amount rt and the corresponding binary zt (52.4, 52.5, 52.8). β 
denotes the proportion of defective units during production, dt the demand of period 
t , and dt,T the sum of demands from period t to the end of the planning horizon T . 
Shortages or backorder are not allowed and all demand must be met by inventory, 
production, rework, or a combination of them. Consequently, all variables are non-
negative (52.7). The decision variables are pt , rt , yt and zt , while Is,t and Id,t directly 
result from them. All others are model parameters. Besides, it can be proven that the 
basic model is NP-hard [ 10]. 

The standard case of one production and rework lot is to produce in t = k the 
sum of the demands from t = k to t = l: pk = dk,l . As a certain proportion of these 
items is defective (β pk), one rework is carried out at k ≤ m ≤ l, and the number of 
reworked items is nm = βpk = βdk,l . When the stocks of serviceables and defectives 
are empty at period l, a new production lot will start: Is,l  0 and Id,l  0. = =

In addition to the standard case, the following subsections describe the three 
specific characteristics of the model. They differ from the standard case as they 
optimise the production schedule and reduce the total costs. By presenting additional 
conditions to the basic MIP formulation, each of them can be excluded from the 
model. Thereby, it is possible to examine each characteristic’s frequency and cost 
effect. 

Production Only (PO) 

In general, rework of defectives is not mandatory for each single production lot. It 
can be cost-efficient to fulfill the demand by only producing new items and storing 
defectives until the next production starts. This is called production only and is 
especially favourable for low holding costs of defectives and/or high rework setup 
costs. Rework will be carried out later to guarantee that the stock of defectives will 
be empty at the end of the planning horizon. If production only is used, there are cost 
savings by skipping the rework setup cost of Rr but also extra cost for holding all 
defectives from the start to the end of this lot. 

By applying the following additional conditions to the MIP formulation of the 
basic model, the occurrence of production only can be excluded.
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pt ≤ dt,T · gt−1 ∀t = 2, . . . ,  T (52.9) 

gt ≤ zt ∀t = 1 (52.10) 

gt ≤ gt−1 − yt + zt ∀t = 2, . . . ,  T (52.11) 

Production only means that there are two successive production runs without 
rework in between. To restrict this, production in period t is now only possible 
according to the status of the additional control variable of the previous period gt−1. 
For gt−1 = 1, production is permitted: pt ≤ dt,T · gt−1 = dt,T . For  gt−1 = 0, pro-
duction is not permitted: pt ≤ dt,T · gt−1 = 0, see  (52.9). 

The status of the control variable gt considers three inputs: rework zt , production 
yt , and the control status of the previous period gt−1, see  (52.11). If there is only 
rework at one period (zt = 1), the status of the control variable will be gt = 1: gt ≤ 
gt−1 − yt + zt = 0 − 0 + 1 = 1. This status will be transferred to the next period if 
there are no changes: gt ≤ gt−1 − yt + zt = 1 + 0 + 0 = 1. 

If there is production without rework at one period, the status of the control 
variable will be gt = 0. Production is only allowed if gt−1 = 1 and (52.11) shows:  
gt ≤ gt−1 − yt + zt = 1 − 1 + 0 = 0. Also here, this status will be transferred to the 
next period if there are no changes: gt ≤ gt−1 − yt + zt = 0 + 0 + 0 = 0. To work  
correctly, gt must be initialised by (52.10) in period t = 1. 

Multiple Rework (MR) 

Contrary to the previous characteristic, multiple rework uses several rework activi-
ties between two successive production operations. This policy is interesting when 
defectives store at lower costs than serviceables (hs > hd ) and rework setup costs are 
lower than production setup costs. The cost savings originate from the cost difference 
of hs > hd and extra costs from one or more additional rework setups Rr . 

The following additional conditions for the MIP formulation of the basic model 
exclude the occurrence of multiple rework. 

rt ≤ dt,T · yt ∀t = 1 (52.12) 

rt ≤ dt,T · (yt + gt−1) ∀t = 2, . . . ,  T (52.13) 

gt ≤ 1 − zt ∀t = 1, . . . ,  T (52.14) 

gt ≤ yt ∀t = 1 (52.15) 

gt ≤ gt−1 + yt ∀t = 2, . . . ,  T (52.16) 

To guarantee that there are not multiple reworks between two successive produc-
tion runs, rework at period t is only possible if there is production at the same period 
(yt = 1) or the status of the control variable of the previous period is gt−1 = 1, see  
(52.12, 52.13). The status of gt is determined by (52.14) and (52.15, 52.16).
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To restrict the occurrence of multiple rework, (52.14) changes the status of the 
control variable to gt = 0 when there is rework at one period: gt ≤ 1 − zt = 1 − 1 = 
0. Contrary to this, (52.16) would allow status gt = 1 if there is production at one 
period: gt ≤ gt−1 + yt = 0 + 1 = 1 or gt ≤ gt−1 + yt = 1 + 1 = 2. (52.15) does 
the same and initialises gt at t = 1. 

If there is production and rework at one period, (52.14) and (52.16) must hold 
simultaneously, and consequently, gt ≤ 0 applies. It should also be noted explicitly 
that rework is unnecessary before the next production can start. 

Overproduction of Serviceables(OP) 

The optimal policy for the basic planning problem of this paper does not consider the 
so-called zero inventory property. This means there may be perfect quality items left 
over from the previous period (Is,k−1 > 0), although production runs at the actual 
period. These items were taken from the last lot size to help optimise the upcoming 
lot’s production schedule by enabling later rework, for example. In this case, rework 
would have to be carried out earlier due to the lack of serviceables at some period 
between t = k and t = l. Using the leftover items Is,k−1 from the previous lot, rework 
can be postponed, and savings apply when defectives store at a lower cost than 
serviceables. Additional costs arise from storing the leftover items. 

To prevent the overproduction of serviceables, the additional conditions for the 
MIP formulation of the basic model are used. 

pt ≤ dt,T · gt ∀t = 2, . . . ,  T (52.17) 

gt ≤ 1 − 
Is,t−1 

dt,T 
∀t = 2, . . . ,  T (52.18) 

Production is only possible by the permission of the control variable gt = 1, see  
(52.17). The status of gt is determine exclusively by the serviceables inventory level of 
the previous period Is,t−1, see  (52.18). Production is permitted (gt ≤ 1) if the stock 
is empty (Is,t−1 = 0): gt ≤ 1 − Is,t−1 

dt,T 
= 1 − 0 

dt,T 
= 1. For  Is,t−1 > 0, production is 

restricted (gt < 1 and as gt is binary gt = 0): gt ≤ 1 − Is,t−1 

dt,T 
< 1. 

Numeric Study 

In the following, computations have been carried out for all four MIP formulations 
from Section “The Basic Model and the Specific Characteristics of the Optimal 
Solutions”: the basic model and excluding PO, MR, and OP, respectively. All tests 
were performed on a Windows Server 2012 R2 with Intel(R) Xeon(R) CPU E5-4627



440 S. Rudert

v2 @ 3.3 GHz processors with 32 cores, of which four were used for the computations, 
768GB RAM, and Gurobi 8.1 as the MILP solver. 

A whole set of different problem instances was solved to obtain highly meaningful 
results. The model parameters and the demand patterns are chosen based on [ 3] and 
are as follows: β = 1%; 5%; 10%; 20%; 30%, hs = 1, hd = 0.1; 0.5; 1.0; 1.5, 
Rp = Rr = 50; 100; 250; 500; 750; 1000; 1500; 3000. There are 10 demand series 
for each of these parameter constellations, which is two for each of the five different 
demand patterns, according to the demand function given in [ 3]. Thus, there are a 
total of 5 · 4 · 8 · 8 = 1280 test instances. Consequently, a total of 10 · 1280 = 12800 
data sets were used as the input for the computation of each MIP formulation. 

First, we examine the frequency of the standard case and of the characteristics 
at all data sets for the basic model. The standard case of one production combined 
with one rework and no carryover of any items from one lot to another is present in 
22.0%. PO can be observed in 76.5% of all cases. There are fewer occurrences of 
MR (1.7%), and OP occurs even less frequently (1.1%). 

For increasing values of β, MR and OP occur more frequently while the opposite 
is true for PO. All three characteristics appear less frequently for rising values of hd . 
For hd ≥ hs , MR and OP cannot be observed at all. Rising values of Rp lead to less 
occurrence of PO and OP while more cases of MR appear. Finally, increasing values 
of Rr show more of PO but less of MR and OP. 

Next, when the specific MIP formulations exclude the characteristics, it is possible 
to calculate the cost delta when applying each characteristic. The average cost per 
instance is 5402, and PO shows the highest cost saving per test instance of 1108, 
while MR shows only 82 and OP 27. For PO, this means that if the production only 
policy is available and is used for the optimal solution of a single instance, the total 
costs are 1108 less compared to a policy where production only is unavailable. The 
cost delta of MR increases very strongly with an increased defective rate β and would 
yield substantially higher values if β would exceed 30%, which is the maximum used 
in the numeric study here. 

Conclusions 

Internal returns have not yet gained much attention in the literature on dynamic lot-
sizing. We presented a basic model that includes the rework of defective items orig-
inating from an imperfect production process. Optimal solutions show three specific 
characteristics in addition to the standard case, which is similar to the Wagner-Whitin 
model. Production only occurs most frequently and strongly reduces total costs com-
pared to the standard case. Multiple rework and the overproduction of serviceables 
are rarely present and reduce costs to a far less extent. The evaluation of this paper 
provides a guideline for developing solution procedures as all three characteristics 
can be used to build problem-specific algorithms.
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Chapter 53 
Manipulating Waiting-Plus-Detour-Time 
Mechanisms for Pickup and Delivery 
Problems 

Martin Damyanov Aleksandrov 

Abstract We consider routing problems where agents have preferences over pickup 
and delivery travel options. We look at the class of mechanisms that maximise social 
welfare. We study computing outcomes with such mechanisms. We also show that 
agents can manipulate such mechanisms. In response, we study computing pure Nash 
equilibria induced by such mechanisms. Finally, we analyse the price of anarchy for 
such mechanisms, which quantifies the welfare loss in an equilibrium. 

Keywords Logistics · Game theory · Pure Nash equilibria 

Introduction 

According to the Federal Statistical Office of Germany, 1nearly 20% of all Germans 
(i.e. ≈ 16 mils) are disabled and nearly 10% of them (i.e. ≈ 1.6 mils) live with 
progressive dementia. Depending on their medical conditions, these people have dif-
ferent preferences about when and how urgently they need to visit medical facilities. 
In such settings, it is perhaps not surprising that people rank minimising their wait-
ing plus detour times as one of the most important criteria: see e.g. [ 10]. Satisfying 
preferences about waiting plus detour times is also crucial for achieving customer 
satisfaction in various taxi, ride-sharing, and car-sharing settings because waiting and 
detouring for shorter times is often more convenient for customers and, additionally, 
customers pay normally lower costs for such travel options in such settings. 

We present a formal model for such problems, where agents have quasi-linear 
valuation functions over their waiting plus detour times. For example, an agent 
might be indifferent between travel options where their waiting plus detour time 
is at most 15 min, in which case their value is zero, but they may strictly prefer 
each of these options to an option where their waiting plus detour time is strictly 

1https://www.destatis.de/. 
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more than 15 min, in which case their value is strictly negative. We look at the class 
of mechanisms that maximise social welfare, which is the sum of the valuations. 
For such mechanisms, we study computing (1) individual valuations (Theorem 1), 
(2) group valuations (Theorem 2), (3) possible manipulations (Theorem 3), (4) pure 
Nash equilibria (Theorem 4), and (5) the price of anarchy (Theorem 5). 

Related Work 

Maximising and manipulating the social welfare in our setting relate to the Travelling 
Repairman Problem (TRP) and the Hamiltonian Path Problem (HPP), respectively. 
Afrati et al. [ 1] showed that the TRP is NP-hard. Garey and Johnson [ 4] showed  
that the HPP is NP-hard. Ma et al. [ 7] designed an incentive-aligned mechanism 
for ride-sharing. Rheingans-Yoo et al. [ 11] presented a mechanism that encourages 
drivers to report their location preferences truthfully. By comparison, we focus on the 
customer side of the problem. Interestingly, in our setting, any welfare-maximising 
mechanism can be manipulated. Waiting- and detour-time customer objectives have 
received a limited attention: see e.g. [ 12]. Nucamendi et al. [ 9] studied minimising 
the total waiting time. Gschwind and Drexl [ 5] considered detour time constraints. 
By comparison, we combine waiting and detour times into a natural objective such 
as maximising the social welfare. 

Formal Preliminaries 

We write N = (L , E) for a network with |L| ≥  2 and E ⊆ L × L . We assume that 
each li ∈ L is reachable from each l j ∈ L \ {li } through some path (s1 = l j , . . . ,  sa = 
li ) of length a ∈ N≥2, where each sk ∈ L and each (sk, sk+1) ∈ E . We consider set 
V = {v1, . . . , vn} of n ∈ N<∞≥1 vehicles, where vi begins at bi ∈ L , ends at ei ∈ L , 
and has capacity qi ∈ N>0, as well as set  R = {r1, . . . ,  rm} of m ∈ N<∞≥1 requests, 
where r j = (p j , d j ) is for transporting agent j from pick-up p j ∈ L to drop-off 
d j ∈ L \ {p j }. For each vi and (l, l ′) ∈ L × L , we write t (i, l, l ′) ∈ R≤∞ 

≥0 for the 
travel time vi needs when moving from l to l ′, where t (i, l, l ′) = ∞  if (l, l ′) /∈ E 
and else t (i, l, l ′) <  ∞. We write Ti for the measure [t (i, l, l ′)]|L|×|L|. We let  I = 
(N , V , R, [T1, . . . ,  Tn]) denote an instance. Plan  P = {R1, . . . ,  Rn} for I is a set of 
routes, where route Ri = (bi , s1(i ), . . . ,  sai (i ), ei ) is a path of length (ai + 2), where 
ai ∈ N≥0, each sl (i ) ∈ L , (bi , s1(i )) ∈ E , each (sl (i ), sl+1(i )) ∈ E , and (spi (i ), ei ) ∈ 
E . We consider feasible plans for instance I, where all requests are serviced: see 
e.g. [ 2]. 

Pick a feasible plan P for instance I. The waiting time w j i  (P) is the time agent j 
waits for vehicle vi to pick them up from their origin p j : w j i  (P) = s(i, bi , s1(i )) + 
[∑sl (i)∈W j i  ,sl (i)	=p j 

t (i, sl (i ), sl+1(i))], where s(i, bi , s1(i )) is the shortest travel time 
for vehicle vi along a path from bi to s1(i ) and W j i  is the sub-path of Ri from s1(i )
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to p j . The detour time d ji  (P) is the additional travel time agent j spends onboard of 
vehicle vi instead of travelling directly from their origin p j to their destination d j : 
d ji  (P) = [∑sl (i )∈D j i  ,sl (i )	=d j 

t (i, sl (i ), sl+1(i ))] −  s(i, p j , d j ), where D j i  is the sub-
path of Ri from p j to d j and s(i, p j , d j ) is the shortest travel time for vehicle vi 
along a path from p j to d j . We let  x j i  (P) = 1 if agent j is serviced by vi in P and, 
otherwise, x j i  (P) = 0. We suppose that agent j has some private threshold value 
τ j ∈ R≥0 for their waiting plus detour time. However, in our model, agent j can 
report any threshold value τ ′

j ∈ R≥0. Next, for a given reported τ ′
j , we let agent j 

have a valuation ũ j i  (P, τ ′
j ) that is a quasi-linear function with respect to (wrt) τ ′

j . 
More specifically, we let ũ j i  (P, τ ′

j ) = 0 if agent j is serviced by vi and w j i  (P) + 
d ji  (P) ≤ τ ′

j ; ũ j i  (P, τ ′
j ) = τ ′

j − (w j i  (P) + d ji  (P)) if agent j is serviced by vi and 
w j i  (P) + d ji  (P) > τ  j ; ũ j i  (P, τ ′

j ) = 0 if agent j is serviced by some vk with k 	= i . 
Thus, we let u j i  (P) = ũ j i  (P, τ  j ) denote their private valuation in P . We look at 
mechanisms that maximise the (social) welfare wrt (reported) profile (τ ′

j )m , i.e. return 
Pmax((τ

′
j )m) = arg maxP : feasible for I

∑
vi∈V

∑
r j∈R x j i  (P) · ũ j i  (P, τ ′

j ). 

Maximising Outcomes 

Let agents report their private threshold values truthfully. We consider the Max-
imiseOutcomes problem: given I, (τ j )m , h ∈ N≥1, F1, . . . ,  Fh ⊆ V , C1, . . . ,  Ch ⊆ 
R, and k1, . . . ,  kh ∈ R≤0 

>−∞, does it exist a feasible plan P for instance I with∑
vi∈Fg

∑
r j∈Cg 

x j i  (P) · u j i  (P) ≥ kg for each g ∈ {1, . . . ,  h}? 
This decision problem is relevant whenever the fleet of vehicles is split into sub-

fleets and each sub-fleet is assigned to service requests whose locations belong to 
some, possibly different, subset of L , e.g. regions, age groups. We look at two extreme 
cases of the MaximiseOutcomes problem. 

MaximiseValuation is MaximiseOutcomes with h = 1, F1 = V , C1 = {r j }, 
and k1 = κ . This decision problem is relevant whenever we care a lot for a given 
agent j . For example, in the context of dispatching ambulances, we may want to 
bring a given patient much quicker to a hospital than all other patients. 

Theorem 1 For given agent j and κ ∈ R≤0 
>−∞, deciding whether the private valu-

ation of agent j is at least κ in some feasible plan (i.e. MaximiseValuation) can 
take O(n · (|E | + |L| ·  log |L|)) time. 
Proof Pick instance I and agent j . Their waiting plus detour time in a feasible plan 
is minimised when we send the fastest vehicle vi ∈ F1 from bi to p j via the quickest 
path for vi and then from p j to d j via the quickest path for vi . For each vk ∈ F1, we  
can compute these two paths in O(|E | + |L| ·  log |L|) time by making two calls to 
the improved version of the Dijkstra’s algorithm—see e.g. [ 3]—with inputs N , bk , 
p j , Tk , and N , p j , d j , Tk , respectively. After that, we can select in O(n) time the 
fastest vehicle vi ∈ F1. Thus, given τ j , the private valuation of agent j is the greatest 
possible they can receive in a feasible plan for I. If it is at least  κ then the answer
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is “yes”. Otherwise, the answer is “no” and no other procedure can give an answer 
“yes”. ◻ 

MaximiseWelfare is MaximiseOutcomes with h = 1, F1 = V , C1 = R, and 
k1 = κ . This is relevant whenever we care a lot for all m agents. For example, in the 
context of dispatching ambulances, we may want to bring all patients to the hospitals 
as quickly as possible. 

Theorem 2 For given m agents and κ ∈ R≤0 
>−∞, deciding whether the welfare is at 

least κ in some feasible plan (i.e. MaximiseWelfare) is  NP-hard. 

To prove Theorem 2, we reduce from the TRP. By Theorem 2, it follows that the 
more general problem MaximiseOutcomes is NP-hard as well. 

Possible Manipulations 

If a given agent reports truthfully that they can wait for say 8 min then maximising 
the welfare may force them to wait for 9 min because doing so may assign them 
to a vehicle that has to pick up someone else before them. However, if the agent 
underreports their private threshold value by say 8 min then they can force the 
mechanism to send a vehicle to their location in the next 3 min and, thus, strictly 
increase their private valuation: see Example 1. 

Example 1 Let us consider locations A(0, 0), B(0, 3), C(4, 0), and D(2, 3). Sup-
pose that there is one vehicle v1 that begins at B, ends at D, has a capacity of 
two, and has a minute metric defined as: t (1, A, B) = t (1, B, A) = 3, t (1, A, C) = 
t (1, C, A) = 4, t (1, B, C) = t (1, C, B) = 5, t (1, A, D) = t (1, D, A) = 13

√
, and 

t (1, C, D) = t (1, D, C) = 13
√

. Also, suppose that there is one agent 1 that submits 
r1 = ( A, C) and another agent 2 that submits r2 = (C, A). Consider the following 
two feasible plans: P1 = {(B, C, A, C, D)} and P2 = {(B, A, C, A, D)}. For plan 
P1, we have  w11(P1) + d11(P1) = 9 and w21(P1) + d21(P1) = 5. For plan P2, we  
have w11(P2) + d11(P2) = 3 and w21(P2) + d21(P2) = 7. 

Suppose that the private threshold value of agent 1 is τ1 = 8 and the one of agent 
2 is τ2 = 0. Thus, supposing that agents report these values truthfully, we derive 
ũ11(P1, τ1) + ũ21(P1, τ2) = (8 − 9) + (0 − 5) = −6 > −7 = (0) + (0 − 7) = 
ũ11(P2, τ1) + ũ21(P2, τ2). Therefore, each maximizing mechanism returnsP1. How-
ever, if agent 1 reports τ ′

1 = 0 then they force any such mechanism to return 
P2 because ũ11(P1, τ

′
1) + ũ21(P1, τ2) = (0 − 9) + (0 − 5) = −14 < −10 = (0 − 

3) + (0 − 7) = ũ11(P2, τ
′
1) + ũ21(P2, τ2) holds. Thus, agent 1 receives a greater pri-

vate valuation: u11(P2) = 0 > −1 = (8 − 9) = u11(P1). Finally, we note that the 
travel time decreases from (13 + 13

√
) in P1 to (11 + 13

√
) in P2. ◻ 

In Example 1, the travel time decreases by 2 min due to strategic behaviour. We 
might therefore be interested in deciding manipulations that induce the lowest travel
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time. For this reason, we study the general PossibleManipulation problem: given 
I, (τ ′

j )m , and agent j , is there τ
′′
j ∈ R≥0 such that u jk(Pmax((τ

′
1, . . . , τ

′′
j , . . . , τ

′
m))) 

> u j i  (Pmax((τ
′
j )m)) holds? To prove Theorem 3, we reduce from the HPP. 

Theorem 3 Deciding whether a given agent can report a threshold value, changing 
the outcome of a given welfare-maximising mechanism, and thus strictly increasing 
their own private valuation (i.e. PossibleManipulation) is  NP-hard. 

Pure Nash Equilibria 

Agents can use joint strategies to manipulate welfare-maximising mechanisms, 
according to which not just one but several of them deviate from reporting their 
private threshold values truthfully. We next look at the equilibrium points—see e.g. 
[ 8]—of these strategies. 

More formally, for any given welfare-maximising mechanism and instance I, we  
say that the reported profile (τ ′

j )m is a pure Nash equilibrium (PNE) iff, for every agent 
j ∈ {1, . . . ,  m} and τ ′′

j ∈ R≥0, u jk(Pmax((τ
′
1, . . . , τ

′′
j , . . . , τ

′
m))) ≤ u j i  (Pmax((τ

′
j )m)) 

holds, where agent j is serviced by vk and vi , respectively. 

Theorem 4 Computing pure Nash equilibria is at least coNP-hard. 

Proof We start with verifying pure Nash equilibria. By definition, (τ ′
j )m is a pure 

Nash equilibrium if and only if, for every agent j ∈ {1, . . . ,  m}, it is not the case that 
there exists τ ′′

j ∈ R≥0 such that u jk(Pmax((τ
′
1, . . . , τ

′′
j , . . . , τ

′
m))) > u j i  (Pmax((τ

′
j )m)) 

holds. A decision problem is coNP-hard if and only if its negated version is NP-hard: 
see e.g. [ 4]. By using this Turing reduction and the result in Theorem 3, it follows 
that verifying a pure Nash equilibrium requires m calls to a coNP-hard oracle and, 
therefore, computing one such profile is at least coNP-hard. ◻ 

The Price of Anarchy 

The price of anarchy—see e.g. [ 6]—quantifies the welfare loss due to strategic 
behaviour. In our setting, for some ϵ <  0 that is very close to 0, the price is the 
ratio between the smallest maximum welfare value in any pure Nash equilibrium 
and the maximum welfare value in the truthful profile [min(τ ′

j )m : PNE
∑

i∈V
∑

j∈R x j i  
(Pmax((τ

′
j )m)) · u j i  (Pmax((τ

′
j )m)) + ϵ]/[∑i∈V

∑
j∈R x j i  (Pmax((τ j )m)) · u j i  

(Pmax((τ j )m)) + ϵ]. 
If a given agent reports a high threshold value truthfully then they might be forced 

to wait even longer, and if they report a low threshold value strategically then they 
might be serviced within their private threshold value in every pure Nash equilibrium, 
but thus make another agent with a low private threshold value wait for a very long
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time and cause arbitrarily welfare loss. As a ratio between two negative values, the 
price can thus go to ∞ in some edge cases. 

Theorem 5 The price of anarchy can be approaching ∞. 

Conclusions 

We studied maximising the social welfare in routing problems where customers have 
preferences for their waiting and detour times in travel options. Our preliminary 
results have at least three practical implications. Firstly, in practice, agents may give 
up manipulating any welfare-maximising mechanism because deciding whether such 
manipulations are beneficial for them may take more time than they can wait for and 
detour in vehicles. Secondly, in practice, encouraging agents to be truthful eliminates 
any possibility of welfare losses with such mechanisms. Thirdly, in practice, we may 
need a lot of time to maximise the welfare exactly because there are many customers 
and, for this reason, we might wish to use approximation algorithms for this task. 
Finally, as a response to these observations, our future work includes approximating 
the welfare in simulated and real-world environments. 
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Chapter 54 
The Grey Zone Two-Echelon Vehicle 
Routing Problem with Customer-
to-Parcel Locations and Low-Pollution 
Vehicles for Inner-City Logistics 

Edgar Ricardo Silva Russi, Nacima Labadie, and Caroline Prodhon 

Abstract This study addresses the two-echelon vehicle routing problem with grey 
zones and Customer-to-Parcel (C2P) stations. This problem arises in the search for 
new sustainable delivery schemes for e-commerce and last-mile distribution in urban 
areas and aims at reducing last-mile transportation costs. This study proposes a 
literature review on the subject, and a mixed integer linear programming (MILP) 
formulation to model and solve small instances of the described problem. 

Keywords 2-Echelon vehicle routing problem · Synchronization · Customer to 
parcel · City logistics · Last-mile delivery · Sustainable logistics 

Introduction 

Last-mile logistics has gained greater importance as the demand for Business-2-
Consumer products in urban areas has increased with the strong growth of e-
commerce driven by a wider access to internet services, both for customers and 
for companies that buy and sell their products through this channel [ 1]. This gener-
ates a huge potential for consolidation and coordination of distribution flows, which 
play a key role in multi-echelon distribution systems [ 2] and can help to reduce traffic 
volume by improving the use of transportation resources [ 3]. To address last-mile 
particular challenges, the transition from the use of Internal Combustion Engine 
Vehicles (ICEV) to Alternative Fuel Vehicles (AFV), the implementation of access 
restrictions into urban areas and the integration of Customer-to-Parcel stations (e.g. 
lockers and pick-up points) have become commonly adopted measures. Therefore, 
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we introduce the Grey Zone Two-Echelon Vehicle Routing Problem with Customer-
to-Parcel Locations and Low-pollution Vehicles for Inner-city Logistics. Different 
from the classical Two-Echelon Vehicle Routing Problem (2E-VRP), clients may 
be served via either C2P stations or home delivery in a specified time window; fur-
thermore we consider satellites as possible C2P stations and grey-zone customers 
on city borders. The contributions of this paper are threefold, as described in the 
following sections: First, a review of the existing literature is given in Section “Liter-
ature Review”, then Section “Problem Description and Mathematical Formulation”, 
defines the problem and presents a mathematical formulation to model it. Finally, the 
results and conclusions are given in Sections “Results” and “Conclusion and Future 
Research”. 

Literature Review 

Regarding innovative notions into 2E-VRP models intended for last-mile logistics, 
[ 6] introduced the notion of grey zones in their multi-objective problem denoted 
2eVRPSyn. Customers in such zones are accessible by fleets of the two levels, giv-
ing more flexibility to their model. They proposed a large neighborhood search 
embedded in a heuristic rectangle/cuboid splitting to efficiently solve the problem. 
Moreover, [ 5] introduced the 2-Echelon Production Routing Problem with Cross-
docking Satellites (2E-PRPCS), it features production and inventory decisions and 
it is solved by a Branch-and-Cut algorithm coupled with a first-solution matheuris-
tic while [ 4] introduced a new variant called the Two-Echelon multiple-trip Vehicle 
Routing Problem with Satellite Synchronization (2E-MTVRP-SS) with time win-
dows and service times. 

On the other hand, to address e-grocery last-mile challenges, [ 15] proposed a 
Decision Support System (DSS) for a model in which the second echelon deliveries 
are performed through either C2P stations or electric cargo bikes.[ 16] developed an 
state of the art Hybrid Immune Algorithm (HIA) to solve a multi-objective Two-
Echelon Location-Routing Problem with Mixed Vehicles and Mixed Satellites (2E-
LRP-MVMS) in which the second echelon deliveries are performed through either 
C2P stations or Autonomous Delivery Robots (ADRs). Further, [ 16] modeled the 
Two-Echelon Vehicle Routing Problem with Mixed Vehicles (2E-VRP-MV) where 
Autonomous Delivery Vehicles (ADVs) serve the clients in the second echelon. To 
solve it, a two-step clustering-based hybrid Genetic Algorithm and Particle Swarm 
Optimization (C-GA-PSO) algorithm are presented. Moreover, as environmental 
factors had gained more importance in last-mile delivery schemes, [ 7] introduced the 
2-Echelon Electric Vehicle Routing Problem with Time Windows (2e-EVRP-TW). 
The model takes into account charging stations, charging times and time windows. 
To solve it, a heuristic based on Clarke and Wright and a Variable Neighborhood 
Search (VNS) are presented. For supplementary information on 2E-VRP refer to [ 8]. 

Furthermore, it was until 2018 when [ 9] introduced the Multi-Depot Two-Echelon 
Vehicle Routing Problem with Delivery Options for Last Mile Distribution (MD-
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TEVRP-DO) that the concept of delivery options through C2P stations was incorpo-
rated into a 2E-VRP.  Moreover,  [  10] proposed a Simulated Annealing Algorithm to 
minimize the transportation cost in their conception of 2E-VRP with locker facili-
ties; while [ 11] introduced the Two-Echelon Vehicle Routing Problem with Coverage 
Options (2E-VRP-CO) where last mile deliveries are performed via C2P stations and 
cargo bikes which is then solved thanks to an Adaptive Large Neighborhood Search 
(ALNS). Similarly, [ 12] considered the synchronization of cargo bikes and vans in 
their two-echelon model solved by a Greedy Randomized Adaptive Search heuristic 
with path re-linking for real-world data of the city of Vienna. Later, [ 13] intro-
duced the concept of occasional drivers in a Two-Echelon Vehicle Routing Problem 
with Time Windows, Coverage Options, and Occasional Drivers (a crowd-shipping 
concept first introduced by [ 14] that can provide potential advantages by its imple-
mentation). For further information on the new developments in last-mile logistics, 
see [ 17]. 

Problem Description and Mathematical Formulation 

The problem that arises involves two different fleets of vehicles making deliveries in 
two different echelons. In our particular case, we consider that the vehicles start and 
end their routes at their respective depot. ICEVs deliver the goods from the depot of 
the first echelon, where the entire stock of goods is located, to the first level customers 
within their time windows and/or to the exchange points, also called satellites. These 
last are also used as Customer-to-Parcel (C2P) stations where customers can pick 
up their products directly. AFVs start from the second echelon depot without any 
goods in cargo so they must immediately meet ICEVs at the satellites where they will 
pick up the goods to start their deliveries. Then the AFVs serve both direct delivery 
customers within their respective time windows and second-level C2P stations where 
customers can retrieve their goods. Due to the costs associated with the use of vehicles 
and satellites, the waiting time of vehicles at these locations is limited to a specific 
value and is minimized by the inclusion of the waiting costs in the objective function 
(54.1) of the MILP model. For this reason, the arrival of the ICEVs and AFVs at the 
satellites must be approximately at the same time so that the transfer of the goods 
is as fast as possible and both the ICEV and the AFV can continue their deliveries. 
Once an AFV has finished its deliveries it can rejoin an ICEV at a satellite to retrieve 
new goods and continue a new route as long as the maximum route time represented 
by the delivery operator’s working day is not exceeded. Likewise, the same satellite 
can be used by different AFVs as long as the ICEV’s maximum waiting time at the 
satellite is not exceeded. In the traditional formulation of the 2E-VRP the customers 
of each echelon are pre-allocated to the first or second echelon, however as [ 6] shows,  
this pre-allocation can lead to poor quality results because customers close to the 
satellites could be served by either an ICEV or an AFV. Thus, [ 6] introduced the 
grey zone, an area in which customers are not predefined and can therefore be served 
by any vehicle. In this model, grey zones will be taken into account only for home
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delivery customers located on the city borders. On the other hand, C2P stations 
are increasingly used to eliminate the risk of unattended deliveries and to optimize 
delivery costs thanks to the possibility of accumulating multiple demands at the 
same station. Similarly, these stations benefit customers by allowing them to pick up 
their deliveries at times that are convenient for them at stations close to their homes. 
Each of these stations has a specific capacity and coverage radius. The mathematical 
model is inspired on [ 6] but it considers time windows and waiting time on client 
nodes, C2P stations for both levels, and location decisions for satellites and stations 
(Table 54.1). 

The objective function (54.1) takes into account the fixed cost of vehicles, the cost 
per distance, the vehicle operating cost per hour for each level, the cost of opening 
satellites and C2P stations, and the waiting costs at satellites and client nodes. The 
classic restrictions of the two-echelon models were formulated (i.e. restrictions on 
flow, exit and return to the depots, use of vehicles, and service to home-delivery 
customers for each level). 

min
∑

i∈vall

∑

j∈vall

∑

k∈F 
[(T (i, j ) + ST (i )) ∗ CT  (k) + (Dis(i, j ) ∗ CD(k))] ∗ X (i, j, k)+

∑

i∈V all

∑

k∈F 
W (i, k) ∗ CT  (k) +

∑

e∈E

∑

j∈vall

∑

k∈F 
X (e, j, k) ∗ FC(k) +

∑

i∈c2 p 
Y (i ) ∗ CU (i ) 

(54.1) 

Also, temporal constraints have been considered to guarantee the service to the 
clients within their time window. Similarly, for node routing (54.2), the time between 
nodes, the service time, and the waiting time at satellites and at client’s nodes (in case 
of arrival before the lower limit of the time window) have been considered. Finally, 
(54.3) limits the maximum duration of the routes. 

T ( j, k) ≥ (T (i, k) + T ime(i, j ) + ST (i) + W (i, k)) − M∗ 
(1 − X (i, j, k)) ∀i ∈ v1,2 , j ∈ v1,2 , k ∈ F1,2 

(54.2) 

T (e f , k) ≤ T M  AX  ∀e f ∈ E f , k ∈ F (54.3) 

Subsequently, constraints (54.4)–(54.6) guarantee that the vehicle load contains 
the demands of both home-delivery customers and C2P stations. Furthermore, capac-
ity constraints have been formulated for all vehicles and C2P stations. 

U ( j, k) + D( j ) ≤ U (i, k) + M ∗ (1 − X (i, j, k))∀i ∈ vall , j ∈ chd, k ∈ F 
(54.4) 

U ( j, k) +
∑

c∈cloc2 
S(c, j )∗D(c) ≤ U (i, k) + M ∗ (1 −

∑

s 

X (i, j, k)) 

∀i ∈ vall , j ∈ loc, k ∈ F2 

(54.5)
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Table 54.1 Notation 

Sets 

vall Set of all nodes 

E/E f Set of the real and the cloned depots of each Echelon 

chd/chd0,1,2 Set of all home delivery clients/set of home delivery clients in the Grey 
Zone (0), 1st Echelon (1) and 2nd Echelon (2) 

c2p Set of all possible locations for lockers and satellites 

sat/sat , Set of real and cloned satellites each physical satellite (sat) is duplicated n 
times (once for each 2nd and Grey Zone customer). 

loc Set of possible location for lockers 

cloc/cloc1,2 Set of all c2p clients/set of c2p clients from the 1st (1) and 2nd Echelon (2) 

v0,1,2 Set of nodes that can be visited by all vehicles (0), only by 1st Echelon 
vehicles (1) and only by 2nd Echelon vehicles (2) 

F/F1;2 Fleet of all vehicles/fleet of 1st (1) and 2nd Echelon (2) vehicles 

Parameters 

M Big number/sum of all customer demands 

TMAX/WMAX Maximum route duration/“(TMAX/10)” as a value of the waiting time 
allowed at satellites 

Time/Dis(i,j) Travel time and distance from node (i) to node (j) 

Q(k)/QLoc(c2p) Capacity of vehicle (k) and capacity of the (c2p) station  

CT/CD(k) Cost of using the vehicle (k) per unit of time and distance 

CF(k) Fixed costs of using the vehicle (k) 

CU/Radius(c2p) Opening cost and Covering radius of (c2p) station  

ST/D(i) Service time and demand in node (i) 

EA/LA(chd) Earliest and latest arrival time to home delivery clients (chd) 

Variables 

X(i,j,k) Binary variable, 1 if the arc (i,j) is crossed by the  vehicle (k) 

T(i,k) Arrival time of vehicle (k) at node (i) 

Y(c2p) Binary variable, 1 if the (c2p) station is opened, 0 otherwise 

U(i,k) Load of vehicle (k) at node (i) 

W(i,k) Waiting time of vehicle (k) at node (i) 

S(cloc,c2p) Binary variable, 1 if the (c2p) station serves the client (cloc) 

U ( j, l) + U ( j, k) +
∑

c∈cloc1 
S(c, j ) ∗ D(c) ≤ U (i, k) + 

M ∗ (1 − X (i, j, k)) ∀i ∈ vall , j ∈ sat , , k ∈ F1 , l ∈ F2 

(54.6) 

Moreover, (54.7) ensure that if a satellite is used by an ICEV, it must also be used by 
an AFV. Likewise, the waiting times are calculated for home delivery customers and 
satellites, whereas (54.8) determine the maximum waiting time allowed on satellites. 
Finally, (54.9) ensure that vehicles do not contain cargo when returning to their
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respective depot at the end of their routes, and (54.10) guarantee that AFVs do not 
contain any load when visiting a satellite.

∑

i∈v1,2 
X (i, s, k) =

∑

j∈v1,2 
X (s, j, k) ∀s ∈ sat , , k ∈ F1,2 (54.7) 

W (s, k) ≤
∑

j∈v1,2 
(X (s, j, k)) ∗ WM  AX  ∀s ∈ sat , , k ∈ F1,2 (54.8) 

U (i, k) ≤ M ∗ (1 − X (i, e f , k)) ∀e f ∈ E f , i ∈ v1,2 , k ∈ F1,2 (54.9) 

U (i, k) ≤ M ∗ (1 − X (i, s, k)) ∀i ∈ v2 , k ∈ F2 , s ∈ sat , (54.10) 

Then, C2P stations constraints were defined (i.e. opening stations, allocation of 
customers and service at the opened ones). Subsequently (54.11) limit to one station 
per client and (54.12) guarantee that for opened stations, customers are within the 
coverage radius. ∑

j∈c2 p 
S(i, j ) = 1 ∀i ∈ cloc (54.11) 

S(i, j ) ∗ Ds(i, j ) ≤ R( j ) ∀i ∈ cloc, j ∈ c2 p (54.12) 

Results 

See Table 54.2. 
Our model was implemented in GUROBI 10.0 coded in Python 3.8.8 and tested 

under an Intel(R) Core (TM) i7-VPRO CPU 2.3 GHz 16 GB RAM is efficient on 
instances of up to 25 nodes. For all the C2P clients, the problem is first defined as 
an assignment problem and then a routing problem for the opened stations, which 
are accessible at all times (no time windows) and create more flexibility for routing. 
Similarly, grey zone customers add further flexibility to the model, as they can be 
part of any vehicle itinerary. However, home-delivery clients reduce model flexibility 
as their arrival times must be within their time windows. It is relevant to highlight 
that the definition of the maximum waiting time allowed plays a determining factor 
in the correct synchronization of the vehicles at the satellites and, consequently, in 
the route calculation. As well, it is noted that if the model does not allow vehicles to 
arrive before the lower limit of the time window (which generates waiting times at 
the customer nodes) the results tend to increase the use of vehicles, to create longer 
waiting times at the satellites and, in certain cases, due to the inflexibility of the 
problem, to end up in a non-feasible zone.
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Conclusion and Future Research 

Our model aims to offer a last mile delivery scheme, where the costs associated 
with waiting times at customer nodes and satellites are minimized through synchro-
nization at the satellites and waiting costs reflected in the objective. Moreover, our 
model includes delivery options through the integration of C2P stations in addition 
to traditional home deliveries under time windows. Our mathematical formulation is 
efficient for small size instances, however due to the NP-hard nature of the problem, 
it is necessary to build approximate algorithms for solving large size and real-city 
instances to compare the performance of our model under conditions closer to those 
faced by real last mile delivery services. 
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Chapter 55 
A General Framework to Evaluate 
Different Rebalancing Operations 
Strategies in One-Way Car Sharing 
Systems 

Selin Ataç, Nikola Obrenović, and Michel Bierlaire 

Abstract Car sharing systems (CSSs) are one of the environmentally beneficial 
solutions in urban transportation. However, the operators still struggle to make these 
systems profitable. One of the main contributors in operational cost is rebalancing 
operations. Therefore, it is important to identify strategies that are tailored accord-
ing to the needs of the considered system. To overcome this challenge, this work 
proposes a simulation-optimization framework that compares different rebalancing 
operations strategies in one-way station-based car sharing systems in terms of cost 
and level of service. The simulation module utilizes the Multi-Agent Transport Sim-
ulation Toolkit (MATSim) whilst the rebalancing operations are determined in the 
optimization module. The framework allows us to explore the different uncertainties 
that can occur in the system, such as fluctuations in trip demand thanks to the MAT-
Sim. The results of the framework help the operator to better analyze the system and 
the best rebalancing strategy under different scenarios. 

Keywords Car sharing systems · Optimization · Agent-based simulation 

Introduction and Literature Review 

Car sharing systems are considered to be one of the sustainable mobility solutions. 
The higher parking and vehicle utilization, the more can environment benefit from its 
usage. From the user perspective, it becomes attractive as they share the fixed costs 
of owning a car, such as insurance, maintenance, and parking, with other system 
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users. On the other hand, this requires smart decisions at every decision level, i.e., 
strategic, tactical, and operational. This paper focuses on the tactical and operational 
level decisions [ 1]. We kindly ask the reader to refer to [ 1] for the car sharing system 
terminology. 

Initial systems are formed as round-trip, and later with the technology, they are 
replaced with station-based one-way and free-floating systems. However, increasing 
user flexibility leads to more complex challenges for the operator. These include 
rebalancing operations, trip demand forecasting, and disaggregate mode choice at 
the operational level. 

Rebalancing operations are applied in systems, where one-way trips are allowed, 
to reduce the vehicle imbalance in the service area. The rebalancing operations can 
be static or dynamic. In the former, the operations are conducted at night or when 
the system is low in operation [ 2], whereas in the latter, they are done during the 
system operating hours. In general, the network is expanded to a time-space graph to 
represent the dynamic structure [ 3, 4], which increases the computational complexity 
of the problem. Therefore, the works propose heuristic algorithms to overcome the 
burdens of the computational complexity. 

Obtaining and utilizing disaggregate data for trip demand forecasting is effortful. 
It requires a detailed survey, analysis, and computational time, whereas using such 
data is essential to reflect the heterogeneity of the population and see the direct 
effects on individuals. Traditional four-step trip-based models (FSMs), that include 
trip generation, trip distribution, mode choice, and traffic assignment, cannot answer 
complex questions as they are static and sequential. Therefore, the literature proposes 
transport simulation toolkits that are activity-based multi-agent platforms to be able 
to analyze each agent. Some examples to such toolkits are the Multi-agent Transport 
Simulation Toolkit (MATSim), SimMobility, and mobiTopp [ 5]. 

In the literature, most works focus on one specific subject rather than having a 
holistic approach. Furthermore, although activity-based multi-agent transport sim-
ulation toolkits can handle the disaggregate data, they lack the representation of 
the supply side. To fill this gap, we introduce a framework, that consists of three 
main components: the agent-based transport simulator, rebalancing operations opti-
mization that follows a rebalancing operations strategy, and choice modeling that 
affects the plans of the agents. We use this framework to identify the best rebalanc-
ing strategy in combination with agent-based modeling for a one-way station-based 
car sharing system with operator-based rebalancing operations solutions, which is 
not studied in the literature, to the best of our knowledge. This way both supply 
and demand sides of car sharing systems are considered. We utilize MATSim as a 
transport simulator because of the possibility to simulate car sharing transport mode 
[ 6]. The disaggregate nature of MATSim allows a detailed analysis regarding the 
most suitable rebalancing operations strategy.
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Methodology 

The proposed framework is presented in Fig. 55.1. In our case, the transport simu-
lation refers to MATSim but any other transport simulation toolkit can be used. We 
kindly ask the reader to refer to [ 7] for further details on MATSim. 

MATSim receives the daily plans of the agents (i.e., the start and end times of 
each activity, the transport mode, and purpose of the trip) as well as the system 
parameters (i.e., location of stations and facilities, car sharing system membership 
information, initial vehicle and parking configuration, socio-economic characteris-
tics of the agents, and public transport schedule). Then, MATSim simulates the given 
day, calculates the utilities of each agent, each agent replans their day according to 
their utilities in the previous iteration and the given day is simulated once again until 
the pre-specified number of iterations, I , is reached. We refer to this loop iterations 
as inner-loop iterations and present it in red arrows in Fig. 55.1. 

The output of the simulation gives the realized car sharing trips, which helps us to 
compute the final state of the vehicles and parking spots. This information is passed to 
the rebalancing operations optimization module and the initial vehicle configuration 
of the following day is determined according to the rebalancing strategy. The initial 
vehicle and parking configuration is modified accordingly and the feedback loop is 
then closed by triggering the next iteration of the outer-loop iterations, which are 
shown in black arrows in Fig. 55.1. The change in initial configuration modifies the 
choices of the agents in the next outer-loop iteration. Here, an outer-loop iteration 
corresponds to a one simulated day and run for pre-specified number of times, O , to  
observe the convergence. 

Within MATSim, the generalized cost of car sharing travel from activity q − 1 to 
activity q is shown in Eq. (55.1) [  7]. 

Fig. 55.1 The framework
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Utrav,q,cs = αcs + βc,cs · ct · tr + βc,cs · cd · d + βt,walk · (ta + te) + βt,cs · t 
(55.1) 

The first term, αcs , refers to the alternative specific constant of the car sharing 
alternative. The second term relates to the time whilst the third is the distance depen-
dent component of the fee. The access and egress times to and from the stations 
are considered in the fourth term and the coefficient of the last term represents the 
marginal utility of an additional unit of time spent on traveling with car sharing, 
where t is the actual in vehicle travel time. 

