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Abstract. Reinforcement learning (RL) has seen increasing success at
solving a variety of combinatorial optimization problems. These tech-
niques have generally been applied to deterministic optimization prob-
lems with few side constraints, such as the traveling salesperson prob-
lem (TSP) or capacitated vehicle routing problem (CVRP). With this
in mind, the recent IJCAI AI for TSP competition challenged partici-
pants to apply RL to a difficult routing problem involving optimization
under uncertainty and time windows. We present the winning submis-
sion to the challenge, which uses the policy optimization with multi-
ple optima (POMO) approach combined with efficient active search and
Monte Carlo roll-outs. We present experimental results showing that our
proposed approach outperforms the second place approach by 1.7%. Fur-
thermore, our computational results suggest that solving more realistic
routing problems may not be as difficult as previously thought.

Keywords: Learning to optimize · Stochastic optimization · Deep
reinforcement learning · Orienteering problem

1 Introduction

Deep reinforcement learning (DRL) approaches represent an exciting new
research avenue in artificial intelligence (AI) and operations research (OR) for
automatically creating heuristics to solve combinatorial optimization (CO) prob-
lems. These approaches are attractive as they can solve CO problems with little
domain knowledge by iteratively building a solution through a construction pro-
cess. A central goal of these approaches is to make optimization technology more
accessible to audiences without expertise in operations research and perhaps even
limited problem domain knowledge. Since the approach “learns” a heuristic on
its own, the overall process of solving the CO problem is transformed to a data
science task, rather than an OR task.
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RL has seen particular success in solving deterministic routing problems with
few side constraints [18], even if concerns about generalization to very large
problem sizes remain [15]. The recent IJCAI AI for TSP competition [4] aimed
to expand the horizon of RL techniques in CO to stochastic problems with side
constraints. The competition posed a stochastic orienteering problem with time
windows to be solved with RL, thus presenting a difficult problem with novel
components not yet solved with RL techniques in the literature. Given a set
of customers, each providing a reward if they are visited, and a time window
in which they can be visited, the objective of the time-dependent orienteering
problem with stochastic weights and time windows (TDOP1) is to construct
a tour from a depot through a subset of the customers that maximizes the
total rewards and returns to the depot before a maximum time is reached. A
penalty is incurred for tours that exceed the maximum time, or that arrive at
customer nodes after their time windows have closed. Travel times are subject
to uncertainty, while the stay duration at customers is instant, provided the
tour arrives after the start of the time window. However, tours that arrive at a
customer before the time window are forced to wait until the start of the window.

The competition posed two tracks: supervised learning and reinforcement
learning. In the supervised learning track, a complete solution to an instance of
the TDOP is provided before the tour is traveled, meaning no recourse actions
can be taken if delays are incurred while carrying out the tour. In the reinforce-
ment learning track, the goal is to learn a policy for picking the next node to
visit on a TDOP tour. Recourse is allowed, thus at each node visited in the
solution, the future nodes to be visited can be adjusted according to how much
time is left in the time horizon.

We propose a solution procedure using the policy optimization with multiple
optima (POMO) method [19] and efficient active search (EAS) [12] that won
first place in the reinforcement learning track2. POMO is a DRL approach that
exploits symmetries in the solution space of CO problems. EAS is an RL-based
search method originally designed for deterministic problems.

POMO and EAS have been successfully applied to deterministic problems.
In contrast to problems considered in earlier work, the TDOP is a stochastic
problem in which the travel times between customers are only revealed during
solution construction. This means that a solution needs to be generated online
(taking into account the already realized travel times at each decision step)
rather than offline. Furthermore, the TDOP is heavily constrained and there
are no obvious symmetries in the solution space that POMO can exploit. Our
contribution is as follows. (1) We adapt POMO to stochastic problems without
symmetries in the solution space. (2) We use EAS as a method for fine-tuning
a given RL policy, and further extend EAS to use entropy regularization to
improve exploration. (3) We use Monte Carlo rollouts for the final online solution

1 We note that the TDOP is abbreviated as the TD-OPSWTW in some works.
2 Although not the focus of our research, our approach can also generate complete

solutions using the expected travel time for the supervised learning track, and these
tie the winning team’s solutions and generate them in less computation time.
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generation. We discuss our entry into the competition and show how the addition
of EAS and Monte Carlo rollouts yields a novel, competition-winning technique.

