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Abstract. The paper aims to deal with the reallocating supply prob-
lem that result from the order promising process under overproduction.
To this end, we develop a competitive distribution model to facilitate
decision-making for order managers and to provide an intelligent sup-
port tool. The basis of the distribution model structure is a non-linear
constrained optimization program that intends to minimize the costs of
competing suppliers in case of an overproduction strategy. We obtain
explicit conditions for orders relocation under affine delivery costs. An
explicit form of conditions on the current delivery pattern will allow one
to develop intelligent tools for decision-making support in the field of
order management.

Keywords: Nonlinear optimization · Resource allocation problem ·
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1 Introduction

The order penetration point defines the stage in the manufacturing value chain
where a particular product is linked to a specific customer order through different
product delivery strategies, such as make-to-stock, assemble-to-order, make-to-
order and engineer-to-order [13]. In this paper, we study the case of an overpro-
duction strategy for supplier to avoid shortage. During the order promising pro-
cess, distributors normally make commitments with customers about the quanti-
ties and dates of orders. However, unexpected events may happen that could lead
to a shortage supply. Researchers pointed out several causes of these unexpected
events: (i) arrival of more priority customer orders that require already reserved
products; (ii) delays in raw materials or components; (iii) machine breakdowns;
(iv) workers absenteeism, among others [4]. These events might lead to the possi-
bility of making partial or delayed deliveries, i.e., the shortage situation. In par-
ticular, cyclical industries face alternating periods of undersupply, when buyers
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know that a shortage is imminent and rationing will occur. Thus, suppliers can
follow overproduction strategy to avoid partial, delayed and cancelled deliveries.

In practice, when supply delivery time increases, customers make multiple
orders with the same supplier or with different suppliers. Such multiple orders
may overload the capacity of a distribution network and increase lead-time. In
the literature, there are studies of shortage gaming as a leading contributor to
the bullwhip phenomenon [15]. Researchers considered shortage decision poli-
cies, investigated an integrated production and maintenance planning model
with time windows and shortage costs [2,11]. Machine learning techniques for
reducing underproduction costs and overproduction costs were developed [6]. In
this paper, we develop the distribution model that intends to minimize the costs
of competing suppliers in case of an overproduction strategy. We show that the
side effect of this strategy is the relocation of order deliveries in a distribution
network. The basis of the model structure is a non-linear constrained optimiza-
tion program.

Samuelson constructed the net social pay-off function and offered the first
mathematical formulation of equilibrium commodity flow assignment problem
in a network of finished goods in a form of constrained optimization program
[16]. The supply-demand allocation pattern, which satisfies this program, is
called equilibrium. Researchers generalized this model for the network of multi-
commodity goods and, nowadays, this model is called spatial equilibrium model
[18]. Worth mentioning that this model takes into account relationships between
supply, demand and logistics costs. The study of general optimality conditions
for this program is given in [5].

Today the problem of supply allocation in distribution networks is highly
urgent. In particular, researchers discuss on implementation of this model when
investigate actual transportation networks [19]. Some of them concentrate on
spatial models under imperfect competition, others study integration of distri-
bution networks under perfect competition [3,9,20]. On the one hand, the non-
identity of equilibrium models for distribution networks and integrative models
with non-zero commodity flow is pointed out [1,12]. On the other hand, equi-
librium spatial models demonstrate explainability and methodological potential
for the analysis of commodity flows and pricing in logistic networks [7,17].

Recently, the conditions on active flows in a network of homogeneous goods
were obtained explicitly under linear mappings of elastic demand and supply [8].
However, when manufacturing faces such uncertainties as overproduction (short-
age), supply (demand) can no longer consider elastic. In this paper, we study
the reallocating supply problem that result from the order promising process
under overproduction. We develop a competitive distribution model to facilitate
decision-making for order managers and to provide an intelligent support tool.
Section 2 contains the basis of the distribution model in a form of the non-linear
constrained optimization program that intends to minimize the costs of compet-
ing actors suppliers and customers. In Sect. 3, we obtained explicit conditions
for orders relocation under affine delivery costs. An explicit form of conditions
on the current delivery pattern will allow one to develop intelligent tools for
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decision-making support in the field of order management. Section 4 discusses
on strategies of suppliers under overproduction. Conclusions are given in the last
section of the paper.

2 Equilibrium Flow Allocation in a Single-Commodity
Network

Consider the set of suppliers M and the set of customers N , which are associated
with commodity production, distribution, and consumption. We denote by si

the supply of i ∈ M , and by λi – the price of a unit of the ith supply, λ =
(λ1, . . . , λm)T. By dj we denote the demand of j ∈ N , and by μj – the price of a
unit of the jth demand, μ = (μ1, . . . , μn)T. Finally, let xij ≥ 0 be the commodity
volume between a pair (i, j), while cij(xij) is the delivery cost of a unit of xij .
Let us also introduce the indicator of delivery status:

δij =
{

1 for xij > 0,
0 for xij = 0,

∀(i, j) ∈ M × N.

