
Comparing Surrogate Models for Tuning
Optimization Algorithms

Gustavo Delazeri1 , Marcus Ritt1(B) , and Marcelo de Souza2

1 Instituto de Informática, Universidade Federal do Rio Grande so Sul,
Porto Alegre, Brazil

{gustavo.delazeri,marcus.ritt}@inf.ufrgs.br
2 Departamento de Engenharia de Software, Universidade do Estado de Santa

Catarina, Ibirama, Brazil
marcelo.desouza@udesc.br

Abstract. Tuning an algorithm requires to evaluate it under different
configurations on several problem instances. Such evaluations are costly.
A way to reduce the configuration time when developing tuners is to use
surrogate models, which map configuration-instance pairs to the approx-
imate algorithm performance and thus allow to replace algorithm runs
by fast calls to the model. Most applications of surrogate models found
in the literature focus on predicting algorithm running time; much less
effort has been devoted to predicting the quality of solutions of optimiza-
tion algorithms. In this paper, we present a comparative study of surro-
gate models for predicting solution quality. We evaluate several surrogate
models from the literature, including random forests, gradient boosting
methods, and neural networks, and compare ways of handling differ-
ent classes of parameters, data imputation strategies, and codification
of instances. We demonstrate for two heuristic algorithms that the best
models can accurately reproduce effects observed when tuning with the
ground truth. Our code is available (https://github.com/gutodelazeri/
oracle).

Keywords: Automatic algorithm configuration · Surrogate models ·
Optimization algorithms

1 Introduction

Selecting the best algorithm among a set of candidates for solving a problem is
a common challenge, since often several algorithms of complementary strengths
are available, or algorithms are parameterized. Following the seminal work of
[36] algorithm selection can be described as a mapping from a problem space P
to an algorithm space A that maximizes some performance measure m(p, a) for
p P P, a P A. Here we are interested in selecting a single algorithm that has the
best expected value with respect to some distribution over the problem space,
a common approach in automatic algorithm configuration or tuning [24,25,32].

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 347–360, 2022.
https://doi.org/10.1007/978-3-031-24866-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_26&domain=pdf
http://orcid.org/0000-0001-9439-3113
http://orcid.org/0000-0001-7894-1634
http://orcid.org/0000-0002-0786-2127
https://github.com/gutodelazeri/oracle
https://github.com/gutodelazeri/oracle
https://doi.org/10.1007/978-3-031-24866-5_26


348 G. Delazeri et al.

Often the algorithm space consists of a family of parameterized algorithms aθ,
with parameter settings θ from some parameter space Θ “ Ś

iP[n] Θi, where Θi

is the domain of parameter i P [n]. Thus the problem of automatic algorithm
configuration is to find the best configuration

θ∗ “ argmaxθPΘEP [m(p, aθ)] (AAC)

for some distribution over the problems P. For stochastic algorithms the problem
space P can be understood as composed of instance-seed pairs together with
an appropriate distribution. Parameters are often real or integer, but can also
be ordinal, categorical, or conditional (i.e. only effective for specific settings of
enabling parameters).

Solving problem (AAC) even approximately is hard, in particular because
obtaining the measure m(p, a) requires running an algorithm on a problem
instance, which can take considerable time, often minutes or hours. As a con-
sequence, the (second-level) problem of selecting among optimizers for prob-
lem (AAC) is even harder. On a family of parameterized optimizers this is also
known as the problem of hyperparameter tuning. It can be made more tractable
by providing a surrogate function m̂ for measure m for some representative first-
level configuration problems. Such surrogate functions are required to be:
1. fast to evaluate;
2. accurate in the sense that predicted values allow to correctly rank the per-

formance of algorithms on instances;
3. handle all parameter classes, including numerical, categorical, and conditional

parameters;
4. have a high fidelity in the sense that hyperparameter optimization on surro-

gates correctly predicts the behaviour under ground truth m.

Note that requirement 4 goes beyond simple accuracy, since we require the model
to represent the ground truth on the level of observable effects, as opposed to
just taking an accurate model as the ground truth for comparing hyperparameter
optimizers. Clearly, as a function of the accuracy, this will be limited to effects
of a minimal effect size. This requirement should allow to quickly assess the per-
formance of new optimizers during design and test, and speed up benchmarking
of optimizers.