For the other modes such as walking, private car, public transportation, and bike, 
the utility of traveling is shown in Eq. (55.2). 

Utrav,q,mode = αmode + βc,mode · cd · d + βt,mode · t (55.2) 

For the current state of research, we test two different rebalancing strategies. In 
the first strategy, do nothing, the final configuration of the cars from the previous 
iteration is taken as an initial configuration for the following iteration. In the second 
strategy, rebalance, we follow a heuristic approach. The minimum vehicle inventory 
reached per station during the day is defined as the minimum number of vehicles 
required for that station. If the total number of available vehicles is more than the 
total number of minimum required vehicles per station, we sequentially distribute 
the excess number of vehicles among stations. Finally, this obtained configuration 
becomes the initial configuration for the following outer-loop iteration. 

Results 

We use the Sioux Falls, South Dakota, USA case study to experiment our framework. 
This network represents a simplified version of the real network and can be seen in 
Fig. 55.2. 24 car sharing stations are placed at each intersection of the network. The 
provided plans file consists of 84,110 agents and the 100% of the population is used 
for the experiments. There are three event types, i.e., home, work, and secondary. The 
four facility types are home, work, secondary, and education. The available transport 
modes are car, public transport, bike, walk, and one-way car share. Although the 
literature states that the willingness to walk to a car sharing station changes between 
400 and 800 m [ 8], we set the search distance of a car sharing vehicle to 200 m as 
Sioux Falls is a very small network. We assume that static rebalancing is deployed 
and the operations happen instantaneously. As we are using a heuristic approach, 
the rebalancing optimization takes less than a second showing that it is suitable for 
operational level decisions. 

For preliminary experiments, we run 100 inner-loop, and 10 outer-loop iterations. 
When we look at Figs. 55.4 and 55.3, we see that the transport simulation converges 
at around 70 iterations. This observation is important as determining the cut-off itera-



55 A General Framework to Evaluate Different Rebalancing … 467

Fig. 55.2 Sioux Falls 
network 

Fig. 55.3 Mode statistics 

tion number saves considerable amount of computation time. Furthermore, Fig. 55.4 
gives us some insights on the mode share. The respective mode shares for the modes 
car, public transport, bike, walk, and one-way car share are 70.9%, 9.6%, 9.6%, 9.7%, 
and 0.2%. Regarding the trip purpose, we observe that 56% of the activities are work 
related whereas 44% are secondary activities such as from home to secondary or vice 
versa. 

Figure 55.5 shows the results for both strategies. The outer-loop iterations are 
depicted in the x-axis and the y-axis shows the number of rentals at each outer-loop
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Fig. 55.4 Score statistics 

Fig. 55.5 Number of rentals 
both strategies 

iteration for both strategies. We see that rebalance strategy is more stable than the do 
nothing strategy. Also, in line with the intuition, the rebalance strategy leads to higher 
number of rentals than the do nothing strategy. The fluctuations for each strategy can 
be explained by the fact that unnecessary rebalancing operations are conducted which 
leads to few number of parking spots in some specific stations where the drop-off 
demand is high. For the do nothing strategy, the trend of number of rentals is negative, 
i.e., the number of rentals is less and less with increasing number of iterations. This 
is expected due to the fact that the pick-up stations have less and less vehicles and 
drop-off stations do not have enough parking spots to serve the drop-off demand. 

After analyzing the fluctuations, we observe that the number of rentals tend to 
decrease for some number of iterations after reaching a relatively high number of 
iterations for do nothing strategy whereas for rebalance strategy, the behavior is 
opposite, i.e., the number of rentals tend to increase after reaching a relatively low 
value. This also results in the positive and negative trends of the strategies.
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Conclusion and Future Work 

In this work, we introduce a holistic framework that aims to compare different rebal-
ancing strategies involving agent-based transport simulation, rebalancing operations 
optimization, and choice modeling. Later, we present a case study based on Sioux 
Falls, USA, and preliminary results for two rebalancing strategies. Future work 
includes investigating the results with higher number of outer-loop iterations to see 
the convergence and generalize results. We also plan to include more sophisticated 
rebalancing strategies as well as simplistic approaches such as equal distribution of 
vehicles. Furthermore, incorporating user-based rebalancing strategies, where opera-
tor offers incentives to the users for specific trips, would be interesting as the choices 
of the users would depend on the pricing. Finally, as transportation involves dis-
crete choice by its nature, we aim at including a choice model that takes pricing into 
consideration in the framework. 
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Chapter 56 
A Multi-criteria Assessment Framework 
for Zero-Emission Vehicles 
from a Customers’ Perspective 

Paul Fabianek and Reinhard Madlener 

Abstract On the basis of economic and user-relevant criteria, this paper proposes an 
assessment framework for zero-emission vehicles. This framework enables a trans-
parent evaluation of different zero-emission vehicles (ZEVs) from the perspective 
of (potential) customers, based on the Analytic Hierarchy Process (AHP) approach 
for a multi-criteria decision analysis. The relevant criteria for the evaluation were 
derived from literature and from semi-structured interviews. These interviews were 
held with individuals having driving experience with both battery electric and fuel 
cell electric vehicles. An AHP survey was also conducted with ZEV drivers and ZEV-
interested individuals for the criteria weights to be determined. Seven criteria were 
found to be particularly relevant for evaluating zero-emission vehicles: total cost, 
range, charging/refueling time, charging/refueling infrastructure availability, green-
house gas emissions, spaciousness, anddriving dynamics. The assessment framework 
includes value scores representing the degree to which a specific ZEV satisfies a given 
quality criterion. The proposed framework combines these scores with the criteria 
weights derived in the AHP. The framework is useful for the design of ZEVs by 
vehicle manufacturers. 

Keywords Analytic Hierarchy Process · Transportation · OR in Sustainability
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Introduction 

In recent years, sales of zero-emission vehicles (ZEVs), especially battery electric 
vehicles (BEVs), have increased rapidly in all major vehicle markets [1]. This global 
trend is driven by policy goals such as the European Green Deal [2], which aims 
to reduce emissions of greenhouse gases and local pollutants in the transport sector. 
These targets demand strong monetary and non-monetary governmental incentives 
that foster this mobility transformation. For a successful, sustainable, and widely 
accepted mobility transformation to be created, the individual mobility needs of users 
must be reliably served. Consequently, users must be at the center when designing 
ZEVs and their ecosystems. Only when the user needs are fulfilled to a high degree 
can high user satisfaction be achieved. In this way, it is possible to convince potential 
users of ZEVs, e.g., BEVs or fuel cell electric vehicles (FCEVs). 

Therefore, we examine which passenger vehicle purchase criteria are relevant 
from the perspective of ZEV drivers and ZEV-interested individuals.1 These criteria 
were selected through interviews conducted with German and Swiss drivers (N = 
7) of FCEVs and BEVs. We then aimed to determine the weights of these criteria 
by using the Analytic Hierarchy Process (AHP)—a multi-criteria decision analysis 
approach. The weights of these criteria were obtained with an AHP online survey (N 
= 569) distributed through various channels (forums, podcasts, newsletters) on the 
topic of zero-emission mobility. With the goal of creating an assessment framework 
for ZEVs, scales were developed for each criterion. These so-called ‘value scores’ 
represent the degree to which a specific ZEV satisfies the defined criteria. 

Despite the early market phase of ZEVs, customer decisions, especially in the 
context of BEVs, have already been intensively studied. Mainly using discrete choice 
experiments [3], the preferences for different BEV attributes or purchase criteria have 
been investigated. A comprehensive literature review was conducted [4]. 

Using AHP, the purchase of vehicles has been studied in the literature by the 
following selection of authors: Based on a survey of dealership experts, [5] analyzed 
vehicle purchase decisions. Canadian drivers’ preferences for vehicle attributes were 
examined [6]. The interaction of environmental attributes and consumer vehicle 
purchase decisions was investigated [7] and vehicle purchase decision-making during 
COVID-19 [8]. 

Unlike previous studies that solely concentrated on determining the decision-
relevant criteria and their respective weights [6, 7] while comparing specific vehicles 
(alternatives) [5, 8], we chose a different approach. In the study at hand, a flex-
ible assessment framework is created with which any ZEV can be evaluated from 
the customer’s point of view. Such an evaluation framework was not found in the 
literature on ZEVs—neither for BEV nor for FCEV. 

The purpose of the assessment framework is to facilitate the evaluation and 
comparison of ZEV models across technologies with each other from a customers’

1 ZEV drivers are individuals who have gained experience with BEVs or FCEVs through car sharing, 
ownership, company vehicles, or rental cars. ZEV-interested individuals keep themselves up to date 
via podcasts, forums, and newsletters. 
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perspective. Moreover, with a differentiated consideration of the weighted purchase 
criteria and value scores, it is possible to design ZEVs that are tailored to specific 
customer needs. 

This paper first introduces the methodology used to identify and assess the criteria 
and value scores for the multi-criteria assessment framework (Sect. “Multi-Cri-
teria Assessment Framework”). In Sect. “Introduction”, passenger vehicle purchase 
criteria are derived through the analysis of the interviews conducted. Section “Multi-
-Criteria Assessment Framework” introduces the value scores used for each criterion, 
allowing for the comprehensive characterization of particular ZEVs. Section “Results 
and Discussion” presents the criteria weights obtained from the AHP. Section “Con-
clusion and Outlook” presents the conclusion of this study, proposing more in-depth 
research approaches. 

Multi-criteria Assessment Framework 

The creation of this assessment framework required the methodology presented in [9, 
10]. As shown in Fig. 56.1, we first derived the relevant criteria for the multi-criteria 
assessment from the interviews, which took place from October to November 2021. 
Following [11], we conducted semi-structured interviews via video conferencing 
with an average duration of 33 min each. It was essential to us that the interviewees 
have experience with both BEVs and FCEVs, as these technologies are primarily 
associated with ZEVs. However, to date, only few FCEVs are in use, thus compli-
cating the search for individuals with practical experience. To select and define the 
relevant evaluation criteria, we evaluated the interviews and related literature (such 
as [12]) on vehicle purchase decisions. 

Criteria weights for ZEVs were obtained through applying AHP [13]; in a partic-
ipatory multi-criteria decision analysis with stakeholders. AHP was chosen because 
it provides an intuitive and easily understandable method for determining criteria 
weights [9]. This reduces methodological comprehension problems and thus partici-
pation hurdles. Since the focus was on the general passenger vehicle purchase criteria, 
care was taken to ensure that the questions were technology-independent and free of 
brand framing. We asked ZEV drivers and ZEV-interested individuals x to compare 
every possible criteria pair in isolation on a scale from 1 = ‘criteria A equally impor-
tant as B’ to 9 = ‘A significantly more important than B’ in an online survey. We 
received such pairwise comparisons from 569 individuals. 

On the basis of the maximum eigenvalue, we performed a mathematical test for 
the consistency of the individuals’ choices. The consistency value (CR ≤ 0.2) defined

ZEV Driver 
Interviews 

Criteria 
Definition 

AHP Weighting 
of Criteria 

Development 
of Value Scores 

Creation of 
Assessment 
Framework 

Fig. 56.1 Procedural approach to the creation of an assessment framework, adopted from [9] 
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in [14] was met by 244 respondents. The results of the comparisons between all n 
criteria i and j are stored in the evaluation matrix Ax = (aij) for these 244 participants 
x: 

Ax = 

⎛ 

⎜⎝ 
a11 · · ·  a1n 
... 

. . . 
... 

an1 · · ·  ann 

⎞ 

⎟⎠, ∀x ∈ {1, 2, . . . ,  244} (56.1) 

For aij it holds 

∀i = 1, . . . ,  n ∀ j = 1, . . . ,  n : ai, j > 0 
∀i = j : ai, j = 1 
∀i = 1, . . . ,  n ∀ j = 1, . . . ,  n : ai, j = a−1 

j,i . 

Subsequently, the priority vector is calculated with the eigenvalue method. The 
aggregation of individual valuations (Ax) was accomplished via the geometric mean 
of the individual evaluation matrices. The group of ZEV drivers and ZEV-interested 
individuals can thus be divided into subgroups based on socio-demographic informa-
tion or information on their driving behavior. Each (sub-) group can be interpreted as 
a synergistic individual and can be analyzed separately [15]. The eigenvalue method 
was implemented in a MATLAB environment and was applied to calculate criteria 
weights from the perspective of the ZEV drivers and ZEV-interested individuals and 
their subgroups. 

For each criterion i, a spectrum of value scores vic is described with values ranging 
from 0 (criterion not satisfied) to 10 (criterion perfectly satisfied). With these value 
scores and the criteria weights wi, ZEVs c can be evaluated from the point of view 
of (potential) users (cf. [9]): 

Z EV  score = 
n∑

i=1 

wi · vic. (56.2) 

Results and Discussion 

The following section presents the results of the sub-steps for establishing the 
assessment framework according to Eq. (56.2). 

Interviews 

The criteria selected and mentioned in the interviews as relevant for the assessment 
of ZEV are listed and defined in Table 56.1. These criteria were defined in dialogue
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Table 56.1 Assessment criteria for passenger vehicle purchase decisions derived from interviews 

Criterion Definition 

Total costs Total costs of operating a ZEV (including investment costs, 
fuel/charging costs, repair and maintenance costs, and 
insurance) 

Range Maximum distance within which ZEVs with an initially full 
battery/tank can be moved without interruptions for 
recharging/refueling 

Charging/refueling time Time needed to fully charge/fuel the vehicle on the way 

Availability of infrastructure Number of charging points or fuel dispensers, permanent 
accessibility, and even utilization, among other things, improve 
availability 

Greenhouse gas emissions Greenhouse gas emissions generated during the production and 
usage of ZEVs 

Spaciousness Space in the ZEV interior (passenger area, luggage trunk) 

Driving dynamics Driving dynamics measured by acceleration and top speed 

with the interviewees. Participants were asked to name ZEV-specific criteria. For 
these criteria to be weighted, pairwise comparisons of the criteria were integrated 
into an online survey. 

Criteria that have been considered relevant in the literature on consumer prefer-
ences for BEVs [4] are:  purchase price, operation cost, driving range, charging time, 
engine power, acceleration time, maximum speed, CO2 emissions, brand, warranty, 
and charging availability. Our criteria selected are mostly consistent with the criteria 
found in the literature or summarize these. Criteria such as design, warranty, or brand 
were not included, as they were not considered as necessarily related to zero-emission 
drive technology. In the interviews, spaciousness was explicitly mentioned as rele-
vant to cross-technology assessments because hydrogen tanks and batteries have 
strong differences in space requirements that affect the space inside the vehicle. 

Criteria Weights 

In this survey, 569 ZEV-interested individuals with a driver’s license (including 399 
ZEV drivers) participated. About 90% of the participants are male and about 70% 
are older than 40 years. Over 60% have a college degree, some of which even hold a 
doctorate. About 25% of the participants had no previous professional contact with 
hydrogen, (electric) mobility, energy, or technology. About 85% have a net household 
income of more than e2500. The typical consumer interested in ZEV is therefore 
rather well-off, educated, predominantly male, and middle-aged or older. Similar 
observations regarding the composition of samples of drivers and people interested 
in electrified vehicles have been made in previous studies [12, 16]. Table 56.2 shows
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Table 56.2 Relative 
importance of criteria 

Criterion Weight/relative importance [%] 

ZEV drivers (N = 
179) 

ZEV-interested (N 
= 65) 

Total costs 10.6+ 12.5+ 

Range 14.7+ 15.4+ 

Charging/refueling 
time 

14.9+ 13.4+ 

Infrastructure 
availability 

14.4+ 17.1++ 

Greenhouse gas 
emissions 

23.3+++ 17.9++ 

Spaciousness 12.7+ 16.2++ 

Driving dynamics 9.4 7.5 

Notes: Relative importance > 20% (+++), 15–20% (++), 10–15% 
(+) 

the analysis of the pairwise AHP comparisons in the form of the priority vector for 
ZEV drivers and interested parties. 

Overall, ZEV drivers and ZEV-interested individuals show similar tendencies 
regarding the weighting of the purchase criteria. Greenhouse gas emissions is the 
most important and driving dynamics is the least important criterion for both groups. 
Total costs also play a minor role across groups.Greenhouse gas emissions are clearly 
more important to drivers than to interested individuals, while costs are slightly more 
important to the latter. The great interest in the ecological added value of ZEV appears 
to have motivated drivers to actively use ZEV despite possible additional costs. Moral 
licensing could also influence this prioritization. Spaciousness is less important to 
ZEV drivers than to ZEV-interested individuals. While range, charging or refueling 
time, and availability of charging infrastructure are of similar importance to ZEV 
drivers, the availability of charging infrastructure stands out among ZEV-interested 
individuals. In the survey, respondents were explicitly asked about ZEV purchase 
barriers. One of the biggest barriers is the insufficient availability of ZEV infrastruc-
ture. Thus, individuals to whom the security of an available infrastructure is partic-
ularly important could still be deterred from using ZEVs. This consideration could 
explain, among other things, why those interested in ZEVs attach great importance 
to the availability. 

Value Scores 

Table 56.3 provides an overview of all criteria showing the corresponding measuring 
units of their value scores. On the basis of data and values from literature and market 
research, the scales of the value scores are created. Common minimum and maximum
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Table 56.3 Value scores and measuring units 

Criterion Measuring unit Criterion Measuring unit 

Total costs e Greenhouse gas 
emissions 

kgCO2_eq/100 km 

Range km (WLTP) Infrastructure 
availability 

Number of 
charging/filling stations 

Charging/refueling time Min Driving dynamics 0–100 km/h in seconds; 
max. km/hSpaciousness Liter 

levels of the criteria serve as the extrema of the scales (e.g., range: < 100 km indicates 
a value score of 0; range ≥ 700 km indicates a value score of 10). Linear interpolation 
is performed between the extrema to create the scale from 0 to 10. For reasons of 
space, no concrete value scores are presented here. The exact values can be found in 
[17]. 

Conclusion and Outlook 

In this study, we identified relevant ZEV assessment criteria. We derived weights 
for these criteria by applying an AHP that is based on an online survey. By defining 
their respective value scores, we formed a multi-criteria assessment framework. This 
framework assesses any ZEV from the perspectives of (potential) customers, without 
the need for repeated involvement of the surveyed and interviewed individuals. The 
weighting of the criteria was shown here for ZEV drivers and ZEV-interested individ-
uals. By dividing the sample by socio-demographic data and by data on mobility and 
behavior, the specific prioritizations of these subgroups can be determined. Therefore, 
this study contributes to a better understanding of the purchasing behavior and prior-
itizations of ZEV drivers and ZEV-interested individuals. The framework is useful 
for the design of ZEVs by vehicle manufacturers, e.g., in the field of battery-electric 
and hydrogen mobility. 

In this short paper, the AHP priority vectors were analyzed for ZEV drivers 
and ZEV-interested individuals only. A resolution of the total sample by socio-
demographic data and mobility behavior data is also possible. The preferred 
passenger vehicle segments of the survey participants were also queried. In addi-
tion, it was determined which ZEV drive technologies the survey participants have 
already had experience with. Taking these data into account, the analysis of the 
criteria weights seems particularly interesting and promising. These evaluations will 
be included in future publications and will provide more detailed insights into the 
prioritizations of ZEV purchase decisions.
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Chapter 57 
A Mutation Based Modular Evolutionary 
Scheme for Integrated Timetabling 
and Vehicle Scheduling With headways 
and Connection Quality Criteria 

Lucas Mertens, Bastian Amberg, and Natalia Kliewer 

Abstract We propose an adaptive modular evolutionary scheme for optimizing the 
NP-Hard integrated timetabling and vehicle scheduling problem (TTVSP) in public 
bus transit. Various heterogeneous mutation operators are utilized within the scheme. 
Depending on their impact on the computed timetable and corresponding bus sched-
ule, each mutation operator will be adaptively applied with a weighted probability 
in future iterations. To validate the solution quality and runtime of the heuristic, we 
exactly solve the TTVSP considering vehicle fix and operational costs. The experi-
ments show that the heuristic computes a cost-optimal solution in a reasonable time. 
We further increased the solution quality relating to service quality by extending the 
utilized approach considering both short connecting times between different lines 
and good headways. 

Keywords Public bus transport · Timetabling · Vehicle scheduling 

Introduction 

Public transport planning is a traditionally sequentially executed multi-level process 
[ 2]. Each planning step covers a different time horizon and is advancing for shorter 
periods. Strategic planning covers the longest horizon and can be divided into net-
work design and line planning. Following these steps, tactical planning is concerned 
with frequency setting and timetabling. Operational planning is executed for short 
periods and is mainly divided into vehicle scheduling, crew scheduling, and crew 
rostering. In our study, we focus on an integrated optimization of timetabling and 
vehicle scheduling, resulting in a bridge between tactical and operational public trans-
port planning. Based on the line network, passenger demands, service times, vehicle 
capacities, and frequency specifications such as headways between service trips, the 
timetabling problem (TT) aims to compute a seasonal, weekday, and holiday-related 
timetable. The timetable defines each service trip and their arrival and departure at 
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each stop. Given this timetable, the vehicle scheduling problem (VSP) is concerned 
with generating a cost-minimal vehicle schedule. Service trips are assigned to vehi-
cles and complemented by deadhead trips without passengers to plan pull-outs from 
depots, pull-ins to depots, and trips between different lines. Traditionally, the TT 
is solved first, and the computed service trips are used as an input for the VSP. By 
integrated optimizing both planning steps, the timetable leading to the lowest cost 
vehicle schedule can be computed. However, solving the integrated timetabling and 
vehicle scheduling problem (TTVSP), the solution space and hence the complexity 
increases significantly. An extensive overview of optimization approaches for the 
TTVSP is given by [ 1]. Only a few publications (e.g. [ 4, 5]) utilize a true integra-
tion considering the entire solution space and are not relying on multiple iterations 
between both planning steps. Even though integrated approaches for solving the 
TTVSP have been proposed, to the best of our knowledge, neither of the publica-
tions cover the full complexity of both real-world TT and VSP yet. E.g., both [ 4] and 
[ 5] consider one vehicle type, and do not allow any interlining. In this short paper, 
we include line synchronization, interlining, and deadheading in TTVSP. We sketch 
the underlying principle and first results of an adaptive modular extendable evolu-
tionary scheme (AMEES) for solving the TTVSP, considering these requirements 
for real-world instances. In the following section the AMEES is described, and an 
exact MIP serving as a benchmark for solving the TTVSP is formulated. The results 
and possibilities to extend the new approach are evaluated in Section “Experiments”. 
Section “Outlook” summarizes our work and gives an outlook on future research. 

Integrated Timetabling and Vehicle Scheduling 

We propose an AMEES to solve the TTVSP for real-world instances in reasonable 
computational time, which is able to consider a diversity of cost and service quality 
criteria in addition to nominal costs such as vehicle fix and operational costs. The 
AMEES evolutionarily improves a population of individuals, with an individual rep-
resenting a TTVSP solution, i.e., a timetable and corresponding vehicle schedule. An 
individual’s fitness is defined by the costs of serving the timetable and can be further 
specialized, e.g., with boni for short connections between different lines reached 
within a specified time interval and for good headways. Headways are considered 
good if they are clock headways and if their prior and following headway have the 
same frequency. Since crossover operations on promising individuals in an evolu-
tionary scheme frequently lead to invalid or deteriorated solutions, the main novelty 
of the AMEES for public transport planning is the inclusion of an extendable variety 
of numerous mutation operators (MO). In the following, the design of the AMEES 
solving the TTVSP is described. First, we outline the structure and MOs directed at 
optimizing the timetable, followed by the specifications for the vehicle schedule. 

The timetable is represented as a binary list of possible service trips. Each possi-
ble service trip is created for each minute a bus could start a trip. The trip schedule 
contains n values, where n equals the total number of possible service trips. A one
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in the list represents a planned trip, otherwise a zero is set. A simple MO could, 
e.g., flip a random binary value within the trip schedule, resulting in planning or 
unplanning a trip. A pool of 23 timetabling MOs is rapidly applied to each individ-
ual. MOs aiming to improve the timetable are separated into four classes: Planner, 
Unplanner, Allocator, and Switcher. Several Planner and Unplanner aim at planning 
or unplanning particular trips to improve the timetable. Switcher specifically change 
the value of two trips and Allocator of multiple trips simultaneously. The class of Plan-
ner, e.g., contains five distinct MOs: PassengerMissingPlanner, MaxHeadwayVio-
latedPlanner, ServiceTimeStartPlanner, and ServiceTimeEndPlanner. Whereas the 
PassengerMissingPlanner plans a new trip to transport all required passengers, the 
MaxHeadwayViolatedPlanner schedules a trip such as the maximal headways are 
satisfied. Both the ServiceTimeStartPlanner and ServiceTimeEndPlanner plan trips 
to cover the service times of a line. 

The vehicle schedule is represented as a vector of vehicle rotation objects. Each 
rotation contains a list of the covered trips, deadhead trips, and its associated depot. 
A pool of 12 MOs aiming to improve an individuum’s vehicle schedule is divided 
into 5 classes: Veh-Planner, Veh-Unplanner, Veh-Trip-Allocator, Veh-Merger, and 
Veh-Splitter. New vehicle rotations are created via Veh-Planner to cover unassigned 
trips. Veh-Unplanner, on the other hand, unschedule redundant vehicles and allocate 
the now unassigned trips to existing rotations. Resulting in lower operational costs, 
Veh-Trip-Allocator reallocate trips between rotations. Veh-Merger reduce the total 
number of required buses by merging trips of two rotations into a single one. Long idle 
times or too much deadheading can lead to inconveniently planned vehicle rotations. 
Veh-Splitter divide these into separate new rotations. E.g., 2 MOs are classified as 
Veh-Splitter: VDeadheadReductionSplitter and VTimeReductionSplitter. If a rotation 
switches between lines frequently, the VDeadheadReductionSplitter separates it into 
at least two rotations that switch less between lines. Reducing long idle times in a 
rotation, the VTimeReductionSplitter splits it at these waiting times into separate 
rotations. 

Figure 57.1 displays the solution process within the AMEES. First, an initial popu-
lation of individuals with no service trip or vehicle is created (1). Several construction 
operators (CO) are applied, resulting in various individuals (2). COs, e.g., schedule 
a sequence of multiple trips with a fixed headway and assign these to vehicles. 
Since individuals are not crossed over, every iteration within the AMEES starts with 

Fig. 57.1 Process of solving the TTVSP with the AMEES
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stochastically applying a MO (3). At first, there is no information about an MO’s per-
formance. Hence, every MO is applied to every individual. An individual’s validity 
is determined by a quantified violation against the minimal required headway, max-
imal allowed headway, and passenger demand constraints. The individual’s fitness 
is defined by the nominal costs, boni for good headways and connections reached 
and a weighted validity. After calculating every individual’s fitness (4), the impact of 
each MO on the fitness is measured and tracked (5). If applying a specific MO results 
in an improved fitness, the MO will be adaptively applied with a higher probability 
on individuals with a similar fitness value in future iterations. However, not only the 
sole performance of a MO is evaluated, but their synergies. Isolated applied, MOs 
classified as, e.g., Veh-Splitter, increase the nominal costs, hence decrease the indi-
vidual’s fitness. However, a collaborative sequencing of heterogeneous MOs might 
frequently lead to an improved solution. Applying a Veh-Merger subsequently to a 
Veh-Splitter, can lead to a better allocation of trips within the vehicle schedule and to a 
superior solution after all. These promising sequences of combining multiple hetero-
geneous MOs are elaborated and applied to individuals within the same generation. 
After applying and measuring the impact of the MOs, the diversity of the popula-
tion, derived from each individual’s fitness value, is evaluated and its composition and 
size adjusted (6). Identical as well as individuals with low fitness are removed. Keep-
ing a constant population size, the individuals with the highest fitness are duplicated. 
However, if the fitness of every individual converges, the population size is gradually 
enlarged to enable an increased diversity within the population. Applying MOs to a 
broader range of individuals requires more computational time but increases the like-
liness of escaping possible local optima. Reaching a termination criteria (e.g. time, a 
predefined amount of valid individuals, or passing an objective value), the fittest indi-
vidual is chosen (7). The fitness function can be easily adjusted, and new MOs can be 
integrated without the need to adjust prior implementations or the solution structure. 

An exact solution serves as a benchmark to evaluate the quality of the computed 
solutions by the AMEES. The corresponding mathematical model is based on a 
time-space network (TSN) formulation according to [ 3]. The TSN consists of nodes 
N representing the time and location of each stopping point and arcs representing 
every possible trip T , deadhead trips D, and waiting times W . Binary and integer 
decision variables set the flow for each arc. The objective function minimizes the 
total costs of all used arcs. The required passenger service is defined within tracking 
gates. Tracking gates are virtual points between two stops and define the number of 
passengers that must be transported within an hour, as well as a minimal required 
and maximal allowed headway between two departures. One tracking gate can set 
requirements for different time periods. If multiple lines path the same tracking 
gate, requirements are set for each line simultaneously. Let G represent the set of 
tracking gates. The set Mg represents each discrete minute and Sg each hour within 
each g ∈ G. Hmin 

g,m defines the trips starting at each minute m ∈ Mg for the defined 
minimal required headway associated with the tracking gate. A service time of one 
hour, with a minimal required headway of 3 minutes would, e.g., result in 58 sets 
of 3 trips with the following departure times: [6:00;6:01;6:02], [6:01;6:02;6:03], ..., 
[6:57;6:58;6:59]. A maximum of one service trip of each set is allowed to be planned
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to guarantee that buses do not depart within a too-small frequency. Similarly, Hmax 
g,m 

represents a set of trips within a g ∈ G starting at each minute m ∈ Mg for the 
defined maximal allowed headway. Furthermore, the set Ein  

n contains each arc from 
T , D, and W going into and Eout 

n leaving a node n ∈ N . If multiple vehicle types are 
considered, ct represents the passenger capacity for each possible service trip and is 
fixed otherwise. Rg,s includes each trip associated to a g ∈ G at each hour s ∈ Sg . 
The parameter pg,s sets the lower bound of required passengers to be transported for 
each g ∈ G at each hour s ∈ Sg . Aiming to minimize the overall costs, the constraints 
of the model can be formulated as follows: 

∑ 

t∈Hmin 
g,m 

xt ≤ 1 ∀g ∈ G, ∀m ∈ Mg (57.1) 

∑ 

t∈Hmax 
g,m 

xt ≥ 1 ∀g ∈ G, ∀m ∈ Mg (57.2) 

∑ 

t∈Rg,s 

ct xt ≥ pg,s ∀g ∈ G, ∀s ∈ S (57.3) 

∑ 

i∈Ein  
n 

xi − 
∑ 

j∈Eout 
n 

x j = 0 ∀n ∈ N (57.4) 

xt ∈ 0, 1 ∀t ∈ T , xi ∈ N ∀i ∈ D ∪ W (57.5) 

For each tracking gate, constraints (57.1) guarantee that no more than one trip 
within the set of minimum required headways is executed. Similarly, (57.2) ensure 
that at least one trip departs within the defined maximum allowed headway. Con-
straints (57.3) guarantee that at least the required amount of passengers are trans-
ported. Lastly, the flow-conservation constraints (57.4) guarantee that every vehicle 
entering a node also leaves it. 

Experimental Results 

To validate the proposed AMEES, the computed results are compared with the results 
of the exact approach for different instances. The exact approach is implemented in 
Python and solved with Gurobi v 9.1.2. The AMEES is implemented in C++. All 
computational tests are carried out on an Intel(R) Core(TM) i9-10900 CPU with 
2.8GHz and 32GB RAM. First, three real-world-inspired instances of increasing 
complexity (I1, I2, and I3) are exactly and heuristically solved. Following, a fourth 
instance (I4) is considered to evaluate the applicability of the AMEES for a large 
problem setting. I1 covers only trips of a single line, with a total of six stops and 
two tracking gates. I2 considers an additional line with 8 stops, passing through two 
new tracking gates. Each tracking gate defines requirements considering headways 
and passenger demands for three different time periods. I3 considers a total of 33 
stops and 5 lines starting at 5 a.m. and ending at 2 a.m. the next day. I3 includes a
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Table 57.1 Comparison between the exact approach and AMEES 

TTVSP exact TTVSP AMEES (20 runs) 

Instance Min 
#Trips 

Min 
#Buses 

Time opt. Total time Total time 
(min) 

Avg. time 
opt. (s) 

Min/Max 
time opt. 
(s) 

I1 125 5 3.4 min 4.5 min 5 0.8 0.7/1.2 

I2 260 11 30.2 min 30.2 min 5 11.2 9.8/16.0 

I3 356 16 – 24 h 5 23.5 11.1/32.9 

Table 57.2 Improved headways and connections considering additional quality criteria 

AMEES AMEES with quality criteria 

Instance #Connections 
Avg/Min/Max 

#Good Headways 
Avg/Min/Max 

#Connections 
Avg/Min/Max 

#Good Headways 
Avg/Min/Max 

I1 0 16.4/14/19 0 42.4 /39/45 

I2 0 26.6/23/29 0 181.2/168/188 

I3 84.4/78/92 129.4/120/144 138.2/121/163 203.7/190/211 

total of 8 tracking gates and 4 intersecting lines. Exactly solving the TTVSP leads 
to a minimal amount of trips and a minimal number of required buses shown in 
the second and third columns of Table 57.1. Column Time Opt. indicates the time 
until the exact approach finds an optimal solution, while Total Time includes the 
time needed to prove optimality. The AMEES is executed 20 times and terminates 
after a time limit of 5 minutes. The column Avg. Time Opt. indicates the average 
time the AMEES required to compute the best solution. The objective value of these 
solutions unanimously equaled the exactly computed optimum. The last column 
of Table 57.1 displays the minimal and maximal time the computation of the best 
individual took in all executions of the AMEES. Already for very small instances, the 
AMESS outperforms the runtime of the exact approach. With growing complexity, 
the runtime of the exact approach is increasing crucially and still holds an optimality 
gap of 5% after 24h runtime for I3. For the same instance, the AMEES converged to 
its best computed solution in an average of under 30 s. 

The AMEES can be extended to compute good headways as well as connections 
reached. So far, an exact model can not consider these additional requirements in 
reasonable computation time. The left half of Table 57.2 shows the average, minimal 
and maximal number of connections reached and good headways of the 20 prior 
evaluated computations. We included the additional quality criteria in the objective 
function of the AMEES and added 6 MOs, such as the GoodHeadwayPlanner that 
schedules trips with a regular headway. As seen in the right half of Table 57.2, 20  
new executions of the enhanced AMEES with only one minute runtime improved 
both quality criteria significantly. 

To further validate the applicability of the AMEES, we consider an additional 
large instance (I4) that cannot be handled in a reasonable time by the exact approach.
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I4 consists of 25 lines, with 165 stops, 50 different routes, and 40 tracking gates. This 
affects, in particular, the trip schedule representation in the AMMEES. The binary 
trip schedule representing each possible trip linearly increases with the total service 
time covered by each line. A total service time of 9480 minutes is covered in I3, 
and the same amount of binary decision variables (9480) are required to model the 
corresponding trip schedule. I4 covers the fivefold service time and requires exactly 
five times the amount of trip schedule decision variables (47400). The AMEES was 
executed 20 times with a time limit of 30 minutes. Each execution resulted in a valid 
timetable and vehicle schedule. The best solution of each execution exhibits a similar 
convergence behavior and required between 4300 and 5000 mutations in an average 
of 22 minutes until no further improvements are computed. On average 98.3 vehicles 
are required to cover 2189.7 service trips. The best solution required 97 vehicles to 
cover 2179 service trips, and the solution with the highest costs required 101 vehicles 
to cover 2214 service trips. 

Conclusion and Outlook 

We proposed an AMEES to solve the TTSVP heuristically. Compared to the exact 
approach, the nominal costs computed by the AMEES converge to the same optimal 
value. No additional trips are planned or buses required. In addition, significantly 
less computational time is needed. We extended the AMEES to compute good head-
ways and connections reached. This resulted in a significant improvement of the 
enhanced quality criteria within a short computation time. For a large real-world-
inspired instance, multiple runs of the AMEES converged to solutions of similar 
quality within reasonable computational time. However, there is still a quality gap 
between these solutions, and additional MOs have to be elaborated to achieve a lower 
variance. This work lays the foundation for further investigating the performance of 
the AMEES for scheduling in public transport. Additionally, we aim to extend the 
AMEES to integrate a third planning step, i.e., the crew scheduling. 
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Chapter 58 
A New Flow-Based Location 
and Capacity Model for Profit-Oriented 
Refueling Station Network 
Transformation 

Tjard Bätge , Christian Weckenborg , and Thomas S. Spengler 

Abstract The availability of refueling stations for alternative fuels is of high impor-
tance for the penetration of alternative fuel vehicles (AFV) in today’s markets and 
is an important lever for sustainable mobility. Therefore, refueling station network 
deployment strategies are currently of great interest to researchers. Several quan-
titative location models have been specifically developed, adapted, and applied to 
determine optimal refueling station locations and network build-up strategies for 
AFV refueling from an overall system’s perspective. However, the network oper-
ator’s intrinsic economic objectives and its preference for transforming the existing 
refueling station network rather than building up new refueling stations are subor-
dinate in most research. That is why a new formulation of a flow-based location 
model is introduced in this study that not only decides on the locations of new alter-
native refueling stations but also on the provisioned capacities of multiple fuel types 
at each newly opened and each already existing refueling station in a multi-period 
planning horizon. This new approach uses a profit-oriented, cash flow-based objec-
tive function to transform the existing refueling station network over time. A case 
study depicting German highways is presented to validate the new model and the 
computational results are discussed. 

Keywords Alternative fuel vehicle · Facility location · Refueling station ·
Capacity planning · Multi-period · Network transformation · Refueling 
infrastructure 

Introduction 

Recently, the usage of alternative fuel vehicles (AFV) is widely discussed as a poten-
tial means to reduce greenhouse gas emissions in the mobility sector. One idea under

T. Bätge (B) · C. Weckenborg · T. S. Spengler 
Institute of Automotive Management and Industrial Production, Technische Universität 
Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany 
e-mail: t.baetge@tu-braunschweig.de 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_58 

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_58&domain=pdf
http://orcid.org/0000-0001-6682-3315
http://orcid.org/0000-0003-3598-4508
http://orcid.org/0000-0002-0212-1899
mailto:t.baetge@tu-braunschweig.de
https://doi.org/10.1007/978-3-031-24907-5_58


488 T. Bätge et al.

discussion and the focus of this study is the replacement of conventional heavy-duty 
diesel trucks with hydrogen fuel cell trucks for long-haul transportation. 

The usage of AFV, however, also necessitates the existence of a corresponding 
alternative refueling station network. Most countries’ current conventional public-
access refueling infrastructure is operated by multiple profit-oriented companies each 
managing its network of refueling stations. Equipping existing conventional stations 
with alternative refueling systems as well as the build-up of new alternative refueling 
stations comes with high investments [1]. Thus, the network operators need to decide 
how to optimally invest in the transformation of their refueling station network if 
they want to secure their market share in the emerging refueling markets for AFV. 
Because of the dynamic nature of the emerging vehicle markets with coexisting fuel 
technologies and a present conventional vehicle stock, these investment decisions 
need to consider (i) different fuels at (ii) different capacity levels and (iii) a strategic 
planning horizon. 

Several quantitative location models have been specifically developed, adapted, 
and applied to determine optimal refueling station locations and network build-
up strategies for AFV refueling from an overall system’s perspective, e.g. [2–4]. 
However, (iv) the network operator’s intrinsic economic objectives and (v) its pref-
erence for transforming the existing refueling station network rather than building 
up new refueling stations are subordinate in most research. Moreover, most research 
neglects the coexistence of multiple fuel types. However, these requirements need 
to be considered to support the investment decisions of a single refueling network 
operator in a competitive environment. That is why the main contribution of this 
research is the development of a new dynamic, multi-fuel, flow-based refueling 
station location and transformation model. The model accounts for the interdepen-
dencies between the company’s decisions, the competitor’s decisions, and the AFV 
market by assuming a simple oligopoly-like refueling market. The model is used 
to investigate how different competitor actions influence the decision-making of a 
major refueling station network operator. 

In the following, the literature is reviewed in Sect. “Literature Review” and the new 
model is introduced in Sect. “Methodology”. Subsequently, a case study depicting 
German highways is presented in Sect. “Case Study”, the case study’s results are 
discussed in Sect. “Results”, and the research is concluded in Sect. “Conclusions”. 

Literature Review 

To optimally allocate alternative refueling stations, Kuby and Lim [5] developed 
the Flow Refueling Location Model (FRLM), where demand is modeled as traffic 
flow passing facilities on origin-destination paths while considering vehicle range. 
A widely used and more efficient formulation of the FRLM has been found by Capar 
et al. [6]. 

There are many extensions and applications of FLRM formulations. Tafakkori 
et al. [7] consider multiple fuel types (i), while Wang and Lin [8] consider multiple
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charging station types. Rose et al. considered node capacity restrictions (ii) and 
applied the model to heavy-duty fuel cell trucks for long-haul transportation in 
Germany [1, 4]. This model has then been extended by a dynamic perspective (iii) to 
generate step-by-step infrastructure construction plans [3]. Zhang et al. also devel-
oped a multi-period capacitated FRLM to find optimal locations for electric vehicle 
charging stations. Different approaches to model the dynamics of the electric vehicle 
market are presented [2]. Multiple fuels, however, are not considered in [1–4]. 

Bersani et al. [9], as well as Crönert and Minner [10], investigate alternative 
refueling station placement with intrinsic economic objectives in competitive envi-
ronments (iv). However, both models are static and study only one fuel type. Multiple 
articles, e.g. [9], consider existing conventional refueling stations as possible alterna-
tive refueling station locations. However, the transformation of technical equipment 
or local restrictions are not explicitly modeled (v). 

To the best of the authors’ knowledge, no model within the literature on alternative 
refueling station location modeling accounts for all defined requirements. That is why 
a new refueling station location and transformation model that extends the model 
of [6] by capacity and demand variables for multiple fuels is introduced in the next 
section. 

Methodology 

The following section introduces the sets, indices, decision variables, constraints, and 
the objective of the new dynamic, multi-fuel, flow-based refueling station location 
and transformation model. The foundation of the mathematical model is a traffic 
network consisting of nodes i, j, k, m ∈ N, i, j, k ∈ L ⊆ N, and i, j, k ∈ CL ⊆ N 
as well as arcs as roads. L and CL mark the positions of the investigated company’s 
and all competitors’ (potential) fuel stations, respectively. At each operated refueling 
station, different refueling systems can be built. Each system dispenses a specific fuel 
type f, alt ∈ F. Following the notation and logic of [6], the traffic flows through 
the network on roundtrip-paths q ∈ Q along the arcs a j,k ∈ Aq . As vehicles with 
different fuels have different ranges, the potential fuel stations on paths q are given 
as i, m ∈ Kq, f 

j,k for each arc a j,k and fuel type f. The periods of the planning horizon 
are denoted as t ∈ T. 

The model’s objective, Eq. (58.1), is to support a refueling station network operator 
regarding investment decisions for the transformation and operation of its existing 
network. For the economic focus of the associated decisions, the net present value 
(NPV) is maximized: 

max N PV  =
∑

t∈T

∑

i∈L

∑

f ∈F 
( p f − so f ) · 365 · quant i  t  y  f,i,t · (1 + h)−t 

−
∑

t∈T

∑

i∈L 
(oper station i · zstation i,t + constr station i · kstation i,t
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+ deconstr station i · dkstation i,t ) · (1 + h)−t 

−
∑

t∈T

∑

i∈L

∑

f ∈F 
(oper system 

f · zsystem 
f,i,t + constr system 

f · ksystem 
f,i,t 

+ deconstr system 
f · dksystem 

f,i,t ) · (1 + h)−t (58.1) 

On the one hand, the refueling station network operator needs to decide which 
stations zstation i,t ∈ {0, 1} as well as how many and which refueling systems 

zsystem 
f,i,t ∈ N+ 

0 to operate on these stations in each period. Therefore, stations and 

systems can be constructed (kstation i,t ∈ {0, 1}, ksystem 
f,i,t ∈ N

+ 
0 ) or deconstructed 

(dkstation i,t ∈ {0, 1}, dksystem 
f,i,t ∈ N+ 

0 ). Construction and deconstruction are associated 

with payments (constr station i , deconstr station i , constr system 
f , deconstr system 

f ). For the 

operation of stations and systems, payments per period occur (oper station i , oper system 
f ). 

All payments are discounted with the interest rate h. A balance constraint ensures 
that the number of systems of fuel type f operated in period t equals the sum of 
systems operated in the previous period t−1 and systems constructed and decon-
structed at the beginning of period t at each station i ∈ L. The stations are balanced 
similarly. Another constraint accounts for the existing initial situation. The available 
space at each refueling station i ∈ L must not be exceeded by the required space of 
the operated systems. 

On the other hand, the fuel sales contribute to net incoming payments via their 
specific price p f and specific payments for provision so f . Each refueling station’s 
quantity of sales quant i  t  y  f,i,t ∈ R+ 

0 of fuel type f is restricted by the installed 
capacity and by the demand demand  f,i,t ∈ R+ 

0 , which is generated by the passing 
vehicles. As a Cournot oligopoly-like market is assumed for this strategic setting, the 
refueling needs that are generated by vehicles traveling on the arcs a j,k ∈ Aq on paths 
q ∈ Q are split into equal parts xq i,( j,k), f,t ∈ R+ 

0 (in distance units) over the refueling 
stations i in operation. The total demand at each refueling station demand  f,i,t (in 
fuel units) can now be calculated as product of refueling needs xq i,( j,k), f,t , number 
of vehicles, and fuel efficiency over paths q ∈ Q and arcs a j,k ∈ Aq . The number 
of cars of a specific fuel type f depend on its realized market share sreal q, f,t ∈ R[0,1]. 
Exogenous knowledge of a potential market share is assumed. However, conventional 
truck owners are assumed to only switch to an AFV if they perceive the alternative 
refueling options to be sufficient. Thus, the realization of potential market shares 
depends on the travelability of the vehicles’ paths, i.e., the coverage y f,q,t ∈ {0, 1}. 
Following the formulation of [6], a path q is covered if all its arcs a j,k ∈ Aq are 
covered by either own or competitors’ refueling stations. Exogenous knowledge of 
the competitors’ actions is assumed. If a path is not travelable for vehicles of fuel 
type f , a predefined share of the traffic will instead use a different vehicle type with 
different fuel alt . If neither vehicle types can travel this path, these vehicles do not 
generate refueling demand.
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Case Study 

As the focus of this study is the replacement of conventional heavy-duty diesel 
trucks with hydrogen fuel cell trucks for long-haul transportation, the case study is 
depicting one network operator with refueling stations along two major highways in 
Germany, Autobahn A2 and A7. The 70 nodes and 76 arcs of this cross-like traffic 
network are analogous to the real-world service areas and road segments. Each of the 
two highways is represented by one OD-round trip. The hydrogen refueling station 
and truck parameters are based on [11], the remaining parameters were appraised 
realistically. 

