
Dimitris E. Simos
Varvara A. Rasskazova
Francesco Archetti
Ilias S. Kotsireas
Panos M. Pardalos (Eds.)

LN
CS

 1
36

21

Learning and
Intelligent Optimization
16th International Conference, LION 16
Milos Island, Greece, June 5–10, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13621

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Dimitris E. Simos · Varvara A. Rasskazova ·
Francesco Archetti · Ilias S. Kotsireas ·
Panos M. Pardalos (Eds.)

Learning and
Intelligent Optimization
16th International Conference, LION 16
Milos Island, Greece, June 5–10, 2022
Revised Selected Papers

Editors
Dimitris E. Simos
SBA Research
Vienna, Austria

Graz University of Technology
Graz, Austria

Francesco Archetti
Università degli Studi di Milano-Bicocca
Milan, Italy

Panos M. Pardalos
University of Florida
Gainesville, FL, USA

Varvara A. Rasskazova
Moscow Aviation Institute (National
Research University)
Moscow, Russia

Ilias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-24865-8 ISBN 978-3-031-24866-5 (eBook)
https://doi.org/10.1007/978-3-031-24866-5

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6399-6103
https://orcid.org/0000-0001-9623-8053
https://orcid.org/0000-0003-4943-3133
https://orcid.org/0000-0003-2126-8383
https://doi.org/10.1007/978-3-031-24866-5

Preface

The sixteenth installment of the international conference series “Learning and Intelligent
Optimization” (LION 16) took place in Milos, Greece, during June 5–10, 2022, at the
Milos Conference Center with the participation of researchers and academicians from 23
countries, from China to Brazil, across five continents. As the repercussions of COVID-
19 continued in some countries and regions, all sessions were digitally broadcasted in
real-time. Thus, all participants had the option to join and give their talk in a remote
setting. LION 16 featured six invited talks:

– “How does our mind emerge from our brain?”, a plenary talk given by Christos
Papadimitriou (Columbia University, USA),

– “Crops, Tuples, and Disasters”, a tutorial talk given by Bernhard Garn, Klaus
Kieseberg, andDimitris E. Simos (MATRISResearchGroup, SBAResearch,Austria),

– “A RandomGenerator of Hypergraphs Ensembles”, a tutorial talk presented byMario
Rosario Guarracino, Amor Messaoud, Yassine Msakni, Giovanni Camillo Porzio
(University of Cassino and Southern Lazio, Italy, and Ecole Supérieure de Commerce
de Tunis, Tunisia),

– “Numerical Infinities and Infinitesimals in Optimization”, a tutorial talk given by
Yaroslav D. Sergeyev (University of Calabria, Italy),

– “Tourism and Hospitality: Relevant Problems for Machine Learning and Intelligent
Optimization”, a tutorial talk given by Roberto Battiti (University of Trento and
Ciaomanager SRL, Italy), and

– “Distributed Adaptive Gradient Methods for Online Optimization”, a tutorial talk
given by George Michailidis (University of Florida, USA).

We would like to thank the authors for contributing their work, and the reviewers
whose tireless efforts resulted in keeping the quality of the contributions at the highest
standards. This volume contains 39 refereed papers carefully selected from 60 submis-
sions using a XX single-blind peer review process, with a minimum of two reviews per
paper. Authors of selected papers were invited to revise their work taking into account
36 full papers and 3 short papers for inclusion in this volume.

The editors also express their gratitude to the organizers and sponsors of the LION
16 conference:

– MATRIS Research Group, SBA Research, Austria.
– CARGO Lab, Wilfrid Laurier University, Canada - APM Institute for the Advance-
ment of Physics and Mathematics.

A special thank you goes to the publicity chair of LION 16 (Izem Chaloupka –
MATRIS Research Group) for coordinating and managing registrations, communica-
tion with participants, the digital media for visibility efforts, online participation, and
digital broadcasting, and to the LION 16 volunteers (junior and senior researchers of

vi Preface

the MATRIS Research Group: Klaus Kieseberg, Ludwig Kampel, and Bernhard Garn),
for the preparation of the conference, managing a scientifically attractive and intrigu-
ing booth, developing disaster scenarios and combinatorial black-box testing games,
and presenting gifts to two participants on each day of the event. We also thank SBA
Research for sponsoring LION 16 and Daniela Freitag-David (Strategic Innovation and
Communication, SBA Research) for increasing the conference visibility through online
news entries.

Another special thank you goes to the Knuth Prize, Gödel, IEEE-John von Neumann
Medal, EATCS, and the IEEE Computer Society Charles Babbage Award holder, Chris-
tos Papadimitriou (Columbia University), for contributing to the community through his
intriguing plenary talk.

After a two-year-long COVID-19 pandemic and virtual conferences, we were
delighted to be able to assemble and reconnect with the vibrant LION community mem-
bers physically and deliver this LNCS proceedings volume for LION 16, in keeping with
the tradition of the four most recent LION conferences [1–4].

June 2022 Dimitris E. Simos
Varvara A. Rasskazova

Francesco Archetti
Ilias S. Kotsireas

Panos M. Pardalos

References
1. Roberto Battiti, Mauro Brunato, Ilias S. Kotsireas, Panos M. Pardalos (Eds.): Learning and
Intelligent Optimization - 12th International Conference, LION 12, Kalamata, Greece, June
10–15, 2018, Revised Selected Papers, Lecture Notes in Computer Science, LNCS 11353,
Springer, 2019.

2. Nikolaos F. Matsatsinis, Yannis Marinakis, Panos M. Pardalos (Eds.): Learning and Intelligent
Optimization - 13th International Conference, LION 13, Chania, Crete, Greece, May 27–31,
2019, Revised Selected Papers, Lecture Notes in Computer Science, LNCS 11968, Springer,
2020.

3. Ilias S. Kotsireas, Panos M. Pardalos (Eds.): Learning and Intelligent Optimization - 14th Inter-
national Conference, LION 14, Athens, Greece, May 24–28, 2020, Revised Selected Papers,
Lecture Notes in Computer Science, LNCS 12096, Springer, 2020.

4. Dimitris E. Simos, Panos M. Pardalos, Ilias S. Kotsireas (Eds.): Learning and Intelligent Opti-
mization - 15th International Conference, LION 15, Athens, Greece, June 20–25, 2021, Revised
Selected Papers. Lecture Notes in Computer Science 12931, Springer, 2021.

Organization

General Chairs

Panos M. Pardalos University of Florida, USA
Francesco Archetti Consorzio Milano Ricerche and Università degli

Studi di Milano-Bicocca, Italy

Program Committee Chairs

Dimitris E. Simos SBA Research and Graz University of
Technology, Austria; Information Technology
Laboratory, NIST, USA

Varvara A. Rasskazova Moscow Aviation Institute, Russia

Local Organizing Committee Chair

Panos M. Pardalos University of Florida, USA

Publicity Chair

Izem Chaloupka SBA Research, Austria

Program Committee

Francesco Archetti Consorzio Milano Ricerche, Italy
Annabella Astorino ICAR-CNR, Italy
Amir Atiya Cairo University, Egypt
Rodolfo Baggio Bocconi University, Italy
Roberto Battiti University of Trento, Italy
Maude Josée Blondin Université of Sherbrooke, Canada
Christian Blum Spanish National Research Council (CSIC), Spain
Juergen Branke University of Warwick, UK
Mauro Brunato University of Trento, Italy
Dimitrios Buhalis Bournemouth University, UK
Sonia Cafieri Ecole Nationale de l’Aviation Civile, France
Antonio Candelieri University of Milano-Bicocca, Italy
John Chinneck Carleton University, Canada
Kostas Chrisagis City University London, UK
Andre Augusto Cire University of Toronto, Canada

viii Organization

Andre de Carvalho University of São Paulo, Brasil
Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium
Renato De Leone University of Camerino, Italy
Clarisse Dhaenens Université Lille 1 - Polytech Lille, CRIStAL,

Inria, France
Luca Di Gaspero University of Udine, Italy
Ciprian Dobre Politehnica University of Bucharest
Adil Erzin Sobolev Institute of Mathematics, Russia
Giovanni Fasano University Ca’Foscari of Venice, Italy
Paola Festa University of Napoli Federico II, Italy
Antonio Fuduli Universita’ della Calabria, Italy
Martin Golumbic University of Haifa, Israel
Vladimir Grishagin Nizhni Novgorod State University, Russia
Mario Guarracino ICAR-CNR, Italy
Youssef Hamadi Uber AI, France
Cindy Heo Ecole hôtelière de Lausanne, Switzerland
Laetitia Jourdan Inria, LIFL, CNRS, France
Valeriy Kalyagin Higher School of Economics, Russia
Alexander Kelmanov Sobolev Institute of Mathematics, Russia
Marie-Eleonore Kessaci Université de Lille, France
Michael Khachay Krasovsky Institute of Mathematics and

Mechanics, Russia
Oleg Khamisov Melentiev Institute of Energy Systems, Russia
Zeynep Kiziltan University of Bologna, Italy
Yury Kochetov Sobolev Institute of Mathematics, Russia
Ilias Kotsireas Wilfrid Laurier University, Waterloo, Canada
Dmitri Kvasov University of Calabria, Italy
Dario Landa-Silva University of Nottingham, UK
Hoai An Le Thi Université de Lorraine, France
Daniela Lera University of Cagliari, Italy
Vittorio Maniezzo University of Bologna, Italy
Silvano Martello University of Bologna, Italy
Francesco Masulli University of Genoa, Italy
Nikolaos Matsatsinis Technical University of Crete, Greece
Kaisa Miettinen University of Jyväskylä, Finland
Laurent Moalic University of Haute-Alsace - IRIMAS, France
Hossein Moosaei Charles University, Czech Republic
Serafeim Moustakidis AiDEAS OU, Greece
Evgeni Nurminski FEFU, Russia
Panos M. Pardalos University of Florida, USA
Konstantinos Parsopoulos University of Ioannina, Greece
Jun Pei Hefei University of Technology, China

Organization ix

Marcello Pelillo University of Venice, Italy
Ioannis Pitas Aristotle University of Thessaloniki, Greece
Vincenzo Piuri Universita’ degli Studi di Milano, Italy
Mikhail Posypkin Dorodnicyn Computing Centre, FRC CSC RAS,

Russia
Oleg Prokopyev University of Pittsburgh, USA
Helena Ramalhinho Universitat Pompeu Fabra, Spain
Mauricio Resende Amazon, USA
Andrea Roli University of Bologna, Italy
Massimo Roma Sapienza University of Rome, Italy
Valeria Ruggiero University of Ferrara, Italy
Frédéric Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy
Marc Schoenauer Inria Saclay Île-de-France, France
Meinolf Sellmann GE Research, USA
Saptarshi Sengupta Murray State University, USA
Yaroslav Sergeyev University of Calabria, Italy
Marc Sevaux Lab-STICC, Université de Bretagne-Sud, France
Dimitris E. Simos SBA Research, Austria
Thomas Stützle Université Libre de Bruxelles, Belgium
Tatiana Tchemisova University of Aveiro, Portugal
Gerardo Toraldo University of Naples Federico II, Italy
Michael Trick Carnegie Mellon University, USA
Toby Walsh The University of New South Wales, Australia
David Woodruff University of California, Davis, USA
Dachuan Xu Beijing University of Technology, China
Luca Zanni University of Modena and Reggio Emilia, Italy
Qingfu Zhang University of Essex, UK, and City University of

Hong Kong, Hong Kong, China
Anatoly Zhigljavsky Cardiff University, UK
Antanas Zilinskas Vilnius University, Lithuania
Julius Žilinskas Vilnius University, Lithuania

Contents

Invited Papers

Optimal Scheduling of the Leaves of a Tree and the SVO Frequencies
of Languages . 3

Christos H. Papadimitriou and Denis Turcu

From Design of Experiments to Combinatorics of Disasters: A Conceptual
Framework for Disaster Exercises . 15

Bernhard Garn, Klaus Kieseberg, Berina Celic, and Dimitris E. Simos

Separating Two Polyhedra Utilizing Alternative Theorems and Penalty
Function . 27

Saeed Ketabchi, Hossein Moosaei, Mario R. Guarracino,
and Milan Hladík

Contributed Papers

A Composite Index Method for Optimization Benchmarking 43
Yulan Bai and Eli Olinick

Optimal Energy Management of Microgrid Using Multi-objective
Optimisation Approach . 58

Yahia Amoura, Ana I. Pereira, José Lima, Ângela Ferreira,
and Fouad Boukli-Hacene

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 77
Suyun Liu and Luis Nunes Vicente

Binary Black Widow Optimization Algorithm for Feature Selection
Problems . 93

Ahmed Al-Saedi and Abdul-Rahman Mawlood-Yunis

Learning to Solve a Stochastic Orienteering Problem with Time Windows 108
Fynn Schmitt-Ulms, André Hottung, Meinolf Sellmann, and Kevin Tierney

ML-Based Approach for Accelerating Global Search Algorithm
for Solving Multicriteria Problems . 123

Konstantin Barkalov, Vladimir Grishagin, and Evgeny Kozinov

The Skewed Kruskal Algorithm . 130
Ermanno Righini and Giovanni Righini

xii Contents

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model 136
Hossein Moosaei and Milan Hladík

Integer Linear Programming in Solving an Optimization Problem
at the Mixing Department of the Metallurgical Production 145

Damir N. Gainanov, Dmitriy A. Berenov, Egor A. Nikolaev,
and Varvara A. Rasskazova

Realtime Gray-Box Algorithm Configuration . 162
Dimitri Weiss and Kevin Tierney

Dynamic Urban Solid Waste Management System for Smart Cities 178
Adriano S. Silva, Thadeu Brito, Jose L. Diaz de Tuesta, José Lima,
Ana I. Pereira, Adrián M. T. Silva, and Helder T. Gomes

Single MCMC Chain Parallelisation on Decision Trees . 191
Efthyvoulos Drousiotis and Paul G. Spirakis

An Extension of NSGA-II for Scaling up Multi-objective Spatial Zoning
Optimization . 205

Mohadese Basirati, Romain Billot, and Patrick Meyer

Competitive Supply Allocation in a Distribution Network Under
Overproduction . 220

Alexander Krylatov, Yulia Lonyagina, and Anastasiya Raevskaya

Safe-Exploration of Control Policies from Safe-Experience via Gaussian
Processes . 232

Antonio Candelieri, Andrea Ponti, and Francesco Archetti

Bayesian Optimization in Wasserstein Spaces . 248
Antonio Candelieri, Andrea Ponti, and Francesco Archetti

Network Vulnerability Analysis in Wasserstein Spaces . 263
Andrea Ponti, Antonio Irpino, Antonio Candelieri, Anna Bosio,
Ilaria Giordani, and Francesco Archetti

BERT Self-Learning Approach with Limited Labels for Document
Classification . 278

Carlos Eduardo de Lima Joaquim and Thiago de Paulo Faleiros

Autonomous Learning Rate Optimization for Deep Learning 292
Xiaomeng Dong, Tao Tan, Michael Potter, Yun-Chan Tsai,
Gaurav Kumar, V. Ratna Saripalli, and Theodore Trafalis

Contents xiii

Optimizing Data Augmentation Policy Through Random Unidimensional
Search . 306

Xiaomeng Dong, Michael Potter, Gaurav Kumar, Yun-Chan Tsai,
V. Ratna Saripalli, and Theodore Trafalis

Evaluating Student Behaviour on the MathE Platform - Clustering
Algorithms Approaches . 319

Beatriz Flamia Azevedo, Ana Maria A. C. Rocha,
Florbela P. Fernandes, Maria F. Pacheco, and Ana I. Pereira

Unsupervised Training for Neural TSP Solver . 334
Elı̄za Gaile, Andis Draguns, Emı̄ls Ozoliņš, and Kārlis Freivalds

Comparing Surrogate Models for Tuning Optimization Algorithms 347
Gustavo Delazeri, Marcus Ritt, and Marcelo de Souza

Search and Score-Based Waterfall Auction Optimization . 361
Dan Halbersberg, Matan Halevi, and Moshe Salhov

Survey on KNN Methods in Data Science . 379
Panos K. Syriopoulos, Sotiris B. Kotsiantis, and Michael N. Vrahatis

Constrained Shortest Path and Hierarchical Structures . 394
Adil Erzin, Roman Plotnikov, and Ilya Ladygin

Investigation of Graph Neural Networks for Instance Segmentation
of Industrial Point Cloud Data . 411

Sandeep Jalui and Evangelia Agapaki

Fitness Landscape Ruggedness Impact on PSO in Dealing with Three
Variants of the Travelling Salesman Problem . 429

Abtin Nourmohammadzadeh, Malek Sarhani, and Stefan Voß

A Multi-UAVs’ Provider Model for the Provision of 5G Service Chains:
A Game Theoretic Approach . 445

Giorgia Maria Cappello, Gabriella Colajanni, Patrizia Daniele,
Laura Galluccio, Christian Grasso, Giovanni Schembra,
and Laura Rosa Maria Scrimali

Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques 460
Elias Dritsas, Sotiris Alexiou, and Konstantinos Moustakas

Airport Digital Twins for Resilient Disaster Management Response 467
Evangelia Agapaki

xiv Contents

Strategies for Surviving Aggressive Multiparty Repeated Standoffs
(Extended Abstract) . 487

Evangelos Kranakis

A Hybridization of GRASP and UTASTAR for Solving the Vehicle
Routing Problem with Pickups and Deliveries and 3D Loading Constraints 505

Themistoklis Stamadianos, Magdalene Marinaki, Nikolaos Matsatsinis,
and Yannis Marinakis

Packing Hypertrees and the k-cut Problem in Hypergraphs 521
Mourad Baïou and Francisco Barahona

Maximizing the Eigenvalue-Gap and Promoting Sparsity of Doubly
Stochastic Matrices with PSO . 535

Panos K. Syriopoulos, Nektarios G. Kalampalikis,
and Michael N. Vrahatis

Value of Information in the Mean-Square Case and Its Application
to the Analysis of Financial Time-Series Forecast . 549

Roman V. Belavkin, Panos Pardalos, and Jose Principe

Author Index . 565

Invited Papers

Optimal Scheduling of the Leaves of a Tree
and the SVO Frequencies of Languages

Christos H. Papadimitriou and Denis Turcu(B)

Columbia University, New York, NY 10027, USA
{christos,d.turcu}@columbia.edu

Abstract. We define and study algorithmically a novel optimization
problem related to the sequential scheduling of the leaves of a binary
tree in a given order, and its generalization in which the optimum order
is sought. We assume that the scheduling process starts at the root of the
tree and continues breadth-first in parallel, albeit with possible interven-
ing lock and unlock steps, which define the scheduling cost. The moti-
vation for this problem comes from modeling language generation in the
brain. We show that optimality considerations in this problem provide
a new explanation for an intriguing phenomenon in linguistics, namely
that certain ways of ordering the subject, verb, and object in a sentence
are far more common in world languages than others.

Keywords: Binary tree · Optimal leaves scheduling · Language ·
Basic word order

1 Introduction: The Leaf Scheduling Problem

Consider a binary tree T , e.g. the one in Fig. 1A—where by binary tree we mean
a downwards directed tree with 2n− 1 nodes, one node of degree two (the root),
n−2 nodes of degree three, and n nodes (the leaves) of degree one—and suppose
that we are also given an order σ of the leaves, say the order subject-verb-object
(SVO) in this example. We are interested in assigning integer times to the nodes
of the tree according to the following rules:

1. The root is assigned time 0;
2. A non-root node i either is assigned time t + 1, where t is the time assigned

to its parent, or it is locked by its parent;
3. The leaves are assigned times that are strictly increasing in the given order,

σ;
4. If a leaf � is assigned a time t, then a locked node i may be assigned time

t + 1, in which case we say that � unlocks i.

We say that an assignment is a feasible schedule if it satisfies these rules.
Intuitively, this assignment of times formalizes the process in which the nodes
of the tree “fire” starting with the root, and the children of a node fire right
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-24866-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_1&domain=pdf
http://orcid.org/0000-0002-2955-2568
https://doi.org/10.1007/978-3-031-24866-5_1

4 C. H. Papadimitriou and D. Turcu

after their parent did. The exception is that a node may choose to lock one or
both of its children at the time of its own firing. A leaf, upon firing, may unlock
one locked node. It is clear that, given a tree and an order of its leaves, there is
always a feasible schedule: Always lock the child that does not lead to the next
leaf in the order, while any firing leaf unlocks the locked ancestor of the next
leaf in the order.

Define now the Leaf Scheduling Problem to be following: Given a tree
T and an order σ of its leaves, find a feasible schedule that has the smallest cost,
where the cost of a schedule is the number of lock commands used (equivalently,
the smallest number of unlock commands). We can also define the weighted ver-
sion of this problem by assigning a weight to every possible lock and unlock
command, and minimizing the sum of these weights. We can further define a
more complex problem called the optimum leaf order problem, in which we are
only given a tree T and we seek the order σ that has the smallest scheduling
cost.

For example, the optimum leaf scheduling problem for the order SVO in
Fig. 1A is the one that assigns 0 to the root, 1 to S and the internal node, 2 to V
and 3 to O. That is, the internal node locks O, and V unlocks it. This solution
has cost one, since one lock is used, and it is clear that there is no solution
with zero cost. In fact, the order S–V–O along with S–O–V are the optimum
leaf orders with cost one, while the other four orders have optimum cost two.
For a more complicated example, the reader may want to verify that the tree in
Fig. 1B, with the leaf order from left to right, has optimum leaf scheduling cost
three, while the optimum orders for this tree are the orders ADBC and ADCB
with cost one. As we shall see in the next section, both algorithmic problems
can be solved by greedy algorithms — with the exception of the optimum leaf
order problem with weights, which is NP-hard.

Motivation: Word Orders in Natural Languages

The reason these problems are interesting is because they relate to a classical
problem in Linguistics, which we explain next. In English, the subject of a sen-
tence generally comes before the verb while the object, if present, follows both:
“dogs chase cats”. This ordering is not universal, as other languages adopt any
of the six possible orderings, see for example [4]. The same order as in English,
denoted SVO, is prevalent in French, Hebrew, modern Greek and Romanian,
and overall in about 42% of world languages. The order SOV is slightly more
common, accounting for 45% of languages, including Hindi, Urdu, Japanese,
Latin, and ancient Greek. The orders VSO (9%), VOS (2%) and OVS (1%)
are much less common, while the order OSV (< 1%) is practically disregarded.
In English, changing the language’s SVO order creates either meaningless sen-
tences (“chase cats dogs”) or changes the meaning (“cats chase dogs”). In other
languages, such as German, Russian, or modern Greek, deviations from the stan-
dard order are tolerated, because nouns have a case in these languages, which
makes their syntactic role (subject vs object) easy to identify independently of

Optimal Scheduling of the Leaves 5

position. However, many linguists believe that most languages have a dominant,
default word order.

There is extensive literature on justifying the widely varying frequencies
of basic word orders, see [1,8,10,11,14,17–19,22]. These past explanations are
based on plausible linguistic principles related to the ease of communicating
meaning, or the difficulty of learning grammar [8,9,14,22] while more recent
explanations consider the mutability and evolution of word orders in languages
[17–19]. Here we propose a different explanation based on the difficulty of artic-
ulating sentences in the brain.

Indeed, one can hypothesize that, in order to generate a sentence such as “cats
chase dogs,” a speaker must first create, through neuronal circuits in their brain,
a tree representation of the sentence as in Fig. 1A,C. There is cognitive evidence
[6] suggesting that this tree is binary (that is, there are no nodes with more
than two children), and in fact that the three leaves”cats,” “chase” and “dogs”
are organized as shown in Fig. 1A,C (instead of the alternative, e.g., where S
and V are combined first); see Fig. 3 in [20]. Given now this tree, the speaker
must articulate it, and this involves selecting and implementing one of the six
word orders. To arrive at one of the orders, a neural mechanism of “lock” and

Fig. 1. (A) Basic syntactic tree with a “Verb Phrase” internal node and “Subject”,
“Verb” and “Object” leaves. (B) An alternative binary tree example, more complex
than the basic syntactic tree. (C) Example articulation from the syntactic tree to
sequential speech for the SVO order. Black arrows are inactive. Blue arrows activate
the object they point to on the next time step. Red inhibitory signals maintain a lock
on the object they point to. Green arrows remove the lock. (D) Articulations of all
possible basic word orders to sequential speech, starting from the same syntactic tree.
Appropriate lock and unlock operations dictate the basic word order. (Color figure
online)

6 C. H. Papadimitriou and D. Turcu

“unlock” steps may be used. In Sect. 3 we point out that this can easily be done
in the model of brain computation proposed in [20]. It would make sense that all
speakers of a language end up using the same fixed order, for reasons of effective
information transfer; even though most languages allow, unlike English, more
flexibility in articulation orders, many linguists believe that there is a dominant
order in each language [5,8,17,19,22]. But which of the six orders will be chosen
as the dominant order? We propose that, the smaller the implementation cost of
a word order in the brain, the more likely it should be for the order to be chosen.
In the model of brain computation articulated in [20] and explained further in
Sect. 3, every node of the tree resides in a different brain area, and long-range
inhibitory neurons are used to lock and unlock brain areas and thus articulate
the sentence.

The rest of this paper is organized as follows: In Sect. 2 we study algorith-
mically the leaf ordering problems, while in Sect. 3 we spell out the model of
brain computation in [20] and the way it can implement sentence generation.
This model ends up providing an explanation for the differences in the proba-
bility of word orders: The two most frequent word orders correspond to the two
optimal solutions, while the other four lag behind. Adopting a model in the style
of statistical mechanics for calculating the frequencies of the orders allows one
to even predict the various differences in the cost of the various lock and unlock
steps that would best explain these frequencies.

2 The Greedy Algorithm

Recall the two problems defined in the introduction: The Leaf Sequencing
Problem seeks the optimum scheduling of lock and unlock steps that realizes
a given sequence, whereas the Optimum Order Problem wants to find the
order that minimizes this optimum cost. Both problems can be weighted.

Theorem 1.

1. The Leaf Sequencing Problem can be solved in O(n log n) time through
a greedy algorithm; ditto for the weighted case.

2. The Optimum Order Problem can be solved by an adaptation of the same
greedy algorithm, if all lock and unlock steps have unit cost.

3. However, if the unlock steps have different costs, even if the costs are restricted
to be either one or two, the Optimum Order Problem is NP-hard.

Proof. (1) We describe the algorithm informally. It entails the sequential firing
of all nodes of the tree, starting from the root; the firing propagates from a node
to its children down the tree (a breadth-first search implemented by a queue of
nodes). Specifically, the root fires at the first parallel time step. At step t + 1,
the internal nodes whose parents fired at step t will fire. Additionally, any leaf
unlocked by another leaf at time t will fire at time t + 1 (there will be at most
one unlocked leaf at any time step). Finally, if one of the internal nodes firing
has any leaf children, then each child is locked unless it is the next leaf to be
output.

Optimal Scheduling of the Leaves 7

To keep track of leaves we maintain a separate heap of locked leaves ordered
by σ, initially empty, and an index next, initially 1. If at some step we encounter
a leaf child i of a node being processed, there are two cases: If σ(i) = next, and no
other leaf has been output during this step, then the leaf is output immediately
and next is increased by 1. Otherwise, σ(i) > next, and i joins the heap of
locked leaves. At the beginning of parallel step t (the round of breadth-first-
search processing the nodes of the tree at depth t−1), we check whether the min
of the heap, call it m, has σ(m) = next. If so, then we output m and increment
next. We then proceed with the breadth-first search. The algorithm terminates
when both the heap and the queue are empty.

We claim that this algorithm outputs the leaves in the σ order, and that it
does so with the fewest lock and unlock operations and in the fewest parallel
steps possible. We first claim that every leaf is output as early, in terms of parallel
time, as possible. This follows from two things: (a) no leaf i can be output earlier
than time T (i), where T (i) satisfies the recurrence T (i) = max{T (σ−1(σ(i) −
1) + 1,depth(i)} if i is not the first leaf and T (i) = depth(i) otherwise; and (b)
the algorithm achieves this time, as can be shown by induction on σ(i). We also
claim that it implements the permutation with the fewest locks, which follows
from the two facts that (c) the minimum possible number of locks is n−1 minus
the number of coincidences, where a coincidence is an i for which the two terms
in the recursive definition of T above are equal, and (d) such coincidences are
caught and exploited by the algorithm.

(2) For the Optimum Order Problem, we start by noticing that every leaf
i becomes available to be output at time depth(i). Second, a leaf can be output
without lock/unlock steps only if it is output at the precise time it becomes
available. Otherwise, if many leaves have the same depth, all but one of them
can be feasibly postponed to any time in the future, and unlocked by the leaf
that was output immediately before it. Hence the following greedy algorithm
achieves the minimum number of lock/unlock steps: We define a one-to one
mapping from the n leaves to the time slots {d, d + 1, . . . , D + n}, where d and
D is the minimum and maximum depth of a leaf of the tree: First, each leaf i
is mapped to depth(i), which creates a map which is not one-to-one because of
collisions. We then repeatedly go through the time slots, from smaller to larger
starting from d and execute the following algorithm: for any time slot t, if it has
� > 1 leaves mapped to it, select � − 1 of these leaves and assign them to the
� − 1 empty time slots greater than t and closest to t, resolving ties arbitrarily.
It is easy to see that this algorithm chooses the permutation of the leaves which
has the maximum number of coincidences (leaves fire exactly when they become
available), in the sense of the previous paragraph, and thus the minimum possible
number of lock and unlock steps.

(3) Finally, for NP-hardness: Imagine that the tree is a full binary tree of
depth d — that is, n = 2d and all leaves arrive simultaneously. Then all permuta-
tions are available, and we need to chose the ones that order σ(1), σ(2), . . . , σ(n)
such that

∑n
i=2 unlockcost(σ(i− 1), σ(i)) is as small as possible. It is easy to see

that this is a generic instance of the (open-loop) traveling salesman problem,

8 C. H. Papadimitriou and D. Turcu

which is known to be NP-hard even if the lengths of the edges are either one or
two [21]. This completes the proof of Part (3) and of the theorem.

3 Generating Sentences in the Brain

It is by now widely accepted among neuroscientists that, in the brain, informa-
tion items such as objects, ideas, words, episodes, etc. are represented by large
populations of spiking neurons. These populations are called assemblies. In [20],
a computational system was presented whose basic data item is the assembly
of neurons, and its operations include merge, the creation of an assembly that
has strong synaptic connectivity to and from two already existing assemblies, as
well as operations that inhibit and disinhibit brain areas. Notice that by repeated
application of the merge operation, trees can be built. Indeed, a simple sentence
such as “dogs chase cats” can be generated by first identifying the three assem-
blies corresponding to the three words in the lexicon — believed to reside in
the left medial temporal lobe [7]. Then, these word-assemblies project to create
three new assemblies within separate subareas of Wernicke’s area in the superior
temporal gyrus, corresponding to Subject, Verb and Object brain areas. Next,
the Verb and Object assemblies (in this example corresponding to “chase” and
“cats”, respectively) merge to create a Verb Phrase assembly in Broca’s area
[7]. Finally, the Subject and Verb Phrase assemblies merge to create an assem-
bly representing the Sentence Fig. 1A, in another subarea of Broca’s area [7].
A sentence may have many other constituents, such as determiners, adjectives,
adverbs, and propositional phrases, but here we focus only on the tree built from
its three basic syntactic parts: Subject, Verb, and Object.

Three different binary trees can be built from three leaves, by grouping any
two of these leaves first. There is a broad consensus in Linguistics [5,14,17,22],
as well as evidence from cognitive experiments [6], supporting the basic tree
described above Fig. 1A with an internal Verb Phrase node whose constituents
are Verb and Object.

Once the sentence is generated, it may be articulated, that is, converted
into speech. This can be done by exciting the root of the tree – the Sentence
assembly – which then will excite its children in the tree and so on. Eventually,
all three leaves will be excited. Each leaf can mobilize motor programs which
will articulate each word, but this must be done sequentially. Therefore, one of
the six orders must be selected and implemented. Perhaps the simplest and most
biologically realistic mechanism for implementing a particular order involves two
plausible primitives, which we call lock and unlock. These primitives correspond
to the familiar neural processes of inhibition of an area (the activation of a
population of inhibitory neurons which will prevent excitatory neurons in this
area from firing) and dis-inhibition (the inhibition of the inhibitory population)
[3,12,16]. In particular, upon firing, an assembly in the tree can inhibit one of
its children from firing. Secondly, any leaf can, upon firing, dis-inhibit any other
leaf.

Optimal Scheduling of the Leaves 9

3.1 Scheduling Cost Explains SVO Frequencies

We have already seen that, among the six orders, only two can be implemented
by just one lock and one unlock operation, whereas all others require two lock
and two unlock operations Fig. 1D. In other words, this simple model imme-
diately predicts “the highest-order bit” of the frequency statistics, namely the
prevalence of the SVO and SOV orders. All other orders besides these two require
extra inhibition and disinhibition, primitives that are known to require signif-
icant brain energy consumption [2,3,15]. Furthermore, extra operations makes
the articulation process more complex, and presumably renders this aspect of
language more difficult for the learner.

3.2 Leaf Scheduling Cost as Energy

It has been argued in the literature [5,8,17–19] that languages have undergone
transitions in their history, in which the word order has changed, and hence the
current frequencies reflect a dynamic equilibrium of this dynamic process. This
view motivates a naïve statistical-mechanical formulation, treating the frequen-
cies of the basic word orders as a Boltzmann distribution [13], in which states
with energy level L are prevalent with probability proportional to e−βL, for a
temperature parameter β. For simplicity, we take β = 1 in this account (but in
our experiments we use a wide range of values for β Fig. 2). The states of our
model are the six basic word orders and the associated energies are the num-
ber of operations required by each articulation choice. The optimal choices for
SVO or SOV have low energies, requiring only two operations (one lock and one
unlock), while the other four optimal choices have high energies, requiring four
operations (two lock and two unlock) Fig. 1D. The prevalence of the six orders
SVO, SOV, VSO, VOS, OSV, and OVS would be proportional to the numbers
e−2, e−2, e−4, e−4, e−4, e−4, respectively. The orders SVO and SOV would then
be expected to be more frequent than the rest by a factor of e2 ≈ 7.4, predict-
ing frequencies (.39, .39, .055, .055, .055, .055), a great first-order approximation
of the empirical distribution (.45, .42, .09..02, .01, .01).

The true cost of a brain area locking and unlocking another area may differ,
depending on the distance between the two brain areas involved and the strength
of their neural connections, as well as the duration, in steps, of the locking state
of the target area. By introducing such hyper-parameters, in addition to β, and
fitting them to the observed data, we can in fact predict their values. That
is, make predictions about the connectivity, via inhibitory neural connections,
between brain areas. It turns out that these predictions are robust to various
hyper-parameters, including β. The Boltzmann distribution model provides the
basis for estimating the frequency of the six basic word orders. We equate these
frequencies [Equation 2] with the empirical observations and numerically solve
the system of six non-linear equations. We note that the equations display an
analytical degeneracy which is also recovered from the simulations; specifically,
four of the six parameters can only be determined up to a common additive

10 C. H. Papadimitriou and D. Turcu

constant. This degeneracy is manifest in Eq. 1, in that these four parameters
cannot be compared with the other two.

The system of equations does not have an analytical solution, but the six
parameters can be approximated using gradient optimization. This method finds
the same qualitative results for different values of the coefficient β Fig. 2A and
for different values of other hyper-parameters. The results of these calculations
are robust enough to support certain predictions about the relative costs of dis-
inhibiting one brain area from another Fig. 2B. More specifically, we find that:

Fig. 2. (A) Loss value plotted during the epochs of gradient descent for various β
values. The lines represent the average loss and the shaded areas the standard deviation
over 200 initializations. (B) Relative costs of the unlock operation from one leaf to
another. Colors represent models with varying β. Each line represents the optimized
parameters for one model. Note the degeneracy of the solutions for the first four leaf
pairs: the lines differ only by an additive constant.

US→V > UV →O � UO→V > US→O and UV →S > UO→S , (1)

where Ux→y is the cost to dis-inhibit assembly y from assembly x.

3.3 A Statistical-Mechanical Argument

In statistical mechanics, the probability of a given state of a system depends
on its energy and temperature parameter. The Boltzmann distribution provides
a way to estimate the thermal equilibrium configuration of all the states of
a system. The probability of a state with energy Ei is proportional to pi ∝
exp (−βEi), where β is a scale factor, inversely proportional to temperature,
and Ei depends on the respective unlock costs Ux→y of state i. The system we
describe has six states, therefore, the probability of each state is:

Optimal Scheduling of the Leaves 11

pi =
exp (−βEi)∑
j exp (−βEj)

, (2)

for i, j ∈ {SV O, SOV, V SO, V OS,OV S,OSV }.
These formulas are simply a heuristic way, aligned with physical principles, of

modeling how complexity affects probabilities; however, we also note that in the
neuroscience literature (see e.g. [15]) metabolic costs are thoroughly discussed
with respect to thermal energy. On this account, we choose the energies of our
states to be Ei ∼ 1 and we assume β � 1.

Fig. 3. The predictions if the primacy of Subject and Verb is the cause of the low
frequencies of the OSV and OVS orders. Notice that there is no prediction for US→V .

4 Discussion

Linguistic phenomena should be constantly reinterpreted under the light of new
insights, including advancements in our understanding of, or theories about, lan-
guage processing in the brain. Despite recent progress in this front, articulating
the constraints imposed by the neural processes involved in the language function
is not easy, due to a large gap, in both scale and focus, between cognitive and
systems neuroscience. Our work attempts to bridge this gap using the computa-
tional framework of the Assembly Calculus, thus providing a new explanation of
the difference in frequencies of the six basic word orders in languages in terms of
the difficulty of generating an order from the basic syntax tree of the sentence.

The simplest version of our model qualitatively matches the observed basic
word order frequencies, and the most complex version can be tuned to predict the
exact frequencies. However, we suspect that the latter calculation may constitute
overfitting, as other considerations are likely to enter in the determination of
these frequencies, including linguistic considerations of communication efficiency

12 C. H. Papadimitriou and D. Turcu

and learnability. These other factors were heretofore the only ones used for this
purpose. Our model is not meant to replace these arguments, but add to them
and it provides an additional basis for breaking the symmetry of the basic word
orders.

We believe that the ultimate explanation of the phenomenon of word orders
will integrate both linguistic and neurocomputational evidence, and perhaps
learnability considerations, together with more kinds to come. For an example
of how this can be done, let us take the linguistic argument that the primary
cause of the extreme rarity of orders starting with “O” may not be the difficulty of
unlocking Subject or Verb subareas from the Object area according to our model,
but the relatively subsidiary semantic role of Object in a sentence, compared to
the primacy of the Subject and the Verb [14,17,22]. In the face of this, we may
decide that the low frequencies of the OSV and OVS orders are adequately
explained on linguistic grounds, and focus on explaining the remaining four
frequencies through the corresponding equations. This leads to 4 equations with
5 parameters (since US→V no longer enters the picture). To balance the number
of equations and parameters, we may fix the ratio of the parameters UO→S and
UV →S (the ones that were not subject to degeneracy in Fig. 2), and solve by
gradient descent. The results are shown in Fig. 3. We notice that our predictions
that UV →O � UO→V > US→O and UV →S > UO→S are stable, while our previous
prediction that US→V is very large vanishes because this unlock operation only
plays a role in the OSV order, whose frequency we are ignoring. In other words,
the prediction that “US→V is very large” was proposed as the cause of the small
frequencies of OSV and OVS, a phenomenon which now has another causal
explanation based on linguistic principles. It may still be that US→V would be
large, presumably because this brain connection is rarely used, but a different
model or experimental evidence may need to be employed to settle this.

References

1. Aitchison, J.: Word order universals. John A. Hawkins Quantitative Analysis of
Linguistic Structure Series. Academic Press, New York, London, Sydney, 1983–
1986. https://doi.org/10.1016/0024-3841(86)90039-2

2. Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of
the brain. J. Cerebral Blood Flow Metab. 21(10), 1133–1145 (2001). https://doi.
org/10.1097/00004647-200110000-00001. pMID: 11598490

3. Buzsáki, G., Kaila, K., Raichle, M.: Inhibition and brain work Neuron
56(5), 771–83 (2007). https://doi.org/10.1016/j.neuron.2007.11.008, https://www.
sciencedirect.com/science/article/pii/S0896627307009270

4. Dryer, M.: Order of subject, object, and verb. In: Martin, H., Matthew S.D., David,
G., Bernard, C. (eds.) The World Atlas Language Structures, chap. 81, pp. 330–
333. Oxford University Press, Oxford (2005)

5. Dunn, M., Greenhill, S.J., Levinson, S.C., Gray, R.D.: Evolved structure of lan-
guage shows lineage-specific trends in word-order universals. Nature 473(7345),
79–82 (2011). https://doi.org/10.1038/nature09923

https://doi.org/10.1016/0024-3841(86)90039-2
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1016/j.neuron.2007.11.008
https://www.sciencedirect.com/science/article/pii/S0896627307009270
https://www.sciencedirect.com/science/article/pii/S0896627307009270
https://doi.org/10.1038/nature09923

Optimal Scheduling of the Leaves 13

6. Frankland, S.M., Greene, J.D.: Two ways to build a thought: distinct forms of
compositional semantic representation across brain regions. Cereb. Cortex 30(6),
3838–3855 (2020). https://doi.org/10.1093/cercor/bhaa001

7. Friederici, A., Chomsky, N.: Language in Our Brain: the Origins of a Uniquely
Human Capacity. The MIT Press (2017). https://books.google.com/books?
id=MJg-DwAAQBAJ

8. Gell-Mann, M., Ruhlen, M.: The origin and evolution of word order. In:
Proceedings of the National Academy of Sciences of the United States
of America, vol. 108, no. 42, pp. 17290–17295 (2011). https://doi.org/10.
1073/pnas.1113716108, http://starling.rinet.ru/cgi-bin/main.cgi?flags=eygtnnl.
Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/,
https://doi.org/10.1073/pnas.1113716108/-/DCSupplemental.www.pnas.org/cgi/
doi/10.1073/pnas.1113716108

9. Greenberg, J.: Some universals of grammar with particular reference to the order
of meaningful elements. Tech. Rep. 40–70 (1963). http://lear.unive.it//handle/
10278/3011

10. Hammarström, H.: The Basic Word Order Typology: an Exhaustive Study. Tech.
Rep. (2015)

11. Huber, M., Consortium, T.A.: Order of subject, object, and verb. Atlas of Pidgin
and Creole Language Structures Online, pp. 330–333 (2013). http://apics-online.
info/parameters/1

12. Jackson, G.M., Draper, A., Dyke, K., Pépés, S.E., Jackson, S.R.: Inhibition, disinhi-
bition, and the control of action in tourette syndrome. Trends in Cognitive Sciences
19(11), 655–665 (2015). https://doi.org/10.1016/j.tics.2015.08.006, https://www.
sciencedirect.com/science/article/pii/S1364661315001837

13. James, S.: Statistical Mechanics: Entropy, Order Parameters and Complexity. In:
Oxford Master Series in Physics, OUP Oxford 14 (2006). https://ezproxy.cul.
columbia.edu/login?qurl=https

14. Krupa, V.: Syntactic Typology and Linearization. Tech. Rep. 58(3), 639-645
(1982). https://doi.org/10.2307/413851

15. Laughlin, S.B., de Ruyter van Steveninck, R.R., Anderson, J.C.: The metabolic
cost of neural information. Nat. Neurosci. 1(1), 36–41 (1998). https://doi.org/10.
1038/236, http://www.nature.com/articles/nn0598_36

16. Letzkus, J., Wolff, S., Lüthi, A.: Disinhibition, a circuit mechanism for asso-
ciative learning and memory. Neuron 88(2), 264–276 (2015). https://doi.org/
10.1016/j.neuron.2015.09.024, https://www.sciencedirect.com/science/article/pii/
S0896627315008132

17. Maurits, L.: Representation, information theory and basic word order. Tech. Rep.
(2011)

18. Maurits, L., Griffiths, T.L.: Tracing the roots of syntax with Bayesian phylogenet-
ics. In: Proceedings of the National Academy of Sciences of the United States of
America, vol 111, no. 37, pp. 13576–13581 (2014). https://doi.org/10.1073/pnas.
1319042111. https://pubmed.ncbi.nlm.nih.gov/25192934/

19. Maurits, L., Perfors, A., Navarro, D.: Why are some word orders more common
than others? A Uniform Information Density account. Tech. rep., vol. 23, pp. 1585–
1593(2010)

20. Papadimitriou, C.H., Vempala, S.S., Mitropolsky, D., Collins, M., Maass, W.: Brain
computation by assemblies of neurons. In: Proceedings of the National Academy of
Sciences 117(25), 14464–14472 (2020). https://doi.org/10.1073/pnas.2001893117,
https://www.pnas.org/content/117/25/14464

https://doi.org/10.1093/cercor/bhaa001
https://books.google.com/books?id=MJg-DwAAQBAJ
https://books.google.com/books?id=MJg-DwAAQBAJ
https://doi.org/10.1073/pnas.1113716108
https://doi.org/10.1073/pnas.1113716108
http://starling.rinet.ru/cgi-bin/main.cgi?flags=eygtnnl.Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/
http://starling.rinet.ru/cgi-bin/main.cgi?flags=eygtnnl.Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/
https://doi.org/10.1073/pnas.1113716108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1113716108
https://doi.org/10.1073/pnas.1113716108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1113716108
http://lear.unive.it//handle/10278/3011
http://lear.unive.it//handle/10278/3011
http://apics-online.info/parameters/1
http://apics-online.info/parameters/1
https://doi.org/10.1016/j.tics.2015.08.006
https://www.sciencedirect.com/science/article/pii/S1364661315001837
https://www.sciencedirect.com/science/article/pii/S1364661315001837
https://ezproxy.cul.columbia.edu/login?qurl=https
https://ezproxy.cul.columbia.edu/login?qurl=https
https://doi.org/10.2307/413851
https://doi.org/10.1038/236
https://doi.org/10.1038/236
http://www.nature.com/articles/nn0598_36
https://doi.org/10.1016/j.neuron.2015.09.024
https://doi.org/10.1016/j.neuron.2015.09.024
https://www.sciencedirect.com/science/article/pii/S0896627315008132
https://www.sciencedirect.com/science/article/pii/S0896627315008132
https://doi.org/10.1073/pnas.1319042111
https://doi.org/10.1073/pnas.1319042111
https://pubmed.ncbi.nlm.nih.gov/25192934/
https://doi.org/10.1073/pnas.2001893117
https://www.pnas.org/content/117/25/14464

14 C. H. Papadimitriou and D. Turcu

21. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Math. Oper. Res. 18(1), 1–11 (1993). http://www.jstor.org/
stable/3690150

22. Tomlin, R.S.: Basic word order. Functional principles. No. 1, Cambridge Univer-
sity Press (CUP) (1988). https://doi.org/10.1017/s0022226700011646. https://
www.cambridge.org/core/journals/journal-of-linguistics/article/abs/russell-s-
tomlin-basic-word-order-functional-principles-london-croom-helm-1986-pp-308/
7542AFB4A8B28D651F6E109B810F4C04

http://www.jstor.org/stable/3690150
http://www.jstor.org/stable/3690150
https://doi.org/10.1017/s0022226700011646
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/russell-s-tomlin-basic-word-order-functional-principles-london-croom-helm-1986-pp-308/7542AFB4A8B28D651F6E109B810F4C04
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/russell-s-tomlin-basic-word-order-functional-principles-london-croom-helm-1986-pp-308/7542AFB4A8B28D651F6E109B810F4C04
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/russell-s-tomlin-basic-word-order-functional-principles-london-croom-helm-1986-pp-308/7542AFB4A8B28D651F6E109B810F4C04
https://www.cambridge.org/core/journals/journal-of-linguistics/article/abs/russell-s-tomlin-basic-word-order-functional-principles-london-croom-helm-1986-pp-308/7542AFB4A8B28D651F6E109B810F4C04

From Design of Experiments
to Combinatorics of Disasters: A

Conceptual Framework for Disaster
Exercises

Bernhard Garn, Klaus Kieseberg(B), Berina Celic, and Dimitris E. Simos

SBA Research, 1040 Vienna, Austria
{bgarn,kkieseberg,bcelic,dsimos}@sba-research.org

Abstract. In this paper, we present a conceptual framework for dis-
aster exercises covering the modelling, generation and post-analysis of
conducted exercises. Our proposed conceptual framework makes use of a
combinatorial approach for actual disaster exercise generation from the
literature. In particular, the scenarios in a disaster exercise generated by
our framework collectively provide certain combinatorial sequence cover-
age guarantees and are also minimizing the overall number of scenarios.
These coverage guarantees make the created scenarios ideal for the assess-
ment of relief strategies and allow for easy generation of more extensive
and effective exercises and training programs. We explain all the indi-
vidual stages of our proposed framework and how they are mapped to
particular steps in the disaster exercise design process.

1 Introduction

Natural as well as man-made disasters are an increasing threat to the safety
of modern humanity. Even in our modern society, the damages caused can be
so severe, that they cannot be fully coped with. In extreme cases, damages
to critical infrastructures and disruptions of critical services can even lead to
human fatalities. The global repercussions of disasters can also be severe: Dis-
asters can cause environmental issues like pollution and mass extinction, have
a huge impact on the global economy and lead to humanitarian crises such as
water and food scarcity as well as displaced populations. In the last decades,
natural disasters have been observed more and more frequently [13]. In 2020
alone, 416 natural disasters have been registered worldwide, not including the
SARS COVID-19 pandemic [3].

As a result, analyzing disasters or crises in order to prevent them in the
future, or at least lessen the damages resulting from them, also has become
increasingly important [22]. Disaster exercises are essential instruments in this
endeavor, as they can be employed for a multitude of different purposes, such as
the assessment of current and future crisis handling processes and relief strate-
gies, the planning of pre-crisis resource requirements and allocation as well as

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 15–26, 2022.
https://doi.org/10.1007/978-3-031-24866-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_2

16 B. Garn et al.

helping train emergency personnel for actual crises [15] in a controlled environ-
ment [8]. To be effective, exercises must provide a safe but realistic environment,
reproducing all, or at least certain, characteristics of actual crises, and allow for
conclusive evaluation.

In this paper, we present a conceptual framework for disaster exercises,
including the process of planning, designing and generating disaster scenarios
for the use in disaster exercises. Our proposed conceptual framework utilizes
a combinatorial approach for disaster exercise generation first described in [1].
The overall structure of our proposed conceptual framework is visualized in
Fig. 1. The intention of our presented conceptual framework is to provide for the
automated design and generation of disaster exercises featuring scenarios, which
collectively for each generated exercise, provide guaranteed coverage for certain
permutations of specified length consisting of events that make up a disaster
or crisis. This guaranteed coverage of certain event permutations can help with
finding problematic sequences of events in a disaster situation that might have
otherwise been overlooked and help to better understand deficiencies and weak-
nesses of current disaster management strategies. Training exercises generated
by our proposed framework provide sets of diverse disaster unfolding story lines
for participants and, consequently, assured overall training diversity for emer-
gency responders. Additionally, the underlying combinatorics provide the means
to minimize the number of scenarios in each generated disaster exercise, leading
to efficient and effective training schedules.

Fig. 1. Structure of the framework for scenario generation.

This paper is structured as follows. In Sect. 2, we provide motivation for our
work. We present an overview of our integrated combinatorial framework for
disaster exercises in Sect. 3. We conclude this work in Sect. 4, where we also offer
an outlook on future work.

From Design of Experiments to Combinatorics of Disasters 17

2 Motivation

In this section, we contextualize our work to the general domain of disaster man-
agement. We give a brief historic perspective on the field of Design of Experi-
ments in Sect. 2.1. In Sect. 2.2, we explain the need for well-designed exercise sce-
narios in disaster management . We argue how notions of combinatorial sequence
coverage can be beneficially made use of in the design of disaster exercises in
Sect. 2.3.

2.1 Design of Experiments

Today, the Design of Experiments (DoE) is a well established and recognized
branch within statistics, used by both academia and practitioners. DoE provides
statistically-based, scientifically objective test strategies for analysis of and con-
clusions drawn from designed experiments. For a comprehensive treatment of
DoE, we refer the interested reader to [19]. Since its inception around 100 years
ago, DoE’s evolvement and development over the years has had profound impact
on test design in various industries. In [19], the following four eras of experimen-
tal design have been identified:

1st Era: Agricultural experiments spearheaded by work of Sir Ronald A. Fisher
[10,11].

2nd Era: Industrial era enabled by the formulation of the response surface
methodology [5].

3rd Era: With the work of Taguchi, the focus shifted towards quality improve-
ments in industrial settings [25].

4th Era: Revived activity in statistical design, from both research and applica-
tion sides.

Modern novel applications of the DoE mentality include combinatorial test-
ing (CT) for software [9,16] and combinatorial security testing (CST) focusing
on security testing aspects within information security [24]. These two testing
methods combine DoE-inspired testing mentality with appropriate discrete com-
binatorial structures, which fit better to the considered domains of computer
science than classical statistical designs from the past. Central to CT and CST
is the notion of combinatorial coverage, which also plays a significant role in the
research presented in this work. Before we go into the technical details, we take
a closer look at the application domain of disaster management next.

2.2 Exercise Scenarios

Disasters and crises can have devastating effects on humankind and therefore
pose a great threat to societies everywhere in the world. Because of this, gov-
ernments and emergency organizations have to be prepared and make efforts to
minimize potential damages, to ensure the functionality of important services
and to be able to provide crisis relief. Here, proactive measures like exercises can

18 B. Garn et al.

help strengthen the crisis management capability of countries or organizations
by providing in-depth analyses of current or new relief strategies and processes,
discuss cooperational and jurisdictional aspects and by training emergency per-
sonnel in a low-risk environment [8].

Exercises often implement scenarios which specify a possible, but not nec-
essarily probable, context and series of events [26], simulating the events and
processes occurring during a disaster or crisis situation. These scenarios can
be based on reconstructions of real-life historical disasters or be of completely
hypothetical nature and should reproduce the corresponding characteristics and
effects of the disaster and feature clear and specific goals or assessment measures
[12]. When looking at crisis scenarios on an abstract level, we can differentiate
between two building blocks making up a scenario, the scenario context and the
crisis, which are illustrated in Fig. 2. The scenario context describes the envi-
ronment the crisis takes place in [26]. It provides important information such
as the geographical and political landscape, the organizations and governmen-
tal agencies involved, their structures and relationships, etc. The crisis gives a
description of the sequence in which crisis-events happen within a specific time-
frame [18]. This not only includes events happening during the exercise (crisis
events), but all events leading up to the crisis (set-up events) as well. The events
themselves can be of several types with different consequences [18].

Fig. 2. Abstract structure of a crisis scenario.

Modelling exercise scenarios as sequences of events which are organized in a
specific space-time framework [4] provides flexible and highly adaptable scenarios
for crisis exercises that make progress easy to monitor and allow for conclusive
assessment.

2.3 Event Coverage

In disaster management, the impact a crisis has on a system not only depends on
the individual events happening during the crisis and their characteristics, but
also on certain parameters of a scenario which specify how the events happen.
Amongst these parameters are the overall duration of the scenario, the number

From Design of Experiments to Combinatorics of Disasters 19

of events which make up the scenario, their ordering, the temporal spacing of the
events as well as their geographic spread. For example, the order in which events
pertaining to the weather, such as changes in weather conditions, happen, might
have a tangible effect on the course of a disaster. Using the bushfire-simulation
engine SPARK [23], we examined the effects of four different scenarios which
feature permutations of event sequences for two types of weather events, wind
speed and wind direction, to the spreading of a modelled fire. These four scenarios
are based on a historical bushfire disaster which happened in February 2009 near
the town of Redesdale in Victoria, Australia, as part of a series of bushfires. The
corresponding events have been extracted from weather logs and official disaster
records [7] and converted into a time-series. This time-series was then imported
alongside other events pertaining to the fire and topographical and land-coverage
data into the SPARK engine, where the initial scenario was simulated. Next,
three other scenarios were simulated which feature changes in the time series
containing the course of the weather events. The results of the simulation of the
initial scenario as well as of the three adapted scenarios are depicted in Fig. 3.

Fig. 3. Simulations pertaining to the 2009 Redesdale fires, Victoria, Australia.

Looking at the results of the simulations, it is evident that the order in which
events happen in a scenario has an impact on how the scenario plays out. This
means that, to fully test a crisis response plan, testing as many permutations of
different scenario parameters as possible is imperative, as the overall response
strategy (i.e., regarding the distribution, allocation and coordination of resources
and emergency services and personnel) differs on a case-by-case basis and has to
be adapted accordingly.

It is obvious that an exhaustive testing approach would be very time consum-
ing and expensive. In fact, for more complex scenarios featuring lots of events it is
practically impossible to test out all possible event permutations with exercises.
However, utilizing the testing philosophy of DoE can help us significantly in this

20 B. Garn et al.

endeavor. Specifically, we make use of certain combinatorial sequence structures
from discrete mathematics [6] as means to derive disaster scenarios as outlined
in [1], which inherently minimize the overall number of generated scenarios while
at the same time guarantee coverage of sub-permutations of selected events.

3 A Conceptual Combinatorial Framework for Disaster
Scenario Generation

In this section, we provide an overview of our proposed conceptual framework for
combinatorial scenario generation for disaster exercises. We show how the indi-
vidual concepts and aspects discussed so far come together and are holistically
integrated into a single process. In particular, we describe the individual steps
of our envisaged process consisting of six stages, which are depicted in Fig. 4.

Fig. 4. Process of scenario generation using the framework.

In the first stage, exercise formulation, covered in Sect. 3.1, the overall
goals of the exercise are discussed and defined. In the stage data acquisition,
which is considered in Sect. 3.2, sources for information regarding the crisis have
to be found and data has to be extracted. This information can include details
pertaining to the development of the crisis, the events that occur and the actors
that are involved in both the emergence, as well as the combatting, of the crisis.
Once data has been acquired the following step, also referred to as the exer-
cise design stage, dealt with in Sect. 3.3, is to design the exercise to suit all
the desired needs established during the exercise formulation with regards to
the information gathered and disaster events identified. In the next stage of
the framework, exercise generation described in Sect. 3.4, exercise designers
have to first select the mathematical (combinatorial) structure most suitable for

From Design of Experiments to Combinatorics of Disasters 21

the previously specified exercise. In particular, translation of events, constraints
and properties of the scenario into parameters of the structure and its genera-
tion has to be performed. The generated structure containing the scenarios is
then implemented into the disaster exercise process, where the exercise can be
conducted and the individual scenarios can be evaluated for their impact. This
stage is called the execution and assessment stage and treated in Sect. 3.5.
The findings from this assessment may then be used to alter future exercises by
fine-tuning the design or by changing the focus to scenarios similar to ones that
performed poorly during the exercise, which can happen in a post-processing
stage, covered in Sect. 3.6. In the following, we put forth a more in-depth tech-
nical description of the individual stages of our proposed conceptual framework.

3.1 Exercise Formulation

Before an exercise can be constructed, exercise designers have to first define the
purpose and general goals of the exercise. For example, crisis management exer-
cises can be utilized to evaluate crisis relief processes and response measures,
whereas training exercises focus more on helping emergency services and crisis
response units getting acquainted with the processes and measures. Depending
on the purpose and goals defined, exercise designers also have to decide on which
exercise types suits these purposes best. In this work, we differentiate between
three major types of exercises: tabletop, functional and full-scale exercises [20].
Tabletop exercises are discussion-based exercises which are used for the assess-
ment of the relief strategies and processes on an operational and jurisdictional
level where participants can familiarize themselves with or discuss existing emer-
gency procedures or develop and test out new ones on a strictly theoretical and
strategical basis [17]. Functional exercises and full-scale exercises are both oper-
ational exercises, used to train or validate existing plans, policies and procedures
at a more operational level and in a more realistic and real-time environment
[15]. While functional exercises focus on a single or a small number of very spe-
cific functions and processes of a disaster response plan and involve only one or
a few organizations, full scale exercises involve the whole crisis management as
well as multiple agencies, organizations and jurisdictions [14].

The exercise types not only differ in the process and goals of the exercises
themselves but also in their characteristics and complexity, as well as in the
implementation of the scenarios used. For example, scenarios used in tabletop
exercises consists of a series of conceptual events discussed from a high-level
point of view and are typically presented in a narrative form [21] by a mod-
erator using text handouts accompanied by photos for visualization purposes
[12]. Functional exercises and full-scale exercises feature more realistic scenarios
where a lot of focus is also on the operational processes. To successfully convey a
certain sense of realism and seriousness, actors are often used simulating victims
or other relevant entities like agency officials [14]. Depending on the number of
agencies and organizations taking part, different sub-goals also have to be imple-
mented to provide for effective assessment of all the different processes that are

22 B. Garn et al.

part of the relief strategy. Due to the general nature of our framework, the sce-
narios generated by it can be used for both discussion-based and operational
exercises.

3.2 Acquisition of Data

Depending on the purpose and scale of the exercise, a multitude of different
information has to be collected in order to generate effective scenarios [2,13].
This can entail general data regarding the scenario context, such as (systemical)
information on the environment and domain the crisis takes place in as well as
information regarding specific events affecting the disaster or relief progress.

The acquisition of data usually begins with the sighting and analysis of viable
sources of information. In this work, post disaster analysis documents such as
official reports and case studies of historical crises can be good starting points.
Scanning archives from social media for content created during the time of the
crisis can also be a viable source of information, though scenario designers have
to be very careful to identify real data from fake. Additionally, crisis events can
also be manually identified by experts in the corresponding field the crisis is
set in. This is especially important for new technology domains, where there is
little historical data available. Once viable data sources have been identified, the
information has to be extracted, either manually or by utilizing data-extraction
tools, and stored in a knowledge base. Our conceptual framework considers the
full scale of modern data mining capabilities and techniques, such as advanced
analytics and natural language processing, to enable the extraction of all relevant
information and important data points from a multitude of different sources
(Fig. 5).

Fig. 5. Illustration of data extraction from a post-disaster report.

3.3 Exercise Design

Once all the information has been successfully allocated and collected, it is sys-
temized with regard to the significance for the overall goals and purposes. This
helps identifying the main disaster events of the crisis as well as ones useful
for reproducing certain crisis characteristics [18]. An important task here is also
to identify event constraints which specify the conditions in which events can
occur. The difficulty and scope of the exercise is then determined by setting sce-
nario parameters such as as the number of events occurring, the minimum and

From Design of Experiments to Combinatorics of Disasters 23

maximum length, the desired complexity and constraints of the scenario. Addi-
tionally, scenario designers can inject events into the scenario that create urgency
and time constraints, add elements of surprise, or present the participants with
a dilemma. The exercise complexity, which determines the strength of the sub-
permutations that are covered collectively by all scenarios in the exercise, is also
set in this stage.

The overall goals determined in the disaster formulation stage can now be
fleshed out and specified in order to present exercises participants with achievable
and distinct goals [12].

3.4 Exercise Generation

Depending on the properties of the exercise designed in the previous stage, such
as scenario length, exercise complexity as well as the occurrence of event and
scenario constraints, suitable combinatorial structures have to be identified and
the properties translated into the mathematical domain and then mapped to
the corresponding parameters of the combinatorial structure. In Fig. 6, which
is taken from [1], such a mapping of two exemplary combinatorial structures is
shown (for undefined terms and notions we refer to [1] and references there in).

Fig. 6. Mapping the scenario properties to the parameters of combinatorial structures.

The combinatorial structures themselves can then be generated by utiliz-
ing various mathematical methods and algorithms. After the generation process
has finished, the created structure is then transcribed to the desired exercise
by mapping the elements of the combinatorial structure to the corresponding
disaster scenarios. All artifacts that are constructed during the disaster exercise
generation process are stored in the knowledge base for future reference.

3.5 Execution and Assessment

After a disaster exercise has been generated, it is given to the exercise organiz-
ers in the form of a set of crisis scenarios, which consist of the disaster events
identified earlier and which collectively satisfy the desired strength for the cho-
sen notion of combinatorial sequence coverage. These sets of scenarios can be

24 B. Garn et al.

delivered in different data formats to suit the needs of the management process
of the organizations involved.

Depending on the number and complexity of the scenarios, the exercises can
be implemented into the disaster management process in a variety of different
ways. For example, they might be implemented as smaller regularly occurring
drills which help with continuously improving the disaster relief processes and
proficiency of participants or as a large-scale one-time exercise which could even
last for a few days. While conducting the exercise, the progress of the participants
as well as the effects on the relief efforts is monitored and evaluated by exercise
conductors. This gives a first assessment of the impact the different scenarios
have on the system as well as a measure on how the disaster relief strategy
and the participants involved are handling them. An illustration of the general
assessment procedure for two scenarios is given in Fig. 7.

Fig. 7. Illustration of the general assessment procedure for two scenarios.

3.6 Post-processing

Finally the results of the evaluation of the individual scenarios as well as the
overall exercise can be used as input for further disaster exercises in the consid-
ered domain, as they might be modeled with a bias towards the scenarios that
have been identified as critical during the assessment. These critical scenarios
are then specifically annotated in the knowledge base for further analysis or
exercise repetition.

4 Conclusion and Future Work

Based on an analysis of current disaster management approaches, we proposed
a DoE-inspired conceptual combinatorial framework for disaster exercises. Our
proposed framework is envisioned to be able to parse multiple kinds of data
sources via appropriate modern data mining techniques. The integration of
domain knowledge enables the semi-automated extraction of relevant data from
the input sources. Once a model has been selected, it is translated into a discrete
mathematical representation, which then enables the generation of disaster sce-
narios, that are given to interested organizations and stakeholders, which satisfy

From Design of Experiments to Combinatorics of Disasters 25

required mathematical properties, including guaranteed notions of combinatorial
coverage. Once exercises have been conducted, their results can be fed back into
the framework for post-processing analysis as well as further exercise tuning.
Our framework can be used as part of on overall cycling training schedule.

We see several possibilities for future work. First, we want to evaluate our
proposed framework in practice for different kinds of disasters and affected stake-
holders. Second, we are interested in broadening our combinatorial modelling and
generation framework by analyzing more combinatorial structures for usage in
disaster scenario generation to be able to accommodate specialized constraints
arising in application domains. Third, the precise mathematical coverage guar-
antees of disaster exercises generated via our proposed framework could be inte-
grated into general novel vulnerability, risk and impact analysis assessments of
disaster threats.

Acknowledgements. SBA Research (SBA-K1) is a COMET Center within the
framework of COMET - Competence Centers for Excellent Technologies Program and
funded by BMK, BMDW, and the federal state of Vienna. The COMET Program is
managed by FFG.

This work was performed partly under the following financial assistance award
70NANB21H124 from U.S. Department of Commerce, National Institute of Standards
and Technology.

References

1. Combinatorial sequences for disaster exercise generation. operations research forum
currently under review (2021)

2. Ahammed, S., et al: Acquisition, storage, retrieval and dissemination of disaster
related data. In: IEEE Region 10 Humanitarian Technology Conference (R10-HTC)
(2014). https://doi.org/10.1109/R10-HTC.2014.7026329

3. Benfield, A.: Weather, climate catastrophe insight. 2020 annual report. Aon Ben-
field. https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-
climate-change-2020-annual-report/index.html 1 (2021)

4. Bouget, G., Chapuis, J., Vincent, J.: Conception de scénarios d’attaque de systèmes
complexes. In: Workshop 3SGS’09 (2009)

5. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum condi-
tions. J. Royal Stat. Soci. Series B (Methodological) 13(1), 1–38 (1951). https://
doi.org/10.1111/j.2517-6161.1951.tb00067.x,https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/j.2517-6161.1951.tb00067.x

6. Colbourne, C., Dinitz, J.: Handbook of Combinatorial Designs, 2nd edn. CRC
Press Boca Raton, FL (2007)

7. Commission,V.B.R.: 2009 Victorian Bushfires Royal Commission: final report
(2010)

8. for Disease Prevention, E.C., Control: Handbook on simulation exercises in EU
public health settings - How to develop simulation exercises within the framework
of public health response to communicable diseases. https://www.ecdc.europa.eu/
en/publications-data/handbook-simulation-exercises-eu-public-health-settings
(2014) (2021)

https://doi.org/10.1109/R10-HTC.2014.7026329
https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-climate-change-2020-annual-report/index.html
https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-climate-change-2020-annual-report/index.html
https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1951.tb00067.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1951.tb00067.x
https://www.ecdc.europa.eu/en/publications-data/handbook-simulation-exercises-eu-public-health-settings
https://www.ecdc.europa.eu/en/publications-data/handbook-simulation-exercises-eu-public-health-settings

26 B. Garn et al.

9. Duan, F., Lei, Y., Kacker, R.N., Kuhn, D.R.: An approach to t-way test sequence
generation with constraints. In: 2019 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW), pp. 241–250 IEEE
(2019)

10. Fisher, R.A.: The Design of Experiments, 8th ed. Hafner Publishing Company
(1966)

11. Fisher, R.A.: Statistical Methods for Research Workers, pp. 66–70. Springer,
New York (1992). https://doi.org/10.1007/978-1-4612-4380-9 6. https://doi.org/
10.1007/978-1-4612-4380-9 6

12. Grunnan, T., Fridheim, H.: Planning and conducting crisis management exercises
for decision-making: the do’s and don’ts. EURO J. Decis. Process. 5(1), 79–95
(2017)

13. Guha-Sapir, D.: EM-DAT: The emergency events database. https://www.emdat.
bewww.emdat.be

14. of Health, D., Human Services, Health Facilities Administration, S.o.N.H.:
Basics of exercise design and administration. https://www.dhhs.nh.gov/oos/bhfa/
documents/beda.pdf (2021)

15. Homeland Security, D.: Homeland security exercise and evaluation program
(HSEEP). https://www.fema.gov/sites/default/files/2020-04/Homeland-Security-
Exercise-and-Evaluation-Program-Doctrine-2020-Revision-2-2-25.pdf (2021)

16. Kuhn, D.R., Kacker, R.N., Lei, Y.: Introduction to combinatorial testing. CRC
Press (2013)

17. Leonard Jr, J.J., Roberson, M.G.: Adding realism to tabletop exercises. In: Interna-
tional Oil Spill Conference, vol. 1999, pp. 555–560. American Petroleum Institute
(1999)

18. Limousin, P., Tixier, J., Bony-Dandrieux, A., Chapurlat, V., Sauvagnargues, S.:
A new method and tools to scenarios design for crisis management exercises. In:
CISAP7: 7TH International Conference on Safety and Environment in Process
Industry, vol. 53, pp. 319–324 (2016)

19. Montgomery, D.C.: Design and analysis of experiments. John wiley sons (2017)
20. Perry, R.W.: Disaster exercise outcomes for professional emergency personnel and

citizen volunteers. J. Contingencies Crisis Manage. 12(2), 64–75 (2004)
21. Peterson, D.M., Perry, R.W.: The impacts of disaster exercises on participants.

Disaster Prev. Manag. Int. J. 8(4), 241–255 (1999)
22. Rosenthal, U., Kouzmin, A.: Crises and crisis management: toward comprehensive

government decision making. J. Publ. Adm. Res. Theory: J-PART 7(2), 277–304
(1997)

23. Scientific, C., Organisation, I.R.: Spark: A wildfire simulation toolkit. https://
research.csiro.au/spark/

24. Simos, D.E., Kuhn, R., Voyiatzis, A.G., Kacker, R., et al.: Combinatorial methods
in security testing. Computer 49(10), 80–83 (2016)

25. Taguchi, G.: System of experimental design; engineering methods to optimize qual-
ity and minimize costs. Tech. rep. (1987)

26. Walker, W.E.: The use of Scenarios and Gaming in Crisis Management Planning
and Training, vol. 7897. Rand Santa Monica, CA (1995)

https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://www.emdat.bewww.emdat.be
https://www.emdat.bewww.emdat.be
https://www.dhhs.nh.gov/oos/bhfa/documents/beda.pdf
https://www.dhhs.nh.gov/oos/bhfa/documents/beda.pdf
https://www.fema.gov/sites/default/files/2020-04/Homeland-Security-Exercise-and-Evaluation-Program-Doctrine-2020-Revision-2-2-25.pdf
https://www.fema.gov/sites/default/files/2020-04/Homeland-Security-Exercise-and-Evaluation-Program-Doctrine-2020-Revision-2-2-25.pdf
https://research.csiro.au/spark/
https://research.csiro.au/spark/

Separating Two Polyhedra Utilizing
Alternative Theorems and Penalty

Function

Saeed Ketabchi1 , Hossein Moosaei2,3 , Mario R. Guarracino4(B) ,
and Milan Hladík5

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, University
of Guilan, Rasht, Iran

sketabchi@guilan.ac.ir
2 Department of Informatics, Faculty of Science, Jan Evangelista Purkyně

University, Ústí nad Labem, Czech Republic
hossein.moosaei@ujep.cz

3 Prague University of Economics and Business, Prague, Czech Republic
4 Department of Economics and Law, University of Cassino and Southern Lazio

Campus Folcara, Cassino, Italy
mario.guarracino@unicas.it

5 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic

hladik@kam.mff.cuni.cz

Abstract. The separation of two polyhedra by a family of parallel
hyperplanes is a well-known problem with important applications in
operations research,statistics and functional analysis. In this paper, we
introduce a new algorithm for constructing a family of parallel hyper-
planes that separates two disjoint polyhedra given by a system of linear
inequalities. To do this, we consider the alternative system and introduce
its dual problem using the alternative theorem. We can find its minimum-
norm solution by combining the objective function and constraints into a
penalty function. Since our objective function is only once differentiable,
we propose an extension of Newton’s method to solve the unconstrained
objective optimization. The computational outcomes demonstrate the
efficacy of the proposed method.

Keywords: Polyhedra · Separating theorem · Theorems of
alternative · Penalty function · Generalized

1 Introduction

In computer modeling, a polyhedron is one of the most commonly used geomet-
ric solids. For example, polyhedra are used in robotic systems to model obstacles
that must be avoided; in computer-aided design, they may represent automobile
parts or tools; and in computer graphics or geographical databases, they may
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 27–39, 2022.
https://doi.org/10.1007/978-3-031-24866-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_3&domain=pdf
http://orcid.org/0000-0002-4401-4741
http://orcid.org/0000-0002-0640-2161
http://orcid.org/0000-0003-2870-8134
http://orcid.org/0000-0002-7340-8491
https://doi.org/10.1007/978-3-031-24866-5_3

28 S. Ketabchi et al.

represent real-world objects such as mountains or buildings [22]. Classification is
a decision-making process that results in the labeling of an observed object as a
member of a particular category. Using a training set of labeled observations, it
is possible to compute a mathematical model and classify new unlabeled obser-
vations. The classification has been utilized in numerous applications, including
the prediction of heart disease, lung cancer, or colon tumors, text categorization,
computational biology, bioinformatics, and image classification [1,7,9,17,19,28].
A concept related to binary classification is the separation of two polyhedra
[3–5]. Separation of parametrized polyhedra was addressed in [15,16].

The method for constructing a family of parallel hyperplanes that separates
two disjoint polyhedra was investigated theoretically by Eremin [10] with no
computational results. This is a practical version of the Hahn-Banach separat-
ing theorem in functional analysis [20,24,26]. A construction of all separating
hyperplanes was proposed by Grygarová [12,13]; naturally, it is time expensive
to handle all separating hyperplanes.

In this paper, we describe an algorithm for constructing a family of parallel
hyperplanes and separating two disjoint polyhedra given by a system of linear
inequalities [11]. To find this family, we consider the dual problem of the alter-
native to this system (Sect. 2). The replacement of the alternative system with
the dual problem is advantageous since the dimension of the new variables is less
than that of the starting one.

To find the minimum norm solution, we combine the objective function and
constraints into a penalty function and obtain an unconstrained quadratic opti-
mization problem. Since the objective function is not twice differentiable, we
use the generalized Newton method with a line-search based on the Armijo rule
(Sect. 3). The experiment results show the efficiency of our proposed algorithm
(Sect. 4). This method is especially efficient for the unconstrained optimization
of a piecewise quadratic function [21]. Concluding remarks are given in Sect. 5.

In this paper, vectors are considered as column vectors and we denote the n-
dimensional real space by Rn. By A�, and ‖·‖, we mean the transpose of matrix
A and Euclidean norm, respectively. and, by (a)+ we mean a vector which is
obtained from a by replacing the negative components by zero. The symbol fx

stands for the partial derivative of f with respect to x. The complement of a set
X is denoted by Xc.

2 Separation of Two Polyhedra

Let x ∈ Rn, and b ∈ Rm, with ‖b‖ �= 0 be two given vectors and A ∈ Rm×n

(m > n) be a rectangular matrix. The linear systems

Ax ≥ b, (1)

and
A�u = 0n, b�u = ρ, u ≥ 0m, (2)

Separating Two Polyhedra 29

determine the alternative sets X and U [8,11] defined as:

X = {x ∈ Rn : Ax ≥ b},

U = {u ∈ Rm : A�u = 0n, b�u = ρ, u ≥ 0m},

where ρ > 0 is an arbitrary fixed positive number and 0i is the zero vector of
dimension i.

From (2) we have
u�(Ax − b) = −ρ. (3)

This equality is the key tool for constructing a family of hyperplanes that sepa-
rate two disjoint and nonempty polyhedra.

Suppose A, b and u are of the form

A =
[

A1

A2

]
, b =

[
b1
b2

]
, u =

[
u1

u2

]
,

where A1 and A2 are full rank matrices of size m1 ×n and m2 ×n; b1, u1 ∈ Rm1

and b2, u2 ∈ Rm2 ; m1 + m2 = m. We also suppose that

X1 = {x ∈ Rn : A1x ≥ b1}, X2 = {x ∈ Rn : A2x ≥ b2},

are two nonempty sets which determine two polyhedra such that X = X1∩X2 =
∅; it means that Ax ≥ b is infeasible.

Let c�x−γ = 0 be a hyperplane whose normal vector is c ∈ Rn, with ‖c‖ �= 0
and γ is a scalar. We say that the hyperplane c�x−γ = 0 separates X1 and X2,
if c�x − γ ≥ 0 for all x ∈ X1, and c�x − γ ≤ 0 for all x ∈ X2. We can rewrite
the systems (1) and (2) and the relation (3) as follows:

A1x ≥ b1, A2x ≥ b2,

A�
1 u1 + A�

2 u2 = 0n, b�
1 u1 + b�

2 u2 = ρ, u1 ≥ 0m1 , u2 ≥ 0m2 , (4)
u�
1 (A1x − b1) + u�

2 (A2x − b2) = −ρ < 0. (5)

Define the linear function ϕ(x, α) : Rn × [0, 1] → R with

ϕ(x, α) = u�
1 (A1x − b1) + αρ. (6)

The relation (5) implies that ϕ(x, α) can be equivalently defined as

ϕ(x, α) = u�
2 (b2 − A2x) + (α − 1)ρ. (7)

The equality ϕ(x, α) = 0, where u1 and u2 satisfies (4) and α belongs to [0, 1],
determines the hyperplane that separates X1 and X2. This means that if x ∈ X1

then, according to (6), we have ϕ(x, α) ≥ 0, while if x ∈ X2 then, according
to (7), we have ϕ(x, α) ≤ 0. The separating hyperplane ϕ(x, α) = 0 with α =
1/2 was first introduced by Eremin [10,11]. From (6) and (7) the hyperplane
ϕ(x, α) = c�x − γ = 0 determines:

c = A�
1 u1 = −A�

2 u2, γ = b�
1 u1 − αρ = −b�

2 u2 − (α − 1)ρ,

30 S. Ketabchi et al.

where u1 and u2 are arbitrary solutions of the system (4).
For fixed vector u� = [u�

1 , u�
2], that satisfies system (4), we define the family

of parallel hyperplanes given by the following equivalent definitions:

Γ (α) = {x ∈ Rn : u�
1 A1x − b�

1 u1 + αρ = 0} = {x ∈ Rn : ϕ(x, α) = 0} (8)

= {x ∈ Rn : −u�
2 A2x + b�

2 u2 + (α − 1)ρ = 0}. (9)

The distance between the hyperplanes Γ (1) and Γ (0) will be called thickness
of the family of hyperplanes.

We note that the system (4) can be considered as a linear programming
problem (its objective function is equal to zero) thus, its dual problem is as
follows:

max
ν∈R1

max
x∈Rn

ρ ν,

subject to
Ax + bν ≤ 0.

We know that the penalty function method is applicable to general constrained
problems with equality and inequality constraints. Also the starting design point
can be arbitrary. Here several penalty functions can be defined. The most popular
one is called the quadratic loss function defined as

Θ(x, ν, ε) = −ερν +
1
2
‖(Ax + bν)+‖2, (10)

where Θ is piecewise quadratic, convex, and once differentiable function. By
using the above penalty function, we can find the minimum-norm solution to the
system (4). Now, we consider the following quadratic programming problem:

min
x∈Rn

min
ν∈R1

Θ(x, ν, ε) = −ερν +
1
2
‖(Ax + bν)+‖2. (11)

Suppose [x∗�, ν∗]� ∈ argminx,v Θ(x, ν, ε). Then the partial derivatives at the
optimal solution would be:

Θx(x∗, ν∗, ε) = A�(Ax∗ + bν∗)+ = 0m, (12)

Θν(x∗, ν∗, ε) = −ερ + b�(Ax∗ + bν∗)+ = 0. (13)

Therefore,

ũ∗ = u(x∗, ν∗, ε) =
(Ax∗ + bν∗)+

ε
, (14)

is the solution of (4). From (14) we get

ũ∗ − (Ax∗ + bν∗)
ε

≥ 0m, ũ∗�(ũ∗ − (Ax∗ + bν∗)
ε

) = 0, ũ∗ ≥ 0m. (15)

Separating Two Polyhedra 31

The conditions (12) (13) and (15) are the Kuhn-Tucker optimality conditions [6]
of the following problem:

min
u∈U

1
2
‖u‖2, where U = {u ∈ Rm : A�u = 0n, b�u = ρ, u ≥ 0m}. (16)

By [10,18] there exists some positive ε such that if we choose ε ∈ (0, ε), then
ũ∗ = 1

ε (Ax∗ + ν∗b)+ is the minimum-norm solution of (4). Therefore, we have
proved:

Theorem 1. Let Θ(x, ν, ε) = −ερν + 1
2‖(Ax + bν)+‖2 and suppose

[x∗�, ν∗]� ∈ argminx,v Θ(x, ν, ε). Then, there exits some positive ε such that
for all ε ∈ (0, ε), vector ũ∗ = 1

ε (Ax∗ + ν∗b)+ is the solution of the quadratic
problem (16).

Remark 1. We should note that we prefer to solve the system (1) instead of the
system (2) because, in polyhedrons, the number of variables of the system (2) is
much greater than the number of variables of the system (1). In addition, with
our strategy, we solve not only the system (2) but also find its minimum-norm
solution.

The next two theorems suggest a simpler algorithm for finding a family of
separating hyperplanes. First, one solves an unconstrained minimization problem
in a space of lower dimension and calculates the minimum-norm solution to
system (4). Then, one constructs Γ using (8) and (9).

The approach of Eremin is to find an arbitrary solution to the consistent
system (4), where the number of unknowns is m. Since we have n < m, the
approaches suggested by Theorem 2 and Theorem 3 are preferable.

Theorem 2. Let [x∗�, ν∗]� ∈ argminx,v Θ(x, ν, ε), ũ∗
1 = 1

ε (A1x
∗+ν∗b1)+, and

ũ∗
2 = 1

ε (A2x
∗ + ν∗b2)+ then:

1. A1
�ũ∗

1 = −A2
�ũ∗

2 �= 0 and c�x = αρ, for every α ∈ [0, 1], separates two
polyhedrons X1 and X2 where c = A1

�ũ∗
1.

2. ν∗ > 0 and if z∗ = (−x∗
ν∗), then z∗ ∈ Xc

1 ∩ Xc
2 .

Proof. To prove (1), we suppose the converse, i.e. A1
�ũ∗ = 0. Then [x∗�, ν∗]� is

a solution of the convex quadratic problem minx,ν
1
2‖(A1x + b1ν)+‖2 and since

X1 �= ∅, this implies that ũ∗
1 = (A1x

∗ + ν∗b1)+ = 0 and b�
1 ũ∗

1 = 0. Therefore,
the system

A2
�u2 = 0n, b2

�u2 = ρ, u2 ≥ 0m2 (17)

has a solution and its alternative system A2x ≥ b2 is inconsistent which is a
contradiction. Now, c�x = αρ for every α ∈ [0, 1], separates two polyhedra X1

and X2 since ũ∗
1 and ũ∗

2 satisfies (4).
To prove (2), first note that from (13) and (14), we have

ρ = b�ũ∗. (18)

32 S. Ketabchi et al.

From (13) and the optimal solution of (10), we obtain

Θ = −ερν∗ +
1
2
ε2‖u∗‖2, (19)

by substituting (18) into (19), we have

Θ = −εb�ũ∗ν∗ +
1
2
ε2‖u∗‖2.

Now we add ± 1
2‖bν∗‖2 to the above equation and get the following function:

Θ =
1
2
‖εu∗ − bν∗‖2 − 1

2
‖bν∗‖2.

The minimum of this function will happen when: εu∗ = bν∗, by multiplying the
both side of this equality in ũ∗�, we have ρν∗

ε = ‖ũ∗‖2 which implies that ν∗ > 0
and from here we obtain that (Az∗ − b)+ = ε

ν∗ ũ∗. This means (A1z
∗ − b1)+ �= 0

and (A2z
∗ − b2)+ �= 0 and therefore, z∗ �∈ X1 ∪ X2. ��

The following theorem is proved in [11], but our proof essentially differs and
is more straightforward than that mentioned in [11]. Let us A ∈ Rm×n be a
given matrix and b ∈ Rm a vector such that X = {x ∈ Rn : Ax ≥ b} = ∅ and
X∗ be the solution set of the following problem:

min
x

1
2
‖(b − Ax)+‖2. (20)

Then we have:

Theorem 3. If As and As′ be two arbitrary submatrices of A and, respectively
bs and bs′ two subvectors of b such that,

A =
[

As

As′

]
, b =

[
bs

bs′

]
,

Xs = {x ∈ Rn : Asx ≥ bs} �= ∅,

Xs′ = {x ∈ Rn : As′x ≥ bs′} �= ∅.

Then
X∗ ⊆ Γs(α),

where Γs(α) = {x ∈ Rn : u�
s Asx − b�

s us + αρ = 0}, α ∈ [0, 1] is arbitrary, and
u =

[
us; u′

s

]
is the solution of (16).

Proof. Let x∗ be an optimal solution of the problem (20).
This problem, is the dual of the following optimization problem :

max
u

b�u − 1
2
‖u‖2 subject to A�u = 0, u ≥ 0. (21)

Separating Two Polyhedra 33

According to the Kuhn-Tucker optimality conditions, we obtain that, z∗ =
(b − Ax∗)+ is the optimal solution of (21) [11]. Now we consider the follow-
ing quadratic problem:

min
u∈U

1
2
‖u‖2, where U = {u ∈ Rm : A�u = 0n, b�u = ‖z∗‖2, u ≥ 0m}. (22)

It is obvious that the optimal solution of (22) is also z∗ and if z∗
s = (bs −Asx

∗)+
then, by defining α = ‖z∗

s‖2/‖z∗‖2 in Γs(α), we have

Γs(α) = {x ∈ Rn : z∗
s

�Asx − b�
s z∗

s + ‖z∗
s‖2 = 0}. (23)

The hyperplane (23) separates two polyhedra Xs and Xs′ and x∗ ∈ Γs(α). This
completes the proof. ��

Algorithm 1. Generalized Newton Method with the Armijo Rule
Input: Choose any p0 = [x0

�, ν0]� ∈ Rn+1 and let ε > 0 be an error tolerance
and i = 0.
while ‖∇Θ(pi)‖∞ ≥ ε do
Choose αi = max{1, 1

2 , 1
4 , . . . } such that

Θ(pi) − Θ(pi + αidi) ≥ −αiμ∇Θ(pi)di,
where di = −∇2Θ(pi)−1∇Θ(pi), s > 0 is a constant, δ ∈ (0, 1) and μ ∈
(0, 1).
pi+1 = pi + αidi

i = i + 1.
end while

3 Algorithm

In this section, we describe an Algorithm to solve the unconstrained optimization
problem (11). In this problem, our objective function is Θ(x, ν, ε) = −ερν +
1
2‖(Ax+bν)+‖2. This function is piecewise quadratic, convex, and differentiable,
but it is not twice differentiable.

Suppose x, y ∈ Rn, and ν, u ∈ R. Then for gradient of Θ(x, ν, ε) we have

‖ � Θ(x, ν, ε) − �Θ(y, u, ε)‖ ≤ ‖B‖‖B�‖(‖x − y‖2 + ‖ν − u‖2) 1
2

where B =
[

A 0
0 b

]
.

This means ∇Θ is globally Lipschitz continuous with constant K =
‖B‖‖B�‖. Thus, for this function the generalized Hessian exists and is defined
by the 2m × 2m symmetric positive semidefinite matrix [7,14,18,21,25,27].

∇2Θ(x, ν, ε) = BD(z)B�,

34 S. Ketabchi et al.

where D(z) denotes an (n+1)× (n+1) diagonal matrix with i-diagonal element
zi equals to 1 if (Ax + bν)i > 0 and, equal to 0 otherwise.

Therefore we can use the generalized Newton method for solving this problem
and to obtain global termination we should use a line-search algorithm [23]. In
Algorithm 1, we apply the generalized Newton method with a line-search based
on the Armijo rule [2].

In this algorithm, the generalized Hessian may be singular, thus we use a
modified Newton direction Cholesky factorizations as the following:

M�M = (∇2Θ(pk) + γIm), dk = −(M�M)−1∇Θ(pk),

where M is an upper triangular matrix, γ is a small positive number and Im is
the identity matrix of order m.

Now we introduce the following iterative process:

pk+1 = pk + αkdk,

and if

p∗ = [x∗�, ν∗]� = argmin
x, ν

{Θ(x, ν, ε) = −ερν +
1
2
‖(Ax + bν)+‖2,

then, ũ∗ = 1
ε (Ax∗ + ν∗b)+ is the solution of the quadratic problem (16). The

proof of the finite global convergence of this algorithm is given in [2,21].

4 Numerical Results

We begin this section by providing a numerical example that demonstrates the
correctness of the theory presented in the preceding sections. We then present
some numerical results on various randomly generated problems to show the
ability and efficiency of the proposed algorithm.

All the experiments were conducted by a computer with these specifications:
Windows 11 Home with 16-GB RAM AMD Ryzen 7 5800H 3.20GHz with MAT-
LAB R2019a.

Here, we illustrate the results of Sects. 2 and 3 with the following example.

Example 1. Suppose Xs and Xs′ are two polyhedra given by a system of linear
inequalities. Let also As and As′ be the related matrices, bs and bs′ the related
vectors as follows:

As =

⎡
⎣−2 −2 −5

0 −3 6
−2 −3 5

⎤
⎦ , As′ =

⎡
⎢⎢⎢⎢⎣

3 6 0
−5 5 −4
4 0 6

−6 2 5
−7 −2 3

⎤
⎥⎥⎥⎥⎦ , bs =

⎡
⎣−34

3
−12

⎤
⎦ , bs′ =

⎡
⎢⎢⎢⎢⎣

23
−55
51

−17
−44

⎤
⎥⎥⎥⎥⎦ .

Separating Two Polyhedra 35

For this example we see that

Xs = {x ∈ Rn : Asx ≥ bs} �= ∅,

Xs′ = {x ∈ Rn : As′x ≥ bs′} �= ∅.

By solving the problem (11) and using of the Theorem 2 we obtain that

x∗ =

⎡
⎣−9.9313

−0.8710
−6.3091

⎤
⎦ , ũ∗ =

[
ũ∗

s

ũ∗
s′

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

0.2581
0

0.6452
0.2258

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ν∗ = 1.5338.

We also see that Xs and Xs′ are two disjoint polyhedra, since ‖u∗‖ = 1.2385. By
computing c = A�

s ũ∗
s =

[−2,−2, 5
]� and putting γ = 34, we find the separating

hyperplane c�x − γ = 0. We plot this example in Fig. 1 and this figure shows
that we could separate two mentioned polyhedra correctly.

Fig. 1. Separation two polyhedra

36 S. Ketabchi et al.

By writing a program to generate a random matrix A for a given m,n and
d (density) and then using our proposed method, we can learn more about the
algorithm’s computational ability. The following MATLAB code (Fig. 2) is how
we came up with the random problems.

Computational results for the test problems are given in the following Table
that are based on the penalty function (Theorem 2). Table 1 reports the following
information for each test problem:

m,n, d a random m × n sparse matrix A, with uniformly dis-
tributed nonzero entries and density d (0 ≤ d ≤ 1).

ũ∗ = 1
ε (Ax∗ + ν∗b)+ the solution of the quadratic problem (16).

f indicates ‖A�ũ∗‖∞.
x∗

s the solution of the problem minx
1
2‖(bs − Asx

∗
s)+‖2.

x∗
s′ the solution of the problem minx

1
2‖(bs′ − Asx

∗
s′)+‖2.

Fig. 2. Code generation for random systems.

Separating Two Polyhedra 37

Table 1. Separating two polyhedra Xs and Xs′

m, n, d f ρ ‖(bs − Asx
∗
s)+‖∞ ‖(bs′ − As′x∗

s′)+‖∞

100,90,1 5.5843e-09 6.6781 4.0539e-10 1.2501e-14
200,150,1 1.1806e-008 1.1747e+001 9.6142e-010 8.3114e-010
400,300,1 8.8863e-008 2.9715e+001 1.6663e-009 1.8356e-009
500,300,.1 1.2571e-013 4.0651e+001 6.8556e-011 7.6328e-011
700,600,0.1 3.5599e-013 6.1905e+001 5.1154e-011 4.4498e-011
850,700,0.1 3.4905e-013 7.3053e+001 5.3766e-011 1.5113e-010
1000,800,0.1 3.6573e-013 7.9620e+001 3.0925e-010 1.2002e-010
1200,1000,0.1 7.9953e-013 9.9921e+001 5.0549e-011 3.5756e-010
1500,1200,0.1 8.6886e-013 1.3227e+002 1.2325e-010 2.2253e-010
1800,1500,0.1 1.0802e-012 1.5005e+002 2.0003e-010 2.9962e-010
2000,1900,0.01 6.4948e-014 1.6370e+002 1.1914e-011 2.1584e-011
2500,2000,0.01 7.3164e-014 2.0902e+002 1.7203e-011 3.6915e-011
3000,2500,0.01 9.5479e-014 2.3541e+002 5.3289e-011 2.7744e-011
4000,3000,0.01 1.5038e-013 3.3336e+002 3.1782e-011 5.9421e-011
5000,4000,0.01 2.5380e-013 4.0755e+002 5.8658e-011 1.2718e-010
7000,6000,0.001 7.6156e-011 5.7671e+002 4.8485e-011 6.1937e-012
10000,8000,0.001 5.1955e-013 8.3709e+002 1.4789e-011 5.5633e-011

The results in Table 1 show that f = ‖A�ũ∗‖∞ is almost zero, ρ is posi-
tive, and also ‖(bs − Asx

∗
s)+‖∞ and ‖(bs′ − As′x∗

s′)+‖∞ are almost zeros for all
instances. Then the system (2) is feasible and the system (1) is infeasible, it
means we could separate two polyhedrons successively.

5 Conclusion

In this paper, we have studied an algorithm to obtain a family of parallel hyper-
planes that separate two disjoint nonempty polyhedrons. Our proposed algo-
rithm is based on the penalty function (10) (Theorem 2). Also, we have proposed
a fast generalized Newton method with the Armijo rule to solve our related
unconstrained optimization problem. The numerical results illustrate our pro-
posed method’s effectiveness and performance, even for large-scale problems. In
addition, there is another method for separating polyhedrons which is s based
on the minimization problem (20) (Theorem 3) [11]. In this paper, we presented
a new proof of this theorem. We should note that the approaches suggested by
Theorems 2 and 3 are preferable to Eremin’s approach. For future work, we
can use kernels to separate two not-intersecting polyhedra that are not linearly
separable.

38 S. Ketabchi et al.

Acknowledgments. H. Moosaei was supported by the Czech Science Foundation
Grant 22-19353S. M. Hladík was supported by the Czech Science Foundation Grant
P403-22-11117S.

Conflicts of Interest. The authors declare that they have no conflict of interest.

References

1. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.:
Computer aided decision making for heart disease detection using hybrid neu-
ral network-Genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26
(2017)

2. Armijo, L.: Minimization of functions having lipschitz continuous first partial
derivatives. Pac. J. Math. 16(1), 1–3 (1966)

3. Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J.
Optim. theory appl. 112(2), 265–293 (2002)

4. Astorino, A., Francesco, M.D., Gaudioso, M., Gorgone, E., Manca, B.: Polyhe-
dral separation via difference of convex (DC) programming. Soft. Comput. 25(19),
12605–12613 (2021). https://doi.org/10.1007/s00500-021-05758-6

5. Astorino, A., Fuduli, A.: Support vector machine polyhedral separability in semisu-
pervised learning. J. Optim. Theory Appl. 164(3), 1039–1050 (2015)

6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: theory and
algorithms. John Wiley Sons (2013)

7. Bazikar, F., Ketabchi, S., Moosaei, H.: DC programming and DCA for parametric-
margin ν-support vector machine. Appl. Intell. 50(6), 1763–1774 (2020)

8. Broyden, C.: On theorems of the alternative. Optim. methods softw. 16(1–4), 101–
111 (2001)

9. Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict
membrane protein types. J. Theor. Biol. 226(4), 373–376 (2004)

10. Eremin, I.I.: Theory Linear Optim. VSP, Utrecht (2002)
11. Evtushenko, Y.G., Golikov, A.I., Ketabchi, S.: Numerical methods for separat-

ing two polyhedra. In: Large-Scale Nonlinear Optimization, pp. 95–113. Springer
(2006)

12. Grygarová, L.: A calculation of all separating hyperplanes of two convex polytopes.
Optimization 41(1), 57–69 (1997). https://doi.org/10.1080/02331939708844325

13. Grygarová, L.: On a calculation of an arbitrary separating hyperplane of con-
vex polyhedral sets. Optimization 43(2), 93–112 (1998). https://doi.org/10.1080/
02331939808844377

14. Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized hessian matrix
and second-order optimality conditions for problems with C1,1 data. Appl. Math.
Optimi. 11(1), 43–56 (1984)

15. Hladík, M.: Separation of convex polyhedral sets with column parameters. Kyber-
netika 44(1), 113–130 (2008)

16. Hladík, M.: On the separation of parametric convex polyhedral sets with applica-
tion in MOLP. Appl. Math. 55(4), 269–289 (2010)

17. Javadi, S.H., Moosaei, H., Ciuonzo, D.: Learning wireless sensor networks for source
localization. Sensors 19(3), 635 (2019)

18. Kanzow, C., Qi, H., Qi, L.: On the minimum norm solution of linear programs. J.
Optim. Theory Appl. 116(2), 333–345 (2003)

https://doi.org/10.1007/s00500-021-05758-6
https://doi.org/10.1080/02331939708844325
https://doi.org/10.1080/02331939808844377
https://doi.org/10.1080/02331939808844377

Separating Two Polyhedra 39

19. Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on para-
metric ν-support vector algorithm for classification. Ann. Oper. Res. 276(1–2),
155–168 (2019)

20. Kundakcioglu, O.E., Seref, O., Pardalos, P.M.: Multiple instance learning via mar-
gin maximization. Appl. Numer. Math. 60(4), 358–369 (2010)

21. Mangasarian, O.: A Newton method for linear programming. J. Optim. Theory
Appl. 121(1), 1–18 (2004)

22. Mitchell, J.S., Suri, S.: Separation and approximation of polyhedral objects. Com-
put. Geom. 5(2), 95–114 (1995)

23. Nocedal, J., Wright, S.: Numer. Optim. Springer, New York (2006)
24. Pardalos, P.M.: Complexity Numer. Optim. World Scientific, Singapore (1993)
25. Pardalos, P.M., Ketabchi, S., Moosaei, H.: Minimum norm solution to the positive

semidefinite linear complementarity problem. Optimization 63(3), 359–369 (2014)
26. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)
27. Salahi, M., Ketabchi, S.: Correcting an inconsistent set of linear inequalities by the

generalized Newton method. Optim. Methods Softw. 25(3), 457–465 (2010)
28. Wang, X.Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support

vector machine classification. Pattern Recogn. 44(4), 777–787 (2011)

Contributed Papers

A Composite Index Method
for Optimization Benchmarking

Yulan Bai(B) and Eli Olinick

Department of Operations Research and Engineering Management,
Southern Methodist University, Dallas, TX 75205, USA

{yulanb,olinick}@smu.edu

Abstract. We propose a multi-criteria Composite Index Method (CIM)
to compare the performance of alternative approaches to solving an opti-
mization problem. The CIM is convenient in those situations when nei-
ther approach dominates the other when tested on different sizes of prob-
lem instances. The CIM takes problem instance size and multiple perfor-
mance criteria into consideration within a weighting scheme to produce
a single number that measures the relative improvement of one alterna-
tive over the other. Different weights are given to each dimension based
on their relative importance as determined by the end user. We summa-
rize the successful application of the CIM to an NP-hard combinatorial
optimization problem known as the backhaul profit maximization prob-
lem (BPMP). Using the CIM we tested a series of eleven techniques
for improving solution time using CPLEX to solve two different BPMP
models proposed in the literature.

Keywords: Performance · Benchmarking · Testing · Metric ·
Timing · Index · Routing · Backhaul · Pickup · Dropoff

1 Introduction

Using solution time as the key performance measure is a long-standing standard
practice in the optimization literature. However, now that computing environ-
ments take advantage of multiple processors and multiple threads while sup-
porting concurrent running of multiple CPU-intensive processes have become
commonplace, measuring solution time is no longer straight-forward. Further-
more, it is often the case that there is a “crossover point” in problem instance
size below which one approach is generally “faster” than another, but above
which the second approach is faster. In this situation the second approach would
usually be favored because the emphasis in the literature is on solution time
as a function of problem instance size. In this study, however, we consider the
practical question of making a recommendation to a user who frequently solves
problems that range in size around the crossover point, and propose a multi-
criteria framework for comparing competing solution approaches. We propose
a Composite Index Method (CIM) that considers several weighted performance
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 43–57, 2022.
https://doi.org/10.1007/978-3-031-24866-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_4&domain=pdf
http://orcid.org/0000-0003-0305-3274
http://orcid.org/0000-0001-7856-1826
https://doi.org/10.1007/978-3-031-24866-5_4

44 Y. Bai and E. Olinick

measure factors and calculates a single number (a composite index) to measure
the relative performance of two competing solution approaches.

The CIM was developed to evaluate two proposed mixed integer program-
ming (MIP) formulations of the backhaul profit maximization problem (BPMP),
the node-arc and triples formulations, each of which can be enhanced with a
variety of solution techniques (e.g., branching-rules and cutting planes). The
results of our application of the CIM to the BPMP are discussed in [10]. In
this paper we focus on the process of using the CIM to arrive at the final “can-
didate” models in [10]. This falls into the area of optimization benchmarking.
Beiranvand et al. [5] provide a recent comprehensive review of the benchmark-
ing literature for optimization problems. As far as we know, the first published
study in optimization benchmarking was by Hoffman et al. [13], in which differ-
ent methods were proposed for linear programming and different test instances
were used to compare algorithms based on the measures of CPU time, number
of iterations, and convergence rate. Another important early paper by Box [6]
considered the importance of model size and the number of function evaluations
during comparison. Later, many researchers explored optimization benchmark-
ing in various applications such as unconstrained optimization, nonlinear least
squares, global optimization, and derivative-free optimization. Crowder et al. [8]
proposed standards and guidelines for benchmarking algorithms. According to
[5], the Performance Profile proposed by Dolan and Moré [9] has become the
“gold standard” for optimization benchmarking (over 4,000 citations so far).

Given a set of solution approaches to an optimization problem, the proce-
dure for using the Performance Profile may be summarized as follows. First, a
single performance measure is selected (usually the computing time). Second, all
candidate solution approaches are applied to each of a set of problem instances
and the best-performing approach for each of the tested instances is used as the
benchmark for assessing the performance of all of the other candidate approaches
on that particular problem instance. In the case of CPU time as the selected met-
ric, the relative performance of a particular approach on a particular instance
is measured by a performance ratio obtained by dividing the CPU time of that
particular approach by the CPU time of the best-performing approach. For a
particular solution approach, the Performance Profile plots the cumulative dis-
tribution function of the performance ratio, the percentage of instances for which
the ratio is less than x, over the range 1 ≤ x ≤ ∞.

In cases such as our BPMP study where the Performance Profiles of the
candidate approaches intersect and cross each other, it may be unclear which
approach is the best overall. Problem size is an important consideration in the
BPMP use case; this makes the Performance Profile inappropriate since it treats
each problem instance equally regardless of its size. Furthermore, the Perfor-
mance Profile only uses a single performance measure, which makes it difficult
to use when there are multiple performance criteria such as when comparing the
trade-off between solution time and solution quality with heuristics, or executing
a solution approach on a system with multiple processors and/or threads.

To the best of our knowledge, parallel computing has received much less
attention in the literature on optimization benchmarking despite the fact that

A Composite Index Method for Optimization Benchmarking 45

it is now widely used in applied optimization. Barr and Hickman did pioneering
studies in this area [3,4] and proposed solutions to the challenges parallelization
brings to benchmarking. However, they did not suggest using a single measure
for easy comparison. Hence, the CIM is an initial step in closing a gap in the
literature.

The rest of this paper is structured as follows. We propose our Composite
Index Method for benchmarking in Sect. 2. We describe the BPMP and node-arc
and triples formulations in Sect. 3. We illustrate the application of the CIM to
the node-arc formulation in Sect. 4 and summarize our results from applying the
CIM to the triples formulation in Sect. 5. We draw conclusions in Sect. 6.

2 Performance Evaluation Using Composite Index
Method (CIM)

We use the CPLEX MIP solver [14] to solve the BPMP instances described in
[2,10]. There are three kinds of “solution time” in the CPLEX output: “CPU
time”, “real time”, and “ticks”. CPU time is a measure of the total time used by
CPLEX to find an optimal solution; it is the total time used by all threads. Real
time (also called wall clock time) is the time that elapsed during the CPLEX
run. Both measures can vary noticeably between runs with identical input on
identical hardware. Therefore, we solve each problem instance three times in
each experiment and report the average CPU and real time over the three runs.
The tick metric, also called deterministic time, is a proprietary measure of com-
putation effort based on counting the number of instructions executed by the
CPLEX solver and therefore shows no variation between multiple runs with the
same inputs on a given hardware configuration [7].

For each of the time measures described above, we use a speedup measure
to compare the solution time of two solution approaches, approach 1 versus
approach 2. Note that in the BPMP application described herein, a solution
approach is essentially a MIP model for the BPMP implemented in AMPL [1]
and solved with CPLEX. In general, a solution approach could be a combination
of a MIP model and an optimization algorithm. Hereinafter, Speedup is defined
as the ratio

Speedup = (Model 1 solution time) ÷ (Model 2 solution time).

If Speedup > 1, model 2 is solved Speedup times faster than model 1; if
Speedup = 1 , model 2 has the same solution time as model 1, and if Speedup
< 1, model 1 is solved 1/Speedup times faster than model 2. Due to the fact
that CPU and real time are not completely reproducible, we suggest that neither
one should be the sole basis for comparing solution approaches. Typically, ticks
and real time are positively correlated (as are ticks and CPU time), however
there does not appear to be a fixed relationship between ticks and the two time
measures. For this reason, we cannot use ticks as the single measure to compare
two models either. Instead, we propose a weighted combination of all three time
measures.

46 Y. Bai and E. Olinick

For a given problem size, n, and timing measure (CPU time, real time,
or ticks), we calculate a composite index based on a weighted combination of
the minimum, median, mean, and maximum speedups among a set of problem
instances. Thus, we obtain three composite indices: Cn, Rn, Tn for CPU time,
real time, and ticks, respectively. To calculate these indices we denote the min-
imum, mean, median, and maximum speedups in CPU time by Cmin, Cmea,
Cmed, and Cmax, respectively, and define Rmin, Rmea, Rmed, Rmax, Tmin, Tmea,
Tmed, and Tmax as the corresponding speedups for real time and ticks. Addi-
tionally, we define ωmin, ωmean ωmed and ωmax for weighting of the minimum,
mean, median and maximum statistics. We also define ω̄ as the summation of
ωmin, ωmean, ωmed and ωmax. The relative weights for CPU, real time, and ticks
are ωc, ωr, and ωt, respectively. Using this notation, the three composite indices
are calculated as follows:

Cn = (ωminCmin + ωmeaCmea + ωmedCmed + ωmaxCmax)/ω̄

Rn = (ωminRmin + ωmeaRmea + ωmedRmed + ωmaxRmax)/ω̄

Tn = (ωminTmin + ωmeaTmea + ωmedTmed + ωmaxTmax)/ω̄

Next, we calculate a composite index, In, for problem size n as a weighted
combination of indices Cn, Rn, and Tn:

In = (ωcCn + ωrRn + ωtTn)/(ωc + ωr + ωt).

Given a set of problem instance sizes, S, and weight ωs for each s ∈ S, we
calculate the grand composite index (GCI), which is the weighted sum of the
composite indices for each problem size given by

GCI = (
∑

s∈S
ωsIs)/

∑

s∈S
ωs.

If the grand composite index GCI > 1, we say that model 2 performs GCI
times better than model 1; if GCI = 1 , model 2 performs the same as model 1,
and if GCI < 1, model 1 performs 1/GCI times better than model 2.

In summary, the composite index method (CIM) seeks to find a single num-
ber, GCI, in a parallel computing environment, to decide which solution app-
roach is better, through instance testing. To do so, we first need to decide the
performance measures; usually more than one measure is needed. Second, multi-
ple runs are needed to reduce the variance of the measures for the same instance
by averaging the measure. Third, for a fixed problem size, multiple instances
should be randomly sampled. Along with the mean measure over the different
instances of the same problem size, we consider the minimum (min), median, and
maximum (max) measure to diminish the effects of outliers. The consideration of
min, mean, median and max, is inspired by the famous PERT concept of project
management, in which pessimistic, optimistic, and most likely task-completion
times are considered with different weights. Finally, comparisons are made over
a range of problem sizes and weighted accordingly.

A Composite Index Method for Optimization Benchmarking 47

The steps described above are for comparing two solution approaches. In
Sect. 4 we describe how we apply CIM iteratively to compare multiple solution
approaches. We illustrate this iterative process by applying it to the BPMP in
Sects. 4 and 5.

3 The Backhaul Profit Maximization Problem (BPMP)

The BPMP requires simultaneously solving two problems: (1) determining how
to route an empty delivery vehicle back from its current location to its depot by
a scheduled arrival time, and (2) selecting a profit-maximizing subset of delivery
requests between various locations on the route subject to the vehicle’s capacity.
Figure 1 illustrates a BPMP instance and solution.

Fig. 1. BPMP example.

Figure 1 shows a network representation of the problem with an empty vehicle
at a location represented by node 1. The vehicle weighs 1 ton and has a carrying
capacity of Q = 2 tons of cargo. The vehicle needs to return to its depot, repre-
sented by node 6, within a fixed period of time. The vehicle’s average traveling
speed limits the route to node 6 to a maximum distance of 7 mi. The vehicle
can make extra money by accepting delivery requests to pick up cargo at the
locations represented by nodes 1 through 5, destined for locations represented
by nodes 2 through 6 as long as it can get back to the depot on time. The tuple
(dij , wij) indicates the distance (in miles) and the size of the delivery request (in
tons) from node i to node j. The optimal solution indicated in Fig. 1 routes the
vehicle on the path represented by the arc sequence (1, 3), (3, 5), (5, 6).

BPMP was first introduced by Dong et al. [10]. Yu and Dong [16] proposed
a MIP formulation based on the traditional node-arc model of multicommodity
flow. Dong [11] proposed an alternative MIP formulation of BPMP called the
triples formulation. Thus, in the literature there are two kinds of BPMP MIP
formulations: node-arc and triples. The purpose of our experimental study is to

48 Y. Bai and E. Olinick

enhance both models as much as possible by applying candidate techniques, and
compare their performance using the CIM method.

3.1 Node-arc Formulation

The following node-arc formulations is taken from [10]. The binary variable xij

indicates whether or not the vehicle traverses arc (i, j), and binary variable ykl

indicates whether or not to accept request (k, l). Binary variable zkl,ij determines
whether or not request (k, l) is performed via arc (i, j). Variable θij represents
the total flow (i.e., tons of cargo) transported on arc (i, j). Sequence variables
si ≥ 0, for i = 1, . . . , n, track the relative order in which nodes are visited. The
node-arc formulation for BPMP is

max
s,x,y,z,θ

p
∑

(k,l)∈R dklwklykl − c
∑

(i,j)∈A dijθij − cv
∑

(i,j)∈A dijxij (1)

subject to

n∑

j=2

x1j = 1 (2)

n−1∑

i=1

xin = 1 (3)

∑

i∈N\{k,n}
xik =

∑

j∈N\{1,k}
xkj ∀k ∈ N \ {1, n} (4)

∑

(i,j)∈A
dijxij ≤ D (5)

∑

i∈N\{k,n}
xik ≤ 1 ∀k ∈ N \ {1} (6)

si − sj + (n + 1)xij ≤ n ∀(i, j) ∈ A (7)
∑

(k,l)∈R
zkl,ij ≤ Mxij ∀(i, j) ∈ A (8)

∑

j∈N\{1,k}
zkl,kj = ykl ∀(k, l) ∈ R (9)

∑

i∈N\{l,n}
zkl,il = ykl ∀(k, l) ∈ R (10)

∑

{i∈N :(i,h)∈A}
zkl,ih =

∑

{j∈N :(h,j)∈A}
zkl,hj ∀(k, l) ∈ R, h ∈ N \ {k, l}(11)

θij =
∑

(k,l)∈R
wklzkl,ij (i, j) ∈ A (12)

θij ≤ Q ∀(i, j) ∈ A (13)

A Composite Index Method for Optimization Benchmarking 49

The objective function is to maximize the total profit. Note that v represents
the weight of the vehicle in tons. The vehicle’s route is constrained to at most D
miles by constraint (5). The node-degree (6), and subtour elimination constraints
(7) ensure that the vehicle follows a simple path from node 1 to node n. The
sequence variables determine the relative order in which nodes are visited by the
vehicle. The logical connection between xij and zkl,ij is enforced by constraint
set (8). Constraint sets (9) and (10) enforce the logical relationship between ykl

and zkl,ij ; Constraints (11) are flow-conservation constraints for intermediate
nodes on the path the vehicle takes from node k to node l. The capacity limit is
enforced by constraint set (13). We denote a solution to the node-arc formulation
by a tuple of unsubscripted variables (x, y, z, s, θ).

3.2 Triples Formulation

The following description of the triples formulation of BPMP is adapted from
[10]; it uses a compact formulation of multicommodity flow originally proposed
by Matula [12,15] in which triples variable uk

ij for node triple (i, j, k) represents
the total flow on all paths from node i to node j with arc (i, k) as the first arc.
In the triples formulation of BPMP, uk

ij represents the tons of cargo that the
vehicle carries from node i to node j on arc (i, k) and an unspecified path from
node k to node j. In a feasible solution, the unspecified path turns out to be the
route that the vehicle takes from node k to node j [10]. The triples formulation
of the BPMP replaces the z variables of the node-arc formulation with triples
variables. The multicommodity flow constraints (9)–(12) are replaced with the
following set of triples constraints that relate the triples variables to arc flows:

θij = wijyij +
∑

(i,k,j)∈T
uj

ik +
∑

(k,j,i)∈T
ui

kj −
∑

(i,j,k)∈T
uk

ij ∀(i, j) ∈ A (14)

θij ≤ Qxij (i, j) ∈ A. (15)

The following constraints are imposed in order to force arc (i, k) to be on the
vehicle’s route if variable uk

ij is positive:

uk
ij ≤ Qxik ∀(i, j, k) ∈ T (16)

These constraints provide a logical linkage between the u variables and the x vari-
ables, and replace constraint set (8) of the node-arc formulation. For a detailed
explanation of the triples formulation, interested readers are referred to [10].

4 Node-Arc Summary

In this section we use the GCI to evaluate the efficacy of various techniques
(cuts, branching rules, etc.) designed to improve CPLEX’s performance using
the node-arc model given in Sect. 3. These techniques were selected and infor-
mally ranked by effectiveness from a larger set of candidates after preliminary

50 Y. Bai and E. Olinick

experiments that we performed prior to developing the CIM. Before applying the
first of the techniques, we established an “incumbent” enhanced node-arc for-
mulation by determining a tight Big-M value for the x-z linking constraint set
(8). We then applied the techniques sequentially according to the ranking from
our preliminary experiments. Using “model 1” to refer to an incumbent solution
approach and “model 2” to refer to the application of a particular technique to
model 1. If GCI > 1, we recommend adopting the technique, and making the
resulting model the new incumbent. We also say, for convenience, that the model
2 is “GCI times faster” than model 1. If GCI ≤ 1, we recommend not adopting
the technique.

4.1 Computing Environment and Weight Selection

The computations were performed on Dell R730 computers each with Dual 12
Core 2.6 GHz Intel Xeon processors and 380 GB RAM. The formulations were
implemented in AMPL 10.00 and solved with CPLEX 12.6.0.0. We used the
default settings for AMPL and CPLEX except where specified.

In our experience, practitioners solving real-world problems are much more
concerned about real time as a performance measure than CPU time, and are
often unaware of the tick measure. For our purposes, however, the reproducibility
of the tick metric is quite important. Therefore, we used the following weights
for each type of time speedup: ωC = 6, ωR = 8, and ωT = 8. Thus, real time and
ticks were equally important and more important than CPU time by a factor of
1 1
3 . For the ten instances of the same size problem, in reference to the PERT

technique, we gave the largest weight to the median, the second largest to the
mean, and the least weight to the min and max. For the problem sizes, we gave
30-node problems the largest weight, 20-node problems the second largest, and
10-node problems the least. The specific weights are listed in Table 1.

Table 1. Node-arc weights

CPU: ωc = 6 Ticks: ωt = 8 Real Time: ωt = 8

Median: ωmed = 40 Mean: ωmea = 10 Min & Max: ωmin = ωmax = 0.5

10-node: ω10 = 1 20-node: ω20 = 10 30-node: ω30 = 12

4.2 Initial Incumbent Formulation

We were only able to solve 10-node and 20-node instances with the incumbent
solution approach (i.e., the original node-arc model). The model was solved three
times for each problem instance. With no techniques applied, the median average
real time for the 10-node instances was 1.15 s, and the median average real time
for the 20-node instances was about 20 min. The results for n = 20 are shown
in Table 2. We summarize the results for n = 10 using four-tuples listing the
averages of the min, mean, median, and max values for CPU time, real time, and

A Composite Index Method for Optimization Benchmarking 51

ticks. The CPU seconds, real time seconds, and ticks tuples are (2.28, 4.17, 4.23,
6.45), (0.50, 1.15, 0.99, 2.56), and (120.06, 332.90, 272.06, 645.50), respectively.
That is, the maximum average CPU time for the 10-node instances was 6.45 s,
the maximum average real time was 2.56 s, and the maximum average number
of ticks was 645.50. Hereinafter, CPU and real time are reported in seconds.

Table 2. Test results of original Node-Arc model for n = 20.

Instance CPU time Real time Ticks

Run 1 Run 2 Run 3 Ave. Run 1 Run 2 Run 3 Ave.

1 12,654 12,310 12,172 12,379 1,937 1,896 1,734 1,856 1,244,880

2 1,745 1,757 1,716 1,739 355 372 344 357 272,703

3 2,457 2,544 2,393 2,465 497 536 467 500 382,350

4 24,954 26,053 27,313 26,106 1,891 2,044 1,943 1,960 1,211,197

5 2,964 3,036 2,981 2,994 632 681 628 647 583,158

6 32,635 35,586 34,566 34,262 1,720 1,859 1,778 1,786 1,005,079

7 2,760 2,770 2,615 2,715 502 512 482 499 422,516

8 5,873 5,888 5,738 5,833 845 857 806 836 674,853

9 28,620 32,115 28,746 29,827 2,007 2,226 1,967 2,067 1,318,085

10 17,096 17,745 18,202 17,681 1,571 1,749 1,606 1,642 1,091,225

Min 1,745 1,757 1,716 1,739 355 372 344 357 272,703

Mean 13,176 13,980 13,644 13,600 1,196 1,273 1,175 1,215 820,605

Median 9,263 9,099 8,955 9,106 1,208 1,303 1,206 1,239 839,966

Max 32,635 35,586 34,566 34,262 2,007 2,226 1,967 2,067 1,318,085

4.3 Technique 1: Conditional Arc Flow

The original node-arc model [16] uses constraint set (13), θij ≤ Q, to ensure
that the total amount of flow, θij , on arc (i, j) is less than or equal to the vehicle
capacity, Q. Notice that if the vehicle does not travel on arc (i, j), there should
be no flow on the arc (i.e., if xij = 0, then θij = 0). If the vehicle does travel
on arc (i, j), the maximum flow on the arc is Q (i.e., if xij = 1, then θij ≤ Q).
Therefore (13) can be replaced by the following constraint set which we call
conditional arc-flow

θij ≤ Qxij ∀(i, j) ∈ A. (17)

Yu and Dong [16] were unable to solve 30-node instances with the original
node-arc model. We had a similar experience in our preliminary tests. Therefore,
we tested this technique only on 10-, 20-, and 30-node instances. Table 3 gives
detailed test results of three runs for the 20-node instances after applying the
technique. The CPU time, real time, and ticks tuples for the 10-node instances
are (0.90, 2.85, 2.91, 4.82) (0.26, 0.66, 0.61, 0.96), and (74.61, 237.37, 241.69,

52 Y. Bai and E. Olinick

384.78) respectively. The complete speedup summary is given in Table 4. Table 5
lists the composite indices and GCI. Speedups in bold are greater than 1.

Conclusion: After applying technique 1, conditional arc-flow, the GCI of
speedups was 8.24, which means, on average, the model with conditional arc-flow
was solved 8.24 times faster than the original model. Therefore, we adopted tech-
nique 1, replacing constraint set (13) with the conditional arc-flow constraints
(17). Furthermore, after applying conditional arc-flow constraints we were able
to solve 30-node instances. The average real times ranged from 4,421 s (1.23 h) to
17,829 s (4.95 h) with a mean and median of 8,546 s (2.37 h) and 7,635 s (2.12 h),
respectively [2].

Table 3. Test Results of Incremental Effect of Conditional Arc-Flow for n = 20

Instance CPU time Real time Ticks

Run 1 Run 2 Run 3 Ave. Run 1 Run 2 Run 3 Ave.

1 1,306 1,258 1,266 1,276 96 100 97 98 54,992

2 720 701 702 708 63 63 64 63 37,316

3 1,974 1,689 1,729 1,797 143 146 134 141 81,335

4 4,945 3,848 3,836 4,210 358 362 318 346 202,725

5 450 409 408 422 94 94 92 93 70,847

6 2,152 1,752 1,764 1,890 196 200 182 193 119,363

7 1,243 1,105 1,120 1,156 81 81 77 80 39,778

8 1,189 1,080 1,010 1,093 74 76 68 73 35,113

9 673 630 620 641 127 130 125 128 96,582

10 811 759 740 770 123 125 119 122 85,867

Min 450 409 408 422 63 63 64 63 35,113

Mean 1,546 1,323 1,320 1,396 136 138 128 134 82,392

Median 1,216 1,093 1,065 1,125 110 112 108 110 76,091

Max 4,945 3,848 3,836 4,210 358 362 318 346 202,725

4.4 Technique 2: Relax Node-Degree Constraints

Yu and Dong [16] used the node-degree cuts (6) to ensure that the vehicle visits
each location at most once. But, the MTZ subtour elimination constraints (7)
also ensure that the vehicle visits each node at most once in an integer solution.
Therefore, we can relax (drop) the node-degree constraints without losing valid-
ity of the integer model (the node-degree cuts can be violated in solutions to the
LP relaxations). Table 6 gives the composite indices and GCI for this technique.
Speedups greater than 1 are in bold.

A Composite Index Method for Optimization Benchmarking 53

Table 4. Summary of Incremental Effect of Conditional Arc Flow Constraints.

Speedup

Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.95 0.91 1.10

Mean 1.68 1.42 1.74

Median 1.46 1.32 1.71

Max 3.17 2.61 2.67

n = 20

Min 1.37 4.70 3.55

Mean 12.21 11.35 9.74

Median 6.65 9.52 8.10

Max 46.52 22.64 19.01

Table 5. Composite Indices and GCI for Technique 1

n Cn (CPU) Tn (Ticks) Rn (Real Time) In GCI

10 1.52 1.35 1.72 1.53 8.24

20 8.08 9.96 8.48 8.91

Table 6. Composite Indices and GCI for Technique 2

n Cn (CPU) Tn (Ticks) Rn (Real Time) In GCI

10 0.73 1.17 0.90 0.95 1.28

20 1.02 1.25 1.22 1.17

30 1.43 1.28 1.48 1.40

Conclusion: After applying technique 2, relax node-degree constraints, the CGI
of speedups was 1.28, which means, on average, the model relaxing the node-
degree constraints was solved 1.28 times faster than the incumbent model. There-
fore, we adopted technique 2 and dropped constraint set (6) from the incumbent.

4.5 Technique 3: Single-Node Demand Cuts

The single-node demand cuts state that the total weight of the delivery requests
accepted from node i, or into node j, is at most the vehicle capacity, Q.

∑
j∈V \{1,i} wijyij ≤ Q ∀i ∈ V \ {n} (18)

∑
i∈V \{j,n} wijyij ≤ Q ∀j ∈ V \ {1} (19)

54 Y. Bai and E. Olinick

The above are valid inequalities that are satisfied by any feasible solution
because the vehicle cannot simultaneously hold cargoes with total weight more
than its capacity. This condition is not necessarily enforced by solutions to the
LP relaxation because of the fractional y values. Table 7 gives the results from
applying single-node demand cuts to the incumbent node-arc model.

Table 7. Composite Indices and GCI Technique 3

n Cn (CPU) Tn (Ticks) Rn (Real Time) In GCI

10 1.30 0.96 1.21 1.15 0.94

20 0.86 0.91 0.88 0.89

30 1.01 0.95 0.94 0.96

Conclusion: After applying technique 3, single-node demand cuts, the GCI of
speedups was 0.94, which means that solving the incumbent model was faster.
Therefore, we did not adopt technique 3.

4.6 Best Node-Arc Model

In total, we tested a series of nine techniques for improving solution time using
CPLEX to solve the node-arc formulation of BPMP. Four of the techniques
were adopted resulting in the Best Node-Arc Model [2]. Table 8 summarizes the
speedup of the Best Node-Arc Model compared to the original model proposed
by Yu and Dong [16]. The CPU time, real time, and ticks tuples for n = 30
are (20,454, 55,459, 39,485, 140,354) (1,594, 3,198, 2,564, 6,166), and (812,789,
1,192,684, 1,147,441, 1,966,885), respectively. The CPU time, real time, and
ticks tuples for n = 40 are (334,025, 6,643,337, 1,213,615, 52,502,367), (18,413,
329,773, 56,428, 2,652,518), and (6,601,682, 62,036,444, 15,873,253, 463,811,772),
respectively.

Table 8. Best Node-Arc Model vs. Original Node-Arc Model

Speedup

n = 10 n = 20

CPU Ticks Real time CPU Ticks Real time

Min 0.58 1.26 1.29 2.17 12.38 7.76

Mean 1.24 1.88 1.81 26.24 25.61 20.78

Median 0.89 1.9 1.63 17.97 24.58 19.56

Max 3.68 2.86 2.81 111.29 42.77 43.98

A Composite Index Method for Optimization Benchmarking 55

5 Triples Summary

In [2] we described in detail how we applied the CIM to the triples formulation
of the BPMP proposed by Dong [11]. We tested two techniques that are specific
to the triples formulation, and six of the nine techniques we tested for the node-
arc model. Due to the fact that preliminary studies showed that we could solve
larger problem instances with the triples formulation than with the node-arc
formulation, we used the following instance-size weights: ω10 = 6, ω20 = 10,
ω30 = 13, ω40 = 14, and ω50 = 16. The other weights were the same as those
used for the node-arc formulation. Tables 9 and 10 summarize the speedup of
the Best Triples Model compared to the original Triples model. Using the Best
Triples Model, we were able to solve 50-node instances with a maximum average
real time of 5,016 s (1.4 h) [2,10]. Tables 11 and 12 compare the final triples and
node-arc formulations. We did not calculate the GGI for Tables 11 and 12, but
it is clearly larger than 1. Thus, the Best Triples Model is the solution approach
recommended by the CIM.