In this paper we compare several representative models from the literature
and evaluate their accuracy and ability to reproduce effects observable when
comparing tuners. The paper is organized as follows. In the remainder of this
section we discuss related work. We then introduce in Sect. 2 a selection of models
for surrogate functions. Section 3 presents an experimental comparison of these
surrogate models for tuning (hyper-)optimization algorithms. We conclude in
Sect. 4.

1.1 Related Work

Approaches to surrogate functions make different assumptions on the domain
and co-domain of the function to be modeled, on access to additional informa-
tion such as derivatives, or bounds, and use different surrogate models. [17], for



Comparing Surrogate Models for Tuning Optimization Algorithms 349

example, assumes a continuous, compact parameter space, a continuous function
that is expensive to evaluate, with no additional information, and a model which
is a weighted sum of radial basis functions centered at the samples plus a polyno-
mial term. This is a form of black-box optimization, and many other approaches
to black-box optimization assume real-valued parameters (e.g. [7,18,30]), some
of which can be extended to handle integer parameters [8], or categorical and
boolean parameters [1,4,41]. Approaches also differ in assumptions on the cost of
evaluation. Expensive functions can take hours to evaluate, and thus the number
of evaluations is typically limited to a few hundred, while for less expensive func-
tions thousands of evaluations are common [38]. Other additional information
that can be exploited in so-called gray-box optimization are objective functions
of a known form (e.g. a sum of squares) the possibility of obtaining faster, less
accurate samples in multi-fidelity objective functions [2], or assumptions on con-
tinuity (e.g. the knowledge of the Lipschitz constant [33]). Typical surrogate
models include linear regression, kernel-based techniques (e.g. the radial basis
functions mentioned above), Gaussian processes, (gradient-boosted) regression
trees, random forests, and neural networks [9,31,39].

Most of the above approaches are concerned with optimization, and often
follow some sequential model-based strategy, that successively acquires a promis-
ing sample (e.g. of best objective function value or highest information gain),
updates the model, and returns the best sample when the computational budget
is spent. In contrast, in this paper we are concerned with static surrogate mod-
els that represent typical tuning landscape well, as outlined in the introduction
(requirements 1–4).

A collection of 110 hyperparameter optimization benchmarks, with 2 to 26
continuous, integer, categorical, or ordinal parameters has been introduced by
[15]. It focuses on ease-of-use, reproducibility and benchmarks with multiple
fidelity levels. All except six benchmarks which use random forests as a surrogate
model are provided in a form of lookup tables. Closer to our work, [5] introduce
a benchmark consisting of four expensive real-world problems (e.g. wind farm
layout) that take from 2 to 60 seconds per evaluation. Two of these problems
are continuous, two have mostly categorical variables. Besides comparing tuners,
they compare mean errors of seven surrogate models on the best 1K of random
samples, as well as samples collected during tuning on two problems. Experi-
ments show that random forests [34] and gradient boosted regression trees (via
XGBoost [6]) are among the best models, and these models tend to be more
accurate when trained on random samples.

[11] have compared eight models to construct surrogate benchmarks for
hyperparameter tuning, namely linear and ridge regression, two forms of support
vector machines, Gaussian processes, random forests, and gradient boosted trees.
Models have been built from 2K to 20K samples collected during the execution of
four tuners on nine datasets. The datasets have 3 to 36 categorical and continu-
ous parameters, with a dimension in [4, 82] after one-hot encoding of categorical
variables. Results show gradient boosted trees and random forests to have best
accuracy, as measured by root mean square error (RMSE) and Spearman’s rank



350 G. Delazeri et al.

correlation, followed by Gaussian processes, with random forests giving the most
“similar” tuned values. Even with similar values, however, a consistent ranking
of tuners on ground truth and surrogate models is not guaranteed. [14] extends
the former work to algorithm configuration by handling conditional variables
by imputation of default or midpoint values, imputation of censored data, and
explicitly handling of randomized algorithms. Quantile random forests serve as a
surrogate model. There are 11 scenarios with about 10–300 parameters and 30–
300 instance features, with nine scenarios predicting runtime. Experiments show
a reasonable reproduction of the rank of tuners over the course of the tuning
process.

Different from most of the above approaches, here we are interested in models
for parameter spaces (requirement 3) when instances features are not available,
and on approximating objective function values as opposed to running time,
which is the focus of most of the literature on models for algorithm tuning.