2 Related Work

Models for automatically learning to solve routing problems have advanced sig-
nificantly since [10] solved small TSP instances with a Hopfield network. The
pointer network architecture [23] in particular has allowed deep networks to
make high-quality recommendations for choosing the next step in a construction
process. Further insights, such as using actor-critic RL [2], attention [18], multi-
ple rollouts [19], and simulation-guided beam search [7], have further closed the
gap to state-of-the-art, handcrafted routing algorithms.

While learned models are good at generating solutions to routing problems,
search is still required to find high quality solutions comparable to those found
with handcrafted heuristics. The neural network’s output distribution is sampled
in [18], while [16] use a beam search with guidance from the neural network.
The work of [13] proposes an improvement method that integrates a neural net-
work into the repair operator of a large neighborhood search. Other iterative
improvement methods for routing problems are proposed in [6,8,20,26]. Genera-
tive machine learning models can also be used to create a searchable latent space
as in [11], in which a generated latent space is searched with an unconstrained
continuous optimizer for good solutions. The DPDP approach from [17] uses a
dynamic programming algorithm that is guided by a “heatmap” of suggestions
generated by the neural network from [16]. In NeuroLKH [27] a neural network
is integrated into the well-known LKH algorithm [9], thus relying on LKH to
perform its search. Finally, [12] introduces EAS to adjust a subset of (model)
parameters at test time to better solve a given problem instance.

In contrast to deterministic routing problems, stochastic routing problems
have seen little attention in the ML literature. DRL is used in [14] to solve a
dynamic vehicle routing problem with stochastic customers and time-windows.
In this VRP variant, new customers (requests) can arise at any time during the
solution execution, resulting in already planned routes to be adjusted online.
A similar VRP variant with stochastic customers is solved by [21] via DRL,
but this variant also considers vehicles with limited capacity. A multiagent RL
approach is proposed in [5] to solve the dynamic CVRP with stochastic travel
times and stochastic customers with time windows. Finally, [1] consider the
problem of routing a single electric vehicle with a reliable charge, taking into
account stochastic energy consumption and dynamic customer requests. They
propose an RL method that learns a policy aiming to minimize the risk of battery
depletion by planning charging stops.

3 Background

We provide background information modeling routing problems using RL. As
our approach uses a transformer architecture, we focus on this in the follow-
ing. We note, however, that a number of options exist for RL for routing and



Learning to Solve a Stochastic Orienteering Problem with Time Windows 111

combinatorial optimization problems in general (see [3]). We begin with a gen-
eral description of modeling routing problems in a sequential decision process,
followed by the POMO method and, finally, how to apply EAS.

Fig. 1. POMO solution construction, from [12].

Solving Routing Problems with RL. Most ML-based approaches for solving rout-
ing problems formulate the solution construction as a sequential decision mak-
ing problem. Starting from a start node, an actor decides, at each decision step
t ∈ {0, ..., T}, which node should be visited next. The actor pθ is usually a deep
neural network with weights θ that outputs a probability value for each possi-
ble action in the given state. The starting state s0 describes the given problem
instance (e.g., the positions of the customers and the depot) and the state st+1

is obtained by applying the action at chosen at step t to the state st. Once a
complete solution π = (a0, ..., aT ) that satisfies all constraints of the problem
is constructed, the objective function value of the solution can be computed
(e.g., the tour length for the TSP). For the training of the network, most exist-
ing approaches use the REINFORCE algorithm [24] which adjusts the network
weights based on the objective function value of the complete solution.