Table 9. Best Triples vs. Original Triples: n = 10, n = 20, and n = 30

Speedup

n = 10 n = 20 n = 30

CPU Ticks Real CPU Ticks Real CPU Ticks Real

Min 1.01 0.49 0.44 0.80 0.74 0.84 0.71 0.69 0.60

Mean 1.51 1.11 1.88 1.95 1.66 1.69 6.49 3.13 4.48

Median 1.48 1.02 1.87 1.53 1.17 1.28 6.43 3.18 4.50

Max 2.76 2.28 3.20 6.20 6.14 5.43 12.03 4.70 7.89

Table 10. Best Triples vs. Original Triples: n = 40 and n = 50

Speedup

n = 40 n = 50

CPU Ticks Real CPU Ticks Real

Min 1.49 1.11 1.31 3.91 2.00 4.62

Mean 7.97 3.17 6.59 10.34 3.65 9.07

Median 7.74 3.40 7.37 8.53 3.54 9.24

Max 14.87 5.30 12.27 24.11 5.82 17.17

56 Y. Bai and E. Olinick

Table 11. Best Triples vs. Best Node Arc: n = 10 and n = 20

Speedup

n = 10 n = 20

CPU Ticks Real CPU Ticks Real

Min 0.39 1.47 0.86 6.34 8.89 7.98

Mean 2.38 4.47 2.31 62.43 24.02 21.46

Median 2.4 4.08 2.22 68.97 25.39 20.01

Max 4.50 8.38 4.00 137.06 42.75 46.20

Table 12. Best Triples vs. Best Node Arc: n = 30 and n = 40

Speedup

n = 30 n = 40

CPU Ticks Real CPU Ticks Real

Min 34.33 16.06 30.96 44.46 34.79 56.61

Mean 210.55 52.26 101.59 1,943.68 319.00 1,050.75

Median 153.62 44.40 106.01 327.41 96.47 225.86

Max 872.08 137.89 212.53 11,929.94 1,417.70 4,275.04

6 Conclusions

We have shown that the Composite Index Method (CIM) fills a gap in the area
of optimization benchmarking. Calculating a single index, GCI, makes it much
easier to select the best solution approach among multiple candidates. By apply-
ing CIM to the backhaul profit maximization problem (BPMP), we demonstrate
the step-by-step details of the framework of CIM in a parallel computing envi-
ronment. Although we focused on solution-time measures for finding a provably
optimal solution, the CIM can be easily adapted to consider other dimensions
of concern such as memory usage and solution quality (for heuristics). Further-
more, individual users can use their own weighting scheme to emphasize their
personal preferences for making trade-offs between performance measures.

Although the Best Triples Model of the BPMP that we identified by our
iterative application of the CIM is a significant improvement over the initial
node-arc formulation proposed in the literature, it is possible that we could have
discovered an even better model by testing the model enhancements (techniques)
in a different order. Thus, an important question for future research is how to
determine the order in which alternative solution approaches are compared using
the CIM when the approaches are not mutually exclusive.

The successful utilization of the CIM lies in the wise selection of perfor-
mance measures and weights in each dimension of concern. An illustrative study
applying the CIM to well known optimization problems for different use cases is
planned for the future.

A Composite Index Method for Optimization Benchmarking 57

References

1. AMPL: AMPL Version 10.6.16. AMPL Optimization LLC (2009)
2. Bai, Y., Olinick, E.V.: An empirical study of mixed integer programming formu-

lations of the backhaul profit maximization problem (2019). https://scholar.smu.
edu/engineering management research/1/. Accessed 20 Feb 2020

3. Barr, R.S., Hickman, B.L.: Reporting computational experiments with parallel
algorithms: issues, measures, and experts’ opinions. ORSA J. Comput. 5(1), 2–18
(1993)

4. Barr, R.S., Hickman, B.L.: Parallel simplex for large pure network problems: com-
putational testing and sources of speedup. Oper. Res. 42(1), 65–80 (1994)

5. Beiranvand, V., Hare, W., Lucet, Y.: Best practices for comparing optimization
algorithms. Optim. Eng. 18(4), 815–848 (2017). https://doi.org/10.1007/s11081-
017-9366-1

6. Box, M.: A comparison of several current optimization methods, and the use of
transformations in constrained problems. Comput. J. 9(1), 67–77 (1966)

7. Carle, M.A.: Deterministic behavior of CPLEX: ticks or seconds? (2019). https://
tinyurl.com/kvy6jbbc. Accessed 14 Feb 2022

8. Crowder, H., Dembo, R.S., Mulvey, J.M.: On reporting computational experiments
with mathematical software. ACM Trans. Math. Softw. (TOMS) 5(2), 193–203
(1979)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

10. Dong, A., Bai, Y., Olinick, E.V., Yu, A.J.: The backhaul profit maximization prob-
lem: optimization models and solution procedures. INFORMS J. Optim. (2022).
https://pubsonline.informs.org/doi/10.1287/ijoo.2022.0071

11. Dong, Y.: The Stochastic Inventory Routing Problem. Ph.D. thesis, Southern
Methodist University (2015). https://search.proquest.com/docview/1757808242

12. Dong, Y., Olinick, E.V., Jason Kratz, T., Matula, D.W.: A compact linear pro-
gramming formulation of the maximum concurrent flow problem. Networks 65(1),
68–87 (2015). https://doi.org/10.1002/net.21583, http://dx.doi.org/10.1002/net.
21583

13. Hoffman, A., Mannos, M., Sokolowsky, D., Wiegmann, N.: Computational experi-
ence in solving linear programs. J. Soc. Ind. Appl. Math. 1(1), 17–33 (1953)

14. IBM. https://vdocuments.mx/ibm-ilog-cplex-user-manual-126.html. Accessed 14
Feb 2022

15. Matula: A new formulation of the maximum concurrent flow problem a proof of
the maximum-concurrent-flow/max-elongation duality theorem (1986). https://s2.
smu.edu/∼matula/MCFP86.pdf

16. Yu, J., Dong, Y.: Maximizing profit for vehicle routing under time and weight
constraints. Int. J. Prod. Econ. 145(2), 573–583 (2013)

https://scholar.smu.edu/engineering_management_research/1/
https://scholar.smu.edu/engineering_management_research/1/
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1007/s11081-017-9366-1
https://tinyurl.com/kvy6jbbc
https://tinyurl.com/kvy6jbbc
https://pubsonline.informs.org/doi/10.1287/ijoo.2022.0071
https://search.proquest.com/docview/1757808242
https://doi.org/10.1002/net.21583
http://dx.doi.org/10.1002/net.21583
http://dx.doi.org/10.1002/net.21583
https://vdocuments.mx/ibm-ilog-cplex-user-manual-126.html
https://s2.smu.edu/~matula/MCFP86.pdf
https://s2.smu.edu/~matula/MCFP86.pdf

Optimal Energy Management
of Microgrid Using Multi-objective

Optimisation Approach

Yahia Amoura1,4,5(B), Ana I. Pereira1,2, José Lima1,3, Ângela Ferreira1,
and Fouad Boukli-Hacene4

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto
Politécnico de Bragança, Bragança, Portugal

yahia@ipb.pt
2 ALGORITMI Center, University of Minho, Braga, Portugal

3 INESC TEC - INESC Technology and Science, Porto, Portugal
4 Higher School in Applied Sciences of Tlemcen, Tlemcen, Algeria

5 University of Laguna, Tenerife, Spain

Abstract. The use of several distributed generators as well as the energy
storage system in a local microgrid require an energy management sys-
tem to maximize system efficiency, by managing generation and loads. The
main purpose of this work is to find the optimal set-points of distributed
generators and storage devices of a microgrid, minimizing simultaneously
the energy costs and the greenhouse gas emissions. A multi-objective app-
roach called Pareto-search Algorithm based on direct multi-search is pro-
posed to ensure optimal management of the microgrid. According to the
non-dominated resulting points, several scenarios are proposed and com-
pared. The effectiveness of the algorithm is validated, giving a compro-
mised choice between two criteria: energy cost and GHG emissions.

Keywords: Microgrid · Power management · Energy management
system · Multi-objective optimisation · Pareto-search algorithm

1 Introduction

An upcoming fossil fuel shortage is estimated in the coming years, on the other
hand, problems related to global warming due to the increase in greenhouse gases
(GHG) emissions have affected the world especially after the major peak in 2018
due to the massive use of fossil resources in power generation. About 64% of
the world’s production was based on oil and gas, however, 33.1 tons of CO2 was
released into the atmosphere [1]. According to the U.S. space agency (NASA) the
average temperature of the earth surface has increased by 1 ◦C compared to the
average of the 19th century [2]. As a result of this environmental conflict, a chal-
lenge was made by european union member states in the framework for action
on climate and energy for the period 2021–2030. Three objectives have been set:
reducing greenhouse gas emissions by at least 40%, increasing the contribution

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 58–76, 2022.
https://doi.org/10.1007/978-3-031-24866-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_5

Optimal Energy Management of Microgrid System 59

of renewable energies to at least 32% and improving energy efficiency by at least
32.5% [3].

Nowadays there is an upward tendency for using small power systems, able
to bring the energy production near to the consumption. In this type of sys-
tem, the most important sources are renewable based (e.g., photovoltaic panels,
wind turbines, etc.), due to their low environmental impact, in combination with
diesel generators in order to obtain the necessary mix able to assure the balance
between production and consumption. These small power-producing networks
called microgrids need a distributed and autonomous power generation control
[4]. Nevertheless, the dispatch problem is transversal to all power systems [5,23],
in particular in the autonomous isolated microgrids with limited power sources.

A microgrid is based on the interconnection of small modular generation
(micro-turbines, fuel cells, photovoltaic, among others), combined with storage
devices (flywheels, energy capacitors or electrochemical batteries) and loads,
some of them controllable, at low voltage distribution systems [6]. The operation
of micro-sources in the network is complex but it can provide distinct benefits
to the overall system performance if it is managed and coordinated efficiently
[7,27].

The use of microgrids has become an attractive option for power utility com-
panies since they can help to improve the power quality and power supply flex-
ibility. Also, they can provide spinning reserves and reduce transmission and
distribution costs. Moreover, they can be used to feed the customers in the
event of an outage in the main grid [8,24].

Following this interest in microgrids, several works have been performed to
ensure optimal management. Researchers in [9] proposed a genetic algorithm
(GA) approach to solve the problem of electric power dispatch using a model that
describes the load demand and environmental requirements. In [10] a multi-team
particle swarm (MTPSO) algorithm is proposed to solve the microgrid schedule
problem. The algorithm is based on swarm information to update the velocity
(position) with faster and more stable convergence, the simulation results show
that the proposed algorithm gives a better global search ability than the classic
PSO. Real-time PSO-based energy management of a stand-alone hybrid wind,
micro-turbine, and energy storage system is presented in [11], with the results
being compared to sequential quadratic programming (SQP). The computation
results show the reliability of the proposed PSO for energy management strategy
in hybrid systems. However, due to the pollutants emission of fossil fuel gen-
erators, the economic objectives are not sufficient for optimal operation of the
microgrids. Therefore, to achieve the best solutions, environmental and economic
objectives must be considered simultaneously. Many researchers have considered
both cost and gas emissions to schedule the output power of distributed genera-
tors in the microgrids. In [12] authors have converted the gas emissions objective
to a constraint and have solved the problem as a single objective, but to find the
Pareto optimal solutions, this method is not efficient. An improved modified bac-
terial foraging optimisation (MBFO) algorithm is proposed in [13] to solve the
multi-objective problem for expert energy management of a microgrid consider-
ing wind energy uncertainty in such a way that the total operating costs and the
net emissions are simultaneously minimized. Authors in [14] present an expert

60 Y. Amoura et al.

multi-objective adaptive modified particle swarm optimisation (AMPSO) algo-
rithm for optimal operation of a typical MG with renewable energy sources to
solve the multi-operation management problem in the microgrid, the numerical
results indicate that the proposed method demonstrates superior performances
and shows dynamic stability and excellent convergence.

The work proposed in this article consists in developing an energy manage-
ment system dedicated to the scheduling of the distributed generators and the
energy storage system of the microgrid considering the simultaneous optimisa-
tion of the economic and environmental criteria. The Pareto-search algorithm
based on the direct multi-search method is proposed as an optimisation approach
in the energy management system. The results allow to have a set of solutions
called non-dominated solutions or optimal Pareto solutions. The Pareto solu-
tions represent the compromise between the two criteria to be optimised: costs
and GHG emissions. Finally, the obtained scenarios are analyzed and compared
in order to have multiple scheduling choices while respecting the economic and
environmental constraints.

The remaining of the paper is organized as follows: Sect. 2 presents the archi-
tecture of the proposed microgrid. In Sect. 3 the storage system is modelled.
Section 4 formulates the multi-objective optimisation problem together with the
related constraints and explains the concept of multi-objective optimisation. the
Pareto-search Algorithm is presented in Sect. 5. Section 6 deals with the analysis
and discussion of the results obtained after the implementation of the energy
management system based on the Pareto-search Algorithm. Finally, Sect. 7 con-
cludes the study and point out some further studies.

2 Microgrid Description

The proposed microgrid comprises two renewable sources: photovoltaic (PV)
and wind-turbine (WT) additionally, it has a micro-turbine (MT), and an energy
storage system (ESS). The microgrid can be explored connected to the main grid,
which will act as a buffer if needed, or it can be explored off-grid, when internal
resources are enough to satisfy the demand or even in case of a malfunction or
failure of the grid. The connection is ensured through a transformer and common
coupling point (PCC) as indicated in Fig. 1.

For a reliable operation process considering the economic and environmental
constraints of the proposed management system, renewable energy sources can
provide energy to loads and/or charge the battery. Excess energy, after satisfying
local demands, can be fed into the main grid, reducing the total operating energy
costs and GHG emissions from conventional generation, or it can be exchanged
with other microgrids.

Regarding the energy storage system, it is assumed an exploitation mode able
to contribute to its lifespan, avoiding deep discharges and reducing the number
of charges-discharges cycles. Additionally, this work considers that the exchange
of energy from the storage system to the main grid is not allowed.

Optimal Energy Management of Microgrid System 61

Fig. 1. The architecture of the microgrid

The energy management system will ensure the optimal control of the sources
according to the dynamic market prices in a time span of 24 h. The load and
power sources profiles of the microgrid proposed above are the same as the ones
previously considered in [13]. The maximum power that can be produced by
the photovoltaic panels is 10 kW and the maximum power of the wind turbine
generator is 20 kW. To reduce the number of startup/shutdown, consequently,
the maintenance requirements, the micro-turbine can operate in a power range
from 6 kW to 30 kW. The maximum power exchanged with the main grid is
limited to 90 kW. The energy storage system is designed to assure the load for
a maximum time period of 1 h. Under this hypothesis, the total capacity of
the energy storage system is Emax = 180 kWh, and it is considered an initial
situation given by E(1) = 52 kWh. Figure 2 illustrates the principle scheme for
the operation of the microgrid energy management system.

Figure 3 (a) and (b) show the maximal hourly power delivered by the renew-
able generators for a time span of 24 h. Figure 4 presents the variation of the
hourly consumption of the microgrid under the same period of time.

62 Y. Amoura et al.

Fig. 2. The principle of the management strategy.

Fig. 3. The daily power profile from (a) PV system, (b) WT system.

3 Modeling of the Energy Storage System

The energy storage system has an important role in a microgrid exploitation
because it allows the flexibility needed to assure the balance between the pro-
duction and consumption, in the presence of variations of either loads or inter-

Optimal Energy Management of Microgrid System 63

Fig. 4. The daily load profile.

mittent sources. Taking into account the microgrid storage requirements, the
most appropriate storage form is the electrochemical battery [15]. This ESS is
chosen for its long-term storage capacity and for the ease of bidirectional flow and
fast power response, allowing a good frequency adjustment source in a microgrid
to provide real-time dynamic balance. It has a positive significance for improv-
ing the power quality of the microgrid and ensuring stable operation [10]. In
order to have reliable modeling of this ESS, several parameters have to be taken
into account such as the nominal capacity and the rate of charge/discharge, this
later is used to limit the deep discharge of the battery leading to a higher lifes-
pan. Therefore, the battery usage is delimited by their minimum and maximum
capacity allowed, respectively Emin and Emax with:

Emin ≤ E(t) ≤ Emax (1)

The energy available in the battery is an important technical parameter to
provide data support for the microgrid management, for instance, the quantity
of energy at time t + 1 is related to the value at time t, and the charge and
discharge energy of the battery can be expressed as follows [16]:{

E(t + 1) = E(t) − ΔtPc(t)ηc, charging mode
E(t + 1) = E(t) − ΔtPd(t)

ηd
, discharging mode

(2)

where Pc(t) and Pd(t) are the charging and discharging power of the battery
at time t, E(t) and Δt are, respectively, the stored energy at time t and the
interval of time considered and, finally, ηc and ηd are the charging and discharging
efficiency, respectively.

64 Y. Amoura et al.

Battery control is a crucial issue that must be taken into account when man-
aging the microgrid, so the energy storage system (ESS) can only be operated
as one of the following modes at a time [17]:

– Charge mode: the battery can be charged from the grid, micro-turbine,
and/or renewable energies with an energy quantity that is not beyond the
charging rate.

– Discharge mode: the battery delivers a quantity of energy without exceed-
ing the limit rate of discharge to supply the microgrid consumers if the prices
of Kwh are high.

– Inactive mode: the battery will not perform any of the above two operations
(charge/discharge), since the grid utility and the microgrid provide electricity
directly to the loads during certain hours in order to consider economic and/or
environmental features.

4 Optimisation Problem

The problem of optimal scheduling of distributed microgrid generators and stor-
age system is defined as a problem of allocating optimal power generation set
points, in such a way that the operating cost and the net emission of pollutants
from conventional sources in the microgrid are minimized simultaneously while
satisfying all constraints imposed by the energy management system (EMS). The
mathematical model of the problem can be presented in the following sections.

4.1 Objective Functions

Objective 1: Operating Cost Minimization. The definition of the oper-
ating cost function depends on several parameters, mainly the architecture of
the microgrid. The cost of the distributed resources and the storage system is
considered dynamic throughout the day, also the cost of selling/buying energy
supplied by or injected into the grid varies during the day, being the main objec-
tive of the cost function is to satisfy the load demand during the day in the
most economical way. So, in each hour t, for a time span of 24 h of operation,
the objective function can be expressed as follows [18]:

C(t) =
Ng∑
i=1

Ui(t)PDGi(t)BDGi(t)+
Ns∑
j=1

Uj(t)PESSj(t)BESSj(t)+PGrid(t)BGrid(t)

(3)
where Ng and Ns are the total number of generators and storage devices, respec-
tively. BDGi(t) and BESSj(t) represent the bids of ith DG unit and jth storage
device at hour t. PGrid(t) is the active power which is bought (sold) from (to)
the utility grid at hour t and BGrid(t) is the bid of the utility grid at hour t.
Ui(t) and Uj(t) are the operation mode of the ith generator and the jth storage
device (ON or OFF), respectively. Table 1 present distributed energy resources,
storage and grid bids.

Optimal Energy Management of Microgrid System 65

The optimisation model of the first objective function can be written as
follows:

f1 =
T∑

t=1

min C(t) (4)

The optimisation model will lead to find PDGi, PESSj and PGrid, i.e, the
optimum set points of distributed generators, energy storage system and main
grid respectively that ensures a low total energy price in each hour t.

Table 1. The hourly unit prices of the distributed generators, storage system and main
grid of the proposed microgrid (Euro/kWh) [13]

Time (h) PV WT MT ESS GRID

01:00 0 0.021 0.0823 0.1192 0.033

02:00 0 0.017 0.0823 0.1192 0.027

03:00 0 0.0125 0.0831 0.1269 0.020

04:00 0 0.011 0.0831 0.1346 0.017

05:00 0 0.051 0.0838 0.1423 0.017

06:00 0 0.085 0.0838 0.15 0.029

07:00 0 0.091 0.0846 0.1577 0.033

08:00 0.0646 0.110 0.0854 0.1608 0.054

09:00 0.0654 0.140 0.0862 0.1662 0.215

10:00 0.0662 0.143 0.0862 0.1677 0.572

11:00 0.0669 0.150 0.0892 0.1731 0.572

12:00 0.0677 0.155 0.09 0.1769 0.572

13:00 0.0662 0.137 0.0885 0.1692 0.215

14:00 0.0654 0.135 0.0885 0.16 0.572

15:00 0.0646 0.132 0.0885 0.1538 0.286

16:00 0.0638 0.114 0.09 0.15 0.279

17:00 0.0654 0.110 0.0908 0.1523 0.086

18:00 0.0662 0.0925 0.0915 0.15 0.059

19:00 0 0.091 0.0908 0.1462 0.050

20:00 0 0.083 0.0885 0.1462 0.061

21:00 0 0.033 0.0862 0.1431 0.181

22:00 0 0.025 0.0846 0.1385 0.077

23:00 0 0.021 0.0838 0.1346 0.043

24:00 0 0.017 0.0831 0.1269 0.037

Objective 2: GHG Emissions Minimization. The environmental foot-
print from atmospheric pollutants is considered the second objective. Emissions
include the polluting gases responsible for the greenhouse gas effect such as

66 Y. Amoura et al.

nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon dioxide (CO2). Table 2
presents the emission factors as defined in [13].

Table 2. Pollutants emission factors [13]

EF Micro-turbine (Kg/MWh) Grid (Kg/MWh)

CO2 724 922

NOX 0.2 2.295

SO2 0.00136 3.583

The mathematical formulation of the second objective can be described as
follows [13]:

EM(t) =
Ng∑
i=1

Ui(t)PDGi(t)EFDGi(t) + PGrid(t)EFGrid(t) (5)

where EFDGi(t) and EFGrid(t) are GHG emissions factors describing the amount
of pollutants emission in kg/MWh for each distributed generator and utility grid
at hour t, respectively.

The optimisation model of the second objective function can be written as
follows:

f2 =
T∑

t=1

min EM(t) (6)

The optimisation model will lead to find PDGi and PGrid, i.e, the optimum
set points of distributed generators and main grid, respectively, that ensures a
low total emission amount in each hour t.

4.2 Constraints Functions

Power Balance Constraint. Total demand (including storage) and transmis-
sion losses must be covered by the total power generation. The active power
balance, in terms of frequency stability, is the precondition for a stable opera-
tion. The losses in transmission are considered numerically small, being ignored
in this article. The condition of the power balance assumes the following form:

Ng∑
i=1

PDGi(t) +
Ns∑
j=1

PESSj(t) + PGrid(t) = PL(t) (7)

being PL(t) the total electrical load demand at hour t. Moreover, the power of
the energy storage system PESSj(t) can be positive in case of discharging or
negative in the case of charging.

Optimal Energy Management of Microgrid System 67

Electrical Limits of Generators Constraint. The microgrid distributed gen-
erators must not operate beyond their limits, and the energy exchanged between
the microgrid and the main grid is also limited. Each DG and main grid’s active
power output is limited by the lower and upper limits, as follows:

Pmin
DGi(t) ≤ PDGi(t) ≤ Pmax

DGi (t) (8)
Pmin

SDj (t) ≤ PESSj(t) ≤ Pmax
ESSj(t) (9)

Pmin
g (t) ≤ PGrid(t) ≤ Pmax

Grid(t) (10)

where Pmin
. (t) and Pmax

. (t) are the minimum and the maximum powers of the
distributed generator (DG), energy storage system (ESS) and the grid (Grid) at
the time t, respectively.

Storage System Limits Constraint. The battery must maintain within the
limits of its capacity and limited by a maximum rate (charging/discharging) that
must not be exceeded.

Emin(t) ≤ E(t) ≤ Emax(t) (11)

⎧⎨
⎩

−Pc(t)ηc ≤ Pmax
c charging mode, Pc(t) < 0

Pd(t)
ηd

≤ Pmax
d discharging mode, Pd(t) > 0

(12)

where Emin(t) and Emax(t) are the minimum and maximum energy levels of
the battery, Pmax

c and Pmax
d are the maximum rate of charge/discharge of the

battery that be must respected in each operation.

4.3 The Multi-objective Optimisation Problem

Many real optimisation problems require the simultaneous optimisation of differ-
ent and often conflicting objectives, characterized by the term of multi-objective
optimisation. The solution to these multi-criteria optimisation problems is not a
unique optimal point, but a set of solutions called the non-dominated, indiffer-
ent, or Pareto-optimal solutions, corresponding to the best possible compromise,
since, one particular solution is not the best with regard to all the objectives.
Generally, in a multi-objective optimisation problem, different objective func-
tions must be simultaneously optimised taking into account a set of equality
and inequality constraints, as follows [19]:

min F = {f1, f2} (13)

where F is a vector composed by the two objective functions (cost & emissions)
defined on Sect. 4.1. The minimization problem defined on (13) is subject to the
constraints defined in previous Sect. 4.2.

68 Y. Amoura et al.

Assuming that the two solutions to the multi-objective problem are x1 and
x2, the two solutions may have one of two properties: one dominates the other, or
none dominates the other. In a minimization problem, without loss of generality,
a solution x1 dominates x2 if both following two conditions are satisfied [18]:

∃i ∈ 1, 2 : fi(x1) < fi(x2) (14)

The non-dominated set of solutions is referred as the optimal set called the
Pareto front. On the other hand, to establish the acceptability of each solution
to be included in the non-dominated solutions repository, the concept of Pareto
dominance is used.

5 Pareto-Search Algorithm

The Pareto search algorithm is a direct multiple search algorithm that uses
pattern searches on a set of points to iteratively search for non-dominated points
[20]. It is based on the search/polling model of direct directional search methods
and uses the concept of pareto dominance to keep a list of non-dominated points
by satisfying all linear/nonlinear bounds and constraints at each iteration [21].
The pattern search is intended to find the best correspondence i.e , the solution
with the smallest error value in the multidimensional possibility analysis space.
The Pareto search algorithm employs a number of intermediary and tolerance
variables in its search mechanism. [21].

At each iteration, the algorithm is structured along a search step and a probe
step, which are important considerations for achieving convergence results. The
searching step is used to improve the performance of the algorithm. The polling
step performs a local search around one of the non-dominated points chosen by
the search step, which constitutes an iteration point or interrogation center. In
both steps, search and polling, a provisional list is first generated, which keeps
all the points of the actual iteration list and all the estimated points around this
step. This list is then filtered by removing all dominated points and retaining the
non-dominated points. A trial list Ltrial is then retrieved from the filtered list
of non-dominated points and must eventually contain all non-dominated points
that are part of the considered iteration list in the preceding iteration [21,22].
The steps of the Pareto search algorithm are explained as follows.

1. Initialization To generate the starting set of points, Pareto-search algorithm
will produce a set of random points that satisfies the bounds of the problem.

2. Poll to Find Better Points
The Pareto search algorithm interrogates the points of the iterates, with the
interrogated points inheriting the associated mesh size of the point in the
iterates. The algorithm uses a query that keeps the feasibility relative to the
limits and all linear constraints. If the model has non-linear constraints, the
Pareto search computes the feasibility of each interrogated point and keeps
the unfeasible points score separate from the feasible points value. The score
of a feasible point is the vector of values of the objective function of this point

Optimal Energy Management of Microgrid System 69

while the score of an infeasible point is the sum of the nonlinear infeasibilities.
The Pareto search algorithm interrogates each point by iterations. If the inter-
rogated points result in at least one non-dominated point compared to the
existing (original) point, the interrogation is considered as successful. Other-
wise, the algorithm continues to interrogate until it reaches an undominated
point or there are no more points in the model.

3. Stopping Conditions
For three or less objective functions, the Pareto search algorithm uses volume
and spread as stopping criteria. For four or more, the Pareto search algorithm
employs distance and spread as stopping parameters.

6 Numerical Results and Discussion

The energy management system (EMS) proposed in this work consists in the
scheduling of the microgrid production sources by taking into account the simul-
taneous minimization of both cost and GHG emission criteria through the
Pareto-search optimisation algorithm.

Table 3 presents the set of non-dominanted solutions obtained by the imple-
mentation of the optimisation algorithm in the energy management system.
These results represent the best trade-off between the two targets under min-
imisation.

Table 3. The non-dominanted solutions obtained by Pareto-search Algorithm

Scenarios Total Energy Cost (euro) Total Emissions (kg)

01 161.0118 1.2795 × 103

02 159.9786 1.2809 × 103

03 159.7697 1.2823 × 103

04 158,5841 1, 2872 × 103

05 157.5630 1.2984 × 103

06 156,7201 1.3120 × 103

07 155,8556 1, 3239 × 103

08 155.3164 1.3387 × 103

09 154.9797 1.3524 × 103

The non-dominated points are classified in Pareto front as shown in Fig. 5. All
these points represent several scheduling scenarios for the distributed generators
of the microgrid, the energy storage system and energy exchanged between the
main grid and the microgrid.

According to the trade-off obtained from the non-dominated points, two cases
are highlighted to illustrate the energy management process of the energy storage

70 Y. Amoura et al.

Fig. 5. Pareto front.

system, the best environmental trade-off and the best economic trade-off, sce-
narios 1 and 9, respectively. Figure 6 show the two power profiles of the energy
storage system of the microgrid corresponding to those scenarios. It is possi-
ble to verify that, for both cases, the energy storage system is mainly used to
compensate the lack of energy during peak hours.

Fig. 6. Storage system power variation considering (a) scenario 1 and (b) scenario 9.

Optimal Energy Management of Microgrid System 71

Figure 7 illustrates the daily power exchange of the energy storage system
with the microgrid. The areas below the zero axes represent the energy during
the charging process while the remaining areas represent the energy delivered
to the microgrid. The null values, between 6 and 8 am from the best economic
scenario (Fig. 7(a)), indicate the inactive mode of the energy storage system,
which translates that the energy of the storage system has reached its maximum
limit Emax, and therefore the energy storage system stop charging.

Fig. 7. Power exchange of the batteries with the microgrid during the day considering
(a) scenario 1 and (b) scenario 9.

Based on the analysis of the non-dominated points, the discussion is divided
into two cases, the first one mainly characterize the economic criterion, while
the second one is related to the environmental criterion, discussed hereinafter.

6.1 Economic Criterion

Table 4 characterizes the classification of the prices according to three states:
best, average, and worst, identifying scenarios one, five, and nine, respectively.

72 Y. Amoura et al.

Table 4. Comparison of results considering the economic criterion

Scenarios Total Energy Cost (euro)

The worst 161.01

The average 157.56

The best 154.97

It is possible to observe that the best point for the price is evaluated at 154, 97
euro, with a total quantity of GHG emission equal to 1.3524 × 103 kg. It can be
noticed that for an improvement of the economic criterion, the environmental
one has been deteriorated. According to the results obtained from the microgrid
generators scheduling, illustrated in Fig. 8, it is outstanding that the optimal set-
points for the microgrid generators with the lowest energy prices are the most
important. The main grid is delivering energy to the microgrid during the night
period when consumption is reduced and therefore the energy price is low. This
energy is mainly used to charge the storage system, as shown by the battery set
points in Fig. 8 (charging is indicated by negative values). During the day, the
use of the photovoltaic source is important due to its low price, whereas wind
energy is moderately exploited. When cost of energy provided by the main grid
is high, the consumption is supported by the micro-turbine in first place, and
with the storage batteries according to their price, state of charge and discharge
rate limits. The grid is considered as the last resource considering its high cost,
ie during peak hours, the power from the main grid is not envisaged.

Fig. 8. Hourly dispatching set points of generators considering the best economical
solution of multi-objective situation.

Optimal Energy Management of Microgrid System 73

However, the first scenario takes mainly into account the economic criterion
by favoring the cheapest sources and considering the fact that the environmental
criterion will not be much affected since it is a simultaneous optimisation of two
objectives.

6.2 Environmental Criterion

Table 5. Comparison of results considering the environmental criterion

Scenarios Total Emissions (Kg)

The worst 1.3524 × 103

The average 1.2984 × 103

The best 1.2795 × 103

Table 5 characterizes the classification of emissions according to three states best,
average and worst case, identifying scenarios nine, five, and one, respectively.

The best point for emissions is evaluated at 1.2795 × 103 kg with a total
energy price equal to 161, 01 euro. It can be noticed that for an improvement of
the environmental criterion by 5.39%, the economic criterion is deteriorated by
3.75%. According to the results presented in Fig. 9, the hourly set points from
renewable sources (wind turbines and photovoltaic) are the most important. The
photovoltaic source is fully exploited during the day due to its encouraging price,
and being non-polluting also the wind source is considerably exploited to reduce
the use of conventional sources responsible for greenhouse gas emissions (GHG).
On the other hand, the use of conventional sources is classified according to the
emission factor, the lack of energy is compensated by the micro-turbine due to
its reduced emission factor compared to that of the main grid, for this reason,
their set-points are important comparing with the previous case which takes
into account much more the economic criteria. Furthermore, the main grid is
less interrogated since it is considered a strong emission source. The purpose
of battery discharging is to compensate the lack of energy and limit the energy
exchange from the main grid to the microgrid in order to reduce greenhouse
gas emissions responsible for global warming. The second case will take into
consideration the scheduling of the microgrid production sources while favoring
the environmental aspect without affecting the economic aspect illustrated by
the total cost of energy.

The performance of the Energy Management System (EMS) based on the
Pareto-search Algorithm is demonstrated by the non-dominant points obtained
which represent trade-off cases between cost and emissions, allowing the achieve-
ment of several scenarios and offering several choices to the grid operator for the
scheduling of the microgrid generators taking as reference the points located in
the Pareto front.

74 Y. Amoura et al.

Fig. 9. Hourly dispatching set-points of generators considering the best environmental
solution of multi-objective situation.

7 Conclusions and Future Work

In this paper, an energy management system based on a multi-objective opti-
misation approach has been proposed to solve the problem of optimal energy
management in microgrids. Both economic and environmental aspects were
simultaneously considered and optimised through the Pareto-search Algorithm.
The results present a set of non-dominated solutions placed on a Pareto front,
allowing the achieving of several microgrid scheduling scenarios. The proposed
methodology provides a set of effective Pareto-optimal solutions respecting the
technical-economic and environmental considerations of the problem under study
and offering to the microgrid operator a variety of options for selecting an appro-
priate energy allocation scenario based on environmental or economic consid-
erations. The wind turbine represents one of the permanent producers of the
microgrid, however, this latter faces several obstacles, mainly the fluctuating
effect. A wind speed forecasting model to predict the available capacity of wind
energy production in the microgrid is important to improve the reliability of the
system, to do that, a forecasting model based on the Artificial intelligence of the
Neural Network (ANN) is proposed as future work. In the same context, another
algorithm based on artificial intelligence will be proposed to ensure the demand
scheduling of a smart city under economic and environmental considerations to
further optimise the management of the microgrid and increase its efficiency.

References

1. Escrivani, G.R., Luna, A.S., Torres, A.R.: Operating parameters for bio-oil pro-
duction in biomass pyrolysis: a review. J. Anal. Appl. Pyrol. 129, 134–149 (2018)

Optimal Energy Management of Microgrid System 75

2. Vittal, H., Oldrich, R., Yannis, M.: Increased future occurrences of the exceptional
2018–2019 Central European drought under global warming. Sci. Rep. Nature Pub-
lisher Group 10(1)(2020)

3. Tsikalakis, A.G., Hatziargyriou, N.D.: Centralized control for optimizing micro-
grids operation. In: 2011 IEEE Power and Energy Society General Meeting. IEEE
(2011)

4. Morais, H., Kádár, P., Faria, P., Vale, Z.A., Khodr, H.M.: Optimal scheduling of a
renewable micro-grid in an isolated load area using mixed-integer linear program-
ming. Renew. Energy 35(1), 151–156 (2010)

5. Shahidehpour, S.M., Tong, S.K.: An overview of power generation scheduling in
the optimal operation of a large scale power system. Electr. Mach. Power Syst.
19(6), 731–762 (1991)

6. Jiayi, H., Chuanwen, J., Rong, X.: A review on distributed energy resources and
MicroGrid. Renew. Sustain. Energy Rev. 12(9), 2472–2483 (2008)

7. Voumvoulakis, E., Skotinos, I., Tsouchakinas, A.: Transient analysis of microgrids
in Grid-connected and islanded mode of Operation. Fuel 2, 30 (2004)

8. Lund, P.D., et al.: Review of energy system flexibility measures to enable high
levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807
(2015)

9. Mohamed, F.A., Koivo, H.N.: Online management genetic algorithms of microgrid
for residential application. Energy Convers. Manage. 64, 562–568 (2012)

10. Liu, Z., Chen, C., Yuan, J.: Hybrid energy scheduling in a renewable micro grid.
Appl. Sci. 5(3), 516–531 (2015)

11. Kani, S.A.P., Colson, C.M., Nehrir, H., Wang, C.: Real-time energy management
of a stand-alone hybrid wind-microturbine energy system using particle swarm
optimization. IEEE Trans. Sustain. Energy 3, 193–201 (2010)

12. Granelli, G., Montagna, M., Pasini, G., Marannino, P.: Emission constrained
dynamic dispatch. Electric Power Sys. 24, 56–64 (1992)

13. Motevasel, M., Seif, A.R.: Expert energy management of a micro-grid considering
wind energy uncertainty. Energy Convers. Manage. 83, 58–72 (2014)

14. Moghaddam, A.A., Seif, A., Niknam, T., Pahlavani, M.R.A.: Multi-objective oper-
ation management of a renewable mg (micro-grid) with back-up micro-turbine/fuel
cell/battery hybrid power source. Energy 36, 6490–6507 (2011)

15. Chen, C., Cai, D., Hu, L.: Smart energy management system for optimal microgrid
economic operation. IET Renew. Power Gener. 5, 258–267 (2011)

16. Chen, J., Wang, C., Zhao, B., Zhang, X.: Economic operation optimization of a
stand-alone microgrid system considering characteristics of energy storage system.
Electric Power Syst. 6, 25–31 (2012)

17. Hossain, M.A., Pota, H.R., Squartini, S., Abdou, A.F.: Modified PSO algorithm for
real-time energy management in grid-connected microgrids. Renew. Energy 136,
746–757 (2018)

18. Moghaddam, A.A., et al.: Multi-objective operation management of a renew-
able MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power
source. Energy 36(11), 6490–6507 (2011)

19. Lin, C., Gen, M.: Multi-criteria human resource allocation for solving multistage
combinatorial optimization problems using multiobjective hybrid genetic algo-
rithm. Expert Syst. Appl. 34, 2480–2490 (2008)

20. Audet, C., Dennis, E.: Analysis of generalized pattern searches. SIAM J. Optim.
13, 889–903 (2002)

76 Y. Amoura et al.

21. Chang, P., Chen, S., Liu, C.: Sub-population genetic algorithm with mining gene
structures for multiobjective flowshop scheduling problems. Expert Syst. Appl. 33,
762–771 (2007)

22. Audet, C., Dennis, E.: Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim. 17, 188–217 (2006)

23. Amoura, Y., Pereira, A.I., Lima, J., Ferreira, A., Boukli-hacene, F.: Optimal energy
management of a microgrid system. In: Symposium of Applied Science for Young
Researchers SASYR (2021)

24. Amoura, Y., Pereira, A.I., Lima, J.: A short term wind speed forecasting model
using artificial neural network and adaptive neuro-fuzzy inference system models.
In: International Conference on Sustainable Energy for Smart Cities (2021)

25. Amoura, Y., Ferreira, A., Lima, J., Pereira, A.I.: Optimal sizing of a hybrid energy
system based on renewable energy using evolutionary optimization algorithms. In:
International Conference on Optimization, Learning Algorithms and Applications
(2021)

26. Amoura, Y., Pereira, A.I, Lima, J.: Optimization methods for energy management
in a microgrid system considering wind uncertainty data. In: Proceedings of Inter-
national Conference on Communication and Computational Technologies (2021)

27. Amoura, Y., Pereira, A.I., Lima, J., Ferreira, A., Boukli-hacene, F., Kerboua,
A.: Smart Microgrid Management: a Hybrid Optimisation Approach, Preprint on
Energy Sustainability and Society

A Stochastic Alternating Balance
k-Means Algorithm for Fair Clustering

Suyun Liu(B) and Luis Nunes Vicente

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem,
PA 18015, USA

sul217@lehigh.edu, lnv@lehigh.edu

Abstract. In the application of data clustering to human-centric
decision-making systems, such as loan applications and advertisement
recommendations, the clustering outcome might discriminate against
people across different demographic groups, leading to unfairness. A nat-
ural conflict occurs between the cost of clustering (in terms of distance
to cluster centers) and the balance representation of all demographic
groups across the clusters, leading to a bi-objective optimization problem
that is nonconvex and nonsmooth. To determine the complete trade-off
between these two competing goals, we design a novel stochastic alternat-
ing balance fair k-means (SAfairKM) algorithm, which consists of alter-
nating classical mini-batch k-means updates and group swap updates.
The number of k-means updates and the number of swap updates essen-
tially parameterize the weight put on optimizing each objective function.
Our numerical experiments show that the proposed SAfairKM algorithm
is robust and computationally efficient in constructing well-spread and
high-quality Pareto fronts both on synthetic and real datasets.

Keywords: k-means clustering · Unsupervised machine learning ·
Data mining · Fairness · Bi-objective optimization · Pareto front

1 Introduction

Clustering is a fundamental task in data mining and unsupervised machine learn-
ing with the goal of partitioning data points into clusters, in such a way that
data points in one cluster are very similar and data points in different clusters are
quite distinct [16]. It has become a core technique in a huge amount of applica-
tion fields such as feature engineering, information retrieval, image segmentation,
targeted marketing, recommendation systems, and urban planning. Data cluster-
ing problems take on many different forms, including partitioning clustering like
k-means and k-median, hierarchical clustering, spectral clustering, among many
others [8,16]. Given the increasing impact of automated decision-making systems

L. N. Vicente—Support for this author was partially provided by the Centre for
Mathematics of the University of Coimbra under grant FCT/MCTES UIDB/MAT/
00324/2020.

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 77–92, 2022.
https://doi.org/10.1007/978-3-031-24866-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_6&domain=pdf
http://orcid.org/0000-0002-9226-7436
http://orcid.org/0000-0003-1097-6384
https://doi.org/10.1007/978-3-031-24866-5_6

78 S. Liu and L. N. Vicente

in our society, there is a growing concern about algorithmic unfairness, which in
the case of clustering may result in discrimination against minority groups. For
instance, females may receive proportionally fewer job recommendations with high
salary [13] due to their under-representation in the cluster of high salary recom-
mendations. Such demographic features like gender and race are called sensitive
or protected features, which we wish to be fair with respect to.

Related Work. An extensive literature work studying algorithmic fairness has
been focused on developing universal fairness definitions and designing fair algo-
rithms for supervised machine learning problems. Among the broadest repre-
sentative fairness notions proposed for classification and regression tasks are
disparate impact [6] (also called demographic parity [10]), equalized odds [19],
and individual fairness [15], based on which the fairness notions in clustering
were proposed accordingly. There are a number of classes of fairness definitions
proposed and investigated for the clustering task [1,11,12,18,23,27]. The most
widely used fairness notion is called balance. It was proposed by [12], and it
has been extended in several subsequent works [7,20,30]. As a counterpart of
the disparate impact concept in fair supervised machine learning, balance essen-
tially aims at ensuring that the representation of protected groups in each cluster
preserves the global proportion of each protected group.

Depending on the stage of clustering in which the fairness requirements are
imposed, the prior works on fair clustering are categorized into three families,
namely pre-processing, in-processing, and post-processing. A large body of the
literature work [5,12,20,30] falls into the pre-processing category. The whole
dataset is first decomposed into small subsets named fairlets, where the desired
balance can be guaranteed. Any resulting solution from classical clustering algo-
rithms using the set of fairlets will then be fair. Chierichetti et al. [12] focused on
the case of two demographic groups and formulated explicit combinatorial prob-
lems (such as perfect matching and minimum cost flow problems) to decompose
the dataset into minimal fair sets defining the fairlets. Their theoretical analysis
gave strong guarantees on the quality of the fair clustering solutions for k-center
and k-median problems. Following that line of work, Backurs et al. [5] embed-
ded the whole dataset into a hierarchical structure tree and improved the time
complexity of the fairlet decomposition step from quadratic to nearly linear time
(in the dataset size). Schmidt et al. [30] introduced the notion of fair coresets
and proposed an efficient streaming fair clustering algorithm for k-means. They
introduced a near-linear time algorithm to construct coresets that helps reduce
the input data size and hence speeds up any fair clustering algorithm. Huang et
al. [20] further boosted the efficiency of coresets construction and made a gen-
eralization to multiple non-disjoint demographic groups for both k-means and
k-median.

On the contrary, post-processing clustering methods [3,7,22,29] modify the
resulting clusters from classical clustering algorithms to improve fairness. For
example, Bera et al. [7] proposed a fair re-assignment problem as a linear relax-
ation of an integer programming model given the clustering results from any
vanilla k-means, k-median, or k-center algorithms. They showed how to derive a

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 79

(ρ+2)-approximation fair clustering algorithm from any ρ-approximation vanilla
clustering algorithm within a theoretical bound of fairness constraints violation.
Moreover, their framework works for datasets with multiple and potentially over-
lapping demographic groups. Lastly, in-processing methods incorporate the fair-
ness constraints into the clustering process [2,24,32]. Our approach falls into this
category and allows for the determination of the trade-offs between clustering
costs and fairness. To our knowledge, the only such other in-processing approach
is the one of Ziko et al. [32], where the clustering balance is approximately mea-
sured by the KL-divergence and imposed as a penalty term in the fair clustering
objective function. The penalty coefficient is then used to control the trade-offs
between clustering cost/fairness.

Our Contribution. The partitioning clustering model, also referred to as the
center-based clustering model, consists of selecting a certain number K of centers
and assigning data points to their closest centers. In this paper, we will focus
on the well-known k-means model, and we will introduce a novel fair clustering
algorithm using the balance measure. The main challenge of the fair clustering
task comes from the violation of the assignment routine, which then indicates
that a data point is no longer necessarily assigned to its closest cluster. The
higher the balance level one wants to achieve, the more clustering cost is added
to the final clustering. Hence, there exists a natural conflict between the fairness
level, when measured in terms of balance, and the classical k-means clustering
objective.

We explicitly formulate the trade-offs between the k-means clustering cost
and the fairness as a bi-objective optimization problem, where both objectives
are written as nonconvex and nonsmooth functions of binary assignment vari-
ables defining point assignments in the clustering model (see (2) further below).
Our goal is to construct an informative approximation of the Pareto front for
the proposed bi-objective fair k-means clustering problem, without exploring
exhaustively the binary nature of the assignment variables. The most widely
used method in solving general bi-objective optimization problems is the so-
called weighted-sum method [17]. There, one considers a set of single objective
problems, formed by convex linear combinations of the two functions, and (a por-
tion of) the Pareto front might be approximated by solving the corresponding
weighted-sum problems. However, this methodology has no rigorous guarantees
due to the nonconvexity of both objective functions. Also, the non-smoothness of
the fairness objective poses an additional difficulty to the weighted-sum method,
as one function will be smooth and the other one no. Moreover, even ignoring the
nonconvexity and non-smoothness issues, the two objectives, namely the cluster-
ing cost and the clustering balance, can have significantly different magnitudes.
One can hardly preselect a good set of weights corresponding to decision-makers’
preferences to capture a well-spread Pareto front.

Therefore, we were motivated to design a novel stochastic alternating bal-
ance fair k-means (SAfairKM) algorithm, inspired from the classical mini-batch
k-means algorithm, which essentially consists of alternatively taking pure mini-
batch k-means updates and swap-based balance improvement updates. In fact,

80 S. Liu and L. N. Vicente

the number of k-means updates (denoted by na) and the number of swap updates
(denoted by nb) play a role similar to the weights in the weighted-sum method,
parameterizing the efforts of optimizing each objective. In the pure mini-batch
k-means updates, we focus on minimizing the clustering cost. A mini-batch of
points is randomly drawn and assigned to their closest clusters, after which
the set of centers are updated using mini-batch stochastic gradient descent. In
the swap-based balance improvement steps, we aim at increasing the overall
clustering balance. For this purpose, we propose a simple swap routine that is
guaranteed to increase the overall clustering balance by swapping data points
between the minimum balance cluster and a target well-balanced cluster. Simi-
larly to the k-means updates, the set of centers are updated using the batch of
data points selected to swap. While the k-means updates reproduce the stochas-
tic gradient descent directions for the clustering cost function, the swap updates
can be seen as taking steps along some increasing directions for the clustering
balance objective (not necessarily the best ascent direction).

We have evaluated the performance of the proposed SAfairKM algorithm
using both synthetic datasets and real datasets. To endow SAfairKM with the
capability of constructing a Pareto front in a single run, we use a list of nondom-
inated points updated at every iteration. The list is randomly generated at the
beginning of the process. At every iteration, and for every point in the current
list, we apply SAfairKM for all considered pairs of (na, nb). For each pair (na, nb),
one does na k-means updates and nb swap updates. At the end of each iteration,
we remove from the list all dominated points (those for each there exists another
one with higher clustering cost and lower clustering balance). Such a simple
mechanism is also beneficial for excluding bad local optima, considering that
the two objectives are nonconvex. We will present the full trade-offs between the
two conflicting objectives for four synthetic datasets and two real datasets. A
numerical comparison with the fair k-means algorithm proposed in [7,32] further
confirms the robustness and efficiency of the proposed algorithm in constructing
informative and high-quality trade-offs.

2 The Mini-Batch k-means Algorithm

In the classical k-means problem, one aims to choose K centers (representatives)
and to assign a set of points to their closest centers. The k-means objective is
the sum of the minimum (squared Euclidean) distance of all points to their
corresponding centers. Given a set of N points P = {xp}Np=1, where xp is the
non-sensitive feature vector, the goal of clustering is to assign N points to K
clusters identified by K centroids C = [c1, . . . , cK]�. Let [M] denote the set of
positive integers up to M for any M ∈ N. The k-means clustering problem is
formulated as the minimization of a nonsmooth function of the set of centroids:

min fKM
1 (C) =

1
2

N∑

p=1

min
k∈[K]

‖xp − ck‖2 (1)

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 81

Since each data point is assigned to the closest cluster, the K cluster centroids are
implicitly dependent on the point assignments. Let sp,k ∈ {0, 1} be an assignment
variable who takes the value 1 if point xp is assigned to cluster k, and 0 otherwise.
For simplicity, we denote sk, k ∈ [K], as an N -dimensional assignment vector
for cluster k, and sp, p ∈ [N], as a K-dimensional assignment vector for point
xp. Let X ∈ R

N×d be the data matrix stacking N data points of dimension d
and eN ∈ R

N be an all-ones vector. Then one can compute each centroid using
ck = X�sk/e�

Nsk.
In practice, Lloyd’s heuristic algorithm [26], also known as the standard

batch k-means algorithm, is the simplest and most popular k-means cluster-
ing algorithm, and converges to a local minimum but without worst-case guar-
antees [21,31]. The main idea of Lloyd’s heuristic is to keep updating the K
cluster centroids and assigning the full batch of points to their closest centroids.

In the standard batch k-means algorithm, one can compute the full gradient
of the objective function (1) with respect to k-th center by ∇ck

fKM
1 (C) =∑

xp∈Ck
(ck − xp), where Ck, k ∈ [K], is the set of points assigned to cluster

k. Whenever there exists a tie, namely a point that has the same distance to
more than one cluster, one can randomly assign the point to any of such clusters.
A full batch gradient descent algorithm would iteratively update the centroids
by ct+1

k − ctk = αt
k

∑
xp∈Ck

(xp − ck),∀k ∈ [K], where αt
k > 0 is the step size. Let

N t
k be the number of points in cluster k at iteration t. It is known that the full

batch k-means algorithm with αt
k = 1/N t

k converges to a local minimum as fast
as Newton’s method, with a superlinear rate [9].

The standard batch k-means algorithm is proved to be slow for large datasets.
Bottou and Bengio [9] proposed an online stochastic gradient descent (SGD)
variant that takes a gradient descent step using one sample at a time. Given a
new data point xp to be assigned, a stochastic gradient descent step would look
like ct+1

k = ctk+αt
k(xp−ctk) if xp is assigned to cluster k. While the SGD variant

is computationally cheap for large datasets, it finds solutions of lower quality
than the batch algorithm due to the stochasticity. The mini-batch version of the
k-means algorithm uses a mini-batch sampling to lower stochastic noise and, in
the meanwhile, speed up the convergence. The detailed mini-batch k-means is
given in Algorithm 1.

3 A New Stochastic Alternating Balance Fair k-means
Method

3.1 The Bi-objective Balance k-means Formulation

Balance [12] is the most widely used fairness measure in the literature of
fair clustering. Consider J disjoint demographic groups. Let Vj represent the
set of points in demographic group j ∈ [J]. Then, vp,j takes the value 1 if
point xp ∈ Vj . We denote vj as an N -dimensional indicator vector for the
demographic group j ∈ [J]. The balance of cluster k is formally defined as
bk = minj �=j′ v�

j sk/v�
j′sk ≤ 1,∀k ∈ [K], which calculates the minimum ratio

among different pairs of protected groups. The overall clustering balance is the

82 S. Liu and L. N. Vicente

Algorithm 1. Mini-batch k-means algorithm
1: Input: The set of points P and an integer K.

2: Output: The set of centers C = {c1, . . . , cK}.

3: Randomly select K points as initial centers.

4: for t = 0, 1, 2, . . . do

5: Randomly sample a batch of points Bt.

6: for k = 1, . . . , K do

7: Identify the set of points Bk
t ⊆ Bt whose closest center is ck.

8: Nk = Nk + |Bk
t |.

9: ck = ck + 1
Nk

∑
xp∈Bk

t
(xp − ck).

minimum balance over all clusters, i.e., b = minK
k=1 bk. The higher the overall

balance, the fairer the clustering.
By the definition of cluster balance given above, the balance function can be

easily computed only using the assignment variables. The k-means objective (1)
can be rewritten as a function of the assignment variables as well. Hence, one
can directly formulate the inherent trade-off between clustering cost and balance
as a bi-objective optimization problem, i.e.,

min (f1(s),−f2(s)) s.t.
K∑

k=1

sp,k = 1,∀p ∈ [N], s ∈ {0, 1}N×K , (2)

where s is the binary-valued assignment matrix with column vectors sk, k ∈ [K],
and row vectors sp, p ∈ [N], and

f1(s) =
1
N

K∑

k=1

N∑

p=1

sp,k‖xp − ck‖2, with ck =
X�sk
e�
Nsk

=

∑N
p=1 xpsp,k

∑N
p=1 sp,k

,

f2(s) = min
k∈[K]

min
j �=j′

j,j′∈[J]

v�
j sk

v�
j′sk

The two constraints in (2) ensure that one point can only be assigned to one clus-
ter. Note that both objectives are nonconvex functions of the binary assignment
variables.

3.2 The Stochastic Alternating Balance Fair k-means Method

We propose a novel stochastic alternating balance fair k-means clustering algo-
rithm to compute a nondominated solution on the Pareto front. We will use a
simple but effective alternating update mechanism, which consists of improving
either the clustering objective or the overall balance, by iteratively updating
cluster centers and assignment variables. Specifically, every iteration of the pro-
posed algorithm contains two sets of updates, namely pure k-means updates and

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 83

pure swap-based balance improvement steps. The pure k-means updates were
introduced in Sect. 2, and will consist of taking a certain number of stochas-
tic k-means steps. In the balance improvement steps, a certain batch of points
is selected and swapped between the minimum balanced cluster and a target
well-balanced cluster.

Balance Improvement Steps. At the current iteration, let Cl be the cluster with
the minimum balance. Then Cl is the bottleneck cluster that defines the overall
clustering balance. Without loss of generality, we assume that bl = |Cl∩V1|/|Cl∩
V2|, which then implies that the pair of demographic groups (V1, V2) forms a key
to improve the balance of cluster Cl, as well as the overall clustering balance. In
terms of the assignment variables, we have

b = bl =
v�
1 sl

v�
2 sl

=

∑N
p=1 vp,1sp,l

∑N
p=1 vp,2sp,l

(3)

One way to determine a target well-balanced cluster Ch is to select it as the one
with the maximum ratio between V1 and V2, i.e.,

h ∈ argmaxk∈[K]

{
v�
1 sk/v�

2 sk, v
�
2 sk/v�

1 sk
}

(4)

Another way to determine such a target cluster is to select a cluster Ch that is
closest to Cl, i.e.,

h ∈ argmink∈[K],k �=l ‖ck − cl‖ (5)

We call the target cluster computed by (4) a global target and the one selected
by (5) a local target. Using a global target cluster makes the swap updates more
efficient and stable in the sense that the target cluster is only changed when
the minimum balanced cluster changes. Instead, swapping according to the local
target leads to less increase in clustering costs.

To improve the overall balance, one swaps a point in cluster Cl belonging to
V2 with a point in cluster Ch belonging to V1. Each of these swap updates will
guarantee an increase in the overall balance. The detailed stochastic alternating
balance fair k-means clustering algorithm is given in Algorithm 2. At each itera-
tion, we alternate between taking k-means updates using a drawn batch of points
(denote the batch size by na) and “swap” updates using another drawn batch of
points (denote the batch size by nb). The generation of the two batches is inde-
pendent. The choice of na and nb influences the nondominated point obtained
at the end, in terms of the weight put into each objective.

Instead of randomly selecting points to swap in line 11 of Algorithm 2, in
our experiments we have used a more accurate swap strategy by increasing the
batch size. Basically, we randomly sample a batch of points from Cl ∩ V2 (resp.
Ch ∩ V1) and select xp (resp. x′

p) as the one closest to Ch (resp. Cl). The batch
size could be increased as the algorithm proceeds. Our numerical experiments
show that the combination of local target clusters and the increasingly accurate
swap strategy result in better numerical performance.

84 S. Liu and L. N. Vicente

Algorithm 2. Stochastic alternating balance fair k-means clustering
(SAfairKM) algorithm
1: Input: The set of points P , an integer K, and parameters na, nb.

2: Output: The set of clustering labels Δ = {δ1, . . . , δN}, where δp ∈ [K].

3: Randomly initialize labels {δ1, . . . , δN} and a set of counters {N1, . . . , NK}. Com-

pute k-means centers {c1, . . . , cK} and balances {b1, . . . , bK} for all clusters.

4: for t = 1, 2, . . . do

5: Randomly sample a batch of na points Bt ⊆ P without replacement.

6: for xp ∈ Bt do

7: Decrease the counter Nδp = Nδp − 1 for the previous clustering label.

8: Identify its closest center index ip. Update clustering label δp = ip.

9: Increase the counter Nδp = Nδp + 1 and center cδp = cδp + 1
Nδp

(xp − cδp).

10: for r = 1, 2, . . . , nb do

11: Identify Cl, Ch, and the pair of demographic groups (V1, V2) according to (3)

and (5).

12: Randomly select points xp ∈ Cl ∩ V2 and xp′ ∈ Ch ∩ V1.

13: Swap points: set δp = h and δp′ = l.

14: Update centers cl = cl + 1
Nl

(xp′ − cl) and ch = ch + 1
Nh

(xp − ch).

15: Update balance for clusters Cl and Ch.

One could have converted the bi-objective optimization problem (2) into a
weighted-sum function using the weights associated with the decision-maker’s
preference. However, optimizing such a weighted-sum function hardly reflects
the desired trade-off due to significantly different magnitudes of the two objec-
tives. Moreover, the existing k-means algorithm frameworks, including Lloyd’s
heuristic algorithm, are not capable of directly handling the weighted-sum objec-
tive function. In our proposed SAfairKM algorithm, the pair (na, nb) plays a role
similar to the weights in the weighted-sum method.

4 Numerical Experiments

4.1 Pareto Front SAfairKM Algorithm

In our implementation1, to obtain a well-spread Pareto front, we frame the
SAfairKM algorithm into a Pareto front version using a list updating mecha-
nism. See Algorithm 3 for a detailed description. In the initialization phase, we
specify a sequence of pairs of the number of k-means updates and swap updates
W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}, and we generate a list of random
initial clustering labels L0. Then we run Algorithm 2 for a certain number of
iterations (q = 1 in our experiments) parallelly for each label in the current list
1 Our implementation code is available at https://github.com/sul217/SAfairKM. All

the experiments were conducted on a MacBook Pro Intel Core i5 processor.

https://github.com/sul217/SAfairKM

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 85

Lt, resulting in a new list of clustering labels Lt+1. At the end of each iteration,
the list is cleaned up by removing all the dominated points from Lt+1. Using this
algorithm, the list of nondominated points is refined towards the true real Pareto
front. The process can be terminated when either the number of nondominated
points is greater than a certain budget (1500 in our experiments) or when the
total number of iterations exceeds a certain limit (depending on the size of the
dataset).

Algorithm 3. Pareto-Front SAfairKM Algorithm

1: Generate a list of starting labels L0. Select parameter q ∈ N and a sequence of
pairs W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}.

2: for t = 0, 1, . . . do
3: Set Lt+1 = Lt.
4: for each clustering label Δ in the list Lk+1 do
5: for (na, nb) ∈ W do
6: Apply q iterations of Algorithm 2 starting from Δ using the parameters

(na, nb).
7: Add the final output label to the list Lt+1.
8: Remove all the dominated points from Lt+1: for each label Δ in the list Lt+1

do
9: If ∃ Δ′ ∈ Lt+1 such that f1(Δ

′) < f1(Δ) and f2(Δ
′) > f2(Δ) hold, remove Δ.

To the best of our knowledge, the only approach in the literature provid-
ing a mechanism of controlling trade-offs between the two conflicting objectives
was suggested by [32] and briefly described in Appendix A. Their approach (here
called VfairKM) consists of solving (6) for different penalty coefficients μ, result-
ing in a set of solutions from which we then remove dominated solutions to obtain
an approximated Pareto front. To ensure a fair comparison, we select a set of
penalty coefficients evenly from 0 to an upper bound μmax, which is determined
by pre-experiments such that the corresponding fairness error is less than 0.01
or no longer possibly decreased when further increasing its value. In some cases,
we found that VfairKM is not able to produce a fairer clustering outcome when
the penalty coefficient is greater than μmax due to numerical instability.

In addition, we compare the Pareto fronts computed by SAfairKM with the
fair k-means solution obtained from the postprocessing fair assignment approach
proposed in [7] (marked as FairAssign). In [7], the fairest clustering solution is
computed by first using a standard clustering algorithm and then applying the
so-called fair assignment procedure. Such a fair assignment procedure consists
of solving a linear programming relaxation of an integer programming problem,
followed by an iterative rounding procedure to satisfy the bound constraints
βj ≤ |Ck ∩ Vj |/|Ck| ≤ γj ,∀j ∈ [J], k ∈ [K], where βj ∈ [0, 1] and γj ∈ [0, 1]
are lower and upper fairness bounds respectively. In our case, however, and in
order to get the fairest solution, we set βj = γj = |Vj |/N which is exactly
the proportion of demographic group j in the input dataset. Finally, we also
present as benchmarks the k-means solutions obtained by both the state-of-
the-art Lloyd’s algorithm (denoted as VanillaKM) and the mini-batch k-means

86 S. Liu and L. N. Vicente

algorithm (denoted as MinibatchKM). Both VanillaKM and MinibatchKM were
equipped with the well-known k-means++ initialization [4].

4.2 Numerical Results

Trade-Offs for Synthetic Datasets. We randomly generated four synthetic
datasets from Gaussian distributions, and their demographic compositions are
given in Fig. 2 of Appendix B. Each synthetic dataset has 400 data points in
the R

2 space and two demographic groups (J = 2) marked by black/circle and
purple/triangle.

Using the list update mechanism (described by Algorithm 3), we are able to
obtain a well-spread Pareto front with comparable quality for each of the syn-
thetic datasets. Recall that we are minimizing the clustering cost and maximizing
the clustering balance. The closer the Pareto front is to the upper left corner, the
higher its quality. In particular, Fig. 1 (a) gives the approximated Pareto front
for the Syn unequal ds2 dataset with K = 2, which confirms the natural conflict
between the clustering cost and the clustering balance. One can see that the
VfairKM algorithm is not able to output any trade-off information as it always
finds the fairest solution regardless of the value of μ. Due to the special compo-
sition of this dataset, the Pareto front generated by SAfairKM is disconnected
(the point around (1.25, 0.35) is both VfairKM and SAfairKM). Results for the
other three synthetic datasets are given by Figs. 3-6 in Appendix B. For all the
synthetic datasets, the left end point on the Pareto front given by SAfairKM
is consistent with the solution of VanillaKM. On the right end of the Pareto
fronts, the fair solution given by FairAssign is dominated by the fairest solution
identified by our approach.

Trade-Offs for Real Datasets. Two real datasets Adult [25] and Bank [28] are
taken from the UCI machine learning repository [14]. The Adult dataset con-
tains 32, 561 samples. Each instance is characterized by 12 nonsensitive features
(including age, education, hours-per-week, capital-gain, and capital-loss, etc.).
For the clustering purpose, only five numerical features among the 12 features
are kept. The demographic proportion of the Adult dataset is [0.67, 0.33] in
terms of gender (J = 2), which corresponds to a dataset balance of 0.49. The
Bank dataset contains 41, 108 data samples. Six nonsensitive numerical features
(age, duration, number of contacts performed, consumer price index, number of
employees, and daily indicator) are selected for the clustering task. Its demo-
graphic composition in terms of marital status (J = 3) is [0.11, 0.28, 0.61], and
hence the best clustering balance one can achieve is 0.185.

For the purpose of a faster comparison, we randomly select a subsample of
size 5000 from the original datasets and set the number of clusters to K = 10.
The resulting solutions from the five algorithms are given in Fig. 1 (b)-(c). For
both datasets, SAfairKM is able to produce more spread-out Pareto fronts which
capture a larger range of balance, and hence provide more complete trade-offs
between the two conflicting goals. In terms of Pareto front quality (meaning dom-
inance of one over the other), SAfairKM also performs better than VfairKM. In

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 87

fact, we can see from Fig. 1 (b)-(c) that the Pareto fronts generated by SAfairKM
dominate most of the solutions given by VfairKM and FairAssign. Also, the left
end of the Pareto front generated by SAfairKM is much closer to the solution
given by VanillaKM than VfairKM. The Pareto fronts corresponding to K = 5
are also given in Fig. 7 of Appendix B. Overall, SAfairKM results in a Pareto
front of higher spread and slightly lower quality than VfairKM for the Adult
dataset, while the Pareto front output from SAfairKM has better spread and
higher quality for the Bank dataset.

Fig. 1. Pareto fronts: SAfairKM: 400 iterations for Syn unequal ds2, 2500 iterations
for Adult, and 8000 iterations for Bank, 30 starting labels, and 4 pairs of (na, nb);
VfairKM: μmax = 0 for Syn unequal ds2, μmax = 3260 for Adult, and μmax = 2440 for
Bank.

Performance in Terms of Spread and Quality of Pareto Fronts. SAfairKM is able
to generate more spread-out and higher-quality Pareto fronts regardless of the
data distribution (see the trade-off results for the four synthetic datasets). The
robustness partially comes from the list update mechanism which establishes a
connection among parallel runs starting from different initial points and pairs
(na, nb), and thus helps escape from bad local optima.

Table 1. Average CPU times per nondominated solution.

Dataset SAfairKM VfairKM Dataset SAfairKM VfairKM

Syn equal ds1 0.80 1.06 Adult (K = 10) 18.52 40.43

Syn unequal ds1 0.81 0.98 Bank (K = 10) 59.12 76.29

Syn equal ds2 0.70 1.29 Adult (K = 5) 14.88 15.08

Syn unequal ds2 0.80 0.10 Bank (K = 5) 11.97 50.31

88 S. Liu and L. N. Vicente

Performance in Terms of Computational Time. Since the two algorithms
(SAfairKM and VfairKM) generally produce Pareto fronts of different cardi-
nalities, we evaluate their computational efforts by the average CPU time spent
per computed nondominated solution (see Table 1). Our algorithm was shown
to be clearly more computationally efficient than VfairKM.

5 Concluding Remarks

We have investigated the natural conflict between the k-means clustering cost
and the clustering balance from the perspective of bi-objective optimization,
for which we designed a novel stochastic alternating algorithm (SAfairKM). A
Pareto front version of SAfairKM has efficiently computed well-spread and high-
quality trade-offs, when compared to an existing approach based on a penaliza-
tion of fairness.

Note that a balance improvement routine for the SAfairKM algorithm could
be derived to handle more than one demographic group. One might formulate
a multi-objective problem with the clustering cost being one objective and the
balance corresponding to each protected attribute (e.g., race and gender) writ-
ten as separate objectives. The balance measured using each attribute can be
improved via alternating swap updates with respect to each balance objective.

A Description of an Existing Approach for Comparison

The authors in [32] considered the fairness error computed by the Kullback-
Leibler (KL)-divergence, and added it as a penalized term to the classical clus-
tering objective. When using the k-means clustering cost, the resulting problem
takes the form:

min f1(s) + μ
N∑

k=1

DKL(U‖Pk) s.t.
K∑

k=1

sp,k = 1,∀p ∈ [N], (6)

where DKL is the KL divergence between the desired demographic proportion
U = [uj , j ∈ [J]] (usually specified by the demographic composition of the whole
dataset) and the marginal probability Pk = [P(j|k) = s�

k vj/eN
�sk, j ∈ [J]].

The penalty coefficient μ associated with the fairness error is the tool to control
the trade-offs between the clustering cost and the clustering balance. To solve
problem (6) for a fixed μ ≥ 0, the authors in [32] have developed an optimization
scheme based on a concave-convex decomposition of the fairness term.

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 89

B More Numerical Results

Fig. 2. Demographic composition of four synthetic datasets.

Fig. 3. Syn equal ds1 data: SAfairKM: 400 iterations, 10 starting labels, and 3 pairs
of (na, nb); VfairKM: μmax = 202.

Fig. 4. Syn unequal ds1 data: SAfairKM: 400 iterations, 10 starting labels, and 3 pairs
of (na, nb); VfairKM: μmax = 223.

Fig. 5. Syn equal ds2 data: SAfairKM: 400 iterations, 10 starting labels, and 3 pairs
of (na, nb); VfairKM: μmax = 60.

90 S. Liu and L. N. Vicente

Fig. 6. Syn unequal ds2 data: SAfairKM: 400 iterations, 10 starting labels, and 3 pairs
of (na, nb); VfairKM: μmax = 0.

Fig. 7. Pareto fronts for K = 5: SAfairKM: 2500 iterations for Adult and 1500 itera-
tions for Bank, 30 starting labels, and 4 pairs of (na, nb); VfairKM: μmax = 6190 for
Adult and μmax = 4790 for Bank.

References

1. Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable
group representations. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 504–514 (2021)

2. Abraham, S.S., Sundaram, S.S.: Fairness in clustering with multiple sensitive
attributes. arXiv preprint arXiv:1910.05113 (2019)

3. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Clustering without over-
representation. In: Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 267–275 (2019)

4. Arthur, D., Vassilvitskii, S.: k-means++ the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035 (2007)

5. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable
fair clustering. In: International Conference on Machine Learning, pp. 405–413.
PMLR (2019)

6. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. Law Rev. 104, 671
(2016)

7. Bera, S., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering.
In: Advances in Neural Information Processing Systems, pp. 4954–4965 (2019)

8. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data. Springer, Berlin, Heidel-
berg (2006). https://doi.org/10.1007/3-540-28349-8 2

http://arxiv.org/abs/1910.05113
https://doi.org/10.1007/3-540-28349-8_2

A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering 91

9. Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithms. In:
Advances in Neural Information Processing Systems, pp. 585–592 (1995)

10. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency
constraints. In: 2009 IEEE International Conference on Data Mining Workshops,
pp. 13–18. IEEE (2009)

11. Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: Inter-
national Conference on Machine Learning, pp. 1032–1041 (2019)

12. Chierichetti, F., Kuma, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems, pp. 5029–5037
(2017)

13. Datta, A., Tschantz, M.C., Datta, A.: Automated experiments on ad privacy set-
tings: a tale of opacity, choice, and discrimination. Proc. Priv. Enhancing Technol.
2015, 92–112 (2015)

14. Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://archive.ics.
uci.edu/ml

15. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226. ACM (2012)

16. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications.
SIAM, Philadelphia (2020)

17. Gass, S., Saaty, T.: The computational algorithm for the parametric objective
function. Nav. Res. Logist. Q. 2, 39–45 (1955)

18. Ghadiri, M., Samadi, S., Vempala, S.: Socially fair k-means clustering. In: Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency,
pp. 438–448 (2021)

19. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Advances in Neural Information Processing Systems, pp. 3315–3323 (2016)

20. Huang, L., Jiang, S., Vishnoi, N.: Coresets for clustering with fairness constraints.
In: Advances in Neural Information Processing Systems, pp. 7589–7600 (2019)

21. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. 28, 89–112 (2004)

22. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data
summarization. In: International Conference on Machine Learning, pp. 3448–3457.
PMLR (2019)

23. Kleindessner, M., Awasthi, P., Morgenstern, J.: A notion of individual fairness for
clustering. arXiv preprint arXiv:2006.04960 (2020)

24. Kleindessner, M., Samadi, S., Awasthi, P., Morgenstern, J.: Guarantees for spec-
tral clustering with fairness constraints. In: International Conference on Machine
Learning, pp. 3458–3467. PMLR (2019)

25. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree
hybrid. In: Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, pp. 202–207. KDD1996, AAAI Press (1996)

26. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

27. Mahabadi, S., Vakilian, A.: Individual fairness for k-clustering. In: Proceedings of
the 37th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 119, pp. 6586–6596. PMLR, Virtual (13–18 Jul 2020)

28. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of
bank telemarketing. Decis. Support Syst. 62, 22–31 (2014)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2006.04960

92 S. Liu and L. N. Vicente

29. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: 45th
International Colloquium on Automata, Languages, and Programming. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

30. Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algo-
rithms for fair k-means. In: Bampis, E., Megow, N. (eds.) WAOA 2019. LNCS,
vol. 11926, pp. 232–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-39479-0 16

31. Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence the-
orem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-6(1), 81–87 (1984)

32. Ziko, I.M., Granger, E., Yuan, J., Ayed, I.B.: Variational fair clustering. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 11202–11209
(2021)

https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/978-3-030-39479-0_16

Binary Black Widow Optimization Algorithm
for Feature Selection Problems

Ahmed Al-Saedi(B) and Abdul-Rahman Mawlood-Yunis

Physics and Computer Science Department, 75 University Ave W, Waterloo,
ON N2L 3C5, Canada

alsa0290@mylaurier.ca, amawloodyunis@wlu.ca

Abstract. In this research work, we study the ability of a nature-inspired algo-
rithm called the Black Widow Optimization (BWO) algorithm to solve feature
selection (FS) problems. We use the BWO as a base algorithm and propose a new
algorithm called the Binary Black Widow Optimization (BBWO) algorithm to
solve FS problems. The evaluation method used in the algorithm is the wrapper
method, designed to keep a degree of balance between two objectives: (i) mini-
mize the number of selected features, (ii) maintain a high level of accuracy.We use
the k-nearest-neighbor (KNN) machine learning algorithm in the learning stage
to evaluate the accuracy of the solutions generated by the BBWO. This study
has two main contributions: (a) applying the BBWO algorithm to solve FS prob-
lems efficiently, and (b) test results. The performance of the BBWO is tested on
twenty-eight UCI benchmark datasets and the test results were compared with six
well-known FS algorithms (namely, the BPSO, BMVO, BGWO, BMFO, BWOA,
and BBAT algorithms). The test results show that the BBWO is as good as, or
even better in some cases than the FS algorithms compared against. The obtained
results can be used as new a benchmark and provide new insights about existing
FS solutions.

Keywords: Black widow optimization algorithm · Classification · Data mining ·
Feature selection · Metaheuristic algorithms

1 Introduction

Feature selection (FS) algorithms are used to determine the best subset of instructive
features while preserving a high level of classification accuracy in portraying the original
dataset features. They are used as a pre-processing stage in many machine learning
algorithms and data mining applications. For example, in data mining, FS is used as a
pre-processing stage to remove redundant and inconsequential features, as well as to
determine a final set of features that cast the greatest degree of light on the original data
[1, 2].

FS has been studied using classical approaches such as random search, complete
search, breadth search, and depth search [1]. However, even though thesemethods ensure
the optimal solution for small datasets, their render is impractical for large datasets

© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 93–107, 2022.
https://doi.org/10.1007/978-3-031-24866-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_7

94 A. Al-Saedi and A.-R. Mawlood-Yunis

because of the enormous amount of computational power required and the excessive
amount of time taken up [1, 2].

In the last few years, metaheuristic algorithms (MAs) have been considered to be the
ideal and most reliable optimization algorithms for solving FS problems, particularly
in cases involving the challenges presented by high-dimensional problems. Researchers
employ MAs as FS algorithms because of their ability and the outstanding results that
have been attained. Examples of such works include Simulated Annealing (SA) [3],
Ant Colony Optimization (ACO) [4], Particle Swarm Optimization (PSO) [5], Genetic
Algorithm (GA) [6], Whale Optimization Algorithm (WOA) [7], Mine Blast Algorithm
(MBA) [20], Ant Lion Optimizer (ALO) [6], Grey Wolf Optimizer (GWO) [8], and Bat
Algorithm (BA) [9].

Metaheuristic algorithms are the most appropriate alternative method for addressing
the limitations of lengthy, far-reaching searches that entail high computational cost [17].
But each dataset has a different number of features, and no single method is the most
appropriate for solving FS problems, i.e., one can still find room for improvements in
the results. These shortcomings urge researchers to find new means to overcome the
limitation of the current FS algorithms.

In this researchwork, we investigated the ability of a nature-inspired algorithm called
the Black Widow Optimization algorithm (BWO) to solve feature selection problems
efficiently. The algorithm is a populationmetaheuristic algorithm recently proposedwith
the intention of optimizing engineering design.

The BWO process is inspired, in essence, by the singular mating behavior exhibited
by black widow spiders, a process that includes an exclusive stage called cannibal-
ism [10]. It follows Darwin’s natural selection theory, which is defined as generational
descent accompanied by modification, species being subtly adjusted over time, and new
species arising as a result. The BWO approach is designed to deliver rapid convergence
and to avoid local optima, and it is, therefore, particularly appropriate for solving several
kinds of optimization problems that involve several local optima. This is because BWO
maintains equilibrium between the exploration and exploitation stages [10].

We build upon the BWO base algorithm and propose a Binary Black Widow Opti-
mization (BBWO) algorithm to solve FS problems. The FS evaluation method used in
the BBWO is the wrapper method, designed to keep a degree of balance between two
objectives: (i) minimize the number of selected features, (ii) maintain a high level of
accuracy. To achieve this, we have used the k-nearest-neighbor (KNN) algorithm in the
learning stage with the intent to evaluate the accuracy of the solutions generated by the
BBWO.

The main contributions of this study are (a) applying the BBWO algorithm to solve
FS problems efficiently, (b) test results. We tested the performance of our proposed
algorithm on twenty-eight University of California Irvine (UCI) benchmark datasets
that include low, medium, and high dimensional datasets. The obtained results can be
used as a new benchmark and provide new insights about existing FS solutions.

The rest of this paper is organized as follows. In section two, we describe the BBWO
algorithm, in Sect. 3, we present experimental results, and in section four, we conclude
the work and identify future works to improve the performance of the BBWO algorithm.

Binary Black Widow Optimization Algorithm for Feature Selection 95

2 BBWO Algorithm for FS

In this section, we describe the Binary Black Widow Optimization (BBWO) algorithm
for feature selection problems. The algorithm is made of multiple steps. These steps are
listed and described below.

1) Solutions Representation
In the BWO, a possible solution to every problem is envisioned in terms of the attributes
of the black widow spider. To solve the optimization problem, the structure is viewed as
an array in aNvar dimension. Awidow is an array describing the solution of the problem,
and it can be defined as:

w = [
x1, , x3,, xNvar

]

In the BBWO, we use binary representation to represent a population of solutions
(Npop). Each solution represents a single widow and is shown by a one-dimensional
vector. The length of the vector varies in accordance with the feature number of the
original dataset. For example, if S features are contained in the dataset, this means that
the solution length is S. The cell value in the vector is indicated by a ‘1’ or a ‘0’. The
value ‘1’ indicates that the corresponding feature is selected, whereas ‘0’ indicates that
the feature is not selected.

Fig. 1. A solution representation.

Since the BBWO operates on a population of solutions, the population is represented
by an array, where each row represents one candidate solution (Fig. 1). Assuming that
the number of features is Nf . And the population size is

∣∣Npop
∣∣, the array size will be

Nf ×
∣∣Npop

∣∣.

2) Initialization
The population of solutions offered by the BBWO for the FS problems is randomly
generated by assigning to each cell of the solution a value of either “0” or “1”. The process
begins by initializing the population-size and the number of features. The algorithm then
arbitrarily assigns either ’0’ or ’1’ by looping through each solution in the population.
This process is repeated until all solutions in the population have been initialized. The
population generation procedure is presented in Algorithm 1.

96 A. Al-Saedi and A.-R. Mawlood-Yunis

3) Fitness Function and Evaluation Method
FS can be considered as amulti-objective optimization problemwhere two contradictory
objectives are to be achieved: a minimal number of selected features and the highest
classification accuracy. The smaller the number of features in the solution and the higher
the classification accuracy, the better the solution is.

Each solution is evaluated according to the proposed fitness function, which depends
on the classifier to get the classification accuracy of the solution and on the number of
selected features in the solution generated by the search algorithm. The fitness function
based on the FS wrapper method is shown in the equation below:

f = αγR(D) + β
|R|
|C| (1)

where γR(D) represents the classification error rate of a given classifier, |R| is the cardi-
nality of the selected subset, |C| is the total number of the original features in the dataset,
and α, β are two weight parameters corresponding to the importance of classification
quality and subset length, α ∈ [0,1] and β = (1 − α).

After initializing the population of solutions, we assign to each solution (widow)
a fitness value, which represents the quality of the solution. The FS wrapper method
uses the classification performance (accuracy) of a classifier to evaluate the solutions. In
particular, we use the KNN classifier as a learning stage algorithm to assess the accuracy
of the solutions generated by the BBWO. KNN is a supervised ML algorithm used for
both classification and regression problems. It calculates the distance between the testing
sample and the samples in the training dataset based on specific metrics like Euclidean
distance, then sorts the calculated distances in ascending order and picks the first k
neighbours. The final step is to predict the response based on neighbours’ voting, where
each neighbour votes for its class feature, then takes the majority vote as the prediction.
The fitness and evaluation methods followed in [6, 8, 11–14] are similar to the described
approach.

Binary Black Widow Optimization Algorithm for Feature Selection 97

4) Transformation Function
The positions of the search agents generated from the standard BWO are continuous
values. This cannot, therefore, be directly applied to our problem because it contradicts
the binary nature of FS selection or non-selection (0 or 1). The sigmoidal function in
Eq. (2) and (3), which is considered a form of the transformation function, is used in
our proposed method as a part of the reproduction process to convert any continuous
value to a binary equivalent. The performance of the transformation function has been
investigated and adopted in other works, e.g., [6, 8, 11].

zsw = 1

1 + e−zw
(2)

zbinary =
{
0, if rand < zsw
1, if rand ≥ zsw

(3)

The zsw in Eq. (2) is a continuous value (feature) in the search agent for the S-shaped
function, specifically in the solutionw at dimension d (w = 1, . . . , d). The rand variable
in Eq. (3) is a random number drawn from the uniform distribution ∈ [0, 1]. Lastly, the
zbinary value can be 0 or 1 in accordance with the value of a rand in comparison with the
values of zsw , where e is a mathematical constant known as Euler’s number.

5) Reproduction Process
To bring forth the new generation, the procreation process begins, and parents (in pairs)
are selected randomly to perform the procreating steps by mating. An array known as
Alpha should also be generated to complete further reproduction. Offspring c1 and c2
will be produced by taking α with the following equation in whichw1 andw2 are parents
[10].

⎧
⎨

⎩

c1 = α × w1 + (1 − α) × w2

c2 = α × w2 + (1 − α) × w1

(4)

This process is repeated for all pairs,where no repetition of randomly selected parents
should take place. Lastly, the children and maternal parents are added to an array and
sorted in accordance with their fitness value. Figure 2 is an assuming example of the
procreate process for a child, y1.

Fig. 2. An assuming example of the procreate process.

98 A. Al-Saedi and A.-R. Mawlood-Yunis

6) Cannibalism Process
Cannibalism can be classified into three kinds: sexual cannibalism where the husband
gets eaten by the female black widow during or after mating, sibling-cannibalism where
the weaker sibling spiders get eaten by stronger siblings, and the last kind where the
mother gets eaten by her strongest child [10]. The proposedmethod (BBWO) determines
the weak or strong spiders by calculating and evaluating their fitness values. Therefore,
the best solutions (surviving spiders) from the reproduction process will be selected and
stored in a variable pop2.

7) Mutation Process
Theprocedure ofmutations begins by randomly selecting anumber of solutions (widows)
from the pop1 population which will be mutated individually. Two cells from each
selected solution (widow) are randomly exchanged, and the new mutation solutions will
be kept in pop3. Figure 3 shows an example of the mutation structure for an individual
solution.

Fig. 3. Mutation structures.

8) New Population Generation
The new population can finally be generated as a combination of pop2 and pop3, which
will then be evaluated to return the optimal solution (W*) of values bearing theN dimen-
sion.TheBWOalgorithmcontains someof the parameterswithwhich exceptional results
can be achieved. These involve the cannibalism rate, the procreation rate (Pr) and the
mutation rate (Mr). The proposed BBWO algorithm determines the cannibalism rate in
accordance with the fitness values Eq. (1), where the same parameters (Pr andMr rates)
of the standard BWO have been used.

2.1 The Pseudo-code of the Proposed Method (BBWO)

In this section, the pseudo-code of the BBWO is presented.

Binary Black Widow Optimization Algorithm for Feature Selection 99

100 A. Al-Saedi and A.-R. Mawlood-Yunis

3 Experiments

In this section, we evaluate the performance of the BBWO against well-known heuris-
tic FS algorithms. Specifically, we compare the performance of our BBWO algorithm
against the BPSO [14], BMVO [16, 17], BGWO [8, 11], BMFO [18], BWOA [7], and
BBAT [19] algorithms.

3.1 Implementation Setup

Python programming is used to implement the proposed BBWO algorithm, and the
work was carried out via a Windows 10, 64-bit operating system, Core i5 processor,
operating at 1.8 GHz and with 8 GB of RAM. A wrapper approach based on a KNN
classifier (where K= 5 [7, 20]) is used to evaluate the fitness value of the selected feature
subsets generated by the BBWO. Twenty-eight well known datasets from the University
of California Irvine (UCI) machine learning repository [7, 8, 20, 21] have been used to
investigate the performance and the strength of the BBOW. The dataset is randomly split
into 80% for the training set and 20% for the test set.

3.2 Evaluation Criteria and Parameters Setting

The performance evaluation is based on the two criteria: classification accuracy and
features selected. A calculation of the classification accuracy and the features selected
were carried out by taking the average accuracy and the average number of features
selected for the optimumsolutionof independent runs. To ensure an impartial comparison
and a correct evaluation between our proposed method and other FS algorithms, we
reimplemented the six FS algorithms (BPSO, BMVO, BGWO, BMFO, BWOA, BBAT)
using the same parameter values (population-size, iterations, runs, K (KNN classifier),
α, β) as illustrated in Table 1, and the same transformation function as explained in
Sect. 2. The description of the data used in the testing is shown in Table 2.

Table 1. Parameters values

Parameters name Value Parameters name Value

Population-size 20 pr 0.6

No. of iterations 10 mr 0.4

Number of
independent runs

20 α 0.99

K (KNN classifier) 5 β 0.01

Dimension-size No. of features

Binary Black Widow Optimization Algorithm for Feature Selection 101

Table 2. Dataset description

No. Datasets Features Objects Classes Domain

1 Breastcancer 9 699 2 Medical

2 BreastEW 30 569 2 Medical

3 CongressEW 16 435 2 Politics

4 Exactly 13 1000 2 Medical

5 Exactly2 13 1000 2 Medical

6 HeartEW 13 270 5 Medical

7 IonosphereEW 34 351 2 Electronic

8 Lymphography 18 148 4 Medical

9 M-of-n 13 1000 2 Medical

10 PenglungEW 325 73 2 Medical

11 SonarEW 60 208 2 Medical

12 SpectEW 22 267 2 Medical

13 Tic-tac-toe 9 958 2 Game

14 Vote 16 300 2 Politics

15 WaveformEW 40 5000 3 Physical

16 Zoo 16 101 7 Artificial

17 Colon 2000 62 2 Medical

18 Parkinsons 22 195 2 Medical

19 Lungcancer 21 226 2 Medical

20 Leukemia 7129 72 2 Medical

21 Dermatology 34 366 6 Medical

22 Semeion 256 1593 10 Handwriting

23 Satellite 36 5100 2 Physical

24 Spambase 57 4601 2 Computer

25 Segment 19 2310 7 Images

26 Credit 20 1000 2 Business

27 KrvskpEW 36 3196 2 Game

28 Plants-100 64 1599 100 Agriculture

3.3 Experiment Results and Discussion of BBWO

The classification accuracy and number of features selected for the BBWO algorithm is
presented in In Table 3.

102 A. Al-Saedi and A.-R. Mawlood-Yunis

Table 3. Experiment results for the BBWO

Datasets
name

Number of
features

Classification
accuracy

Feature
selected

Breastcancer 9 0.97 3.00

BreastEW 30 0.94 12.25

CongressEW 16 0.95 4.60

Exactly 13 0.91 3.75

Exactly2 13 0.77 3.65

HeartEW 13 0.84 3.80

IonosphereEW 34 0.88 13.75

Lymphography 18 0.85 6.80

M-of-n 13 0.95 7.00

PenglungEW 325 0.90 150.75

SonarEW 60 0.86 24.40

SpectEW 22 0.81 8.50

Tic-tac-toe 9 0.80 3.80

Vote 16 0.93 4.05

WaveformEW 40 0.88 20.60

Zoo 16 0.92 5.05

Parkinsons 22 0.89 7.70

Lungcancer 21 0.90 8.40

Colon 2000 0.87 959.20

Leukemia 7129 0.86 3531.90

Dermatology 34 0.97 15.70

Semeion 256 0.93 130.00

Satellite 36 0.99 12.20

Spambase 57 0.92 28.60

Segment 19 0.96 8.70

Credit 20 0.79 7.60

KrvskpEW 36 0.95 19.00

Plants-100 64 0.80 33.50

The BBWO results compared to the six FS algorithms (BPSO, BMVO, BGWO,
BMFO, BWOA, BBAT), based on the classification accuracy (maximizing), and the
number of features selected (minimizing) are shown in Table 4 and Table 5 respectively.

Binary Black Widow Optimization Algorithm for Feature Selection 103

Table 4. Comparison BBWO with all algorithms based on the classification accuracy

Datasets
name

BBWO BPSO BMVO BGWO BMFO BWOA BBAT

Breastcancer 0.97 0.96 0.97 0.96 0.97 0.97 0.96

BreastEW 0.94 0.94 0.94 0.95 0.94 0.93 0.94

CongressEW 0.95 0.92 0.95 0.95 0.95 0.95 0.94

Exactly 0.91 0.76 0.89 0.74 0.90 0.91 0.73

Exactly2 0.77 0.77 0.76 0.75 0.76 0.74 0.74

HeartEW 0.84 0.81 0.85 0.84 0.85 0.85 0.82

IonosphereEW 0.88 0.86 0.88 0.88 0.88 0.88 0.88

Lymphography 0.85 0.82 0.84 0.82 0.85 0.83 0.81

M-of-n 0.95 0.83 0.99 0.88 0.98 0.98 0.81

PenglungEW 0.90 0.87 0.89 0.89 0.89 0.88 0.88

SonarEW 0.86 0.86 0.87 0.86 0.86 0.87 0.86

SpectEW 0.81 0.81 0.81 0.82 0.82 0.81 0.81

Tic-tac-toe 0.80 0.74 0.81 0.78 0.82 0.81 0.76

Vote 0.93 0.91 0.94 0.94 0.94 0.94 0.93

WaveformEW 0.88 0.86 0.88 0.87 0.88 0.88 0.83

Zoo 0.92 0.89 0.89 0.88 0.88 0.90 0.89

Parkinsons 0.90 0.88 0.89 0.86 0.89 0.89 0.88

Lungcancer 0.90 0.88 0.91 0.90 0.91 0.91 0.90

Colon 0.87 0.86 0.89 0.87 0.87 0.87 0.87

Leukemia 0.86 0.83 0.86 0.85 0.86 0.86 0.85

Dermatology 0.97 0.89 0.96 0.95 0.97 0.97 0.92

Semeion 0.93 0.92 0.93 0.92 0.93 0.93 0.92

Satellite 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Spambase 0.93 0.88 0.93 0.92 0.93 0.93 0.89

Segment 0.96 0.94 0.96 0.96 0.96 0.96 0.94

Credit 0.79 0.76 0.79 0.77 0.78 0.79 0.78

KrvskpEW 0.95 0.90 0.96 0.95 0.97 0.97 0.87

Plants-100 0.80 0.78 0.79 0.78 0.80 0.79 0.77

Average 0.8932 0.8614 0.8935 0.8760 0.8939 0.8925 0.8632

Rank 3 7 2 5 1 4 6

From the best results, which are showed in Tables 4 and 5, we can conclude that the
BBWOproduced competitive results in terms of the average total classification accuracy
for all datasets in comparison with other the six FS algorithms. This result is summarized

104 A. Al-Saedi and A.-R. Mawlood-Yunis

Table 5. Comparison BBWO with all algorithms based on the feature selected

Datasets
name

BBWO BPSO BMVO BGWO BMFO BWOA BBAT

Breastcancer 3.00 3.40 4.55 5.15 4.35 4.60 3.45

BreastEW 12.25 11.40 10.95 13.55 13.20 12.12 13.15

CongressEW 4.60 5.20 4.25 5.95 5.40 4.20 5.55

Exactly 3.75 5.30 7.25 7.05 7.05 6.65 5.80

Exactly2 3.65 3.95 2.33 5.40 3.15 2.10 3.50

HeartEW 3.80 4.25 3.45 4.15 3.70 3.45 4.65

IonosphereEW 13.75 14.35 13.35 15.90 15.00 12.55 16.55

Lymphography 6.80 7.60 6.66 7.56 7.35 6.35 7.55

M-of-n 7.00 5.50 7.22 8.00 6.75 7.35 6.15

PenglungEW 151.75 154.80 152.35 155.20 152.45 146.35 156.85

SonarEW 24.40 27.05 25.55 28.05 28.95 23.85 27.00

SpectEW 8.50 8.95 8.22 10.15 8.20 8.75 9.85

Tic-tac-toe 3.80 4.20 4.55 4.55 4.41 4.05 4.28

Vote 4.05 5.05 4.95 6.35 5.85 4.50 6.15

WaveformEW 20.60 22.00 22.15 21.45 21.35 19.45 20.25

Zoo 5.05 5.59 6.35 6.65 6.13 5.75 6.50

Parkinsons 7.70 8.00 8.45 9.15 9.10 8.20 9.25

Lungcancer 7.00 7.25 8.66 9.35 8.90 8.05 8.95

Colon 980.22 961.65 963.25 965.55 962.15 943.55 963.35

Leukemia 3531.90 3555.82 3571.85 3535.85 3534.55 3511.35 3513.50

Dermatology 14.70 16.85 15.95 16.70 16.60 16.45 16.50

Semeion 130.00 131.85 127.00 128.6 131.60 126.80 126.70

Satellite 9.20 13.01 10.55 12.40 11.40 10.10 12.45

Spambase 28.60 29.77 26.55 30.50 26.25 26.50 27.25

Segment 7.70 8.72 9.25 9.90 9.95 8.90 9.60

Credit 7.22 8.41 7.95 8.50 8.30 7.72 8.75

KrvskpEW 19.00 19.73 19.81 21.30 18.56 17.92 18.45

Plants-100 32.50 35.55 33.15 33.80 33.32 34.15 35.50

Average 180.44 181.61 181.66 181.66 180.85 178.27 180.26

Rank 3 5 6 6 4 1 2

Binary Black Widow Optimization Algorithm for Feature Selection 105

in Fig. 4. Moreover, The BBWO shows impressive results in term of minimizing the
features selected. This performance is shown in Fig. 5. The rank of the BBWO is third
out of seven, based on the average total features selected of all datasets in comparison
with the other FS algorithms.

Fig. 4. Average number of classification accuracy of all algorithms (Maximizing)

Fig. 5. Average number of features selected of all algorithms (Minimizing)

4 Conclusion and Future Works

In this research work, we investigated the ability of a nature-inspired algorithm called
the Black Widow Optimization algorithm (BWO) to solve feature selection problems.
We used the essence of the BWO to create an algorithm called the Binary Black Widow
Algorithm (BBWO) and applied it to solve feature selection problems. We described
the BBWO concepts and algorithm steps and showed how it can be applied to solve
feature selection problems. The performance of the BBWO was tested on twenty-eight
UCI benchmark datasets and the test results were compared with six well-known FS

106 A. Al-Saedi and A.-R. Mawlood-Yunis

algorithms (BPSO, BMVO, BGWO, BMFO, BWOA, BBAT). The results showed that
the BBWO is as good as, or even better in some cases, than the other FS algorithms.

In future works, we would like to combine the BBWO with other metaheuristics
algorithms, for example, the hill-climbing algorithm, to further improve the perfor-
mance of the BBWO. The impact of the parameter adaptation schemes and different
population generation methods on the performance of the BBWO are important future
works. Finally, we would like to study the suitability of the BBWO for solving many
other real-world problems such as text mining, clustering, image processing, and routing
problems.

References

1. Venkatesh, B., Anuradha, J.: A review of feature selection and its methods. Cybern. Inf.
Technol. 19(1), 3–26 (2019)

2. Sharma, M., Kaur, P.: A comprehensive analysis of nature-inspired meta-heuristic techniques
for feature selection problem. Arch. Comput.Methods Eng. 28(3), 1103–1127 (2020). https://
doi.org/10.1007/s11831-020-09412-6

3. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-
based approaches. IEEE Trans. Knowl. Data Eng. 16(12), 1457–1471 (2004)

4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.
1(4), 28–39 (2006)

5. Kennedy, J., Russell, E.: Particle swarm optimization. In: Proceedings of ICNN 1995-
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

6. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary ant lion approaches for feature selection.
Neurocomputing. 213, 54–65 (2016)

7. Mafarja,M.,Mirjalili, S.:Whale optimization approaches for wrapper feature selection. Appl.
Soft Comput. 62, 441–453 (2018)

8. AbdelBasset, M., ElShahat, D., Elhenawy, I., de Albuquerque, V.H.C., Mirjalili, S.: A new
fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection.
Expert Syst. App. 139, 112824 (2020)

9. Yang,X.-S.:Anewmetaheuristic bat-inspired algorithm. In:González, J.R., Pelta,D.A., Cruz,
C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Berlin,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6

10. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic
approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249
(2020)

11. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for
feature selection. Neurocomputing. 172, 371–381 (2016)

12. Taradeh, M., et al.: An evolutionary gravitational search-based feature selection. Inf. Sci. 497,
219–239 (2019)

13. Mafarja, M., Jaber, I., Ahmed, S., Thaher, T.: Whale optimisation algorithm for high-
dimensional small-instance feature selection. Int. J. Parallel, Emerg. Distrib. Syst. 36, 1–17
(2019)

14. Shaban,W.M., Rabie, A.H., Saleh, A.I., Abo-Elsoud,M.A.: A newCOVID-19 patients detec-
tion strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowl.
Based Syst. 205, 106270 (2020)

https://doi.org/10.1007/s11831-020-09412-6
https://doi.org/10.1007/978-3-642-12538-6_6

Binary Black Widow Optimization Algorithm for Feature Selection 107

15. Mafarja, M., Jarrar, R., Ahmad, S., Abusnaina, A.A.: Feature selection using binary particle
swarm optimization with time varying inertia weight strategies. In: Proceedings of the 2nd
International Conference on Future Networks and Distributed Systems, pp. 1–9 (2018)

16. Mirjalili, S.,Mirjalili, S.M., Hatamlou, A.:Multi-verse optimizer: a nature-inspired algorithm
for global optimization.NeuralComput.App. 27(2), 495–513 (2015). https://doi.org/10.1007/
s00521-015-1870-7

17. Al-Madi, N., Faris, H., Mirjalili, S.: Binary multi-verse optimization algorithm for global
optimization and discrete problems. Int. J. Mach. Learn. Cybern. 10(12), 3445–3465 (2019).
https://doi.org/10.1007/s13042-019-00931-8

18. Zawbaa, H.M., Emary, E., Parv, B., Sharawi, M.: Feature selection approach based on moth-
flame optimization algorithm. In: 2016 IEEE Congress on Evolutionary Computation (CEC),
pp. 4612–4617. IEEE (2016)

19. Mirjalili, S.,Mirjalili, S.M.,Yang,X.-S.:Binarybat algorithm.NeuralComput.Appl.25(3–4),
663–681 (2013). https://doi.org/10.1007/s00521-013-1525-5

20. Alweshah, M., Alkhalaileh, S., Albashish, D., Mafarja, M., Bsoul, Q., Dorgham, O.: A hybrid
mine blast algorithm for feature selection problems. Soft. Comput. 25(1), 517–534 (2020).
https://doi.org/10.1007/s00500-020-05164-4

21. https://archive.ics.uci.edu/ml/datasets.php

https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s13042-019-00931-8
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1007/s00500-020-05164-4
https://archive.ics.uci.edu/ml/datasets.php

Learning to Solve a Stochastic
Orienteering Problem with Time

Windows

Fynn Schmitt-Ulms1, André Hottung2(B), Meinolf Sellmann3,
and Kevin Tierney2

1 McGill University, Montreal, Canada
fynn.schmitt-ulms@mcgill.ca

2 Decision and Operation Technologies Group, Bielefeld University,
Bielefeld, Germany

{andre.hottung,kevin.tierney}@uni-bielefeld.de
3 InsideOpt, Dover, DE, USA

Abstract. Reinforcement learning (RL) has seen increasing success at
solving a variety of combinatorial optimization problems. These tech-
niques have generally been applied to deterministic optimization prob-
lems with few side constraints, such as the traveling salesperson prob-
lem (TSP) or capacitated vehicle routing problem (CVRP). With this
in mind, the recent IJCAI AI for TSP competition challenged partici-
pants to apply RL to a difficult routing problem involving optimization
under uncertainty and time windows. We present the winning submis-
sion to the challenge, which uses the policy optimization with multi-
ple optima (POMO) approach combined with efficient active search and
Monte Carlo roll-outs. We present experimental results showing that our
proposed approach outperforms the second place approach by 1.7%. Fur-
thermore, our computational results suggest that solving more realistic
routing problems may not be as difficult as previously thought.

Keywords: Learning to optimize · Stochastic optimization · Deep
reinforcement learning · Orienteering problem

1 Introduction

Deep reinforcement learning (DRL) approaches represent an exciting new
research avenue in artificial intelligence (AI) and operations research (OR) for
automatically creating heuristics to solve combinatorial optimization (CO) prob-
lems. These approaches are attractive as they can solve CO problems with little
domain knowledge by iteratively building a solution through a construction pro-
cess. A central goal of these approaches is to make optimization technology more
accessible to audiences without expertise in operations research and perhaps even
limited problem domain knowledge. Since the approach “learns” a heuristic on
its own, the overall process of solving the CO problem is transformed to a data
science task, rather than an OR task.
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 108–122, 2022.
https://doi.org/10.1007/978-3-031-24866-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_8

Learning to Solve a Stochastic Orienteering Problem with Time Windows 109

RL has seen particular success in solving deterministic routing problems with
few side constraints [18], even if concerns about generalization to very large
problem sizes remain [15]. The recent IJCAI AI for TSP competition [4] aimed
to expand the horizon of RL techniques in CO to stochastic problems with side
constraints. The competition posed a stochastic orienteering problem with time
windows to be solved with RL, thus presenting a difficult problem with novel
components not yet solved with RL techniques in the literature. Given a set
of customers, each providing a reward if they are visited, and a time window
in which they can be visited, the objective of the time-dependent orienteering
problem with stochastic weights and time windows (TDOP1) is to construct
a tour from a depot through a subset of the customers that maximizes the
total rewards and returns to the depot before a maximum time is reached. A
penalty is incurred for tours that exceed the maximum time, or that arrive at
customer nodes after their time windows have closed. Travel times are subject
to uncertainty, while the stay duration at customers is instant, provided the
tour arrives after the start of the time window. However, tours that arrive at a
customer before the time window are forced to wait until the start of the window.

The competition posed two tracks: supervised learning and reinforcement
learning. In the supervised learning track, a complete solution to an instance of
the TDOP is provided before the tour is traveled, meaning no recourse actions
can be taken if delays are incurred while carrying out the tour. In the reinforce-
ment learning track, the goal is to learn a policy for picking the next node to
visit on a TDOP tour. Recourse is allowed, thus at each node visited in the
solution, the future nodes to be visited can be adjusted according to how much
time is left in the time horizon.

We propose a solution procedure using the policy optimization with multiple
optima (POMO) method [19] and efficient active search (EAS) [12] that won
first place in the reinforcement learning track2. POMO is a DRL approach that
exploits symmetries in the solution space of CO problems. EAS is an RL-based
search method originally designed for deterministic problems.

POMO and EAS have been successfully applied to deterministic problems.
In contrast to problems considered in earlier work, the TDOP is a stochastic
problem in which the travel times between customers are only revealed during
solution construction. This means that a solution needs to be generated online
(taking into account the already realized travel times at each decision step)
rather than offline. Furthermore, the TDOP is heavily constrained and there
are no obvious symmetries in the solution space that POMO can exploit. Our
contribution is as follows. (1) We adapt POMO to stochastic problems without
symmetries in the solution space. (2) We use EAS as a method for fine-tuning
a given RL policy, and further extend EAS to use entropy regularization to
improve exploration. (3) We use Monte Carlo rollouts for the final online solution

1 We note that the TDOP is abbreviated as the TD-OPSWTW in some works.
2 Although not the focus of our research, our approach can also generate complete

solutions using the expected travel time for the supervised learning track, and these
tie the winning team’s solutions and generate them in less computation time.

110 F. Schmitt-Ulms et al.

generation. We discuss our entry into the competition and show how the addition
of EAS and Monte Carlo rollouts yields a novel, competition-winning technique.

2 Related Work

Models for automatically learning to solve routing problems have advanced sig-
nificantly since [10] solved small TSP instances with a Hopfield network. The
pointer network architecture [23] in particular has allowed deep networks to
make high-quality recommendations for choosing the next step in a construction
process. Further insights, such as using actor-critic RL [2], attention [18], multi-
ple rollouts [19], and simulation-guided beam search [7], have further closed the
gap to state-of-the-art, handcrafted routing algorithms.

While learned models are good at generating solutions to routing problems,
search is still required to find high quality solutions comparable to those found
with handcrafted heuristics. The neural network’s output distribution is sampled
in [18], while [16] use a beam search with guidance from the neural network.
The work of [13] proposes an improvement method that integrates a neural net-
work into the repair operator of a large neighborhood search. Other iterative
improvement methods for routing problems are proposed in [6,8,20,26]. Genera-
tive machine learning models can also be used to create a searchable latent space
as in [11], in which a generated latent space is searched with an unconstrained
continuous optimizer for good solutions. The DPDP approach from [17] uses a
dynamic programming algorithm that is guided by a “heatmap” of suggestions
generated by the neural network from [16]. In NeuroLKH [27] a neural network
is integrated into the well-known LKH algorithm [9], thus relying on LKH to
perform its search. Finally, [12] introduces EAS to adjust a subset of (model)
parameters at test time to better solve a given problem instance.

In contrast to deterministic routing problems, stochastic routing problems
have seen little attention in the ML literature. DRL is used in [14] to solve a
dynamic vehicle routing problem with stochastic customers and time-windows.
In this VRP variant, new customers (requests) can arise at any time during the
solution execution, resulting in already planned routes to be adjusted online.
A similar VRP variant with stochastic customers is solved by [21] via DRL,
but this variant also considers vehicles with limited capacity. A multiagent RL
approach is proposed in [5] to solve the dynamic CVRP with stochastic travel
times and stochastic customers with time windows. Finally, [1] consider the
problem of routing a single electric vehicle with a reliable charge, taking into
account stochastic energy consumption and dynamic customer requests. They
propose an RL method that learns a policy aiming to minimize the risk of battery
depletion by planning charging stops.

3 Background

We provide background information modeling routing problems using RL. As
our approach uses a transformer architecture, we focus on this in the follow-
ing. We note, however, that a number of options exist for RL for routing and

Learning to Solve a Stochastic Orienteering Problem with Time Windows 111

combinatorial optimization problems in general (see [3]). We begin with a gen-
eral description of modeling routing problems in a sequential decision process,
followed by the POMO method and, finally, how to apply EAS.

Fig. 1. POMO solution construction, from [12].

Solving Routing Problems with RL. Most ML-based approaches for solving rout-
ing problems formulate the solution construction as a sequential decision mak-
ing problem. Starting from a start node, an actor decides, at each decision step
t ∈ {0, ..., T}, which node should be visited next. The actor pθ is usually a deep
neural network with weights θ that outputs a probability value for each possi-
ble action in the given state. The starting state s0 describes the given problem
instance (e.g., the positions of the customers and the depot) and the state st+1

is obtained by applying the action at chosen at step t to the state st. Once a
complete solution π = (a0, ..., aT) that satisfies all constraints of the problem
is constructed, the objective function value of the solution can be computed
(e.g., the tour length for the TSP). For the training of the network, most exist-
ing approaches use the REINFORCE algorithm [24] which adjusts the network
weights based on the objective function value of the complete solution.

POMO. One state-of-the-art RL approach for sequential solution construction is
the POMO approach [19]. POMO is an end-to-end approach that exploits sym-
metries in the solution space of combinatorial optimization problems to enforce
exploration during the training phase. POMO uses a transformer-based network
pθ [22] that consists of an encoder and decoder. The encoder learns to gener-
ate an internal representation ω of a given problem instance (i.e., an embed-
ding) and the decoder qφ learns to construct a solution based on this embedding
sequentially. Note that the weights φ of the decoder are a subset of all model
weights θ. Figure 1 shows the embedding generation and the autoregressive solu-
tion construction for a TSP instance. At each decoding step, an action is sampled
according to the output distribution by the decoder.

Note, that once an instance embedding has been generated by the encoder,
the decoder can be used to generate multiple solutions for that instance. POMO
exploits this fact by sampling multiple solutions for each problem instance. Fur-
thermore, POMO uses symmetries in the solution space to enforce exploration.
For example, for the TSP with n cities, POMO constructs n solutions {π1, ..., πn}
from the same embeddings. By starting each solution construction process from
a different starting city, POMO ensures that each of the solutions is unique.

112 F. Schmitt-Ulms et al.

During training, POMO uses gradient ascent to update the neural network
weights based on a set of sampled solutions {π1, ..., πn} with the objective to
maximize the expected reward

∇θJ(θ) ≈ 1
n

n∑

i=1

(R(πi) − b)∇θ log pθ(πi | si
0) (1)

where pθ(πi | si
0) ≡ ∏T

t=0 pθ(ai
t | si

t), b is the baseline, and R(πi) is the reward
of the i-th solution. The baseline b is given by the average reward of all n
solutions. The baseline stabilizes training by preventing the fluctuating reward
between different instances and multiple solutions of single instances from overly
influencing training.

EAS. Given a model trained as described above, we now focus on the search
phase in which we are given an instance we have never seen before and need to
solve it. Active search [2] performs an extensive search for high-quality solutions
to a single test instance by iteratively solving the instance and adjusting the
model parameters at the end of each iteration. In other words, active search
performs a search for solutions by fine-tuning a given model towards a single
instance using reinforcement learning. Over the course of the search/training,
the model performance on the single test usually improves, and high-quality
solutions are found. The best found solution at the end of the search/training is
returned as the final solution. After solving the instance, the adjusted parameters
are discarded and the model is returned to its original state, as they likely will
not generalize to any other instances. While active search finds high-quality
solutions, it is very slow because all instances have to be solved sequentially and
a full update of the model parameters must be performed.

A recent extension to active search, called EAS [12], only updates a subset
of (model) parameters during the search This significantly reduces the runtime
and GPU memory requirements, since most model parameters are not updated
and many model operations can hence be performed on a batch of test instances
in parallel. For example, an extra layer can be added for each instance and only
the parameters of this layer are updated during search. In this work, we use an
EAS variant that adjusts the embeddings generated by the encoder, since both
this and the extra layer versions of EAS show similar performance in [12].

4 The TDOP

In the TDOP, we are given a graph, G = (V,E), with nodes V representing
customers and a single depot, and edges E between all nodes. Each node i is
assigned a location (xi, yi) in a Euclidean plane, a time window (wi, w̄i), as well
as a reward ri. The goal of the problem is to construct a tour starting and ending
at the depot that maximizes the reward earned by visiting customers (nodes). If
a node is visited, it must be visited during its time window. If a node is visited
early, the model is forced to wait until the beginning of the time window. If a
node is visited late, a penalty p is incurred. The travel time between nodes, t̂ij ,

Learning to Solve a Stochastic Orienteering Problem with Time Windows 113

Fig. 2. An instance and solution (black, solid line) to the TDOP with time windows
shown in square brackets. Alternate solutions are given by the red, dotted line and
blue, dashed line. (Color figure online)

is stochastic, but bounded above by the euclidean distance between each pair of
nodes. The visit duration at each node is instantaneous. The maximum travel
time is given by D, and the penalty p|V | is added to the objective function if it
is exceeded. Note that in this version of the orienteering problem, no costs are
incurred traveling between nodes. Thus, given a variable xi ∈ {0, 1} that is set
to 1 iff the route visits node i ∈ V , and a variable δi ∈ {0, 1} that is equal to
1 iff the time window at node i ∈ V is violated, the objective function can be
formulated as max

∑
i∈V (rixi − p′

iδi) , with p′
i defined as the penalty p for all

nodes i that are not the depot, and p|V | for the depot.
Figure 2 shows a TDOP instance with time windows for each node. For the

purpose of illustration, assume the reward at every node is one. One possible
solution is given by the black, solid line; assume the stochastic travel times
between nodes are realized such that none of the time windows visited along the
tour are violated. The tour thus incurs no penalty. The blue, dashed line shows
an alternative end of the tour that would earn an extra reward. If we arrive at
node 4 early enough, visiting node 5 may still be viable within its time window.
This decision would be made on the fly as the tour is carried out. The red,
dotted line, however, shows an alternative solution that is guaranteed to suffer
a penalty regardless of the realization of the travel times, as the time window
ends before the previous node’s time window begins.

5 Solving the TDOP

Our solution approach for the TDOP consists of three steps. First, we use the
POMO approach to learn a problem size-specific policy. To this end, we slightly
adjust the POMO model to TDOP, e.g., by changing the structure of the input
that the model accepts. In the next step, we use EAS to enhance the learned
policy. EAS has been originally proposed as a search method for non-stochastic
problems. We adjust EAS to the stochastic search setting and deploy it with the
objective to find a fine-tuned policy to a given test instance. In the third step,
we use Monte Carlo rollouts to construct the final solutions using the policies
fine-tuned via EAS. In the following, we describe each of these three steps in
more detail.

114 F. Schmitt-Ulms et al.

5.1 POMO for the TDOP

Modeling the TDOP. The model of TDOP within POMO is straightforward
and only requires a few adjustments to the CVRP model presented by [19] to
output decent solutions.

POMO Rollouts. The core idea of POMO is to create n diverse solutions for
each instance during training. The average reward of the n solutions for one
instance can then be used as a baseline. POMO uses problem-specific mech-
anisms to enforce diversity among the solution rollouts for each instance. For
the TSP, POMO starts each of the rollouts from a different starting city. For
the CVRP, POMO visits a different customer first for each rollout. For both
problems, the quality of the different rollouts for an instance can be directly
compared, since the diversity enforcing mechanism only marginally (or not at
all) influences the quality of the solutions that can be found. For the TDOP
it is not possible to use a similar diversity enforcing mechanism, because the
solution quality heavily depends on the selected start node. Instead, we leverage
the stochastic nature of the TDOP and sample the travel times independent for
each rollout. This encourages diversity among the different rollouts and hence
increases exploration. We still use the average reward of all rollouts as the shared
baseline. Future work could investigate if an individual baseline for each rollout
taking into account the sampled travel times can improve performance.

Model Input. POMO accepts a vector representing each node of the problem
instance. For example, for the TSP, POMO is given a vector consisting of
the x and y-coordinates of each node. For the TDOP, we provide the vector
(xi, yi, ri, wi, w̄i) for each node i. Note that we scale wi and w̄i based on the
maximum travel time D.

Decoder Context. During decoding, POMO constructs a solution autoregres-
sively. Starting from an empty solution it sequentially decides which customer
should be visited next. To choose a customer, the POMO model has to consider
the context of the decision (e.g., the currently visited customer). This context
is provided to the model in the form of a vector. For example, for the TSP the
POMO model is given the embedding of the current node, the embedding of
the start node and the global graph embedding as context. For the TDOP, we
additionally provide the decoder with the current time at which the last node
in the partial solution is visited as input. Note that we scale current time based
on the maximum travel time D.

Masking Schema. The output space of POMO potentially includes actions that
are infeasible, such as visiting a previously visited node, in addition to actions
that are clearly bad, such as visiting a node with a clearly violated time window.
A simple mechanism for avoiding such actions is masking, which sets the proba-
bility of an undesired action in the output space to 0. We apply masking in both
the train and test phases. Masking the previously visited nodes is sufficient to
ensure that the solution created is always feasible.

Learning to Solve a Stochastic Orienteering Problem with Time Windows 115

We also use masking in the context of the time windows. Each state st is
associated with the current time at which the last node in the partial solution
is visited. We mask any node with an end time window w̄i that is less than the
current time, as these nodes can clearly no longer be visited without incurring a
large penalty3. It is still possible to get hit with a penalty due to the stochastic
travel times, but we let the model choose its own risk/reward trade-off. Further-
more, we forbid actions that correspond to traveling to a node i where wi > D
and actions that involve traveling to a customer that has already been visited.

5.2 EAS for Stochastic Problems

EAS has originally been proposed as a search method for deterministic prob-
lems. In that setting, EAS fine-tunes a given model to a single test instance via
reinforcement learning. The best solution observed during this fine-tuning pro-
cess is returned as the final solution. In the stochastic setting considered in this
work, we can not generate multiple solutions and pick the best one, because the
solution quality depends on the realized travel times, and these are not known in
advance. Hence, we do not use EAS to search for a solution, but as a tool to gen-
erate a fine-tuned, robust policy for each test instance. These instance-specific
policies can then be used to generate the final solutions at test time.

In [12], three different variants of EAS are proposed. In this work, we use
the EAS-Emb variant that updates the embeddings generated by the POMO
encoder throughout the search. Note that we consider these instance embeddings
a part of the policy. The overall EAS process then works as follows. For each
single test instance, we first use the POMO encoder to generate a corresponding
embedding ω. We then fine-tune ω in an iterative process by repeatedly sampling
a set of solutions {π1, ..., πn} using the POMO decoder qφ(π | ω) and adjusting
the embeddings ω via gradient ascent using the gradient

∇ωJ1(ω) ≈ 1
n

n∑

i=1

[
(R(πi) − b)∇ω̂ log qφ(πi | ω)

]
(2)

where qφ(πi | ω) ≡ ∏T
t=0 qφ(ai

t | si
t, ω), and b is the POMO baseline. Note

that in contrast to (1), here we adjust the embedding ω rather than the model
parameters θ.

Entropy Regularization. As previously discussed, we are not able to force diverse
rollouts as POMO does on the TSP and VRP, and instead sample n solutions
independently. This hampers the exploration during the search, and we noticed
that EAS often quickly converges towards a single solution. We propose to use
entropy regularization [25] to increase the exploration during the search. Entropy
regularization aims to increase the entropy of the model output (i.e., the distri-
bution over all possible actions) and penalizes assigning a very high probability

3 We assume the penalty is large enough (p > ri) such that, in the version of the
problem with recourse, we should always avoid the late arrival penalty at nodes.

116 F. Schmitt-Ulms et al.

values to a single action. We use entropy regularization by considering a second
gradient during the search that is defined as

∇ωJH(ω) ≈ − 1
n

n∑

i=1

T∑

t=0

∑

a∈A(si
t)

[∇ω̂qφ(a | si
t, ω) log qφ(a | si

t, ω)
]

(3)

where A(si
t) is the set of all actions that can be applied to the state si

t.
The gradient of the overall objective J2 is defined as

∇ω̂J2(ω) = ∇ωJ1(ω) + β · ∇ωJH(ω) (4)

where β is a hyperparameter that defines the regularization strength.
Since choosing a value for β is not trivial, we perform EAS with m differ-

ent values (see Sect. 6 for details). To do this, we create m copies of the initial
embedding ω prior to the EAS search and then fine-tune each embedding com-
pletely separately (but in parallel) using different β values. This allows us to
effectively fill the available GPU memory. After the search, we evaluate each of
the m fine-tuned embeddings on a separate validation set, and we discard all
but the best performing embedding. We note that β could also be tuned in a
hyperparameter tuning phase.

5.3 Solution Construction Using Monte Carlo Rollouts

For the final solution construction, we use the fine-tuned policies and Monte
Carlo rollouts to determine each node to visit. We solve the instances one at a
time, but exploit the batching capability of the GPU in our method. Since we
reveal the true travel time of each arc as we solve a TDOP instance, we can
only solve it for “real” a single time. Once we commit to a move, the move is
performed and the real travel time is revealed.

Monte Carlo Rollouts. Monte Carlo rollouts are a well-known mechanism for
examining the quality of an action in a sequential decision process. In our case,
we could of course just rely on the argmax action of the EAS-trained policy,
but this is akin to assuming our model never makes mistakes. Naturally, our
model is not always correct. We thus roll out, or complete, the solution from the
top five model-recommended nodes using a simulation. The expected value of
each of the top actions is then computed and we select the one with the highest
expected value. Thus, the Monte Carlo rollouts are a recourse mechanism. If the
decision maker is risk averse, one could also use an alternative criteria to the
expected value, such as the conditional value-at-risk. However, the penalty in the
competition is so high that our learned policy avoids risk as much as possible.

Figure 3 shows an example application of the Monte Carlo rollouts. From
the depot, POMO is queried and provides a probability distribution over all
unmasked nodes. As discussed, the Monte Carlo rollouts are only computed for
the top actions, in this case the top 5 ranked descending. We thus receive an
expected value for each action and see that b has the best value, even though the

Learning to Solve a Stochastic Orienteering Problem with Time Windows 117

Fig. 3. Illustration of the POMO Monte Carlo procedure.

network ranked it below a. We select b, realize the stochastic travel time, and
query POMO again, yielding the second set of nodes. While some are the same
as in the first iteration, some are new, which corresponds to the fact that we are
now at a different node and some actions may no longer be feasible or could be
too risky to carry out. The rollouts are again performed on the top nodes and c
is selected. The process continues until the route is complete.

6 Computational Results

We evaluate our approach using the competition environment. We answer the
following research questions:

(RQ1) How does our approach perform on the competition test set? Can EAS
and Monte Carlo rollouts improve the performance?

(RQ2) Does entropy regularization improve the performance of EAS and what
is the search trajectory of EAS?

(RQ3) How often do the actions selected by the Monte Carlo rollouts diverge
from greedy action selection, and in what cases?

Dataset. We use the competition dataset to evaluate our approach. The dataset
consists of four different sizes of instances, with 25, 50, 100 and 200 nodes each,
respectively. Each size category contains 250 instances. Nodes are assigned x, y
coordinates in a Euclidean plane according to a uniform distribution. Time win-
dows are generated according to a nearest neighbor procedure described in [4] in
more detail. The rewards at the nodes are generated according to their Euclidean
distance to the depot at (0, 0). The penalty p for missing a time window is 1.
The instance generator is available at the competition’s GitHub page: https://
github.com/paulorocosta/ai-for-tsp-competition.

Setup. For POMO, we train 4 separate models to solve instances with 20, 50,
100, and 200 nodes, respectively. During training, we generate training instances
on the fly using the competition instance generator. We train until we achieve
full convergence on a single Nvidia V100 GPU. This takes between five hours

https://github.com/paulorocosta/ai-for-tsp-competition
https://github.com/paulorocosta/ai-for-tsp-competition

118 F. Schmitt-Ulms et al.

Table 1. Final performance on the test set instances

Method Instance size Avg.

20 50 100 200

POMO 5.27 8.03 11.24 17.17 10.43

POMO & EAS 5.36 8.14 11.49 17.68 10.67

POMO & EAS & MCR 5.40 8.20 11.62 17.87 10.77

Table 2. Final leaderboard of the competition (top 3).

Team Average Reward

RISE up (ours) 10.77341

Ratel 10.58859

ML for TSP 10.39341

(for the 20 node model) up to a full day (for the 100 and 200 node model). For
EAS, we perform 1500 iterations per instance with m = 120 and set β to values
in the range [0, 3]. For the Monte Carlo rollouts, we perform 600 rollouts for each
possible action at each decision step. On average, the EAS and MC computation
takes between 7 min for 20 node instances and 48 min for 200 node instances.

6.1 RQ1: Test Set Performance

We evaluate our approach on the competition dataset and report results after
each step in Table 1. Across all different instance sizes, EAS can improve the per-
formance of POMO by 2.3% and the Monte Carlo rollouts (MCR) improve the
performance of POMO and EAS by an additional 0.9%. The relative improve-
ment of EAS is significantly higher on larger instances (e.g., 1.7% on instances of
size 20 and 3.0% on instances of size 200). In contrast, for Monte Carlo rollouts
the offered improvement is only slightly higher on larger instances (e.g., 0.8% on
instances of size 20 and 1.1% on instances of size 200).

In Table 2 we report the final results for the reinforcement learning track of
the competition. Our approach significantly outperforms the second best app-
roach (by 1.75%) and the third best approach (by 3.66%). We note that we do
not know the computational costs associated with the approaches of the other
competition participants. However, our approach would have also won the com-
petition without the expensive Monte Carlo rollout phase.

6.2 RQ2: EAS

EAS is examined in [12] for deterministic problems. There is no guarantee that
using EAS on a stochastic problem like the TDOP will result in good perfor-
mance. Thus, we examine how the reward improves with each iteration of EAS.
Furthermore, we evaluate if entropy regularization is able to improve the quality
of the solutions seen during EAS.

Learning to Solve a Stochastic Orienteering Problem with Time Windows 119

Figure 4 shows the average best reward in each EAS iteration for the four
different problem sizes. That is, we report the average over the best reward of
each instance at each iteration of EAS. We show results for EAS with and without
entropy regularization. Note that although the total percentage improvement
is not that high, for the class of TDOP investigated, it is rather significant
since most of the rewards are earned from a few nodes. Thus, the challenge
is to maximize the reward of the remaining route. In all problem sizes, EAS
quickly increases the performance, with the average best reward at iteration 250
already near the quality achieved after 1500 iterations. Also note that on size
200 instances, EAS has not converged by iteration 1500, although the remaining
performance improvement is likely rather small.

We now briefly examine entropy regularization. As can be seen, it provides a
small boost in the average best reward on all sizes of instances. The additional
exploration provided by entropy regularization is beneficial to the overall search,
although we note that on size n = 200 instances the default performance catches
up given enough time. It is possible that a higher weight must be given to entropy
regularization on this size of instance or that a reactive mechanism is necessary
to properly balance the loss functions.

Fig. 4. Average of the best reward at each EAS iteration over all instances.

6.3 RQ3: Monte Carlo Rollouts

While Monte Carlo rollouts are computationally expensive, they significantly
improve the performance over greedy action selection on the test dataset. If
enough rollouts are performed for each action, we get an accurate estimate of
the expected total reward for each action. Consequently, the actions selected

120 F. Schmitt-Ulms et al.

Fig. 5. Average of the best reward seen at each EAS iteration over all instances.

by the Monte Carlo rollouts should almost always be at least as good as those
selected greedily. We hence use the Monte Carlo rollouts mechanism in this
experiment to analyze in which cases the POMO model, using EAS enhanced
policies and greedy action selection, makes mistakes. We thus track the decisions
that were made based on the Monte Carlo rollouts and the decisions that would
have been made based on greedy action selection for all test set instances.

Each plot in Fig. 5 shows for each decision step t on how many instances (in
%) the action selected greedily diverges from the action selected by the Monte
Carlo rollouts. Furthermore, the percentage of solutions that are not yet complete
are reported for each step t.

We note that the divergence is the average across those instances that are not
yet fully solved. Hence, the divergence becomes unstable for high values of t when
only a few incomplete solutions remain. Nonetheless, the divergence is lower
towards the beginning of the solution construction process and higher towards
the end. Upon closer investigation, we noticed that greedy action selection often
results in returning to the depot earlier than Monte Carlo rollouts.

In general, the divergence is equally low for all instance sizes, with values
staying below 5% for the majority of the solution construction process in all
cases. This is especially surprising for instances with 100 and 200 nodes where
the number of possible (unmasked) actions is much higher at each decision step
than for instances with fewer nodes.