The potential hydrogen fuel cell truck market share is assumed to follow a general-
ized logistic function reaching its maximum growth in 2035 and converging to 100%. 
As only two fuels are examined, the diesel share is the reversed function. The plan-
ning horizon is 20 years or periods, respectively. Four competition scenarios (I–IV) 
are investigated. Scenario I, early and instantaneous build-up of hydrogen infras-
tructure at all competitor stations 5 years from the baseline year 2022. Scenario 
II, build-up 10 years after baseline, and Scenario III, late build-up 15 years after 
baseline. Scenario IV, no competitor hydrogen refueling infrastructure build-up. 

The model classifies as a mixed-integer quadratically-constrained program. It has 
been implemented in Python 3.9.12 and solved using Gurobi 9.5 on a virtual 64-bit 
Windows 10 system with 4 cores Intel Xeon Platinum 8180 @2.50 GHz CPU and 
32 GB RAM. The case study models comprise around 23,000 linear, 630 quadratic, 
and 81,600 general constraints as well as 87,100 variables, 7,500 of which are integer 
and 3,700 are binary. Three scenario instances (I, II, and III) were solved optimally in 
about 1 min, 6 min, and 2 h. Instance IV was terminated after 72 h with an optimality 
gap of 5.83%. The large runtime results from increasing symmetries as competition 
decreases. 

Results 

The optimal investment and operation plans have been calculated for each scenario 
of the case study. The results show that the company’s decisions strongly depend 
on the timing of the competitors’ actions. Figure 58.1 illustrates the NPV and the 
number of diesel and hydrogen systems operated on the company’s refueling stations 
in each period.

The transformation with the highest NPV can be realized in Scenario IV without 
competition in the hydrogen refueling market. The NPV will be lower the earlier 
the competitors enter the market. All transformation plans include both hydrogen 
and diesel refueling systems. Hydrogen systems are preferably built along the A2 
first, where traffic volume is higher. In Scenario III and in Scenario II along the 
A2, it is optimal to install hydrogen systems before the competitors act (market 
leader strategy). As a result, groups of specific refueling stations are simultaneously
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Fig. 58.1 NPV and station configurations for the 4 scenarios

equipped with hydrogen systems. These stations are spatially dispersed along the 
highway to ensure travelability. Whereas in Scenario I and in Scenario II along 
the A7, travelability is ensured by the competitors’ refueling stations and a market 
follower strategy is adopted. Depending on their sales quantity, scattered stations 
are successively equipped with hydrogen systems. In contrast to the market leader 
strategy, not every operated station is equipped with a hydrogen system in the final 
period, where the fuel cell vehicle market share is > 95%. This might be perceived 
as a lack of service by the customers. 

Conclusions 

The presented model has shown to generate useful investment and operation plans 
for the transformation of a multi-fuel refueling station network. The results can 
support operators’ decision-making for different competition scenarios. Future 
research should apply the model to larger case studies and improve computational 
performance. 
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Chapter 59 
Bidirectional Green Waves for Major 
Road Axes by Adjusting Separate 
Left-Turn Phases 

Christian Liebchen 

Abstract Planning so-called green waves along major road axes is a well-
established target for traffic engineers. This is mainly for two reasons: a smooth 
traffic flow quality, and less air pollution. For one-way road axes (e.g., the Avenues 
in Manhattan), this is a trivial downstream task. For bidirectional arterials, there is 
a well-known necessary condition for establishing a green wave in both directions: 
The driving times between two subsequent crossings must be integer multiples of 
half of the cycle time of the signal programs at the nodes. In this presentation, we 
propose an integer linear optimization model to establish fixed-time green waves in 
both directions that are as long and as wide as possible, even in the situation where the 
above-mentioned driving time condition is not fulfilled. In particular, we are consid-
ering an arterial along whose nodes separate left-turn signal groups are realized. In 
our computational results, we show that scheduling left-turn phases before or after 
the straight phases can reduce waiting times along the arterial. Moreover, we show 
that there is always a solution with green waves in both directions that are as long 
and as wide as possible, where absolute priority is put on just one direction. Only 
when considering prioritized parts of a green band (e.g. some first few seconds), then 
an ideal green wave into one direction can provide suboptimal quality compared to 
optimizing both directions together. Finally, we validate the nominal solution quality 
according to the objective function values with the results of corresponding runs of 
the well-established traffic flow simulation tool SUMO. 
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Introduction 

Despite the availability of traffic-responsive control of street crossings, fixed-time 
controlled signal programs can still be a matter of choice, in particular, during times 
that show high traffic volumes in various directions and dense networks with short 
distances between junctions. When considering one isolated junction (or node), the 
following decisions are to be taken: definition of the phases (signal groups showing 
green at the same time), sequence of the phases, and lengths of the phases. Counting 
intermediate times as “phases”, too, the sum of the lengths of all phases yields the 
cycle length, after which the same signal program repeats in a fixed-time control. 
When coordinating adjacent junctions, a common cycle length might be set first. 

We are considering a road arterial along which both directions deserve attention. If 
the junctions have only two phases, so-called green waves can only be established into 
both directions, if the driving time between two consecutive junctions equals half of 
the common cycle length, or some integer multiple of it. This condition is only rarely 
met in practice. Hence, even with the best possible coordination (or synchronization) 
of the relative offsets (or shifts) of the signal programs of the junctions, it is not 
possible to plan green waves into both directions for the entire platoons of cars. 

This is why we are going beyond the pure coordination of predefined signal 
programs. Rather, we are optimizing the sequences of the phases, and even select 
among a predefined small set of alternative phases at each junction. According to [2], 
our goal is to minimize the number of stops of the cars that travel along the entire 
arterial. 

Mathematical optimization had been applied to the pure coordination of fixed 
signal programs of traffic lights even for intermeshed street networks [7], involving 
sophisticated objective functions to measure the waiting times of arriving cars appro-
priately ([8], in particular Sect. 1.3.5) and making use of time-expanded networks 
[3]. 

Zhang et al. [9] include decisions of phase sequencing along two arterials similar 
to the one that we are working with. But they also take the freedom to adjust the 
progression speeds in order to compute (at least narrow) green bands along the 
entire arterial into both directions. Köhler and Strehler [4] also select appropriate 
sequences for the phases. An instance, for which an optimum solution is found 
within a few seconds involves seven junctions, but six junctions are just connected 
by a unidirectional traffic flow. For a larger and intermeshed network of 32 signalized 
intersections, optimality gaps of 20 percent remain even after hours of computation. 

With this background, our contribution lies in the combination of: 

• sticking to compact mathematical models (see also [6]) and optimization methods, 
• not only computing optimal relative shifts of fixed signal programs, but including 

phase sequencing and partial selection among some pre-defined alternative phases, 
• at the price of limiting the use case to arterials (with separate left-turn signal 

groups) instead of scheduling general road networks, 
• finally evaluating the planned results by a microscopic traffic flow simulation.



59 Bidirectional GreenWaves for Major Road Axes by Adjusting Separate… 497

Our computational results show that allowing for selecting among different strate-
gies for the left-turn phases can be highly beneficial. This is supported by an 
evaluation using the microscopic traffic flow simulation software tool SUMO [1]. 

General Setting and Optimization Model 

We are considering an arterial along which the left-turn traffic is secured by separate 
signal groups. According to [2], our goal is to schedule the green phases such that the 
cars that are driving along the entire arterial are facing as little stops as possible. This 
is advantageous for both, the quality of the traffic flow, and environmental impacts. 

Instead of only coordinating fixed signal programs being pre-defined at each 
junction, our optimization model selects among the phases that are displayed in 
Fig. 59.1. 

As a result of traffic flow analysis, assume the straight traffic requires a green 
duration of 50 s per cycle (i.e. 90 s), and left-turn traffic 15 s. These durations can 
be composed of three sequences I–III of the phases (a) to (d): I (a) 15 s, (b) 35 s, (c) 
15 s; II: (c) 15 s, (b) 35 s, (a) 15 s; III: (b) 50 s, (d) 15 s (alternatively, the other way 
round). 

Due to space limitations, we are only able to sketch the optimization model “as 
is”, without discussing any of its simplifying assumptions. We are considering an 
ordered set J of junctions along the arterial. The two directions of the arterial are D 
= {WE, EW}, where driving from node j to j + 1 is from west to east and takes dij 
seconds. The cycle time, which applies to each junction, is denoted by T (e.g. 90 s). 

As in [8], the model that we are using is based on the Periodic Event Scheduling 
Problem (PESP, [7]), see also [5]. There are two types of vertices, namely the begin-
ning time of a green phase (GB) at junction j in direction d, whose time point within 
the cycle time T is the value of the variable π j, d, GB  ∈ [0,T ). In Fig. 59.2, these 
vertices are displayed in grey. For sake of convenience, we also introduce variables 
π j, d, AB  ∈ [0,T ), which model the beginning of the platoon arriving (AB) at junction j 
(white vertices).

There are three types of arcs along which we are measuring time durations:

Fig. 59.1 Reference [6]. There are four relevant basic phases for the through-traffic along the 
arterial together with separate left-turn signal groups. The phases for the crossing traffic are not 
displayed, but are assumed to be connected (see also, Fig. 59.2 in [9]) 
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Fig. 59.2 Reference [6]. Highlighting the arcs with possible slack along an arterial, where the four 
leftmost vertices belong to junction j, while the four rightmost vertices belong to junction j + 1

• driving activities Ad (from green begin to arrival begin at next junction), 
• offset (shift) activities As (between two green begin vertices at the same junction), 
• activities Aw at the junctions, where cars could face waiting times in case of a 

stop (from the beginning of a platoon arriving at a junction to beginning of green 
there). 

The time duration xa ∈ [La, ua] of an arc  a = (v1,v2) ∈ A is related to the points of 
time of the two involved events as follows (see [5, 7]), where pa ∈ Z is a technical 
variable: 

xa = πv2−πv1 + πa · T (59.1) 

For arcs a ∈ Ad , the lower and upper bounds are [da, da], and [0, T − 1] for a ∈ 
Aw. In order to let the values of xa, a ∈ As select only among values that correspond 
to feasible phase sequences, i.e., xa ∈ {−sj, 0,  sj} (with sj = 15 s in our example), 
we introduce a ternary variable cj ∈ {− 1, 0, + 1}—hereby leaving the pure PESP 
model—and require: 

xa = c j · s j + T · r j , r j ∈ {0, 1} (59.2) 

Finally, for the objective function, let us just point to [6] to indicate that maxi-
mizing the portion of a platoon that arrives at some junction and can continue without 
having to stop can be modeled by a piecewise linear convex function that has to be 
maximized. This involves additional binary variables to identify the appropriate linear 
segment in function of the value of the tension variable xa, a ∈ Aw. Notice that in 
addition to considering the entire green band, we put some extra priority on the first 
few seconds of it: Whenever a car had to stop at red, it will continue its trip within 
the first few seconds of green. Hence, we may consider the full green duration gdj, no  

as well as only the first few prioritized seconds of it gdj, yes.
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Computational Results of Optimization and Simulation 

We are considering a 3 km long bidirectional arterial with two lanes for driving into 
both directions each. Along this arterial, there are located eleven junctions. This 
situation is similar to several major road axes in the city of Berlin, Germany, e.g. the 
street Prenzlauer Allee. As on several other streets in Berlin, there is a tramway line 
in the middle between the two roadways for the two directions. In order to provide 
safe left-turns from the arterial, there are separate green phases, when the tramway 
has to stop. 

We are assuming a cycle time of T = 90 s, as it is often used in Germany. For 
the straight traffic along the arterial, we are working with a green phase duration of 
47 s, plus a three seconds yellow phase. For the left-turns, we schedule 12 s of green, 
again plus a three seconds yellow phase. In order to demonstrate the full potential 
of the proposed integer linear optimization model, we avoid the ideal driving times 
of half the cycle time (i.e., 45 s) and integer multiples of it. In Fig. 59.3, we depict 
the driving times (in seconds) between two subsequent junctions, where the total of 
200 s corresponds to an average flow progression speed of 15 m/s (54 km/h). The 
interested reader is invited to check that also only few partial sums of these driving 
times are close to integer multiples of half the cycle time. 

Optimization. In our series of optimization runs, we had varied the following 
parameters, but report only the conceptually simplest as well as the best quality 
solutions: 

• length of the prioritized green duration gdj,yes, 
• degree of freedom, whether both directions must have green at the same time (i.e., 

cj = 0), or if phase sequences can be selected at each junction (i.e., cj ∈ {− 1,0, 
+ 1}), 

• requirement whether an ideal green wave into one direction (w.l.o.g. WE) has to 
be established (i.e., xa = 0, for a ∈ Aw in direction d = WE), 

• different global weights for the (un-) prioritized portion of the objective function. 

The optimization ran on an Intel Core i5-5200U at 2.20 GHz with 8 GB RAM, 
the model was built in AIMMS 4.86.6.2 and solved with CPLEX 20.1. The solution 
times were below one minute (except ID 18 99 min). If we make it ten times more 
attractive to put priority only on the first 10 or 25 s of the green band (ID 02 and 
ID 03), the results turn out to be much worse than when putting weights the other 
way round. 

Simulation. To evaluate the results of our mathematical optimization model (Table 
59.1), we use the microscopic traffic flow simulation tool SUMO [1]. The traffic flow 
for the simulation model is 18% for each direction (16 cars per 90 s). The cars are

20 28 24 12 12 24 28 20 16 16 

Fig. 59.3 Driving times (in seconds) between two subsequent junctions along the arterial 
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of two different types: “normal cars” plus some “sporty cars” having speed factors 
of 0.95 or 1.1, accelerations of 1.5 m/s2 or 2.5 m/s2, and decelerations of 3.0 m/s2 

or 4.5 m/s2, resp., and common speed deviations 0.05. “Solution quality” are the 
durations of the green bands that do not have to stop, according to the results within 
the optimization model.

In the simulation, we are reporting the stop and time loss values including the first 
junction, where the traffic flow arrives uniformly at random. Hence, one may expect 
already 40/90 = 0.44 stops there (red duration divided by cycle time). Together with 
random speed deviations, this explains values of more than 0.5 stops per car even 
in the direction of an ideal green wave (ID’s 02, 15, 16)—and yield an expected 
number of only about 1.2 stops per car along the ten subsequent junctions in ID 18. 
This high quality for the traffic flow can also be observed in the time–space diagram 
in Fig. 59.4.

Conclusions 

From a traffic engineering point of view, the results of our simulation runs clearly 
support the high benefit of allowing for selecting among different strategies for the 
left-turn phases at the junctions along a bidirectional road arterial. Potentially, this 
could also be applied to other speed profiles, such as bicycle pedelecs at, say, 25 km/h. 
Tuning the performance of solving the integer linear programs, has not been the focus 
here, but is rather left to possible future merely mathematical contributions.
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Fig. 59.4 Illustration of the green bands in both directions for a well-coordinated plan (ID 18) in 
a time–space diagram (time passing top-down). The first 25 s of the green bands are drawn solid. 
There is no junction j at which both directions are having green at the same time (i.e. cj = 0)
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Chapter 60 
Modeling Uncertainty in the 
Timetable-Based Railway Network 
Design Problem 

Tim Sander, Nadine Friesen, Karl Nachtigall, and Nils Nießen 

Abstract Many European countries plan their railway infrastructure according to 
strategic timetables, using them as input for further strategic and tactical planning 
steps, including network design. While both tactical timetabling and network design 
are well covered by the research, there exists, to the best of the authors’ knowledge, 
no model which focuses on network design based on strategic timetables. In this 
short paper, we present an overview of our research. The traditional network design 
problem is extended to incorporate railway-specific features such as headway-based 
capacity estimations and demand derived from a strategic timetable. This includes 
trains represented by integral flows with start, destination, and time bounds as well as 
timetabling constraints for line frequencies and transfers. Since strategic timetabling 
is done many years in advance, the strategic timetable and as such the demand for 
the network design problem are subject to uncertainty. To account for this, we aim to 
calculate networks which are robust towards changing input timetables. We describe 
two approaches to model this: optimizing the network for a timetable family (a set of 
discrete scenarios) and varying demands within scenarios, which is modelled by a set 
of optional trains. The paper describes basic modelling decisions, details the approach 
to incorporate the uncertainty and shows the main features of the optimization model 
as well as a case study and further research. 
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Introduction 

In recent years, many western European railway operators have altered the traditional 
planning process by including strategic timetabling. These strategic timetables, which 
are constructed ten to twenty years in advance, are used as input for further strategic 
and tactical planning steps, including network design. In this paper, we present a rail-
way network design problem where the demand is derived from a strategic timetable. 
Even though the first strategic timetable has been constructed in Switzerland in the 
1980s, the topic has been picked up by academic research only recently, e.g. in [ 4] 
or [ 7]. More research has been conducted focusing on tactical timetables (refer to 
Chaps. 5 and 6 of [ 1, 2]). 

Railway network design has also been studied in a few publications, including 
timetable-independent approaches like [ 6] or microscopic approaches without an 
implementation like [ 5]. The integration of these two steps however leaves room for 
further research. We try to reduce the gap with this paper. Since the strategic timetable 
is constructed many years in advance, it is subject to uncertainty. We address this 
uncertainty by using a robust optimization approach based on timetable families. 
Robust optimization in railway analysis is common, but it is usually applied to the 
tactical and operational planning stages like tactical timetabling or crew and vehicle 
scheduling [ 3]. 

The remainder of this short paper is structured as follows: in Section “Methodol-
ogy”, we describe the modelling of the network and the input timetable, including a 
focus on the robust modelling in Section “Considering Robustness”. The key proper-
ties of the optimization model including the constraints dealing with the robust opti-
mization are presented in Section “Optimization Model”. In Section “Case Study”, 
we provide details about the implementation and the case study before concluding 
the paper in Section “Conclusion and Outlook”. 

Methodology 

Modeling Approach 

In our model, we start with a given strategic timetable and use it to calculate a cost-
optimal network on which the timetable can be operated. To gain some flexibility for 
optimization, the timetable is relaxed in several ways: 

– the trains can be routed freely from their origin to their destination nodes, with an 
option to define via-nodes 

– only time bounds for the departure at the origin node and the arrival at the desti-
nation node are considered.
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Using these relaxations, we derive an operational concept which includes a list 
of trains with start and destination nodes and time bounds. It also includes a list of 
timing-related connections between pairs of trains which model either frequencies 
or transfers. 

The network is defined as a multi-graph G = (N, A) featuring nodes i ∈ N and arcs 
(i, j, tr  ) ∈ A. Nodes represent stations or junctions and provide the opportunity to 
change from one arc to another. We also consider node links (i, a, b), which connect 
two arcs (a, i, tr  ) and (i, b, tr  ) with each other, allowing trains to travel from node a 
to node b through node i. We do not consider limited node capacities at the moment. 

The arcs (i, j, tr  ) are identified by the nodes which they connect (i and j) and the 
track number tr. One arc represents one track, so multi-track sections are modelled 
by several parallel arcs. This allows us to model both single-track and multi-track 
sections. The inclusion of an arc into the solution is controlled by the decision variable 
yi, j,tr  . Similar decision variables li,a,b exist for node links. Both are associated with 
building costs and are part of the objective function. To estimate the capacity used on 
a section, we use train-type and train-sequence-dependent minimal headway times 
(MHT), which have to be respected between two trains that use the same track. In 
case the capacity is insufficient, the model features three options to extend capacity 
on arcs: 

– including more parallel arcs 
– reducing travel times 
– reducing headway times. 

The last two are modelled using reduction variables r time  and r MH  T, which are 
also included in the objective function and come with associated costs ctime  and 
cMH  T  for each unit of time reduction. 

Considering Robustness 

Because of the long planning horizon and the resulting difficulties to estimate demand 
and political decisions influencing the timetable, strategic timetables are subject 
to uncertainties. Since the network designed by our model is based on a strategic 
timetable, it needs to account for possible changes to this input timetable. We model 
the uncertain timetables by defining timetable families, which comprise several dis-
crete timetable scenarios with individual lists of trains and connections. Besides, the 
demand within one scenario is variable. 

By defining timetable families, we can model slightly different timetable concepts 
which may vary in the trains or the timing relationships. We can then calculate a 
network which enables a specified percentage of the timetable family. By observing 
this scenario coverage share, we can calculate both full robust networks, which cover 
all given scenarios and light robust networks, which cover only a certain share of the 
scenarios.
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The variable demand within one scenario is modelled with optional trains. They 
can be considered in different ways: 

– only activate optional trains if they don’t require additional infrastructure 
– add a penalty to the objective function if a train is not activated and create a 
trade-off between the capacity to run additional trains and the costs for additional 
infrastructure 

– randomly select a random number of trains from the optional set before the opti-
mization, which then become mandatory. 

The optional trains can also be used to evaluate the remaining capacity on the opti-
mized network and to quantify the robustness towards changes in the input timetable. 

Optimization Model 

We model the timetable-based railway network design problem as a mixed-integer 
linear program. Our objective function (60.1) minimises infrastructure costs, which 
contains building costs fi, j,tr  and fi,a,b for arcs and node links as well as reduction 
costs ctime  

i, j and cMH  T  
i, j for reductions of travel and headway times. It also includes 

penalty terms which are activated if a scenario or an optional train is not included 
in the final solution. This is modelled using the decision variables oszo  s for scenarios 
and otrain  k for trains. 

min
∑

(i, j,tr  )∈A 

fi, j,tr  yi, j,tr  +
∑

(i,a,b)∈L 
fi,a,bli,a,b +

∑

(i, j)∈Al 

ctime  
i, j r

time  
i, j 

+
∑

(i, j)∈Al 

cmht  
i, j r

mht  
i, j +

∑

k∈K 
penk(1 − otrain  k ) +

∑

s∈S 
pens(1 − oszo  s ) (60.1) 

Because we integrate network design and strategic timetabling as well as observe 
railway-specific capacity measures by using minimal headway times, the constraint 
set is extensive and an explanation of the full model would exceed the scope of 
this short paper. Therefore, we will describe only the constraints dealing with the 
robustness consideration and leave a full description for a future paper.

∑

s∈S 

1 

ns 
oszo  s ≥ ss (60.2) 

oszo  s = 1 ∀s ∈ Smand (60.3)

∑

(k, p)∈Pk 

pk, p = otrain  k · oszo  s ∀k ∈ K (60.4) 

otrain  k = oszo  s ∀k ∈ Kmand,s , ∀s ∈ S (60.5)
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∑

k∈K 
otrain  k ≥ nk,mand,s + nk,opt,demand,s ∀s ∈ S (60.6) 

The most important aspect of our robust optimization approach, the scenario cov-
erage share ss , is controlled by (60.2), while (60.3) allows to define certain scenarios 
as mandatory. To route the trains through the network, we use pre-generated paths 
for each train. These paths have to include all defined via-nodes for a train and must 
fulfil the travel time requirements given by the operational concept. Constraint (60.4) 
makes sure that exactly one path is chosen for each train if both the scenario and the 
train itself are active. It is important to note that this constraint is linearised in the 
code. If the correspondent scenario is active, all mandatory trains of this scenario 
have to be active as well, which is ensured by (60.5). As mentioned in Section “Con-
sidering Robustness”, we have an option to request a certain amount of optional 
trains to be included. This is done by constraint (60.6). 

Further constraints cover the standard network design aspects by ensuring that 
trains travel only on arcs and node links included in the solution networks. The 
integrated timetabling is done by constraints ensuring that given time bounds, travel 
times, required frequencies and transfer times and minimal headway times are cor-
rectly observed. The frequency and transfer constraints are only active if the corre-
spondent scenario is activated. The correct headway time to be observed depends on 
the train types and the sequence of two trains following each other. 

The results include the cost-optimal network with all the arcs and node links 
necessary to operate the requested timetable scenarios. They also include the routing 
of each train and a feasible macroscopic timetable for each scenario. Note, that the 
timetable is not yet optimized. However, it is possible to optimize the timetable in 
a later optimization step, e.g. by minimizing the total travel time while fixing the 
infrastructure. 

Case Study 

To demonstrate the model, prove its functionality and identify performance issues, 
the optimization model has been tested on a small case study. Several test cases 
and scenarios have been derived from drafts for the Deutschlandtakt, the strategic 
timetable concept for Germany. The optimization model has been implemented in 
Python 3.8 and solved by Gurobi v9.5.1. using a laptop featuring an Intel Core i7-
8565U CPU @1.80 GHZ and 16 GB of RAM. The computational results for a test 
case with ten scenarios are shown in Table 60.1. The scenarios vary in the number, 
type and route of trains (between 22 and 48) and the amount of frequency and transfer 
constraints (between 0 and 56). The resulting network has been calculated for varying 
coverage percentages. 

As expected, the infrastructure costs increase with the scenario coverage. It can 
also be observed, that the demanded coverage share has a significant impact on 
the model’s performance and that computation times are rather long, given that the
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Table 60.1 Computational results 

Scenario 
coverage (%) 

Objective Gap (%) Active scenarios Runtime (s) 

20 407,600 0.00 3/10 502.05 

40 411,100 0.00 6/10 930.09 

60 411,100 0.00 6/10 1330.84 

80 431,900 1.64 8/10 3600.19 

100 458,900 0.00 10/10 1890.89 

shown example covers only about 12 nodes and 20 arcs. Even though the model is 
associated with strategic planning, the current runtimes do not allow the calcula-
tion of realistically sized instances within reasonable time, especially when multiple 
scenarios are considered. Therefore, a heuristic approach for calculating a network 
covering all scenarios has been developed. First, cost-optimal networks are calcu-
lated for each timetable scenario independently. Using an adapted version of the 
optimization model, the feasibility of each timetable scenario on each unique infras-
tructure resulting from the first step is evaluated. In case no network topology covers 
all scenarios, the infrastructure covering the largest number of timetable scenarios is 
then iteratively extended to cover the unfulfilled timetable scenarios. This approach 
has proven to be faster than the complete optimization model, but still leaves room 
for further improvements. 

Conclusion and Outlook 

In this short paper, we gave an overview of our research concerning the integration of 
strategic railway timetabling and railway network design. We motivated the problem 
at hand and identified a gap in the literature. We propose a mixed-integer linear 
program which calculates a cost-optimal railway network based on demand given as 
an operational concept derived from a strategic timetable, featuring a list of trains 
and important timetabling aspects such as frequencies and transfers. The model 
incorporates railway-specific details like track-based routing and a realistic capacity 
estimation using minimal headway times on both single- and double-track lines. 
During the optimization, a feasible timetable respecting the key properties given 
in the operational concept is designed. Further research will focus on performance 
improvements by studying both heuristic approaches and decomposition techniques. 
Besides that, an evaluation of the remaining capacity of the networks is planned as 
well as a sensitivity analysis of the network towards changes in the input parameters. 
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Chapter 61 
Integration of the Multiple Criteria 
Decision Making Method KEMIRA 
into a GIS for the Problem of Choosing 
Suitable Areas for a Given Use 

Abdoulaye Ouedraogo and Stéphane Aimé Metchebon Takougang 

Abstract Land use management problems generally requires the use of geographic 
information systems (GIS). To do this, it is first necessary to take into account sev-
eral often conflicting criteria. However, given the limited capabilities of GIS, the 
representation of a decision map resulting from the overlaying of more than four 
conflicting criteria maps is problematic. To overcome this difficulty and enhance the 
analytical capabilities of GIS, the literature presents a variety of works on the joint use 
of GIS and multiple criteria decision making (MCDM) methods. In these works, the 
limitations that emerge are firstly the difficulty of fully integrating a MCDM method 
into the GIS, secondly the large number of parameters of the MCDM method to 
be integrated into the GIS, thirdly the aggregation of heterogeneous criteria. In this 
work we propose an answer to these three concerns through the integration of the 
KEMIRA method in the GIS open source QGIS and illustrate our approach on a real 
case study in Burkina Faso. 

Keywords MCDM · KEMIRA method · GIS · QGIS · Land use management 

Introduction 

In this paper, we are interested in the multiple criteria choosing problem statements 
in land use management which aim at choosing best areas or alternatives in a set 
X = {x1, x2, . . . ,  x P} taking into account Q criteria and the preferences of Decision 
Maker (DM). An aggregation model must be constructed to allow the choosing 
process to yield to a result in accordance with the DM’s preferences. Only multiple 
criteria choosing models based on a utility function will be considered. When using an 
additive utility function for multicriteria choosing, the analyst must determine weight 
and threshold parameters. These parameters are used to construct a preference model 
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of the decision maker (DM). Generally it is not realistic to assume that the DM would 
easily provide the values of these parameters. In the case of choosing problems, and 
precisely concerning the utility functions based models, few authors have proposed 
methodologies to infer preference parameters [ 1, 2]. 

By heterogeneous criteria we mean those for which compensation between 
strengths and weaknesses of the criteria is not allowed, in contrast to homogeneous 
criteria where it is allowed. One of the drawbacks of utility functions is most often 
the total compensation among heterogeneous criteria when it is not allowed. It is 
the case for instance when dealing with the sustainable management of resources 
where a strong productivity (economic criterion) can’t compensate a lost of biodiver-
sity (environmental criterion). That is why considering the criteria by homogeneous 
groups of criteria during the process of aggregating the performances of the alterna-
tives would further contribute to legitimize the results of an approach based on the use 
of utility functions. Such a context is presented by Metchebon Takougang et al. [ 3], 
when dealing with the land use problem of assessing the sustainability of resource 
management practices where criteria derived from economic, social, environmental 
and governance issues need to be taken into account. Another context showing the 
need to consider groups of homogeneous criteria that we can mention is that related to 
the choice of the best crop varieties suitable for a given region where criteria derived 
from quality, productivity and processing appear. Recently, an iterative approach 
based on the gradient descend, using increasing functions and thresholds, has been 
presented by Krylovas et al. [ 4, 5]. This approach, called KEmeny Median Indica-
tor Ranks Accordance (KEMIRA) method, takes into account the homogeneity of 
groups of criteria in their aggregation process. This method allows to choose best 
alternatives. 

In spatial decision problem several works promoting the use of Geographical 
Information System (GIS) and/or remote sensing exist [ 6, 7]. Particularly concerning 
the integration of Multiple Criteria Decision Analysis (MCDA) in GIS including their 
strengths and limitations, a number of works have been listed by Sobrie et al. [ 8] 
and Malczewski and Rinner [ 9]. Some of the limitations that emerge from these 
works relate to the difficulty of fully integrating an MCDM method into GIS and the 
large number of parameters, inherent to the MCDM method, that must be taken into 
consideration. Another limitation to add is the aggregation of heterogeneous criteria 
which are in most cases aggregated as if they were homogeneous. Our present work 
aim to give an answer to this three mentioned limitations by integrating the KEMIRA 
method into the GIS open source QGIS. 

The next part of the paper is structured as follows. Firstly we present the KEMIRA 
method and its operating process. After we briefly expose the strategy adopted to 
integrate KEMIRA method into the GIS. Finally we illustrate our approach through 
a real case study of choosing areas of adequate response to the risk of degradation 
in Burkina Faso.
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Mathematical Formulation of KEMIRA Model 

We assume that the set of alternative is X = {x1, x2, . . . ,  x P}. For  k ∈ {1, . . . ,  P}, 
alternative xk is a real-valued vector of dimension Q. Each component of this vector 
represents the performance of alternative xk on a specific criterion. The Q criteria 
are partitioned into S groups indexed by {1, . . . ,  S} and the elements of each group 
are indexed in turn by {1, . . . ,  ni } where ni is the size of group i . We have of course∑S 

i=1 ni = Q because the S groups form a partition of the Q criteria. Each criterion 
is thus indexed by a pair of natural numbers, the first one for the group, and the 
second one for the criterion within the group. The performance of alternative xk on 
criterion (i, j ) is thus denoted by Xk 

i, j . To each criterion (i, j ), we associate a weight 
wi, j . Our objective is to compute the weight wi, j of each criterion (i, j ) and select 
the best alternatives by formulating and solving an optimization problem. 

Criteria Priority and Increasing Functions 

We assume that the DM is able to provide a ranking of criteria in each group. There-
fore, without loss of generality, suppose that in each group the criteria are ranked in 
the decreasing order so that the relations (61.1) and the corresponding restrictions 
on the criteria weights (61.2) hold: 

(1, 1)  (1, 2)  · · ·  (1, n1), 
(2, 1)  (2, 2)  · · ·  (2, n2), 

· · ·  
(S, 1)  (S, 2)  · · ·  (S, nS). 

(61.1) 

w1,1 ≥ w1,2 ≥  · · ·  ≥  w1,n1 , 
w2,1 ≥ w2,2 ≥  · · ·  ≥  w2,n2 , 

· · ·  
wS,1 ≥ wS,2 ≥  · · ·  ≥  wS,nS . 

(61.2) 

So, having the performance Xk 
i, j , k ∈ {1, 2, . . . ,  P}, j ∈ {1, 2, . . . ,  ni }, of alter-

natives w.r.t. the Q criteria, we normalize them. Here we choose an affine type of 
normalization and the normalized values are obtained by the relation 

xk i, j =
Xk 
i, j − min j X k 

i, j 

max j X k 
i, j − min j X k 

i, j 
. (61.3) 

In each group we assume that the weights are normalized and we verify:
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ni∑

j=1 

wi, j = 1, ∀i ∈ {1, 2, . . . ,  S}. (61.4) 

We also assume that all criteria are to be maximized. The bigger values of variables 
xk i, j represent better satisfaction w.r.t. the considered criterion. Then, for an alternative 
xk and for each group i , we compute the weighted average of the performance, 
denoted by Wi : 

Wi (x
k ) = 

ni∑

j=1 

wi, j × xk i, j , (61.5) 

where weights (wi, j ) satisfy requirements (61.2) and (61.4). 

Process of Selecting the Best Alternatives 

For each increasing function Wi we introduce one threshold αi , 0 < αi < 1. Thus, 
an alternative xk is selected as better if it satisfies requirements (61.6): 

Wi (x
k ) > αi ∀i ∈ {1, 2, . . . ,  S}. (61.6) 

In practice the thresholds αi are the performance levels, set by the DM, that any 
alternative must meet. So the DM must express his preference on these thresholds in 
terms of percentage of the best performance respectively in each group of criteria. 
Formally, for each group i the DM is asked to set a number p strictly between 0 and 
100 such that: 

αi = p% × P 
max 
k=1 

Wi (x
k ), 0 < αi < 1. (61.7) 

Objective function and mathematical program Denote B the set of best alterna-
tives and |B| the cardinal of B, i.e., the number of elements in B. f opt  denotes the 
function to be optimized and is defined by f opt  = |B|. For a given set of weights 
satisfying relation (61.2) and associated performance levels as stated in inequations 
(61.6) expressing the preference information of the DM, corresponds a choice of best 
alternatives whose set is B. The objective function to be maximised then allows the 
selection process to be stopped when the number of best alternatives, |B|, is as large  
as possible. This statement is formalised by the following mathematical program: 

maxwi, j f opt  = |B| 
wi, j satisfying relation (61.2) and (61.6). 

(61.8) 

Algorithm for selection problem In this work we have implemented the algorithm 
proposed by Krylovas et al. [ 5] to solve the mathematical program (61.8). We stop
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this algorithm of eliciting the corresponding weights with best alternatives associated 
when the cardinal of the set of best alternatives representing the objective function 
f opt  is maximal. 

Implementation of the KEMIRA Method in the GIS 

Figure 61.1 shows an adaptation of the scheme propose by Sobrie et al. [ 8] that we 
used to implement KEMIRA Method in the GIS. The main difference between our 
integration scheme and that of Sobrie et al. is the absence of a criteria weights infer-
ence module. Indeed, in our case, the KEMIRA method in the process of selecting 
the best alternatives also allows to determine the criteria weights. 

1st step: Structuring of the problem: identification of criteria which are individually 
spatialized in the form of corresponding criteria maps built through a GIS. 
The region under study are partitioned into areas or spatial units. 

2nd step: Construction of the multiple criteria map: The position of each spatial 
unit on a criterion map allowing to deduce the performance of said spatial 
w.r.t. the corresponding criterion and vice versa. The overlaying of all the 
criteria maps results to the multiple criteria map. 

Fig. 61.1 Construction of a decisional map in a GIS
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3rd step: Definition of KEMIRA model: the functioning of the KEMIRA method 
was presented in Section “Mathematical Formulation of KEMIRA Model”. 
The DM expresses his preferences by giving a value to the performance 
thresholds αk on each identified group of homogeneous criteria Sk . The  
DM also expresses his preference by ranking the criteria in each group 
from best to the worst. 

4th step: Generation of the decision map: the KEMIRA model being defined, the 
decision map is generated with spacial units of two colors. The best spatial 
unit have all the same color whereas the remaining spatial units have the 
other color. 

Quantum GIS (QGIS) 

In this work we have used QGIS 3.14.0 [ 10] which is an GIS open source allowing 
to implement new tools in the form of plugging usable as any other basic tool incor-
porated in the GIS. So KEMIRA method has been implemented in python language 
directly inside the QGIS 3.14.0. Kernel in such a way to been used as a new decision 
tool when need. 

Application to a Choice Problem in Land Use Management 

In order to illustrate the methodology, we consider a real case study concerning the 
identification of adequate areas of response to the risk of degradation in Loulouka 
watershed located in Burkina Faso (West Africa). Such areas which is not degraded 
could be appropriate for a specific activity (e.g. agriculture). This problem has been 
addressed by Metchebon Takougang et al. [ 3] using a weak integration of the MCDA 
method ELECTRE TRI in the GIS. Here we implement a full integration of the 
MCDA method KEMIRA into the GIS for the identification of areas of adequate 
response to degradation risk. In the following we highlight the main results of the 
structuring phase of the problem. For the reader interested by the structuring of the 
problem, more details on this application can be seen in Metchebon Takougang et 
al. [ 3]. 

The Loulouka watershed has been partitioning in 227 spatial units or areas of 
25 ha each. Four groups of criteria has been identified according to the dimensions 
of limitation of the degradation (soil erosion, biodiversity, soil fertility and agricul-
tural productivity). On this basis ten (10) criteria and their relevant measurement 
indicators have been developed to evaluate the 227 spacial units or alternatives. 
The set of ten criteria has been subdivided in four (4) groups, S4 = {(4, 1), (4, 2)}, 
S3 = {(3, 1), (3, 2)}, S2 = {(2, 1), (2, 2)}, S1 = {(1, 1), (1, 2), (1, 3), (1, 4)}:
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• S1 : limiting soil erosion; S2 : limiting biodiversity loss 
• S3 : soil fertility is maintained; S4 : Good agricultural productivity is promoted. 

The ranking of criteria in each group Sk as well as the performance levels αk have 
to be provided by the DM. Note that while it is generally easy for the DM to rank the 
criteria within each group Sk , the determination of their corresponding thresholds or 
performance levels αk is not obvious. For the execution of the KEMIRA algorithm, 
the parameters were defined as follows: 

the maximum number of iterations, maxi ter  = 800; 
αi = 65% × max227 k=1 Wi (xk); ∀k ∈ {1, 2, 3, 4}. (61.9) 

maxi ter  = 800 denotes the number of iterations of KEMIRA algorithm executed 
from which the size of the set of best selected spatial units, f opt , is maximal for 
our case study. Here we obtained f opt  = 56. The results of Metchebon Takougang 
et al. [ 3] showed that, after using a weak integration between ELECTRERI Tri 
Method and ArcView3.2a GIS, the number of spatial units assigned respectively to 
the 4th categories of response to the risk of degradation was: 172 for the two worst 
categories C1 and C2 (spatial units belonging to this two categories are considered as 
degraded), 55 for the two best categories C3 and C4 (spatial units belonging to these 
two categories are considered to be non-degraded). With the parameters of KEMIRA 
method as state in (61.9), the 56 best selected spatial units sensibly correspond to 
the 55 non-degraded spatial units obtained by Metchebon Takougang et al. [ 3]. 

Conclusion 

The new KEMIRA-GIS model that we have proposed provides an answer to the 
three limitations raised in the introduction. Note that the main difficulty in apply-
ing the new KEMIRA-GIS model concerns the determination of the performance 
threshold αk for which an indirect method must be developed. In addition, tests on 
other spatially-referenced selection problems (e.g. selection of green areas with high 
economic, environmental and cultural potential for sustainability; assessment of the 
vulnerability of water wells) need to be conducted to confirm its validity. 
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Chapter 62 
A 2D Convex Shapes Bin Packing 
Problem in the Production of Laminated 
Safety Glass 

Steffen Goebbels, Thomas Lühring, and Jochen Rethmann 

Abstract The discussed two-dimensional nesting problem is motivated by the pro-
duction of differently shaped tiles of laminated safety glass that can be represented by 
primitive, convex polygons. Within as few rectangular bins as possible, representing 
the space of a furnace, tiles must be placed without overlapping. While the primary 
problem is to minimize the number of occupied bins, distances between adjacent tiles 
or a tile and an adjacent furnace boundary must be neither too small nor too large 
to ensure the stability of the furnace filling during a lamination process. To fulfill 
this condition, a minimum number of additional rectangular support plates must be 
added. These plates are considered equivalent to tiles when measuring distances. 
This is a new aspect that, to our knowledge, has not been covered in the literature 
so far. We represent the problem as a mixed integer linear program based on no-fit 
polygons and compare results with those of a greedy-type heuristic. 

Keywords Nesting problem · 2D-irregular shapes bin packing problem 

Introduction 

A variety of heuristics and optimization procedures including evolutionary algo-
rithms and simulated annealing strategies have been developed to tackle several 
problems of nesting polygonal shapes within rectangular spaces, cf. [ 2]. This paper 
discusses a variant with additional constraints motivated by the automation of lam-
inated glass tile production by the company HEGLA-HANIC GmbH. The tiles are 
homogeneous stacks of glass layers and intermediate foils. The composition of the
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layers can be optimized from a material point of view (cf. [ 9]), but that is not intended 
here. Rather, the tiles are given as simple, convex 2D polygons, which thus do not 
have to be generated by guillotine cuts. As a primary optimization goal, the tiles 
must be arranged on a minimum number of rectangular furnace bins without over-
laps. During the laminating process, a plate is placed from above the tiles with great 
pressure. The tiles must not be too close to each other, but also not too far apart, 
so that the pressure does not cause any damage. The lower distance bound can be 
easily achieved by enlarging the polygons through scaling. To fulfill the upper dis-
tance condition, rectangular support plates can be added. The secondary optimization 
goal is to minimize their number. This problem is strongly NP hard since the clas-
sical bin packing problem is reducible to it. The survey [ 10] summarizes modeling 
techniques for 2D nesting problems. Here, we state the problem as a mixed integer 
linear program (MILP) based on no-fit polygons. Then we discuss a simple greedy 
approach. 

Mixed Integer Linear Program 

Geometric Basics Let simple, convex polygons . Pi , .i ∈ [n] := {1, . . . , n}, repre-
senting tiles be given such that they can be traversed counter-clockwise by follow-
ing the edges between .mi vertices .vi,1, . . . , vi,mi and back to .vi,mi+1 := vi,1 where 
.vi,k = (vi,k .x, vi,k .y) ∈ R

2. To guarantee a minimum distance between tiles in the 
final layout, the original tiles have already been enlarged. We also add .N (also 
enlarged) rectangular support plates . Pi , .i ∈ {n + 1, . . . , n + N } of not necessarily 
different size and a rectangle .Pn+N+1 that will be used to limit maximum distances. 
The model also allows simple, convex polygons instead of rectangles. For each pair 
.(i, j) ∈ [n + N ] × [n + N + 1] with .i < j we compute a no-fit polygon (NFP, see 
[ 1, 3]) .Fi, j with vertices .f i, j,1, . . . , f i, j,mi, j , f i, j,mi, j+1 := f i, j,1 that are also arranged 
counter-clockwise. Here, this polygon describes the curve of reference point . v j,1

when .Pj traverses around the edges of the fixed polygon . Pi . Note that with .Pi and 
.Pj , also the NFP is simple and convex. This follows directly from the standard 
algorithm to obtain the shape of an NFP for two convex polygons by orienting . Pi
counter-clockwise, .Pj clockwise, translating all directed edges of both polygons to 
a single point and then concatenating the edges counter-clockwise giving a polygon 
.F̃i, j with vertices .f̃ i, j,k , see  [  4]. To obtain the NFP .Fi, j one only has to translate 
this shape .F̃i, j according to the reference point and the position of .Pi with vector 
.(Δxi, j ,Δyi, j ), 

. Δxi, j := min
k∈[mi ]

vi,k .x − max
k∈[m j ]

(v j,k .x − v j,1.x) − min
k∈[mi, j ]

f̃ i, j,k .x,

and .Δyi, j defined accordingly with . x replaced by . y. Whereas we restrict ourselves 
to convex polygons, many algorithms were developed to also compute NFPs for 
non-convex polygons, see [ 5, 12] and the literature cited there.
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To shift a polygon to a certain position, we use an offset .si = (si .x, si .y). Shifted 
polygons .si + Pi and .s j + Pj do not overlap if and only if .s j + v j,1 lies outside 
.si + Fi, j . The NFPs have to be computed in advance. As a result, no intersections 
need to be calculated later. 

MILP Let.B ≤ n be the maximum number of furnace rectangles (bins) to be consid-
ered. To choose. B sufficiently small, one can use the number of occupied bins of any 
feasible solution computed with a heuristic, cf. Section “Greedy Approach”. Binary 
variables .xi,k ∈ {0, 1} indicate whether a polygon .Pi is placed within the furnace 
rectangle with index.k ∈ [B] (then.xi,k = 1) or not  (.xi,k = 0). Then the primary goal 
of the nesting problem is to minimize the number of occupied bins such that all tiles 
can be placed without overlaps. The secondary goal is to use a minimum number of 
support plates to fulfill the maximum distance restriction: With binary variables . bk
indicating the use of bin . k, the goal is then 

. minimize
∑

k∈[B]
bk + 1

2N

∑

k∈[B]

n+N∑

i=n+1

xi,k, s.t.∀k∈[B]
∑

i∈[n]
xi,k ≤ n · bk

and several further restrictions described in what follows. 
The objective function is lower bounded by the area of all tiles divided by the 

furnace area. All coordinates plus offsets, i.e., coordinates of points .vi,k + si , have  
to be within the range of the furnace rectangle coordinates. Each polygon has to be 
placed within at most one bin (cf. 62.1): .∀i∈[N+n]

∑
k∈[B] xi,k ≤ 1. 