POMO. One state-of-the-art RL approach for sequential solution construction is
the POMO approach [19]. POMO is an end-to-end approach that exploits sym-
metries in the solution space of combinatorial optimization problems to enforce
exploration during the training phase. POMO uses a transformer-based network
pθ [22] that consists of an encoder and decoder. The encoder learns to gener-
ate an internal representation ω of a given problem instance (i.e., an embed-
ding) and the decoder qφ learns to construct a solution based on this embedding
sequentially. Note that the weights φ of the decoder are a subset of all model
weights θ. Figure 1 shows the embedding generation and the autoregressive solu-
tion construction for a TSP instance. At each decoding step, an action is sampled
according to the output distribution by the decoder.

Note, that once an instance embedding has been generated by the encoder,
the decoder can be used to generate multiple solutions for that instance. POMO
exploits this fact by sampling multiple solutions for each problem instance. Fur-
thermore, POMO uses symmetries in the solution space to enforce exploration.
For example, for the TSP with n cities, POMO constructs n solutions {π1, ..., πn}
from the same embeddings. By starting each solution construction process from
a different starting city, POMO ensures that each of the solutions is unique.
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During training, POMO uses gradient ascent to update the neural network
weights based on a set of sampled solutions {π1, ..., πn} with the objective to
maximize the expected reward

∇θJ(θ) ≈ 1
n

n∑

i=1

(R(πi) − b)∇θ log pθ(πi | si
0) (1)

where pθ(πi | si
0) ≡ ∏T

t=0 pθ(ai
t | si

t), b is the baseline, and R(πi) is the reward
of the i-th solution. The baseline b is given by the average reward of all n
solutions. The baseline stabilizes training by preventing the fluctuating reward
between different instances and multiple solutions of single instances from overly
influencing training.

EAS. Given a model trained as described above, we now focus on the search
phase in which we are given an instance we have never seen before and need to
solve it. Active search [2] performs an extensive search for high-quality solutions
to a single test instance by iteratively solving the instance and adjusting the
model parameters at the end of each iteration. In other words, active search
performs a search for solutions by fine-tuning a given model towards a single
instance using reinforcement learning. Over the course of the search/training,
the model performance on the single test usually improves, and high-quality
solutions are found. The best found solution at the end of the search/training is
returned as the final solution. After solving the instance, the adjusted parameters
are discarded and the model is returned to its original state, as they likely will
not generalize to any other instances. While active search finds high-quality
solutions, it is very slow because all instances have to be solved sequentially and
a full update of the model parameters must be performed.

A recent extension to active search, called EAS [12], only updates a subset
of (model) parameters during the search This significantly reduces the runtime
and GPU memory requirements, since most model parameters are not updated
and many model operations can hence be performed on a batch of test instances
in parallel. For example, an extra layer can be added for each instance and only
the parameters of this layer are updated during search. In this work, we use an
EAS variant that adjusts the embeddings generated by the encoder, since both
this and the extra layer versions of EAS show similar performance in [12].

4 The TDOP

In the TDOP, we are given a graph, G = (V,E), with nodes V representing
customers and a single depot, and edges E between all nodes. Each node i is
assigned a location (xi, yi) in a Euclidean plane, a time window (wi, w̄i), as well
as a reward ri. The goal of the problem is to construct a tour starting and ending
at the depot that maximizes the reward earned by visiting customers (nodes). If
a node is visited, it must be visited during its time window. If a node is visited
early, the model is forced to wait until the beginning of the time window. If a
node is visited late, a penalty p is incurred. The travel time between nodes, t̂ij ,
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Fig. 2. An instance and solution (black, solid line) to the TDOP with time windows
shown in square brackets. Alternate solutions are given by the red, dotted line and
blue, dashed line. (Color figure online)

is stochastic, but bounded above by the euclidean distance between each pair of
nodes. The visit duration at each node is instantaneous. The maximum travel
time is given by D, and the penalty p|V | is added to the objective function if it
is exceeded. Note that in this version of the orienteering problem, no costs are
incurred traveling between nodes. Thus, given a variable xi ∈ {0, 1} that is set
to 1 iff the route visits node i ∈ V , and a variable δi ∈ {0, 1} that is equal to
1 iff the time window at node i ∈ V is violated, the objective function can be
formulated as max