Learning to Solve a Stochastic Orienteering Problem with Time Windows 121

7 Conclusion

We presented an RL approach for solving the TDOP that won first place in the
RL track of the IJCAI AI4TSP competition in 2021. Our approach modifies the
POMO method and extends it with EAS and Monte Carlo rollouts. First, we
enable the POMO method to handle stochastic problems without symmetries in
the solution space. Then we use EAS with entropy regularization to fine-tune
POMO’s learned policies. Finally, we use Monte Carlo rollouts to assist in solu-
tion construction. We show experimentally that each of these steps contributes
towards the good performance of our method, and that entropy regularization
can significantly improve the performance of EAS. In future work, we will exam-
ine the approach on different distributions of travel times and time windows.

Acknowledgments. Fynn Schmitt-Ulms was supported by the German Academic
Exchange Service Research Internships in Science and Engineering (DAAD RISE) pro-
gram. The computational experiments in this work have been performed using the
Bielefeld GPU cluster. We thank the Bielefeld HPC.NRW team for their support.

References

1. Basso, R., Kulcsár, B., Sanchez-Diaz, I., Qu, X.: Dynamic stochastic electric vehicle
routing with safe reinforcement learning. Transp. Res. Part E: Logistics Transp.
Rev. 157, 102496 (2022)

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural Combinatorial Opti-
mization with Reinforcement Learning. arXiv:1611.0 (2016)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2020)

4. Bliek, L., et al.: The first AI4TSP competition: learning to solve stochastic routing
problems (2022). https://doi.org/10.48550/arXiv.2201.10453

5. Bono, G.: Deep multi-agent reinforcement learning for dynamic and stochastic
vehicle routing problems. Ph.D. thesis, Université de Lyon (2020)

6. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. In: Advances in Neural Information Processing Systems, pp. 6278–6289
(2019)

7. Choo, J., et al.: Simulation-guided beam search for neural combinatorial optimiza-
tion (2022). https://doi.org/10.48550/arXiv.2207.06190

8. de O. da Costa, P.R., Rhuggenaath, J., Zhang, Y., Akcay, A.: Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning. In:
Asian Conference on Machine Learning, pp. 465–480. PMLR (2020)

9. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

10. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)

11. Hottung, A., Bhandari, B., Tierney, K.: Learning a latent search space for routing
problems using variational autoencoders. In: International Conference on Learning
Representations (2021)

12. Hottung, A., Kwon, Y.D., Tierney, K.: Efficient active search for combinatorial
optimization problems. In: International Conference on Learning Representations
(2022)

http://arxiv.org/abs/1611.0
https://doi.org/10.48550/arXiv.2201.10453
https://doi.org/10.48550/arXiv.2207.06190

122 F. Schmitt-Ulms et al.

13. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. In: European Conference on Artificial Intelligence, pp.
443–450 (2020)

14. Joe, W., Lau, H.C.: Deep reinforcement learning approach to solve dynamic vehicle
routing problem with stochastic customers. Proc. Int. Conf. Autom. Plann. Sched.
30, 394–402 (2020)

15. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T.: Learning TSP requires
rethinking generalization. In: Michel, L.D. (ed.) 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 210, pp. 33:1–33:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021)

16. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network
technique for the travelling salesman problem. arXiv:1906.01227 (2019)

17. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep policy dynamic program-
ming for vehicle routing problems. In: International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pp.
190–213 (2022)

18. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
International Conference on Learning Representations (2019). https://doi.org/10.
48550/arXiv.1803.08475

19. Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: POMO: policy opti-
mization with multiple optima for reinforcement learning. In: Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information
Processing Systems. vol. 33, pp. 21188–21198. Curran Associates, Inc. (2020)

20. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. In:
Advances in Neural Information Processing Systems. 34 (2021)

21. Sultana, N.N., Baniwal, V., Basumatary, A., Mittal, P., Ghosh, S., Khadilkar, H.:
Fast approximate solutions using reinforcement learning for dynamic capacitated
vehicle routing with time windows. arXiv preprint arXiv:2102.12088 (2021)

22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

23. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Adv. Neural Inf. Process.
Syst. 28, 2692–2700 (2015)

24. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

25. Williams, R.J., Peng, J.: Function optimization using connectionist reinforcement
learning algorithms. Connection Sci. 3(3), 241–268 (1991)

26. Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics for
solving routing problems. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 5057–5069
(2021)

27. Xin, L., Song, W., Cao, Z., Zhang, J.: NeuroLKH: combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem.
In: Advances in Neural Information Processing Systems. 34 (2021)

http://arxiv.org/abs/1906.01227
https://doi.org/10.48550/arXiv.1803.08475
https://doi.org/10.48550/arXiv.1803.08475
http://arxiv.org/abs/2102.12088

ML-Based Approach for Accelerating
Global Search Algorithm for Solving

Multicriteria Problems

Konstantin Barkalov(B) , Vladimir Grishagin , and Evgeny Kozinov

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
{konstantin.barkalov,evgeny.kozinov}@itmm.unn.ru, vagris@unn.ru

Abstract. The paper considers a new approach to solving multicriterial
optimization problems on the base of criteria scalarization, dimension-
ality reduction via Peano curves and efficient global search algorithm.
The novelty of the approach consists in application of machine learning
methods combined with utilizing a posteriori information for acceler-
ation of the search. Effectiveness of the proposed approach has been
demonstrated by means of solving a set of multiextremal multicriterial
optimization problems.

Keywords: Multicriterial problems · Global optimization · Machine
learning · Logistic regression

1 Introduction

Machine learning (ML) methods are powerful tools that are applied in many
areas of research. In particular, the ML methods are successfully used for solv-
ing complicated problems of computational mathematics. One of such problem
classes to which ML can be applied is the class of multicriterial optimization
(MCO) models. In this case, ML is used, as a rule, in combination with meta-
heuristic algorithms [11,17,18] that in the case of multiextremal criteria lose in
efficiency in comparison with deterministic methods [10,15].

Among the most qualitative deterministic methods for solving these prob-
lems the information-statistical global search algorithm [14,16] can be consid-
ered. This method proposed initially for solving scalar problems was successfully
extended to MCO models [4,7].

The paper reflects results of a new research direction connected with utilizing
ML methods for acceleration of the global search algorithm in the case of its
application to MCO problems. The proposed approach is based on building a
number of separating planes in the criteria space to segregate the Pareto set
and accelerate the process of its construction. The efficiency of the approach is
estimated experimentally compared to several other MCO methods.

This study was supported by the Russian Science Foundation, project No 21-11-00204.

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 123–129, 2022.
https://doi.org/10.1007/978-3-031-24866-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_9&domain=pdf
http://orcid.org/0000-0001-5273-2471
http://orcid.org/0000-0002-2884-3670
http://orcid.org/0000-0001-6776-0096
https://doi.org/10.1007/978-3-031-24866-5_9

124 K. Barkalov et al.

2 Problem Statement

The MCO problem to be considered is formulated as follows:

f(y) = (f1(y), f2(y), . . . , fs(y)) → min, y ∈ D, (1)

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N, a, b ∈ R

}
. (2)

where fi(y), 1 ≤ i ≤ s, are criteria, y = (y1, y2, . . . , yN) is a vector of independent
variables, N is the dimension of the problem. The criteria fi(y), 1 ≤ i ≤ s, are
supposed to be multiextremal, to be given as a “black-box” functions and to
satisfy the Lipschitz condition

|fi(y′) − fi(y′′)| ≤ Li‖y′ − y′′‖, y′, y′′ ∈ D, 1 ≤ i ≤ s, (3)

where Li > 0, 1 ≤ i ≤ s, are a priori unknown Lipschitz constants.
Any effective (Pareto-optimal) variant in which it is impossible to reduce

the values of all criteria fi(y), 1 ≤ i ≤ s, at once by choosing another option
can be considered as a partial solution to the MCO problem. In practice, various
scalarization techniques are often used to find effective solutions [2,8,12,13]. The
present study uses the minimax convolution of partial criteria that possesses
good theoretical properties and allows one to find effective points by solving the
problem

max
1≤i≤s

{λifi(y)} → min, y ∈ D, (4)

where λi ≥ 0, 1 ≤ i ≤ s,
∑s

i=1 λi = 1, are numerical indicators (weights) of the
significance of each criterion.

In general case, the entire set of Pareto-optimal variants is taken as a com-
plete solution to the MCO problem. For the numerical building of an approxi-
mation of the Pareto set a number of scalar optimization problems (4) are solved
with different coefficients λi ≥ 0, 1 ≤ i ≤ s, distributed uniformly.

3 General Computational Scheme

In the framework of the proposed approach the information-statistical theory
of global search is used for solving the scalar optimization problems (4). For
problems with several variables (N > 1) the dimensionality reduction on the
base of Peano-type mappings [14,16] is applied. While solving a problem (4) the
algorithm generates a sequence of trials where the term “trial” means evaluation
of criteria at a point of the feasible domain D and computation of the convolution
(4) at this point.

Coordinates of a new trial are chosen according to the following rules:

1. Obtain univariate images of all points of preceding trials mapped onto one-
dimensional interval [0, 1] by means of Peano curves.

2. Partition the segment [0, 1] into subintervals according to the images of trials
performed.

ML-Based Approach for Accelerating Global Search Algorithm 125

3. For each subinterval compute a numerical value called characteristic of this
subinterval.

4. Select the subinterval with the highest characteristic.
5. Place a point of new trial within the subinterval with the highest character-

istic.
6. Map the new trial point to the point y ∈ D using Peano evolvent and compute

the value of the function (4) at this point.

The algorithm completes execution when the required accuracy is achieved.
After stopping the global search algorithm, an estimate of the Pareto set is
built on the base of the accumulated information obtained in the course of opti-
mization. If the quality of the Pareto set estimate is not sufficient, then new
preferences (new coefficients λ) are set and the search process continues.

4 Approaches to Improving Search Efficiency

Two techniques are used to improve the search efficiency of the Pareto area
assessment.

The first one is to jointly solve a series of global search problems from (4).
The essence of the technique consists in the accumulation of search information
during the optimization process and in reusing afterwards this information while
solving a problem (4) with new weight coefficients λ. A detailed description of
the technique can be found in [4,7].

The second improvement is connected with a new method for calculating
the characteristics of subintervals formed during univariate optimization on the
interval [0, 1].

Let R(i) be the characteristic of the i-th subinterval. This characteristic is
supposed to consist of two parts:

R(i) = Rags(i) + αRPS(i). (5)

The term Rags(i) allows you to select a subinterval oriented at finding the
global minimum of the current optimization task (4), while RPS(i) influences
the selection of a subinterval to improve the evaluation of the Pareto area. The
coefficient α from (5) allows adjusting the contribution of each of parts.

Rags(i) is calculated in accordance with the expression from the global search
algorithm [4,7,14,16].

Calculation of RPS(i) is based on machine learning methods. When solving
the first global search problem (4), the value of RPS(i) is assumed to be zero.
To solve each subsequent scalar problem (4), RPS(i) is calculated as follows.

In the course of Pareto set assessment all trial points are partitioned into two
classes. This bipartition is based on belonging to the Pareto set. For these classes,
a separating hyperplane is constructed in the domain of criteria values using the
logistic regression [19]. Examples of separating planes are shown in Fig. 1. During
the choice of a new trial point, the distances of all obtained criteria values from

126 K. Barkalov et al.

Fig. 1. Separating hyperplanes in the criteria space

the separating plane are calculated and the value of RPS(i) is built depending
on these distances.

Hereinafter the algorithm taking into account distances to separating hyper-
plane and accumulated information will be called ML MGSA.

5 Results of Computational Experiments

Computational testing was carried out on the “Lobachevsky” supercomputer of
Nizhny Novgorod State University in the environment of the Globalizer software
system [6].

The first series of experiments was performed to compare the algorithm
ML MGSA with a number of widely known multiobjective optimization algo-
rithms using a test two-criterion problem [3]

f1(y) = (y1 − 1)y2
2 + 1, f2(y) = y2, 0 ≤ y1, y2 ≤ 1. (6)

In these experiments, a numerical approximation of the Pareto set was built.
The quality of approximation is estimated by such indicators as the hypervol-
ume index (HV) and distribution uniformity index (DU) [3,20]. In the frame-
work of the experiment 5 algorithms of multicriterial optimization were com-
pared: the Monte-Carlo (MC) method, the genetic algorithm SEMO [1], the
Non-uniform coverage (NUC) method [3], the bi-objective Lipschitz optimiza-
tion (BLO) method [20] and algorithm ML MGSA, proposed in this article.

ML MGSA solved 25 problems (4) with different convolution coefficients λ,
distributed uniformly. The results of the conducted experiments are shown in
Table 1 where ML MGSA with α = 0 corresponds to the version without machine
learning. As it follows from the results presented in Table 1, ML MGSA demon-
strates the better quality compared to other methods.

In the second group of experiments 100 bi-criteria MCO problems have been
solved. As the criteria, the multiextremal functions

ML-Based Approach for Accelerating Global Search Algorithm 127

Table 1. Efficiency of the multicriterial algorithms compared

Algorithm MC SEMO NUC BLO ML MGSA (α = 0) ML MGSA (α = 1.5)

Number of trials 500 500 515 498 302 269

Number of Pareto points found 67 104 29 68 92 79

HV index (the more the better) 0.300 0.312 0.306 0.308 0.312 0.312

DU index (the less the better) 1.277 1.116 0.210 0.175 0.101 0.103

f(y) = −(AB + CD)1/2

AB =
(∑7

i=1

∑7
j=1[Aijaij(y1, y2) + Bijbij(y1, y2)]

)2

CD =
(∑7

i=1

∑7
j=1[Cijaij(y1, y2) − Dijbij(y1, y2)]

)2

aij(y1, y2) = sin(πiy1) sin(πjy2), bij(y1, y2) = cos(πiy1) cos(πjy2),

(7)

0 ≤ y1, y2 ≤ 1, have been taken where parameters −1 ≤ Aij , Bij , Cij ,Dij ≤ 1
are the independent random numbers distributed uniformly [5,9].

In order to estimate efficiency of machine learning procedure in ML MGSA,
this method tested in 2 variants: with (α > 0) and without (α = 0) use of
separating planes in the criteria space. Each multicriterial problem was reduced
to 50 scalar problems (4) with different weight coefficients λ, distributed uni-
formly. Other parameters of the algorithm were the same. The averaged results
can be found in Table 2. Figure 2 additionally shows the average value of HV
index depending on the number of trials.

Table 2. Efficiency of the multicriterial algorithms compared

ML MGSA (α = 0.0) ML MGSA (α = 0.01)

Average number of iterations 1902.4 658.6

Average value of DU index 1.32 1.55

Average value of HV index 92.1 91.9

Reducing the number of iterations 1 2.9

The results show that embedding the machine learning into the global search
algorithm leads to a significant reduction of the number of trials (almost 3 times)
with maintaining close values of indicators HV and DU.

128 K. Barkalov et al.

Fig. 2. Efficiency of the multicriterial algorithms compared

References

1. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and pro-
gramming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-
8 35

2. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin, Heidelberg (2005)
3. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-

objective optimization. Optim. Methods Softw. 29(5), 1005–1019 (2014)
4. Gegrel, V., Kozinov, E.: Accelerating multicriterial optimization by the intensive

exploitation of accumulated search data. AIP Conf. Proc. 1776, 090003 (2016)
5. Gergel, V., Grishagin, V., Israfilov, R.: Adaptive dimensionality reduction in mul-

tiobjective optimization with multiextremal criteria. Lecture Notes in Computer
Science 11331, 129–140 (2019)

6. Gergel, V.P., Barkalov, K.A., Sysoyev, A.V.: A novel supercomputer software sys-
tem for solving time-consuming global optimization problems. Numer. Algebra
Control Optimi. 8(1), 47–62 (2018)

7. Gergel, V.P., Kozinov, E.A.: Efficient multicriterial optimization based on intensive
reuse of search information. J. Glob. Optim. 71(1), 73–90 (2018)

8. Gergel, V., Kozinov, E.: Parallel computations for various scalarization schemes in
multicriteria optimization problems. In: Wyrzykowski, R., Deelman, E., Dongarra,
J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043, pp. 174–184. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-43229-4 16

9. Grishagin, V., Israfilov, R.: Multidimensional constrained global optimization in
domains with computable boundaries. CEUR Workshop Proc. 1513, 75–84 (2015)

10. Kvasov, D.E., Mukhametzhanov, M.S.: Metaheuristic vs. deterministic global opti-
mization algorithms: the univariate case. Appl. Math. Comput. 318, 245–259
(2018)

11. Ma, X., et al.: MOEA/D with opposition-based learning for multiobjective opti-
mization problem. Neurocomputing 146, 48–64 (2014)

https://doi.org/10.1007/3-540-36970-8_35
https://doi.org/10.1007/3-540-36970-8_35
https://doi.org/10.1007/978-3-030-43229-4_16

ML-Based Approach for Accelerating Global Search Algorithm 129

12. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineer-
ing. Struct. Multi. Optim. 26(6), 369–395 (2004)

13. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimiza-
tion. SOIA, vol. 123. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61007-8

14. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-Filling Curves. Springer Briefs in Optimization, Springer, New
York (2013)

15. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-
inspired metaheuristics in expensive global optimization with limited budget. Sci.
Rep. 8(1), 435 (2018)

16. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Con-
straints. Sequential and parallel algorithms. Kluwer Academic Publishers, Dor-
drecht (2000)

17. Subraveti, S., Li, Z., Prasad, V., Rajendran, A.: Machine learning-based multiob-
jective optimization of pressure swing adsorption. Ind. Eng. Chem. Res. 58(44),
20412–20422 (2019)

18. Talbi, E.G.: Hybrid metaheuristics for multi-objective optimization. J. Algorithms
Comput. Technol. 9(1), 41–63 (2015)

19. Yu, H.F., Huang, F.L., Lin, C.J.: Dual coordinate descent methods for logistic
regression and maximum entropy models. Mach. Learn. 85(1), 41–75 (2011)

20. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univari-
ate algorithm of bi-objective lipschitz optimization to multidimensional problems.
Commun. Non-linear Sci. Numer. Simulat. 21(1–3), 89–98 (2015)

https://doi.org/10.1007/978-3-319-61007-8
https://doi.org/10.1007/978-3-319-61007-8

The Skewed Kruskal Algorithm

Ermanno Righini and Giovanni Righini(B)

University of Milan, Milan, Italy
ermanno.righini@studenti.unimi.it, giovanni.righini@unimi.it

Abstract. Kruskal algorithm is one of the most efficient algorithms to
compute a minimum spanning tree (MST) of a given weighted unoriented
and connected graph. The edge list is sorted and edges are iteratively
selected from it until a MST is found. To improve its performance, edge
sorting can be interleaved with edge selection, so that only the relevant
part of the edge list is actually sorted. Filtering techniques can also be
used so that the size of some parts of the edge list is reduced before
sorting and selection. Here we examine a further idea, i.e. to produce an
unbalanced initial partition, with the aim of early guessing which part
of the edge list actually needs being considered for filtering, sorting and
edge selection.

Keywords: Minimum spanning tree · Kruskal algorithm

1 Kruskal Algorithm

The minimum spanning tree problem consists of finding a the minimum weight
spanning tree (MST) of an unoriented connected weighted graph G = (V,E) with
|V | = n vertices and |E| = m edges. The most used and successful algorithms
to solve this problem are Prim algorithm [6] and Kruskal algorithm [3].

In Kruskal algorithm the list of edges is sorted by non-decreasing weight
and a forest is initialized where each vertex represents a tree on its own. Then
starting from the smallest edge, all edges that do not close cycles are selected
and inserted, thus connecting trees to form larger trees until the forest is made
by a unique component which is a MST.

procedure Kruskal(IN: V , E, OUT: T)
T ← ∅
Sort(E) � Edge sorting (by non-decreasing weight)
for (x, y) ∈ E do

if Find(x) = Find(y) then � Edge selection
Union(x, y)
T := T ∪ {(x, y)}

Edge selection implies two main operations: Find detects the tree to which a
vertex belongs; Union merges two trees into a single tree. An edge is selected to
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 130–135, 2022.
https://doi.org/10.1007/978-3-031-24866-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_10&domain=pdf
http://orcid.org/0000-0001-9830-7454
https://doi.org/10.1007/978-3-031-24866-5_10

The Skewed Kruskal Algorithm 131

be inserted in the MST if and only if its endpoints belong to different trees of
the current forest. For an efficient implementation of the algorithm a Union-Find
data structure can be used [7].

The time complexity of this implementation is O(m logm), owing to edge
sorting. The second part of the algorithm, after sorting, can be implemented
with worst-case time complexity O(m + n log n).

2 Improvements

Two main improvements to Kruskal algorithm consist of delaying or avoiding
the need of sorting unnecessary edges.

2.1 QuickKruskal Algorithm

The QuickKruskal algorithm variation [5] interleaves edge sorting with edge
selection. It performs edge sorting as it is done in QuickSort, i.e. partitioning
the edge list in two lists by comparing all edges with a suitably chosen pivot
element; in this way the edges in the second list remain unsorted if the MST is
found within the edges of the first list. This procedure is recursively applied to
both lists.

procedure QuickKruskal(IN: V , E. OUT: T)
if |E| < θ then return Kruskal(V, E, T)

p ← SelectPivot(E)
(E1, E2) ← Partition(E, p)
QuickKruskal(V, E1, T)
if |T | < n − 1 then

QuickKruskal(V, E2, T)

With this strategy Kruskal algorithm becomes much faster for random graphs
with randomly generated weights, where the last edge contained in the MST is
expected to be found within the 1

2n log n smallest edges [2].
On the other hand, QuickKruskal is not very robust: if the input graph has

at least one heavy edge, then the entire edge list up to that edge needs to be
sorted and the number of operations to be executed falls back to the standard
Kruskal algorithm, possibly with a small overhead due to the comparisons with
the pivot elements.

For the same reason, i.e. to avoid this overhead, when the size of a list is
below a suitably tuned threshold θ, then the list is completely pre-sorted as in
the classing Kruskal algorithm. The experimental results presented in Sect. 3
were obtained with θ = 1000.

As shown in [5], the average time complexity of this implementation is O(m+
n log2 n) when G is a random graph with randomly generated weights.

132 E. Righini and G. Righini

2.2 FilterKruskal Algorithm

In the FilterKruskal algorithm, presented in [4], each edge list is recursively
partitioned into two parts as in QuickKruskal algorithm, but the second list is
filtered before being sorted: the list is scanned and the edges whose endpoints
belong to the same component in the current forest are deleted. This simple
modification leads to better performance since, unless the graph is very sparse,
most of the edges do not belong to the MST and they are filtered before being
sorted.

procedure FilterKruskal(IN: V , E. OUT: T)
if |E| < θ then return Kruskal(V, E, T)

p ← SelectPivot(E)
(E1, E2) ← Partition(E, p)
FilterKruskal(V, E1, T)
if |T | < n − 1 then

for [i, j] ∈ E2 do
if Find(i) = Find(j) then

E2 ← E2\{[i, j]} � Filtering
FilterKruskal(V, E2, T)

As shown in [4], the average time complexity of the algorithm for random
graphs with random edge weights is O(m + n log n log m

n).

2.3 SkewedFilterKruskal Algorithm

To further improve the FilterKruskal algorithm, we try to guess the size of the
edge list containing the MST at the first level of the recursion. Following [2], the
MST of a random graph with random edges is expected to be contained in the
1
2n log n smallest edges. More generally, in most graphs the MST is contained in
a relatively small part of the edge list if the graph is dense enough.

To exploit this observation, the pivot element in the first recursion level of
FilterKruskal is chosen to produce a skewed partitioning, so that E1 is likely
to have size kn log n where k is a constant slightly larger than 1/2. In all other
recursion levels the algorithm tries to achieve a balanced partition, as in Quick-
Kruskal and FilterKruskal.

In order to achieve balanced or skewed partitions, pivot elements must be
suitably chosen. For this purpose we tested an s-samples policy for different
values of s. The policy consists of selecting s samples at random from the edge
list and then to select a pivot among them in order to partition their sorted list
according to the desired proportion between the two parts.

To achieve balanced partitions in FilterKruskal, the 1-sample policy is obvi-
ously the fastest, but it allows for large variability in the size of the partitions
and hence in the computing time. In particular, in the first recursion level a bad

The Skewed Kruskal Algorithm 133

selection of the pivot (a too large value) can worsen the performance signifi-
cantly. Better results are achieved by increasing s (keeping it odd) and selecting
the median of the samples as the pivot.

To achieve an unbalanced partition in SkewedFilterKruskal, it is necessary to
be more precise with pivot selection. Therefore we opted for a

√
n-samples policy.

Clearly, we do not use the median value but the one in position �
√
n log n
2m � in the

sorted list of the samples. This policy produces accurate unbalanced partitions
although it is definitely slower than those that are effective for balanced parti-
tions. An idea we successfully tested to mitigate this performance degradation is
to pick a sample of size

√
n only once at the start of the procedure and to reuse

the same samples at every recursion level. When a range must be partitioned
and there are no samples in it, then the algorithm turns to the 1-sample policy.

3 Computational Results

In our tests, we considered three types of random graphs:

– Random graphs with random edge weights. In these graphs every edge has
the same probability to belong to E and edge weights are randomly generated
with uniform probability distribution in a predefined interval.

– Random graphs with a long edge. These graphs are generated in the same
way as the previous type but the longest edge in E belongs to the MST.
These rather artificial graphs are used to test the algorithms when they are
forced to scan the entire edge list.

– Random 2D Euclidean graphs. In these graphs, vertices are points in a 2D
plane and edge weights are Euclidean distances. For each vertex, the edges
linking it to its k nearest neighbors are added to the graph. Graphs in this
class tend to exhibit a more clustered structure.

In out tests we compared the following algorithms:

– Prim algorithm [6] implemented with pairing heaps [1];
– the basic implementation of Kruskal algorithm [3];
– the FilterKruskal algorithm [4];
– the SkewedFilterKruskal algorithm.

Our tests were done on graphs with n = 60000 and several values of density.
All tests were performed on a Intel Core i5-6600 CPU, 3.9GHz. The source code
as well as instances and solutions are available from the authors upon request.

Plots in Fig. 1 show the comparison between the computing time taken by
above algorithms for graphs of the three classes with different density. The com-
puting time does not take into account the time needed to create the data-
structures, which is significant for Prim algorithm. The best performances for
all graph types were achieved by SkewedFilterKruskal, even in the case of graphs
with a long edge, where the procedure is forced to read and filter all edges, as
well as with Euclidean random graphs, where the presence of clusters introduces
heavier edges into the MST.

134 E. Righini and G. Righini

Fig. 1. Comparison of different algorithms on different graph types. From top to bot-
tom: graphs with random weights, graphs with a long edge, random Euclidean graphs.

The Skewed Kruskal Algorithm 135

4 Conclusions and Open Questions

These experiments show that, in spite of the remarkable improvements achieved
in the last years compared with the basic version of Kruskal algorithm, there is
still room for further enhancements.

In particular, the idea of producing an unbalanced partition since the very
beginning of the FilterKruskal algorithm (SkewedFilterKruskal) would benefit
from further investigation to answer the following questions:

– Is it possible to use learning techniques to guess the size of the edge list
containing all the edges of the MST?

– Assuming the desired size of the initial partition is known, how can one opti-
mally tune an s-samples policy, i.e. the trade-off between the number of sam-
ples used (and sorted) and the accuracy in the actual resulting partition?

References

1. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: a new
form of self-adjusting heap. Algorithmica 1(1–4), 111–129 (1986)

2. Janson, S., Knuth, D.E., Łuczak, T., Pittel, B.: The birth of the giant component.
Random Struct. Algorithms 4(3), 233–358 (1993)

3. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

4. Osipov, V., Sanders, P., Singler, J.: The filter-kruskal minimum spanning tree algo-
rithm. In: 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 52–61. SIAM (2009)

5. Paredes, R., Navarro, G.: Optimal incremental sorting. In: 2006 Proceedings of the
Eighth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 171–
182. SIAM (2006)

6. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech.
J. 36(6), 1389–1401 (1957)

7. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint
sets. J. Comput. Syst. Sci. 18(2), 110–127 (1979)

Bounds for Sparse Solutions of K-SVCR
Multi-class Classification Model

Hossein Moosaei1,2(B) and Milan Hladík2

1 Department of Informatics, Faculty of Science, Jan Evangelista Purkyně
University, Ústí nad Labem, Czech Republic

hmoosaei@gmail.com, hossein.moosaei@ujep.cz
2 Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles

University, Prague, Czech Republic
hladik@kam.mff.cuni.cz

Abstract. The support vector classification-regression machine for k-
class classification (K-SVCR) is a novel multi-class classification app-
roach based on the “1-versus-1-versus-rest” structure. In this work, we
suggested an efficient model by proposing the p-norm (0 < p < 1) instead
of the 2-norm for the regularization term in the objective function of K-
SVCR that can be used for feature selection. We derived lower bounds
for the absolute value of nonzero entries in every local optimal solution of
the p-norm based model. Also, we provided upper bounds for the num-
ber of nonzero components of the optimal solutions. We explored the link
between solution sparsity, regularization parameters, and the p-choice.

Keywords: K-SVCR · Multi-class classification · First-order
optimally condition · Sparsity · p-norm

1 Introduction

Support vector machines (SVM) were developed by Vapnik and his colleagues for
binary classification problems [5,10]. They were employed in a variety of applica-
tions, including facial recognition [11], heart disease detection [3], energies pre-
diction [1,23,26], Raman spectroscopy [14], biomedicine [22], and many others.
The concept behind this approach is to identify the largest margin between two
hyperplanes, which leads to solving a constraint quadratic programming prob-
lem (QPP). Many versions, modifications, and applications of SVM and other
binary classification methods have been presented during the last few decades
[4,12,13,15,19,24].

The task of categorizing things into several classes is known as multi-class
classification. It is not limited to any number of classes, unlike binary classifica-
tion. Multi-class classification problems occur in many real-world applications.
Although a problem with multi-class categories can be transformed into a series
of binary classification problems by “1-versus-rest” [6] and “1-versus-1” [16] meth-
ods, studies such as [25] have shown that some of these strategies are frequently
ineffective when applied directly to the multi-class problems.
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 136–144, 2022.
https://doi.org/10.1007/978-3-031-24866-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_11&domain=pdf
http://orcid.org/0000-0002-0640-2161
http://orcid.org/0000-0002-7340-8491
https://doi.org/10.1007/978-3-031-24866-5_11

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model 137

In [2], a new and effective multi-class classification technique based on “1-
versus-1-versus-rest” structure, named support vector classification regression
for k-class classification (K-SVCR), was presented by Angulo et al. for k-class
classification problems. This approach builds 1

2k(k −1) classifiers such that each
of them is trained with all of the training data, eliminating the risk of information
loss and class imbalance issues. As a result, the K-SVCR outperforms SVM
methods for multi-class classification tasks. As a consequence of its superior
predicting outcomes, the K-SVCR has gotten much interest [18,20].

As a fundamental challenge in classification, feature selection removes irrele-
vant data characteristics to enhance the algorithm’s performance. K-SVCR has
been a promising tool in machine learning, but it does not directly obtain the
feature importance. Identifying a collection of traits that contribute most to
categorization is another critical challenge in classification. For the K-SVCR
problem, most papers focused on solving this problem and using all the fea-
tures. In recent years, p-norm (0 < p < 1) has been widely used in optimization.
The main idea is to use p-norm to obtain sparse solutions for the classification
problem [17,21]. The final classifier uses all features when the 2-norm is used
in K-SVCR. Naturally, employing the p-norm (0 < p < 1) in the regularization
term should provide a sparser solution than using the 2-norm and even 1-norm,
as proven by various investigations [8,9]. This paper suggests a lower bound of
the solution to identify zero and nonzero entries in every local solution of the
K-SVCR model. This lower bound clearly highlights the link between the spar-
sity of the solution and the choice of the regularization parameters and the value
of p. The theorem may be used to assist in the selection of appropriate model
parameters and norms in K-SVCR. It may also be used to distinguish between
zero and nonzero elements in an optimum numerical solution. In addition, we
derived upper bounds for the number of nonzero components of the optimal
solutions.

The rest of this paper is organized as follows: Sect. 2 briefly describes K-
SVCR. Section 3 presents absolute lower bounds for nonzero entries in the local
solution of K-SVCR and upper bounds for the number of nonzero components,
and concluding remarks are given in Sect. 4.

Notations. If f is a real-valued function defined on the n-dimensional real space
Rn, the gradient of f with respect to x is denoted by ∇xf , which is a column
vector in Rn. By AT we mean the transpose of a matrix A. For two vectors x and
y in the n-dimensional real space, xT y denotes the scalar product. For x ∈ Rn,
‖x‖ denotes 2-norm, ‖x‖0 denotes the 0-norm of x, which is the number of non-
zero entries of x, and a general p-norm is defined as ‖x‖p = (

∑p
i=1 |xi|p)1/p.

A column vector of ones of arbitrary dimension is indicated by e. The positive
part of a real r is denoted by r+ = max(r, 0); for vectors, we use it entrywise.
For A ∈ Rm×n and B ∈ Rn×l, the kernel k(A,B) is an arbitrary function which
maps Rm×n × Rn×l into Rm×l. In particular, if x and y are column vectors in
Rn and A ∈ Rm×n, then k(xT , y) is a real number, k(xT , AT) is a row vector in
Rm , and k(A,AT) is an m × m matrix.

138 H. Moosaei and M. Hladík

2 K-support Vector Classification Regression

K-SVCR, which is a new method of multi-class classification with ternary out-
puts {−1, 0,+1}, proposed in [2]. This method introduces the support vector
classification-regression machine for k-class classification. This new machine eval-
uates all the training data into a “1-versus-1-versus-rest” structure during the
decomposing phase using a mixed classification and regression support vector
machine (SVM). Figure 1 from [20] illustrates the K-SVCR method graphically.

Fig. 1. Geometric representation of K-SVCR method.

K-SVCR can be formulated as a convex quadratic programming problem as
follows:

min
w,b,ζ1,ζ2,φ,φ∗

1
2
‖w‖2 + c1(eT ζ1 + eT ζ2) + c2e

T (φ + φ∗) (1)

subject to Aw + eb � e − ζ1,

− (Bw + eb) � e − ζ2,

− δe − φ∗ � Cw + eb � δe + φ,

ζ1, ζ2, φ, φ∗ � 0.

where c1 > 0 and c2 > 0 are the regularization parameters, and ζ1, ζ2, φ and φ∗

are positive slack variables. To avoid overlapping, the positive parameter δ must
be lower than 1. We can define the nonlinear K-SVCR as follows:

min
w,b,ζ1,ζ2,φ,φ∗

1
2
‖w‖2 + c1(eT ζ1 + eT ζ2) + c2e

T (φ + φ∗) (2)

subject to k(A,DT)w + eb � e − ζ1,

− (k(B,DT)w + eb) � e − ζ2,

− δe − φ∗ � k(C,DT)w + eb � δe + φ,

ζ1, ζ2, φ, φ∗ � 0,

where k(·, ·) is an appropriate kernel function and D = [AT BT CT]T .

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model 139

3 Lower Bound for Nonzero Components of Solutions

This subsection contains lower bounds on the absolute values of the optimum
solution’s non-zero components. We establish such lower and upper boundaries
that any component of the optimal solution that fits inside the bounds must
be 0. We will demonstrate a connection between the penalty parameters and p
and the sparsity of the solution.

At first, we can slightly improve the primal problem of K-SVCR (1) as (3),
which uses the square of 2-norm of slack variables ζ1, ζ2, φ and φ∗ instead
of 1-norm slack variables in the objective function and we also improved the
regularization term 1

2‖w‖2 to general form c
2 (‖w‖2 + b2). Then, the following

minimization problem can be considered.

min
w, b, ζ1, ζ2, φ, φ∗

c

2
(‖w‖2 + b2) + c1(‖ζ1‖2 + ‖ζ2‖2) + c2(‖φ‖2 + ‖φ∗‖2) (3)

subject to Aw + eb � e − ζ1,

−(Bw + eb) � e − ζ2,

Cw + eb � δe + φ,

−Cw − eb � δe + φ∗,
ζ1, ζ2, φ, φ∗ � 0.

where c > 0, c1 > 0 and c2 > 0 are the regularization parameters, and ζ1, ζ2, φ
and φ∗ are positive slack variables. Indeed, we want to discover the sparest solu-
tion of the problem (3), which implies we should minimize the number of nonzero
components as well as objective functions. To reach this goal, we substitute ‖w‖2
with ‖w‖0 in the above problem to find the following hard problem:

min
w, b, ζ1, ζ2, φ, φ∗

c1(‖ζ1‖2 + ‖ζ2‖2) + c2(‖φ‖2 + ‖φ∗‖2) +
c

2
(‖w‖0 + b2) (4)

subject to ζ1 � e − (Aw + eb),
ζ2 � e + (Bw + eb),
Cw + eb − δe � φ,

−Cw − eb − δe � φ∗,
ζ1, ζ2, φ, φ∗ � 0.

For the optimal solution, we have ζ1 = (e−(Aw+eb))+ and similarly for variables
ζ2, φ, and φ∗. Thus, problem (4) is equivalent to the following unconstrained
optimization problem:

min
w,b

c1‖(e − (Aw + eb))+‖2 + c1‖(e + Bw + eb)+‖2

+ c2‖(−δe − Cw − eb)+‖2 + c2‖(−δe + Cw + eb)+‖2 +
c

2
(‖w‖0 + b2). (5)

140 H. Moosaei and M. Hladík

The ‖x‖0 is naturally linked to the ‖x‖p with 0 < p < 1, because we have the
following relation [7]:

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

n∑

i=1

|xi|p. (6)

Thus, in the objective functions of problems (4) and also (5), the term ‖w1‖0
can be approximated by the p-norm, ‖w‖p

p with 0 < p < 1. Therefore instead of
problem (5) we have the following problem:

min
w,b

Φ(w, b) = min
w,b

c1‖(e − (Aw + eb))+‖2 + c1‖(e + Bw + eb)+‖2

+ c2‖(−δe − Cw − eb)+‖2 + c2‖(−δe + Cw + eb)+‖2 +
c

2
(‖w‖p

p + b2). (7)

Now, we try to find lower bounds on the absolute values of non-zero com-
ponents of the optimal solution. Indeed, we want to find such lower and upper
boundaries that each component of the optimal solution that lies within the
bounds must be 0.

Now we introduce the main theorem of this paper as follows:

Theorem 1. Let (w∗, b∗) is a optimal solution of problem (7) and (w0, b0) be
an arbitrary point. For any i ∈ {1, 2, . . . , n}, if w∗

i ∈ (−I, I), then w∗
i = 0, where

I =

[
c
2p

2(c1‖A‖ + c1‖B‖ + 2c2‖C‖)
√

Φ(w0, b0)

] 1
1−p

.

Proof. Let k = ‖w∗‖0. Assume, without loss of generality, that the optimal solu-
tion has the form w∗ = (w∗

1 , w
∗
2 , . . . , w

∗
k, 0, . . . , 0)T . Let Z∗ = (w∗

1 , w
∗
2 , . . . , w

∗
k)T

be nonzero components of the optimal solution. Now, consider the optimization
problem

min
Z,b

F (Z, b) = c1‖(e − (ÃZ + eb))+‖2 + c1‖(e + B̃Z + eb)+‖2 (8)

+ c2‖(−δe − C̃Z − eb)+‖2 + c2‖(−δe + C̃Z + eb)+‖2 +
c

2
(‖Z‖p

p + b21).

In the above problem, Ã, B̃ and C̃ represent the positive class, the negative class
and the zero class in the new training set, respectively.

It is obvious that (Z∗, b∗) is a local optimal solution of (8). So, the first-
order necessary condition is satisfied at (Z∗, b∗). Since all components of Z∗ are
nonzero, the function F (Z, b) is differentiable at (Z∗, b∗) and we have

0 = −2c1Ã
T (e − (ÃZ∗ + eb∗))+ + 2c1B̃

T (e + B̃Z∗ + eb∗)+ (9)

− 2c2C̃
T (−δe − C̃Z∗ − eb∗)+ + 2c2C̃

T (−δe + C̃Z∗ + eb∗)+ +
c

2
(∇∗

Z‖Z∗‖p
p),

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model 141

In view of ∇Z‖Z∗‖p
p = p diag(|Z∗|)p−1 sgn(Z∗), we derive

c

2
p‖(diag(|Z∗|)p−1 sgn(Z∗))‖ (10)

= ‖2c1Ã
T (e − (ÃZ∗ + eb∗))+ − 2c1B̃

T (e + B̃Z∗ + eb∗)+

+ 2c2C̃
T (−δe − C̃Z∗ − eb∗)+ − 2c2C̃

T (−δe + C̃Z∗ + eb∗)+‖.

Thus
c

2
p‖diag(|Z∗|)p−1‖ (11)

� 2c1‖ÃT ‖ · ‖(e − (ÃZ∗ + eb∗))+‖ + 2c1‖B̃T ‖ · ‖(e + B̃Z∗ + eb∗)+‖
+ 2c2‖C̃T ‖ · ‖(−δe − C̃Z∗ − eb∗)+‖ + 2c2‖C̃T ‖ · ‖(−δe + C̃Z∗ + eb∗)+‖

� (2c1‖AT ‖ + 2c1‖BT ‖ + 4c2‖CT ‖)
√

F (w0, b0).

Then we obtain
c

2
p min
1�i�k

|Z∗
i |p−1 � c

2
p‖diag(|Z∗|)p−1‖

� 2(c1‖A‖ + c1‖B‖ + 2c2‖C‖)
√

F (w0, b0).

Finally, we can conclude that:

|Z∗
i | � min

1�i�k
|Z∗

i | �
(c

2p

2(c1‖A‖ + c1‖B‖ + 2c2‖C‖)
√

F (w0, b0)

) 1
1−p

(12)

Therefore, given any local optimal solution (w∗, b∗) of problem (8), we have that
w∗

i ∈ (−I, I) implies w∗
i = 0, for i = 1, . . . , n. ��

The above theorem has shown the choice of penalty parameters and p and
the sparsity of the solution have a link.

Now we find an upper bound for the number of nonzero components of the
optimal solution. This indicates at least how many features can be removed.

Corollary 1. Suppose that (w∗, b∗) is a optimal solution of problem (7) and
(w0, b0) be an arbitrary point. Then we have:

‖w∗‖0 � min
{

n,
2Φ(w0, b0)

cIp

}

.

Proof. Let k = ‖w∗‖0. Assume, without loss of generality, that the optimal solu-
tion has the form w∗ = (w∗

1 , w
∗
2 , . . . , w

∗
k, 0, . . . , 0)T . Let Z∗ = (w∗

1 , w
∗
2 , . . . , w

∗
k)T

be the nonzero components of the optimal solution. It is obvious that
c

2
k min

1�i�k
|Z∗

i |p � c

2
‖Z∗‖p

p =
c

2
‖w∗‖p

p � Φ(w∗, b∗) � Φ(w0, b0).

One the one hand, from Theorem 1, we know

min
1�i�k

|Z∗
i | � I.

142 H. Moosaei and M. Hladík

On the other hand, we have:

k = ‖w∗‖0 � n.

This completes the proof.

The above corollary demonstrates that, naturally, the maximum number of
nonzero components of the optimal solution depends on parameters and the
number of features (n).

The nonlinear form of the problem (5) is equivalent to the following opti-
mization problem.

min
w,b

c1‖(e − (k(A,DT)w + eb))+‖2 (13)

+ c1‖(e + k(B,DT)w + eb)+‖2 + c2‖(−δe − k(C,DT)w − eb)+‖2

+ c2‖(−δe + k(C,DT)w + eb)+‖2 +
c

2
(‖w‖0 + b2).

Then by using p-norm we have:

min
w,b

Ψ(w, b) = min
w,b

c1‖(e − (k(A,DT)w + eb))+‖2 (14)

+ c1‖(e + k(B,DT)w + eb)+‖2 + c2‖(−δe − k(C,DT)w − eb)+‖2

+ c2‖(−δe + k(C,DT)w + eb)+‖2 +
c

2
(‖w‖p

p + b2).

The following theorem allows us to determine the non-zero components of
any optimum solution of the nonlinear K-SVCR. Its proof is quite similar to the
proof of Theorem 1, so we omitted it from here.

Theorem 2. Let (w∗, b∗) is a optimal solution of problem (14) and (w0, b0) be
an arbitrary point. For any i ∈ {1, 2, . . . , n}, if w∗

i ∈ (−L,L), then w∗
i = 0,

where

L =

[
c
2p

(2c1‖k(A,DT)‖ + 2c1‖k(B,DT)‖ + 4c2‖k(C,DT)‖)
√

Ψ(w0, b0)

] 1
1−p

.

The following corollary provides an upper bound for the number of nonzero
components of the optimal solution for nonlinear K-SVCR. It can be proved
similarly to Corollary 1.

Corollary 2. Suppose (w∗, b∗) is a optimal solution of problem (14) and (w0, b0)
be an arbitrary point. Then we have:

‖w∗‖0 � min
{

N,
2Ψ(w0, b0)

cLp

}

,

where N is the number of features in the nonlinear space.

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model 143

4 Conclusion

An innovative multi-class technique is the support vector classification-regression
machine for k-class classification (K-SVCR). K-SVCR evaluates all training data
into the “1-versus-a-versus-rest” structure with ternary outputs {−1, 0,+1}. We
suggested an efficient model with feature selection duty by improving the K-
SVCR model by using the p-norm instead of 2-norm in the original problem.

By using the first-order necessary condition for a the local optimal solution,
a lower bound for the absolute value of nonzero entries for any local optimal
solution of the new model is investigated. Furthermore, the lower bounds indicate
the link between the sparsity of the solution and the regularization parameters
and norm selection. As future work, an implementation of the proposed method
can be considered to obtain sparse solutions for K-SVCR numerically.

Acknowledgments. The authors were supported by the Czech Science Foundation
Grant P403-22-11117S. H. Moosaei was also supported by the Center for Foundations
of Modern Computer Science (Charles Univ. project UNCE/SCI/004).

References

1. Ahmad, A.S., et al.: A review on applications of ANN and SVM for building
electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33, 102–
109 (2014)

2. Angulo, C., Català, A.: K -SVCR. a multi-class support vector machine. In: López
de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 31–38.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45164-1_4

3. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.:
Computer aided decision making for heart disease detection using hybrid neu-
ral network-genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26
(2017)

4. Bazikar, F., Ketabchi, S., Moosaei, H.: DC programming and DCA for parametric-
margin ν-support vector machine. Appl. Intell. 50(6), 1763–1774 (2020)

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Haussler, D. (ed.) Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pp. 144–152. COLT 1992, ACM, New York (1992)

6. Bottou, L., et al.: Comparison of classifier methods: a case study in handwritten
digit recognition. In: Proceedings of the 12th IAPR International Conference on
Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-
5). vol. 2, pp. 77–82. IEEE (1994)

7. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

8. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization.
IEEE Signal Process. Lett. 14(10), 707–710 (2007)

9. Chartrand, R.: Nonconvex regularization for shape preservation. In: 2007 IEEE
International Conference on Image Processing. vol. 1, pp. 293–297. IEEE (2007)

10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

https://doi.org/10.1007/3-540-45164-1_4

144 H. Moosaei and M. Hladík

11. Déniz, O., Castrillon, M., Hernández, M.: Face recognition using independent com-
ponent analysis and support vector machines. Pattern Recogn. Lett. 24(13), 2153–
2157 (2003)

12. Ding, S., Shi, S., Jia, W.: Research on fingerprint classification based on twin
support vector machine. IET Image Proc. 14(2), 231–235 (2019)

13. Ding, S., Zhang, N., Zhang, X., Wu, F.: Twin support vector machine: theory,
algorithm and applications. Neural Comput. Appl. 28(11), 3119–3130 (2017)

14. Fenn, M.B., Xanthopoulos, P., Pyrgiotakis, G., Grobmyer, S.R., Pardalos, P.M.,
Hench, L.L.: Raman spectroscopy for clinical oncology. Adv. Opt. Technol. 2011,
213783 (2011)

15. Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on para-
metric ν -support vector algorithm for classification. Ann. Oper. Res. 276(1–2),
155–168 (2019)

16. Kreßel, U.H.G.: Pairwise Classification and Support Vector Machines, pp. 255–268.
MIT Press, Cambridge (1999)

17. Li, G., Yang, L., Wu, Z., Wu, C.: DC programming for sparse proximal support
vector machines. Inf. Sci. 547, 187–201 (2021)

18. Ma, J., Zhou, S., Chen, L., Wang, W., Zhang, Z.: A sparse robust model for large
scale multi-class classification based on K-SVCR. Pattern Recogn. Lett. 117, 16–23
(2019)

19. Moosaei, H., Ketabchi, S., Razzaghi, M., Tanveer, M.: Generalized twin support
vector machines. Neural Process. Lett. 53(2), 1–20 (2021)

20. Moosaei, H., Hladík, M.: Least squares approach to K-SVCR multi-class classifi-
cation with its applications. Ann. Math. Artif. Intell. 90, 873–892 (2022). https://
doi.org/10.1007/s10472-021-09747-1

21. Moosaei, H., Mousavi, A., Hladík, M., Gao, Z.: Sparse universum quadratic
surface support vector machine models for binary classification. arXiv preprint
arXiv:2104.01331 (2021)

22. Pardalos, P.M., Boginski, V.L., Vazacopoulos, A.: Data Mining in Biomedicine,
Springer Optimization and Its Applications, vol. 7. Springer (2007). https://doi.
org/10.1007/978-0-387-69319-4

23. Shao, M., Wang, X., Bu, Z., Chen, X., Wang, Y.: Prediction of energy consumption
in hotel buildings via support vector machines. Sustain. Cities Soc. 57(6), 102128
(2020)

24. Trafalis, T.B., Ince, H.: Support vector machine for regression and applications to
financial forecasting. In: Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges
and Perspectives for the New Millennium. vol. 6, pp. 348–353. IEEE (2000)

25. Xu, Y., Guo, R., Wang, L.: A twin multi-class classification support vector machine.
Cogn. Comput. 5(4), 580–588 (2013)

26. Zhao, H.x., Magoulès, F.: A review on the prediction of building energy consump-
tion. Renew. Sustain. Energy Rev. 16(6), 3586–3592 (2012)

https://doi.org/10.1007/s10472-021-09747-1
https://doi.org/10.1007/s10472-021-09747-1
http://arxiv.org/abs/2104.01331
https://doi.org/10.1007/978-0-387-69319-4
https://doi.org/10.1007/978-0-387-69319-4

Integer Linear Programming in Solving
an Optimization Problem at the Mixing

Department of the Metallurgical
Production

Damir N. Gainanov1,2, Dmitriy A. Berenov1, Egor A. Nikolaev2,
and Varvara A. Rasskazova2(B)

1 Ural Federal University, Ekaterinburg, Russia
berenov@dc.ru

2 Moscow Aviation Institute (National Research University), Moscow, Russia

varvara.rasskazova@mail.ru

Abstract. The paper is devoted to investigate of the optimization prob-
lem on the mixing department processes at the metallurgical production.
The problem is to unload transportation ladles into the iron ladles in
such a way, to provide a timely and continues exchange between domain
department and the mixing one, as well as between mixing department
and converter shop-floor. This stage of technological chain plays the most
important role for timely delivery of iron ladles to the converter shop-
floor and for execution of the production plan in general.

To solve the problem under consideration there proposed an integer
linear programming model, which takes into account all technological
restrictions on the mixing department processes. There constructed a
special set of variables, which allowed one to formalize both a complex
system of constraints an objective function.

To demonstrate an effectiveness and powerful of the proposed app-
roach, there were carried out a computational experiment using real-
world data on the mixing department processes at the metallurgical pro-
duction.

Keywords: Integer linear programming · Mathematical modeling ·
Metallurgical production · Mixing department

1 Introduction

Integer linear programming provides a wide class of methods and techniques
for solving different problems on planning and management, including trans-
portation and production problems. In [1,2] there were proposed integer linear
programming models for solving several applied problems on railway planning.
In [3] there also considered a transportation problem in frame of extreme flows
in networks. An approaches to solving scheduling problems, including railway
scheduling problems and production chains management, could be found in [4,5].
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 145–161, 2022.
https://doi.org/10.1007/978-3-031-24866-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_12

146 D. N. Gainanov et al.

For several planning problems regarding production, integer linear models were
proposed in [6]. When solving an applied problem, one need to pay the most
attention to various technologies features of the problem under consideration.
Indeed, an applied problems are often characterized by a complex and hard sys-
tem of constraints, and that is why various models are investigated for each
unique problem separately. In this paper we propose an integer linear program-
ming model for solving an applied problem on optimization of mixing department
processes at the metallurgical production.

In [7–10] one could find a full-scale overview on methods and applications of
the integer linear programming. In [7,8] there were discussed with details a classic
statements and foundation methods on solving linear programs, including integer
linear programs and Boolean ones. In [9,10] there were investigated various meth-
ods of integer linear modeling to solve problems on planning, decision-making
and management in applied areas. The present paper also propose a scalable
approach, which could be continued to solve optimization problems arising both
in mixing department and others at the metallurgical production.

It is well known, that integer linear programming is one of the classical
NP-hard problems, and that is why there continues developing a modern and
powerful methods for solving this problem fast and effectively. In [11,12] there
presented a full-scale overview on modern methods and algorithms for solving
integer linear programming problem. Due to existing of the various solvers inte-
grated into the software of the most languages, we do not discuss ways for solving
integer linear programs in the present paper. But the most attention we pay for
developing a full-scale and effectively integer linear programming model to solve
an applied optimization problem under consideration.

In [13–15] there proposed a various methods for solving applied problems on
planning and management at the metallurgical production. In [13] there pro-
posed an effective methodology for solving decision-making problem on man-
agement of the technological chains at the metallurgical production. A robust
approach to solve problems on steel production management were also proposed
in [16–18]. In [14,15] there were developed an effectively algorithms for predict-
ing the quality of the final production at the rolling mills. However, there is a
rather poor covering on problems related with dispatching of shop-floors at the
metallurgical production, and in this paper one of such problems is investigated.
It is need to be mentioned, that the problem under consideration serve as a pre-
liminary stage of the production chain. Indeed, at the mixing department there
preparing an iron ladles for further processing at the converter shop-floor. And
when there occurs various interruptions in timely delivery of the iron ladles, it
lead to connected interruptions in processing of the production plan in general.

2 Statement of the Problem

Let us consider the set of ladles which needs to be loaded by cast iron (iron
ladles). We denote such a set by C, and mean that for each element of the set
C there be given a set of parameters of the form

Integer Linear Programming in Solving an Optimization Problem 147

C = {ci : i, idi, l nomi, pi, w mini, w maxi, gradei, Sii,Mni, Si, Pi},

where i is an order number, and idi is the unique identifier of the ladle, and
l nomi is an absolutely number of the ladle, and pi is a place at the mixing
department, where corresponding iron ladle was standed for loading, and w mini

and w maxi are allowed weight for the ladle in tonnes of iron, and gradei is the
steel grade with respect to production order, and Sii,Mni, Si, Pi correspond to
chemical requirements on silicium, marganec, sulfur and phosphor, with respect
to production order also.

Let there be also given a set of ladles with cast iron, which came from the
domain department by railway trains (transportation ladles). These ladles are
available for loading iron ladles of the corresponding set C, and each transporta-
tion ladle is characterized by the following set of parameters:

T = {ti : tri, pathi, nomi, wi, T Sii, T Mni, T Si, T Pi, cri},

where tri is the number of train, which delivered a corresponding transportation
ladle to the mixing department, and pathi is the number of railway track, where
corresponding train was fixed, and nomi is a number of transportation ladle, and
wi is an amount of transportation ladle in tonnes of iron, and T Sii, T Mni,
T Si, and T Pi are chemical features of the transportation ladle with regards to
silicium, marganec, sulfur and phosphor respective, and cri is a list of cranes,
which could take up the transportation ladle from the railway track for delivering
to the place, where some iron ladle stands.

One need to construct a plan for loading each iron ladle from the set C, using
transportation ladles from the set T , with respect to following conditions:

1. each iron ladle from the set C could use not more than 4 transportation ladles
from the set T ,

2. each transportation ladle from the set T could be used for loading not more
than 2 iron ladles from the set C,

3. not more then 2 sequentially arriving trains could be used in parallel for
loading of iron ladles from the set C; that is if there be used a train with
number i, then either (i − 1)-th or (i + 1)-th train could be also used,

4. each transportation ladle from the set T needs to become either empty, or
not used, or partitional used (and stay at the crane) due to loading all ladels
from the set C; at the same time there could be stay the only one partitional
used transportation ladle from the set T ,

5. the weight of each loaded iron ladle i from the set C needs to be not less than
corresponding w mini, and also not more than w maxi.

We introduce a parameter of step c to allow one a partially loading of iron
ladles from the set C. Similarly, we introduce a parameter of step t to allow one
a partially unloading of transportation ladles from the set T . It is clear, that
the values of step c and step t are closely connected with a dimensional of com-
putational model. And if these values will be rather big, then the model could
become not-representative. So, using these parameters, one need to achieve a

148 D. N. Gainanov et al.

balance between both a powerful and dimensional of the model under construc-
tion.

Let us suppose, that there is known how many iron ladles from C one could
to load using fixed 2 trains with transportation ladles from T . In general case
this is a separate problem, but it does not matter for goals of the further expla-
nation. We denote such a number of iron ladles from C by k, and let j1, j2 be
corresponding trains with transportation ladles from T . Thus, there be given

C ′ = {ci1 , ci2 , ..., cik}, C ′ ⊆ C,

and
T ′ = {ti1 , ti2 , ..., til}, T ′ ⊆ T,

where trij = j1 or trij = j2 for all tij ∈ T ′.
So, for each iteration of the solving procedure there be given a set of iron

ladles, which need to be loaded using the set of transportation ladles. In man-
ufacturing terms, iron ladles contain three hundred tonnes of iron, and each
transportation ladle contains from eighty to one hundred tonnes of iron. That
is why each iron ladle could be loaded using three or four transportation ladles.
But in case of using four transportation ladles the last one will be unloaded not
fully, and needs to be unloaded into the nearest iron ladle arriving to the mixing
department.

It needs to be also mentioned, that iron ladles from the set C
′
, as well as

transportation ladles from the set T
′
, could be either fully loaded, or partially

loaded in case of partially loading or unloading at the previous iteration. But
all ladles from the set T

′
and belonging to the train, which is new arriving from

the domain department, need to be necessary fully loaded. And this condition
provide a sequential unloading of transportation ladles, as well as periodical and
timely exchange of transportation ladles between domain and mixing depart-
ments corresponding.

3 Variable Set

Let us consider the set of C
′
and the set of T

′
. Each variable of the model under

construction will corresponds to the possible unloading of the transportation
ladle from the set T

′
into some iron ladle from the set of C

′
. Thus, for each

variable of the model there will be defined a set of parameters of the form:

x : x load, x crane, x c, x t, x path, x w, coeef,

where x load is an indeficator of the loading, and x crane is a subset of cranes,
which could deliver a choosen transportation ladle to the place with correspond-
ing iron ladle, and x c is a number of iron ladle, and x t is a number of trans-
portation ladle, and x path is a railway track, where corresponding transporta-
tion ladle was fixed, and x w is an amount of iron which is unloading from

Integer Linear Programming in Solving an Optimization Problem 149

transportation ladle into corresponding iron ladle, and coeff is a coefficient of
the objective function.

We state x = 1 if the transportation ladle xt is unloading into the iron ladle
xc with the amount xw tonnes, and x = 0 otherwise.

We will call as true variables such ones, which correspond to real unloading
from transportation ladle into iron one. And for each true variable we introduce
a special connected variable corresponds to symmetric unloading of the same
transportation ladle. So, for the fixed iron ladle ci, transportation ladle tj , and
the value of a parameter stept, a subset of variables, including both true variables
and corresponding connected variables for symmetric unloading, will take the
following form:

xk :
x loadk = idi, x cranek = “pi ∩ crj”, x ck = l nomi,

x tk = tj , x pathk = pathj , x wk = wj − k · step t, coeffk,

xk+1 :
x loadk+1 = idi, x cranek+1 = “pi ∩ crj”, x ck+1 = l nomi,

x tk+1 = tj , x pathk+1 = pathj , x wk+1 = wj − k · step t, coeffk+1,

where k =
[
0, � wj

step t�
]
.

To provide a regular ladle exchange between domain department and the
mixing one, we also introduce a fake variables with respect to possible surpluses
on the transportation ladles. A parameter of the type x c corresponds to iron
ladle from the set C

′
and needs to be deleted for such variables. It is clear that for

each fake variable there needs to be created a corresponding symmetric variable
also. And this way will allow one to describe any partially unloading with respect
to the value of the parameter step t.

It is need to be mentioned, that if two trains with transportation ladles are
fixed with arrival time, than fake variables could not be introduced for the first
arrived train due to condition on sequential unloading. So, let us suppose that
there fixed some transportation ladle tj : pathj = j2, where j2 is a number of
train which arrived at the mixing department later, than another train with
number j1. Then a subset of fake variables for this ladle will take the form:

xk :
x loadk = “ − ”, x cranek = “ − ”, x ck = “ − ”,
x tk = tj , x pathk = j2, x wk = wj − k · step t, coeffk,

xk+1 :
x loadk+1 = “ − ”, x cranek+1 = “ − ”, x ck+1 = “ − ”,
x tk+1 = tj , x pathk+1 = j2, x wk+1 = k · step t, coeffk+1.

The above procedure for generating of fake variables is directed on possible
partially unloading of transportation ladles. But the same conditions could also
occur for any iron ladle, when there are not available transportation ladles for

150 D. N. Gainanov et al.

loading this iron ladle. In other words, this case take place when available number
of transportation ladles is not enough for loading all given iron ladles. With
respect to these cases, we also introduce an additional group of fake variables
with lost parameters of the type x t, x path and x w corresponding. So, for the
fixed iron ladle ci ∈ C

′
and the value of a parameter step c, a subset of fake

variables will take the form:

xk :
x loadk = idi, x cranek = “ − ”, x ck = l nomi,

x tk = “ − ”, x pathk = “ − ”, x wk = w maxi − k · step c, coeffk.

Such fake variables will correspond to a partially loading of the iron ladles,
and it is not necessary to generate a connected symmetric variables.

4 Coefficients

The most targets of the service on optimal iron mixing are the following:

1. decreasing of the number of iron ladles loads using four transportation ladles;
2. decreasing of the number of iron ladles loads, which need for a long-time

improvement of chemical features of the iron using special machines.

The first target is due to the following. When there used four transporta-
tion ladles for loading some iron ladle, then there occurs a significant delay for
ladles exchange between domain department and mixing one. Indeed, four fully
loaded transportation ladles could not be unloaded into the same iron ladle.
That is why the last not fully unloaded transportation ladle will stay at the
mixing department, and wait for the next iron ladle available for loading. But
the train, which delivered this transportation ladle to the mixing department,
could not be returned to the domain department until all ladles become empty.
And thus, there occurs a delay in timely delivery of transportation ladles from
the domain department at the mixing one. As a corollary there occurs a sig-
nificant delay for delivery iron ladles to the convertor department, and further
delay in manufacturing plan running. So, the decreasing of the number of iron
ladles loads using four transportation ladles provide a priority fully unloading
for each transportation ladle, and leads to the timely trains returning back to
the domain department.

The second target above is also directed to provide a timely iron ladles deliv-
ery to the converter department. But the highest priority is connected with the
first mentioned condition, which regards to using three transportation ladles for
loading each iron ladle. And thus, the second condition could be serve as a con-
straint of the model when the first condition is holds, and the minimum number
of loads using four transportation ladles is already achieved.

Indeed, if even some iron ladle needs to be improved with respect to chemical
features, then a timely exchange of transportation ladles increase a possibility of
mixing department for preparing an iron ladle with given chemical requirements.

Integer Linear Programming in Solving an Optimization Problem 151

In the present paper we do not investigate the second target above, and stay
with details on the first one. To minimize a number of iron ladles loads using four
transportation ladles, we will consider the following structure of the coefficients.

It is clear, that each fully unloading of the transportation ladle has a higher
priority instead of partially unloading of the same transportation ladle. Then for
each true variables, that is

xk : x loadk = idi, x cranek,

x ck, x tk = tj , x pathk, x wk = 0 or x wk = wj , coeffk,

one need to state the minimum value of the coefficient (in case of problem on
minimum).

At the same time, transportation ladles from the first arrived train have the
higher priority for unloading to the current iron ladle. That is if j1 and j2 be a
fixed numbers of trains, sequentially arrived to the mixing department, and the
train j1 be the first arrived, then the holds the following:

coeffk < coeffk′ ,

where

xk : x loadk = idi, x cranek, x ck, x tk, x pathk = j1, x wk, coeffk,

xk′ : x loadk′ = idi, x cranek′ , x ck′ , x tk′ , x pathk′ = j2, x wk′ , coeffk′ .

As for partially unloading is allowed for the last arrived train only, then coef-
ficients of the corresponding variables will have the same form with x

′
above.

That is
coeffk < coeffk′ ,

where

xk : x loadk = idi, x cranek, x ck, x tk, x pathk = j1, x wk, coeffk,

xk′ : x loadk′ = “ − ”, x cranek′ , x ck′ , x tk′ , x pathk′ = j2, x wk′ , coeffk′ .

Sometimes further, for the more compact presentation we will drop such a param-
eters of variables, which are not significant in the frame of current reasoning.
Thus, for true variables the following hold:

coeffk1 < coeffk2 <

< coeffk3 = coeffk4 < coeffk5 = coeffk6 ,

where

xk1 : x loadk1 = idi, x tk1 = tj ,

x pathk1 = j1, x wk1 = 0 or x wk1 = wj , coeffk1 ,

and

xk2 : x loadk2 = idi, x tk2 = tj ,

x pathk2 = j1, x wk2 �= 0 and x wk2 �= wj , coeffk2 ,

152 D. N. Gainanov et al.

and

xk3 : x loadk3 = idi, x tk3 = tj′ ,

x pathk3 = j2, x wk3 = 0 or x wk3 = wj′ , coeffk3 ,

and

xk4 : x loadk4 = “ − ”, x tk4 = tj′ ,

x pathk4 = j2, x wk4 = 0 or x wk4 = wj′ , coeffk4 ,

and

xk5 : x loadk4 = idi, x tk5 = tj′ ,

x pathk5 = j2, x wk5 �= 0 and x wk5 �= wj′ , coeffk5 ,

and

xk6 : x loadk6 = “ − ”, x tk6 = tj′ ,

x pathk6 = j2, x wk6 �= 0 and x wk6 �= wj′ , coeffk6 ,

To simplification, the above coefficients of the type k1, k2, k3, k4, k5, k6 could be
described using arbitrary monotone increasing function. For example, it could
be a linear function of the form 1, 2, 3, 3, 4, 4.

Let us consider the subset of variables, which correspond to the partially
loaded iron ladles now. That is the case, when given set of transportation ladles
is not enough for loading all given iron ladles. As it was already mentioned, such
variables are characterized by the set of parameters of the following form:

xk : x loadk = idi, x cranek = “ − ”, x ck = l nomi, x tk = “ − ”,
x pathk = “ − ”, x wk, coeffk.

It is clear, that in such a case there is no question on the number of transporta-
tion ladles using for the load. But one need to guarantee the volume of the iron
ladle only. With respect to this condition, there is no reasons to differ priorities
among possible partially leavings of the iron ladle, because of the most priority
way for loading this ladled will be included into solution due to coefficients for
transportation ladles. Then it will be enough to introduce an arbitrary coeffi-
cients for such fake variables, with simply difference from the corresponding fake
variables for transportation ladles. That is,

coeffk1 < coeffk2 < coeffk3 = coeffk4 < coeffk5 =
= coeffk6 < coeffk7 < coeffk8 ,

where coefficients of the type k1-k6 were described above, and coefficients of the
type k7 and k8 correspond to fully and partially loads, and looks as following:

xk7 : x loadk7 = idi, x wk7 = x maxi, coeffk7 ,

xk8 : x loadk8 = idi, x wk8 �= x maxi, coeffk8 .

Integer Linear Programming in Solving an Optimization Problem 153

Note, that difference between coefficients of the type k7 and k8 were introduced
for presentation purposes only, and is not loaded with significant ideology sense.

It should be also mentioned, that in terms of objective, the transfer from
minimization problem to the maximization one could be achieved by simply
circulation of coefficients as following:

coeffk1 > coeffk2 > coeffk3 = coeffk4 > coeffk5 =
= coeffk6 > coeffk7 > coeffk8 .

But in terms of applied features of the problem, such a relation will be still
directed to the minimization of the number of iron ladles loads using four trans-
portation ladles.

5 Constraints

As we do not consider a group of constraints on chemical features of the iron
ladles, we will stay on discussion of numerical constraints only.

At first it should be mentioned, that no one transportation ladle could be
unloaded into more, then two different iron ladles. In case of fully unloading, it
will be the only one iron ladle, and in case of partially unloading the leaved part
needs to be unloaded into the nearest available iron ladle. Thus there occur a
constraint of the following form:

∑
k

{xk : x tk = tj} = 2 for all tj ∈ T
′
. (1)

And also ∑
k

{xk · x wk : x tk = tj} = wj for all tj ∈ T
′
. (2)

Note, that namely for constraints of the form (2) there were generated symmetric
variables in functional space. That is for example, if transportation ladle tj will
be fully unloaded into some iron ladle ci, then a solution will contain both the
following variables:

xk1 = 1: x ck1 = ci, x tk1 = tj , x wk1 = wj ,

xk2 = 1: x ck2 = ci, x tk2 = tj , x wk2 = 0.

Let us consider an iteration nomit such, that for some transportation ladle
tj ∈ T

′
there holds the following:

∑
k

{xk : x tk = tj} = 2,

∑
k

{xk · x wk : x tk = tj} = wj .

And let there also holds x loadk′ = “−” for some xk′ = 1 included into the sum
above.

154 D. N. Gainanov et al.

The described case means, that during the current iteration nomit a trans-
portation ladle tj was not unloaded in full. Thus, this transportation ladle tj
needs to transfer into a functional space for the next iteration as an element of
the train with number j1. That is, this transportation ladle becomes to the next
iteration with a highest priority for unloading. Then a tuple of constraints of the
form (1)-(2) for this transportation ladle will take the form:

∑
k

{xk : x tk = tj} = 1, (3)

∑
k

{xk · x wk : x tk = tj} = wj −
∑

k,nom it

{x wk : xk = 1} . (4)

Let us now consider a group of constraints on the number of transportation
ladles using for loading iron ladles, as well as constraints on the integrated volume
of the iron ladles. Due to the maximum number of transportation ladles using
for each iron ladle is equal to four, then

∑
k

{xk : x loadk = idi} � 4 for all ci ∈ C
′
. (5)

And also with respect to integrated volume of iron ladle, there needs to hold the
following:

∑
k

{xk · x wk : x loadk = idi} � w mini for all ci ∈ C
′
, (6)

∑
k

{xk · x wk : x loadk = idi} � w maxi for all ci ∈ C
′
. (7)

Similarly to the notation of the (3) and (4), there occur a specific modification
of constraints of the form (5) and (6), when a process become from the one
iteration to another. That is for some iron ladle ci ∈ C

′
there needs to hold the

following:
∑
k

{xk : x loadk = idi} � 4 −

−
∑

k,nom it

{xk : x loadk = idi, x wk �= 0} ,(8)

and
∑
k

{xk · x wk : x loadk = idi} � w mini −

−
∑

k,nom it

{xk · x wk : x loadk = idi, x tk �= “ − ”} , (9)

and the constraint of the form (7) is not changed.

Integer Linear Programming in Solving an Optimization Problem 155

It should be also mentioned, that above comments regarding constraints mod-
ification of the form (3), (4), and (8), (9), plays a significant role in the code
realization of the model only. But in general case for the purposes of the present
paper it does not matter, and we will restrict our description by the fixed itera-
tion of the solving process. So, to get a correct solution one need to satisfied the
constraints of the form (1), (2), and (5)-(7) at the each iteration.

6 Objective

As it was already noted, the present paper consider an objective case directed on
decreasing of the number of iron ladles loades using four transportation ladles.
Reminder, that a problem under investigation is also characterized with a con-
dition on sequential unloading of trains, which delivery transportation ladles to
the mixing department. Due to these reasons, a solving procedure is an itera-
tion process, and there fixed two trains with transportation ladles on each step.
These trains are with numbers j1 and j2 respectively, where train with number
j1 arrives to the mixing department early, than a train with number j2. That is
why we state, that a train with number j1 needs to be unloaded with a higher
priority, than a train with number j2. And also we state, that fake variables
on partially unloading of transportation ladles are allowed for the train with
number j2 only.

So, let us consider an arbitrary iteration nom it, and the sets of C ′ and
T ′ of iron and transportation ladles corresponding. A functional space for this
iteration nom it will take the form:

xk : x loadk = idi,

x cranek = “pi ∩ crj”,
x ck = l nomi,

x tk = tj ,

x pathk = j1 or x pathk = j2,

x wk = k · step t or x wk = wj − k · step t,

coeffk =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x pathk = j1 and x wk = 0 or x wk = wj ,

2, if x pathk = j1 and x wk �= 0 and x wk �= wj ,

3, if x pathk = j2 and x wk = 0 or x wk = wj ,

4, if x pathk = j2 and x wk �= 0 and x wk �= wj ,

156 D. N. Gainanov et al.

or

xk : x loadk = “ − ”,
x cranek = “ − ”,
x ck = “ − ”,
x tk = tj ,

x pathk = j2,

x wk = k · step t or x wk = wj − k · step t,

coeffk =

{
3, if x wk = 0 or x wk = wj ,

4, if x wk �= 0 and x wk �= wj ,

or

xk : x loadk = idi,

x cranek = “ − ”,
x ck = l nomi,

x tk = “ − ”,
x pathk = “ − ”,
x wk = w maxi − k · step c,

coeffk =

{
5, if x wk = w maxi,

6, otherwise.

We state, that xk = 1 if and only if, a transportation ladle tj is unloading to
the iron ladle ci with number l nomi in the amount of x wk tons, and xk = 0
otherwise. Then the integer linear program under construction will take the
following form: ∑

k

xk · coeffk −→ min (10)

with constraints⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k

{xk : x tk = tj} = 2 for all tj ∈ T ′,
∑
k

{xk · x wk : x tk = tj} = wj for all tj ∈ T ′,
∑
k

{xk : x loadk = idi} � 4 for all ci ∈ C ′,
∑
k

{xk · x wk : x loadk = idi} � w mini for all ci ∈ C ′,
∑
k

{xk · x wk : x loadk = idi} � w maxi for all ci ∈ C ′,

xk ∈ {0, 1}.

(11)

Thus, an optimization problem on decreasing the number of iron ladles loads
using four transportation ladles is reduced to solving a sequence of integer linear
programs of the form (10), (11), using at the each step a correction procedure
of the (3), (4), (8) and (9).

Integer Linear Programming in Solving an Optimization Problem 157

7 Computational Results

A numerical experiment was carried out, using real world data on the mixing
department processes at the Novolipetsk Metallurgical Enterprise at 2020.

A parameter of step t was stated as equal to 10 (tonnes), which is rather sig-
nificant restriction on optimization possibilities. Indeed, this parameter is closely
connected with the dimension of a functional space, and if the value become less,
than a set of variables increase significantly. And due to these reasons there could
occur another problem, with another global optimal solution. But even with the
value of a parameter of step t is chosen to be rather big, the obtained results
demonstrate a powerful of the proposed approach with respect to the purposes
on decreasing the number of iron ladles loads using four transportation ladles.

Computational results are described in the tables below, and show corre-
sponding values of observed parameters for each month of a base period. In
Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 there used the following notations:

– “Day” is a calendar day, for which a calculations were carried out,
– “Iron ladles” is a number of iron ladles, for which there were fixed a full load

(sometimes it was not possible to get full-scale data, and that is why this
number could be rather small),

– “Avg, transportation ladles (day)” is an average number of transportation
ladles, which was recommended for optimal loading of each iron ladle in the
day under consideration; for example, in Table 1 at the April, 16-th there was
obtained a solution for loading 23 iron ladels using 3.5 transportation ladles
for each load,

– “Avg, transportation ladles (month)” is an average number of transportation
ladles, which was recommended for optimal loading of each ladle in the month
under consideration (among all iron ladles).

In Table 10 there shown a percent relations for loads, which use three and four
transportation ladles respectively in obtained solution. It should be mentioned,
that values of 40 % and 50 % for loads, which use three transportation ladles
were obtained in May, June, July and August, due to small base samples, and
in all other cases an obtained percent increasing significantly.

Historical data under consideration in general is characterized by relation of
40 % and 60 % for loads using three and four transportation ladles corresponding.
And in the Table 11 there shown, that obtained solution provide an opposite
relation and significantly better result of 60 % for the number of loads, which
use three transportation ladles.

Thus, one can conclude a powerful and effectiveness of the proposed integer
linear programming approach, to minimize number of loads using four trans-
portation ladles.

158 D. N. Gainanov et al.

Table 1. Computational results (2020, April)

Day 16 19 21 22 27

Iron ladles 23 23 3 11 21

Avg, transportation ladles (day) 3.5 3.6 3 3.1 3.7

Avg, transportation ladles (month) 3.38

Table 2. Computational results (2020, May)

Day 2 6 7 8 9 11 13 16 17 18 19 21

Iron ladles 24 4 21 19 14 24 20 21 38 26 24 2

Avg, transportation ladles (day) 3.6 3.2 3.5 3.4 3.5 3.2 3.2 3.5 3.7 3.6 3.8 3.5

Day 22 24 25 27 28

Iron ladles 13 4 3 17 17

Avg, transportation ladles (day) 3.3 3.2 4 3.7 3.7

Avg, transportation ladles (month) 3.53

Table 3. Computational results (2020, June)

Day 4 8 9 10 28

Iron ladles 42 5 2 10 17

Avg, transportation ladles (day) 3.5 3.8 3 3.8 3.7

Avg, transportation ladles (month) 3.56

Table 4. Computational results (2020, July)

Day 4 19 20 24 27 31

Iron ladles 8 9 9 11 14 13

Avg, transportation ladles (day) 3.8 3.5 3.7 3.7 3.8 3.6

Avg, transportation ladles (month) 3.68

Table 5. Computational results (2020, August)

Day 2 5 6 7 11 15 16 18 19 20

Iron ladles 18 19 19 18 13 17 19 19 14 18

Avg, transportation ladles (day) 3.7 3.6 3.7 3.7 3.5 3.6 3.6 3.7 3.7 3.5

Avg, transportation ladles (month) 3.63

Integer Linear Programming in Solving an Optimization Problem 159

Table 6. Computational results (2020, September)

Day 1 2 3 4 6 7 10 11 12 15 17 18

Iron ladles 18 19 19 15 22 33 13 15 36 18 38 20

Avg, transportation ladles (day) 3.5 3.6 3.3 3.5 3.6 3.5 3.3 3.1 3.6 3.6 3.5 3.4

Day 20 21 22 23 26 27 30

Iron ladles 19 17 17 28 2 15 10

Avg, transportation ladles (day) 3.3 3.5 3 3.3 4 3.6 10

Avg, transportation ladles (month) 3.47

Table 7. Computational results (2020, October)

Day 2 3 4 9 10 12 13 14 15 16 19 20

Iron ladles 13 36 18 21 14 4 16 15 15 28 12 16

Avg, transportation ladles (day) 3 3.5 3.6 3.3 3.7 3.7 3.6 3.4 3.4 3.7 3.1 3.5

Day 22 23 24 25 26 28 29 30 31

Iron ladles 3 28 38 28 10 22 31 32 13

Avg, transportation ladles (day) 3 3.6 3.4 3.4 3.6 3.4 3.3 3.5 3.5

Avg, transportation ladles (month) 3.43

Table 8. Computational results (2020, November)

Day 1 3 4 5 6 8 9 10 11 16 17 19

Iron ladles 12 34 28 28 18 18 18 18 16 16 11 19

Avg, transportation ladles (day) 3.2 3.2 3.2 3.3 3.3 3.2 3.3 3.2 3.6 3.5 3.1 3.4

Day 20 21 22 24 25 26 29

Iron ladles 12 18 18 17 19 18 4

Avg, transportation ladles (day) 3.6 3.6 3.6 3.5 3.4 3.5 3

Avg, transportation ladles (month) 3.35

Table 9. Computational results (2020, December)

Day 1 3 5 6 7 8 10 11 12 13 15 16

Iron ladles 15 15 25 23 19 17 25 24 21 26 4 21

Avg, transportation ladles (day) 3.6 3.5 3.4 3.7 3.4 3.4 3.5 3.2 3.6 3.5 3.3 3.5

Day 19 22 23 24 26 27 28 29

Iron ladles 12 20 26 21 28 26 21 27

Avg, transportation ladles (day) 3.5 3.2 3.3 3.3 3.3 3.1 3.2 3.4

Avg, transportation ladles (month) 3.39

160 D. N. Gainanov et al.

Table 10. Computational results

Month Three transportation ladles Four transportation ladles

April 60% 40%

May 50% 50%

June 50% 50%

July 40% 60%

August 40% 60%

September 60% 40%

October 60% 40%

November 70% 30%

December 70% 30%

Table 11. Computational results

Avg, fact Avg, optimal

Number of loads using three transportation ladles 40% 60%

Number of loads using four transportation ladles 60% 40%

8 Conclusion

The paper investigates an optimization problem on decreasing a number of iron
ladles loads, which use four transportation ladles at the mixing department of the
metallurgical production. Such a problem arises due to requirements on regular
and timely return of transportation ladles back to the domain department, as
well as on delivery of iron ladles to the converter shop-floor. The present paper
does not consider the second condition above, which is the most related with
chemical requirements on iron ladles. But we only directed to satisfy a numerical
conditions on using transportation ladles. And this condition have a highest
priority, and that is why it was considered in the present paper in details.

The proposed integer linear programming model takes into account all tech-
nological restrictions and rules regarding availability of transportation ladles.
There constructed a full-scale mathematical model, where were taken into
account both numerical constraints and restrictions on iron amount, from
unloading out of transportation ladles until loading into the iron ladle.

A computational experiment was carried out using real-world data on the
mixing department processes at the Novolipetsk Metallurgical Enterprise. This
experiment shows an effectiveness and powerful of the proposed approach, even
using rather big step for a generating process of the functional space.

Acknowledgement. The paper was prepared with support of the Russian Scientific
Fund. Project No

¯
23-21-00293 “Optimization of discrete systems in problems of logistic

using integer linear programming approach and graph theory methods”.

Integer Linear Programming in Solving an Optimization Problem 161

References

1. Lazarev, A.A., Musatova, E.G.: Integer statements of the problem of forming rail-
way trains and schedules of their movement. Manage. Large Syst. 38, 161–169
(2012)

2. Gainanov, D.N., Ignatov, A.N., Naumov, A.V., Rasskazova, V.A.: On track proces-
sion assignment problem at the railway network sections. Autom. Remote. Control.
81(6), 967–977 (2020)

3. Hu, T.: Integer programming and threads in networks. Mir, Moscow (1974)
4. Ryan, D. M., Foster, B. A.: An integer programming approach to scheduling. In:

Wren, A. (eds.) Computer Scheduling of Public Transport Urban Passenger Vehicle
and Crew Scheduling. Amsterdam: North-Holland, pp. 269–280 (1981)

5. Wagner, H.M.: An integer linear-programming model for machine scheduling. Nav.
Res. Logist. Quart. 6(2), 131–140 (1959)

6. Pochet, Y., Wolsey, L. A.: Production planning by mixed integer programming. In:
Mikosh, T. V., Resnick, S. I., Robinson, S. M. (eds.) Springer Series in Operations
Research & Financial Engineering (2006). https://doi.org/10.1007/0-387-33477-7

7. Shevchenko, V.N., Zolotykh, N.Y.: Linear and integer linear programming. Nizhny
Novgorod State University named after N. I. Lobachevsky, Nizhny Novgorod (2004)

8. Schraver, A.: Theory of linear and integer programming. Mir, Moscow (1991)
9. Segal, I.K., Ivanova, A.P.: Introduction to applied discrete programming: models

and computational algorithms. FIZMATLIT, Moscow (2007)
10. Appa, G. M., Pitsoulis, L. S., Paul, W. H.: Handbook on modeling for discrete

optimization. Springer Series, International Series in Operations Research & Man-
agement Science, vol. 88, XXII (2006)

11. Wolsey, L.A.: Integer programming. John Wiley & Sons, NJ (2020)
12. Hu, T.C., Kahng, A.B.: Linear and integer programming made easy. Springer

(2016). https://doi.org/10.1007/978-3-319-24001-5
13. Kabulova, E.G.: Intelligent management of multi-stage systems of metallurgical

production. Model. Optim. Inf. Technol. 7(24), 341–351 (2018)
14. Gitman, M.B., Trusov, P.V., Fedoseev, S.A.: On optimization of metal forming

with adaptable characteristics. J. Appl. Math. Comput. 7(2), 387–396 (2020)
15. Gainanov, D.N., Berenov, D.A.: Algorithm for predicting the quality of the product

of metallurgical production. In: CEUR Workshop Proceedings, vol. 1987, 194–200
(2017)

16. Qiu, Y., Wang, L., Xu, X., Fang, X., Pardalos, P.M.: Scheduling a realistic hybrid
flow shop with stage skipping and adjustable processing time in steel plants. Appl.
Soft Comput. 64, 536–549 (2018)

17. Kong, M., Pei, J., Xu, J., Liu, X., Pardalos, P.M.: A robust optimization approach
for integrated steel production and batch delivery scheduling with uncertain rolling
times and deterioration effect. Int. J. Prod. Res. 58(17), 5132–5154 (2020). https://
doi.org/10.1080/00207543.2019.1693659

18. Long, J., Sun, Z., Pardalos, P.M., Bai, Y., Zhang, S., Li, C.A.: robust dynamic
scheduling approach based on release time series forecasting for the steelmaking
continuous casting production. Appl. Soft Comput. 92, 106271 (2020). https://
www.sciencedirect.com/science/article/pii/S1568494620302118

https://doi.org/10.1007/0-387-33477-7
https://doi.org/10.1007/978-3-319-24001-5
https://doi.org/10.1080/00207543.2019.1693659
https://doi.org/10.1080/00207543.2019.1693659
https://www.sciencedirect.com/science/article/pii/S1568494620302118
https://www.sciencedirect.com/science/article/pii/S1568494620302118

Realtime Gray-Box Algorithm
Configuration

Dimitri Weiss(B) and Kevin Tierney

Decision and Operation Technologies Group, Bielefeld University, Bielefeld, Germany
{dimitri.weiss,kevin.tierney}@uni-bielefeld.de

Abstract. A solver’s runtime and the quality of the solutions it gen-
erates are strongly influenced by its parameter settings. Finding good
parameter configurations is a formidable challenge, even for fixed prob-
lem instance distributions. However, when the instance distribution can
change over time, a once effective configuration may no longer provide
adequate performance. Realtime algorithm configuration (RAC) offers
assistance in finding high-quality configurations for such distributions
by automatically adjusting the configurations it recommends based on
instances seen so far. Existing RAC methods treat the solver to be con-
figured as a black box, meaning the solver is given a configuration as
input, and it outputs either a solution or runtime as an objective func-
tion for the configurator. However, analyzing intermediate output from
the solver can enable configurators to avoid wasting time on poorly per-
forming configurations. To this end, we propose a gray-box approach that
utilizes intermediate output during evaluation and implement it within
the RAC method CPPL. We apply cost sensitive machine learning with
pairwise comparisons to determine whether ongoing evaluations can be
terminated to free resources. We compare our realtime gray-box configu-
rator to a black-box equivalent on several experimental settings and show
that our approach reduces the total solving time in several scenarios.

Keywords: Algorithm configuration · Cost sensitive learning · SAT ·
MILP

1 Introduction

Changing a solver’s parameters can have a drastic impact on its performance.
The right parameters can lead to runtime reductions of multiple orders of magni-
tude or significantly improved solution quality, as demonstrated in [3,17]. How-
ever, finding good parameters is time-consuming and a challenge for both solver
developers and users due to large parameter spaces and long evaluation times of
the solvers. Automated algorithm configuration (AC) has been proposed to assist
algorithm designers and users in this daunting task. Approaches like SMAC [16],
GGA [2] or irace [21], for offline configuration, as well as realtime configuration
methods like [10,12], automatically identify high-quality parameter configura-
tions. These approaches have proven themselves highly capable in recent years
on a wide range of problems [18].
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 162–177, 2022.
https://doi.org/10.1007/978-3-031-24866-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_13

Realtime Gray-Box Algorithm Configuration 163

Offline AC provides a high-quality configuration after an offline search on a
problem instance set. A core assumption of this approach is that the instance
distribution does not change over time, not even when the training phase is
over and the configuration is used in practice. Thus, offline AC only requires a
sufficiently large and representative problem instance set and enough time for
the configuration process to be completed. However, in many real-world settings,
instance distributions change over time in unpredictable ways, for example if a
company grows and encounters larger instances or different types of customers.
Furthermore, there may be insufficient instances to train configurators offline in
advance of seeing new instances. Thus, specialized AC methods are required for
this setting to provide high-quality configurations to decision makers.

Realtime AC considers a stream of problem instances to be solved in which
the configuration used to solve them can be adjusted on an instance-by-instance
basis. It is assumed that the instances are subject to changes in statistical prop-
erties, i.e. concept drift, which is known to be a challenge in realtime data
streams [27]. Recently proposed RAC methods like RAC through tournaments
(ReACT) [12], RAC through tournament rankings (ReACTR) [11] and Contex-
tual Preselection with Plackett-Luce (CPPL) [10] are designed to handle this set-
ting. They propose configurations that may be good at solving a given instance
and run the configurations in parallel in a tournament format. The methods
adjust learned models based on feedback from each instance solved. In this way,
they dynamically respond to changing instance distributions and ensure the
stream of instances is solved quickly.

AC methods generally consider the solver being configured (henceforth the
target algorithm) to be a black box, meaning the target algorithm accepts param-
eters and a problem instance as input and outputs a solution, with no view of
the internals of the approach. However, under this assumption the AC method
must wait until the target algorithm has finished executing, even though it may
be able to gain insights about the quality of a configuration by monitoring its
output. For further detail, see e.g., [22]. An alternative to the black box is a white
box, which assumes full information about a solver’s behavior. For example, the
method would know all implementation details of a branch-and-bound proce-
dure for a particular optimization problem. This would require customizing the
configurator for each solver it encounters, which is impractical both in terms of
development time and the lack of access to the solver internals in many cases.
Thus, we seek a middle ground in which the configurator can monitor the status
of a target algorithm and gain actionable insights from it.

Most solvers provide intermediate output that can be aggregated into a time
series of feature vectors that describe the current status of the solution process.
We consider such target algorithms to be a gray box, and utilize this information
to support an AC process. This concept has been in the focus of research in the
Bayesian optimization framework as well, see e.g. [4]. In [26], such information is
used to adapt parameters during runtime dynamically for specially instrumented
target algorithms. Thus, in this paper, we propose a realtime, gray-box algorithm
configuration approach. We extend the RAC approach CPPL [10] to gather and
utilize information provided by the target algorithm during runtime to guide the
configuration process. The contributions in this work are as follows.

164 D. Weiss and K. Tierney

1. We implement the first realtime configurator that assumes the target algo-
rithm is a gray box.

2. We develop an approach based on cost sensitive learning to detect and elim-
inate underperforming configurations in a RAC environment.

3. We empirically assess the performance gains of viewing the target algorithm
as a gray box.

This paper is organized as follows. First, we provide an overview of automated
AC and related work in Sect. 2. Our gray-box extension is detailed in Sect. 3. We
experimentally evaluate the gray-box mechanism in Sect. 4, and we conclude and
discuss promising future work in Sect. 5.

2 Automated AC

We provide an overview of related work and the AC methods extended in this
article. We first discuss offline AC, in which a single configuration must be chosen
to work well on a static set of instances. Then, we introduce RAC, in which the
instance distribution is allowed to change, and we suggest new configurations for
each instance to be solved. For a full overview of the area of AC, see [25].

2.1 Offline AC

We first consider offline AC, in which the goal is to find a high-quality configura-
tion for a given solver offline, i.e., in advance of using the configuration to solve
unseen instances. To this end, we adopt the notation of [17]. In this setting, we
are given a set of problem instances Π ⊆ Π̂ and a parameterized algorithm A.
The objective of the offline AC problem is to find a configuration θ in the space
of all possible parameter settings Θ of A that optimizes a performance metric.
The performance metric m : Π × Θ → R describes, e.g., the runtime A requires
to achieve a specified solution quality (runtime configuration), or the solution
quality found within a given time limit l (quality configuration). Thus, the goal
in the case of runtime configuration is to minimize

∑
π∈Π̂ m(π, θ), whereas for

quality configuration we maximize the previous sum. Note that in the context
of this work, we focus solely on runtime minimization.

Offline AC has been tackled successfully by a variety of approaches that
employ search paradigms including evolutionary algorithms, local search, and
model-based learning. The CALIBRA method [1] is one of the first general AC
methods and employs a fractional factorial design to generate initial configura-
tions, followed by a local search to refine them. ParamILS [17] also uses a local
search, but embeds a single-change neighborhood within an iterative local search.
The method F-race [8] empirically evaluates a finite set of configuration candi-
dates with a racing mechanism that discards low-quality configurations using
a Friedman test. ParamILS, CALIBRA and F-race require a discretized search
space.

More recent AC methods relax the requirement of a discretized search space
and thus support continuous, discrete and categorical parameters. The genetic

Realtime Gray-Box Algorithm Configuration 165

algorithm-based GGA [3] uses a racing mechanism and a crossover operator
designed to capture parameter dependencies to generate new configurations.
GGA is extended in [2] to include a specialized random forest surrogate to
assist in generating new configurations. The configurator SMAC [16] is based
on sequential model-based optimization, meaning it uses a Bayesian optimiza-
tion paradigm for suggesting high-quality configurations. The irace configura-
tor [21] samples configurations based on a distribution and evaluates them by
racing. After each race, it updates the sampling distribution based on the best
performing configurations. This procedure is iterated to enhance the configura-
tion qualities until a given threshold is reached. Finally, the method GPS [23]
exploits the structure of parameter space landscapes with the assumption of
weak interaction of parameters and uni-modal response to value changes in the
performance of the algorithm.

2.2 RAC

In contrast to the offline AC setting, in which the problem instance set is assumed
to be given in advance, the RAC setting assumes the problem instance set is
given as a sequence of problem instances that must be solved without a training
phase. Thus, at each time i, a corresponding instance πi must be solved. RAC
represents real-world settings in which, for example, instances must be solved
on a daily basis to plan vehicle tours, employee schedules, etc. In such cases,
instances will likely change over time, either in terms of their size or in terms of
their structure (e.g., more customers of a certain type or changing time windows
for deliveries). Thus, the underlying distribution of the problem instance set Π̂
is not fixed, meaning learning a single offline configuration in advance would be
insufficient. On the single instance Πi, the goal of RAC is to find a configuration
θ(πi) optimizing m(πi, θ(πi)) over the set of possible configurations Θ(Πi), only
using the information gained from solving instances π1, . . . , πi−1.

On a sequence of instances, the goal of a possible RAC setting is to minimize
their solution time, as depicted in Fig. 1. Configurations are evaluated in tour-
naments to compute the evaluation metric. The basic assumption here is that
there is a machine available with multiple cores to run several copies of the solver
in parallel, thus taking advantage of the ever-increasing parallel capabilities of
modern CPUs. A tournament involves running the solver in parallel with differ-
ent configurations θj chosen from a pool of configurations. The best performing
configuration θ∗

πi
is the configuration to first lead to a solution of the problem

instance πi. Once it is finished, the tournament can be stopped, as we have a
solution to the instance. The configuration runtime is used to update the scores
of the configurations in the pool. If any scores reach a specified threshold, the
corresponding configuration is removed from the pool. Furthermore, the scores
are used to decide which configurations should be run on the next instance.

The concept drift present in the instances of the RAC setting requires a sig-
nificantly different approach than in the offline setting. For RAC, we require
mechanisms to adjust the best configuration over time and discount past knowl-
edge gained on instances that may no longer be relevant. Furthermore, the total

166 D. Weiss and K. Tierney

Fig. 1. RAC in tournaments.

resources available are assumed to be significantly lower than in the offline AC
setting, since we cannot expect users of RAC methods to have hundreds of cores
available to commit to solving their problem. Two types of RAC methods can be
identified in the literature. The first, based on the work of [12], uses statistical
tests to manage a pool of configurations that can be used to solve instances. The
second employs a bandit approach [10] to select configurations from its pool to
solve each instance. The information gained from solving the instance is provided
back to the bandit approach.

RAC Through Tournaments (ReACT). The first RAC method introduced
is ReACT in [12]. A pool of configurations is randomly initialized that includes
the default configuration of the target algorithm. For the first problem instance,
configurations are chosen randomly to run in the tournament and include the
default configuration to avoid a bootstrapping phase where the algorithm might
perform worse than the default. A score keeping component follows the configu-
rations’ performance. For each new instance, configurations are sampled from the
pool weighted by how well they performed on past instances. Configurations are
removed from the pool if they lose in too many tournaments. New configurations
are generated randomly.

The ReACT approach is extended with the TrueSkill ranking system [15]
in [11] for managing the pool of configurations. This approach, called ReACTR,
uses TrueSkill to provide a score and confidence value for each configuration.
TruSkill estimates the quality of configurations in comparison to each other with-
out them needing to be evaluated in the same tournament. ReACTR greedily
selects a fixed number of configurations from the pool to run in a tournament for
a given instance based on their TrueSkill rankings. A fixed portion of the tour-
nament is filled with random configurations to further explore the parameter
space. New configurations are generated by genetic crossover of the configura-
tions ranked highest by TrueSkill. These are then mutated to further encourage
exploration of high-quality configurations. Randomly generated configurations
replace low-quality configurations with a given probability. Configurations are
removed from the pool if an empirically defined TrueSkill threshold is exceeded.

Realtime Gray-Box Algorithm Configuration 167

Contextual Preselection with Plackett-Luce (CPPL). CPPL [10] is cur-
rently a state-of-the-art RAC method based on contextual bandits. It harnesses
a Plackett-Luce model for online preselection with context information [9]. The
preselection bandit approach solves a sequential online decision problem in which
every decision yields feedback. Furthermore, a context Xi = (xi,1 . . .xi,n) for the
problem instance i provides information about each of the n available configura-
tions. Thus, the context consists of the parameter values of a configuration and
problem instance features. Given an instance i to be solved, CPPL decides the
subset of configurations in the pool that are most likely to solve the instance.
The chosen subset of configurations is evaluated by running the parameterized
solvers in parallel in a tournament. The feedback for the decision is the informa-
tion about performance of the configurations that have been evaluated.

In addition to determining each tournament, the preselection bandit model is
used to decide if a configuration in the pool should be replaced by a new one. To
this end, all pairs of configurations in the pool are examined. If a configuration
is dominated by any other configuration, it is discarded. Configuration θj is
dominated by configuration θk, with θj �= θk, if the inequality v̂i,k − ci,k ≥ v̂i,j +
ci,j holds true for θj �= θk, v̂ is the weight of a configuration and c is a confidence
in the learned weight. The learned model also guides the generation process
of new configurations. To this end, configurations are generated by a crossover
mechanism with mutations or random generation with a small probability. These
configurations are then assessed by the model and the best ranked configurations
are used to replace the discarded configurations in the pool, akin to the genetic
engineering procedure in [2]. Note that the context vector provided to the learned
model always includes the context of the problem instance in the next time step.

3 Gray-box Method

We propose a gray-box approach to improve the RAC process of the chosen
framework CPPL. In this approach, output data of the solver during runtime is
gathered to help improve the RAC process. Specifically, we learn a cost sensitive
model that is used to terminate underperforming configurations. Termination of
configurations frees resources for the evaluation of other configurations in the
pool.

3.1 Identifying Underperforming Configurations

In the proposed approach, target algorithm output data is gathered for each
configuration j running on an instance i and condensed into a feature vector f j,t

at preset time points t with n features. Note that for notational convenience, we
do not index this vector with the current instance. This data indicates the current
state of the target algorithm and is gathered from direct output of the solver.
Feature vectors are gathered from each configuration running in the tournament
if the algorithm provided output until t. Algorithms may not provide output in

168 D. Weiss and K. Tierney

Fig. 2. Adapting configurations during tournaments based on solver output data.

preprocessing phases or if no progress was made in between time points. The
output can be used to classify configurations.

As illustrated in Fig. 2, the runtime output data of the target algorithm is mon-
itored during the tournament and fed back to the gray-box algorithm configura-
tor. The algorithm configurator classifies pairs of configurations, if enough mean-
ingful output data is available. Configurations in the tournament can be termi-
nated based on the classifications. If configurations are removed from the tourna-
ment, resources are freed. All data gathered during the tournament is processed
in between solving problem instances by the gray-box algorithm configurator.

Given f j,t and the (censored) runtime of each configuration, it is possible to
learn a model to predict whether a given configuration will win the tournament
or not. However, this is a practically impossible task in isolation, i.e., to know
whether a configuration will win (or lose) a tournament, we need to know about
the other configurations in our feature vector. Thus, we propose a preference
learning approach using pairwise comparisons. This enables us to assess configu-
rations in relation to the other configurations in the tournament. To this end, we
compute a feature vector for the pairwise comparison of configurations j and k,
f ′

t,j,k = (f j,t;fk,t;f j,t − fk,t), which concatenates the vectors of each configu-
ration and their difference at time t. The model predicts whether j outperforms
k, i.e. m(πi, θj) < m(πi, θk), or the opposite case m(πi, θj) > m(πi, θk), where k
outperforms j.

After solving each instance, we update our model using the information
gained in the previous tournament. We note that the model can also be updated
at a fixed interval. The training data consists of the pairwise feature vectors
gathered during previous tournaments, with the label set as indicated above. If
both configurations j and k fail to solve an instance, we ignore all corresponding
vectors f ′

t,j,k.

3.2 Applying Cost-Sensitive Classification

A drawback of the previously proposed mechanism for comparing configurations
is that it does not consider the performance difference between configurations.
Consider configurations A and B and C, with runtimes 4, 5 and 30 s, respectively.
It is clearly worse for our model to suggest that C will finish before A than it is

Realtime Gray-Box Algorithm Configuration 169

for the model to suggest that B will finish before A. We thus propose using cost-
sensitive classification so that configurations with small differences in runtime
receive a different label than those with large runtime differences.

Cost-sensitive learning requires an objective function value for each possible
combination of ground truth and prediction of the model. We thus construct the
following cost matrix at time t given configurations j and k:

Ct,j,k =
(

CTN CFN

CFP CTP

)

.

The cost matrix entries are computed for every pairwise comparison. The indices
TN ,FN ,FP and TP of the cost entries stand for true negative, false negative,
false positive and true positive, respectively. The positive ground truth is the
case of configuration j outperforming configuration k, and negative ground truth
the opposite case.

We assign the following costs to CTN , CFN , CFP , and CTP :

Ct,j,k =

(
0 max (0,

m(πi,θk)−m(πi,θj)
l)

max (0,
m(πi,θj)−m(πi,θk)

l) 0

)

The intuition of the cost matrix is simple: the model is penalized propor-
tionally to how “wrong” it is. Here, the difference in runtime is divided by the
timeout l . The maximum term ensures there are no negative entries, although
these would never be chosen anyway due to the combination of ground truth
and prediction in such cases. The entries for true positives and negatives are
naturally set to 0. We note that we did not experiment significantly with the
cost matrix, and there may be more effective alternatives.

3.3 Terminating Underperforming Configurations

The cost sensitive pairwise comparison model allows us to rank configurations,
but it does not directly tell us which ones ought to be terminated. We thus
introduce a simple heuristic for eliminating the underperformers. The heuristic
is designed conservatively, as we must avoid removing the tournament winner
(which at this stage is hidden among the potential losers in the ongoing tour-
nament). The heuristic only considers configurations for which there is output
available. Empirically, there did not seem to be any useful information from a
lack of information, i.e., just because a solver does not output anything does
not necessarily mean it will not win the tournament (at least for the solvers we
tested). Thus, we just ignore such configurations until they begin to output.

The heuristic works as follows. First, we rank the configurations by how often
the cost sensitive model says they is better than a different configuration. Note
that if there is a tie between all configurations, we do not terminate any con-
figuration. However, if multiple configurations are tied for last place we kill all
of them. We run this check as soon as there is enough output to make pairwise
comparisons. If there is a meaningful difference in the ranking between configu-
rations, we terminate all configurations with the worst ranking from the current

170 D. Weiss and K. Tierney

tournament and do not terminate any configurations in this tournament again.
In other words, our goal is to free up resources as soon as possible, but once that
has been done, we do not want to risk terminating something else.

3.4 Utilizing Freed Resources

Once one or more configurations are removed from the current tournament,
computational resources are free and can be reallocated. There are two options
for using these resources: (1) we can run a different configuration from the pool
or (2) we can run the next instance from the instance sequence. In option (1),
the new configuration will start late compared to other configurations and will
thus be at a clear disadvantage. It is unlikely that this new configuration will
ever win unless configurations are stopped very early, which is often not possible.
Thus, we select option (2), in which we start the next instance early.

In the proposed strategy, resources freed in the tournament on problem
instance πi are used to start the evaluation of configurations on the problem
instance πi+1 early. We assume that problem instances in the sequence are avail-
able, and that there is no dependence between them (such as in rolling horizon
planning). Starting a configuration from the pool with the next problem instance
πi+1 before the current tournament πi has been finished gives a runtime advan-
tage to the configuration that starts early. Note that due to this advantage, in
the following tournament we will not actually know whether a configuration that
started later may have actually been the fastest. This could have an impact on
CPPL and our cost-sensitive learning over time, since we could end up providing
incorrect data to the models. Empirically, however, this does not seem to cause
any issues.

4 Computational Experiments

We assess the performance of our proposed gray-box approach and assess the
overall need of a gray box within the CPPL approach. We run all experiments
with 16 Intel Xeon Gold Skylake 6148 cores running at 2.4 GHz. We answer the
following research questions:

RQ1: Does CPPL always select the best configuration in the pool?
RQ2: Can underperforming configurations be identified based on gray-box data?
RQ3: Can a gray-box version of CPPL outperform a black-box version?

4.1 Dataset and Solver

We consider a set of three scenarios also used in [10]. Table 1 provides a sum-
mary. We use two SAT solvers, CaDiCaL [7] and Glucose [5]. Since CaDiCaL and
Glucose are targeted to different types of SAT instances, we match each solver
with a separate dataset of 1,000 instances. Thus, CaDiCaL is tasked with solv-
ing instances from the power-law random SAT generator [13], whereas Glucose

Realtime Gray-Box Algorithm Configuration 171

Table 1. The RAC scenarios we consider in this work.

Scenario Solver Problem Instance set

1 CaDiCaL [7] SAT Power-law random SAT [13]

2 Glucose [5] SAT Modularity-based random SAT [14]

3 CPLEX [19] MILP Frequency assignment problem [24]

is assigned instances from the modularity-based random SAT instance genera-
tor [14]. In the third scenario, CPLEX is given 1,000 instances of the frequency
assignment problem [24].

All instance sets are generated to include concept drift. The problem instance
set in scenario 1 is generated with 10,000 variables, 93,000 clauses, 4 literals per
clause, a power-law exponent of variables set to 18 and a power-law exponent
of clauses changing in 10 equally distributed steps from 12.5 to 2.5. The second
problem instance set is generated with 10,000 variables, 60,000 clauses, 4 literals
per clause, 600 communities and gradually changing the modularity factor from
0.4 to 0.35 as in the scenarios before. The MILP instances in scenario 3 are
generated setting the number of cells to 5, the variance of channel requirements
per cell to 1.5, drawing the necessary distance between channels from a normal
distribution and gradually changing the mean requirement of channels per cell
from 8 to 18 in 10 equally distributed steps.

We use the first 50 instances in all scenarios as a validation set. These
instances are used to bootstrap the bandit model in CPPL. The reason for this
is that CPPL has a burn-in period in which it is exploring the space of configu-
rations. This is significantly cheaper than running standard offline configuration,
requiring under a second of computation time. We note that this step can be
skipped in cases where no instances are available before the instance stream must
be solved, or performed with randomly generated instances matching the initial
instance distribution of the instance stream. We do not include these instances
in our results and consider them to be a training set.

4.2 RQ1: Does CPPL Find the Best Configuration?

We run an experiment to examine the accuracy of the selection mechanism of
CPPL for each scenario. CPPL is run with a time limit l of 300 s, with tour-
naments of 16 configurations and a pool of 30 configurations at all times. As
the sequence of problem instances is solved, we record the state of the config-
uration pool, the selection of configurations to run in the tournaments and the
results of the tournaments. The results of the tournaments include the winning
configuration as well as its runtime needed to solve the problem instance. For
each problem instance, we run the solver with the 14 configurations that did not
compete in the tournament, using the runtime of the winning configuration as
the time limit. To reduce the expense of this experiment, the time limit l is set
to the formerly recorded winning time. This way, we identify each configuration
which would have won the tournament but was not selected.

172 D. Weiss and K. Tierney

Table 2. Underperformance of the CPPL selection from the pool.

Scenario Time loss Average number of

Total (s) % better configs

1 1090 8.0 4.95

2 853 28.9 2.75

3 324 0.1 0.01

Table 2 shows the aggregated performance of CPPL over each of the scenarios.
The time loss is the unrealized improvement in runtime over the whole instance
set, i.e. if CPPL had always chosen the best configuration, this amount of time
could have been saved. This time loss is stated in the total amount of seconds and
in percent of the overall runtime needed for the respective scenario. Additionally,
the average number of better performing configurations per problem instance is
given for each scenario.

Overall, there is room for improvement in all scenarios. The message from
these results is that CPPL is not perfect, and that an intervention in the tourna-
ment during runtime might improve performance. We note, however, that while
these results motivate attempting to select new configurations out of the pool,
as discussed the time potentially given to new configurations is not enough to
outperform the already running configurations.

4.3 RQ2: Quality of Prediction Based on Gray-Box Data

We conduct experiments offline and during realtime configuration to examine
whether the gray-box model can detect low-quality configurations. In the first
experiment, we consider an offline setting and examine the prediction quality of
the cost-sensitive machine learning method. The second experiment is performed
in a realtime setting to examine the decisions of our termination heuristic. That
is, the question is whether we erroneously eliminate high-quality configurations.
In all experiments, we use the cost-sensitive classification method CostCla [6].

Offline Classification. We conduct an offline experiment to gauge whether it
is possible to train a cost sensitive model to identify underperforming configu-
rations. First, we initialize 160 configurations randomly and let them simultane-
ously run in 10 tournaments of 16 configurations each on the first 100 problem
instances in each scenario, resulting in 1,000 tournaments. Each run of a config-
uration on an instance has a time limit of 300 s. We let every configuration run
until it solves the instance or reaches the time limit, even if there is a winner in
the tournament. The gray-box data from the solvers is recorded every 2 s. Note
that the solvers do not all output at every time point, nor is the feature vector
always complete, since there can be a lack of output for some features. Thus, we
fill missing output with the last known feature vector and missing entries in the
feature vector with zeros.

Realtime Gray-Box Algorithm Configuration 173

Fig. 3. Pairwise comparison classification in offline setting. (Color figure online)

Figure 3 shows the performance of the model at time points, which are com-
puted as a percentage of the average runtime of all scenarios. We run a five fold
cross validation split by problem instances.

The blue line provides the amount of valid data at each time point, since
sometimes solvers take some time before they first output anything. During this
time, we simply have no information whether a configuration is good or bad.
The other lines provide the labels of the confusion matrix. Given a pairwise
comparison between configurations i and j, we consider the positive case to be
when the runtime of i is less than the runtime of j. Note that the fluctuations
in the classification accuracy are mainly due to the amount of data available
(shown in blue).

We first note that the model accuracy is mostly stable over time, notwith-
standing the randomness of not all data being available in early time points in
scenarios 1 and 2. This is somewhat unexpected, as more information is available
as solving progresses. This could indicate a weakness of the model, or just that
the information we need to make a decision is available early. In scenario 3, the
model classifies more pairwise comparisons as positive and less as negative with
more available data. Since in this experiment all configured solvers run until the
time limit, even if there is a winner in the tournament, more configurations begin
to solve the instance. This makes the pairwise comparison challenging. However,
when using our classification model for a real configuration task, all remaining
configurations are terminated as soon as there is a winner in the tournament,
thus making the data less ambiguous.

Overall, performance of the model in this case is somewhat mixed. While
the model excels at determining which configuration is better in scenario 2, the
performance drops off in scenario 1. However, this performance is good enough,
as our main goal is not to get every single i,j pair ordered correctly, but to build
a model capable of figuring out which configurations underperform. Hence, in
the following, we adjust the way the model is used to more accurately reflect its
use in a RAC setting.

174 D. Weiss and K. Tierney

Classification in a Realtime Setting. To gain insight about the effect of
termination of configurations in the RAC setting, we implement the model and
pairwise comparison mechanism within CPPL. Each time our heuristic would
terminate a configuration, we log the state of the tournament, but do not actu-
ally carry out the termination. In all scenarios, we find that the winning config-
uration of the tournament is never terminated. Thus, our heuristic is sufficiently
conservative to avoid choosing the best performing configuration.

We compute the average rankings of the winners and the other configurations
in each tournament for all scenarios to find the range of rankings between them.
Our goal is to assess how close the tournament winner is to the top of the
tournament. In this way, we get an idea about the robustness of the approach.
In scenario 1, on average 1.9 configurations are predicted to be better than
the winning configuration. Compared to that, the average for all non-winning
configurations is 3.3. Configurations predicted to be better than the winning
configuration in scenario 2 are 4.5 on average. For all configurations not winning
the tournament, 4.7 configurations are predicted to be better. In scenario 3, on
average 14.6 configurations are predicted to be better than the winner and 15.9
configurations are predicted to be better than the losing configurations.

Overall, the results of this experiment are very promising. In all scenarios run
in this experiment, the winning configuration never would have been terminated.
This is due to the big enough range between the average numbers of predictions of
winning or losing configurations to be better than the compared configuration
such that it is possible to reliably distinguish the winner from the remaining
configurations. Since this is the case, the termination of configurations does not
increase the runtime over the sequence of problem instance.

4.4 RQ3: Black-Box vs. Gray-Box CPPL

We directly compare CPPL as a black-box and a gray-box approach. We again
use a time limit of 300 s and tournaments of 16 configurations each. All scenarios
are run three times each using the black-box version of CPPL and the gray-box
implementation.

Figure 4 illustrates the direct comparison of the approaches as a rolling aver-
age of the runtime needed to complete an instance. The blue line depicts the
performance of CPPL and the orange line the performance of the gray-box
implementation. Note that the concept drift of the problem instances makes
solving problem instances more difficult over the course of the problem instance
sequence. In all scenarios, the gray-box outperforms the black-box version. In
scenario 1, the gray-box outperforms the black-box by 37.1% of the overall run-
time the black-box needed to solve the problem instance set. In scenario 2 the
gray-box implementation needs 19.4% less of the total black-box runtime. The
gray-box implementation outperforms the black-box in scenario 3 by 11.9%.
While the concept drift affects the gray-box algorithm configurator in scenario
2 as well, it is better able to adapt and keep the average runtime low.

Realtime Gray-Box Algorithm Configuration 175

Fig. 4. Direct comparison of the black-box (blue, dotted) and gray-box (orange, solid)
implementations of CPPL. (Color figure online)

5 Conclusion and Future Work

We introduced a RAC method based on a gray-box view of the target algo-
rithm. Our approach uses a dynamically learned cost-sensitive pairwise com-
parison mechanism combined with a simple heuristic to terminate poorly per-
forming configurations early. We show that exploiting the intermediate output
of the solver can lead to significant performance gains over ignoring it. This is
especially promising, as the solvers we used were not specifically designed for
gray-box configuration. On the contrary, a solver specifically designed for this
setting could likely output information that is actionable earlier, leading to larger
performance gains. For future work, we will investigate how to better bootstrap
realtime configuration with offline configuration and how to improve the model
performance of the cost sensitive classification in the gray box setting. Further-
more, the identification of underperforming configurations will be investigated
with other methods, e.g. the bandit-based approach Hyperband [20].

Acknowledgements. The authors are supported in part by the funding program
Zentrales Innovationsprogramm Mittelstand (ZIM) (Grant No. ZF4622601LF8) of
the German Federal Ministry for Economic Affairs and Climate Action, and the
project Maschinelle Intelligenz für die Maschinelle Intelligenz für die Optimierung von
Wertschöpfungsnetzwerken (MOVE) (Grant No. 005-2001-0042) of the “it’s OWL”
funding of the Ministry of Economics, Innovation, Digitalization and Energy of the
German state of North Rhine-Westphalia. The authors would also like to thank the
Paderborn Center for Parallel Computation (PC2) for the use of the OCuLUS and
Noctua clusters.

References

1. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operat. Res. 54, 99–114 (2006)

2. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: International Joint Con-
ferences on Artificial Intelligence Organization (IJCAI) (2015)

176 D. Weiss and K. Tierney

3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Principles and Practice of Constraint
Programming - CP 2009, pp. 142–157 (2009). https://doi.org/10.1007/978-3-642-
04244-7 14

4. Astudillo, R., Frazier, P.I.: Thinking inside the box: a tutorial on grey-box Bayesian
optimization. In: 2021 Winter Simulation Conference (WSC), pp. 1–15 (2021).
https://doi.org/10.1109/WSC52266.2021.9715343

5. Audemard, G.: Glucose and Syrup in the SAT Race 2015. In: SAT Competition
2015 (2015)

6. Bahnsen, A.C., Aouada, D., Ottersten, B.: Example-dependent cost-sensitive deci-
sion trees. Expert Syst. Appl. 42(19), 6609–6619 (2015). https://doi.org/10.1016/
j.eswa.2015.04.042

7. Biere, A.: CaDiCaL at the SAT Race 2019. In: SAT Race 2019 - Solver and Bench-
mark Descriptions, p. 2 (2019)

8. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 11–18 (2002)

9. El Mesaoudi-Paul, A., Bengs, V., Hüllermeier, E.: Online Preselection with Context
Information under the Plackett-Luce Model (2020)

10. El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., Tierney, K.: Pool-based
realtime algorithm configuration: a preselection bandit approach. In: Kotsireas,
I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 216–232. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53552-0 22

11. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.: ReACTR: realtime algorithm con-
figuration through tournament rankings. In: International Joint Conferences on
Artificial Intelligence Organization (IJCAI), pp. 304–310 (2015)

12. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.J., Tierney, K.: ReACT: real-time algo-
rithm configuration through tournaments. In: Annual Symposium on Combinato-
rial Search (SoCS) (2014)

13. Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.: Phase Transitions for
scale-free SAT formulas. In: Association for the Advancement of Artificial Intelli-
genceSPONSORSHIP (AAAI), pp. 3893–3899 (2017)

14. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator.
In: International Joint Conferences on Artificial Intelligence Organization (IJCAI),
pp. 1952–1958 (2015)

15. Guo, S., Sanner, S., Graepel, T., Buntine, W.L.: Score-based Bayesian skill learn-
ing. In: European conference on Machine Learning and Knowledge Discovery in
Databases (ECMLPKDD), pp. 106–121 (2012). https://doi.org/10.1007/978-3-
642-33460-3 12

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Learning and Intelligent Optimization (LION),
p. 507–523 (2011)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. (JAIR), p. 267–306 (2009)

18. Hutter, F., et al.: Aclib: a benchmark library for algorithm configuration. In: Inter-
national Conference on Learning and Intelligent Optimization (LION), pp. 36–40
(2014). https://doi.org/10.1007/978-3-319-09584-4 4

19. IBM: IBM ILOG CPLEX Optimization Studio: CPLEX User’s Man-
ual (2016). https://www.ibm.com/support/knowledgecenter/SSSA5P 12.7.0/ilog.
odms.studio.help/pdf/usrcplex.pdf

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1109/WSC52266.2021.9715343
https://doi.org/10.1016/j.eswa.2015.04.042
https://doi.org/10.1016/j.eswa.2015.04.042
https://doi.org/10.1007/978-3-030-53552-0_22
https://doi.org/10.1007/978-3-642-33460-3_12
https://doi.org/10.1007/978-3-642-33460-3_12
https://doi.org/10.1007/978-3-319-09584-4_4
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf

Realtime Gray-Box Algorithm Configuration 177

20. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Effi-
cient hyperparameter optimization and infinitely many armed bandits. CoRR
abs/1603.06560 (2016). http://arxiv.org/abs/1603.06560

21. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package:
iterated racing for automatic algorithm configuration. Operat. Res. Perspect. pp.
43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

22. Pardalos, P.M., Rasskazova, V., Vrahatis, M.N.: black box optimization, machine
learning, and no-free lunch theorems. Springer International Publishing (2021).
https://doi.org/10.1007/978-3-030-66515-9

23. Pushak, Y., Hoos, H.: Golden parameter search: exploiting structure to quickly
configure parameters in parallel. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 245–253 (2020). https://doi.org/10.1145/
3377930.3390211

24. Santos, H., Toffolo, T.: Python MIP: Modeling examples (2018–2019). Accessed 23
Jan 2020. https://engineering.purdue.edu/∼mark/puthesis/faq/cite-url/

25. Schede, E., et al.: A survey of methods for automated algorithm configuration
(2022)

26. Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., Lindauer, M.: Learning
heuristic selection with dynamic algorithm configuration. CoRR abs/2006.08246
(2020). https://arxiv.org/abs/2006.08246

27. Tsymbal, A.: The problem of concept drift: definitions and related work. Tech.
rep., Department of Computer Science, Trinity College, Dublin (2004)

http://arxiv.org/abs/1603.06560
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/978-3-030-66515-9
https://doi.org/10.1145/3377930.3390211
https://doi.org/10.1145/3377930.3390211
https://engineering.purdue.edu/~mark/puthesis/faq/cite-url/
https://arxiv.org/abs/2006.08246

Dynamic Urban Solid Waste Management
System for Smart Cities

Adriano S. Silva1,2,3,4(B) , Thadeu Brito1 , Jose L. Diaz de Tuesta2,5 ,
José Lima1 , Ana I. Pereira1 , Adrián M. T. Silva3,4 ,

and Helder T. Gomes2

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto
Politécnico de Bragança, 5300-253 Bragança, Portugal

{adriano.santossilva,brito,jllima,apereira}@ipb.pt
2 Centro de Investigação de Montanha (CIMO). Instituto Politécnico de Bragança,

5300-253 Bragança, Portugal
3 Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis

and Materials (LSRE-LCM), Faculty of Engineering, University of Porto,
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

4 Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering,
University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
5 Department of Chemical and Environmental Technology, ESCET,

Rey Juan Carlos University, Madrid, Spain

Abstract. Increasing population in cities combined with efforts to
obtain more sustainable living spaces will require a smarter Solid Waste
Management System (SWMS). A critical step in SWMS is the collection
of wastes, generally associated with expensive costs faced by companies
or municipalities in this sector. Some studies are being developed for the
optimization of waste collection routes, but few consider inland cities as
model regions. Here, the model region considered for the route optimiza-
tion using Guided Local Search (GLS) algorithm was Bragança, a city
in the northeast region of Portugal. The algorithm used in this work is
available in open-source Google OR-tools. Results show that waste col-
lection efficiency is affected by the upper limit of waste in dumpsters.
Additionally, it is demonstrated the importance of dynamic selection of
dumpsters. For instance, efficiency decreased 10.67% for the best upper
limit compared to the traditional collection in the regular selection of
dumpsters (levels only). However, an improvement of 50.45% compared
to traditional collection was observed using dynamic selection of dump-
sters to be collected. In other words, collection cannot be improved only
by letting dumpsters reach 90% of waste level. In fact, strategies such as
the dynamic selection here presented, can play an important role to save
resources in a SWMS.

Keywords: Smart city · Waste management systems · Vehicle routing
problem

Supported by Fundação para Ciência e a Tecnologia and MIT Portugal Program.
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 178–190, 2022.
https://doi.org/10.1007/978-3-031-24866-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_14&domain=pdf
http://orcid.org/0000-0002-6795-2335
http://orcid.org/0000-0002-5962-0517
http://orcid.org/0000-0003-2408-087X
http://orcid.org/0000-0001-7902-1207
http://orcid.org/0000-0003-3803-2043
http://orcid.org/0000-0001-8551-6353
http://orcid.org/0000-0001-6898-2408
https://doi.org/10.1007/978-3-031-24866-5_14

Dynamic Urban Solid Waste Management System for Smart Cities 179

1 Introduction

Cities worldwide occupy only 3% of the earth’s land area, but they consume 75%
of natural resources and produce 60–80% of global greenhouse emissions. Their
impact on the environment will become even more expressive since, by 2050, most
of the worldwide population (ca. 70%) will be concentrated in urban areas [21].
Cities with high population density will require a more innovative sustainable
infrastructure to manage the generated wastes [6,25,26]. Solid Waste Manage-
ment System (SWMS) is a complex system that deals with activities that include
waste collection, transportation, handling, and proper disposal [17]. Solid waste
generation is currently more than 4 billion tons per year, and management sys-
tems globally are not taking advantage of technological development to improve
their services. . For urban solid waste collection, companies (or municipal author-
ities in some countries) deploy a fleet of trucks on predetermined routes to collect
the waste from dumpsters. The collection and transportation represent 60–80%
of the total SWMS cost [1,15].

The initial strategy adopted to address collection route problems for Bra-
gança, a city located in the Northeast region of Portugal, will be reported in
this work. The ongoing project’s main goal is to implement a wireless sensors
network to collect real-time information regarding the waste level and use these
data for collection route optimization. However, before the implementation, a
study about how the upper limit of waste in dumpsters (level of waste in which
dumpsters will be considered for collection) affects collection efficiency and how
dynamic selection of dumpsters to be collected can improve efficiency was nec-
essary. Thus, a GLS algorithm was used to evaluate the effect of the upper limit
on the overall performance. Furthermore, a dynamic method for selecting dump-
sters to be collected was assessed. Daily waste levels were determined considering
the demographic factor of each dumpster as starting approach.

The rest of the paper is organized as follows. Section 2 brings an updated
overview of waste collection problems, some examples of waste collection in
smart cities, and algorithms used to solve these problems. Section 3 presents
the methodology employed, Sect. 4 summarizes the results, and Sect. 5 carries
the main findings of the present work and future steps.

2 Related Literature

Literature used here was obtained by exploring the most relevant documents
in this area. In brief, keywords “smart cities” and “waste management” were
introduced in the Web of ScienceTM (WoS) search engine and a small database
of 552 documents published from 2015 to 2021 was obtained. Using biblioshiny
(free tool from bibliometrix R package), “waste collection” cluster was identified
and used to narrow documents of interest in this work. The final sub-cluster
used to select documents was “vehicle routing problem”, and the 29 documents
found will be presented in the next sections.

180 A. S. Silva et al.

2.1 Waste Collection in Smart Cities

Urban informatization increased significantly last years due to the rapid devel-
opment and wide applications of Information and Communication Technologies
(ICT) in urban areas to assemble future cities, or smart cities. The concept
is mainly related to the smarter management of the large population content
in cities [19,22,27]. For SWMS in smart cities, the effort has been directed
towards solving the waste collection problem using ICT tools. For instance, sev-
eral works are reporting the utilization of a wireless sensors network to acquire
real-time data that helps the decision-making process of scheduling collection
routes [24,28].

There are already some cities and countries worldwide leading digital tran-
sition in waste management systems with smart waste collection technologies.
Brisbane, a town in Australia, signed a cooperation agreement with the local
waste management company to install induction devices and develop a strategy
to empty them according to remaining space in each bin. In Denmark, the coun-
try’s largest telecommunications company invested in SmartBin technology to
install sensors in waste bins and integrate data in the smart city digital platform
through an agreement with Cisco. In Shangai, China, the company responsible
for the waste management system created a dynamic management platform cov-
ering 16 districts and 82 streets. This platform improved waste collection quality
through digitization, refinement, and visualization of waste classification [15].

2.2 Waste Collection Route Problems

Frequently, well-studied vehicle routing problems are used as starting approach
for solving waste collection problems. Classic formulations currently used include
(but are not limited to) Traveling Salesman Problem (TSP) and Vehicle Routing
Problem (VRP).

TSP illustrates the case in which a business traveler needs to visit M cus-
tomers from surrounding locations K just once, returning to the point of origin.
In this problem, the time required to travel from location i to j is defined as tij ,
and the objective is to find the shortest path in which these locations should be
visited. VRP represents an extending TSP. In this problem, the objective is to
find the best route for multiple vehicles visiting multiple locations. Several works
use VRP as initial formulation and introduce new constraints to the problem to
reach real-case scenarios. From this attempt, more formulations arise, such as
Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem With
Time Windows (VRPTW), Multi-Depot Vehicle Routing Problem (MDVRP),
the Site-Dependent Vehicle Routing Problem (SDVRP), and the Open Vehicle
Routing Problem (OVRP) [4].

For solid waste collection, CVRP is frequently used. In CVRP, vehicles have a
limited capacity and need to pick up, or deliver, items to customers with a given
demand. The problem can be summarized as picking up, or delivering, the items
for the minimum cost, never exceeding the vehicle’s maximum capacity [13].