There must be no overlaps between polygons .si + Pi and .s j + Pj placed within 
the same bin (i.e.,.xi,k = x j,k = 1), i.e., by considering convexity of the NFP.Fi, j , the  
reference point.s j + v j,1 must lie in at least one half-plane bounded by a straight line 
through an edge of the NFP.si + Fi, j and in which the NFP is not located. For such 
a half-plane, .yi, j,k ∈ {0, 1} is set to one. By applying the inner product “. ·” and by 
considering the Hesse normal form of lines (the absolute value of the inner product 
between a point on a line and a normal of the line is the distance to the origin, here 
the outer normal of the occupied half plane is chosen to compare signed distances), 
one gets conditions (cf. [ 7, 10]) 

. ∀i, j∈[n+N ],i< j∀k∈[mi, j ]∀l∈[B](
f i, j,k+1.y − f i, j,k .y,−f i, j,k+1.x + f i, j,k .x

)

.
[(
si .x + f i, j,k .x, si .y + f i, j,k .y

) − (
s j .x + v j,1.x, s j .y + v j,1.y

)]

≤ M(2 − xi,l − x j,l) + M(1 − yi, j,k),

∀i, j∈[n+N ],i< j

∑

k∈[mi, j ]
yi, j,k ≥ 1.

The constant .M > 0 has to be chosen sufficiently large. For non-convex polygons, 
checking with convex regions outside the NFP can be done instead of checking with 
half planes, see [ 6].
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Fig. 62.1 The distance condition (62.2, 62.3) requires that each square of the background grid 
has to be at least partially covered. Left: a feasible one-bin layout for two tiles (grey) with two 
support plates (white). Right: an optimal solution using two bins without support plates (instance 3 
in Table 62.1) 

So far, we have not described how to enable rotations. In the application under 
consideration, only rotations by multiples of .90◦ are to be discussed (orthogonal 
rotation). Rotations by a finite number of angles can be easily represented by adding 
rotated tile polygons (of different shape) to the list of polygons .Pi and by assuring 
that exactly one rotated instance of a polygon has to be placed in exactly one bin, 
i.e., for each index set.I ⊂ [n], representing all rotated instances of a tile, we require 

.

∑

i∈I

∑

k∈[B]
xi,k = 1. (62.1) 

We model a maximum distance condition by placing a grid with . g points over all 
furnace rectangles, i.e., bins, see Fig. 62.1. Let  .gi ∈ R

2, .i ∈ [g], be offset vectors 
that shift predefined rectangle.Pn+N+1 to have a center point at a corresponding grid 
point. The condition is that, for each grid point indexed by .i ∈ [g], in each bin at 
least one intersection between a placed tile or support plate polygon .s j + Pj and 
this shifted rectangle .gi + Pn+N+1 has to occur. Such an intersection is indicated 
by setting a binary variable .zi, j,l ∈ {0, 1}, .i ∈ [g], . j ∈ [n + N ], .l ∈ [B], to one. It 
occurs if and only if the reference point.gi + vn+N+1,1 lies inside each half plane that 
is bounded by a line through an edge of the NFP.s j + Fj,n+N+1 and that is occupied 
by the NFP. 

. ∀i∈[g]∀ j∈[n+N ]∀k∈[m j,n+N+1]∀l∈[B](
f j,n+N+1,k+1.y − f j,n+N+1,k .y,−f j,n+N+1,k+1.x + f j,n+N+1,k .x

)

.[(s j .x + f j,n+N+1,k .x, s j .y + f j,n+N+1,k .y)

− (gi .x + vn+N+1,1.x, gi .y + vn+N+1,1.y)]
≥ −M(1 − x j,l) − M(1 − zi, j,l), (62.2) 

.∀i∈[g]∀l∈[B]
∑

j∈[n+N ]
zi, j,l >

∑

j∈[n+N ]
(1 − x j,l). (62.3) 

If .x j,l = 0, one can choose .zi, j,l = 1, i.e., .∀i∈[g]∀ j∈[n+N ]∀l∈[B] zi, j,l ≥ 1 − x j,l . 
Certain solver heuristics appear to work better if shifted rectangles . gi + Pn+N+1

slightly overlap such that placement in overlap regions is preferred.
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1: 9: 

5: 11: 

Fig. 62.2 Feasible solutions of four problem instances computed by CPLEX on 12 threads within 
a limit of one hour elapsed time (instances 1, 5, 9, and 11 in Table 62.1) 

Greedy Approach 

In up to 10,000 (nearly) random orders (permutations), we iteratively position the tiles 
in a bottom-left strategy. Then, among all results with the smallest number of bins, 
we select a result that intersects with the largest number of rectangles . gi + Pn+N+1

so that a small number of support plates is needed. Motivated by the instability of 
the problem, this stochastic experiment replaces a local search to find a good order. 
To further reduce the required number of support plates, tiles small enough to fit into 
the distance rectangle .Pn+N+1 are always placed at the end of each permutation so 
that they can be inserted into empty distance rectangles with priority. We basically 
use steps 1–5 of the genetic algorithm in [ 8] in the implementation of the bottom-left 
strategy. However, we do not only attach to the last placed tile polygon but to all 
polygons. We shift each attached polygon as far as possible to the left and to the 
bottom by using a binary search for feasible positions that also allows to fill gaps. 
After placing the tiles, support plates are added to fulfill (62.2, 62.3). As long as 
each support plate fits into the rectangle .Pn+N+1 of the distance condition, and if 
enough support plates are provided, this is always possible. Since we use distance 
rectangles that slightly overlap, we greedily search for a vertex of these rectangles 
that is covered by a maximum number of so far empty distance rectangles. Then we 
place a support plate there (if it fits). Finally, we remove some of the support plates 
by re-arranging tiles: For each rectangle .gi + Pn+N+1 in which a support plate is 
placed, we try to shift a tile from the left or from the bottom to the border of this 
rectangle such that (62.2, 62.3) holds without the support plate. 

Results 

Results for exemplary problem instances 1 provided by HEGLA-HANIC GmbH are 
listed in Table 62.1. Small instances can be solved with our MILP to optimality, 
e.g., see Fig. 62.1. However, for most instances up to 20 tiles, CPLEX 12.8 was able 
to find feasible (but not necessarily optimal) solutions within 60 min, cf. Fig. 62.2. 
The greedy approach found feasible solutions for all instances within less than two

1 Data available at https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/ 
Publikationen/dataset.zip. 

https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Personen/goebbels/Publikationen/dataset.zip
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Table 62.1 Results of the MILP and the greedy strategy (10,000 permutations): a best feasible 
solution of the MILP is considered if the time limit of 60 min is exceeded 

MILP (CPLEX, 12 threads) Greedy strategy (one thread) 

Instance Tiles Bins Support Time (s) Bins Support Time (s) 

1 19 4 0 Exceeded 4 0 13 

2 47 – – Exceeded 9 8 (.≤ 5) 86 

3 11 2 0 18 2 1 (0) 5 

4 12 – – Exceeded 4 4 (.≤ 3) 15 

5 12 3 0 Exceeded 3 3 (0) 7 

6 12 – – Exceeded 8 7 (.≤ 5) 20 

7 28 – – Exceeded 9 3 (.≤ 1) 18 

8 36 – – Exceeded 7 5 (.≤ 4) 51 

9 12 2 0 Exceeded 2 0 6 

10 14 – – Exceeded 4 1 (0) 8 

11 14 3 0 Exceeded 3 1 (0) 12 

12 46 – – Exceeded 16 17 (.≤ 9) 73 

minutes when working with 10,000 permutations, but in most cases 1000 permuta-
tions led to similar results in a fraction of time. For instances that could be solved 
with the MILP, the greedy heuristic was able to obtain the same number of bins as the 
MILP and reduce the number of support plates to one on average, while the feasible 
solutions found by MILPs within the time limit had zero support plates on average. 
For some instances, we could further reduce the support plates manually, see upper 
bounds for the optimum in brackets. 

Conclusions 

Although the greedy approach often fails to find a minimum number of support plates, 
it is apparently sufficient for practical use. Future work may test other strategies. For 
example, the assignment to bins could be separated from the placement of tiles and 
support plates within the bins in a branch-and-bound approach. The prerequisites of 
the framework in [ 11] are fulfilled. Grouping tiles into classes could help doing the 
tile assignment.
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Chapter 63 
Learning Strategies for Outsourcing 
Problems With asymmetric Information 
and Uncertain Execution 

Alexander Herbst 

Abstract In this contribution, we consider an outsourcing problem based on a spe-
cific principal–agent relationship with hidden characteristics. Under the assumption 
that the principal knows the probability distribution on the agent’s discrete type 
space, a standard solution technique for the resulting contracting problem is stochas-
tic optimization on the set of incentive compatible menus of contracts from which 
the agent can choose a single contract according to the take-it-or-leave-it principle, 
respectively. Admittedly, this approach neglects any sort of uncertainties in the post-
contract phase which is not realistic in many practical environments like production 
and logistics. To address this issue, we present a novel and holistic problem formu-
lation that links the contracting phase to an uncertain execution phase in a logistical 
context containing the possibility of renegotiating contracts as a reaction to envi-
ronmental changes. Since the resulting problem has the character of a multi-round 
game, we apply well-known concepts from the trendy AI-area of Deep Reinforce-
ment Learning to exploit clever contracting strategies for the principal. Finally, we 
evaluate our approach inside a computational study. 

Keywords Agent systems · Artificial intelligence · Transportation 

Introduction and Problem Description 

We consider the general problem from [ 1] where we want to process Q ∈ N units of 
some good and have the opportunity to outsource a partial quantity q ∈ [0; Q] to an 
external service provider while the remaining quantity Q − q has to be handled by 
own resources. 

Within this setting we adapt the common assumption that both principal and agent 
are faced with linear cost terms θpx and θax for processing an arbitrary quantity x , 
respectively, where the principal has total knowledge about his own cost factor θp but 
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can only restrict the agent’s cost factor θa to a set  Θa = {θ a; θ a} [ 2]. As an extension 
to [ 2] and similar to [ 1] we consider a time aspect as well, i.e. we assume speed 
parameters δp, δa > 0 such that x is processed in δpx time units by the principal and 
in δax time units by the agent. In contrast to [ 1] we assume that δp and δa are always 
completely observable for the principal and that Θa is discrete as above (instead of 
Θa = [θ a; θ a]). 

We claim that a cooperation only happens on the basis of a contract C := (q, p) 
with some quantity q ∈ [0; Q] and payment of p ∈ R+ monetary units. For θa fixed 
we want to define the agent’s utility Ua 

θa 
(C) for accepting contract C as a quasi-linear 

function of quantity q and payment p [ 1, 2]. 

Definition 1 (Utility of the agent) For a contract C := (q, p) we define 

Ua 
θa 

(C) := p − θaq. 

In order to deal with uncertainty about the true type θa it is an essential approach to 
design contract alternatives for each possible scenarios and equip them with specific 
incentives that rationally affect the agent in our interest [ 1– 3]. 

Definition 2 (Incentive compatibility) A menu of contracts {C(θa) : θa ∈ Θa} is 
called incentive compatible if the following expression holds: 

Ua 
θa 

(C(θa)) ≥ 0 ∧ θa ∈ arg max 
θ '∈Θa 

Ua 
θa 

(C(θ ')) ∀θa ∈ Θa . 

The overwhelming majority of principal-agent approaches put the principal’s pref-
erences in focus [ 1– 4], often meaning that the optimal incentive compatible menu 
of contracts measured by some utility of the principal is of interest. For our setting 
such a menu of contracts contains two contracts {C(θ a); C(θ a)} from which C(θ a) is 
chosen if θa = θ a and C(θ a) is chosen if θa = θ a [ 2]. The payment p(θ a) or p(θ a) 
is transferred immediately and both principal and agent start operating according to 
their speed factors δp and δa [ 1]. 

However, many similar approaches end at this point as they consider determin-
istic circumstances after some contract is negotiated making further investigations 
irrelevant [ 1– 4]. The closeness to reality of those simplified models can be doubted. 
As a main contribution of this work we consider the possibility of specific parameter 
changes in an uncertain execution phase and the option of renegotiation as a reaction 
to these. 

Deterministic Execution Phase 

For now, let us assume that the four problem parameters θp, θa , δp and δa remain 
constant after the initial negotiation phase. According to [ 2] the utility function of 
the principal should be of the general form
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U (q, p) := S(q) − p (63.1) 

where S(·) is a concave function that values the intrinsic preferences of the principal 
for an agreed quantity q and p monetary units have to be paid to the agent. Such 
a function lives up to the principle of a decreasing marginal utility and ensures the 
existence of a global maximum. 

A specific representation of S(·) in (63.1) which charges up the principal’s prefer-
ence for an early and uniform processing of the total quantity Q against the internal 
costs for precessing Q − q units by using own resources is introduced in [ 1]: 

S(q) := R − c ·
(

δp + δa 
2Q 

q2 − δp q + 
δp 

2 
Q

)
− θp(Q − q). (63.2) 

Within this setting the optimal incentive compatible menu of contracts (from the 
viewpoint of the principal) can be stated explicitly. 

Theorem 1 Let Θa := {θ; θ} with v being the probability that θ is the true value 
of θa. For  U as above and Δθ := θ − θ , the incentive compatible menu of con-
tracts {C(θ ); C(θ )} := {(q(θ ), p(θ )); (q(θ ), p(θ ))} maximizing the expected utility 
v · U (C(θ )) + (1 − v) · U (C(θ )) of the principal is then given by 

q(θ ) = 
Q

(
cδp + θp − θ

)
c(δp + δa) 

, q(θ ) = 
Q

(
cδp + θp − θ − v 

(1−v) Δθ
)

c(δp + δa) 
, 

p(θ ) = θ · q(θ ) + Δθ · q(θ ), p(θ ) = θ · q(θ ). 

Proof The theorem follows directly from the general optimization problem for two 
possible cost parameters {θ ; θ} in [ 2] by concretely setting S(q) as in (63.2). □ 

Uncertain Execution Phase and Renegotiation 

In what follows we assume that the parameters δp, δa , θp and θa can possibly change 
over time due to specific uncertainties in the execution phase. In this context, imag-
inable real world events could be changing traffic scenarios like completely free 
highways on the one hand or jams which can possibly occur in waves of different 
lengths [ 5] on the other hand. 

We want to assume that parameter changes can only occur at discrete points in time 
t = 0, 1, 2, 3, . . .  and that for each time stamp t , the principal has complete knowl-
edge about his own parameter constellation (δ(t) 

p , θ  (t) p ) as well as the agent’s speed 
parameter δ(t) 

a (for example by observing the current traffic situation) for the current 
time interval [t; t + 1]. As an example from literature, [ 6] utilizes variable-length
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Markov chains to extract traffic scenarios from real world data. For our model, how-
ever, we will use a simpler approach incorporating a Markov chain with stationary 
transitions and small state space [ 7]. 

More precisely, let us consider three possible speed scenarios (normal traffic, 
low traffic and high traffic) for both the principal and the agent by defining the 
parameter sets Δp = {δ p; δ̂p; δ p}, δ p < δ̂p < δ p, and Δa = {δa; δ̂a; δa}, δa < δ̂a < 
δa . We initialize δ(0) 

p = δ̂p and δ(0) 
a = δ̂a by default and assume that the probabilities 

for a parameter transition into one direction are given by pp and pa , with 0 < pp, pa < 
1/2. This means for example that if δ(t) 

p = δ̂p for some t , the probability for a transition 

to δ(t+1) 
p = δ p or δ(t+1) 

p = δ p is given by pp, respectively, which conversely implies 

δ(t+1) 
p = δ̂p with probability 1 − 2 · pp. On the other hand, if δ(t) 

p already equals one 

of both extreme values, i.e. δ p or δ p, only a transition to δ̂p is allowed to happen with 
probability pp, whereas 1 − pp delivers the probability for the parameter to remain 
constant. The exactly same behavior is assumed for δ(t) 

a with probability pa . 
Regarding the costs, we define a set of three possible scenarios Θp = {θ p; θ̂p; θ p} 

for the principal which are directly linked to their speed parameter, i.e. only the pairs 
(δ p, θ p), (δ̂p, θ̂p), (δ p, θ p) can occur. For the agent, on the other hand, we continue to 
be guided by Section “Introduction and Problem Description”, where the information 
asymmetry between principal and agent lies in the principal’s fuzzy knowledge about 
the true value of θa ∈ Θa := {θ a; θ a}. In what follows, we assume that the probability 
v for θ (t) a = θ a depends on the current speed parameter δ(t) 

a , i.e. we have to consider 
three probability values v, v̂ and v, one for each element of Δa . 

Regarding uncertainties for t = 1, 2, 3, . . .  we want to provide the principal with 
the option of renegotiating a currently active contract. In this context we define qt as 
the remaining quantity the agent has to supply at time t > 0, i.e. qt = max{0; qt−1 − 
1/δ(t−1) 

a } holds if we consider the same contract for t − 1 and t . 

Claim For t > 0, qt and θ (t) a given, the agent accepts a contract update (qnew 
t , pt ) 

from the principal if and only if it leads to a non-decreasing utility, i.e. 

Ua 
θ (t) a

(
qnew 
t , pt

) ≥ Ua 
θ (t) a 

(qt , 0) ⇐⇒ pt − θ (t) a q
new 
t ≥ −θ (t) a qt . (63.3) 

Learning Renegotiation Strategies 

We can interpret the problem resulting from the model synthesis in Section “Uncer-
tain Execution Phase and Renegotiation” as a single player multi-stage game with 
incomplete information [ 8] (due to the random parameter switches) from the view-
point of the principal. The contract offers are the game actions and the game termi-
nates when the whole quantity Q is processed. One could object at this point that 
the interpretation as a two-person game would be more obvious, since we are actu-
ally dealing with two different participants—the principal and the agent—with their 
own decision-making possibilities and opposing objectives. However, we assume
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that at any time t = 0, 1, 2, . . .  and for each realization of θ (t) a ∈ {θ a; θ a} the agent 
chooses the action that optimizes their own easily calculable utility. For this reason, 
the actions of the agent appear to the principal as the realization of random scenarios 
from the environment which can be specified exactly in advance. 

The interpretation as a one-person game also allows us to apply standard methods 
from the AI-area of Deep Reinforcement Learning as Actor-Critic, DDPG or Deep 
Q-Learning [ 9]. We decided to set up a Deep Q-Learning environment in Python 
(version 3.7.5) by using the packages gym to define the actual game environment 
and keras-rl to build and train the neural network. In what follows, the concrete 
definitions of state and action space (which both have to be discrete for Deep Q-
Learning) as well as the step-wise rewards are explained. 

State space: Consists of tuples (Qt , qt , δ(t) 
p , θ  (t) a ) where Qt ∈ {0; . . .  ; Q} is the cur-

rent total quantity, qt ∈ {0; . . .  ; Qt } is the current outsourced quantity, δ(t) 
p ∈ Δp and 

δ(t) 
a ∈ Δa . The size of the state space is |δp| · |δa| ·  (Q + 1)(Q + 2)/2. 

Action space: Consists of tuples (a, s), where a ∈ {−K ; . . .  ; 0; . . .  ; K } aims at an 
update of the current outsourced quantity qt , i.e. qnew 

t = qt + k · a for some k ∈ N, 
and s ∈ {0; 1} defines the “scope” of acceptance by the agent, meaning that we 
choose pt = θ a(qnew 

t − qt ) if s = 0 and pt = θ a(qnew 
t − qt ) if s = 1. Comparing 

(63.3) one can check that for s = 0, qnew 
t is accepted if θ (t) a = θ a or qnew 

t < qt (pt 
is then a redemption from the agent) and for s = 1, qnew 

t is accepted if θ (t) a = θ a or 
qnew 
t > qt . A special case is the start of the game where we take the initial contract 

menu {C(θ a); C(θ a)} from Theorem 1 and possibly update its quantities by some a, 
a' as above. After the game starts an action (a, s) can indeed only be applied to the 
currently active contract. The size of the action space is 4 · K + 1. 

Rewards: The principal’s reward Rt for the period [t; t + 1] consists of a perfor-
mance term in the spirit of φ ◦ τ in Section “Introduction and Problem Description” 
(with R = 0), the costs for using own resources in [t; t + 1] and an eventual transfer 
pt from/to the agent. Let 

Rt = −  
c 

Q 

⎛ 

⎝∫
St 

α
δ (t) p ,δ (t) a 

(Qt , qt ; x) dx  + Qt+1 

⎞ 

⎠ − θ (t) p · min
{
Qt − qt ; 1/δ(t) 

p

} − pt 

with St = {x : 0 ≤ α
δ (t) p ,δ (t) a 

(Qt , qt ; x) ≤ 1} being the processed units in [t; t + 1]. 

Computational Study 

In this last section we present a concrete neural network implementation which 
realizes the reinforcement learning approach for smart renegotiation strategies. As 
parameters for our problem we chose Q = 100, c = 5, Δp = Δa = {1/3; 1/2; 1}, 
pp = pa = 1/5, Θp = {1; 3/2; 2} and Θa = {1; 2} with v = 3/4, v̂ = 1/2 and v =
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1/4. We take the initially best contracts C(1) and C(2) as computed in Theorem 1 as 
starting point, resulting in initial quantities q(1) = 60 and q(2) = 20 due to δ(0) 

p = 
δ(0) 
a = 1/2. 
Using the respective formula from Section “Learning Renegotiation Strategies”, 

we got a state space of size 3 × 3 × 101 × 102/2 = 46,359. The entire space is of 
course difficult to explore due to its extent, but we can assume that the neural network 
can provide good approximations for a variety of states. For the actions we achieved 
good results by setting k = 2 and K = 3 (compare Section “Learning Renegotiation 
Strategies”), resulting in an action space size of 4 × 3 + 1 = 13. The neural network 
itself was basically built in the following linear manner by using the package keras 
[ 10]: one Embedding layer mapping each state to a vector of size 20, two Dense 
layers of size 32 with relu activation and one linear Dense output layer predicting 
the Q-values of the actions. 

We trained our model for 106 episodes with a learning rate of 10−3 and an ∈-greedy 
policy [ 9] (∈ was set to 0.1 by default). Overall, the training took about 310 min and 
yielded an average reward of − 1464 on 100 test instances. We compared this value 
to a benchmark reward resulting from the original setting where only an initial menu 
of contracts but no renegotiation was allowed. By taking the same 100 sequences of 
random parameters δ(t) 

p , δ
(t) 
a , θ (t) p and θ (t) a we obtained an average reward of − 1695, 

meaning that the renegotiation strategies from our model led to a significant increase 
in the principal’s average utility. 

Conclusion 

The general usefulness of renegotiating contracts during an uncertain execution phase 
of principal-agent models is obvious whereas optimal strategies for the principal are 
hard to compute due to a possibly large “game tree”. In this contribution, however, 
we were able to generate beneficial renegotiation strategies for a specific outsourcing 
problem by training a neural network. The general approach interpreting the multi-
round principal-agent setting as a single player game from the principal’s viewpoint 
and exploiting deep reinforcement learning techniques on it can naturally be trans-
ferred to similar problems as well. 
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Chapter 64 
Temperature-Based Trajectory Planning 
for Surfaces in Wire-Arc Additive 
Manufacturing 

Johannes Schmidt and Armin Fügenschuh 

Abstract In Wire-Arc Additive Manufacturing, the desired workpiece is built layer-
wise by a weld source moving freely over a substrate plate, either welding or transit-
ing. The main issue with this manufacturing technique is the temperature distribution 
within the workpiece since the large thermal gradients caused by the welding pro-
cess lead to thermal stress. We consider the trajectory planning problem of finding 
an optimal welding trajectory for a given two-dimensional layer. It is formulated as 
a mixed-integer linear problem (MILP) searching the welding path with the most 
homogeneous temperature distribution during manufacturing. The heat conduction, 
the weld source, and the heat radiation are incorporated into the model, together with 
two coupled time discretizations to accelerate the solution process. For two example 
surfaces, the computed optimal trajectory is compared to commonly used strategies 
like raster, zigzag or spiral paths. 

Keywords Wire-arc additive manufacturing · Mixed-integer linear 
programming · Heat equation · Finite element method 

Introduction 

In the process of Wire-Arc Additive Manufacturing (WAAM), the desired workpiece 
is split up into slices and built up layer-by-layer. The welding head can move freely 
over the clamped substrate plate to deposit droplets of metal wire molten by an 
electrical arc or a laser. Also, transfer moves without welding, called transits, are 
possible. One of the main factors for the quality of the resulting workpiece are the 
high thermal gradients caused by the weld source leading to strain or even cracks. 
Especially for filled surface structures consisting of many weld beads, this must 
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be taken into account. Thus, careful planning of the welding trajectory is essential 
for high-quality workpieces. Today, the trajectories for surfaces are planned using 
standard patterns like rastering, zig-zag, contour, or spiral paths, which are chosen 
by different criteria without optimization [ 4]. An extensive review of WAAM can be 
found in [ 6]. 

We formulate the problem of finding a feasible weld source trajectory that maxi-
mizes the quality of the finished workpiece as a mixed-integer linear problem (MILP), 
incorporating a detailed calculation for the temperature distribution of the constructed 
part into the optimization. To model the heat transmittance, heat conduction, radi-
ation, and the heat input by the weld source are taken into account using a two-
dimensional heat equation with Robin boundary, which is discretized by a finite ele-
ment method to fit the chosen framework. A similar approach for space discretization 
with a heuristical solution method is presented in [ 2]. Furthermore, we use different 
time discretizations regarding the space and the time dimension to achieve a flexible 
level of detail for the computed temperature. For a set of example instances, the pre-
sented approach is compared to the standard patterns rastering, zig-zag, and spiral 
paths, applying the standard mixed-integer solver CPLEX. Furthermore, the effect 
of the different time discretizations is examined on this instances. 

Mathematical Model 

In this work, we consider a single two-dimensional layer with a bulky structure of 
a sliced workpiece, i.e., the layer is a surface where multiple weld beads are placed 
next to each other. The velocities vw ∈ R+ and vm ∈ R+ of the weld source while 
welding or transiting are respectively known. Then, for a given discrete time step 
length Δt ∈ R+, the layer is covered by a set V of non-overlapping quadratic pixels 
of side length vw Δt and each pixel i ∈ V is identified with a node located in its center 
(xi , yi ) ∈ R2. Let denote n = |V| in the following. Defining an edge (i, j ) ∈ W for 
every pair of squares i, j ∈ V , i �= j , with a common side, the considered layer is 
described by an undirected grid graph G = (V, W). 

To calculate the temperature distribution within the layer, a time-expanded version 
of the graph G is necessary. Due to the choice of the pixel’s side length, the weld 
source requires one time step to reach the next node while welding. Furthermore, 
for an accordingly chosen weld bead width, the area covered by a pixel is filled 
with material if the weld source reaches the node in its center. Thus, the complete 
layer is processed if every node i ∈ V is visited exactly once. For transit moves, the 

number of required time steps is given by τ m i, j =
⌈

de 
i, j 

vm Δt

⌉
, where de 

i, j is the Euclidean 

distance between the nodes i, j ∈ V . Let  U = {(i, j ) ∈ V × V | i �= j} denote the set 
of all possible transit moves and ω ∈ N ∪ {0} their preprocessed minimal necessary 
number. 

By applying a second discretization scheme for the time discretization of the 
temperature calculation, we achieve a more flexible approach where the level of detail
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of the temperature distribution can be adjusted to the requirements of the application 
avoiding unnecessarily complex optimization models. Therefore, a number nc ∈ N 
is chosen and the time step length Δtc = ncΔt is set for this second, more coarse, 
time discretization taking only multiples of nc into account. 

Since the number of time steps to process the complete layer T w ∈ N varies 
with the chosen transit moves, which are not known a priori, it affects the num-
ber of variables and constraints in the resulting optimization model. Thus, a good 
upper bound of T w is crucial to avoid unnecessarily complex models. In the follow-
ing, we consider the rather coarse approximation T w = n − 1 + ω max(i, j )∈U τ m i, j . 
Regarding the second time discretization, the last time step has to be a multiple 
of nc to allow a correct computation. Thus, the maximum number of time steps 
is given by T max = min{knc | k ∈ N, knc ≥ T w}. This yields the discrete time 
horizons T = {1, . . . ,  T w} for the space discretization regarding the trajectory and 
T c = {nc, 2nc, . . . ,  T max } for the time discretization of the temperature calculation. 
In the following, the abbreviations T c 0 = T c ∪ {0}, T0 = T ∪ {0}, T − = T \ {T w}, 
T − 
0 = T0 \ {T w}, and T end = {n − 1 + ω, . . . , T w} are used. Note, that the last 

abbreviation T end describes the set of all time steps, in which the manufacturing 
process can end. Incorporating the processing time, we define sets 
W∗ = {(i, ti , j, t j ) ∈ V × T − 

0 × V × T | (i, j) ∈ W, t j = ti + 1}, 
U∗ = {(i, ti , j, t j ) ∈ V × T − × V × T − | (i, j ) ∈ U , t j = ti + τ m i, j } and introduce 
two sorts of binary variables wi,ti , j,t j ∈ {0, 1} for (i, ti , j, t j ) ∈ W∗ and ui,ti , j,t j ∈ 
{0, 1} for (i, ti , j, t j ) ∈ U∗, indicating if the weld source moves from node i ∈ V to 
node j ∈ V while welding or transiting, respectively. Furthermore, auxiliary binary 
variables u+ 

i ∈ {0, 1}, indicating if the trajectory starts at node i ∈ V , u− 
i,t ∈ {0, 1}, 

indicating if the trajectory ends at node i ∈ V at time step t ∈ T end , and 

wi,t =
{
u+ 
i , i ∈ V, t = 0∑

h,th :(h,th ,i,t)∈W∗ 
wh,th ,i,t +

∑
h,th :(h,th ,i,t)∈U∗ 

uh,th ,i,t , i ∈ V, t ∈ T , (64.1) 

indicating if the weld source is above node i ∈ V at time step t ∈ T0, are defined. 
The problem of finding a feasible trajectory is then given by

∑
j,t j :(i,0, j,t j )∈W∗ 

wi,0, j,t j = u+ 
i , ∀i ∈ V (64.2a)

∑
t∈T0 

wi,t = 1, ∀i ∈ V (64.2b)

∑
(i,ti , j,t j )∈U∗ 

ui,ti , j,t j = ω, (64.2c)
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∑
j,t j :(i,t, j,t j )∈W∗ 

wi,t, j,t j +
∑

j,t j :(i,t, j,t j )∈U∗ 

ui,t, j,t j = wi,t ∀i ∈ V, t ∈ T \ T end , 

(64.2d)∑
j,t j :(i,t, j,t j )∈W∗ 

wi,t, j,t j +
∑

j,t j :(i,t, j,t j )∈U∗ 

ui,t, j,t j = wi,t + u− 
i,t , ∀i ∈ V, t ∈ T end , 

(64.2e)∑
i∈V 

u+ 
i = 1, (64.2f)

∑
i∈V

∑
t∈T end 

u− 
i,t = 1. (64.2g) 

The trajectory has to start somewhere (64.2a) and every node must be visited 
(64.2b). Only the minimal number of necessary transit moves is allowed (64.2c). 
Constraints (64.2d) and (64.2e) guarantee the continuity of the trajectory and the 
start and end node have to be unique (64.2f) and (64.2g). 

Regarding the calculation of the temperature distribution, a two-dimensional heat 
equation of the form 

∂θ 
∂t 

(x, y, t) = α
(

∂2θ 
(∂x)2 

(x, y, t) + 
∂2θ 

(∂ y)2 
(x, y, t)

)
+ q(x, y, t) 

∀(x, y) ∈ Ω, t ∈ [0, T ] , (64.3a) 

∂θ 
∂n 

(x, y, t) = κe
(
ϕadd − θ(x, y, t)

) ∀(x, y) ∈ ∂Ω, ∀t ∈ [0, T ] , (64.3b) 

θ(x, y, 0) = θ ini t  (x, y) ∀(x, y) ∈ Ω, (64.3c) 

is used with thermal diffusivity α ∈ R+, weld source term q : Ω × [0, T ] → R+, 
and artificial cooling parameters κe, ϕadd ∈ R+. The heat conduction is described 
in (64.3a), the Robin boundary condition (64.3b) represents a linear approximation 
of the non-linear radiation term, and the initial temperature distribution is given in 
(64.3c). For the computation of the temperature, we introduce variables θi,t ∈ R+ for 
the temperature of node i ∈ V at time step t ∈ T c 0 and qi,t ∈ R+ for the temperature 
gain by the weld source of node i ∈ V at time step t ∈ T c. Following the approach in 
[ 5], the partial differential equation system (64.3) is discretized using a finite element 
method with the node setV as discretization points, linear triangle elements, the shape 
of the considered layer as its boundary, the time step length Δtc, and an implicit time 
approach, yielding the linear equation system 

(M + Δtc K )	θt+1 = Δtc(	qt+1
	f H + κe ϕadd 	f R) + M 	θt ∀t ∈ T c \ {T max }, 

(64.4) 
with mass matrix M ∈ Rn×n , stiffness matrix K ∈ Rn×n , temperature vector
	θt =

(
θ1,t · · ·  θn,t

)

, weld source vector 	qt =

(
q1,t · · ·  qn,t

)

, and load vectors
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f H , f N ∈ Rn . Regarding the weld source, we follow the piece-wise constant 
approximation approach in [ 1] with K w ∈ N intervals P1, . . . ,  PK w , related fac-
tors 1 = κw 

1 ≥ κw 
1 ≥ . . .  ≥ κw 

K w ≥ 0, and temperature gain ϕw ∈ R+ and adapt it to 
the used framework of a coarse time discretization for the temperature calculation. 
Thus, the variables qi,t are given by 

qi,t = 
nc−1∑
p=0

(
κc

)p K 
w∑

k=1

∑
j∈V\{i} 
de 
i, j∈Pk 

κw 
k ϕ

w w j,t−p ∀i ∈ V, ∀t ∈ T c , (64.5) 

where κc ∈ R+ is a cooling factor applied to the previous time steps. At the initial 
time step, the start node of the welding trajectory affects the initial temperature. Since 
the parameter ϕw must be estimated for every value of nc, a new parameter ϕw 

0 ∈ R+ 
is introduced to achieve the same initial temperature distribution independently of 
nc. This leads to the additional constraints 

θi,0 = θ ini t  i + 
K w∑
k=1

∑
j∈V\{i} 
de 
i, j∈Pk 

κw 
k ϕ

w 
0 w j,0 ∀i ∈ V. (64.6) 

In this work, we aim to achieve a most homogeneous temperature distribution 
within the workpiece to maximize its quality. Therefore, the computed temperature’s 
absolute deviation from a given target temperature ϑ target  ∈ R+ should be minimal. 
To linearize the necessary absolute value function, new variables ϑ+ 

i,t , ϑ
− 
i,t ∈ R+ for 

the positive and negative deviation of the temperature of node i ∈ V at time step 
t ∈ T c 0 are introduced. This gives the linear objective function 

min
∑
t∈T c 0

∑
i∈V 

(ϑ+ 
i,t + ϑ− 

i,t ), (64.7) 

with the additional constraints 

ϑ+ 
i,t − ϑ− 

i,t = θi,t − ϑ target ∀i ∈ V, ∀t ∈ T c 0 . (64.8) 

Computational Results 

The model consisting of the constraints (64.1)–(64.6) and (64.8) with the objective 
function (64.7) was implemented in Python 3.8 and all instances were solved using 
IBM ILOG CPLEX 20.1.0.0 [ 3] on a Mac Pro with an Intel Xeon W running 32 
threads parallel at 3.2 GHz clock speed and 768 GB RAM. In the CPLEX settings, 
the branching priority based on increasing cost per coefficient count was enabled. For 
the approximation of the weld source, the intervals and parameters obtained in [ 1] are
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Fig. 64.1 Discretization of the instances and the respective obtained optimal trajectories. Both 
model variants found the same solution for the respective surface 

Table 64.1 Objective values and computation times of both model variants for all instances and 
the comparison to the standard patterns 

Raster Zig-zag Spiral Optimization 

nc = 1 nc = 2 
Angle Value 934,012 934,442 714,966 711,597 392,581 

Time (s) 205.88 66.08 

Circle Value 1,115,886 1,116,044 841,977 833,399 461,795 

Time (s) 560.19 337.36 

used. The parameters ϕw, ϕadd , κe, and κc are chosen as the solution of a least-squares 
problem for every value of the parameter nc based on a simulated instance. Their 
values for nc = 1 are ϕw = 1514 K, ϕadd = 709.73 K, κe = 0.1831, and κc = 1, 
while for nc = 2 they are given by ϕw = 915 K, ϕadd = 711.03 K, κe = 0.2246, 
and κc = 0.8576. Furthermore, the thermal diffusivity is set to α = 3.774 mm/s, the 
initial temperature of all nodes i ∈ V is set to θ ini t  i = 500 K, the initial temperature 
gain is ϕw 

0 = 1514 K, and as time step length we use Δt = 0.5 s. 
In the experiments, we consider a workspace of 8 × 8 pixels and choose a subset 

of them to describe an angle and a circle as example instances. Both instances are 
solved for the values nc ∈ {1, 2} with the respective parameters and compared to the 
results of the standard patterns raster, zig-zag, and spiral path considering nc = 1. 
The discretization and the obtained optimal trajectories are displayed in Fig. 64.1, 
while detailed information about the computational performance and the comparison 
can be found in Table 64.1. 

Comparing the objective values of the solutions, the raster and the zig-zag pattern 
yield nearly the same results due to their similar structure, while the spiral path 
produces much better solutions. The computed optimal solution is slightly better than 
the spiral path and the resulting trajectories have only slight adjustments compared 
to a spiral. For every instance, the optimal solution for both values of nc is the same. 
Regarding the computation times, the model with nc = 2 outperforms the standard 
approach using only a single time discretization.
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Conclusions and Future Work 

In this work, we derived an MILP formulation for the trajectory planning problem for 
WAAM including a detailed calculation of the temperature distribution. Applying 
two coupled time discretizations yields a less complex model with faster computation 
times. The computational results on example instances show the applicability of our 
approach to the standard mixed-integer solver CPLEX and its benefits compared 
to the use of a single time discretization. In our future work, we will extend this 
approach to layers with arbitrary geometry, also including thin-walled structures, 
and derive better bounds for T w. Furthermore, it remains to formulate criteria for 
applying a second time discretization to avoid changing the optimal solution by larger 
discretization errors. 
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Chapter 65 
A Conceptual Framework for Studying 
Self-learning Agents in Recommerce 
Markets 

Rainer Schlosser and Alexander Kastius 

Abstract In many markets, customers as well as retailers look for increased sus-
tainability. Recommerce markets—which offer the opportunity to trade in and resell 
used products—are constantly growing and help to use resources more efficiently. To 
additionally manage the trade in and resell prices for used product versions is chal-
lenging for retailers as substitution and cannibalization effects have to be taken into 
account. An unknown customer behaviour as well as competition with other mer-
chants regarding both sales and buying back resources further increases the problem’s 
complexity. Data-driven pricing agents offer the potential to find well-performing 
strategies and satisfy the need for automated decision support, particularly in online 
markets. As the training of such agents is typically data hungry and too costly to be 
performed in practice, synthetic test environments are needed to try out and evaluate 
self-learning pricing agents in different market scenarios. In this paper, we propose 
a conceptual approach for such a recommerce market simulation framework and 
its basic components. Further, we discuss requirements and opportunities to study 
self-learning strategies in synthetic markets. 

Keywords Recommerce · Dynamic pricing · Reinforcement learning ·
Sustainability 

Introduction 

Sustainability and an efficient use of resources are of general growing interest. 
Recommerce markets, in which used products are sold, are constantly growing. 
Such markets follow the concept of a circular economy and help to save resources 
by giving them a longer lifetime. 
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Recommerce firms buy in returned articles (such as smart phones, clothes, etc.) 
from customers or other firms and resell them again to consumers as used products. 
As the costs for grading, storing, repairing, or refurbishing products are comparably 
low and the demand for used products is currently increasing, recommerce is a 
beneficial business model. However, recommerce firms also face challenges, which 
can be described as follows: 

1. To successfully manage trade ins and sales an optimized pricing is essential. 
2. Further, when also new product versions are sold, substitution effects between 

new and used products have to be taken into account. 
3. Many recommerce markets are characterized by duopoly or oligopoly competi-

tion. 
4. The impact and the interaction of own as well as competitors’ prices on demand 

is not easy to anticipate. 
5. Usually fully manual pricing decisions are infeasible and automation is required, 

but effective rule-based pricing strategies are hard to derive. 
6. Self-learning data-driven algorithms typically require too much data to be trained 

in practice. 

To tackle these challenges, simulated market environments are key to develop, 
test, and evaluate the strategic interplay of automated pricing strategies applied in 
recommerce markets. In addition, the potential performance of self-learning strate-
gies can be compared to rule-based baseline strategies. 

In this paper, we propose a conceptual framework for such a recommerce market 
simulation, including an adjustable customer behavior model as well as the capability 
to apply rule-based and self-learning agents based on reinforcement learning (RL). 
Monitoring tools shall allow to analyze each agent’s policy and their effects on the 
overall market and the associated resource flows. With the help of such simulations, 
we seek to study the competitiveness of self-adapting pricing tools and their long-
term impact on market competitors and customers. 

This paper is organized as follows. In Section “Related Work”, we discuss related 
work. In Section “Conceptual Framework”, we describe our conceptual framework 
to simulate recommerce markets and to test self-learning algorithms. Concluding 
remarks are given in the final Section “Conclusions”. 

Related Work 

We shortly discuss related work along the following different streams related to the 
topic of the paper: circular economy (Section “Circular Economy”), dynamic pricing 
(Section “Dynamic Pricing”), RL techniques (Section “RL Algorithms”), and market 
simulations (Section “Market Simulations”).
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Circular Economy 

An entrypoint to study the concepts of circular economy and sustainable markets 
are given in, e.g., Stahel [ 17] and Bocken et al. [ 1]. The overall idea is to save 
resources, reduce the the use of resources and to avoid waste, which is also closely 
related to closed loop supply chains, see, e.g., [ 6, 12]. Further, related aspects are 
environmental cost [ 4] or recycling investments [ 13]. 

Dynamic Pricing 

Selling products on online marketplaces is a classical revenue management appli-
cation, see, e.g., [ 20]. A comprehensive overview about the literature in dynamic 
pricing research is provided by the surveys [ 3, 10, 18]. The recent work [ 5] particu-
larly discusses dynamic pricing models under competition on online marketplaces. 

RL Algorithms 

Simulation-based algorithms allow to heuristically solve large Markov decision prob-
lems with incomplete information. An overview of the field of RL is given, e.g., in 
[ 19]. Established RL algorithms are, e.g., Deep Q-learning Networks [ 11], PPO [ 15], 
or Soft Actor Critic [ 7]. Applications of such methods to dynamic pricing problems 
can, e.g., be found in [ 8]. Unfortunately, RL algorithms typically require a lot of 
training data making it less attractive to use them in practice. To overcome this issue, 
approaches like transfer learning or multitask RL seek to use observable data more 
efficiently. 

Market Simulations 

The combined problem of (i) updating prices, (ii) learning demand behaviours, and 
(iii) identifying strategy equilibria in competitive markets is challenging as informa-
tion is incomplete and merchants may constantly adapt their strategies. For analyzing 
and evaluating the complex interplay and long-term behavior of mutual self-adaptive 
pricing strategies market simulations for classical e-commerce application have been 
used [ 9], see [ 2, 14, 16, 21]. However, the additional buy back option of recommerce 
markets and associated circular resource flows have not been studied in the mentioned 
frameworks.
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Conceptual Framework 

In this section, we describe main components of our recommerce simulation frame-
work (Section “Market Model”), discuss the integration of RL methods within a 
Markov decision process (MDP) (Section “MDP Framework and Application of RL 
Agents”), and propose the design of different computational studies to study different 
market setups (Section “Design of Computational Studies”). 

Market Model 

To mimic real-life recommerce markets, in our market simulation framework, we 
consider the following main components: (i) supplier(s), (ii) firm(s) including a 
private data/event store, (iii) a (shared) marketplace, (iv) consumer, (v) resources in 
use, and (vi) waste (cf. garbage), see Fig. 65.1. The components are connected as 
follows. Firms set prices for new and used products on their (or a central) marketplace. 
Arriving consumers decide (whether and) which product to buy from which firm. 
Bought products are considered as resource in use at the consumer side. They may 
be sent to garbage after a while or sold back to one of the firms which offer a 
corresponding buy back price. Firms can also order new resources from their (or 
a central) supplier at a certain cost (cf. virgin cost). To be able to easily integrate 
various RL libraries, we follow a standard stationary discrete time setup with infinite 
horizon. 

Note, this basic model sketched above also allows to describe the following spe-
cial cases: (i) monopoly settings, (ii) scenarios with just one product type, and (iii) 
classical e-commerce scenarios with no buy back option (cf. linear economy), as 
well as combinations of those cases (i)–(iii). 

Moreover, the basic model can also be extended to capture more complex set-
tings. For instance, for each firm, we may additionally consider a technology state 
serving as a sustainability image (cf. greenness, signaling, etc.), which increases 
demand. Further, this state could be stimulated via corresponding investment efforts 
and otherwise depreciates over time. 

Active decisions are made by the firms and the consumers. The pricing deci-
sions of a firm can be organized by a certain rule-based strategy as well as via an 
RL agent exploiting a firm’s gathered partially observable market data. The con-
sumer behavior can be arbitrarily defined, e.g., by generating random numbers of 
interested customers with heterogeneous preferences and a diversified willingness-
to-pay. Besides consumer of myopic type also certain shares of strategic or loyal 
customers can be defined and considered.
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Fig. 65.1 Illustration of the main components of a recommerce market simulation with two com-
peting merchants, cf. Firm A and Firm B 

MDP Framework and Application of RL Agents 

To train dynamic pricing agents for the proposed market framework by using standard 
RL algorithms, the formulation of a so-called environment is required, which includes 
states, actions, reward signals, and state transitions dynamics. 

From a firm’s, i.e., the agent’s, perspective the state is characterized by the 
own inventory level, the current prices of the competitors, and—if considered 
observable—the amount of resources in use. Further aspects such as, e.g., the firms’ 
current greenness, are also part of the state. 

Further, a firm’s action is a combination of prices for new and used products, the 
buy back price, and, e.g., a potential investment decision. The reward signal of a 
firm is the aggregated reward associated to realized sales, purchases, and holding 
costs (within one period); it is characterized by the underlying customer behaviour 
including the defined arrival stream of interested consumers. 

State transitions are organized in an MDP fashion and governed by the evolution 
of the own inventory level and in particular the (subsequent) price adjustments of all 
competing firms. This requires that certain, e.g., rule-based, policies are defined for 
the competing firms. The agent’s objective is to find a state-dependent strategy that 
maximizes expected discounted long-term rewards. 