∑
i∈V (rixi − p′

iδi) , with p′
i defined as the penalty p for all

nodes i that are not the depot, and p|V | for the depot.
Figure 2 shows a TDOP instance with time windows for each node. For the

purpose of illustration, assume the reward at every node is one. One possible
solution is given by the black, solid line; assume the stochastic travel times
between nodes are realized such that none of the time windows visited along the
tour are violated. The tour thus incurs no penalty. The blue, dashed line shows
an alternative end of the tour that would earn an extra reward. If we arrive at
node 4 early enough, visiting node 5 may still be viable within its time window.
This decision would be made on the fly as the tour is carried out. The red,
dotted line, however, shows an alternative solution that is guaranteed to suffer
a penalty regardless of the realization of the travel times, as the time window
ends before the previous node’s time window begins.

5 Solving the TDOP

Our solution approach for the TDOP consists of three steps. First, we use the
POMO approach to learn a problem size-specific policy. To this end, we slightly
adjust the POMO model to TDOP, e.g., by changing the structure of the input
that the model accepts. In the next step, we use EAS to enhance the learned
policy. EAS has been originally proposed as a search method for non-stochastic
problems. We adjust EAS to the stochastic search setting and deploy it with the
objective to find a fine-tuned policy to a given test instance. In the third step,
we use Monte Carlo rollouts to construct the final solutions using the policies
fine-tuned via EAS. In the following, we describe each of these three steps in
more detail.
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5.1 POMO for the TDOP

Modeling the TDOP. The model of TDOP within POMO is straightforward
and only requires a few adjustments to the CVRP model presented by [19] to
output decent solutions.

POMO Rollouts. The core idea of POMO is to create n diverse solutions for
each instance during training. The average reward of the n solutions for one
instance can then be used as a baseline. POMO uses problem-specific mech-
anisms to enforce diversity among the solution rollouts for each instance. For
the TSP, POMO starts each of the rollouts from a different starting city. For
the CVRP, POMO visits a different customer first for each rollout. For both
problems, the quality of the different rollouts for an instance can be directly
compared, since the diversity enforcing mechanism only marginally (or not at
all) influences the quality of the solutions that can be found. For the TDOP
it is not possible to use a similar diversity enforcing mechanism, because the
solution quality heavily depends on the selected start node. Instead, we leverage
the stochastic nature of the TDOP and sample the travel times independent for
each rollout. This encourages diversity among the different rollouts and hence
increases exploration. We still use the average reward of all rollouts as the shared
baseline. Future work could investigate if an individual baseline for each rollout
taking into account the sampled travel times can improve performance.

Model Input. POMO accepts a vector representing each node of the problem
instance. For example, for the TSP, POMO is given a vector consisting of
the x and y-coordinates of each node. For the TDOP, we provide the vector
(xi, yi, ri, wi, w̄i) for each node i. Note that we scale wi and w̄i based on the
maximum travel time D.

Decoder Context. During decoding, POMO constructs a solution autoregres-
sively. Starting from an empty solution it sequentially decides which customer
should be visited next. To choose a customer, the POMO model has to consider
the context of the decision (e.g., the currently visited customer). This context
is provided to the model in the form of a vector. For example, for the TSP the
POMO model is given the embedding of the current node, the embedding of
the start node and the global graph embedding as context. For the TDOP, we
additionally provide the decoder with the current time at which the last node
in the partial solution is visited as input. Note that we scale current time based
on the maximum travel time D.

Masking Schema. The output space of POMO potentially includes actions that
are infeasible, such as visiting a previously visited node, in addition to actions
that are clearly bad, such as visiting a node with a clearly violated time window.
A simple mechanism for avoiding such actions is masking, which sets the proba-
bility of an undesired action in the output space to 0. We apply masking in both
the train and test phases. Masking the previously visited nodes is sufficient to
ensure that the solution created is always feasible.
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We also use masking in the context of the time windows. Each state st is
associated with the current time at which the last node in the partial solution
is visited. We mask any node with an end time window w̄i that is less than the
current time, as these nodes can clearly no longer be visited without incurring a
large penalty3. It is still possible to get hit with a penalty due to the stochastic
travel times, but we let the model choose its own risk/reward trade-off. Further-
more, we forbid actions that correspond to traveling to a node i where wi > D
and actions that involve traveling to a customer that has already been visited.