Dynamic Urban Solid Waste Management System for Smart Cities 181

2.3 Algorithms for Route Optimization

Algorithms used to solve vehicle routing problem in waste collection range from
conventional to meta-heuristics. The first is known to have an easier implementa-
tion but lacks in handling uncertain parameters and multi-objective functions so
far. However, advances in mathematical programming are allowing the coupling
of uncertain parameters with many real-world problems using mixed-integer
linear programming (MILP), for example. Nevertheless, MILP has difficulties
solving problems demanding large computational efforts and risk of high dimen-
sionality, which can hinder their use to solve large dimension VRP problems. In
spite of that, there are interesting works in the literature using this approach.
Youseflloo et al. for example used MILP to optimize the total cost of collection
routes considering also environmental aspects [30]. Other works used MILP to
find the optimal routes for solid waste collection, as the case study approach by
Erdinç et al. optimized waste collection routes in the city of Istanbul, Turkey [5].

Most of the algorithms implemented to solve routing problems in waste col-
lection can be divided into bio-inspired algorithms. Each one is developed consid-
ering the problem approached, with specific constraints and objectives. Despite
that, problems in this area generally focus on reducing the total cost associated
with the routes, considering the capacity constraints of both trucks and depots.
A great number of works have already explored the use of Ant Colony Opti-
mization [9], Genetic Algorithms [12], Large Neighborhood Search [18], Tabu
Search [23], Variable Neighborhood Search [10] among others. There is also a
significant number of works in the literature using Geographic Information Sys-
tems (GIS) to deal with waste collection [29]. GIS-based algorithms are able to
give a strong base to support truck routes, being considered a valuable tool for
a better decision-making [11].

The increasing need to deal with environmental problems and achieve highly
sustainable solutions has also collaborated to develop algorithms for multi-
objective problems. Studies in this approach consider constraints and objec-
tives directly associated to waste collection routes and socioeconomic aspects.
For instance, the work presented by Yanfang et. al. used the NSGA-based algo-
rithm to find the best locations for recycling plants considering the obnoxious
effect [16]. Another study dealing with smart system for waste collection and
recycling waste is presented in Xulong et. al. developing a hybrid algorithm based
on whale optimization algorithm and genetic algorithm to solve a bi-objective
mathematical programming model [15].

Search algorithms, such as Guided Local Search (GLS), have also proven to
be a good solution to various combinatorial optimization problems, including
VRP [2,3]. GLS is a meta-heuristic algorithm that operates building penalties
during search procedure. The penalty factors are taken into consideration by
the objective function when the search is too close to a previously visited local
minima. With this strategy, the algorithm is able to migrate to neighborhood
solutions and escape local searches [14].

182 A. S. Silva et al.

3 Methodology

In brief, locations known to have a dumpster in the city of Bragança were selected
to assess the waste collection efficiency considering different upper limit values
for waste containers (regular). Daily waste oscillation was approached by ana-
lyzing the nearby of each dumpster. After that, a method for dynamic selection
of dumpsters for collection routes was applied to evaluate how much this strat-
egy can improve the collection efficiency (dynamic). The overall procedure is
illustrated in Fig. 1.

Fig. 1. General procedure approached.

3.1 Problem Assembly

The company in charge of solid waste management in the Northeast region
of Portugal is Resíduos do Nordeste (see company website). The company is
responsible for the waste management of 13 municipalities and around 134000
citizens, with a production of wastes estimated in 58000 tons/year (2019). In
2019, 7.9% of this amount represented selective waste collection, and the number
of waste collected by this means increased 77.6% compared to 2014. Paper is the
type of waste most discharged/found in dumpsters, representing 33.5% of the
total waste collected in the selective collection (see more details in [20]).

This work will approach the selective collection of paper waste. The popu-
lation of Bragança represents 27.11% of the collected waste that is selected for
recycling. For this reason, the collection region considered for this study has 10
waste dumpsters of paper. The problem can be summarized as a CVRP, where
the objective is to minimize total distance traveled for waste collection, reduc-
ing total cost and carbon emission. As constraints it is necessary to taking in
account that:

– Trucks have limited capacity Kmax.
– Each route begin and ends at central depot.

https://www.residuosdonordeste.pt/

Dynamic Urban Solid Waste Management System for Smart Cities 183

– Dumpsters must be served when predicted level of waste reach Cmax.
– Waste must be transported to central depot when full capacity of truck is

reached.
– Trucks only collect one type of waste (i.e. paper).

3.2 Level of Dumpsters

Initial levels (L0,j) inside the chosen dumpsters j = 1, ..., k were calculated using
a uniform distribution probability. Oscillation of waste level was considered con-
stant throughout the days, and calculated based on evaluation of 150m around
each dumpster using the software Google Earth. This evaluation made it possi-
ble to calculate a filling velocity that expresses the daily oscillation of waste in
percentage for each dumpster [7]. The formula for calculating the filling velocity
(fv) of dumpster j, the daily waste level (L), and amount of waste (Lc) in m3

on the day i of the dumpster j are presented.

fvj =
FAj

TA
PM ∧ Li,j = Li−1,j + fvj ∧ Lci,j = Li,j

CD

100
(1)

In which fvj is the filling velocity of the dumpster j, FAj represents the
filled area with buildings around dumpster j, TA is the total area around each
dumpster, PM is the maximum filling velocity. The Li,j and Lci,j represents the
waste level and amount in day i for dumpster j, respectively. Li−1,j represents
the level of waste from the day before i − 1, and CD represents total volume
of the dumpster. In Fig. 2 collection points are represented (left), as well as one
example of how the filled area was determined (right).

Fig. 2. Chosen locations for waste collection (on left) and example of how filled area
was determined (on right).

3.3 Dynamic Selection

In this work, GLS algorithm was used to solve CVRP in order to compare
distances traveled for waste collection during TDa days. Dumpsters suitable for

184 A. S. Silva et al.

the collection were chosen based on a daily level. In regular selection of dumpster
to be collected, when a given dumpster reached Cmax, it should be considered
for collection.

For the dynamic selection of dumpsters to be collected, upper level was con-
sidered as Cmax − 2fvj . Within this strategy, it is possible to previously collect
dumpsters that would be full after 2 days. The parameter CM represents the
average maximum capacity of the dumpsters. Algorithm 1 illustrates the com-
plete procedure for dynamic waste collection.

Algorithm 1. Dynamic waste collection
1: L0,j ← rand(0, CM − 1)
2: fv = [fv1, ..., fvk]
3: for i in days do
4: for j in dumpsters do
5: Li,j = Li−1,j + fvj
6: if Li,j ≥ Cmax − 2fvj then

7: Lci,j = Li,j
CD

100
8: Li,j = 0
9: coli,j = j

10: end if
11: end for
12: end for
13: for i in days do
14: DMi ←− distance_matrix(coli)
15: TDi, loadi ←− GLS(DMi, Lci,j)
16: end for

Dumpsters selected for collection were stored on the list coli,j . At last, daily
distance matrix DMi should be calculated considering all dumpsters locations
associated to the day i. Also, the amount of waste Lci,j in m3 was used as
argument by the GLS algorithm GLS(). The algorithm returns the total distance
traveled daily for collection TDi and the total load loadi for the day i.

4 Results and Discussion

Generally, authors consider the upper limit for collection (Cmax) in 70–90%, but
few explain the choice [8]. Here, GLS-based algorithm was compiled for values
of 70, 80, and 90% for Cmax to determine which is the best Cmax value for both
regular and dynamic selection method. For comparison purposes, a traditional
collection (TC) simulation was also performed considering the best route for one
collection of all dumpsters every two days.

A period of 30 days was approached in this study (TDa = 30), and collection
was modeled with a small fleet (3 trucks). Truck’s capacity is Kmax = 16m3, and
total volume of dumpsters is CD = 2.5m3, based on information obtained from

Dynamic Urban Solid Waste Management System for Smart Cities 185

Resíduos do Nordeste. Average maximum capacity for determination of initial
level was 80% (CM = 80).

4.1 Waste Level Throughout Days

For the determination of daily levels of solid waste, two parameters are impor-
tant: initial level (L0,j) and filling velocities (fvj). The calculation of fvj was
performed by individual analysis nearby each dumpster and defining Pmax as
20% per day. Results obtained for these parameters are expressed below in Table
1 together with latitude and longitude of each location. Central depot (location
0) is located in coordinates (41.37233, -7.14233).

Table 1. Definition of L0,j , fvj , and dumpsters location.

Dumpster L0,. (%) fv (%/day) Latitude Longitude

1 43 6.85 41.79323 –6.76898
2 12 5.01 41.79971 –6.76808
3 73 11.80 41.80608 –6.75995
4 54 7.64 41.80049 –6.76400
5 38 5.74 41.79887 –6.77037
6 18 3.50 41.80399 –6.76464
7 76 15.81 41.80294 –6.76206
8 21 10.50 41.80282 –6.77679
9 35 12.28 41.80729 –6.77366
10 19 7.64 41.78781 –6.77335

Waste levels during studied days is directly related to the selection of dump-
sters for collection since collected dumpsters have their level reset to 0. In this
regard, situations of overfilling might happen depending on the strategy adopted
for the waste collection Dumpsters overfilled should be avoided in real scenar-
ios as this could lead to population unsatisfied with collection service and more
serious problems with the accumulation of waste in manhole, leading to sewer
flooding and disease spread. To study the influence of the chosen strategy on
overfilling of dumpsters the percentage of collection days with overfilled dump-
sters was determined. Results obtained using 70% and 80% did not showed
significant differences, with only one dumpster overfilled (Dumpster 7) 6.67%
and 16.67% of collection days using 70% and 80% as upper threshold of waste,
and no overfilled dumpster in dynamic approach. Considering 90% as maximum
level of waste overcome results with higher differences in regular approach, as
shown in Fig. 3.

For dynamic selection using 90% as maximum waste level, no dumpster
showed overfilling. On the other hand, most dumpsters were overfilled in reg-
ular selection. Higher overfilling is proportional to filling velocities since the

186 A. S. Silva et al.

Fig. 3. Overfilling results for regular approach using maximum waste level of 90%.

most overfilled dumpster (9) is the one with highest fv, and the less overfilled
dumpster (6) has the lower fv. The absence of overfilled dumpsters in dynamic
approach is associated to the early collection performed in this approach, that
considers the level after 2 days to select suitable dumpsters for collection.

4.2 Numerical Results Discussion

The analysis of separate results of total distance and load carried can be mislead-
ing since the truck can travel longer distances and carry more load, for example.
To better evaluate the efficiency, a parameter called here as CE (collection effi-
ciency) was calculated by a simple division between the amount of load (m3)
and traveled distance (km).

In Fig. 4a, CE obtained for regular selection of dumpsters using different
upper limits is exhibited. This result demonstrates that 90% is the collection level
that returns the highest efficiency. However, traditional collection simulation is
still 11.94% more efficient than the highest efficiency obtained using only levels
to select dumpsters suitable for collection.

Using dynamic selection of dumpsters for the collection returned the results
of CE exhibited in Fig. 4b. Despite already confirming with previous results that
90% as maximum level returns the highest efficiency, simulations for dynamic
selection considering 70% and 80% were performed here as proof of concept.
Results obtained for CE demonstrated that the strategy can increase collec-
tion efficiency even for Cmax considered less efficient. For instance, efficiencies
in dynamic approaches were higher than TC’s efficiency, and best result (90%
dynamic) was 50.45% higher than TC result.

Daily distances traveled and load carried in best result (90% dynamic) are
shown along with the worst results (70% regular) in Fig 5. Graph with daily
distances traveled shows that collection days in 70% regular and 90% dynamic
have about the same distance traveled (see days 4 and 6, for example). The real
improvement can be observed by comparing the amount of collection days and

Dynamic Urban Solid Waste Management System for Smart Cities 187

Fig. 4. CE obtained for regular (a) and dynamic (b) selection of dumpsters for collec-
tion route vs TC.

the daily load carried per collection day. In this regard, 90% dynamic has 58%
fewer trips and 112.37% more average load collected per collection day compared
to 70% regular. For instance, the average load collected per collection day in
90% dynamic approach is also 43.49% higher with 47% fewer trips compared to
traditional collection.

Fig. 5. Total distance traveled and load carried for worst (70% regular) and best (90%
dynamic) approach.

5 Conclusions and Future Work

Maximum level of waste in dumpsters to increase collection efficiency was deter-
mined to be 90% according to results. In initial tests, the simple selection of

188 A. S. Silva et al.

dumpsters for collection according to level was not enough to overcome results
observed with simulation of traditional collection. This scenario changed once
a method considering the forecasting of waste level after two days was used
(dynamic selection). In brief, results obtained in this work have shown that (i)
the best level for waste collection and (ii) strategies for selection of dumpsters
to be collected are a powerful and necessary tool to improve the collection of
solid waste. Furthermore, dynamic selection considers 2-days forecast waste level,
which significantly reduces the probability of overfilled dumpsters.

More sophisticated algorithms will be considered for the dynamic selection of
the dumpsters that need collection (e.g. GA) in future work. Additionally, if data
regarding waste production is available, a forecasting model will be developed
based on neural networks to predict daily waste levels in dumpsters and achieve
higher similarity to real scenarios. After developing a suitable methodology for
optimizing routes, the last step will be the WSN assembly to collect real-time
information regarding waste level inside dumpsters for better decision-making.

Acknowledgements. Adriano Silva was supported by FCT-MIT Portugal PhD
grant SFRH/BD/151346/2021, and Thadeu Brito was supported by FCT PhD
grant SFRH/BD/08598/2020. This work was financially supported by UIDB/057
57/2020 (CeDRI), UIDB/00690/2020 (CIMO), LA/P/0045/2020 (ALiCE), UID B/500
20/2020, UI- DP/50020/2020 (LSRE-LCM) and funded by national funds through
FCT/MCTES (PIDDAC). Jose L. Diaz de Tuesta acknowledges the financial support
through the program of Attraction de Talento of Atraccion al Talento of the Comunidad
de Madrid (Spain) for the individual research grant 2020-T2/AMB-19836.

References

1. Anagnostopoulos, T., et al.: Challenges and opportunities of waste management in
IoT-enabled smart cities: a survey. IEEE Trans. Sustain. Comput. 2(3), 275–289
(2017). https://doi.org/10.1109/TSUSC.2017.2691049

2. Tirkolaee, E.B., Abbasian, P., Soltani, M., Ghaffarian, S.A.: Developing an applied
algorithm for multi-trip vehicle routing problem with time windows in urban waste
collection: a case study. Waste Manage. Res. 37(1), 4–13 (2019). https://doi.org/
10.1177/0734242X18807001

3. Barbucha, D.: An agent-based guided local search for the capacited vehicle rout-
ing problem. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 476–485. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22000-5_49

4. Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving
the vehicle routing problem and its variants. Comput. Indus. Eng. 140, 106242
(2020). https://doi.org/10.1016/j.cie.2019.106242

5. Erdinç, O., Yetilmezsoy, K., Erenoğlu, A.K., Erdinç, O.: Route optimization of an
electric garbage truck fleet for sustainable environmental and energy management.
J. Clean. Prod. 234, 1275–1286 (2019). https://doi.org/10.1016/j.jclepro.2019.06.
295

6. Esmaeilian, B., Wang, B., Lewis, K., Duarte, F., Ratti, C., Behdad, S.: The future
of waste management in smart and sustainable cities: a review and concept paper.
Waste Manage. 81, 177–195 (2018). https://doi.org/10.1016/j.wasman.2018.09.047

https://doi.org/10.1109/TSUSC.2017.2691049
https://doi.org/10.1177/0734242X18807001
https://doi.org/10.1177/0734242X18807001
https://doi.org/10.1007/978-3-642-22000-5_49
https://doi.org/10.1016/j.cie.2019.106242
https://doi.org/10.1016/j.jclepro.2019.06.295
https://doi.org/10.1016/j.jclepro.2019.06.295
https://doi.org/10.1016/j.wasman.2018.09.047

Dynamic Urban Solid Waste Management System for Smart Cities 189

7. Ferreira, J.A.O.: Optimização do Processo de Recolha de Resíduos: Desenvolvi-
mento de Ferramentas de Investigação Operacional para o Problema de Orientação
de Equipas com Multi-Restrições. Ph. D. thesis, Universidade do Minho (Portugal)
(2015)

8. Ferrer, J., Alba, E.: BIN-CT: Urban waste collection based on predicting the
container fill level. Biosystems 186, 103962 (2019). https://doi.org/10.1016/j.
biosystems.2019.04.006

9. Grakova, E., Slaninová, K., Martinovič, J., Křenek, J., Hanzelka, J., Svatoň, V.:
Waste collection vehicle routing problem on HPC infrastructure. In: Saeed, K.,
Homenda, W. (eds.) CISIM 2018. LNCS, vol. 11127, pp. 266–278. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99954-8_23

10. Gruler, A., Quintero-Araújo, C.L., Calvet, L., Juan, A.A.: Waste collection under
uncertainty: a simheuristic based on variable neighbourhood search. Europ. J.
Indus. Eng. 11(2), 228–255 (2017)

11. Hatamleh, R., Jamhawi, M., Al-Kofahi, S., Hijazi, H.: The use of a GIS system as
a decision support tool for municipal solid waste management planning: the case
study of al Nuzha district, Irbid, Jordan. Procedia Manufact. 44, 189–196 (2020).
https://doi.org/10.1016/j.promfg.2020.02.221

12. Karakatič, S.: Optimizing nonlinear charging times of electric vehicle routing with
genetic algorithm. Expert Syst. Appl. 164, 114039 (2021). https://doi.org/10.
1016/j.eswa.2020.114039

13. Khachay, M., Ogorodnikov, Y.: PTAS For the Euclidean capacitated vehicle rout-
ing problem with time windows. In: Matsatsinis, N.F., Marinakis, Y., Pardalos, P.
(eds.) LION 2019. LNCS, vol. 11968, pp. 224–230. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38629-0_18

14. Le, T.D.C., Nguyen, D.D., Oláh, J., Pakurár, M.: Optimal vehicle route schedules
in picking up and delivering cargo containers considering time windows in logistics
distribution networks: a case study. Prod. Eng. Archives 26(4), 174–184 (2020).
https://doi.org/10.30657/pea.2020.26.31

15. Lu, X., Pu, X., Han, X.: Sustainable smart waste classification and collection sys-
tem: a bi-objective modeling and optimization approach. J. Clean. Prod. 276,
124183 (2020). https://doi.org/10.1016/j.jclepro.2020.124183

16. Ma, Y., Zhang, W., Feng, C., Lev, B., Li, Z.: A bi-level multi-objective location-
routing model for municipal waste management with obnoxious effects. Waste Man-
age. 135, 109–121 (2021). https://doi.org/10.1016/j.wasman.2021.08.034

17. Mahmood, I., Idwan, S., Matar, I., Zubairi, J.A.: Experiments in routing vehicles
for municipal services. In: 2018 International Conference on High Performance
Computing & Simulation (HPCS), pp. 993–999. IEEE (2018). https://doi.org/10.
1109/HPCS.2018.00156

18. Mofid-Nakhaee, E., Barzinpour, F.: A multi-compartment capacitated arc routing
problem with intermediate facilities for solid waste collection using hybrid adaptive
large neighborhood search and whale algorithm. Waste Manage. Res. 37(1), 38–47
(2019). https://doi.org/10.1177/0734242X18801186

19. Nirde, K., Mulay, P.S., Chaskar, U.M.: IoT based solid waste management system
for smart city. In: 2017 International Conference on Intelligent Computing and
Control Systems (ICICCS), pp. 666–669. IEEE (2017). https://doi.org/10.1109/
ICCONS.2017.8250546

20. do Nordeste, R.: Relatório de Sustentabilidade 2019. https://www.
residuosdonordeste.pt/documentos/ (2019)

https://doi.org/10.1016/j.biosystems.2019.04.006
https://doi.org/10.1016/j.biosystems.2019.04.006
https://doi.org/10.1007/978-3-319-99954-8_23
https://doi.org/10.1016/j.promfg.2020.02.221
https://doi.org/10.1016/j.eswa.2020.114039
https://doi.org/10.1016/j.eswa.2020.114039
https://doi.org/10.1007/978-3-030-38629-0_18
https://doi.org/10.1007/978-3-030-38629-0_18
https://doi.org/10.30657/pea.2020.26.31
https://doi.org/10.1016/j.jclepro.2020.124183
https://doi.org/10.1016/j.wasman.2021.08.034
https://doi.org/10.1109/HPCS.2018.00156
https://doi.org/10.1109/HPCS.2018.00156
https://doi.org/10.1177/0734242X18801186
https://doi.org/10.1109/ICCONS.2017.8250546
https://doi.org/10.1109/ICCONS.2017.8250546
https://www.residuosdonordeste.pt/documentos/
https://www.residuosdonordeste.pt/documentos/

190 A. S. Silva et al.

21. O’Dwyer, E., Pan, I., Acha, S., Shah, N.: Smart energy systems for sustainable
smart cities: current developments, trends and future directions. Appl. Energy
237, 581–597 (2019). https://doi.org/10.1016/j.apenergy.2019.01.024

22. Pardalos, P.M.: Artificial intelligence, machine learning, and optimization tools for
smart cities: designing for sustainability. Springer Nature (2022). https://doi.org/
10.1007/978-3-030-84459-2

23. Paul, A., Kumar, R.S., Rout, C., Goswami, A.: Designing a multi-depot multi-
period vehicle routing problem with time window: hybridization of tabu search and
variable neighbourhood search algorithm. Sadhana 46(3), 1–11 (2021). https://doi.
org/10.1007/s12046-021-01693-2

24. Ramalho, M.S., Rossetti, R.J., Cacho, N., Souza, A.: SmartGC: a software archi-
tecture for garbage collection in smart cities. Int. J. Bio-Inspired Comput. 16(2),
79–93 (2020)

25. Rassia, S., Pardalos, P.: Smart city networks. Springer (2017).https://doi.org/10.
1007/978-3-319-61313-0

26. Rassia, S.T., Pardalos, P.M.: Sustainable environmental design in architecture:
impacts on health, vol. 56. Springer Science & Business Media (2012). https://doi.
org/10.1007/978-1-4419-0745-5

27. Rassia, S.T., Pardalos, P.M. (eds.): Future city architecture for optimal living.
SOIA, vol. 102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15030-
7

28. Shah, P.J., Anagnostopoulos, T., Zaslavsky, A., Behdad, S.: A stochastic optimiza-
tion framework for planning of waste collection and value recovery operations in
smart and sustainable cities. Waste Manage. 78, 104–114 (2018). https://doi.org/
10.1016/j.wasman.2018.05.019

29. Vu, H.L., Bolingbroke, D., Ng, K.T.W., Fallah, B.: Assessment of waste characteris-
tics and their impact on GIS vehicle collection route optimization using ANN waste
forecasts. Waste Manage. 88, 118–130 (2019). https://doi.org/10.1016/j.wasman.
2019.03.037

30. Yousefloo, A., Babazadeh, R.: Designing an integrated municipal solid waste man-
agement network: a case study. J. Clean. Prod. 244, 118824 (2020). https://doi.
org/10.1016/j.jclepro.2019.118824

https://doi.org/10.1016/j.apenergy.2019.01.024
https://doi.org/10.1007/978-3-030-84459-2
https://doi.org/10.1007/978-3-030-84459-2
https://doi.org/10.1007/s12046-021-01693-2
https://doi.org/10.1007/s12046-021-01693-2
https://doi.org/10.1007/978-3-319-61313-0
https://doi.org/10.1007/978-3-319-61313-0
https://doi.org/10.1007/978-1-4419-0745-5
https://doi.org/10.1007/978-1-4419-0745-5
https://doi.org/10.1007/978-3-319-15030-7
https://doi.org/10.1007/978-3-319-15030-7
https://doi.org/10.1016/j.wasman.2018.05.019
https://doi.org/10.1016/j.wasman.2018.05.019
https://doi.org/10.1016/j.wasman.2019.03.037
https://doi.org/10.1016/j.wasman.2019.03.037
https://doi.org/10.1016/j.jclepro.2019.118824
https://doi.org/10.1016/j.jclepro.2019.118824

Single MCMC Chain Parallelisation
on Decision Trees

Efthyvoulos Drousiotis1(B) and Paul G. Spirakis2,3

1 Department of Electrical Engineering and Electronics, University of Liverpool,
Liverpool L69 3BX, UK

E.Drousiotis@liverpool.ac.uk
2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

spirakis@liverpool.ac.uk
3 Department of Computer Engineering and Informatics, University of Patras,

26504 Patras, Greece

Abstract. Decision trees are highly famous in machine learning and
usually acquire state-of-the-art performance. Despite that, well-known
variants like CART, ID3, random forest, and boosted trees miss a proba-
bilistic version that encodes prior assumptions about tree structures and
shares statistical strength between node parameters. Existing work on
Bayesian decision trees depend on Markov Chain Monte Carlo (MCMC),
which can be computationally slow, especially on high dimensional data
and expensive proposals. In this study, we propose a method to paral-
lelise a single MCMC decision tree chain on an average laptop or per-
sonal computer that enables us to reduce its run-time through multi-core
processing while the results are statistically identical to conventional
sequential implementation. We also calculate the theoretical and practi-
cal reduction in run time, which can be obtained utilising our method on
multi-processor architectures. Experiments showed that we could achieve
18 times faster running time provided that the serial and the parallel
implementation are statistically identical.

Keywords: Parallel algorithms · Machine learning · MCMC decision
tree

1 Introduction

In Bayesian statistics, it is a common problem to collect and compute random
samples from a probability distribution. Markov Chain Monte Carlo (MCMC)
is an intensive technique commonly used to address this problem when direct
sampling is often arduous or impossible. MCMC using Bayesian inference is often
used to solve problems in biology [13], forensics [12], education [5], and chemistry
[6], among other areas making it one of the most widely used algorithms when
a collection of samples from a probability distribution is needed. Monte Carlo
applications are generally considered embarrassingly parallel since each chain
can run independently on two or more independent machines or cores. Despite
that, the main problem is that each chain is not embarrassingly parallel, and
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 191–204, 2022.
https://doi.org/10.1007/978-3-031-24866-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_15

192 E. Drousiotis and P. G. Spirakis

when the feature space and the proposal are computationally expensive, we can
not do much to improve the running time and get results faster. When we have to
handle huge state-spaces and complex compound states, it takes significant time
for an MCMC simulation to converge on an adequate model not only in terms
of the number of iterations required but also the complexity of the calculations
occurring in each iteration(such as searching for the best features and tree shape
of a decision tree). For example, running an MCMC on a single chain Decision
tree for a dataset of 400000 datapoints and 15 features took upwards of 6 h
to converge when run on a 2.3 − 5.10 GHz Intel Core i7-10875H. In [3], an
approach aiming to parallelise a single chain is presented, and the improvement
achieved is at its best 2.2 times faster. The functionality of this kind of solution
is therefore limited as in real-time, and life applications run time is critical. The
work presented in this paper aims to find methods to significantly reduce the
MCMC Decision tree’s runtime by emphasising on the implementation of MCMC
rather than the statistical algorithm itself. We aim to reduce significantly and
up to an order of magnitude the run time of the MCMC Decision Tree on a
single laptop or personal computer which is going to make the algorithm widely
applicable and suitable for non tecinacl users. The remainder of this paper is
organised as follows. Section 2 explains the MCMC in General and the Most
Recent Work. Section 3 presents the MCMC in Decision trees. Our method is
outlined in Sect. 4, with the possible theoretical improvements. We introduce
the case study in which we applied our method and reviewed results in Sect. 5.
Section 6 concludes the paper.

2 Markov Chain Monte Carlo in General and Most
Recent Work

One of the most widely used algorithms is the Metropolis [9] and its general-
isation (see Algorithm 1), the Metropolis-Hastings sampler (MH) [8]. Given a
partition of the state vector into components, i.e., x = (x1, ..., xk), and that we
wish to update the ith component, the Metropolis-Hastings update proceeds as
follows. We first have a density for producing candidate observation x′, such
that x′

i = xi, which is denoted by q(x, x′). Given the chains ergodic condition,
the definition of q is arbitrary, and it has a stationary distribution π which is
selected so that the observations may be generated relatively easily. After the
new state generation x′ = (x1, ..., xi−1, xi, xi+1, ..., xk) from density q(x, x′), the
new state is accepted or rejected using the Rejections Sampling principle with
acceptance probability α(x, x′) given by Eq. 1. If the proposed state is rejected,
the chain remains in the current state.

It is worth mentioning that acceptance probability in this form is not unique,
considering there are many acceptance functions that supplies a chain with
the required properties. Nevertheless, Peskun(1973) [10] proved that MH is the
optimal one where the proper states are rejected least often, which maximises
the statistical efficiency meaning that more samples are collected with fewer
iterations.

Single MCMC Chain Parallelisation on Decision Trees 193

a(χ, χ′) = min(1,
π(x)
π(x′)

q(χ|χ′)
q(χ′|χ)

) (1)

On a Markov process, the next step depends on the current state, which
makes it hard for a single Markov chain to be processed contemporaneously by
several processing elements. Byrd [2]. Proposed a method to parallelise a single
Markov chain(Multithreading on SMP Architectures), where we consider backup
move “B” in a separate thread of execution as it is not possible to determine
whether move “A” will be accepted. If “A” is accepted, the backup move B
- whether accepted or rejected - must be discarded as it was based upon a
now supplanted chain state. If “A” is rejected, control will pass to “B”, saving
much of the real-time spent considering “A” had “A” and “B” been evaluated
sequentially. Of course, we may have as many concurrent threads as desired.

At this point, it is worth mentioning that the single chain parallelisation
can become quickly problematic as the efficiency of the parallelisation is not
guaranteed, especially for computationally cheap proposal distributions. Also,
we need to consider that nowadays, computers make serial computations much
faster than in 2008, when the single parallelisable chain was proposed.

Another way of making faster MCMC applications is to reduce the conver-
gence rate by requiring fewer iterations. Metropolis-Coupled MCMC((MC)3)
utilised multiple MCMC [1] chains to run at the same time, while one chain is
treated as the “cold” where its parameters are set to normal while the other
chains are treated as “hot”, which are expected to accept the proposed moves.
The space will be explored faster through the “hot” chains than the “cold” as
they are more possible to make disadvantageous transitions and not to remain
at near-optimal solutions. The speedup increased when more chains and cores
were added.

Our work is focused on achieving a faster execution time of the MCMC algo-
rithm on Decision trees through multiprocessor architectures. We aim to reduce
the number of iterations while the number of samples collected is not affected.
Multi-threading on SMP Architectures and (MC)3 differs from our work as the
former targets rejected moves as a place for optimisation, and the latter requires
communication between the chains. Moreover, the aims are different as (MC)3

expands the combination of the chain, enhancing the possibilities of discover-
ing different solutions and assisting avoid the simulation getting stuck in local
optima.

2.1 Probabilistic Trees Packages and Level of Parallelism

Most of the existing probabilistic tree packages are only supported by the R
programming language.

BART [4] software included in the CRAN package1 supports multi thread-
ing based on OpenMP, where there are numerous exceptions for operating sys-
tems, so it is difficult to generalise. Generally, Microsoft Windows lacks OpenMP
detection since the GNU autotools do not natively exist on this platform and
1 https://cran.r-project.org/web/packages/BART/index.html.

https://cran.r-project.org/web/packages/BART/index.html

194 E. Drousiotis and P. G. Spirakis

Apple macOS since the standard Xcode toolkit is also not provided. The paral-
lel package provides multi-threading via forking, only available in Unix. BART
under CRAN uses parallelisation for the predict function and running concurrent
chains.

BartMachine2, which is written in Java and its interface is provided by rJava
package, which requires Java Development Kit(JDK), provides multi-threading
features similar to BART. BartMachine is recommended only for those users who
have a firm grounding in the java language and its tools to upgrade the package
and get the best performance out of it. Similar to BART, its parallelisation is
based on running concurrent chains.

The rest of the available packages, BayesTree3,dbarts4,Bartpy5,XBART6 and
imptree7 does not support any kind of parallelisation.

Concurrent chains can not solve the problem of long hours of execution time.
For example, if a single chain needs 50 h to execute, 5 chains will still need 50 h
if run concurrently. In contrast, in our case, a chain that serially needs 50 h now
takes approximately 2 h for each chain. Moreover, we can run concurrent chains
where each chain is parallelised. If our implementation is compared to a package
like BartMachine and BART, the runtime improvement we achieved is around
18 times faster, and if we compare it with a package that does not offer any
parallelisation like most of the existing ones, the run time improvement for 5
chains is around 85 times faster.

3 Markov Chain Monte Carlo in Decision Tree

A decision tree typically starts with a root node, which branches into possible
outcomes. Each of those outcomes leads to additional decision nodes, which
branch off into other possibilities ending up in leaf nodes. This gives it a treelike
shape.

Our model describes the conditional distribution of y given x, where x is a
vector of predictors [x = (x1, x2, ..., xp)]. The main components of the tree(T)
includes the depth of the tree(d(T)), θ which is the set of features(k(T)) and
the set of thresholds(c(T)) for each node, and the possibilities p(Y |T, θ, x) for
each leaf node(L(T)). If x lies in the region corresponding to the ith terminal
node, then y|x has distribution f(y|θi), where f represents a parametric family
indexed by θi. The model is called a probabilistic classification tree, according
to the quantitative response y.

2 https://cran.r-project.org/web/packages/bartMachine/index.html.
3 https://cran.r-project.org/web/packages/BayesTree/BayesTree.pdf.
4 https://cran.r-project.org/web/packages/dbarts/index.html.
5 https://pypi.org/project/bartpy/.
6 https://jingyuhe.com/xbart.html.
7 https://cran.r-project.org/web/packages/imptree/index.html.

https://cran.r-project.org/web/packages/bartMachine/index.html
https://cran.r-project.org/web/packages/BayesTree/BayesTree.pdf
https://cran.r-project.org/web/packages/dbarts/index.html
https://pypi.org/project/bartpy/
https://jingyuhe.com/xbart.html
https://cran.r-project.org/web/packages/imptree/index.html

Single MCMC Chain Parallelisation on Decision Trees 195

As Decision Trees are identified by (θ, T), a Bayesian analysis of the prob-
lem proceeds by specifying a prior probability distribution p(θ, T). Because θ
indexes the parametric model for each T , it will usually be convenient to use the
relationship

p(Y1 :N , T, θ|x1 :N) = p(Y |T, θ, x)p(θ|T)p(T) (2)
In our case it is possible to analytically obtain Eq. 2 and calculate the pos-

terior of T as follows:

p(Y |T, θ, x) =
N∏

i=1

p(Yi|xi, T, θ) (3)

p(θ|T) =
∏

j∈(T)

p(θj |T) =
∏

j∈(T)

p(kj |T)p(cj |kj , T) (4)

p(T) =
a

(1 + d)β
(5)

Equation 3 describes the product of the probabilities of every data point(Yi)
classified correctly given the datapoints features(xi), the tree structure(T), and
the features/thresholds(θ) on each node on the tree. Equation 4 describes the
product of possibilities of picking the specific feature(k) and threshold(c) on
every node given the tree structure(T). Equation 5 is used as the prior for tree
Ti. This formula is recommended by [4] and three aspects specify it: the proba-
bility that a node at depth d(= 0.1.2....) is nonterminal, the parameter a ∈ 0, 1
which controls how likely a node would split, with larger α values increasing
the probability of split, and the parameter β > 0 which controls the number of
terminal nodes, with larger values of β reducing the number of terminal nodes.
This feature is crucial as this is the penalizing feature of our probabilistic tree
which prevents it from overfitting and allowing convergence to the target func-
tion f(X) [11], and it puts higher probability on “bushy” trees, those whose
terminal nodes do not vary too much in depth.

An exhaustive evaluation of Eq. 2 over all trees T will not be feasible, except
in trivially small problems, because of the sheer number of possible trees, which
makes it nearly impossible to determine precisely which trees have the largest
posterior probability.

Despite these limitations, Metropolis-Hastings algorithms can still be used
to explore the posterior. Such algorithms simulate a Markov chain sequence of
trees such as:

T0, T1, T2,, Tn (6)
which are converging in distribution to the posterior p(Y |T, θ, x)p(θ|T)p(T) in
Eq. 2.

Because such a simulated sequence will tend to gravitate toward regions
of higher posterior probability, the simulation can be used to search for high-
posterior probability trees stochastically. We next describe the details of such
algorithms and their implementation.

196 E. Drousiotis and P. G. Spirakis

3.1 Specification of the Metropolis-Hastings Search Algorithm
on Decision Trees

The Metropolis-Hastings(MH) algorithm for simulating the Markov chain in
Decision trees (see Eq. 7) is defined as follows. Starting with an initial tree T0,
iteratively simulate the transitions from Ti to Ti + 1 by these two steps:

1. Generate a candidate value T ′ with probability distribution q(Ti, T
′).

2. Set Ti+1 = T ′ with probability

a(Ti, T
′) = min(1,

π(Y1 :N , T ′, θ′|x1 :N)
π(Y1 :N , T, θ|x1 :N)

q(T, θ|T ′, θ′)
q(T ′, θ′|T, θ)

) (7)

Otherwise set Ti+1 = Ti.

To implement the algorithm, we need to specify the transition kernel q. We
consider kernels q(T, T ′), which generate T ′ from T by randomly choosing among
four steps:

– Grow(G) : add a new D(T) and choose uniformly a k(T) and a c(T)
– Prune(P) : choose uniformly a D(T) to become a leaf
– Change(C) = choose uniformly a D(T) and change randomly a k(T) and a

c(T)
– Swap(S) = choose uniformly two D(T) and swap their k(T) and c(T)

The rules are chosen by picking a number uniformly between 0 and 1 and
each action have its own interval. For example, p(G) = 0.3, p(P) = 0.3, p(C) =
0.2, p(S) = 0.2, [0, 0.3, 0.6, 0.8, 1]

The probabilities (see Eq. 8) represent the sum of the probabilities of every
accepted forward move. P(G), p(P), p(C), p(S) are set by the user who chooses
how often each move wants to be proposed.

q(T ′, θ′|T, θ) = q(T ′|T)q(θ′|T ′) =
∑

a

q(a)q(T ′|T, a)q(θ′|T ′, θ, a) (8)

where :

q(G)q(T ′|T,G)q(θ′|T ′, θ,G) = p(G) × 1
c

× 1
k

× 1
|L(T)| (9)

q(P)q(T ′|T, P)q(θ′|T ′, θ, P) = p(P) × 1
|D(T)| − 1

(10)

q(C)q(T ′|T,C)q(θ′|T ′, θ, c) = p(C) × 1
|D(T)| × 1

c
× 1

k
(11)

q(S)q(T ′|T, S)q(θ′|T ′, θ, S) = p(S) × 1
(|D(T)|(|D(T)| − 1))/2

(12)

Equation 9 can be described as the possibility of proposing the grow move
including the probability of choosing the specific feature(k), threshold(c) and

Single MCMC Chain Parallelisation on Decision Trees 197

leaf node(|L(T)|) to grow. P(G) is multiplied by the number of features(k),
the unique number of datapoints(c) and the number of leaf nodes(|L(T)|). For
example, given a dataset with 100 unique datapoints(c), 5 features(k), a tree
structure(T) with 7 leaf nodes(|L(T)|) and a p(G) = 0.3 Eq. 9 will be 0.3× 1

100 ×
1
5 × 1

7 .
Equation 10 is the possibility of proposing the prune move, where p(P) is

multiplied by the number of decision nodes subtracting one((|D(T)| − 1) we are
not allowed to prune the root node). In practise, given a p(P) = 0.3 and a tree
structure(T) with 7 decision nodes(|D(T)|) Eq. 10 will be 0.3 × 1

10−1
Equation 11 is the possibility of proposing the change move where p(C) is

multiplied by the number of decision nodes(|D(T)|), the number of features(k),
and the number of unique datapoints(c). For example, given a dataset with with
100 unique datapoints(c), 5 features(k), a tree structure(T) with 12 decision
nodes(|D(T)|) and a p(G) = 0.2 Eq. 9 will be 0.2 × 1

100 × 1
5 × 1

12 .
Equation 12 is the possibility of proposing the swap move where p(S) is mul-

tiplied by the number of paired decision nodes(|D(T)|).In practise, given a tree
structure(T) with 12 decision nodes(|D(T)|) and a p(S) = 0.2 Eq. 12 will be
0.2 × 1

((12)(12−1))/2

Theorem 1. Transition kernel(see Eq. 13) yields a reversible Markov chain, as
every step from T to T ′ has a counterpart that can move from T ′ to T .

q(T ′, θ′|T, θ) (13)

Proof. Assume a Markov chain, starting from its unique invariant distribution
π. Now, take into consideration that for every sample T0, T1, ..., Tn have the same
joint probability mass function(p.m.f) as their time reversal Tn, Tn−1, ..., T0, so
as we can call the Markov chain reversible, as well as its invariant distribution
π is reversible. This can be explained as a simulation of a reversible chain that
looks the same if it runs backward.

The first thing we have to look for is if the Markov chain starts at π, and it
can be checked by Eq. 14

P (Tk = i|Tk+1 = j, Tk+2 = ik+2,, Tn = in)

=
P (Tk = i, Tk+1 = j, Tk+2 = ik+2,, Tn = in)

P (Tk+1 = j, Tk+2 = ik+2,, Tn = in)

=
πPijPjik+2....Pin−1in

πPjik+2....Pin−1in

=
πPij

πj

(14)

Equation 14 is only dependent on i and j where this expression for reversibil-
ity must be the same as the forward transition probability P (X = Tk+1 = i|X =
Tk = j) = Pji. If, both original and the reverse Markov chains have the same
transition probabilities, then their p.f.m must be the same as well.

198 E. Drousiotis and P. G. Spirakis

An example for our probabilistic tree is the following:
Assume a tree structure(T) with 5 leaf nodes(|L(T)|) and 11 decision

nodes(|D(T)|) sampling from a given dataset with 4 features(c) and 100 unique
datapoints(k) for each feature.

If for example the forward proposal(q(T ′, θ′|T, θ)) = (“change”) with p(C) =
0.2, we end up with the following equation: 0.2× 1

11× 1
4× 1

100 . At the same time the
reverse proposal(going from the current position to the previous) (q(T, θ|T ′, θ′))
equation looks exactly the same as the forward proposal. Given the above prac-
tical example we have strengthen our proof which shows that (q(T ′, θ′|T, θ)) =
(q(T, θ|T ′, θ′)), which shows in practise the reverse transition kernel nature of
our model.

Algorithm 1. The General Metropolis-Hashting Algorithm
Initialize X0

for i = 1 to N do
sample χ′ from q(χ′|χt−1)

Calculate α(χi, χt−1) = min(1, π(x)
π(x′)

q(χ|χ′)
q(χ′|χ)

)

Draw u from u[0, 1]
if u < α(χi|χt−1) then

χi = χ′

else
χi = χt−1

end if
end for

4 Parallelising a Single Decision Tree MCMC Chain

Given a Decision’s Tree MCMC chain with N iterations, we propose a method
that utilises C number of cores aiming to enhance the running time of a single
chain by at least an order of magnitude. As stated in Section 1 and Section 2,
at each iteration, a new sample χ′ is drawn from the proposal distribution.
Our method requires sampling from C number of cores, S(C = S) number
of samples in parallel. We then accept the sample with the greatest a(Ti, T

′)
and repeat the same method until the Markov Chain converges to a stationary
distribution. In our method, we check the Markov chain convergence when the
F1-score fluctuates less than ±3% for at least 100 iterations. Once the Chain
has converged, we proceed to the second phase of our method. We now keep
producing samples using C cores, but we can now collect more than one sample
which satisfies a(Ti, T

′) >= u. (u is a random uniform number[0, 1]), otherwise
we collect Ti From this point, we will propose new samples from the sample with
the greatest a(Ti, T

′) until we are happy with the number of samples collected.
Using this method, we can collect the same number of samples and explore the
feature space as effectively as the serial implementation, but 18 times faster using
an average laptop or personal computer.

Single MCMC Chain Parallelisation on Decision Trees 199

Our algorithm reduces the number of iterations and explores the feature
space faster as we use more cores. This provides us with a significant run time
improvement up to 18 times faster when the feature space is big and the proposal
is expensive. The following sections will evaluate the running time improvement
and the quality of the samples produced.

Algorithm 2. Single Chain parallelisation on MCMC Decision Trees
Initialize T0

for i = 1 to N do
sample C number of T ′ from Q(T j ′|T j

t−1)

Calculate in parallel α(T j
i|T j

t−1) = min(1, p(Y1:N ,T ′,θ′|x1:N)
p(Y1:N ,T,θ|x1:

q(T,θ|T ′,θ′)
q(T ′,θ′|T,θ)

) for each
sample

Store every sampled posterior α(T j
t|T j

t−1) value
Until converge T ′ = max α(T j

i|T j
t−1)

if Markov Chain converged then
Draw u from uniform[0, 1]
for j = 1 to j do � For loop run in parallel

if α(T j
i|T j

t−1) > u then
Collect Sample T ′

T ′ = max α(T j
i|T j

t−1)
else

Collect Sample T
end if

end for
end if

end for

Theoretical Gains. Using C cores simultaneously, the programme cycle con-
sists of repeated “steps,” each performing the equivalent of between 1 and n
iterations. We need to calculate the number of iterations based on the accep-
tance rate to produce the same number of samples(S) when we increase C. The
moves are considered in parallel, where they are accepted or rejected. Given that
the average probability of a single arbitrary move being rejected is pr, the prob-
ability of the ith in every single concurrent core is pr. This step continues for i
iterations where Eqs. 15, 16, and 17 show the iterations needed, run time, and
speedup improvement, respectively, given a time(t) in minutes for each iteration.
Theoretical speedup (see Fig. 1) were plotted for varying cores.

i =
S/C

pr
(15)

Runtime =
i

t
(16)

Speedup =
Runtime

C
(17)

200 E. Drousiotis and P. G. Spirakis

For example, given a single MCMC Decision Tree chain running for 10000
iterations and an acceptance rate of 70%, after 3000 burn-in iterations, we end
up with 4900 samples.

For the parallel MCMC chain, given the same settings as the serial one,
with a 30% burn-in period and 25 cores, we will collect the same number of
samples with 500 iterations. This provides us with a 25 times faster execution
time. Algorithm 2 indicates the part implemented on a parallel environment, and
Fig. 3 the maximum theoretical benefits from utilising our method. Considering
the communication overhead, the parts of the algorithm that are not parallelised,
and the fact that the cores does not receive constant utilisation, in practise the
speedups of this order are not achievable. Therefore, we will test it in practise
and find out how it performs on real-life scenarios respect to the accuracy and
the runtime improvement

5 Results

5.1 Quality of the Samples Between Serial and Parallel
Implementation

We have used the Wine dataset from scikit learn datasets8 repository as well as
Pima Indians Diabetes and Dermatology from UCI machine learning repository9,
which are publicly available, to examine the quality of the samples on several
testing hypotheses, including the different number of cores per iteration given the
average F1-Score. Precision and Recall were also calculated for more depth and
detailed insights about the performance and quality of the samples. The results,
including the F1-Score, Precision, Recall, and Accuracy(see Tables 2, 3 and 4)
produced through 25-Fold Cross-Validation, ensure that every observation from
the original dataset has the possibility of appearing in the training and test sets
and also reduce any statistical error. Before any performance comparison, we
need to examine whether the samples produced for each test case(25 cores and
40 cores) have any statistical difference from the serial implementation. We next
examine if extracted samples by utilising 25 and 40 cores are representative of
the family of the data they come. We use as ground truth data the F1-scores on
each sample collected on every fold of the serial implementation, and we compare
them with the corresponding collected samples from the other two test cases. In
order to check any statistical difference between the samples, we performed the
two-sample t-test for unpaired data [7], which is defined as follows:

T =
Y1 − Y2√

s2
1

N1
+ s2

2
N2

(18)

8 https://scikit-learn.org/stable/datasets/toydataset.html.
9 https://archive.ics.uci.edu/ml/index.php.

https://scikit-learn.org/stable/datasets/toydataset.html
https://archive.ics.uci.edu/ml/index.php

Single MCMC Chain Parallelisation on Decision Trees 201

|T | > t1−a/2,νwhere : ν =

(
s21
n1

+
s22
n2

)2

(s21/n1)
2

n1 − 1
+

(s22/n2)
2

n2 − 1

(19)

Formula 18 is used to calculate the t-Test statistic equation where N1 and
N2 are the sample sizes, Y1 and Y2 are the sample means, and s21 and s22 are the
sample variances. The null hypothesis is rejected when Eq. 19 holds, which is the
critical value of the t distribution with ν degrees of freedom.

For our first dataset(Wine), we first examine the serial implementation with
the parallel using 25 cores. The absolute value of the t-Test, 0.62, is less than
the critical value of 1.964, so we prove the null hypothesis and conclude that the
samples drawn by using 25 cores have not any statistical difference at the 0.05
significance level. We then compare the serial implementation with the parallel
using 40 cores. In this case, the absolute value of the t-Test, 0.63, is less than
the critical value of 1.964, so we prove the null hypothesis and conclude that
the samples drawn by using 40 cores have not any statistical difference at the
0.05 significance level. We also examine the parallel implementations between
them(using 25 and 40 cores accordingly). In this case, the absolute value of t-
Test, 0.64, is less than the critical value of 1.964, so we reject the null hypothesis
and conclude that the samples drawn using 40 cores(in comparison with the
samples drawn with 25 cores) have not a statistical difference at the 0.05 signif-
icance level. The results for the rest of the datasets are presented explicitly in
Table 1.

Table 1. Datasets critical values

Datasets 1 vs 25 cores 1 vs 40 cores 25 vs 40 cores Critical T value

Pima Indians Diabetes 0.51 0.63 0.63 1.97

Dermatology 0.73 0.77 0.77 1.97

Wine 0.62 0.64 0.65 1.97

T-test proves that if we use up to 40 cores for sampling(rarely laptops and
personal computers have more than 40cores), the quality of the samples are the
same, ending up with statistically same samples as the serial implementation.
Tables 1, 2, and 3 shows that when we sample in parallel using up to 40 cores,
the accuracy and the F1-score remain on the same levels as the serial implemen-
tation. Tables 1, 2, 3, 4 indicate that a single chain on MCMC Decision Trees can
not be an embarrassingly parallel algorithm as we can only improve the running
time of a single chain by utilising a specific number of cores. The running time
improvement we achieved(×18 faster) is the maximum run-time enhancement
we can achieve on an MCMC decision tree to maintain the high metrics pro-
duced by the serial implementation. If we try to extract up to 40 samples per
iteration, it is highly probable to get samples that does not affect the final results

202 E. Drousiotis and P. G. Spirakis

negatively. According to our results, the maximum number of cores can that be
used is 40. Furthermore, Precision, Recall, and F1-score metrics indicate that
no overfit is observed even when more than 3 labels exist, proving the samples’
quality even in multi class classification problems.

Table 2. Results for wine dataset

Labels Precision Recall F1-score

1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.85 0.88 0.88 1.00 1.00 1.00 0.92 0.94 0.94

1 1.00 1.00 1.00 0.78 0.78 0.78 0.88 0.88 0.88

2 1.00 0.93 0.93 1.00 1.00 1.00 1.00 0.96 0.96

Accuracy 0.93 0.93 0.93

Table 3. Results for Pima Indian Diabetes Datasets

Labels Precision Recall F1-score

1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.83 0.84 0.84 0.86 0.83 0.83 0.84 0.84 0.84

1 0.65 0.63 0.63 0.61 0.65 0.86 0.63 0.64 0.64

Accuracy 0.78 0.78 0.78

Table 4. Results for dermatology datasets

Labels Precision Recall F1-score

1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.93 0.93 0.93 1.00 1.00 1.00 0.97 0.97 0.97

1 0.94 0.94 0.93 1.00 1.00 1.00 0.97 0.97 0.96

2 1.00 1.00 1.00 0.96 0.96 0.96 0.98 0.98 1.00

3 0.94 0.94 0.92 0.94 0.94 0.95 0.94 0.94 0.95

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 0.67 0.67 0.67 0.80 0.80 0.80

Accuracy 0.96 0.96 0.96

5.2 Practical Gains

Figure 1 presents the theoretical and practical speedup achieved given the num-
ber of cores used demonstrating a remarkable runtime improvement, especially
when the feature space is ample and the proposal is expensive. Figure 1 demon-
strates that in practise, theoretical speedups of this order can not be achieved
for various reasons, including communications overhead, and as well as the cores
do not receive constant utilisation. The practical improvement achieved used
the novel method we proposed, speeds up the process up to 18 times depending

Single MCMC Chain Parallelisation on Decision Trees 203

on the number of cores the user may choose to utilise. Moreover, Fig. 1 demon-
strates that even if we use more than 25 cores, the speedup achieved is the same,
because of the architecture of the cores. When we run on a local machine(laptop
or personal computer) a medium size dataset(500,000 entries), the memory is
not enough to run every single parallel tree on a separate core. Given that, we
have to wait for a core to finish the task, in order to allocate its memory to
another core. Given that, we end up that it is not always beneficial to use more
cores, as faster execution time and speedup is not guaranteed. Scaling up to 25
cores is the ideal, having in mind that any number above that, might not benefit
the run time. To the best of our knowledge it is the first time where a single
chain in general, specifically on decision trees, is parallelised with our proposed
method.

Fig. 1. Speedup achieved by utilising different number of cores

6 Conclusion

Our novel proposed method for parallelising a single MCMC Decision tree chain
takes advantage of multicore machines without altering any properties of the
Markov Chain. Moreover, our method can be easily and safely used in conjunc-
tion with other parallelisation strategies, i.e., where each parallel chain can be
processed on a separate machine, each being sped up using our method.

Furthermore, our approach can be applied to any MCMC Decision tree algo-
rithm which needs to process hundreds of thousands of data given an expensive
proposal where an execution time of 18 times faster can be easily achieved. As
multicore technology improves, CPUs with multiple processing cores will pro-
vide speed-ups closer to the theoretical limit calculated. By taking advantage of
the improvements in modern processor designs our method can help make the

204 E. Drousiotis and P. G. Spirakis

use of MCMC Decision tree-based solutions more productive and increasingly
applicable to a broader range of applications. Future work includes on expanding
our method on a High Performance Computer(HPC), servers, and cloud which
are build for this kind of tasks to compare and demonstrate possible runtime
improvements, and discover the merits of such technologies. Moreover, we plan to
implement more MCMC single chain parallelisation techniques, including data
partitioning, and conduct experiments with various size and shapes datasets, to
find the most effective technique, given the type and shape of the dataset.

References

1. Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F.: Parallel metropolis
coupled markov chain monte carlo for Bayesian phylogenetic inference. Bioinfor-
matics (2004)

2. Byrd, J.M.R., Jarvis, S.A., Bhalerao, A.H.: Reducing the run-time of MCMC pro-
grams by multithreading on SMP architectures. In: 2008 IEEE International Sym-
posium on Parallel and Distributed Processing. IEEE (2008)

3. Byrd, J.M.R., Jarvis, S.A., Bhalerao, A.H.: Speculative moves: multithreading
markov chain monte carlo programs. High-Performance Medical Image Computing
and Computer Aided Intervention (HP-MICCAI) (2008)

4. Chipman, H.A., George, E.I., McCulloch, R.E.: Bart: Bayesian additive regression
trees. In: The Annals of Applied Statistics (2010)

5. Drousiotis, E., Shi, L., Maskell, S.: Early predictor for student success based on
behavioural and demographical indicators. In: Cristea, A.I., Troussas, C. (eds.) ITS
2021. LNCS, vol. 12677, pp. 161–172. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-80421-3 19

6. Le Brazidec, J.D., Bocquet, M., Saunier, O., Roustan, Y.: Quantification of uncer-
tainties in the assessment of an atmospheric release source applied to the autumn
2017. Atmos. Chemis. Phys. 21(17), 13247–13267 (2021)

7. Fisher, L., Mcdonald, J.: 3-two-sample t-test. Fixed effects analysis of variance.
Probability and Mathematical Statistics: A Series of Monographs and Textbooks
(1978)

8. Hastings, W.K.: Monte carlo sampling methods using Markov chains and their
applications (1970)

9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

10. Peskun, P.H.: Optimum monte-carlo sampling using Markov chains. Biometrika
60(3), 607–612 (1973)

11. Ročková, V., Saha, E.: On theory for Bart. In: The 22nd International Conference
on Artificial Intelligence and Statistics. PMLR (2019)

12. Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evi-
dence without specifying the number of contributors. Forensic Sci. Int. Genet. 13,
269–280 (2014)

13. Valderrama-Bahamóndez, G.I., Fröhlich, H.: MCMC techniques for parameter esti-
mation of ODE based models in systems biology. Front. Appl. Math. Stat. 5, 55
(2019)

https://doi.org/10.1007/978-3-030-80421-3_19
https://doi.org/10.1007/978-3-030-80421-3_19

An Extension of NSGA-II for Scaling
up Multi-objective Spatial Zoning

Optimization

Mohadese Basirati1,2(B), Romain Billot1, and Patrick Meyer1

1 IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France
{mohadese.basirati,romain.billot,patrick.meyer}@imt-atlantique.fr

2 Mines Saint-Etienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS,
UMR 6158 LIMOS, Saint-Etienne, France

Abstract. Among decision problems in spatial management planning,
marine spatial planning (MSP) has lately gained popularity. One of the
difficulties in MSP is to determine the best place for a new activity
while taking into account the locations of current activities. This paper
presents the results of the extension of one multi-objective evolutionary-
based algorithm (MOEA), non-dominated sorting genetic algorithm-II
(NSGA-II) solved the multi-objective spatial zoning optimization prob-
lem. The proposed algorithm aims to maximize the interest of the area
of the zone dedicated to the new activity while maximizing its spatial
compactness. The extended NSGA-II, unlike the traditional one, makes
use of a different stop condition, four crossover operators, three muta-
tion operators, and repairing operators. This algorithm is developed for
the raster data and it computes solutions for the multi-objective spa-
tial zoning optimization model at a large scale. The proposed NSGA-II
has revealed a good performance in comparison with the exact method
tested on a small scale. To improve the performance of the algorithm,
its parameters are calibrated and tuned using the Multi-Response Sur-
face Methodology (MRSM) method. Analysis of variance (ANOVA) was
used to determine the effective and non-effective factors and correct-
ness of the regression models. Finally, conclusions are made and future
research works are recommended.

Keywords: Multi-objective spatial zoning optimization · Evolutionary
algorithms · NSGA-II · Multi-response surface methodology · Marine
spatial planning · Raster

1 Introduction

A wide range of decision problems in the spatial planning strategy, such as land-
use planning [6], and marine spatial planning (MSP) [2] make use of spatial data.
Formally, MSP decision problems are optimization problems in which we must
identify the optimal position and form of a spatial region for a new activity, given
certain restrictions. Due to its complexity, the problem is formulated as a multi-
objective optimization problem (MOOP), resulting into a group of solutions
known as Pareto optimal solutions, rather than a single solution [1,3]. In a
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 205–219, 2022.
https://doi.org/10.1007/978-3-031-24866-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_16

206 M. Basirati et al.

recent paper, an exact mathematical zoning model for MSP is proposed as a
Multi-Objective Integer Linear Program [2]. Nevertheless, most of the linear
models could not be scaled up due to computational hardness [9]. Likewise,
many industrial and scientific optimization problems are intractable in terms of
computing optimal solutions. In reality, “good” results provided using heuristic
or meta-heuristic algorithms are frequently sufficient [13].

The contributions of this paper can be summarized as follows:

1. To address the computational complexity issue of the exact method for the
large-scale raster-based zoning problem in MSP, we proposed a new version
of a population-based MOEA (NSGA-II) which is a Pareto approach. Inno-
vations are proposed for initialization process, stopping condition, chromo-
some encoding, crossover, mutation, check and repair operators, constraint
handling strategies, and algorithm structure on raster data. The proposed
NSGA-II is used to simultaneously optimize the interestingness and com-
pactness objectives of the new activity’s zone.

2. Multi-Response Surface Methodology for parameters tuning: we set up a
design experiment (DOE) as Box-Behnken design(BBD) for the algorithm
which implements a multi-response regression model for three different map
sizes of the problem in order to determine the optimal value of the algo-
rithm parameters. Moreover, the effectiveness of all models are validated by
Analysis of Variance (ANOVA).

The article is structured as follows. In Sect. 2 we recall the problem setting
recently published. In Sect. 3, we present the NSGA-II algorithm for the problem
at hand to find the optimal solutions. In Sect. 4, we describe an experimental
setting to solve the proposed algorithm, while in Sect. 5, we propose the com-
putational results for artificially generated synthetic instances. Conclusions are
drawn in Sect. 6.

2 Related Work

As stated in the recent paper [2], one of the sub-topics of MSP is the zoning prob-
lem: the objective is to identify the ideal zone of the new activity while a certain
number of human activities already exist and are considered unchangeable in a
specified maritime region.

Figure 1 recalls the problem definition introduced in [2] in a fictive maritime
area along with all its various elements.

As shown in Fig. 1 these existing activities are shipping lanes, ports, and
restricted areas. The goal of this problem is to find the best place for a new
activity that optimizes both its interest and compactness. In the meanwhile,
it must observe the minimum and maximum distances from existing activities
without overlapping with them. For example, zone A is quite compact and inter-
esting, while meeting all minimal distance constraints. However, area B disobeys
a maximal distance constraint to the closest port (d�

p′) and a minimal distance to
the restricted windmill farm (d�

r′). While it is a completely compact zone but less

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 207

Fig. 1. Problem definition [2]

interesting. Likewise, the area C violates the minimal distance constraint to the
shipping lane (d�

s′), whereas it is less compact but utterly interesting. Finally, as
a result of these mentioned restrictions, among all three proposed zones, only the
area A is acceptable with respect to simultaneously objectives and constraints.
We refer the reader to [2] for a comprehensive formulation and exact resolution
of the problem, while the rest of this paper is dedicated to the development of a
meta-heuristic approach able to cope with large-scale problems.

The starting point in our problem is spatial data in which the information
describes different elements along with their locations on or near the earth’s
surface. In this case, we chose to use raster data presented as a regular grid of
cells or pixels. All related formulations are compiled with this data structure.

3 Problem Resolution

3.1 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

High computational cost and hardness limitations are the main issues in the
exact solvers for generating the exact solution sets. To cope with this issue,
implementing MOEAs such as single solution-based or population-based multi-
objective meta-heuristic algorithms can be applied. NSGA-II as a population-
based algorithms, is selected and implemented for this problem. However, to
enhance diversification and intensification of the proposed solutions, we selected
the population-based algorithm, NSGA-II [4]. Two key challenges in MOOPs are
(1) computing complexity and (2) non-elitism approach. To deal with the compu-
tational complexity, NSGA-II employs a fast non-dominated sorting strategy. To
address constrained multi-objective optimization problems, NSGA-II employs an

208 M. Basirati et al.

effective constraint-handling approach. The flowchart shown in Fig. 2, proposes
our NSGA-II architecture for solving the problem.

Fig. 2. The flowchart of innovative structure of the proposed NSGA-II for SZOP

During the search process, the proposed NSGA-II uses a different initializa-
tion process, stop criterion, four crossover operators, and three mutation oper-
ators as opposed to the traditional NSGA-II [5]. In addition, offspring chro-
mosomes, which are generated by the four crossovers, and three mutations, can
have a chance to compete with parent chromosomes for survival from one gen-
eration to the next. Moreover, the proposed NSGA-II has two check and repair
mechanisms to automatically prevent its search process to get stuck in the local

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 209

optima or infeasible solutions. In other words, the proposed NSGA-II is capable
of preventing repetitive solutions by generating solutions with different struc-
tures and not throwing away the non-feasible solutions: it is able to repair those
which need a minor modification to make them feasible/acceptable. It should be
noted that the two notations pm, and Npop in Fig. 2 represent (1) the probability
of mutation, and (2) the population size, respectively. In addition, the details of
the proposed NSGA-II components will be presented in the subsequent sections.

In this flowchart, after generating the random initial population including
the feasible different zones with respect to the solution and population size, the
current zones set are evaluated to make a first memory of the objective func-
tions. By doing so, the main loop of this algorithm begins. By considering the
stop criterion, at the first step, one out of four crossovers is selected randomly
to generate non-iterative and acceptable offspring and this process repeats until
reaching the crossover rate. Afterwards, if the mutation probability is met, the
same process in a similar way as crossover is carried out for three mutation
operators to make offspring. Next, all populations and achieved offspring com-
bined to make a union set are evaluated. In this step, because the size of a union
set should be the same as that of the initial population, all zones may not be
in a union set. As a result, crowding sorting is used to complete it by adding
an incomplete front in the crowding distance technique, in which the required
population is created by the top of the front elements without sacrificing good
solutions (elitism). Moreover, to calculate the stop criterion, which is the num-
ber of non-improved Hypervolume values, it needs to achieve the Pareto front
in each iteration. Therefore, in case of not meeting the stop criterion, the final
selected solution set is stored and gives rise to the next generation. Otherwise,
the final Pareto front is reported.

3.2 Solution Encoding Schema

The structure of the solution representation is one of the first steps in the suc-
cessful implementation of meta-heuristic algorithms. For our problem, the con-
straints are as follows:
– Each solution should have a fixed number of cells (the required solution size).
– Each solution should be without any hole.
– Each solution should be in the feasible area without crossing other existing

activities.
– The shape and structure of each solution should be compact without any

interruption.

With respect to the mentioned elements, the representation form is
a multi-dimensional matrix, Npop × [1 × solution size] including Npop

arrays(chromosomes) [1 × solution size]. Each chromosome includes the cell
coordinates (x,y) of the proposed new activity zone in the related problem.

3.3 The Initialization Operators

Generating a well-initialized population could reduce the convergence rate to
reach the optimal Pareto Front in less iterations. The used algorithm for gener-
ating the random population is like circle filling on a grid by bounding box in

210 M. Basirati et al.

which instead of checking distances on the entire possible grids, we are saving a
lot of time by checking a much smaller area without looking at the rest of the
grid. This algorithm is able to generate compact zones with enough diversifi-
cation which meet all constraints mentioned in the Sect. 3.2. The steps of this
algorithm could be summarized as follows:

1. Defining the square bounding box
2. Gathering all cells inside of this box
3. Selecting those cells which meet all following conditions

– Being inside of the circle starting with radius 1 (if it is less or equal than
the radius then mark it)

– Being feasible
– Not being repetitive

4. Repeating Step 3 by reaching the upper-bound solution size and increasing
the radius in each iteration up to the max predefined radius (8)

3.4 Crossover Operators

Single-Point Vertical Cutting Crossover (Crossover-1). To thoroughly
explore the search space of the problem, the proposed NSGA-II employs four
crossovers, namely, crossover 1, crossover 2, crossover 3, and crossover 4, applied
to three different parts of the chromosome. For each crossover, we need to select
two parents as the inputs for this operator. Therefore binary tournament selec-
tion [5] is used to select two selective parents. As shown in Fig. 3, two parents
which are representing two zones along with their encoded chromosomes are in
purple and yellow. Next, as can be seen in Fig. 3, one cut-point cell is randomly
selected by the length of each chromosome. Next, the middle cell of these two
cut-point cells is made, which is called “C” in red. By doing so, each parent
is divided into three parts; before cut-point, cut-point, and after the cut-point,
respectively. Initially, both parents are sorted based on x-coordinate, hence this
division is done vertically, that is why this crossover is called “single-point
vertical cutting crossover”. Having found the middle cell, the two other
parts are vertically swapped and transformed into the new center point, that
is, “left-hand” side of “Parent-1” and “right-hand” side of “Parent-2” are
shifted to the middle cell that forms the “Offspring-1”. On the other side, the
“left-hand” side of “Parent-2” and the “right-hand” side of “Parent-1” are
replaced with the same middle cell, producing another offspring, “Offspring-2”.

Single-Point Horizontal Cutting Crossover (Crossover-2). In this
crossover, unlike crossover-1, the cutting direction is changed from vertical to
horizontal. In other words, two parent chromosomes are sorted based on y-
coordinate.

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 211

Fig. 3. Single-point vertical cutting crossover (Crossover-1)

Semi-ProportionalVertical Single-PointCuttingCrossover (Crossover-
3). By implementing the first two crossovers, the main focus is making well-
diversified offspring from the structure point of view in the parent neighbourhoods.
However, in the next two crossovers, the aim is to generate well-diversified located
offspring in the adjacency of parents. Therefore, the cutting type in crossovers 3
and 4 is the same as crossover-1 (vertical single-point cutting). Nevertheless, after
randomly selecting the cutting cells in the parents, the new rule is applied to find
the cell “C” in the offspring. The approach to find the cell “C” is based on the first
objective function, namely, the interestingness value of parents.

In Crossover-3, an indicator called “proportion is used, which calculates the
difference between the first objective function values of two parent chromosomes.
Three different scenarios are considered for the proportion value as follows:

1. Zero proportion: when the first objective function value of both parents
is equal, the middle cell in the distance between the selected cutting cells of
parents (1/2 ×A) is chosen as a new “C” cell.

2. Negative proportion: when the first objective function value of “Parent-
1” is less than “Parent-2”, a new “C” cell is pulled toward the “Parent-2”
located in the distance (2/3 × A) from the “Parent-1” making one of the
offspring. However, the other offspring is generated as before in the middle
distance.

3. Positive proportion: The movement direction of the “C” cell here is exactly
in contrary with the negative proportion.

Full-Proportional Vertical Single-Point Cutting Crossover (Crossover-
4). The only difference between crossover 3 and 4 is that in case of positive and
negative proportions, both offspring intend to get closer toward the parent with
higher objective function. Therefore, we could name it as full-proportional ver-
tical single-point cutting crossover. All 4 crossovers are implemented iteratively
through a loop. In each iteration, the check and repair operators check the feasi-
bility of the offspring (explained in Sect. 3.6). If each offspring is validated, it will
be added to the list of offspring. This insertion will continue until the crossover
rate is reached.

212 M. Basirati et al.

3.5 Mutation Operators

As shown in the crossover operators, to exploit well-diversified solutions around
the parent chromosomes, vertical and horizontal reconfiguration of the solutions
are considered. However, to better explore the search space of the problem, three
mutation operators are used. Whenever the mutation operators are called, after
a predefined number of iterations during the main loop of the proposed MOEAs,
they will randomly select only one to implement. The structure of the mutations
is based on the combination of 4-direction movements (right, left, up, and down)
and rotational symmetry of the solution through the solution space (90◦, 180◦,
270◦). Like the crossover operators in Sect. 3.4, the inputs of each mutation are
two parent chromosomes (binary tournament selection).

In mutation 1, each chromosome is moved to the other part of the search
space, where the moving step between the list of 4-directions is randomly selected
for each parent. Meanwhile, on the one hand, in mutation 2, in addition to 4-
direction movement, each gen (x,y) coordinate in each parent chromosome should
be rotated counterclockwise by a given angle around a given origin. On the other
hand, in mutation 3, each parent chromosome is only influenced by the rotation
process. After checking the feasibility and repairing the output of each mutation,
there could be at maximum two offspring chromosomes.

3.6 Check and Repair Operators

Some issues could happen in the making process of the solutions. One issue is
generating the new solutions in the feasible solution space neither outside of
that nor crossing with the existing activities. The other issue is reproducing
the solutions well compact (i.e. without any hole). To solve these issues, two
different check and repair operators are used, called “check-and-repair” and
“compacity-improver”. For the first issue, three different scenarios and one
scenario for the second issue could happen as follows:

– Scenarios related to the first issue:
1. The chromosomes are outside of the solution space (map)
2. The chromosomes are inside of the solution space but have overlap with

the existing activities.
– Scenarios related to the second issue:

1. The chromosomes include holes or interruptions.

For each mentioned scenario some solutions are suggested hereafter;

– The proposed approach for the first issue using “check-and-repair” opera-
tor:
1. Generating and replacing a totally new chromosome by a random popu-

lation generator.

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 213

2. Counting the number of overlapped cells; if less than 5, the searching
process begins to find alternatives in their adjacent cells while keeping or
improving the compacity; otherwise, it is totally deleted. All feasible and
non-iterative 4-direction ((-1, 0), (0, 1), (0, -1), (1, 0)) neighbours of the
overlapped cell are gathered.

– The proposed approach for the second issue using “compacity-improver”
operator:
1. Bounding the “0-1” solution matrix by value “2” .
2. Exploring the rows and columns without any “1” or any single “0” fully

surrounded by “1”.
3. Removing the found zero rows/columns and exchanging the single sur-

rounded “0” element with one of the feasible “1” in the outer layer of the
matrix.

These two repairing operators are implemented in the body of all crossovers
and mutations, whenever they are called in the main loop of the NSGA-II.

3.7 Evaluation and Selection Operators

Fitness value of each chromosome (quality of a solution) is calculated by two
different objective functions. The first objective function is calculated by sum-
ming the interest value of zone’s cells, and the compacity value is calculated
by the representative method for the measurement of compactness called the
“Normalized Discrete Compactness (NDC) measure, suggested by [15].

Through the selection process, each time, the population is sorted into dif-
ferent non-dominance levels. Each solution is assigned a fitness equal to its
non-dominance level (“1” will be assigned to the first non-dominated front).
Accordingly, even though the objectives are maximization, by multiplying into
-1, the assumption of the problem is changed to the minimization of the fitness
functions.

The process of non-dominated sorting and filling the population steps accord-
ing to the crowding distance can be carried out simultaneously in this procedure
until the population size requirement is met. As a result, a non-dominated front
finding operator was applied each time to see if the obtained solution could be
included into the Pareto set. If this is not possible, there is no need to sort any
further. However, if the number of identified solutions exceeds the population
size, the extra number of solutions will be deleted using the crowding-distance
measure from the last front that could not be fully accommodated.

3.8 Stop Condition

In the MOEAs different stopping conditions may be used, 1) fixed number of
iterations, 2) convergence to a solution with a given quality [12]. We devised
a new stop criterion that may partially address the weaknesses of redundant
generations and reduce the ratio of solution quality to computing time. When
the algorithm has executed a certain number of iterations without improvement,

214 M. Basirati et al.

this condition is used to end the operation. It is based on the HV value, the
diversity and convergence control measure of MOEAs Pareto set, during a given
number of iterations.

4 Response Surface Methodology for Parameters Tuning

This section calibrates the NSGA-II using a parameter tuning procedure. To do
so, the response surface technique (RSM) is used to optimize the parameters of
MOEAs, which have a significant impact on the quality of the solution obtained.
However, most past RSM-based applications have only dealt with single-response
problems, multi-response situations receiving less attention.

4.1 Multi-Response RSM (MRRSM) Optimization

Multi-Response RSM (MRRSM) Optimization problems can be divided into
three groups; Desirability viewpoints, Priority based methods, and Loss func-
tion [8].

Although the MRRSM’s responses may have curvature over the search ranges
of the significant factors, BBD with one central point is chosen to run the exper-
iments [10]. There are k = 4 factors in three levels, i.e. low, medium and high,
signed by −1 , 0 , and +1 , respectively. Using the initial data in Table 1, the
coded NSGA-II is executed based on the BBD for four factors in three levels
with one center point shown in Table 2. This design yields an experiment with
25 runs for three different map sizes.

Table 1. Data generation parameters

Parameter name Possible values Description

nrow 55, 300, 1000 Number of rows of the raster grid

ncol 55, 300, 1000 Number of columns of the raster grid

np 6, 8, 10 Number of ports

ns 6, 7, 8 Number of shipping lanes

na 3, 4, 5 Number of protected area

nw 2, 3, 4 Number of windmill farms

solution size 15 Size of a solution

To make a balance between robustness and optimization for multiple response
problems, we make a hybrid method by using the loss function of Taguchi method
to compact and compute multi-responses.

There are two kinds of factors in the loss function of Taguchi method; noise
factors N , and controllable factor S. Since MOEAs have multiple runs to obtain
better solutions, signal-to-noise ratio (S/N) is used in this research to analyze
the results.

In this article, three measures are utilized to evaluate NSGA-II in comparison
with the exact method: Hypervolume (HV) [11], number of Pareto solutions

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 215

Table 2. Search range of algorithm parameters

Algorithm Actual values Coded values Low(-1) Medium(0) High(+1)

NSGA-II Population size (Npop) x1 100 150 200

Crossover rate (Rc) x2 0,4 0,6 0,8

Mutation rate (Rm) x3 0,1 0,4 0,7

Mutation probability (Pm) x4 0,25 0,5 0,75

(NPS), and best solution (Best Sol). To determine best solution, for each set of
solution, both objective functions values, weighted 0.5 each, are added together.
After that, the optimal solution, the maximum, is chosen as Best Sol (similar to
how the simple additive weighting algorithm (SAWA) in multi-criteria decision
making (MCDM) handles [16]). As the problem is maximization, the the greater
HV, NPS, and Best Sol values, the more efficient.

According to the goal of our experiment, among four different formulations
of the Taguchi method, we selected the first type, the larger is better [7], whose
aim is to find the maximum S/N defined in Eq. 1:

S

N
= −10 log(

1
n

n∑

i=1

1
sum2

i

) (1)

where sumi is the response in the Taguchi method, and n is the number of
replications(n = 3). Now, S/N is our MRRSM response. To establish the signif-
icance of the individual process parameters and their interactions, a regression
equation can be formed. It estimates the correlation between the response and
the input process parameters.

Finally ,the obtained metrics are combined into a single number to calculate
the S/N (using SAWA in the MCDM approach with equal weight [16]).

The developed algorithms and the experimental DOE tests are coded, respec-
tively, in Python, version 3.8 and R version 4.1.2 to estimate the response func-
tions. All experimental tests are implemented on the Openstack virtual system
with 20 VCPU, Disk 10 GB with 30 GB RAM running Linux/Ubuntu 20.04.1
LTS.

In this paper, we used the combination of stepwise regression and cross-
validation which returns the best performing model as a feature selection tech-
nique for all regression models. All final models are solved within the coded
parameters, and the optimum combinations of the parameters (a stationary point
in the original units) are achieved by the algorithm. Statistical significance was
checked by F-value and p-value (significant probability value less than 0 .05).
Based on the ANOVA results, the quality of fit of the polynomial model was
evaluated using the determination coefficients R-squared, adjusted R-squared,
p-value, and the acceptable stationary point in original units. Finally, the opti-
mal combination, which is the stationary point based on the generated response
surface model, is obtained.

216 M. Basirati et al.

4.2 Final Tuned Parameters

Having found the best fitted MRSM regression model for three different map
sizes, the optimal values of the tuned parameters are given in Table 3. Note that
depending on problem size in terms of map size, we fit one individual MRSM
model leading to different tuned parameters.

Table 3. Tuned parameters for NSGA-II

Solving methodologies Parameters Size

Small Medium Large

NSGA-II Npop 157 179 150

Rc 0,6 0,67 0,69

Rm 0,44 0,43 0,46

Pm 0,5 0,5 0,5

Moreover, to determine the best value for the stop criteria, for each size of the
problem, we run 8 different problems with the fixed number of iterations 3000,
to see the trend of HV value for estimation. Next, the average non-improvement
number of iterations 600 for each size is considered as a stop condition.

5 Results

5.1 Performance Measures

To assess the performance of NSGA-II rather than the exact method, quality
indicators are provided. They are searching for two complimentary performance
goals: 1) convergence to the ideal Pareto front and 2) diversity of options along
the front [14].

Therefore, in addition to the metrics defined in Sect. 4, iteration number
and three other performance metrics are applied. Among the explained metrics,
NPS , BestSol , and HV are considered as the diversity-based, convergence-based,
and hybrid category of the quality indicators which combines convergence and
diversity measures, respectively.

Corresponding to the following three performance metrics, the higher, the
better of the solution quality we have.

Mean Ideal Distance (MID):
This measure presents the closeness between Pareto solution and the ideal point
(0, 0) which is a convergence-based indicator shown as in Eq. 2:

MID =
∑n

i=1 ci
n

(2)

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 217

where n is the number of non-dominated set and ci =
√

f1i2 + f2i2 , and f1i, f2i
are the value of i th non-dominated solution for first and second objective function
respectively.

Spread of non-dominance solution (SNS):
The spread of a non-dominance solution is a diversity-based indicator that
assesses the uniformity of the generated solution distribution in terms of dis-
persion and extension. The formulation of this indicator is illustrated in Eq. 3.

SNS =

√∑n
i=1(MID − ci)2

n− 1
(3)

The rate of achievement to two objectives simultaneously (RAS):
The balance in reaching to objective functions is another convergence-based
quality metrics. In the following Eq. 4 Fi = min(f1i, f2i).

RAS =

∑n
i=1| f1i−Fi

Fi
| + | f2i−Fi

Fi
|

n
(4)

5.2 Comparison Analysis

To calculate all these metrics, first, 8 different randomly selected datasets as
different sets of inputs are tested. Then, to evaluate a much more robust com-
parison, each instance is implemented 30 times and each digit is the median of
30 runs of each problem with its respective method.

To prove the validity of the algorithms, we need to show the gap between
the optimal and NSGA-II solutions for a small map size. As shown in Table 4
according to each measure, NSGA-II achieved promising values and pretty well
close to exact solutions in small size.

Table 4. The comparison between NSGA-II and the optimal solution

Problems Map Size HV Best Sol MID SNS RAS

Exact NSGA-II Exact NSGA-II Exact NSGA-II Exact NSGA-II Exact NSGA-II

1 Small 5,866 5,5173 0,563 0,5315 78,859 76,0040 3,038 2,215 0,995 0,9903

2 6,310 5,7088 0,557 0,5210 85,126 79,5036 4,936 1,730 0,996 0,9909

3 6,313 5,6567 0,558 0,5205 84,002 79,0040 6,725 1,368 0,995 0,9904

4 6,310 5,7088 0,557 0,5214 85,112 79,1463 5,039 1,891 0,996 0,9904

5 6,316 5,7119 0,557 0,5220 85,126 79,3371 4,814 2,060 0,996 0,9901

6 6,313 5,7149 0,557 0,5205 85,751 79,3374 5,158 1,869 0,996 0,9904

7 6,310 5,6299 0,558 0,5205 85,223 79,0040 5,606 2,060 0,996 0,9901

8 6,310 5,7149 0,557 0,5181 85,112 79,3368 5,314 2,079 0,996 0,9901

Average 6,2556 5,6704 0,5580 0,5219 84,2891 78,8342 5,0789 1,9090 0,9958 0,9903

Finally, in addition to the small size, the results of NSGA-II for medium
and large problem sizes with respect to the performance metrics are shown in
Table 5.

218 M. Basirati et al.

Table 5. The Result of NSGA-II

Problems Map size HV Best Sol MID SNS RAS

1 Medium 5,7088 0,5163 78,4038 0,8989 0,9901

2 5,7088 0,5196 77,8921 1,5506 0,9901

3 5,7088 0,5172 78,3789 0,8721 0,9901

4 5,7057 0,5154 78,4323 0,8692 0,9901

5 5,7057 0,5154 78,4038 0,9147 0,9901

6 5,8636 0,5356 78,4328 2,5409 0,9898

7 5,7057 0,5154 78,3675 0,8647 0,9899

8 5,6451 0,5163 78,3789 0,8421 0,9899

Average 5,7190 0,5189 78,3363 1,1691 0,9900

1 Large 5,8958 0,5129 80,6714 1,2377 0,9901

2 5,9640 0,5145 80,6714 1,4120 0,9897

3 5,8881 0,5168 80,2547 1,1655 0,9895

4 5,8881 0,5155 80,6714 1,2235 0,9894

5 5,8138 0,5054 80,6463 0,4633 0,9888

6 5,8850 0,5129 80,3623 1,0260 0,9895

7 5,8942 0,5103 81,0039 1,0945 0,9900

8 5,8881 0,5103 80,5050 0,8421 0,9897

Average 5,8896 0,5123 80,5983 1,0581 0,9896

6 Conclusion

In this paper, a novel population-based meta-heuristics algorithm is proposed to
solve one of the challenges mentioned in [2]. The extended NSGA-II thoroughly
addresses the problem size restriction in an enough fast way while providing
solutions that are close to optimality. On a small scale, our study represents
different performance measures to prove the validation of the proposed NSGA-
II in comparison with the exact solutions. Moreover, having tuned the proposed
algorithm by MRSM for three different problem sizes, the results for the large-
scale are represented. Another extension of this study, however, would be to
determine the ideal site for numerous new activities at the same time, which
would be one of the viewpoints of this effort. In the event of disagreement, we
intend to provide certain negotiation-based algorithms to find a solution that is
acceptable to all parties.

References

1. Basirati, M., Akbari Jokar, M.R., Hassannayebi, E.: Bi-objective optimization
approaches to many-to-many hub location routing with distance balancing and
hard time window. Neural Comput. Appl. 32(17), 13267–13288 (2020)

NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization 219

2. Basirati, M., Billot, R., Meyer, P., Bocher, E.: Exact zoning optimization model
for marine spatial planning (MSP). Front. Marine Sci. 8, 726187 (2021)

3. Censor, Y.: Pareto optimality in multiobjective problems. Appl. Math. Optim.
4(1), 41–59 (1977)

4. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduc-
tion. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimi-
sation for Product Design and Manufacturing. Springer, London (2011). https://
doi.org/10.1007/978-0-85729-652-8 1

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

6. Gwaleba, M.J., Chigbu, U.E.: Participation in property formation: Insights from
land-use planning in an informal urban settlement in tanzania. Land Use Policy
92, 104482 (2020)

7. Heckert, N.A., et al.: Handbook 151: Nist/sematech e-handbook of statistical meth-
ods. In: e-Handbook of Statistical Methods, pp. 2 (2002)

8. Hejazi, T.H., Bashiri, M., Dı, J.A., Noghondarian, K., et al.: Optimization of prob-
abilistic multiple response surfaces. Appl. Math. Model. 36(3), 1275–1285 (2012)

9. Lokman, B., Köksalan, M., Korhonen, P.J., Wallenius, J.: An interactive approx-
imation algorithm for multi-objective integer programs. Comput. Oper. Res. 96,
80–90 (2018)

10. Myers, R.H., Montgomery, D.C., Vining, G.G., Borror, C.M., Kowalski, S.M.:
Response surface methodology: a retrospective and literature survey. J. Qual. Tech-
nol. 36(1), 53–77 (2004)

11. Paquete, L., Schulze, B., Stiglmayr, M., Lourenço, A.C.: Computing representa-
tions using hypervolume scalarizations. Comput. Oper. Res. 137, 105349 (2022)

12. Sidi, M.O., Kadrani, A., Quilot-Turion, B., Lescourret, F., Génard, M.: Compro-
mising NSGA-II performances and stopping criteria: case of virtual peach design.
In: International Conference on Metamaterials, Photonic Crystals and Plasmonics,
p. 2 (2012)

13. Stewart, T.J., Janssen, R., van Herwijnen, M.: A genetic algorithm approach to
multiobjective land use planning. Comput. Oper. Res. 31(14), 2293–2313 (2004)

14. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74. John Wiley &
Sons (2009)

15. Wenwen, L., Goodchild, F., Church, R.: An efficient measure of compactness for
2d shapes and its application in regionalization problems. Int. J. Geograph. Info
Sci. 27(6), 1227–1250 (2013)

16. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision mak-
ing: A simulation comparison of select methods. Eur. J. Oper. Res. 107(3), 507–529
(1998)

https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/3-540-45356-3_83

Competitive Supply Allocation
in a Distribution Network Under

Overproduction

Alexander Krylatov1,2(B) , Yulia Lonyagina1, and Anastasiya Raevskaya1

1 Saint Petersburg State University, Saint Petersburg, Russia
a.krylatov@spbu.ru, aykrylatov@yandex.ru

2 Institute of Transport Problems RAS, Saint Petersburg, Russia

Abstract. The paper aims to deal with the reallocating supply prob-
lem that result from the order promising process under overproduction.
To this end, we develop a competitive distribution model to facilitate
decision-making for order managers and to provide an intelligent sup-
port tool. The basis of the distribution model structure is a non-linear
constrained optimization program that intends to minimize the costs of
competing suppliers in case of an overproduction strategy. We obtain
explicit conditions for orders relocation under affine delivery costs. An
explicit form of conditions on the current delivery pattern will allow one
to develop intelligent tools for decision-making support in the field of
order management.

Keywords: Nonlinear optimization · Resource allocation problem ·
Distribution network

1 Introduction

The order penetration point defines the stage in the manufacturing value chain
where a particular product is linked to a specific customer order through different
product delivery strategies, such as make-to-stock, assemble-to-order, make-to-
order and engineer-to-order [13]. In this paper, we study the case of an overpro-
duction strategy for supplier to avoid shortage. During the order promising pro-
cess, distributors normally make commitments with customers about the quanti-
ties and dates of orders. However, unexpected events may happen that could lead
to a shortage supply. Researchers pointed out several causes of these unexpected
events: (i) arrival of more priority customer orders that require already reserved
products; (ii) delays in raw materials or components; (iii) machine breakdowns;
(iv) workers absenteeism, among others [4]. These events might lead to the possi-
bility of making partial or delayed deliveries, i.e., the shortage situation. In par-
ticular, cyclical industries face alternating periods of undersupply, when buyers

The work was supported by a grant from the Russian Science Foundation (No. 19-71-
10012 Multi-agent systems development for automatic remote control of traffic flows
in congested urban road networks).

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 220–231, 2022.
https://doi.org/10.1007/978-3-031-24866-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_17&domain=pdf
http://orcid.org/0000-0002-6634-1313
http://orcid.org/0000-0002-6240-177X
https://doi.org/10.1007/978-3-031-24866-5_17

Competitive Supply Allocation in a Distribution Network 221

know that a shortage is imminent and rationing will occur. Thus, suppliers can
follow overproduction strategy to avoid partial, delayed and cancelled deliveries.

In practice, when supply delivery time increases, customers make multiple
orders with the same supplier or with different suppliers. Such multiple orders
may overload the capacity of a distribution network and increase lead-time. In
the literature, there are studies of shortage gaming as a leading contributor to
the bullwhip phenomenon [15]. Researchers considered shortage decision poli-
cies, investigated an integrated production and maintenance planning model
with time windows and shortage costs [2,11]. Machine learning techniques for
reducing underproduction costs and overproduction costs were developed [6]. In
this paper, we develop the distribution model that intends to minimize the costs
of competing suppliers in case of an overproduction strategy. We show that the
side effect of this strategy is the relocation of order deliveries in a distribution
network. The basis of the model structure is a non-linear constrained optimiza-
tion program.

Samuelson constructed the net social pay-off function and offered the first
mathematical formulation of equilibrium commodity flow assignment problem
in a network of finished goods in a form of constrained optimization program
[16]. The supply-demand allocation pattern, which satisfies this program, is
called equilibrium. Researchers generalized this model for the network of multi-
commodity goods and, nowadays, this model is called spatial equilibrium model
[18]. Worth mentioning that this model takes into account relationships between
supply, demand and logistics costs. The study of general optimality conditions
for this program is given in [5].

Today the problem of supply allocation in distribution networks is highly
urgent. In particular, researchers discuss on implementation of this model when
investigate actual transportation networks [19]. Some of them concentrate on
spatial models under imperfect competition, others study integration of distri-
bution networks under perfect competition [3,9,20]. On the one hand, the non-
identity of equilibrium models for distribution networks and integrative models
with non-zero commodity flow is pointed out [1,12]. On the other hand, equi-
librium spatial models demonstrate explainability and methodological potential
for the analysis of commodity flows and pricing in logistic networks [7,17].

Recently, the conditions on active flows in a network of homogeneous goods
were obtained explicitly under linear mappings of elastic demand and supply [8].
However, when manufacturing faces such uncertainties as overproduction (short-
age), supply (demand) can no longer consider elastic. In this paper, we study
the reallocating supply problem that result from the order promising process
under overproduction. We develop a competitive distribution model to facilitate
decision-making for order managers and to provide an intelligent support tool.
Section 2 contains the basis of the distribution model in a form of the non-linear
constrained optimization program that intends to minimize the costs of compet-
ing actors suppliers and customers. In Sect. 3, we obtained explicit conditions
for orders relocation under affine delivery costs. An explicit form of conditions
on the current delivery pattern will allow one to develop intelligent tools for

222 A. Krylatov et al.

decision-making support in the field of order management. Section 4 discusses
on strategies of suppliers under overproduction. Conclusions are given in the last
section of the paper.

2 Equilibrium Flow Allocation in a Single-Commodity
Network

Consider the set of suppliers M and the set of customers N , which are associated
with commodity production, distribution, and consumption. We denote by si

the supply of i ∈ M , and by λi – the price of a unit of the ith supply, λ =
(λ1, . . . , λm)T. By dj we denote the demand of j ∈ N , and by μj – the price of a
unit of the jth demand, μ = (μ1, . . . , μn)T. Finally, let xij ≥ 0 be the commodity
volume between a pair (i, j), while cij(xij) is the delivery cost of a unit of xij .
Let us also introduce the indicator of delivery status:

δij =
{

1 for xij > 0,
0 for xij = 0,

∀(i, j) ∈ M × N.

Definition. The allocation pattern x is called equilibrium if

λi + cij(xij) = μj for xij > 0,
λi + cij(xij) ≥ μj for xij = 0,

∀(i, j) ∈ M × N.

Thus, if the sum of the supplier’s price and the delivery costs for a customer
exceeds his/her demand price, then the supplier will face with the cancelled
delivery.

An equilibrium allocation pattern can be obtain as a solution of the following
optimization problem [10,14]:

min
x

∑
i∈M

∑
j∈N

xij∫
0

cij(u)du

subject to ∑
j∈N

xij = si ∀i ∈ M,

∑
i∈M

xij = dj ∀j ∈ N,

xij ≥ 0 ∀i, j ∈ M × N,

under ∑
i∈M

si =
∑
j∈N

dj .

In this paper, we develop a competitive distribution model based on the above
non-linear constrained optimization program. We show that this model facilitates
decision-making for order managers and provides an intelligent support tool. To

Competitive Supply Allocation in a Distribution Network 223

this end, we obtain explicit conditions for orders relocation under affine delivery
costs. Obtained supply relocation policy in a distribution network under over-
production is appeared to allow order manager relocate supply among customers
in order to avoid cancelled deliveries. This relocation guarantees minimum costs
for all customers caused by the unexpected shortage.

3 Competitive Supply Allocation in a Distribution
Network Under Overproduction

Let us study a competitive supply allocation in a distribution network modelled
by a single-commodity network with m suppliers and one customer (i.e., |M | = m
and |N | = 1). We assume that available supply is more than the overall demand:

d <
∑
i∈M

si.

In other words, a distributor faces competitive supply relocation in a distribution
network under overproduction. Thus, we introduce Δ > 0 as an overproduction
value: ∑

i∈M

si − d = Δ, (1)

while εi ≥ 0 as the difference between i-th demand and its actual delivery volume,
i, i ∈ M , ε = (ε1, ε2, . . . , εm):

∑
i∈M

(si − xi) =
∑
i∈M

εi = Δ. (2)

In terms of a single-commodity network, the allocation pattern x∗, which satisfies
the following optimization problem:

x∗ = arg min
x

∑
i∈M

xi∫
0

ci(u)du, (3)

subject to ∑
i∈M

xi = d,

xi = si − εi, ∀i ∈ M,
xi ≥ 0, ∀ i ∈ M,
εi ≥ 0, ∀i ∈ M,∑

i∈M

εi = Δ.

(4)

is the equilibrium deliveries allocation under overproduction.
Within the present paper, we examine equilibrium allocation in a case of

affine delivery functions. In other words, we assume that

ci(z) = c0
i + kiz, c0

i ≥ 0, ki > 0, ∀i ∈ M, (5)

i.e., delivery costs increase when the volume of the order increases.

224 A. Krylatov et al.

Lemma 1. Equilibrium deliveries allocation of overproduction in problem (3)–
(4) under affine delivery costs (5) is obtained be the following pattern:

xi =

{
μ−λi−c0i

ki
, if μ − λi > c0

i ,

0, if μ − λi ≤ c0
i ,

∀i ∈ M, (6)

where λ and μ satisfy
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈M

μ−λi−c0i
ki

δi = d,

μ−λi−c0i
ki

δi = si − εi, ∀i ∈ M∑
i∈M

εi = Δ

λi = η, if εi > 0
λi = η + βi, if εi = 0

(7)

Proof. Since goal function (3) is convex as well as the restriction set (4), then
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient. Let us
study the Lagrangian of problem (3)–(4):

L =
∑
i∈M

xi∫
0

(c0
i + kiu)du + μ

(
d −

∑
i∈M

xi

)
+

+
∑
i∈M

λi (xi − si + εi) +
∑
i∈M

(−αixi)+

+
∑
i∈M

(−βiεi) + η

(
Δ −

∑
i∈M

εi

)
.

We differentiate this Lagrangian with respect to xi and εi, i ∈ M , and equate
the results to zero:

∂L

∂xi
= c0

i + kixi − μ + λi − αi = 0 ∀i ∈ M, (8)

∂L

∂εi
= λi − βi − η = 0 ∀i ∈ M. (9)

According to complementary slackness,

− αixi = 0, ∀i ∈ M, (10)

− βiεi = 0, ∀i ∈ M. (11)

Using (10), due to (8) we obtain:

xi =

{
μ−λi−c0i

ki
, if μ − λi > c0

i ,

0, if μ − λi ≤ c0
i ,

∀i ∈ M,

Competitive Supply Allocation in a Distribution Network 225

that leads to (6). Moreover, due to (9) and (11), we obtain:

λi =
{

η, if εi > 0,
η + βi, if εi = 0,

∀i ∈ M.

However, since
∑

i∈M

xi = d and xi = si − εi, i ∈ M , then:

∑
i∈M

xiδi = d, (12)

xiδi = si − εi ∀i ∈ M. (13)

Therefore, taking into account
∑

i∈M

εi = Δ, when one substitutes the expression

of xi, i ∈ M , into (12)–(13), we obtain (7). ��
Without loss of generality, we order suppliers as follows:

c0
1 + k1s1 ≥ c0

2 + k2s2 ≥ · · · ≥ c0
m + kmsm. (14)

Theorem 1. If there is m̄ such that
⎧⎪⎪⎨
⎪⎪⎩

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

< Δ, ∀τ = 1, . . . , m̄,

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

≥ Δ, ∀τ = m̄ + 1, . . . ,m,

then

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if c0
i ≥

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

,

m̄∑

l=1
sl−Δ+

m̄∑

l=1

c0l −c0i
kl

ki

m̄∑

l=1

1
kl

, if c0
i <

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

,

∀i = 1, m̄,

and xi = si for all i = m̄ + 1,m.

Proof. I. Let us introduce M̄ ⊆ M such that εi > 0 for all i ∈ M̄ . We summarize
equalities μ−λi−c0i

ki
= si − εi, i ∈ M , for all i ∈ M̄ :

∑
i∈M̄

μ − λi − c0
i

ki
=

∑
i∈M̄

si − Δ,

due to λi = η, for all i ∈ M̄ , we obtain:

∑
i∈M̄

μ − η − c0
i

ki
=

∑
i∈M̄

si − Δ

226 A. Krylatov et al.

or

η =

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

. (15)

II. Since
μ − λi − c0

i

ki
= si, ∀i ∈ M\M̄,

or, in a matrix form,

⎛
⎜⎜⎜⎜⎝

− 1
ki1

0 . . . 0
0 − 1

ki2
. . . 0

...
...

. . .
...

0 0 . . . − 1
kim̄

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λi1

λi2
...

λim̄

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

si1 − μ−c0i1
ki1

si2 − μ−c0i2
ki2

...

sim̃
− μ−c0iñ

kim̄

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then
λi = μ − c0

i − siki, ∀i ∈ M\M̄. (16)

According to
λi = η, if εi > 0,
λi = η + βi, if εi = 0,

∀i ∈ M,

that is
λi = η, ∀i ∈ M̄,
λi = η + βi, ∀i ∈ M\M̄,

one can see λi ≥ η, for all i ∈ M\M̄ . Thus, due to (15) and (16), we obtain:

μ − c0
τ − sτkτ ≥

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

, ∀τ ∈ M\M̄,

while, since
∑

i∈M̄

1
ki

> 0, then

(
μ − c0

τ − sτkτ

) ∑
i∈M̄

1
ki

≥
∑
i∈M̄

μ − c0
i

ki
−

∑
i∈M̄

si + Δ, ∀τ ∈ M\M̄,

or ∑
i∈M̄

μ − c0
τ − sτkτ

ki
≥

∑
i∈M̄

μ − c0
i − siki

ki
+ Δ, ∀τ ∈ M\M̄,

Eventually, we obtain:

∑
i∈M̄

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
ki

≥ Δ, ∀τ ∈ M\M̄. (17)

Competitive Supply Allocation in a Distribution Network 227

III. Since xτ < sτ for all τ ∈ M̄ , then for τ ∈ M̄ either sτ > xτ = 0 or
sτ > xτ > 0. Thus, according to (6), we obtain

λτ = μ − c0
τ − kτxτ , if xτ > 0,

λτ ≥ μ − c0
τ , if xτ = 0,

∀τ ∈ M̄.

Taking into account kτsτ > 0, for all τ ∈ N , we can re-write this system as
follows:

λτ = μ − c0
τ − kτxτ , if xτ > 0,

λτ > μ − c0
τ − kτsτ , if xτ = 0,

∀τ ∈ M̄.

Since λτ = η and xτ < sτ , for all τ ∈ M̄ , then

η > μ − c0
τ − kτsτ , ∀τ ∈ M̄.

Due to (15), we obtain:

μ − c0
τ − kτsτ <

∑
i∈M̄

μ−c0i
ki

− ∑
i∈M̄

si + Δ
∑

i∈M̄

1
ki

∀τ ∈ M̄,

i.e., ∑
i∈M̄

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
ki

< Δ ∀τ ∈ M̄. (18)

IV. If customers are ordered according to (14), then

(
c0
i + kisi

) − (
c0
τ + kτsτ

)
= ti(si) − tτ (sτ)

{
≥ 0, if i < τ,

≤ 0, if i > τ.

If τ = 1, then
ci(si) − c1(s1)

ki
≤ 0, ∀i ∈ M.

Since Δ > 0, then τ = 1 /∈ M\M̄ , i.e., τ = 1 ∈ M̄ . If τ = 2, then
{

c1(s1) − c2(s2) ≥ 0,

ci(si) − c2(s2) ≤ 0, ∀j = 2, . . . ,m.
(19)

Hence, either
c1(s1) − c2(s2)

k1
≥ Δ

or
c1(s1) − c2(s2)

k1
< Δ.

If c1(s1)−c2(s2)
k1

≥ Δ, then, due to (14),

Δ ≤ c1(s1) − c2(s2)
k1

≤ c1(s1) − ci(si)
k1

, ∀j = 2, . . . , m.

228 A. Krylatov et al.

Thus, we obtain:
M̄ = {1}, M\M̄ = {2, . . . , n}. (20)

However, if c1(s1)−c2(s2)
k1

< Δ, then, due to (19), τ = 2 /∈ M\M̄ , i.e., τ = 2 ∈ M̄ .
Such a chain of reasoning leads to the existence of required m̄, 1 ≤ m̄ ≤ n.

V. Due to xi = si − εi and εi = 0 for all i = m̄ + 1,m, then

xi = si, i = m̄ + 1,m.

Moreover, due to (6) under λi = η for all i = 1, m̄, we have

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if c0
i ≥

m̄∑

l=1

c0i +slkl
kl

−Δ

m̄∑

l=1

1
kl

μ−η−c0i
ki

, if c0
i <

m̄∑

l=1

c0l +slkl
kl

−Δ

m̄∑

l=1

1
kl

i = 1, m̄,

which is the required expression, due to (15). ��
Theorem 1 gives the supply relocation policy in a distribution network under

overproduction. In other words, the supply can be relocated among customers in
such a way to avoid cancelled orders. This relocation guarantees minimum costs
for all customers caused by the unexpected shortage.

4 Strategies of Suppliers Under Overproduction

Let us consider the order management policy of suppliers in case of an overpro-
duction strategy (Fig. 1).

Fig. 1. Order management: strategies of suppliers under overproduction

Competitive Supply Allocation in a Distribution Network 229

Assume that the green supplier has four customers (Fig. 1a). We tend to study
risks that can arise when the yellow supplier appears to offer its overproduction
(Fig. 1b). One can see that customers 1, 2, and 3 are located quite close to the
green supplier, while customers 2, 3, and 4 are located quite close to the yellow
one. According to Theorem 1, if

c0
τ ≥

m̄∑
l=1

c0l +slkl

kl
− Δ

m̄∑
l=1

1
kl

, (21)

then the customer τ can cancel order and change the supplier for the closer one.
Moreover, according to Theorem 1, xi = si for i = m̄ + 1,m, while

c0
1 + k1s1 ≥ c0

2 + k2s2 ≥ · · · ≥ c0
m + kmsm, (22)

and ⎧⎪⎪⎨
⎪⎪⎩

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

< Δ, ∀τ = 1, . . . , m̄,

m̄∑
i=1

(c0i +kisi)−(c0τ+kτ sτ)
ki

≥ Δ, ∀τ = m̄ + 1, . . . ,m.
(23)

In other words, a customer choose the closest suppliers with small orders rather
than large order from distant supplier. Moreover, if

c0
i <

m̄∑
l=1

c0l +slkl

kl
− Δ

m̄∑
l=1

1
kl

, (24)

then

xi =

m̄∑
l=1

sl − Δ +
m̄∑

l=1

c0l −c0i
kl

ki

m̄∑
l=1

1
kl

, (25)

for all i = 1, m̄ from (23), where (25) is the value of a partially confirmed order.
Hence, a supplier has the following set of risks (Table 1).

Table 1. Scenarios for decision-making support.

Evaluation Scenario Risk

Inequality (21) holds Delivery cost exceeds the equilibrium Cancelled

Value for the given distribution network Order

Inequality (24) holds Delivery cost is less than the equilibrium Partial order

Value for the given distribution network Confirmation

230 A. Krylatov et al.

Therefore, if suppliers follow an overproduction strategy in order to avoid
the shortage, they can face several risks raised as side effects of this strategy.
The first risk is the cancelled order. In other words, if inequality (21) holds, the
customer can cancel his/her order and choose another supplier. The second risk
is partial order confirmation. Indeed, if inequality (24) holds, the customer can
confirm the part of the order and choose another supplier for the rest.

5 Conclusion

The paper aimed to deal with the reallocating supply problem that result from
the order promising process under overproduction. To this end, we developed a
competitive distribution model to facilitate decision-making for order managers
and to provide an intelligent support tool. The basis of the distribution model
structure was a non-linear constrained optimization program that intends to
minimize the costs of competing suppliers in case of an overproduction strategy.
We obtained explicit conditions for orders relocation under affine delivery costs.
An explicit form of conditions on the current delivery pattern will allow one
to develop intelligent tools for decision-making support in the field of order
management.

References

1. Barrett, C., Li, J.: Distinguishing between equilibrium and integration in spatial
price analysis. Am. J. Agr. Econ. 84(2), 292–307 (2002)

2. Barron, Y., Hermel, D.: Shortage decision policies for a fluid production model
with map arrivals. Int. J. Prod. Res. 55(14), 3946–3969 (2017)

3. Bramoulle, Y., Kranton, R.: Public goods in networks. J. Econ. Theory 135, 478–
494 (2007)

4. Esteso, A., Mula, J., Campuzano-Bolaŕın, F., Diaz, M., Ortiz, A.: Simulation to
reallocate supply to committed orders under shortage. Int. J. Prod. Res. 57(5),
1552–1570 (2019)

5. Florian, M., Los, M.: A new look at static spatial price equilibrium models. Reg.
Sci. Urban Econ. 12(4), 579–597 (1982)

6. Ji, B., Ameri, F., Cho, H.: A non-conformance rate prediction method supported
by machine learning and ontology in reducing underproduction cost and overpro-
duction cost. Int. J. Prod. Res. 59(16), 5011–5031 (2021)

7. Kiselev, A., Yurchenko, N.: Game equilibria and transition dynamics in a dyad
with heterogeneous agents. Autom. Remote. Control. 82(3), 549–564 (2021)

8. Krylatov, A., Lonyagina, Y.: Equilibrium flow assignment in a network of homo-
geneous goods. Autom. Remote. Control. 83(5), 805–827 (2022)

9. McNew, K.: Spatial market integration: definition, theory, and evidence. Agricult.
Resour Econ. Rev. 25(1), 1–11 (1996)

10. Nagurney, A.: Network economics: a variational inequality approach. Kluwer Aca-
demic Publishers, The Netherlands (1993)

11. Najid, N., Alaoui-Selsouli, M., Mohafid, A.: An integrated production and main-
tenance planning model with time windows and shortage cost. Int. J. Prod. Res.
49(8), 2265–2283 (2011)

Competitive Supply Allocation in a Distribution Network 231

12. Novikov, D.A.: Games and networks. Autom. Remote. Control. 75(6), 1145–1154
(2014). https://doi.org/10.1134/S0005117914060149

13. Olhager, J.: Strategic positioning of the order penetration point. Int. J. Prod. Econ.
85(3), 319–329 (2003)

14. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Dover
Publications, New York (1994)

15. Samuel, C., Mahanty, B.: Shortage gaming and supply chain performance. Int. J.
Manuf. Technol. Manage. 5(5/6), 536–548 (2003)

16. Samuelson, P.: Spatial price equilibrium and linear programming. Am. Econ. Rev.
42(3), 283–303 (1952)

17. Stephens, E., Mabaya, E., von Cramon-Taubadel, S., Barrett, C.: Spatial price
adjustment with and without trade. Oxford Bull. Econ. Stat. 74(3), 453–469 (2012)

18. Takayama, T., Judge, G.: Equilibrium among spatially separated markets: a refor-
mulation. Econometrica 32(4), 510–524 (1964)

19. Vasin, A., Grigoryeva, O., Tsyganov, N.: A model for optimization of transport
infrastructure for some homogeneous goods markets. J. Global Optim. 76(3), 499–
518 (2020)

20. Vasin, A.A., Daylova, E.A.: Two-node market under imperfect competition.
Autom. Remote. Control. 78(9), 1709–1729 (2017). https://doi.org/10.1134/
S0005117917090144

https://doi.org/10.1134/S0005117914060149
https://doi.org/10.1134/S0005117917090144
https://doi.org/10.1134/S0005117917090144

Safe-Exploration of Control Policies
from Safe-Experience via Gaussian

Processes

Antonio Candelieri(B) , Andrea Ponti , and Francesco Archetti

University of Milano-Bicocca, Milan, Italy
{antonio.candelieri,francesco.archetti}@unimib.it,

a.ponti5@campus.unimib.it

Abstract. Control of many real-life systems strongly relies on the
knowledge of a domain expert, who usually adopts a safe control pol-
icy to deal with uncertainty. The term safe means that the policy is
aimed at avoiding system’s disruptions or relevant deviations from the
desired behaviour, usually at the cost of sub-optimal performances. This
paper proposes a statistically-sound approach which exploits the col-
lected experience to safe-explore new policies by assuming a reasonable
risk in terms of safety while improving performances. Gaussian Process
regression is the core of the approach, providing a probabilistic approxi-
mation of both system’s dynamics and performances, depending on his-
torical data related to the application of the safe policy. Being a proba-
bilistic model, Gaussian Process provides both an estimate of the level of
safety and, more important, the associated predictive uncertainty, which
is crucial for implementing the safe-exploration of new efficient policies.
The approach allows to avoid the typically expensive implementation of a
digital twin of the system, required in the case of simulation-optimization
approaches, as well as the formulation as a stochastic programming prob-
lem. Results on two case studies, inspired by real-life systems, are pre-
sented, showing an improvement in terms of performances with respect
the initial safe policy, with reasonable safety of the systems.

Keywords: Test · Gaussian processes · Safe-exploration · Optimal
control

1 Introduction

1.1 Motivation

Many dynamic real-life systems are usually controlled depending on a policy
usually aimed at ensuring safety of the system itself, at the cost of settling for
sub-optimal performances. Depending on the specific system, safety is associ-
ated to different aspects. Some examples of safety are: ensuring a satisfactory
level/quality of service for a utility (e.g., energy, water, oil/gas distribution net-
works), avoiding disruptions in controlling a robot/plant (e.g., manufacturing
system), or avoiding discomfort to people (e.g., house cooling/heating/lighting
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 232–247, 2022.
https://doi.org/10.1007/978-3-031-24866-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_18&domain=pdf
http://orcid.org/0000-0003-1431-576X
http://orcid.org/0000-0003-4187-4209
http://orcid.org/0000-0003-1131-3830
https://doi.org/10.1007/978-3-031-24866-5_18

Safe-Exploration of Control Policies from Safe-Experience 233

system). Moreover, most of these systems are inevitably affected by uncertainty,
making difficult to optimize control’s performances under safety constraints.

Typical solutions include the mathematical formalization – most of the time
as a rough approximation – of all the equations regulating the system, along
with a possible model of the uncertain components, for instance depending
on historical observations. Then, the resulting mathematical problem can be
addressed through mathematical programming, typically stochastic optimization
approaches [1–3].

Another possibility is to implement a digital twin of the system, usually
offering a more accurate model of the system compared to mathematical pro-
gramming. Then, simulation-optimization is used to search for optimal control
policies by simulating a large number of scenarios according to the estimated
distribution of the uncertain components [4–6]. An efficient search mechanism is
crucial in the case that the simulation of a single scenario is expensive in terms of
computational resources and/or time [7,8]. A relevant practical issue is that the
realization of an accurate digital twin could a really expensive task depending
on the complexity of the system to control.

However, mathematical programming and simulation-optimization do not
make any efficient usage of historical data collected by applying a safe control
policy. Typically, historical observations are just used to estimate the unknown
distribution of the uncertainty components, enabling stochastic and/or robust
optimization approaches. More recently, research has focused on exploiting the
safe experience’s data to approximate the system’s behaviour in response to the
control actions. Although safe experience’s data provides just a partial knowl-
edge about the system to control, Machine Learning (ML) methods allows to
generalize over unseen data – i.e., new control actions – while dealing with two
different sources of uncertainty: the one related to ML algorithm’s prediction
error and the uncertain components affecting the system.

This section concludes with an overview on related works in different appli-
cation domains and the specific contribution of the paper. Then, Sect. 2 provides
the general definition of the considered setting, that is the optimal safe control
of a dynamic system; Sect. 3 details the proposed approach; Sect. 4 presents the
two case studies considered in the study; Sect. 5 summarizes relevant results;
finally, Sect. 6 provides conclusions, limitations, and perspectives.

1.2 Related Works

The interlink between safety and optimality has been studied in different research
communities, relatively to optimal learning and optimal control. For instance, in
[9] a Safe active learning algorithm was proposed to learn a model of a system’s
performance metric under the constraint that the system always stays in a safe
operation. In [10] an approach mixing safe active learning and Bayesian opti-
mization is proposed to address the optimal calibration of a PID (proportional-
integrative-derivative) controller for a high pressure fuel supply system of an
engine. The combination between safe active learning and Bayesian optimization
has been successively and extensively investigated, such as in [11–15], proving

234 A. Candelieri et al.

that sample efficiency of Bayesian optimization [16,17], along with safe active
learning, allows to suitably address the safe optimal tuning of a controller’s
hyperparameters, typically a PID controller. Most of these approaches use Gaus-
sian Process regression [18,19] to obtain a probabilistic model of the objective
function to be optimized under safety constraints. Another important application
domain is robotics, where optimizing a control policy is more sophisticated than
tuning few controller’s hyperparameters. Many research works use GP regres-
sion to implement data-efficient approaches, also in the reinforcement learning
setting [20–22]. Finally, [23] is Lipschitz safe optimization method to adopt in
the case that an estimation of the uncertainty is available.

1.3 Contribution

The main contributions of this paper can be summarized as follows:

– using experience’s data from a safe policy to model the system’s dynamic,
including performance metric and safety, without requiring the – usually
expensive – realization of a digital twin of the system

– adopting Gaussian Process regression to obtain a probabilistic model of the
system’s dynamic while dealing with different sources of uncertainty, that are
prediction error, partial knowledge (i.e., data are only collected according to
a safe policy), and uncertainty affecting system’s response.

– testing the approach for safe-exploring new control policies, starting from
safe experience related to a previously adopted safe – and sub-optimal –
policy, for two test cases inspired by real-life systems. Improvement in terms
of performances and incurred risk in term of safety are analysed.

2 Reference Problem

2.1 Control of a Dynamic System

The general setting considered in the paper refers to the control of a dynamic
system S under uncertainty. A graphical representation is provided in Fig. 1,
where π is the control policy applied by the controller, a(t) is the action per-
formed accordingly to π, that is a(t) = π(t, s(t)), s(t) is the system’s output,
ξ(t) is the uncertain component, and λ is a set of system and/or control specific
parameters (e.g., a target reference for s(t) in some applications).

It is important to remark that the response of the system has some delay δt
due to the need to process the input, and it also depends on both the system’s
current value (aka state), the control action a(t), and the realization ξ(t) of
uncertain component. Formally:

s(t + δt) = f
(
s(t), a(t), ξ(t)

)
.

Furthermore, ξ(t) is observable only a-posteriori – specifically after the appli-
cation of a(t) – and its distribution, ξ(t) ∼ P (θt), is unknown. On the contrary,

Safe-Exploration of Control Policies from Safe-Experience 235

Fig. 1. Control of a dynamic system under uncertainty: a schematic representation.

we assume that it is possible to observe an instantaneous regret in response to
the control action a(t) – namely, r(t, s(t), a(t), ξ(t)) – along with the compliance
to operational and safety constraints, overall denoted by

gi

(
t, x(t), s(t), ξ(t)

)
> 0 (1)

with i = 1, ..., ng and ng the number of constraints. To better understand the dif-
ference between operational and safety constraints, consider the following exam-
ple: the min-max range for a(t) is an operational constraint because it is asso-
ciated to the physical capabilities of the controller, while a safety constraint is
any constraint associated to the disruption of the system or a critical deviation
of its behaviour from the desired one (e.g., s(t) outside a certain range).

It is important to remark that we are not considering chance-constrained
optimization. Indeed, chance constrained optimization ensures that the proba-
bility of meeting a certain constraint is above a given threshold pi – that is
P

(
gi

(
t, x(t), s(t), ξ(t)

)
> 0

)
> pi. Instead, we want that all the constraints (1)

are always met: in chance constrained terms this means that pi = 1 ∀i = 1, ..., ng.

2.2 Problem Formulation and Usual Solving Methods

As far as optimal control is concerned, the aim is to search for an optimal policy
π∗ minimizing the cumulative regret, that is the regret accumulated over a given
time interval [0, T] in response to the control policy, while satisfying all the
operational and safety constraints. Formally:

π∗ = arg min
π∈∏

∫ T

0

r
(
t, s(t), a(t), ξ(t)

)
dt (2)

s.t. gi

(
t, h(t), a(t), ξ(t)

)
> 0 ∀i = 1, ..., ng;∀t = 0, ..., T (3)

where it is important to remark that a(t) = π(t, s(t)), and with
∏

denoting the
search space of all the possible control policies.

Solving the problem (2–3) requires to explicit both the regret function and all
the constraints, while dealing with the possible realizations of the uncertain com-
ponent. When a mathematical formalization is possible – even if roughly approx-
imated – stochastic approximation methods can be used, otherwise a digital twin

236 A. Candelieri et al.

of the system can be implemented and simulation-optimization is adopted. In
both the two cases, robust solutions can be obtained by sampling realizations
of the uncertain component from an approximation of its distribution, which is
usually based on previous knowledge or historical observations.

3 Novel Approach: Safe-Exploring from Safe Experience

Many real-life systems are controlled through policies that are typically safe
but largely sub-optimal. The (safe) experience collected by these safe-by-design
policies is anyway precious. It is important to remark that the term safe-by-
design is here used to denote a very simple policy aimed at generating actions
satisfying all the constraints (2) by ignoring the resulting cumulative regret (3).
The proposed approach starts from the safe experience to explore new and more
efficient policies – in terms of regret – while facing some risk in terms of safety.
Specifically, we use Gaussian Processes (GPs) as probabilistic models to enable
safe exploration based on the estimation of the trade-off between risk and benefit.

First, the safe experience collected according to a safe-by-design policy, π0,
can be represented by a set of tuples, each one denoted as follows:

< t, s(t), a(t), s(t + Δt), r(t) >

when a real-life system is considered, the continuous-time assumption can be
relaxed according to the intrinsically discrete nature of data acquisition process
(e.g., sensors’ sampling rate). Moreover, the system’s response to the control
action is not immediate. Thus, we can consider a constant delay Δt between the
control action a(t) and the observation of the system’s response s(t + Δt).

Information collected into the tuples can be reorganized into two sets of data,
namely the transition dynamic dataset Dπ0 and the instantaneous regret
dataset Rπ0 :

Dπ0 =
{(

x(i), s′(i)
)}

i=1:N0

; Rπ0 =
{(

x(i), r(i)
)}

i=1:N0

(4)

where N0 is the number of tuples collected over time in response to the
application of π0 (i.e., N0 is the experience size), x(i) =

(
t(i), s(t)(i), a(t)(i)

)
,

s′(i) = s(t + Δt)(i), and r(i) is the observed regret associated to the ith tuple.
A GP regression model is fitted on Dπ0 to approximate the transition dynamic

of the system S. As a probabilistic regression model, this GP provides both
a prediction of the system’s response, s′ = μD(x), and its associated uncer-
tainty σD(x), for every input x – where x is interpreted as “performing a(t),
at time t, given s(t)”. Using expanded notation allows for clearly visualizing
time-dependency: s′ = s(t + Δt) ≈ μD(t, s(t), a(t)), with associated uncertainty
σD(t, s(t), a(t)).

Safe-Exploration of Control Policies from Safe-Experience 237

Analogously, a GP regression model is fitted on Rπ0 to estimate the instan-
taneous regret expected for a given x. The predicted regret is given by the GP’s
posterior mean μR(x) with associated uncertainty σR(x).

The new improved policy, π+, consists in solving, at each time t, and for the
given s(t), the following optimization problem:

a+(t) = arg min
a∈A

{
μR

(
x|t, s(t)) − βR σR

(
x|t, s(t))

}
(5)

s.t. γj

(
μD

(
x|t, s(t)), σD

(
x|t, s(t))

)
> 0 ∀j = 1, ..., nγ ; ∀t = 0, ..., T

(6)

where the notation
(
x|t, s(t)) denotes that t and s(t) are given and, consequently,

the optimization is only performed on a ∈ A, with A the set of all the possible
control actions. This is important because it means that while GP is defined on
a d-dimensional space, the optimization is performed on a q-dimensional space,
with q < d. Specifically, q = 1 in the case that a(t) is a scalar.

Here, our important assumption is that the problem can be solved step-wise,
and that an (estimated) safe action at a step t̄ is sufficient to guarantee the
existence of safe actions at successive steps t > t̄. If valid, this avoids expensive
look-ahead and/or rollout procedures, leading to short computational time for
solving (5-6).

The problem (5–6) is therefore a re-formulation of the original problem (2–3),
where partial knowledge about the systems’ transition dynamic and instan-
taneous regret – collected according to the application of the safe policy π0 – is
included through the two GP regression models.

To make a parallel, the two GPs are the counterparts of the equations of a
mathematical (approximated) formalization as well as of a (partial) digital twin
of the system.

Precisely, we propose to adopt an optimistic-in-face-of-uncertainty approach
to optimize the objective function (5). Indeed, we add an uncertainty bonus,
σR(x), to our estimate of the instantaneous regret, μR(x), suitably weighted by
βR. If βR = 0 then we assume that the GP’s prediction is the best approxi-
mation of the instantaneous regret, otherwise we give a chance to exploration.
This is also known as GP Confidence Bound (GP-CB) an it is a widely and
successfully applied acquisition function in Bayesian optimization [16,17], with
different suitably scheduling of βR proposed to guarantee convergence to global
optimum in the global optimization setting [24–27].

It is important to remark that also constraints – all or some of them – must
be re-formulated according to the partial transition dynamic modelled by the
associated GP, possibly leading, in the more general case, to a different number
of constraints. Both prediction, μD(x), and uncertainty, σD(x), must be consid-
ered to implement safety evaluation mechanisms with different risk attitudes.
Contrary to βR, the multiplier βD is here used to weight the uncertainty asso-
ciated to the constraints satisfiability, especially safety constraints. Thus, it is

238 A. Candelieri et al.

not related to optimality, just like in some approaches proposed for a different
optimization setting – namely multiple information source optimization [28,29]
– where it is used to tune a sort of reliability measure.

The formulation of the two case studies considered in this paper will make
easier to understand how to reformulate objective function and constraints in
terms of GPs and according to the specific target problem.

4 Case Studies

4.1 Case Study 1: Optimal Control of a Water Tank

System Description. The first case study refers to the control of a water
tank in a water distribution network. The system is sketched in Fig. 2 and it is
characterized by the following mass conservation equation:

s(t + Δt) = s(t) + a[t : t + Δt] − ξ[t : t + Δt] (7)

where [t : t + Δt] denotes the time interval from t to t + Δt. Thus, s(t + Δt)
is the amount of water into the tank at the end of the time interval, s(t) is the
amount of water into the tank at the beginning of the time interval (i.e., when
the control action is decided), a[t : t + Δt] is the amount of water pumped into
the tank within that time interval (i.e., the control action), and ξ[t : t + Δt] is
the amount of water supplied to match the demand in that time interval.

Fig. 2. Control of a water tank: a schematic representation. Notation follows that used
in the general schema in Fig. 1.

We consider the case that the control is performed on a hourly basis, that
is Δt = 1 [hour], over an entire day, that is T = 24 [hours]. Furthermore, to
simplify notation, we rewrite (7) as:

st = st−1 + at−1 − ξt−1 ∀t = 0, ..., T − 1 (8)

where at−1 and ξt−1 are intended as a[t − 1 : t] and ξ[t − 1 : t], respectively.

Safe-Exploration of Control Policies from Safe-Experience 239

Optimal Control Problem. The specific problem can be formalized as:

min
at∈�

T−1∑

t=0

c(t, at) (9)

s.t. st = st−1 + at−1 − ξt−1 ∀t = 0, ..., T − 1 (10)
smin ≤ st ≤ smax ∀t = 0, ..., T (11)
amin ≤ at ≤ amax ∀t = 0, ..., T − 1 (12)

where the instantaneous regret r(t, st, at, ξt) is simply given by c(t, at), that is
the cost for pumping an amount at of water within a hour; it explicitly depends
on t because energy price usually changes over the day (i.e., Time-of-Use tariff).
Then, (10) is the mass-balance equation (i.e., transition dynamics of the system),
(11) is a safety constraint, and (12) is an operational constraint (i.e., min-max
amount of water which can be supplied in a hour). It is important to remark
again that ξt is the uncertain component, only observable a-posteriori and whose
distribution is unknown. Furthermore, we assume that the system’s dynamic is
also unknown: we have just reported all the equations for illustrative purposes.

Experimental Setup. The case study was instantiated by setting smin =
5m3, smax = 50m3, amin = 0m3, amax = 10m3. The safe-by-design policy π0

consists in at = min{amin, smax − st−1} and it has been applied on 365 days
with water demand sampled from a typical real-life daily water demand pattern.
The 365 samples are shown in Fig. 3: average and standard deviation of the base
pattern can be easily identified. Water demand is the uncertain component and
its distribution is therefore considered as unknown.

Fig. 3. Daily water demand patterns related to 365 days.

With respect to c(t, at), we assumed a non-linear relation between the amount
of water supplied in a hour and the consumed energy, that is Et = a3

t , leading
to:

c(t, at) =
pricet · Et

η
=

pricet · a3
t

η
(13)

240 A. Candelieri et al.

with η = 0.85 the pump’s efficiency and

pricet =

⎧
⎨

⎩

1€/kWh if t ∈ [1; 6] ∪ [23; 24]
2€/kWh if t ∈ [9; 18] ∪ [21; 23]
3€/kWh if t ∈ [7; 8] ∪ [19; 20]

(14)

Instead of solving (9-12) via stochastic programming or simulation-
optimization, the proposed approach starts from the available safe – and sub-
optimal – control policy π0, such that at = min{amin, smax − st−1}. The two
associated datasets Dπ0 and Rπ0 are used to fit the two GPs and to obtain the
associated μD(x), σD(x), μR(x), and σR(x). The the optimization problem is
formulated as:

min
at∈[amin,amax]

{
μR(x|t, st) − βR σR(x|t, st)

}
(15)

s.t. μD(x|t, st) + βD σD(x|t, st) ≤ smax (16)
μD(x|t, st) − βD σD(x|t, st) ≥ smin (17)

In the case that a feasible solution of the problem does not exist, then at is
chosen according to the safe-by-design policy π0.

4.2 Case Study 2: Optimal Control of a House Heating System

System Description. The second case study is the control of a house heating
system. A graphical representation of the case study is sketched in Fig. 4.

Fig. 4. Control of a house heating system: a schematic representation. Notation follows
that used in the general schema in Fig. 1.

Transition dynamics of the system is more complicated than the previous
case study: equations have been adapted from the “Model A House Heating
System” example available at the Mathworks website1.