Finally, within the described environment, different standard RL algorithms such 
as DQN, PPO, or SAC can be applied by using common RL libraries.
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Design of Computational Studies 

In a first basic model, we will consider an RL agent competing against certain 
(unknown) rule-based strategies in a duopoly setting. The goal is to compare differ-
ent RL algorithms by evaluating the RL agent’s and the competitor’s performance, 
the associated resource flows, and the required amounts of data to sufficiently train 
the agent. 

To study the agents’ realized prices, sales, purchases, holding costs, profits, etc., a 
suitable monitoring will be required. With such a tool the strategic interplay and the 
mutual price adaptions can be visualized and analyzed. Further, the impact of certain 
model parameters (e.g., virgin cost, holding costs, consumer behavior, discounting, 
etc.) on the long-term performance of all market participants and the associated 
resource flows (cf. steady state) can be investigated. 

In further experiments, we will also study how agents adapt to changing market 
environments, e.g., (i) if virgin costs are increasing over time or (ii) if the customer 
behaviour changes, e.g., towards a more sustainable one. Moreover, we will examine 
the case, in which two self-adapting RL agents compete against each other. Note, in 
this scenario the Markov property is no longer satisfied and stability issues may arise. 
In another experiment, we will study how an RL agent’s performance is affected by 
different information structures, i.e., if the number of resources in use or even the 
competitor’s inventory level would be an observable part of the state space. Finally, 
we also aim to analyze an RL agent’s performance in oligopoly settings with different 
numbers of competitors. 

Conclusions 

In this paper, we have proposed a market simulation framework for recommerce 
markets under competition. The framework has modular components, which allow 
to study different pricing strategies in different market scenarios. The simulation is 
designed such that self-learning RL algorithms can be easily integrated and com-
pared. In future research, we will implement the proposed concepts and evaluate the 
proposed numerical experiments. Results might be interesting from both a theoretical 
and a practical perspective. 
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Chapter 66 
Multi-agent Dynamic Pricing Using 
Reinforcement Learning and 
Asymmetric Information 

Alexander Kastius, Nils Kiele, and Rainer Schlosser 

Abstract Self-learning agents can be used in numerous ways for dynamic pricing 
nowadays. It has been shown, that reinforcement learning can serve as a toolkit to 
efficiently develop pricing strategies in dynamic environments. In many real-world 
situations, it can be expected that multiple market participants rely on such self-
learning agents to implement pricing decisions. From the view of one agent, this 
violates the fundamental Markov property, which leads to instability in the learning 
process. Past publications proposed to rely on asymmetric information to achieve 
equilibria and usually focused on tabular solutions or solvers. We use multi-agent 
learning and asymmetric information with function approximation tools for high-
dimensional state spaces by exchanging policy information between multiple actors. 
We discuss possible problems and their solutions and propose a simulation environ-
ment for further evaluation of the developed system. 

Keywords Dynamic pricing · Reinforcement learning · Multi-agent systems ·
Asymmetric information 

Introduction 

Past research has shown, that dynamic pricing serves as a suitable use case for 
reinforcement learning (RL) [ 2]. In practice, we often consider market setups, in 
which many traders exist and each trader is distinguished by more than one feature. 
Price-relevant features are for example other traders’ prices, product features, and 
estimated inventory sizes. The order of magnitude grows with the number of sell-
ers as well. In such high-dimensional environments, deep RL covers many of the 
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tools necessary to deduct reasonable pricing policies automatically. Given enough 
information, RL algorithms can deduct which features are relevant and which can be 
ignored. Dedicated feature selection mechanisms like L1-regularization can increase 
this effect [ 1]. 

Modern RL algorithms can work on continuous state spaces, which can consist of 
high-dimensional real valued features, and continuous action spaces, which allow an 
intuitive representation of the allowed pricing span. Many of those algorithms belong 
to the domain of policy gradient algorithms, which directly improve the agents policy 
according to an estimation of the expected discounted future reward. The policy 
gradient theorem and its variations serve as a foundation of those algorithms [ 9]. 

Further, past experiments have shown, that instabilities arise when multiple agents 
in the system learn their policies at the same time [ 2]. In practice, those instabilities 
are a problem as they reduce the effectiveness of pricing algorithms and increase 
the cost of exploration for all algorithms. The cost of exploration is the loss that is 
inferred due to following non-optimal policies and deviating from possibly optimal 
policies because exploration needs to be performed to search for better policies. 
As the general assumption in RL is that the optimal policy cannot be identified, 
exploration has to be performed at all times. 

In commercial environments, the cost of exploration is the element that hinders 
such algorithms from application. In the past, several experiments have been per-
formed to display the feasibility of the concept of leader-follower games to implement 
multi-agent pricing setups, see Section “Related Work”. In many of those setups, 
one agent under assessment learns its policies given information about the potential 
behaviour of the other agents. We seek to reduce the overall cost of exploration for all 
market participants by reintroducing this concept. Measuring the cost of exploration 
then provides a possible mechanism to implement such systems in practice, as a fee 
could be implemented which hands over some of the cost improvements of the leader 
to the followers, to encourage information exchange in an asymmetric environment. 
The novelty of the presented system comes from two major aspects: First of all, it 
incorporates a sophisticated multi-agent deep RL algorithm, whose structure is suited 
to handle complex environments and possibly improve overall learning performance. 
As to our best knowledge, this algorithm has not been used yet to tackle a dynamic 
pricing scenario as the one outlined in this paper. With the cost-of-exploration, as it 
is described later on, we also provide a tool to measure, if the expected performance 
increase does actually occur on a global, system-wide, level for all agents. 

In Section “Related Work”, we will first introduce some examples of such asym-
metric setups and leader-follower implementations using RL on various environ-
ments. In Section “Reinforcement Learning and Leader-Follower Games”, we dis-
play the internal mechanisms of one of the algorithms listed in Section “Related 
Work”. After that, in Section “Implications of Asymmetric Information in Pricing”, 
we propose a mechanism to measure the cost of exploration in an ideal environment. 
The final section concludes.
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Related Work 

As mentioned in [ 8], hierarchies naturally arise in multi-agent problems when some 
agents have the ability to commit to their action before the others or when there 
is asymmetric information. We focus on these kind of leader-follower hierarchies. 
On the other hand, the term ‘Hierarchical Reinforcement Learning’ [ 6, 7] is used in  
the literature to refer to a hierarchy of goals that is created by breaking a complex 
task down into easier subtasks. In the early 2000s, Könönen published papers about 
learning a Stackelberg equilibrium in asymmetric multi-agent settings, using RL 
methods. Reference [ 4] uses a Q-learning approach to solve a hierarchical problem 
in which a supplier and a broker are learning simultaneously to maximize their own 
profits. In [ 3], a gradient-based method is used to determine a Stackelberg equilib-
rium. However, this approach relies on computing sums which makes it unsuitable 
for continuous state and action spaces. 

The aforementioned works require complete information of the game. Also, eval-
uation only took place in Single-Leader-Single-Follower (SLSF) settings. Refer-
ence [ 10] however, developed an algorithm where agents learn only using their 
received rewards (revenue). Also, the algorithm can be applied to a Single-Leader-
Multiple-Follower (SLMF) setting. This is achieved by modeling each leaders action 
as a different subgame the followers have to learn. The leader meanwhile learns 
at a slower rate, to encourage convergence of all agents to a Stackelberg equilib-
rium. 

So far, we have only looked at discrete action spaces. Reference [ 8] recently 
proposed an algorithm called SMARL to solve problems with multiple leaders and 
followers (MLMF) and continuous state and action spaces. SMARL is an actor-critic 
method that performs well in multi-agent settings by using a shared policy for all 
agents during training. In SMARL, mixed cooperative and competitive objectives 
are possible. In this context, a brief comparison of the different papers is shown in 
Table 66.1. 

Table 66.1 Overview of related work (LF refers to leader-follower) 

Paper Action space LF type Agents’ 
information 

Problem domain 

[ 3] Discrete SLSF Full information Grid-world 

[ 4] Discrete Mostly SLSF Full information Grid-world, pricing 

[ 5] Discrete SLSF Full information Pricing 

[ 10] Discrete SLMF Reward-based Economics 

[ 8] Continuous MLMF Reward-based Highway-driving 
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Reinforcement Learning and Leader-Follower Games 

In single-agent RL, an agent interacts in discrete time-steps with an environment by 
choosing actions [ 9]. The environment provides the agent with rewards, conditioned 
on the state it is in. The optimization goal usually consists of maximizing the expected 
discounted reward by finding a policy which maximizes this value. For a single agent, 
the value of a state s (at any time t) is defined as follows, given a policy π and step 
wise rewards rk+t for step k + t : 

Vπ (s) = E 

[∑ 

k≥0 

γ k rk+t |st = s, at ∼ π 

] 

. 

For a pricing problem, we usually consider the action space to consist of the 
range of prices any agent is allowed to choose from. Those might be different for 
each agent, which influences the resulting policies. The state space might consist 
of several features. This includes current competitor prices and additional features 
describing, e.g., both quality and availability of offered products. In past experiments, 
we discovered that discretization of the action space in a pricing problem has disad-
vantages [ 2]. Thus, we suggest the solution algorithm proposed in [ 8] might serve 
as a foundation of a solution system for pricing systems. In this paper, as previously 
outlined, a leader-follower game is considered. 

The general optimization goal consists of optimizing the value of the starting 
state s0 by improving the policy. In multi-agent RL, multiple agents are learning 
cooperative or competitive behaviour together in the same environment. This requires 
particular solution methods because using single-agent RL in a multi-agent setting 
leads to non-stationarity from any agent’s perspective. 

Leader-follower games model a decision-making problem where the players have 
asymmetric roles: One agent (the leader) commits to an action first and the other 
participants (followers) then make their decision on the basis of the leader’s action, 
competitively playing a Nash game. In such asymmetric games, we are interested in 
finding a Stackelberg equilibrium in which the leader’s optimal action maximizes its 
own reward, knowing the followers will play a Nash game among themselves. 

We now summarize the solution method SMARL from [ 8]. SMARL is a model-
free, off-policy actor-critic method. Model free means that no full model of the 
environment is needed, off-policy means that the data can be generated by any policy, 
not just the one that is optimized, and actor-critic means that every agent in the system 
learns both a policy and a value estimator. There are N agents, each of which has 
a relationship to any other agent: leader, follower, or equal in hierarchy. Each agent 
with id i has a deterministic policy µi , conditioned on parameters θi , as well as  
a centralized Q-function Qµ 

S,i , with µ = {µ1, . . . ,  µN }, which is only used during 
training. Qµ 

S,i takes as input all agent’s observations x = (o1, . . . ,  oN ) as well as 
the actions a1, . . . ,  aN of all agents. μi is the actor and Q

µ 
S,i the critic for an agent. 

Because both are continuous, they are approximated with artificial neural networks. 
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In this case, an artificial neural network is a parametric non-linear function of arbitrary 
structure, usually containing several layers of computation, whose parameters can 
be adjusted to change its output given a specified input and which is differentiable. 
Random noise is added to µi to enable exploration. 

The agent’s policies µ are updated using the Deterministic Policy Gradient The-
orem. The gradient of µi is impacted by the actions of its followers F (i ). Let  D 
be a replay buffer containing tuples of the current global state x, the next global 
state x', all agent actions a1, . . . ,  aN , and rewards r1, . . . ,  rN . With ai = µi (oi ) and 
aF = µ f 

(
o f , ai

)
, ∀ f ∈ F (i ), the gradient ∇θi J (θi ) is equal to 

Ex,a∼D 
[∇θi µi (oi ) ∇ai Q

µ 
S,i (x, a1, . . . ,  aN ) + ∇θi µi (oi ) ∇ai Q

µ 
S,i (x, aF )

] 
. 

On the other hand, each critic’s value function Qµ 
S,i is updated using off-policy 

temporal difference (TD) learning. Let µ' = {µθ '1 , . . . ,  µθ 'N } be the set of target poli-
cies with parameters θ ' and let Qµ' 

S = {Qµ' 
S,1, . . . ,  Qµ' 

S,N } be the set of target critics 
with parameters ω'. The target networks keep delayed copies of the original parame-
ters to stabilize training. With a' 

i = µ' 
i (oi ) and y = ri + γ Qµ' 

S,i 

(
x', a'

1, . . . ,  a' 
N 

)
, the  

TD error to be minimized becomes: 

Ex,a,r,x'∼D 

[(
Qµ 

S,i (x, a1, . . . ,  aN ) − y
)2]

. 

Implications of Asymmetric Information in Pricing 

Given the information from the last section, we can consider a multi-agent RL prob-
lem in which two agents are optimized, one being the leader, one being the follower. 
With mutual price updates, we usually do not know which pricing decision will be 
performed by the respective competitor; in a leader-follower setup, this changes with 
at least one agent knowing the competitors response in advance. We intend to deter-
mine, if this information exchange can improve the overall economic outcome for 
both involved agents. 

We propose to use the decrease in cost-of-exploration for a two-player duopoly. 
To measure this, several factors have to be taken into account. In a leader-follower 
game, one policy is known to the other agent. In a duopoly as it was evaluated by e.g., 
[ 2], this is not case. In both setups, the demand function is considered unknown to the 
agents. A solution algorithm can compute the optimal response given the customers 
choice when the competitor policy and the demand model is known. The cost-of-
exploration is considered the difference between the revenue of the optimal response 
and the actual policy. Given an optimal policy π ∗ and an evaluation policy π , we  
consider the current relative cost of exploration as 
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[ ]
V 

C(π ) = π (s0) 
E . 

Vπ ∗ (s0) 

This value has to be considered in two additional dimensions: The value in RL 
is usually considered long-term, not over a single state. Furthermore, the expected 
value has to be taken into account, as the actual generated revenue depends on the 
stochastic demand model. For each step during training, it is possible to compute 
the optimal policy given the demand model and the current competitor’s policy. The 
expected value of this policy given a fixed starting state can be computed. It can then 
be compared to the expected value of the actual current policy. This computation 
will be performed for both an asymmetric setup, where one agent can learn given 
the competitors price choice, and a setup in which this information is not given in 
advance. 

The goal of future assessments is to evaluate the difference between both, serving 
our hypothesis that an improvement can be made by decreasing this price. A suitable 
market model then shares the saved cost-of-exploration between all market partici-
pants. Due to increased learning stability, it might be possible that even the transparent 
market participants will have a decreased cost-of-exploration. In this case, a balanced 
sharing model of the pricing mechanism has to be taken into account. Furthermore, 
long-term effects might occur, where different market participants observe varied 
levels of cost effectiveness at different points during the learning process. This effect 
becomes stronger, if the market consists of an oligopoly and if the different market 
participants join the market at different points in time. To evaluate this situation, the 
market model used by us will need further extensions to cover changes in the market 
setup during the training process. A toolkit that can perform the proposed evaluation 
has been developed by us in the past. Future work will incorporate full evaluation of 
all mechanisms proposed at this point in time. 

Conclusions 

We have shown that several alternative implementations of RL in leader-follower 
games do exist and have provided an insight in their mechanisms. Further, we have 
defined a measurement toolkit, which can develop a notion of what we consider 
the most crucial key performance indicator of an multi-agent RL setup, exclud-
ing the absolute revenue itself. Next, we seek to provide a full measurement of all 
aspects discussed in Section “Implications of Asymmetric Information in Pricing”, 
including a measurement of absolute performance given different possible imple-
mentations of the corresponding algorithms. Such measurements shall provide a 
user with a notion of how a market can be served with regulatory framework, which 
in turn, may level out the leader’s advantage over other market participants. One 
possible suggestion for such a mechanism introduces licensing fees for the informa-
tion based on the reduced loss of exploration for a single participant. If those fees 
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are smaller than the increase in cost of exploration for all market participants, an 
exchange might be possible without putting a disadvantage on those offering their 
policies to the public, while every participant can make use of the increased system 
stability. 
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Chapter 67 
A Heuristic Bicriteria Scheduling 
Approach for a Flooring Production 
Planning Problem 

D. Leib, E. Finhold, and T. Heller 

Abstract We consider a scheduling problem motivated by a particular process step 
in the production of rubber flooring. In this step, a set of given jobs of different colors 
has to pass through a heated pressure roller, one job at a time. Since different jobs 
require different process temperatures, and heating up the machine is expensive, 
we want to minimize the total temperature change. On the other hand, we aim at 
minimizing the alternations between bright and dark colors to minimize cleaning 
effort. We provide an efficient heuristic for finding all job sequences that are Pareto 
optimal with respect to the two objectives. 

Keywords Bicriteria optimization · Heuristics · Scheduling 

Introduction 

The production of rubber flooring consists of several process steps. In the calendering 
process, the material is passed through several heated rollers. As the jobs have to be 
processed at different temperatures, and heating up, respectively, cooling down the 
machine is both time consuming and expensive, one naturally aims at minimizing 
temperature differences between consecutive orders. Further, jobs may come in dif-
ferent colors. In order to minimize cleaning effort and the risk of color contamination 
between jobs, job orders with smooth color transitions are particularly desirable. 

Since the required heating time/costs, respectively, the “costs” of the color tran-
sition between two jobs depends on their temperature, respectively, color difference, 
this can be understood as sequence dependent setup times. The literature on schedul-
ing with sequence dependent setup times is rich in results on different schedul-
ing problems (e.g. [ 1, 6, 7]). In particular, formulating scheduling problems with 
sequence dependent setup times as a traveling salesperson problem (TSP) has a long 
history (cf. [ 2, 4]). A setting similar to our multi-objective problem was studied in [ 5], 
where a bicriteria TSP with sequence priorities are introduced. In contrast to these, 
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we will focus on paths instead of tours. For a general introduction to multicriteria 
optimization, see [ 3]. 

In this paper, we present a heuristic approach for computing job sequences that are 
Pareto optimal w.r.t. temperature and color change costs, i.e., sequences that cannot 
be improved in one objective without worsening the other, when the number of colors 
is equal to two, that is, we only differentiate between bright and dark colors. 

Definitions and Notation 

We first start with some definitions. A job j is a pair (t, c) ∈ R≥0 × {0, 1}, where 
t is the process temperature and c the color, sometimes we address the process 
temperature and color of a job j as t ( j ) and c( j ), respectively. The set of jobs is 
denoted by J and is assumed to be finite in size. For technical reasons we assume 
that the process temperatures of all jobs in J are pairwise different. 

A partially ordered path in J is a finite sequence P = (P1, . . . ,  Pk) of dis-
joint subsets Pi ⊂ J with c( j ) = c( j ′) for j, j ′ ∈ Pi and i = 1, . . . ,  k. It is  Hamil-
tonian if

⋃k 
i=1 Pi = J . If  Pi = {  j} is just a singleton we may write (P1, . . ., 

Pi−1, j, Pi+1, . . . ,  Pk) instead of (P1, . . . ,  Pi−1, { j}, Pi+1, . . . ,  Pk ). A (ordered) path 
p is a partially ordered path (P1, . . . ,  Pk) where all Pi are singletons. 

We call a partially ordered path alternating if the colors of the jobs in Pi and 
Pi+1 differ for i = 1, . . . ,  k − 1. We can associate to each partially ordered path P 
an alternating partially ordered path A(P) by uniting consecutive sequences of sets 
Pi of the same color of maximal length in P . A path p is an ordering of a partially 
ordered path P if A(p) = A(P). 

We consider two cost functions: The total temperature change and color change 
count of a path p = ( j1, . . . ,  jk) are given by T ( p) := ∑k−1 

i=1 |ti+1 − ti | and C( p) :=
∑k−1 

i=1 |ci+1 − ci | = |{i < k|ci �= ci+1}| respectively, where ji = (ti , ci ). Correspond-
ingly we define T (P) := min{T (p)|p ordering of P} and C(P) := min{C(p)|p 
ordering of P} for partially ordered paths. Note that C(P) is easy to compute as it 
holds C(P) = C( p) for any ordering p of P . Regarding T we will show later that 
T (P) can be computed efficiently on partially ordered paths in some specific cases. 

Example 1 Let J = {(10, 0), (20, 1), (50, 0)} and P = ({(10, 0), (50, 0)}, (30, 1)). 
There are two orderings for P , namely p1 = ((10, 0), (50, 0), (30, 1)) and p2 = 
((50, 0), (10, 0), (30, 1)). It  is  C(P) = c(p1) = c(p2) = 1 and since T (p1) = 60 > 

50 = T ( p2) we have T (P) = T ( p2) = 50. 

For Hamiltonian paths p, p′ we say that p′ dominates p if T (p′) ≤ T ( p) and 
C( p′) <  C(p) or T (p′) <  T (p) and C(p′) ≤ C(p). A  Pareto optimal path is a 
Hamiltonian (ordered) path which is not dominated by any other Hamiltonian path. 
Our goal is to find the set of Pareto optimal paths. Since the number of color changes 
in any path of length n is bounded by n − 1 this also applies to the number of Pareto 
optimal paths.
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Swapping Algorithm 

The idea of the algorithm is to first compute the Pareto extremes, which are the 
Pareto optimal paths with minimal and maximal color change count, respectively. 
Then we iteratively compute elements with intermediate color change count. W.l.o.g. 
we assume that any (partially ordered) path contains jobs of both color 0 and color 1. 
Otherwise, we get the unique Pareto optimal path by sorting the jobs by temperature 
(which can be done in polynomial time). 

Computing the Pareto Extremes 

We begin with the two extreme Pareto optimal solutions; one with minimal total tem-
perature changes and one with minimal color change count. The former is achieved 
by simply ordering the jobs by their process temperature: 

Lemma 1 Let p be a path in J , then T ( p) ≥ tmax − tmin where tmax and tmin are the 
maximal and minimal temperatures of the jobs occuring in p, respectively. 

The Pareto optimal extreme with exactly one change in color can be found using 
Lemma 2 below. For Pi ⊂ J we write −→Pi for the path resulting from ordering the 
elements in Pi increasingly with respect to the process temperature and 

←−
Pi for the 

corresponding path with decreasing temperature. Then we have: 

Lemma 2 Let P = (P1, . . . ,  Pk) be an alternating partially ordered path, then 

T (P) ∈
{
T ( P̃1, . . . ,  P̃k)| P̃i ∈ {−→Pi , ←−Pi }

}
. 

Let Pc ⊂ J be the set of all jobs of color c for c ∈ {0, 1}. To get a Pareto opti-
mal element with one color change we need to find an ordering p of (P0, P1) 
with T (p) = T (P). But Lemma 2 shows that p can be chosen as an element in 
{(−→P0, −→P1), (−→P0, ←−P1), (←−P0, −→P1), (←−P0, ←−P1)} with minimal total temperature change. 

Going Up and Going Down 

The following lemma shows that if a partially ordered path P has a specific structure, 
then an ordering p of P with T (p) = T (P) can be computed directly. 

Lemma 3 Let P = (P1, . . . ,  Pk) be an alternating partially ordered path for k ≥ 3 
and assume the sequences P1, P3, P5 . . .  and P2, P4, P6 . . .  of packages of the same 
color are strictly increasing w.r.t. the process temperature, respectively. Set p := 
( P̂1, 

−→
P2, . . . ,  

−−→
Pk−1, P̂k) where
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P̂1 =
{−→
P1, 

|tmax(P1)−tmin(P2)| 
|tmin(P1)−tmin(P2)| ≤ 1←−

P1 else. 
and P̂k =

{−→
Pk , 

|tmax(Pk−1)−tmin(Pk )| 
|tmax(Pk−1)−tmax(Pk )| ≤ 1←−

Pk else. 
, 

then T (p) = T (P). 

Let Cmax be the color change count of the Pareto optimal path which is sorted by 
process temperature as in Section “Computing the Pareto Extremes” and let pCmax 

be the corresponding path. Since there are no Hamiltonian paths with a smaller total 
temperature change due to Lemma 1, there is no Pareto optimal path with a higher 
color change count. Thus all Pareto optimal elements have a color change count 
between Cmax and 1. We initialize a result dictionary that will keep track of one 
representative for each of those color change counts containing both Pareto extremes 
initially, where we let p1 be the Pareto optimal path with a color change count of 1. 
Paths of intermediate color change count are computed in two ways: 

Starting from pCmax we compute new representatives in two ways by going down 
in which we compute new Hamiltonian paths with decreased color change count. 
Let p be a current path of the result list and A( p) = (P1, . . . ,  Pk). 

(D1) Swap the two subsets at both borders, and return the resulting partially ordered 
paths {(P2, P1 ∪ P3, . . .  Pk), (P1, . . . ,  Pk−2 ∪ Pk, Pk−1)}. 

(D2) Let j, j ′ be a pair of two consecutive jobs in p of different color with |t ( j ′) − 
t ( j )| minimal and let Pi , Pi+1 be the sets in P containing j, j ′, respectively. 
Return {(P1, . . . ,  Pi−1 ∪ Pi+1, Pi ∪ Pi+2, . . . ,  Pk)}. 

Starting from p1 we may compute new representatives in two ways by going up in 
which we compute new Hamiltonian paths with increased color change count. 

(U1) Let 
−→
P2 = ( j2 1 , . . . ,  j2 r ) and 

−−→
Pk−1 = ( j k−1 

1 , . . . ,  j k−1 
s ) where r, s ∈ {1, . . . ,  n}. 

We construct Hamiltonian partially ordered paths by inserting P1 into 
−→
P2 or Pk 

into 
−−→
Pk−1 at every inner position of 

−→
P2 and 

−−→
Pk−1, respectively, leading to 

{({ j2 1 }, P1, { j2 2 , . . . ,  j2 r }, P3, . . . ,  Pk ), 
({ j2 1 , j2 2 }, P1, { j2 3 , . . . ,  j2 r }, P3, . . . ,  Pk), . . . 
({ j2 1 , . . . ,  j2 r−1}, P1, { j2 r }, P3, . . . ,  Pk)} ∪  

{(P1, . . . ,  Pk−2, { j k−1 
1 , . . . ,  j k−1 

s−1 }, Pk, { j k−1 
s }), 

(P1, . . . ,  Pk−2, { j k−1 
1 , . . . ,  j k−1 

s−2 }, Pk, { j k−1 
s−1 , j

k−1 
s }),  . . .  

(P1, . . . ,  Pk−2, { j k−1 
1 }, Pk, { j k−1 

2 , . . . ,  j k−1 
s })}. 

(U2) Let j, j ′ be a pair of two consecutive jobs in p of different color with 
|t ( j ′) − t ( j )| minimal and let Pi , Pi+1 be the sets in P containing j, j ′, respec-
tively. Return {(P1, . . . , (Pi \ j ) ∪ {  j ′}, (Pi+1 \ j ′) ∪ {  j}, . . . ,  Pk)} if the color 
change count increased and nothing, otherwise. 

The Hamiltonian partially ordered paths resulting from (D1), (D2), (U1) and (U2) are 
all alternating and fulfill the requirements of Lemma 3. Thus we can use Lemma 3
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to compute an ordering from each of the results with the best possible temperature 
change values. The result dictionary is then updated with the new paths found where 
existing entries are replaced if their total temperature change is higher than the ones 
already computed. We exit the routine if we did not improve the total temperature 
change for any of the color change counts in the result dictionary after a full cycle of 
going down and going up. Lastly the Pareto optimal elements in the result dictionary 
can be computed in linear time as the number of Pareto optimal paths is bounded by 
n − 1. 

Algorithm 1 Swapping algorithm 

p1, pCmax = get_pareto_extremes(J ) 
result_dict = {1: p1, Cmax : pCmax } 
while true do 
current = pCmax 

for i = Cmax, . . . ,  3 do 
path_list_down = going_down(current) 
update(result_dict, path_list_down) 
current = result_dict[i − 1] 

end for 
current = p1 

for i = 1, . . . ,  Cmax − 2 do 
path_list_up = going_up(current) 
update(result_dict, path_list_up) 
current = result_dict[i + 1] 

end for 
if has_not_improved(result_list) then 
break 

end if 
end while 
return result_dict 

Numerical Results 

For a numerical analysis of Algorithm 1 we fix the number of jobs to n = 20 and 
apply Algorithm 1 to 1000 randomly generated instances of size n where we gener-
ate the jobs uniformly distributed in [40, 400] × {0, 1}. We then compare the total 
temperature changes of the result to the minimal temperature change value possible 
under all paths with the same color change count, which where computed by enu-
meration. Let m be a color change count that is contained in the algorithms result 
dictionary R and let P̂m be the set of all paths p resulting from Lemma 3 with C(p) = 
m. Set Nm = |  ̂Pm |, T min 

m := min{T ( p)|p ∈ P̂m}, T max 
m := max{T ( p)|p ∈ P̂m} and 

dm(R) := |{p ∈ P̂m |T ( p) <  T (R(m))}| where R(m) is the path with color change 
count m in R. The  accuracy and relative temperature change difference of R are
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acc(R) := 1 − 
1 

|R|
∑

m∈R 

dm(R) 

Nm 
and r td(R) := 

1 

|R|
∑

m∈R 

|T (R(m)) − T min 
m | 

|T max 
m − T min 

m | , 

respectively. The following table shows the median, 99% quantile and worst values 
of accuracy and relative temperature change difference of the 1000 runs. 

Mean 99% quantile Worst 
acc 0.9991 0.9921 0.9781 
r td  0.0043 0.0288 0.0514 

In 99% of the runs we had an accuracy over 99% and a relative temperature 
difference of less than 3% to the optimal and the worst run had an accuracy over 
97% and less than a 6% difference in relative temperature difference to the optimal 
values. 

Outlook and Conclusion 

The main aspect of the presented algorithm was to find qualitative solutions in a 
reasonable computation time, especially in realtime applications. Future research is 
directed to the cases of more than two color classes as well as a polynomial time 
algorithm for finding the Pareto optimal solution for a given color change count. In 
future work the polynomial time algorithms will be used to give a comparison against 
the algorithm presented in this paper. 
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Chapter 68 
Propagation and Branching Strategies 
for Job Shop Scheduling Minimizing the 
Weighted Energy Consumption 

Andreas Bley and Andreas Linß 

Abstract We consider a job shop scheduling problem with time windows, flexible 
energy prices, and machines whose energy consumption depends on their operational 
state (offline, ramp-up, setup, processing, standby or ramp-down). The goal is to find 
a valid schedule that minimizes the overall energy cost. To solve this problem to opti-
mality, we developed a branch-and-bound algorithm based on a time-indexed integer 
linear programming (ILP) formulation, which uses binary variables that describe 
blocks spanning multiple inactive periods on the machines. In this paper, we discuss 
the propagation and branching schemes used in that algorithm. The strategies, which 
are specifically tailored for energy related machine scheduling problems, primarily 
aim to determine and sharpen the activity profiles of the machines (and thus reduce 
the number of the inactive block variables) and address the workload profile of the 
tasks with lower priority. Computational experiments validate the efficiency of those 
techniques. 

Keywords Integer programming · Machine scheduling · Presolving · Branch and 
bound 

Introduction 

In recent years, energy awareness and increasing energy prices gained a lot of atten-
tion in production planning. Various approaches to incorporate energy consumption 
or costs into models and solution techniques for machine scheduling problems have 
been proposed, see for example [ 6, 10]. Those models explicitly consider differ-
ent machine states, such as processing, standby or off, the transitions among these 
states, and the respective energy demands and durations [ 2, 12]. Problems with 
time-dependent energy costs are typically modeled using time-indexed formula-
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tions, which leads to huge ILP models. Even more, in contrast to classical objectives 
minimizing completion times, minimizing the energy consumption leads to highly 
fractional solutions of the linear programming (LP) relaxations. Thus, tailored model 
reduction and branching techniques are needed to solve those models efficiently. 

In this paper, we present such techniques for a variant of the job-shop scheduling 
problem with flexible energy prices and time windows discussed in [ 4, 11]. An 
overview of formulations for the classical job-shop scheduling problem is given in [ 8]. 
A survey on alternative modelling and solution approaches for job-shop scheduling 
can be found in [ 14]. 

Problem Description and Formulation 

In our problem, the planning horizon.[T ] := {0, . . . , [T ] − 1} consists of.[T ]uniform 
periods. For each .t ∈ [T ], we are given an energy price .Ct ∈ R≥0, which is valid 
during period . t . Furthermore, we are given a set of (non-uniform) machines . M :=
{1, . . . , nM } and a set of jobs .J := {1, . . . , nJ }. A job  . j ∈ J consists of a list of 
tasks .( j, k), . j ∈ J , .k ∈ Oj := [n j ], .n j ∈ N, which must be processed in the order 
defined by.Oj . Each task.( j, k)must be setup and processed on a predefined machine 
.m j,k ∈ M . For each task.( j, k), we are given its setup time.dse

j,k ∈ N and its processing 
time .dpr

j,k ∈ N. In addition, we are given a release date .a j ∈ [T ] and a due date 
. f j ∈ [T ] for each job . j ∈ J , which apply to the first and the last task of the job, 
respectively. We let .O := {( j, k) : j ∈ J, k ∈ Oj }. . OM

|m = {( j, k) ∈ O|m j,k = m}
denotes the set of tasks .( j, k) on machine .m ∈ M . 

In each period .t ∈ [T ], each machine .m ∈ M must be in one of the operat-
ing states off, processing, setup, standby, ramp-up or ramp-down, summarized as 
.S = {off, pr, se, st, ru, rd}. A machine is called active if its operating state is setup, 
processing, or  standby, otherwise it is called inactive, with the canonical switches 
between the states and implications between tasks and machine states. The duration 
of the ramp-up phase, changing from off to any state .s ∈ {se, pr, st, rd}, is .dru

m ∈ N. 
The duration of the ramp-down phase is.drd

m ∈ N. For each machine.m ∈ M and state 
.s ∈ S, .Ds

m is the energy demand of machine .m in state . s. 
A feasible solution consists of the start time for each task’s processing and 

a machine state for each machine and each period. Each task is processed non-
preemptively and each task’s setup immediately precedes (also non-preemptively) 
its processing. The processing of a task can start only after the processing of its pre-
decessor has been completed, but its setup can already start while the predecessor is 
processing (on another machine). The start of the first and the completion of the last 
task of each job must obey this job’s release and due dates, respectively. Only one 
task can be processed or set up on a machine simultaneously. A machine processing 
or setting up for a task must be in state processing or setup, respectively. Otherwise, 
the machine can be active in standby or become inactive ramping down, being off, or  
ramping up, respecting the ramping durations and canonical state relations. At the



68 Propagation and Branching Strategies for Job Shop … 575

beginning and the end of the planning horizon, each machine must be off. Our goal 
is to find a solution whose energy cost is minimized. 

From the task precedences, the ramping, setup and processing times, and the 
jobs’ release and due dates, we obtain for each task .( j, k) ∈ OM

|m on machine .m the 

earliest period.a j,k := max{a j , dru
m + dse

j,0} + ∑k−1
q=0 d

pr
j,q and the latest period. f j,k :=

min{ f j , T − drd
m } − ∑|Oj |−1

l=k dpr
j,l when its processing may start. 

We use a time-indexed formulation with binary variables to explicitly indicate so-
called breaks, i.e., inactive blocks of consecutive ramp-down–off –ramp-up periods 
on the machines, to avoid inequalities describing the ramping mechanism. To use 
this type of variables also to model the initial and final ramping, we extend the time 
window for each machine to .Tm+ := {−drd

m , . . . , T + dru
m − 1} and enforce that the 

machine is off in periods . 0 and. T . The energy price is set to .Ct = 0 for the artificial 
periods .t ∈ Tm+ \ T . For each machine . m, .Bm denotes the set of all feasible breaks 
.(t0, t1),.t0, t1 ∈ [Tm+ ] and.t1 − t0 ≥ dru

m + drd
m , where the machine is starting its ramp-

down at . t0, is  off from .t0 + drd
m until .t1 − dru

m − 1, and in ramp-up from .t1 − dru
m to 

.t1 − 1. In total, we have three types of variables: 

– .x j,k,t ∈ {0, 1} indicating iff task .( j, k) ∈ O starts processing in period .t ∈ [T ], 
– .zstm,t ∈ {0, 1} indicating iff machine .m ∈ M is in state standby in .t ∈ [T ], 
– .zm,br

t0,t1 ∈ {0, 1} indicating iff .m ∈ M is in a break from. t0 to . t1, .(t0, t1) ∈ Bm . 

The associated objective coefficients .ĉ j,k,t and .ĉbrm,t0,t1 express the total energy cost 
induced by the setup and processing of task.( j, k) if started in period. t and by a break 
from. t0 until . t1 on machine m, respectively. 

We obtain the following integer programming formulation of the problem: 

. min
∑

m∈M

⎛

⎝
∑

t∈[T ]

⎛

⎝Ct D
st
mz

st
m,t +

∑

( j,k)∈OM|m

ĉ j,k,t x j,k,t

⎞

⎠ +
∑

(t0,t1)∈Bm

ĉbrm,t0,t1 z
m,br
t0,t1

⎞

⎠ (68.1) 

.

∑

t∈{a j,k ,..., f j,k }
x j,k,t = 1 ( j, k) ∈ O (68.2) 

.

t−dpr
j,k∑

q=0

x j,k,q −
t∑

q=0

x j,k+1,q ≥ 0 j ∈ J, k < |Oj |, t ∈ [T ] (68.3) 

.

∑

( j,k)∈OM|m

min(t+dse
j,k ,T−1)

∑

q=max(t−dpr
j,k+1,0)

x j,k,q + zstm,t +
∑

(t0,t1)∈Bm :t∈{t0,...,t1}
zm,br
t0,t1 = 1 m ∈ M, t ∈ [T ] (68.4) 

.

∑

(−drd
m ,t1)∈Bm

zm,br
−drd

m ,t1
= 1 m ∈ M (68.5)
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.

∑

(t0,T+dru
m −1)∈Bm

zm,br
t0,T+dru

m −1 = 1 m ∈ M (68.6) 

.x j,k,t ∈ {0, 1} ( j, k) ∈ O, t ∈ [T ] (68.7) 

.zm,br
t0,t1 ∈ {0, 1} m∈M, (t0, t1) ∈ Bm (68.8) 

.zstm,t ∈ {0, 1} m∈M, t ∈ [T ] (68.9) 

The objective (68.1) describes the total energy cost. Equalities (68.2) ensure that 
each task is started once. Constraints (68.3) describe the precedence relations between 
consecutive tasks of each job. Equalities (68.4) enforce that each machine is either 
processing or setting up a task or in a break or standby in each period. Constraints 
(68.5) and (68.6) ensure each machine is offline in periods . 0 and . T . 

Propagation and Presolving 

In this section, we discuss several preprocessing and propagation techniques to reduce 
the size of the proposed integer program (68.1)–(68.9) at the root node and within 
the branch and bound tree. In practice, such reductions are of utmost importance 
to efficiently solve large models. Many techniques such as detecting dominating 
columns, bound tightening, and conflict analysis are implemented in general pur-
pose ILP solvers [ 1]. However, these techniques heavily exploit problem-specific 
structures, whose (re-)detection from the model is computationally expensive and 
available only for some very general types of substructures. In our application, where 
the connection among precedence constraints and time windows plays a key role, 
problem-specific techniques are necessary. 

Precedence constraints and time windows. Throughout this section, we denote by 
.a j,k and . f j,k the earliest and the latest period when task .( j, k) ∈ O may start its 
processing, respectively, at the current branch and bound node. This time window 
may have holes, when task .( j, k) is not allowed to start processing. Pretending that 
there are no holes in .[a j,k, f j,k], we first apply the constraint propagation rules from 
[ 5] to detect locally valid precedence constraints and tighten .a j,k and . f j,k . 

Conflicts of breaks and tasks. Next, we try to infer implications stemming from over-
laps of time windows of tasks and a single break-variable. Clearly, the break.zm,br

t0,t1 on 
machine.m ∈ M with.(t0, t1) ∈ Bm cannot participate in any integer feasible solution, 
if both .t0 < a j,k + dpr

j,k and .t1 ≥ f j,k − dse
j,k hold for an arbitrary task .( j, k) ∈ OM

|m . 
This condition indicates that the break would conflict with each possible start of 
processing of task .( j, k). 

Irrelevant breaks. A break-variable.zm,br
t0,t1 , .m ∈ M and.(t0, t1) ∈ Bm , will not be used 

in any optimal integral solution, if there is a combination of other break- and standby-
variables on machine.m that exactly cover the periods from. t0 until . t1 with a smaller
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objective. We detect those cases by enumerating all possible covers with exactly 
one break. If all energy prices are non-negative, non-artificial breaks before the first 
and after the last task on a machine are unnecessary. Hence, break-variable . zm,br

t0,t1
with .t0 > 0 and .t1 ≤ T can be eliminated if .t0 ≤ min( j,k)∈OM|m

(a j,k + dpr
j,k − 1) or if 

.t1 ≥ max( j,k)∈OM|m
( f j,k − dse

j,k). 

Clique information. Modern ILP solvers automatically generate clique inequali-
ties using a graph describing pairwise conflicts of binary variables, c.f. [ 1]. Not 
all such conflicts are detected automatically. In our code, we explicitly add con-
flicts for pairs of break-variables if their combined lengths exceed the duration 
of the overall time window .T minus the sum of all task setup and processing 
actions, the initial ramp-up, and the final ramp-down on the machine. More explic-
itly, we add all conflicts between break variables zm,br 

t0,t1 and z
m,br 
t2,t3 with . t3 − t2 + t1 −

t0 + 2 > T + dru
m + drd

m − ∑
( j,k)∈OM|m

(dpr
j,k + dse

j,k). In addition, the clique constraints 

.x j,k,t + ∑t+dpr
j,k−1+dse

i,l

q=t−dse
j,k−dpr

i,l+1
xi,l,q ≤ 1 for all pairs .( j, k), (i, l) ∈ OM

|m and (meaningful) 

periods .t ∈ [T ] are added to the conflict graph. 
General presolving for task variables. Eventually, we apply the presolving and con-
straint propagation rules available in the used ILP solver, see [ 1], for example. 

Branching Scheme 

Our branching scheme consists of two rules. Our preferred branching aims to interrupt 
longer intervals of consecutive fractional inactivity and forces the machine to either 
ramp-up or ramp-down completely. Both branches sharpen the machine profile and 
typically increase the dual bound. To enforce integrality of the activity of .m in 
period . t ', we create two child nodes, one forcing the fractional (in)activity . fm,t ' :=∑

(t0,t1)∈Bm :t0≤t '≤t1
zm,br
t0,t1 to . 0 and the other forcing it to . 1. The machine .m ∈ M and 

the interval .[q0, q1] ∈ Qm are chosen to maximize .(q1 − q0) · ∑q1
t=q0

fm,t , where 
.Qm denotes the set of all consecutive fractionally inactive intervals . [q0, q1] ⊂ [Tm+ ]
on. m. The chosen period.t ' = (

∑q1
t=q0

t · fm,t )/(
∑q1

t=q0
fm,t ) interrupts the fractional 

activity of .m in .[q0, q1] and forbids incomplete ramping in favorable periods. 
If the first rule does not find an auspicious branching, we employ the branch-

ing of [ 13] to adjust the time windows of single tasks by branching on the 
assignment constraints (68.2). In contrast to [ 13], the task .(k̂, ĵ) ∈ O to branch 

on is chosen to maximize .(r( ĵ, k̂) − l( ĵ, k̂)) · ( ∑r( ĵ,k̂)

t=l( ĵ,k̂)

∑
( j,k)∈OM|m

x j,k,t
)−1

, with 

.l( j, k) = argmint∈[T ]{x j,k,t > 0} and.r( j, k) = argmaxt∈[T ]{x j,k,t > 0}. This modi-
fication prefers tasks that currently have small overlap with others, and so branching 
on those tasks has a strong effect on the machine activity.
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Results 

In this section, we compare results obtained by applying the introduced techniques in 
our branch-and-cut code in scip [ 3] (with gurobi 9.5.1 [ 7]), using them to presolve 
the model solved by gurobi, and using gurobi as a standalone solver with default 
setting and aggressive presolving, but without our presolving methods. 

The instances presented here, with real energy prices from March 2021 of Ger-
many/Luxembourg, are derived from the instance la01 [ 9] by dividing all process-
ing times by 10 and ceiling to get processing and setup times and a manageable 
time window (.T = 120). Ramping times are chosen as .2/3, . 1, or  .1.5 times the 
mean processing on each machine to derive instances with small (s), medium (m) 
and large (l) ramping durations, respectively. The energy demands are chosen as 
.(Doff

m , Dru
m , Dse

m , D
pr
m , Dst

m, D
rd
m ) = (0, 10, 5, 8, 3, 6). The resulting full models for s, 

m, and l have 31,198, 30,998, and 30,698 variables, respectively. Table 68.1 shows 
the number of variables after presolve (v), the number of branch and bound nodes 
(NN), the primal-dual gap, and the dual bound after 3600 s. 

The results show that our techniques detect more reductions even than the aggres-
sive presolving of gurobi. Only with our reductions the problem could be solved 
to optimality within the time limit. Furthermore, our tailored branching substan-
tially reduced the number of branch-and-bound nodes that have been explored. With 
our branching and presolving scip was able so solve the problems as fast gurobi 
with only our presolving and its default branching strategies, despite running single-
threaded versus gurobi using up to 8 parallel threads. 

Conclusion 

We developed preprocessing and branching techniques that enable us to solve time-
indexed ILP formulations of job shop scheduling problems involving time windows, 
machine states and energy costs to optimality. Our reduction and propagation tech-
niques outperform those implemented in standard ILP solvers and can also be applied 
easily within the branch-and-bound tree. Our experiments show that, in combination 
with tailored branching strategies, these techniques effectively reduce the number of 
variables, drive the dual bound and substantially reduce the size of the branch-and-
bound trees, especially for instances with relatively large ramping-durations. From 
our point of view, there is still some need to improve the bounds on the task variables 
to obtain stronger dual bounds and derive better primal solutions faster.



68 Propagation and Branching Strategies for Job Shop … 579

Ta
bl
e 
68
.1
 
C
om

pa
ri
so
n 
of
 th

e 
ef
fe
ct
 o
f 
ou
r 
pr
op
ag
at
io
n 
an
d 
br
an
ch
in
g 
ru
le
s 

In
st
an
ce

la
01
 s

la
01
 m

la
01
 l 

v
N
N

G
ap

D
ua
l

v
N
N

G
ap

D
ua
l

v
N
N

G
ap

D
ua
l 

sc
ip

 +
pr
e
 +
br
a

12
 k

1.
2 
k

0.
00

12
4,
29
1

9
k

59
1

0.
00

13
2,
44
8

5
k

6
k

0.
00

14
6,
50
3 

gu
ro
bi
 +
 p
re

14
 k

10
8 
k

0.
00

12
4,
29
1

9
k

9
k

0.
00

13
2,
44
8

6
k

11
3 
k

0.
00

14
6,
50
3 

gu
ro
bi

19
 k

15
7 
k

0.
16

12
4,
09
8

23
 k

42
 k

0.
05

13
2,
38
7

12
 k

16
4 
k

0.
26

14
6,
16
2



580 A. Bley and A. Linß

References 

1. Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., & Weninger, D. (2020). Presolve reductions 
in mixed integer programming. INFORMS Journal on Computing, 32(2), 473–506. 