5.2 EAS for Stochastic Problems

EAS has originally been proposed as a search method for deterministic prob-
lems. In that setting, EAS fine-tunes a given model to a single test instance via
reinforcement learning. The best solution observed during this fine-tuning pro-
cess is returned as the final solution. In the stochastic setting considered in this
work, we can not generate multiple solutions and pick the best one, because the
solution quality depends on the realized travel times, and these are not known in
advance. Hence, we do not use EAS to search for a solution, but as a tool to gen-
erate a fine-tuned, robust policy for each test instance. These instance-specific
policies can then be used to generate the final solutions at test time.

In [12], three different variants of EAS are proposed. In this work, we use
the EAS-Emb variant that updates the embeddings generated by the POMO
encoder throughout the search. Note that we consider these instance embeddings
a part of the policy. The overall EAS process then works as follows. For each
single test instance, we first use the POMO encoder to generate a corresponding
embedding ω. We then fine-tune ω in an iterative process by repeatedly sampling
a set of solutions {π1, ..., πn} using the POMO decoder qφ(π | ω) and adjusting
the embeddings ω via gradient ascent using the gradient

∇ωJ1(ω) ≈ 1
n

n∑

i=1

[
(R(πi) − b)∇ω̂ log qφ(πi | ω)

]
(2)

where qφ(πi | ω) ≡ ∏T
t=0 qφ(ai

t | si
t, ω), and b is the POMO baseline. Note

that in contrast to (1), here we adjust the embedding ω rather than the model
parameters θ.

Entropy Regularization. As previously discussed, we are not able to force diverse
rollouts as POMO does on the TSP and VRP, and instead sample n solutions
independently. This hampers the exploration during the search, and we noticed
that EAS often quickly converges towards a single solution. We propose to use
entropy regularization [25] to increase the exploration during the search. Entropy
regularization aims to increase the entropy of the model output (i.e., the distri-
bution over all possible actions) and penalizes assigning a very high probability

3 We assume the penalty is large enough (p > ri) such that, in the version of the
problem with recourse, we should always avoid the late arrival penalty at nodes.
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values to a single action. We use entropy regularization by considering a second
gradient during the search that is defined as

∇ωJH(ω) ≈ − 1
n

n∑

i=1

T∑

t=0

∑

a∈A(si
t)

[∇ω̂qφ(a | si
t, ω) log qφ(a | si

t, ω)
]

(3)

where A(si
t) is the set of all actions that can be applied to the state si

t.
The gradient of the overall objective J2 is defined as

∇ω̂J2(ω) = ∇ωJ1(ω) + β · ∇ωJH(ω) (4)

where β is a hyperparameter that defines the regularization strength.
Since choosing a value for β is not trivial, we perform EAS with m differ-

ent values (see Sect. 6 for details). To do this, we create m copies of the initial
embedding ω prior to the EAS search and then fine-tune each embedding com-
pletely separately (but in parallel) using different β values. This allows us to
effectively fill the available GPU memory. After the search, we evaluate each of
the m fine-tuned embeddings on a separate validation set, and we discard all
but the best performing embedding. We note that β could also be tuned in a
hyperparameter tuning phase.

5.3 Solution Construction Using Monte Carlo Rollouts

For the final solution construction, we use the fine-tuned policies and Monte
Carlo rollouts to determine each node to visit. We solve the instances one at a
time, but exploit the batching capability of the GPU in our method. Since we
reveal the true travel time of each arc as we solve a TDOP instance, we can
only solve it for “real” a single time. Once we commit to a move, the move is
performed and the real travel time is revealed.