2 Surrogate Models for Optimization Algorithms

In this section we present the selected procedures for data pre-processing and
surrogate models. Concerning data pre-processing, all selected models are able
to handle real and integer parameters, so we have to define only how to handle
categorical and conditional variables to attend requirement 3. For categorical
variables, if the underlying surrogate model is not already able to handle them
directly, we test three encoding strategies: one-hot, binary, and by-index encod-
ing. In all three a variable with n categories is first mapped to an integer i P [n].
Then, for one-hot encoding i is mapped to ei, where ei “ (0, . . . , 1, . . . , 0) is the
ith unit vector, i.e. to n new binary variables; for binary encoding i is mapped to
its base-2 representation (i)2, leading to �log2 n� new binary variables; for index
encoding, i is used directly. The categorical variables include the instances. Since
the instances may have a considerable influence on the predicted variable, and
the number of instances is limited, we study two further strategies for this case:
instance-wise models, where we build an individual model for each instance,
and a combined model for all instances where we treat the instance as a nor-
mal categorical variable. For conditional variables, we impute values, and test
three strategies: imputing a fixed, chosen from the parameter’s domain uniformly
at random, imputing the default value, and imputing random values. We have
excluded out-of-domain, quantile, or mean imputation since previous work found
no significant differences to default imputation, which is similar to our strategy.

From previous work it is also clear that tree-based models are often competi-
tive [12,27]. Thus we include random forests and gradient boosted trees. We have
chosen two widely used implementations, random forest run [3] and ranger [44].
[16] have studied models for tabular data over real, integer and categorical fea-
tures, and have found two deep neural network architectures, namely ResNet
and FT-Transformer, as well as gradient boosted trees to be among the best
models. Therefore we include these two neural network architectures, as well
as two implementations of gradient boosted trees, namely CatBoost [35] and



Comparing Surrogate Models for Tuning Optimization Algorithms 351

XGBoost [6]. We did not include Gaussian process models in our study, since
previous work indicate that random forest perform better with large parameter
spaces with both numerical and categorical parameters [11].

The ResNet consists of a number of residual blocks, each block consisting of
two layers: a linear layer followed by a rectified linear unit (ReLU), and a second
linear layer. The residual blocks are followed by a final ReLU and a linear layer
that maps to the regression variable [19]. The FT-Transformer consists of a num-
ber of transformer blocks, each consisting of the typical multi-head attention with
query-key-value layers followed by a linear layer [42]). Categorical variables are
handled as proposed by [16], who propose a specific embedding for each possible
value. The number of layers of both architectures, as well as several other param-
eters are tuned following [16], as explained below in the experimental section.

Finally we include an interpolated tabular model, that uses Shephard’s
method of inverse distance weighting [37] with a definable cutoff after considering
the k closest samples. Closest samples are found by using the ball tree structure
from scikit-learn. For distance weighting we use the heterogeneous Euclidean-
overlap metric of [43]: for numerical parameters, the distance is defined as dif-
ference in parameter values, normalized to [0, 1]; for categorical parameters the
distance is 0 when parameter values are equal, and 1 otherwise. Undefined cat-
egorical values always have distance 1 to all other values.

All models are trained to learn to predict objective function values from the
ground truth data, i.e. our approach can be classified as pointwise learning-to-
rank (as opposed to learn to rank pairs or larger subsets of inputs directly).

3 Experimental Results

The main goal of the experiments is to compare the performance of the selected
models for modeling optimization landscapes. We use two measures to judge
performance. First, we measure the accuracy of the models in ranking pairs of
parameter settings. This is done by comparing pairs of samples from the test
set using the predicted and ground truth values. The accuracy is then defined
as the number of correctly predicted orders over all pairs. Accuracy values a are
in [0, 1] and are related to Kendall’s tau [29] by τ “ 2a ´ 1.

We first report on the effects of instance representation and pre-processsing
in Sect. 3.2. In Sect. 3.3 we analyze accuracy as measured by the relative root
mean squared error and Kendal’s τ . Finally, we measure the performance by the
fidelity with which the different models are able to reproduce effects that can be
observed on the ground truth data. For this experiment we have selected three
parameters of irace and compare it on different settings. These experiments are
explained in Sect. 3.4.