2. Benedikt, O., Sucha, P., Modos, I., Vlk, M., & Hanzálek, Z. (2018). Energy-aware produc-
tion scheduling with power-saving modes. In Integration of constraint programming, artificial 
intelligence, and operations research (pp. 72–81). Springer. 

3. Bestuzheva, K., Besancon, M., Chen, W. K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., 
Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., & Gottwald, L. (2021). The SCIP optimization 
suite 8.0 (ZIB-Report 21-41). Zuse Institute Berlin. 

4. Bley, A., & Linß, A. (2020). Job shop scheduling with flexible energy prices and time windows. 
In Operations Research Proceedings 2019 (pp. 207–213). Springer. 

5. Brucker, P. (2002). Scheduling and constraint propagation. Discrete Applied Mathematics, 
123(1), 227–256. 

6. Gao, K., Huang, Y., Sadollah, A., & Wang, L. (2020). A review of energy-efficient scheduling 
in intelligent production systems. Complex & Intelligent Systems, 6(2), 237–249. 

7. Gurobi Optimization, LLC. (2022). Gurobi optimizer reference manual. https://www.gurobi. 
com 

8. Jain, A., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future. 
European Journal of Operational Research, 113(2), 390–434. 

9. Lawrence, S. (1984). Resource constrained project scheduling: An experimental investiga-
tion of heuristic scheduling techniques (supplement) (Technical Report). Graduate School of 
Industrial Administration, Carnegie-Mellon University. 

10. Nolde, K., & Morari, M. (2010). Electrical load tracking scheduling of a steel plant. Computers 
& Chemical Engineering, 34(11), 1899–1903. 

11. Selmair, M., Claus, T., Herrmann, F., Bley, A., & Trost, M. (2016). Job shop scheduling with 
flexible energy prices. In Proceedings of the 30th ECMS. 

12. Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the 
production scheduling of a single machine to minimize total energy consumption costs. Journal 
of Cleaner Production, 67, 197–207. 

13. van den Akker, J. M., Van Hoesel, C. P. M., & Savelsbergh, M. W. (1999). A polyhedral approach 
to single-machine scheduling problems. Mathematical Programming, 85(3), 541–572. 

14. Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research 
and its new perspectives under industry 4.0. Journal of Intelligent Manufacturing, 30(4), 1809– 
1830.

https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com


Chapter 69 
Scheduling Unrelated Parallel Machines 
with Attribute-Dependent Setup Times: 
A Case Study 

Sven Jäger, Neele Leithäuser, Sebastian Velten, and Christian Weiß 

Abstract We study a practical production planning problem that was encountered 
by an industrial partner. Mathematically, the problem can be described as an unrelated 
parallel machine scheduling problem with deadlines and sequence-dependent setup 
times. The setup times depend on certain job attributes (e.g. material, color, size) 
of the successive products. For all products, dated demands are given that must be 
met with the means of one or multiple production orders that can be assigned to 
a set of eligible machines. We describe and evaluate different approaches to solve 
the scheduling problem. Our final algorithm is a combination of an iterated greedy 
construction heuristic together with a constraint program to locally improve the 
solution found by the heuristic. For most of our test instances, our algorithm achieves 
more than 20% reduction of setup times compared to the original solutions used by 
our industrial partner. 

Keywords Scheduling · Setup times · Unrelated machines ·
Constraint programming · Heuristics · Iterated greedy 

Introduction 

In many manufacturing processes, machines must be set up individually for the prod-
ucts that are being produced. The effort caused by a product change often depends 
on the dissimilarity of the products. In this paper we report on a real world case study 
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that we have conducted with an industrial partner from the metalworking industry. 
In our real world example, every product is specified by seven attributes. The effort 
needed to change machine settings depends only on the types of attributes that differ 
between two successive products produced on the same machine. Crucially, the setup 
time does not depend on the respective values of the attributes or on the machines 
they are being manufactured on. 

Usually, setups take several hours, but in extreme cases can also need up to two 
weeks. In relation to this, typical jobs in our setting run for several weeks (but may 
be defined also for much smaller time scales if necessary). Since setup time is unpro-
ductive machine time, it is obviously desired to minimize the setup times. Moreover, 
different amounts of the various products are demanded at different deadlines. In 
this study, in order for a solution to be feasible, all demands must be fulfilled at or 
before their deadlines. 

The remainder of this paper is structured as follows: to finish this section we 
briefly discuss how to model our scheduling problem mathematically, as well as 
provide a brief review of the related literature. In the Section “Using Mathematical 
Modelling and Third Party Solvers” we discuss solution approaches involving third 
party solvers. In the Section “Iterated Greedy Heuristic” we describe a dedicated 
iterated greedy heuristic. Finally, in the Section “Computational Results” we provide  
computational results and a short outlook on future research directions. 

Problem formulation. Our problem can be modelled as a scheduling problem with 
unrelated parallel machines and sequence-dependent setup times. For each demand, 
there is one job with a deadline equal to the deadline of the associated demand. 
Importantly, jobs may be split across machines in a fashion where the same job may 
be processed by more than one machine at the same time. This is different from 
standard parallel machine scheduling problems. 

Each machine is available for processing during specific time intervals, and can 
process only one job at a time. For this case study, we assume that the available inter-
vals are known in advance and that the downtime can be used for setup operations. 

Each job is specified by seven attributes and its deadline. For each attribute chang-
ing from a job to its successor on the same machine, a certain setup time is required. 
The setups for multiple changing attributes can be carried out in parallel, so that it 
can be assumed that for one pair of successive jobs only the maximum setup time 
implied by any attribute change is needed. 

The goal is to minimize the total sum of setup times, while fulfilling all deadlines. 
Without regard for deadlines this problem is much easier than in the general case 
with arbitrary sequence-dependent setup times (which is equivalent to solving a 
travelling salesperson problem). The difficulty thus stems from the combination 
with the deadlines. 

Related work. Scheduling with sequence-dependent setup times has been studied 
intensively both from a theoretical point of view, see e.g. [ 6], and from a practi-
cal point of view, see the extensive survey by Allahverdi [ 1], focusing on heuristic 
approaches. The problem considered in this paper occurs as a subproblem of the prob-
lem considered by Fu et al. [ 2]. However, their practical instances are significantly
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smaller, so that they are able to use a standard mixed integer linear programming 
solver as a routine for this subproblem. Silva et al. [ 9] use techniques similar to ours 
to solve a scheduling problem where machines have to be equipped with job-specific 
tools that are also a limited resource. 

Using Mathematical Modelling and Third Party Solvers 

In this section we describe different approaches we used to try and solve our practi-
cal problem with mathematical modelling techniques. In particular, we used mixed 
integer linear programming (MILP) and constraint programming (CP). We discuss 
different approaches and stages of our work and point out which turned out to be 
successful and which did not pass the practice check. 

Black Box Solving 

Our first approach was to attempt to solve the problem by modelling it as a MILP or 
a CP and then solve it with a black box solver. To solve the MILP, we used Gurobi 
[ 3], while for the CP we used IBM ILOG CP Optimizer [ 4]. In what follows, due to 
space limitations, we focus on the constraint programming approach, as it is more 
important to the steps we describe later on. 

The CP is modelled in such a way, that for each job, there are as many interval 
variables as the job has eligible machines, one for each machine. The length of each 
interval is variable, but the total amount of product produced for all intervals of one 
job must meet the demanded amount for the job. Also, each interval belonging to a 
job must finish before that job’s deadline. 

Intervals on the same machine may not overlap. This is modelled using a 
noOverlap-constraint (see [ 5]). For IBM ILOG CP Optimizer, the noOverlap-
constraint is extended in such a way, that sequence dependent setup times can be 
modelled: two jobs on the same machine, in addition to not overlapping, have to 
have some fixed time between them that depends on the jobs. We use this IBM ILOG 
CP Optimizer specific feature to model setup times. During unavailabilities, jobs 
simply stay on the machine without any amount of product being produced. This 
behaviour is modelled via the Intensity functions provided by IBM ILOG (see [ 5]). 
Note, that if all jobs are known in advance, it is not necessary for jobs to be preempted 
and later restarted on the same machine. We use this fact in order to simplify our 
model. 

As one might have expected, using these solvers as simple black boxes is not 
successful for industrial size instances. For most instances, neither the MILP nor the 
CP solver was able to find a feasible solution within a reasonable time frame. For those 
instances where it was possible to find a feasible solution, this was usually worse than 
the solution originally produced by our industrial partner. Additional experiments
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with smaller instances, as well as a review of the literature (see, e.g., [ 7]), suggested 
that the CP approach was more promising for finding feasible solutions quickly, so 
for our following steps, we dropped the MILP approach from consideration. 

Black Box Solving with Starting Solutions 

In a next step, we provided the CP with a starting solution, using at first the original 
solution from our industrial partner. With this help, the CP managed to find additional 
solutions, however, none of them were much better than the starting solution, in 
particular for larger instances. For example, within about three hours, for our large 
four months instance (see Table 69.1), the CP solver only managed to improve the 
starting solution’s setup time by seven minutes, compared to a total setup time of the 
starting solution of roughly 360 days. 

Using the CP Model with Starting Solutions and Localized 
Search 

Finally, we decided to abandon the idea of using the CP to try and optimize the whole 
instance in one go. Instead, we split up the instance in sets of at most five machines 
(this value provides the best trade-off between running time and solution quality), 
and then used the CP to optimize on these subsets only. In particular, our algorithm 
worked as follows: first, find the machine with the largest amount of setup time. 
Reorder jobs on this machine to minimize the total setup time, while still fulfilling 
all deadlines. Then, choose another machine which shares many processable job 
types with the first machine. Reorder and switch jobs on both machines to minimize 
setup times, again while still fulfilling all deadlines. Continue to add machines in this 
manner until at most five machines are optimized at the same time. Then, continue 
again with a single machine, namely the one with the second largest setup time. 
Continue in this manner, until each machine was chosen as first machine once. 

For each optimization step, we allowed the CP solver to run for four seconds per 
involved machine, leading to a total of 1 min per each selected first machine. For 
our large instances, this leads to roughly three hours of computation time, similar to 
what we allowed the black box CP solver to use. 

Using this approach, again with the starting solution as originally used by our 
industrial partner, we were able to improve, in each instance, the starting solution 
by roughly 20%. Details can be found in the Section “Computational Results” and 
Table 69.2.
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Iterated Greedy Heuristic 

The choice of the starting solution has a large impact on the quality of the schedule 
resulting from the localized search procedure described in the last section. Since 
the localized search is able to mend some local deficiencies, it is important that 
the initial solution has a good global structure. This was one motivation for us to 
look at algorithms to produce alternative initial solutions for the localized search. In 
addition, when applying our heuristic to future planning tasks, it is desirable that the 
planners need not manually provide an initial solution. 

In view of their good experimental performance, reported by Ruíz and Stützle 
[ 8, 10], we decided to develop an iterated greedy algorithm for this task. The main 
building block of our algorithm is a list scheduling procedure that obtains a sequence 
of jobs as input and outputs a schedule possibly violating some deadlines. The iterated 
greedy algorithm searches for an input order for which the resulting list schedule 
does not delay jobs and has low total setup time. In every iteration the current input 
order is modified, based on the currently delayed jobs. Note that the assignment 
of jobs to machines is not specified in advance but results from the list scheduling 
procedure. A similar approach was pursued by Silva et al. [ 9]. 

In the list scheduling procedure, for each job, in the order of the input sequence, 
the following two steps are executed: first, the algorithm tries to completely fulfill 
the demand in time. To this end, as much as possible is scheduled before the deadline 
on each eligible machine. If the demand cannot be completely satisfied, in a second 
step, the remaining quantity is produced in one contiguous block on the machine with 
minimum necessary setup time. An important degree of freedom is the order in which 
the machines are considered in the first step. For this we have to balance between 
the speed of the machine, the amount that can be scheduled before the deadline, and 
the time required to setup the machine for the product. This has to be tuned for the 
concrete setup and production times occurring in the application. 

Now we turn to the procedure for adjusting the job order from one step to the next. 
In the first step of the algorithm, jobs are ordered in such a way that if all jobs were 
scheduled on the same machine, setup times would be minimized, i.e., by similarity 
in job attributes. For the second step, all jobs which are late in the first step are moved 
to the front, generating two separate groups of jobs. Then each group is individually 
ordered in the same way as before, to minimize setup times. Then, in each further 
step, again all jobs which are late in the previous step are moved from their current 
job group and placed into the group one before that, generating a new group for 
jobs which already were in the first group. Then, all groups are again ordered as in 
step one. This is repeated until no job is late or a fixed number of steps has been 
performed. Note, that for our test instances, based on the actual machine and job data 
of our industrial partner, this algorithm always found a solution where all deadlines 
were met.
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Computational Results 

We tested our algorithm for six real-world problem instances with different numbers 
of jobs and machines and with different planning horizons. The characteristics of 
these instances are compiled in Table 69.1. For each instance we compare the sched-
ules obtained by our iterated greedy heuristic (Section “Iterated Greedy Heuristic”) 
to the plans originally implemented by our industrial partner. These original plans 
are achieved by running first a proprietary scheduling algorithm as part of a market-
competitive ERP (enterprise resource planning) software. This scheduling algorithm 
ignores setup times and instead assumes that all processes are slower by a fixed per-
centage to allow for setups. Its main goal is fulfilling deadlines. Then, in a second 
step, the human production schedulers fix the schedules given by the ERP software 
by hand, mostly focusing on reducing setup times locally. 

Additionally, we also subsequently apply the CP-based localized search (see the 
Section “Using the CP Model with Starting Solutions and Localized Search”) to both 
the original and the iterated greedy schedule. The results are shown in Table 69.2. 
Naturally, by applying an improvement search to the schedules, they can only get 
better. Recall that the improvement search from the Section “Using the CP Model with 
Starting Solutions and Localized Search” requires a starting solution. In particular, 
for an actual operational roll-out at our industrial partner’s site an original solution 
from our industrial partner is no longer available as starting solution, but it needs 
to be computed instead. Thus, our full proposed algorithm is to first compute a 
starting solution via the iterated greedy heuristic and subsequently apply the CP-
based localized search to that solution as an improvement heuristic. 

Observe that for all instances the combination of iterated greedy and localized 
search we propose clearly outperforms the original schedules with regard to both total 
setup time and number of setups. Also note that the relative improvement increases 
with larger time horizons. For smaller time horizons the improvement is not as 
significant, which is mostly due to the iterated greedy heuristic providing a worse 
starting solution than the original solution. In those cases, applying the localized 
search directly to the original solution would yield even better results, although, as 
described above, this is not feasible for a future operational algorithm. 

Table 69.1 Characteristics of the studied problem instances 

Instance # Jobs # Machines Time horizon (months) 

S2 98 8 2 

S4 252 8 4 

S6 346 8 6 

L2 3336 284 2 

L4 8072 284 4 

L6 13,289 284 6
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Table 69.2 Results for the studied problem instances 
Inst. Total setup time [machine days] # Setups 

orig itGr orig + locS itGr + locS orig itGr orig + locS itGr + locS 

S2 15.4 17.1 11.9 12.3 45 50 35 36 

S4 66.4 81.8 58.3 59.3 114 119 91 93 

S6 85.5 41.9 66.7 34.3 170 122 116 100 

L2 170.8 200.9 134.8 161.9 562 626 437 499 

L4 358.6 301.3 281.8 263.0 1180 926 918 814 

L6 564.5 427.0 449.6 373.9 1788 1209 1386 1058 

Here, orig denotes the original schedule, itGr is the schedule obtained by the iterated greedy 
heuristic described in the Section “Iterated Greedy Heuristic”. To both solutions, we also sub-
sequently apply the CP-dependent localized search from the Section “Using the CP Model with 
Starting Solutions and Localized Search”; the values for those solutions can be found in columns 
orig + locS and itGr + locS, respectively 

The decreased quality of the iterated greedy heuristic is due to artifacts at the 
end of the scheduling horizon, which become less meaningful for larger instances. 
Note that some of these end-of-horizon artifacts are due to the manner in which 
the instances are truncated: the original schedule is truncated in such a way that it 
fits exactly the new instance, so it does not lose quality due to instance truncation. 
Our iterated greedy algorithm, on the other hand, has to plan jobs from scratch and 
thus has less flexibility towards the end of the schedule than the industrial planners 
had when creating the original schedule (due to tighter due dates at the end of the 
instance). 

Conclusion 

In this paper, we have described a case study of a real life industrial production plan-
ning problem and described different stages of developing solution algorithms. Then 
we have compared different algorithmic solutions to the originally used schedules 
from our industrial partner. It can be seen that a combination of different algorithmic 
paradigms (e.g., in this paper, a construction heuristics combined with a CP-based 
improvement heuristic) is useful when solving practical scheduling problems. 

In the future, it will be important to extend our algorithms to an online setting, 
where jobs and machine availabilities become known over time, and the schedule 
has to be computed incrementally. To achieve this, it will be especially important to 
handle end-of-horizon effects as described in the Section “Computational Results”.
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Chapter 70 
Storage and Retrieval in Fully 
Automated Grid-Based Storage Systems 

Nicolas Fauvé and Simone Neumann 

Abstract In the fast-growing online market, e-grocery providers in particular adver-
tise fast delivery times. These can only be achieved through flexible and compact 
warehouse solutions close to the customer. Storage providers have recognized this 
need and therefore offer new types of storage solutions. However, this development 
has so far received little attention from the scientific community. Therefore, this 
paper introduces a new type of storage and addresses the modeling of storage and 
retrieval in terms of cost factors and their composition. 

Keywords Warehousing · Compact storage · Grid-based 

Introduction 

As described by Azadeh et al. [ 2], new compact storage systems have entered the 
market and have been successful. Although there are quite a number of publications 
on the optimization of the storage process for different storage systems or on the 
coordination of mobile robots, there are so far only a few scientific publications 
dealing with the kind of systems we describe in this paper, one of which is by Zou 
et al. [ 7]. Those systems are interesting for the rising e-commerce (see, e.g., Boysen 
et al. [ 3]) due to their high density. The issue of poor accessibility resulting from the 
density is tried to be addressed by system designs such as AutoStore [ 1] or Ocado [ 5]. 
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Fig. 70.1 Mode of operation 

These designs have the weakness that access is achieved through time-consuming 
reshuffle processes. To eliminate the disadvantage of having to retrieve unneeded 
bins during the storage and retrieval process, the following system (see Fig. 70.1) is  
proposed. 

Storage units (we will call them bins) are stacked on top of each other and packed 
as a cuboid (red). Automated guided vehicles (AGVs) (green) can store bins by being 
lifted onto the cuboid, driving to the assigned stack and dropping the bin. In addition, 
AGVs can retrieve a bin by being lifted to the assigned tier and driving into the cuboid 
after a path has been created. The lifts and the floor (blue) connect the cuboid and 
pick stations (orange) in which the bins are assigned to orders. 

Scope of Paper We focus on one part of the proposed storage system. Our subsystem 
of interest only includes the handling of the bins with the AGVs in the area of the 
storage cuboid and the lift. This neglects the possibilities of sequencing bins in the 
area in front of the cuboid and at the pick stations. Furthermore, we focus on a 
two-dimensional slice of the storage cuboid (without loss of generality, since the 
interaction of different slices of the storage cuboid is negligible). 

As the proposed storage system is new and the literature on similar systems is 
scarce, in this paper, we want to lay the foundation for future research by describing 
in detail how the system works and which relevant costs arise. This is done by 
determining the cost structure for storing and retrieving a bin at a particular position 
within a two-dimensional slice of the storage cuboid. 

The rest of the paper is structured as follows: In the next Section, we will describe 
the storage system. Then, we will analyze the cost structure of the storage and retrieval 
processes in detail and at the end of the paper, we will give some managerial impli-
cations and raise some questions for future research.
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(a) Storage process (b) Retrieval process 

Fig. 70.2 Side view of our system 

The Compact Storage System 

System Description The two-dimensional slice (see Fig. 70.2) consists of a set D = 
{1, . . . ,  d} of stacks aligned in a single row. Each stack holds h bins, resulting in 
a set of d · h = |B| different bins. The position of a bin is indicated by px,y with 
x ∈ {0, . . . ,  d} referring to its horizontal position and y = {1, . . . ,  h + 1} referring 
to its vertical position. Since the bins do not have a fixed assigned position in the 
cuboid, it can change constantly over time. AGVs enter and exit the system via the 
input and output (I/O) point located in position p0,1. In  x = 0 a lift is moving the 
AGV with the bin to its designated tier y. Within the storage cuboid, the AGV moves 
the bin sideways. A bin sinks by one tier after a bin of the same stack has been 
retrieved from below it. In order for an AGV to move sideways, a horizontal path 
must be created by lifting all blocking bins from the same tier or higher. Empty 
positions in a stack resulting from the retrieval of a bin are replenished from above. 
Figure 70.2 shows a storage and a retrieval process. 

Assumptions In the following, we consider a simple storage strategy being imple-
mented by refilling the storage cuboid from the top with bins as soon as a storage 
position is available. Furthermore, the bins move at a constant speed. 

We assume that each bin has the same dimension because, in practice, a uniform 
footprint simplifies bin handling and automation. Moreover, we act on the assumption 
that the weight of all bins is the same. The energy needed to drop or pick a bin and 
to lift and lower the AGV can be neglected. Counterweights in the lift compensate 
for the latter. Moreover, the time needed to create a path can be neglected, since it is 
overshadowed by the lifting time of the AGV.
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Cost Structures of Storage and Retrieval Processes 

When calculating the cost of storage and retrieval processes, we can use an objective 
function taking into account time and/or energy. For each storage or retrieval process, 
the costs are calculated that occur when the AGV starts at the I/O point, drops or 
picks the bin, and then drives back to the I/O point. 

By doing the retrieval process through creating horizontal aisles, time costs and 
energy costs are decoupled. For example, a bin in position p2,y with y < h is closer to 
the I/O point (as it is located at a lower tier) and therefore can be retrieved faster than 
a bin in position p2,h . However, the former requires more mass to be lifted than the 
latter and therefore its retrieval has a higher energy consumption. A bin in position 
p2,y requires 2 · (h − y + 1) − 1 bins to be lifted, while one bin needs to be lifted 
to retrieve the bin in position p2,h . Therefore, we have two different calculations for 
the time costs and energy costs. 

The total time costs tretrieve and tstore consist of the following components: the 
time thor,x to move the AGV in the x-direction from the stack x to the lift (or vice 
versa); the time tver,y to move the AGV in the y-direction from tier y to the I/O point 
(or vice versa); the time tdrop to drop the bin and the time tpick to pick the bin. 

The total energy costs eretrieve and estore consist of the following components: the 
energy epath,x,y needed to create a path for the AGV to retrieve a bin from position 
px,y and the energy ehor,x to move the AGV in the x-direction from the stack x to the 
lift (or vice versa). 

Storage Process Since the storage cuboid is assumed to be fully loaded, it can only be 
replenished once a bin has been removed. This leaves no degree of freedom where to 
store the bin. As all operations occur on the top tier h + 1, costs for a storage process 
differ only depending on the x-coordinate of the previous retrieval process, as shown 
in Eqs. (70.1) and (70.2) 

tstore = 2 · (thor,x + tver,h+1) + tdrop (70.1) 

estore = 2 · ehor,x (70.2) 

The closer the x-coordinate is to the lift, the lower the energy and time costs are. 
Since no path is created, overall energy costs are low compared to the energy costs 
of the retrieval process. 

Retrieval Process In the retrieval process, the general structure of energy and time 
costs differ. While time costs show a linear pattern (see Fig. 70.3), energy costs show 
a radial one (see Fig. 70.4). 

The time costs for the retrieval process are calculated as follows: 

tretrieve = 2 · (thor,x + tver,y) + tpick (70.3) 

Compared to the storage process, the x-coordinate as well as the y-coordinate are 
variable. This results in the longest retrieval time being in the top-left corner of the 
storage cuboid.



70 Storage and Retrieval in Fully Automated Grid-Based … 593

Fig. 70.3 Composition of the time costs of the retrieval process (low time costs in green, high time 
costs in red) 

Fig. 70.4 Composition of the energy costs of the retrieval process (low energy costs in green, high 
energy costs in red) 

Concerning the total energy costs, the path creation costs epath,x,y are decisive. 

estore = 2 · (epath,x,y + ehor,x ) (70.4) 

To retrieve the top right bin ( p1,h), no path needs to be created, as access to the bin 
is not blocked by other bins. When retrieving a bin, bins to the right as well as bins 
above block access, leading to a radial increase of energy costs, with the lowest cost 
being in the top right corner and the highest cost being in the bottom left corner 
(pd,1) of the storage cuboid. As already mentioned, the energy costs for picking the 
bin and lifting the AGV can be neglected. The ehor,x component of eretrieve leads to 
a break in symmetry. 

Bounds for the retrieval process Over time, the bin either stays on the top tier or 
sinks, never worsening the retrieval time. Therefore, we can determine the following 
bounds on the retrieval times: (I) Upper bound: retrieval time from the top tier and 
(II) Lower bound: retrieval time from the lowest tier. 
The opposite is true for the energy costs. The lower the bin sinks, the higher the 
energy costs for the retrieval will be, as more bins need to be lifted. (III) Upper 
bound: energy costs for retrieval from the lowest tier and (IV) Lower bound: energy 
costs for retrieval from the top tier. 

Conclusion and Future Research 

In this paper, initial analyses of the time and energy cost structure of a new auto-
mated grid-based compact storage system were made, which are necessary for future



594 N. Fauvé and S. Neumann

studies concerning this kind of system. To summarize our findings, we can state the 
following: it is desirable to store bins that are needed very frequently near the lift, 
at a high tier (when minimizing energy costs for retrieval) or at a lower tier (when 
minimizing retrieval time), but one has to keep in mind that as time passes, bins sink 
down, which leads to an increase in energy costs and a decrease in time. 

When considering how to expand the storage cuboid, the composition of the cost 
structure plays an important role. If the number of tiers h equals the number of stacks 
d, either adding a tier or a stack can be cost-efficient. Considering the time costs, the 
speed of horizontal movement or vertical movement is decisive. If the AGV is lifted 
faster than it can move sideways, adding a tier is time-efficient. Regarding energy 
costs, the cost for sideways movements are decisive and therefore, adding a tier is 
energy-efficient. 

For future research, in the context of automated compact storage systems such 
as those described here, various decision questions, either answered independently 
or simultaneously, are of interest. How to retrieve a set of given bins? How to store 
a set of given bins? How to rearrange the bins in the cuboid to facilitate future 
storage and retrieval processes? Which items are to be stored in which bin? At which 
position in the storage cuboid should a bin be stored (both initially and also during 
housekeeping)? To answer these, a detailed analysis of storage and retrieval strategies 
is necessary, existing studies on other storage systems, such as [ 4, 6], which address 
scattered storage, could be adapted, and a mathematical model should be set up. 
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Chapter 71 
Comparison of Adoption Rates 
of Hydrogen, Hydrogen-Electric 
and SAF in the Future Air Transport 
System with a System Dynamics Model 

Chetan Talwar , Imke Joormann , and Thomas S. Spengler 

Abstract Aviation has been criticized for its negative climate impact in the past few 
years due to the emission of harmful greenhouse gasses (GHGs) such as CO2, NOx 

and water vapor that can cause the formation of climate harming ozone and contrails. 
In recent years, many different technologies have surfaced that have the potential to 
reduce emissions and replace the existing conventional jet fuel technology. On one 
hand, H2 powered aviation just recently regained high attention from the industry, 
e.g., Airbus launched the ZEROe program where they pledged to develop the world’s 
first zero-emission commercial aircraft by 2035. On the other hand, sustainable avia-
tion fuels (SAF) or biofuels have been identified as an alternative option. Given the 
different promising future technologies, it is difficult to predict their role in transition 
pathways that will lead the air transport system towards a more sustainable future. We 
develop a global scale system dynamics air transport system simulation model and 
incorporate components like the new potential technologies, production side emis-
sions of new fuels, i.e., SAF and hydrogen, air travel demand, airline industry and 
aircraft manufacturers. We also include the long, medium and short haul segments 
of flights. Using this model, we analyze the adoption trends of new technologies and 
fuels by assessing the amount of fleet operated with them and its effect on emission 
reduction within each flight segment. 

Keywords System dynamics and theory · Dynamical systems · Transportation
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Introduction 

Aviation is one of the most important industries on the planet in terms of 
efficient transportation. Due to the harmful greenhouse gas emissions, IATA passed a 
resolution for aviation to reach net-zero carbon emissions by 2050. It is 
widely accepted that this goal cannot be reached by using the current jet fuel 
technology. On the other hand, new technologies like hydrogen, hydrogen-electric 
and sustainable aviation fuels (SAFs) have showcased their potential, but it is unclear 
how the transition to these new technologies would happen if assessed strictly from 
a usage point of view. Furthermore, it is important to analyze what would be the 
behavior of the system in different adoption scenarios of these new technologies 
to find out their emissions reduction potential. To determine the adoption rates, the 
interaction between different stakeholders of the air transport system needs to be 
considered to understand the advantages, limitations, and potential delays of the 
new technologies. For example, when considering the adoption of SAF by airlines, 
the availability of synthetic and biofuels is a major cause of concern, as there are 
scalability issues [1]. In this study, a system dynamics air transport system (ATS) 
model is used to analyze and compare the behavior of the system under different 
adoption rate scenarios. The dynamics describing the ATS are influenced by feed-
back loops, time dependencies, stakeholder interactions, decision processes, and 
non-linearity. Due to its highly interactive and feedback approach, system dynamics 
is well suited to assess the air transport system. To consider these interactions in a 
dynamic simulation model, it is imperative that the mutual causality between the 
variables of interest is clearly defined. In this paper, the feedback structure between 
the variables in the ATS is described with the help of causal loop diagrams that affect 
the adoption of novel energy supply systems. In the system dynamics methodology, 
the causal loop diagram (CLD) is one tool which aids in representing the feedback 
structure of how different variables of interest in a system are causally interrelated 
[2]. The different variables from the subsystem interact with each other and affect the 
adoption rates of new technologies. Representing the system in this way facilitates 
a better understanding of the initial impression of possibilities with respect to the 
feedback structure within the system. 

Literature Review 

The system dynamics (SD) technique has been used by researchers in the commer-
cial jet aircraft industry to demonstrate its effectiveness in forming reliable forecasts, 
identifying key variables for poor returns and cyclical behavior in the industry [3–5]. 
These models were later extended to study the potential of reducing CO2 emissions 
with the help of alternative fuels in aviation [6]. For this, new feedback mechanisms 
like alternative fuel production, drop in quota and alternative fuel adoption mecha-
nisms were introduced in the model. Even though the previous studies were robust
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and insightful, they did not include new technologies such as hydrogen and their role 
in different flight segments and emission reduction. Furthermore, the role of the new 
technologies and fuels has not been assessed in the context of recent emission goals 
set for the aviation industry in a system dynamics model. 

Modeling Approach 

The system dynamics ATS model developed previously consisted of the interlinked 
subsystems air travel demand, airline operations, aircraft manufacturers and alterna-
tive fuel producers [4, 6]. In this paper, the existing ATS model is used and extended 
further to analyze the feedback structures that affect the adoption rates of the new 
technologies. 

The previously developed system dynamics ATS model is extended by including 
hydrogen and SAFs as new technologies. The model includes manufacturing capacity 
changes, usage adoption mechanism and production capacity changes of the new 
technologies. The feedback structure of the extended model is represented in 
Figs. 71.1, 71.2 and 71.3. In the figures, the variables given in roman are the pre-
existing variables from the previous model feedback structures. The underlined and 
italicized variables are the new extensions made to the feedback structures. The 
bolded variables are the exogenous inputs that affect the feedback mechanism from 
the outside of the model boundary. The “+” symbol in the diagram indicates the 
same directional movement between the variables, while the “−” symbol indicates 
the relationship between variables as moving in opposite directions. The symbol “||” 
on the connecting lines indicates delays in the transmission of information. Finally, 
the variables, used more than once in the three diagrams to interlink the subsystems, 
are marked in green. 
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Fig. 71.1 Feedback structure between demand, passenger load factor and fares
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Figure 71.1 shows the feedback structure that leads to changes in air travel demand: 
First, the endogenous factors such as the effect of the passenger load factor, airline 
fares and profits of the industry and second, the changes in demand due to the exoge-
nous factors like increase in population growth and GDP per capita. The balancing 
loop B1 shows the balancing effect of an increase in passenger load factor that 
increases the congestion perceived by the customers, which in turn negatively affects 
the air travel demand. The balancing loop B2 represents the effect of passenger load
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factor and ticket prices on the demand. An increase in passenger load factor posi-
tively affects airline fares. An increase in airline fares negatively affects the demand 
as certain customers reduce travel due to high prices. The balancing loop B3 repre-
sents the change in the attractiveness of the industry as perceived by the airlines. An 
increase in airline fares increases the prospected profit due to an increase in operating 
revenues. The increasing profits prompts other companies to enter the market, which 
further results in a reduction of fares to gain a higher market share. 

Figure 71.2 shows the feedback structure of the airline fleet operation mechanism. 
The effect of air travel demand and passenger load factor from Fig. 71.1 is also 
taken into account. The boundaries of the previous model are extended by including 
feedback mechanisms related to the introduction of SAFs and hydrogen in the system. 

An increase in air travel demand increases the total desired capacity orders. This 
is due to the action taken by airlines to increase their aircraft orders to match the 
demand. From this point, the extensions made to the boundary are displayed in the 
form of a decision to choose hydrogen based aircraft or conventional aircraft. The 
decision to choose one over the other depends on the direct operating costs of each 
technology and the fuel availability. The cost including fuel, operation, ownership 
of new aircraft, jet fuel prices, inflation and improvements are treated as exoge-
nous input. The reinforcing loop R2 represents increase in the capacity of hydrogen 
production as the airlines choose to order more hydrogen based aircraft. With an 
increase in orders by the airlines, the fuel producers are incentivized to produce 
more as the expectation of hydrogen fuel based aircraft usage in the future increases. 
In order to not have unrealistic exponential hydrogen fuel production growth, the 
reinforcing effect of loop R2 is balanced by the balancing loop B5. In loop B5, the 
increase in total seats on order hydrogen increases the hydrogen seats manufacturing 
capacity and the amount of hydrogen seats deliveries. The increase in deliveries 
negatively affects the total seats on order hydrogen, which represents the adjust-
ments done by the airlines to not over-order the fleet. Similar to loops R2 and B5, for 
SAF, the increase in reinforcing loop R1 is balanced by the adjustments done by the 
airlines in balancing loop B4. Lastly, the reinforcing loop R3 represents the steady 
increase in the fleet size ordered by the airlines as the demand increases depicting 
the growth of the industry over time. 

Figure 71.3 depicts the feedback structure of the fuel production subsystem of 
the model. In the figure, HEFA, FT synthesis and ATJ are the acronyms used for 
hydroprocessed fatty acid esters and fatty acids, fischer tropsch synthesis and alcohol 
to jet SAF production method, respectively. The reinforcing loops R4 and R5 repre-
sent the effect of increase over time in usage of hydrogen and SAF on its production 
capacity changes. An increase in the amount of hydrogen and SAF produced posi-
tively affects the annual use of hydrogen and SAF. The increase in use of the new 
fuels provides a positive incentive for the fuel manufacturers to increase the produc-
tion capacities, which after certain delays increases the amount of hydrogen and 
SAF produced in the system. The reinforcing loops R4 and R5 are balanced by the 
balancing loop B6 and B7, which depict the reduction in growth of hydrogen and 
SAF fuel requirement if the two technologies are adopted over time. Since the emis-
sions from hydrogen and SAF production depend on the path through which they are
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produced, the bolded variables represent the emission reduction potential of different 
paths of production as exogenous input. 

Conclusion and Future Work 

In this paper, the feedback structures of the air transport system (ATS) were described 
with the help of causal loop diagrams (CLD). The causal loop diagrams show that 
if there is an increase in the airline orders of SAF and hydrogen based aircraft then 
it leads to an increase in SAF and hydrogen fuel production capacity. An increase 
in airline orders and fuel availability would over time lead to an increase in aircraft 
manufacturing capacity thereby generating different adoption rates of the new tech-
nologies in the system. Comparison of different adoption rates shed light on the 
future emissions from the system. The future challenges in developing the model 
lie in gathering exogenous input data, modeling the airline’s decision making mech-
anisms, generating different adoption scenarios and developing a stock and flow 
model that behaves in accordance with the real system. 
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Chapter 72 
Do Artificial Agents Reproduce Human 
Strategies in the Advisers’ Game? 

Maximilian Moll, Jurgis Karpus, and Bahador Bahrami 

Abstract Game theory has been recently used to study optimal advice-giving strate-
gies in settings where multiple advisers compete for a single client’s attention. In the 
advisers’ game, a client chooses between two well informed advisers to place bets 
under uncertainty. Experiments have shown that human advisers can learn to play 
strategically instead of honestly to exploit client behavior. Here, we analyze under 
which conditions agents trained with Q-learning can adopt similar strategies. To this 
end, the agent is trained against different heuristics and itself. 

Keywords Reinforcement learning · Game theory · Decision making 

Introduction: The Advisers’ Game 

Should we trust the results of search engines and other algorithmic advisers when 
multiple recommenders compete for our attention? As we will see, the answer 
depends on when was the last time that we used a particular recommender instead 
of its competitors. When two advisers compete for a single client’s attention, honest 
advising is good when you already are the client’s favored adviser. When you are not 
the favoured adviser, game theory shows that you should issue advice strategically, 
not honestly [ 1]. To show that, we use the advisers’ game, which is played by three 
agents—two advisers and a client. In the beginning, the client chooses an adviser to 
place a bet on the outcome of a Bernoulli experiment. Then, the two advisers learn 
the underlying probability and both independently communicate a probability for 
this outcome to the client, which may or may not be the objective probability that 
they saw. The client must follow the chosen adviser’s recommendation, but observes 
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the non-chosen adviser’s recommendation, too. Lastly, the lottery is resolved and the 
result is observed by the client, who can then decide whether to stick with their cur-
rent adviser or switch advisers for the following round. This is reiterated for multiple 
rounds. 

Preliminary game-theoretic analysis of the problem (the problem turns out to be 
too complex for a complete analytic solution) and previous experiments with this 
game have shown that when an adviser is not selected by a human client, it often 
pays to issue advice strategically, sometimes suggesting to bet on the colour that 
is less likely to win [ 2]. We will refer to this strategy as strategic from now on. In 
this paper, we investigate what happens if the adviser is trained by Reinforcement 
Learning (RL). To avoid the complications of training on thousands of human clients, 
an established formula for updating the client’s trust in an adviser is used instead [ 1]. 
The idea of using RL to find optimal strategies in (rational solutions of) games is 
not new [ 3– 5]. The case here is of particular interest, since the exact game-theoretic 
solution of the problem is not known [ 2]. While, in principle, it can be established 
by backward induction, the length of the game makes this process very complex and 
thus only approximations of the exact solution are used. 

Methods: RL Setup for the Advising Game 

In RL a typical problem formulation assumes that the agent has no information 
about the inner workings of the task it is to solve, which is usually encapsulated in 
the environment. Instead it needs to learn to do so by data-based interaction with 
the latter in a succession of time-steps t = 0, . . . ,  T . In doing so, the environment 
reports its current state st ∈ S ⊂ Rn to the agent, which in turn selects and submits 
its next action at ∈ A ⊂ Rm . In response the environment updates itself and returns 
a new  state  st+1 and reward rt . The agents goal is to find a policy π : S → A which 
maximizes the return

∑T 
t=0 γ t rt for a given γ ∈ (0, 1]. The dynamics of the problem 

are captured by the state transition (st , at ) �→ (st+1, rt ), which can be probabilistic. 
The definition of the policy is usually extended to include mappings from the state 
space to distributions over the action space, from which the action is then being 
sampled. For more details the interested reader is referred to [ 6]. 

In the basic version of the advisers’ game, the state consists of an indicator for the 
selected adviser and the objective probability of winning from placing a bet on the 
black colour that the advisers observe. Here, the decision was taken to use multiples 
of 1 

11 to avoid a central 50% and allow for some flexibility while maintaining a 
reasonably sized state space. To focus training on situations, in which the strategic 
adviser shows interesting behavior, the possible probabilities were limited to be 
between 3 

11 and 
8 
11 . The action consists of the probability that is communicated to 

the client. Here, we decided to exclude the communication of certainty, leading to 
the 10 actions 1 11 , . . . ,  10 11 . 

After both advisers reported their chosen action, the result is sampled from a 
Bernoulli distribution according to the probability given in the state and used to
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update the trust of the client in both advisers. Here, we use the formula proposed in 
[ 1]. Initially, the trust in both advisers is equal, i.e. w = (0.5, 0.5). If  ps and po are 
the reported probabilities of the selected respectively other adviser and ws and wo 

are the corresponding trust values, then if the result is 1 

w′
s =

ws · p2 s 
ws · p2 s + wo · p2 o 

, w′
o = 1 − w′

s 

and otherwise 

w′
s =

ws · (1 − ps)2 

ws · (1 − ps)2 + wo · (1 − po)2 
, w′

o = 1 − w′
s 

The adviser for placing a bet in the following round of the game is then chosen based 
on the larger trust. If the trust values are equal, the previously chosen adviser is kept. 
A reward of 1 is given to the agent selected for the next round, and 0 otherwise. In 
a single iteration of the game this is repeated for 20 rounds, and thus the goal of the 
agent is to be selected by the client as often as possible during this time frame. 

It can be seen that the client internally updates the trust based on its old value 
and thus implicitly considers the whole history during each iteration. Thus the next 
state and reward depend on more than the previous state and action. This violates 
the Markov Property which underpins RL and initial experiments confirmed that this 
causes issues. However, including a full history in each state would lead to a large 
state space, which would cause issues for later stages of this investigation, when 
human clients will be used. As a consequence, the state space was revised to include 
just a one step history, which indicated which agent was chosen in the previous round 
or, in the case of the first round, that there is no previous history. This leads to a total 
of 36 states, the combination of 3 possible previous states, 2 current states, and 6 
observable probabilities. 

Given the manageable sizes of state and action spaces, tabular Q-learning was 
implemented for the RL agent. The goal of Q-learning is to find an estimate to the 

action-value function Qt (s, a) = Eπ

[∑T −1 
τ =t rτ |st = s, at = a

]
, where the expected 

value is taken with respect to the policy the agent is following. Thus, this function 
indicates how good a given action in a given state is. It can be shown [ 8] that we can 
find the action-value function for the optimal policy not only by iteration, but also 
that we can use its current version for a bootstrapped value of the return similar to 
the Bellman principle: 

Qt (s, a) ← Qt (s, a) + α
(
r + γ max 

a 
Qt+1(st+1, a) − Qt (s, a)

)
, 

where α is the learning rate. Typically, Qt is initialized as Qt (s, a) = 0, ∀s, a, t . In  
our experiments we set γ = 1. It should be noted that many implementations ignore 
the time index and use the same function for all time steps. While not correct in the
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setting here, it can be done practically, but the values of the function will lose their 
absolute meaning. 

For exploration, two approaches are being compared: The first one, an epsilon-
greedy policy, is more commonly used in tandem with Q-learning. It selects the 
action maximizing Qt (s, ·) with probability ϵ and chooses a random action with 
probability 1 − ϵ. In our experiments, a constant ϵ = 0.5 was chosen. It should be 
noted that more elaborate cooling schemes are possible and can be beneficial. The 
second approach applies the softmax function 

xi �→ exi
∑m 

j=1 e
x j 

, i = 1, . . . ,  m 

to Q(s, ·) and samples the action from the resulting discrete probability distribution. 
As the differences in value increase, these distributions place more and more mass 
on the best action making exploration less likely. Thus, a natural cooling scheme 
occurs. 

In addition to the RL agent, the honest and the aforementioned strategic approach 
are implemented as straightforward heuristics as well. 

For the experimental comparisons, we investigated the learning rates α ∈ {0.1, 0.01}, 
number of iterations N ∈ {10,000, 50,000, 100,000} and the two different forms of 
policy-epsilon-greedy and softmax. For all of these, the simplification of assum-
ing a single Q-function independent of time was taken. For the above mentioned 
reasons, however, long training is not possible in the softmax case, as the values 
would become overly large. Thus, for the softmax exploration, the setting with 20 
Q-functions is explored as well. Each agent is trained against either the honest, the 
strategic heuristic or against itself. 

For the evaluation the trained agent plays 1000 iterations each against the honest 
and the strategic adviser respectively and the average return is recorded. In the case 
of the epsilon-greedy policy, exploration is suppressed and the deterministic policy 
selecting the best action is used. For the softmax policy the action continues to be 
sampled to allow for stochastic policies. 

Results and Discussion: Emergence of a Better Strategy 

The results of the experiments for 100,000 iterations and a learning rate of 0.1 are 
shown inTable  72.1. For the softmax agents with a single action-value function higher 
iteration numbers were often not possible due to the aforementioned overflow issue 
and 5000 iterations had to be used instead. 

As can be seen from the results, the agent can only learn to beat the honest heuristic 
by training against it. This shows the power of being honest, when we are limited to 
less certain cases. The problem of the strategic heuristic is that often the risk does 
not pay off. This means the agent can learn a weaker strategy that is good enough to
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Table 72.1 Excerpt of results—the training column shows whether the agent was trained against 
the honest, strategic heuristic or by self-play 

Policy Training Learning rate Iterations Test honest Test strategic 

ϵ-greedy Honest 0.1 100,000 15.456 12.345 

ϵ-greedy Strategic 0.1 100,000 3.848 14.96 

ϵ-greedy Self 0.1 100,000 6.15 11.673 

Softmax 
single 

Honest 0.1 10,000 13.946 14.094 

Softmax 
single 

Strategic 0.1 5000 4.477 14.877 

Softmax 
single 

Self 0.1 5000 6.373 14.044 

Softmax multi Honest 0.1 100,000 12.236 13.696 

Softmax multi Strategic 0.1 100,000 3.974 14.337 

Softmax multi Self 0.1 100,000 5.7 12.715 

The test columns state the performance during the evaluation against the respective heuristic after 
training. Values larger than 10 mean that the agent outperforms the heuristic 

beat the strategic heuristic, but struggles against honest play. The self-play setting, 
however, requires more analysis, since training the agent on beating earlier versions 
of itself, as suggested in for example [ 7], could improve this. 

Next, we can look at the strategy that the agent arrived at. Figure 72.1 shows the 
action-value functions for the softmax agent, as they show the results most clearly. 
Similar behavior can, however, be observed with all successful agents. First, we 
analyse behavior when the agent is selected. We can see that it reports the observed 
probability truthfully, if it has been selected twice (or more) in a row (a). This makes 
sense, since once repeated trust is established, it is difficult to lose sufficient trust for 
a change of adviser, so any risk taking is unnecessary. 