Monte Carlo Rollouts. Monte Carlo rollouts are a well-known mechanism for
examining the quality of an action in a sequential decision process. In our case,
we could of course just rely on the argmax action of the EAS-trained policy,
but this is akin to assuming our model never makes mistakes. Naturally, our
model is not always correct. We thus roll out, or complete, the solution from the
top five model-recommended nodes using a simulation. The expected value of
each of the top actions is then computed and we select the one with the highest
expected value. Thus, the Monte Carlo rollouts are a recourse mechanism. If the
decision maker is risk averse, one could also use an alternative criteria to the
expected value, such as the conditional value-at-risk. However, the penalty in the
competition is so high that our learned policy avoids risk as much as possible.

Figure 3 shows an example application of the Monte Carlo rollouts. From
the depot, POMO is queried and provides a probability distribution over all
unmasked nodes. As discussed, the Monte Carlo rollouts are only computed for
the top actions, in this case the top 5 ranked descending. We thus receive an
expected value for each action and see that b has the best value, even though the
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Fig. 3. Illustration of the POMO Monte Carlo procedure.

network ranked it below a. We select b, realize the stochastic travel time, and
query POMO again, yielding the second set of nodes. While some are the same
as in the first iteration, some are new, which corresponds to the fact that we are
now at a different node and some actions may no longer be feasible or could be
too risky to carry out. The rollouts are again performed on the top nodes and c
is selected. The process continues until the route is complete.

6 Computational Results

We evaluate our approach using the competition environment. We answer the
following research questions:

(RQ1) How does our approach perform on the competition test set? Can EAS
and Monte Carlo rollouts improve the performance?

(RQ2) Does entropy regularization improve the performance of EAS and what
is the search trajectory of EAS?

(RQ3) How often do the actions selected by the Monte Carlo rollouts diverge
from greedy action selection, and in what cases?

Dataset. We use the competition dataset to evaluate our approach. The dataset
consists of four different sizes of instances, with 25, 50, 100 and 200 nodes each,
respectively. Each size category contains 250 instances. Nodes are assigned x, y
coordinates in a Euclidean plane according to a uniform distribution. Time win-
dows are generated according to a nearest neighbor procedure described in [4] in
more detail. The rewards at the nodes are generated according to their Euclidean
distance to the depot at (0, 0). The penalty p for missing a time window is 1.
The instance generator is available at the competition’s GitHub page: https://
github.com/paulorocosta/ai-for-tsp-competition.

Setup. For POMO, we train 4 separate models to solve instances with 20, 50,
100, and 200 nodes, respectively. During training, we generate training instances
on the fly using the competition instance generator. We train until we achieve
full convergence on a single Nvidia V100 GPU. This takes between five hours

https://github.com/paulorocosta/ai-for-tsp-competition
https://github.com/paulorocosta/ai-for-tsp-competition
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Table 1. Final performance on the test set instances

Method Instance size Avg.

20 50 100 200

POMO 5.27 8.03 11.24 17.17 10.43

POMO & EAS 5.36 8.14 11.49 17.68 10.67

POMO & EAS & MCR 5.40 8.20 11.62 17.87 10.77

Table 2. Final leaderboard of the competition (top 3).

Team Average Reward

RISE up (ours) 10.77341

Ratel 10.58859

ML for TSP 10.39341

(for the 20 node model) up to a full day (for the 100 and 200 node model). For
EAS, we perform 1500 iterations per instance with m = 120 and set β to values
in the range [0, 3]. For the Monte Carlo rollouts, we perform 600 rollouts for each
possible action at each decision step. On average, the EAS and MC computation
takes between 7 min for 20 node instances and 48 min for 200 node instances.

6.1 RQ1: Test Set Performance

We evaluate our approach on the competition dataset and report results after
each step in Table 1. Across all different instance sizes, EAS can improve the per-
formance of POMO by 2.3% and the Monte Carlo rollouts (MCR) improve the
performance of POMO and EAS by an additional 0.9%. The relative improve-
ment of EAS is significantly higher on larger instances (e.g., 1.7% on instances of
size 20 and 3.0% on instances of size 200). In contrast, for Monte Carlo rollouts
the offered improvement is only slightly higher on larger instances (e.g., 0.8% on
instances of size 20 and 1.1% on instances of size 200).