3.1 Methodology

We have done the experiments using the tuner irace [32]. The irace configura-
tor applies iterated racing, where in each iteration candidate parameter settings
are run on a number of instances, statistically significantly worse configurations



352 G. Delazeri et al.

are discarded, and new configurations are sampled according to a distribution
of good parameter values, which evolves with each candidate parameter set-
ting. These distributions are represented by their marginal distributions on each
parameter and converge to the best settings. If not otherwise specified we run
irace with default parameters, and run all tests with three fixed budgets. We
have chosen a maximum budget of 3K evaluations, the smallest possible budget
for irace of 780 evaluations, and an intermediate budget of 1890 evaluations.
Therefore the results do not depend on the concrete computing platform or the
running time. When running times are mentioned they have been obtained on
a PC with a 12-core AMD Ryzen 9 3900X processor with 32 of main memory,
running Ubuntu Linux 20.04. All models run in a server that responds queries on
parameter settings by irace, generated by a wrapper that replaces the algorithm
to be tuned. Our code is available at https://github.com/gutodelazeri/oracle.

Configuration Scenarios. We evaluate all surrogate models on two config-
uration scenarios, namely ACOTSP and LKH. Both are heuristic algorithms
for the symmetric traveling salesperson problem (TSP). We use 10 Random
Uniform Euclidean TSP instances with 2000 cities, generated using the port-
gen instance generator from the 8th DIMACS Implementation Challenge [28].
Both ACOTSP and LKH scenarios are part of the AClib benchmark library
for algorithm configuration [26]. The ACOTSP scenario implements ant colony
optimization algorithms for TSP [10]. We use ACOTSP version 1.03, available
at [40]. It has 4 real, 4 integer, and 3 categorical parameters; 5 of these param-
eters are conditional. The LKH scenario concerns the Lin-Kernighan-Helsgaun
algorithm for TSP [20–22]. We use LKH version 2.0.9 [23]. It has 12 integer and
9 categorical parameters, all of them unconditional. In both scenarios we use no
additional instance features, since we are only interested in building surrogate
models for the selected instances. We test, however, the case of a separate model
for each instance, see below, which arguably corresponds to the best possible set
of features for the selected instances.

Models. We summarize the selected models in Table 3.1. All models use their
default parameters, with the exception of the neural networks, which are tuned
using the process proposed by [16], and PyRFR, which uses the configuration
found by [13].

Model Instances Categoricals Imputation

Interpolation split, merged model-defined model-defined

CatBoost split, merged model-defined model-defined

XGBoost split, merged binary, one-hot, index fixed, default, random

skranger split, merged binary, one-hot, index fixed, default, random

PyRFR split, merged binary, one-hot, index fixed, default, random

FT-Transformer merged model-defined model-defined

ResNet merged model-defined model-defined

https://github.com/gutodelazeri/oracle


Comparing Surrogate Models for Tuning Optimization Algorithms 353

Datasets. For each of the above scenarios we created a dataset by sampling
5K configurations uniformly at random for each instance, for a total of 50K
samples with their corresponding (ground truth) objective function value. In
both scenarios objective function values were obtained by fixing the seed of
the pseudo-random generator to 1, i.e. we limit ourselves here to studying a
deterministic version of both algorithms. The cost metric for both scenarios is
the objective function value obtained after a running time limit of 10 s. Samples
for ACOTSP have been obtained with a single trial (tries=1), those for LKH
with a single run (RUNS=1).

In the experiments, these datasets are split into a training set, a test set,
and a validation set. We use three sizes of the training set, namely 300, 3K, and
30K samples. Training sets are generated to be laminar, i.e. smaller training sets
are contained in larger ones. The remaining samples are evenly split among the
test and the validation set. The test set is used for tuning the architecture of
the neural networks (FT-Transformers and ResNets). We study all models with
these three sizes, except for the models based on neural networks which require
a higher number of samples and therefore are trained only with a training set of
size 30K. To evaluate accuracy in Sects. 3.2 and 3.3 we select 5K samples from
the test and validation set.

For handling categorical variables we study three ways of encoding them, as
mentioned above: binary encoding, one-hot encoding, and encoding by the index.
These encodings are applied to all models which cannot handle categorical data
directly, namely gradient-boosted trees as implemented by XGBoost, and ran-
dom forests as implemented in skranger and PyRFR. skranger has support for
declaring variables to be categorical. However, these variables have to be numer-
ical. For this reason, we test in skranger all encodings, but declare the encoding
variables as categorical. We set handling of categorical values in skranger to con-
sider all partitions (respect_categorical_features="partition"), since the
number of values in the dataset is small, and testing all partitions will give the
best possible splits.

For handling different instances we test two strategies: training a surrogate
model for each instance individually, or training a single surrogate model for all
instances. These strategies are called “split” and “merged”, respectively, in the
experiments below. For “merged” models the instance is added as an additional
categorical variable to the dataset, and is subject to the above transformations
of categorical variables, when applicable.