Definition. The allocation pattern x is called equilibrium if

λi + cij(xij) = μj for xij > 0,
λi + cij(xij) ≥ μj for xij = 0,

∀(i, j) ∈ M × N.

Thus, if the sum of the supplier’s price and the delivery costs for a customer
exceeds his/her demand price, then the supplier will face with the cancelled
delivery.

An equilibrium allocation pattern can be obtain as a solution of the following
optimization problem [10,14]:

min
x

∑
i∈M

∑
j∈N

xij∫
0

cij(u)du

subject to ∑
j∈N

xij = si ∀i ∈ M,

∑
i∈M

xij = dj ∀j ∈ N,

xij ≥ 0 ∀i, j ∈ M × N,

under ∑
i∈M

si =
∑
j∈N

dj .

In this paper, we develop a competitive distribution model based on the above
non-linear constrained optimization program. We show that this model facilitates
decision-making for order managers and provides an intelligent support tool. To
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this end, we obtain explicit conditions for orders relocation under affine delivery
costs. Obtained supply relocation policy in a distribution network under over-
production is appeared to allow order manager relocate supply among customers
in order to avoid cancelled deliveries. This relocation guarantees minimum costs
for all customers caused by the unexpected shortage.

3 Competitive Supply Allocation in a Distribution
Network Under Overproduction

Let us study a competitive supply allocation in a distribution network modelled
by a single-commodity network with m suppliers and one customer (i.e., |M | = m
and |N | = 1). We assume that available supply is more than the overall demand:

d <
∑
i∈M

si.

In other words, a distributor faces competitive supply relocation in a distribution
network under overproduction. Thus, we introduce Δ > 0 as an overproduction
value: ∑

i∈M

si − d = Δ, (1)

while εi ≥ 0 as the difference between i-th demand and its actual delivery volume,
i, i ∈ M , ε = (ε1, ε2, . . . , εm):

∑
i∈M

(si − xi) =
∑
i∈M

εi = Δ. (2)

In terms of a single-commodity network, the allocation pattern x∗, which satisfies
the following optimization problem:

x∗ = arg min
x

∑
i∈M

xi∫
0

ci(u)du, (3)

subject to ∑
i∈M

xi = d,

xi = si − εi, ∀i ∈ M,
xi ≥ 0, ∀ i ∈ M,
εi ≥ 0, ∀i ∈ M,∑

i∈M

εi = Δ.

(4)

is the equilibrium deliveries allocation under overproduction.
Within the present paper, we examine equilibrium allocation in a case of

affine delivery functions. In other words, we assume that

ci(z) = c0
i + kiz, c0

i ≥ 0, ki > 0, ∀i ∈ M, (5)

i.e., delivery costs increase when the volume of the order increases.
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Lemma 1. Equilibrium deliveries allocation of overproduction in problem (3)–
(4) under affine delivery costs (5) is obtained be the following pattern:

xi =

{
μ−λi−c0i

ki
, if μ − λi > c0

i ,

0, if μ − λi ≤ c0
i ,

∀i ∈ M, (6)

where λ and μ satisfy
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈M

μ−λi−c0i
ki

δi = d,

μ−λi−c0i
ki

δi = si − εi, ∀i ∈ M∑
i∈M

εi = Δ

λi = η, if εi > 0
λi = η + βi, if εi = 0

(7)

Proof. Since goal function (3) is convex as well as the restriction set (4), then
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient. Let us
study the Lagrangian of problem (3)–(4):

L =
∑
i∈M

xi∫
0

(c0
i + kiu)du + μ

(
d −

∑
i∈M

xi

)
+

+
∑
i∈M

λi (xi − si + εi) +
∑
i∈M

(−αixi)+

+
∑
i∈M

(−βiεi) + η

(
Δ −

∑
i∈M

εi

)
.

We differentiate this Lagrangian with respect to xi and εi, i ∈ M , and equate
the results to zero:

∂L

∂xi
= c0

i + kixi − μ + λi − αi = 0 ∀i ∈ M, (8)

∂L

∂εi
= λi − βi − η = 0 ∀i ∈ M. (9)

According to complementary slackness,

− αixi = 0, ∀i ∈ M, (10)

− βiεi = 0, ∀i ∈ M. (11)

Using (10), due to (8) we obtain:

xi =

{
μ−λi−c0i

ki
, if μ − λi > c0

i ,

0, if μ − λi ≤ c0
i ,

∀i ∈ M,
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that leads to (6). Moreover, due to (9) and (11), we obtain:

λi =
{

η, if εi > 0,
η + βi, if εi = 0,

∀i ∈ M.