The changing in-house temperature equation is:

ds

dt
=

1
mκ

(
dQG

dt
− dQL

dt

)
(18)

1 https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.
html.

https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html
https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html

Safe-Exploration of Control Policies from Safe-Experience 241

where m is the mass of air in the house, κ is the heat capacity and dQG

dt and dQL

dt
are the rate of heat gain equation and the rate of heat loss equation, respectively.
More specifically, they are computed as follows:

dQG

dt
= Mκ

(
a(t) − s(t)

)
;

dQL

dt
=

(
s(t) − ξ(t)

)

R

with M the mass of air of the heater, R the thermal resistance, s(t) the current
in-house temperature, and ξ(t) the outside temperature. Finally, the system’s
dynamics can be synthesized by the following equation:

s(t + Δt) = s(t) +
Δt

mκ

⎛

⎝Mκ
(
a(t) − s(t)

)
+

(
s(t) − ξ(t)

)

R

⎞

⎠ (19)

Optimal Control Problem. The objective function of this problem is
∑

t∈[0;T]

c
(
t, a(t)

)
(20)

with a time step equal to Δt = 1 [minute]. The constraints are given by:

– the system’s transition dynamic equation (19);
– the operational constraint amin ≤ a(t) ≤ amax ∀t ∈ {0,Δt, ..., T − Δt}
– the safety constraints are related to keep an in-house target temperature

s̄ = 18◦C by
• reaching it within 30 min;
• not exceeding a sovraelongation of 1◦C (i.e., s(t) <= 19◦C for t <= 30

[minutes]);
• and keeping s(t) ∈ [s̄ − 0.5◦C; s̄ + 0.5◦C] ∀t = 0, ..., T

– the Time-of-Use tariff:

pricet =

⎧
⎨

⎩

1€/◦C if t ∈ [0; 7] ∪ [21; 24]
10€/◦C if t ∈ (7; 10] ∪ (17; 21]
5€/◦C if t ∈ (10; 17]

(21)

Experimental Setup. The values of all the parameters characterizing the in-
house heating system are taken from the Mathworks’ example and reported
here for the sake of completeness: m = 1470 [kg], κ = 1005.4, [Joule/◦C kg],
M = 3600 [kg hour], R = 4.329 · 10−7[◦C hour/Joule].

For the outside temperature, ξ(t), we have considered the freely available
Yosemite temperature data2: 60 days of temperature measures, with a 1 sample
every minute. All the values were converted from Fahrenheit to Celsius degrees.

2 https://github.com/facebook/prophet/blob/main/examples/
example yosemite temps.csv.

https://github.com/facebook/prophet/blob/main/examples/example_yosemite_temps.csv
https://github.com/facebook/prophet/blob/main/examples/example_yosemite_temps.csv

242 A. Candelieri et al.

In this case, the safe-by-design policy π0 consists of a PID (proportional-
integrative-derivative) controller, such that

a(t) = min

{

Kpe(t) + Ki

∑

i∈[0;t]

e(t) + Kd
e(t) − e(t − 1)

Δt
, amax

}

(22)

where e(t) = s̄ − s(t), amax = 70◦ C and the PID’s parameters have been
manually set to Kp = 43, Ki = 0.17 and Kd = 0 to meet all the constraints.

Figure 5 shows: (left) the outside temperature data, (middle) the associated
control actions performed by the PID controller, and (right) the resulting in-
house temperature, separately for the 60 days considered

(a) Outside temperature. (b) Heating by the PID. (c) In-house temperature.

Fig. 5. Safe control policy of the in-house heating system.

It is important to remark that, contrary to most of the existing approaches
which combines safe active learning and Bayesian optimization to efficiently tune
the PID’s parameters [10,13–15], the proposed approach aims at searching for a
new policy which could be more sophisticate than (22).

5 Experiments and Results

5.1 Results on Case Study 1

Figure 6 shows the approximation (i.e., the GP model) of the water tank’s
dynamics at t = 1, with μD(x) and σD(x) respectively on the left and right
hand side. the 365 blue dots represent the safe experience, that is the actions
performed according to both π0 and the realizations of ξ(t) for the 365 days
considered.

More in detail, the picture shows that many days started with an amount of
water into the tank s(t − 1) ≤ 40m3, leading to pump the maximum possible
amount of water (i.e., a(t) = 10m3). For all the other days, starting with s(t −
1) > 40, the actions implied by π0 are given by smax − s(t − 1).

Figure 7 shows how actions change over time due to a higher withdrawal of
water from the tank over the day. As an example, t = 11 is reported.

Safe-Exploration of Control Policies from Safe-Experience 243

Fig. 6. Time t = 1: predicted amount of water s(t) depending on s(t − 1) and in
response to a(t) (left), and uncertainty about the prediction (right).

Fig. 7. Time t = 11: predicted amount of water s(t) depending on s(t − 1) and in
response to a(t) (left), and uncertainty about the prediction (right).

Figure 8 provides an example of the optimization problem (15–17) solved for a
given day and at a certain hour (i.e., t = 17). The top shows the approximation
of the instantaneous regret – specifically Eq. (15) with βR = 1 (dashed blue
line) – to be minimized under the (approximated) safety constraints depicted in
the bottom – specifically Eqs. (16–17) with βD = 3 (i.e., 99.7% of the possible
realizations of s(t), under the Gaussian assumption). The horizontal dashed line
represents the optimal and safe action identified.

The approach was tested over the first 30 days of the 365 to compute the
improvement in terms of performances (i.e., cost reduction) with respect to the
risk for safety. Results show a reduction of the daily cost equal to 3.7%,
on average, but with a safety violation for one out of the 30 days.

244 A. Candelieri et al.

Fig. 8. Optimization problem (15-17) solved for a given day and time t.

5.2 Results on Case Study 2

Figure 9 presents an example of the approximated systems dynamic (i.e., GP
model) according to the safe experience collected by using the PID controller.
As an example we have selected one of the first minutes to highlight that when
the in-house temperature s(t) is very low then the control action is the maximum
possible heating, that is a(t) = 70 ◦C, otherwise a lower heating is selected. Blue
points are used to depict safe experience data.

At every time step, more precisely every minute, an optimization problem
is solved aimed at minimizing the most optimistic estimation of the instanta-
neous regret, that is μR(x|t, s(t)) + βRσR(x|t, s(t)) (with βR = 1), under the
constraints listed above and whose fulfilment is evaluated with respect to the
prediction s(t + Δt) 	 μD(x|t, s(t)), uncertainty σD(x|t, s(t)), and βD = 3.

Fig. 9. House heating system: an example of the approximated system dynamic for a
given t (on the left) and associated predictive uncertainty (on the right).

Safe-Exploration of Control Policies from Safe-Experience 245

Although this second case study is more complicated than the first one,
especially in terms of constraints, the proposed approach has provided analogous
results. Specifically, acost reduction of around 4% is achieved with few
violations of the constraints, over 60 days.

5.3 Software and Data

Software and data will be published on github if the paper is accepted.

6 Conclusions, Limitations, and Perspectives

Empirical results on the two case studies prove that the proposed approach can
explore new and more efficient policies starting from safe experience data, with-
out requiring stochastic programming or an expensive a digital twin. However,
results also show there is the risk to incur into safety violations. This is due
to two different aspects: the first is that βD should be chosen to set a suitable
margin on wrong predictions of the next state; the second is related to the par-
tial knowledge of the system dynamic and to the fact that the new policy could
lead to states significantly different from any other in the safe experience data,
without any chance to avoid unsafe actions. Ongoing works aims at (i) defining a
mechanism to identify a suitable βD, (ii) evaluating safety not only step-wise but
also looking ahead – considering the additional computational cost – and (iii)
extending the safe experience by including the new one collected in response to
the new policy. The last point is really important, especially in terms of an anal-
ysis of the convergence towards the optimum and safest policy for the specific
target problem, under the realizations of the uncertain component ξ(t).

References

1. Lu, Q., et al.: Stochastic programming for floodwater utilization of a complex
multi-reservoir system considering risk constraints. J. Hydrol. 599, 126388 (2021)

2. Han, D., Lee, J.H.: Two-stage stochastic programming formulation for optimal
design and operation of multi-microgrid system using data-based modeling of
renewable energy sources. Appl. Energy 291, 116830 (2021)

3. Lima, R.M., Conejo, A.J., Giraldi, L., LeMaitre, O., Hoteit, I., Knio, O.M.: Risk-
averse stochastic programming vs. adaptive robust optimization: a virtual power
plant application. INFORMS J. Comput. 34, 1795–1818 (2022)

4. Rachih, H., Mhada, F., Chiheb, R.: Simulation optimization of an inventory control
model for a reverse logistics system. Dec. Sci. Lett. 11(1), 43–54 (2022)

5. Chakraei, I., Safavi, H.R., Dandy, G.C., Golmohammadi, M.H.: Integrated
simulation-optimization framework for water allocation based on sustainability of
surface water and groundwater resources. J. Water Resour. Plan. Manag. 147(3),
05021001 (2021)

6. Tordecilla, R.D., Juan, A.A., Montoya-Torres, J.R., Quintero-Araujo, C.L.,
Panadero, J.: Simulation-optimization methods for designing and assessing resilient
supply chain networks under uncertainty scenarios: A review. Simul. Model. Pract.
Theory 106, 102166 (2021)

246 A. Candelieri et al.

7. Candelieri, A., Galuzzi, B., Giordani, I., Archetti, F.: Learning optimal control
of water distribution networks through sequential model-based optimization. In:
International Conference on Learning and Intelligent Optimization, pp. 303–315
(2020)

8. Candelieri, A., Ponti, A., Archetti, F.: Data efficient learning of implicit control
strategies in water distribution networks. In: 2021 IEEE 17th International Con-
ference on Automation Science and Engineering (CASE), pp. 1812–1816 (2021)

9. Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., Toussaint,
M.: Safe exploration for active learning with gaussian processes. In: Bifet, A., et al.
(eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 133–149. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23461-8 9

10. Schillinger, M., Hartmann, B., Skalecki, P., Meister, M., Nguyen-Tuong, D., Nelles,
O.: Safe active learning and safe Bayesian optimization for tuning a PI-controller.
IFAC-PapersOnLine 50(1), 5967–5972 (2017)

11. Sui, Y., Zhuang, V., Burdick, J., Yue, Y.: Stagewise safe Bayesian optimization
with gaussian processes. In: International Conference on Machine Learning, pp.
4781–4789. PMLR (2018)

12. Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R., Krause, A.: Adaptive and safe
Bayesian optimization in high dimensions via one-dimensional subspaces. In: Inter-
national Conference on Machine Learning, pp. 3429–3438. PMLR (2019)

13. Fiducioso, M., Curi, S., Schumacher, B., Gwerder, M., Krause, A.: Safe contextual
Bayesian optimization for sustainable room temperature PID control tuning. arXiv
preprint arXiv:1906.12086 (2019)

14. Berkenkamp, F., Krause, A., Schoellig, A. P.: Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. Mach. Learn. 1–35
(2021)

15. König, C., Turchetta, M., Lygeros, J., Rupenyan, A., Krause, A.: Safe and efficient
model-free adaptive control via Bayesian optimization. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9782–9788. IEEE (2021)

16. Frazier, P.I.: Bayesian optimization. In: Recent Advances in Optimization and
Modeling of Contemporary Problems, pp. 255–278. Informs (2018)

17. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

18. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

19. Gramacy, R.B.: Surrogates: Gaussian Process Modeling, Design, and Optimization
for the Applied Sciences. Chapman and Hall/CRC, Boca Raton (2020)

20. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2),
408–423 (2013)

21. Bischoff, B., et al.: Policy search for learning robot control using sparse data. In:
2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
3882–3887. IEEE (2014)

22. Kamthe, S., Deisenroth, M.: Data-efficient reinforcement learning with probabilis-
tic model predictive control. In: International Conference on Artificial Intelligence
and Statistics, pp. 1701–1710. PMLR (2018)

23. Sergeyev, Y.D., Candelieri, A., Kvasov, D.E., Perego, R.: Safe global optimization
of expensive noisy black-box functions in the δ-Lipschitz framework. Soft. Comput.
24(23), 17715–17735 (2020). https://doi.org/10.1007/s00500-020-05030-3

https://doi.org/10.1007/978-3-319-23461-8_9
http://arxiv.org/abs/1906.12086
https://doi.org/10.1007/978-3-030-24494-1
https://doi.org/10.1007/s00500-020-05030-3

Safe-Exploration of Control Policies from Safe-Experience 247

24. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf.
Theory 58(5), 3250–3265 (2012)

25. De Ath, G., Everson, R. M., Fieldsend, J. E., Rahat, A. A.: ε-shotgun: ε-greedy
batch Bayesian optimisation. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 787–795 (2020)

26. De Ath, G., Everson, R.M., Rahat, A.A., Fieldsend, J.E.: Greed is good: explo-
ration and exploitation trade-offs in Bayesian optimisation. ACM Trans. Evol.
Learn. Optim. 1(1), 1–22 (2021)

27. Berk, J., Gupta, S., Rana, S., Venkatesh, S.: Randomised Gaussian process upper
confidence bound for Bayesian optimisation. In: Proceedings of the 29th Interna-
tional Conference on Artificial Intelligence, pp. 2284–2290 (2021)

28. Candelieri, A., Archetti, F.: Sparsifying to optimize over multiple information
sources: an augmented Gaussian process based algorithm. Struct. Multidiscip.
Optim. 64(1), 239–255 (2021). https://doi.org/10.1007/s00158-021-02882-7

29. Candelieri, A., Perego, R., Archetti, F.: Green machine learning via augmented
Gaussian processes and multi-information source optimization. Soft. Comput.
25(19), 12591–12603 (2021). https://doi.org/10.1007/s00500-021-05684-7

https://doi.org/10.1007/s00158-021-02882-7
https://doi.org/10.1007/s00500-021-05684-7

Bayesian Optimization in Wasserstein Spaces

Antonio Candelieri1(B), Andrea Ponti1,3,4, and Francesco Archetti2,4

1 Department of Economics, Management and Statistics,
University of Milano-Bicocca, Milan, Italy
antonio.candelieri@unimib.it

2 Department of Computer Science, Systems and Communication,
University of Milano-Bicocca, Milan, Italy

3 Oaks s.r.l., Milan, Italy
4 Consorzio Milano Ricerche, Milan , Italy

Abstract. Bayesian Optimization (BO) is a sample efficient approach for approx-
imating the global optimumof black-box and computationally expensive optimiza-
tion problems which has proved its effectiveness in a wide range of engineering
andmachine learning problems.A limiting factor in its applications is the difficulty
of scaling over 15–20 dimensions. It has been remarked that global optimization
problems often have a lower intrinsic dimensionality which can be exploited to
construct a feature mapping the original problem into low dimension manifold. In
this paper we take a novel approach mapping the original problem into a space of
discrete probability distributions endowed with a Wasserstein metric. In this new
approach both the Gaussian process model and the acquisition function work in a
1-dimensional Wasserstein (WST) space. The results in the WST space are then
mapped back to the original space using a neural network. Computational results
show that, at least for high dimension additive test functions, the exploration in
the Wasserstein space is significantly more effective.

Keywords: Bayesian optimization · Wasserstein distance · Gaussian processes

1 Introduction

Bayesian Optimization (BO) is a sample efficient approach for approximating the global
optimum of black-box and computationally expensive optimization problems which has
proved its effectiveness in a wide range of engineering design and machine learning
problems. A limiting factor in its applications is the difficulty of scaling over 15–20
dimensions. The issue of BO in high dimensional problems has been addressed translat-
ing it into low-dimensional problems defined on subsets of variables. (Kandasamy et al.
2015; Moriconi et al. 2020a) or exploiting a lower intrinsic dimensionality. To tackle the
issue of high dimensionality we take a novel approach embedding the original problem
into a space of discrete probability distributions endowed with a Wasserstein metric. We
consider the optimization of a black-box, expensive, multi-extremal function f (x):

f (x) : x ∈ X ⊂ R
d → R (1)

© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 248–262, 2022.
https://doi.org/10.1007/978-3-031-24866-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_19

Bayesian Optimization in Wasserstein Spaces 249

whereX is the search space and neither gradient nor convexity information are available.
Moreover, we assume that:

• f (x) is some unknown composition of functions, that is:

f (x) = C(h1(x), . . . , hM (x)) (2)

• Also the mapping between x ∈ X ⊂ Rd and h(x) ∈ RM is unknown. Only the value
of each component function, hm(x) with m = 1, . . . ,M , is observable.

Another approach for acquisition function in high dimensional spaces has been pro-
posed in (Candelieri et al. 2020). Some classes of problems belong to this setting, as first
observed in (Kandasamy et al. 2015) where the additive structure in high dimensional
problems has been leveraged into the algorithm Add-GP-UCB. Also the scalarization
approach to multi-objective optimization (Zhang and Golovin, 2020) is a specific case
of the model in Eq. 2. Another case, considered in (Astudillo and Frazier 2021) assumes
that h1, . . . , hm can be arranged in a directed acyclic network and also fits in Eq. 2. In
the above papers the composition function C(·) is assumed known.

Instead, in the approach proposed in this paper, no assumptions about C(·) are postu-
lated. This argument is related to the approach proposed in (Astudillo and Frazier 2022)
which leverages internal information of composite objective functions where one can
observe and selectively evaluate individual constituents. The knowledge of the vector
h(x) is extremely important and valuable because its elements are informative of the
value of f (x), significantly more than x. We assume that h(x) can be observed.

Let denote with ψ : RM → W, a function transforming the values of the h(x)’s
into a histogram, x ⇒ h(x) = (h1(x), . . . , hM (x)) ⇒ ψ(h(x)) = H (x) which is the
histogram associated to x. A general constructive procedure for the computation of ψ(·)
is as follows.

• Given the function f (x) = C(h1(x), . . . , hM (x)) for i = 1, . . . ,M we assumewithout,
loss of generality, that a and b can be a lower bound a an upper bound respectively given
by min

i
min
x
hi(x) and max

i
max
x

hi(x) that is split into K equi-intervals �k = tk+1 − tk :

t0 = a and tK = b. The histogram H (x) has bins �k and weights wk . The weight wk
associated to bin �k is given by the cardinality of the set

wk = |{i : hi(x) ∈ �k}| (3)

• In the specific case f (x) =
M∑

i=1
λihi(x) the same procedure associates for each λ vector

a histogram to x.

250 A. Candelieri et al.

Other situations which fit into the above model and yield naturally a distributional
representation of a candidate solution is when the data generating process is a simulation
model. This is the case in optimizing the average performance of a systemwhere f (x,w)

is the value of f (x)u nder the environmental condition w and p(w) represents the “rele-
vance” of conditionw (probability of its occurrence or the fraction of time that condition
w occurs). A closely related instance is when optimizing the expected performance of
systems modelled by a discrete event simulation f (x,w) where w is a random variable.
In this case f (x) = E(f(x,w)).This is the case of hyperparameter optimization in a
machine learning algorithm based on k-fold cross validation. In this application f (x,w)

is the any loss function (predictive accuracy, fairness, explainability) on fold w using
hyperparameter configuration x, N = k, and our goal is to minimize the loss function∑

w f (x,w). Also in this case it might be expedient rather than fit a model to the data to
consider directly the empirical distribution.

In these cases, the procedure is the same as in Eq. 3: a candidate solution x generates
a set (later called sample) of values f (x,wj)with j = 1, . . .N where N can be the number
of environmental conditions or scenarios rather than the number of observations of the
stochastic elements in the simulation This sample f (x,wj)j = 1, . . .N is “bucketed”
into an histogram with support in the range (f l, f u), where f l and f u are a lower and
upper bound of f , subdivided into K equal subintervals (bins).

The key idea is to represent a point x, upon the evaluation of f (x), as a histogram
which encodes the information gathered about the objective function. The space of his-
tograms is structured as a metric space that is a non-empty set with a metric defined
on the set. The metric is a function which defines a distance between two elements of
the set (points in the space) with the properties of positivity, symmetry, and triangle
inequality. Since the points in this metric space are histograms, the distance between
them is a distance between probability distributions. There is a plethora of distances
between distributions (Sriperumbudur et al. 2010). The distributional distances com-
monly used in machine learning are the entropy-based ones like Kullback-Leibler (KL)
and Jensen-Shannon (JS) whose application to gauge network dissimilarity between
networks has been proposed in (Schieber et al. 2017). Some of them do not satisfy the
requirements of non-negativity, symmetry and triangle inequality and are therefore not
true metrics. In this paper we focus on the Wasserstein (WST) distance and embed the
optimization problem in the metric space whose points are histograms equipped with
the Wasserstein distance, which we call Wasserstein space. Wasserstein distance, also
known as the optimal transport distance, is a mathematically principled method to align
probability distributions. Originated by a paper of Monge (Monge 1781) it received its
linear programming formulation in Kantorovich (Kantorovich 1942). A complete math-
ematical formulation is in (Villani 2009) while (Peyre and Cuturi 2019) offer a complete
review of the recent theoretical and computational advances. It has many versions, both
continuous and discrete, and its versatility has warranted attention also beyond its math-
ematical foundations Notably it has found applications in machine learning from shape
analysis (Gangbo and McCann 2000) to image interpolation, domain adaptation (Redko
et al. 2019), parameter estimation in simulation models (Öcal et al. 2019), structured
data on graphs (Vayer et al. 2018) active learning (Frogner et al. 2019) and adversarial
networks (Ariovsky et al. 2017).

Bayesian Optimization in Wasserstein Spaces 251

WST distance, also called optimal transport distance, lifts a ground metric between
bins to a metric between histograms and this makes it the method of choice to compare
histograms. The optimal transport distance, hasmany important properties. It is a “weak”
distance meaning that WST spaces are very large, and it allows to compare singular
distributions (e.g., discrete ones) whose supports do not overlap and quantify the spatial
shift between supports. Their representational capability has been shown by embedding
a variety of complex objects like images, networks and words. An explanation of the
interest in the Wasserstein distance is that Euclidean embeddings of data are flawed as
they account for the correspondence of each feature independently of the other features.
This limits the ability of Euclidean embedding to capture complex relationships between
inputs due to limiting assumptions about neighbourhood sizes and connectivity. At the
contrary theWasserstein distance is cross-feature and provides geometricallymeaningful
distances to compare discrete distributions.BayesianOptimization algorithmshave so far
largely focused on problems where inputs are represented as numerical and categorical
variables in Euclidean spaces.

In this paper we extend the distributional approach to Bayesian optimization encod-
ing the geometry of the data generated in the sequential optimization process and
performing the search in the Wasserstein space. In this paper we focus on the rela-
tion between WST distance and Bayesian optimization inducing, through the function
ψ(h(x)), a non-Euclidean structure in the search space and consequently in the rep-
resentation of the data sequentially acquired during the optimization process. The key
advantage of Bayesian Optimization over other black-box learning and optimization
algorithms is sample efficiency which might be not enough in high dimensional spaces.
This observation begets the key research question we address in this paper: can the
sample efficiency of Bayesian optimization for high dimensional problems be improved
embedding the optimization in the Wasserstein space?

A GP is completely defined by its mean μ(x) and covariance function, where the
latter is typically a kernel function k

(
x, x′): GP(

μ(x), k
(
x, x′)).

Here we consider, just for the sake of simplicity, the Squared Exponential kernel:

k
(
x, x′) = e

− ‖x−x
′ ‖2

2�2 which translates in theWasserstein space into k
(
w,w′) = e

− ‖w−w
′ ‖2

2�2

where w and w′ are the histograms associated to (x, f (x)) and
(
x′, f

(
x

′))
.

Learning the value of the length scale � in the WST space is not a problem as we can
use MLE. The main difference in training the GP model inW is a different definition of
the function evaluation dataset:

D1:n = (X1:n,W1:n, y1:n) (4)

where:

• X1:n = {
x(i)

}
i=1:n are the locations queried.

• W1:n = {
w(i)

}
i=1:n are the associated histograms (inW).

• y1:n = {
y(i)

}
i=1:n are the observed function values.

The WST Bayesian Optimization framework is based on two building blocks.

252 A. Candelieri et al.

The first performs the search in the WST space. It this paper we use the squared

exponential in the Wasserstein space KSE
(
w,w′) = e−

∣
∣
∣
∣

∣
∣
∣
∣w−w

′ ∣∣∣
∣

∣
∣
∣
∣

2

2σ2 and the L/UCB acquisi-
tion also in theWasserstein space. The second block learns a neural network which maps
the results of the first back to the original search space X. The WST algorithm, called
RBF kernel - W, has been tested vs. basic BO, called RBF kernel - X: the computational
results show that theWST algorithm outperforms basic BO already in 10 dimensions and
that the competitive edge increases substantially as the dimension of the search space
increases.

1.1 Related Works

The use of the WST distance in optimization problems is still a sparsely explored field.
Important results from themathematical programming community, (Mohajerin Esfahani
and Kuhn 2018) and (Nguyen et a. Nguyen et al., 2021), use the Wasserstein metric
for distributionally robust optimization (DRO). (Kuhn et al. 2019) focus Wasserstein
based DRO onto machine learning and carry out parameter estimation by minimizing
empirical risk of any data measure within given value of the WST distance of the input
data. The issue of DRO is analysed also in (Liu 2022) who propose a Wasserstein
barycentric ambiguity set. (Pflug and Pichler 2012) use theWST distance for multistage
stochastic optimization models. (Cohen et al. 2020) introduce a practical algorithm that
treats the barycenter as a parametric model and can be applied to high dimensions.
(Moriconi et al. 2020b) use quantile Gaussian processes. Closer to the focus of our
paper is (Kandasamy et al. 2018) which use a kernel induced by Wasserstein distance in
aBayesian optimization framework to search the space of neural network architectures. It
must be remarked that in the case ofmultivariate distributions the construction of positive
definite kernels on sets of probability measures is not straightforward. The traditional
approach for learning from distribution is to consider reproducing kernel Hilbert spaces
(RKHS). The kernels associated to probability distributions, in particular the Hilbertian
kernel on probability measures have been first proposed in (Hein et al. 2005).

A general solution to the problem in the setting of Hilbert spaces has been provided
in (Peyré and Cuturi 2019). Specific positive definite kernels are designed in order to
map distributions into a reproducing kernel Hilbert space and extend kernel methods to
probabilitymeasures. Results are strongly dependent on the dimension of the histograms.

(De Plaen et al. 2020) gives an approximation result which shows that as the param-
eter sigma in goes to 0, the smallest eigenvalue of the kernel matrix tends to 1 therefore
yielding a positive definite kernel. A distributional distance-based learning has been
shown to be very effective also over discrete structures (Ponti et al. 2021a; Ponti et al.
2021b).

The major problem in extending the kernel to WST spaces is that for Kw(w,w
′
) =

e−
W2
2

(

w,w
′)

2σ2 to be a kernel, any resulting squared exponential kernel matrix built with
the Wasserstein distance must be positive definite. This in general cannot be guaranteed
because Wasserstein spaces are not Hilbertian and therefore a Wasserstein based kernel
KW

(
w,w′) is not guaranteed, but in some specific conditions, to be positive definite.

Bayesian Optimization in Wasserstein Spaces 253

One such condition is when the histograms is univariate which is met by our problem
and in general by single objective problems. Single objective optimizations generates
1-d histograms so that we are in the condition in which the resulting kernel KW

(
w,w′)

is definite positive.

1.2 Our Contributions

• A first contribution of this paper is to show that a distributional representation of
points in the search space of an optimization problem as histograms, which encode
the information about the objective function, can be applied to Bayesian optimization.

• The choice of the Wasserstein distance because it’s a metric, captures complex
relationships between inputs, neighbourhood sizes and connectivity and provides
geometrically meaningful distances.

• A Bayesian optimization method where both the kernel KSE
(
w,w′) = e−

∣
∣
∣
∣

∣
∣
∣
∣w−w

′ ∣∣∣
∣

∣
∣
∣
∣

2

2σ2 and
the acquisition function operate in the Wasserstein space.

• A neural network which maps the results from the WST space back to the original
search space X.

• A measure of concentration around the global optimum in the space W as the
ambiguity set built upon a notion of distance between histograms.

• Computational results which show that the Wasserstein algorithm outperforms both
in terms of function evaluations and wall clock time, the basic BO algorithm and
that the competitive edge increases substantially as the dimension of the search space
increases.

1.3 Organization of the Paper

The contents of the paper are organized as follows. Section. 2 provides background
knowledge in particular about Wasserstein distance in Sect. 2.1 and Bayesian optimiza-
tion in Sect. 2.2. Section 3 establishes the Wasserstein based Bayesian optimization
algorithms. Section 4 the computational results on a test function. Section 5 provides
conclusions and perspectives.

2 Background

2.1 Wasserstein Distance

A The WST distance between continuous probability distributions is:

Wp
(
P(1),P(2)

) =
(

inf
γ∈�(P(1),P(2))

∫
X×X d

(
x(1), x(2)

)p
dγ

(
x(1), x(2)

)
) 1

p

(5)

where d(x(1), x(2)) is also called ground distance (usually it is the Euclidean norm),
�

(
P(1),P(2)

)
the set of all joint distributions γ (x(1), x(2)) whose marginals are

respectively P(1) and P(2) is the set of all transportation plans and p > 1 is an index.

254 A. Candelieri et al.

For one dimensional distributions WST can be written in an explicit form. Let P
∧(1)

and P
∧(2)

be the cumulative distribution for one-dimensional distributions P(1) and P(2)

on the real line and
(
P
∧(1))−1

and
(
P
∧(2))−1

be their quantile functions. In this case:

Wp
(
P(1),P(2)

) =
(

∫ 1
0

∣
∣
∣
∣

(
P
∧(1))−1(

x(1)
) −

(
P
∧(2))−1(

x(2)
)
∣
∣
∣
∣

p

dx

) 1
p

(6)

Let’s now consider the case of a discrete distribution P specified by a set of support
points xi with i = 1, . . . ,m and their associated probabilities wi such that

∑m
i=1 wi = 1

with wi ≥ 0 and xi ∈ M for i = 1, . . . ,m. Usually, M = R
d is the d -dimensional

Euclidean space with the lp norm and xi are called the support vectors.M can also be a
symbolic set provided with a symbol-to-symbol similarity. P can also be written using
the notation:

P(x) =
m∑

i=1
wiδ(x − xi) (7)

where δ(·) is the Kronecker delta. The WST distance between two distributions P(1) ={
w(1)
i , x(1)

i

}
with i = 1, . . . ,m1 and P(2) =

{
w(2)
i , x(2)

i

}
with i = 1, . . . ,m2 is the

solution of the following linear program:

W
(
P(1),P(2)

) = min
γij∈R+

∑

i∈I1,j∈I2
γijd

(
x(1)
i , x(2)

j

)

(8)

The cost of transport between x(1)
i and x(2)

j , d
(
x(1)
i , x(2)

j

)
, is defined by the p-th

power of the norm ‖x(1)
i , x(2)

j ‖ (usually the Euclidean distance). We define two index
sets I1 = {1, . . . ,m1} and I2 likewise, such that:

∑

i∈I1
γij = w(2)

j ,∀j ∈ I2 (9)

∑

j∈I2
γij = w(1)

i ,∀i ∈ I1 (10)

Equations 9 and 10 represent the in-flow and out-flow constraint, respectively. The
terms γij are called matching weights between support points x(1)

i and x(2)
j or the optimal

coupling for P(1) and P(2). Discrete optimal transport is a linear program and thus can
be solved exactly in O(n3logn) with interior point methods. In practice a version with
entropic smoothing (Peyré and Cuturi 2019; Flamary et al., 2021) has proven more
efficient. The discrete version of the WST distance, for p = 1, is usually called Earth
Mover Distance (EMD). For instance, when measuring the distance between grey scale
images, the histogram weights are given by the pixel values and the coordinates by the
pixel positions. In the specific case of histograms, the entries γij denote howmuch of the
bin i has to be moved to bin j. The computation of EMD turns out to be the solution of a
minimum cost flow problem on a bi-partite graph where the bins of P(1) are the source

Bayesian Optimization in Wasserstein Spaces 255

nodes and the bins ofP(2) are the sinks while the edges between sources and sinks are the
transportation costs. In the case of one-dimensional histograms, the computation ofWST
reduces to the comparison of two 1-dimensional histograms which can be performed by
a simple sorting and the application of the following equation.

Wp
(
P(1),P(2)

) =
(

1
n

n∑

i

∣
∣
∣w

(1)∗
i − w(2)∗

i

∣
∣
∣
p
) 1

p
(11)

where x(1)∗
i and x(2)∗

i are the sorted samples. To apply directly this formula the histograms
have to be aligned. For each histogram, the cumulated relative frequency is computed,
whose inverse, as inEq. 6, is the quantile functionQ(s)which for a histogram is piecewise
linear. Hence the integral, as in Eq. 6, can be computed as the sum of simple intervals.

In this paper, we embed input data as probability distributions inWasserstein spaces.
TheWasserstein distance can be analysed also from the embedding point of view.Wasser-
stein spaces are very large meaning that many spaces can embed into them with low
distortion. The reverse direction, embedding WST spaces into others, is more difficult
and relatively well studied only for discrete distributions. This is motivated by interest
in more efficient algorithms by embedding into spaces with easily-computed metrics. In
this paper we have used an instance of this approach embedding the WST distance for
univariate histograms into the space of quantile functions, as shown in Eq. 6. A recent
paper on the subject of embeddings and Wasserstein spaces is (Frogner et al. 2019)
where the specific cases of graph embeddings and word embeddings are considered.

2.2 Bayesian Optimization

Bayesian Optimization is a statistically principled approach to adaptively and sequen-
tially select points in which to evaluate the objective function with the aim of optimizing
f with a small number of function evaluations. In order to be sample efficient, we need
a way of extrapolating our belief about what f looks like at points not yet evaluated. In
Bayesian Optimization this is enabled by a surrogate model which should also be able to
quantify the uncertainty of its predictions in form of a posterior distribution over function
values f (x) at points x. Posteriors represent the belief a model has about the function
values about points not yet observed. Therefore, the posterior is the distribution over
the outputs conditioned on the data observed so far. When using the Gaussian process
model the posterior is given explicitly as a multivariate distribution.

A Gaussian process (GP) is a probability distribution over functions denoted as
f (x) ∼ GP(μ(x), k

(
x, x′)) where μ(x) is the mean function of the GP and k

(
x, x′)

is the covariance function (aka kernel). Therefore, GP is as a collection of random
variables, any finite number of which have a joint Gaussian distribution and f (x) can be
considered as a sample from a multivariate normal distribution (Frazier 2018; Archetti
and Candelieri 2019).

Let denote with X1:n = {
x(i)

}
i=1,...,n a set of n points in
 ⊂ Rd and with y1:n =

{
f
(
x(i)

) + ε
}
i=1,..,n the associated function values, possibly noisy with ε a zero-mean

Gaussian noise ε ∼ N(
0, λ2

)
. Then the posterior predictive mean μ(x) and standard

256 A. Candelieri et al.

deviation σ 2(x), conditioned on X1:n and y1:n, are given by the following equations:

μ(x) = k(x,X1:n)
[
K + λ2I

]−1
y1:n (12)

σ 2(x) = k(x, x) − k(x,X1:n)
[
K + λ2I

]−1
k(X1:n, x) (13)

where k(x,X1:n) = {
k
(
x, x(i)

)}
i=1,...,n and K ∈ Rn×n with entries Kij = k

(
x(i), x(j)

)
.

The choice of the kernel should reflect prior beliefs over the structural properties of
f (x), specifically its smoothness. Almost every kernel has its own hyperparameters to
tune – usually via Maximum Log-likelihood Estimation (MLE) or Maximum A Posteri-
ori Probability (MAP) – for reducing the potentialmismatches between prior smoothness
assumptions and the observed data. Common kernels for GP regression are:

• Squared Exponential: kSE
(
x, x′) = e

− ‖x−x′‖2
2�2

• Exponential: kEXP
(
x, x′) = e− ‖x−x′‖

�

• Power-exponential: kPE
(
x, x′) = e− ‖x−x′‖p

�p

• Matérn3/2:kM 3/2
(
x, x′) =

(
1 +

√
3‖x−x′‖

�

)
e−

√
3‖x−x′‖

�

• Matérn5/2: kM 5/2
(
x, x′) =

[

1 +
√
5‖x−x′‖

�
+ 5

3

(‖x−x′‖
�

)2
]

e−
√
5‖x−x′‖

�

The acquisition function is the mechanism behind the sample efficiency of Bayesian
optimizationmethod: it manages the balancing between exploration and exploitation and
is an important concept also outside machine learning (Candelieri et al. 2021). It drives
the search of the new evaluation points towards points with potential high values of
objective function either because value of μ(x) is high or the uncertainty represented by
σ 2(x) is high (or both). A widely used acquisition function is the Expected Improvement
(EI) given by the expected improvement on f (x)with respect to the predictive distribution
of the surrogate model. Another common acquisition is based the Confidence Bound
concept. Lower Confidence Bound – LCB – and Upper Confidence Bound – UCB – in
theminimization andmaximization case, respectively. The next point to evaluate is given
by the minimizer of:

LCB(x) = μ(x) − kσ(x) (14)

where k ≥ 0 is the parameter to manage the exploration/exploitation trade-off.

3 The WST-BO Algorithm

3.1 BO in the Wasserstein Space

To train the GP model in the WST space we need the function evaluation dataset:

D1:n = (X1:n,W1:n, y1:n) (15)

where:

Bayesian Optimization in Wasserstein Spaces 257

• X1:n = {
x(i)

}
i=1:n are the locations queried

• W1:n = {
w(i)

}
i=1:n are the associated histograms (inW)

• y1:n = {
y(i)

}
i=1:n are the observed function values.

The Gaussian Process is trained in the Wasserstein space and the updating formulas
(Eqs. 12 and 13) become:

μ(w) = k(w,W1:n)
[
K + λ2I

]−1
y1:n (16)

σ 2(w) = k(w,w) − k(w,W1:n)
[
K + λ2I

]−1
k(W1:n,w) (17)

where Kij = kW
(
w(i),w(j)

)
and k(W1:n,w) is a vector whose i-th component is

kW
(
w(i),w

)
. The minimization of LCB(·) = μ(·) − β

1
2 σ(·) yields to w(n+1) =

argminLCB(w) used to augments the dataset and to update the kernel matrix and the GP
as in Eqs. 16 and 17.

3.2 Mapping W into X
We need to map back w(n+1) in the X space to obtain the value x(n+1) and consequently
y(n+1). The mapping W → X, is performed by a neural network: from w(n+1) we
obtain θ(n+1) an approximation of

(
h1

(
x(n+1)

)
, . . . , hM

(
x(n+1)

))
. Next, we learn a neural

network-based regressionmodel : � → X. Thenumber of layers of the neural network
is 3 and in each layer the number of neurons is max(n, d). Using this model, we obtain
the new point

(
θ(n+1)

) = x(n+1) which yields y(n+1) = f (x(n+1)) which yields to
w̃(n+1). Finally, we update both, the regression model and the GP conditioned to this
new observation

(
x(n+1), w̃(n+1), y(n+1)

)
.

4 Computational Results

The results are partial and preliminary. Only one function, Alpine 01 is reported (Al-
Roomi 2015).

f (x) =
n∑

i=1
|xisin(xi) + 0.1xi| (18)

The algorithms have been implemented using BoTorch (Balandat et al. 2020) a
Python library for Bayesian Optimization part of the PyTorch ecosystem. BoTorch pro-
vides an easy-to-use interface for defining, managing, and running sequential experi-
ments and a modular interface for composing Bayesian optimization primitives as prob-
abilistic models, acquisition functions, and optimizers. BoTorch organizes the compu-
tations in batches of size q. The acquisition function used is Lower Confidence Bound
(LCB).

258 A. Candelieri et al.

Fig. 1. Alpine 01 objective function in the case of d = 2.

All the following results refer to 5 optimization runs; in the figure the mean and
standard deviation over the different runs are reported.

Dimension d = 5. The plain BO (RBF kernel in X) has a consistently better
performance.

Fig. 2. (a) and (b) represent the minimum observed as a function respectively of function
evaluations and wall-clock time; (c) minimum distance averaged over five simulations.

Dimension d = 10. The algorithms in theWasserstein space perform significantly better
confirming the superiority of the search in WST space at very low evaluation counts).
WSTkernel suffers in terms ofwall clock time because its preliminary implementation in
BoTorch has some significant inefficiencies which will be eliminated in the next version
of WST Kernel.

Dimension d = 50.The advantage of theWasserstein embedding growswith the number
of dimensions.

4.1 Convergence

The ambiguity set is built upon a notion of distance between histograms. Let H∗ the
histogram associated to x∗ and f (x∗), the ambiguity set of the optimal solution in W is
given by W(ε,H∗) = {H : W (H∗,H) ≤ ε}. The cardinality of W(ε,H∗) is a measure
of concentration around the global optimum in the spaceW (for ε = 0.05 the cardinality
is 77).

Bayesian Optimization in Wasserstein Spaces 259

Fig. 3. (a) and (b) represent the minimum observed as a function respectively of function
evaluations and wall-clock time; (c) minimum distance averaged over five simulations.

Fig. 4. (a) and (b) represent the minimum observed as a function respectively of function
evaluations and wall-clock time; (c) minimum distance averaged over five simulations.

Fig. 5. Early iteration stage (a), late iteration stage (b), optimal histogram (c).

Fig. 6. TheWasserstein distance between the optimal histogram and the sequence
{
w(i)

}

i=1,...,n
.

260 A. Candelieri et al.

5 Conclusions and Perspectives

Themain conclusion is that a distributional representation of points in the search space as
histograms can be effectively applied to Bayesian optimization. Metric learning encodes
the information about the objective function for Bayesian optimization including the
geometry of the data generated in the sequential optimization process. One could regard
the bins as features and the histogram representation as embedding x in a lower dimen-
sional feature space, the Wasserstein space. The Wasserstein distance has been chosen
because it’s a metric, captures complex relationships between inputs, neighbourhood
sizes and connectivity and provides geometrically meaningful distances.

Computational experiments show, both in terms of function evaluations and wall
clock time, how the new method outperform “vanilla” BO and its advantage increases
with the dimension of the search space. The distributional approach is natural for
simulation-optimization problems over discrete structures, sensor placement in phys-
ical and informational networks and stochastic vehicle routing. Also multi-objective
problems fit into this scheme once a scalarizing strategy is adopted.

References

Al-Roomi, A.R.: Unconstrained Single-Objective Benchmark Functions Repository (2015)
Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer International

Publishing (2019)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Interna-

tional Conference on Machine Learning, pp. 214–223. PMLR, July 2017
Astudillo, R., Frazier, P.: Bayesian Optimization of Function Networks. In: Advances in Neural

Information Processing Systems, 34 (2021)
Astudillo, R., Frazier, P.I.: Thinking inside the box: A tutorial on grey-box Bayesian optimiza-

tion. arXiv preprint arXiv:2201.00272 (2022)
Bachoc, F., Suvorikova, A., Ginsbourger, D., Loubes, J.M., Spokoiny, V.: Gaussian processes with

multidimensional distribution inputs via optimal transport and Hilbertian embedding. Electron.
J. Stat. 14(2), 2742–2772 (2020)

Balandat, M., et al.: BoTorch: a framework for efficient Monte-Carlo Bayesian optimization. Adv.
Neural. Inf. Process. Syst. 33, 21524–21538 (2020)

Candelieri, A., Giordani, I., Perego, R., Archetti, F.: Composition of kernel and acquisition func-
tions for High Dimensional Bayesian Optimization. In: Kotsireas, I.S., Pardalos, P.M. (eds.)
LION 2020. LNCS, vol. 12096, pp. 316–323. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53552-0_29

Candelieri, A., Ponti, A., Archetti, F.: Uncertainty quantification and exploration–exploitation
trade-off in humans. J. Ambient Intell. Humanized Comput., 1–34 (2021)

Cohen, S., Arbel, M., Deisenroth, M.P.: Estimating barycenters of measures in high dimen-
sions. arXiv preprint arXiv:2007.07105 (2020)

De Plaen, H., Fanuel, M., Suykens, J.A.: Wasserstein exponential kernels. In: 2020 International
Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE, July 2020

Frazier, P.I.: Bayesian optimization. In: Recent Advances in Optimization and Modeling of
Contemporary Problems, pp. 255–278. INFORMS (2018)

Frogner, C., Mirzazadeh, F., Solomon, J.: Learning embeddings into entropic wasserstein
spaces. arXiv preprint arXiv:1905.03329 (2019)

https://doi.org/10.1007/978-3-030-53552-0_29

Bayesian Optimization in Wasserstein Spaces 261

Gangbo, W., McCann, R.J:. Shape recognition via Wasserstein distance. Quarterly of Applied
Mathematics, 705–737 (2000)

Hein, M., & Bousquet, O.: Hilbertian metrics and positive definite kernels on probability mea-
sures. In: International Workshop on Artificial Intelligence and Statistics, pp. 136–143. PMLR,
January 2005

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural architecture search
with bayesian optimisation and optimal transport. Advances in neural information processing
systems, 31 (2018)

Kandasamy, K., Schneider, J., Póczos, B.: High dimensional Bayesian optimisation and bandits
via additive models. In: International conference on machine learning, pp. 295–304. PMLR,
June 2015

Kantorovich, L.V.: On the translocation of masses. In: Dokl. Akad. Nauk. USSR (NS), vol. 37,
pp. 199–201 (1942)

Kuhn, D., Esfahani, P.M., Nguyen, V.A., Shafieezadeh-Abadeh, S:. Wasserstein distributionally
robust optimization: Theory and applications in machine learning. In: Operations research &
management science in the age of analytics, pp. 130–166. Informs (2019)

Lau, T.T.K., Liu, H.: Wasserstein Distributionally Robust Optimization via Wasserstein Barycen-
ters (2022)

Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using
the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Pro-
gramm. 171(1), 115–166 (2018)

Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale (1781)
Moriconi, R., Deisenroth, M. P., Sesh Kumar, K.S.: High-dimensional Bayesian optimization

using low-dimensional feature spaces. Mach. Learn. 109(9), 1925–1943 (2020a)
Moriconi, R., Kumar, K.S.S., Deisenroth, M.P.: High-dimensional Bayesian optimization with

projections using quantile Gaussian processes. Optim. Lett. 14(1), 51–64 (2019). https://doi.
org/10.1007/s11590-019-01433-w

Nguyen, V.A., Shafieezadeh-Abadeh, S., Kuhn, D., Mohajerin Esfahani, P.: Bridging Bayesian
and minimax mean square error estimation via Wasserstein distributionally robust optimiza-
tion. Mathematics of Operations Research (2021)

Öcal, K., Grima, R., Sanguinetti, G.: Parameter estimation for biochemical reaction networks
using Wasserstein distances. J. Phys. A: Math. Theor. 53(3), 034002 (2019)

Peyré, G., Cuturi, M.: Computational optimal transport: With applications to data science. Found.
Trends® Mach. Learn. 11(5–6), 355–607 (2019)

Pflug, G.C., Pichler, A.: A distance for multistage stochastic optimizationmodels. SIAM J. Optim.
22(1), 1–23 (2012)

Ponti, A., Candelieri, A., Archetti, F.: A Wasserstein distance based multiobjective evolutionary
algorithm for the risk aware optimization of sensor placement. Intell. Syst. Appl. 10, 200047
(2021)

Ponti, A., Candelieri, A., Giordani, I., Archetti, F.: Probabilistic measures of edge criticality in
graphs: a study in water distribution networks. Appl. Network Sci. 6(1), 1–17 (2021). https://
doi.org/10.1007/s41109-021-00427-x

Redko, I., Courty, N., Flamary, R., Tuia, D.: Optimal transport for multi-source domain adaptation
under target shift. In: The 22nd International Conference onArtificial Intelligence andStatistics,
pp. 849–858. PMLR, April 2019

Schieber, T.A., Carpi, L., Díaz-Guilera, A., Pardalos, P. M., Masoller, C., Ravetti, M.G.:
Quantification of network structural dissimilarities. Nature Commun. 8(1), 1–10 (2017)

Smola, A.J., Schölkopf, B.: Learning with kernels, vol. 4. GMD-Forschungszentrum Information-
stechnik

Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Schölkopf, B., Lanckriet, G.R.: Hilbert space
embeddings and metrics on probability measures. J. Mach. Learn. Res. 11, 1517–1561 (2010)

https://doi.org/10.1007/s11590-019-01433-w
https://doi.org/10.1007/s41109-021-00427-x

262 A. Candelieri et al.

Vayer, T., Chapel, L., Flamary, R., Tavenard, R., Courty, N.: Optimal transport for structured data
with application on graphs. arXiv preprint arXiv:1805.09114 (2018)

Villani, C.: Optimal transport: old and new, vol. 338, p. 23. Springer, Berlin (2009)
Zhang, R., Golovin, D.: Random hypervolume scalarizations for provable multi-objective black

boxoptimization. In: InternationalConference onMachineLearning, pp. 11096–11105. PMLR,
November 2020

Network Vulnerability Analysis in Wasserstein
Spaces

Andrea Ponti1,4,5(B), Antonio Irpino3, Antonio Candelieri1, Anna Bosio2,
Ilaria Giordani2,4, and Francesco Archetti2,5

1 Department of Economics, Management and Statistics,
University of Milano-Bicocca, Milano, Italy

a.ponti5@campus.unimib.it
2 Department of Computer Science, Systems and Communication,

University of Milano-Bicocca, Milano, Italy
3 Dip. Matematica e Fisica Universitá della Campania “Luigi Vanvitelli” Caserta, Caserta, Italy

4 Oaks S.R.L., Milano, Italy
5 Consorzio Milano Ricerche, Milano, Italy

Abstract. The main contribution of this paper is the proposal of a new family
of vulnerability measures based on a probabilistic representation framework in
which the network and its components are modelled as discrete probability distri-
butions. The resulting histograms are embedded in a space endowed with a metric
given by the Wasserstein distance. This representation enables the synthesis of a
set of discrete distributions through a barycenter and the clustering of distribu-
tions. We show that analyzing the networks as discrete probability distributions
in the Wasserstein space enables the definition of a new family of vulnerability
measures and the assessment of the criticality of each component. Computational
results on real-life networks confirm the validity of our basic assumption that dis-
tributional representation can capture the topological information embedded in
a network graph and yield more meaningful metrics than vulnerability measures
based on average values. The computation of theWasserstein distance is equivalent
to the solution of a min-flow problem: its computational complexity has limited
its diffusion outside the imaging science community. To avoid this computational
bottleneck in this paper, we focus on a statistical approach that drastically reduces
the computational hurdles. This approach has been implemented in a software tool
HistDAWass. The linear complexity of this approach has also enabled the analysis
of large-scale networks.

Keywords: Vulnerability · Wasserstein distance · Network analysis

1 Introduction

There are many measures of network vulnerability: a recent paper (Freitas et al. 2021) is
a wide and updated survey that analyses eighteen such measures. The main contribution
of this paper is the proposal of a new family of vulnerability measures based on a proba-
bilistic representation framework in which the network and its components are modeled

© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 263–277, 2022.
https://doi.org/10.1007/978-3-031-24866-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_20&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_20

264 A. Ponti et al.

as discrete probability distributions. These distributions are embedded in a probabilistic
space: in particular, we consider the discrete probability distribution The resulting his-
tograms are embedded in a space endowedwith ametric given by theWasserstein (WST)
distance. This paper also establishes a unifying mathematical and statistical framework
that enables the computation of Wasserstein-based vulnerability measures and network
clustering in the Wasserstein space. This distributional representation makes a better
use of all the information hidden in the shortest paths in the network than the connec-
tivity measures given by the average values. We use the Wasserstein distance among
possible distances between discrete probability distributions due to its advantages over
other distributional distances. It is close to natural perception, allows for flexible bin-
ning schemes and enables a synthetic representation of the shape of data through the
barycenters. The barycenter is sensitive to the underlying geometry of the histograms.
The Wasserstein barycenter, also called the Fréchet mean of distributions, can represent
the mean variation of a set of histograms and offers a helpful synthesis of their struc-
ture. If we consider two nodes, the WST distance between their histograms captures our
intuition of closeness between histograms. Therefore, the concept of barycenter enables
clustering of distributions in a space whose metric is the Wasserstein distance. More
simply, the barycenter in the space of distributions is the analog of the centroid when
the clustering takes place in a Euclidean space. Considering barycenters as centroids,
we can perform clustering in WST as the generalization of k-means in the space of
discrete distributions endowed with the Wasserstein distance. The advantages of non-
Euclidean distances in enabling new insights and a better statistical inference must be
weighted against their computational costs. The computation of theWasserstein distance
is equivalent to a min-flow problem that typically has a cubical complexity. This paper
focuses on a statistical approach (Irpino and Verde 2015), where the approximations
are on the distributions themselves, which drastically reduces the computational hurdles
for multivariate distributions. This approach has been implemented in a software tool,
HistDAWass, whose basis is described in (Irpino and Verde, 2015), and has been used
for the computations in this paper.

In this paper, we show that analyzing the networks as a discrete probability dis-
tribution in the Wasserstein space enables the definition of a set of new vulnerability
measures. The WST distance between their barycenters gives the difference in vulner-
ability between two networks; If the two networks differ by one component (node or
arc), their WSDT distance indicates the criticality of that component. This paper aims
twofold: first to show howWasserstein spaces enable a better representational flexibility
than Euclidean spaces. Second to show how the employed computational method, with
its low computational complexity, enables computational procedures which allow even
large-scale networks to be analyzed in the new framework. This novel approach has
been tested on a benchmark problem and a real-life large water distribution network, the
assessment of their vulnerability and their clustering.

1.1 Related Works

An early proposal to measure network similarity as the distance distributions of the
node-to-node distances is in (Schieber et al. 2017) which propose the Jensen-Shannon

Network Vulnerability Analysis in Wasserstein Spaces 265

distance. Here we consider the Wasserstein distance due to its flexibility and natural
interpretation.

Wasserstein Clustering
The basic computation of the optimal transport map between 2 discrete distributions
involves solving a network flow problem whose computation is typically cubic in the
sizes of the measure. In the case of simple ground costs, it is shown to be equivalent to a
min-flow algorithm of quadratic computational complexity and, in specific cases, e.g., 1-
dimensional, to linear. Computing the barycenter and clustering adds two further layers
of computations. The problem has been investigated particularly for images (Bonneel
et al. 2016). Flamary et al. (2021) have proposed a general package, “Python Optimal
Transport,” which offers several computational options. A seminal paper is (Applegate
et al. 2011) where a method is proposed for clustering multidimensional distributions
of patterns of mobile phone calls using earth mover distance, which reduces the cost to
linear time. Building on flow representation, Atasu and Mittelholzer (2019) propose an
approximate solution for Earth Mover Distance (a specific WST distance for discrete
distributions) which attains linear complexity. A statistical approach for the data analysis
inWST spaces is proposed in (Bigot 2020) and (Verdinelli andWasserman 2019), which
propose a modified Wasserstein distance for distribution clustering that inherits many
properties of the Wasserstein distance at a lower computational cost. Another solution,
which will be adopted in this paper and analyzed in Sect. 2, has been proposed in
(Irpino and Romano 2007) and (Irpino and Verde 2015). This approach is extended
by Balzanella and Irpino (2020) to the spatial prediction and dependence monitoring
on georeferenced data streams. Yet another approach is in (Puccetti et al. 2020): their
main contribution is the Iterative Swapping Algorithm (ISA) for computing barycenters,
which has a quadratic time complexity and can also be applied to clustering problems
and more complex optimization problems like the k-barycenter problem.

Wasserstein for Network Vulnerability
The literature on vulnerability and resilience in networks is extremely large. For general
networks, an updated survey is in (Freitas et al. 2021). Herewe limit toWater distribution
Networks (WDN). The complex network analysis of water distribution systems has been
introduced in (Yazdani and Jeffrey, 2011) and extended in (Yazdani and Jeffrey 2012)
to weighted and directed network models. Graph-theoretic approaches have been the
subject of several papers. Herrera et al. (2016) andDiNardo et al. (2018) applied a graph-
theoretic framework for assessing the resilience of sectorizedwater distribution networks
(Candelieri et al. 2017) integrates network analysis and hydraulic simulation (Soldi et al.
2015). The same approach is extended in (Ulusoy et al. 2018) to a resilience measure
based on a hydraulically informed measure of link criticality. Directly relevant to this
paper is the new approach proposed in (Ponti et al. 2021a), which uses a representation
of the network as a discrete probability distribution over the domain of node-to-node
distances. As shown in (Ponti et al. 2021b) this also provides a link criticality index.

266 A. Ponti et al.

1.2 Our Contributions

• The distributional representation is shown to capture effectively the topological infor-
mation embedded in network graphs andyieldmoremeaningfulmetrics than centrality
and vulnerability measures based on average values.

• The statistical approach in the computation of the Wasserstein distance has lower
computational complexity than the optimal transport approach.

• The computation of barycenters inWasserstein spaces enables the synthetic represen-
tation of the geometry of the data.

• Wasserstein-based clustering results in better quality and lower computational
complexity than usual methods.

• The new family of vulnerability measures provides both aggregate evaluations (at
network level) and indications of the criticality even of a single network element.

2 Wasserstein

2.1 Basic Definitions

The WST distance between continuous probability distributions is:

Wp

(
P(1),P(2)

)
=

(∫

X×X
d
(
x(1), x(2)

)p
dγ

(
x(1), x(2)

)) 1
p

(1)

where d
(
x(1), x(2)

)
is also called ground distance (usually it is the Euclidean norm),

�
(
P(1),P(2)

)
denotes the set of all joint distributions γ

(
x(1), x(2)

)
whose marginals are

respectively P(1) and P(2), and p ≥ 1 is an index. When p = 1 and the probability
distribution is discrete, the Wasserstein distance is also called the Earth Mover Distance
(EMD). The EMD is the minimum energy cost of moving and transforming a pile of
sand in the shape of P(1) to the shape of P(2). The cost is quantified by the amount of
sand moved times the moving distance d

(
x(1), x(2)

)
. The EMD then is the cost of the

optimal transport plan. Some specific cases are very relevant in applications, whereWST

can be written in an explicit form. Let P
∧(1)

and P
∧(2)

be the cumulative distribution for

one-dimensional distributions P(1) and P(2) on the real line and
(
P
∧(1))−1

and
(
P
∧(2))−1

be their quantile functions.

Wp

(
P(1),P(2)

)
=

(∫ 1

0

∣∣∣∣
(
P
∧(1))−1

(u) −
(
P
∧(2))−1

(u)

∣∣∣∣
p

du

) 1
p

(2)

2.2 The Space of Quantile Functions

As shown by Eq. (2), Wasserstein distance between one dimensional (1D) distributions
relies on quantile functions, and, in the case of p = 2, it corresponds to a Euclidean
distance between two non-decreasing functions with support [0; 1]. As shown by Dias
andBrito (2015), beingF(R,R) a set of functions. (F ,+, ·) is a vector space of functions

Network Vulnerability Analysis in Wasserstein Spaces 267

equipped with the usual operations of addition (f + g)(x) = f (x) + g(x), ∀x ∈ R, and
scalar product (λ · f)(x) = λ · f (x), λ ∈ R. Considering the case of the set E ⊂ F of
quantile functions such that E([0, 1],R), and with the non-negative first derivative, i.e.,
given f ∈ E : [0, 1] → R, f

′ ≥ 0, ∀x ∈ (0, 1), the space (E,+, ·) is not a subspace
of (F ,+, ·) since it does not satisfy the definition of a vector space. In fact, if λ < 0
then g(x) = λ · f (x) in not a quantile function since g

′ ≤ 0, ∀x ∈ (0, 1). The last
result impacts the addition operation too. For these reasons, (E,+, ·) is a semi-vector
(or semi-linear space) space, i.e., only conical combinations of functions are possible.

Wasserstein Space
Even if (E,+, ·) is a semi-vector-space, (X ,Wp), where Wp is the p-Wasserstein dis-
tance with p ≥ 1 and X ∼ (E−1)′, , is a compact metric space and it is separable and
complete (Bolley 2008). Especially, when x0 is a 1D distribution function and p = 2,
the �2 Wasserstein distance, or the 2-Wasserstein distance, by means of convex analysis,
the Agueh and Carlier (2011) provide conditions for the existence, uniqueness, charac-
terization and regularity of Fréchet means of a set of distributions. No explicit solution
to the Fréchet mean problem is available, in general, in the multivariate case. However,
some approximate solutions have been recently proposed (Boissard et al. 2015; Cuturi
and Doucet 2014).

2.3 The Wasserstein Distance for Discrete Distributions: The Optimal Transport
Approach

Let us now consider the case of a discrete distribution P specified by a set of support
points xi with i = 1, . . . ,m and their associated probabilities wi such that

∑m
i=1wi = 1

with wi ≥ 0 and xi ∈ M for i = 1, . . . ,m. Usually, M = Rd is the d -dimensional
Euclidean space with the lp norm and xi are called the support vectors.M can also be a
symbolic set provided with a symbol-to-symbol similarity. P can also be written using
the notation:

P(x) =
m∑
i=1

wiδ(x − xi) (3)

where δ(·) is the Kronecker delta. The WST distance between two distributions P(1) ={
w(1)
i , x(1)

i

}
with i = 1, . . . ,m1 and P(2) =

{
w(2)
i , x(2)

i

}
with i = 1, . . . ,m2 is obtained

by solving the following linear program:

W
(
P(1),P(2)

)
=

∑
i∈I1,j∈I2

γijd
(
x(1)
i , x(2)

j

)
(4)

The cost of transport between x(1)
i and x(2)

j , d
(
x(1)
i , x(2)

j

)
, is defined by the p-th

power of the norm ‖x(1)
i , x(2)

j ‖ (usually the Euclidean distance). We define two index
sets I1 = {1, . . . ,m1} and I2 likewise, such that

∑
i∈I1

γij = w(2)
j ,∀j ∈ I2 (5)

268 A. Ponti et al.

∑
j∈I2

γij = w(1)
i ,∀i ∈ I1 (6)

Equations (5) and (6) represent the in-flow and out-flow constraints, respectively.
The terms γij are called matching weights between support points x(1)

i and x(2)
j or the

optimal coupling for P(1) and P(2). . The discrete version of the WST distance is usually
called EarthMoverDistance (EMD). For instance, whenmeasuring the distance between
greyscale images, the histogramweights are given by the pixel values and the coordinates
by the pixel positions. Anotherway to look at the computation of the EMD is as a network
flow problem. In the specific case of histograms, the entries γij denote how much of the
bin i has to be moved to bin j. The computation of EMD turns out to be the solution of
a minimum cost flow problem on a bipartite graph where the bins of P(1) are the source
nodes and the bins of P(2) are the sinks, while the edges between sources and sinks
are the transportation costs. In the case of one-dimensional histograms, the computation
of WST reduces to the comparison of two 1-dimensional histograms, which can be
performed by a simple sorting and the application of Eq. (14)

Wp

(
P(1),P(2)

)
=

(
1

n

n∑
i

∣∣∣w(1)∗
i − w(2)∗

i

∣∣∣
p
) 1

p

(7)

where w(1)∗
i and w(2)∗

i are the sorted samples. The major computational issue is the
polynomial complexity of the linear programming solvers commonly used to compute
WST. Starting from the consideration that the variables in w are more important than
the matching weights, approximate solvers have been proposed, specifically, Sinkhorn
solvers, which will be detailed later. Here it is just important to remark that they allow
managing the trade-off between accuracy and computational cost through a regulariza-
tion hyperparameter. Another approach is taken in (Ye et al. 2017) based on ADMM.
Entropic regularization enables scalable computations, but large values of the regular-
ization parameter could induce an undesirable smoothing effect, while low values not
only reduce the scalability but might induce several numeric instabilities.

2.4 The Wasserstein Distance for Discrete Distributions: A Statistical Approach

In the case of one-dimensional pdf’s Irpino and Romano (2007) and Irpino and Verde
(2015) proposed how to compute in an efficient wayW2

(
P(1),P(2)

)
. Irpino and Romano

(2007) considered the computation of W2
(
P(1),P(2)

)
when P(1) and P(2) are 1-D his-

tograms also with different binning of the support. After a homogenization step, which
allows for the description of the two histograms’ cdf’s through the same levels of prob-
ability, they show that the squaredW2

(
P(1),P(2)

)
can be obtained as a weighted sum of

the squared distances of the bins’ midpoints and half-widths in linear time with respect
to the numbers of bins obtained by the homogenization step. They also proved that ifP(1)

has n(1) bins and P(2) has n(2) bins, after the homogenization step, the common number
of bins n∗ ∈ (

n(1), n(2)
)
, . . . ,

(
n(1) + n(2) − 1

)
. Irpino and Verde (2015) proposed a set

of basic statistics for 1-D-pdf-valued data where, assuming that all the pdf’s have finite

Network Vulnerability Analysis in Wasserstein Spaces 269

at least the first twomoments, the squaredW2
(
P(1),P(2)

)
can be decomposed as follows:

W 2
2

(
P(1),P(2)

)
= (μ1 − μ2)

2 + (σ1 − σ2)
2 + 2σ1σ2(1 − ρ12), (8)

where:

• μ1 and μ2 are the expectations of the two pdf ’s;
• σ1 and σ2 are the standard deviations of the two pdf ’s;
• ρ1,2 is the Pearson correlation between the quantile functions associated with the two

pdf ’s.

The decomposition, available only for 1-D-pdf-valued data, provides a framework
from interpreting the variability of a set of distributions. The W2

(
P(1),P(2)

)
is a met-

ric that has been used for extending the k-means cost function to distribution-valued
data (Verde and Irpino 2007) and it allows the definition of Fréchet means in terms of
distributional-valued data. The decomposition is used to explain the within and between
clusters sum of squares with respect to the three components, providing an effective tool
for interpreting the clustering results.

2.5 Barycenter and Clustering

Consider a set of N discrete distributions, P = {
P(1), . . . ,P(N)

}
, with P(k) ={(

w(k)
i , x(k)

i

)
: i = 1, . . . ,mk

}
and k = 1, . . . ,N , then, the associated barycenter,

denoted with P = {(
w1, x1

)
, . . . ,

(
wm, xm

)}
, is computed as follows:

P = 1

N

N∑
k=1

λkW
(
P,P(k)

)
(9)

where the values λk are used to weight the different contributions of each distribution in
the computation. Without loss of generality, they can be set to λk = 1

N ∀k = 1, . . . ,N .
The synthesis through a barycenter of a set of distributions have several advantages,

among which: TheWasserstein barycenter, also called the Fréchet mean of distributions,
and appears to be a noteworthy feature to represent the mean variation of a set of dis-
tributions and offers a useful synthesis of the structure of probability distributions, in
particular:

• It is sensitive to the underlying geometry. Consider three distributions P(1) =
δ0,P(2) = δε and P(3) = δ100. W

(
P(1),P(2)

) ≈ 0, W
(
P(1),P(3)

) ≈ W
(
P(2),P(3)

) ≈
100. The Total variation, Hellinger and Kullback-Leibler distances take the value 1;
thus, they fail to capture our intuition that P(1) and P(2) are close to each other while
they are far away from P(3).

• It is shape-preserving. Denote P(1), . . . ,P(N) and assume that each P(j) can be written
as a location shift of any other P(i), with i = j. Suppose that each P(j) is defined as
P(j) = N

(
μj, 	

)
, then the barycenter has the closed form:

270 A. Ponti et al.

P = N

⎛
⎝ 1

N

N∑
j=1

μj, 	

⎞
⎠ (10)

in contrast to the (Euclidean) average 1
N

∑N
j=1 P

(j).
Therefore, the concept of barycenter enables clustering among distributions in a

space whose metric is the Wasserstein distance. More simply, the barycenter in the
space of distributions is the analog of the centroid when the clustering takes place in a
Euclidean space. The most common and well-known algorithm for clustering data in the
Euclidean space is k-means. Since it is an iterative distance-based (aka representative-
based) algorithm, it is easy to propose variants of k-means by simply changing the
distance adopted to create clusters, such as theManhattan distance (leading to k-medoids)
or any kernel allowing for non-spherical clusters (i.e., kernel k-means). The crucial point
is that only the distance is changed while the overall iterative two-step algorithm is
maintained. This is also valid in the case of the WST k-means, where the Euclidean
distance is replaced by WST and centroids are replaced by barycenters:

• Step 1 – Assign.Given the current k barycenters at iteration t, namely P(1)
t , . . . ,P(k)

t ,
clusters C(1)

t , . . . ,C(k)
t are identified by assigning each one of the distributions

P(1), . . . ,P(N) to the closest barycenter:

C(i)
t =

{
P(j) ∈ P : P(i)

t = W
(
Q,P(j)

)}
,∀i = 1, . . . , k (11)

• Step 2 – Optimize. Given the updated composition of the clusters, update the
barycenters:

P(i)
t+1 = 1∣∣∣C(i)

t

∣∣∣
∑

P∈C(i)
t

W (Q,P) (12)

As in k-means, a key point of WST k-means is the initialization of the barycenters.
If all the distributions in P are defined on the same support, then they can be randomly
initialized; otherwise, a possibility is to start from k distributions randomly chosen
among those in P. Finally, termination of the iterative procedure occurs when the result
of the assignment step does not change any longer, or a prefixed maximum number of
iterations is achieved.

Network Vulnerability Analysis in Wasserstein Spaces 271

3 Distributional Representation of Networks

A histogram is a function mk that counts the elements in a sample of n observations of
a random variable that fall into each of k the disjoint categories (known as bins).

n =
K∑

k=1

mk (13)

To construct a histogram, the first step is to divide the support of the random variable
into a number of intervals – and then compute the “weight” of the bin counting how
many sampled values fall into each interval. The bins are usually specified as adjacent,
consecutive, non-overlapping intervals and are usually of the same size. In this section a
new analysis is performed in terms of node–node discrete distance distributions where
the weights mk are Pi(k) the percentage of nodes which are connected to i at a distance
k with each node i = 1, . . . , n of the graph G(V ,E).

Pi(k) = ni,k
n − 1

(14)

A first solution to aggregate the node to node distance distributions over the whole
graph is given by the Euclidean average:

PG(k) = μk = 1

n

n∑
i=1

ni,k
n − 1

= 1

n

n∑
i=1

Pi(k). (15)

Fig. 1. The Euclidean average of the node-to-node distance of Neptun (left), for node 92 (center)
and node 296 (right) of the Neptun network.

In this paper the Frechet mean of distributions (a.k.a. barycenter) will be introduced
in the next section and discussed in Sect. 6. Figure 1 shows how the Euclidean mean is
not shape preserving (from Sect. 6).

4 Vulnerability Measures

Given the graph G(V ,E) associated to the network, the removal of edge (i, j) yields
G′ = G/(i, j). The question we address in this section is how does vulnerability change
when edges are added or ablated from the network G. In particular, we assume the
ablation of an edge, which corresponds to a failure in the network, either natural or
intentional.

272 A. Ponti et al.

4.1 Efficiency-Based Vulnerability

Usual measures of network vulnerability are based on the concept of efficiency:

E(G) = 1

n(n − 1)

∑
i,j∈V ,i =j

1

dij
, (16)

where dij is the geodesic distance between nodes i and j.
The removal of edge (i, j) yields G′ = G/(i, j). Deleting an edge implies E(G′)

smaller than E(G). The increase of vulnerability induced by the removal of (i, j) is
given by the relative loss of efficiency,

CE

(i, j) = E(G) − E(G\{i, j})

E(G)
(17)

The average network vulnerability is:

VMEAN (G) = 1

n

∑
(i,j)∈E

CE

(i, j) (18)

The “worst case” network vulnerability is:

VMAX (G) = max
(i,j)∈EC

E

(i, j) (19)

4.2 Wasserstein-Based Vulnerability

The distributional approach established in Sect. 2 enables a new metric on vulnerability
based on theWasserstein distance. Given the set of distributions Pi(k) associated to node

i respectively of G and G′ = G\{(i, j)} we compute the barycenters P(G) and P
(
G

′)

as shown in the previous Sect. 3. The WST distance W2

(
P(G),P

(
G

′))
is assumed as

an index of the increase in vulnerability. Analogously to the loss of efficiency, two more
Wasserstein-based vulnerabilitymeasures can be established. Average case vulnerability
of G of the set same set of WST distances:

1

|E|
∑

(i,j)∈E
W2

(
P(G),P(G\{(i, j)}) (20)

For the “worst case” vulnerability:

max
(i,j)∈EW2

(
P(G),P(G\{(i, j)}) (21)

5 Data and Software Resources

5.1 Networks

Neptun is small WDN in Timisoara, Romania, more specifically it is a district metered
area (DMA) of a large WDN, and it was a pilot area of the European project ICeWater
(Fig. 2).

Network Vulnerability Analysis in Wasserstein Spaces 273

Fig. 2. The graph associated to Neptun WDN.

5.2 Software

We use the HistDAWass (Histogram Data Analysis using Wasserstein distance) pack-
age to analyse the 1D distributions extracted from the networks. HistDAWAss package
contains statistical tools written in R, and it is open-source and freely available1. It
was developed in the framework of Symbolic Data Analysis (SDA) (Bock and Diday
2000), a relatively new approach to the statistical analysis of multi-valued data, specif-
ically for data described by univariate histograms. The methods and the basic statistics
for histogram-valued data are based on the L2 Wasserstein metric between distribu-
tions, i.e., the Euclidean metric between quantile functions. The package extends sev-
eral descriptive and exploratory techniques for multivariate data to datasets described
by a table of univariate histograms. The core input of most of the methods is a table of
histogram-valued data, namely, a table where the columns are histogram variables (as
defined in the framework of SDA). The package contains tools for computing the basic
statistics of histogram variables, such as Frechét means and Frechét variances, unsuper-
vised classification techniques, such as hard and fuzzy k-means, hierarchical clustering
and self-organizing maps, least-square regression techniques, and dimension reduction
methods.

6 Computational Results

6.1 Vulnerability

The following table displays the differential vulnerability between networks G, G′, G′′
and G′′′ obtained removing e1, e2 and disconnecting the network by their joint removal.
Jensen-Shannon is similar to the measure introduced in (Schieber et al. 2017), loss of
efficiency is given by Eq. (13) (Table 1 and Fig. 3).

In the above heat maps the colour of each edge is given by the Wasserstein distance
between the aggregate distributions of the original network and the one obtained deleting
that edge. Left corresponds to Euclidean aggregation (Eq. 15) and right the Wasserstein
aggregations i.e., the two barycenters (Eq. 9) (Figs. 4 and 5).

1 https://github.com/Airpino/HistDAWass.https://cran.r-project.org/web/packages/HistDA
Wass/index.html

https://github.com/Airpino/HistDAWass
https://cran.r-project.org/web/packages/HistDAWass/index.html

274 A. Ponti et al.

Table 1. Vulnerability measures

Neptun Jensen-Shannon Wasserstein Loss of efficiency

G, G′ 0.2025 3.3280 0.0469

G, G′′ 0.2950 5.4870 0.0601

G, G′′′ 0.3286 12.1810 0.2432

Fig. 3. Euclidean Heatmap (left), Wasserstein Barycenter heatmap (right).

Fig. 4. Network mean histogram (left. Network barycenter histogram (right).

Again, we can observe, as already remarked in Sect. 3, that barycenters are shape-
preserving.

6.2 Clustering

The following figure displays the clustering obtained using the k-means scheme but with
the WST distance. The procedure is that described in Sect. 2.5. The number of clusters
has been determined according to the Dunn-Index (Fig. 6).

δij
(
Ci,Cj

) = 1

|Ci| · ∣∣Cj
∣∣

∑
x∈Ci

∑
y∈Cj

W (x, y) (22)

Network Vulnerability Analysis in Wasserstein Spaces 275

Fig. 5. Network mean histogram removing node 552 (left). Network barycenter histogram
removing node 552 (right).

i(Ci) = 2

|Ci| · (|Ci| − 1)

∑
x∈Ci

∑
y∈Ci :x =y

W (x, y) (23)

DI =
min

i,j∈{1,2,3}δij
(
Ci,Cj

)

max
k∈{1,2,3}

k(Ck)
(24)

Fig. 6. The clustering results on Neptun WDN.

7 Conclusions and Perspectives

Modeling the network and its components as discrete probability distributions and
embedding them in a probabilistic space has been shown to enable the methodological
and operational definition of a new family of network vulnerability measures. Endow-
ing this space with the Wasserstein metric also establishes a unifying mathematical and
statistical framework that enables the computation of Wasserstein-based vulnerability
measures and the barycentric synthesis of the network structure and clustering in the
Wasserstein space.

276 A. Ponti et al.

TheWasserstein distancehas demonstrated someadvantages over other distributional
distances. It is close to natural perception, allows for flexible binning schemes and
enables a synthetic representation of the shape of data thru the barycenters. This paper
focuses on a statistical approach that drastically reduces computational complexity. This
approach has been implemented in a software tool HistDAWass whose basis is described
in (Irpino and Verde 2015) and has been used for the computations in this paper.

Both modeling flexibility and low computational complexity make the WST-based
framework naturally suitable for different kinds of analysis, such as network classifica-
tion and temporal evolution using nodal degree distribution whose similarity could be
effectively measured using WST.

References

Agueh,M., Carlier, G.: Barycenters in theWasserstein space. SIAM J.Math. Anal. 43(2), 904–924
(2011)

Applegate, D., Dasu, T., Krishnan, S., Urbanek, S.: Unsupervised clustering of multidimen-
sional distributions using earth mover distance. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 636–644, August
2011

Atasu, K., Mittelholzer, T.: Linear-complexity data-parallel earth mover’s distance approxi-
mations. In: International Conference on Machine Learning, pp. 364–373. PMLR, May
2019

Balzanella, A., Irpino, A.: Spatial prediction and spatial dependence monitoring on georeferenced
data streams. Stat. Methods Appl. 29(1), 101–128 (2019). https://doi.org/10.1007/s10260-019-
00462-0

Bigot, J.: Statistical data analysis in the Wasserstein space. ESAIM: Proc. Surv. 68, 1–19 (2020)
Bock, H.H., Diday, E.: Analysis of Symbolic Data: ExploratoryMethods for Extracting Statistical

Information from Complex Data. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-
642-57155-8

Boissard,E., LeGouic,T., Loubes, J.M.:Distribution’s template estimatewithWassersteinmetrics.
Bernoulli 21(2), 740–759 (2015)

Bolley, F.: Separability and completeness for the Wasserstein distance. In: Donati-Martin, C.,
Émery, M., Rouault, A., Stricker, C. (eds.) Séminaire de Probabilités XLI. LNM, vol. 1934,
pp. 371–377. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77913-1_17

Bonneel, N., Peyré, G., Cuturi, M.: Wasserstein barycentric coordinates: histogram regression
using optimal transport. ACM Trans. Graph. 35(4), 71–81 (2016)

Candelieri, A., Giordani, I., Archetti, F.: Supporting resilience management of water distribution
networks through network analysis and hydraulic simulation. In: Proceedings of the 2017 21st
International Conference on Control Systems and Computer Science (CSCS), pp. 599–605.
IEEE (2017)

Cuturi, M., Doucet, A.: Fast computation ofWasserstein barycenters. In: International Conference
on Machine Learning, pp. 685–693. PMLR, June 2014

Dias, S., Brito, P.: Linear regression model with histogram-valued variables. Stat. Anal. Data Min.
8, 75–113 (2015)

Di Nardo, A., Giudicianni, C., Greco, R., Herrera, M., Santonastaso, G.F.: Applications of graph
spectral techniques to water distribution network management. Water 10, 45 (2018)

Flamary, R., et al.: Pot: python optimal transport. J. Mach. Learn. Res. 22(78), 1–8 (2021)
Freitas, S., Yang, D., Kumar, S., Tong, H., Chau, D.H.: Graph Vulnerability and Robustness: A

Survey. arXiv preprint arXiv:2105.00419 (2021)

https://doi.org/10.1007/s10260-019-00462-0
https://doi.org/10.1007/978-3-642-57155-8
https://doi.org/10.1007/978-3-540-77913-1_17
http://arxiv.org/abs/2105.00419

Network Vulnerability Analysis in Wasserstein Spaces 277

Herrera, M., Abraham, E., Stoianov, I.: A graph-theoretic framework for assessing the resilience
of sectorised water distribution networks. Water Resour. Manage. 30(5), 1685–1699 (2016).
https://doi.org/10.1007/s11269-016-1245-6

Ponti, A., Candelieri, A., Giordani, I., Archetti, F.: A novel graph-based vulnerability metric in
urban network infrastructures: the case of water distribution networks. Water 13(11), 1502
(2021)

Ponti, A., Candelieri, A., Giordani, I., Archetti, F.: Probabilistic measures of edge criticality in
graphs: a study in water distribution networks. Appl. Network Sci. 6(1), 1–17 (2021). https://
doi.org/10.1007/s41109-021-00427-x

Puccetti, G., Rüschendorf, L., Vanduffel, S.: On the computation of Wasserstein barycenters. J.
Multivar. Anal. 176, 104581 (2020)

Schieber, T.A., Carpi, L., Díaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti, M.G.:
Quantification of network structural dissimilarities. Nat. Commun. 8(1), 1–10 (2017)

Soldi, D., Candelieri, A., Archetti, F.: Resilience and vulnerability in urban water distribution
networks through network theory and hydraulic simulation. Procedia Eng. 119, 1259–1268
(2015)

Ulusoy, A.-J., Stoianov, I., Chazerain, A.: Hydraulically informed graph theoretic measure of link
criticality for the resilience analysis of water distribution networks. Appl. Network Sci. 3, 1–22
(2018)

Verdinelli, I., Wasserman, L.: Hybrid Wasserstein distance and fast distribution clustering.
Electron. J. Stat. 13(2), 5088–5119 (2019)

Yazdani, A., Jeffrey, P.: Complex network analysis of water distribution systems. Chaos:
Interdiscipl. J. Nonlinear Sci. 21, 016111 (2011)

Yazdani, A., Jeffrey, P.: Water distribution system vulnerability analysis using weighted and
directed network models. Water Resour. Res. 48 (2012)

Ye, J., Wu, P., Wang, J.Z., Li, J.: Fast discrete distribution clustering using Wasserstein barycenter
with sparse support. IEEE Trans. Signal Process. 65(9), 2317–2332 (2017)

https://doi.org/10.1007/s11269-016-1245-6
https://doi.org/10.1007/s41109-021-00427-x

BERT Self-Learning Approach
with Limited Labels for Document

Classification

Carlos Eduardo de Lima Joaquim1,2(B) and Thiago de Paulo Faleiros1

1 Departamento de Ciência da Computação, Universidade de Braśılia,
Campus Universitário Darcy Ribeiro, 70910-900 Braśılia, Brazil

carlos.joaquim@live.com, thiagodepaulo@unb.br
2 Exército Brasileiro, Centro de Desenvolvimento de Sistemas, QGEx - Bloco G - 2o

Piso, 70630-901 Braśılia, Brazil

Abstract. The remarkable production speed of documents and, conse-
quently, the volume of unstructured data stored in the Brazilian Govern-
ment facilities requires processes that enable the capacity of classifying
documents. This requirement is compliant with the existing archival leg-
islation. In this sense, Natural Language Processing (NLP) stands as
an important asset related to document classification, considering the
reality of current document production, where there is a considerable
number of unlabeled documentary samples. The Self-Learning approach
applied to the BERT fine-tuning step delivers a model capable of classi-
fying a partially labeled set of data according to the Requirements Model
for Computerized Document Management Systems (e-ARQ Brazil). The
developed model was capable of reaching a human-level performance,
outperforming Active Learning and BERT in a series of defined confi-
dence levels.

Keywords: Self-learning · BERT · Natural language processing

1 Introduction

With the advent of the information age, where information and communication
technologies became an essential asset, the potential use of applications exploring
the possibilities of obtaining useful and timely knowledge became real. Institu-
tions can potentialize its documentary collection value, transforming it into a
valuable asset.

There is an appreciable amount of information being produced in a daily
basis, with a significant part of this collection becoming records related to legal
and historical matter. The legal value regards the value a document has to
produce evidence before the law, and the historical value concerns documents
related to institutional origin, rights and objectives, its organization and devel-
opment [1].

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 278–291, 2022.
https://doi.org/10.1007/978-3-031-24866-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_21&domain=pdf
http://orcid.org/0000-0001-5623-8809
http://orcid.org/0000-0001-5275-8356
https://doi.org/10.1007/978-3-031-24866-5_21

BERT Self-Learning Approach with Limited Labels 279

The authors of [2] declare that large volumes of information available and
stored make it difficult to access for the right information at the right time. Stat-
ing that this situation might lead to the information explosions, in accordance
with [23]. Along the same line of thought, [21 as cited in 2] affirms that, at the
tactical level, poor information quality compromises decision making.

Inner statistics from the Brazilian Army show that it is possible to apply this
method to more than 22 million documents, evaluating and classifying them
according to the current Federal regulations. The needed classification of this
documentary mass is the first step towards the direction of delivering efficiency
while following the present regulations. That massive amount of data would take
too long to be processed and assessed, if considering the possibility of scrutiny
carried out exclusively by human hands.

This documentary production started to increasingly grow after Computer-
ized Document Management System’s (CDMS) initiative took place. The Fed-
eral classification model, named e-ARQ, was the chosen model to be applied to
the documents, given that this archetype is the standard reference to CDMS
in Brazil. Thus, this intended study is related to the pressing need to properly
classify documents produced by the Brazilian Army, allowing correct treatment
and full compliance with the requirements established by the Government.

In the present scenario, the shortage of labeled samples shall be considered
as a premise. With this information being known, one major question when
classifying documents, while following the supervised learning paradigm, is the
existing need of a substantial number of labeled samples, in order to adequately
generalize the model and make predictions of unseen samples, the supervised
learning approaches does not become suitable as a deemed solution.

As the foregoing restriction regarding the number of labeled samples emerges
as a limitation in several scenarios, the opposite turns out to be true. While
labeled data is expensive to obtain, unlabeled data is essentially free in com-
parison [14]. It can be seen that creating large datasets to certain supervised
learning problems requires a great deal of human effort, pain and/or risk or
financial expense [11,20]. This need for supervision poses a major challenge when
we encounter critical scientific and societal problems where fine-grained labels
are difficult to obtain [12].

In this line of thought, it can be seen in [20] that semi-supervised learning
(SSL) provides a powerful framework for leveraging unlabeled data when labels
are limited or expensive to obtain. The method can trace back to 1970s, and it
attracts extensive attention since 1990s s [26 as cited in 13]

Considering that the size of modern real world datasets is ever-growing so
that acquiring label information for them is extraordinarily difficult and costly
[11,18], deep semi-supervised learning is becoming more and more popular [13].

It becomes an attractive approach towards addressing the lack of data, once,
in contrast with supervised learning algorithms, SSL algorithms can improve
their performance by also using unlabeled examples. Additionally SSL algo-
rithms generally provide a way of learning about the structure of the data from
the unlabeled examples, alleviating the need for labels [20].

280 C. E. L. Joaquim and T. P. Faleiros

There are various fields within semi-supervised learning of which self-learning
is one [17]. Throughout this study, it was expected to find language model that
would dexterously classify the partially labeled dataset set according to the e-
ARQ, reaching human-level performance [25] in the classification results in a set
of documents belonging to the Brazilian Army.

It was envisaged to expand the use of BERT [5], and replace the fully super-
vised fine-tuning stage for a self-learning method, termed BERT-SL, expecting
that the process surrounding BERT downstream tasks will successfully achieve
suitable scores when evaluated.

Furthermore, from an organizational perspective, it was expected that the
results coming from this research fulfill the objective of allowing adequate sup-
port to properly classify documents, assisting document evaluation teams to do
their job, according to what is determined by [6].

The remaining of this article is organized as follows: Sect. 2 presents the works
related to what was developed in this article. Section 3 presents the methodology
used in the development of the work, describing how the procedures and exper-
iments were performed aiming the evaluation. Section 4 describes the results
obtained, according to the established parameters. Finally, in Sect. 5, the con-
clusion was carried out, as well as opportunities for future work were pointed
out.

2 Related Work

This research’s related work derives from different areas, here named: text clas-
sification, limited labeled data, semi-supervised learning, and self-learning. As
specified by [19], the problem of learning accurate text classifiers from limited
numbers of labeled examples, by using unlabeled documents to augment the
available labeled documents, was addressed by showing that the accuracy of
learned text classifiers can be improved by augmenting a small number of labeled
training documents with a large pool of unlabeled documents.

Their results showed EM to perform significantly better, mainly when there
was little labeled data, though unlabeled data could throw off parameter esti-
mation when one considered that the number of unlabeled documents was much
greater than the number of labeled documents. The authors modulated the influ-
ence of the unlabeled data, in order to control the extent to which EM performs
unsupervised clustering, by introducing a λ parameter into the likelihood equa-
tion, which decreased the contribution of unlabeled documents to parameter
estimation.

Fragos, Belsis and Skourlas [7] focused on assessing the performance of two or
more classifiers used in combination in the same classification task, classifying
documents using two probabilistic approaches – Näıve Bayes and Maximum
Entropy classification model – then combining the results of the two classifiers
to improve the classification performance, using two merging operators, Max and
Harmonic Mean.

The authors applied the X square test on the corpus and selected 2,000
higher ranked words for each category to be used in the maximum entropy model,

BERT Self-Learning Approach with Limited Labels 281

and evaluated the classification performance of the classifiers using micro-Recall
(μRe), micro-Precision (μPr) and micro-averaged F1 measure (micro-F1).

The Maximum Entropy model, presented by Fragos, Belsis and Skourlas [7],
showed better performance than the Näıve Bayes classifier. Additionally, the two
merging operators were used to combine results of the Näıve Bayes and SVM
classifiers to improve performance, especially for the Recall rate. As results, it
could be demonstrated that the merging operators do improve the performance,
as indicated by the results for Micro-averaged F1 measure, that scored 0.90 and
0.91 for MaxC and HarmonicC operators respectively.

On the same pitch of [19], the use of self-learning and co-training is presented
as a way to leverage the power of unlabeled data, together with labeled data,
in [11]. The resulting work included the TSentiment15, an annotated Twitter
dataset of 2015 comprising 228 million tweets without retweets and 275 million
with retweets.

The authors evaluated the performance of self-learning and co-training and
how it was affected by the amount of labeled data, the amount of unlabeled
data and the confidence threshold, and, not only this, processed the available
data as a batch and as a stream, showing that streaming achieved a comparable
accuracy to the batch approach. The findings, in sentiment analysis, revealed
that co-training performed better with limited labels, whereas self-training was
best choice when significant amount of labeled data was available.

Iosifidis and Ntoutsi [11] used unigrams for self-learning, and unigram-
bigrams and unigrams-SpecialF for co-training. In their experiments, although
both self-learning and co-training benefited from more labeled data, when labeled
data surpassed 40%, self-learning improved faster than co-training. When pro-
cessing streaming, that revealed to be more efficient, history helped with the
performance; notwithstanding the batch approach being better in terms of accu-
racy.

As avowed in [13], Li and Ye addressed issues related to generative model
based schemes, that does not naturally work on discrete data. The authors
bridged the idea of self-training and adversarial networks, to overcome their
issues, by designing a Reinforcement Learning based Adversarial Networks for
Semi-supervised Learning – RLANS – framework.

Howe, Khang and Chai [10] developed a comparative study on the perfor-
mance of various machine learning(“ML”) approaches for classifying judgments
into legal areas, using a novel dataset of 6,227 Singapore Supreme Court judg-
ments and investigating how state-of-the-art NLP methods compared against
traditional statistical models.

Dealing with small number of lengthy documents, the authors came to the
conclusion that BERT models competed at disadvantage, because of the mod-
els’ inability to be fine-tuned on longer input texts, having LSA based linSVM
outperforming both word-embedding and language models.

While Howe, Khang and Chai [10] have found limitations regarding the text
length, citing it as a disadvantage, Sun et al. [24] conducted exhaustive experi-
ments to investigate different fine-tuning methods of BERT on text classification

282 C. E. L. Joaquim and T. P. Faleiros

tasks and provided a general solution for BERT fine-tuning. This way they were
able to reach new state-of-the-art results on eight widely-studied text classifica-
tion datasets.

In [24], the problem related to the catastrophic forgetting was addressed as
well. Considered a common problem in transfer learning, meaning that the pre-
trained knowledge is erased while learning new knowledge [16 as cited in 24], it
was managed by setting a lower learning rate, such as 2e − 5 on BERT, so it
could overcome the catastrophic forgetting problem. Aggressive learning rates,
as 4e − 4, lead the training set to fail to converge.

The authors were able to bring off experimental findings, reporting that the
top layer of BERT showed to be more useful for text classification, the appropri-
ate decreasing learning rate allows BERT overcome the catastrophic forgetting
problem, whithin-task and in-domain further pre-training can significantly boost
its performance, and the most important finding considered to this work, BERT
can improve the task with small-size data.

Meng et al. [18] used the label name of each class to train classification
models on unlabeled data, waiving the use of any labeled documents. Towards
achieving their goals, they took advantage of pre-trained neural language models
for document classification. In this abstraction only the label name of each class
was provided to train a classifier on purely unlabeled data.

In the same field, in [8] BERT model is compared with a traditional machine
learning NLP approach that trains machine learning algorithms in features
retrieved by the Term Frequency - Inverse Document Frequency (TF-IDF) algo-
rithm as a representative of traditional approaches. Experiments showed the
superiority of BERT and its independence of features of the NLP problem such
as the language of the text, adding empirical evidence to use BERT as a default
technique in NLP problems [8].

3 Methodology

Considering that the main goal of this experiment is to assess the possible perfor-
mance improvements that originate from the use of self-learning for downstream
tasks, specifically text classification, the development of the methodology ini-
tially took place through the gathering of a specific dataset from a Military
Organization (OM).

When it comes to the algorithm, initially a minimum set of labeled documents
was trained in order to later classify the entire documents pertaining to the six
chosen classes that encompass the following administrative actions, whose class
id can be seen in Table 1: commendations, promotions, leaves, budget & finances,
designations, and health. The process of labeling the unlabeled documents was
based on the confidence level established as a threshold for the classification
process.

Concerning the confidence level, the first experiments with classical BERT
brought in f1-score 0.83 as one of the lowest results for specific classes, then a
confidence level milestone was set having 0.82 as the basic confidence level for

BERT Self-Learning Approach with Limited Labels 283

unlabeled samples’ classification. Subsequently, the threshold possibilities were
expanded and additional confidence levels were considered as an option, starting
from 0.6, and reaching 0.95.

This procedure continued iteratively until there were no more documents
remaining to be classified at a specific confidence level. Afterwards the results
were compared to the results that stem from another classification methods,
Active Learning, associated with Logistic Regression model applied on a TF-
IDF vectorized corpus, and BERT itself.

3.1 Data

Fig. 1. Document length distribution

At the preprocessing stage, corrupted, drafts and non-processed documents
were removed from the dataset, and all the corpus was converted to lowercase,
along with manual preprocessing which comprehended: removing Portuguese
stop words from the corpus using Natural Language Toolkit (NLTK) [3] library;
Punctuation ablation; Numbers pertaining to itemization and object pronouns
attached to Portuguese verbs removal; and conducting Lemmatization on the
corpus using spaCy [9].

The corpus was then submitted to Ktrain [15] preprocessing methods. The
resulting dataset had a 5,940× 5,799 dimensionality, with unbalanced class dis-
tribution, dispersed over six distinct classes, as seen in Table 1.

After data transformation, the resulting document length distribution, and
class distribution can be seen in Fig. 1, and Fig. 2, allowing one to perceive the
final length distribution of the dataset, and the final length distribution per class.

284 C. E. L. Joaquim and T. P. Faleiros

Fig. 2. Boxplot document length distribution per class.

Table 1. Class distribution

Class ID Class description Class size %

085.4-B Vacations or Medical Leave 2201 37.05

087.12-B Verification of Medical Conditions 1352 22.76

051.3 Budget execution 926 15.59

085.1-B Honorable Mention/Service Leave 810 13.64

083.12-B Relocation 372 6.26

082.1-A Promotion 279 4.70

In order to successfully establish a number of labeled documents, a classifica-
tion tool, termed Document Classifier, was developed so the process of searching
and classifying documents was conducted without further efforts regarding find-
ing similar documents in the dataset.

3.2 BERTimbau

Throughout this work, finding an algorithm that could achieve state-of-the-art
performance in Portuguese was a concern due to the existing linguistic bias in
favor of languages that predominate on the areas where only major companies
and research centers can afford training language models with billions of param-
eters on massive datasets [4].

The work of Souza et al. [22], BERTimbau, arouse as the current answer
to this need, delivering state-of-the-art results for downstream natural language
processing tasks in Portuguese language, and will be simply referred to as BERT
throughout this study. The pre-trained BERT [5] based model, BERTimbau,

BERT Self-Learning Approach with Limited Labels 285

was the model of choice, applied when running the fine-tuning step using the
developed self-learning approach.

The model will be simply referred to as BERT throughout this study, having
12 layers, 768 hidden size, 12 attention heads, and 110M parameters. The maxi-
mum sentence length also observed BERT [5], following the S = 512 tokens limit.
The pre-trained BERT [5] based model, BERTimbau, was the model of choice,
applied when running the fine-tuning step using the developed self-learning app-
roach.

3.3 Self-Learning

Bearing in mind that this research can find in self-learning a solid answer to the
problem of limited number of labeled documents in a dataset, it is intended to
assess the resulting performance of the algorithm by selecting a specific percent-
age of samples from the total amount of labeled documents, starting with 3%
and increasingly growing up this number to 30%.

Table 2. Four group sample distribution

Dataset size Training size Validation size Unlabeled size Test size

200 100 50 50 5740

594 269 146 179 5346

1188 540 291 357 4752

1782 810 437 535 4158

As a means to better achieve the objectives of this research, the data was
split in four sets. In this fashion, during this work one will observe, as exhibited
in Table 2, the four sets being used, notably the training set, validation set,
unlabeled set, and test set.

As a way of exploring the possibilities of the self-learning process, experiments
using the validation set as the unlabeled set were carried out as well. In this
configuration, the datasets do not include the unlabeled set, and the validation
set suffered prejudice by being classified according to the established threshold,
having its samples moved from the validation set to the training set.

Further experiments included model where line 13 of the Algorithm1 was
suppressed. Yet, the sample distribution in the experiments was as follows: the
methods were equally exposed to the same number of samples, thus reflecting a
factual scenario, which commonly occurs in everyday life.

Observing the aforementioned data organization, in each experiment, the
selected data was submitted to the self-learning Algorithm 1, until there were
no more unlabeled samples in the corresponding set. After the initial training
procedure, the full subset of documents were then submitted to the trained
model, without any labels.

286 C. E. L. Joaquim and T. P. Faleiros

Algorithm 1. BERT Self-Learning Approach Pseudocode
Input: Ltr: labeled training set; Lv: labeled validation set; Lts: labeled test set; U :
unlabeled set; δ: confidence threshold
Result: T : labeled set; Φf : final classifier

1: T ← Ltr, Lv

2: while (U is not empty) do
3: Φ ← new classifier
4: Φ ← train new classifier on T ;
5: for i = 1 to |U| do
6: if confidence of Φ.classify(Ui) ≥ δ then
7: T ← T ∪ Ui, where Ui is the i-th instance in U
8: Mark Ui as labeled;
9: end if

10: end for
11: Update U by removing labeled instances;
12: end while
13: Φf ← train final classifier on T
14: return T , Φf ;

The resulting prediction for every sample, whose probabilistic classification
was equal to or greater than the confidence level, allowed it to be incorporated,
or not, in the labeled document selection of the training set for the next training
session.

This process iteratively repeated its steps until all the documents in the
U dataset were considered labeled – to expound, the whole dataset received a
classification equal to or greater than the defined confidence level.

Downstream Task. The first experiment had as main objective nothing more
than the discovery of hyperparameters,i.e., learning rate, number of epochs, and
batch size, that would be expected to best perform when classifying the available
dataset, bringing off satisfying results. It was possible to find the benchmark
after having thoroughly tested all possible combinations of the values of the
hyperparameters defined in Table 3.

Table 3. Benchmark model hyperparameters

Learning rate Batch size No
¯ of Epochs

3e−5 2 4

4e−5 6 5

5e−5 8 6

6e−5 10 –

7e−5 – –

BERT Self-Learning Approach with Limited Labels 287

Afterwards, series of self-learning experiments were conducted using the
hyperparameters, and, then, more experiments were produced using classical
BERT. The experiment was called BERT’, being carried out having the data
distributed, as presented in Table 4, and considered the most realistic scenario,
once in real life there would be no more samples to feed classical BERT with.

Table 4. BERT’ Data Distribution. In this distribution, as the unlabeled set was not
used by the model, it was merged with the test set.

Dataset size Training size Validation size Test size

200 100 50 5790

594 269 146 5525

1188 540 291 5109

1782 810 437 4693

4 Results and Discussion

In this section, the results of the experiments conducted using the self-learning
approach during the fine-tuning step of BERT training are presented. The best
hyperparameter experiment, where hyperparameter combinations would show
the most prominent benchmark, registered that a 4.00E−5 learning rate, five
epochs and batch size of two presented the best performance.

Table 5. Performance indicators (PI) of featured BERT-SL Classification Results. This
table presents the best results for each dataset, outlined from the preceding experi-
ments, against BERT’ and Active Learning.

Dataset size CL F1-Score PI

BERT’ AL

200 0.84 0.9771 0.0472 0.1330

594 0.82 0.9867 0.0165 0.0328

1188 0.90 0.9884 0.0146 0.0110

1782 0.90 0.9933 0.0121 0.0123

The ensuing experiments showed convincing results regarding the initial
objective of this study, which was to find a self-learning method that could
reach the human classification capacity.

As shown in Table 5, the use of self-learning also allowed the production of
results comparable to BERT’s, showing that it obtained excelling outcomes when

288 C. E. L. Joaquim and T. P. Faleiros

Table 6. Classical BERT classification results.

Dataset size BERT’ F1-score

200 0.9330

594 0.9708

1188 0.9743

1782 0.9814

compared to BERT, whose results are registered in Table 6, in several scenarios
and confidence levels.

Despite of the highest score be related to the biggest dataset, the 1782-sample
dataset, it is relevant to emphasize that the top gain came from the 200-sample
dataset. The maximum gain coming from this experiment yielded a score 4.72%
greater than BERT’, and 13.30% beyond the active learning mark, as seen in
Fig. 3, and detailed in Table 5.

The same Fig. 3 allows one to perceive that BERT-SL, when working with the
594-sample dataset, provided a gain of 1.65% over BERT’, and 3.28% over the
active learning method. When dealing with 1188-sample dataset, the proposed
method was able to deliver scores 1.46% better than BERT’, and 1.10% greater
than the active learning method. The gain got lower as the dataset size increased,
reaching a gain of 1.21% over BERT’ for the 1782-sample dataset, and 1.23%
over the active learning method for the same dataset.

Fig. 3. BERT-SL overall performance, for every dataset, compared to BERT’ and
Active Learning experiments.

As presented in Fig. 4, throughout the undertook experiments, the language
model resulting from the proposed method was able to outperform BERT’ in
every designed confidence level, surmounting the aforementioned method 100%

BERT Self-Learning Approach with Limited Labels 289

of the time, and surpassed the active learning process in every confidence level
but 0.55 and 0.50, where BERT-SL was able to beat BERT’ 87.50% of the time.

Fig. 4. Outperforming BERT experiments grouped by confidence level.

Considering the complete testing universe, Fig. 5 delineates the results. It
remains clear that BERT-SL excelled BERT’ in every experiment, and surpassed
the active learning in almost all of them, being the only exception the tests where
the 1188-sample dataset served as the input, when 93,75% of the experiments
surpassed the active learning method.

It has been successfully demonstrated that, even when more samples where
fed to classical BERT, BERT-SL showed to be able to achieve better scores,
mainly when it comes to labeled samples shortage. The experiment, in Table 5,
showed that BERT-SL was capable of achieving up to 4.72% better performance
than the classical BERT, and 13.30% than the Active Learning.

Fig. 5. Percentage of BERT-SL experiments that outperform BERT’.

290 C. E. L. Joaquim and T. P. Faleiros

As described above, it was observed that, for experiments involving a set
of two hundred samples, BERT-SL obtained a superior performance capable of,
considering the aforementioned 22 million documents, estimating in 1,039,272
the number of documents adequately classified, when compared to BERT’; in
2,926,811 the number of documents adequately classified, when compared to
the Active Learning method. The average gain for this set would be of 314,524
documents properly classified by BERT-SL, in comparison to the classical BERT.

5 Conclusion

Observing what was presented in the previous section, it is possible to infer,
based on the results of this study, that the introduction of the self-learning app-
roach in the fine-tuning stage allowed the improvement of BERT’s performance,
with emphasis on the target scenarios of the study that aims to treat the problem
of scarcity of labels in the documental sets of the Brazilian Federal Government.

The self-learning approach, associated with BERTimbau, demonstrated to be
a promising method regarding NLP classification tasks, showing better results
than the classical BERT when the same number of samples is available to both
methods, surpassing the traditional method in every single experiment following
this setup.

The method showed outstanding results associated with datasets whose labels
reach only 3% of the samples, showing an increasing performance, when com-
pared to classical BERT, as the number of available labeled samples decreases.
It was therefore possible to achieve suitable results while carrying out the exper-
iment, making it possible to apply the method to other datasets.

References

1. Nacional, A.: Gestão de documentos: curso de capacitação para os integrantes do
sistema de gestão de documentos de arquivo siga, da administração pública federal.
Course packet (01 2019), electronic Data (1 file: 993 kb)

2. Azemi, N., Zaidi, H., Hussin, N.: Information quality in organization for better
decision-making. Int. J. Acad. Res. Bus. Soc. Sci. 7 (2018). https://doi.org/10.
6007/IJARBSS/v7-i12/3624

3. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python (2009).
https://nltk.org/book

4. Castro, N.F.F.d.S., da Silva Soares, A.: Multilingual transformer ensembles for
portuguese natural language tasks (2020)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding (2019)

6. Exército Brasileiro: Instruções gerais para avaliação de documentos do exército (10
2019), eB10-IG-01.012

7. Fragos, K., Belsis, P., Skourlas, C.: Combining probabilistic classifiers for text
classification. Procedia-Soc. Beh. Sci. 147, 307–312 (2014)

8. González-Carvajal, S., Garrido-Merchán, E.C.: Comparing Bert against traditional
machine learning text classification (2021)

https://doi.org/10.6007/IJARBSS/v7-i12/3624
https://doi.org/10.6007/IJARBSS/v7-i12/3624
https://nltk.org/book

BERT Self-Learning Approach with Limited Labels 291

9. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-
strength natural language processing in Python (2020). https://doi.org/10.5281/
zenodo.1212303

10. Howe, J.S.T., Khang, L.H., Chai, I.E.: Legal area classification: a comparative
study of text classifiers on Singapore supreme court judgments (2019)

11. Iosifidis, V., Ntoutsi, E.: Large scale sentiment learning with limited labels. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD 2017, New York, NY, USA, pp. 1823–1832.
Association for Computing Machinery (2017). https://doi.org/10.1145/3097983.
3098159, https://doi-org.ez54.periodicos.capes.gov.br/10.1145/3097983.3098159

12. Jean, N., Xie, S.M., Ermon, S.: Semi-supervised deep kernel learning: regression
with unlabeled data by minimizing predictive variance (2019)

13. Li, Y., Ye, J.: Learning adversarial networks for semi-supervised text classifica-
tion via policy gradient. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1715–1723 (2018)

14. Liang, P.: Semi-supervised learning for natural language. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2005)

15. Maiya, A.S.: ktrain: a low-code library for augmented machine learning. CoRR
abs/2004.10703 (2020), https://arxiv.org/abs/2004.10703

16. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. Psychol. Learn. Mot. 24, 109–165 (1989)

17. McEntee, E.: Enhancing partially labelled data: self learning and word vectors in
natural language processing (2019)

18. Meng, Y., et al.: Text classification using label names only: a language model
self-training approach (2020)

19. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39(2), 103–134 (2000)

20. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evalua-
tion of deep semi-supervised learning algorithms (2019)

21. Redman, T.C.: Improve data quality for competitive advantage. MIT Sloan Man-
age. Rev. 36(2), 99 (1995)

22. Souza, F., Nogueira, R., Lotufo, R.: BERTimbau: pretrained BERT models
for Brazilian Portuguese. In: 9th Brazilian Conference on Intelligent Systems,
BRACIS, Rio Grande do Sul, Brazil, October 20–23 (2020, to appear)

23. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM
40(5), 103–110 (1997)

24. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune Bert for text classification?
(2020)

25. Wolf, F., Poggio, T., Sinha, P.: Human document classification using bags of words,
August 2006

26. Zhu, X.J.: Semi-supervised learning literature survey (2005). last modified on 19
July 2008

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1145/3097983.3098159
https://doi.org/10.1145/3097983.3098159
https://doi-org.ez54.periodicos.capes.gov.br/10.1145/3097983.3098159
https://arxiv.org/abs/2004.10703

Autonomous Learning Rate Optimization for
Deep Learning

Xiaomeng Dong1,2(B), Tao Tan1, Michael Potter1, Yun-Chan Tsai1, Gaurav Kumar1,
V. Ratna Saripalli1, and Theodore Trafalis2

1 GE Healthcare, Chicago, USA
Xiaomeng.Dong@ge.com

2 University of Oklahoma, Norman, USA

Abstract. A significant question in deep learning is: what should that learning
rate be? The answer to this question is often tedious and time consuming to
obtain, and a great deal of arcane knowledge has accumulated in recent years
over how to pick and modify learning rates to achieve optimal training perfor-
mance. Moreover, the long hours spent carefully crafting the perfect learning rate
can be more demanding than optimizing network architecture itself. Advancing
automated machine learning, we propose a new answer to the great learning rate
question: the Autonomous Learning Rate Controller. Source code is available at
https://github.com/fastestimator/ARC/tree/v1.0.

Keywords: Deep Learning · AutoML · Learning Rate · Optimization

1 Introduction

Learning Rate (LR) is one of the most important hyperparameters in deep learning
training, a parameter everyone interacts with for all tasks. In order to ensure model
performance and convergence speed, LR needs to be carefully chosen. Overly large
LRs will cause divergence whereas small LRs train slowly and may get trapped in a bad
local minima. As training schemes have evolved over time they have begun to move
away from a single static LR towards scheduled LRs, as can be seen in a variety of
state-of-the-art AI applications [2,23,30,36]. LR scheduling provides finer control of
LRs by allowing different LRs to be used throughout the training. However, the extra
flexibility comes with a cost: these schedules bring more parameters to tune. Given
this tradeoff, there are broadly two ways of approaching LR scheduling within the AI
community.

Experts with sufficient computing resources tend to hand-craft their own LR sched-
ules, because a well-customized LR schedule can often lead to improvements over cur-
rent state-of-the-art results. For example, entries in the Dawnbench [5] are known for
using carefully tuned LR schedules to achieve world-record convergence speeds. How-
ever, such LR schedules come with significant drawbacks. First, these LR schedules
are often specifically tailored to an exact problem configuration (architecture, dataset,
optimizer, etc.) such that they do not generalize to other tasks. Moreover, creating these
schedules tends to require a good deal of intuition, heuristics, and manual observation

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 292–305, 2022.
https://doi.org/10.1007/978-3-031-24866-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_22&domain=pdf
https://github.com/fastestimator/ARC/tree/v1.0
https://doi.org/10.1007/978-3-031-24866-5_22

Autonomous Learning Rate Optimization for Deep Learning 293

of training trends. As a result, building a well-customized LR schedule often requires
great expertise and significant computing resources.

In contrast, others favor existing task-independent LR schedules since they often
provide decent performance gains with less tuning efforts. Some popular choices are
cyclic cosine decay [24], exponential decay, and warmup [9]. While these LR schedules
can be used across different tasks, they are not specially optimized for any of them. As a
result, these schedules do not guarantee performance improvements over a consant LR.
On top of that, many of these schedules still require significant tuning to work well. For
example, in cyclic cosine decay, parameters such as lmax, lmin, T0, and Tmulti must all
be tuned in order to function properly.

Recent advancements in AutoML on architecture search [21,29,38] and update rule
search [1] have proved that it is possible to create automated systems that perform equal
or better than human experts in designing deep learning algorithms. These successes
have inspired us to tackle the LR scheduling problem. We aim to create a system that
learns how to change LR effectively.

To that end we introduce ARC: an Autonomous LR Controller. It takes training sig-
nals as input and is able to intelligently adjust LRs in a real-time generalizable fashion.
ARC overcomes the challenges faced by prior LR schedulers by encoding experiences
over a variety of different training tasks, and by dynamically responding to each new
training situation so that no manual parameter tuning is required.

ARC is also fully complementary to modern adaptive optimizers such as Adagrad
[7] and Adam [17]. Adaptive optimizers compute updates using a combination of LR
and ‘adaptive’ gradients. When gradients have inconsistent directions across steps, the
scale of the adaptive gradient is reduced. Conversely, multiple updates in the same direc-
tion result in gradient upscaling. This is sometimes referred to as adaptive LR even
though the LR term has not actually been modified. Our method is gradient agnostic
and instead leverages information from various training signals to directly modify the
optimizer LR. This allows it to detect patterns which are invisible to adaptive optimiz-
ers. Thus it can be used in tandem for even better results.

The key contributions of this work are:

1. An overall methodology for developing autonomous LR systems, including problem
framing and dataset construction.

2. A comparison of ARC with popular LR schedules across multiple computer vision
and language tasks.

3. An analysis of failure modes and unexpected behaviors from ARC, informing future
directions for research.

2 Challenges and Constraints

Before delving into our methodology, we will first highlight some of the key challenges
in developing an autonomous LR controller. These challenges explain many of our sub-
sequent design decisions.

a) Subjectivity. Determining the superiority of one model over another (each trained
with a different LR) is fraught with subjectivity. There are many different ways to

294 X. Dong et al.

measure model performance (training loss, validation loss, accuracy, etc.) and they
may often be in conflict with one another.

b) Cumulativeness. Associating the current model performance with an LR decision
at any particular step is challenging, since the current performance is the result of
the cumulative effect of all previous LRs used during training.

c) Randomness. Randomness during training makes it difficult to compare two alter-
native LRs. Some common sources of randomness are dataset shuffling, data aug-
mentation, and random network layers such as dropout. Any performance differ-
ences due to the choice of LR need to be large enough to overshadow these random
effects.

d) Scale. Different deep learning tasks use different metrics to monitor training. The
most task-independent of these are training loss, validation loss, and LR. Unfor-
tunately, the magnitude of these values can still vary greatly between tasks. For
example, categorical cross entropy for 1000-class classification is usually between
0 and 10, but a pixel-level cross entropy for segmentation can easily reach a scale of
several thousand. Moreover, a reasonable LR for a given task can vary greatly, from
10−6 up to 10 or more.

e) Footprint. The purpose of having an automated LR controller is to achieve faster
convergence and better results. Any solution must therefore have a sufficiently small
footprint that using it does not adversely impact training speed and memory con-
sumption.

3 Methods

3.1 Framing LR Control as a Learning Problem

We frame the development of ARC as a supervised learning problem: predicting the
next LR given available training history. Due to challenge b), the model needs to observe
the consequence of a specific LR for long enough to form a clear association between
LR and performance. We therefore only modify the LR on a per-epoch basis.

Per challenges a) and d), as well as the desire to create a generalizable system,
we cannot use any task-specific metrics. We also cannot rely on model parameters or
gradient inspection since ARC would then become architecture dependent and would
likely also fail challenge e). We therefore leverage only the historical training loss,
validation loss, and LR as input features.

Due to challenges c) and d), rather than generating a continuous prediction of what
new LR values should be, we instead pose this as a 3-class classification problem. Given
the input features, should the LR: increase (LR ∗ 1.618), remain the same (LR ∗ 1.0),
or decrease (LR ∗ 0.618)? There is no theoretical basis for our choice of multiplicative
factors here, but one increase followed by one decrease will leave you roughly where
you started.

3.2 Generating the Dataset

Having framed the problem, we now need to generate a dataset on which we can train
ARC. To do this we need data from real deep learning training tasks. For each task we
used the following procedure to generate data:

Autonomous Learning Rate Optimization for Deep Learning 295

Input Features Output Label

n n n

Training
Loss

Validation
Loss

Learning
Rate

Epochs

LR * 0.618
LR * 1.0
LR * 1.618 Min Loss

n

LR * 1.618

Step 1

Step 2, 3, 4

Step 5

Fig. 1. Generating and Labeling a Data Point

1. Train n epochs with LR = r, then save the current state as checkpoint C
2. Reload C, train for n epochs with LR = 1.618 ∗ r, then compute validation loss

(l+)
3. Reload C, train for n epochs with LR = 1.0 ∗ r, then compute validation loss (l1)
4. Reload C, train for n epochs with LR = 0.618 ∗ r, then compute validation loss

(l−)
5. Note the LR which resulted inmin {l+, l1, l−}
6. Reload C, eliminatemax {l+, l1, l−} and its corresponding LR, replace r with one

of the two remaining LRs at random, and return to step 1

By executing steps 1 - 5 we can create one input/ground truth pair. The input features
are the training loss, validation loss, and LR during step 1, concatenated with those same
features from the previous 2n epochs of training. The label is the LR noted in step 5.
This process is depicted in Fig. 1.

Steps 1 - 6 continue until training finishes. Assuming the total number of training
epochs is N , then we get N/n data points from each training procedure. The random
selection process in step 6 is used to explore a larger search space without causing the
loss to diverge.

To address challenge d), for each instance of input data we apply z-score normal-
ization to the training and validation losses. LR is normalized by dividing by its first
value. All three features are then resized to length 300 using inter-nearest interpolation.

To help ensure generalization, we gathered 12 different computer vision and lan-
guage tasks - each having a different configuration (dataset, architecture, initial LR,
etc.) as shown in Table 1. Each of the 12 tasks were trained an average of 42 times.
Each training randomly selected an optimizer from {Adam, SGD, RMSprop [34]}, an
initial LR r ∈ [1e-2, 1e-5], a value of n ∈ [1, 10], and then trained for a total of 10n
epochs. Thus approximately 5050 sample points were collected in total.

296 X. Dong et al.

Table 1. Training dataset task overview

Task Task description Dataset Architecture

1 Image Classification SVHN Cropped [27] VGG19 [32] + BatchNorm [13]

2 Image Classification SVHN Cropped VGG16 [32] + ECC [35]

3 Adversarial Training [8] SVHN Cropped VGG19

4 Image Classification Food101 [3] Densenet121 [12]

5 Image Classification Food101 InceptionV3 [33]

6 Multi-Task [16] CUB200 [37] ResNet50 [10] + UNet [31]

7 Text Classification IMDB [25] LSTM

8 Named Entity Recognition MIT Movie Corpus [22] BERT [6]

9 One Shot Learning omniglot [19] Siamese Network [18]

10 Text Generation Shakespear [15] GRU [4]

11 Semantic Segmentation montgomery [14] UNet

12 Semantic Segmentation CUB200 UNet

3.3 Correcting Ground Truth

Suppose that during step 5 of the data generation process you find that l+, l1, and l−
are 0.113, 0.112, and 0.111 respectively. Due to challenge c) it may not be appropriate
to confidently claim that decreasing LR is the best course of action.

Luckily, there is one more datapoint we can use to reduce uncertainty. Suppose that
during step 6 we choose to decrease the LR. Then the subsequent step 1 is repeating
exactly the prior step 4. Let l∗− be the validation loss at the end of step 1. If the relative
order of l+, l1, and l− is the same as the relative order of l+, l1, and l∗−, then we consider
our ground truth labeling to be correct (for example, if l∗− = 0.109). On the other hand,
if the relative ordering is different (for example, if l∗− = 0.115), then random noise is
playing a greater role than the LR in determining performance. In that case we take a
conservative approach and modify the ground truth label to be ‘constant LR’.

3.4 Building the Model

relu
LR * 1.618

LR * 0.618

LR * 1.0

Conv1D (32) MaxPool Conv1D (64) MaxPool Dense (32) Dense (3)LSTM (64) LSTM (64)

relu relu softmax

k=5 k=2 k=5 k=2300x3

Fig. 2. Network architecture used in ARC

The ARC model architecture is shown in Fig. 2. It consists of three components: a
feature extractor, an LSTM [11], and a dense classifier. The feature extractor consists

Autonomous Learning Rate Optimization for Deep Learning 297

of two 1D convolution layers, the LSTM of two stacked memory sequences, and the
classifier of two densely connected layers. Considering challenge e), we chose layer
parameters such that the total number of trainable model parameters is less than 80k.
Compared to the millions of parameters which are common in current state-of-the-art
models, this architecture should add relatively minimal overhead.

The model was trained with the corrected dataset from Sect. 3.3, split 70/30 between
training and validation data. We used categorical cross entropy for the loss, and lever-
aged an Adam optimizer with the following parameters: LR = 1e − 4, beta1 = 0.9,
and beta2 = 0.999. Training proceeded with a batch size of 128 for 300 epochs, with
the best model being saved along the way. We define the ‘best’ model using a weighted
accuracy, since predicting a constant LR is less problematic than calling for a change
in the incorrect direction. The Reward/Penalty Matrix (RPM) for this metric is given in
Table 2, with the corresponding metric computed from the Confusion Matrix (CM) per
Eq. 1.

wacc =
∑

i CM [i, i] ∗ |RPM [i, i]|
∑

i,j CM [i, j] ∗ |RPM [i, j]| (1)

Table 2. Reward/penalty matrix

Predict n Actual Decrease Constant Increase

Decrease +3 −1 −3

Constant −1 +1 −1

Increase −3 −1 +3

Once trained, the ARC model can be used to periodically adjust the LR for other
models, as we will demonstrate in Sect. 4.

4 Experiments

In this section, we test how well ARC can guide training tasks on previously unseen
datasets and architectures. Specifically, we deploy ARC on two computer vision tasks
and one NLP task. For each task, we compare ARC against 3 standard LR schedules:
Baseline LR (BLR) - in which LR is held constant, Cyclic Cosine Decay (CCD), and
Exponential Decay (ED).

In order to gain a holistic view of the effectiveness of different schedulers, we use
3 different initial LRs for each task. Each training configuration is run 5 times in order
to compute standard deviations. Scheduler performance is measured in two ways: best
validation metric performance (e.g. highest accuracy), and fewest steps till convergence.
We define convergence by running each of the 4 schedulers 5 times, finding the best
metric scores for each of those 20 runs, and then picking the worst of those scores to
be our convergence threshold. Schedulers which can reach that threshold the fastest are
preferable.

298 X. Dong et al.

4.1 Image Classification on CIFAR10

Table 3. Results for CIFAR10 Image Classification (best values in bold)

Initial LR = 0.01 Initial LR = 0.001 Initial LR = 0.0001

Accuracy Converge Step Accuracy Converge Step Accuracy Converge Step

BLR 90.16± 0.12 11020± 640 91.43± 0.15 10520± 621 88.83± 0.07 5340± 361

CCD 92.20 ± 0.12 8400± 228 92.88± 0.09 8040± 361 87.83± 0.31 7460± 196

ED 91.82± 0.28 6800 ± 580 92.43± 0.15 6900± 415 85.75± 0.28 9500± 1207

ARC 91.87± 0.36 7120± 671 92.98 ± 0.18 5840 ± 224 89.87 ± 0.58 4440 ± 258

ARC (eval) BaseLR (eval) Cyclic Cosine Decay (eval) Exponential Decay (eval)

ARC (train) BaseLR (train) Cyclic Cosine Decay (train) Exponential Decay (train)

Initial LR: 1e-2 Initial LR: 1e-3 Initial LR: 1e-4

Fig. 3. Performance on CIFAR10

For our first experiment we trained a model to perform CIFAR10 image classification.
We used the same architecture and preprocessing as proposed in [28]. We trained for
30 epochs (rather than 24 in the original implementation) using an Adam optimizer
and a batch size of 128. Three different initial LRs were used: 1e−2, 1e−3, and 1e−4.
For each initial LR, we compare the performance of BLR with the performance of
ARC (invoked every 3 epochs), as well as CCD (using the settings proposed in [29] for
CIFAR10), and ED (with a gamma of 0.9).

The results for all experiment runs are summarized in Table 3. Representative graphs
of LR and accuracy for each method are given in Fig. 3.

When the initial LR is sufficiently large (1e−2 and 1e−3), all decaying LR sched-
ulers outperform the baseline LR. From Fig. 3 (left and center), we can see that ARC
also decided to decrease the LR. Amongst all LR schedulers, ARC perform the sec-
ond best with the large initial LR (1e−2), and was the best performer with the medium
initial LR (1e−3).

Autonomous Learning Rate Optimization for Deep Learning 299

When the initial LR is small (1e−4), however, the drawback of statically decaying
LR schedulers becomes evident: decaying an already small LR damages convergence.
In this case, CCD and ED are beaten by the baseline LR. On the other hand, as shown in
Fig. 3 (right), ARC is able to sense that the LR is too small and increasing it, achieving
the best final accuracy and convergence speed.

4.2 Object Detection on MSCOCO

Table 4. Results for MSCOCO Object Detection (best values in bold)

Initial LR = 0.01 Initial LR = 0.005 Initial LR = 0.001

mAP Converge Step mAP Converge Step mAP Converge Step

BLR 16.3± 0.2 30380± 2905 16.3± 0.1 23140± 920 13.4± 0.1 16480± 519

CCD 16.8± 0.2 29600± 805 15.9± 0.1 28480± 1013 11.1± 0.1 24880± 637

ED 15.6± 0.1 36340± 5398 14.6± 0.1 37260± 4986 9.6± 0.1 38220± 4835

ARC 17.1 ± 0.2 21440 ± 1384 16.5 ± 0.5 18820 ± 279 14.3 ± 0.2 12480 ± 979

ARC (eval) BaseLR (eval) Cyclic Cosine Decay (eval) Exponential Decay (eval)

ARC (train) BaseLR (train) Cyclic Cosine Decay (train) Exponential Decay (train)

Initial LR: 1e-2 Initial LR: 5e-3 Initial LR: 1e-3

Fig. 4. Performance on MSCOCO

Our second and most time-consuming task is object detection using the MSCOCO
dataset. We downscale the longest side of each image to 256 pixels in order to com-
plete the trainings within a more reasonable computational budget. The RetinaNet [20]
architecture was selected for this task. We used a batch size of 32 and trained for a total
of 45000 steps, with validation every 1500 steps. We used a momentum optimizer with
0.9 for its momentum value, but kept all other parameters consistent with the official
implementation. The configuration for our LR schedulers is the same as in Sect. 4.1,
but with initial LRs of 0.01, 0.005, and 0.001 (we found that LRs outside of this range

300 X. Dong et al.

risked divergence or converged too slowly to be useful). For this task we use mean
average precision (mAP) to benchmark model performance.

The results for all experiment runs are summarized in Table 4. Representative graphs
of LR and mAP for each method are given in Fig. 4.

Interestingly, the largest LR (1e-2) we used was not large enough to allow ED to
outperform the baseline LR. Unfortunately, larger initial LRs were found to lead to
training divergence. This exposes a critical limitation of exponential LR decay: the rate
of decay needs to be carefully tuned, otherwise LR can be either too large early on
or too small later in training. On the other hand, both CCD and ARC outperform the
baseline LR, with ARC achieving the best mAP and dramatically better convergence
speed.

For the other two smaller LRs (5e-3 and 1e-3), both ED and CCD are worse than
the baseline LR because they have no mechanism to raise the LR when doing so would
be useful. In contrast, ARC can notice this deficiency and increase the LR accordingly
- allowing it to achieve the best mAP and convergence scores across the board.

4.3 Language Modeling on PTB

Table 5. Results for PTB Language Modeling (best values in bold)

Initial LR = 1.0 Initial LR = 0.1 Initial LR = 0.01

Perplexity Converge Step Perplexity Converge Step Perplexity Converge Step

BLR 121.2± 3.8 7540± 3770 136.6± 0.3 8800± 63 314.5± 2.4 8640± 224

CCD 123.3± 3.9 11960± 6090 159.5± 1.0 16260± 206 450.3± 7.1 16160± 120

ED 122.9± 1.7 5900± 1909 201.4± 1.4 29000± 3592 603.9± 3.0 28400± 3769

ARC 116.8 ± 0.6 4140 ± 258 124.7 ± 2.6 6840 ± 80 258.1 ± 62.2 6480 ± 40

For our final task we move beyond computer vision to verify whether ARC can be useful
in natural language processing tasks as well. We performed language modeling using
the PTB dataset [26] with a vocabulary size of 10000. Our network for this problem
leveraged 600 LSTM units with 300 embedding dimensions, and a 50% dropout applied
before the final prediction. Training progressed for 98 epochs, with a batch size of
128 and a sequence length of 20. A Stochastic Gradient Descent (SGD) optimizer was
selected, with initial LR values of 1.0, 0.1, and 0.01 (with 1.0 being the largest power of
10 we could find which did not lead to training divergence). Our CCD scheduler used
T0 = 14 and Tmulti = 2 such that we could fit 3 LR cycles into the training window.
The ED scheduler gamma value was set to 0.96, and ARC was invoked every 9 epochs.
For this task we used perplexity to measure model performance (lower is better).