In summary, the XGBoost model and the random forests (skranger, PyRFR)
require imputation of missing values and encoding of conditionals; CatBoost,
and the neural networks can handle all parameters as given. Furthermore, the
interpolation baseline also does not need any pre-processing.

3.2 Effects of Instance Representation and Pre-processing

In a first experiment we analyze the influence of the representation of the
instances, the parameter imputation for conditional variables, and handling of



354 G. Delazeri et al.

categorical variables. Table 1 shows for the three different sample sizes the aver-
age relative root mean squared error (RRMSE) R and the average Kendall’s τ
for the different strategies. Averages apply only to the models for which different
strategies have been applied (see Table 3.1). In the comparisons below we report
p-values of sign tests comparing errors and τ values over all models.

Table 1. Relative root mean squared error R and Kendall’s τ for different sample sizes
N , and different representation, imputation, and encoding strategies.

N Instance Imputation Encoding
Merged Split Default Fixed Random One hot Binary Index
R τ R τ R τ R τ R τ R τ R τ R τ

300 0.26 0.48 0.27 0.46 0.14 0.50 0.14 0.47 0.14 0.51 0.26 0.47 0.27 0.45 0.26 0.48
3000 0.15 0.63 0.16 0.61 0.08 0.67 0.09 0.67 0.09 0.63 0.15 0.64 0.16 0.61 0.15 0.62
30000 0.07 0.78 0.08 0.76 0.04 0.78 0.04 0.78 0.05 0.75 0.07 0.79 0.08 0.75 0.07 0.78

We can observe that errors decrease and Kendall’s τ consistently increases
with increasing sample sizes. For 30K samples all RRMSE are below 0.1, and
the value of Kendall’s τ above 0.75. Turning to representation of instances, we
find that using a single model (strategy “merged”) is better than strategy “split”
which models each instance individually (all p ă 0.001). Note that since we
have 10 instances, each individual model is built with only 10% of the samples.
We next look at the imputation strategy. In this case averages are only over the
ACOTSP scenario, since scenario LKH does not have conditional variables. Here
differences are only significant for larger sample sizes, and indicate that imputing
fixed or default values tends to be better than imputing random values for 3K
samples (all p ă 0.004) and for 30K samples (all p ă 0.001), but not significantly
different from each other. Finally we turn to the encoding. Here we find that
binary and index encoding are not significantly different (all p ą 0.02), but for
larger sample size one-hot encoding performs better than the other strategies
(all p ă 0.001 for 3K and 30K samples).

Based on these results, we focus in the remaining experiments on a single
model, and fix imputation and encoding strategies, where they apply, to “fixed”
and “one-hot”, and compare the resulting seven models.

3.3 Accuracy of the Surrogate Models

Table 2 shows RRMSE and Kendall’s τ for the seven selected models, both sce-
narios and all three samples sizes, except for the neural networks, which have
been trained only with 30K samples. Again we can see that RRMSE decreases
and Kendall’s τ in agreement increases with the sample size. We also can see that
the error for scenario LKH is considerably higher than for ACOTSP. A sample
size of 300 seems inadequate for a good prediction, and increasing the number of
samples to 3K and then 30K quality improves considerably, in particular for sce-
nario LKH, although it remains harder to predict, with RRMSE values of about



Comparing Surrogate Models for Tuning Optimization Algorithms 355

0.1. The baseline model using interpolation shows worse performance, although
it is not far off from the other models. Overall both two gradient-boosted trees
and the random forest pyRFR work well, and the Transformer-based neural
network has the best performance.

Table 2. Relative root mean squared error R and Kendall’s τ for different sample sizes
N , and both scenarios for all seven selected models.

Scen. Model 300 3K 30K
R τ R τ R τ

ACOTSP Interpolation 0.14 0.57 0.10 0.67 0.07 0.78
ACOTSP skranger 0.14 0.49 0.09 0.68 0.05 0.79
ACOTSP PyRFR 0.13 0.50 0.08 0.71 0.04 0.81
ACOTSP XGBoost 0.13 0.54 0.06 0.72 0.03 0.79
ACOTSP CatBoost 0.12 0.66 0.07 0.74 0.03 0.82
ACOTSP ResNet ´ ´ ´ ´ 0.02 0.80
ACOTSP FT-Transformer ´ ´ ´ ´ 0.02 0.84
LKH Interpolation 0.45 0.15 0.36 0.30 0.19 0.71
LKH skranger 0.45 0.36 0.29 0.52 0.12 0.77
LKH PyRFR 0.44 0.45 0.23 0.59 0.09 0.83
LKH XGBoost 0.43 0.48 0.24 0.66 0.09 0.80
LKH CatBoost 0.45 0.44 0.20 0.65 0.10 0.78
LKH ResNet ´ ´ ´ ´ 0.10 0.74
LKH FT-Transformer ´ ´ ´ ´ 0.09 0.80