However, since
∑

i∈M

xi = d and xi = si − εi, i ∈ M , then:

∑
i∈M

xiδi = d, (12)

xiδi = si − εi ∀i ∈ M. (13)

Therefore, taking into account
∑

i∈M

εi = Δ, when one substitutes the expression

of xi, i ∈ M , into (12)–(13), we obtain (7). ��
Without loss of generality, we order suppliers as follows:

c0
1 + k1s1 ≥ c0

2 + k2s2 ≥ · · · ≥ c0
m + kmsm. (14)

Theorem 1. If there is m̄ such that
⎧⎪⎪⎨
⎪⎪⎩

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

< Δ, ∀τ = 1, . . . , m̄,

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

≥ Δ, ∀τ = m̄ + 1, . . . ,m,

then

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if c0
i ≥

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

,

m̄∑

l=1
sl−Δ+

m̄∑

l=1

c0l −c0i
kl

ki

m̄∑

l=1

1
kl

, if c0
i <

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

,

∀i = 1, m̄,

and xi = si for all i = m̄ + 1,m.

Proof. I. Let us introduce M̄ ⊆ M such that εi > 0 for all i ∈ M̄ . We summarize
equalities μ−λi−c0i

ki
= si − εi, i ∈ M , for all i ∈ M̄ :

∑
i∈M̄

μ − λi − c0
i

ki
=

∑
i∈M̄

si − Δ,

due to λi = η, for all i ∈ M̄ , we obtain:

∑
i∈M̄

μ − η − c0
i

ki
=

∑
i∈M̄

si − Δ
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or

η =

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

. (15)

II. Since
μ − λi − c0

i

ki
= si, ∀i ∈ M\M̄,

or, in a matrix form,

⎛
⎜⎜⎜⎜⎝

− 1
ki1

0 . . . 0
0 − 1

ki2
. . . 0

...
...

. . .
...

0 0 . . . − 1
kim̄

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λi1

λi2
...

λim̄

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

si1 − μ−c0i1
ki1

si2 − μ−c0i2
ki2

...

sim̃
− μ−c0iñ

kim̄

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then
λi = μ − c0

i − siki, ∀i ∈ M\M̄. (16)

According to
λi = η, if εi > 0,
λi = η + βi, if εi = 0,

∀i ∈ M,

that is
λi = η, ∀i ∈ M̄,
λi = η + βi, ∀i ∈ M\M̄,

one can see λi ≥ η, for all i ∈ M\M̄ . Thus, due to (15) and (16), we obtain:

μ − c0
τ − sτkτ ≥

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

, ∀τ ∈ M\M̄,

while, since
∑

i∈M̄

1
ki

> 0, then

(
μ − c0

τ − sτkτ

) ∑
i∈M̄

1
ki

≥
∑
i∈M̄

μ − c0
i

ki
−

∑
i∈M̄

si + Δ, ∀τ ∈ M\M̄,

or ∑
i∈M̄

μ − c0
τ − sτkτ

ki
≥

∑
i∈M̄

μ − c0
i − siki

ki
+ Δ, ∀τ ∈ M\M̄,

Eventually, we obtain:

∑
i∈M̄

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
ki

≥ Δ, ∀τ ∈ M\M̄. (17)
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III. Since xτ < sτ for all τ ∈ M̄ , then for τ ∈ M̄ either sτ > xτ = 0 or
sτ > xτ > 0. Thus, according to (6), we obtain

λτ = μ − c0
τ − kτxτ , if xτ > 0,

λτ ≥ μ − c0
τ , if xτ = 0,

∀τ ∈ M̄.

Taking into account kτsτ > 0, for all τ ∈ N , we can re-write this system as
follows:

λτ = μ − c0
τ − kτxτ , if xτ > 0,

λτ > μ − c0
τ − kτsτ , if xτ = 0,

∀τ ∈ M̄.

Since λτ = η and xτ < sτ , for all τ ∈ M̄ , then

η > μ − c0
τ − kτsτ , ∀τ ∈ M̄.

Due to (15), we obtain:

μ − c0
τ − kτsτ <

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

∀τ ∈ M̄,

i.e., ∑
i∈M̄

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
ki

< Δ ∀τ ∈ M̄. (18)

IV. If customers are ordered according to (14), then

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
= ti(si) − tτ (sτ )

{
≥ 0, if i < τ,

≤ 0, if i > τ.

If τ = 1, then
ci(si) − c1(s1)

ki
≤ 0, ∀i ∈ M.

Since Δ > 0, then τ = 1 /∈ M\M̄ , i.e., τ = 1 ∈ M̄ . If τ = 2, then
{

c1(s1) − c2(s2) ≥ 0,

ci(si) − c2(s2) ≤ 0, ∀j = 2, . . . ,m.
(19)

Hence, either
c1(s1) − c2(s2)

k1
≥ Δ

or
c1(s1) − c2(s2)

k1
< Δ.