Autonomous Learning Rate Optimization for Deep Learning 301

ARC (eval) BaseLR (eval) Cyclic Cosine Decay (eval) Exponential Decay (eval)

ARC (train) BaseLR (train) Cyclic Cosine Decay (train) Exponential Decay (train)

Initial LR: 1.0 Initial LR: 0.1 Initial LR: 0.01

Fig. 5. Performance on PTB

The results for all experiment runs are summarized in Table 5. Representative graphs
of LR and perplexity for each method are given in Fig. 5.

Surprisingly, even our largest initial LR did not allow CCD nor ED to outperform
the baseline LR. The situation is similar to what we observed in Sect. 4.2 with ED. In
contrast, ARC shows how LR changes can improve the training results significantly,
especially in Fig. 5 (right) where the system continuously increased the LR throughout
training, leading to the best final performance and convergence speeds.

5 Limitations and Unexpected Behaviors

As Sect. 4 demonstrates, ARC can be successfully deployed over a range of tasks, archi-
tectures, optimizers, and initial LRs. It does, however, have some limitations and failure
modes which bear mentioning.

One limitation of ARC is that it requires a constant optimization objective. While
this is often the case for real-world problem-solving tasks, it is not true of generative
adversarial networks (GANs), where the loss of the generator is based on the perfor-
mance of an ever-evolving discriminator. Thus ARC, while applicable to many prob-
lems, may not be appropriate for all genres of deep learning research.

A second limitation of the current ARC implementation is that it sometimes pro-
vides unreliable decisions if queried too frequently. While we found that once per epoch
typically works, running every few epochs can be more reliable. In our experiments, we
chose to evenly distribute 10 invocations throughout the training. A truly autonomous
system ought to determine its own update frequency. We see eliminating this parameter
as an area for future research.

302 X. Dong et al.

eval

train

MSCOCO, Initial LR: 0.01 PTB, Initial LR: 1.0

Fig. 6. Unexpected behaviors

As for failure modes, just like any other deep learning model, ARC can also make
incorrect decisions. Figure 6 (left) shows an instance of object detection training where
ARC incorrectly chose to raise the LR, leading to a small decrease in mAP. Neverthe-
less, ARC detected the problem and was then able to course correct and drop the LR
again in order to get the training back on track. This bad behavior may have been due
to the fact that less historical information is available early on during training.

Figure 6 (right) shows an interesting phenomena which may or may not be a fail-
ure mode. After achieving an optimal performance around step 7500, ARC started to
drop the LR as might normally be expected to improve performance. However, after
step 15000 it changed course and dramatically increased the LR, despite the fact that
perplexity continued to get worse. Comparing this with what happened to the other
schedulers for the same task configuration in Fig. 5 (left), however, ARC might actu-
ally be attempting to prevent the model from overfitting. This is something we hope to
investigate more thoroughly in the future.

6 Conclusion

In this work we proposed an autonomous learning rate controller that can guide deep
learning training to reach better results in less time. ARC overcomes several challenges
in LR scheduling and is complementary to modern adaptive optimizers. We experimen-
tally demonstrated its superiority to conventional schedulers across a variety of tasks,
optimizers, and network architectures, as well as identifying several areas for future
improvement. Not only that, ARC achieves its objectives without tangibly increasing
the training budget, in sharp contrast to other AutoML paradigms. The true test of any
automation system is not whether it can outperform any possible hand-crafted custom

Autonomous Learning Rate Optimization for Deep Learning 303

solution, but rather whether it can provide a high quality output with great efficiency.
Given that, the fact that ARC actually does outperform popular scheduling methods
while requiring no effort nor extra computation budget on the part of the end user makes
it a valuable addition to the AutoML domain.

References

1. Bello, I., Zoph, B., Vasudevan, V., Le, Q.V.: Neural optimizer search with reinforcement
learning. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
onMachine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings
of Machine Learning Research, vol. 70, pp. 459–468. PMLR (2017). https://proceedings.mlr.
press/v70/bello17a.html

2. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: optimal speed and accuracy of object detec-
tion. CoRR abs/2004.10934 (2020). https://arxiv.org/abs/2004.10934

3. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components
with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10599-4 29

4. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine
translation: encoder-decoder approaches. In: Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M.
(eds.) Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, Doha, Qatar, 25 October 2014. pp. 103–111. Association
for Computational Linguistics (2014). https://doi.org/10.3115/v1/W14-4012, https://www.
aclweb.org/anthology/W14-4012/

5. Coleman, C.A., et al.: Dawnbench: an end-to-end deep learning benchmark and competition,
nIPS ML Systems Workshop (2017)

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2–7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Com-
putational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res. 12(61), 2121–2159 (2011). https://jmlr.org/
papers/v12/duchi11a.html

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015).
https://arxiv.org/abs/1412.6572

9. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR
abs/1706.02677 (2017). https://arxiv.org/abs/1706.02677

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/
10.1109/CVPR.2016.90

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

https://proceedings.mlr.press/v70/bello17a.html
https://proceedings.mlr.press/v70/bello17a.html
https://arxiv.org/abs/2004.10934
https://doi.org/10.1007/978-3-319-10599-4_29
https://doi.org/10.1007/978-3-319-10599-4_29
https://doi.org/10.3115/v1/W14-4012
https://www.aclweb.org/anthology/W14-4012/
https://www.aclweb.org/anthology/W14-4012/
https://doi.org/10.18653/v1/n19-1423
https://jmlr.org/papers/v12/duchi11a.html
https://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1706.02677
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735

304 X. Dong et al.

12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017).
https://doi.org/10.1109/CVPR.2017.243

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015. JMLR
Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015). https://
proceedings.mlr.press/v37/ioffe15.html

14. Jaeger, S., Candemir, S., Antani, S., Wang, Y.X., Lu, P.X., Thoma, G.: Two public chest X-
ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med. Surg.
4(6), 475–477 (2014)

15. Karpathy, A.: The unreasonable effectiveness of recurrent neural networks. https://karpathy.
github.io/2015/05/21/rnn-effectiveness/. Accessed 04 Nov 2020

16. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–
22 June 2018, pp. 7482–7491. IEEE Computer Society (2018). https://doi.org/10.1109/
CVPR.2018.00781, https://openaccess.thecvf.com/content cvpr 2018/html/Kendall Multi-
Task Learning Using CVPR 2018 paper.html

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun,
Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1412.
6980

18. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recog-
nition (2015). iCML Deep Learning Workshop

19. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through
probabilistic program induction. Science 350(6266), 1332–1338 (2015)

20. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In:
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 Octo-
ber 2017, pp. 2999–3007. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.
2017.324

21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9
May 2019. OpenReview.net (2019). https://openreview.net/forum?id=S1eYHoC5FX

22. Liu, J., Cyphers, S., Pasupat, P., McGraw, I., Glass, J.R.: A conversational movie search
system based on conditional random fields. In: INTERSPEECH 2012, 13th Annual Con-
ference of the International Speech Communication Association, Portland, Oregon, USA,
9–13 September 2012, pp. 2454–2457. ISCA (2012). https://www.isca-speech.org/archive/
interspeech 2012/i12 2454.html

23. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR
abs/1907.11692 (2019). https://arxiv.org/abs/1907.11692

24. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26
April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/
forum?id=Skq89Scxx

25. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150. Association for
Computational Linguistics, Portland, Oregon, USA (June 2011). https://www.aclweb.org/
anthology/P11-1015

https://doi.org/10.1109/CVPR.2017.243
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://openreview.net/forum?id=S1eYHoC5FX
https://www.isca-speech.org/archive/interspeech_2012/i12_2454.html
https://www.isca-speech.org/archive/interspeech_2012/i12_2454.html
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015

Autonomous Learning Rate Optimization for Deep Learning 305

26. Marcus, M.P.: Treebank-3 ldc99t42. web download. https://catalog.ldc.upenn.edu/
LDC99T42. Accessed 04 Nov 2020

27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natu-
ral images with unsupervised feature learning. In: nIPS Deep Learning and Unsupervised
Feature Learning Workshop (2011)

28. Page, D.C.: Cifar10-fast dawn benchmark implementation. https://github.com/davidcpage/
cifar10-fast. Accessed 04 Nov 2020

29. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via
parameter sharing. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10–15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 4092–4101. PMLR
(2018). https://proceedings.mlr.press/v80/pham18a.html

30. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res. 21(140), 1–67 (2020). https://jmlr.org/papers/v21/20-074.html

31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4 28

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings
(2015). https://arxiv.org/abs/1409.1556

33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2818–2826. IEEE
Computer Society (2016). https://doi.org/10.1109/CVPR.2016.308

34. Tieleman, T., Hinton, G.: Lecture 6.5–RmsProp: divide the gradient by a running average of
its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)

35. Verma, G., Swami, A.: Error correcting output codes improve probability estimation and
adversarial robustness of deep neural networks. In: Wallach, H.M., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8–14 December 2019, pp. 8643–8653. Canada, Vancouver, BC (2019)

36. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNET: a new
backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

37. Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001, Califor-
nia Institute of Technology (2010)

38. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26
April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/
forum?id=r1Ue8Hcxg

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://github.com/davidcpage/cifar10-fast
https://github.com/davidcpage/cifar10-fast
https://proceedings.mlr.press/v80/pham18a.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.308
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Optimizing Data Augmentation Policy
Through Random Unidimensional Search

Xiaomeng Dong1,2(B), Michael Potter1, Gaurav Kumar1, Yun-Chan Tsai1,
V. Ratna Saripalli1, and Theodore Trafalis2

1 GE Healthcare, San Ramon, USA
Xiaomeng.Dong@ge.com

2 University of Oklahoma, Norman, USA

Abstract. It is no secret among deep learning researchers that finding the
optimal data augmentation strategy during training can mean the differ-
ence between state-of-the-art performance and a run-of-the-mill result. To
that end, the community has seen many efforts to automate the process of
finding the perfect augmentation procedure for any task at hand. Unfor-
tunately, even recent cutting-edge methods bring massive computational
overhead, requiring as many as 100 full model trainings to settle on an ideal
configuration. We show how to achieve equivalent performance using just
6 trainings with Random Unidimensional Augmentation. Source code is
available at https://github.com/fastestimator/RUA.

Keywords: Deep learning · AutoML · Data augmentation

1 Introduction

Data augmentation is a widely used technique to improve deep-learning model
performance. It is sometimes described as a “freebie” [1] because it can improve
model performance metrics without incurring additional computational costs at
inferencing time. Unfortunately, creating a good data augmentation strategy
typically requires human expertise and domain knowledge [3], which is inconve-
nient during initial development as well as when transferring existing strategies
between different tasks. In an effort to overcome these drawbacks, researchers
have begun looking for an automated solution to data augmentation.

AutoAugment [2] and its variants (FastAA [13] and PBA [9]) automated the
data augmentation process by introducing augmentation parameters which are
then jointly optimized alongside the neural network parameters during train-
ing. While these methods do offer an automated solution to the problem, they
also introduce massive search spaces which in turn significantly increase the time
required to train a model. For example, AutoAugment uses Reinforcement Learn-
ing (RL) on a search space of size 1032, which costs thousands of GPU hours
to find a solution for a single task. Although later methods such as FastAA
and PBA greatly improved the search and reduced computation requirements
through data subsampling, they can still be undesirable due to the complexity
of implementing joint optimization algorithms.
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 306–318, 2022.
https://doi.org/10.1007/978-3-031-24866-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_23&domain=pdf
https://github.com/fastestimator/RUA
https://doi.org/10.1007/978-3-031-24866-5_23

Optimizing Data Augmentation Policy 307

RandAugment [3] took a different approach by completely removing the pol-
icy optimization while achieving better results than prior methods. Unlike its
predecessors which rely on applying RL to a search space of size 1032, RandAug-
ment uses only two global parameters, reducing the search space from 1032 to
102 so that a grid search can be a simple yet viable solution to the problem.
As a result, RL is no longer needed for the policy search, making the method
significantly easier to implement and more computationally feasible for practical
usage.

Despite the significant complexity and efficiency enhancements made by Ran-
dAugment, there is still room for improvement. For example, the default setting
of RandAugment uses a 10× 10 grid search for the 102 search space. While it is
technically possible to run any training task 100 times, the computational cost
of doing so may still be prohibitive, especially on large-scale datasets.

To reduce costs, a sub-grid is often selected from the 10 × 10 grid for the
actual search. Unfortunately, appropriate sub-grid selection is highly customized
to specific problems. This re-introduces a requirement on human expertise and
experience, which autonomous methods seek to avoid. For example, for Cifar100
[11] the proposed subgrid is N ∈ {1, 2},M ∈ {2, 6, 10, 14}. For ImageNet [4],
a ResNet50 model [8] uses the subgrid N ∈ {1, 2, 3},M ∈ {5, 7, 9, 11, 13, 15},
whereas EfficientNet [16] on the same dataset searches N ∈ {2, 3}, and M ∈
{17, 25, 28, 31}. It is difficult to say what kind of intuition would allow someone
to generate such sub-grids for previously unseen problems.

To address these problems, we propose Random Unidimentional Augmenta-
tion (RUA): a simpler yet more effective automated data augmentation workflow.
The goal of RUA is to achieve the following two objectives:

1. Reduce the computational cost required to perform automated search, with-
out sacrificing performance.

2. Eliminate the need for problem-specific human expertise in the process,
enabling a fully automated workflow.

2 Methods

2.1 Dimensionality Reduction: 2D to 1D

There are 2 global parameters defined in the search space of RandAugment:
M and N . M represents the global distortion magnitude which controls the
intensity of all augmentation operations. N is the number of transformations to
be applied in each training step. By default, M and N are both integers ranging
from 1 to 10, with 10 giving the maximum augmentation effects.

Although the definitions of M and N are different, the end result of increasing
their values is the same: more augmentation. If they could be merged into a single
augmentation parameter, then the search space could be reduced by an order of
magnitude. To check whether this might be possible, we ran RandAugment on
a full 10× 10 grid for two classification tasks. We used ResNet9 for Cifar10, and
WRN-28-2 [19] for SVHN [14]. Their test accuracies are shown in Fig. 1.

308 X. Dong et al.

Fig. 1. Model accuracy as a function of M and N using RandAugment. Note the
(accuracy) gradient as you traverse from the bottom left to the top right of each
image.

The gradients in Fig. 1 show a diagonal trend from the bottom left to the top
right. Although the optimal accuracy regions vary between the two problems, the
fact that both exhibit an approximately diagonal gradient raises the possibility
of traversing the two parameters simultaneously. We confirmed that this pattern
is robust to variations in augmentation parameters, as well as across different
architectures, tasks, and datasets. These results can be found later on in Fig. 3.
We therefore introduce a single parameter r ∈ [0, 1] such that r = M/Mmax and
r = N/Nmax. We then define our augmentation operation parameters directly
in terms of r, eliminating the need to pick an explicit value for Mmax. This
parameterization can be found in Table 1. This formulation leaves Nmax as the
single open parameter in the method. While one could simply set Nmax = 10
in the footsteps of RandAugment, it can also be set lower while still providing
adequate gradient traversal. We defer further discussion of this to Sect. 2.4.

In situations where r ∗Nmax is not an integer, we apply �r ∗Nmax� augmen-
tations, plus a final augmentation which executes with probability equal to the
floating point remainder. For example, if r ∗Nmax = 3.14, then 3 augmentations
will be guaranteed, and a fourth will execute with 14% probability.

2.2 More Search with Less Computation

Another interesting observation one can make from Fig. 1 is that, traversing the
diagonals of both Cifar10 and SVHN, accuracy first increases to a maximum and
then decreases. In other words, there appears to be unimodality with respect to
r. If we extract these diagonal terms and plot their relative accuracies against r
(Fig. 2 top), the unimodal trend becomes more apparent.

The same trend can be observed in the RandAugment paper [3], reproduced
here as Fig. 2 bottom. This demonstrates that the unimodal relationship persists
across different network and dataset sizes.

Optimizing Data Augmentation Policy 309

Fig. 2. RandAugment test accuracy as a function of r (Nmax = 10).

In light of this unimodal property, we can leverage algorithms that are more
efficient than grid search to explore a larger search space using less computation.
One such algorithm is the golden-section search [10]. Golden-section search is a
simple method that is widely used for finding the maximum or minimum of
a unimodal function over a given interval. The pseudo code for golden-section
search is given in Algorithm 1.

With golden-section search, every evaluation (after the first) of the search
space will reduce the remaining search space by a constant factor of ≈ 0.618
(inverse golden ratio). As a result, we can search over 90% of the domain of
r using only 6 evaluations. This makes it practical to search over the entire
training dataset, without having to resort to subsampling like Fast AA or PBA.
Note that this search space reduction does not require any human expertise or
intervention, allowing the method to be used as an automated solution for a
deep learning task.

2.3 RUA Augmentation Parameters

After our search space reduction, we are left with one parameter, r, which con-
trols the global augmentation intensity. The exact manner of this control is given
in Table 1 (right). A zero value of r means no augmentation, whereas a value of
1 achieves maximum augmentation.

This is a conceptual divergence from RandAugment, as 6 of their 14 transfor-
mations are not set up to scale this way. These transformations are marked with
a “*” in Table 1 (left). For example, the transformation intensity of Solarize and

310 X. Dong et al.

Algorithm 1. Golden Section Search (Max-Finding)
Require: Input function:f , range:[a, b], max iterations:k

φ1, φ2 ←
√
5−1
2

, 3−√
5

2

h ← b − a
c ← a + φ2 ∗ h
d ← a + φ1 ∗ h
yc ← f(c)
yd ← f(d)
for i from 1 to k do

if yc > yd then
b ← d
d ← c
yd ← yc

h ← φ1 ∗ h
c ← a + φ2 ∗ h
yc ← f(c)

else
a ← c
c ← d
yc ← yd

h ← φ1 ∗ h
d ← a + φ1 ∗ h
yd ← f(d)

end if
end for
if yc > yd then

return c
else

return d
end if

Posterize are inversely correlated with r. Moreover, Color, Contrast, Brightness,
and Sharpness are all ‘shifted’ in that they cause no augmentation when r = 0.5,
whereas values closer to 0 or 1 lead to stronger alterations to the input.

In addition to aligning r with augmentation intensity, we also introduce non-
deterministic parameter selection into our augmentations. For example, rather
than rotating an image exactly ±30 degrees whenever the Rotate operation is
applied, we instead draw from a random uniform distribution (U) to cover the
augmentation space more thoroughly. The maximum intensity of certain aug-
mentations are also increased to keep the expected intensity consistent in spite
of the switch to uniform distributions. We justify each of these decisions with
an ablation study in Sect. 3.2.

Optimizing Data Augmentation Policy 311

Table 1. Augmentations and their associated parameters. Augmentations marked with
a “∗” have non-zero impact at r = 0 under RA, but are zero-aligned under RUA.

Augmentations RandAug (RA) RUA

Identity – –

AutoContrast – –

Equalize – –

Rotate degree = ±30r degree = U(−90r, 90r)

Solarize∗ threshold = 256r threshold = 256 − U(0, 256r)

Posterize∗ bit shift = 8 − 4r bit shift = U(0, 7r)

Color∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)

Contrast∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)

Brightness∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)

Sharpness∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)

Shear-X coef = ±0.3r coef = U(−0.5r, 0.5r)

Shear-Y coef = ±0.3r coef = U(−0.5r, 0.5r)

Translate-X coef = ±100r coef = U(−r, r) ∗ width/3

Translate-Y coef = ±100r coef = U(−r, r) ∗ height/3

2.4 Selecting a Maximum N

One question which must be answered when applying RUA is what value to
use as Nmax. While one may be content to use 10, since that was the extent of
the RandAugment search space, other numbers may well be equally valid. We
ran a second grid search (Fig. 3) using our RUA augmentation parameters to
verify that large values of Nmax may not be necessary in order to achieve a good
performance. Based on this search, we examined what outcomes a user would
achieve if they ran RUA using different values of Nmax ranging from 1 to 10.
This sensitivity analysis is shown in Fig. 4. In our tests, setting Nmax > 5 does
not appear to provide any significant benefit, though small values like 1 or 2 can
clearly be harmful, especially for ViT/Tiny ImageNet.

312 X. Dong et al.

Fig. 3. Test performance as a function of M and N using RUA augmentation param-
eters. Note that the (accuracy/dice) gradients as you traverse from the bottom left to
the top right of each image are similar to Fig. 1. Interestingly, this trend exists even
in more recent attention-based architectures (ViT [6] on Tiny ImageNet [12]) and on
segmentation tasks (U-Net [15] on CUB200 [17]). Cells which are candidates for our
RUA search when Nmax = 5 are hatched with white.

Fig. 4. The best performances along a diagonal path as a function of Nmax.

Given that RUA is relatively insensitive to higher values of Nmax, there are
pragmatic reasons to choose values smaller than 10. Applying a large number
of transformations during training can severely bottleneck the training speed.
See Fig. 5 for an example. For our hardware, with any N ≥ 3 the cpu-based
preprocessing became rate limiting, especially once N ≥ 5. This may be one
reason why RandAugment never chose N > 3 in their sub-grid selections. With
these factors in mind, we selected Nmax = 5 for our final experiments.

Optimizing Data Augmentation Policy 313

Fig. 5. Preprocessing and training speeds as a function of N . Measurements were
taken on an AWS EC2 P3.2xlarge instance (8 core Intel Xeon CPU, NVIDIA Tesla
V100 GPU). Training was conducted using the ResNet9 architecture on Cifar10.

3 Experiments

3.1 RUA Performance Assessment

In order to perform a direct comparison with previous works, we deploy RUA in
the same training setting used by RandAugment on Cifar10, Cifar100, SVHN,
and ImageNet. Details regarding the parameters used in each experiment are
given in Table 2. There are a few things worth highlighting about our experi-
mental parameters:

1. In order to be consistent with previous works, we also applied default aug-
mentations before and after applying RUA augmentation on different tasks.
For example, pad-and-crop, horizontal flip, and cutout [5] are used on the
Cifar 10/100 datasets.

2. In Cifar10, RandAugment trained for 1800 epochs whereas the official imple-
mentation of PyramidNet [7] and ShakeDrop [18] trained for 300 epochs. We
picked 900 epochs as a compromise between different official implementation
settings.

3. In every dataset we hold out 5k training samples as evaluation data for select-
ing the best r. After selecting r, we put the hold-out set back into the training
set and train again. We then record the test performance at the end of that
final training.

314 X. Dong et al.

Table 2. Experiment parameter details. Note that PyramidNet uses ShakeDrop regu-
larization for consistency with the RandAugment experimental setup.

Dataset CIFAR10 CIFAR10 CIFAR100 SVHN (Core) ImageNet

Network PyramidNet-272-
200

Wide-ResNet-28-
10

Wide-ResNet-28-
10

Wide-ResNet-28-
2

ResNet50

Epochs 900 200 200 200 180

Batch Size 128 128 128 128 4096

Image Preprocessing mean-std-
Normalize

mean-std-
Normalize

mean-std-
Normalize

Divide by 255 None

Augmentations [pad-and-crop,
horizontal flip,
RUA, Cutout]

[pad-and-crop,
horizontal flip,
RUA, Cutout]

[pad-and-crop,
horizontal flip,
RUA, Cutout]

[RUA, Cutout] [random resized
crop, horizontal
flip, RUA]

Optimizer SGD SGD SGD SGD SGD

Weight Decay 1e−4 5e−4 5e−4 5e−4 1e−4

Initial LR 0.1 0.1 0.1 0.1 1.6

LR Schedule Cosine Decay Cosine Decay Cosine Decay Cosine Decay ×0.1 at epoch 60,
120, and 160

Momentum 0.9 0.9 0.9 0.9 0.9

Nmax 5 5 5 5 5

Best r 0.867 0.6 0.733 0.8 0.666

Table 3. Experimental results for RUA compared with previous works. We report our
average test accuracy over 10 independent runs (as in prior works). Best values in bold.

Methods CIFAR10 CIFAR100 SVHN ImageNet

PyramidNet WRN-28-10 WRN-28-10 WRN-28-2 ResNet50

Baseline 97.3 96.1 81.2 96.7 76.3

AA 98.5 97.4 82.9 98.0 77.6

Fast AA 98.3 97.3 82.7 – 77.6

PBA 98.5 97.4 83.3 – –

RA 98.5 97.3 83.3 98.3 77.6

RUA 98.5 97.4 83.6 98.0 77.7

The final test results of RUA are shown in Table 3, where our performance
scores are from an average of 10 independent runs. The results of previous meth-
ods including the baseline, AA, Fast AA, PBA, and RA are taken from previous
work [3]. The best accuracies for each column are highlighted in bold. The search
space and the number of iterations required by each method is shown in Table
4, with the best highlighted in bold.

Optimizing Data Augmentation Policy 315

Table 4. The search spaces of various auto-augmentation solutions. Fast AA and PBA
search by training on subsampled datasets to improve search speed. Since reduced
datasets can be equally applied to any of the above search methods, we directly com-
pare iterations required by each search algorithm rather than dataset/hardware specific
metrics. For each method, one iteration involves training the target model to conver-
gence.

Methods Search space order Search iterations required

AA 1032 15000

Fast AA 1032 200

PBA 1061 16

RA 102 100

RUA 10 6

As demonstrated in Table 3, RUA achieved equal or better test scores than
previous state-of-the-art methods on 4 out of 5 tasks. For the Cifar10 tasks, we
are equivalent to the best prior methods, with one-tailed t-test p-values of 0.0017
and 0.034. For Cifar100 and ImageNet our performance exceeds that of prior
methods, with one-tailed t-test p-values of 0.002 and 0.039. On SVHN, despite
being outperformed by RandAugment, RUA nonetheless achieved competitive
performance on par with AutoAugment.

In addition to the performance, RUA also managed to reduce the search
space by an order of magnitude and cut the training iteration requirements of
the previous best method by more than 2x as shown in Table 4. This proved that
the method could optimize the augmentation policy more efficiently than prior
methods while achieving equivalent or better results.

3.2 Ablation Study

We conducted an ablation study on the various design decisions outlined in
Sect. 2.3. The results of this study are given in Table 5. There are several note-
worthy takeaways from these comparisons. First, making the “*” augmentations
from Table 1 positively correlated with r is always beneficial. This can be seen
through pairwise comparisons of rows 1 vs 5, 2 vs 6, 3 vs 7, and 4 vs 8. The
second takeaway is that using a random distribution to draw the transformation
arguments is always beneficial. This can be seen through pairwise comparisons of
rows 1 vs 3, 2 vs 4, 5 vs 7, and 6 vs 8. Finally, increasing the maximum strength of
augmentations (for example rotating ±90 rather than ±30) is always deleterious
on its own (rows 1 vs 2 and 5 vs 6), but advantageous when paired with ran-
dom sampling (rows 3 vs 4 and 7 vs 8). This is not particularly surprising since
larger effects under deterministic sampling will consistently and seriously distort
an image, whereas under uniform sampling they permit a larger exploration of
the distortion space while still more often sampling less extreme distortions. All
told, the best design was to apply all three modifications (row 8).

316 X. Dong et al.

Table 5. An ablation study of the RUA design decisions from Sect. 2.3. A ResNet9
architecture was trained on Cifar10, with accuracies averaged over 10 independent
runs. ‘Aligned’ indicates our modifications to the “*” transforms in Table 1, ‘Random’
indicates our use of a random uniform distribution, and ‘Expanded’ indicates the use of
expanded augmentation parameters. Row 1 is thus analogous to running RandAugment
using our dimensionality reduction and golden section search routine, and row 8 is the
full RUA method.

Aligned Random Expanded Accuracy

1 0 0 0 0.916

2 0 0 1 0.912

3 0 1 0 0.917

4 0 1 1 0.920

5 1 0 0 0.917

6 1 0 1 0.915

7 1 1 0 0.920

8 1 1 1 0.922

4 Conclusion

In this work, we proposed Random Unidimensional Augmentation (RUA), an
automated augmentation method providing several benefits relative to previous
state-of-the-art algorithms. Our search space is one order of magnitude smaller
than prior works, our transformations are more effective, and we leverage more
efficient search algorithms. As a result of these improvements, RUA achieves
equivalent results while requiring significantly less computation. We experimen-
tally demonstrated RUAs strength on the same tasks used by previous works
across various network architectures and datasets. Unlike previous methods,
RUA does not rely on any problem-specific human expertise, making the method
truly automated and thus fit for use in conjunction with larger autoML pipelines.

References

1. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: optimal speed and accuracy of
object detection. CoRR abs/2004.10934 (2020). arxiv.org/abs/2004.10934

2. Cubuk, E.D., Zoph, B., Mané, D., Vasudevan, V., Le, Q.V.: Autoaugment:
earning augmentation strategies from data. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20
June, 2019, pp. 113–123. Computer Vision Foundation/IEEE (2019). https://doi.
org/10.1109/CVPR.2019.00020. http://openaccess.thecvf.com/content CVPR
2019/html/Cubuk AutoAugment Learning Augmentation Strategies From Data
CVPR 2019 paper.html

3. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: Randaugment: Practical automated
data augmentation with a reduced search space. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing

http://arxiv.org/2004.10934
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/CVPR.2019.00020
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html

Optimizing Data Augmentation Policy 317

Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, 6–12 December 2020, virtual (2020). https://proceedings.neurips.
cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html

4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: A large-scale hier-
archical image database. In: 2009 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami,
Florida, USA, pp. 248–255. IEEE Computer Society (2009). https://doi.org/10.
1109/CVPR.2009.5206848

5. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017). arxiv.org/abs/1708.04552

6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR (2021)

7. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, 21–26 July, 2017, pp. 6307–6315. IEEE Computer Society (2017). https://
doi.org/10.1109/CVPR.2017.668

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June, 2016, pp. 770–778. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.90

9. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation:
Efficient learning of augmentation policy schedules. In: Chaudhuri, K., Salakhut-
dinov, R. (eds.) Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Proceed-
ings of Machine Learning Research, vol. 97, pp. 2731–2741. PMLR (2019). http://
proceedings.mlr.press/v97/ho19b.html

10. Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4(3),
502–506 (1953). http://www.jstor.org/stable/2032161

11. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

12. Li, F.F., Karpathy, A., Johnson, J.: Tiny imagenet visual recognition challenge
(2016). https://www.kaggle.com/c/tiny-imagenet

13. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: Wallach, H.M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December, 2019,
Vancouver, BC, Canada, pp. 6662–6672 (2019). https://proceedings.neurips.cc/
paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html

14. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011). nIPS Deep Learning
and Unsupervised Feature Learning Workshop

15. Ronneberger, O., P.Fischer, Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-
Assisted Intervention (MICCAI). LNCS, vol. 9351, pp. 234–241. Springer (2015).
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a, (available on
arXiv:1505.04597 [cs.CV])

16. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long
Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp.
6105–6114. PMLR (2019). http://proceedings.mlr.press/v97/tan19a.html

https://proceedings.neurips.cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d85b63ef0ccb114d0a3bb7b7d808028f-Abstract.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/1708.04552
https://doi.org/10.1109/CVPR.2017.668
https://doi.org/10.1109/CVPR.2017.668
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v97/ho19b.html
http://proceedings.mlr.press/v97/ho19b.html
http://www.jstor.org/stable/2032161
https://www.kaggle.com/c/tiny-imagenet
https://proceedings.neurips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6add07cf50424b14fdf649da87843d01-Abstract.html
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://arxiv.org/abs/1505.04597
http://proceedings.mlr.press/v97/tan19a.html

318 X. Dong et al.

17. Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001,
California Institute of Technology (2010)

18. Yamada, Y., Iwamura, M., Akiba, T., Kise, K.: Shakedrop regularization for deep
residual learning. IEEE Access 7, 186126–186136 (2019)

19. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Wilson, R.C., Hancock,
E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference
2016, BMVC 2016, York, UK, 19–22 September, 2016. BMVA Press (2016). http://
www.bmva.org/bmvc/2016/papers/paper087/index.html

http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html

Evaluating Student Behaviour
on the MathE Platform - Clustering

Algorithms Approaches

Beatriz Flamia Azevedo1,2(B) , Ana Maria A. C. Rocha2 ,
Florbela P. Fernandes1 , Maria F. Pacheco1,3 , and Ana I. Pereira1,2

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI),
Instituto Politécnico de Bragança, Bragança 5300-253, Portugal

{beatrizflamia,fflor,pacheco,apereira}@ipb.pt
2 Algoritmi Research Centre, University of Minho, Campus Azurém,

Guimarães 4800-058, Portugal
arocha@dps.uminho.pt

3 Center for Research and Development in Mathematics and Applications CIDMA,
University of Aveiro, Aveiro, Portugal

Abstract. The MathE platform is an online educational platform that
aims to help students who struggle to learn college mathematics as well
as students who wish to deepen their knowledge on subjects that rely
on a strong mathematical background, at their own pace. The MathE
platform is currently being used by a significant number of users, from
all over the world, as a tool to support and engage students, ensuring
new and creative ways to encourage them to improve their mathematical
skills. This paper is addressed to evaluate the students’ performance on
the Linear Algebra topic, which is a specific topic of the MathE platform.
In order to achieve this goal, four clustering algorithms were considered;
three of them based on different bio-inspired techniques and the k-means
algorithm. The results showed that most students choose to answer only
basic level questions, and even within that subset, they make a lot of
mistakes. When students take the risk of answering advanced questions,
they make even more mistakes, which causes them to return to the basic
level questions. Considering these results, it is now necessary to carry
out an in-depth study to reorganize the available questions according to
other levels of difficulty, and not just between basic and advanced levels
as it is.

Keywords: Automatic clustering algorithms · Optimization ·
Bio-inspired methods · e-learning technology

This work has been supported by FCT Fundação para a Cincia e Tecnologia within the
R&D Units Project Scope UIDB/00319/2020, UIDB/05757/2020, UIDP/05757/2020
and Erasmus Plus KA2 within the project 2021-1-PT01-KA220-HED-000023288. Beat-
riz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021.

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 319–333, 2022.
https://doi.org/10.1007/978-3-031-24866-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_24&domain=pdf
http://orcid.org/0000-0002-8527-7409
http://orcid.org/0000-0001-8679-2886
http://orcid.org/0000-0001-9542-4460
http://orcid.org/0000-0001-7915-0391
http://orcid.org/0000-0003-3803-2043
https://doi.org/10.1007/978-3-031-24866-5_24

320 B. Flamia Azevedo et al.

1 Introduction

In an era where the Internet and digital resources, in general, are forcing all
teaching system levels to reinvent themselves, it becomes necessary and urgent
to implement changes in teaching and learning processes [17]. Moreover, the
COVID-19 pandemic showed how much investment in technological resources
and literacy is still necessary in order to allow the strengthening of current
educational systems and activities, contributing to increase the students’ and
teachers’ interest in the subjects they are involved in. One way to do this is by
applying digital educational technologies such as e-learning platforms.

In particular, Mathematics is considered a fundamental area for the construc-
tion of a sustainable knowledge economy, one of the great societal challenges of
our time [4,17]. However, this is one subject that students report most prob-
lems in learning and, therefore, it is essential to invest in different and engaging
ways of teaching and learning mathematics. Today’s students demand that their
educational environments integrate the digital tools of the twenty-first century,
adapting to their modern way of life and, in this context, the MathE learning
environment can offer a valuable contribution to improve the students’ confi-
dence in their ability to learn mathematics.

MathE (mathe.pixel-online.org) is an e-learning platform where students
from all over the world have free access to resources such as videos, exercises,
training tests, and pedagogical materials covering several areas of mathematics
taught in higher education courses. The MathE project offers an online tool for
autonomous learning, available 24 hours per day, 7 days per week, where students
can learn mathematics in an engaging way, more varied and more in line with
the dynamics of the current generation of students than the traditional methods.
MathE’s purpose is to provide students and teachers with a new perspective on
mathematical teaching and learning, relying on digital interactive technologies
that enable autonomous study [4]. At its current stage, the platform is organized
into three main sections, Student’s Assessment, MathE Library and Community
of Practice, in which fifteen mathematics topics are covered, among the ones
that are in the classic core of graduate courses. A more detailed description of
the sections and the covered topics can be found at [5].

In particular, the Student’s Assessment section is composed of multiple-
choice questions divided into topics, with two levels of difficulty—basic and
advanced—among which the students can make their choice. The students can
train and practice their skills in the Self Need Assessment (SNA) subsection.
This subsection aims to provide the student with a self training assessment to
test whether a certain topic that he/she has enrolled in is already properly under-
stood. If a student or a teacher believe that the understanding of a given subject
needs to be deepened, the student has the possibility of answering another train-
ing assessment to measure his/her degree of confidence in order to perform a final
assessment. Each training assessment is be randomly generated from an assess-
ments database composed of questions and their corresponding answers. In this
way, the same student is able to answer different training assessments on the
same topic. After the student submits a self-assessment test, the corresponding
grade automatically appears, allowing self-assessment.

https://mathe.pixel-online.org

Evaluating Student Behaviour on the MathE Platform 321

The MathE Platform is being improved, so that it becomes even more inter-
active and gains intelligence for decision making. In this way, it is expected that
in the near future the questions will be addressed to students in an autonomous
way instead of in a randomized manner, as it currently is. One of the first nec-
essary steps to achieve this is to recognize patterns in the data obtained so
far. Thus, this work aims to evaluate the student’s behavior when answering
questions under the Linear Algebra topic of the SNA. Considering the obtained
results it is expected to obtain information about the student’s performance,
that is, if they are getting the right answers or the wrong ones.

Currently, there are 99 teachers and 1161 students from different nationalities
enrolled in the platform: Portuguese, Brazilian, Turk, Tunisian, Greek, German,
Kazakh, Italian, Russian, Lithuanian, Irish, Spanish, Dutch, and Romanian. In
this work, the performance of students using the Linear Algebra topic in the
SNA section of the MathE platform will be evaluated. Linear Algebra is the
most consulted and answered topic of the platform; this fact is not surprising,
considering that Linear Algebra is a subject present in almost all curricula of
higher education courses that include mathematics. For this reason, it was the
topic chosen for the analysis herein described.

To perform the current research, the data collected over 3 years from students
from different countries was analyzed by different clustering techniques in order
to investigate the similarities and dissimilarities in the profiles of different groups
of students in the topic Linear Algebra.

This paper is organized as follows: after the introduction, Sect. 2 presents
an overview of clustering algorithms and also presents some recent work of
bio-inspired clustering techniques. Section 3 introduces the clustering algorithms
that will be applied in this work. The database composed of MathE student’s
performance in the MathE Self Need Assessment is described in Sect. 4. The
results are presented and discussed in Sect. 5. Finally, the main conclusions and
the future paths are described in Sect. 6.

2 An Overview on Clustering Algorithms and Related
Works

Clustering is one of the most widely used methods for unsupervised learning and
it is very useful in engineering, health sciences, humanities, economics, education,
and in many other areas of knowledge that involve unlabeled datasets, i.e., sets
of data where there is no defined association between input and output. Thus,
clustering algorithms consist of performing the task of grouping a set of elements
with similarities in the same group and dissimilarities in other groups [20].

A crucial step in clustering is to assess the member’s proximity that composes
a dataset and to partition the dataset into groups, considering the similarity and
dissimilarity between a pair of elements. The partitioning method is one of the
most common strategies used in clustering algorithms. This method provides a
dataset partition into a pre-determined number of clusters, not known a priori.
Each cluster is represented by its centroid vector, and the clustering process is

322 B. Flamia Azevedo et al.

carried out in an effort to iteractively optimize a criterion function and, at each
execution step, all centroids are updated in an attempt to improve the quality
of the final solution [16].

However, partitioning methods are known for their sensitivity to the initial
position of the centroid, which may lead to weak solutions, getting stuck at the
local optimum if the algorithm starts in a poor region of the problem space [16].
Moreover, the partitioning clustering algorithm heavily depends on the initial
values of the cluster centers [8], which define the number of clustering partitions,
as it is the number of groups that the dataset will be divided into.

Aiming to overcome these difficulties, the automatic clustering strategies that
combine clustering and optimization techniques have helped to surpass these
challenges, offering at the same time several improvements in clustering methods.
The automatic clustering process consists of solving an optimization problem,
aiming to minimize the similarity within a cluster and maximize the dissimilarity
between clusters. Thus, most metaheuristic approaches are judged to fit well in
the context of the new clustering paradigm [11].

In this context, several studies suggest using nature-inspired metaheuristics
to select the optimal number of clusters and find a solution that maximizes the
separation between different clusters and minimizes the distance between data
points in the same cluster [18]. Eesa and Orman [8] present a bio-inspired Cut-
tlefish Algorithm (CFA) combined with the k-means algorithm for searching the
best cluster centers that can minimize the clustering metrics and avoid getting
stuck in local optima. Likewise, Singh [21] suggests using the Whale Optimiza-
tion Algorithm (WOA) to improve the cluster exploration mechanism and solve
the problem of local entrapment. Nemmich et al. [14] use Artificial Bees Colony
Algorithm with a Memory Scheme to improve the k-means performance. So, in
the approach presented in [14], a simple memory scheme is introduced to prevent
visiting sites which are close to previously visited sites and to avoid visiting sites
with the same fitness or worse. All of the enumerated approaches were tested on
several benchmark datasets as well as, sometimes, on real-life problems, and the
authors considered various statistical tests to justify the effectiveness of combin-
ing clustering algorithms and metaheuristics.

Nguyen and Kuo [15] present an automatic fuzzy clustering using a non-
dominated sorting particle swarm optimization algorithm for categorical data.
The method can identify the optimal number of clusters based on two objec-
tive functions that minimize the global compactness and fuzzy separation rep-
resenting intra-cluster and inter-cluster distances. In its turn, [10] proposes a
metaheuristic-based Possibilistic Multivariate Fuzzy Weighted c-means Algo-
rithm (PMFWCM) for clustering mixed data (numerical and categorical). In this
case, three metaheuristics, Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO) and Sine Cosine algorithm (SCA) are used in different combinations
with the PMFWCM for cluster analysis. Both authors claimed that the proposed
algorithms work efficiently and determine the optimal number of cluster centers.

Another interesting approach is presented by Atabay et al. [2] which pro-
pose a clustering algorithm that integrates PSO and k-means algorithms. The

Evaluating Student Behaviour on the MathE Platform 323

sensitivity of the k-means algorithm to the initial choice of the centroids is solved
by PSO integration. On the other hand, the ability to rapidly converge by transi-
tioning the center of a cluster from the previous location to the average location
of points belonging to that cluster in each iteration is used to accelerate conver-
gence and improve the result of the PSO algorithm.

Considering what was described in the literature review, several approaches
can be combined between bio-inspired optimization and clustering techniques,
allowing to mitigate or eliminate some of the difficulties encountered by the
methods using hybrid techniques. In this work, three bio-inspired metaheuris-
tic approaches are considered, Genetic Algorithm (GA) [22], Particle Swarm
optimization [9], and Differential Evolution (DE) [23], in order to find the opti-
mum number of clusters to assess student performance from the MathE dataset.
Besides, the results will be compared with k-means clustering.

3 Clustering Approaches

The cluster separation measure incorporates the fundamental features of some
of the well-accepted similarity measures often applied to the cluster analysis
problem and also satisfies certain heuristic criteria [1]. In this work, the Davies-
Bouldin index (DB) [7] will be used as a clustering measure, that will define the
number of cluster centroids, which is the number of groups that the dataset will
be divided into.

3.1 Davies-Bouldin Index

Davies-Bouldin index (DB) is based on a ratio of intra-cluster and inter-cluster
distances. It is used to validate cluster quality and also to determine the optimal
number of clusters. Consider that cluster C have members X1,X2, ...,Xm. The
goal is to define a general cluster separation measure, Si and Mij , which allows
computing the average similarity of each cluster with its most similar cluster.
The lower the average similarity, the better the clusters are separated and the
better the clustering results. To better explain how to get the Davies-Bouldin
index, four steps are considered [7].

In the first step, it is necessary to evaluate the average distance between each
observation within the cluster and its centroid, that is the dispersion parameter
Si, also know as intra-cluster distance, given by Eq. (1),

Si =

⎧
⎨

⎩

1
Ti

Ti∑

j=1

|Xj − Ai|q
⎫
⎬

⎭

1
q

(1)

where, for a particular cluster i, Ti is the number of vectors (observations),
Ai is its centroid and Xj is the jth (observation) vector.

The second step aims to evaluate the distance between the centroids Ai and
Aj , given by Eq. (2), which is also known as inter-cluster distance. In this case,

324 B. Flamia Azevedo et al.

aki is the kth component of the n-dimensional vector ai, which is the centroid
of cluster i, and N is the total number of clusters. It is worth mentioning that
Mij is the Minkowski metric of the centroids which characterize clusters i and j
and p = 2 means the Euclidean distance.

Mij =

{
N∑

k=1

|aki − akj|p}
} 1

p

= ||Ai − Aj ||p (2)

In the third step, the similarity between clusters, Rij , is computed as the
sum of two intra-cluster dispersions divided by the separation measure, given by
Eq. (3), that is the within-to-between cluster distance ratio for the ith and jth
clusters.

Rij =
Si + Sj

Mij
(3)

Finally, the last step calculates the DB index, Eq. (4), that is, the average of
the similarity measure of each cluster with the cluster most similar to it. Ri is
the maximum of Rij i �= j, so, the maximum value of Rij represents the worst-
case within-to-between cluster ratio for cluster i. Thus, the optimal clustering
solution has the smallest Davies-Bouldin index value.

DB =
1
N

N∑

i=1

Ri (4)

Considering the definition of the DB index, a minimization problem can be
defined, whose objective function is the DB index value. Thus, metaheuristics can
be used in order to solve this problem as an evolutionary bio-inspired algorithm.

3.2 Evolutionary Bio-inspired Clustering Algorithms

The algorithms in the class of evolutionary computation start by randomly gen-
erating a set (population) of potential solutions. The population is represented
by individuals arranged in the search space, which is the space where each vari-
able can have values (some examples are Z

n, Rn, {0, 1}n, ...). The search space
is delimited by the domain of the objective function, which ensures that all
individuals are feasible solutions for the problem [22]. By iteratively applying
the genetic operators like selection, crossover, and mutation (the most common
ones), the population is being modified to obtain new feasible solutions. This
process stochastically discards poor solutions and evolves more fit (better) solu-
tions [6]. Due to the nature of these operators, which are based on Darwin’s
evolution principles (in which the most adapted individuals of a given popula-
tion survive whereas the less adapted die to be replaced by their offspring [6,22]),
it is expected that the evolved solutions will become better generation by gener-
ation (iteration). Like any iterative process, the evolutionary algorithms require
a stopping criterion to stop the search [22]. Some examples of stopping criteria
are described in [3].

Evaluating Student Behaviour on the MathE Platform 325

In this work, three bio-inspired evolutionary algorithms are used. Genetic
Algorithms (GA) [22], which is based on the Darwinian principle of survival of
the fittest and encoding of individuals; Differential Evolution (DE) [23], which
are inspired by the theory of evolution using natural selection; and Particle
Swarm Optimization (PSO) [9] that is an evolutionary algorithm, based on the
behavior of birds flocking, or fish schooling. Figure 1 shows the GA, DE and PSO
flowcharts.

Fig. 1. The GA, DE and PSO flowcharts. Adapted from [13]

The main difference between the variants of the so-called automatic algo-
rithms that will be used in this paper is the optimization process to define the
DB-index, since each one of them employs a different bio-inspired optimization
algorithm, that is GA, DE or PSO.

3.3 K-means Clustering Algorithm

The k-means partitioning clustering algorithm is one of the most well-known
clustering algorithms, which requires a priori the definition of the number of
clusters, being an example of an algorithm that is dependent on the initial solu-
tion, as mentioned in Sect. 2.

The k-means algorithm consists of trying to separate samples into groups
of equal variance, minimizing a criterion known as the inertia or within-cluster
sum-of-squares (WSS). As k-means is not an automatic clustering algorithm, it
requires the definition of the initial parameter k, that represents the number of
clusters division. The value of k can be specified by different techniques, such as
Silhouette method, Davies-Boulding index, or Calinski Harabasz method [19].
Once this value is established, the k-means algorithm divides a set of X samples
X1,X2, ...,Xm into k disjoint clusters C, each described by the mean of the
samples in the cluster, µi, also denoted as cluster “centroids”. In this way, the

326 B. Flamia Azevedo et al.

k-means algorithm aims to choose centroids that minimize the inertia, or within-
cluster sum-of-squares criterion, presented in Eq. (5) [1].

WSS =
m∑

i=0

min ||Xj − Ai||2, in which µi ∈ C (5)

From these centers, a clustering is defined, grouping data points according
to the center to which each point is assigned.

4 Dataset

This study is focused on the analysis of the performance of a set of students on
the MathE Student’s Assessment section. The data collected and the performed
analysis take into consideration information provided by 134 students from dif-
ferent countries who are active and consistent users of the Linear Algebra topic
of the Student’s Assessment section. These students regularly answer and submit
self-assessment tests to support their study and validate their progress on this
topic. As was previously mentioned, Linear Algebra is the most accessed topic
of the MathE platform, so a considerable amount of basic and advanced ques-
tions have been answered. For this reason, this topic was chosen to be analyzed
through clustering algorithms.

In order to analyze the students’ profile through clustering, the number of
questions answered correctly and incorrectly for each student were evaluated,
according to the basic and advanced levels. Then, the outlier students were
identified through the Box plot method, and these students were removed out
of the data set, leaving the information of 99 students for the analysis.

As previously mentioned, the questions available in MathE were divided into
two levels of difficulty, basic and advanced. Hence, when a student selects a topic,
he/she must also decide the difficult level of questions he/she wants to answer.
After that the platform will provide a set of 7 random questions, available in the
platform database, that belong from the chosen topic and level of difficult.

Over the 3 years of the platform’s availability, 199 different questions were
used, out of the 211 available in the platform’s linear algebra database (142 basic
and 69 advanced), being equal to 3696 the sum of times the available questions
were used. Table 1 shows the number of correct and incorrect answers according
to the question level. As can be seen, from the 3696 questions answered, 2919
were from the basic level and 777 from the advanced level, making a total of
1741 and 1955 correct and incorrect answers, respectively.

Table 2 presents the descriptive measures of the considered variables. The
Answers column refers to the total number of basic or advanced questions that
were answered correctly or incorrectly; Min and Max are the minimum and
maximum values obtained in each variable; the column No. Students presents
the number of students who answered a question correctly or incorrectly at
basic or advanced levels. That is, out of the 99 students evaluated, 87 answered
at least one basic question correctly and 88 answered at least one basic question

Evaluating Student Behaviour on the MathE Platform 327

Table 1. Number of question answered according to the type of answer given

Answer type

Level Correct Incorrect Total

Basic 1386 1533 2919

Advanced 355 422 777

Total 1741 1955 3696

incorrectly. On the other hand, only 26 correctly answered at least one advanced
question and 23 incorrectly answered at least one advanced question.

Table 2. Descriptive measures

Variable Answers Min Max No. students

Correct basic 1386 0 25 87

Incorrect basic 1533 0 31 88

Correct advanced 355 0 7 26

Incorrect advanced 422 0 7 23

5 Results and Discussion

The MathE platform has the mission to offer a dynamic and compelling way
of teaching and learning mathematics, relying on interactive digital technologies
that enable autonomous study [5]. This work focuses on investigating students
features, using clustering algorithm in order to recognize patterns in the stu-
dents platform user’s. In the future, these patterns will serve as a guidance to
provide intelligence to the platform, making it capable of addressing questions
in a personalized way according to each student’s profile.

The information of the 99 students who used the Linear Algebra topic were
considered in this analysis. The results obtained for the Linear Algebra topic -
as was previously mentioned, the most widely chosen - can be inferred for the
other less used topics of the platform.

Figure 2 shows the number of questions answered by each one of the 99 con-
sidered students, grouped by answered question level, ([a]-basic question and [b]-
advanced questions). As already shown in Table 2 and better illustrated in Fig. 2,
the range of answered basic questions varies from 0 to 35, while the advanced
ones vary between 0 and 7. Hence, the figure offers a better perception of the
profile of each individual student. It can be clearly seen that the students choose
to answer more basic questions than advanced ones. However, even answering
more basic than advanced questions, they end up making too many mistakes.

328 B. Flamia Azevedo et al.

Fig. 2. Student’s Performance on basic and advanced questions

When a student selects a topic and a level on the Self-Need Assessment
section, the MathE platform system provides the student with a subset of 7
questions randomly generated from the assessments database of the selected
topic. Thus, when it sums up the number of questions answered by each stu-
dent at each level, it is possible to evaluate, on average, how many tests these
students used to answer. Thus, evaluating by question difficulty level, it can be
deduced from Fig. 2(a) that the center of the figure, that is, with a range [0, 10],
is comprised of students who answer 1 or 2 basic tests, which represent most of
the students; within the range [11, 20], are the students answered more than 2
tests. Finally, above the range 20, are the students who answered at least 3 or
more tests. Concerning the advanced questions (see Fig. 2(b)), we can say that
students answer at most 2 tests of 7 advanced questions and do not return to
this level afterwards.

Aiming to group the different profiles of students and analyzing the simi-
larities and dissimilarities between students groups, the dataset was evaluated
by clustering algorithms. Therefore, three automatic clustering algorithms were
used to define the optimum number of clusters and establish their optimum posi-
tion. Thence, three bio-inspired optimization strategies were considered, namely
GA, PSO, and DE. More details about the algorithms’ codification can be con-
sulted at [24]. Moreover, the results of these three approaches were compared
with k-means algorithm, which is an example of a non-automatic clustering algo-
rithm [1].

For all bio-inspired algorithms, the common parameters used were: maximum
number of clusters equal to 10; initial population equal to 100, maximum number
of iterations equal to 250, which was also the stoppage criterion considered. For
the GA, a rate of 0.8 was considered for selection and crossover, and 0.3 for a
mutation. On the other hand, for PSO, the chosen rates were: global learning
coefficient equal to 2, personal learning coefficient equal to 1.5, inertia weight
equal to 1 and inertia weight damping equal to 0.99. Finally, for DE, the rates are

Evaluating Student Behaviour on the MathE Platform 329

equal to 0.2 for crossover and the scaling bound factor varies between [0.2, 0.8].
The results were obtained using an Intel(R) i5(R) CPU @1.60 GHz with 8 GB
of RAM using Matlab software [12].

In order to perform the clustering analysis, 4 variables were defined, as pre-
sented below. Each of them describes the number of questions answered by a
student according to the question level and the type of answer.

• variable 1: correct answers to basic questions
• variable 2: incorrect answers to basic questions
• variable 3: correct answers to advanced questions
• variable 4: incorrect answers to advanced questions

All clustering algorithms considered the four variables at the same time. The
number of centroids and their positions defined by each algorithm are described
on Table 3.

Table 3. Algorithms comparison

Algorithm Centroid position DB Index Intra C. Dist. Inter C. Dist. Time (s)

var1 var2 var3 var4

Genetic
Algorithm

C1 12.647 28.967 2.562e-06 1.087 0.612 10.359 30.128 59.217

C2 4.461 3.531e-07 1.188 0.634 8.081

Differential
Evolution

C1 17.431 31 0.661 0 0.605 10.370 30.142 55.110

C2 4.851 1.496 0.414 0 8.079

PSO C1 16.802 30.637 8.687e-08 0.374 0.598 10.989 31.382 42.821

C2 3.866 2.0743 1.205 0.865 7.806

k-means C1 11.380 18.380 0.952 1.095 0.901 18.326 16.066 1.631

C2 4.974 3.653 0.858 0.653 26.467

Since in this paper, the automatic clustering algorithms are considered, it is
up to the algorithm itself to define the optimal number of cluster division. In
this case, the optimal value corresponds to the smallest DB-index, since the opti-
mization algorithm goal is to minimize this parameter. Thence, from the results
presented in Table 3, it is possible to observe that all algorithms pointed to 2
as the optimal cluster division number. That is, 2 cluster is the value that min-
imizes the DB-index for all considered bio-inspired clustering algorithms (GA,
DE and PSO) and also by the Matlab function evalclusters, which was used to
define the cluster number of the k- means.

From the results presented in Table 3 it can be said that the 3 evolutionary
bio-inspired algorithms have similar behavior, both in the definition of the posi-
tion of the centroids and also in the parameters value of DB index, intra-cluster
distance and inter-cluster distance. However, the PSO bio-inspired clustering
algorithm presented slightly better solutions, having obtained the lowest value
of DB index and greater inter-clustering distance in less time than the GA and
DE. PSO is one of the most famous bio-inspired algorithm due to its high explo-
ration capacity, simplicity coding, and especially the high speed of convergence.

330 B. Flamia Azevedo et al.

Such features were also evident from the results obtained in this work. Since
a small size and low complexity dataset was considered, the similarity between
the results of the bio-inspired algorithms is according to what was expected. As
the complexity of the data increases, it is expected to find different amounts of
clusters in each algorithm.

Regarding k-means, although it provides the solution in much less compu-
tational time than the other algorithms, the final solution is worst compared
to the 3 bio-inspired algorithms in terms of DB index and also in relation to
intra-cluster and inter-cluster distances. It is important to highlight that the
DB index used in k-means was obtained by the Matlab function evalclusters,
since k-means is not an example of automatic clustering, so it requires a specific
technique to define the initial parameter k.

Due to the better performance of PSO algorithm its solution was chosen to be
presented and analyzed. As it is no possible to represent a 4-dimensional graphic,
Fig. 3 presents the clustering division, according to 3 to 3 variable combination.

Fig. 3. PSO’s bio-inspired clustering solution

Cluster 1, in blue, describes a group of students who answer more basic
questions incorrectly. This cluster contains fewer elements, and it is slightly
more compact than cluster 2. All students that belong to this cluster answered
at least 18 basic questions incorrectly. However, it is not possible to establish
an average value of basic questions answered by students in this cluster since
the cluster elements are well scattered. Clearly, the characteristic of having at
least 18 incorrect answers is the main point in establishing the division between
cluster 1 and 2. Thus, it can be said that most basic questions were answered
incorrectly. Moreover, most of the students in this cluster do not answer any
advanced questions, and of those who do, only take one test of 7 questions in

Evaluating Student Behaviour on the MathE Platform 331

the SNA. Out of the answers, either they get 2 correctly and 5 incorrectly, or
they answer all incorrectly.

Cluster 2, in red, has the group of students who made fewer mistakes in basic
questions, that is, less than 15, but it is essential to consider that they answered
fewer questions than students from cluster 1. In general, students from cluster 2
answer around 20 basic questions; they usually take 2 tests of 7 questions in the
SNA, with half of these answers being correct. On the other hand, concerning
the advanced questions, they usually answer 1 or at most 2 tests in the SNA,
and of the questions answered, they usually provide 5 correct answers.

6 Conclusions

E-learning has already operated a transformation in higher education, and on-
line platforms such as MathE are an opportunity to make learning more accessi-
ble, deepen student engagement and allow teachers to shift to a student-centered
pedagogical model. This work aimed to evaluate the performance of a group of
students who answered questions about Linear Algebra on the section Self Need
Assessment of the MathE platform. For this purpose, data collected over 3 years
was evaluated through different cluster techniques.

Through the performed analysis it can be concluded that most of the students
who use the MathE platform, specifically on the Linear Algebra topic, have many
difficulties in the subject, as they have a high error rate about the hit rate.
Although the clustering algorithm separates the sample into two groups, it was
not possible to establish a group of students whose performance was significantly
better than the other’s. Besides, the expressive number of incorrect answers
indicates that it is urgent and mandatory to review the questions’ difficulty level.
However, it is also known that some teachers use the platform in the classroom
to ascertain the level of the students at the beginning of the course. This may
be the cause of the high number of questions incorrectly answered since many
of them are answered before the students have contact with the concepts in the
classroom.

Future research will focus on developing a more robust clustering analysis
and new possibilities in combining bio-inspired algorithms. Besides, more of the
topics covered by the MathE platform must be involved in the study as well as
other students’ features such as country and course information.

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathemat-
ics, USA (2007). https://doi.org/10.1145/1283383.1283494

2. Atabay, H.A., Sheikhzadeh, M.J., Torshizi, M.: A clustering algorithm based on
integration of k-means and pso. In: 1st Conference on Swarm Intelligence and
Evolutionary Computation (CSIEC2016) - Higher Education Complex of Bam,
pp. 59–63. Iran (2016). https://doi.org/10.1109/CSIEC.2016.7482110

https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1109/CSIEC.2016.7482110

332 B. Flamia Azevedo et al.

3. Azevedo, B.F.: Study of Genetic Algorithms for Optimization Problems. Master’s
thesis, Instituto Politecnico de Braganca Escola Superior de Tecnologia e Gestao,
Portugal, Braganca, Portugal (2020)

4. Azevedo, B.F., Amoura, Y., Kantayeva, G., Pacheco, M.F., Pereira, A.I., Fernan-
des, F.P.: Collaborative Learning Platform Using Learning Optimized Algorithms,
vol. 1488. Springer (2021). https://doi.org/10.1007/978-3-030-91885-9-52

5. Azevedo, B.F., Pereira, A.I., Fernandes, F.P., Pacheco, M.F.: Mathematics learning
and assessment using MathE platform: a case study. Educ. Inf. Technol. 27(2),
1747–1769 (2021). https://doi.org/10.1007/s10639-021-10669-y

6. Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence
Algorithms. SCI, vol. 779. Springer, Cham (2019). https://doi.org/10.1007/978-3-
319-91341-4

7. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.
1979.4766909

8. Eesa, A.S., Orman, Z.: A new clustering method based on the bio-inspired cuttle-
fish optimization algorithm. Expert Syst.37 (2020). https://doi.org/10.1111/exsy.
12478

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948
(1995). https://doi.org/10.1109/ICNN.1995.488968

10. Kuo, R.J., Amornnikun, P., Nguyen, T.P.Q.: Metaheuristic-based possibilistic mul-
tivariate fuzzy weighted c-means algorithms for market segmentation. Appl. Soft
Comput. J. 96 (2020). https://doi.org/10.1016/j.asoc.2020.106639

11. Kuo, R.J., Huang, Y.D., Lin, C.C., Wu, Y.H., Zulvia, F.E.: Automatic kernel
clustering with bee colony optimization algorithm. Inf. Sci. 283, 107–122 (2014).
https://doi.org/10.1016/j.ins.2014.06.019

12. MATLAB: The mathworks inc (2019a). https://www.mathworks.com/products/
matlab.html

13. Nakane, T., Bold, N., Sun, H., Lu, X., Akashi, T., Zhang, C.: Application of evo-
lutionary and swarm optimization in computer vision: a literature survey. IPSJ
Trans. Comput. Vis. Appl. 12(1), 1–34 (2020). https://doi.org/10.1186/s41074-
020-00065-9

14. Nemmich, M.A., Debbat, F., Slimane, M.: A data clustering approach using bees
algorithm with a memory scheme. Lecture Notes Networks Syst. 50, 261–270
(2019). https://doi.org/10.1007/978-3-319-98352-3-28

15. Nguyen, T.P.Q., Kuo, R.J.: Automatic fuzzy clustering using non-dominated sort-
ing particle swarm optimization algorithm for categorical data. IEEE Access 7,
99721–99734 (2019). https://doi.org/10.1109/ACCESS.2019.2927593

16. Pacifico, L.D.S., Ludermir, T.B.: An evaluation of k-means as a local search opera-
tor in hybrid memetic group search optimization for data clustering. Nat. Comput.
20(3), 611–636 (2020). https://doi.org/10.1007/s11047-020-09809-z

17. Pedró, F., Subosa, M., Rivas, A., Valverde, P.: Artificial intelligence in educa-
tion: challenges and opportunities for sustainable development (2019), uNESCO
DOC Digital Library - Available online at https://unesdoc.unesco.org/ark:/48223/
pf0000366994. Accessed May 2021

18. Qaddoura, R., Faris, H., Aljarah, I.: An efficient evolutionary algorithm with
a nearest neighbor search technique for clustering analysis. J. Ambient. Intell.
Humaniz. Comput. 12(8), 8387–8412 (2020). https://doi.org/10.1007/s12652-020-
02570-2

https://doi.org/10.1007/978-3-030-91885-9-52
https://doi.org/10.1007/s10639-021-10669-y
https://doi.org/10.1007/978-3-319-91341-4
https://doi.org/10.1007/978-3-319-91341-4
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1111/exsy.12478
https://doi.org/10.1111/exsy.12478
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.asoc.2020.106639
https://doi.org/10.1016/j.ins.2014.06.019
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1186/s41074-020-00065-9
https://doi.org/10.1186/s41074-020-00065-9
https://doi.org/10.1007/978-3-319-98352-3-28
https://doi.org/10.1109/ACCESS.2019.2927593
https://doi.org/10.1007/s11047-020-09809-z
https://unesdoc.unesco.org/ark:/48223/pf0000366994
https://unesdoc.unesco.org/ark:/48223/pf0000366994
https://doi.org/10.1007/s12652-020-02570-2
https://doi.org/10.1007/s12652-020-02570-2

Evaluating Student Behaviour on the MathE Platform 333

19. Saitta, S., Raphael, B., Smith, I.F.C.: A comprehensive validity index for clustering.
Intell. Data Anal. 12(6), 529–548 (2008). https://doi.org/10.3233/IDA-2008-12602

20. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
To Algorithms. Cambridge University Press (2014)

21. Singh, T.: A novel data clustering approach based on whale optimization algorithm.
Expert Syst. 38(3) (2021). https://doi.org/10.1111/exsy.12657

22. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, 1
edn. (2008). https://doi.org/10.1007/978-3-540-73190-0

23. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

24. Yapiz: Evolutionary clustering and automatic clustering (2022). https://www.
mathworks.com/matlabcentral/fileexchange/52865-evolutionary-clustering-and-
automatic-clustering. Accessed 2 Feb 2022

https://doi.org/10.3233/IDA-2008-12602
https://doi.org/10.1111/exsy.12657
https://doi.org/10.1007/978-3-540-73190-0
https://doi.org/10.1023/A:1008202821328
https://www.mathworks.com/matlabcentral/fileexchange/52865-evolutionary-clustering-and-automatic-clustering
https://www.mathworks.com/matlabcentral/fileexchange/52865-evolutionary-clustering-and-automatic-clustering
https://www.mathworks.com/matlabcentral/fileexchange/52865-evolutionary-clustering-and-automatic-clustering

Unsupervised Training for Neural TSP
Solver

El̄ıza Gaile1(B), Andis Draguns2, Emı̄ls Ozoliņš2, and Kārlis Freivalds3

1 Faculty of Computing, University of Latvia, Riga, Latvia
eliiza.gaile@gmail.com

2 Institute of Mathematics and Computer Science at University of Latvia,
Riga, Latvia

andis.draguns@lumii.lv
3 Institute of Electronics and Computer Science, Riga, Latvia

karlis.freivalds@edi.lv

Abstract. There has been a growing number of machine learning meth-
ods for approximately solving the travelling salesman problem. However,
these methods often require solved instances for training or use complex
reinforcement learning approaches that need a large amount of tuning.
To avoid these problems, we introduce a novel unsupervised learning
approach. We use a relaxation of an integer linear program for TSP to
construct a loss function that does not require correct instance labels.
With variable discretization, its minimum coincides with the optimal or
near-optimal solution. Furthermore, this loss function is differentiable
and thus can be used to train neural networks directly. We use our loss
function with a Graph Neural Network and design controlled experiments
on both Euclidean and asymmetric TSP. Our approach has the advan-
tage over supervised learning of not requiring large labelled datasets. In
addition, the performance of our approach surpasses reinforcement learn-
ing for asymmetric TSP and is comparable to reinforcement learning for
Euclidean instances. Our approach is also more stable and easier to train
than reinforcement learning.

1 Introduction

Traveling salesman problem (TSP) is a well-known combinatorial optimization
problem that searches for the optimal way to traverse a graph while visiting each
node exactly once. TSP and its variants have broad practical applications, e.g.
in electronics and logistics [16]. Considering that TSP is an NP-hard problem,
many analytical methods and heuristics have been handcrafted to solve this
problem as optimally and efficiently as possible.

Neural networks have become powerful tools to solve various tasks and have
shown encouraging results also for TSP. Training neural networks to solve com-
binatorial optimization tasks such as TSP presents distinct challenges for all
learning paradigms - supervised (SL), unsupervised (UL), and reinforcement

This research is funded by the Latvian Council of Science, project lzp-2021/1-0479.

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 334–346, 2022.
https://doi.org/10.1007/978-3-031-24866-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_25&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_25

Unsupervised Training for Neural TSP Solver 335

learning (RL). Recently, both supervised and reinforcement learning has been
widely used to solve TSP, however, both of them have disadvantages.

While SL can perform better than other learning paradigms on fixed-size
graphs (e.g. [11]), supervised learning requires optimally labeled TSP examples
that are time consuming to produce even for moderately sized instances; besides
that supervised learning cannot process multiple correct solutions. Although
reinforcement learning does not have these problems, RL systems are often com-
plex, unstable, and less sample efficient than other learning paradigms. Besides
that, RL models are not well-suited for non-autoregressive models since that
would require a vast action space with O(n2) continuous values. But autoregres-
sive RL models rely on decoders that use node embeddings instead of adjacency
matrix embeddings. This means that to solve asymmetric TSP using RL, the
full adjacency matrix representation must be encoded in node embeddings. It
can be done but requires powerful and complex encoders [14].

We propose to train Neural models for TSP in an unsupervised way through
minimization of a differentiable loss. By exchanging supervised loss function with
this unsupervised loss, it is possible to eliminate the need for labeled training
data without using RL and hence avoid RL disadvantages as well. The loss
function is constructed so that its global minimum corresponds to the optimal
solution of relaxed TSP; we use variable discretization to obtain integer solutions.
Since loss function is non-convex, direct minimization for a given TSP instance
usually ends up a sub-optimal local minimum, but when used for training a
neural network, the trained network manages to find close-to-optimal solutions.

The proposed loss function does not rely on labels so it can be applied on
large instances while relieving us from the need to create a pre-solved dataset
and does not have problems with multiple solutions. In addition, our unsu-
pervised approach performs similarly to reinforcement learning when solving
Euclidean instances and our approach works on asymmetric TSP which rein-
forcement learning struggles with.

2 Related Work

Over the last few years, many new machine learning approaches for solving
TSP have been proposed. These approaches can be divided into two directions
- hybrid methods where machine learning assists established classical heuristics
and end-to-end neural solvers where ML model outputs solutions directly from
the input.

Most of the notable end-to-end advances in TSP are based on sequence-
to-sequence models [2,18], attention models [4,13,17] or graph neural networks
[11,12,14]. Earlier works focused more on supervised learning (mostly based
on Pointer Networks [18]), however after that more and more RL approaches
emerged (e.g. [2,11,13,14]) and it was noted that reinforcement learning is gen-
erally more suitable for TSP than SL [9,10].

To our knowledge, there are no notable works on neural end-to-end TSP
solvers with unsupervised learning despite UL also having the advantage of not

336 E. Gaile et al.

requiring labeled data. There is also very little work on non-Euclidean TSP
variants; most of the models used for solving TSP use only node coordinates
without adjacency matrices as input and are only applied to planar TSP variants
(e.g. [4,11,13,18]).

3 Unsupervised TSP

To train a neural network in an unsupervised manner, an unsupervised loss
function is needed. We construct a differentiable function L : ([0, 1]n×n, Rn×n) →
R, where n - number of nodes in a TSP instance. The input of this function is
two matrices - matrix X which tells if each edge is a part of the proposed optimal
tour (0 - not a part of the tour, 1 - part of the tour) and matrix C which is the
adjacency matrix of the instance and contains weights of each edge. The output
of L is an abstract numerical evaluation of how close the proposed tour is to the
optimal solution; the smaller the output, the better.

3.1 Unsupervised Loss

Our approach to obtain such a loss function is based on a relaxation of an integer
program for TSP that was first used by Dantzig, Fulkerson, and Johnson [1]. If
the vertices are numbered from 1 to n, the TSP problem can be formulated as
follows:

min
n∑

i=1

n∑

j �=i,j=1

cij · xij : (1)

0 ≤ xij ≤ 1
n∑

i=1,i �=j

xij = 1 j = 1, . . . , n;

n∑

j=1,j �=i

xij = 1 i = 1, . . . , n;

∑

i∈Q

∑

j �=i,j∈Q

xij ≤ |Q| − 1 ∀Q � {1, . . . , n}, |Q| ≥ 2

The last constraint guarantees that the solution has no tours smaller than
the whole graph and therefore is called the subtour constraint. The subtour
constraint checks O(2n) node subsets. To avoid this exponential growth, the
subtour constraint can be replaced by a heuristic algorithm that looks only at
a part of subsets (the ones which are more likely to violate the constraint) and
can therefore run in polynomial time. If the chosen heuristic is re-applied many
times and each time the found constraint violations are corrected, a solution
with no violations will be achieved.

Unsupervised Training for Neural TSP Solver 337

For the heuristic, the parametric connectivity [1] is used. First, this heuristic
replaces the previous subtour contraint with

cut(Q,V − Q) ≥ 1 ∀Q ⊂ {1, . . . , n}, |Q| ≥ 2, (2)

where V - the set of all vertices and cut(S, T) =
∑

i∈S

∑
j∈T xij . Similarly to

DFJ, this constraint also ensures that there are no subtours in the TSP solution.
Second, the heuristic imagines the proposed solution X as a separate graph

with edge weights corresponding to xij values (these are values that deter-
mine whether edge is the solution). The heuristic calculates and then orders
this graph’s subsets by a parameter ε, which is the maximum edge weight such
that for any two vertices in the subset, they are connected by a path in with all
edges of weight at least ε. Assuming that the first three constraints of DFJ are
satisfied, subsets of the graph with the largest ε have the smallest cuts (and the
largest expected values to violate subtour constraint), therefore n subsets with
the largest ε parameters are chosen to be checked.

By combining the relaxation of the integer program and the parametric con-
nectivity heuristic, the loss function for TSP with solution matrix X and adja-
cency matrix C is obtained. We evaluate the length of the tour and how much
each of the DFJ constraints are violated (0 corresponds to satisfied constraints):

L = α ·
n∑

i=1

n∑

j=1,j �=i

cij · xij (3)

+ β ·

⎡

⎢⎣
n∑

j=1

⎛

⎝1 −
n∑

i=1,i �=j

xij

⎞

⎠
2

+
n∑

i=1

⎛

⎝1 −
n∑

j=1,j �=i

xij

⎞

⎠
2
⎤

⎥⎦

+ γ ·
∑

Q∈S

(1 − cut(Q,V − Q))2

where S - node subsets chosen by the parametric connectivity heuristic that
violate the subtour constraint; α, β, γ - scalars for scaling.

When the summands of the loss function are scaled appropriately, the global
minimum of the function thus created satisfies all constraints and has the shortest
tour, and can therefore express the quality of a proposed TSP solution without
optimal labels. For this paper, we experimentally found that values α = 5, β = 1,
γ = 1 work well.

Additionally, the proposed loss function L is differentiable w. r. t. solution
X and can therefore be used to train a neural network directly. It is not differ-
entiable w. r. t. to the choice of node subsets S and if we wanted to perfectly
evaluate the proposed solution, we should look at all its subsets. However, the
use of a neural network helps to get closer results without checking all subsets
of a particular instance and avoids exponential count of such subsets.

338 E. Gaile et al.

3.2 Variable Discretization

To achieve a differentiable loss function, a relaxed TSP problem is used, and
the optimal solution of such a relaxation does not always correspond to integer
solutions [7]. To ensure that the solutions provided by minimization of the unsu-
pervised loss function are integer or can be easily converted to integer solutions
we use the Gumbel-Softmax technique [8,15]. We add Gumbel noise of a cer-
tain magnitude to logits and then apply softmax to get xij . To understand why
adding noise helps to obtain integer solutions, consider how noise affects the xij .
When logits are near zero (xij = 0.5) the addition of noise will produce large
fluctuations in xij and consequently large and random loss. But when logits are
large (xij close to integer points) softmax is saturated and the impact of noise
becomes negligible. Therefore to minimize the expected loss, the network will be
encouraged to produce integer or near-integer solutions. This principle has been
described in more detail in other works [5].

Since we use greedy search to read out the obtained solution we are not
required to fully discretize the solution and noise addition is performed only to
improve the solution quality. We experimentally found out that in Euclidean
TSP case the best results are obtained without noise but in Asymmetric TSP
noise of magnitude 0.1 works well.

3.3 Implementation

Implementation of the first three summands of L is straightforward. Our app-
roach to efficiently implement the last summand and the parametric connectivity
heuristic is based on a known method [1]. To find the n subsets with the largest
ε parameters and therefore the smallest expected cuts, we start with an empty
graph X0 = ({1, ..., n}, ∅). By adding edges of the proposed solution X to X0

in a descending edge weight order, components of X0 are subsets of X whose ε
is at least the value of the last edge added. Hence every time the addition of an
edge changes components of X0, the new component corresponds to the subset
with the next largest ε. This way we can bypass the explicit calculation of ε.

For the implementation of this algorithm, only the list of components of X0 is
needed. At first, each vertex is in its own component. If the endpoints of the edge
with the next largest weight belong to different components, they are merged
together by changing the component list; then the cut of the vertex subset of
the new component is checked. If the cut sum value in either direction is smaller
than one, this new component is insufficiently connected to the rest of the graph
and forms a subtour. This is repeated until there are only two components left.

To make our method easily usable for both symmetric and asymmetric
graphs, all graphs are implemented as directed; when ordering edge weights
and adding edges to X0, a sum of both direction weights is used. However, when
observing cuts, each direction is checked separately as this can provide more
information.

It has been shown that parametric connectivity heuristic can be implemented
with complexity O(n2α(n2)) [1], α - the inverse of the Ackermann function. How-
ever, since the parametric connectivity heuristic is used only when training the

Unsupervised Training for Neural TSP Solver 339

Algorithm 1. Parametric connectivity
Input: Adjacency matrix X, where weight of each edge describes if that edge is in
the optimal tour; number of vertices n

1: Initialize empty set of cuts that violate subtour constraint S
2: Initialize array of component indexes for each vertex comp; comp ← [1..n]
3: Initialize counter i; i ← 0

4: Add all edges to Edecr

5: Sort Edecr in decreasing order of edge weight

6: for edge in Edecr do
� Find components of both edge endpoints

7: c ← comp[edge.endpoint1]
8: c0 ← comp[edge.endpoint2]

9: if c != c0 then
10: i ← i + 1 � Merge components together
11: for v ← 1 to n do
12: if comp[v] is c0 then
13: comp[v] ← c

14: Initialize cut values for each direction cutin, cutout
15: cutin, cutout ← 0
16: for v1 ← 1 to n do
17: for v2 ← 1 to n do

� Find values of cuts in both directions
18: c1 ← comp[v1]
19: c2 ← comp[v2]
20: if c1 == c and c2 != c then
21: cutin ← cutin + X[v1, v2]

22: if c2 == c and c1 != c then
23: cutout ← cutout + X[v2, v1]

� Add a subset of vertices (cut) for each violated constraint
24: for sum in [cin, cout] do
25: if sum < 1 then
26: Initialize empty set Q
27: for v ← 1 to n do
28: if comp[v] == c then
29: Q ← Q ∪ {v}
30: S ← S ∪ {Q}
31: if i = n − 2 then return S

model, a more advanced implementation is not necessarily needed. Our imple-
mentation of this algorithm is simpler and the complexity of our approach is
O(n3) (see Algorithm 1).

340 E. Gaile et al.

4 Neural Model

Our model is based on Joshi et al. [9] and follows the same pipeline: the input is
a graph represented by its adjacency matrix C and we train our model to output
matrix X ∈ [0, 1]n×n. This matrix shows which edges belong to the optimal tour
and its values can be viewed as probabilities. We use a graph neural network that
uses both edges and nodes, and each edge and node of the graph is embedded
as d-dimensional vector. Lastly, we use our differentiable loss function L to train
the network.

To get the full predicted tours from X (e.g. to use for evaluation), we use
greedy search. Greedy search finds the complete tour by starting from a random
node and traversing along the heaviest edge which is available until a Hamilto-
nian cycle is formed.

We also need neural models with supervised learning and reinforcement learn-
ing to compare our approach to different learning paradigms. To ensure fairness,
we use the same SL and RL models as Joshi et al. [9] used in his work.

4.1 Graph Neural Network

Our graph neural network (GNN) consists of several layers and each layer �
consists of message passing and updating of node and edge embeddings. For
initial node embeddings h�=0

ij and edge embeddings e�=0
ij we use d-dimensional

linear projections of node coordinates and normalized edge weights respectively:

h�=0
ij = nodeij · W1 + b1 (4)

norm cij =
cij√

1
n

∑n
k

∑n
l (ckl)

2
(5)

e�=0
ij = norm cij · W2 + b2 (6)

To update edge and node features message passing is used. Two types of
messages are computed from each edge (outgoing from vertex and incoming to
vertex) using simple MLP networks, after that vertices gather and process all
messages from their adjacent edges and the vertex itself:

out stateij =
∑n

k=1(MLP1(e�
ik))√

n
(7)

in stateij =

∑n
k=1(MLP2(e�

kj))√
n

(8)

vertex stateij = [in state, out state, h�
ij] (9)

Next a new edge embedding candidate for each edge is obtained from the pro-
cessed messages of adjacent vertices, and the embedding of each edge is updated
by combining the old embedding with the new candidate (tileij is used for ease
of implementation):

Unsupervised Training for Neural TSP Solver 341

tileij =

⎡

⎢⎣
vertexij

...
vertexij

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
n times (10)

candidateij = MLP3([e�
ij , tileij , tile

T
ij]) (11)

e�+1
ij = e�

ij · σ(a · A�) + B� · candidate (12)

Lastly, the updating of node embeddings h�
ij is done by using MLP network

on information available to vertices:

h�+1
ij = MLP4(h�

ij) (13)

Each layer contains multilayer perceptrons MLP1, MLP2, MLP3, MLP4, each
with 3 layers (including input and output layer); learnable parameters W1, W2,
A, B ∈ R

d and b1, b2 ∈ R as well as a scalar value a (we experimentally deter-
mined a = 10 to work well).

To decode edge embeddings from the last layer of GNN and get probabilities
for each edge to belong to optimal tour, we first use two layer MLP to get logits
from embeddings; after that we get probability matrix X from logits via softmax
over each edge.

If a symmetrical TSP variant is being tackled (e.g. Euclidean TSP), we make
logits symmetrical before softmax by taking the mean of logits in each edge
direction.

5 Evaluation

We carry out several experiments to compare our unsupervised approach to both
supervised and reinforcement approaches.

All datasets are generated randomly. For symmetric graphs, we choose points
in a unit square and get adjacency matrices as Euclidean distances between
those points. For asymmetric graphs, random adjacency matrices are generated
with each edge weight ranging from 0 to 1. Correct solution tours (required for
evaluation and supervised learning) are computed using Concorde solver [3] and
Gurobi optimizer [6] for symmetric and asymmetric cases respectively.

We explore all methods on fixed-size graphs of 20 and 50 vertices on Euclidean
TSP and on asymmetric TSP. For unsupervised and reinforcement learning train-
ing 128000 examples are randomly generated in each of the 100 epochs; for super-
vised learning, a larger set of 1280000 samples and their solutions are generated
beforehand. For evaluation, 1280 samples and their solutions are generated of
each type, i.e. TSP and ATSP on respective graph sizes.

To fairly compare between different paradigms, supervised and unsupervised
models differ only in the loss function. Comparison with reinforcement learning
is not as straightforward considering that the RL model is auto-regressive and
builds the solution step by step as opposed to SL and UL models, which are non-
autoregressive and produce the solution in one shot. To ensure the comparison

342 E. Gaile et al.

is as fair as possible, for RL we use the corresponding encoder described in
Joshi et al. [9]. Unfortunately, this means that for asymmetric TSP this encoder
has to embed the adjacency matrix into node embeddings. Nonetheless, Table 1
contains a summary of the main hyperparameters used for comparing SL, RL,
and our UL method. We also follow the experimental setup of Joshi et al. [9],
but some parameters have been adjusted for hardware limitations.

Table 1. Training parameters for SL, UL and RL models.

Parameter SL UL RL

Epochs 1 100 100

Epoch size 12800000 128000 128000

Batch size (n = 20, 50) 128, 32 128, 32 128, 32

Encoder layers (n = 20, 50) 16, 8 16, 8 16, 8

Number of parameters 354562 354562 379072

Learning rate 10−4 10−4 10−4

Embedding and hidden dimensions 64 64 64

The output of the model is the probabilities of edges to belong to the cor-
rect tour; hence, the greedy search method is used to get a valid tour predic-
tion. Results are compared using optimality gap, i.e. the average percentage
ratio between the predicted tour and the correct one. We also look at inference
time (1280 samples) and inspect the consistency of validation results throughout
training to observe any unstable behaviours.

Tables 2 and 3 shows results of solving Euclidean and asymmetric TSP using
different learning paradigms. We evaluate all methods on fixed-size graphs of 20
and 50 vertices.

Table 2. Optimality gap and inference time of TSP using SL, RL and UL

Method TSP20 TSP50

Opt. Gap Time Opt. Gap Time

SL 0.219 2.914 4.870 8.141

RL 2.752 3.163 7.954 8.881

UL 1.289 2.852 11.419 8.468

In all of the experiments supervised learning shows superior results to other
learning paradigms, which we explain by our experiments being of fixed-sized
graphs and supervised learning having all the information of training instances.
This also coincides with the current literature [10].

When comparing unsupervised learning with reinforcement learning, we can
observe that results on Euclidean instances are ambiguous, as UL performs better

Unsupervised Training for Neural TSP Solver 343

Table 3. Optimality gap and inference time of ATSP using SL, RL and UL

Method ATSP20 ATSP50

Opt. Gap Time Opt. Gap Time

SL 17.640 3.225 83.377 9.598

RL 534.820 3.488 1439.005 9.208

UL 20.560 3.446 32.699 9.392

on 20 vertices, but RL surpasses UL when looking at instances with 50 vertices.
However, results on asymmetric TSP are much more certain, where RL behaves
very poorly. This suggests that the encoder used is not powerful enough to
efficiently embed the adjacency matrix into node embeddings.

When comparing results between TSP and ATSP, we can see that perfor-
mance for asymmetric instances is noticeably worse as it is a generally harder
problem. However, UL achieves similar results to SL for asymmetric TSP, which
may indicate the adaptiveness of the unsupervised approach.

Inference time results between learning paradigms are very similar and no
noteworthy differences can be seen.

Figure 1 shows training behaviors of each of the learning paradigms in all
experiments carried out (validation done with greedy search). It can be seen in
Euclidean experiments (Fig. 1a, Fig. 1b) that reinforcement learning has several
big fluctuations in the training process; we do not experience this with other
learning paradigms. This type of unstable behaviour is a relatively more common
behaviour for RL in general and leads to large amount of steps to train the neural
network properly. The asymmetric training graphs (Fig. 1c, Fig. 1d) show small
or no improvement in RL training over time, indicating that the encoder used
is not suitable for asymmetric TSP.

To better see how unsupervised loss work with neural networks, we carried
out an experiment to compare straightforward minimization of the loss function
and its usage in our model. The minimization of the function was done using
Adam optimizer (learning rate = 0.01) and we let it run on each instance of
the evaluation datasets for 15000 steps which were empirically determined to
be enough for most edges to be almost discrete. To get proper tours from the
output, we use greedy search.

Results in this experiments for Euclidean TSP and asymmetric TSP can be
seen in Table 4 and Table 5. We tracked both the optimality gap for each method
as well as inference time for 1280 instances. It should be noted that time spent on
loss minimization directly depends on optimization steps and could be reduced
by possibly sacrificing the quality of the solution. For better comprehension of
the experiment, we added average results of a random tour and also of a tour
found with greedy search on the adjacency matrix.

As expected, we can see that the minimization of the loss function returns
better results than just greedy search. When the loss function is used together
with a neural network, the results are even better. This can be explained by

344 E. Gaile et al.

(a) TSP20 (b) TSP50

(c) ATSP20 (d) ATSP50

Fig. 1. Comparison of optimality gap throughout training when using RL, SL and UL

the fact that the loss function has many local minimums in which the optimizer
can get trapped, but a neural network helps to overcome this. If we look at the
inference times, we can see that individual optimization is very slow and is not
practical for widespread use.

Table 4. Comparison of minimization of loss function and loss function used in neural
network for TSP

Method TSP20 TSP50

Opt. Gap Time Opt. Gap Time

Random 186.959 0.007 371.908 0.011

Greedy search 17.620 0.169 22.801 1.220

Loss function 6.736 25181.865 16.560 54313.828

Neural network 1.289 2.852 11.419 8.468

Unsupervised Training for Neural TSP Solver 345

Table 5. Comparison of minimization of loss function and loss function used in neural
network for ATSP

Method ATSP20 ATSP50

Opt. Gap Time Opt. Gap Time

Random 556.233 0.007 1492.072 0.0011

Greedy search 91.194 0.169 145.298 1.220

Loss function 26.413 24448.681 47.762 54002.372

Neural network 20.560 3.446 32.699 9.392

6 Conclusions

We introduce a novel unsupervised learning approach for solving the TSP prob-
lem with neural networks. The basis of our unsupervised method is a new dif-
ferentiable loss function that works on both Euclidean and asymmetric TSP.
Unsupervised learning has the advantage over supervised learning of not need-
ing large correctly labeled datasets. Our method performs similarly to reinforce-
ment learning for Euclidean graphs with 20 and 50 vertices and outperforms
reinforcement learning when looking at the stability of training or asymmetric
graphs.

The loss function is constructed in a way to be easily modified with extra
constraints. The addition of constraints can be done by expressing the constraint
as a differentiable polynomial and adding it to the loss function. Considering
that routing problems are very widespread and often have unique limitations,
the addition of constraints is very relevant and may be very useful. This work
does not explore this possibility further but in the future, we want to examine
our work on TSP variants with additional constraints.

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems. Math. Program.
97, 91–153 (2003)

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. ArXiv abs/1611.09940 (2017)

3. Concorde TSP Solver (2003). http://www.math.uwaterloo.ca/tsp/concorde/
4. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning

heuristics for the tsp by policy gradient. In: CPAIOR (2018)
5. Frey, B.: Continuous sigmoidal belief networks trained using slice sampling. In:

NIPS (1996)
6. Gurobi Optimization (2021). https://www.gurobi.com
7. Hougardy, S.: On the integrality ratio of the subtour lp for euclidean tsp. Oper.

Res. Lett. 42(8), 495–499 (2014)

http://www.math.uwaterloo.ca/tsp/concorde/
https://www.gurobi.com

346 E. Gaile et al.

8. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April, 2017, Conference Track Proceedings. OpenReview.net (2017).
https://openreview.net/forum?id=rkE3y85ee

9. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T., Bresson, X.: Learning tsp
requires rethinking generalization. arXiv preprint arXiv:2006.07054 (2020)

10. Joshi, C.K., Laurent, T., Bresson, X.: On learning paradigms for the travelling
salesman problem. ArXiv abs/1910.07210 (2019)

11. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227
(2019)

12. Khalil, E.B., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. In: NIPS (2017)

13. Kool, W., Hoof, H.V., Welling, M.: Attention, learn to solve routing problems! In:
ICLR (2019)

14. Kwon, Y.D., Choo, J., Yoon, I., Park, M., Park, D., Gwon, Y.: Matrix encoding
networks for neural combinatorial optimization. ArXiv abs/2106.11113 (2021)

15. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continu-
ous relaxation of discrete random variables. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Confer-
ence Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?
id=S1jE5L5gl

16. Matai, R., Singh, S., Mittal, M.L.: Traveling salesman problem: an overview of
applications, formulations, and solution approaches (2010)

17. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: NeurIPS (2018)

18. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: NIPS (2015)

https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/2006.07054
http://arxiv.org/abs/1906.01227
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl

Comparing Surrogate Models for Tuning
Optimization Algorithms

Gustavo Delazeri1 , Marcus Ritt1(B) , and Marcelo de Souza2

1 Instituto de Informática, Universidade Federal do Rio Grande so Sul,
Porto Alegre, Brazil

{gustavo.delazeri,marcus.ritt}@inf.ufrgs.br
2 Departamento de Engenharia de Software, Universidade do Estado de Santa

Catarina, Ibirama, Brazil
marcelo.desouza@udesc.br

Abstract. Tuning an algorithm requires to evaluate it under different
configurations on several problem instances. Such evaluations are costly.
A way to reduce the configuration time when developing tuners is to use
surrogate models, which map configuration-instance pairs to the approx-
imate algorithm performance and thus allow to replace algorithm runs
by fast calls to the model. Most applications of surrogate models found
in the literature focus on predicting algorithm running time; much less
effort has been devoted to predicting the quality of solutions of optimiza-
tion algorithms. In this paper, we present a comparative study of surro-
gate models for predicting solution quality. We evaluate several surrogate
models from the literature, including random forests, gradient boosting
methods, and neural networks, and compare ways of handling differ-
ent classes of parameters, data imputation strategies, and codification
of instances. We demonstrate for two heuristic algorithms that the best
models can accurately reproduce effects observed when tuning with the
ground truth. Our code is available (https://github.com/gutodelazeri/
oracle).

Keywords: Automatic algorithm configuration · Surrogate models ·
Optimization algorithms

1 Introduction

Selecting the best algorithm among a set of candidates for solving a problem is
a common challenge, since often several algorithms of complementary strengths
are available, or algorithms are parameterized. Following the seminal work of
[36] algorithm selection can be described as a mapping from a problem space P
to an algorithm space A that maximizes some performance measure m(p, a) for
p P P, a P A. Here we are interested in selecting a single algorithm that has the
best expected value with respect to some distribution over the problem space,
a common approach in automatic algorithm configuration or tuning [24,25,32].

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 347–360, 2022.
https://doi.org/10.1007/978-3-031-24866-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_26&domain=pdf
http://orcid.org/0000-0001-9439-3113
http://orcid.org/0000-0001-7894-1634
http://orcid.org/0000-0002-0786-2127
https://github.com/gutodelazeri/oracle
https://github.com/gutodelazeri/oracle
https://doi.org/10.1007/978-3-031-24866-5_26

348 G. Delazeri et al.

Often the algorithm space consists of a family of parameterized algorithms aθ,
with parameter settings θ from some parameter space Θ “ Ś

iP[n] Θi, where Θi

is the domain of parameter i P [n]. Thus the problem of automatic algorithm
configuration is to find the best configuration

θ∗ “ argmaxθPΘEP [m(p, aθ)] (AAC)

for some distribution over the problems P. For stochastic algorithms the problem
space P can be understood as composed of instance-seed pairs together with
an appropriate distribution. Parameters are often real or integer, but can also
be ordinal, categorical, or conditional (i.e. only effective for specific settings of
enabling parameters).

Solving problem (AAC) even approximately is hard, in particular because
obtaining the measure m(p, a) requires running an algorithm on a problem
instance, which can take considerable time, often minutes or hours. As a con-
sequence, the (second-level) problem of selecting among optimizers for prob-
lem (AAC) is even harder. On a family of parameterized optimizers this is also
known as the problem of hyperparameter tuning. It can be made more tractable
by providing a surrogate function m̂ for measure m for some representative first-
level configuration problems. Such surrogate functions are required to be:
1. fast to evaluate;
2. accurate in the sense that predicted values allow to correctly rank the per-

formance of algorithms on instances;
3. handle all parameter classes, including numerical, categorical, and conditional

parameters;
4. have a high fidelity in the sense that hyperparameter optimization on surro-

gates correctly predicts the behaviour under ground truth m.

Note that requirement 4 goes beyond simple accuracy, since we require the model
to represent the ground truth on the level of observable effects, as opposed to
just taking an accurate model as the ground truth for comparing hyperparameter
optimizers. Clearly, as a function of the accuracy, this will be limited to effects
of a minimal effect size. This requirement should allow to quickly assess the per-
formance of new optimizers during design and test, and speed up benchmarking
of optimizers.

In this paper we compare several representative models from the literature
and evaluate their accuracy and ability to reproduce effects observable when
comparing tuners. The paper is organized as follows. In the remainder of this
section we discuss related work. We then introduce in Sect. 2 a selection of models
for surrogate functions. Section 3 presents an experimental comparison of these
surrogate models for tuning (hyper-)optimization algorithms. We conclude in
Sect. 4.

1.1 Related Work

Approaches to surrogate functions make different assumptions on the domain
and co-domain of the function to be modeled, on access to additional informa-
tion such as derivatives, or bounds, and use different surrogate models. [17], for

Comparing Surrogate Models for Tuning Optimization Algorithms 349

example, assumes a continuous, compact parameter space, a continuous function
that is expensive to evaluate, with no additional information, and a model which
is a weighted sum of radial basis functions centered at the samples plus a polyno-
mial term. This is a form of black-box optimization, and many other approaches
to black-box optimization assume real-valued parameters (e.g. [7,18,30]), some
of which can be extended to handle integer parameters [8], or categorical and
boolean parameters [1,4,41]. Approaches also differ in assumptions on the cost of
evaluation. Expensive functions can take hours to evaluate, and thus the number
of evaluations is typically limited to a few hundred, while for less expensive func-
tions thousands of evaluations are common [38]. Other additional information
that can be exploited in so-called gray-box optimization are objective functions
of a known form (e.g. a sum of squares) the possibility of obtaining faster, less
accurate samples in multi-fidelity objective functions [2], or assumptions on con-
tinuity (e.g. the knowledge of the Lipschitz constant [33]). Typical surrogate
models include linear regression, kernel-based techniques (e.g. the radial basis
functions mentioned above), Gaussian processes, (gradient-boosted) regression
trees, random forests, and neural networks [9,31,39].

Most of the above approaches are concerned with optimization, and often
follow some sequential model-based strategy, that successively acquires a promis-
ing sample (e.g. of best objective function value or highest information gain),
updates the model, and returns the best sample when the computational budget
is spent. In contrast, in this paper we are concerned with static surrogate mod-
els that represent typical tuning landscape well, as outlined in the introduction
(requirements 1–4).

A collection of 110 hyperparameter optimization benchmarks, with 2 to 26
continuous, integer, categorical, or ordinal parameters has been introduced by
[15]. It focuses on ease-of-use, reproducibility and benchmarks with multiple
fidelity levels. All except six benchmarks which use random forests as a surrogate
model are provided in a form of lookup tables. Closer to our work, [5] introduce
a benchmark consisting of four expensive real-world problems (e.g. wind farm
layout) that take from 2 to 60 seconds per evaluation. Two of these problems
are continuous, two have mostly categorical variables. Besides comparing tuners,
they compare mean errors of seven surrogate models on the best 1K of random
samples, as well as samples collected during tuning on two problems. Experi-
ments show that random forests [34] and gradient boosted regression trees (via
XGBoost [6]) are among the best models, and these models tend to be more
accurate when trained on random samples.

[11] have compared eight models to construct surrogate benchmarks for
hyperparameter tuning, namely linear and ridge regression, two forms of support
vector machines, Gaussian processes, random forests, and gradient boosted trees.
Models have been built from 2K to 20K samples collected during the execution of
four tuners on nine datasets. The datasets have 3 to 36 categorical and continu-
ous parameters, with a dimension in [4, 82] after one-hot encoding of categorical
variables. Results show gradient boosted trees and random forests to have best
accuracy, as measured by root mean square error (RMSE) and Spearman’s rank

350 G. Delazeri et al.

correlation, followed by Gaussian processes, with random forests giving the most
“similar” tuned values. Even with similar values, however, a consistent ranking
of tuners on ground truth and surrogate models is not guaranteed. [14] extends
the former work to algorithm configuration by handling conditional variables
by imputation of default or midpoint values, imputation of censored data, and
explicitly handling of randomized algorithms. Quantile random forests serve as a
surrogate model. There are 11 scenarios with about 10–300 parameters and 30–
300 instance features, with nine scenarios predicting runtime. Experiments show
a reasonable reproduction of the rank of tuners over the course of the tuning
process.

Different from most of the above approaches, here we are interested in models
for parameter spaces (requirement 3) when instances features are not available,
and on approximating objective function values as opposed to running time,
which is the focus of most of the literature on models for algorithm tuning.

2 Surrogate Models for Optimization Algorithms

In this section we present the selected procedures for data pre-processing and
surrogate models. Concerning data pre-processing, all selected models are able
to handle real and integer parameters, so we have to define only how to handle
categorical and conditional variables to attend requirement 3. For categorical
variables, if the underlying surrogate model is not already able to handle them
directly, we test three encoding strategies: one-hot, binary, and by-index encod-
ing. In all three a variable with n categories is first mapped to an integer i P [n].
Then, for one-hot encoding i is mapped to ei, where ei “ (0, . . . , 1, . . . , 0) is the
ith unit vector, i.e. to n new binary variables; for binary encoding i is mapped to
its base-2 representation (i)2, leading to �log2 n� new binary variables; for index
encoding, i is used directly. The categorical variables include the instances. Since
the instances may have a considerable influence on the predicted variable, and
the number of instances is limited, we study two further strategies for this case:
instance-wise models, where we build an individual model for each instance,
and a combined model for all instances where we treat the instance as a nor-
mal categorical variable. For conditional variables, we impute values, and test
three strategies: imputing a fixed, chosen from the parameter’s domain uniformly
at random, imputing the default value, and imputing random values. We have
excluded out-of-domain, quantile, or mean imputation since previous work found
no significant differences to default imputation, which is similar to our strategy.

From previous work it is also clear that tree-based models are often competi-
tive [12,27]. Thus we include random forests and gradient boosted trees. We have
chosen two widely used implementations, random forest run [3] and ranger [44].
[16] have studied models for tabular data over real, integer and categorical fea-
tures, and have found two deep neural network architectures, namely ResNet
and FT-Transformer, as well as gradient boosted trees to be among the best
models. Therefore we include these two neural network architectures, as well
as two implementations of gradient boosted trees, namely CatBoost [35] and

Comparing Surrogate Models for Tuning Optimization Algorithms 351

XGBoost [6]. We did not include Gaussian process models in our study, since
previous work indicate that random forest perform better with large parameter
spaces with both numerical and categorical parameters [11].

The ResNet consists of a number of residual blocks, each block consisting of
two layers: a linear layer followed by a rectified linear unit (ReLU), and a second
linear layer. The residual blocks are followed by a final ReLU and a linear layer
that maps to the regression variable [19]. The FT-Transformer consists of a num-
ber of transformer blocks, each consisting of the typical multi-head attention with
query-key-value layers followed by a linear layer [42]). Categorical variables are
handled as proposed by [16], who propose a specific embedding for each possible
value. The number of layers of both architectures, as well as several other param-
eters are tuned following [16], as explained below in the experimental section.

Finally we include an interpolated tabular model, that uses Shephard’s
method of inverse distance weighting [37] with a definable cutoff after considering
the k closest samples. Closest samples are found by using the ball tree structure
from scikit-learn. For distance weighting we use the heterogeneous Euclidean-
overlap metric of [43]: for numerical parameters, the distance is defined as dif-
ference in parameter values, normalized to [0, 1]; for categorical parameters the
distance is 0 when parameter values are equal, and 1 otherwise. Undefined cat-
egorical values always have distance 1 to all other values.

All models are trained to learn to predict objective function values from the
ground truth data, i.e. our approach can be classified as pointwise learning-to-
rank (as opposed to learn to rank pairs or larger subsets of inputs directly).

3 Experimental Results

The main goal of the experiments is to compare the performance of the selected
models for modeling optimization landscapes. We use two measures to judge
performance. First, we measure the accuracy of the models in ranking pairs of
parameter settings. This is done by comparing pairs of samples from the test
set using the predicted and ground truth values. The accuracy is then defined
as the number of correctly predicted orders over all pairs. Accuracy values a are
in [0, 1] and are related to Kendall’s tau [29] by τ “ 2a ´ 1.

We first report on the effects of instance representation and pre-processsing
in Sect. 3.2. In Sect. 3.3 we analyze accuracy as measured by the relative root
mean squared error and Kendal’s τ . Finally, we measure the performance by the
fidelity with which the different models are able to reproduce effects that can be
observed on the ground truth data. For this experiment we have selected three
parameters of irace and compare it on different settings. These experiments are
explained in Sect. 3.4.

3.1 Methodology

We have done the experiments using the tuner irace [32]. The irace configura-
tor applies iterated racing, where in each iteration candidate parameter settings
are run on a number of instances, statistically significantly worse configurations

352 G. Delazeri et al.

are discarded, and new configurations are sampled according to a distribution
of good parameter values, which evolves with each candidate parameter set-
ting. These distributions are represented by their marginal distributions on each
parameter and converge to the best settings. If not otherwise specified we run
irace with default parameters, and run all tests with three fixed budgets. We
have chosen a maximum budget of 3K evaluations, the smallest possible budget
for irace of 780 evaluations, and an intermediate budget of 1890 evaluations.
Therefore the results do not depend on the concrete computing platform or the
running time. When running times are mentioned they have been obtained on
a PC with a 12-core AMD Ryzen 9 3900X processor with 32 of main memory,
running Ubuntu Linux 20.04. All models run in a server that responds queries on
parameter settings by irace, generated by a wrapper that replaces the algorithm
to be tuned. Our code is available at https://github.com/gutodelazeri/oracle.

Configuration Scenarios. We evaluate all surrogate models on two config-
uration scenarios, namely ACOTSP and LKH. Both are heuristic algorithms
for the symmetric traveling salesperson problem (TSP). We use 10 Random
Uniform Euclidean TSP instances with 2000 cities, generated using the port-
gen instance generator from the 8th DIMACS Implementation Challenge [28].
Both ACOTSP and LKH scenarios are part of the AClib benchmark library
for algorithm configuration [26]. The ACOTSP scenario implements ant colony
optimization algorithms for TSP [10]. We use ACOTSP version 1.03, available
at [40]. It has 4 real, 4 integer, and 3 categorical parameters; 5 of these param-
eters are conditional. The LKH scenario concerns the Lin-Kernighan-Helsgaun
algorithm for TSP [20–22]. We use LKH version 2.0.9 [23]. It has 12 integer and
9 categorical parameters, all of them unconditional. In both scenarios we use no
additional instance features, since we are only interested in building surrogate
models for the selected instances. We test, however, the case of a separate model
for each instance, see below, which arguably corresponds to the best possible set
of features for the selected instances.

Models. We summarize the selected models in Table 3.1. All models use their
default parameters, with the exception of the neural networks, which are tuned
using the process proposed by [16], and PyRFR, which uses the configuration
found by [13].

Model Instances Categoricals Imputation

Interpolation split, merged model-defined model-defined

CatBoost split, merged model-defined model-defined

XGBoost split, merged binary, one-hot, index fixed, default, random

skranger split, merged binary, one-hot, index fixed, default, random

PyRFR split, merged binary, one-hot, index fixed, default, random

FT-Transformer merged model-defined model-defined

ResNet merged model-defined model-defined

https://github.com/gutodelazeri/oracle

Comparing Surrogate Models for Tuning Optimization Algorithms 353

Datasets. For each of the above scenarios we created a dataset by sampling
5K configurations uniformly at random for each instance, for a total of 50K
samples with their corresponding (ground truth) objective function value. In
both scenarios objective function values were obtained by fixing the seed of
the pseudo-random generator to 1, i.e. we limit ourselves here to studying a
deterministic version of both algorithms. The cost metric for both scenarios is
the objective function value obtained after a running time limit of 10 s. Samples
for ACOTSP have been obtained with a single trial (tries=1), those for LKH
with a single run (RUNS=1).

In the experiments, these datasets are split into a training set, a test set,
and a validation set. We use three sizes of the training set, namely 300, 3K, and
30K samples. Training sets are generated to be laminar, i.e. smaller training sets
are contained in larger ones. The remaining samples are evenly split among the
test and the validation set. The test set is used for tuning the architecture of
the neural networks (FT-Transformers and ResNets). We study all models with
these three sizes, except for the models based on neural networks which require
a higher number of samples and therefore are trained only with a training set of
size 30K. To evaluate accuracy in Sects. 3.2 and 3.3 we select 5K samples from
the test and validation set.

For handling categorical variables we study three ways of encoding them, as
mentioned above: binary encoding, one-hot encoding, and encoding by the index.
These encodings are applied to all models which cannot handle categorical data
directly, namely gradient-boosted trees as implemented by XGBoost, and ran-
dom forests as implemented in skranger and PyRFR. skranger has support for
declaring variables to be categorical. However, these variables have to be numer-
ical. For this reason, we test in skranger all encodings, but declare the encoding
variables as categorical. We set handling of categorical values in skranger to con-
sider all partitions (respect_categorical_features="partition"), since the
number of values in the dataset is small, and testing all partitions will give the
best possible splits.

For handling different instances we test two strategies: training a surrogate
model for each instance individually, or training a single surrogate model for all
instances. These strategies are called “split” and “merged”, respectively, in the
experiments below. For “merged” models the instance is added as an additional
categorical variable to the dataset, and is subject to the above transformations
of categorical variables, when applicable.

In summary, the XGBoost model and the random forests (skranger, PyRFR)
require imputation of missing values and encoding of conditionals; CatBoost,
and the neural networks can handle all parameters as given. Furthermore, the
interpolation baseline also does not need any pre-processing.

3.2 Effects of Instance Representation and Pre-processing

In a first experiment we analyze the influence of the representation of the
instances, the parameter imputation for conditional variables, and handling of

354 G. Delazeri et al.

categorical variables. Table 1 shows for the three different sample sizes the aver-
age relative root mean squared error (RRMSE) R and the average Kendall’s τ
for the different strategies. Averages apply only to the models for which different
strategies have been applied (see Table 3.1). In the comparisons below we report
p-values of sign tests comparing errors and τ values over all models.

Table 1. Relative root mean squared error R and Kendall’s τ for different sample sizes
N , and different representation, imputation, and encoding strategies.

N Instance Imputation Encoding
Merged Split Default Fixed Random One hot Binary Index
R τ R τ R τ R τ R τ R τ R τ R τ

300 0.26 0.48 0.27 0.46 0.14 0.50 0.14 0.47 0.14 0.51 0.26 0.47 0.27 0.45 0.26 0.48
3000 0.15 0.63 0.16 0.61 0.08 0.67 0.09 0.67 0.09 0.63 0.15 0.64 0.16 0.61 0.15 0.62
30000 0.07 0.78 0.08 0.76 0.04 0.78 0.04 0.78 0.05 0.75 0.07 0.79 0.08 0.75 0.07 0.78

We can observe that errors decrease and Kendall’s τ consistently increases
with increasing sample sizes. For 30K samples all RRMSE are below 0.1, and
the value of Kendall’s τ above 0.75. Turning to representation of instances, we
find that using a single model (strategy “merged”) is better than strategy “split”
which models each instance individually (all p ă 0.001). Note that since we
have 10 instances, each individual model is built with only 10% of the samples.
We next look at the imputation strategy. In this case averages are only over the
ACOTSP scenario, since scenario LKH does not have conditional variables. Here
differences are only significant for larger sample sizes, and indicate that imputing
fixed or default values tends to be better than imputing random values for 3K
samples (all p ă 0.004) and for 30K samples (all p ă 0.001), but not significantly
different from each other. Finally we turn to the encoding. Here we find that
binary and index encoding are not significantly different (all p ą 0.02), but for
larger sample size one-hot encoding performs better than the other strategies
(all p ă 0.001 for 3K and 30K samples).

Based on these results, we focus in the remaining experiments on a single
model, and fix imputation and encoding strategies, where they apply, to “fixed”
and “one-hot”, and compare the resulting seven models.

3.3 Accuracy of the Surrogate Models

Table 2 shows RRMSE and Kendall’s τ for the seven selected models, both sce-
narios and all three samples sizes, except for the neural networks, which have
been trained only with 30K samples. Again we can see that RRMSE decreases
and Kendall’s τ in agreement increases with the sample size. We also can see that
the error for scenario LKH is considerably higher than for ACOTSP. A sample
size of 300 seems inadequate for a good prediction, and increasing the number of
samples to 3K and then 30K quality improves considerably, in particular for sce-
nario LKH, although it remains harder to predict, with RRMSE values of about

Comparing Surrogate Models for Tuning Optimization Algorithms 355

0.1. The baseline model using interpolation shows worse performance, although
it is not far off from the other models. Overall both two gradient-boosted trees
and the random forest pyRFR work well, and the Transformer-based neural
network has the best performance.

Table 2. Relative root mean squared error R and Kendall’s τ for different sample sizes
N , and both scenarios for all seven selected models.

Scen. Model 300 3K 30K
R τ R τ R τ

ACOTSP Interpolation 0.14 0.57 0.10 0.67 0.07 0.78
ACOTSP skranger 0.14 0.49 0.09 0.68 0.05 0.79
ACOTSP PyRFR 0.13 0.50 0.08 0.71 0.04 0.81
ACOTSP XGBoost 0.13 0.54 0.06 0.72 0.03 0.79
ACOTSP CatBoost 0.12 0.66 0.07 0.74 0.03 0.82
ACOTSP ResNet ´ ´ ´ ´ 0.02 0.80
ACOTSP FT-Transformer ´ ´ ´ ´ 0.02 0.84
LKH Interpolation 0.45 0.15 0.36 0.30 0.19 0.71
LKH skranger 0.45 0.36 0.29 0.52 0.12 0.77
LKH PyRFR 0.44 0.45 0.23 0.59 0.09 0.83
LKH XGBoost 0.43 0.48 0.24 0.66 0.09 0.80
LKH CatBoost 0.45 0.44 0.20 0.65 0.10 0.78
LKH ResNet ´ ´ ´ ´ 0.10 0.74
LKH FT-Transformer ´ ´ ´ ´ 0.09 0.80

3.4 Agreement in Reproduction of Effects

In this section we assess how well the surrogate models can replicate the observ-
able effects caused by changing the default configuration of irace. We have
selected the three parameters shown in Table 3 and set them to the two listed
levels, with all remaining parameters kept at their defaults. Then we compare
the ground truth (i.e. irace executing the algorithms) to the results obtained
using the surrogate models trained with 30K samples. For the comparison we
ran irace with the three budget values 780, 1890, and 3000 as explained above,
and replicate each run 10 times with different seeds for irace. The best obtained
configuration is then evaluated on all 10 instances.

To compare the models, we follow [13] and introduce scores that reflect the
concordance of effects in surrogate models with the ground truth. For each of the
three budgets and two scenarios, we compare the objective values found by the
best configuration for a high and low level of one of the three parameters. The
comparison is based on a Mack-Skillings test with a confidence level α “ 0.05
and Bonferroni correction for multiple tests. In each case we attribute a score

356 G. Delazeri et al.

Table 3. Selected parameters of irace with a brief description, and the tested levels.

Parameter Description Levels

firstTest No. of instances evaluated before first statistical test 2, 10
elitistLimit Max. no. of statistical tests without elimination 1, 5
confidence Confidence level of statistical test 0.2, 0.95

Table 4. Overall scores for all seven models, three effects, and two scenarios.

Model Confidence ElitistLimit firstTest
ACOTSP LKH ACOTSP LKH ACOTSP LKH

CatBoost 0.17 0.00 0.00 0.00 0.00 0.33
FT-Transformer 0.17 0.00 0.00 0.00 0.00 0.33
Interpolation 0.17 0.00 0.00 0.00 0.33 0.33
PyRFR 0.17 0.00 0.00 0.00 0.00 0.33
XGBoost 0.33 0.33 0.00 0.00 0.00 0.33
resnet 0.33 0.17 0.00 0.00 0.00 0.33
skranger 0.33 0.17 0.00 0.00 0.00 0.33

that is 0, if the low level is significantly higher, 0.5 if both levels are statistically
not different, and 1 if the high level is significantly higher. To compare a model
to the ground truth, we report the average absolute distance of the model’s
scores to the scores of the ground truth. In this model, a score of 0 corresponds
to complete agreement with the ground truth, and a score of 1 to complete
disagreement.

Table 4 shows the results. We can see that there is overall a very good agree-
ment of models and ground truth, with scores never higher than 0.33, with one
exception. Models of best accuracy, as reported in the previous section, also have
best scores, with two exceptions: the interpolation baseline has also a compara-
ble score, while XGBoost is slightly worse on parameter “confidence”. A closer
look at the ground truth shows that for parameter “elitistLimit” the effects are
not statistically significant. This explains the good scores for all models, which
also find no effect, but limits the scope of the conclusions. In contrast, setting
parameter “firstTest” to the high level is in four of six cases statistically different,
and the models are able to reproduce this effect mostly.

We finally have a look at evaluation times, to see to what extent requirement 1
is satisfied. Average evaluation times per call to the models ranges from 1ms to
about 160ms with two neural networks being the slowest to evaluate (without
using a GPU). Therefore, in our experiments speedups range from 50 to 10000.
Since the evaluation times are independent from algorithm execution times and
grow only slowly with the number of samples, clearly speedups will grow with
algorithm execution times.

Comparing Surrogate Models for Tuning Optimization Algorithms 357

4 Conclusions

In this paper we have compared surrogate models for the tuning of optimization
algorithms, including several strategies for handling categorical and conditional
variables, if the underlying model cannot represent them directly, and two ways
for handling instances, namely by a single model or by per-instance models. We
find that a one-hot encoding with a fixed value imputation and a combined model
work best. Among the models one based on random forests (pyRFR) and two
gradient-boosted trees (XGBoost, CatBoost) work well. A neural network (FT-
Transformer) has the overall best performance. This also holds when evaluating
the agreement of the surrogate models to the ground truth with the effects of
changing tuner parameters, although XGBoost performs worse in this setting.
Overall we can confirm that models that have been found to work well in the
literature for surrogate models for hyperparameter optimization and execution
time, also work well for objective function values, and that neural networks
maybe an interesting alternative, which confirms findings of [16] with regard to
tabular data. In future work, we plan to extend the scope of this study to more
scenarios and a broader selection of tuners and models.

Acknowledgments. This research has been supported by Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. M. de
Souza acknowledges the support of the Santa Catarina State University, Brasil. M. Ritt
acknowledges the support of CNPq, Brasil (grant 437859/2018-5) and Google Research
Latin America (grant 25111).

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a nextgenera-
tion hyperparameter optimization framework. In: Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2019)

2. Astudillo, R., Frazier, P.I.: Thinking inside the box: a tutorial on grey-box bayesian
optimization. In: Proceedings of the 2021 Winter Simulation Conference, December
2021

3. AutoML. RFR: A extensible C++ library for random forests with Python bindings,
December 2022. https://github.com/automl/random_forest_run

4. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Dasgupta,
S., McAllester, D. (eds.) Proceedings of the 30th International Conference on
Machine Learning, vol. 28. Proceedings of Machine Learning Research 1. Atlanta,
Georgia, USA: PMLR, June 2013, pp. 115–123. https://proceedings.mlr.press/v28/
bergstra13.html

5. Bliek, L., Guijt, A., Karlsson, R., Verwer, S., de Weerdt, M.: EXPObench: bench-
marking surrogate-based optimisation algorithms on expensive black-box func-
tions. In: CoRR abs/2106.04618 (2021). arXiv: 2106.04618

6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, San Francisco (2016). ISBN: 978-1-
4503-4232-2. https://doi.org/10.1145/2939672.2939785

https://github.com/automl/random_forest_run
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
http://arxiv.org/abs/2106.04618
https://doi.org/10.1145/2939672.2939785

358 G. Delazeri et al.

7. Claesen, M., Simm, J., Popovic, D., Moreau, Y., Moor, B.D.: Easy hyperparameter
search using optunity. In: CoRR abs/1412.1114 (2014). arXiv: 1412.1114

8. Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimiza-
tion with costly function evaluations. Math. Program. Comput. 10(4), 597–629
(2018). https://doi.org/10.1007/s12532-018-0144-7

9. Cowen-Rivers, A., Lyu, W., Wang, Z., Tutunov, R., Jianye, H., Wang, J., Ammar,
H.: HEBO: heteroscedastic evolutionary bayesian optimisation, December 2020.
https://valohaichirpprod.blob.core.windows.net/papers/huawei.pdf

10. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
11. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmark-

ing of hyperparameter optimizers via surrogates. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30
January 2015, pp. 1114–1120. AAAI Press, Austin (2015). http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9993

12. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmark-
ing of hyperparameter optimizers via surrogates. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–
30 January, 2015, pp. 1114–1120. AAAI Press, Austin (2015). http://ceur-ws.org/
Vol-1201/paper-06.pdf

13. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Effi-
cient benchmarking of algorithm configuration procedures via model-based surro-
gates. In: CoRR abs/1703.10342 (2017). arXiv: 1703.10342

14. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Effi-
cient benchmarking of algorithm configurators via model-based surrogates. In:
Mach. Learn. 107(1), 15–41 (2018). https://doi.org/10.1007/s10994-017-5683-z

15. Eggensperger, K., et al.: HPOBench: a collection of reproducible multi-fidelity
benchmark problems for HPO. In: Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2) (2021)

16. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning
models for tabular data. In: CoRR abs/2106.11959 (2021). arXiv: 2106.11959

17. Gutmann, H.-M.: A radial basis function method for global optimization. In: J.
Global Optim. 19(3), 201–227 (2001). issn: 0925–5001. https://doi.org/10.1023/
A:1011255519438

18. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2016. https://doi.org/10.1109/cvpr.2016.90

20. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

21. Tinós, R., Helsgaun, K., Whitley, D.: Efficient recombination in the Lin-Kernighan-
Helsgaun traveling salesman heuristic. In: Auger, A., Fonseca, C.M., Lourenço, N.,
Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp.
95–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_8

22. Helsgaun, K.: General k-opt Submoves for the Lin-Kernighan TSP Heuristic. Math.
Programm. Comput. 1(2-3), 119–163 (2009)

23. Helsgaun, K.: Source Code of the Lin-Kernighan-Helsgaun Traveling Salesman
Heuristic (2018). http://webhotel4.ruc.dk/~keld/research/LKH

http://arxiv.org/abs/1412.1114
https://doi.org/10.1007/s12532-018-0144-7
https://valohaichirpprod.blob.core.windows.net/papers/huawei.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9993
http://ceur-ws.org/Vol-1201/paper-06.pdf
http://ceur-ws.org/Vol-1201/paper-06.pdf
http://arxiv.org/abs/1703.10342
https://doi.org/10.1007/s10994-017-5683-z
http://arxiv.org/abs/2106.11959
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1007/978-3-319-99253-2_8
http://webhotel4.ruc.dk/~keld/research/LKH

Comparing Surrogate Models for Tuning Optimization Algorithms 359

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3_40

25. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009).
https://doi.org/10.1613/jair.2861

26. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H.H., Leyton-
Brown, K., Stützle, T.: AClib: a benchmark library for algorithm configuration. In:
Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014.
LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09584-4_4

27. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artif. Intell. 206, 79–111 (2014). https://doi.org/10.1016
%2Fj.artint.2013.10.003. https://doi.org/10.1016/j.artint.2013.10.003

28. Johnson, D.S., McGeoch, L.A., Rego, C., Glover, F.: 8th DIMACS Implementation
Challenge: The Traveling Salesman Problem (2001). http://dimacs.rutgers.edu/
archive/Challenges/TSP

29. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1-2), 81–93
(1938). https://doi.org/10.1093/biomet/30.1-2.81

30. Klein, A., Dai, Z., Hutter, F., Lawrence, N., González, J.: Meta-surrogate bench-
marking for hyperparameter optimization. In: Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems. Curran Associates
Inc., Red Hook (2019)

31. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. In: CoRR (2021). arXiv: 2109.09831 [cs.LG]

32. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

33. Malherbe, C., Vayatis, N.: Global optimization of lipschitz functions. In: Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70, ICML
2017. Sydney, NSW, Australia: JMLR.org, pp. 2314–2323 (2017)

34. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

35. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost:
unbiased boosting with categorical features. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems. NIPS 2018, pp.
6639–6649. Curran Associates Inc., Montréal (2018)

36. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976).
https://doi.org/10.1016/S0065-2458(08)60520-3

37. Shepard, D.: A two-dimensional interpolation function for irregularlyspaced data.
In: Proceedings of the 1968 23rd ACM National Conference. ACM Press (1968).
https://doi.org/10.1145/800186.810616

38. Škvorc, U., Eftimov, T., Korošec, P.: GECCO black-box optimization competi-
tions. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, July 2019. https://doi.org/10.1145/3319619.3321996

39. Springenberg, J.T., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with
robust bayesian neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol.
12. Curran Associates Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/
a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1016%2Fj.artint.2013.10.003
https://doi.org/10.1016%2Fj.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
http://dimacs.rutgers.edu/archive/Challenges/TSP
http://dimacs.rutgers.edu/archive/Challenges/TSP
https://doi.org/10.1093/biomet/30.1-2.81
http://arxiv.org/abs/2109.09831
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/3319619.3321996
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf

360 G. Delazeri et al.

40. Stützle, T.: ACOTSP: a software package of various ant colony optimization algo-
rithms applied to the symmetric traveling salesman problem (2002). http://www.
aco-metaheuristic.org/aco-code

41. Turner, R., et al.: Black-Box Optimization for Machine Learning (2020). https://
github.com/rdturnermtl/bbo_challenge_starter_kit

42. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems, vol. 30. Cur-
ran Associates Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

43. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif.
Intell. Res. 6, January 1997. https://doi.org/10.1613/jair.346

44. Wright, M.N., Ziegler, A.: Ranger: a fast implementation of random forests for
high dimensional data in C++ and R. J. Stat. Softw. 77(1)(2017). https://doi.
org/10.18637/jss.v077.i01

http://www.aco-metaheuristic.org/aco-code
http://www.aco-metaheuristic.org/aco-code
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://github.com/rdturnermtl/bbo_challenge_starter_kit
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1613/jair.346
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

Search and Score-Based Waterfall
Auction Optimization

Dan Halbersberg(B), Matan Halevi, and Moshe Salhov

Playtika Ltd., Hahoshlim St. 8, Herzliya, Israel
{danh,matanh,moshesa}@playtika.com

Abstract. Online advertising is a major source of income for many
online companies. One common approach is to sell online advertisements
via waterfall auctions, through which a publisher makes sequential price
offers to ad networks. The publisher controls the order and prices of the
waterfall in an attempt to maximize his revenue. In this work, we pro-
pose a methodology to learn a waterfall strategy from historical data by
wisely searching in the space of possible waterfalls and selecting the one
leading to the highest revenues. The contribution of this work is twofold;
First, we propose a novel method to estimate the valuation distribution of
each user, with respect to each ad network. Second, we utilize the valua-
tion matrix to score our candidate waterfalls as part of a procedure that
iteratively searches in local neighborhoods. Our framework guarantees
that the waterfall revenue improves between iterations ultimately con-
verging into a local optimum. Real-world demonstrations are provided to
show that the proposed method improves the total revenue of real-world
waterfalls, as compared to manual expert optimization. Finally, the code
and the data are available here.

Keywords: Auction optimization · Real-time bidding · Search and
score · Waterfall

1 Introduction

Online advertisements serve as a major source of income, for many online com-
panies [15]. Whenever a user surfs on a website or utilizes a mobile app, an
advertisement real-estate, known as ad-slots are allocated. Each ad-slot is pop-
ulated by a relevant advertisement. The slot owner is called a publisher and the
advertisement owner is called a supplier. The publisher sells ad-slots to suppliers
via ad networks such as Facebook, Google, etc. Interactions between publishers
and suppliers take place through real-time bidding auctions.

The publisher’s goal is to maximize the selling price of each ad-slot. There
are several approaches to choosing a particular ad network for a given slot.
One common approach is known as the waterfall strategy [2,6,7,11,14,18]. A
waterfall is a list of instances, where each instance belongs to a specific ad
network and is associated to a specific price [14]. For each ad-slot, the ad networks
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 361–378, 2022.
https://doi.org/10.1007/978-3-031-24866-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_27&domain=pdf
https://github.com/PlaytikaResearch/public_waterfall2
https://doi.org/10.1007/978-3-031-24866-5_27

362 D. Halbersberg et al.

are sequentially approached, according to a pre-configured list of instances. Each
ad network can accept or reject to buy the slot for the given pre-defined instance
price. If the ad network rejects the price, the slot is offered to the next instance
in line until an ad network accepts the terms. Since the waterfall is predefined
by the publisher, optimally determine the strategy, i.e., the order and pricing
configuration of all instances in the waterfall, remains a significant challenge
[1,3].

To empower the user experience, this bidding process must be completed in
real-time in order to empower user experience [17,19]. Therefore, it is important
to find the best strategy, such that the timing of the last approached instance
will not breach the time constraint. Additionally, the supplier limits the number
of instances, to minimize the auction overhead [3].

Many publishers decide on the ordering of ad networks based on human
experience, trial and error, or other similar inefficient methods [3]. Besides for the
fact that these methods cannot guarantee an optimal strategy, it is challenging to
scale them for large publishers who need to manage many waterfalls for different
platforms, operation systems, countries, etc. In recent years, growing attention
has focused on automating and optimizing this process, in order to increase the
revenue. An online learning algorithm was proposed by [14] to solve this problem,
and other reinforcement methods were proposed [1–3,18] as well. These methods
focus on predicting the ad network’s pricing strategy. In many real-world cases,
the waterfall strategy is repeatedly operating over the same users and over several
online sales events. This data stream can be accumulated and utilized to further
improve any waterfall strategy.

In this study, we propose a novel approach that utilizes user-accumulated
data that is measured during multiple visits to the publisher’s web site or app.
More explicitly, we suggest to use this information to estimate the perceived
valuation of each user, by each ad network. These personalized valuations inform
our hypothesis regarding auction events via simulations. The ability to simulate
the actual effect of the bidding process allows us to design an efficient local search
strategy for designing a locally optimal waterfall strategy. Applying the optimal
waterfall strategy allows the publisher to not only gain more profits from the
auction, but also to automate the process and adapt to temporal changes in user
valuation, which reduces the overhead from marketing experts.