If the agent is selected in the current but not in the previous round (d), we see 
that the behavior depends on the observations. If the probabilities are more certain, 
i.e., closer to 0 or 1, the agent reports them truthfully. This again has the idea to 
avoid extreme risk of losing trust. For probabilities close to 0.5, however, we can 
see that the agent is not quite truthful: in one case, the agent reports a more extreme 
probability, in the other, it reports a probability biased towards the opposite outcome. 
Both can be seen as the attempt to increase the trust it has gained with fairly low risk. 

In the cases in which the agent is not selected, we can observe very strategic 
behavior. The most extreme case of this happens, when it was not selected for at 
least two rounds in a row (c). Here we can see, that the agent always advises with 
near certainty to bet on the colour that is less likely to win, independently of how 
small the chances are for that to happen. This behavior is reasonable since, were the 
unlikely event to occur, it would increase the change of trust in the RL agent’s favor. 
At the same time, since there is a level of saturation in the trust formula—increasing 
numbers of sequential successes will change the trust increasingly little—there is 
not much to lose.
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Fig. 72.1 Action-value plots for the four interesting scenarios: a selected twice (or more) in a row, 
b selected in the previous but not the current round, c not selected for at least two rounds in a row, 
d selected in the current but not the previous round. Brighter colors indicate higher values 

In the final case, when the agent was selected in the previous but not the current 
round (b), we can see again a mixture of behavior. For less decisive probabilities it 
re-iterates the same strategy as explained in the previous case. However, since the 
adviser has just changed, the trust values are both still fairly close to 0.5 and thus, 
taking extreme risks is not justified. That said, the agent does not report extreme 
probabilities truthfully, but instead exaggerates them. This measure again increases 
the trust in it over the other agent, if the correct outcome is chosen. 

Conclusions 

In summary, our agent improves on the strategic heuristic that has been used in the 
analysis of the advisers’ game before. In future work, we will test whether increasing 
the agent’s running memory of past rounds would lead to even better strategies. This 
memory increase can be contrasted with an approach based on partially-observable 
Markov decision processes. Another approach will be to replace the simple tables 
with a neural network including a Long-Short-Term-Memory unit, enabling the agent 
to maintain a full recollection of the iteration. Finally, we plan to investigate the RL 
agent’s performance in game play with human clients, which replaces the simplistic 
client formula with a much more complex (and realistic) process. 
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Chapter 73 
GTRF: Generalized Trade Reduction 
Framework for Double-Auction 
Mechanisms 

Jacob Ehrlich, Maximilian Moll, and Stefan Pickl 

Abstract In a groundbreaking paper McAfee introduced the Trade Reduction (TR) 
Mechanism that circumvents the famous Myerson and Satterthwaite impossibility 
result by sacrificing a small amount of efficiency. Here the author creates order 
statistics based on the submitted bids and reduces at most the least efficient trade. 
Based on this principle an alternate mechanism was proposed by Segal-Halevi et al. 
which extends this to the strongly budget balanced setting. This paper proposes a 
generalization of these two TR mechanisms to fit into a larger framework that can be 
implemented based on the market in which the auction is to be applied. Additionally, 
by taking advantage of the relationship of bid order-statistics a novel mechanism; 
titled BORS, is revealed to complete the GTRF. Using a simulation based evaluation, 
performance is characterized across various settings in order to achieve optimized 
results. 

Keywords Auctions/competitive bidding · Simulation 

Introduction 

Mechanism design exists as a tool to clear complex trading markets. This paper con-
siders two-sided markets consisting of buyers interested in, and sellers in possession 
of a single identical unit an indivisible g. The goal is to design a mechanism that 
solves two simultaneous problems with a set of coupled rules. These problems are 
the Allocation Problem: Who gets to trade in the market, and Payment problem: 
The fair price to be rendered for a good/service, g. Buyers/sellers have private val-
uations/reservation of g that act as a maximum/minimum they would be willing to 
pay/receive. Potential for trade exists when a both sides of the market can obtain 
a positive gain from a trade, i.e. buyers value g more than the sellers. Mechanisms 
can posses certain desired economic properties: Individual Rationality (IR), Incen-

J. Ehrlich (B) · M. Moll · S. Pickl 
Universität der Bundeswehr München, 85579 Neubiberg, Germany 
e-mail: jacob.ehrlich.1@us.af.mil 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_73 

611

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_73&domain=pdf
jacob.ehrlich.1@us.af.mil
mailto:jacob.ehrlich.1@us.af.mil
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73
https://doi.org/10.1007/978-3-031-24907-5_73


612 J. Ehrlich et al.

tive Compatibility (IC), and Budget Balance (BB). A measure of effectiveness for 
a mechanism is the markets economic efficiency as determined by the gains from 
trade (GFT) which sums up all gains from trade across the market. A mechanism that 
achieves the optimal GFT, thereby leaving no more value in the market to be gained 
is referred to as ideally efficient. Comparing the achieved GFT from a given mech-
anism to the ideally efficient mechanism for a market generates a ratio of efficiency. 
Efficiency can be interpreted as the percentage of ideal GFT a mechanism achieves, 
where the compliment is the percentage of gains left in the market. 

For the bilateral trade setting [ 7] proved it impossible for a mechanism to be 
ideally efficient while also maintaining the desired properties of IR, IC, and BB. 
This impossibility result is circumvented by [ 6] in what was later deemed the trade 
reduction (TR) mechanism. McAfee recognized that despite the sacrifice of ideal 
efficiency, one can still optimize to achieve a high efficiency while satisfying the 
properties of IR, IC, and BB. This was later extended to the more rigorous strong 
Budget Balance (SBB) by [ 10]. This paper aims to introduce an additional mech-
anism, titled BORS, that is robust to market saturation to the existing menu of TR 
mechanisms. Additionally a Framework is proposed that generalizes and combines 
the entire menu allowing a mechanism designer to customize the TR mechanism 
according the market in which the mechanism is to be implemented. 

Taxonomy and Notation 

The set of all potential traders are split into two disjoint sets N and M denoting buyers 
and sellers respectively. Additionally, define the disjoint sets of winning traders 
as T and loosing traders as T' as determined by the allocation rule A such that 
T ∪ T' = N ∪ M. Buyers strategically submit bids that are organized according to 
their competitiveness into order statistics {b1, . . . ,  bn} =  b representing their private 
valuations. Similarly seller bids are organized according to their competitiveness into 
order statistics {s1, . . . ,  sm} =  s and represent private reservations prices. Consider 
non-discriminatory pricing rules such that all winning buyers and seller ∈ T pay pb 
and receive ps . The unique coupling of the allocation A(b, s) = T and a payment 
rule P(b, s) = p = (pb, ps) is defined as a mechanism X (b, s) = (T, p). 

Related Work and Extensions 

The foundation of this paper stems from the seminal trade reduction (TR) mecha-
nism by [ 6]. The principle concept behind the McAfee mechanism is to reduce the 
efficient number of traders by at most the least efficient/favorable trade (LFT). This 
mechanism achieves IR, IC, BB and allows for asymptotic efficiency to be achieved 
as at most one trade, the LFT, is reduced. As the number of traders increase, the value 
lost from the LFT becomes inconsequential to the measure of market efficiency.
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Table 73.1 Existing trade reduction mechanisms 

Mechanism Prior-free Budget Efficiency 

Trade reduction [ 6] Yes Surplus 1 − 1 k 
Random sampling [ 4] Yes Balanced 1 − O ln(k) 

k 

/

VCG-TR [ 3] No Balanced * in 
expectation 

1 − 1 k * in expectation 

SBBA [ 10] Yes Balanced 1 − 1 k 
DA-NLC [ 1] Yes Balanced 1 − 1 k 

In [ 3] the authors introduce a SBB, IC, IR mechanism that meets efficiency in 
expectation equal to that of [ 6] however requires the use of prior distributions along 
which valuation (reservation) prices fall. These distributions are assumed to be public 
knowledge. 

A random sampling approach is taken by [ 4] and extended to a prior-free setting 
by [ 9]. The general concept is to halve the market and use each half to calculate the 
trading prices of the other. To achieve SBB, the authors introduce randomization in 
the form of a lottery price, which has a slower rate of convergence toward asymptotic 
efficiency as compared to [ 6]. 

An alternate IR, IC, SBB mechanism called SBBA is introduced by [ 10] with 
expected GFT equal to that of McAfee 1 − 1 k . In SBBA randomization is introduced 
in the allocation rule A for the case in which a trade reduction is necessary. This is 
extended to the multi-unit case in [ 11] and extended to the multi-lateral case in [ 5]. 

An alternate randomized extension is presented in [ 1] this mechanism introduces 
randomization in the payment rule P which comes at the cost of IC. An additional 
no loss constraints (NLC) is required for Strategy-proofness limiting bidders to not 
consider strategies that could in any way result in a negative utility (Table 73.1). 

BORS Mechanism 

Examining the relationship between the LFT and the least inefficient traders, 
bk+1, sk+1, allows for the revelation of the circumstances in which existing TR mech-
anisms guarantee efficient trades. Through this lens an undiscovered TR mechanism 
is presented. 

Xψ = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

sk+1, bk+1 ∈ [sk, bk] (┌ − {bk, sk}, {bk, sk}) 
sk+1 ∈ [sk, bk], bk+1 /∈ [sk, bk] (┌, {sk+1, sk+1}) 
bk+1 ∈ [sk, bk], sk+1 /∈ [sk, bk] (┌, {bk+1, bk+1}) 
sk+1, bk+1 /∈ [sk, bk] (┌ − {bk, sk}, {bk, sk}) 

(73.1)
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The proposed mechanism, entitled BORS, achieves the same desired properties 
of IR, IC, BB, and has asymptotic efficiency of 1 − 1 k as at most the LFT is reduced. 
Finally, the mechanism is deterministic and prior-free. The mechanism gains it’s 
name by implementing either the least inefficient buyer bk+1 or seller sk+1 but not 
both, b or s. 

Generalized TR Framework 

An additional finding is detected at this stage, namely that although the McAfee TR 
rule is used here, the mechanism could also be implemented with an SBBA rule 
if SBB is favored over determinism. This key finding suggests a framework can 
be built based on the specifications of a market designer. The TR mechanism can 
be broken into two components, the initial pricing option that guarantees efficient 
trade, and the rule by which a trade reduction is implemented. As the initial pricing 
option for SBBA has the potential to result in a price equal to on of the LFT, the 
SBBA mechanism cannot be paired with the McAfee TR rule. However, because the 
McAfee and the BORS mechanism presented above do not depend on any efficient 
trader, these mechanisms can be paired with the SBBA TR rule. The only remaining 
question then becomes under what conditions a pricing mechanism may be preferable 
to any other. 

Market Simulation 

While considerable work can be done to more directly characterize the settings under 
which each pricing rule results in higher expected efficiency, the scope of this paper 
is to show that any given pricing mechanism may be preferred based on the market 
in which it is to be implemented. Four settings have been identified to present the 
performance of the three TR mechanism: McAfee, SBBA, and BORS. For any given 
market the range of valuations and reservations can be normalized [0, 1] (Table 73.2). 

Table 73.2 Simulation settings 

Setting Buyers distribution Sellers distribution Likelihood 
of buyer 

a No restrictions Uniform (0, 1) Uniform (0, 1) 0.5 

b Buyers > sellers Triangular (0, 0.75, 1) Uniform (0, 0.25, 1) 0.5 

c Sellers saturation Triangular (0, 0.75, 1) Uniform (0,0.25,1) 0.25 

d Buyers saturation Triangular (0, 0.75, 1) Uniform (0,0.25,1) 0.75
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Fig. 73.1 a No restrictions b Buyers > sellers c Sellers saturation d Buyers saturation 

In the first setting no restrictions are placed along this range and both buyers and 
sellers are drawn from a Uniform distribution with equal likelihood of a trader being 
assigned as either a buyer or seller. The second setting aims at making a more realistic 
assumption that buyers will tend to value g more than the sellers such that a potential 
for efficient trades exist. To showcase the scenario a simple triangular distribution is 
used with buyers centered at 0.75 and sellers at 0.25. Traders are equally likely to be 
assigned to the set of buyers or sellers. The final two scenarios aim at examining the 
situation in which the market is saturated by one side. Here the likelihood of being 
assigned to the dominant set becomes 0.75. 

Overall this shows the McAfee mechanism produces consistent results as it does 
not favor one side of the market. As seen in Fig. 73.1a this mechanism acts as the 
standard. Contrarily the SBBA mechanism requires the market designer to select 
a mechanism that favors one side of the market. If sufficient prior knowledge of 
the market exists, this can work in favor of the designer as evidenced in Fig. 73.1c. 
Finally the proposed BORS mechanism offers similar results to SBBA in Fig. 73.1a, 
c, but clearly shows substantial improvement over existing mechanism in the case of 
buyer saturation as seen in Fig. 73.1d.
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Conclusion and Outlook 

This paper has revealed a novel trade reduction (TR) mechanism titled BORS that 
compliments the existing TR mechanism from McAfee and the recently published 
SBBA mechanism. Secondly, a generalization was made that incorporates the menu 
of TR into a single defined framework. This allows a mechanism designer to better 
apply a specific TR mechanism according to the market in which the mechanism is to 
be implemented. The framework also gives the designer the flexibility to make a trade-
off between determinism and SBB. This paper is meant to highlight the existence 
of different markets in which the various possible baseline TR mechanisms can be 
preferable based on the efficiency with which they clear the market. Considerable 
work remains to properly characterize and outline the exact settings in which the 
various TR mechanisms should be implemented. Additional next steps would be 
to extend the BORS mechanism to the multi-unit, and later the multi-lateral case 
following the academic progression of the SBBA mechanism. 
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Chapter 74 
Iterated Boxed Pigs Game: A 
Reinforcement Learning Approach 

Rudy Milani, Maximilian Moll, and Stefan Pickl 

Abstract This paper analyzes the iterated version of the well-known Boxed Pigs 
game through Reinforcement Learning. In this scenario, there are two differently 
sized players (pigs) that compete against each other. The core idea is about sacrificing 
a pay-off in order to generate some rewards. In our iterated version, these pigs 
play this game repeatedly using different strategies. We carry out two experiments: 
in the first one, we train two Q-learning agents against each other to see which 
equilibrium will be generated. In the second one, we pit the Reinforcement Learning 
agent against a fixed policy pig. The results of this experiment confirm the ability of 
Reinforcement Learning techniques in finding the best strategy for maximizing the 
return independently from the other player choices. 

Keywords Simulation · Prescriptive analytics · Machine learning 

Introduction 

In this paper, we focus our attention on the Boxed Pigs game, which was first 
described in [ 1]. It is, in particular, well-known in the economics literature as an 
example of where weakness can be a strength. A general form of Boxed Pigs is 
described as follows: there are two pigs, a big one and a piglet, in a box. On one side, 
there is a lever and, on the other side, is a trough. The lever controls the food that 
will be in the trough. Since there is a difference in the dimensions of the animals, the 
game is unbalanced to one side. 

An interesting interpretation of this game is given by the relations between world-
leading companies in high-tech and smaller societies that are competing in the same 
field. The latter prefer waiting for new features discoveries from the bigger ones to 
copy them and have an advancement without any cost of research. However, there are 
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also other relevant applications of this abstract problem, e.g., the analogy described 
by McMillan [ 2] with the oil market (OPEC), where Saudi Arabia can be considered 
as the big pig and the smaller producers as the piglet. For these reasons, it is interesting 
to understand how the game changes if iterated over time. In the one-step game, the 
result is straightforward: the big pig has to press the lever and the small one will 
wait. In fact, there exists a dominant strategy for the piglet that consists of waiting 
instead of pushing the lever. This leads the great pig to press the lever or they will 
not receive anything. 

Furthermore, this kind of problem can be also easily generalized by repeating 
these steps in time, and can become more complex by adding new parameters, e.g., 
life span and penalty parameter. However, in this research we focus only on the 
simplest scenario (no life span and penalty parameter). One major example of simple 
generalization is the iterated version of Prisoner’s Dilemma [ 3]. 

An interesting approach consists of applying Reinforcement Learning techniques 
to this iterated game [ 4], since Game Theory and Reinforcement Learning are strictly 
correlated because of their same goal: producing an optimal policy for a given task. 
The major difference is in the way these strategies are obtained. While for Game 
Theory we need to find an equilibrium by analyzing the possible outcomes for each 
player action, in the case of Reinforcement Learning we derive the best strategy 
through data accumulated during the simulation of that particular problem. For this 
reason, Reinforcement Learning deals with Markov Decision Processes (MDPs). 
However, it is possible to compare the Game Theory results with the ones obtained 
from Reinforcement Learning when we study problems that can be generalized as 
MDPs, e.g., iterated games. 

For these reasons, the purpose of this paper is to analyze the iterated version of 
the Boxed Pigs game through Reinforcement Learning. In particular, we want to 
understand if the equilibrium achieved by two Reinforcement Learning pigs, that 
play against each other, will be the same as in the normal scenario, and recognize 
the ability of these agents when they are facing fixed strategies opponents. 

Theoretical Background 

In the context of Reinforcement Learning (RL) we have an agent which is the learner 
and decision maker, which means that it has to understand how to use the information 
of the state to choose the best action. Everything that interacts with the agent is called 
environment. 

Formally, at each discrete time step t = 0, 1, 2, . . .  the agent receives the actual 
state st ∈ S ⊆ Rn from the environment, and decides on an action at ∈ A ⊆ Rm , 
where S and A are the state and action spaces respectively [ 5]. As a consequence of 
the action, the agent will receive a numerical reward rt ∈ R, and the environment will 
update to a new state st+1. The agent has to choose actions to maximize the sum of 
rewards Rt = ∑∞ 

i=0 γ i rt+i+1 where γ ∈ [0, 1) is a discounting factor. In order to have 
a finite sum, it is possible to define all the rewards after a final time step T equals to
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zero: rt = 0 for t > T [ 5]. Fundamental for the description of the following algorithm 
is the Q-function Qπ (s, a) = Eπ

[∑∞ 
k=0 γ krt+k+1

∣
∣st = s, at = a

]
evaluated under 

the policy π , which is defined simply as a distribution over actions given states: 
π(a|s) = P(at = a|st = s), where P(·) represent the probability. The RL method we 
study here is Q-learning [ 6], a model-free and off-policy method. At the beginning 
of the learning process a Q-table (Q(st , at ) ≈ Qπ (st , at )), with dimensions defined 
by the number of the states and actions |S| × |A|, is initialized as a matrix of zeros. 
The agent will always look at this matrix to determine its action using an ϵ − greedy 
strategy, where with probability ϵ ∈ [0, 1] a random action is chosen, otherwise, 
the action maximizing the Q-value for that state is performed. After taking an action, 
the Q-table is updated using the following rule: 

Q(st , at ) ← Q(st , at ) + α
[

rt+1 + γ max 
a∈A 

Q(st+1, a) − Q(st , at )

]

, (74.1) 

where α ∈ (0, 1] is the learning rate. 

Related Work 

To the best of our knowledge, this is the first paper investigating the iterated version 
of the Boxed Pigs game. However, there are plenty of works associated with iterative 
games, e.g., for the iterated Prisoner’s Dilemma, and its solutions obtained using 
Reinforcement Learning techniques [ 4, 7]. In the particular case of the Prisoner’s 
Dilemma, there is a Nash equilibrium given by the defection of the players which 
leads to a worse reward for both, rather than collaborating. In the iterated version, 
the usual solution is given by the cooperation until one of them decides to betray. 
After that action, the other player will always defect. In the context of Boxed Pigs 
game, we have also a Nash equilibrium which corresponds to the best reward of the 
small pig while there are better possibilities for the bigger pig. Consequently, the 
asymmetry of the game that is presented in this case is a major difference. For these 
reasons, we can not directly transfer the results achieved in the Prisoner’s Dilemma. 

Methods and Discussion 

In this scenario, we consider as state the encoded previous actions taken by the two 
pigs, i.e., the tuples st = (aB 

t−1, as 
t−1) with aB 

t−1, as 
t−1 ∈ {l, w} , where aB 

t−1 represents 
the big pig action, and as 

t−1 the piglet move; while l indicates the action “press the 
lever” and w “wait”. Then, the action space is given by the combination of the two 
possible actions between the two pigs. The asymmetry of the game between the big 
pig and the piglet is represented in the different rewards collected by them in the 
same situations. To provide the meal, at least one of the pigs must press the lever, or
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Fig. 74.1 Representation of the boxed pigs game. The piglet’s arrows are dashed to show that it is 
slower than the big pig 

nothing will happen, consequently, both rewards are r B 
t = r s 

t = 0, where, r B 
t and r s 

t 
represent the rewards at time step t of, respectively, the big pig and the piglet. If both 
the pigs go to press the lever, then, the bigger one will arrive first at the trough and 
will eat more (r B 

t = 4) than the small one (r s 
t = 1). In the case when the big pig waits 

(r B 
t = 5) and the piglet press the lever, the latter will not eat at all (r s 

t = 0). Vice 
versa, if the big pig presses the lever and the small one waits, the piglet will be able 
to feed itself (r s 

t = 2) and leave some leftovers to the first one (r B 
t = 3). In general, 

the small pig has only one possibility for eating: wait until the big one will do all the 
job. All the possible combinations of this game, together with the respective rewards, 
represented by the apples, are portrayed in Fig. 74.1. For our aims, we focus only on 
the finite horizon formulation, where there is a maximum number of T = 50 steps 
that can be reached. 

The first experiment was based on training an agent for each pig and examining 
which policy is obtained. In Fig. 74.2, all the Q-tables obtained after the training 
phase for both the experiments are listed. In particular, Fig. 74.2a, b present the 
Q-tables derived after the training using the following parameters: learning rate 
α = 0.1, discounting factor γ = 0.95, epsilon ϵ = 0.4, decay (subtracting) of the 
epsilon �ϵ = 0.001 and 1000 episodes. In this scenario, both the RL agents come 
up to the Nash equilibrium that is given by the combination of pushing the lever 
for the pig and waiting for the piglet after a few iterations; but to obtain a visible 
difference between the Q-values we considered a longer training. This result is in 
contrast with the equilibrium obtained in the case of the Prisoner’s Dilemma [ 7], 
where the solution for the iterated version consists in the cooperation of the players 
while the classic problem converge to the betrayal attitude. In the case of the Boxed 
Pigs game, the results are the same in both the versions. This is principally caused 
by the asymmetry of the rewards. 

The second experiment consists of training only one of the pigs using Q-learning 
against the other that is playing with a fixed strategy. The policies that are considered 
are the following: always press the lever, always wait, random choice, tit-for-tat 
(TFT) and inverse tit-for-tat (Inv-TFT). The choice of these strategies is supported 
by the simplicity of the first three and the efficiency of the last two. In fact, Tit-for-tat 
was the winning strategy for an iterated Prisoner Dilemma tournament held in 1980
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(a) Piglet RL (b) Pig RL (c) Pig lever (d) Piglet lever 

(e) Pig wait (f) Piglet wait (g) Pig random (h) Piglet random 

(i) Pig TFT (j) Piglet TFT (k) Pig Inv-TFT (l) Piglet Inv-TFT 

Fig. 74.2 List of all the Q-tables obtained after the training against fixed policy pigs 

by Robert Axelrod [ 8]. The idea behind this policy is to start with a cooperative 
choice and then copy the action that has been done by the opponent in the previous 
step. In the case of the inverse tit-for-tat, instead of taking the same previous action of 
the opponent, the opposite is chosen, e.g., if the piglet in the step before has waited, 
then the pig will press the lever in the next step. The parameters used in these training 
phases are the same as in the previous simulation. 

In the following, we analyze the results obtained for this second simulation. As we 
can notice from Fig. 74.2c–f, when the other pig policy is deterministic, the RL pig 
will be almost always able to find the optimal solution for itself, i.e., which consist 
of respectively waiting and pressing the lever when the other one presses the lever 
or waits. Only in the scenario when the big pig always waits, the piglet will not be 
able to change its reward despite its choice. Figure 74.2g, h report another interesting 
aspect: when the opponent is taking random choices, then the bigger pig policy will 
converge to always push the lever, while the piglet will wait. This enlightens the 
fact that following the one-step optimal policy is the best option also for the iterated 
scenario against a random player, as seen in the previous experiment. For the tit-for-
tat strategy, the RL pig understands that it has to alternatively do the action wait and
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Table 74.1 Rounded mean of the returns obtained at the end of each training of the RL pig against 
all the possible combination of strategies for 10 episodes 

RL agent Opponent strategy 

Lever Wait Random Tit-for-tat Inv-TFT RL 

Pig 250 150 150 200 247 150 

Piglet 100 0 100 50 99 100 

push the lever to maximize the cumulative reward-food obtained. Lastly, against the 
inverse tit-for-tat, the agents learn fast to do the action wait since the opponent will 
directly press the lever. In this way, it will achieve the maximum amount of reward. 

The quality of this approach is finally tested in 10 episodes. The results obtained, 
reported in Table 74.1, confirm the good performance of the RL pigs to achieve the 
best profit against a fixed policy agent. 

Conclusion 

In this paper, we found that the solution obtained using RL of the iterated form of 
Boxed Pigs game is the same of the regular version (without any penalty parameter) 
and we confirm the efficiency of RL in tackling the problem of finding an optimal 
strategy against a fixed policy agent for the iterated version of the Boxed Pigs game. 

Future works involve the analysis of the iterated version of the extended Boxed 
Pigs game. In this scenario, with one more pig, the application of Multi-Agent RL 
techniques will be necessary to find the optimal solution. Another possible experi-
ment, that we are going to execute, concerns the addition of a penalty parameter and 
a minimum amount of food that each pig has to eat in order to survive, to make this 
problem more complex and realistic. In this way, it will be more similar to analyzing 
the hitting probabilities and times of an absorbing Markov chain. It is also interesting 
to study theoretically the iterated version in order to have a formal description of the 
solutions that can be found. 
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Chapter 75 
Monte Carlo Based Machine Learning 

Sara Shashaani and Kimia Vahdat 

Abstract Even though simulation is mainly used for computer models with inexact 
outputs, there are direct benefits in viewing results from samples of an existing dataset 
as replications of a stochastic simulation. We propose building Machine Learning 
prediction models with the Monte Carlo approach. This allows more specific account-
ability for the underlying distribution of the data and the impact of uncertainty in 
the input data in terms of bias. We opt for nonparametric input uncertainty with 
multi-level bootstrapping to make the framework applicable to large datasets. The 
cost of Monte Carlo-based model construction is controllable with optimal designs 
of nested bootstrapping and integrating variance reduction strategies. The benefit 
is substantial in providing more robustness in the predictions. Implementation in a 
data-driven simulation optimization problem further indicates the superiority of the 
proposed method compared to the state-of-the-art methods. 

Keywords Bias correction · Robustness · Data-driven optimization · Simulation 

Introduction 

This paper provides a new perspective on data-driven modeling and its promise. View-
ing machine learning (ML) as a simulation experiment entails viewing results from 
samples of an existing dataset as replications of a stochastic simulation. Analyzing 
the input-output dependency for ML models with Monte Carlo (MC) methodology 
benefits are many, among which are: 

• seeing the model uncertainty effect on the outputs, 
• distinguishing risks and errors and enabling input uncertainty (IU) analysis, 
• identifying input data and model inter-dependencies, 
• understanding the interaction of training set and validation and characterizing their 
optimal configuration, 

S. Shashaani (B) · K. Vahdat 
North Carolina State University, Raleigh, NC 27695, USA 
e-mail: sshasha2@ncsu.edu 
URL: https://shashaani.wordpress.ncsu.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_75 

625

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_75&domain=pdf
sshasha2@ncsu.edu
mailto:sshasha2@ncsu.edu
https://shashaani.wordpress.ncsu.edu
 331 57990
a 331 57990 a
 
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75
https://doi.org/10.1007/978-3-031-24907-5_75


626 S. Shashaani and K. Vahdat

Fig. 75.1 Stochastic simulation input-output dependence for.(s, S) problem 

• tackling the curse-of-dimensionality with the dimension-independent MC proce-
dures, 

• leveraging variance reduction for efficiency, and 
• combining external system knowledge into learning with MC and quasi-MC based 
methods. 

To set ground notations/definitions, we start with a stochastic simulation frame-
work on a famous stochastic problem and then revisit that as a data-driven problem. 

Viewing Machine Learning as a Simulation Experiment 

We introduce a unified stochastic simulation and ML framework (Figs. 75.1 and 
75.2) to clarify sources of uncertainty. To illustrate this framework, consider the (. s, 
. S) inventory problem with continuous demand, whose objective is to identify the 
re-order and order-up-to levels that minimize the expected per-period total cost—the 
sum of back-order, order, and holding costs. 

With stochastic simulation, a fixed logic model . h is present, which requires an 
input model. F for the random demands. X , typically generated by fitting a known fam-
ily of distributions to real-world collections of. x . One run of the simulation,.Y (z|F), 
represents a realization of the system performance with decision .z = (s, S). MC  
then yields estimating .θ(z) := θ(z|Fc), the true expected system performance at . z
under the true demand distribution.Fc, with sample average.θ̂ (z|F) of. i = 1, 2, . . . , n
i.i.d. .Yi (z|F) replications [ 1]. Conventional stochastic simulation assumes the logic 
is unbiased, i.e., .θ(z) := E[θ̂ (z|F)]. We note that .Y (z|F) = θ̂ (z|F) + ∈U (z|F), 
where .U is the random number leading to output .Y (·|F), and .∈U is a mean-zero 
random variable. To also include the IU error in the decomposition, we write 
.θ̂ (z|F) = θ(z) + ∈F (z), where.∈F (z) may not be a mean-zero random variable, sug-
gesting an existence of bias due to IU. Estimating the mean of.∈F relies on repeating 
the stochastic simulation over replicas of .F [ 2]. With this insight, we write
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Fig. 75.2 ML input-output dependence for.(s, S) problem 

. MSE(θ̂(z|F)) = =
Var(θ̂ (z|F))

    

EF [Var(θ̂(z|F))] + VarF (θ(z|F))+
Bias2(θ̂(z|F))

    

EF [(θ̂(z|F) − θ(z))2],

where the variance effect is known to dominate the bias [ 3]. Quantifying. Var(θ̂(z|F))

and more recently parametric.Bias(θ̂(z|F)) in a low-dimensional input space has been 
studied [ 4, 5]. With high-dimensional input space, the bias effect may be significant 
enough. We propose two nonparametric bias estimation methods, that are easily 
generalizable to stochastic simulation and ML problems. 

MC-Guided Input-Output Formulations of ML 

Suppose, the logic of the (. s, . S) inventory problem was unattainable and instead we 
had access to historical records of the system performance (total cost) under various 
levels of re-order and order-up-to quantities and demands, i.e.,.{⟨(z, x), y⟩i }i=1,2,...,n , 
where .z = (s, S). In complicated systems, many more variables would be recorded 
as part of . z that may or may not be important. The domain-agnostic approach ML 
would still include all recorded variables in the learning. With a selected family of 
learning algorithms (e.g., linear regression), a data-driven logic.H would minimizes 
its outputs’ discrepancy from the observed responses (total cost) over the training 
set or.{U2} in Fig. 75.2 by choosing the optimal learning parameters (e.g., regression 
coefficients). Once the logic model is formed, it will be evaluated on a new point 
.U1 also sampled from .F but with a specific order to ensure that no overlap would 
corrupt the process, will be generated, i.e., the model output .Y ((z|H)|F). 

Importantly, .H is random and dependent on the observed data points in ML. To 
clarify, we assume that the learning algorithm is the perfect choice for the logic 
model. The uncertainty of what .H truly is, will be added to the total variability. We 
call this error logic uncertainty, which is dependent on the input data uncertainty but 
specifically tracks the effect of a wrong logic model (logic misspecification) on the 
outputs. Hence a compound uncertainty encompassing the logic and input data risk 
needs to be estimated. .H can more broadly be used to represent model complexity,
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where the choice of . z would entail characteristics controlling the complexity of the 
model, e.g., degree of polynomials corresponding to each feature, regularization 
terms [ 6, 7], and the optimization algorithms used to fit the model among many 
more. 

With the logic itself being random, we write out an analogue of output. Y ((z|H)|F)

decomposition as, 

.Y ((z|H)|F) = θ(z) + ∈F (z) + ∈H (z|F) + ∈U ((z|H)|F), (75.1) 

where.∈H (F) represents the risk associated with logic uncertainty for an input model 
. F . By nature, the ML model is more dependent on data, more sensitive to the problem 
dimension, and significantly noisier than simulation models. A nested simulation 
scheme can quantify each uncertainty term in (75.1) [  8]. 

Estimating Bias Due to Misspecifying the Input Distribution 

Statistical variance .∈U (·) is the most studied error term in stochastic simulation, 
and there are well-established methods for estimating the effect of .∈F on the out-
put variance [ 9]. The logic uncertainty is difficult to estimate, particularly with no 
prior assumption. We study estimating the input induced bias and variance using 
nonparametric methods, where .F is an empirical distribution. 

In a nested simulation, the outer level varies the risk factor (in this case,. F), and the 
inner level varies the system’s best performance (fit) under the realized risk factors. 
For ease of exposition, we drop . z since the same steps are repeated for every . z. We  
let .F∗ represent a bootstrap of .F and for each .F∗ and collect 

. 
{{

Yi (H1|F∗)
}

, . . . ,
{

Yi (Hr |F∗)
}} average−−−→ {

Ȳ (H1|F∗), . . . , Ȳ (Hr |F∗)
}

,

where .Hj is the logic model obtained from a replication of fitting data using .F∗. 
This enables tracking the conditional effect of logic uncertainty. We also denote the 

average of all outputs on the RHS with.
¯̄Y (F∗). Since we want the outputs to be i.i.d., 

it is important that we first sample the test data with.{U1,1, . . . ,U1,n} j from.F∗, and 
then take .{U2, j } to build .Hj . Note, this is in contrast to the usual sampling routine 
for ML where the training data is drawn first. Let the bootstrap distributions from 
which these training and test sets are drawn be .F∗∗

j j = 1, 2, . . . , r and re-write 
.H(F∗∗

j ) := Hj for clarity. To compute the bias within each logic, we again use one 
bootstrap of .F∗∗

j , i.e., .F∗∗∗
j and obtain 

. 
{

Ȳ (H(F∗∗
j )|F∗) − Ȳ (H(F∗∗∗

j )|F∗)
} := {bias j (F∗)} average−−−→ bias(F∗).

This technique is called fast iterated bootstrapping (FIB) [ 10]. However, this bias 
estimator has a high variance and we will need a variance reduction approach for
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FIB. Defining a control variate.Wj (F∗) = Ȳ (H(F∗∗
j )|F∗) − ¯̄Y (F∗) can help reduce 

the variance of the logic bias estimator, since .E[W (F∗)] = 0 and .Var(W (F∗)), 
.Cov(W (F∗), .bias(F∗)) can be easily estimated. We hence use the bias estimator 

.
{

bias j (F∗) + c × Wj (F∗)
} average−−−→ bias'(F∗), where 

. c = − Cov(W (F∗), bias(F∗))
2.Var(W (F∗))

=
1
r

∑r
j=1 bias j (F

∗) × Wj (F∗)
1

r−1

∑r
j=1 W

2
j (F

∗)
.

With the variance-reduced bias estimate above, we can de-bias our average out-

put from input model .F∗ with .
¯̄Y '(F∗) := ¯̄Y (F∗) − bias'(F∗). Recall this de-biased 

quantity is an estimate of .θ̂ (F∗) − E[∈H (F∗)], where .E[∈H (F∗)] is the bias due to 
conditional logic uncertainty. In simulation, this bias is often neglected as the model 
is fixed. In ML, however, it may be the dominating source of corrupting the out-
puts. In Section “Numerical Example”, we show how it helps with the robustness of 
estimation. 

Unlike the bias due to logic uncertainty, the bias due to input uncertainty (the mis-
specification of.Fc by. F) is an important factor not only in ML but also in stochastic 
simulations, which can be tracked by allowing multiple replications of .F∗. Our  fol-
lowing nonparametric approach for estimating this bias is a contribution to both 
frameworks. Following the Taylor expansion and Von-Mises’ path-wise differentia-
bility [ 11], we develop an input bias estimator via higher order influence functions 
(HOIF). We write 

.θ(Fε) ≈ θ(F) + ε(Fc − F)∇εθ(Fε) + 1

2
(ε(Fc − F))2∇2θ(Fε), (75.2) 

where.Fε = F + ε(Fc − F) is the perturbed input distribution. Note, bootstrap the-
ory allows us to approximate.Fc − F with.F − F∗ when enough bootstrap samples 
are applied. Hence the second orders approximation in (75.2) is appropriate. The first 
and second order derivatives can be approximated with score functions, as suggested 
by [ 12]. See [ 13] for the elaborated derivation of these terms. Then the estimate of 
.θ(Fε) − θ(F) will be the bias that will be deducted from the final output estimate 

.
¯̄̄
Y = b−1 ∑b

k=1
¯̄Y '(F∗

k ). 

Numerical Example 

Figure 75.3 compares predictions in a stochastic .(s, S) inventory using the existing 
and proposed approaches. The nonparametric de-biased outputs for 3 scenarios cor-
rectly identify the optimal scenario (20, 50) while ignoring bias would mislead the 
decision-maker. The total budget used in each approach is the same. 

A data-driven .(s, S) inventory problem as laid out in Section “MC-Guided 
Input-Output Formulations of ML” reveals in Table 75.1 confidence intervals (CI) for
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Fig. 75.3 The proposed 
de-bias estimator finds the 
correct trend 

Table 75.1 ML predicts the performance of two policies in a .(s, S) inventory problem with 2000 
total budget 

Data size Method .z1 .z2 90% Diff. CI 

.50 Biased with IU variance [ 9] .178.3 ± 1.9 .187.1 ± 2.9 . [−16.6,−0.8]
Parametric de-biased [ 5] .183.7 ± 2.9 .189.1 ± 10.4 . [−26.9, 16.3]
Nonparametric de-biased .183.8 ± 3.9 .179.3 ± 4.6 . [−8.5, 17.9]
Optimal nonparametric de-biased .187.3 ± 5.0 .170.5 ± 4.5 . [4.7, 28.7]

.100 Biased with IU variance [ 9] .181.5 ± 1.4 .181.5 ± 2.7 . [−7.1, 7.1]
Parametric de-biased [ 5] .185.0 ± 4.2 .187.1 ± 9.1 . [−22.8, 18.7]
Nonparametric de-biased .187.1 ± 3.0 .170.5 ± 5.0 . [4.1, 28.8]
Optimal nonparametric de-biased .184.1 ± 5.6 .171.5 ± 3.8 . [1.5, 23.6]

Nonparametric de-biased estimators enable correct selection, i.e., paired residual CI above 0 

.z1 = (20, 40) and.z2 = (20, 50), where.z2 is the optimal solution and hence ought to 
provide smaller predictions for the total cost, i.e., .θ(z1) − θ(z2) < 0. A successful 
prediction places the paired residual 95% CI fully above 0. We experiment with dif-
ferent sizes of available data. When the available data is small (50), the optimal (i.e., 
budget-optimal) nonparametric de-biased estimator where the number of repeats in 
each layer of bootstrapping is follows a budget allocation strategy [ 13], is the only 
method correctly finding .z2 as the better solution. When the available data is large 
(100), either with optimal budget allocation or not, the proposed method finds the 
correct solution. In both cases, the parametric de-biased and biased estimators fail 
to find the correct solution. 

Concluding Remarks 

The proposed unified framework illuminates that viewing ML as a simulation can 
track the propagation of bias of data/logic into output. Without prediction bias, the 
estimates of future outcomes of a decision can mislead to a worse/riskier option. 
The proposed nonparametric bias estimator successfully identifies the correct trend
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and provides better predictions. While quantifying the dependency between .∈F and 
.∈H , etc., is a remaining open question, our current approach exhibits asymptotic and 
numerical success despite ignoring the dependency terms. 
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Chapter 76 
Xpress Mosel: Highlights from 20 Years 
of Software Development and New 
Advanced Programming Features 

Susanne Heipcke and Yves Colombani 

Abstract Twenty years after its first commercial release, the Xpress Mosel soft-
ware keeps evolving driven by user requirements, usage patterns and technological 
advances. This contribution takes the reader through the major phases of its devel-
opment: Mosel was initially designed as an optimization modeling language that 
also provided programming features. Over time the Mosel distribution has been 
enriched with numerous components and tools addressing a variety of purposes. The 
increasing use of Mosel as general-purpose programming language was recognized 
by turning it into a free software a few years ago. Motivation and use cases for major 
new programming features are discussed in detail. 

Keywords Mathematical modeling · Optimization applications · Language 
design · Testing systems 

Introduction 

The first commercial publication of Xpress Mosel in 2001 introduced various new 
concepts for mathematical modeling: Mosel was designed as an optimization mod-
eling language that also provided programming features, with an open, modular 
architecture allowing developers to add new functionality according to their needs. 
The first part of this paper takes the reader through the major development phases of 
Mosel, directing particular focus at the phase preceding the first publication during 
which the fundamental questions of whether, why, and how to replace an estab-
lished software (namely Mosel’s precursor mp-model [ 1], commercialized by Dash 
Associates since 1983) had to be addressed. 
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During the 20 years of Mosel’s existence a shift in usage patterns can be observed, 
moving from largely stand-alone optimization projects to multi-user web apps that 
directly interact with many other systems and programs. This evolution has entailed 
an increasing use of Mosel as general-purpose programming language that was rec-
ognized by turning Mosel into free software a few years ago. Recent releases of 
Mosel further build out its programming capabilities, addressing advanced program-
ming needs of large software development projects. The second part of this paper 
discusses some examples of advanced new programming functionality. 

Phases of Software Development 

Phase 0: Inception and Design (1997–2001, Versions 0–1.2) 

Target: match functionality of existing systems; provide easy transitioning from the 
precursor standalone command-line tool mp-model without any disruptive changes to 
user habits whilst switching to an entirely new architecture that provides openings for 
a large variety of future developments (in-memory data exchange when embedding 
model execution into a host language [ 2], publication of the Mosel Native Interface 
for the implementation of user modules [ 3]). 

• First step: proof of feasibility—reading and executing existing mp-model files on 
the new architecture (replacing an interpreted/script language written in Fortran 
and in parts Assembly by parsing and compilation to a virtual machine imple-
mented in C) without any loss of efficiency or functionality (specifically the han-
dling of sparse data structures). 

• Second step: creating a new language in close collaboration with expert academic 
and industrial users (most notably the group of Laurence Wolsey at CORE, Univ. 
Louvain-la-Neuve, and the team of mathematicians at BASF AG, Germany, led 
by Anna Schreieck). 

• Third step: development of tools and interfaces: ‘mod2mos’ converter, library 
APIs (C, Java, VB), Xpress IVE (Interactive Visual Environment) as development 
environment on Windows. 

• Fourth step: finding a name—the working name ‘Mmod2’ of the prototype phase 
for ‘mp-model version 2’ with file extension ‘mm2’ (already using ‘bim’ =‘Binary 
Model’ for compiled files) was finally replaced by the name ‘Mosel’ (with the file 
extension ‘mos’) that has no specific meaning and is easy to pronounce; the naming 
convention ‘dso’ = ‘Dynamic Shared Object’ was adopted for Mosel modules 
(C libraries extending the Mosel language) after using system-specific dynamic 
library file extensions during the prototype phase.
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Phase 1: New Directions for Modeling: Debugger and Profiler, 
Multi-processor Parallelism (2002–2008, Versions 1.4–3.0) 

Target: make programming tools available for a modeling language; exploit newly 
available multi-processor machines for parallelising (decomposition) algorithms and 
other computational tasks on the model level. 

• Programming tools and functionality: creation of debugger and profiler for the 
Mosel language; new programming-style data structures and functionality; intro-
duction of the notion of packages (libraries written in Mosel). 

• Multi-processor parallelism: concurrent model execution within a Mosel instance 
coordinated by event-based message queues; also: definition of multiple problems 
within a model (handled sequentially). 

• Modular building block: concept of generalized file handling (I/O drivers). 
• New solvers and problem formulation paradigms (Nonlinear, Constraint Program-
ming). 

Phase 2: Distributed Computing (2008–2017, Versions 3.2–4.8) 

Target: anticipate emerging new usage patterns, creating technology to enable work-
ing in distributed settings including cloud architectures. 

• Mosel Distributed Framework [ 4] and remote launcher (XPRD) provided the 
underlying technical framework for Xpress Insight (platform for web-based apps 
with scenario handling based on Mosel models, first release in 2014). 

• The newly introduced remote invocation protocol is used by a new browser-based 
development environment Xpress Workbench (first release July 2017) and equally 
by automated testing systems for large Mosel projects. 

• Support for cloud platforms: aec2, hadoop, and mmhttp components; related 
new features: encryption, Unicode, internationalization (message catalog selec-
tion based on system language configuration). 

• Connectivity: data exchange with/invocation of other languages (Matlab, R, Java, 
Python). 

• Possibility to execute Mosel programs in fully secure restricted mode. 

Phase 3: Advanced Programming Needs (2017–now, Versions 
5.0–6.2) 

Target: address programming functionality needs of increasingly large software 
development projects including connectivity, testing systems, and expectations of



638 S. Heipcke and Y. Colombani

developers using mainstream programming languages; provide tooling (high-level 
packages and low-level functionality for their implementation) for low-code devel-
opment of end-user apps. 

• End of 2017 Mosel was turned into a free software in recognition of its increasing 
use as general programming language, also opening up the matrix manipulation 
routines accessible from the Mosel Native Interface (NI) to provide access to 
alternative LP/MIP/NLP solvers [ 5]. 

• New advanced programming features for large-scale projects with multiple con-
tributors such as dynamic packages, definition of namespaces, shared data, and 
inline documentation [ 6]; recent additions that are discussed more in detail below 
include union types and function pointers. 

• Improved implementations of existing functionality including revised matrix han-
dling to match ever-increasing (average and maximum) problem sizes [ 6]. 

• Creation of high-level packages for advanced programming tasks distributed as 
open-source (inline documentation: moseldoc [ 7], remote execution: compsrv, dis-
tributed computing system: jobqueue, testing system: moseltest [ 5]) 

Advanced Programming Functionality 

Recent additions to Mosel comprise new maths/optimization features, notably the 
handling of general constraints, that is, certain nonlinear relations that are directly 
recognized by MIP solvers [ 8], and (forthcoming with Mosel 6.2) support for opti-
mization with multiple objectives. However, the vast majority of new features relate 
to advanced programming functionality, a trend that may be expected to continue. 
We now take a closer look at some representative examples. 