3.4 Agreement in Reproduction of Effects

In this section we assess how well the surrogate models can replicate the observ-
able effects caused by changing the default configuration of irace. We have
selected the three parameters shown in Table 3 and set them to the two listed
levels, with all remaining parameters kept at their defaults. Then we compare
the ground truth (i.e. irace executing the algorithms) to the results obtained
using the surrogate models trained with 30K samples. For the comparison we
ran irace with the three budget values 780, 1890, and 3000 as explained above,
and replicate each run 10 times with different seeds for irace. The best obtained
configuration is then evaluated on all 10 instances.

To compare the models, we follow [13] and introduce scores that reflect the
concordance of effects in surrogate models with the ground truth. For each of the
three budgets and two scenarios, we compare the objective values found by the
best configuration for a high and low level of one of the three parameters. The
comparison is based on a Mack-Skillings test with a confidence level α “ 0.05
and Bonferroni correction for multiple tests. In each case we attribute a score



356 G. Delazeri et al.

Table 3. Selected parameters of irace with a brief description, and the tested levels.

Parameter Description Levels

firstTest No. of instances evaluated before first statistical test 2, 10
elitistLimit Max. no. of statistical tests without elimination 1, 5
confidence Confidence level of statistical test 0.2, 0.95

Table 4. Overall scores for all seven models, three effects, and two scenarios.

Model Confidence ElitistLimit firstTest
ACOTSP LKH ACOTSP LKH ACOTSP LKH

CatBoost 0.17 0.00 0.00 0.00 0.00 0.33
FT-Transformer 0.17 0.00 0.00 0.00 0.00 0.33
Interpolation 0.17 0.00 0.00 0.00 0.33 0.33
PyRFR 0.17 0.00 0.00 0.00 0.00 0.33
XGBoost 0.33 0.33 0.00 0.00 0.00 0.33
resnet 0.33 0.17 0.00 0.00 0.00 0.33
skranger 0.33 0.17 0.00 0.00 0.00 0.33

that is 0, if the low level is significantly higher, 0.5 if both levels are statistically
not different, and 1 if the high level is significantly higher. To compare a model
to the ground truth, we report the average absolute distance of the model’s
scores to the scores of the ground truth. In this model, a score of 0 corresponds
to complete agreement with the ground truth, and a score of 1 to complete
disagreement.

Table 4 shows the results. We can see that there is overall a very good agree-
ment of models and ground truth, with scores never higher than 0.33, with one
exception. Models of best accuracy, as reported in the previous section, also have
best scores, with two exceptions: the interpolation baseline has also a compara-
ble score, while XGBoost is slightly worse on parameter “confidence”. A closer
look at the ground truth shows that for parameter “elitistLimit” the effects are
not statistically significant. This explains the good scores for all models, which
also find no effect, but limits the scope of the conclusions. In contrast, setting
parameter “firstTest” to the high level is in four of six cases statistically different,
and the models are able to reproduce this effect mostly.

We finally have a look at evaluation times, to see to what extent requirement 1
is satisfied. Average evaluation times per call to the models ranges from 1ms to
about 160ms with two neural networks being the slowest to evaluate (without
using a GPU). Therefore, in our experiments speedups range from 50 to 10000.
Since the evaluation times are independent from algorithm execution times and
grow only slowly with the number of samples, clearly speedups will grow with
algorithm execution times.



Comparing Surrogate Models for Tuning Optimization Algorithms 357

4 Conclusions

In this paper we have compared surrogate models for the tuning of optimization
algorithms, including several strategies for handling categorical and conditional
variables, if the underlying model cannot represent them directly, and two ways
for handling instances, namely by a single model or by per-instance models. We
find that a one-hot encoding with a fixed value imputation and a combined model
work best. Among the models one based on random forests (pyRFR) and two
gradient-boosted trees (XGBoost, CatBoost) work well. A neural network (FT-
Transformer) has the overall best performance. This also holds when evaluating
the agreement of the surrogate models to the ground truth with the effects of
changing tuner parameters, although XGBoost performs worse in this setting.
Overall we can confirm that models that have been found to work well in the
literature for surrogate models for hyperparameter optimization and execution
time, also work well for objective function values, and that neural networks
maybe an interesting alternative, which confirms findings of [16] with regard to
tabular data. In future work, we plan to extend the scope of this study to more
scenarios and a broader selection of tuners and models.