The rest of the paper is organized as follows. Section 2 provides the rele-
vant background and surveys related works. In Sect. 3, we present the proposed
framework and detail its characterizations. Furthermore, Sect. 4 demonstrates
the application of the suggested method using both simulated and real-world
data. Finally, in Sect. 5 we provide our conclusions.

2 Background and Related Works

A waterfall, W , is an ordered list of r instances. The ith instance Wi, where
1 ≤ i ≤ r is associated to a specific ad network for a given price, pi ∈ {0, ...,M},
where M is the maximal price allowed by the ad network [14]. Thus, each ad

Search and Score-Based Waterfall Auction Optimization 363

Fig. 1. An example of a waterfall with twelve instances of five ad networks.

network in the waterfall may have several instances. For example, in Fig. 1,
the ad network AdMob has three instances 1, 4, and 10 for $100, $50, and $7,
respectively. The waterfall strategy is not tailored to a specific user valuation,
but rather is designed to be optimal for the entire user population (i.e., all users
will run through the same waterfall).

Most of the works in this field are based on concepts pertaining to rein-
forcement learning [3]. One such algorithm [14] is a multi-armed bandits algo-
rithm. The idea of the algorithm is to learn the valuation distribution of each ad
network. For that, the publisher adaptively chooses waterfall strategy, receives
feedback (accept/reject), and evaluates the performance using a regret function.
However, this online algorithm has several restrictive assumptions, such as: each
ad network has a single instance and that the valuations are unique per ad
network, yet equal for all users. Similar assumptions were also made by other
researchers [3]. Recently, [2] proposed to utilize the ad-request information to
learn a model that predicts the probability of an ad network to buy the ad-slot
for the given price. The outputs are then fed into a Monte-Carlo algorithm, which
optimizes the state-action values, accordingly. However, proposing a policy for
each ad-request (even in the case that they are grouped by their commonality)
is practically impossible.

The waterfall optimization can be defined as a local search problem, where
the task is to maximize the total waterfall strategy revenue over all users. Search
and score (S&S) is a heuristic method that belongs to a family of local search
algorithms [12]. Methods following this heuristic aim to solve computationally
hard optimization problems [4,12]. One such method is known as hill climb-
ing [16]; an iterative algorithm is initialized by an arbitrary solution and then
attempts to find a better solution candidate by making a local change to the best
solution so far. The best solution candidate is adopted by the algorithm, which is
then followed by a similar evaluation of any incremental change to that selected

364 D. Halbersberg et al.

solution, in the next iteration. The algorithm terminates once the improvement
is negligible.

A major limitation of the hill climbing procedure is that it can converge
into a local minimum. This limitation is heavily dependent on the search start-
ing point. To overcome this limitation, another heuristic search known as the
Monte Carlo Tree Search (MCTS) was proposed [10]. As opposed to the hill
climbing procedure, the MCTS searches for the most promising next solution
candidate in a decision-making problem, combining the precision of tree search
with the generality of random simulation. Algorithms following the MCTS app-
roach adopt, in each iteration, the change with the greatest potential with respect
to future iterations. One relevant implementation of a hill climbing procedure,
which inspired our proposed S&S–based waterfall optimization algorithm, is the
well-known K2 algorithm [9]. The K2 is a heuristic search algorithm for learning
the structure of a Bayesian network that best fits the data. The algorithm starts
with a random graph, and considers all local neighbor graphs, at each iteration.
A neighbor graph is defined as an equal graph with a single change that can be:
edge addition, deletion or reversal. By likening the waterfall W to a serial graph,
we can equate a node in the graph to an instance in the waterfall and edges to
the waterfall order. Using the estimated valuation matrix B, a procedure, similar
to that of the K2, can be designed over the space of all valid waterfall graphs.
In the following section, we will describe this local search procedure in detail.

3 Proposed Method

To utilize the fact that users are frequently visiting the publisher’s website or
app, we propose a two-stage framework; First, estimate valuation matrix, B ∈
RU×K from historical data, where U is the number of distinct users and K is
the number of ad networks. B holds the perceived value of each user by each
ad network (Sect. 3.1). Second, search for the optimal waterfall by simulating
auction events utilizing B, which can approximate the revenue effect of order
and pricing changes in the waterfall. More explicitly, in the second stage, our
proposed framework uses the valuation matrix in an iterative manner (Sect. 3.2).
In this way, we are able to define the problem as a local search problem over the
space of valid waterfalls.

The main contributions of the proposed method are: 1) modeling user pricing
per ad network, by learning each user’s Beta distribution parameters, given their
respective historical pricing data; 2) minimizing the information requirement by
explicitly utilizing sales events, while implicitly utilizing rejected bid information
from the sales data. The two contributions rely on the fact that the advertisement
process is ongoing and most user ad-slots were sold several times in the past.

3.1 Estimate the Valuation Matrix

The valuation matrix (B) is a key component in our S&S–based waterfall opti-
mization algorithm as the entire search procedure depends on B to simulate

Search and Score-Based Waterfall Auction Optimization 365

Algorithm 1. Estimate the valuation matrix
1: Input: Dataset D
2: Output: Valuation matrix B
3:
4: for each User u and ad network k do
5: Vu,k = collect all past sell events of u to k from D
6: if Vu,k �= ∅ then
7: Bu,k = beta.fit(Vu,k)
8: else if u was sold to at least a ad networks z �= k then � Imputation needed
9: Vu,k = collect all past sell events of u to ∀z �= k

10: Bu,k = beta.fit(Vu,k)
11: else
12: Bu,k = Bk � Use global parameters of k

auction events. If B is wrong, the results would be misleading. One simple app-
roach to estimating B is to take the average sell price of each user, per ad
network. However, the main limitations of this metric are: 1) it will generate a
deterministic value that is less suitable for simulation purposes; and 2) in many
cases, the average is not a good representative of the user valuation. To over-
come these limitations, one can suggest to replace the simple average with a
normal distribution estimation, and then during the search phase, sample from
this distribution. Nevertheless, normal distribution does not necessarily fit the
user valuation distribution, and therefore, we propose to use the Beta distribu-
tion, which allows for a more flexible representation of the user’s valuation. This
distribution was also found appropriate by other researchers [8,14]. Algorithm 1
loops over each user (u, 1 ≤ u ≤ U) and collects the user data (vector Vu,k)
per ad network (k, 1 ≤ k ≤ K) for the beta estimation (Bu,k). This is our
training data. However, if no data is available, i.e., the user was never sold to
that particular ad network, the algorithm tries two estimation methods; 1) if the
user was sold in the past to at least a (in our experiments we use a = 3) other
ad networks, it uses their data for the estimation; or 2) if (sufficient) other ad
networks data are not available, it uses the global beta distribution parameters
of the specific ad network in question. The output of the Algorithm is the valu-
ation matrix Bu,k of dimension U × K, where U is the number of distinct users
and K is the number of ad networks. In our case, the main advantage of the
Beta distribution over, for example, the simple mean value, is that it generalizes
well to a stochastic process, allowing us to represent different types of users. For
example, some users could have a Poisson-like distribution while others can be
normal, exponential, etc. In general, the beta distribution is appropriate when
the true probability distribution is unknown [13].

Another method that can be used to estimate the valuation matrix is via a
classifier (e.g., CATboost, Neural Network, etc.). Following [3], we propose to
utilize historical data to predict the valuation of each user, and more explic-
itly, to train classifiers per ad network. To achieve this goal, one can use infor-
mation from past auction events to correlate between the dependent variable

366 D. Halbersberg et al.

Algorithm 2. Run users in a waterfall
1: Input: Valuation matrix B, Waterfall W
2: Output: q′

3:
4: Initialization:
5: for each instance Wi in the waterfall W do
6: q′

i = 0

7: Start:
8: for each User u do
9: i = 0 � Go over the waterfall from top to bottom

10: while i ≤ r do
11: k = ad network of Wi

12: Pu,k = Sample a value from Bu,k

13: if Pu,k > pi then
14: q′

i+ = 1
15: Break
16: i+ = 1

Algorithm 3. Evaluate the valuation matrix
1: Input: Valuation matrix B, Waterfall W
2: Output: Similarity score
3:
4: q′ = Run users in the waterfall based on their valuation matrix � Call Algorithm 2
5: Score = 0
6: for each instance Wi in the waterfall W do

7: Score+ =
|q′

i−qi|
qi

× Wei

(auction price) and other available independent variables such as: time, geogra-
phy, demographic, device information, in-app activities, etc. Once such classifiers
are trained, we may use them to fill-in valuation matrix, Bu,k.

Evaluate the Valuation Matrix Estimation in Terms of Accuracy: It
is crucial to validate the capability of the estimated Beta distributions in B to
accurately generate pricing predictions, before moving forward to search for the
best fitted waterfall, using that matrix. The B-based pricing predictions ability
is a key component in our framework. Large prediction errors will result in a
misleading waterfall strategy that will produce reduced revenues, when run over
the actual user population.

To evaluate B-based prediction accuracy, we propose to generate sale pre-
dictions for validation data that is accumulated similarly to the training data.
Each sale event is an advertisement (sometimes called an impression) and has
corresponding sale pricing. Acceptable B will predict the number of impressions
with good accuracy, as compared to the given validation impressions data. The
performance evaluation process is detailed in Algorithms 2 and 3. The goal of
Algorithm 2 is to predict how each ad network instance in a predefined waterfall
strategy would behave, given B. Let q ∈ Z+r be the measured vector of the

Search and Score-Based Waterfall Auction Optimization 367

actual outcomes of a waterfall strategy in the form of the number of impressions
per ad network instance and qi an impression assignment of a specific instance.
The output of Algorithm 2 is a vector, q′, which holds the number of predicted
impressions of each instance in the waterfall. Algorithm 3 takes W and its cor-
responding impressions, q, as input. Additionally, Algorithm 3 compares q and
q′ computed in Algorithm 2, based on Eq. 1.

Score =
r∑

i=1

|q′
i − qi|
qi

× Wei, (1)

where q′
i and qi are the simulated and real number of impressions in the ith

instance, respectively, r is the length of the waterfall, and Wei is the weighted
revenue of the ith instance: Wei = Revenue(Wi)∑

Revenue(Wi)
. If this score is low enough, we

say that B represents the true value of the users, as perceived by the different
ad networks.

3.2 The Search Procedure

First, we define the score function that is used to compare waterfalls, as part of
the S&S procedure:

Revenue(W) =
r∑

i=1

qi × pi. (2)

The revenue of each candidate waterfall is calculated using Algorithm 2.
That is, once the algorithm runs all the users through the candidate waterfall,
the number of impressions of each instance, q′

i, are updated. Figure 2 shows an
example output of Algorithm 2, where the last column is q′. Using Eq. 2, we can
sum up the multiplication of the price and the number of impressions to get the
total revenue of the candidate waterfall.

Next, our search procedure considers all local neighbors (i.e., candidate water-
falls) in each iteration, where a local neighbor is defined as the current waterfall,
except for a single change that can be: 1) instance addition, 2) instance removal,

Fig. 2. An example of a waterfall with six instances and their associate daily number
of impressions for a given date. The total daily revenue of the waterfall is $1,032 since
the prices in the waterfall are for batches of 1,000 users.

368 D. Halbersberg et al.

Fig. 3. An illustration of a single iteration in the S&S-based waterfall optimization
algorithm. In each neighbor waterfall the changed price is marked in red. (Color figure
online)

or 3) a changed instance price (increase or decrease). To narrow-down the search
space, we restrict the prices to be discrete (however, one can choose other quan-
tiles such as 50 cents, 10 cents, etc.). By scoring each neighbor waterfall, the
algorithm can evaluate how the waterfall would be affected by each specific incre-
mental change. In each iteration, the algorithm adopts the change leading to the
highest improvement in revenue. Figure 3 illustrates an example of a waterfall
with a revenue of $1, 000 and three of its neighbor waterfalls. The second neigh-
bor has the highest revenue, and therefore, is selected as the incremental change
to the next iteration.

Following, we present our proposed S&S–based waterfall auction optimiza-
tion algorithm (Algorithm 4). The algorithm takes (lines 1–5) an initial waterfall
(W 0), a valuation matrix (B), the maximal number of iterations (Max iter) and
a threshold (ε) for the stopping condition as inputs. The initial waterfall can be
an empty/random waterfall, or an existing/human expert waterfall. After initial-
ization (lines 9–13) is complete, the algorithm iterates, taking into consideration
all local changes (line 17) and adopting the one with highest revenue (line 22),
for each iteration. Finally, it terminates once the maximal number of iterations
is reached or the difference in revenue between two successive iterations is deter-
mined to be lower than ε (line 26).

Our waterfall auction optimization algorithm is based on the heuristic hill
climbing method [12] that can neither guarantee reaching the global optimum
nor converging to a local or the global optimum in a reasonable time frame.
Since our proposed algorithms adopt a neighbor waterfall only if its revenue is
strictly above the aforesaid threshold, then no cycles can exist within the search

Search and Score-Based Waterfall Auction Optimization 369

Algorithm 4. Search and score procedure
1: Input: Initial waterfall W 0 � This could be the current existing waterfall
2: Valuation matrix B
3: Max iter
4: ε
5: Output: Waterfall W
6:
7: Initialization:
8: q′ = Run users in the waterfall W 0 based on their valuation matrix B � Call

Algorithm 2
9: Optimal revenue = Revenue(W 0)

10: Convergence = True
11: W = W 0

12: Iter = 0
13: Start:
14: while Convergence do
15: Iter += 1
16: Prev revenue = Optimal revenue
17: neighbors = list of neighbors of W
18: for each neighbor g in neighbors do
19: Run the users (B) in g � Call Algorithm 2
20: Curr revenue = Revenue(g)
21: if Curr revenue > Prev revenue then
22: Prev revenue = Curr revenue
23: W = g

24: if Iter==Max iter or Prev revenue - Optimal revenue < ε then
25: Convergence = False
26: Optimal revenue = Prev revenue

procedure, and thus, the algorithms must converge. The convergence rate, how-
ever, is problem-dependent [9]. Luckily, our target function is the total revenue
of the waterfall strategy and the majority of the revenue comes from the higher
section of the waterfall, where the prices are relatively high. Since the algorithm
selects the change leading to the highest improvement in revenue for each iter-
ation, it will first optimize the higher part of the waterfall, enabling the best
solution to be reached relatively quickly. Therefore, one can restrict the number
of iterations, as we show in our empirical evaluation in Sect. 4.

The Monte Carlo Tree Search (MCTS): Another search procedure we chose
to apply as part of our waterfall auction optimization algorithm is a MCTS-like
procedure. The goal of this algorithm is to expand the search space in order
to avoid a local maximum, due to the non-convex nature of our score function.
Algorithm 5 (see Appendix A) trades between accuracy and complexity, as it
evaluates more candidate waterfalls at the expense of a higher run-time. At
each iteration, the algorithm will adopt the neighbor waterfall with the greatest
revenue potential; not necessarily the one with the current highest revenue. All

370 D. Halbersberg et al.

other components of the MCTS–based waterfall optimization algorithm are the
same as the regular S&S (i.e., Algorithms 1–3).

Complexity: The computational complexity of our proposed methods is com-
posed of two elements, corresponding to the two folds of our framework. The first,
which dictates the complexity, is the estimations of B per user and ad network.
In total, the algorithm has to estimate U × K Beta distributions parameters,
each from x samples per user (past sell events), which depends on the data
time-period (x is monotonic with the data duration). The second, less dominant
element of our framework is the hill climbing search. In this stage, the algorithm
is bounded by O(U × r) for each candidate waterfall, since in the worst case,
each user runs through the entire waterfall. The number of candidate waterfalls
at each of the it iterations is bounded by O(3r + MK), and thus, the second
element of our framework is bounded by O[it × U × r × (3r + MK)].

The number of possible waterfalls is (M × K)r, where M is the number of
unique prices (M is also the maximal price in our discrete case). Although the
number of possible iterations is bounded by the number of possible waterfalls,
in practice, it is restricted to a value between 10 − 50. This is because the
optimization is mainly affected by changes in the higher section of the waterfall
(as described in Sect. 3.2), and thus, we achieve most of the improvement in
revenue at an early stage of the search process.

Moreover, both parts of the computations (i.e., estimating B and the hill
climbing search) could easily be parallelized: 1) estimating B could be paral-
lelized by distributing the data by users, and; 2) as part of the search procedure,
one could evaluate at each iteration the candidate waterfalls in parallel and by
that reduce the algorithm run-time to O(it × U × r). Also, note that it is small
and that O(U × r) refers to the worst case scenario. In practice, assuming, for
example, that the impressions are distributed uniformly across the waterfall, this
bound is reduced by half, as Eq. 3 shows regarding the number of requests to ad
networks:

of requests =
r∑

i=1

i × U

r
=

r(r + 1)
2

× U

r
=

U(r + 1)
2

. (3)

Finally, in terms of the data we need to store, our proposed algorithms require
only the successful events. This is a huge advantage over other reinforcement
learning algorithms (e.g., [2,14]), which require both accepted and rejected auc-
tion events. This allows us to reduce the volume of stored data by over 90%.

4 Empirical Evaluation

In this section, we report on our experiments with synthetic and real-world water-
falls. With respect to the latter, we experimented with four different waterfalls
linked to different countries, to increase the variability of our results. To maintain
confidentially, we will refer to them as WaterfallA−WaterfallD. We compared
the two variations of the search procedure; S&S– and MCTS–based waterfall

Search and Score-Based Waterfall Auction Optimization 371

optimization algorithms, to a human expert optimization based on total revenue
and computational complexity. The waterfalls and their associated data can all
be found online in our supplementary materials. The human expert optimization
is actually the most common approach in the industry, and therefore, it can be
used as a solid baseline.

4.1 Synthetic Data

In this section, we report on our experiment with synthetic data. The motivation
for this experiment was twofold: 1) to show that our proposed S&S–based algo-
rithm may converge to the optimal solution regardless of the initialization, using
a toy example, and; 2) to show that the simple S&S–based algorithm does not
fall behind the MCTS–based algorithm, in terms of accuracy, while it conver-
gences significantly faster. To demonstrate these advantages, we selected four ad
networks and synthetically sampled 4 × 105 users, where the beta distribution
parameters per ad network were: Beta(α = 1, β = 6), Beta(2, 6), Beta(10, 5),
and Beta(6, 1). We selected these parameters so that the distributions would
substantially overlap each other (as can be seen in Fig. 4). In addition, we ini-
tialized the algorithms with five different waterfalls, i.e., different in the order
and the prices of the instances, to show that the convergence was not random.

Figure 5a shows the learning curve of the two search algorithms for an empty
waterfall initialization. The optimal solution ($835.4) was calculated using an
exhaustive search over all possible solutions (total of 30 discrete prices and 4 ad
networks, generating 4!×304 candidate waterfalls). It can be seen that both S&S–
and MCTS–based waterfall optimization algorithms converge to a solution that is
close to the optimal one ($830.9 and $835.4 for the S&S and MCTS, respectively).
Although the S&S–based algorithm did not achieve as optimal a solution as the
MCTS–based algorithm, their revenue is close enough (830.9835.4 = 0.995). In addi-
tion, the fact that they both have a similar number of iterations (≈ 40) is deceiv-
ing, as the number of examined neighbors is significantly lower for the S&S–based
algorithm (as can be seen in Fig. 5b). The S&S–based algorithm simulated
only 200 waterfalls, as opposed to the over 4,000 waterfalls simulated by the
MCTS–based algorithm. Therefore, concerning the trade off accuracy-runtime,
this experiment demonstrates the S&S–based algorithm might be superior to the
MCTS–based algorithm, with respect to both accuracy and complexity.

Fig. 4. The beta distributions used to sample the synthetic valuations.

https://github.com/PlaytikaResearch/public_waterfall2

372 D. Halbersberg et al.

Fig. 5. a) The learning curve measured in revenue ($) for the S&S– (solid red line) and
MCTS–based (dashed blue line) algorithms comparing to the optimal solution that was
found using exhaustive search and b) The cumulative number of neighbors (candidate
waterfalls) examined by the S&S– (solid red line) and MCTS–based (dashed blue line)
algorithms, with respect to the learning curve in Fig. 5 (Color figure online)a.

Table 1. The revenue($) achieved by the two search algorithms for five initializations,
where the optimal solution is $835.4

Init 1 Init 2 Init 3 Init 4 Init 5

S&S 833.9 830.9 822.5 829.5 827.9

MCTS 835.4 835.4 835.4 831.4 832.4

Difference (%) 0.2 0.5 1.6 0.2 0.5

Table 1 shows the results of the S&S– and MCTS–based waterfall optimiza-
tion algorithms for five initializations: 1) the true order, but with different prices,
2) empty waterfalls, 3) all prices being equal to the average valuation, and 4–
5) in the opposite order and with different prices. It can be seen that, except
for the last two initializations, the MCTS–based algorithm learned the optimal
waterfall, while the S&S–based algorithm did not recover the optimal water-
fall for any of the initializations. Nevertheless, the S&S–based algorithm is only
0.6% lower than the MCTS–based algorithm on average. That said, it is ≈ 20
quicker, as measured by the number of neighbors evaluated during the learning.
Therefore, we can conclude that for small non-complex waterfall optimization
problems, the S&S–based algorithm can almost achieve the global optimum and
it is monotonic with the MCTS–based algorithm, but faster in several orders of
magnitudes.

4.2 The Real-World Auction Data

The data used in our analyses were collected from four different real waterfalls.
The “raw-data” used in our experiments are hourly aggregated, per user and
ad network. The given data were randomly sampled from a cohort of 60 days
which include 355, 905 users and 27, 615, 614 advertisements (an average of 78
advertisements per user). The data processing is described in detail, in Table 4
in Appendix B.

Search and Score-Based Waterfall Auction Optimization 373

Next, we describe the experiment methodology. The given data includes 60
days of waterfall sales and strategy measurements. For each validation day num-
ber d, we use its past 30 days as training data. The result is training set Xt

and a corresponding validation data Xv. Given the data train-validation split
we used Algorithm 1 on Xt to learn the beta distributions in B. Given B, we
predicted the outcome of applying the waterfall strategy W on samples from
B using Algorithm 2. Furthermore, we generated the corresponding impressions
vector q′. This vector was compared to the given impressions vector q of the
waterfall from day d using Eq. 1. Notice, that q′ was estimated based on data
ended in day d − 1, while q refers to day d. This is to prevent over-fit and to
demonstrate the prediction capability of B.

Since a sale event can take place only if the user valuation is larger than
the instance price, we need to increase the values sampled from B by a small
constant ε. To enable this to occur, we define a coefficient vector ζ that includes
one coefficient per ad network. We learn the ζ that minimize Eq. 1. However,
optimizing all coefficients at once is practically unfeasible, since a change in one
coefficient requires to re-predict the waterfall outcome and re-evaluate B, based
on Eq. 1. Therefore, we suggest to learn the coefficients in a coordinate descent
methodology [5]. That is, randomly selecting an ad network and optimizing its
coefficient using a grid search. Then, move to the next ad network and continue
the optimization in a round-robin manner, until the improvement in Eq. 1 is
negligible. This procedure allows to loop over the ad networks several times.
Finally, after B is estimated, run Algorithms 4 and 5 to find the converged
waterfall. We use the current real waterfalls as the initial waterfall inputs for the
learning algorithms. This enable us to exploit the human expert knowledge.

Table 2 shows the valuation matrix fitness to each waterfall, as measured by
Eq. 1. The values in the table are all positive, but are not bounded i.e., [0 − ∞].
There is a trade-off between an accurate valuation matrix and a generalized
one. One could define the valuation matrix as the true absolute sales prices of
each user that will generate q, but this will result in over-fit that will mislead
the waterfall strategy over new data. Thus, the proposed valuation matrix, is
a probabilistic estimation of longer time period, which will generalize well, and
allows the algorithm to explore and exploit the data. Table 2 demonstrates that,
for WaterfallA, the valuation matrix is the most accurate with a mean error of
0.29 and a corresponding std of 0.06. This is the result of a larger number of ad
sales per user in WaterfallA, as compared to the other waterfalls.

374 D. Halbersberg et al.

Fig. 6. The learning curve, measured as the improvement in revenue, for the four
real-world waterfalls (A − D). Each color represents a point in time (d) to which the
algorithm was applied. (Color figure online)

Table 2. The valuation matrix fitness for four waterfalls and four time-points (d)
measured by mean absolute error (low is better).

d = 7 d = 14 d = 21 d = 28 Mean (std)

WaterfallA 0.30 0.37 0.27 0.23 0.29 (0.06)

WaterfallB 0.62 0.78 0.70 0.66 0.69 (0.07)

WaterfallC 0.46 0.54 0.48 0.54 0.51 (0.04)

WaterfallD 0.74 0.61 0.80 0.74 0.72 (0.08)

We will now present the results of our proposed search-based waterfall opti-
mization algorithms. Figure 6 shows the learning curves of the S&S–based water-
fall optimization algorithm for the four waterfalls in four time points during the
experiment. In general, the algorithm converges after 10–20 iterations. Also, it
can be seen that WaterfallA (Fig. 6a) has the fastest learning curve, as com-
pared to the other waterfalls. This is due to the origin of the users in that
particular waterfall. Furthermore, it can bee seen that the results for d = 7 (red
solid line) are always the lowest. This is due to the environment’s characteristics
in that period of time. Conversely, for d = 28 (blue dot line) the results are
always the highest (except for WaterfallB).

Table 3 summarizes the results of the two search–based waterfall optimiza-
tion algorithms, as compared to the human–based performances for the four

Search and Score-Based Waterfall Auction Optimization 375

real-world waterfalls. The human expert had manually inspected the original
waterfalls at each time point, according to their number of impressions, prices,
and ad network capacity, and following, recommendations for the changed water-
falls were evaluated in terms of total revenue (recall that this is the most common
approach in the industry). The table reveals that human experts had the lowest
improvement in revenue, while the MCTS had the highest average improvement
rate. Although the MCTS was superior to the S&S-based waterfall optimization
algorithm for three out of four real waterfalls, this came at the expense of a
much higher run-time: 20–25 times higher. The run-time results could be seen in
the last two columns of Table 3. Note that we did not parallelize the algorithms
since a run-time of ≈ 1 hour is reasonable for an off-line algorithm that usually
runs once a day (for a more complex system that could be scaled).

Table 3. The revenue improvement (%) and run-time complexity (measured in hours),
as compared to the baseline (current revenue) for the four waterfalls, as well as to the
two search-based optimization algorithms and human expert.

Human
expert (%)

S&S-based
(%)

MCTS-based
(%)

S&S-based
(hours)

MCTS-based
(hours)

WaterfallA 0.6 6 5 1.2 27.0

WaterfallB 0.6 4 4 1.8 47.4

WaterfallC 0.1 4 5 0.8 17.1

WaterfallD 0.2 11 12 0.5 11.6

Finally, we experimented our algorithms with empty and a random waterfall
initializations. First, we revealed that the empty initialization yield the worst
results. The main reason is that the algorithm terminates too fast, and thus,
converges to a poor local maximum. Second, we found that the random initial-
ization was also inferior to the human expert initialization, which make sense,
since the human expert knowledge is valuable.

5 Summary

In this study, we suggest a framework to learn about waterfalls from histori-
cal data. The settings in our proposed framework are: offline learning, multiple
instances per ad network, unknown number of instances, and discrete prices.
To the best of our knowledge, this is the first attempt to tackle the problem
from the user’s perspective. The main advantages of the proposed method are:
it utilizes expert knowledge as an initial waterfall for the S&S procedure, and;
the proposed method does not requires an online search step. In many cases,
online measurements are not feasible. Finally, our method uses only the suc-
cessful events, while implicitly utilizing rejected bid information. This allows to
significantly reduce the volume of the stored data by 90%.

Future research should focus on 1) improving the valuation matrix estima-
tion. Two proposals in this direction could be to use a more general distribution,

376 D. Halbersberg et al.

such as Dirichlet, or to incorporate the rejected events in the valuation estimation
process; 2) to dispense with the discrete price assumption, and; 3) to investigate
other algorithms for solving this optimization problem so as to find the glob-
ally optimal waterfall strategy. This is crucial, since the proposed search-based
waterfall optimization algorithms can only guarantee sub-optimal solutions.

6 Appendix

Appendix A - The Pseudo-code for the Monte Carlo Tree Search
Algorithm

In this Appendix, we present the pseudo-code for the MCTS proposed algo-
rithm. As opposed to the S&S-based algorithm, here, the algorithm will adopt
the neighbor waterfall with the greatest revenue potential at every iteration;
not necessarily the one with the current highest revenue. From an algorithm
perspective, the difference is that there are two for loops in lines 18 and 20.

Algorithm 5. Monte Carlo tree search procedure
1: Input: Initial waterfall W 0 � This could be the current existing waterfall
2: Valuation matrix B
3: Max iter
4: ε
5: Output: Waterfall W
6:
7: Initialization:
8: q′ = Run users in the waterfall W 0 based on their valuation matrix B � Call

Algorithm 2
9: Optimal revenue = Revenue(W 0)

10: Convergence = True
11: W = W 0

12: Iter = 0
13: Start:
14: while Convergence do
15: Iter += 1
16: Prev revenue = Optimal revenue
17: neighbors = list of neighbors of W
18: for each neighbor g in neighbors do
19: grand neighbors = list of neighbors of g
20: for each neighbor gg in grand neighbors do
21: Run the users (B) in gg � Call Algorithm 2
22: Curr revenue = Revenue(gg)
23: if Curr revenue > Prev revenue then
24: Prev revenue = Curr revenue
25: W = g

26: if Iter==Max iter or Prev revenue - Optimal revenue < ε then
27: Convergence = False
28: Optimal revenue = Prev revenue

Search and Score-Based Waterfall Auction Optimization 377

Appendix B - An Example for the Data Processing Flow

Table 4 describes the data processing from raw-data (Table 4a) into a valuation
matrix (Table 4c), using Algorithm 1. Table 4b is the output of row 5 in Algo-
rithm 1. For example, rows 1 and 4 that are marked in red-bold in Table 4a are
the raw data of user ‘4421AB3’ and ‘G’ with a single impression each. These
two rows are converted to a vector with (at least) the two entries ‘[0.02,0.19]’
that are marked with a red-bold box in Table 4b, before the beta distribution
parameters, Beta(α = 0.93, β = 10.99), are estimated as marked in red-bold in
Table 4c.

Table 4. Raw-data samples from the auction dataset (WaterfallA) and their processed
output.

378 D. Halbersberg et al.

References

1. Afshar, R.R., Rhuggenaath, J., Zhang, Y., Kaymak, U.: A reward shaping approach
for reserve price optimization using deep reinforcement learning. In: Proceedings
of the 9th International Joint Conference on Neural Networks (2021)

2. Afshar, R.R., Zhang, Y., Firat, M., Kaymak, U.: A decision support method to
increase the revenue of ad publishers in waterfall strategy. In: IEEE Conference
on Computational Intelligence for Financial Engineering and Economics, pp. 1–8.
IEEE (2019)

3. Afshar, R.R., Zhang, Y., Firat, M., Kaymak, U.: A reinforcement learning method
to select ad networks in waterfall strategy. In: Proceedings of the 11th International
Conference on Agents and Artificial Intelligence (2019)

4. Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent optimization,
vol. 45. Springer Science & Business Media (2008)

5. Dimitri, P.: Bertsekas and Athena Scientific. Convex optimization algorithms,
Athena Scientific Belmont (2015)

6. Busch, O.: The programmatic advertising principle. In: Busch, O. (ed.) Program-
matic Advertising. MP, pp. 3–15. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-25023-6 1

7. Chakraborty, T., Even-Dar, E., Guha, S., Mansour, Y., Muthukrishnan, S.:
Approximation schemes for sequential posted pricing in multi-unit auctions. In:
Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 158–169. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17572-5 13

8. Chou, P.-W., Maturana, D., Scherer, S.: Improving stochastic policy gradients in
continuous control with deep reinforcement learning using the beta distribution.
In: Proceedings of the 34th International Conference on Machine Learning, pp.
834–843. PMLR (2017)

9. Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic
networks from data. Mach. Learn. 9(4), 309–347 (1992)

10. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75538-8 7

11. Despotakis, S., Ravi, R., Sayedi, A.: First-price auctions in online display adver-
tising. J. Marketing Res. 58(5), 888–907 (2021)

12. Hoos, H., Stützle, T.: Stochastic local search: Foundations and applications. Else-
vier (2004)

13. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, vol.
289. John Wiley and sons (1995)

14. Kveton, B., Mahdian, S., Muthukrishnan, S., Wen, Z., Xian, Y.: Waterfall bandits:
Learning to sell ads online. arXiv preprint:1904.09404 (2019)

15. Muthukrishnan, S.: Ad exchanges: research issues. In: Leonardi, S. (ed.) WINE
2009. LNCS, vol. 5929, pp. 1–12. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10841-9 1

16. Russell,S.,Norvig,P.:Artificial intelligence:Amodernapproach.PrenticeHall (2002)
17. Ting, M., Grislain, N.: Maximizing net income of the auction waterfall with an

abort decision tree. arXiv preprint arXiv:1809.01245 (2018)
18. Wang, J., Zhang, W., Yuan, S.: Display advertising with real-time bidding (RTB)

and behavioural targeting. arXiv preprint arXiv:1610.03013, 2016
19. Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising.

In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1077–1086 (2014)

https://doi.org/10.1007/978-3-319-25023-6_1
https://doi.org/10.1007/978-3-319-25023-6_1
https://doi.org/10.1007/978-3-642-17572-5_13
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-642-10841-9_1
https://doi.org/10.1007/978-3-642-10841-9_1
http://arxiv.org/abs/1809.01245
http://arxiv.org/abs/1610.03013

Survey on KNN Methods in Data Science

Panos K. Syriopoulos(B), Sotiris B. Kotsiantis , and Michael N. Vrahatis

Computational Intelligence Laboratory, Department of Mathematics,
University of Patras, 26110 Patras, Greece

{p.syriopoulos,sotos,vrahatis}@math.upatras.gr

Abstract. The k-nearest neighbors (KNN) algorithm remains a useful
and widely applied approach. In the recent years, we have seen many
advances in KNN methods, but few research works give a holistic account
of all aspects of KNN and the progress made. This paper is a brief survey
on modern KNN methods and their role in data science. Furthermore,
we survey: the challenges, how they are approached in the literature, the
impact of the distance metric, several KNN variations, as well as query
methods.

Keywords: KNN methods · Data science · Instance based learning

1 Introduction

KNN belongs to the family of instance-based learning algorithms, a concept
explained by Aha et al. [2]. Simply put, the training instances are stored in
memory without explicitly learning a model. The training instances (referred to
as “knowledge”, training set, or simply dataset) will only be processed in the
prediction phase. For each new data instance, a query is made to the knowledge
base and, only then, the knowledge returned by the query is processed to pro-
duce a prediction. In the simplest case of KNN, the query returns the k nearest
data points to the new instance (based on some distance or similarity metric).
The intuition is that similar examples are good predictors of unseen examples.
Apart from the simplicity of the algorithm, KNN classification enjoys a theo-
retical guarantee: the probability of error is bounded above by twice the Bayes
probability of error (Loizou and Maybank [33]).

In KNN classification, the output is a class membership and is usually deter-
mined by the majority class of the instances returned. In KNN regression, the
output is determined by the average of neighboring data points. With little to
no training time, KNN is a useful tool for “off-the-bat” analysis of data sets.
It is versatile, easy to implement and makes no assumptions on the data. An
early review of KNN classification is given by Cunningham and Delany [10].
The core issues were: (a) how to determine the appropriate similarity/distance
metric, (b) how to determine the user-defined parameter k, (c) how to address
computational complexity issues in large datasets. Many works have addressed
these issues since then. This survey gives an overview of modern developments
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 379–393, 2022.
https://doi.org/10.1007/978-3-031-24866-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_28&domain=pdf
http://orcid.org/0000-0002-2247-3082
http://orcid.org/0000-0001-8357-7435
https://doi.org/10.1007/978-3-031-24866-5_28

380 P. K. Syriopoulos et al.

with respect to these core issues but also intends to exhibit the utility of KNN
in data science in general.

The structure of this paper is as follows: Sects. 2–4 are concerned with the
high level concepts of KNN algorithms. Specifically, Sect. 2 is a recap of the
challenges related to KNN, and provides descriptions of how certain algorithms
tackle these issues. Section 3 is focused on the choice of distance metric, metric
learning and the role of feature space transformation. Section 4 describes several
recent KNN variations that we find interesting. The rest of the chapters are as
follows: Sect. 5 is concerned with prototype selection and generation, and feature
selection methods. Section 6 is dedicated to matching issues related to hashing
algorithms, partition trees, and graph techniques. A lot of work related to scaling
KNN for big data is also presented in Sect. 6. Finally, a synopsis and concluding
summary are presented in Sect. 7.

2 Challenges

KNN is a simple and non parametric algorithm (does not make any assumption
on the distribution of the training instances). However, proper tuning of the
hyper-parameter k is of crucial importance. Figure 1(a) is an example where
different parameter values result in different classification outcome. If k = 3 the
unseen observation (the ‘x’ mark on the figure) is classified as blue, whereas
if k = 6 it is classified as orange. Figure 1(b) demonstrates how the decision
boundary might look like for a particular choice of k. A comprehensive tutorial
is given by Cunningham and Delany [11].

Fig. 1. In plot (a) the unseen observation is classified as blue for k = 3 while it is
classified as orange for k = 6. Plot (b) exhibits the decision boundary formed in a
3-class example. (Color figure online)

The factors that might affect KNN performance include:

1. Outliers and Noise: Outliers have a higher chance of misclassification and
noise makes the determination of a suitable k value a more challenging task.

Survey on KNN Methods in Data Science 381

2. Overlapping class regions: The region defining a class, or fragments of a
class, may overlap with the region of another class. When classes intertwine,
the classification decision may be prone to error.

3. Class imbalance: Some classes in the data set may contain significantly
less observations than other classes. This biases the prediction in favor of the
over-represented classes, especially when there is a high degree of overlap.

A recent survey on the challenges related to KNN, together with experimental
results, has been given by Zhang in [66]. The current chapter is complementary
by offering insightful descriptions of the challenges and of how they are addressed,
together with key results regarding the use of KNN algorithms in general.

The weakness of KNN in overlapping regions can be described in terms of
the statistical properties of the classes. Consider two Gaussian distributions with
different means and variances, and overlapping density functions. The Gaussian
with the smaller variance tends to dominate the decision of KNN, as samples
tend to form dense clusters in the region around the mean. In this example,
Tang and He [49] demonstrate that Bayesian estimation outperforms regular
KNN. To tackle this challenge they propose Extended-NN (ENN) which looks
at data points that consider the unseen example to be in their k-neighborhood.
The method iteratively assigns the unseen observation to classes and calculates a
class-wise coherence statistic. Total coherence is calculated by the average num-
ber of correct inclusion in the k-neighborhoods of data points (of a given class)
that consider the unseen observation to be their k-neighbor, and summing over
all the classes. The assignment with largest total coherence wins. ENN is shown
to outperform regular KNN consistently. Nonetheless, their paper demonstrates
that the incorporation of Bayesian estimation may yield promising results.

Class imbalance phenomena have been widely studied in the machine learn-
ing literature (for example He and Garcia [20], Fernández et al. [14]). Tradi-
tional pre-processing techniques include re-sampling and cost-sensitive learning.
Unfortunately, re-sampling techniques can fail to improve the accuracy of KNN
due to the usually sparse nature of minority instances in space. As a response,
researchers devise KNN specific approaches, many of which revolve around for-
mulating more appropriate decision rules.

Ando proposes in [3] Weighted Class-wise Nearest Neighbors (WCNN). He
estimates and compares conditional probabilities of class membership given
majority or minority class. The estimates are based on the distance of the unseen
observation from: (a) the kth nearest majority observation, (b) the kth nearest
minority observation. The intuition is that the distance from the kth minor-
ity class observation is generally larger. WCNN biases the decision towards the
minority class. The decision function is linear in the k-distances and the weights
are optimised for non-linear performance loss in a convex setting. Furthermore,
by construction, WCNN can work with distance data. To reduce the perplexity
of the distance features, WCNN is paired with a hierarchical clustering algo-
rithm that considers class labels. The major sub-components are regarded as
supplementary labels to facilitate optimisation. The key advantages of WCNN

382 P. K. Syriopoulos et al.

are that (a) data-balancing preprocessing algorithms may be avoided, (b) it
works directly with pairwise distance data.

Zhang et al. [70] proposed the K-Rare Nearest Neighbors (KRNN) where k
is variable so as to encompass at least some examples of the under-represented
classes, i.e. the total number of observations in a query’s neighborhood is vari-
able. Given an unknown instance, the probability of it belonging to a minority
class is modeled with a binomial distribution. The confidence interval for the
proportion of minority observations in the data set is calculated, and a modified
confidence interval is used for the proportion of minority observations in the
neighborhood of the query. Additionally, two modified Laplace estimates for the
posterior class probability are formed, and the relative position of the confidence
intervals determines which Laplace estimate is used in the decision function. The
confidence levels for the global and local confidence intervals are hyperparam-
eters of the algorithm. Experiments indicate a performance improvement over
WCNN on the datasets used.

When it comes to noise we can distinguish between noise in the attributes
and noise in the prediction variable. When attributes are numeric, noise man-
ifests itself in the statistical properties of the classes. For categorical variables,
there could be errors in the attributes and/or misclassified data points. All types
of noise deteriorate the performance of KNN. Assuming that correctly classified
points dominate their respective regions in feature space, sensitivity to noise
can be reduced by choosing a larger k value. Early noise reduction techniques
involved disregarding misclassified points in the training set. However, the sensi-
tivity of KNN’s performance to noise has motivated KNN-based anomaly detec-
tion techniques. The general idea is scoring points based on their similarity to
their neighbors, for example Bandaragod et al. [7], Pang et al. [38]. We have not
come across a paper that considers correlations between attribute values and
noise in a KNN framework.

Apart from competitive performance, KNN based anomaly detection algo-
rithms demonstrate a gravity defiant learning curve. The general understanding
is that, for most learning algorithms, the error rate decreases with the size of
the dataset, i.e. the more data the better. Contrary to the conventional wisdom,
anomaly detection techniques based on KNN reach peak performance when the
training dataset is small. Ting et al. [50] use a computational geometry argu-
ment to find closed form expressions for the lower and upper bounds of the area
under the receiver operating characteristic curve for the 1-NN anomaly detection
scheme. It is shown that the expected bounds depend on both the size of the
dataset and the proportion of anomalies, and that the bounds reach an optimal
value at a finite dataset size. Experimental results show that other KNN-based
anomaly detectors demonstrate the same behavior. This result consolidates the
role of KNN methods in data science as it provides a solid theoretical ground
for the use of KNN ensembles in anomaly detection, which would be especially
useful in the context of big data. More specifically, KNN detectors can work in
parallel on subsamples of the dataset, and achieve maximal expected accuracy.
Triguero et al. [52] advocate the use of KNN methods as means of creating smart

Survey on KNN Methods in Data Science 383

data out of big data, the main tools being KNN based noise reduction meth-
ods, and missing value imputators. Note that noise reduction methods should
be applied prior to imputators to reduce bias.

The final issue of this chapter concerns the choice of the hyperparameter k.
To the best of our knowledge the most straightforward approach seems to be
the best in terms of accuracy. Most notably, García-Pedraja et al. [17] propose
the assignment of a k value to each observation in the knowledge base, using
ten-fold cross-validation. The values are chosen by considering both the local
best k and the global best k in order to avoid large deviations in the values
assigned to neighboring points. New instances, then, inherit the k value of their
nearest neighbor. Experiments indicate improved accuracy over regular KNN.
Approaches based on direct (convex) optimization are also present, and can
also improve accuracy. Zhang et al. [67] propose a sparse reconstruction of the
dataset from itself through multiplication with a weight matrix. Non-negativity
is enforced to ensure that points are reconstructed from points with correlated
features and l1 regularization is added to the cost function to ensure sparsity. The
number of non-zero entries indicates the suitable k value for each observation.
An extra term is added to ensure that points are reconstructed with points with
similar features (i.e. are close in the feature space). Their work is extended in
Zhang et al. [68] where a decision tree, named k∗-tree, is constructed. The k∗-tree
can be searched efficiently and results in faster query times (by storing relevant
points in the leafs) for a small loss of accuracy.

3 Choice of Distance Metric

In general, data instances with d features are considered as points within an
d-dimensional feature space. Since the prediction is determined by the nearest
neighbors, the nature of KNN is such that the relative position of instances is
more significant than their absolute positions. Ideally, the distance metric should
minimize the distance between similarly classified instances, while maximizing
distance between instances of different classes.

Abu Alfeilat et al. [1] tested a large number of distance metrics on real world
datasets and found that the choice of metric significantly affects classification
performance. Specifically, there is no optimal distance metric that is suitable
for all datasets, and metrics from the same families showed similar classification
results. Additionally, some distance metrics were found to be more tolerant to
noise than others. It could be the case that some application domains favor
certain metrics over others. Hu et al. [23] conducts similar experiments for the
medical domain and find that the Chi-square distance function performs the
best.

While cross validation is an option for finding a suitable distance metric,
another approach is distance metric learning. These methods involve applying
a (linear or nonlinear) transformation to the feature space in order to max-
imise classification accuracy. Xing et al. [63] was the first to propose a convex
optimization approach. They considered the Mahalanobis distance defined by

384 P. K. Syriopoulos et al.

dA(x, y) = (x−y)�A(x−y), where A = W�W is a positive semi-definite matrix
A � 0 (here W corresponds to the space transformation). The intuition is: find
the optimal matrix A that minimizes distances between similarly labeled points
and maximizes distances between points in different classes. To see this, let
yij = 1 if the i’th and j’th points in the knowledge base belong to the same class
(i.e. yi = yj), and zero otherwise. The objective function can be written as:

maximize
∑

i,j

(1 − yij)
√
dA(xi, xj),

subject to:
∑

i,j

yijdA(xi, xj) � 1,

A � 0.

(1)

The objective function aims to maximize the distance between points belonging
to different classes while the first condition forces points belonging to the same
class to remain close to each other. In a similar approach Shalev-Shwartz et
al. [42] learns a Mahalanobis metric online and tries to enforce a scalar thresh-
old b such that points in the same class are at most b − 1 distance apart while
points in different classes are at least b+1 distance apart. Both these approaches
improve the performance of KNN and have the advantage that the optimization
problems are convex. However there is a key observation relevant to KNN that
exposes a weakness of linear space transformations. Points of the same class may
cluster in different locations in feature space and may exhibit different patterns
in their relevant positions with points from other classes. Goldberger et al. [18]
tries to circumvent this problem by introducing the novel idea of Neighborhood
Component Analysis (NCA). NCA randomly assigns neighborhoods to points
and maximizes the leave-one-out probability that the KNN label is correct. The
probability that point j is in the neighborhood of point i is inversely related to
their distance in the transformed space. Inspired by the idea that only the dis-
tances of neighbors are relevant in the objective function of Eq. (1), Weinberger
et al. [59] formulated a convex optimization problem similar to that of Eq. (1)
that sums over neighbors (instead of over all pairs of points) and whose resulting
transformation is known as the Large Margin Nearest Neighbor (LMNN).

It is clear that the choice of metric is relevant in KNN applications and that
the methods of this chapter alleviate the adverse effects of data peculiarities.
While linear transformations do improve the accuracy of KNN, their weakness
comes from the fact that they are global, yet, the distributions of classes differ in
different regions of the feature space. As a result, and by extension, all literature
on space transformations is relevant for improving KNN classification accuracy.

4 Variations of KNN

Here we briefly recite a selection of recent KNN methods that we find interesting
in dealing with the challenges in Sect. 2. Although this chapter provides a less

Survey on KNN Methods in Data Science 385

than complete account, we believe that the our references include a satisfactory
number of readings.

The state of the art seems to revolve around meaningful compositions of
existing methods and ideas. The works cited in this paragraph have been used
in conjunction with each other to produce better KNN algorithms. Pascal and
Yoshua [54] devised a variant of KNN based on k-local hyperplanes. The intuition
is that classes lie on non-linear manifolds on the feature space. The core idea
is to linearly approximate the manifold locally, and assign unseen observations
based on their distance from the (approximate) manifold of each class. Particu-
larly, suppose a set of class labels C = {1, 2, . . . , NC} where NC is the number
of classes. For each unseen data point, locate the k nearest neighbors from each
class (for a total of kNC nearest neighbors). Say NCi

= {x1, x2, . . . , xk} are
the k closest points with class label i. The local approximation of the corre-
sponding manifold is a linear combination of the points in NCi

. The coefficients
of the linear combinations are optimised to minimize the distance to the unseen
observation for each i in C, and the point is assigned to the class of the closest
linear combination. Another important “building block” is the family of fuzzy
KNN algorithms. We direct the reader to Derrac et al. [12] for a taxonomy and
experimental analysis. Meanwhile, several researchers have proposed the use of
different k-values for different regions of the feature space, i.e. Wettschereck and
Dietterich [60], Wang et al. [56], Garcia et al. [17]. Among others, Garcia et
al. [17] proposed a tenfold cross validation scheme for the assignment of differ-
ent values of k to each point in the knowledge base. Unclassified examples would
inherit the k value of their closest neighbor. Furthermore, several researchers
adopted weighting schemes to weight the labels of the k-nearest neighbors (usu-
ally according to distance), i.e. Dudani [13], Liu and Chawla [32], Gou et al. [19].

Recently, researchers combine two or several of the known approaches,
together with their own innovation, and produce algorithms that are less vulner-
able to noise and outliers, class imbalance, and class region distribution. Susan
and Kumar [47] applied a linear transformation (such as LMNN or NCA, see
Sect. 3) to the feature space and adopted a new decision rule. They split the k
nearest neighbors in two clusters. One consists of the neighbors that are closest to
the farthest neighbor, and the other consists of the neighbors that are closest to
the closest neighbor. The latter cluster, then, determines the final classification.
The rule is resilient to outliers, noise, and class imbalances because the fea-
ture space transformation has expanded distances between instances of different
classes. Yu et al. [65] combined k-local hyperplane distances with a fuzzy rela-
tive transform decision rule to tackle class imbalances. Zhang et al. [69] employed
the locality preserving projection (by He and Niyogi [22]) to reconstruct the test
sample from the training sample, resulting in a weighting of nearest neighbors.
These are but a few examples of successful combinations of ideas.

5 Feature Selection and Data Reduction

This chapter is concerned with data reduction techniques. These methods revolve
around disregarding irrelevant and/or redundant dimensions of a dataset, or,

386 P. K. Syriopoulos et al.

disregarding unnecessary data points. These methods are valuable in practice
as they may result in greater accuracy, reduced runtimes, and reduced memory
requirements.

The accuracy of distance based algorithms can be severely degraded with
high-dimensional data due to the curse of dimensionality. Feature selection (FS)
techniques aim at reducing the dimensionality of the data, thus, improving the
accuracy of the learning algorithm. The goal is to identify a small subset of fea-
tures that maximizes a measure of accuracy. A broad categorization of FS meth-
ods includes filter-based methods, wrapper-based methods, embedded methods,
and hybrid methods. For more information we refer the reader to Li et al. [30].
Lets consider a general strategy for FS that includes (a) a feature subset selector,
(b) a feature subset evaluator. Usually, in wrapper-based methods, a machine
learning model is re-trained and tested with the dataset projected on the current
feature subset (in order to evaluate its performance). In these cases, KNN offers
a significant speedup when the distance function is calculated recursively. For
example, the d-dimensional Euclidean distance satisfies:

dE(x, x′)2 =
d−1∑

i=1

(xi − x′
i)

2 + (xd − x′
d)

2.

Wang et al. take the aforementioned approach in [55]. Many approaches in the
literature select KNN for subset evaluation, e.g. Tahir et al. [48] propose a Tabu
search strategy for subset generation. A challenge in the FS literature is instabil-
ity. In many cases the number of features far exceeds the number of observations.
As a result, the features selected by certain algorithms (most notably the ran-
dom forest approach) highly depend on the initial data sample. Ensemble KNN
wrapper methods are believed to be able to tackle instability issues (Li et al.
[31], Park and Kim [39]). In the context of filter-based methods, a comparative
study by Rogati and Yang [41] showed that KNN methods were amongst the top
three performers at year 2001, indicating that KNN can benefit greatly from FS
methods.

In a work more intimately related to KNN, Xiao and Chaovalitwongse [62]
showed that the FS problem can be cast as a convex optimisation problem if
the decision is based on the distance to the centroids of each class. The idea is
to learn a Mahalanobis matrix (similarly to what is shown in Sect. 3) and add
a l1 regularization term in the loss function. l1 regularization promotes sparsity
for the Mahalanobis matrix, which effectively nullifies certain dimensions of the
data.

Data reduction methods attempt to reduce the number of training instances.
The idea is to select, or artificially generate prototypes that faithfully represent
the given target concept. Ideas include retaining instances that are close to the
decision boundary, or, retaining instances near the centers of the class clusters.
Wrapper-based subset search and evaluation strategies are also present. A com-
plete taxonomy, comparison, and extensive experimentation is given in Garcia
et al. [16]. A valuable insight is that efficient query methods, such as approxi-
mate nearest neighbors (described in the next chapter), can compete in run-time

Survey on KNN Methods in Data Science 387

performance with regular KNN even when the initial dataset is reduced in size.
Another observation is that the time complexity of these algorithms were gener-
ally O(n2d2) or higher, where n is the number of data points and d the number
of features, together with high storage requirements. Arnaiz-González et al. [5]
propose a linear complexity algorithm using locality sensitivity hashing (LSH).
Even though the data reduction rates and the resulting classification accuracy
were not among the top performers, it is a solution for extremely large datasets,
and their paper provides descriptions of many other data reduction algorithms.
Additionally, Triguero et al. [51] provide a distributed solution using the MapRe-
duce framework. Recent publications, among others, include prototype selection
for imbalanced datasets: Sisodia and Sisodia [45], prototype selection with local
feature weighting: Zhang et al. [71], prototype selection for KNN regression: Song
et al. [46].

6 Nearest Neighbor Matching Algorithms

It is important to note that when working with high dimensional features, there is
no known exact nearest-neighbor search algorithm with acceptable efficiency. To
enhance the speed of queries, most practical applications settle for approximate
search. The neighbors returned by approximate search techniques may not be
the k-nearest, but they are typically close to the k-nearest neighbors. Regardless
of whether KNN is used as a classifier, or as a tool for aforementioned purposes,
this chapter aims to show that KNN can be a scalable solution.

When the data set is large, O(dn) query time-complexity renders KNN algo-
rithms intractable for certain applications. Several solutions have been studied.
When the number of training instances is large, special data structures (par-
titioning trees, neighboring graph techniques) can enhance query speeds sig-
nificantly. The main disadvantage of such methods is how they scale with the
dimensionality of the data. Techniques such as hashing counteract this problem.

A simple and popular hashing method is the locality sensitive hashing (LSH),
Indyk and Motwani [25]. The idea is to hash the data so that the probability
that hashes coincide is much higher for points that are close together. Formally,
locality sensitivity is defined by four parameters, (r1, r2, p1, p2). Given some dis-
tance function d, a family of hash functions H is (r1, r2, p1, p2)-sensitive if for
any two points p, q in the data set the following conditions are fulfilled:

1. if p ∈ B(q, r1), then Prh∈H[h(p) = h(q)] � p1,

2. if p /∈ B(q, r2), then Prh∈H[h(p) = h(q)] � p2,

where B(p, r) denotes the hypersphere centered at point p with radius r. For
this to be meaningful, it is essential that probabilities p1, p2 satisfy p1 > p2,
and r1 < r2. The gap between p1 and p2 can be amplified by concatenating
several hash functions. Practically, a collection of hashes split the data points into
several partitions. To process a query, brute force search is applied to elements
of the partitions with corresponding hash values. LSH is grounded in the theory

388 P. K. Syriopoulos et al.

of random projections. In the simplest case, points are projected on random
lines passing through the origin. These lines are then discretized into small line
segments each with a corresponding id. Thus, a table of hash codes is created,
each entry having pointers to the corresponding data points. This allows for
the creation of data structures that can be searched efficiently. A generalization
named Density Densitive Hashing (DSH) also exploits the distribution of the
data [28].

Hashing methods result in fast and effective queries. Query times achieved
are sublinear. In general, the quality of the hash functions determine the quality
of the method (for details see Muja and Lowe [36]). In fact, the space parti-
tions produced by random projections had been widely studied in the average
case. In the last decade a lot of work has been dedicated in studying worst case
scenarios. To illustrate what is meant by average and worst case scenario, con-
sider the random projection method described in the previous paragraph. If a
dataset consists of points sparsely distributed around the origin, the probability
of collision of far away points is small. On the contrary, if there is a dense clus-
ter of points in the dataset (and away from the origin), these points are likely
to collide with far away points. For this reason, data-dependent hashing meth-
ods have been developed. These methods aim for data optimal (approximate)
nearest neighbors search, for details see He et al. [21], Xu et al. [64], Iwamura
et al. [26], Andoni and Razenshteyn [4]. In the recent years, the literature on
hashing methods has grown and we direct the reader to the survey by Wang
et al. [57].

In the family of partitioning trees, the kd-tree (Friedman et al. [15]), has
been one of the best known neighbor matching algorithms with logarithmic time
complexity, but it scales poorly with the number of dimensions (and in fact is
comparable to exhaustive search when the number of dimensions is high, see
Indyk [24]). Several authors have improved kd-trees in order to speed up KNN
search. To name a few, Beygelzimer et al. [8] proposed cover-trees, Silpa-Anan
and Hartley [44] proposed optimised kd-trees. Nister and Stewenius [37] proposed
the vocabulary tree, which uses hierarchical k-means. In a comparison by Muja
and Lowe [35] it was shown that the multiple randomized trees are the most
effective for high dimensional data.

Jegou et al. [27] proposed a product quantization approach in which the
feature space is decomposed into low dimensional subspaces in which the data
points are represented by compact codes. Babenko and Lempitsky [6] proposed
the inverted multi-index, obtained by replacing the standard quantization with
product quantization. A more in-depth analysis is given in review papers by
Vasuki and Vanathi [53], Wu and Yu [61].

Nearest neighbor graph methods build graphs where vertices are data points
or subsets of data points. In this case the query is an effective exploration of the
graph. Empirical results place graph methods in the current state of the art for
query methods. We direct the reader to recent surveys by Wang et al. [58] and
Shimomura et al. [43].

Survey on KNN Methods in Data Science 389

Finally, a lot of work has been done for decentralized framework solutions.
Chatzimilioudis et al. [9] developed Spitfire, a high performance distributed algo-
rithm. Gieseke et al. [40] presented a GPU based algorithm for kd-trees. Kim et
al. [29] propose parallel KNN using MapReduce. Maillo et al. [34] also provided
a solution for exact k-nearest neighbor classification based on Spark.

7 Synopsis and Concluding Remarks

We have studied a variety of aspects related to KNN. Challenges related to:
(a) noise and outliers, (b) overlapping class regions, and (c) class imbalanced
data have been analyzed through key works in the literature. The role of KNN
in data pre-processing, including de-noising and missing value imputations has
been presented. The choice of hyperparameter k has also been analyzed. The
impact of the distance metric used has been explored, together with metric-
learning techniques. The merit of KNN in feature selection algorithms has been
discussed, together with the effect of such methods on KNN’s accuracy. We
further explored data reduction techniques. Moreover, query methods, together
with mentions of parallel and distributed solutions have been mentioned.

We would like to point out here that KNN is a non parametric, instance based
algorithm that makes no assumptions about the underlying data distribution.
This trait is crucial due to the fact that real world data rarely obey typical
theoretical assumptions. KNN is easy to implement and its basic principle is
easy to understand. Some challenges regarding the choice of the right distance
metric have been overcome with data driven approaches like metric learning.
Localization of the k-value, and different decision rules (subspace distances, fuzzy
criteria, feature weighting etc.) have also increased classification accuracy.

The state-of-the-art seems to revolve around the meaningful composition of
ideas that make the algorithm more resilient to class imbalances, noise, and
outliers. The two major drawbacks are the storage requirements and the query
run-time complexity. Methods of prototype selection and generation can reduce
the number of training instances required without hindering classification accu-
racy greatly. Methods of feature selection can reduce the dimensionality of the
data by discarding irrelevant/redundant features. KNN based methods have been
developed for noise reduction, outlier detection, and missing value imputation
among other applications. Theoretical results indicate that KNN anomaly detec-
tors demonstrate a gravity defiant learning curve. These issues enable the usage
of KNN anomaly detectors ensembles in the context of large datasets.

Approximate nearest neighbor methods significantly reduce query run-times,
allowing for applications on data intensive domains. Hashing, quantization,
neighboring graph techniques, and indexing methods all contribute to the diverse
literature that enables the use of KNN in large data domains. GPU based dis-
tributed algorithms and adaptations for data streams are a testament to KNN’s
utility as a classification method or as part of larger machine learning models.

390 P. K. Syriopoulos et al.

References

1. Alfeilat, H.A., et al.: Effects of distance measure choice on K-nearest neighbor
classifier performance: a review. Big Data, 7 (2019)

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. (1991)

3. Ando, S.: Classifying imbalanced data in distance-based feature space. Knowl. Inf.
Syst. 46 (2016)

4. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 2015, pp. 793–801. Association for Computing
Machinery, New York, NY (2015). ISBN 9781450335362

5. Arnaiz-González, Á., Díez-Pastor, J.-F., Rodríguez, J.J., García-Osorio, C.:
Instance selection of linear complexity for big data. Knowl.-Based Syst. 107, 83–95
(2016)

6. Babenko, A., Lempitsky, V.: The inverted multi-index. IEEE Trans. Pattern Anal.
Mach. Intell. 37(6), 1247–1260 (2014)

7. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient
anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE
International Conference on Data Mining Workshop, pp. 698–705. IEEE (2014)

8. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference on Machine Learning, pp. 97–
104 (2006)

9. Chatzimilioudis, G., Costa, C., Zeinalipour-Yazti, D., Lee, W.-C., Pitoura, E.:
Distributed in-memory processing of all k nearest neighbor queries. IEEE Trans.
Knowl. Data Eng. 28(4), 925–938 (2015)

10. Cunningham, P., Delany, S.: k-nearest neighbour classifiers. Mult Classif. Syst. 54,
04 (2007)

11. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers - a tutorial. ACM
Comput. Surv. (CSUR) 54(6), 1–25 (2021)

12. Derrac, J., García, S., Herrera, F.: Fuzzy nearest neighbor algorithms: taxonomy,
experimental analysis and prospects. Inf. Sci. 260, 98–119 (2014)

13. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. SMC-6(4), 325–327 (1976)

14. Fernández, A., del Río, S., Chawla, N.V., Herrera, F.: An insight into imbalanced
big data classification: outcomes and challenges. Complex Intell. Syst. 3(2), 105–
120 (2017)

15. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209–226
(1977)

16. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012)

17. García-Pedrajas, N., Romero del Castillo, J.A., Cerruela-García, G.: A proposal
for local k values for k -nearest neighbor rule. IEEE Trans. Neural Netw. Learn.
Syst. 28(2), 470–475 (2017)

18. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood
components analysis. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems, vol. 17. MIT Press, Cambridge (2004)

Survey on KNN Methods in Data Science 391

19. Gou, J., Du, L., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor
classifier. J. Inf. Comput. Sci. 9, 1429–1436 (2012)

20. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. (2009)

21. He, J., Liu, W., Chang, S.-F.: Scalable similarity search with optimized kernel
hashing. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1129–1138 (2010)

22. He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L.,
Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16.
MIT Press, Cambridge (2003)

23. Hu, L.-Y., Huang, M.-W., Ke, S.-W., Tsai, C.-F.: The distance function effect on k-
nearest neighbor classification for medical datasets. Springerplus 5(1), 1–9 (2016).
https://doi.org/10.1186/s40064-016-2941-7

24. Indyk, P.: Nearest neighbors in high-dimensional spaces (2004)
25. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Conference Proceedings of the Annual ACM Sympo-
sium on Theory of Computing, pp. 604–613, October 2000

26. Iwamura, M., Sato, T., Kise, K.: What is the most efficient way to select nearest
neighbor candidates for fast approximate nearest neighbor search? In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 3535–3542 (2013)

27. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

28. Jin, Z., Li, C., Lin, Y., Cai, D.: Density sensitive hashing. IEEE Trans. Cybern.
44(8), 1362–1371 (2013)

29. Kim, W., Kim, Y., Shim, K.: Parallel computation of k-nearest neighbor joins using
mapreduce. In: 2016 IEEE International Conference on Big Data (Big Data), pp.
696–705. IEEE (2016)

30. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR)
50(6), 1–45 (2017)

31. Li, S., Harner, E.J., Adjeroh, D.A.: Random KNN feature selection - a fast and
stable alternative to random forests. BMC Bioinform. 12(1), 1–11 (2011)

32. Liu, W., Chawla, S.: Class confidence weighted kNN algorithms for imbalanced
data sets. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS
(LNAI), vol. 6635, pp. 345–356. Springer, Heidelberg (2011). ISBN 978-3-642-
20847-8. https://doi.org/10.1007/978-3-642-20847-8_29

33. Loizou, G., Maybank, S.J.: The nearest neighbor and the Bayes error rates. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-9(2), 254–262 (1987)

34. Maillo, J., Ramírez, S., Triguero, I., Herrera, F.: KNN-IS: an iterative spark-based
design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117,
3–15 (2017)

35. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1), 2 (331–340), 2 (2009)

36. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

37. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), vol. 2, pp. 2161–2168. IEEE (2006)

38. Pang, G., Ting, K.M., Albrecht, D.: LeSiNN: detecting anomalies by identifying
least similar nearest neighbours. In: 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pp. 623–630. IEEE (2015)

https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1007/978-3-642-20847-8_29

392 P. K. Syriopoulos et al.

39. Park, C.H., Kim, S.B.: Sequential random k-nearest neighbor feature selection for
high-dimensional data. Expert Syst. Appl. 42(5), 2336–2342 (2015)

40. Patwary, M.M.A., et al.: Panda: extreme scale parallel k-nearest neighbor on dis-
tributed architectures. In: 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp. 494–503. IEEE (2016)

41. Rogati, M., Yang, Y.: High-performing feature selection for text classification. In:
Proceedings of the Eleventh International Conference on Information and Knowl-
edge Management, pp. 659–661 (2002)

42. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and batch learning of pseudo-
metrics. In: Proceedings of the Twenty-First International Conference on Machine
Learning, ICML 2004, pp. 94. Association for Computing Machinery, New York
(2004)

43. Shimomura, L.C., Oyamada, R.S., Vieira, M.R., Kaster, D.S.: A survey on graph-
based methods for similarity searches in metric spaces. Inf. Syst. 95, 101507 (2021)

44. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–8. IEEE (2008)

45. Sisodia, D., Sisodia, D.S.: Quad division prototype selection-based k-nearest neigh-
bor classifier for click fraud detection from highly skewed user click dataset. Int.
J. Eng. Sci. Technol. 28, 101011 (2022)

46. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for
k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

47. Susan, S., Kumar, A.: DST-ML-EkNN: data space transformation with metric
learning and elite k-nearest neighbor cluster formation for classification of imbal-
anced datasets. In: Chiplunkar, N.N., Fukao, T. (eds.) Advances in Artificial Intel-
ligence and Data Engineering. AISC, vol. 1133, pp. 319–328. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-15-3514-7_26

48. Tahir, M.A., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and
feature weighting using hybrid Tabu search/K-nearest neighbor classifier. Pattern
Recogn. Lett. 28(4), 438–446 (2007)

49. Tang, B., He, H.: ENN: extended nearest neighbor method for pattern recognition
[research frontier]. IEEE Comput. Intell. Mag. 10(3), 52–60 (2015)

50. Ting, K.M., Washio, T., Wells, J.R., Aryal, S.: Defying the gravity of learn-
ing curve: a characteristic of nearest neighbour anomaly detectors. Mach. Learn.
106(1), 55–91 (2017)

51. Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F.: MRPR: a mapreduce
solution for prototype reduction in big data classification. Neurocomputing 150,
331–345 (2015)

52. Triguero, I., García-Gil, D., Maillo, J., Luengo, J., García, S., Herrera, F.: Trans-
forming big data into smart data: an insight on the use of the k-nearest neighbors
algorithm to obtain quality data. WIREs Data Min. Knowl. Discov. 9(2) (2019)

53. Vasuki, A., Vanathi, P.: A review of vector quantization techniques. IEEE Poten-
tials 25(4), 39–47 (2006)

54. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor
algorithms. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural
Information Processing Systems, vol. 14. MIT Press, Cambridge (2001)

55. Wang, A., An, N., Chen, G., Li, L., Alterovitz, G.: Accelerating wrapper-based
feature selection with k-nearest-neighbor. Knowl.-Based Syst. 83, 81–91 (2015)

56. Wang, J., Neskovic, P., Cooper, L.N.: Neighborhood size selection in the k-nearest-
neighbor rule using statistical confidence. Pattern Recogn. 39(3), 417–423 (2006)

https://doi.org/10.1007/978-981-15-3514-7_26

Survey on KNN Methods in Data Science 393

57. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash.
IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 769–790 (2018)

58. Wang, M., Xu, X., Yue, Q., Wang, Y.: A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631 (2021)

59. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin
nearest neighbor classification, January 2005

60. Wettschereck, D., Dietterich, T.: Locally adaptive nearest neighbor algorithms.
In: Cowan, J., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information
Processing Systems, vol. 6. Morgan-Kaufmann, Burlington (1993)

61. Wu, Z., Yu, J.: Vector quantization: a review. Front. Inf. Technol. Electron. Eng.
20(4), 507–524 (2019). https://doi.org/10.1631/FITEE.1700833

62. Xiao, C., Chaovalitwongse, W.A.: Optimization models for feature selection of
decomposed nearest neighbor. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 177–
184 (2016)

63. Xing, E., Jordan, M., Russell, S.J., Ng, A.: Distance metric learning with appli-
cation to clustering with side-information. In: Becker, S., Thrun, S., Obermayer,
K. (eds.) Advances in Neural Information Processing Systems, vol. 15. MIT Press,
Cambridge (2002)

64. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for
approximate nearest neighbor search. In: 2011 International Conference on Com-
puter Vision, pp. 1631–1638 (2011)

65. Yu, Z., Chen, H., Liu, J., You, J., Leung, H., Han, G.: Hybrid k-nearest neighbor
classifier. IEEE Trans. Cybern. 46(6), 1263–1275 (2016)

66. Zhang, S.: Challenges in KNN classification. IEEE Trans. Knowl. Data Eng. 1
(2021)

67. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for KNN classification.
ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 1–19 (2017)

68. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient KNN classification with
different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst.
29(5), 1774–1785 (2017)

69. Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel KNN algorithm with
data-driven k parameter computation. Pattern Recogn. Lett. 109, 44–54 (2018).
Special Issue on Pattern Discovery Multi-Source Data (PDMSD)

70. Zhang, X., Li, Y., Kotagiri, R., Wu, L., Tari, Z., Cheriet, M.: KRNN: k rare-class
nearest neighbour classification. Pattern Recogn. 62, 33–44 (2017)

71. Zhang, X., Xiao, H., Gao, R., Zhang, H., Wang, Y.: K-nearest neighbors rule
combining prototype selection and local feature weighting for classification. Knowl.-
Based Syst. 243, 108451 (2022)

http://arxiv.org/abs/2101.12631
https://doi.org/10.1631/FITEE.1700833

Constrained Shortest Path
and Hierarchical Structures

Adil Erzin1,2(B) , Roman Plotnikov1,2 , and Ilya Ladygin3

1 Sobolev Institute of Mathematics, SB RAS, Novosibirsk 630090, Russia
{adilerzin,prv}@math.nsc.ru

2 St. Petersburg State University, St. Petersburg 199034, Russia
3 Novosibirsk State University, Novosibirsk 630090, Russia

Abstract. The Constrained Shortest Path (CSP) problem is as follows.
An n-vertex graph is given, two weights are assigned to each edge: “cost”
and “length”. It is required to find a min-cost bounded-length path
between a given pair of vertices. The problem is NP-hard even when
the lengths of all edges are the same. Therefore, various approximation
algorithms have been proposed in the literature for it. The constraint
on path length can be accounted for by considering one aggregated edge
weight equals to the linear combination of the cost and length. By varying
the value of the Lagrange multiplier in the linear combination, a feasible
solution delivers a minimum to the objective function with new weights.
At the same time, as usually, the Dijkstra’s algorithm or its modifica-
tions are used to construct a shortest path with the current weights of
the edges. However, in the large graphs, this approach may turn out to
be time-consuming. In this paper, we propose to search a solution, not
in the original graph but in the specially constructed hierarchical struc-
tures (HS). We show that the shortest path in the HS is constructed
with O(m)-time complexity, where m is the number of edges/arcs of the
graph, and the approximate solution in the case of integer costs and
lengths is found with O(m log n)-time complexity. In result of a priori
analysis of the algorithm its accuracy estimation turned out to depend
on the parameters of the problem and can be significant. Therefore, to
evaluate the algorithm’s effectiveness, we conducted a numerical exper-
iment on the graph of roads of megalopolis and randomly constructed
metric unit-disk graphs (UDGs). The numerical experiment results show
that in the HS, solution is built 10–100 times faster than in the methods
which use Dijkstra’s like algorithm to build a min-weight path in the
original graph.

Keywords: Constrained shortest path · Hierarchical structures ·
Polynomial algorithms · Complexity · Simulation

The research was supported by the Russian Science Foundation (grant No. 19-71-
10012 “Multi-agent systems development for automatic remote control of traffic flows
in congested urban road networks”).

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 394–410, 2022.
https://doi.org/10.1007/978-3-031-24866-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_29&domain=pdf
http://orcid.org/0000-0002-2183-523X
http://orcid.org/0000-0003-2038-5609
https://doi.org/10.1007/978-3-031-24866-5_29

Constrained Shortest Path and Hierarchical Structures 395

1 Introduction

In the modern communication networks, to meet the Quality of Service (QoS)
requirements, it is necessary to take into account more than one characteristic of
each element [9,12,14,20]. In this paper we are considering the following problem.
Given a weighted digraph G = (V,A), where V is the set of vertices (|V | =
n), A is the set of arcs (|A| = m). Two non-negative values (length and cost)
are assigned to each arc. It is required to find a min-cost bounded-length path
between a given pair of vertices s and t (s-t path). In the literature, this problem
is mentioned as Constrained Shortest Path (CSP) problem. CSP is NP-hard,
both in the general graphs [4] and in the acyclic networks [20]. Exact exponential
[11,13,21] and approximation polynomial algorithms [6,8,12,14,15,18–20,22] are
proposed to solve it.

The exact Constrained Bellman-Ford (CBF) algorithm proposed in [21] has
exponential complexity, but it is faster than brute force on average. The main
idea behind this algorithm is to systematically search for the least cost paths
while monotonically increasing the length. First, the algorithm finds a min-cost
s-t path. Next, for each vertex u, a list of min-length paths from s to u is
created. Then, a vertex is selected that lies on the s-t path with minimal cost,
the list of which contains the path that satisfies the constraint. The algorithm
then explores the neighbors of this vertex using breadth-first search [3], and (if
necessary) adds new paths to the lists of neighbors. This process continues until
the length constraint is met and there is a path for further exploration.

Another exact algorithm is the Pulse algorithm proposed in [13]. Its essence
is to apply an impulse from the vertex s to the neighboring vertices, then from all
neighboring to the next neighbors, etc. Each time, the following characteristics
of the partial path are stored in memory: the vertices passed, the value of the
objective function, and the current length. When the impulse reaches the vertex
t, then the constructed path along with all the characteristics is stored. In this
way, all possible paths can be found, including an optimal one. The difference
between this algorithm and the full enumeration lies in the special strategies for
cutting off partial paths (“pulses”). In the paper, these strategies are dominance,
bounds and infeasibility. The essence of the dominance strategy is to remember
the best paths in terms of the cost and length, bounds strategies is the systematic
pruning of paths with the worse objective function than the paths already found.
Infeasibility allows to cut off pulses that are unpromising in length at an early
stage (this is achieved by calculating the shortest distance from t to each other
vertex).

Hassin in [6] proposed two ε-approximation algorithms for the case of positive
arc weights with time complexity O((mn

ε +1) log log B) and O(mn2

ε log n
ε), where

B is an upper bound on the path cost. The first algorithm uses the upper and
lower bounds (UB and LB respectively). At the start of the program, they are
given the values LB = 1, UP is the sum of (n−1) largest arc costs. Then, using a
special testing procedure, the estimates are systematically improved, and, using
the results obtained, new arc costs are set in the form c′(u, v) = � c(u,v)(n−1)

εLB �
∀(u, v) ∈ E, which allows us to obtain the required path. Orda [14] and Lorenz

396 A. Erzin et al.

et al. [12] modified ε-approximation algorithms to scale better in hierarchical
networks.

A special place among the approximation algorithms is occupied by
backward-forward heuristic (BFH). First, for each vertex u ∈ V , two u − t
paths are searched: min-cost path and min-length path. This can be done, for
example, with the Reverse-Dijkstra algorithm [2]. Then, starting from the ver-
tex s, a modification of Dijkstra’s algorithm is applied, in which an additional
condition is used to relax the arc, using the previously found paths (arc relax-
ation has the same meaning as in the usual Dijkstra algorithm). Examples of
algorithms using similar approaches have been given by Reeves and Salama [16],
Sun and Langendorfer [17]. A similar algorithm for a multi-constrained problem
was proposed by Ishida [7].

For large road networks, Wang et al. [19] developed the constrained labeling
algorithm COLA. It is based on two special properties that are characteristic for
large road networks. First, road networks are usually (roughly) planar, which
makes it possible to effectively divide the graph into several subgraphs with the
special boundary vertices, between which it is required to find a path inside each
subgraph. Secondly, often in the solutions of CSP problems on road networks
there are a small number of landmarks [5] – the vertices that are present in valid
paths much more often than others. According to experiments, an algorithm that
takes into account these properties copes with mainland-sized road networks
many times better than other algorithms.

In the generalization of the CSP problem – Multi-Constrained Path (MCP)
problem – each arc has more than two parameters and it is required to find a
path that satisfies each constraint with respect to the corresponding parameter.
A summary and comparison of algorithms that solve MCP can be found in [11].

1.1 Our Contribution

Our approach to find an approximate solution to the CSP is based on the
Lagrange Relaxation Aggregated Cost (LARAC) algorithm developed in [8] and
summarized in [22]. In this approach, the Lagrange multiplier α > 0 is intro-
duced, and instead of the cost aij and length bij of the arc (i, j), one aggregated
weight cij = aij + αbij is used. For a fixed value of α, a path P (α) of minimal
weight c(α) is constructed of the cost a(α) and length b(α). If the length of the
path exceeds the allowable value, then the value of α increases. Otherwise, it
decreases.

To reduce the complexity, we build the special hierarchical structures (HS),
in which the copies of the same vertex can be located at the several neighboring
levels, and the arcs connect the vertices of the neighboring levels. However, in the
HS, the sink t is incident to the arcs from all adjacent vertices, regardless of the
level of their location. Further, using the heuristic considerations, the additional
arcs are added to the HS instead of some paths in the original metric graph.

We have shown that the shortest path in the HS is constructed with O(m)-
time complexity, where m is the number of arcs/edges in the original graph. If
the graph is sparse, then this is a big gain compared to the Dijksra’s algorithm

Constrained Shortest Path and Hierarchical Structures 397

and its modifications in the original graph. Obviously, not all arcs of the original
graph are included in the HS, so the found path may differ from the shortest
one. To compare the running time and the accuracy of our approach, a numerical
experiment was carried out. The simulation shows that the construction of the
shortest path in HS is several times faster than in the original graph. At the
same time, in the HS, the solutions close to the optimal ones are constructed.

The rest of the paper is organized as follows. In the next section, we present
a formulation of the CSP. In the third section, we present the procedures for
constructing the hierarchical structures. Section 4 is devoted to the description
of algorithm Aα, which ideologically coincides with the LARAC [8,22] and builds
an approximate solution to the problem. This section also provides estimates for
the running time and accuracy of the Aα. Section 5 describes the numerical
experiment, as well as the results of the simulation. The last section concludes
the paper.

2 Problem Formulation

Let a mixed graph G = (V,A), |V | = n, |A| = m, be given, whose arcs/edges
we will call the arcs for definiteness. To each arc (i, j) ∈ A two non-negative
numbers: cost aij and length bij are assigned. We assume that the graph does
not contain a pair of vertices i, j ∈ V linked by a simple path Pij from i to j
in which all internal vertices (that is, not coinciding with i and j) have degree
equal to 2. If such path exists, then instead of it we add one arc (i, j), the cost
of which is equal to the sum of the costs aij =

∑

(p,q)∈Pij

apq, and the length is

equal to the sum of the lengths bij =
∑

(p,q)∈Pij

bpq of the arcs included in it. It

is required to find a path from the vertex s ∈ V to the vertex t ∈ V (s-t path)
of the minimal cost and the length no more than β > 0. If Π is a set of simple
s-t paths, then it is required to find a path P ∈ Π, which is the solution to the
following problem. ∑

(i,j)∈P

aij → min
P∈Π

; (1)

∑

(i,j)∈P

bij ≤ β. (2)

The problem (1) is polynomially solvable, but the problem (1)–(2) is NP-hard
even if the lengths of the arcs are equal [4].

3 Hierarchical Structures

First, let us consider an acyclic digraph (Fig. 1a) with one non-negative weight
assigned to each arc. If the vertices s and t are known, then in this case the HS is
constructed without loss of arcs as follows. We place the vertex s to the level 0.
Then any vertex i falls into the level l ≥ 1 if there is a path from s to i consisting

398 A. Erzin et al.

Fig. 1. HS for acyclic digraph

of l arcs, but there is no s − i path consisting of l + 1 or more arcs (Fig. 1b). As
a result, the destination vertex t gets to some last level L. If there was an arc
(i, j) in the original graph G, then the same arc exists in the HS. In this case, it
is obvious that the vertex j is on a level with greater number compared to the
level number of the location of the vertex i. Moreover, in the process of building
a HS, we can simultaneously build the shortest paths to each vertex (see the red
arcs in Fig. 1). To do this, we consider in turn the vertices of the levels 1, . . . , L.
Among the arcs entering the vertex i, which is at the level l, we choose one that
belongs to the shortest path going from s to i. This is easy to implement by
storing the length of the shortest path to every vertex adjacent to i that is on
a level less than l. As a result, the shortest s-t path will be constructed with
O(m)-time complexity.

If graph G is arbitrary (not acyclic directed), then the placement of the
vertices at the levels of the HS is ambiguous. In this case, we may build a k-HS,
where k is a positive integer constant. In the k-HS, k copies of each vertex i are
located at the levels l, l+1, . . . , l+k−1, where l is the minimal number of edges
in the path from s to i (see example of k-HS in Fig. 2, where k = 2). In the
k-HS, the arcs link only the vertices of neighboring levels, except for the vertex
t, which is connected with all adjacent vertices, regardless of their placement
level (Fig. 2b).

In the example in Fig. 2b the images of the vertex 4 are located at the levels
2 and 3. The arc (1, 4) enters the vertex 4 at the level 2, and the arc (3, 4) enters
the vertex 4 at the level 3. Some vertices in the HS may turn out to be dead
ends – no arcs go out of them. In Fig. 2b such vertices are 5 at the level 3 and 7
at the level 5.

Constrained Shortest Path and Hierarchical Structures 399

Fig. 2. 2-HS for the mixed graph

If it is required to build the paths of minimal weight to all vertices in the
HS, then this can be done during the construction of a k-HS, similarly to the
method described above. For this, the vertices of the levels 1, . . . , L are considered
in turn. For any vertex i of the l-th level, an incoming arc (p, i) is chosen such
that cpi + dp = min

q
(cqi + dq), where the vertex q is at the level l − 1, and dq is

the minimal weight of the s − q path (it was found earlier). In the example in
Fig. 2b the arcs included in the shortest paths are red. Since k = const, the time
complexity of finding the min-cost paths is still equal to O(m).

In the 1-HS, each vertex i goes to the certain level which number equals to
the minimal number of arcs in the s − i path. As a result, all s-t paths in the
1-HS consist of the minimal number of arcs. In the k-HS, k > 1, the number of
arcs in the s-t paths, as well as the number of paths, is greater, which makes
it possible to find a path better than in the 1-HS. In Fig. 2 the shortest path is
indicated by bold red edges.

3.1 Algorithm k-HSpmax

Since not all promising paths fall into the k-HS, then when the nodes are the
points in the plane (metric graph), we add some arcs to the k-HS that connect
vertices of the non-adjacent levels based on the following heuristic. For each
vertex v ∈ V , we choose a perspective arc a(v) outgoing from v in the direction
of the sink t, defined by equation a(v) = arg max(ij)∈A |�ij| cos(∠(�ij, �it)/cij if it
is greater than 0. For each vertex v ∈ V and any integer p ∈ [1, n− 1], a path (if

400 A. Erzin et al.

it exists) outgoing from v and consisting of p perspective arcs can be uniquely
defined. For a fixed parameter pmax, we connect the vertices in the k-HS that
are the ends of the perspective paths consisting of p = 2, . . . , pmax arcs. Thus,
in the k-HSpmax no more than npmax additional arcs are added.

Let us introduce the following notations:

– vertexMinLayers – an array that for each vertex stores its minimal level in
HS;

– vertexMaxLayers – an array that for each vertex stores its maximum level
in HS (so, in k-HS, 0 ≤ vertexMaxLayers[i] − vertexMinLayers[i] ≤ k − 1
∀i ∈ {0, . . . , n − 1});

– �ij – a vector on a plane that goes from the vertex i to the vertex j.
– bestOutgoingArc[i] - an index of a perspective arc outgoing from the node i

(or -1, if it does not exist). For each vertex v ∈ V and any integer p ∈ [1, n−1],
a path (if it exists) outgoing from v and consisting of p perspective arcs can
be uniquely defined.

– vertexInfo – a matching between a pair of vertex and level, and a pair of a
min-weight path to this vertex in the HS and a sequence of arcs in this path
from a vertex of the previous level.

The pseudocode of the algorithm k-HSpmax presented in Algorithm 1. First,
for each vertex i ∈ {0, . . . , n−1} its perspective arc bestOutgoingArc[i] is calcu-
lated. Then the vertexMaxLayers[i] and vertexMinLayers[i] are set to −1 for
all i ∈ V \{s}, and they set to 0 for i = s. The queue Q is initially formed by the
only pair (s, 0) and vertexInfo[(s, 0)] = (0, ∅). The main phase of the algorithm
consists of the breadth-first search using the queue Q. For each considered pair
of vertex and level (i, l) the weight of a best found subpath wl

i and its part from
the vertex of a previous level P l

i are known, and on each iteration the direct
descendants of a vertex and the ends of the chains constructed by perspective
arcs (we call this neighborhood N(i)) are considered. For each vertex j ∈ N(i)
a path from i to j with the weight wij is known, as well as vertexMinLayers[j]
and vertexMaxLayers[j]. A Q or vertexInfo may be changed only in one of
the three following cases:

1. vertexMinLayers[j] = vertexMaxLayers[j] = -1. In this case we set
vertexMinLayers[j] = vertexMaxLayers[j] = l + 1, vertexInfo[j, l + 1]
= (wl

i + wij , Pij) and push the pair (j, l + 1) to the queue Q.
2. (vertexMinLayers[j] ≤ l +1) ∧ (vertexMaxLayers[j] ≥ l +1). In this case

the value of wl+1
j is known. If wl+1

j > wl
i +wij , then we set vertexInfo[j, l+1]

= (wl
i + wij , Pij).

3. (vertexMaxLayers[j] - vertexMinLayers[j] < k−1) ∧ (vertexMaxLayers[j]
= l) ∧ (maxLayer = −1 ∨ l < maxLayer). In this case, as well as in the case
1, we set vertexMaxLayers[j] = l + 1, vertexInfo[j, l + 1] = (wl

i + wij , Pij)
and push the pair (j, l + 1) to the queue Q.

Constrained Shortest Path and Hierarchical Structures 401

Once all predecessors of the target vertex are considered, the number of
maximal level is known. After that all vertices on the level that exceeds the
maximal level number are not added to the queue. During the procedure, the s.c.
best child of a target is found. Starting from this vertex and the corresponding
level, the sought for path is recovered using a backtracking procedure.

Algorithm 1. Heuristic algorithm k-HSpmax of shortest path construction using
the HS and perspective arcs merging
1: Input : G = (V, A) is an original graph, pmax – a maximum number of perspective

arcs in a path, k – a maximal number of levels that may contain copies of one
vertex; Q – an empty queue of pairs of two integers

2: Output : P – an s-t path in G;
3: for i = 1, . . . , n do
4: Find bestOutgoingArc[i];
5: vertexMaxLayers[i] = vertexMinLayers[i] = −1;
6: end for
7: vertexMaxLayers[s] = vertexMinLayers[s] = 0;
8: Push (s, 0) to Q, set vertexInfo[(s, 0)] = (0, ∅);
9: Set bestTargetChild = (−1, −1), maxLayer = −1;

10: while Q is not empty do
11: (i, l) = Q.Pop();
12: for all j ∈ N(i) do
13: Calculate wij and Pij ;
14: if j = t then
15: Update bestTagretChild and maxLayer;
16: end if
17: if vertexMinLayers[j] = vertexMaxLayers[j] = -1 then
18: Set vertexMinLayers[j] = vertexMaxLayers[j] = l + 1;
19: Set vertexInfo[(j, l + 1)] = (wl

i + wij , Pij);
20: Q.Push(j, l + 1);
21: else if (vertexMinLayers[j] ≤ l + 1) ∧ (vertexMaxLayers[j] ≥ l + 1) ∧

(wl+1
j > wl

i + wij) then

22: wl+1
j = wl

i + wij ;

23: vertexInfo[(j, l + 1)] = (wl
i + wij , Pij);

24: else if (vertexMaxLayers[j] - vertexMinLayers[j] < k − 1) ∧
(vertexMaxLayers[j] = l) ∧ (maxLayer = −1 ∨ l < maxLayer) then

25: Set vertexMaxLayers[j] = l + 1;
26: vertexInfo[(j, l + 1)] = (wl

i + wij , Pij);
27: Q.Push(j, l + 1);
28: end if
29: end for
30: end while
31: Starting from the bestTargetChild, using the data stored in the vertexInfo,

recover the s-t path

402 A. Erzin et al.

4 Algorithm Aα

The algorithm presented below essentially coincides with LARAC [8,22], but
we describe it in the following interpretation convenient for us. Instead of two
characteristics of each arc (i, j) ∈ A: cost aij and length bij , we introduce one
aggregated characteristic equal to cij(α) = aij + αbij , α ≥ 0, which we call the
weight of the arc. Let us denote by P (α) a min-weight s-t path when the weights
of the arcs are equal to cij(α), (i, j) ∈ A. Its cost is a(α) and its length is b(α).
If the path P (0) is feasible, i.e. the inequality (2) b(0) ≤ β is satisfied, then this
is the optimal path. Otherwise, the value of α should be increased until we find
the minimal α = α∗ for which the s-t path P (α∗) is feasible. To find α∗ one can
apply a dichotomy algorithm (the pseudo code is presented in Algorithm2). The
authors in [8,22] use an alternative way to change the α values.

Algorithm 2. Algorithm Aα

1: Input : G = (V, A) is an original graph, αmax, ε > 0
2: Output : s-t path P in G;
3: αl = 0; αr = αmax;
4: if P (αr) is not feasible then
5: Solution does not exist. stop algorithm
6: end if
7: if P (αl) is feasible then
8: return P (αl)
9: end if

10: while αr − αl > ε do
11: αm = (αl + αr)/2
12: if P (αm) is feasible then
13: αr = αm;
14: else
15: αl = αm;
16: end if
17: end while
18: return P (αl);

Of course, P (α∗) is not always an optimal solution to the problem (1)–(2) (see
Fig. 3a). However, in the case of the integer costs and lengths of the arcs, we can
estimate the accuracy of the resulting solution, as well as the number of steps to
find the α∗. Indeed, an arbitrary s-t path on a plane with a horizontal coordinate
axis α and a vertical axis y is characterized by the straight line y = bα + a. The
length b of the path determines the slope of this line, and the cost a of the path
determines the point of intersection of the line with vertical axis. The entire set
of the s-t paths forms a minorant of straight lines whose slope decreases with
increasing α. It is required to find the minimal α = α∗ for which the minorant
is determined by the straight line y = bα∗ + a with b ≤ β. The path P (α∗)
corresponding to this line is an approximate solution to the problem (1)–(2).

Constrained Shortest Path and Hierarchical Structures 403

Fig. 3. Representation of the s-t paths by the straight lines on the plane (α, 0, y)

Let us assume that α∗ is determined by the intersection of the lines y = b1α+a1

and y = b2α + a2, b2 < β, b1 > β. From the equality b1α
∗ + a1 = b2α

∗ + a2, we
get that α∗ = a2−a1

b1−b2
. If aij ≤ amax and bij ≤ bmax, then α∗ ≤ amaxn.

Assume that the line corresponding to the optimal path passes above the
minorant at the point α∗ (green line in Fig. 3a). Then the parameter e of the line
y = βα+e passing through the point of intersection of the lines y = b1α+a1 and
y = b2α+ a2 (dashed green line in Fig. 3a), is the lower bound for the optimum.
We have βα∗ + e = b2α

∗ + a2, whence e = a2 − (β − b2)α∗. Therefore, taking
into account the integer parameters, the ratio is

ε ≤ a2

e
=

a2

a2 − (β − b2)a2−a1
b1−b2

≤ 1
1 − β−a2

b1−b2

≤ 1
1 − β−1

β

≤ β.

As mentioned above, the dichotomy method can be used to find α∗. Let us
estimate the number of iterations of the method for integer parameters. An upper
bound for the value of α∗ was obtained above. Let us find a lower bound for the
difference of neighboring α. To do this, we take three lines y = b1α + a1, y =
b2α + a2, y = b3α + a3, b1 > b2 > b3, a1 < a2 < a3, which form two neighboring
break points αl and αr, αl < αr, of the minorant. We have b1αl +a1 = b2αl +a2

and b3αr + a3 = b2αr + a2. Consequently,

αr − αl =
a3 − a2

b2 − b3
− a2 − a1

b1 − b2
≥ 1

(b2 − b3)(b1 − b2)
>

1
b1b2

≥ 1
b2maxn2

.

If K is the maximum number of iterations in the dichotomy method, then
amaxn/2K ≤ 1/b2maxn2. Hence K = O(log n).

If, for each value of α, Dijkstra’s algorithm is used to find the min-weight
path, then the complexity of constructing an approximate solution to the prob-
lem (1)-(2) is O(n2 log n). If we look for the min-weight path in the HS, then the
complexity of obtaining an approximate solution is O(m log n).

The resulting guaranteed accuracy is rough. Therefore, in the next section
we describe a numerical experiment in which the running time and the accuracy
of the solution are compared.

404 A. Erzin et al.

5 Simulation

We implement the proposed approach using the programming language C++. In
order to find an optimal solution or a lower bound of the optimum, we construct
an ILP model presented in [10] for CSP and then use a GUROBI solver. As the
test instances we use a road map of New York city [1] and the randomly generated
unit-disk graphs (UDG). The experiment was carried out on the AMD Ryzen 5
3550H 2.1 GHz 8 Gb RAM, Windows 10× 64.

There are two weights defined for each arc in the data set of the New York
road map. The first weight is a distance, and the second weight is an average
traveling time between the nodes. To avoid large values, we divide all parameters
by 100 and left only the integer parts of the resulting numbers.

UDGs are constructed in the following way. Firstly, a set of nodes is randomly
uniformly spread over a square region. Then, each two nodes are connected by
two oppositely directed arcs iff the distance between them is not more than a
predefined value r. After that, two weights are assigned to each arc. The first
weight equals to the distance, and the second weight equals to the distance
multiplied by noise factor – a random real uniquely generated for each arc and
uniformly distributed in the segment [1, 3].

Practically, actual running time spent to find one-weight shortest path (SP)
depends on the proximity between the source s and target t. That is why we
consider separately instances when the distance between s and t is small (25 % of
the graph diameter), medium (50%), and large (75%). For each graph instance
and each variant of the distance between source and target, we generate 10
random problem instances.

We test different variants of HS based heuristic in order to find a best com-
bination of its parameters. To be precise, for each k = 1, 2, 3 and pmax = 1, 2, 3
we run k-HSpmax on each test instance and compare their performance with
Dijkstra’s algorithm (it is called Dij below). Also, we use each heuristic that
solves SP problem in the LARAC based algorithm that approximately solves
CSP. Note that for the LARAC based approach we use the rules of updating α
from [8]. To denote these algorithms the prefix A is used.

In Fig. 4 the results on the New York map are presented. Here and in the
next figures, the average values among launching the algorithms on 10 random
instances are presented, and the vertical intervals stand for the standard devia-
tions. On the one hand, as it is seen in Fig. 4a, the HS based algorithms bring
significant performance error, but, on the other hand, it noticeably decreases
with growth of k and pmax, and, according to Fig. 4b, these heuristics spend
less time than Dijkstra’s algorithm. Of course, the running time also increases
with growth of k and pmax, so the moderate values of these parameters may be
chosen to achieve less quality degradation with significant speedup.

The results of application of these algorithms to the LARAC based approach
for CSP are presented in Fig. 5. The average path lengths are presented in Fig. 5a,
the average ratio values that was obtained on the cases when GUROBI found
optimal solution are presented in Fig. 5b, and Fig. 5c shows the average run-
ning time. Note that GUROBI failed to find solution to the large-size instances,

Constrained Shortest Path and Hierarchical Structures 405

Fig. 4. Algorithms results for the SP problem on the New York map. Average values
and standard deviations.

when the distance between s and t is 75% of the metric graph diameter. Here,
again, one can observe that using Dijkstra’s algorithm allows to get more precise
solution on average but HS based heuristics allow to find approximate solution
10–100 times faster.

We also test all algorithms on the UDGs that were constructed as described
above. The points for the graph generation are randomly spread on the unit-side
square. Graph density depends on two parameters: n – the number of vertices,
and r – the disk radius that defines connectivity between each pair of vertices.
There are three UDG variants tested: (1) n = 10000 and r = 0.1, (2) n = 10000
and r = 0.2, and (3) n = 100000 and r = 0.025. All tested heuristics construct a
near optimal solution: the ratio is at most 1.002. Therefore, it is worth comparing
only a running time. Figure 6 presents the average running time for solving the
SP problem, and in Fig. 7 the average running time for solving the CSP problem
are shown. It can be noticed that for the both problems in the UDG the usage
of HS based heuristics instead of Dijkstra’s algorithm is justified since they
construct almost optimal solution an order of magnitude faster.

406 A. Erzin et al.

Fig. 5. Algorithms results for the CSP problem on the New York map. Average values
and standard deviations.

Constrained Shortest Path and Hierarchical Structures 407

Fig. 6. Time in seconds of solving SP problem on the UDG. Average values and stan-
dard deviations.

408 A. Erzin et al.

Fig. 7. Time in seconds of solving CSP problem on the UDG. Average values and
standard deviations.

Constrained Shortest Path and Hierarchical Structures 409

6 Conclusion

This paper considers NP-hard Constrained Shortest Path (CSP) problem, when
to each arc of the given n-nodes graph two characteristics are assigned: cost
and length, and it is required to find a min-cost bounded-length path between
the given pair of nodes. The constraint on a path length is accounted for by
considering one aggregated edge weight equals to the linear combination of the
cost and length using a Lagrange multiplier as in [8]. By varying the multiplier
value, a feasible solution delivers a minimum to the function with new weights.
Then we are looking for the solution, not in the original graph but in the specially
constructed hierarchical structures (HS). We show that the shortest path in
the HSs is constructed with O(m)-time complexity, where m is the number of
edges/arcs in the graph, and the approximate solution in the case of integer costs
and lengths of the edges is found with O(m log n)-time complexity. An a priori
estimate of the accuracy turned out to depend on the parameters of the problem
and can be significant. Therefore, to evaluate the algorithm’s effectiveness, we
conducted a numerical experiment on the graph of roads of the megalopolis
and randomly constructed unit-disk graphs (UDGs). The simulation shows that
in the HSs, a solution is built 10–100 times faster than by the methods using
Dijkstra like algorithms in the original graph.

References

1. 9th DIMACS Implementation Challenge. http://www.dis.uniroma1.it/challenge9/
download.shtml

2. Ahuja, R.K., et al.: Network Flows: Theory, Algorithms, and Applications. Prentice
Hall Inc, London (1993)

3. Cormen, T.H., et al.: Introduction to Algorithms. The MIT Press, Cambridge
(2000)

4. Garey, M.S., Johnson, D.S.: Computers and Intractability: Guide to the Theory of
NP-Completeness. (Ed by, W.H. Freeman), New York (1979)

5. Goldberg, A.V., Chris, H.: Computing the shortest path: a search meets graph
theory. In: SODA 2005 (2005)

6. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math.
Oper. Res. 17(1), 36–42 (1992)

7. Ishida, K., et al.: A delay-constrained least-cost path routing protocol and the
synthesis method. In: Proceedings of the 5th International Conference on Real-
Time Computing Systems and Applications, pp. 58–65. IEEE (1998)

8. Jüttner, A., et al.: Lagrange relaxation based method for the QoS routing problem.
IEEE INFOCOM 2001, 859–868 (2001)

9. Koster, A.M.C., Muñoz, X. (eds.): Graphs and Algorithms in Communication Net-
works. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-02250-0

10. Handler, G., Zang, I.: A dual algorithm for the constrained shortest path problem.
Networks 10, 293–310 (1980)

11. Kuipers, F.A., et al.: An overview of constraint-based path selection algorithms
for QoS routing. IEEE Commun. Mag. 40(12), 50–55 (2002)

12. Lorenz, D.H., et al.: Efficient QoS partition and routing of unicast and multicast.
In: Proceedings of IWQoS 2000, pp. 75–83 (2000)

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
https://doi.org/10.1007/978-3-642-02250-0

410 A. Erzin et al.

13. Lozano, L., Medaglia, A.L.: On an exact method for the constrained shortest path
problem. Comput. Oper. Res. 40, 378–384 (2013)

14. Orda, A.: Routing with end-to-end QoS guarantees in broadband networks.
IEEE/ACM Trans. Netw. 7(3), 365–374 (1999)

15. Pugliese, L.D.P., et al.: The resource constrained shortest path problem with uncer-
tain data: a robust formulation and optimal solution approach. Comput. Oper. Res.
107, 140–155 (2019)

16. Reeves, D.S., Salama, H.F.: A distributed algorithm for delay-constrained unicast
routing. IEEE/ACM Trans. Netw. 8(2), 239–250 (2000)

17. Sun, Q., Langendorfer, H.: A new distributed routing algorithm for supporting
delay-sensitive applications. Comput. Commun. 21, 572–578 (1998)

18. Wang, H., et al.: A bio-inspired method for the constrained shortest path problem.
Sci. World J. 2014, 271280 (2014)

19. Wang, S., et al.: Effective indexing for approximate constrained shortest path
queries on large road networks. Proc. VLDB Endow. 10(2), 61–72 (2016)

20. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia
applications. IEEE Sel. Areas Commun. 14(7), 1228–1234 (1996)

21. Widyono R.: The design and evaluation of routing algorithms for real-time chan-
nels. Technical report TR-94-024, University of California at Berkeley & Interna-
tional Computer Science Institute (1994)

22. Xiao, Y., et al.: The constrained shortest path problem: algorithmic approaches
and an algebraic study with generalization. AKCE J. Graphs. Combin. 2(2), 63–86
(2005)

Investigation of Graph Neural Networks
for Instance Segmentation of Industrial

Point Cloud Data

Sandeep Jalui1(B) and Evangelia Agapaki2(B)

1 Electrical and Computer Engineering, Herbert Wertheim College of Engineering,
University of Florida, Gainesville, FL 32611, USA

sjalui@ufl.edu
2 Construction Management, M.E. Rinker, Sr. School of Construction Management,

University of Florida, Gainesville, FL 32603, USA
agapakie@ufl.edu

https://www.evagapaki.com/

Abstract. The concept of Digital Twins (DTs) was introduced 15 years
ago. There have been many research methodologies and software to
implement DTs in different industries including manufacturing, construc-
tion, product design, and other fields. DTs help quantify operational
risks, improve production time, assist predictive maintenance, enable
real-time remote monitoring and thus better financial decision-making.
The generation of DTs for existing industrial sites necessitates the use
of laser scanners for the acquisition of point cloud data that capture the
existing (as-is) conditions. Currently, human modelers manually segment
point cloud data by overlaying 3D CAD models on top of the laser scans
or validating laser scanned point clouds with 2D documentation and
drawings. Our previous work has achieved effective point cloud process-
ing with techniques such as instance segmentation and class segmenta-
tion of the collected and registered industrial point cloud data. Instance
Segmentation is an important method of clearly partitioning each object
to a human-understandable point cluster in complex laser scanned data,
creating a Geometric Digital Twin of Industrial Facilities. The industrial
point cloud data consists of pipes, valves, cylinders, and various other
combinations of geometric shapes. Segmenting such data is a difficult task
as the data is too complex to visualize and understand. In our previous
work, CLOI-NET, which is the state-of-the-art architecture for instance
segmentation of industrial point clouds, achieves instance segmentation
with average accuracy of 70% using graph connectivity algorithms. This
proved that there is scope for more accurate instance segmentation of
complex industrial point cloud data with a focus on identifying topolog-
ical connectivity between components of the point cloud (e.g., a piping
network). Also, there have been many research methods, for instance seg-
mentation in city-scale and indoor environments classifying cars, people,
buildings, trees, roads, using different types of neural networks with sat-
isfactory performance having average accuracy upto 85%. In this paper,
we discuss the best algorithms/networks like Graphical Neural Networks

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 411–428, 2022.
https://doi.org/10.1007/978-3-031-24866-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_30&domain=pdf
http://orcid.org/0000-0002-0562-3691
http://orcid.org/0000-0002-2962-9203
https://doi.org/10.1007/978-3-031-24866-5_30

412 S. Jalui and E. Agapaki

and 3D-CNNs and how they can be used to perform instance segmenta-
tion of industrial data, which will eventually lead to a better version of
DT implementation specifically for industrial point cloud data.

Keywords: Digital Twin · Instance segmentation · Graphical Neural
Network · Geometric deep learning · Point clouds · Computer vision

1 Introduction

Fig. 1. Class segmentation of industrial objects (Agapaki, 2020) [3]

Maintaining a safe environment in industrial facilities is critical for improving
work processes efficiently as well as economic aspects of their operation and
management. It has been estimated that due to poor maintenance of equipment,
the downtime costs are around $50 billion per year with 44% of equipment failing
due to aging processes [1]. Also, the Chartered Institute of Buildings in the U.K.
estimates that refurbishing and retrofitting 93% of the industrial equipment
will be one of the major goals by 2050 [2]. These problems can be resolved by
the generation and maintenance of up-to-date Digital Twins (DTs). However,
the cost of generating DTs is so high that it outweighs the benefits. This is
because manual modeling of labor cost and data collection using laser scanners
is expensive.

Thus, there is a need to develop solutions which need less labor-intensive
industrial modeling tools and will help increase the productivity of industrial
assets. Such problems can be solved by generating DTs with the help of Artifi-
cial Intelligence and Neural Networks. In our previous work as shown in Fig. 1, we
developed and implemented a CLOI-NET [3] framework, which aims to simplify
the above process as discussed. The CLOI-NET algorithms were the first frame-
work to generate geometric digital twins from terrestrial laser scanned industrial
data. This framework follows three steps: (a) Semantic or class Segmentation
(b) Instance Segmentation, and (c) Fitting to other geometric representations.
Semantic segmentation helps us to identify different classes or objects in a point
cloud while instance segmentation is an extension of semantic where it differen-
tiates each instance of the semantic category.

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 413

The class segmentation problem is solved, and 70% of the total labor hours
can be saved for this task [3]. While instance segmentation has been devel-
oped using graph connectivity algorithms in our previous work [4], the problem
remains due to low accuracy as well as missing relationships between instances.
The output of instance segmentation is important as it can provide sufficient geo-
metric information to generate DTs by fitting 3D representations (e.g., meshes,
parametric shapes) to the instance point clusters. In our previous research [4], we
used a Breadth First Search algorithm [5] to implement instance segmentation.
The implementation of this algorithm on industrial point cloud data revealed low
accuracy due to high data complexity, however there is room for improvement
if we apply more advanced models tailored to industrial environments. To give
some examples, the highest recall value of segmented cylinders is 61.3% and low-
est is 48.5% for 50% IoU on four industrial laser scanned, point cloud datasets.
Similarly, the average precision for I-beams was 59.1% and average recall was
64.2%. Also, a petrochemical plant suffers most from over-segmentation due to
sparse point density of the data. There are many research organizations which
are described below who have worked on instance segmentation using different
combinations of neural networks and they have successfully implemented those
on real world datasets of indoor or outdoor scenes with sufficient accuracy scores.

The segmentation output in computer vision problems is usually evaluated
using the mean Intersection over Union (mIoU) metric. The IoU is the ratio
between the area of overlap and the area of union between the ground truth
and the predicted instance labels. AP is the area under the Precision-Recall
Curve(AUC-PR) evaluated at some % of IoU threshold. AP50 is evaluated at
50% IoU threshold and AP75 at 75% IoU threshold. mAP is the average of
different AP values calculated for respective classes [6]. Models such as Soft-
Group [7], HAIS [8], SSTNET [9], Dyco3D [12] have achieved some significant
results with respect to instance segmentation of point clouds. On the ScanNet v2
dataset, the AP50 score of softgroup is 76.1%, followed by 69.9% and 69.8% of
HAIS and SSTNET respectively. The SSTNet [9] model has achieved an average
recall value of 73.4% and mean average precision (mAP) 54.1% on an indoor
point cloud dataset of office spaces (S3DIS), while on ScanNet(v2) dataset,
mAP@0.5 is 69.8% and mAP is 50.6%. Another state-of-the-art instance seg-
mentation network (OccuSeg [10]) achieved mAP@0.5 of 63.4% and 47.1% on
the ScanNET(v2) and the SceneNN dataset respectively. Also, networks such as
Res-UNet-R/H [13] are successful in 3D instance segmentation of mitochondria
cells from human and rat samples.

While these networks solve instance segmentation, there are some robust net-
works who have achieved panoptic segmentation. Panoptic segmentation unifies
both class and instance segmentation methods. Table 1 below shows some of the
state-of-the-art panoptic segmentation networks on semantic Kitti datasets with
their respective mean Intersection over Union (mIoU) scores. As per our study,
we found that GP-S3Net [19] and EfficienctLPS [20] gives the best state-of-the-
art output on panoptic segmentation tasks in terms of mIoU score. Semantic
Kitti [22,23] dataset is based on real world objects such as roads, buildings,

414 S. Jalui and E. Agapaki

cars, people, trees and many others. Apart from the techniques mentioned, we
also found that Graphical Neural Networks [14,16] have huge scope of being
applied to 3-D pointcloud datasets performing both semantic and instance seg-
mentation. Thomas N. Kipf and Max Welling have explained the fundamentals
of Graph Convolutional Networks (GCN) in their prior work [25]. In this paper,
we discuss some of the existing techniques, which have been tested on indoor
buildings and city datasets, how we can leverage these techniques and update our
own state-of-the-art architecture CLOI-NET to give satisfactory performance on
Industrial Point Clouds.

Table 1. Panoptic segmentation models [24]

Approach mIoU (%)

GP-S3Net 70.8

EfficientLPS 61.4

DS-Net 61.6

Panoster 59.9

Panoptic4D (single scan) 61.3

MOPT 52.6

Panoptic RangeNet 50.9

2 Background on Point Cloud Instance Segmentation
Methods

Fig. 2. Convolutional neural networks and PointNET-based methods

As we can see in Fig. 2 (a), Convolutional Neural Networks (CNNs) can be
applied on the 2-D image that segment objects because they are powerful algo-
rithm for image processing, and require a regular grid as input. However, point

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 415

clouds are typically sparse and not evenly distributed on a regular grid. If point
clouds were to be placed on a regular 2D grid, they will generate an uneven
number of points, thus there is no benefit in applying convolutions as it will
give less accurate output [27]. Another approach is using PointNETs which are
shown in the Fig. 2 (b). PointNET [41] is one of the best architectures to process
an unordered set of points for semantic feature extraction, because of its sim-
plicity (MLP layers) and invariance in permutations of input points. This is the
reason the development of CLOI-NET uses PointNET algorithms as the back-
bone network for semantic segmentation. PointNET uses a hierarchical neural
network, named as PointNET++ [28], which processes a set of points sampled
in a metric space in a hierarchical manner. Using a distance metric, the set of
points are partitioned into overlapping local regions. Then, by applying MLP
layers, local features are extracted capturing fine geometric features from small
neighborhoods. Such features are grouped further until PointNET++ obtains
the features of the whole point set. This technique is quite accurate, but does
not allow the aggregation of local information which restricts the performance
of the algorithm [16].

However, there has been a follow-up work on PointNET [41] such as DGCNN
[26] which constructs graphs, thereby improving the accuracy performance but
at the cost of memory consumption and runtime. Another approach is by using
grouping based instance segmentation, which is demonstrated by SoftGroup
algorithm. This method has a bottom-up pipeline that generates per-point pre-
dictions such as semantic maps, geometric shifts and then aggregates points into
instances segmentation [7]. SoftGroup is a useful method to investigate compared
to our previous efforts on CLOI-NET for pure improvements of the instance seg-
mentation task. Out of all the methods discussed above, we researched that if
point clouds are considered as graphical data by defining nodes and edges [29]
and training a classification algorithm using Graphical Neural Networks will be
a huge advancement with expected accurate predictions and will be the first
benchmark for instance segmentation of industrial point clouds.

2.1 Geometric Deep Learning Methods

One of the advantages of geometric deep learning methods is that they directly
process 3D points. SSTNet [9] learns point-wise semantic and instance-level fea-
tures separately and then it efficiently aggregates these features as superpoints
via point-wise pooling. The important part in this algorithm is semantic super-
point tree (SST), where superpoints are its tree leaves. SSTNET achieved 67.8%
AP@50, being the state-of-the-art instance segmentation network on real-world
indoor laser scanned data. The limitation of this method is that topological rela-
tionships between instances cannot be predicted using this method. OccuSeg [10]
takes the 3D geometry model data as input, and produces point-wise predictions
of instance level semantic information. While PointGroup [11] is a bottom-up
3D instance segmentation framework.

416 S. Jalui and E. Agapaki

Fig. 3. SOTA literature review based on Geometric Deep Learning method

Based on the semantic predictions for the original coordinate space and
shifted coordinate space, this network is trained to group points into different
clusters and ScoreNet is used for prediction. The architectural model of HAIS [8]
and SoftGroup [7] is built in a similar way as PointGroup. However, Softgroup
[7] has achieved the best results by surpassing the strongest previous method by
a significant margin of +6.2% on the ScanNet v2 hidden test set and +6.8% on
S3DIS Area 5 of AP 50. The main limitation of such methods is that they are

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 417

suitable for small datasets not for large datasets due to their computational com-
plexity. RandLA-Net [17], KPConv [18] and PointNet++ [28] are point based
methods. Figure 3 shows different architectures based on 3D Geometric Deep
Learning Methods.

2.2 Projection Based Methods

Projection based methods transform input point clouds in 2D and use CNNs
to segment objects in 2D images. These networks have been widely applied in
autonomous driving. The projection can be either the topdown Bird-Eye-View or
spherical Range-View as shown in Fig. 4 [35–39]. The computation speed of these
models is very high but accuracy is low because of information loss during pro-
jections. One of the high-performing networks is EfficientLPS [20]. This model
is built on the EfficientNet family of networks and thus the name EfficientLPS.
EfficientNet [21] is a scaling method that uniformly scales depth, width, and
resolution to increase the performance for convolutional neural networks. Effi-
cientLPS architecture consists of projection, backbone, semantic head, instance
head and post-processing modules. Using a scan unfolding technique [32], 3D
point cloud data is projected into 2D data. It is then fed as an input into a
backbone module consisting of a Proximity Convolution Module, an Efficient-
Net encoder, 2-way FPN and Range Encoder Network (REN) in parallel. The
REN is implemented parallel to the encoder to encode range channel of the
projection and fuse it with the 2-way FPN outputs to calculate range-aware
multi-scale features and then outputs are fed as an input to the semantic and
instance head.

Fig. 4. SOTA literature review based on Projection Based Methods

418 S. Jalui and E. Agapaki

The logits from the heads are combined in the panoptic fusion model and
using the K-NN algorithm the output is projected back to 3D. The mIoU score
for SemanticKITTI test set is 61.4% and for validation set is 64.9% which is quite
low as compared to instance segmentation networks. A limitation of projection-
based methods is that they cannot be easily applied on densely populated scenes
due to information loss and many object occlusions.

2.3 Graph Neural Networks

Fig. 5. Structure of Graph Neural Networks

Since our data is 3D point clouds, which is non-euclidean, the traditional CNN
method fails to perform instance segmentation. And thus a new type of algo-
rithm is needed to deal with non-euclidean data. The Graphical Neural Network
algorithm has a lot of potential to handle such type of data. GNNs are a family
of neural networks, which operates on graph-structured data as shown in Fig. 5.
They extract and utilize the features from originally defined graph. In GNN tech-
niques the entire point cloud data is treated as a graph or subsets of pointclouds
can be considered and connected via nodes of each subset graph. In graphical
network, each data point is connected with edges. A graph is defined as G = (V,
E), where V is the set of nodes and E is the edges between nodes. Each node has
its own set of features. GNNs can be easily applied to the graph data and can
do segmentation tasks. GNNs can make more accurate predictions about groups
in the graph, as compared to traditional models that consider individual graphs
in isolation.

Also, GNNs have largely replaced graph-structured data models like graph
kernels and random-walk methods because of their inherent flexibility to model

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 419

the underlying systems better. GCN, GAT, GraphSAGE, GIN are some of the
types of GNNs based on message-passing forms in GNN architectures [33]. How-
ever, there are many challenges in graphical neural network modelling. The
graphs do not have consistent structure, therefore prediction becomes a chal-
lenging task. The node order equivalency is another challenge. Even though the
graph structure might look the same but node labelling will be different after
every iterations. As compared to images, where pixels have absolute fixed posi-
tions. If the nodes are permuted in some way, the outcome representation of
the nodes should also be permuted in the same way after applying graph algo-
rithm. The GNN models applied on the data should be scalable. In our point
cloud dataset, we cannot consider every point as a node in the graph, other-
wise it will be computationally expensive. Rather, we consider one point from
the whole object as node and connect with other nodes through edges. GNNs
can solve multiple problems like Node Classification which classifies individual
nodes, Graph Classification which classifies entire graphs, Node Clustering which
groups similar nodes, Link Prediction helps in finding missing links and Influ-
ence Maximization identifies individual nodes. Figure 6 shows the different type
of models discussed above [33].

Fig. 6. Types of GNN solutions

Weijing and Rajkumar [14] have worked on developing the Point-GNN algo-
rithm which performs the object detection on pointclouds data. Their approach
is composed of three steps: a) Graph generation, b) GNN layers of T iterations,
c) bounding box generation based on the classification and localization output

420 S. Jalui and E. Agapaki

of the GNN. The point clouds are represented as P = {p1,...,pN}, where pi =
(xi, yi, zi, si) is a point with both 3D coordinates and the state value si ∈
Rk a k-length vector that represents the laser intensity or the features encoding
the surrounding objects. Si preserves the information within the original point
cloud. Using the point cloud P, a graph is constructed G = (P, E) where P is
considered as vertices and connects to its neighbour points within a fixed radius
r and E = {(pi, pj) | ||xi − xj ||2 < r} [15].

Here, voxels [30] are also used to reduce the density of point clouds that
reduces the computational time. These graphs are then passed through multiple
multi-layer perceptron (MLP) layers and then aggregated through a max func-
tion. In the third step, using non-maximum suppression (NMS), multiple bound-
ing boxes of the same object are merged into one and confidence score is assigned.
The highest Average Precision (AP) on the KITTI dataset is 88.33%, 51.92%
and 78.6% on car, pedestrian and cyclist predictions. As shown in Fig. 7 which
shows various types of approaches for segmentation algorithms using graphical
neural networks.

DGCNN model is inspired by PointNet [41] and convolution operations which
performs point cloud classification, point cloud part segmentation and semantic
segmentation. It integrates EdgeConv into the PointNet architecture. EdgeConv
is permutation invariant and captures local geometric structure, then generates
edge features that describe the relationships between a point and its neigh-
bors. Thus, this model constructs local neighborhood graph using EdgeConv
and applies convolution on the edges connecting neighboring pairs of points.
However, this model has the potential to improve scalability and efficiency. This
model is more useful for abstract point clouds like document retrieval and image
processing rather than 3D geometry [26].

MuGNet is a multi-resolution graph neural network which converts input
point clouds into small graph clusters and then each cluster is classified into
semantic classes based on cluster features [40]. MuGNet acts as a pseudo-logistic
growth where memory usage lows down with increase in the memory. As the
number of data points increases, this model scales accurately. Thus, MuGNet
would be appropriate for scenarios where a large number of point clouds need
to be processed at once, and particular information needs to be saved [40].

HAPGN performs part segmentation and semantic segmentation. HAPGN
uses GGAN module which enhances the local feature extraction and HiGPool
layers to learn the hierarchical features. This model takes raw point clouds as
input and pass it through mlp layer. Then, it is passed through GGAN and
HiGPool layers which are parallel to each other to extract local and hierarchical
features. The outputs of these modules are concatenated and the final score is
computed through an MLP layer [42]. However, this algorithm needs a lot of
improvement when it comes to unbalanced large scale point cloud datasets. The
accuracy scores for all these models are shown in Table 2.

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 421

Fig. 7. SOTA literature review based on Graph Neural Network

Table 2. Performance of Graph Models on S3DIS dataset

Models Overall accuracy (%) mIoU (%)

MuGNet 88.5 69.8

DGCNN 85 59.2

HAPGN 85.8 62.9

422 S. Jalui and E. Agapaki

3 Experiments

3.1 Dataset

Figure 8 shows the CLOI [3] dataset consisting of different shapes like Cylinder,
Valve, Flange, Angle, Ibeam, Channel, Elbow. The hrs mentioned refer to the
modelling time taken when performing the modelling task manually in Revit [31]
software. The % mentioned is the frequency of appearance in the entire dataset.
The maximum objects in the CLOI dataset are Cylinder followed by channels
and elbows. The objects which does not comes under the above category, we
have annotated that as other which constitutes approximately 27%. The dataset
is unbalanced due to nature of the target regions and needs to considered while
modelling algorithm. Also, CLOI dataset is segregated into 6 different Area
folders, where Area 1 to Area 5 is considered as training and Area 6 as testing.

Fig. 8. CLOI dataset

3.2 Implementation

The above CLOI dataset was used for training with SoftGroup algorithm to check
the behavior of geometric deep learning methods. As SoftGroup has achieved the
highest benchmark on S3DIS dataset for Instance Segmentation, this algorithm
was first and becomes the basis for implementing neural network based algorithm
as compared to graph connectivity algorithm. This experiment was tested with
different combination of learning rate, epochs, GPU configuration and different

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 423

parameters of the dataset. This experiment is run in 4 stages:- pre-training,
training, inference and visualization. We found the respective mIoU scores for
different classes with 30 epochs and learning rate 0.004 and is mentioned in
the Table 3. The accuracy score was around 62.3% with mean IoU 27.2%. The
running time for each training codes takes approximately 6 hrs for 30 epochs
with 1 GPU node and 200 GB memory.

Table 3. SoftGroup implementation on CLOI dataset

Objects Cylinder Valve Channel Ibeam Elbow Angle Flange Other

mIoU(%) 50.7 49.1 5.0 43.4 13.5 0.7 0.0 55.0

4 Discussion

Based on the investigation of all algorithms discussed in this paper. We imple-
mented the SoftGroup algorithm on CLOI dataset and there are some chal-
lenges which need to be addressed. There is room for lot of improvements for
this experiment. The computational time and resources needs to be reduced.
Also, the overall accuracy and mIoU scores needs to be increased for better
instance segmentation. Also, the new algorithm should be able to train accu-
rately on unbalanced datasets. Our review of the existing literature indicates
that graph neural network architectures are appropriate for the inference of the
links between segmented instances (edges of the graph). Our proposed architec-
ture is that we can combine the SoftGroup with Graphical Neural Network to
overcome the challenges. Our hypothesis is that with given the instance point
clusters as input, we predict the edges of the graph. The input of this process
will be a graph with a set of nodes {is1, is2, ..., isn} and edges {(is1, is2), (is2,
is3), ...}, where edges are defined for each pair of nodes that are relatively in
close proximity to each other. This is considered as the “ground truth graph”
for the inference of topological relationships in a piping network.

A piping network consists of pipes, valves, elbows and flanges. After the input
graph is defined, the next step is to identify feature vectors, f = {f1, f2, ..., fn},
where N is number of features of each instance node. Each feature vector will
be obtained by using a geometric deep learning algorithm such as SoftGroup for
classifying the node and extracting the feature vector of its last network layer.
In addition to the extracted feature vector, another set of object-level geometric
features needs to be obtained. These features are a set of orientation vectors,
radius (for the case of pipes), center, starting and end point coordinates of each
instance node. Then, a graph attention network will be deployed similar to the
one proposed in CurvaNet architecture [34], where the input of the network is
the feature vector of each instance, and the outputs are link edges between the
instances. The outline of our suggested methodology is presented in the Fig. 9.

424 S. Jalui and E. Agapaki

Fig. 9. Discussion

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 425

Pytorch Geometric [43] library can be used to built the proposed architecture.
This library is built on PyTorch specifically for designing graph neural network
based methods. However, there are still some open-ended research questions
(RQs), which we intend to answer while implementing this methodology:

– RQ1: Which is the most appropriate GDL instance segmentation architecture
to extract instance feature vectors? (Current research)

– RQ2: Which are other node definitions that can be considered for the piping
network graph (e.g., partial point cloud instances and missing edges)?

– RQ3: Which additional features can be added to the geometric feature vector
(i.e., curvature, normals)

5 Conclusions

The major challenge we are facing is dealing with huge and complex point cloud
data without sacrificing instance segmentation accuracy. By investigating various
types of 3D segmentation networks based on geometric techniques, projection
and graphical based methods, we implemented a SoftGroup algorithm on CLOI
dataset and found the results not so satisfactory but it was the first benchmark
if we consider neural network based models as compared to a previous method
which was only breadth first search algorithm. Also, while researching various
graphical-based neural networks implemented on 3D point clouds data shows
the average accuracy of 85% and thus there can be a high likelihood of success
with using graphical techniques and potentially we will be able to implement and
deploy a high-performing instance segmentation network specifically for indus-
trial point clouds. Implementing a successful instance segmentation method,
which will resolve issues related to the faster implementation of DTs in the
manufacturing industry, can be of substantial importance.

Acknowledgments. We thank the Florida Space Institute (NASA) for sponsoring
this research. We gratefully acknowledge the collaboration of all academic and indus-
trial project partners. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the institutes mentioned above.