Union Types 

A union is a container capable of holding an object of arbitrary type/structure or 
one of a predefined set of types that can be used, among others, for reading and 
storing input data of a-priori unknown type. It can also be used for the retrieval of 
information from another Mosel model without prior knowledge of its structure/data 
model, a feature that can be exploited in the implementation of generic libraries and in 
particular for testing systems. A union is defined by specifying the set of compatible 
types or using the predefined union type ’any’ like the type definitions of package 
json in Fig. 76.1 that implements generic access routines for JSON files. 

The code snippet in Fig. 76.2 employs the package functionality for reading a 
JSON file of an a priori unknown structure.
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Fig. 76.1 Type definitions in package ‘json.mos’ [ 7] with documentation annotations 

Fig. 76.2 Using the functionality of package json in a Mosel program 

Subroutine References 

Subroutine references can ease the integration of user inputs (e.g. from Xpress 
Insight) into Mosel models, and they also provide new ways for implementing call-
backs (e.g. from optimization solvers or data handling interfaces). The code snippet 
in Fig. 76.3 uses subroutine references to apply a function selection made by the user. 
This approximation problem is described in [ 9]. 

Reflection 

Reflection or Reflective Programming is the ability of a process to examine, intro-
spect, and modify its own structure and behavior [ 10]. It helps programmers to create 
generic software libraries and it can also be used for observing and modifying pro-
gram execution at runtime, meaning that it is often employed for the implementation 
of testing systems. 

The new Mosel module mmreflect provides functionality for retrieving and calling 
subroutines, retrieving and modifying array entries, scalars and sets, and it defines the 
array iterator type for enumerating arrays of unknown structure and type. The 
enumeration speed achieved with an iterator is equivalent to standard enumeration for 
the different Mosel array types (dense/dynamic/hashmap) with up to 2 dimensions, 
and more than one order of magnitude faster for higher numbers of dimensions 
(time measures averaged over 3 runs on Win10 64bit). The code snippet in Fig. 76.4
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Fig. 76.3 Working with subroutine references (file ’optgrid2.mos’ [ 7]) 

Fig. 76.4 Using union types, reflection and array iterator (file ‘solarrayanypkg.mos’ [ 7]) 

shows the generic implementation of a subroutine that copies solution values from 
a decision variable array into another array after inspecting the provided arrays for 
matching structures. 

Conclusion 

Since its first publication Mosel has evolved driven by user requirements and to 
exploit technological advances, reinforcing in particular its programming function-
ality. An important difference to mainstream programming languages that provide
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extensions to support mathematical modeling, such as Python, resides in that the 
Mosel language has been designed to directly handle large-scale algebraic expres-
sions for stating constraints without any need for reformulations by the developer or 
the use of add-on components. Furthermore, through the concept of I/O drivers it is 
easy to isolate a Mosel program from the systems it is embedded into for standalone 
development and testing purposes. 
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Chapter 77 
Data-Driven Prediction of Order Lead 
Time in Semiconductor Supply Chain 

Xin Shen, Patrick Moder, Christian Pfeiffer, Grit Walther, and Hans Ehm 

Abstract This study proposes an AI-empowered order lead time prediction 
integrating a multidimensional real-world dataset from a semiconductor manu-
facturer’s supply chain. Examined features capture order–, delivery–, planning–, 
customer–, and product– related information. We thoroughly analyze a broad spec-
trum of machine learning algorithms ranging from linear regression and tree-based 
models to neural networks and compare them with respect to prediction perfor-
mance, computation time, and understandability. We find that boosting algorithms 
demonstrate solid predictive performance with the highest accuracy and most effi-
cient computation time. Our results allow supply chain experts to obtain data-
informed estimations of order lead times and an understanding of the predictive 
mechanisms. 

Keywords Machine learning · Supply chain · Predictive analytics 

Motivation 

Despite COVID-19, the semiconductor business is booming at a breakneck pace 
due to a significant increase in demand for new-generation chips [ 1]. Downstream 
manufacturers expect a reliable delivery window and must communicate with semi-
conductor suppliers in advance to hedge against unpredictable shortages. Accurate 
order lead time predictions not only leverage the accuracy of semiconductor manu-
facturers’ own supply chain planning, but also facilitate customer’s procurement and 
production planning. However, the magnitude of order lead time is affected by mul-
tiple business activities and external factors, such as market dynamics, cycle time, 
and technology upgrades. The fluctuation of these parameters enhances the difficulty 
of order lead time approximation. Semiconductor manufacturers seek solutions that 

X. Shen (B) · C. Pfeiffer · G. Walther 
RWTH Aachen University, 52062 Aachen, Germany 
e-mail: xin.shen@rwth-aachen.de 

P. Moder · H. Ehm 
Infineon Technologies AG, Am Campeon 1 -15, 85579 Neubiberg, Germany 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
O. Grothe et al. (eds.), Operations Research Proceedings 2022, Lecture Notes 
in Operations Research, https://doi.org/10.1007/978-3-031-24907-5_77 

645

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24907-5_77&domain=pdf
xin.shen@rwth-aachen.de
mailto:xin.shen@rwth-aachen.de
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77
https://doi.org/10.1007/978-3-031-24907-5_77


646 X. Shen et al.

produce accurate prediction results in their complex supply chain environment to 
increase credibility towards the customer and efficiency of their own planning oper-
ations [ 2]. 

A considerable amount of researchers and companies strive to predict order lead 
time with the objective of customer retention and attraction. Indirect and direct meth-
ods can be employed. The indirect method calculates the lead time based on sequenc-
ing and queueing theory, whereas the direct method utilizes historical data. Burggräf 
et al. systematically review literature related to direct lead time prediction using 
machine learning and operations research in engineer-to-order domains and identify 
data classes and origins that we based our data selection on. They find that includ-
ing more data classes capturing different lead time-related aspects may improve 
prediction results and that machine learning models are a promising way to make 
accurate predictions [ 3]. Singh and Soni for instance compare the predictive per-
formance of multiple machine learning models for order lead time in just-in-time 
manufacturing. The authors prove that machine learning models are able to predict 
lead times and propose the inclusion of larger data sets to increase accuracy [ 4]. 
Lingitz et al. apply machine learning algorithms for a semiconductor manufacturer 
with limited features. Still, the authors only calculate the lead time for a simple 
three-step sequence process without considering the whole production system [ 2]. 
To the authors’ best knowledge, there is a lack of semiconductor industry-oriented 
prediction frameworks involving specific attributes and operational datasets. Given 
these shortcomings, we seek to explore the ML-supported lead time prediction on 
real-world datasets from the semiconductor domain. The research requirements are 
derived from both a theoretical perspective (prediction performance on real-world 
data and advanced machine learning model usage) and practical considerations (com-
putation time and understandability). 

In this paper, we precisely define order lead time in alignment with the case com-
pany, considering the order modification behavior and specific granularity. Further-
more, we apply multidimensional real-world datasets from diverse internal infor-
mation systems. In addition, a broad spectrum of algorithms ranging from linear 
regression and tree-based machine learning models to neural networks are analyzed 
and compared in terms of accuracy, computation time, and feature importance. The 
results enable supply chain experts to obtain a holistic understanding of the predictive 
performance and features that drive lead time behavior. 

Research Design 

In the given research environment, order lead time refers to the time span from the 
receipt of the last modified sales order until this order is physically available in a 
distribution center. This definition (i) accounts for changes of order characteristics 
after an order gets placed (due to updated customer requirements or operational 
deviations at the semiconductor manufacturer) and (ii) seeks to remove uncertainties 
that appear after the arrival at the distribution center (due to delayed order handling on
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site or delivery deviations of freight forwarders). We select data and indicators for a 
single product line from 2018 to 2019. The selected datasets are cleaned by addressing 
incomplete and noisy observations. We consolidate data from multiple sources into 
a single table on schedule line granularity. Table 77.1 lists the attributes utilized for 
prediction. We use robust scaler to rescale numerical features to the same range, 
thus mitigating the influence of outliers [ 8]. Categorical features are transformed 
into a machine-readable format using encoding techniques: cyclical features like 
months are converted into sine and cosine pairs, while one-hot encoding transforms 
the remaining categorical features into the new binary columns [ 6]. 

To address the problem of data leakage, i.e., preventing inadvertently involving 
unavailable information during the prediction phase, we rearrange data based on the 
initial order entry date. The data is subsequently partitioned into four distinct splits 
with hold-out test set and expanding window on the training set [ 7], as illustrated in 
Fig. 77.1. Such partition aims to examine the data-efficient performance of individual 
machine learning models. 

This paper presents the evaluation of nine predictive models: (1) linear regres-
sion (lr), (2) lasso regression (las), (3) ridge regression (rig), (4) random forest (rf), 
(5) support vector regression (svr), (6) gradient boosting (reg), (7) extreme gradient 
boosting (xgbr), (8) light gradient boosting machine (lgbm), and (9) artificial neural 
network (NN). Boosting algorithm delivers promising predictive results by ensem-
bling all predictors, which has not been intensively investigated in the field of lead 
time prediction [ 8]. Therefore, this paper compares the performance of three boosting 
algorithms to close the research gap. For overviews on models and methods see [ 9]. 
Nested cross-validation combined with Bayesian Optimization is utilized to deter-
mine the optimal hyperparameters in the search space [ 10]. As shown in Fig. 77.1, 
while the inner loop serves for hyperparameter tuning, the outer loop evaluates the 
model generalization on hold-out testing data with optimized hyperparameters. The 
separate loop design aims to provide a less biased estimation of model generalization, 
which evaluates performance with tuned hyperparameters on a completely separate 
test set. Consequently, the overfitting risk is mitigated. Evaluation metrics contain 
mean absolute error (MAE), root mean squared error (RMSE), and coefficient of 
determination (R2). Computation time in this paper indicates the total time required 
to execute the training and test process on a local 2.4GHz system. Shapley additive 
explanation (SHAP), a cooperative game-theoretical based approach, is employed to 
explain the individual feature contribution. 

Results and Discussion 

Training process with Split 4 (35260 instances) obtains the best predictive perfor-
mance in comparison to other splits, as shown in Table 77.2. Continuous improvement 
indicates that models constantly learn from features as the training set expands. More 
training instances can leverage prediction accuracy by providing additional informa-
tion. Overall, we find that advanced machine learning models outperform conven-
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Table 77.1 Independent variables for order lead time prediction with brief description (FF: fron-
tend, BF: backend, PO: order entry date) 

Category Variables Description Types 

Delivery DW+ Positive delivery window [days] Numerical 

DW− Negative delivery window [days] Numerical 

Customer Region Shipping-to regions Categorical 

Countr  y Shipping-to countries Categorical 

Order Order V olumeupdate Updated order volume [pieces] Numerical 

Order V olumeinitial Initial order volume [pieces] Numerical 

Order Costupdate Updated order cost in Euro Numerical 

OLT  update  req Updated requested order lead time 
[days] 

Numerical 

OLT  ini tial  req Initial requested order lead time [days] Numerical 

Changereq �(OLT  update  req , OLT  ini tial  req ) Numerical 

Deltareq �(OLT  update  req , SDT  update) Numerical 

PO  Monthupdate Month of latest order modification Numerical 

PO  Monthinitial Month of initial order entry Numerical 

PO  CW  update Calendar week of latest order 
modification 

Numerical 

PO  CW  ini tial Calendar week of initial order entry Numerical 

PO  Y earupdate Year of latest order modification Numerical 

P  O  Y  earini tial Year of initial order entry Numerical 

FF  categor  y Category of freeze fence Categorical 

Planning SDT  update Standard delivery time for updated 
order [days] 

Numerical 

SDT  update Standard delivery time for initial order 
[days] 

Numerical 

Y ieldFE Cumulative planned yield at FE [%] Numerical 

Y ieldFE Cumulative planned yield at BE [%] Numerical 

CTFE Cumulative planned cycle time at FE 
[weeks] 

Numerical 

CTBE Cumulative planned cycle time at BE 
[weeks] 

Numerical 

FFFE Cumulative planned freeze fence at FE 
[weeks] 

Numerical 

FFBE Cumulative planned freeze fence at 
BE [weeks] 

Numerical 

FFtotal FFtotal  =FFFE  + FFBE  [weeks] Numerical 

HFG Main product group Categorical 

Product CPW Chip per wafer [pieces] Numerical 

Wa  f  er  diameter Wafer size [mm] Numerical 

Deltarampup �(POupdate, Ramp up Date) Numerical 

BT Chip category Categorical
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Fig. 77.1 Four-split prediction experiment with expanding training sets 

Table 77.2 Prediction results on test set of Split 4, most accurate predictions and shortest compu-
tation time in bold 

Model MAE (days) RMSE (days) R2 Computation time (s) 

lr 16 21 0.83 0.13 

las 25 28 0.67 0.20 

rig 16 21 0.83 0.11 

svr 15 25 0.82 178.04 

rf 22 26 0.76 9.24 

reg 12 18 0.90 2.26 

xgbr 12 19 0.89 0.78 

lgbm 12 17 0.91 0.23 

NN 13 17 0.89 166.86 

tional regression approaches and tree-based models yield superior prediction results. 
The fine-tuned feed-forward neural network achieves reasonable predictions with 
optimized hyperparameters, consisting of two hidden layers of 80 neuron units each 
and a dropout rate of 0.3. However, given the similar extensive computing time, ANN 
(similarly for svr) is only conditionally applicable in industrial operations. In contrast, 
boosting algorithms exhibit strong predictive power, while requiring low computa-
tion time with usage of stage-wise additive expansion. Tuning the hyperparameters 
alleviates the overfitting problem of boosting models by reducing model complex-
ity. Among them, LightGbM with unique leaf-wise growth mechanism obtains the 
lowest MAE, RMSE, highest R2 and meanwhile least computation time for Split 4. 

The scatter plots in Fig. 77.2 illustrate the individual prediction and the corre-
sponding true values, confirming the results from Table 77.2. Random forest pro-
duces the same prediction values despite the different magnitude of the independent 
variables. The abnormal prediction behaviour is attributed to the node split criterion 
based on certain input variables. This is since the tested models usually generate either 
overestimated (OLTpred > OLTreal) and underestimated predictions (OLTpred < 
OLTreal). Lasso regression overestimates most observations (94.07 %), while gra-
dient boosting (62.97 %) gives the most frequent underestimated results.
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Fig. 77.2 Prediction observations on test set of Split 4 

We analyze SHAP values for the best performing boosting algorithms. In addition 
to order information, business cycle (ramp-up date) and planning parameters (cycle 
time and freeze fence) are most important for prediction, which is in line with related 
literature and expert proposals. The ramp-up date reflects the maturity of the product 
and production process. An earlier ramp-up date indicates a more mature high-yield 
manufacturing process with less occurrence of bottlenecks. Consequently, shorter 
order lead time can be expected. Planned cycle time is an expert-defined average 
cycle time for the certain sales product. The cycle time is usually included in the 
lead time, which measures exclusively the time frame throughout the manufacturing 
process. Additionally, production freeze fence represents the frozen time frame, when 
the modification of production scheduling is prohibited. The longer freeze fence is 
usually for products with complicated manufacturing processes and excessive cycle 
time to secure order fulfillment.
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Conclusion 

Accurately predicting order lead times is critical, particularly for high-tech enter-
prises with complex global supply chain networks such as semiconductor manu-
facturers. We propose an AI-empowered prediction framework that is tested with 
real-world data. Notably, boosting algorithms demonstrate reliable predictive per-
formance using the experimental design. The best performing lgbm model yields 
prediction errors of less than two weeks, which is a reasonable performance in prac-
tice given lead times of multiple months at the semiconductor manufacturer. Con-
sidering the potential of neural networks, it is worth investigating advanced network 
architectures to improve the accuracy and computation time. Asymmetrical penalty 
costs should be integrated into models to account for the consequences of predic-
tion errors. This is important as overestimation of lead times in the semiconductor 
supply chain indicates a decrease in commercial competitiveness since competitors 
may offer shorter promised lead times. Yet, underestimation leads to unsatisfied cus-
tomers and subsequent penalties. Furthermore, investigating other product lines and 
time frames is necessary. The latter may include the observation of periods longer 
than two years and/or during heavy demand fluctuations as occurred after the Covid 
pandemic outbreak. Together with analyzing additional exogeneous variables (busi-
ness cycle, weather information, etc.), we may be able to further assess the model’s 
generalizability and robustness. Finally, specific strategies and actionable items need 
to be defined on how to use the predictive information and underlying features for 
enhanced supply chain operations. 
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Chapter 78 
Impact Analysis of Extended Payment 
Terms in Food Supply Chains During 
a Demand Shortfall 

Alexander Zienau, Mahdi Alazzeh, Ole Hansen, Christina Imdahl, 
Marcus Wiens, and Frank Schultmann 

Abstract The current pandemic has disrupted many supply chains, among them 
food supply chains, and their physical and financial flows. Therefore, companies 
with high bargaining power may extend their payment terms to downstream suppliers 
as a reaction to decreased financial cash flow. We model a stylized three-stage food 
supply chain and use simulation to analyze the effects of a demand shortfall. We then 
investigate the effects of payment term extensions by different companies. We find 
that although extending payment terms can be beneficial for a single company in the 
short run, it will harm the supply chain in the long-run and conclude that incentives 
should be put into place to motivate companies accordingly. 

Keywords Supply chain management · Disaster and crisis management ·
Simulation 

Introduction 

The COVID-19 pandemic has caused many different disruptions and challenges for 
single businesses, but also for whole supply chains. Companies fell short on paying 
their liabilities as less goods were sold, or they struggled receiving the supplies as 
producers were closing their productions [ 1]. 
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In response to disruptions during the pandemic, companies with high market 
power extended their own payment terms to increase their liquidity in the short-term 
[ 2]. However, this can harm long-term supply chain performance [ 3]. This can be 
especially impactful in food supply chains, where profit margins are low and few 
companies control a large share of the market downstream (i.e. retail and wholesale 
companies). 

In this work, we study the relation between the physical flow of goods and the 
financial flow. Although there is a direct relationship between extended payment 
terms and increased delivery risks, the consequences of extending payment terms in 
a supply chain are so far scarcely researched. To our knowledge, Esenduran et al. [ 3] 
is one of the few studies which looks into the extension of payments in supply chains 
and the related effects. Esenduran et al. [ 3] analyze the impact of extended payment 
terms in combination with supply chain risk management measures such as quick 
response and backup suppliers and show how extended payment terms can harm the 
buyer’s operations. In another study, Tsai [ 5] model cash flow risk in supply chains 
and show how decreasing a firm’s cash conversion cycle (CCC) increases cash flow 
risks. 

For a stylized multi-echelon food supply chain consisting of a supplier, a producer 
and a wholesaler, we develop a model in which we design physical flows to meet the 
downstream service level with a (s,S) order policy. Inspired by lock-downs during 
the COVID-19 pandemic, we analyze how a shortfall of demand in gastronomy and 
payment extensions of upstream companies impact supply chain performance using 
simulation. In this regard, we also evaluate the results of adjusted financial flows 
using each stage’s CCC. 

We find that while extending payment terms can increase the CCC of a company 
in the short run, it can greatly harm the supply chain, and thus the company which 
increased its payment terms, in the long-run. Our study enables researchers and 
practitioners to analyze the interplay between physical and financial flows in crises 
and to evaluate corporate decisions on an extension of payment. Thereby, it can also 
serve as decision support for public actors’ crisis management that affects commercial 
supply chains. 

Model 

We set up a stylized model of a three-echelon food supply chain, consisting of a 
supplier (Stage 3), a producer (Stage 2), and a wholesaler (Stage 1), where the latter 
serves external aggregated demand from the gastronomy sector (Stage 0), see Figure 
78.1. This will allow us to analyze how adjusting extended payment terms at the 
wholesaler or producer can affect performance and balance of the whole supply chain. 
Decisions within the supply chain can be made each day t . Aggregated demand from 
the gastronomy received by the wholesaler is assumed to be uniformly distributed: 
D1,t ∼ U(900, 1100).
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Supplier 
Stage 3 

� Producer 
Stage 2 

� Wholesaler 
Stage 1 

� Gastronomy 
Stage 0 

Fig. 78.1 Serial system 

The wholesaler however, will only accept this demand (partially or fully) condi-
tionally. To avoid accumulating too much backlog, the amount of demand from the 
gastronomy, which the wholesaler can accept per day, is capped at the sum of the 
current inventory position and a maximum backlog Bmax 

1 . Hence, the net (accepted) 
demand at the wholesaler is defined as: 

D̃1,t = min(B1,t−1 + D1,t , I1,t + Bmax 
1 ) 

The physical flow from the producer to the wholesaler is denoted as S1,t and the 
flow from the wholesaler to the gastronomy as S0,t = min( D̃1,t , I1,t ) accordingly. 
Therefore, the wholesaler’s on-hand inventory at the end of any day can be described 
as: 

I1,t = I1,t−1 + S1,t − S0,t . 

Backlog is calculated at the end of a day as B1,t = ( D̃1,t − S0,t )−. The wholesaler 
places an order O1,t at the producer following a (s,S) order policy. Hence, we intro-
duce the target inventory level S1, the reorder level s1 and the producer’s delivery 
time L2 and define orders that have been placed at the producer but not yet delivered: 
Oo 

1,t = 
∑t−1 

i=1 O1,i − 
∑t−1 

i=1 S1,i . 

O1,t = 

⎧ 
S1 − (I1,t + Oo 

1,t ) + L2 · E(D1,t ) + B1,t if I1,t + Oo 
1,t ≤ s1 

0 if  I1,t + Oo 
1,t > s1 

We denote the available monetary funds at the wholesaler before production at day 
t as M1,t , and the planned time until payment from the gastronomy to the wholesaler 
as r1 days. Given that p1 is per unit price the gastronomy pays to the wholesaler, 
the payment received by the wholesaler at the beginning of a day is then M− 

0,t = 
S0,t−r1 · p1. Daily operations at the wholesaler also generate fixed cost C f i  x  1 and the 
wholesaler has to cover inventory-dependent storage costs Ch 

1,t = I1,t−1 · ch 1 . 
Each day, the wholesaler pays the producer an amount P2,t , which includes 

planned payments and delayed payments. These payments are subject to the per unit 
price p2 the wholesaler agreed upon with the producer. It follows that P2,t = S1,t · p2 
is the planned part of the payment of the wholesaler to the producer. Additionally, 
we define the payment extension of a liability as Δ2,t = r2 + k. Here, we denote u as 
the interest rate for late payment and k as the earliest delay at which the wholesaler 
can pay his liabilities plus interest P2,t · (1 + k · u) ≤ M1,t+Δ2,t .
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In conclusion, all payments by the wholesaler for a given day are defined as 

M− 
1,t = 

∑ 

n:{n+Δ2,n=t} 
P2,n . 

Hence, the available monetary funds at the wholesaler before production starts 
are 

M1,t = M1,t−1 − C f i  x  1 + M− 
0,t − M− 

1,t − Ch 
1,t . 

Similar processes apply to the producer. The producer receives payments M− 
1,t 

from the wholesaler each day, and has to pay his liabilities, fixed costs, inventory 
holding costs and production costs. The payables are P3,t = S2,t · p3 and in t the pro-
ducer pays M− 

2,t = 
∑ 

n:{n+Δ3,n=t} P3,n . Inventory holding costs are assessed for raw 
material and finished good, such that Ch 

2,t = I raw 
2,t−1 · ch 2,raw + I2,t−1 · ch 2 . The produc-

tion costs C p 2,t are dependent on the financial ability to fund production and the 
available money for production is thus 

M2,t = M2,t−1 − M− 
2,t − C f i  x  2 + M− 

1,t − Ch 
2,t − C p 2,t−1. 

Based on the available monetary funds the production quantity Q2,t is determined. 
The producer aims to produce a standard quantity q equivalent to his mean demand 
until he reached his target inventory s2, which is set to ensure downstream availability. 
The producer has limited flexibility to increase or decrease his production dependent 
on demand realization as follows: 

Q plan t = 

⎧ 
⎪⎨ 

⎪⎩ 

0.9q if I2,t−1 ≥ s2 
q if 0 ≤ I2,t−1 < s2 
1.1q if B2,t−1 > 0 

The realized production quantity is determined by the amount of available raw mate-
rial and the available monetary funds M2,t because production generates costs: 

Q2,t = min(Q plan t , M2,t /c
p 
2 , I 

raw 
2,t−1) 

Consequently, production costs of C p 2,t = Q2,t · cp 2 emerge each day. 
Following production, the producer ships the number of goods ordered by the 

wholesaler: S1,t+L2 = min(O1,t , I2,t−1 + Q2,t ). 
Hence, by the end of the day, the inventory level of raw and finished goods can 

be calculated as follows: 

I raw 
2,t = I raw 

2,t−1 − Q2,t + S2,t and I2,t = I2,t−1 + Q2,t − S1,t 

The producer orders new raw material from the supplier according to a (s,S) 
policy. Utilizing the outstanding orders Oo 

2,t = 
∑t−1 

i=1 O2,i − 
∑t−1 

i=1 S2,i this is



78 Impact Analysis of Extended Payment Terms in Food Supply Chains … 657

O2,t = 

⎧ 
Sraw 
2 − I raw 

2,t + Oo 
2,t + q · L3 + B1,t i f  I  raw 

2,t + Oo 
2,t < sraw 

2 

0 i f  I  raw 
2,t + Oo 

2,t ≥ sraw 
2 

where sraw 
2 is set to cover a 90% service level and Sraw 

2 to cover average lead time 
demand. 

The supplier receives the incoming payments from the producer M− 
2,t and pays its 

fixed costs C f i  x  3 and the production costs from the previous day C p 3,t−1. 

M3,t = M3,t−1 + M− 
2,t − C f i  x  i − C p 3,t−1 

After that, the supplier aims to supply the number of units ordered by the producer. 
If the supplier’s money is not sufficient for production, as many units of raw material 
are purchased as the the supplier can financially afford. cp 3 is a price per unit. 

Q3,t = min(O2,t , M3,t /c
p 
3 ) 

Consequently, production costs of C p 3,t = Q3,t · cp 3 emerge each day. After his 
delivery time, the supplier delivers the goods to the producer, i.e.S2,t+L2 = min(O2,t , 
I3,t−1 + Q3,t ). 

Results 

During normal times, the physical and financial flows in supply chain are balanced 
around the mean demand per day - cost and prices are in a relation that generates a 
margin for each stage. The price at which the supplier sells the unprocessed good is 
set at p3 = 10. He encounters fixed costs per day of C f i  x  3 = 5000 and production 
costs of cp 3 = 4 per unit. This leaves him with a margin of 10%. After processing, the 
producer sells the good for a price of p2 = 20 per unit. With this revenue, he covers 
fixed costs of C f i  x  2 = 6000, production costs of cp 2 = 2 per unit and inventory costs 
(Weighted Average Cost of Capital) for both his stock of raw and finished goods at 
the end of each day, at a rate of ch = 0.05 times the unit price (p3 for raw, p2 for 
finished goods), per year. This equals a margin of slightly less than 10%, depending 
on the daily inventory costs that apply. The margins used are in line with prevalent 
values in the food processing industry. 

The wholesaler uses his large network to sell the finished good to the gastronomy, 
at a price of p1 = 30. He pays fixed costs of C f i  x  1 = 8000 and is subject to the 
inventory holding cost rate ch . He is left with a margin of over 6%, which is less than 
in the food processing industry, but a commonly low value for food trade and retail 
in general, as it is a very competitive market. 

The maximum backlog the wholesaler will allow is half of average daily demand at 
B1,t = 500. Each payment outside a crisis is due after 30 days, for all stages, based on
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Table 78.1 Scenarios and results 
Scenario Service 

level 
Disruption CCC 

Sup Prod Wh Breakdown Sup Prod Wh 

Normal 90.61 0.00 0.10 0.00 No 31.99 6.87 6.55 

Crisis 84.70 0.00 0.60 1.70 No 32.20 7.88 7.46 

Δr1 = 15 85.01 0.00 0.30 1.80 No 32.20 22.78 − 3.44 
Δr1 = 30 85.04 0.00 0.60 1.30 No 32.23 40.48 − 13.57 
Δr2 = 15 42.01 180.60 121.90 113.80 311.90 41.85 − 10.41 1.75 

Δr2 = 30 34.75 233.30 207.30 199.90 200.40 49.82 − 19.46 3.75 

Δr1andΔr2 = 15 42.95 177.40 117.90 118.20 321.10 42.12 3.08 − 11.58 
Δr1andΔr2 = 30 34.22 233.10 207.90 201.30 200.20 49.69 0.58 − 22.67 

average values from practice. The interest rate for late payments is set at u = 8.12% 
per year, in line with the number currently issued by the German Central Bank. The 
starting capital for the supplier amounts to over one month of fixed production cost, 
the values for the producer and wholesaler are set to cover four months, in line with 
their higher market power. Delivery times between stages are set at L2 = L3 = 5 
days. As a reaction to the fluctuation in demand, the reorder points and the target 
inventory levels are set to s1 = sraw 

2 = 5400 and S1 = Sraw 
2 = 10400 accordingly. 

This ensures meeting the downstream service level of 90% at the wholesaler stage. 
To analyze the consequences of a negative shock in demand, as it was caused by 

the current pandemic during the first lockdown(s), we assume that the base value 
of demand (the average) is reduced to 40% of its former value. Hence, in case of a 
lockdown Dshock 

1,t ∼ U (360, 440), ∀t ⊆ T shock applies in the model and production 
capacities, reorder points and target inventory levels are adjusted accordingly. The 
demand shock lasts from day 40 (warm-up period) to 100 in the simulation. 

We evaluate the effects of this disruption on the supply chain in Table 78.1 using 
different indicators. The Service level describes the delivery reliability downstream, 
where the wholesaler satisfies the demand of the gastronomy. A Disruption at the 
supplier stage is captured by the total days the supplier has insufficient monetary 
funds to produce any raw material. Each day the producer does not have any raw 
material, production is disrupted at this stage. Lastly, any day the wholesaler has to 
turn down demand from the gastronomy because it exceeds his maximum backlog 
level, is also counted as a disruption. The column Breakdown indicates whether a 
supply chain member went bankrupt and at which day of the simulation this occurred. 
We also evaluate the financial performance of each supply chain stage using the CCC. 
It measures how many days it takes to convert expenses into income from customers 
by taking into account Days Inventory Held, Days Sales Outstanding and Days 
Payables Outstanding. The lower the CCC, the better the financial performance of 
a company. A negative CCC is possible for companies with high bargaining power 
who receive money from their customers before they pay their suppliers [ 4]. All 
results displayed in Table 78.1 are the average over 10 simulation runs. 
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When comparing the first two scenarios, Normal and Crisis, we find that the 
crisis causes minor disruptions at downstream stages and also negatively affects 
the downstream service level and the CCC of each stage. The decreased financial 
performance can lead companies with high bargaining power to extend their payment 
terms in order to bring their CCC down. Hence, we investigate what happens within 
the supply chain when the wholesaler or the producer, or both, extend their payment 
terms to 45 or 60 days. Δr1 (wholesaler) and Δr2 (producer) describe scenarios with 
extended payment terms of either 15 or 30 days. Note that a value of 60 days is 
currently the legally allowed maximum, set by Directive 2019/633/EU. 

It improves the wholesaler’s CCC compared to the crisis scenario, when he is the 
only supply chain partner that extends his payment terms (15 or 30 days). It comes 
at a disproportionate cost for the producer in terms of CCC though. Furthermore, 
the downstream service level does not improve significantly. If only the producer 
extends his payment terms, it also decreases the producer’s CCC. However, this time 
the cost for the supply chain is even greater. While this intervention also lowers the 
CCC of the wholesaler, it greatly increases the CCC of the supplier, to the degree 
where disruptions occur frequently at all stages. This culminates in the supplier going 
bankrupt on average at day 312 or 200, depending on the degree of the payment term 
increase. If both the wholesaler and the producer extend their payment terms at the 
same time, the effects are similar to those of an extension by only the producer. 

Conclusion 

Although the crisis has negative effects on all stages of the supply chain, in our 
scenarios it is actually best if no company in the supply chain extends its payment 
terms and the whole supply chain bears the consequences of the crisis. This underlines 
the complicated situation a company might find itself in. While extending payment 
terms can be an attractive option in the short-run, it is harmful for the whole supply 
chain in the long run, and thus also for the company that extends the payment terms 
itself. Yet, there is evidence from practice that this was often the case [ 2]. 

An implication for managers is thus that they should consider carefully whether 
extending payment terms to achieve a small financial advantage is worth the potential 
aftermath, such as liquidity risks, along the supply chain. Typically, companies are 
not linked to a single upstream and a single downstream partner. Consequently, a 
company’s liquidity risk that results from the downstream partner’s payment term 
extension increases with a greater sales share with the downstream partner. Moreover, 
future research could investigate price changes as a response to extended payment 
terms. We also conclude that, while the Directive 2019/633/EU already limits the 
possible magnitude of payment term extensions, additional incentives to avoid exten-
sions or affordable (free) loans for companies in need can be worthwhile options. 
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Chapter 79 
The Lot-Size Adaptation Approach 
for the Two-Level Stochastic Capacitated 
Lot-Sizing Problem 

Markus Mickein and Knut Haase 

Abstract We introduce a two-level stochastic capacitated lot-sizing problem with 
random demand and service level constraints under the static and static-dynamic 
uncertainty strategy. While the static strategy determines setup periods and lot-sizes at 
the beginning of the planning horizon, the static-dynamic strategy allows adjustments 
of lot-sizes during the planning horizon. We present a model formulation of the 
demand difference adaptation policy for a multi-stage production system. Thereby, 
lot-size adaptations depend on demand differences between the realized and expected 
demand. We evaluate 144 test instances with different parameter settings to quantify 
the economic efficiency of the uncertainty strategies for the multilevel lot-sizing 
problem. The computational study demonstrates that additional costs of semifinished 
goods and scarcity of storage capacity on upstream precesses reduce the cost saving 
potential of lot-size adaptations. 

Keywords Stochastic programming · Production and inventory systems · Supply 
chain management 

Introduction 

Production planning is subject to demand uncertainty. Neglecting stochastic demand 
leads to service level violations. Therefore, Bookbinder and Tan (1988) introduce 
the static, dynamic, and static-dynamic uncertainty strategies for lot-sizing under 
random demand [ 1]. The static strategy determines setup periods and lot-sizes at the 
beginning of the planning horizon. The dynamic strategy allows adjustments of setup 
and lot-size decisions during the planning horizon. The static-dynamic strategy fixes 
setup periods for the entire planning horizon but enables subsequent adjustments of 
lot-sizes. 

While the static strategy determines robust production schedules, the static-
dynamic strategy provides flexible schedules associated with higher planning efforts. 
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However, the static-dynamic strategy achieves lower costs than the static strategy 
for the single-level lot-sizing problem. Nevertheless, adaptable lot-sizes of finished 
goods require sufficient provision with semifinished goods. Therefore, it is manda-
tory to incorporate potential previous production stages. 

Because the well-known inventory-oriented order-up-to-level policy is only suit-
able for uncapacitated problems without material requirements, we apply the demand-
oriented demand difference adaptation policy with limited adjustments [ 2]. Thereby, 
lot-size adaptations depend on demand differences between realized and expected 
demand. In this paper, we present the model formulation for two-level stochastic 
capacitated lot-sizing problem (2L-SCLSP) of the limited demand difference adap-
tation policy. 

This study quantifies the economic efficiency of applying the static-dynamic strat-
egy in multilevel production systems under additional costs for semifinished goods 
and scarcity of storage capacity on upstream processes. 

Problem Description 

The considered two-level lot-sizing problem is subject to demand uncertainty. Several 
scenarios s within a scenario sample S model the stochastic demand. The production 
problem contains |T | periods t and |J | products j . The multilevel bill of material 
J j defines the predecessor-successor relationship between finished and semifinished 
goods Ĵ . 

We make two assumptions for the different production stages: First, the semifin-
ished goods follow the static strategy and the finished goods follow the static or rather 
static-dynamic strategy. Applying the static strategy for semifinished goods smooths 
the fluctuation beyond the production system to avoid the bullwhip effect. Second, the 
demand for finished goods can be backordered under consideration of the γ service 
level, but the need for semifinished goods must be immediately fulfilled. Satisfying 
the need for semifinished goods is necessary to ensure the production capability of 
finished goods. 

The classical lot-sizing problem determines setup periods Xt, j , lot-sizes Qt, j , and 
inventories Is,t, j . Due to the acceptance of backorders, the net inventory consists of 
backlog I − 

s,t, j and physical stock I 
+ 
s,t, j . We limit backlogs to fulfil a given γ service 

level. The objective function minimizes the expected holding and setup costs by the 
cost rate of holding h and setup v. The production capacity cr limits production time 
corresponding to the time rate of production p for products Jr that are allocated to 
resource r . The production factor f j,i defines the required quantity of product i to 
produce one unit of product j . 

We allow lot-size adaptations As,t, j based on cumulative demand differences�s,t, j 
between scenario demand ds,t, j and expected demand d̄ t, j . Previous adjustments must 
be considered to avoid double counting (79.2).



79 The Lot-Size Adaptation Approach … 663

Fig. 79.1 Mechanism of the lot-size-adaptation approach

�s,t, j =
∑

τ<t 

(ds,τ, j − d̄τ, j ) ∀s, t, j (79.1) 

A
′
s,t, j = �s,t, j −

∑

τ<t 

As,τ, j ∀s, t, j |Xt, j = 1 (79.2) 

We limit the lot-size adaptation by a maximum extension Et, j and maximum reduc-
tion Rt, j . The binary decision variables Ys,t, j and Zs,t, j indicate adaptations by the 
maximum extension or reduction quantity and prevent arbitrary values. The variable 
Ys,t, j is one if the theoretical adaptation exceeds the maximum extension. Analo-
gously, Zs,t, j is one if the theoretical adaptation falls below the maximum reduction. 

As,t, j = min{Et, j , A
′
s,t, j } ∀s, t, j |A′

s,t, j > 0 (79.3) 

As,t, j = max{−Rt, j , A
′
s,t, j } ∀s, t, j |A′

s,t, j < 0 (79.4) 

Figure 79.1 illustrates the mechanism of the lot-size adaptation approach. Note 
that the example shows the first production cycle without previous adjustments. 
Figure 79.1(a) shows the case where the lot-size adaptations correspond to positive 
cumulative demand differences. Figure 79.1(b) shows that the positive cumulative 
demand differences exceed the maximum extension quantity. Figure 79.1(c) shows 
the case where the lot-size adaptations correspond to negative cumulative demand 
differences. Figure 79.1(d) shows that the negative cumulative demand differences 
fall below the maximum reduction quantity. 

Model Formulation 

The model formulation of the 2L-SCLSP based on [ 3]. We adapt the original for-
mulation by using a γ service level, considering a multilevel production system, and 
applying the static-dynamic uncertainty strategy.
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min F = 
1 

|S|
∑

s

∑

t

∑

j 

h · I + 
s,t, j +

∑

t

∑

j 

v · Xt, j (79.5) 

s.t. 

I0, j + Qt, j + As,t, j − ds,t, j −
∑

i∈J j 

fi, j (Qt,i + As,t,i ) = Is,t, j ∀s, t = 1, j (79.6) 

Is,t−1, j + Qt, j + As,t, j − ds,t, j −
∑

i∈J j 

fi, j (Qt,i + As,t,i ) = Is,t, j ∀s, t > 1, j 

(79.7) 
I + 
s,t, j ≥ Is,t, j ∀s, t, j (79.8) 

I − 
s,t, j ≥ −Is,t, j ∀s, t, j (79.9) 

Qt, j ≤ m · Xt, j ∀t, j (79.10)

∑

t 

Qt, j ≥
∑

t 

d̄ t, j +
∑

t

∑

i∈J j 

fi, j · d̄ t,i j (79.11)

∑

j∈Jr 

p(Qt, j + Et, j ) ≤ cr ∀t, r (79.12)

∑

t

∑

s 

I − 
s,t, j ≤ (1 − γ )  · |S| ·

∑

t 

d̄ t, j ∀ j (79.13) 

Xt, j ∈ {0, 1} ∀t, j (79.14) 

I + 
s,t, j , I 

− 
s,t, j , I0, j , Qt, j ≥ 0 ∀s, t, j (79.15) 

The objective function (79.5) minimizes the expected holding and setup costs. 
The inventory balance for the first period (79.6) and the remaining planning horizon 
(79.7) contains the net inventory, current production quantity, demand for finished 
goods, and need for semifinished goods. Equation (79.8) determines the physical 
inventory by the positive net inventory and Equation (79.9) determines the backlog 
by the negative net inventory. Equation (79.10) ensures the setup condition for the 
production. Equation (79.11) makes sure to produce the expected demand within 
the planning horizon to guarantee the production capability beyond the planning 
horizon. The capacity constraint (79.12) limits the production time by the available 
capacity. The service level constraint (79.13) limits backlogs by a γ service level. 

Equations (79.18) to (79.25) employ the demand difference adaptation policy. 
Note that lot-size adaptations and backlogs of semifinished goods are fixed to zero
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due to the required immediately demand fulfilment and applied static uncertainty 
strategy. 

As,t, j ≤ �s,t, j −
∑

τ |τ<t 

As,τ, j + m · (1 − (Xt, j − Zs,t, j )) ∀s, t, j (79.16) 

As,t, j ≥ �s,t, j −
∑

τ |τ<t 

As,τ, j − m · (1 − (Xt, j − Ys,t, j )) ∀s, t, j (79.17) 

As,t, j ≤ Et, j ∀s, t, j (79.18) 

− As,t, j ≤ Rt, j ∀s, t, j (79.19) 

As,t, j ≥ Et, j − m · (1 − Ys,t, j ) ∀s, t, j (79.20) 

− As,t, j ≥ Rt, j − m · (1 − Zs,t, j ) ∀s, t, j (79.21) 

Et, j ≤ m · Xt, j ∀t, j (79.22) 

Rt, j ≤ Qt, j ∀t, j (79.23) 

Ys,t, j , Zs,t, j ∈ {0, 1} ∀s, t, j (79.24) 

Et, j , Rt, j ≥ 0 ∀s, t, j (79.25) 

Equation (79.16) and (79.17) determine the lot-size adaptation by the cumulative 
demand difference and previous adjustments. Equations (79.18) and (79.19) limit 
the lot-size adaptation by the maximum extension and reduction quantity. Equation 
(79.20) determines the lot-size adaptation when the cumulative demand and previous 
adjustments exceed the maximum extension. Analogously, Equation (79.21) deter-
mines the lot-size adaptation when the cumulative demand and previous adjustments 
fall below the maximum reduction. Equations (79.22) and (79.23) ensure the setup 
condition for adjustments and nonnegative production quantities. 

Equation (79.26) considers the storage limitations on upstream processes.

∑

j∈ Ĵ 
(I0, j + 

t∑

τ =0 

Q j,τ ) −
∑

j /∈ Ĵ 

t∑

τ =0 

(Q j,τ − R j,τ ) ≤ w ∀t (79.26) 

The storage capacity constraint (79.26) contains the initial inventory and production 
quantities of semifinished goods as well as the minimum need for producing finished 
goods. The approximated capacity represents the maximum storage capacity for 
semi-finished goods which is limited by the storage capacity w.



666 M. Mickein and K. Haase

Computational Study 

We evaluate 144 test instances to quantify the economic efficiency of the uncer-
tainty strategies under different parameter settings. The test instances differ regard-
ing the service level (SLV = {0.90, 0.98}), demand variation coefficient (VCO = 
{0.1, 0.3}), time between orders (TBO = {1, 5}), target capacity utilization (TCU = 
{0.80, 0.95}), cost ratio between semifinished and finished goods (CPL = {0.1, 0.2, 
0.5}), and scarcity of storage capacity on upstream processes (SSC = {1.00, 0.50, 
0.25}). We consider a divergent product structure with 4 finished and 2 semifinished 
goods. The expected demand is uniformly distributed over time and the scenario 
demand is normally distributed over the scenarios. To generate scenario samples that 
meet the statistical properties of the distribution more accurately, we apply a discrete 
sampling technique for multi-period problems [ 4]. We assume the production factor, 
production time, and holding costs to be one unit. The production and storage capac-
ity depend on given parameters such as the demand, time between orders, production 
time, target capacity utilization, and assumed scarcity. 

We solve the optimization problem by the scenario extension approach [ 4]. This 
approach iteratively extends the scenario sample to improve the accuracy of the uncer-
tainty approximation. Since we apply the static uncertainty strategy for semifinished 
products, only the number of binary variables of the setup decision rises. However, 
the additional constraints for considering semifinished goods increase the planning 
complexity. For this reason, we extend the acceptable computation time to guarantee 
feasible solutions. 

Table 79.1 reports the objective value of the static and static-dynamic strategy 
depending on additional costs for semifinished goods and scarcity of storage capacity 
on upstream processes. All test instances fulfil the required service level in an out-
of-sample simulation. The objective value of the static strategy changes only slightly 
despite additional costs and capacity limitations. The reason is that the static strat-
egy does not require storing of semifinished goods. In contrast, the static-dynamic 
strategy needs storing due to the adjustments of lot-sizes. Thus, additional costs and 
capacity limitations affect the objective value. 

Additional costs for semifinished goods reduce the cost savings by the static-
dynamic strategy. Lower costs (CPL = 0.1) achieves cost savings of 0.6 % and 
higher costs (CPL = 0.5) reduce the cost savings to 0.1 %. This decrease is caused 
by a 55 % reduction of lot-size adaptation quantities under higher costs. 

The static-dynamic strategy achieve less cost savings under scarcity of storage 
capacity on upstream processes. Even a moderate capacity limitation (SSC = 0.50) 
reduces the cost savings to 0.3 %. That is a reduction of 30 % compared to low capacity 
limitation (SSC = 1.00). This lower capability for storing for storing semifinished 
goods reduce the lot-size adaptation quantities by 48 %.
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Table 79.1 Objective value depending on the additional cost for semifinsihed goods and scarcity 
of the storage resource on upstream processes. 

Static\Static 2L-SCLSP Static-dynamic\Static 2L-SCLSP 
F(SSC) CPL = 0.1 CPL = 0.2 CPL = 0.5 CPL = 0.1 CPL = 0.2 CPL = 0.5 

F(1.00) 42009 42029 42034 41763 41860 41989 

F(0.50) 42029 42032 42033 41858 41886 42016 

F(0.25) 42027 42032 42034 41865 41917 42009 

Conclusion 

This study introduces the two-level stochastic capacitated lot-sizing problem under 
the static and static-dynamic uncertainty strategy. The computational study demon-
strates that costs for semifinished goods and scarcity of storage capacity on upstream 
processes reduce the economic efficiency of the static-dynamic strategy. The results 
indicate that the multilevel problem setting and associate constraints lower the ben-
efits of possible adaptations. Nevertheless, other reasons must be considered when 
selecting the uncertainty strategy, such as the flexibility of the production system and 
the planning effort. Additionally, since the variation coefficient has a decisive influ-
ence on economic efficiency, further research studies should address even heavier 
forecast errors. 
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