Acknowledgments. This research has been supported by Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. M. de
Souza acknowledges the support of the Santa Catarina State University, Brasil. M. Ritt
acknowledges the support of CNPq, Brasil (grant 437859/2018-5) and Google Research
Latin America (grant 25111).

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a nextgenera-
tion hyperparameter optimization framework. In: Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2019)

2. Astudillo, R., Frazier, P.I.: Thinking inside the box: a tutorial on grey-box bayesian
optimization. In: Proceedings of the 2021 Winter Simulation Conference, December
2021

3. AutoML. RFR: A extensible C++ library for random forests with Python bindings,
December 2022. https://github.com/automl/random_forest_run

4. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Dasgupta,
S., McAllester, D. (eds.) Proceedings of the 30th International Conference on
Machine Learning, vol. 28. Proceedings of Machine Learning Research 1. Atlanta,
Georgia, USA: PMLR, June 2013, pp. 115–123. https://proceedings.mlr.press/v28/
bergstra13.html

5. Bliek, L., Guijt, A., Karlsson, R., Verwer, S., de Weerdt, M.: EXPObench: bench-
marking surrogate-based optimisation algorithms on expensive black-box func-
tions. In: CoRR abs/2106.04618 (2021). arXiv: 2106.04618

6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, San Francisco (2016). ISBN: 978-1-
4503-4232-2. https://doi.org/10.1145/2939672.2939785

https://github.com/automl/random_forest_run
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
http://arxiv.org/abs/2106.04618
https://doi.org/10.1145/2939672.2939785


358 G. Delazeri et al.

7. Claesen, M., Simm, J., Popovic, D., Moreau, Y., Moor, B.D.: Easy hyperparameter
search using optunity. In: CoRR abs/1412.1114 (2014). arXiv: 1412.1114

8. Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimiza-
tion with costly function evaluations. Math. Program. Comput. 10(4), 597–629
(2018). https://doi.org/10.1007/s12532-018-0144-7

9. Cowen-Rivers, A., Lyu, W., Wang, Z., Tutunov, R., Jianye, H., Wang, J., Ammar,
H.: HEBO: heteroscedastic evolutionary bayesian optimisation, December 2020.
https://valohaichirpprod.blob.core.windows.net/papers/huawei.pdf

10. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
11. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmark-

ing of hyperparameter optimizers via surrogates. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30
January 2015, pp. 1114–1120. AAAI Press, Austin (2015). http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9993

12. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmark-
ing of hyperparameter optimizers via surrogates. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–
30 January, 2015, pp. 1114–1120. AAAI Press, Austin (2015). http://ceur-ws.org/
Vol-1201/paper-06.pdf

13. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Effi-
cient benchmarking of algorithm configuration procedures via model-based surro-
gates. In: CoRR abs/1703.10342 (2017). arXiv: 1703.10342

14. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Effi-
cient benchmarking of algorithm configurators via model-based surrogates. In:
Mach. Learn. 107(1), 15–41 (2018). https://doi.org/10.1007/s10994-017-5683-z

15. Eggensperger, K., et al.: HPOBench: a collection of reproducible multi-fidelity
benchmark problems for HPO. In: Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2) (2021)

16. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning
models for tabular data. In: CoRR abs/2106.11959 (2021). arXiv: 2106.11959

17. Gutmann, H.-M.: A radial basis function method for global optimization. In: J.
Global Optim. 19(3), 201–227 (2001). issn: 0925–5001. https://doi.org/10.1023/
A:1011255519438

18. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2016. https://doi.org/10.1109/cvpr.2016.90

20. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

21. Tinós, R., Helsgaun, K., Whitley, D.: Efficient recombination in the Lin-Kernighan-
Helsgaun traveling salesman heuristic. In: Auger, A., Fonseca, C.M., Lourenço, N.,
Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp.
95–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_8

22. Helsgaun, K.: General k-opt Submoves for the Lin-Kernighan TSP Heuristic. Math.
Programm. Comput. 1(2-3), 119–163 (2009)