In Table 2 we report the final results for the reinforcement learning track of
the competition. Our approach significantly outperforms the second best app-
roach (by 1.75%) and the third best approach (by 3.66%). We note that we do
not know the computational costs associated with the approaches of the other
competition participants. However, our approach would have also won the com-
petition without the expensive Monte Carlo rollout phase.

6.2 RQ2: EAS

EAS is examined in [12] for deterministic problems. There is no guarantee that
using EAS on a stochastic problem like the TDOP will result in good perfor-
mance. Thus, we examine how the reward improves with each iteration of EAS.
Furthermore, we evaluate if entropy regularization is able to improve the quality
of the solutions seen during EAS.
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Figure 4 shows the average best reward in each EAS iteration for the four
different problem sizes. That is, we report the average over the best reward of
each instance at each iteration of EAS. We show results for EAS with and without
entropy regularization. Note that although the total percentage improvement
is not that high, for the class of TDOP investigated, it is rather significant
since most of the rewards are earned from a few nodes. Thus, the challenge
is to maximize the reward of the remaining route. In all problem sizes, EAS
quickly increases the performance, with the average best reward at iteration 250
already near the quality achieved after 1500 iterations. Also note that on size
200 instances, EAS has not converged by iteration 1500, although the remaining
performance improvement is likely rather small.

We now briefly examine entropy regularization. As can be seen, it provides a
small boost in the average best reward on all sizes of instances. The additional
exploration provided by entropy regularization is beneficial to the overall search,
although we note that on size n = 200 instances the default performance catches
up given enough time. It is possible that a higher weight must be given to entropy
regularization on this size of instance or that a reactive mechanism is necessary
to properly balance the loss functions.

Fig. 4. Average of the best reward at each EAS iteration over all instances.

6.3 RQ3: Monte Carlo Rollouts

While Monte Carlo rollouts are computationally expensive, they significantly
improve the performance over greedy action selection on the test dataset. If
enough rollouts are performed for each action, we get an accurate estimate of
the expected total reward for each action. Consequently, the actions selected
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Fig. 5. Average of the best reward seen at each EAS iteration over all instances.

by the Monte Carlo rollouts should almost always be at least as good as those
selected greedily. We hence use the Monte Carlo rollouts mechanism in this
experiment to analyze in which cases the POMO model, using EAS enhanced
policies and greedy action selection, makes mistakes. We thus track the decisions
that were made based on the Monte Carlo rollouts and the decisions that would
have been made based on greedy action selection for all test set instances.

Each plot in Fig. 5 shows for each decision step t on how many instances (in
%) the action selected greedily diverges from the action selected by the Monte
Carlo rollouts. Furthermore, the percentage of solutions that are not yet complete
are reported for each step t.

We note that the divergence is the average across those instances that are not
yet fully solved. Hence, the divergence becomes unstable for high values of t when
only a few incomplete solutions remain. Nonetheless, the divergence is lower
towards the beginning of the solution construction process and higher towards
the end. Upon closer investigation, we noticed that greedy action selection often
results in returning to the depot earlier than Monte Carlo rollouts.

In general, the divergence is equally low for all instance sizes, with values
staying below 5% for the majority of the solution construction process in all
cases. This is especially surprising for instances with 100 and 200 nodes where
the number of possible (unmasked) actions is much higher at each decision step
than for instances with fewer nodes.
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7 Conclusion

We presented an RL approach for solving the TDOP that won first place in the
RL track of the IJCAI AI4TSP competition in 2021. Our approach modifies the
POMO method and extends it with EAS and Monte Carlo rollouts. First, we
enable the POMO method to handle stochastic problems without symmetries in
the solution space. Then we use EAS with entropy regularization to fine-tune
POMO’s learned policies. Finally, we use Monte Carlo rollouts to assist in solu-
tion construction. We show experimentally that each of these steps contributes
towards the good performance of our method, and that entropy regularization
can significantly improve the performance of EAS. In future work, we will exam-
ine the approach on different distributions of travel times and time windows.
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