If c1(s1)−c2(s2)
k1

≥ Δ, then, due to (14),

Δ ≤ c1(s1) − c2(s2)
k1

≤ c1(s1) − ci(si)
k1

, ∀j = 2, . . . , m.
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Thus, we obtain:
M̄ = {1}, M\M̄ = {2, . . . , n}. (20)

However, if c1(s1)−c2(s2)
k1

< Δ, then, due to (19), τ = 2 /∈ M\M̄ , i.e., τ = 2 ∈ M̄ .
Such a chain of reasoning leads to the existence of required m̄, 1 ≤ m̄ ≤ n.

V. Due to xi = si − εi and εi = 0 for all i = m̄ + 1,m, then

xi = si, i = m̄ + 1,m.

Moreover, due to (6) under λi = η for all i = 1, m̄, we have

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if c0
i ≥

m̄∑

l=1

c0i +slkl
kl

−Δ

m̄∑

l=1

1
kl

μ−η−c0i
ki

, if c0
i <

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

i = 1, m̄,

which is the required expression, due to (15). ��
Theorem 1 gives the supply relocation policy in a distribution network under

overproduction. In other words, the supply can be relocated among customers in
such a way to avoid cancelled orders. This relocation guarantees minimum costs
for all customers caused by the unexpected shortage.

4 Strategies of Suppliers Under Overproduction

Let us consider the order management policy of suppliers in case of an overpro-
duction strategy (Fig. 1).

Fig. 1. Order management: strategies of suppliers under overproduction
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Assume that the green supplier has four customers (Fig. 1a). We tend to study
risks that can arise when the yellow supplier appears to offer its overproduction
(Fig. 1b). One can see that customers 1, 2, and 3 are located quite close to the
green supplier, while customers 2, 3, and 4 are located quite close to the yellow
one. According to Theorem 1, if

c0
τ ≥

m̄∑
l=1

c0l +slkl

kl
− Δ

m̄∑
l=1

1
kl

, (21)

then the customer τ can cancel order and change the supplier for the closer one.
Moreover, according to Theorem 1, xi = si for i = m̄ + 1,m, while

c0
1 + k1s1 ≥ c0

2 + k2s2 ≥ · · · ≥ c0
m + kmsm, (22)

and ⎧⎪⎪⎨
⎪⎪⎩

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

< Δ, ∀τ = 1, . . . , m̄,

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

≥ Δ, ∀τ = m̄ + 1, . . . ,m.
(23)

In other words, a customer choose the closest suppliers with small orders rather
than large order from distant supplier. Moreover, if

c0
i <

m̄∑
l=1

c0l +slkl

kl
− Δ

m̄∑
l=1

1
kl

, (24)

then

xi =

m̄∑
l=1

sl − Δ +
m̄∑

l=1

c0l −c0i
kl

ki

m̄∑
l=1

1
kl

, (25)

for all i = 1, m̄ from (23), where (25) is the value of a partially confirmed order.
Hence, a supplier has the following set of risks (Table 1).

Table 1. Scenarios for decision-making support.

Evaluation Scenario Risk

Inequality (21) holds Delivery cost exceeds the equilibrium Cancelled

Value for the given distribution network Order

Inequality (24) holds Delivery cost is less than the equilibrium Partial order

Value for the given distribution network Confirmation
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Therefore, if suppliers follow an overproduction strategy in order to avoid
the shortage, they can face several risks raised as side effects of this strategy.
The first risk is the cancelled order. In other words, if inequality (21) holds, the
customer can cancel his/her order and choose another supplier. The second risk
is partial order confirmation. Indeed, if inequality (24) holds, the customer can
confirm the part of the order and choose another supplier for the rest.

5 Conclusion

The paper aimed to deal with the reallocating supply problem that result from
the order promising process under overproduction. To this end, we developed a
competitive distribution model to facilitate decision-making for order managers
and to provide an intelligent support tool. The basis of the distribution model
structure was a non-linear constrained optimization program that intends to
minimize the costs of competing suppliers in case of an overproduction strategy.
We obtained explicit conditions for orders relocation under affine delivery costs.
An explicit form of conditions on the current delivery pattern will allow one
to develop intelligent tools for decision-making support in the field of order
management.

References

1. Barrett, C., Li, J.: Distinguishing between equilibrium and integration in spatial
price analysis. Am. J. Agr. Econ. 84(2), 292–307 (2002)

2. Barron, Y., Hermel, D.: Shortage decision policies for a fluid production model
with map arrivals. Int. J. Prod. Res. 55(14), 3946–3969 (2017)

3. Bramoulle, Y., Kranton, R.: Public goods in networks. J. Econ. Theory 135, 478–
494 (2007)
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