23. Helsgaun, K.: Source Code of the Lin-Kernighan-Helsgaun Traveling Salesman
Heuristic (2018). http://webhotel4.ruc.dk/~keld/research/LKH

http://arxiv.org/abs/1412.1114
https://doi.org/10.1007/s12532-018-0144-7
https://valohaichirpprod.blob.core.windows.net/papers/huawei.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://ceur-ws.org/Vol-1201/paper-06.pdf
http://ceur-ws.org/Vol-1201/paper-06.pdf
http://arxiv.org/abs/1703.10342
https://doi.org/10.1007/s10994-017-5683-z
http://arxiv.org/abs/2106.11959
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1007/978-3-319-99253-2_8
http://webhotel4.ruc.dk/~keld/research/LKH


Comparing Surrogate Models for Tuning Optimization Algorithms 359

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3_40

25. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009).
https://doi.org/10.1613/jair.2861

26. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H.H., Leyton-
Brown, K., Stützle, T.: AClib: a benchmark library for algorithm configuration. In:
Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014.
LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09584-4_4

27. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artif. Intell. 206, 79–111 (2014). https://doi.org/10.1016
%2Fj.artint.2013.10.003. https://doi.org/10.1016/j.artint.2013.10.003

28. Johnson, D.S., McGeoch, L.A., Rego, C., Glover, F.: 8th DIMACS Implementation
Challenge: The Traveling Salesman Problem (2001). http://dimacs.rutgers.edu/
archive/Challenges/TSP

29. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1-2), 81–93
(1938). https://doi.org/10.1093/biomet/30.1-2.81

30. Klein, A., Dai, Z., Hutter, F., Lawrence, N., González, J.: Meta-surrogate bench-
marking for hyperparameter optimization. In: Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems. Curran Associates
Inc., Red Hook (2019)

31. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. In: CoRR (2021). arXiv: 2109.09831 [cs.LG]

32. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

33. Malherbe, C., Vayatis, N.: Global optimization of lipschitz functions. In: Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70, ICML
2017. Sydney, NSW, Australia: JMLR.org, pp. 2314–2323 (2017)

34. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

35. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost:
unbiased boosting with categorical features. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems. NIPS 2018, pp.
6639–6649. Curran Associates Inc., Montréal (2018)

36. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976).
https://doi.org/10.1016/S0065-2458(08)60520-3

37. Shepard, D.: A two-dimensional interpolation function for irregularlyspaced data.
In: Proceedings of the 1968 23rd ACM National Conference. ACM Press (1968).
https://doi.org/10.1145/800186.810616

38. Škvorc, U., Eftimov, T., Korošec, P.: GECCO black-box optimization competi-
tions. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, July 2019. https://doi.org/10.1145/3319619.3321996

39. Springenberg, J.T., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with
robust bayesian neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol.
12. Curran Associates Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/
a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1016%2Fj.artint.2013.10.003
https://doi.org/10.1016%2Fj.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://dimacs.rutgers.edu/archive/Challenges/TSP
https://doi.org/10.1093/biomet/30.1-2.81
http://arxiv.org/abs/2109.09831
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/3319619.3321996
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf


360 G. Delazeri et al.

40. Stützle, T.: ACOTSP: a software package of various ant colony optimization algo-
rithms applied to the symmetric traveling salesman problem (2002). http://www.
aco-metaheuristic.org/aco-code

41. Turner, R., et al.: Black-Box Optimization for Machine Learning (2020). https://
github.com/rdturnermtl/bbo_challenge_starter_kit

42. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems, vol. 30. Cur-
ran Associates Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

43. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif.
Intell. Res. 6, January 1997. https://doi.org/10.1613/jair.346

44. Wright, M.N., Ziegler, A.: Ranger: a fast implementation of random forests for
high dimensional data in C++ and R. J. Stat. Softw. 77(1 )(2017). https://doi.
org/10.18637/jss.v077.i01

http://www.aco-metaheuristic.org/aco-code
http://www.aco-metaheuristic.org/aco-code
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1613/jair.346
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

	Comparing Surrogate Models for Tuning Optimization Algorithms
	1 Introduction
	1.1 Related Work

	2 Surrogate Models for Optimization Algorithms
	3 Experimental Results
	3.1 Methodology
	3.2 Effects of Instance Representation and Pre-processing
	3.3 Accuracy of the Surrogate Models
	3.4 Agreement in Reproduction of Effects

	4 Conclusions
	References