References

1. Thomas, D.S., Thomas, D.S.: The costs and benefits of advanced maintenance in
manufacturing. US Department of Commerce, National Institute of Standards and
Technology, Gaithersburg, MD, USA (2018)

2. Edwards, J., Townsend, A.: Buildings under refurbishment and retrofit. Carbon
Action 2050 (2011)

3. Agapaki, E., Brilakis, I.: CLOI-NET: class segmentation of industrial facilities
point cloud datasets. Adv. Eng. Inform. 45, 101121 (2020)

4. Agapaki, E., Brilakis, I.: Instance segmentation of industrial point cloud data. J.
Comput. Civ. Eng. 35(6), 04021022 (2021)

426 S. Jalui and E. Agapaki

5. Hsu, C.-M., Lian, F.-L., Ting, J.-A., Liang, J.-A., Chen, B.-C.: Road detection
based on bread-first search in urban traffic scenes. In: 2011 8th Asian Control
Conference (ASCC), pp. 1393–1397. IEEE (2011)

6. https://towardsdatascience.com/on-object-detection-metrics-with-worked-
example-216f173ed31e

7. VuVu, T., Kim, K., Luu, T.M., Nguyen, T., Yoo, C.D.: SoftGroup for 3D instance
segmentation on point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2708–2717 (2022)

8. Chen, S., Fang, J., Zhang, Q., Liu, W., Wang, X.: Hierarchical aggregation for 3D
instance segmentation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 15467–15476 (2021)

9. Liang, Z., Li, Z., Xu, S., Tan, M., Jia, K.: Instance segmentation in 3D scenes using
semantic superpoint tree networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2783–2792 (2021)

10. Han, L., Zheng, T., Xu, L., Fang, L.: OccuSeg: occupancy-aware 3D instance seg-
mentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2940–2949 (2020)

11. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: Pointgroup: dual-set point
grouping for 3d instance segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 4867–4876 (2020)

12. He, T., Shen, C., Hengel, A.V.: Dynamic convolution for 3D point cloud instance
segmentation. arXiv preprint arXiv:2107.08392, 18 July 2021

13. Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep net-
works for 3D mitochondria instance segmentation. arXiv preprint arXiv:2104.07961
(2021)

14. Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection
in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1711–1719 (2020)

15. Bentley, J.L., Stanat, D.F., Hollins Williams Jr., E.: The complexity of finding
fixed-radius near neighbors. Inf. Process. Lett. 6(6), 209–212 (1977)

16. Tailor, S.A., de Jong, R., Azevedo, T., Mattina, M., Maji, P.: Towards efficient
point cloud graph neural networks through architectural simplification. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2095–2104 (2021)

17. Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1110–811117 (2020)

18. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KpConv: flexible and deformable convolution for point clouds. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420
(2019)

19. Razani, R., Cheng, R., Li, E., Taghavi, E., Ren, Y., Bingbing, L.: GP-S3NET:
graph-based panoptic sparse semantic segmentation network. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 16076–16085
(2021)

20. Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: EfficientLPS: efficient
lidar panoptic segmentation. IEEE Trans. Robot. (2021)

21. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. PMLR (2019)

https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
http://arxiv.org/abs/2107.08392
http://arxiv.org/abs/2104.07961

Investigation of GNN for Instance Segmentation on Industrial Point Clouds 427

22. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of
lidar sequences. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (2019)

23. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE (2012)

24. http://www.semantic-kitti.org/tasks.html#panseg
25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 9 Sept 2016
26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic

graph CNN for learning on point clouds. ACM Trans. Graph. (TOG). 38(5), 1–2
(2019)

27. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neu-
ral networks for 3D shape recognition. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 945–953 (2015)

28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: Guyon, I., et al. (eds.) Advances in Neural
Information Processing Systems, vol. 30, Curran Associates Inc. (2017)

29. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

30. Meng, H.-Y., Gao, L., Lai, Y.-K., Manocha, D.: VV-net: voxel VAE net with group
convolutions for point cloud segmentation. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 8500–8508 (2019)

31. https://www.autodesk.com/products/revit/overview?term=1-YEAR&
tab=subscription&plc=RVT

32. Triess, L.T., Peter, D., Rist, C.B., Zöllner, J.M., Scan-based semantic segmentation
of lidar point clouds: an experimental study. In: 2020 IEEE Intelligent Vehicles
Symposium (IV), pp. 1116–1121. IEEE (2020)

33. Daigavane, A., Ravindran, B., Aggarwal, G.: Understanding convolutions on
graphs. Distill 6(9), e32 (2021)

34. He, W., Jiang, Z., Zhang, C., Sainju, A.M.: CurvaNet: geometric deep learning
based on directional curvature for 3D shape analysis. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 2214–2224 (2020)

35. Zeng, Y., et al.: RT3D: real-time 3-D vehicle detection in lidar point cloud for
autonomous driving. IEEE Robot. Autom. Lett. 3(4), 3434–40 (2018)

36. Simon, M., Milz, S., Amende, K., Gross, H.-M.: Complex-YOLO: an Euler-region-
proposal for real-time 3D object detection on point clouds. In: Leal-Taixé, L., Roth,
S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 197–209. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11009-3 11

37. Cortinhal, T., Tzelepis, G., Aksoy, E.E.: Salsanext: fast semantic segmentation of
lidar point clouds for autonomous driving. 3(7). arXiv preprint arXiv:2003.03653
(2020)

38. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate
LiDAR semantic segmentation. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 4213–4220 (2019). https://doi.org/10.1109/
IROS40897.2019.8967762

39. Razani, R., Cheng, R., Taghavi, E., Bingbing, L.: Lite-HDSeg: LiDAR semantic
segmentation using lite harmonic dense convolutions. In: IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 9550–9556 (2021). https://doi.
org/10.1109/ICRA48506.2021.9561171

http://www.semantic-kitti.org/tasks.html#panseg
http://arxiv.org/abs/1609.02907
https://www.autodesk.com/products/revit/overview?term=1-YEAR&tab=subscription&plc=RVT
https://www.autodesk.com/products/revit/overview?term=1-YEAR&tab=subscription&plc=RVT
https://doi.org/10.1007/978-3-030-11009-3_11
http://arxiv.org/abs/2003.03653
https://doi.org/10.1109/IROS40897.2019.8967762
https://doi.org/10.1109/IROS40897.2019.8967762
https://doi.org/10.1109/ICRA48506.2021.9561171
https://doi.org/10.1109/ICRA48506.2021.9561171

428 S. Jalui and E. Agapaki

40. Xie, L., Furuhata, T., Shimada, K.: MuGNet: multi-resolution graph neural net-
work for segmenting large-scale pointclouds. In: Conference on Robot Learning.
PMLR (2021)

41. Qi, C.R., et al.: Pointnet: deep learning on point sets for 3D classification and
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017)

42. Chen, C., et al.: Hapgn: hierarchical attentive pooling graph network for point
cloud segmentation. IEEE Trans. Multimedia 23, 2335–2346 (2020)

43. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
arXiv preprint arXiv:1903.02428 (2019)

http://arxiv.org/abs/1903.02428

Fitness Landscape Ruggedness Impact
on PSO in Dealing with Three Variants
of the Travelling Salesman Problem

Abtin Nourmohammadzadeh1(B) , Malek Sarhani1,2 , and Stefan Voß1

1 Institute of Information Systems, University of Hamburg, Hamburg, Germany
{abtin.nourmohammadzadeh,stefan.voss}@uni-hamburg.de

2 School of Business Administration, Al Akhawayn University, Ifrane, Morocco
m.sarhani@aui.ma

Abstract. Fitness landscape analysis has gained quite some attention
in understanding the behaviour of metaheuristics. Swarm intelligence is
a type of metaheuristics that has grown considerably on the algorithmic
side over the past decade. Nevertheless, only little attention has been paid
to understanding the behaviour of algorithms on different fitness land-
scapes, especially in combinatorial optimization. Our aim in this paper
is to re-motivate the importance of this issue. Moreover, by considering
particle swarm optimization (PSO), we present a first investigation on
its adaptation to three variants of the travelling salesman problem and
how its performance is correlated with the ruggedness of the problem
instances. The results show that PSO performance deteriorates with the
increase in the number of cities and the ruggedness of the instances.

Keywords: Particle swarm optimization · Fitness landscape analysis ·
Metaheuristics · Travelling salesman problem · Ruggedness

1 Introduction

Many real-world problems require optimization. Optimization algorithms are
designed to find the most desirable solution to an optimization problem, taking
into account the quality of the solution, the computational cost, or a compro-
mise of both. In particular, metaheuristics have shown promise for solving com-
plex optimization problems where classical exact techniques are computationally
expensive and traditional approximate algorithms (e.g. gradient-based methods)
perform poorly [7].

In general, work on metaheuristics focuses either on the algorithmic side or on
the analysis of the problem itself. Fitness landscape (FL) analysis is an approach
that focuses on the latter and provides insights towards the understanding of the
performance of different algorithms and the reasons of this performance based
on the FL characteristics [50]. This concept was proposed several decades ago in
[52] as an abstract notion for understanding biological evolution and was later

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 429–444, 2022.
https://doi.org/10.1007/978-3-031-24866-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_31&domain=pdf
http://orcid.org/0000-0003-0383-0379
http://orcid.org/0000-0001-8307-5144
http://orcid.org/0000-0003-1296-4221
https://doi.org/10.1007/978-3-031-24866-5_31

430 A. Nourmohammadzadeh et al.

used to explain the behaviour of optimization algorithms. That is, FL analysis
has evolved over the past two decades from a purely theoretical concept to a
practical tool supporting optimization [38]. Indeed, characterizing a problem
should lead to a better understanding of it and to better choices of optimization
algorithms as well as their parameterization, and therefore, have an increased
chance of producing better quality solutions.

Before delving into this issue, we note that metaheuristics could often be
divided into single solution approaches and population-based algorithms. The
former consist of modifying and improving a single candidate solution while the
latter work on a collection of solutions in parallel [13,46]. The first category
includes mainly local search approaches and the second could be divided into
evolutionary computation approaches and swarm intelligence methods [54]. For
a related template we refer to [16].

In general, FL could be defined by a triplet: the fitness function, the solu-
tion space and the neighbourhood relation. While the two first elements are
algorithm independent, the neighbourhood depends on each algorithm and has
been studied primarily for evolutionary computation and local search. In fact,
by analyzing the literature, we can notice that most of the work on FL analy-
sis has been devoted to evolutionary algorithms as they share the same origin.
Moreover, the neighbourhood of evolutionary operators such as mutation could
be easily characterized [36]. In addition, the notion has been included in local
search algorithms as they are associated with the concept of neighbourhood.
That is, a local search approach usually involves choosing the best solution from
a neighbourhood. We refer to [49] for an example of extensive analysis of local
search FLs. FL analysis is also useful when hybridizing evolutionary computa-
tion and local search (e.g. a memetic algorithm as studied in [29]). The concept
of swarm intelligence is different and often consists of the interaction between a
number of agents. In fact, most of the work included in the recent surveys on
FL analysis fell into the categories of local search and evolutionary computation
as can be seen, e.g., in [27] and [33].

On the contrary, we can notice that a large part of the research on the algo-
rithmic side has been devoted to swarm intelligence. In fact, swarm intelligence
algorithms had become a major area of research over the last decade and most
of the proposed algorithms were part of it [10]. But there is a lack of interest
in linking the performance of such algorithms to the characteristics of the prob-
lems. This is one of the reasons for the controversy over many of the proposed
methods in the past decade, which was exposed, e.g., in [42] and [5].

Recently, de Armas et al. [2], extending [16], proposed a pool template to
identify and analyze swarm intelligence algorithms at a component level and to
highlight their similarities. In this paper, we aim to shed light on the character-
ization of swarm intelligence algorithms based on FL features. More specifically,
we provide a first step to the FL characterization of a particle swarm opti-
mization (PSO) adaptation to the travelling salesman problem (TSP), which is
among the most studied combinatorial optimization problems. In fact, PSO is
one of the most adopted swarm intelligence algorithms, and the most studied

Fitness Landscape Ruggedness Impact on PSO 431

approach in terms of FL analysis (as highlighted in Sect. 3.2). But, most of the
work on this topic has focused on continuous optimization, which is typical for
PSO. To the best of our knowledge, the introduction of FL analysis has not
yet been explored for discrete and binary PSO adaptations, as well as for other
swarm intelligence approaches. Beyond investigating the TSP, we conduct some
experiments for two generalizations of the TSP, too.

The rest of the paper is organized as follows: in the next section, we are
interested in FL features and in particular the ruggedness. In Sect. 3, we show
how PSO could be adopted to the considered problems. Section 4 shows the
experiments. Finally, a conclusion is presented.

2 Fitness Ruggedness

2.1 Fitness Landscape Features

The FL of optimization problems has been studied for a while and a number of
features have been shown to influence the ability of algorithms to solve problems.
An example of an apparent feature of FL is the set of local optima of a given
problem. Unimodal functions have only one local optimum, which is also the
global optimum while multimodal functions have multiple local optima. For a
comprehensive survey of FL features, we refer to [33] and [27]. Here, we note
that some features are tailored to evolutionary algorithms such as evolvability
and epistatis. The former speculates on the ability of a population to produce
offspring (subsequent solutions) fitter than their parents (previous solutions). It
could also be defined as the ability of a given search process to move to a place
in the landscape of better fitness. The latter refers to the degree of dependency
between the genes (bits) of a chromosome (variable). In other words, it reflects
the degree of interdependence between variables and how it is possible to adjust
one variable to find the optimal value independently of the others. Another
analysis of the FL could be carried-out through its basins of attraction. These
are the areas which lead to a certain local optimum and are most often sought
in local search methods. Additionally, they could be incorporated into swarm
intelligence analysis as in [41]. Other measures are based on samples of the
search space, such as ruggedness, which is our focus in this paper, and which we
describe below.

2.2 Ruggedness Measures

Ruggedness generally refers to the number and distribution of local optima. The
most common approach to predict ruggedness is through fitness value samples
obtained from the FL using a time series of random walks. The autocorrelation
function computed in Eq. (1) and proposed by [51] was previously the most
classical approach to measure FL ruggedness.

ρ(s) =
E[ftft+s] − E[ft]E[ft+s]

V [ft]
(1)

432 A. Nourmohammadzadeh et al.

where E[ft] and V [ft] are the expectation and the variance, respectively, of the
time series.

The idea of using this function is that in a rugged landscape, the fitness
of neighbouring solutions is less correlated, and thus, it is harder for a search
method to infer a search direction from a previous solution. However, this mea-
sure has been criticized in some works, which have pointed out its weakness in
the characterization of the FL (e.g. [21]). Thus, the measure proposed in [44] to
study ruggedness, which is described above, has become the most common over
the last decade.

In [44], the authors defined three states to characterize it, which are rugged,
smooth and neutral states. The rugged and smooth states correspond to the
differences in fitness between neighbouring solutions, while the neutral state
is determined by equal neighbouring solutions regarding fitness. The authors
adopted the notion of entropy to measure the degree of change between the
three states. In this case, the samples are encoded in a certain symbol sequence,
and the entropy is measured. The approach was first introduced for combina-
torial optimization and then extended to continuous optimization [25]. In this
paper, we are interested in combinatorial optimization and we briefly describe
the approach as follows.

The time series is represented as a string, S(ε) = s1s2s3...sn, of symbols
si ∈ {1̄, 0, 1} and i ∈ 1, ..., n. The encoding function for the time series of a
random walk is defined as follows:

Φ(i, ε) =

⎧
⎨

⎩

1̄ if yi+1 − yi < −ε
0 if |yi+1 − yi| ≤ ε
1 if yi+1 − yi > ε

(2)

where ε is the information sensitivity, which acts as an accuracy parameter of
the symbol sequence.

Based on this definition, an entropic measure H is defined as follows:

H(ε) = −
∑

p�=q

P[pq]log6P[pq] (3)

where, P[pq] is defined as:

P[pq] =
n[pq]

n
(4)

and n[pq] is the number of sub-blocks pq in the string S(ε) (p and q are
elements from the set {1̄, 0, 1} computed in Eq. (2)). The interested reader is
referred to [25] and [34] for a more detailed description of these parameters, which
measure the degree of change indicated above. In this paper, we are interested
in computing the ruggedness parameter as defined in Eq. (5).

R = max
ε

H(ε) (5)

The analysis of ruggedness has shown efficiency in improving metaheuristic
performance. In particular, it is a fruitful way of designing adaptive algorithms
that take advantage of FL analysis as studied, e.g., in [18]. In this paper, we aim
to use it to analyze the PSO behaviour for the TSP and some generalization.

Fitness Landscape Ruggedness Impact on PSO 433

3 Particle Swarm Optimization for TSP Landscapes

PSO is a swarm intelligence approach that mimics the movement of birds and
fish, which was originally proposed in [19]. In the native PSO, the updating of
the population of particles is done according to Eq. (6).

vj
i (t + 1) = wvj

i (t) + c1r1.(p
j
i (t) − xj

i (t)) + c2r2.(pj
g(t) − xj

i (t)) (6)

where vj
i (t) and xj

i (t) correspond to the jth dimension of velocity and position
vectors of the particle i. The position pj

i (t) represents the jth dimension of the
best previous position of particle i, while pj

g(t) represents the jth dimension of the
best position among all particles in the population, while the variables r1 and r2
are two independently uniformly distributed random variables. The parameters
c1 and c2 are the acceleration factors and w is the inertia weight. This last
parameter was introduced in [39] to balance the exploration and exploitation
dilemma.

PSO was mainly adopted for continuous optimization and most of the
improvements and extensions proposed in the literature have focused on improv-
ing its performance for continuous problems. Nevertheless, some extensions have
been proposed to deal with combinatorial optimization and few solvers are imple-
mented (e.g. [45]). Below, we take a look at how PSO could be adapted to the
TSP.

3.1 PSO for the TSP

The TSP is a well-known NP-hard combinatorial optimization problem. Meta-
heuristics have shown to be effective for the TSP, especially for large instances.
Most of the adopted approaches are either local searches or evolution computa-
tion approaches [43]. Ant colony optimization is the most adopted swarm intel-
ligence approach for the TSP [47]. Regarding PSO, it has been less adopted
because it is not easy to adapt its concept to the TSP. This also applies to the
classical binary PSO proposed in [20], which consists in transforming continuous
solutions using the sigmoid function. Nonetheless, a few approaches have pro-
posed to adapt PSO to this problem and have shown success in this regard. For
example, Chen et al. [8] used a set-based representation scheme that allows PSO
to characterize the discrete search space. The approach represents TSP solutions
as permutations over a number of vertices of a given instance. Another approach
was proposed in [48], which introduced the concept of a swap sequence. This
concept is a sequence of swap operators that involve exchanging two nodes in a
solution. This idea was extended and further illustrated in [15] and [14]. Their
idea was inspired by the concept of path relinking [12] and consists of defining
velocity operators and choosing from them in a probabilistic way. More precisely,
particle’s positions are transformed according to a velocity operator. The binary
operations take two particles and alter the position of one of them considering
the position of the other. Also, in this case, the velocities are updated according
to Eq. 7.

vj
i (t + 1) = vj

i (t) ⊕ α(pj
i (t) − xj

i (t)) ⊕ β(pj
g(t) − xj

i (t)) (7)

434 A. Nourmohammadzadeh et al.

We can observe that for this PSO adaptation w = 1, α and β correspond to c1r1
and c2r2, respectively.

3.2 Fitness Landscape Analysis for PSO

As previously noted, FL has been studied less for swarm intelligence than for
other types of metaheuristics. Despite this, there are a few papers incorporating
it into the PSO analysis. In particular, a funnel is a FL feature that was first
introduced for the case of PSO [41]. A funnel in a landscape is a global basin
shape that consists of clustered local optima and was also adopted later (e.g.
[53]). Other researchers were interested in analyzing the topic more broadly.
Malan and Engelbrecht [26] analyzed the correlation between three metrics
and the PSO performance for continuous optimization. The three metrics are
a ruggedness measure based on entropy (Eq. (3)), a dispersion measure for pre-
dicting the presence of funnels and a fitness gradient estimation measure. A
similar work with respect to the gradient was proposed in [26] and extended in
[24]. The authors were interested in the searchability, which is an adaptation
of the evolvability for PSO. Then, a more generic work was conducted in [11].
The authors adopted these different features to compare and analyze the per-
formance of certain PSO variants, in terms of the balance between exploration
and exploitation. The measure adopted for this purpose was named the diversity
rate-of-change.

As the integration of FL analysis in PSO has so far been dedicated to con-
tinuous optimization, a researcher who tries to understand the behaviour of the
PSO algorithm on a combinatorial optimization problem, has very little inspi-
ration from previous studies to work on in terms of FL analysis. In this paper,
we are interested in the analysis the ruggedness of TSP instances and the anal-
ysis of the link between them and the PSO performance. Before diving into the
experiments, we briefly present some research concerning the analysis of TSP
instances.

3.3 TSP Hardness and Fitness Landscape PSO Assessment

Some papers were interested in the analysis of the FL of TSP instances. An
example of a paper which highlighted the concept of ruggedness is [30]. But,
most of the papers included other features. For example, Boese et al. [4] asserted
that the search space of TSP instances (under 2-opt moves) has a big-valley
structure, in which local optima are clustered around one central global optimum.
However, this statement has been questioned in multiple papers (e.g. [17]) and
its generalization is also an issue of discussion [31]. Indeed, as noted in [32], the
TSP structure is not yet fully understood. Moreover, according to [32], many
works have revealed the presence of multiple funnels. This means, as stated in
Sect. 3.2, that local optima are organized into several clusters, so that a particular
local optimum belongs to a particular funnel. Cárdenas-Montes [6] presented a
methodology for creating difficult instances of the TSP based on the spatial
attributes of previously solved instances. Other papers, such as [40], interested

Fitness Landscape Ruggedness Impact on PSO 435

in reducing the difficulty of the TSP. After highlighting these papers, we note
that to our knowledge, there is no clear understanding and a quantification of
the ruggedness of instances. Also, work on this issue is still ongoing (e.g. [43])
and it depends on each algorithm [28]. From an algorithmic point of view, it is
related to the nature of local optima and funnels. In this paper, we investigate
the impact of this factor on PSO depending on the number of cities for some
randomly generated instances, and then, some benchmark TSP instances are
investigated. The next steps are doing the experiments for two special variants
of the TSP, namely the clustered TSP (CTSP) and the family TSP (TSP). In the
CTSP, the cities are divided into a number of clusters and the salesman must
visit all the cities of each cluster contiguously (see [23]). The FTSP includes
clusters of cities, too, however, the salesman has to visit a number of cities from
each cluster with minimal distance without any limit of finishing with one cluster
before starting with another one (see [3]).

On the other hand, Malan and Engelbrecht [28] defined a number of metrics
to predict PSO performance. Additionally, the same authors [26] incorporated
other metrics such as the success rate (SR) and the success speed (SP).

SR expresses the number of successful runs, which find a solution within the
fixed accuracy level of the global optimum, divided by the total number of runs.
SR is a value in the range [0,1] where 1 indicates the highest possible rate of
success. SP indicates the average number of function evaluations until reaching
the global optimum (within the fixed accuracy level) over ns runs. This metric
is calculated as follows:

SSPr =

{
0 if run is not successful
Max(FES)−(FESr−1)

Max(FES) otherwise (8)

SP =
{ ∑ns

r=1 SSPr

ns if ns > 0
0 if ns = 0

(9)

FESr is the number of function evaluations until success in run r. SSPr is the
success speed of a run r, which is in the range [0,1]. It is 1, if the global optimum
is reached in the first function evaluation. (It is noticeable that this metric is
related to time-to-target plots [1]).

4 Experiments

4.1 Experimental Setup

In this work, we adopt SR, SP as well as their product (SR·SP). Six sets con-
taining TSP instances of different variants are considered. These sets include
random and benchmark TSP, CTSP and FTSP instances.

For PSO, we adopt the values α = 0.9 and β = 1 as they are the values
adopted in the papers underlined in Sect. 3.1. The population size and the num-
ber of iterations are set to 100 and 200, respectively.

For each instance with the same distance matrices, we perform random walks
(2-opt move) 30 times with 200 iterations and calculate the ruggedness factor

436 A. Nourmohammadzadeh et al.

(R). In addition, we run the PSO 30 times on the same instances and compute
the three factors SR, SP, SR·SP (the best solution is estimated by looking at
the different possible solutions). The algorithms are implemented in Python. In
particular, we adopt the Mlrose package [35] to implement the random walks. In
Sect. 4.2, we depict the results obtained.

4.2 Investigation of PSO Ruggedness on the Sets of Three Different
TSP Variants

Regarding the random TSP instances, we use the following number of cities to
generate the instances: 10, 20, 50, 100, 200 and 500. The coordinates of the
cities are randomly generated in a [0,1]×[0,1] field. Our motivation in choosing
these values is to start with a basic number of cities before studying the PSO
performance on larger instances. In Table 1, we show the average results of the
random TSP sets obtained by performing the experiments explained above. In
the last row, some information about the correlation between ruggedness and
the used performance metric (SR ·SP) is given. This includes a correlation coef-
ficient (rs) calculated based on the Spearman’s rank method [9] that shows the
correlation of the instance ruggedness and the PSO performance. We show also
the corresponding pvalue of the null hypothesis: no correlation exists between
ruggedness and the performance metric. The relation between the ruggedness
and the PSO performance for this set is depicted in Fig. 1

Table 1. PSO performance on the random TSP instances and ruggedness

No. of cities R SR SP SR·SP

10 0.7183 0.7225 0.7582 0.5478

20 0.7431 0.7012 0.7210 0.5056

50 0.7875 0.6721 0.7092 0.4767

100 0.8626 0.6455 0.6871 0.4435

200 0.8807 0.5512 0.6284 0.3464

500 0.9587 0.1816 0.2268 0.0412

1000 0.9892 0.0067 0.0036 0.0000

1100 0.9936 0.0008 0.0012 0.0000

1200 0.9959 0.0002 0.0008 0.0000

1500 0.9988 0.0000 0.0000 0.0000

Correlation rs = −0.9692 pvalue = 0.0000

The second set consists of 12 benchmark instances from TSPLIB [37]. The
results of this set are shown in Table 2 and Fig. 2.

The next experiments are on 10 CTSP instances, which we build using the
data of 10 instances from TSPLIB [37] and clustering the cities by the kmeans
method [22]. The obtained results are shown in Table 3 and Fig. 3.

Fitness Landscape Ruggedness Impact on PSO 437

Table 2. PSO performance on the benchmark TSP instances and ruggedness

No. of cities R SR SP SR·SP
eli51 0.7329 0.7209 0.8325 0.6001

berlin52 0.7451 0.7162 0.8227 0.5892

pr76 0.7608 0.7052 0.8170 0.5761

rat99 0.7745 0.6852 0.7965 0.5458

kroA100 0.7826 0.6733 0.7704 0.5187

lin105 0.7895 0.6682 0.7682 0.5133

pr124 0.7992 0.6542 0.7481 0.4894

pr136 0.8152 0.6206 0.7152 0.4439

pr150 0.8346 0.5720 0.6671 0.3816

rat195 0.8865 0.5347 0.6178 0.3303

kroA200 0.8965 0.5310 0.6008 0.3190

ts225 0.9372 0.5125 0.5820 0.2983

Correlation rs = −1 pvalue = 0.0000

0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

R

SR
.S
P

Fig. 1. Ruggedness vs. the PSO perfor-
mance for the random TSP instances

0.75 0.8 0.85 0.9 0.95

0.3

0.4

0.5

0.6

R

SR
.S
P

Fig. 2. Ruggedness vs. the PSO per-
formance for the benchmark TSP
instances

Subsequently, we do a similar test on 10 benchmark CTSP instances adopted
from [23]. The corresponding results are summarised in Table 4 and Fig. 4.

The last two sets contain random and benchmark FTSP instances. The ran-
dom ones are used by adapting 10 TSPLIB [37] instances exactly like the FTSP
random instances and choosing a random number of required cities to visit from
each family within the set [0.1fmi, 0.3fmi], where fmi is the number of mem-
bers of family i. The benchmark FTSP instances are from [3]. The results related
to the two last sets are given by Tables 5 and 6 as well as Figs. 5 and 6.

The results of all the six sets indicate that the performance of the approach
deteriorates with the increase of the number of cities. In fact, the approach is

438 A. Nourmohammadzadeh et al.

Table 3. PSO performance on the random CTSP instances and ruggedness

No. of cities R SR SP SR·SP
bays29 0.7012 0.7129 0.8252 0.5883

att48 0.7481 0.6827 0.8092 0.5524

brazil58 0.7663 0.6504 0.7812 0.5081

gr96 0.8015 0.6278 0.7682 0.4823

ch130 0.8572 0.6012 0.7265 0.4368

ch150 0.8962 0.5835 0.6825 0.3982

d198 0.9353 0.5467 0.6132 0.3352

a280 0.9682 0.5178 0.5806 0.3006

d493 0.9892 0.1627 0.2108 0.0343

d657 0.9994 0.0876 0.1502 0.0132

Correlation rs = −0.9970 pvalue = 0.0000

Table 4. PSO performance on the benchmark CTSP instances and ruggedness

No. of cities R SR SP SR·SP
49-pcb1173 0.6742 0.7228 0.8190 0.5920

100-pcb1173 0.7506 0.7055 0.7962 0.5617

144-pcb1173 0.7986 0.6894 0.7820 0.5391

10-nrw1379 0.8685 0.6626 0.7612 0.5044

12-nrw1379 0.8892 0.6552 0.7606 0.4983

1500-10-503 0.9678 0.0395 0.0856 0.0034

1500-20-504 0.9716 0.0281 0.0553 0.0016

1500-50-505 0.9775 0.0253 0.0126 0.0003

1500-100-506 0.9865 0.0091 0.0062 0.0001

1500-150-507 0.9982 0.0019 0.0008 0.0000

Correlation rs = −1 pvalue = 0.0000

Table 5. PSO performance on the random FTSP instances and ruggedness

No. of cities R SR SP SR·SP
bayg29 0.7061 0.8016 0.7910 0.6341

att48 0.7351 0.7825 0.7792 0.6097

gr48 0.7462 0.7705 0.7208 0.5554

berlin52 0.7628 0.7558 0.7014 0.5301

berlin58 0.7865 0.7413 0.6827 0.5061

gr96 0.8365 0.7206 0.6527 0.4703

bier127 0.8642 0.6862 0.6288 0.4315

ch130 0.8955 0.6570 0.5922 0.3891

ch150 0.9521 0.2636 0.2461 0.0649

brg180 0.9763 0.1826 0.2259 0.0412

Correlation rs = −1 pvalue = 0.0000

Fitness Landscape Ruggedness Impact on PSO 439

0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

R

SR
.S
P

Fig. 3. Ruggedness vs. the PSO perfor-
mance for the random CTSP instances

0.7 0.8 0.9 1

0

0.2

0.4

0.6

R

SR
.S
P

Fig. 4. Ruggedness vs. the PSO per-
formance for the benchmark CTSP
instances

Table 6. PSO performance on the benchmark FTSP instances and ruggedness

No. of cities R SR SP SR·SP

a280 1 0.7167 0.8562 0.8447 0.7232

a280 2 0.7289 0.8425 0.8409 0.7085

gr666 1 0.8267 0.7832 0.7613 0.5963

gr666 2 0.8372 0.7725 0.7585 0.5859

gr666 3 0.8416 0.7688 0.7471 0.5744

pr1002 1 0.9724 0.1726 0.0166 0.0029

pr1002 2 0.9766 0.1265 0.0154 0.0019

pr1002 3 0.9814 0.1078 0.0073 0.0008

pr144 4 0.7598 0.7758 0.7245 0.5621

kroA150 3 0.7837 0.7524 0.7031 0.5290

Correlation rs = −0.81818 pvalue = 0.00381

unable to find the optimal solution in large instances in most executions. The
degradation is also correlated with the ruggedness factor.

The ruggedness estimations are negatively correlated with performance for
low and high dimensional problems. This can be deduced from the obtained
Spearman’s correlation coefficients, which are between -0.80 and -1. Most of the
problems with high ruggedness values were not solved (SR × SP values of 0).

In the end of this section, it has to be mentioned that the results obtained
with the used PSO are not competitive when they are compared to the best-
known or optimal results specially for the large-sized instances. The reason is that
this PSO is not the best solution methodology for the investigated problems and
some enhancements are required such as hybridizing it with other metaheuristics
or exact methods.

440 A. Nourmohammadzadeh et al.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

R

SR
.S
P

Fig. 5. Ruggedness vs. the PSO perfor-
mance for the random FTSP instances

0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

R

SR
.S
P

Fig. 6. Ruggedness vs. the PSO per-
formance for the benchmark FTSP
instances

5 Conclusion and Discussion

In this work, we investigated the fitness landscape analysis of PSO for combina-
torial optimization. We started by motivating the topic and presenting the open
challenges. Next, we presented a first study of the most common PSO adapta-
tion to the TSP and its two variants. The presented results indicate that the
adopted approach could not find satisfactory results for TSP instances out of
100 instances. In addition, we can notice that its performance correlates with
the ruggedness. In that sense our work sheds some light on the detailed analysis
of PSO as a general solver in combinatorial optimization. This does not mean
that PSO is bad; it just indicates additional insights on a popular method and
its real impact and behaviour. Note, however, that other FL features also have
an impact as PSO does not fully correlate with the ruggedness factor.

Future research should attempt to incorporate other features into the analysis
of PSO. Also, it would be important to compare the performance of different
swarm intelligence approaches or certain PSO variants, as investigated in [11]
for continuous optimization. In addition, PSO could also be studied for other
combinatorial optimization problems in order to have a broader overview of its
performance.

Acknowledgement. Malek Sarhani was supported by the Alexander von Humboldt
Foundation.

References

1. Aiex, R.M., Resende, M.G., Ribeiro, C.C.: TTT plots: a Perl program to create
time-to-target plots. Optim. Lett. 1(4), 355–366 (2007). https://doi.org/10.1007/
s00291-020-00604-x

https://doi.org/10.1007/s00291-020-00604-x
https://doi.org/10.1007/s00291-020-00604-x

Fitness Landscape Ruggedness Impact on PSO 441

2. de Armas, J., Lalla-Ruiz, E., Tilahun, S.L., Voß, S.: Similarity in metaheuristics:
a gentle step towards a comparison methodology. Natural Comput. 21, 265–287
(2021). https://doi.org/10.1007/s11047-020-09837-9

3. Bernardino, R., Paias, A.: Heuristic approaches for the family traveling salesman
problem. Int. Trans. Oper. Res. 28(1), 262–295 (2021). https://doi.org/10.1111/
itor.12771

4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique
for combinatorial global optimizations. Oper. Res. Lett. 16(2), 101–113 (1994).
https://doi.org/10.1016/0167-6377(94)90065-5

5. Camacho Villalón, C.L., Stützle, T., Dorigo, M.: Grey wolf, firefly and bat algo-
rithms: three widespread algorithms that do not contain any novelty. In: Dorigo,
M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 121–133. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60376-2 10

6. Cárdenas-Montes, M.: Creating hard-to-solve instances of travelling salesman prob-
lem. Appl. Soft Comput. 71, 268–276 (2018). https://doi.org/10.1016/j.asoc.2018.
07.010

7. Caserta, M., Voß, S.: Metaheuristics: intelligent problem solving. In: Maniezzo, V.,
Stützle, T., Voß, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10,
pp. 1–38. Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-1306-7 1

8. Chen, W.N., Zhang, J., Chung, H., Zhong, W.L., Wu, W.G., Shi, Y.: A novel
set-based particle swarm optimization method for discrete optimization problems.
IEEE Trans. Evol. Comput. 14(2), 278–300 (2010). https://doi.org/10.1109/tevc.
2009.2030331

9. Daniel, W.W.: Applied Nonparametric Statistics. PWS-KENT Pub, Boston (1990)
10. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation

metaheuristic algorithms. Comput. Industr. Eng. 137, 106040 (2019). https://doi.
org/10.1016/j.cie.2019.106040

11. Engelbrecht, A.P., Bosman, P., Malan, K.M.: The influence of fitness landscape
characteristics on particle swarm optimisers. Nat. Comput. (2021). https://doi.
org/10.1007/s11047-020-09835-x

12. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
1–51. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026589

13. Glover, F., Sörensen, K.: Metaheuristics. Scholarpedia 10(4), 6532 (2015). https://
doi.org/10.4249/scholarpedia.6532

14. Goldbarg, E.F.G., Goldbarg, M.C., de Souza, G.R.: Particle swarm optimization
algorithm for the traveling salesman problem. In: Greco, F. (ed.) Traveling Sales-
man Problem, pp. 75–96. InTech (2008). https://doi.org/10.5772/5580

15. Goldbarg, E.F.G., de Souza, G.R., Goldbarg, M.C.: Particle swarm for the traveling
salesman problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol.
3906, pp. 99–110. Springer, Heidelberg (2006). https://doi.org/10.1007/11730095 9

16. Greistorfer, P., Voß, S.: Controlled pool maintenance for metaheuristics. In: Rego,
C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution, pp.
387–424. Kluwer Academic Publishers (2005). https://doi.org/10.1007%2F0-387-
23667-8 18

17. Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space
structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011). https://doi.org/
10.1057/jors.2010.116

18. Huang, Y., Li, W., Tian, F., Meng, X.: A fitness landscape ruggedness multiobjec-
tive differential evolution algorithm with a reinforcement learning strategy. Appl.
Soft Comput. 96, 106693 (2020). https://doi.org/10.1016/j.asoc.2020.106693

https://doi.org/10.1007/s11047-020-09837-9
https://doi.org/10.1111/itor.12771
https://doi.org/10.1111/itor.12771
https://doi.org/10.1016/0167-6377(94)90065-5
https://doi.org/10.1007/978-3-030-60376-2_10
https://doi.org/10.1016/j.asoc.2018.07.010
https://doi.org/10.1016/j.asoc.2018.07.010
https://doi.org/10.1007/978-1-4419-1306-7_1
https://doi.org/10.1109/tevc.2009.2030331
https://doi.org/10.1109/tevc.2009.2030331
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1007/s11047-020-09835-x
https://doi.org/10.1007/s11047-020-09835-x
https://doi.org/10.1007/BFb0026589
https://doi.org/10.4249/scholarpedia.6532
https://doi.org/10.4249/scholarpedia.6532
https://doi.org/10.5772/5580
https://doi.org/10.1007/11730095_9
https://doi.org/10.1007%2F0-387-23667-8_18
https://doi.org/10.1007%2F0-387-23667-8_18
https://doi.org/10.1057/jors.2010.116
https://doi.org/10.1057/jors.2010.116
https://doi.org/10.1016/j.asoc.2020.106693

442 A. Nourmohammadzadeh et al.

19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks. IEEE (1995). https://doi.
org/10.1109/icnn.1995.488968

20. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algo-
rithm. In: IEEE International Conference on Systems, Man, and Cybernetics. Com-
putational Cybernetics and Simulation. IEEE (1997). https://doi.org/10.1109/
icsmc.1997.637339

21. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-
aware performance prediction for evolutionary multi-objective optimization. IEEE
Trans. Evol. Comput. 24(6), 1063–1077 (2019)

22. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982). https://doi.org/10.1109%2Ftit.1982.1056489

23. Lu, Y., Hao, J.K., Wu, Q.: Solving the clustered traveling salesman problem via
TSP methods. arXiv preprint arXiv:2007.05254 (2020). https://doi.org/10.48550/
arXiv.2007.05254

24. Malan, K.M., Engelbrecht, A.P.: Characterising the searchability of continuous
optimisation problems for PSO. Swarm Intell. 8(4), 275–302 (2014). https://doi.
org/10.1007/s11721-014-0099-x

25. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes
using entropy. In: 2009 IEEE Congress on Evolutionary Computation. IEEE
(2009). https://doi.org/10.1109/cec.2009.4983112

26. Malan, K.M., Engelbrecht, A.P.: Ruggedness, funnels and gradients in fitness land-
scapes and the effect on PSO performance. In: 2013 IEEE Congress on Evolutionary
Computation. IEEE (2013). https://doi.org/10.1109/cec.2013.6557671

27. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013). https://
doi.org/10.1016/j.ins.2013.04.015

28. Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic per-
formance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the
Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 103–132. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4 4

29. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000).
https://doi.org/10.1109/4235.887234

30. Merz, P., Freisleben, B.: Memetic algorithms for the traveling salesman problem.
Complex Syst. 13(4), 297–346 (2001)

31. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis.
In: Chicano, F., Hu, B., Garćıa-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595,
pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8 5

32. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes.
J. Heurist. 24(3), 265–294 (2017). https://doi.org/10.1007/s10732-017-9334-0

33. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelli-
gent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-23229-9 8

34. Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous
fitness landscapes. In: Datta, R., Deb, K. (eds.) Evolutionary Constrained Opti-
mization. ISFS, pp. 29–50. Springer, New Delhi (2015). https://doi.org/10.1007/
978-81-322-2184-5 2

35. PyPI: mlrose, 13 March 2022. https://pypi.org/project/mlrose/

https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icsmc.1997.637339
https://doi.org/10.1109/icsmc.1997.637339
https://doi.org/10.1109%2Ftit.1982.1056489
http://arxiv.org/abs/2007.05254
https://doi.org/10.48550/arXiv.2007.05254
https://doi.org/10.48550/arXiv.2007.05254
https://doi.org/10.1007/s11721-014-0099-x
https://doi.org/10.1007/s11721-014-0099-x
https://doi.org/10.1109/cec.2009.4983112
https://doi.org/10.1109/cec.2013.6557671
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1007/978-3-642-41888-4_4
https://doi.org/10.1109/4235.887234
https://doi.org/10.1007/978-3-319-30698-8_5
https://doi.org/10.1007/s10732-017-9334-0
https://doi.org/10.1007/978-3-642-23229-9_8
https://doi.org/10.1007/978-81-322-2184-5_2
https://doi.org/10.1007/978-81-322-2184-5_2
https://pypi.org/project/mlrose/

Fitness Landscape Ruggedness Impact on PSO 443

36. Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86,
473–490 (1999). https://doi.org/10.1007/bf01165154

37. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376

38. Richter, H.: Fitness landscapes: from evolutionary biology to evolutionary compu-
tation. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and
Application of Fitness Landscapes. Emergence, Complexity and Computation, vol.
6, pp. 3–31. Springer, Heidelberg (2014). https://doi.org/10.1007%2F978-3-642-
41888-4 1

39. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360). IEEE (1998).
https://doi.org/10.1109/icec.1998.699146

40. Sun, Y., Ernst, A., Li, X., Weiner, J.: Generalization of machine learning for prob-
lem reduction: a case study on travelling salesman problems. OR Spectrum 43(3),
607–633 (2020). https://doi.org/10.1007/s00291-020-00604-x

41. Sutton, A.M., Whitley, D., Lunacek, M., Howe, A.: PSO and multi-funnel land-
scapes: how cooperation might limit exploration. In: Keijzer, M. (ed.) Genetic
and Evolutionary Computation Conference, pp. 75–82. Association for Computing
Machinery, New York (2006). https://doi.org/10.1145/1143997.1144008

42. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015). https://doi.org/10.1111/itor.12001

43. Varadarajan, S., Whitley, D., Ochoa, G.: Why many travelling salesman problem
instances are easier than you think. In: Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference, pp. 254–262. ACM (2020). https://doi.org/10.
1145/3377930.3390145

44. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, ruggedness and neutral-
ity of fitness landscapes: from theory to application. In: Ghosh, A., Tsutsui, S.
(eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 3–44.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18965-4 1

45. Vaz, A.I., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global
derivative-free optimization. Optim. Methods Softw. 24(4–5), 669–685 (2009).
https://doi.org/10.1080/10556780902909948

46. Voß, S.: Tabu search: applications and prospects. In: Du, D., Pardalos, P.M. (eds.)
Network Optimization Problems, vol. 2, pp. 333–353. World Scientific, Singapore
(1993). https://doi.org/10.1142/9789812798190 0017

47. Voss, S.: Book review: Marco Dorigo and Thomas Stützle: Ant colony optimization.
Math. Methods Oper. Res. 63(1), 191–192 (2006). https://doi.org/10.1007/s00186-
005-0050-4

48. Wang, K.P., Huang, L., Zhou, C.G., Pang, W.: Particle swarm optimization for
traveling salesman problem. In: Proceedings of the 2003 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), pp. 1583–1585.
IEEE (2003). https://doi.org/10.1109/icmlc.2003.1259748

49. Watson, J.P.: Empirical modeling and analysis of local search algorithms for the
job-shop scheduling problem. Ph.D. thesis, Colorado State University (2003)

50. Watson, J.P.: An introduction to fitness landscape analysis and cost models for
local search. In: Handbook of Metaheuristics, pp. 599–623. Springer, US (2010).
https://doi.org/10.1007/978-1-4419-1665-5 20

51. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell
the difference. Biol. Cybern. 63(5), 325–336 (1990). https://doi.org/10.1007/
bf00202749

https://doi.org/10.1007/bf01165154
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1007%2F978-3-642-41888-4_1
https://doi.org/10.1007%2F978-3-642-41888-4_1
https://doi.org/10.1109/icec.1998.699146
https://doi.org/10.1007/s00291-020-00604-x
https://doi.org/10.1145/1143997.1144008
https://doi.org/10.1111/itor.12001
https://doi.org/10.1145/3377930.3390145
https://doi.org/10.1145/3377930.3390145
https://doi.org/10.1007/978-3-642-18965-4_1
https://doi.org/10.1080/10556780902909948
https://doi.org/10.1142/9789812798190_0017
https://doi.org/10.1007/s00186-005-0050-4
https://doi.org/10.1007/s00186-005-0050-4
https://doi.org/10.1109/icmlc.2003.1259748
https://doi.org/10.1007/978-1-4419-1665-5_20
https://doi.org/10.1007/bf00202749
https://doi.org/10.1007/bf00202749

444 A. Nourmohammadzadeh et al.

52. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In: Proceedings of the Sixth International Congress of Genetics, vol. 1, pp.
356–366 (1932)

53. Xin, B., Chen, J., Pan, F.: Problem difficulty analysis for particle swarm opti-
mization. In: Proceedings of the First ACM/SIGEVO Summit on Genetic and
Evolutionary Computation - GEC 2009, pp. 623–630. ACM Press (2009). https://
doi.org/10.1145/1543834.1543919

54. Yang, X.-S. (ed.): Recent Advances in Swarm Intelligence and Evolutionary Com-
putation. SCI, vol. 585. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-13826-8

https://doi.org/10.1145/1543834.1543919
https://doi.org/10.1145/1543834.1543919
https://doi.org/10.1007/978-3-319-13826-8
https://doi.org/10.1007/978-3-319-13826-8

A Multi-UAVs’ Provider Model
for the Provision of 5G Service Chains:

A Game Theoretic Approach

Giorgia Maria Cappello1(B), Gabriella Colajanni2, Patrizia Daniele2,
Laura Galluccio1, Christian Grasso1, Giovanni Schembra1,

and Laura Rosa Maria Scrimali2

1 Department of Electrical, Electronics and Informatics Engineering (DIEEI)
and CNIT Research Unit, University of Catania,

Viale Andrea Doria, 6 - 95125 Catania, Italy
{giorgia.cappello,christian.grasso,giovanni.schembra}@unict.it

2 Department of Mathematics and Computer Science, University of Catania,
Viale Andrea Doria,6 - 95125 Catania, Italy

{gabriella.colajanni,patrizia.daniele,laura.scrimali}@unict.it

Abstract. In the last years, the use of Flying Ad-hoc Networks
(FANET) to extend and improve the capability of 5G networks, espe-
cially in scenarios characterized by poor or completely inexistent struc-
tured networks, has been very successful. The possibility to mount, on
board of an Unmanned Aerial Vehicle (UAV), a Computing Element,
giving it the possibility to host virtual functions (VFs) and provide data
processing services, has allowed 5G networks to be able to extend their
functionalities closer to the user, in the so-called Edge Network. In this
paper, we present a multi-UAVs’ providers network based model describ-
ing the provisioning of service chains to users and devices on the ground.
The objective of each provider in the proposed model is to establish the
optimal service chain flows to manage and send to, or receive by, other
providers in order to maximize its revenue while minimizing the total exe-
cution, execution request and transmission costs, under the constraints
that the total costumer demand, for each service chain, are satisfied, as
well as the capacity constraints. We formulate the nonlinear optimiza-
tion problem as a non-cooperative game in which each player (provider)
is rational and acts selfishly. In particular, we analyzed the Generalized
Nash Equilibrium Problem (GNEP), and the equivalent formulation of
the GNEP by means of Variational Inequality theory is also provided.
Finally, an illustrative numerical example is presented and analyzed.

Keywords: 5G · Unmanned Aerial Vehicles · Generalized Nash
Equilibrium Problem · Variational formulation

1 Introduction

In the last years, due to the rapid evolution of mobile communication networks,
a plethora of new services has been introduced, for applications ranging from
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 445–459, 2022.
https://doi.org/10.1007/978-3-031-24866-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_32&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_32

446 G. M. Cappello et al.

smart agriculture to environmental monitoring, from search and rescue opera-
tions during environmental disasters to support for the management of cities and
forest fires [1,2]. However, some typical application scenarios of 5G networks are
characterized by poor or completely inexistent structured networks. In this case,
the use of Unmanned Aerial Vehicles (UAVs) could be of fundamental impor-
tance to support and extend traditional wireless networks. 5G [3] is not only the
last step in the evolution of mobile communication networks, but a revolution
due to the introduction of innovative service capabilities. In 5G networks, an
important role is played by the virtualization of physical resources at the edge
of the network, where data are generated by end-users. This is done through the
use of two combined paradigms: network function virtualization (NFV) [4] and
multi-access edge computing (MEC) [5]. In scenarios such as those described
above, at the moment, the data generated by the devices must be sent to remote
clouds, far from the place where these data were produced, for further process-
ing. To address this problem, the possibility of an extension of a 5G network
at the Edge using a Flying Ad-hoc Network (FANET), composed by a certain
number of UAVs, was proposed in [6,7]. More in detail, each UAV is equipped
with a computing element (CE), thus it is able to host one or more Service
Chains (SC), composed by a certain number of Virtual Functions (VFs) linked
together, with the aim of processing data flows coming from end users or ground
devices. However, the main problem when FANETs are used to provide com-
putational resources is represented by the limited flight duration of each UAV.
Indeed, when UAV battery runs out, the FANET loses a component, with a
consequent decrease of the maximum offered computational capabilities. The
problem of charge duration of UAV battery is exacerbated by the presence of
the CE that, depending on the application scenarios, hosts VFs providing a total
power consumption comparable to the power consumption of the engine. All that
said, it is clear that distributing the service chains flows optimally among the
UAVs belonging to different providers in the FANET, in order to minimize the
overall consumption and maximize the FANET lifetime represents an aspect to
pay attention to in these contexts, to achieve a tradeoff that allows to offer as
much service as possible to end users.

In the recent years there has been a growing interest in adopting cooperative
and non-cooperative game theoretic approaches [14–16] to model many commu-
nications and networking problems in the context of FANETs. In particular,
game theory has been deployed for the resolution of conflicts among UAV inter-
acting decision makers in wireless network applications [22]. In [20] the authors
tackle the problem of offloading heavy UAV computational tasks with the aim to
achieve the best possible tradeoff between energy consumption, time delay, and
computation cost. They formulate the problem as a non cooperative theoretical
game. In [21] the authors present a framework in which the coordination of a
group of UAVs flying is considered so as to guarantee the maximum network
coverage to mobile-ground units by efficiently utilizing the available on-board
power. A game theoretic and a heuristic approaches are proposed and com-
pared. Furthermore, in [23] the authors explore some new challenges in the multi-
UAV cooperative search, such as collaborative control and search area covering

A Multi-UAVs’ Provider Model for 5G Service Chains 447

problems, while in [24] a game-theoretic autonomous decision-making approach
for efficient deployment of UAVs in a multi-level and multi-dimensional assisted
network is analyzed. The UAVs work in a cooperative manner for achieving the
suitable deployment with the optimal coverage values for the candidate region.

In this paper we consider a network-based model for a multi-service chain
and multi-provider scenario.

We consider a fleet of UAVs of different providers organized as a FANET.
This fleet provides service chains (SCs) on demand to users and devices on the
ground, e.g. in a remote geographic area (see [10] and [11]). We formulate a
nonlinear optimization problem in order to determine the optimal distribution
flow pattern that, for each provider, maximizes its revenue while minimizing the
total execution, execution request and transmission costs, under the constraint
that the total users’ and devices’ demand is satisfied, namely the conservation
flow constraints, and the capacity constraints.
In our framework we include the possibility for each provider, that manages a
service chain, to send chain flows to other providers for the execution, by paying
a request execution costs. Therefore, we formulate the optimization problem
as a game in which each player (provider) acts in a non cooperative manner.
In particular, we analyzed a Generalized Nash Equilibrium Problem (GNEP),
because the strategy of a given provider is affected by the strategies of the other
providers. We also provide an equivalent formulation of the GNEP by means
of Variational Inequality theory. Given the equivalence between the GNEP and
the VI problem, conditions guaranteeing the existence of a GNE follow from the
existence of a solution of the VI [17]. Furthermore, building on the equivalence
between the GNEP and the VI problem, one can borrow solution methods for
the GNEP from the vast literature on variational inequalities [18,19].

The rest of the paper is organized as follows. In Sect. 2 we present the network
topology and the mathematical formulation of the optimization problem. In
Sect. 3 we outline the GNEP, and a variational equilibrium of the GNEP is also
provided. Finally, an illustrative numerical example is presented and analyzed
in Sect. 4. We summarize our results and present our conclusions in Sect. 5.

2 The Mathematical Formulation

In this section, we present the multi-provider network model. We consider a
network topology consisting of the provider layer and service chain layer, as
depicted in Fig. 1.

We denote by k = 1, . . . ,K the typical service chain required by customers
(users and devices on the ground) and by q = 1, . . . , Q the typical provider of
services. Each provider, for each service chain, can establish the flow of service
chain requests it intends to satisfy. In addition, each provider can send (and,
obviously, receive) part of the flow to other providers for the execution.

448 G. M. Cappello et al.

Fig. 1. Network topology

The model variables are described below. Let:

– ykq be the nonnegative flow of service chain k managed by provider q (that
is the amount of packet rate requested for the k-th chain and controlled
by the provider q); and let us group all these quantities into the vectors
Yk = (ykq)q=1,...,Q, Yq = (ykq)k=1,...,K and Y = (ykq) k=1,...,K

q=1,...,Q
;

– xkqq̃ be the nonnegative flow of service chain k managed by provider q and
sent to the provider q̃ for the execution with q �= q̃. It means that a variable
xkqq does not exist because a generic provider q cannot send flow to itself. Let
us group all these quantities into the vectors Xqq̃ = (xkqq̃)k=1,...,K , ∀q, q̃ =
1, . . . , Q, Xq = (xkqq̃) k=1,...,K

q̃=1,...,Q
, ∀q = 1, . . . , Q, X̃q = (xkq̃q) k=1,...,K

q̃=1,...,Q
, ∀q =

1, . . . , Q and X = (xkqq̃) k=1,...,K
q,q̃=1,...,Q

.

Costumers, that are users or devices on the ground, require a certain amount of
flow (packet rate) for each service chain k, that we denote by Dk.

The flow distribution of each service chain k among the various providers
must satisfy the demand for that service chain in the network, namely the fol-
lowing conservation law holds:

Q∑

q=1

ykq = Dk, ∀k = 1, . . . ,K. (1)

For each service chain k a certain amount of execution or computation space,
denoted by sk, is needed. Moreover, we denote by Cq the maximum computation
capacity of the resources owned by provider q (e.g. CE in the UAVs, etc.).

We now present the demand price and cost functions. Let us introduce:

– the unit demand price of the service chain k provided by q, as the function
ρkq : RQ

+ → R+ that depends on the executed flows, that is:

ρkq = ρkq (Yk) ;

the demand price function is assumed to be continuous, continuously differen-
tiable, decreasing with respect to the respective service chain’s own demand;

– the execution cost that the provider q has to pay, as the function c
(E)
q :

R
K(2Q−1)
+ → R+ that depends on the net executed flow by provider q, given

A Multi-UAVs’ Provider Model for 5G Service Chains 449

by the sum, for each service chain k, of the amount of flows managed by
provider q but not sent to other providers and the amount of flows that q

receive from others
K∑

k=1

⎛

⎜⎝ykq +
Q∑

q̃=1
q̃ �=q

(xkq̃q − xkqq̃)

⎞

⎟⎠, that is:

c(E)
q = c(E)

q

⎛

⎜⎝
K∑

k=1

⎛

⎜⎝ykq +
Q∑

q̃=1
q̃ �=q

(xkq̃q − xkqq̃)

⎞

⎟⎠

⎞

⎟⎠ = c(E)
q

(
Yq, X̃q,Xq

)
;

– the unit request execution cost that provider q has to pay to provider q̃ for the
execution of service chains managed by q, as the function c

(S)
q̃ : RK(Q−1)

+ →
R+ that depends on the flows sent by all the providers to q̃ for all the service
chains, X̃q̃ :

c
(S)
q̃ = c

(S)
q̃

(
X̃q̃

)
;

it is clear that c
(S)
q̃ represents the unit revenue that the provider q̃ receives

from executing the service chains managed by other providers;
– the management cost that the provider q has to pay for managing the required

flow for the service chain k, as the function c
(M)
kq : R+ → R+, that depends

on the flow of service chain k managed by provider q, ykq:

c
(M)
kq = c

(M)
kq (ykq) ;

– the transmission cost from the provider q to the provider q̃, as the function
c
(T)
qq̃ : RK

+ → R+ that depends on the flow of all the service chains sent from

q to q̃

K∑

k=1

xkqq̃:

c
(T)
qq̃ = c

(T)
qq̃

(
K∑

k=1

xkqq̃

)
= c

(T)
qq̃ (Xqq̃) ;

In our model we assume that there is not a transmission cost from the provider
q̃ to the provider q, incurred by q.

The aim of provider q is to maximize his profit, given by the difference
between the revenues and the costs. Particularly, the revenues are obtained by
the sum of unit demand price of each service chain (multiplied by the flow of
service chain managed by q) and the revenues that the provider q receives from
all the providers when it executes service chains managed by them; while the
overall cost is defined by the sum of all the execution, request execution (to other
providers) and transmission costs.

The nonlinear optimization problem formulation for the provider q is as fol-
lows:

450 G. M. Cappello et al.

maximize
K∑

k=1

ρkq (Yk) ykq − c(E)
q

(
Yq, X̃q,Xq

)
+

+
Q∑

q̃=1
q̃ �=q

(
c(S)
q

(
X̃q

)
·
(

K∑

k=1

xkq̃q

)
− c

(S)
q̃

(
X̃q̃

)
·
(

K∑

k=1

xkqq̃

))
+

−

⎡

⎢⎣
K∑

k=1

c
(M)
kq (ykq) +

Q∑

q̃=1
q̃ �=q

c
(T)
qq̃ (Xqq̃)

⎤

⎥⎦ (2)

subject to:
Q∑

q̃=1

ykq̃ = Dk, ∀k = 1, . . . ,K, (3)

Q∑

q̃=1
q̃ �=q

xkqq̃ ≤ ykq, ∀k = 1, . . . ,K, (4)

K∑

k=1

sk ·

⎛

⎜⎝ykq +
Q∑

q̃=1
q̃ �=q

(xkq̃q − xkqq̃)

⎞

⎟⎠ ≤ Cq, (5)

ykq̃, xkqq̃, xkq̃q ≥ 0, ∀k = 1, . . . , K, ∀q̃ = 1, . . . , Q. (6)

Constraint (3) represents the conservation law, according to which the demand
Dk must be satisfied (without excesses or lacks).

Constraint (4) means that, for each service chain, each provider cannot send
to other providers more flow than it manages.

The computational capacity constraint is defined by (5), which establishes
that the computational space required by all the service chains for the execu-
tion on the provider q’s resources must not exceed the maximum computational
capacity of q, Cq.

Finally, constraint (6) defines the domain of the variables.
We assume here that

K∑

k=1

skDk ≤
Q∑

q=1

Cq. (7)

In other words, we assume that in the network there is sufficient capacity to
execute all the requested service chains. We also assume that the demand price
terms are continuously differentiable and concave, while all the cost terms are
continuously differentiable and convex in the objective function.

A Multi-UAVs’ Provider Model for 5G Service Chains 451

3 Generalized Nash Equilibrium Problem Formulation

In this section we provide the Generalized Nash Equilibrium (GNE) problem
formulation of the optimization problem (2)–(6), and then we analyze the GNE
as variational equilibrium of an appropriate variational inequality.

Let us consider a non cooperative game with Q players that are the providers
of the service chains in the network, each of whom are rational and acts selfishly.

Let Kq denote the feasible strategy vectors set corresponding to provider q,
where:

Kq = {(Yq,Xq, X̃q) ∈ R
K(2Q−1)
+ , s.t.: (3) − (5) ∀k = 1, . . . , K; ∀q̃ = 1, . . . , Q}.

Observing that the amount of flow that a provider q sends to another provider q̃
must be equal to the amount that the provider q̃ receives from q, we also define:

K = {(Y,X) ∈ R
KQ2

+ , s.t.: (3) − (5) ∀k = 1, . . . ,K; ∀q, q̃ = 1, . . . , Q hold}

in which all the constraints are shared.
As a consequence of the assumption (7), the feasible set K is nonempty.
Each provider q, q = 1, . . . , Q, hence, seeks to maximize its payoff function

Uq(X,Y) : K → R that corresponds to the objective function of the optimization
problem (2)-(6), described in the previous section. The utility function Uq of
player q depends not only on its own strategy vector, but also on the strategy
vector of the other players.

We now state the following definition.

Definition 1. A Service Chain flow distribution pattern (Y ∗,X∗) ∈ K, is said
to be a Generalized Nash Equilibrium if for each providers q, q = 1, . . . , Q,

Uq(Y ∗
q ,X∗

q , X̃∗
q , Ŷ ∗

q , X̂∗
q) ≥ Uq(Yq,Xq, X̃q, Ŷ

∗
q , X̂∗

q), ∀(Yq,Xq, X̃q) ∈ Kq, (8)

where
Ŷ ∗
q ≡ (Y ∗

1 , . . . , Y ∗
q−1, Y

∗
q+1, . . . , Y

∗
Q), X̂∗

q ≡ (
X∗

q̃q̂

)
q̃,q̂=1,...,Q

q̃,q̂ �=q
q̃ �=q̂

.

According to the above definition, an equilibrium is achieved if no provider can
increase its utility by unilaterally altering the value of its strategy vector, given
the strategies of the other providers and the constraints.

We now introduce an equivalent GNE formulation that allows us to analyze
and determine the equilibrium solution via a variational inequality through a
variational equilibrium (see [8,9]).

Definition 2. A vector (Y ∗,X∗) ∈ K is said to be a variational equilibrium of
the above GNE if there exist the Lagrange multiplier vectors λ1∗ ∈ R

K , λ2∗ ∈
R

KQ
+ and λ3∗ ∈ R

Q
+ such that the vector (Y ∗,X∗, λ1∗, λ2∗, λ3∗) ∈ R

KQ2

+ × R
K ×

R
KQ
+ × R

Q
+ is a solution to the variational inequality:

452 G. M. Cappello et al.

Find (Y ∗,X∗, λ1∗, λ2∗, λ3∗) ∈ R
KQ2

+ × R
K × R

KQ
+ × R

Q
+ such that:

Q∑

q=1

K∑

k=1

[
∂c

(E)
q

(
Y ∗
q , X̃∗

q , X∗
q

)

∂ykq
+

∂c
(M)
kq

(
y∗
kq

)

∂ykq
− ρkq (Y

∗
k) − ∂ρkq

(
Y ∗
k

)

∂ykq
y∗
kq +

+λ1∗
k − λ2∗

kq + skλ3∗
q

]
× (ykq − y∗

kq) +

+
K∑

k=1

Q∑

q=1

Q∑

q̃=1
q̃ �=q

[
∂c

(E)
q

(
Y ∗
q , X̃∗

q , X∗
q

)

∂xkqq̃
+

∂c
(T)
qq̃

(
X∗

qq̃

)

∂xkqq̃
+ λ2∗

kq − skλ3∗
q

]
× (xkqq̃ − x∗

kqq̃) +

+
K∑

k=1

Q∑

q=1

Q∑

q̃=1
q̃ �=q

[
∂c

(E)
q

(
Y ∗
q , X̃∗

q , X∗
q

)

∂xkq̃q
+ skλ3∗

q

]
× (xkq̃q − x∗

kq̃q) +

−
K∑

k=1

[Q∑

q=1

y∗
kq − Dk

]
× (λ1

k − λ1∗
k) +

−
K∑

k=1

Q∑

q=1

[Q∑

q̃=1

x∗
kqq̃ − y∗

kq

]
× (λ2

kq − λ2∗
kq) +

−
Q∑

q=1

[K∑

k=1

sk ·

⎛

⎜⎝y∗
kq +

Q∑

q̃=1
q̃ �=q

(x∗
kq̃q − x∗

kqq̃)

⎞

⎟⎠ − Cq

]
× (λ3

q − λ3∗
q) ≥ 0,

∀ (Y, X, λ1, λ2, λ3) ∈ R
KQ2

+ × R
K × R

KQ
+ × R

Q
+, (9)

where λ1 = (λ1
k)k=1,...,K ; λ2 = (λ2

kq) k=1,...,K
q=1,...,Q

, λ3 = (λ3
q)q=1,...,Q are the vectors of Lagrange

multipliers associated with the constraints (3), (4) and (5), respectively.

Note that the terms of the utility functions related to the execution request (both
costs and revenues between providers) cancel out because they are opposite.

The existence of a solution to variational inequality (9) is guaranteed from
the classical theory of variational analysis, since the feasible set is compact and
the function that enters the variational inequality is continuous (see [12]).

4 Illustrative Numerical Example

In this section we present an illustrative numerical example for the GNEP
described in the previous section. We consider a simple scenario in which there
are Q = 3 providers and K = 4 service chain requests.

Let us consider the data provided in Table 1, and K = {(Y,X) ∈
R

36, s.t. (3) − −(5), ∀k = 1, . . . , 4; q = 1, 2, 3} the set of the feasible strategies.
We solved the VI (9) obtaining the following optimal solutions:

A Multi-UAVs’ Provider Model for 5G Service Chains 453

Table 1. Data for the illustrative example.

Demand Dk D1 = 35, D2 = 40, D3 = 20, D4 = 45

Computation space sk s1 = 2, s2 = 10, s3 = 3, s4 = 5

Computational
capacity Ĉq

Ĉ1 = 370, Ĉ2 = 290, Ĉ3 = 200

Unit demand price
functions ρkq(Yk)

ρ11 = −0.3y11 + 2.2y12 + 2.3y13, ρ32 = 1.7y31 − 0.5y32 + 2y33

ρ12 = −0.1y12 + 1.5y11 + 1.5y13, ρ33 = 1.1y31 + 1.2y32 − 0.5y33

ρ13 = −0.2y13 + 1.1y11 + 1.2y13, ρ41 = −0.2y41 + 1.3y42 + 1.5y43

ρ21 = −0.1y21 + 1.1y22 + 2.3y23, ρ42 = 1.2y41 − 0.1y42 + 1.3y43

ρ22 = −0.3y22 + 1.3y21 + 1.1y23, ρ43 = +1.1y41 + 1.3y42 − 0.3y43

ρ23 = −0.1y23 + 1.3y21 + 1.1y22, ρ31 = −0.5y31 + 1.1y32 + 1.2y33

Execution cost
functions c

(E)
q (Yq, X̃q,Xq)

c
(E)
1 = 0.3

[K∑
k=1

(yk1 +

Q∑
q̃=2

(xkq̃1 − xk1q̃))
]2

+ 2
[K∑
k=1

(yk1 +

Q∑
q̃=2

(xkq̃1 − xk1q̃))
]

c
(E)
2 = 0.4

[K∑
k=1

(yk2 +

Q∑
q̃=1
q̃ �=2

(xkq̃2 − xk2q̃))
]2

+ 3
[K∑
k=1

(yk2 +

Q∑
q̃=1
q̃ �=2

(xkq̃2 − xk2q̃))
]

c
(E)
3 = 0.25

[K∑
k=1

(yk3 +

Q∑
q̃=1
q̃ �=3

(xkq̃3 − xk3q̃))
]2

+ 4
[K∑
k=1

(yk3 +

Q∑
q̃=1
q̃ �=3

(xkq̃3 − xk3q̃))
]

Management cost
functions c

(M)
kq (ykq),

c
(M)
11 = 0.2y2

11 + 0.1y11, c
(M)
12 = 0.1y2

11 + 0.5y11, c
(M)
33 = 0.35y2

33 + y33

c
(M)
13 = 0.3y2

13 + 0.1y13, c
(M)
21 = 0.2y2

21 + 0.2y11, c
(M)
41 = 0.25y2

41 + 0.5y41

c
(M)
22 = 0.5y2

22 + 0.1y22, c
(M)
23 = 0.25y2

22 + 0.2y23, c
(M)
42 = 0.25y2

42 + y42

c
(M)
31 = 0.2y2

31 + 0.2y31, c
(M)
32 = 0.4y2

32 + 0.1y32, c
(M)
43 = 0.35y2

43 + 2y43

Transmission cost
functions

c
(T)
qq̃ (

K∑
k=1

xkqq̃)

c
(T)
12 = 0.5(

K∑
k=1

xk12)
2 + (

K∑
k=1

xk12), c
(T)
32 = 0.45(

K∑
k=1

xk32)
2 + (

K∑
k=1

xk32)

c
(T)
13 = 0.2(

K∑
k=1

xk13)
2 + (

K∑
k=1

xk13), c
(T)
21 = 0.09(

K∑
k=1

xk21)
2 + (

K∑
k=1

xk21)

c
(T)
23 = 0.35(

K∑
k=1

xk23)
2 + (

K∑
k=1

xk23), c
(T)
31 = 0.4(

K∑
k=1

xk31)
2 + (

K∑
k=1

xk31)

y∗
11 = 18.13, y∗

12 = 9.78, y∗
13 = 7.08, y∗

21 = 12.94, y∗
22 = 15.11, y∗

23 = 11.95,

y∗
31 = 8.80, y∗

32 = 2.76, y∗
33 = 8.44, y∗

41 = 22.83, y∗
42 = 18.43, y∗

43 = 3.74

x∗
113 = 7.38, x∗

123 = 3.75, x∗
kqq̃ = 0, for all the remaining variables.

These optimal solutions are computed through the Euler Method (see [13] for a
detailed description) using the Matlab program on an HP laptop with an AMD
compute cores 2C+3G processor, 8 GB RAM. We observe that, in equilibrium,
for the providers q = 1 and q = 2, it is convenient to send part of the flows of
the service chain k = 1 to the provider q = 3 for the execution.

We also analyzed seven different scenarios (instances), Si, i = 1, . . . , 7, with
the same network configuration described above, in which we vary the maximum
computational capacity of each provider, Cq, ∀q = 1, 2, 3, as reported in Table 2.
The optimal solutions are shown in Fig. 2 and Fig. 3. Particularly, in Fig. 2 are
reported the optimal variables referred to the flow of each service chain managed
by each provider, ykq, ∀k = 1, 2, 3, 4, ∀q = 1, 2, 3; while in Fig. 3 are reported

454 G. M. Cappello et al.

Table 2. Scenarios analyzed and maximum computational capacities.

Scenario C1 C2 C3

S1 370 290 200

S2 350 300 210

S3 340 370 370

S4 320 250 480

S5 300 380 510

S6 250 250 650

S7 220 290 760

the optimal variables referred to the flow of each service chain managed by a
provider but executed by another provider, xkqq̃, ∀k = 1, 2, 3, 4, ∀q, q̃ = 1, 2, 3.
Note that, for example, in all seven scenarios, at the equilibrium, the value of
the optimal flow variable of the service chain k = 3 and the second provider
q = 2 (y32) is the lowest (see Fig. 2, eighth variable). From Fig. 3 we can observe
several null values. They mean that there are no packet rate transfers between
some providers. In particular, we underline that there are absolutely no input
flows to the second provider and output from the third.

Fig. 2. Optimal solutions: amount of packet rate requested and managed by each
provider, for each service chain.

A Multi-UAVs’ Provider Model for 5G Service Chains 455

Fig. 3. Optimal solutions: amount of packet rate transferred between providers (one
of which manages while the other performs)

We also analyzed, for each scenario, the used computational capacities
of each provider, and compared them with the maximum ones. Figures 4, 5
and 6 show, for each provider respectively, the total computational capac-
ity that the provider should have used if he had to run all managed ser-

vices,
K∑

k=1

skykq, the total computational capacity transferred to or from other

providers,
K∑

k=1

Q∑

q̃=1

sk(xkq̃q − xkqq̃), the real total computational capacity to use,

given by the sum of the previous ones (that is,
∑

k

⎡

⎣skykq +
Q∑

q̃=1

(xkq̃q − xkqq̃)

⎤

⎦),

and the maximum available computational capacity, Cq.
In some scenarios, the total computational capacity that a provider should

have used if he had to run all managed services,
K∑

k=1

skykq, results to be grater

than the maximum available (see the seventh scenario for provider q = 1 and
the fourth for provider q = 2). Note also that the total computational capacity

transferred to or from other providers,
K∑

k=1

Q∑

q̃=1

sk(xkq̃q − xkqq̃) could assume a

negative value. This means that such a provider (for which this condition occurs)
sends flows to other providers rather than receiving them. Therefore, from Figs. 4,

456 G. M. Cappello et al.

Fig. 4. Provider q = 1: computational capacity analysis

Fig. 5. Provider q = 2: computational capacity analysis

A Multi-UAVs’ Provider Model for 5G Service Chains 457

Fig. 6. Provider q = 3: computational capacity analysis

5 and 6, we can observe that providers q = 1 and q = 2 generally send flows
to other providers, while provider q = 3 generally receives from other providers.
Finally, we underline that, except for the last scenario, provider q = 3 always uses
all his available computational capacity to execute services managed by himself
and services received from (and managed by) other providers. These results are
justified by the different cost functions.

5 Conclusion and Future Works

In this paper we propose a network based model for covering service chain
requests from end users and ground devices on a multi-providers 5G FANET.
We consider the scenario in which there is a single FANET, composed by UAVs
belonging to different providers whose purpose is to maximize their profits, under
the constraint to satisfy all requests for service chains. We studied a GNEP and
solved it through a suitable variational inequality.

As future work, it would be interesting to extend the present non-cooperative
game considering a scenario in which the different providers also choose how to
place Virtual Functions constituting the Service Chains on their own UAVs in
the FANET, in order to satisfy the service demand of the users on the ground
(see [25] for VF placement optimization problem with one single provider).

Acknowledgement. The research was partially supported by the PIACERI project
“OMNIA”, the PRIN Project “Liquid Edge”, the POR S6 project and the PNRR
RESTART SUPER Project. The research of Gabriella Colajanni was also partially

458 G. M. Cappello et al.

supported by the Italian Ministry of University and Research (MUR) and the European
Union for the PON project on Research and Innovation 2014-2020, D.M. 1062/2021.
These supports are gratefully acknowledged.

References

1. Erdelj, M., Natalizio, E., Chowdhury, K.R., AkyildizI. F.: Help from the Sky:
leveraging UAVs for disaster management. In: IEEE Pervasive Computing, vol.
16, no. 1, pp. 24–32 (2017)

2. George, J., Sujit, P.B., Sousa, J.B.: Search strategies for multiple UAV search and
destroy missions. J. Intell. Robot. Syst. 61, 355–367 (2011)

3. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging tech-
nologies. IEEE Access 3, 1206–1232 (2015)

4. Yi, B., Wang, X., Li, K., Sajal, k. D., Huang, M.: A comprehensive survey of
network function virtualization. Comput. Netw. 133, 212–262 (2018)

5. Filali, A., Abouaomar, A., Cherkaoui, S., Kobbane, A., Guizani, M.: Multi-access
edge computing: a survey. IEEE Access 8, 197017–197046 (2020)

6. Faraci, G., Grasso, C., Schembra, G.: Design of a 5G network slice extension with
MEC UAVs managed with reinforcement learning. IEEE J. Sel. Areas Commun.
38, pp. 2356–2371 (2020)

7. Faraci, G., Grasso, C., Schembra, G.: Reinforcement-learning for management of
a 5G network slice extension with UAVs. In: IEEE INFOCOM 2019 - IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS), pp.
732–737 (2019)

8. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper.
Res. 175, 177–211 (2010)

9. Kulkarni, A.A., Shanbhag, U.V.: On the variational equilibrium as a refinement of
the generalized Nash equilibrium. Automatica 48(1), 45–55 (2012)

10. Colajanni, G., Daniele, P., Sciacca, D.: On the provision of services with UAVs in
disaster scenarios: a two-stage stochastic approach. Oper. Res. Forum 3(1), 1–30
(2022). https://doi.org/10.1007/s43069-022-00127-x

11. Colajanni G., Sciacca D.: An optimization model for service requests manage-
ment in a 5G network architecture. In: Masone, A., et al. (eds.): Optimization and
Data Science: Trends and Applications. AIRO Springer Series, vol. 6, pp. 81–98.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86286-2 7

12. Kinderlehrer, D., Stampacchia, G.: Variational Inequalities and Their Applications.
Academic Press, New York (1980)

13. Dupuis, P., Nagurney, A.: Dynamical systems and variational inequalities. Ann.
Oper. Res. 44, 9–42 (1993)

14. D’Oro, S., Galluccio, L., Palazzo, S., Schembra, G.: A game theoretic approach for
distributed resource allocation and orchestration of softwarized networks. IEEE J.
Sel. Areas Commun. 35(3), 721–735 (2017)

15. Nagurney, A., Wolf, T.: A Cournot-Nash-Bertrand game theory model of a service-
oriented Internet with price and quality competition among network transport
providers. CMS 11(4), 475–502 (2014)

16. Lasaulce, S., Tembine, H.: Game Theory and Learning for Wireless Networks:
Fundamentals and Applications. Academic Press, Cambridge (2011)

17. Scutari, G., Palomar, D.P., Facchinei, F., Pang, J.S.: Convex optimization, game
theory, and variational inequality theory. IEEE Sig. Process. Mag. 27(3), 35–49
(2010)

https://doi.org/10.1007/s43069-022-00127-x
https://doi.org/10.1007/978-3-030-86286-2_7

A Multi-UAVs’ Provider Model for 5G Service Chains 459

18. Nagurney, A.: Network Economics: A Variational Inequality Approach, vol. 10.
Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-2178-1

19. Facchinei, F., Pang, J.S. (eds.): Finite-Dimensional Variational Inequalities and
Complementarity Problems. Springer, New York (2003). https://doi.org/10.1007/
b97543

20. Messous, M.A., Senouci, S.M., Sedjelmaci, H., Cherkaoui, S.: A game theory based
efficient computation offloading in an UAV network. IEEE Trans. Veh. Technol.
68(5), 4964–4974 (2019)

21. Giagkos, A., Tuci, E., Wilson, M.S., Charlesworth, P.B.: UAV flight coordination
for communication networks: genetic algorithms versus game theory. Soft. Comput.
25(14), 9483–9503 (2021). https://doi.org/10.1007/s00500-021-05863-6

22. Mkiramweni, M.E., Yang, C., Li, J., Zhang, W.: A survey of game theory in
unmanned aerial vehicles communications. IEEE Commun. Surv. Tutor. 21(4),
3386–3416 (2019)

23. Ni, J., Tang, G., Mo, Z., Cao, W., Yang, S.X.: An improved potential game theory
based method for multi-UAV cooperative search. IEEE Access 8, 47787–47796
(2020)

24. Nemer, I.A., Sheltami, T.R., Mahmoud, A.S.: A game theoretic approach of deploy-
ment a multiple UAVs for optimal coverage. Transp. Res. Part A Policy Pract. 140,
215–230 (2020)

25. Cappello, G.M., et al.: Optimizing FANET lifetime for 5G softwarized network
provisioning, submitted (2022)

https://doi.org/10.1007/978-94-011-2178-1
https://doi.org/10.1007/b97543
https://doi.org/10.1007/b97543
https://doi.org/10.1007/s00500-021-05863-6

Metabolic Syndrome Risk Forecasting
on Elderly with ML Techniques

Elias Dritsas(B), Sotiris Alexiou, and Konstantinos Moustakas

Department of Electrical and Computer Engineering, University of Patras,
26504 Rion, Greece

{dritsase,salexiou}@ceid.upatras.gr, moustakas@ece.upatras.gr

http://www.vvr.ece.upatras.gr/en/

Abstract. Metabolic syndrome is a disorder that affects the overall
function of the human body. It is manifested by elevated levels of choles-
terol and triglycerides, a significant reduction in energy levels, weight
gain with visceral fat deposition in the abdomen, and menstrual disorders
while increasing the risk of cardiovascular disease, autoimmune diseases
and diabetes. A public dataset is exploited to evaluate the metabolic
syndrome (MetS) occurrence risk in the elderly using Machine Learn-
ing (ML) techniques concerning Accuracy, Recall and Area Under Curve
(AUC). The stacking method achieved the best performance. Finally, our
purpose is to identify subjects at risk and promote earlier intervention
to avoid the future development of MetS.

Keywords: Metabolic syndrome · Risk prediction · Machine learning

1 Introduction

MetS can be described as a scourge of the modern age, associated with a seden-
tary lifestyle and poor diet. The rates of people with metabolic syndrome are con-
stantly increasing in the western world. The effects of this increase have already
begun to show with the rise of type 2 diabetes from a young age [22]. It is a
disease that has no specific symptoms. Hence, its diagnosis is made through labo-
ratory indicators. Insulin resistance (a state of decreased activity and sensitivity,
accompanied by increased insulin secretion) is a key feature of the metabolic syn-
drome that causes a set of symptoms that may not be immediately apparent as
being related to the disorder. Under normal conditions, the human body breaks
down food into glucose. Insulin is the hormone secreted by the pancreas that
helps glucose pass from the blood into the cells [3,13,19].

In people with insulin resistance, the body secretes more and more insulin,
which leads to the appearance of [17]:

This work has been supported by the European Union’s H2020 research and innovation
programme GATEKEEPER under grant agreement No 857223, SC1-FA-DTS-2018-
2020 Smart living homes-whole interventions demonstrator for people at health and
social risks.

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 460–466, 2022.
https://doi.org/10.1007/978-3-031-24866-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_33&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_33

Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques 461

– Hypertension which is characterized by high systolic above 130 mmHg or low
diastolic blood pressure above 85 mmHg.

– Elevated blood sugar levels, namely, fasting glucose above 100 mg/dl.
– Low levels of good cholesterol HDL less than 40 mg /dl for men and 50 mg/dl

for women.
– Elevated triglycerides with values greater than 150 mg/dl.
– Waist fat deposition with development of central obesity and increased vis-

ceral fat: waist circumference over 102 cm in men and over 88 cm in women.

In recent years, more and more research works have scientifically seen that
sleep remains a major and valuable aspect of human life as, among else, it reg-
ulates the proper functioning of the human body. Hence, its absence may have
serious consequences. According to [15,21,23], the “incorrect” sleep patterns
(short duration <7 h and long duration >9 h) can also affect the risk of devel-
oping metabolic syndrome.

Based on the above, a big challenge in the healthcare field is the early forecast-
ing of various chronic conditions, such as diabetes (as classification [8,12] or regres-
sion task for continuous glucose prediction [1,5]), hypertension [7], high choles-
terol [9,11], COPD [4], CVDs [6], stroke [10] etc. Similar to other conditions, sev-
eral research studies have been conducted for MetS using ML models. In [2], deci-
sion tree (DT) was selected for MetS features selection and data classification.
This model was evaluated considering the Youden index, Positive Predicted Value
(PPV), Negative Predicted Value (NPV), Sensitivity and Specificity. The key idea
in this work was to derive possible rules for the determination of MetS that could
enhance its diagnosis. In [14], besides to decision tree, the authors applied the sup-
port vector machine (SVM) method to predict MetS. Sensitivity, specificity and
accuracy were employed to assess their behavior. In [16], the authors investigated
the performance of ML methods using data sampling techniques to generate bal-
anced training sets in order to identify dependencies between diabetes mellitus
and metabolic syndrome. For this purpose, they applied DT and Näıve Bayes.
In [24], SVM, DT, random forest (RF), artificial neural network (ANN), princi-
pal component analysis (PCA) and association analysis (AA) are applied for the
modelling and construction of predictive models for metabolic syndrome charac-
terization. In [25], the XGBoost model is the best performing in terms of AUC,
Accuracy, Precision, F1-score, Specificity and F2-score.

An ongoing comparative study of various ML techniques is the main contri-
bution of this work. Moreover, the current research models will be integrated
into the AI services of the GATEKEEPER1 system, which aims to improve the
independence and ability overtime of the elderly and provide information to pro-
fessionals to support their decision for implementing personalised prevention and
intervention plans (lifestyle changes).

The rest of this paper is organized as follows. Section 2 describes the features
of the dataset which are used by experts as diagnostic criteria of MetS. Section 3
presents the methods for data balancing and feature importance ranking. Also,
Sect. 4 presents the evaluation of the ML models and Sect. 5 summarizes the
paper.
1 https://www.gatekeeper-project.eu/.

https://www.gatekeeper-project.eu/

462 E. Dritsas et al.

2 Dataset Description

Our research was based on a dataset from Kaggle. From this dataset, we focused
on participants who are over 50 years old. The number of participants is 396, and
all the attributes (11 as input to ML models and 1 for target class) are described
as follows

– Age (years): This feature refers to the age of a person who (in this study) is
over 50 years old.

– Gender: This feature refers person’s gender. The number of men is 193 while
the number of women is 203.

– Marital: This feature represents the marital status of the participants and
has 5 categories(Widowed, Married, Single, Divorced and Separated).

– WaistCirc -WC (cm): It is the measurement taken around the abdomen at
the level of the umbilicus.

– BMI (Kg/m2): This feature captures the body mass index of a person.
– Albuminuria (mg/g): This feature represents the person’s urine albumin

level and is categorized as normal to mildly increased (<30 mg/g), moderate
increased (30–300 mg/g - microalbumin) and severe increased (≥300 mg/g -
macroalbumin) [26].

– UrAlbCr: It captures the urine albumin to creatinine ratio. Its values define
the level of albuminuria, as it is explained in the previous feature.

– UricAcid (mg/dL): Uric acid is a chemical created when the body breaks
down purines.

– Blood Glucose: This feature captures the person’s blood glucose level.
– HDL (mg/dL): High-density lipoprotein absorbs cholesterol and carries it

back to the liver.
– Triglycerides (mg/dL): Triglycerides are a type of fat (lipid) found in human

blood.
– MetS: This feature represents if a person has Metabolic Syndrome or not.

Table 1. Statistical Characteristics

Features Min Max Mean ± std

Age 50 80 67.23 ± 9.36

BMI 15.7 59.2 29.97 ± 5.93

WaistCirc 66.4 145.6 102.92 ± 14.86

UrAlbCr 1.87 338.54 19.98 ± 42.09

Uric Acid 1.9 9.9 5.69 ± 1.45

Blood Glucose 73 327 113.09 ± 33.

HDL 25 108 55.08 ± 15.89

Triglycerides 41 560 139.29 ± 81.4

Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques 463

In Table 1, we summarize the statistical characteristics of the numerical fea-
tures in the dataset. The participants are older than 50 years, and their maximum
age is 80 years. In the current data, the number of participants who have been
diagnosed with MetS is approximately similar in the age groups 55–59 (29), 60–
64 (32), 65–69 (35) and 70–64 (32), while about two times greater (57) is the
number of participants in the age group of older than 75 years. Moreover, the
distribution of patients with MetS and albuminuria severity level is shown in
Table 2.

Table 2. Patients with MetS and Albuminuria level per age group

Level 0 Level 1 Level 2

50–54 16 3 0

55–59 25 3 0

60–64 30 1 0

65–69 20 1 0

70–74 26 4 0

75+ 39 21 2

Most of the patients have urine albumin to creatinine ratio in the normal to
mild range and even less in the moderate class. In the third class, only patients
older than 75 years have occurred. As in [18], here, it is also verified that the
prevalence of both metabolic syndrome and albuminuria increases with age.

In this study, 27 women and 24 men suffer from MetS with the simultaneous
presence of waist circumference above 88 for females and 102 for males, triglyc-
erides above 150 and HDL lower than 50 and 40, respectively. In Table 3, we
see MetS patients distribution for each criterion separately. Also, in the dataset,
there are 162 MetS patients with glucose levels above 100. These patients are
mainly distributed in the overweight (50) and obese (96) classes. In Table 4, we
present the prevalence of MetS in overweight and obesity classes when the waist
circumference criterion is also satisfied.

Table 3. WaistCirc, HDL, Triglyc-
erides per class

WC No Yes

>102 (male) 34 84

>88 (female) 71 91

HDL No Yes

<40 (male) 5 43

<50 (female) 6 42

Triglycerides No Yes

>150 12 112

Table 4. WaistCirc vs BMI classes

No Yes No Yes

Overweight 48 50 Obese I 29 69

WC > 102 20 22 WC > 102 10 39

WC > 88 28 28 WC > 88 19 30

Obese II 8 28 Obese III 4 16

WC > 102 2 15 WC > 102 0 8

WC > 88 6 13 WC > 88 4 8

464 E. Dritsas et al.

3 Data Preprocessing and Feature Importance

In this study, random oversampling has been applied to produce a balanced
dataset. For the training of the ML-based models, all features were kept, except
for race and income. Based on the relevant literature, we focus only on the most
important risk factors for metabolic syndrome. To estimate the importance of
an attribute x, we employed Gain Ratio (GR) method. The Gain Ratio of an
attribute x is calculated as GR(x) = IG(x)

H(x) , where IG(x), H(x) capture the
Information Gain and entropy of x, respectively [20]. The entropy of x is defined
as H(x) = −∑

i P (xi)log2(P (xi)) where P (xi) captures the probability to have
the value xi by considering all values of an attribute. In the balanced dataset the
features’ importance and the related weight are as follows: Triglycerides (0.2972),
BMI (0.1795), WaistCirc (0.1698) BloodGlucose (0.1526), HDL (0.1065), Age
(0.0845), UricAcid (0.0825), UrAlbCr (0.0519), Albuminuria (0.0357), Marital
(0.0105) and Sex (0.0000186).

Table 5. Machine learning models performance

Logistic regression SVM (linear) MultiLayer perceptron Random forest Stacking

Yes No Yes No Yes No Yes No Yes No

Accuracy 0.783 0.785 0.888 0.909 0.919

Recall 0.773 0.793 0.785 0.785 0.899 0.879 0.919 0.899 0.924 0.914

AUC 0.891 0.891 0.785 0.785 0.927 0.927 0.974 0.974 0.971 0.971

4 Performance Evaluation of ML Models

In this section, the performance of several ML models is evaluated in the WEKA
environment using 10-cross validation on the balanced dataset. Logistic Regres-
sion (LR), Support Vector Machine (SVM), MultiLayer Perceptron (MLP), Ran-
dom Forests (RFs) and a Stacking ensemble (using as base classifiers the previous
models while as a meta classifier the LR) was applied.

The results in Table 5 indicate that LR and (linear) SVM models present sim-
ilar satisfactory accuracy and recall 78.5%. The LR model demonstrated higher
AUC, and it can discriminate the prevalence of MetS with a higher probability
than SVM in populations similar to the dataset. An even higher performance
demonstrated RF (as a single classifier) and the superior outcomes were acquired
by the stacking method. Stacking performed best concerning the accuracy and
recall metrics with a bit (0.3%) lower AUC. Finally, this model is considered
powerful for the personalized risk assessment of the MetS in the context of the
GATEKEEPER system.

5 Conclusions

In this research work, a publicly available dataset was considered to examine the
order of importance of specific risk factors on MetS, aiming at risk prediction in

Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques 465

older people living at home. A limitation of the current study is that in the fea-
tures set was not available the blood pressure in relation to metabolic syndrome.
Several ML methods were assessed and the Stacking method was found to yield
the best prediction performance against the single classifiers. The results of the
stacking method presented consistently high accuracy (0.919), recall (0.919) and
AUC (0.971), a fact that seems promising for the discrimination ability of the
model regarding possible subjects with MetS.

In future work, we aim to extend the Machine Learning framework through
the use of Deep Learning methods by applying Long-Short-term-Memory
(LSTM) algorithm and Convolutional Neural Networks (CNN) based on the
same dataset and comparing the results concerning the aforementioned metrics.

References

1. Alexiou, S., Dritsas, E., Kocsis, O., Moustakas, K., Fakotakis, N.: An approach
for personalized continuous glucose prediction with regression trees. In: 2021 6th
South-East Europe Design Automation, Computer Engineering, Computer Net-
works and Social Media Conference (SEEDA-CECNSM), pp. 1–6. IEEE (2021)

2. Babič, F., Majnarić, L., Lukáčová, A., Paralič, J., Holzinger, A.: On patient’s
characteristics extraction for metabolic syndrome diagnosis: predictive modelling
based on machine learning. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM
2014. LNCS, vol. 8649, pp. 118–132. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10265-8 11

3. Basciano, H., Federico, L., Adeli, K.: Fructose, insulin resistance, and metabolic
dyslipidemia. Nutr. metabol. 2(1), 1–14 (2005)

4. Dritsas, E., Alexiou, S., Moustakas, K.: COPD severity prediction in elderly with
ML techniques. In: Proceedings of the 15th International Conference on PErvasive
Technologies Related to Assistive Environments, pp. 185–189 (2022)

5. Dritsas, E., Alexiou, S., Konstantoulas, I., Moustakas, K.: Short-term glucose pre-
diction based on oral glucose tolerance test values. In: International Joint Confer-
ence on Biomedical Engineering Systems and Technologies - HEALTHINF, vol. 5,
pp. 249–255 (2022)

6. Dritsas., E., Alexiou., S., Moustakas., K.: Cardiovascular disease risk prediction
with supervised machine learning techniques. In: Proceedings of the 8th Inter-
national Conference on Information and Communication Technologies for Ageing
Well and e-Health - ICT4AWE, pp. 315–321. INSTICC, SciTePress (2022)

7. Dritsas, E., Fazakis, N., Kocsis, O., Fakotakis, N., Moustakas, K.: Long-term hyper-
tension risk prediction with ML techniques in ELSA database. In: Simos, D.E.,
Pardalos, P.M., Kotsireas, I.S. (eds.) LION 2021. LNCS, vol. 12931, pp. 113–120.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92121-7 9

8. Dritsas, E., Trigka, M.: Data-driven machine-learning methods for diabetes risk
prediction. Sensors 22(14), 5304 (2022)

9. Dritsas, E., Trigka, M.: Machine learning methods for hypercholesterolemia long-
term risk prediction. Sensors 22(14), 5365 (2022)

10. Dritsas, E., Trigka, M.: Stroke risk prediction with machine learning techniques.
Sensors 22(13), 4670 (2022)

https://doi.org/10.1007/978-3-319-10265-8_11
https://doi.org/10.1007/978-3-319-10265-8_11
https://doi.org/10.1007/978-3-030-92121-7_9

466 E. Dritsas et al.

11. Fazakis, N., Dritsas, E., Kocsis, O., Fakotakis, N., Moustakas, K.: Long-term
cholesterol risk prediction with machine learning techniques in ELSA database. In:
International Joint Conference on Computational Intelligence (IJCCI), pp. 445–
450. SCIPTRESS (2021)

12. Fazakis, N., Kocsis, O., Dritsas, E., Alexiou, S., Fakotakis, N., Moustakas, K.:
Machine learning tools for long-term type 2 diabetes risk prediction. IEEE Access
9, 103737–103757 (2021)

13. Freeman, A.M., Pennings, N.: Insulin resistance. StatPearls [Internet] (2021)
14. Karimi-Alavijeh, F., Jalili, S., Sadeghi, M.: Predicting metabolic syndrome using

decision tree and support vector machine methods. ARYA Atherosclerosis 12(3),
146 (2016)

15. Konstantoulas, I., Kocsis, O., Dritsas, E., Fakotakis, N., Moustakas, K.: Sleep qual-
ity monitoring with human assisted corrections. In: International Joint Conference
on Computational Intelligence (IJCCI), pp. 435–444. SCIPTRESS (2021)

16. Perveen, S., Shahbaz, M., Keshavjee, K., Guergachi, A.: Metabolic syndrome and
development of diabetes mellitus: predictive modeling based on machine learning
techniques. IEEE Access 7, 1365–1375 (2018)

17. Raikou, V.D., Gavriil, S.: Metabolic syndrome and chronic renal disease. Diseases
6(1), 12 (2018)

18. Shih, H.M., Chuang, S.M., Lee, C.C., Liu, S.C., Tsai, M.C.: Addition of metabolic
syndrome to albuminuria provides a new risk stratification model for diabetic kid-
ney disease progression in elderly patients. Sci. Rep. 10(1), 1–9 (2020)

19. Tappy, L., Lê, K.A.: Metabolic effects of fructose and the worldwide increase in
obesity. Physiol. Rev. (2010)

20. Trabelsi, M., Meddouri, N., Maddouri, M.: A new feature selection method for
nominal classifier based on formal concept analysis. Procedia Comput. Sci. 112,
186–194 (2017)

21. Troxel, W.M., et al.: Sleep symptoms predict the development of the metabolic
syndrome. Sleep 33(12), 1633–1640 (2010)

22. Vollenweider, P., Eckardstein, A.v., Widmann, C.: HDLS, diabetes, and metabolic
syndrome. von Eckardstein, A., Kardassis, D. (eds.) High Density Lipoproteins.
Handbook of Experimental Pharmacology, vol. 224, pp. 405–421. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-09665-0 12

23. Wolk, R., Somers, V.K.: Sleep and the metabolic syndrome. Exp. Physiol. 92(1),
67–78 (2007)

24. Worachartcheewan, A., Schaduangrat, N., Prachayasittikul, V., Nantasenamat, C.:
Data mining for the identification of metabolic syndrome status. EXCLI J. 17, 72
(2018)

25. Yang, H., et al.: Machine learning-aided risk prediction for metabolic syndrome
based on 3 years study. Sci. Rep. 12(1), 1–11 (2022)

26. Zhang, A., et al.: The relationship between urinary albumin to creatinine ratio and
all-cause mortality in the elderly population in the Chinese community: a 10-year
follow-up study. BMC Nephrol. 23(1), 1–10 (2022)

https://doi.org/10.1007/978-3-319-09665-0_12

Airport Digital Twins for Resilient
Disaster Management Response

Evangelia Agapaki(B)

Construction Management, M.E. Rinker, Sr. School of Construction Management,
University of Florida, Gainesville, FL 32603, USA

agapakie@ufl.edu
https://www.evagapaki.com/

Abstract. Airports are constantly facing a variety of hazards and
threats from natural disasters to cybersecurity attacks and airport stake-
holders are confronted with making operational decisions under irregular
conditions. We introduce the concept of the foundational twin, which can
serve as a resilient data platform, incorporating multiple data sources and
enabling the interaction between an umbrella of twins. We then focus on
providing data sources and metrics for each foundational twin, with an
emphasis on the environmental airport twin for major US airports.

Keywords: Digital twin · Instance segmentation · Graphical neural
network · Geometric deep learning · Point clouds · Computer vision

1 Introduction

The complexity of airport operations regardless of their size extends beyond
the airside side of operations. Natural disasters, climate change threats, high
annual passenger demand, large volumes of cargo and baggage, concessionaires
and vendors as well as other airport tenants may extend an airport’s operations
beyond capacity or disrupt operations. Figure shows the airport systems and
stakeholders in an airport. The American Society of Civil Engineers (ASCE)
has rated airport infrastructure with grade “D” and this finding is based on
the anticipated higher passenger demand compared to infrastructure capacity
(Bureau of Transportation Statistics, 2019). Moreover, irregular operations and
disruptions due to internal or external threats can have serious consequences in
cities [24]. For example, in December 2017, one of the busiest airports in the
world, Atlanta’s Hartsfield-Jackson airport, suffered an 11hr-long power outage,
which disrupted the airport’s operations and also incurred economic losses [34].
These incidents necessitate the need for a resilient airport.

Resilience incorporates the ability to (a) anticipate, prepare for, and adapt to
changing conditions, (b) to absorb, (c) to withstand, respond to, and (d) to recover
rapidly from disruptions. The implementation of resilient solutions in airports can
be performed by preventing or mitigating disruptive events to air traffic operations
[8,27,44]. Those events can be either severe weather hazards (e.g., dense fog, flood-
ing, snow, drought, tornado, wildfire, hurricane), threats (e.g., equipment outages,
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 467–486, 2022.
https://doi.org/10.1007/978-3-031-24866-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_34&domain=pdf
http://orcid.org/0000-0002-2962-9203
https://doi.org/10.1007/978-3-031-24866-5_34

468 E. Agapaki

Fig. 1. Airport systems and stakeholders

political changes, economic downturn, pandemics, cyber-attacks, physical attacks)
and vulnerabilities (e.g., equipment outages, lack of staff).

Resilience can be quantified by analyzing risks to an airport. We adopt the
definition of airport risks by the National Infrastructure Protection Plan (NIPP)
[39], where risk is defined by the likelihood and the associated consequences of
an unexpected event. Those risks are the hazards most likely to occur, potential
threats, and vulnerabilities. Hazards and threats refer to incidents that can dam-
age, destroy, or disrupt a site or asset. The difference between hazards and threats
is that the former can happen unexpectedly, typically outside of an airport’s
control whereas the latter happen purposefully and are usually manmade. Some
examples of hazards are natural hazards (e.g., hurricanes, earthquakes, wild-
fire), technological (e.g., infrastructure failure, poor workmanship, or design),
or human-caused threats (e.g., accidents, cyberattacks, political upheaval). The
consequences associated with the vulnerabilities of an airport, as a result of a
hazard or threat being realized, is one way to measure the impacts associated
with risks. Therefore, risk is defined as the multiplication of consequences, prob-
ability and vulnerabilities of an airport.

Resilience analysis includes both the time before (planning capability), during
(absorbing capability) and after a disruption event occurs (recovery and adapta-
tion capability), including the actions taken to minimize the system damage or
degradation, and the steps taken to build the system back stronger than before.
Figure 2(a) shows this timeline and the planning [7,13,18,19,30,31,43,45],
absorbing [7,13,30,31,35,42,43,45], recovering [2,41,43,45,47], and adapting
[7,13,41,43,45,47] phases of a resilience event. As shown in Fig. 2, the system
initially is in a steady state. After the disruptive event occurs at td, the system’s
performance starts decreasing and then a contingency plan is implementing at
time tc. Then, there are four “recovery” scenarios. In the first scenario (blue line),

Airport Digital Twins for Resilient Disaster Management Response 469

the performance of the system gradually recovers without any outside interven-
tion until it reaches the original steady state. In the second scenario (purple,
dashed line), the system first reaches a new steady state, but eventually returns
to its originally state. For example, temporary routes and measures are taken
to meet immediate needs of airport operations when the system is damaged due
to a hurricane. However, it may take weeks or months for the system to fully
recover. The worst scenario is when the system cannot recover (red dashed line).
The last scenario is to reach the recovery state earlier by using a holistic Digital
Twin (DT) framework (green line), which will be discussed in the last section
of this paper. Figure 2(b) showcases the risk assessment adoption framework in
airport operations [11].

This paper targets to identify the areas of highest risks for an airport, so that
these can serve as indicators to inform policies and investment decisions.

1.1 Background on Airport Resilience

In recent years, there has been a lot of research on resilience in airport oper-
ations. Multiple studies have implemented Cost-Benefit Analysis (CBA) tools
to estimate costs and benefits after implementing security measures in their
security risk assessment policies. However, CBA analysis cannot validate the
estimated airport security costs, therefore multiple simulation experiments are
needed to investigate the interdependencies between different stakeholders and
systems [32]. To overcome these limitations, the ATHENA project investigated a
framework to evaluate curbside traffic management control measures and traffic
scenarios at the Dallas-Fort Worth International Airport (DFW) [37], optimiza-
tion of shuttle operations that can lead to 20% energy reductions [29] and traffic
demand forecasting [22].

Researchers have also focused on risk assessment models of airport security.
Lykou et al. (2019) [23] developed a model for smart airport network security
with the objective to mitigate malicious cyberattacks and threats. Zhou and
Chen (2020) [46] proposed a method to evaluate an airport’s resilient perfor-
mance under extreme weather events. Their results demonstrated that airport
resilience greatly varies based on the level of modal substitution, airport capac-
ity and weather conditions. Previous research has greatly focused on airport
security protection [36,44,48]. Agent-based modeling has been used to represent
sociotechnical elements of an airport’s security system and identify states and
behaviors of its agents such as weather, pilots, aircrafts, control tower operators
[33]. Recently, Huang et al. (2021) [17] proposed a Bayesian Best Worst Method
that identifies the optimal criteria weights with a modified Preference Ranking
Organization method for Enrichment evaluations (modified PROMETHEE) to
make pairwise comparisons between alternatives for each criterion. They evalu-
ated their method in three airports in Taiwan. This system relies on the judge-
ment of experts for the evaluation of multiple, even overlapping criteria based
on pre-determined evaluation scales.

However, a comprehensive framework for resilient management response for
airports has not yet been developed. This is a complex and difficult Multiple Cri-

470 E. Agapaki

Fig. 2. (a) Resilience framework overview with and without the use of Digital Twins
and (b) risk assessment adoption in airports (modified from Crosby et al., 2020).

teria Decision-Making (MCDM) problem. The objective of MCDM is to identify
an optimal solution when taking into account multiple overlapping or conflict-
ing criteria. This study intends to develop a framework that leverages recent
advances in digital twin technologies and identify the criteria and metrics, which
will act as a guidance for a holistic disaster management response.

1.2 Resilience Indexes

Previous literature has focused on identifying multiple metrics (resilience
indexes) related to aviation and airport safety and operations [2,4,7,12,13,18,
19,21,24,30,31,35,41,41–43,45,47]. Figure 3 summarizes the most widely used
resilience metrics for each resilience phase as described above. These metrics

Airport Digital Twins for Resilient Disaster Management Response 471

take into account the airport’s physical facilities, personnel, equipment and the
disaster response phases.

Resilience indexes and web-based platforms have been widely developed for
communities. Two widely adopted tools are the National Risk Index (FEMA,
2022) and the ASCE Hazard Tool (ASCE, 2022). The former calculates risk
index scores per each US county based on 18 natural hazards by computing the
expected annual loss due to natural disasters multiplied by the social vulner-
ability divided by the community resilience. The ASCE Hazard tool provides
reports on natural disasters with widely known parameters. These tools need
to be taken into account when considering the exposure of airports to natural
disasters.

The uncertainly of disruption occurrences in conjunction with the complexity
of airport infrastructure and operations (Fig. 1) necessitates the need for a unified
digital platform to integrate information related to airport operations as well as
interactions between airport sub-systems and their accurate representation.

2 Airport Digital Twin Framework

Technological innovations have the potential to: (a) capture the detailed geome-
try of the physical infrastructure and generate the asset’s digital twin, (b) enrich
the geometric digital twin with real-time sensor data, (c) update, maintain and
communicate with the digital twin and (d) leverage the digital twin to monitor
the asset’s performance and improve decision-making by planning interventions
well before the time of need. The goal of this research is to develop a foun-
dational digital twin template that can be implemented across airports of all
sizes. This leverages the use of digital twin technologies to explore alternative
future scenarios for a more resilient airport. The foundational digital twin will
be used as the main framework and specific systems of the digital twin will be
investigated. In particular, the key objectives are the following:

– O1: Airport Digital Twin (ADT) definition in the context of operational air-
port systems.

– O2: Airport Digital Twin (ADT) generation and maintenance. We propose
a framework for static and dynamic information curation based on existing
sensor data and airport systems.

We introduce the concept of the foundational airport digital twin (Fig. 4),
which incorporates an umbrella of twins that could interact with each other;
these twins are, but not limited to, the geometric, financial, operations, social
and environmental twin. If successful implementation of the foundational twin is
achieved, then it can lead to improved efficiency and operations as well as better
planning in the presence of irregular events that are of paramount importance for
airport executives and stakeholders. The Foundational Digital Twin will serve
as a resilient data backbone for airport infrastructure systems and will enable
the implementation of more advanced twins such as the adaptive/planning and
intelligent twin. As illustrated in Fig. 4, the adaptive twin encapsulates simu-
lated scenarios towards a proactive plan of operating an airport, where planned

472 E. Agapaki

Fig. 3. Literature review on metrics for each airport resilience phase

Airport Digital Twins for Resilient Disaster Management Response 473

interventions will be more sophisticated than ever before. The data collection,
modeling and intervention will become increasingly automated. That level of
automation will lead to the Intelligent Twin, where we envision an informed
decision-making system with minimal human intervention.

Fig. 4. Digital Twin framework

We expand on the definition of the Foundational Digital Twin in Fig. 5. The
geometric twin entails spatial data collection as well as their intelligent process-
ing, Building Information Modeling (BIM) and validation with laser scanned
data and GIS data integration. The process of laser scanning to BIM has already
been applied to other complex infrastructure assets and is named as geometric
digital twinning [1]. The Financial twin should have the capacity to: (a) simulate
the allocation of funding from a variety of sources and visualize it in different
physical assets at the airport, (b) visualize potential conflicts in funding utiliza-
tion in real-time and (c) facilitate the fiscal management of an airport expansion
and renewal projects. The Social twin should visualize the human demand on
infrastructure and predict social behaviors based on historical data. In particu-
lar, it should: (a) integrate geospatial and airport-specific data (e.g., area and
airport infrastructure reachability in correlation to the number of runways, taxi-
ways), (b) integrate and process demographic data such as urban indexes and
population around the airport to predict human demand and (c) integrate geo-
graphic and urban data related to the existing built environment surroundings
that can affect passenger demand. Lastly, the environmental twin should account
for natural hazards, energy consumption, occupancy rates, pollution and air vol-
ume for airports to be on track to achieve net-zero carbon infrastructure by 2050
(UN Environment Program, 2020).

474 E. Agapaki

As presented in Fig. 5, the foundational digital twin will be integrated with
existing infrastructure Asset Management (AM) software and the configuration
parameters (asset lifecycle, risk management, consequence of failure, probability
of failure) will be predicted based on the capabilities of the twin. The asset will be
registered in a Common Data Environment (CDE) and the infrastructure needs
will be assessed based on the existing capital program of the airport (in-year or
multi-year capital program) as well as the financial system (e.g., existing asset
reports, tangible capital asset and government accounting standards board). All
the data is expected to be aggregated in a data warehouse (data lake), which
will be hosted in the airports’ Operations Center facilities.

Fig. 5. Definition of foundational digital twin

2.1 Exploration of Threats and Hazards for Airport Digital Twins

The threats and hazards are grouped into each Foundational Twin and are sum-
marized in Fig. 6. Each group is then analyzed below.

Geometric. The majority of aging industrial facilities lacks accurate drawings
and documentation [1]. Without capturing the existing geometry of an asset
accurately, the incurred information loss throughout an asset’s lifecycle would
be immense.

Financial. Budget reductions and overruns, economic downturns, inefficient
funding allocations are some of the financial threats airport authorities may
be encountered with [15,38].

Operational. Equipment maintenance is critical for airport operations (SMS
Pilot Studies; FAA, 2019). The condition of passenger bridge boarding and ancil-
lary equipment is another critical component that needs to be reliably assessed
and maintained.

Airport Digital Twins for Resilient Disaster Management Response 475

Social. Airports are at risk of malicious events that can put their operations
in jeopardy. Such incidents have been reported in the Los Angeles International
airport in 2002 and 2013, when assailants killed airport personnel during attacks
[10,25]. In 2014 an intoxicated passenger attacked another passenger in a hate
crime at the Dallas airport [28], indicating the need for vigilance at all levels.
Incidents of cyberattacks continue to increase and airport infrastructure is a tar-
get for those. Zoonotic diseases1 will likely increase in their extent and frequency
in the future [20]. We need to look into the diseases that have the highest likeli-
hood of infecting regions where the airports operate. For example, in Texas, the
most common vectors include ticks and mosquitoes carrying spotted fever rick-
ettsiosis and West Nile virus, respectively [6]. Other unknown zoonotic diseases
could arise in the future in the same way that the novel coronavirus is thought
to have emerged as a zoonotic disease and then rapidly spread around the world,
primarily via airports and air travel [40]. In such scenarios, the airport’s oper-
ations could facilitate the spread of new zoonotic diseases from one person to
another, including passengers, flight crews, airport workers, transportation per-
sonnel, and others. Other societal threats are demographic changes (e.g., sudden
population growth) and unprecedented industrial or staff accidents.

Environmental. These threats include natural hazards and impacts of climate
change that can significantly alter meteorological conditions, which may affect air-
port operations. Extreme natural events can lead to power system and flight dis-
ruptions. Studies have estimated that these events will be exacerbated to a modest
degree by climate change [14,26]. Although current research cannot definitively
conclude whether climate change will increase or decrease the frequency of torna-
does in every situation, overall warmer temperatures will likely reduce the poten-
tial for wind shear conditions that lead to tornadoes [5,16]. Severe wind could
become more common because previous research has shown that climate change
is responsible for a gradual increase in world average wind speeds [9]. Fewer and/or
less powerful tornadoes could help improve operations, because airport structures
and visitors are less likely to be damaged or harmed by airborne debris caused by
tornadoes. On the other hand, stronger overall winds could lead to more difficult
weather conditions for pilots of arriving or departing aircraft.

Climate change also has the potential to increase the annual average tem-
peratures and to make the temperature swings more extreme. This can result
in an increase in electricity demand as HVAC systems respond to temperature
changes. This increased electricity demand can stress system components in both
daily operations and in heat wave and cold snap events.

There are three features of the twin that have the potential to assist decision
making better than any other technology tool. Those are: (a) interoperability
between software tools, which facilitates better communication between mul-
tiple stakeholders, (b) relationship mapping between both static (e.g., static
infrastructure) and dynamic entities (e.g., humans, moving infrastructure) and
1 A zoonotic disease is one in which an animal acts as intermediary for disease trans-

mission between the vector and the infected human (e.g., Lyme disease occurs in
white-footed mice, but it is transmitted to humans via ticks).

476 E. Agapaki

Fig. 6. Definition of foundational DTs in relation to hazards and threats

(c) semantics that allow Artificial Intelligence (AI) tools and data analytics to
forecast future scenarios. An example of airport stakeholders involved in the
operational twin is presented in Fig. 7. Figure 8 shows semantics in the geomet-
ric digital twin applied to heavy industrial facilities. We will also investigate
potential data sources for the generation and maintenance of DTs in the next
section.

Airport Digital Twins for Resilient Disaster Management Response 477

Fig. 7. Airport stakeholders of the operational twin

Fig. 8. Automated geometric digital twinning on industrial assets (Agapaki, 2020)

2.2 Data Sources for the Generation and Maintenance of Airport
DTs

A sample of data sources and existing datasets for each Foundational Twin
is summarized in Figs. 9 and 10. Existing literature provides the insight that
there is an abundance of systems related to air traffic control (i.e., ADS-B,
SWIM, ERAM). FAA’s goal of the NEXT Generation Air Transportation Sys-
tem (NextGen) is a national upgrade of the air traffic control systems. The Sys-
tem Wide Integration Management (SWIM) is the first implementation of this
vision, and it integrates a variety of data systems, including weather, communi-
cation radar information, traffic flow management systems, en route flight plan
changes, arrival and departure procedures, microburst information, NOTAMs,
storm cells, wind shear and terminal area winds aloft. However, the systems
related to operating, maintaining and predicting failures and irregular operations
in the landside and terminal operations are limited. Airport Computer Main-
tenance Management Systems (CMMS) have been proposed for use in airports

478 E. Agapaki

(National Academies, 2015) to streamline maintenance operations by using work
schedules, maintaining inventory and spare parts at optimal levels and tracking
historical records. However, based on the results of the above-mentioned report,
a total of 15 different CMMS software packages were used by airports that have
implemented these systems, which makes the data governance and interoperabil-
ity a challenge. In addition, although the exact location and tracking of air traffic
is managed thoroughly through a variety of systems, the movement of passengers
and occupants of the terminals is not monitored. To give an example, an airline
becomes aware of a passenger being at the terminal only when they check in
their luggage or pass TSA control.

The data needs will differ per airport size depending on their experience and
on their operational management practices. At a minimum, we investigate data
sources and metrics to be adopted for the environmental twin for a small set of
US airports.

3 Investigation of Environmental Digital Twin Metrics

We selected a set of airports, namely: Southwest Florida International air-
port (RSW), Hartsfield-Jackson International airport (ATL), Charlotte Douglas
International airport (CLT), Ronald Reagan Washington International airport
(DCA), William Hobby airport (HOU), Dalls/Fort Worth International airport
(DFW), Dallas Love Field airport (DAL), Austin-Bergstrom International air-
port (AUS) and Orlando international airport (MCO). The reason for our selec-
tion was based on their number of enplanements, being in the top-10 busiest US
airports for large and medium hub airports [3].

We investigated the natural hazard risk index scores for selected counties,
where the identified airports operate. Figure 11 presents the relative distribution
of hazard type risk index scores for each county, which can be used as one of the
data sources for the environmental airport DT.

Another indicator of irregular airport operations is the number of cancelled
and/or delayed flights arriving or departing at the airport. We collected data
from TranStats (Bureau of Transportation Statistics, 2022) for the on-time
arrival and departure flights. Figure 12 shows the arrivals and departures in five
of the above-mentioned airports and their distribution per year for the last ten
years. Then, we looked at extreme weather events that have occurred and could
affect the operation of these airports. In particular, we investigated Hurricane
Irma. Hurricane Irma occurred in September 2017 affecting MCO, RSW, ATL,
CLT and DCA airports and primarily ATL airport with 3.76 and 3.78% cancelled
arrival and departure flights respectively. A power outage also affected the ATL
airport with nearly 5% cancelled flights in December 2017. Similarly, RSW, CLT,
DCA and MCO were affected with the majority of their canceled flights being in
September 2017 (Fig. 13). Another important aspect that should be investigated
is the recovery time of airport operations after these events occurred, which is
part of future work.

Airport Digital Twins for Resilient Disaster Management Response 479

Fig. 9. Data sources and existing datasets for the geometric, operations, financial and
social foundational twin

480 E. Agapaki

Fig. 10. Data sources and existing datasets for the environmental foundational twin

Fig. 11. Risk index scores for 18 natural hazards and nine US airports (modified from
FEMA).

Airport Digital Twins for Resilient Disaster Management Response 481

Fig. 12. Distribution of percentage of cancelled (a) arrival and (b) departure flights
for ATL, MCO, RSW, CLT and DCA airports.

Climate change metrics are another significant factor that needs to be taken
into account when generating and maintaining a digital twin. The National Cli-
mate Assessment Representative Concentration Pathways (RCP) provide key
indicators for quantifying climate change. Those are: cooling degree days, heat-
ing degree days, average daily mean temperature, annual number of days with
minimum and maximum temperatures beyond threshold values, annual precipi-
tation, dry days, and days with more than 2” precipitation. Cooling and heating
degree days refer to the number of hours per year and the degrees above or
below 65 ◦F as detailed by the NOAA methodology (US Department of Com-
merce 2022). This methodology means that the cooling degree days and heating
degree days can exceed 365 as they are multiplied with the number of hours per
year and the magnitude of temperatures above or below 65 ◦F.

Temperature has the potential to impact human health. It can also affect
power, transport, and water system resilience. For example, at the DFW air-
port, the number of cooling degree days is projected to increase from 2600 to
3400 and the number of heating degree days is projected to decrease from 2400
to 1900 (both according to the low emissions scenario). Cooling degree days will
increase electricity consumption from air conditioning, increase on site water
consumption, and can exacerbate the airport’s peak electricity demand which
was analyzed in a subsequent section. Both maximum and minimum ambient
temperature can affect electricity demand. The average high and low tempera-
tures at 2m above the ground, the average precipitation and average wind speed
are compared for ATL, CLT, RSW, DFW and HOU. The average precipitation
is computed by accumulating rainfall over the course of a sliding 31-day period
and the average wind speed is computed as the mean hourly wind speed at 10m
above the ground.

482 E. Agapaki

Fig. 13. Per month percentage of cancelled flights in 2017.

Aside from the average temperature, wind and precipitation values, heat
waves and cold spells can have an acute effect on airport operations. Using the
SAFRAN methodology (EPA, 2021), those can be identified in future work.

The overall amount of precipitation, dry days, and days with significant rain-
fall (>2” per day) is expected to change very little from present time through
2050. We used DFW as an example, where there have been several historical
events where extreme precipitation has led to power system and flight disrup-
tions. These events have included snowfall (US Department of Commerce 2021a;
US Department of Commerce 2021b; Narvekar 2011; NBCDFW 2021; Lind-
sey 2021; L’Heureux 2021), droughts (Runkle and Kunkle 2017; Hegewisch and
Abatzoglou 2021; Centers for Disease Control and Prevention National Environ-
mental Public Health Tracking 2020), and floods (USGCRP 2018; First Street
Foundation 2021) (Fig. 14).

Airport Digital Twins for Resilient Disaster Management Response 483

Fig. 14. (a) Average high and low temperature (b) average wind speed and (c) average
monthly rainfall.

4 Discussion

When dealing with risk, an airport organization has the choice to either accept
the risk, avoiding the risk by planning and preparing for interrupted activi-
ties or working to eliminate the risk through mitigation. This research reviewed
the existing risks in the context of gathering available data sources, grouped
them into categories (geometric, financial, social and environmental) and devel-
oped a unified framework for the assessment of risks using multiple criteria. We
particularly emphasized environmental threats and provided metrics as well as
open-source existing databases for the evaluation of those risks.

5 Conclusion

There have been many studies investigating airport resilience frameworks, how-
ever a unified framework that identifies and then combines multiple data sources
has not yet been investigated. The aim of this study was to use a foundational
digital twins in order to identify key threats and hazards. We then suggested
metrics and data sources for the environmental digital twin that can be used
as guidance for the development of a unified and integrated data framework for
the DT development. Future research directions include the foundational digital
twin implementation on airport case studies.

Acknowledgments. We thank the Florida Space Institute (NASA) for sponsoring
this research. We gratefully acknowledge the collaboration of all academic and indus-
trial project partners. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the institutes mentioned above.

484 E. Agapaki

References

1. Agapaki, E.: Automated object segmentation in existing industrial facilities. Ph.D.
thesis, University of Cambridge (2020)

2. Bao, D., Zhang, X.: Measurement methods and influencing mechanisms for the
resilience of large airports under emergency events. Transportmetrica A: Transp.
Sci. 14(10), 855–880 (2018)

3. Bazargan, M., Vasigh, B.: Size versus efficiency: a case study of us commercial
airports. J. Air Transp. Manag. 9(3), 187–193 (2003)

4. Bruneau, M., et al.: A framework to quantitatively assess and enhance the seismic
resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)

5. Center for Climate and Energy Solutions: Tornadoes and climate change (2019).
https://www.c2es.org/content/tornadoes-and-climate-change/

6. Centers for Disease Control and Prevention Division of Vector-Borne Diseases:
Texas: Vector-borne diseases profile (2004–2018) (2020). https://www.cdc.gov/
ncezid/dvbd/vital-signs/texas.html

7. Chen, W., Li, J.: Safety performance monitoring and measurement of civil aviation
unit. J. Air Transp. Manag. 57, 228–233 (2016)

8. Clark, K.L., Bhatia, U., Kodra, E.A., Ganguly, A.R.: Resilience of the us national
airspace system airport network. IEEE Trans. Intell. Transp. Syst. 19(12), 3785–
3794 (2018)

9. Climate Central: Extreme weather and climate change (2021). https://www.
climatecentral.org/library/climopedia/extreme-weather-and-climate-change-the-
southeast

10. CNN: Cnn.com - Los Angeles airport shooting kills 3 - July 5, 2002 (2004). https://
web.archive.org/web/20041204221915/, http://archives.cnn.com/2002/US/07/
04/la.airport.shooting/

11. Crosby, Missouri, L.: Airport security vulnerability assessments. Program Appl.
Res. Airport Secur. (2020)

12. Damgacioglu, H., Celik, N., Guller, A.: A route-based network simulation frame-
work for airport ground system disruptions. Comput. Industr. Eng. 124, 449–461
(2018)

13. Ergün, N., Bülbül, K.G.: An assessment of factors affecting airport security ser-
vices: an AHP approach and case in turkey. Secur. J. 32(1), 20–44 (2019)

14. Future Climate Dashboard’ Web Tool. Climate Toolbox: Future climate dashboard:
Location: 32.9025o n, 97.0433o w. (2021). https://climatetoolbox.org/tool/Future-
Climate-Dashboard

15. Graham, A., Morrell, P.: Airport Finance and Investment in the Global Economy.
Routledge, London (2016)

16. Hausfather, Z.: Tornadoes and climate change: what does the science
say? (2019). https://www.carbonbrief.org/tornadoes-and-climate-change-what-
does-the-science-say-2

17. Huang, C.N., Liou, J.J., Lo, H.W., Chang, F.J.: Building an assessment model for
measuring airport resilience. J. Air Transp. Manag. 95, 102101 (2021)

18. Huizer, Y., Swaan, C., Leitmeyer, K., Timen, A.: Usefulness and applicability of
infectious disease control measures in air travel: a review. Travel Med. Infect. Dis.
13(1), 19–30 (2015)

https://www.c2es.org/content/tornadoes-and-climate-change/
https://www.cdc.gov/ncezid/dvbd/vital-signs/texas.html
https://www.cdc.gov/ncezid/dvbd/vital-signs/texas.html
https://www.climatecentral.org/library/climopedia/extreme-weather-and-climate-change-the-southeast
https://www.climatecentral.org/library/climopedia/extreme-weather-and-climate-change-the-southeast
https://www.climatecentral.org/library/climopedia/extreme-weather-and-climate-change-the-southeast
https://web.archive.org/web/20041204221915/
https://web.archive.org/web/20041204221915/
http://archives.cnn.com/2002/US/07/04/la.airport.shooting/
http://archives.cnn.com/2002/US/07/04/la.airport.shooting/
https://climatetoolbox.org/tool/Future-Climate-Dashboard
https://climatetoolbox.org/tool/Future-Climate-Dashboard
https://www.carbonbrief.org/tornadoes-and-climate-change-what-does-the-science-say-2
https://www.carbonbrief.org/tornadoes-and-climate-change-what-does-the-science-say-2

Airport Digital Twins for Resilient Disaster Management Response 485

19. Humphries, E., Lee, S.J.: Evaluation of pavement preservation and maintenance
activities at general aviation airports in Texas: practices, perceived effectiveness,
costs, and planning. Transp. Res. Rec. 2471(1), 48–57 (2015)

20. James, M., Gage, K., Khan, A.: Potential influence of climate change on vector-
borne and zoonotic diseases: a review and proposed research plan. Environ. Health
Perspect. 118, 1507–14 (2010). https://doi.org/10.1289/ehp.0901389

21. Janić, M.: Modeling the resilience of an airline cargo transport network affected by
a large scale disruptive event. Transp. Res. Part D: Transp. Environ. 77, 425–448
(2019)

22. Lunacek, M., et al.: A data-driven operational model for traffic at
the Dallas fort worth international airport. J. Air Transp. Manag. 94,
102061 (2021). https://doi.org/10.1016/j.jairtraman.2021.102061, https://www.
sciencedirect.com/science/article/pii/S0969699721000442

23. Lykou, G., Anagnostopoulou, A., Gritzalis, D.: Smart airport cybersecurity: threat
mitigation and cyber resilience controls. Sensors 19(1), 19 (2018)

24. Metzner, N.: A comparison of agent-based and discrete event simulation for assess-
ing airport terminal resilience. Transport. Res. Procedia 43, 209–218 (2019)

25. News, N.: AX shooting: TSA officer Hernandez bled for 33 minutes at scene -
report - U.S. news (2013). https://web.archive.org/web/20131118070335/, http://
usnews.nbcnews.com/_news/2013/11/15/21471203-lax-shooting-tsa-officer-
hernandez-bled-for-33-minutes-at-scene-report

26. NOAA National Centers for Environmental Information: Texas - key findings
(2017). https://statesummaries.ncics.org/downloads/TX-screen-hi.pdf

27. Pishdar, M., Ghasemzadeh, F., Maskeliūnaitė, L., Bražiūnas, J.: The influence of
resilience and sustainability perception on airport brand promotion and desire to
reuse of airport services: the case of Iran airports. Transport 34(5), 617–627 (2019)

28. Post, W.: Man tackled at Dallas airport after homophobic attack (2014). https://
www.washingtonpost.com/news/morning-mix/wp/2014/10/27/man-tackled-at-
dallas-airport-after-spewing-homophobic-slurs/

29. Sigler, D., et al.: Route optimization for energy efficient airport shuttle operations -
a case study from Dallas fort worth international airport. J. Air Transp. Manag. 94,
102077 (2021). https://doi.org/10.1016/j.jairtraman.2021.102077, https://www.
sciencedirect.com/science/article/pii/S0969699721000600

30. Singh, V., Sharma, S.K., Chadha, I., Singh, T.: Investigating the moderating effects
of multi group on safety performance: the case of civil aviation. Case Stud. Transp.
Policy 7(2), 477–488 (2019)

31. Skorupski, J., Uchroński, P.: A fuzzy system to support the configuration of bag-
gage screening devices at an airport. Expert Syst. Appl. 44, 114–125 (2016)

32. Stewart, M.G., Mueller, J.: Cost-benefit analysis of airport security: are airports
too safe? J. Air Transp. Manag. 35, 19–28 (2014)

33. Stroeve, S.H., Everdij, M.H.: Agent-based modelling and mental simulation for
resilience engineering in air transport. Saf. Sci. 93, 29–49 (2017)

34. Sun, X., Wandelt, S., Zhang, A.: Resilience of cities towards airport disruptions at
global scale. Res. Transport. Bus. Manag. 34, 100452 (2020)

35. Tahmasebi Birgani, Y., Yazdandoost, F.: An integrated framework to evaluate
resilient-sustainable urban drainage management plans using a combined-adaptive
MCDM technique. Water Resour. Manag. 32(8), 2817–2835 (2018)

36. Thompson, K.H., Tran, H.T.: Operational perspectives into the resilience of the us
air transportation network against intelligent attacks. IEEE Trans. Intell. Transp.
Syst. 21(4), 1503–1513 (2019)

https://doi.org/10.1289/ehp.0901389
https://doi.org/10.1016/j.jairtraman.2021.102061
https://www.sciencedirect.com/science/article/pii/S0969699721000442
https://www.sciencedirect.com/science/article/pii/S0969699721000442
https://web.archive.org/web/20131118070335/
http://usnews.nbcnews.com/_news/2013/11/15/21471203-lax-shooting-tsa-officer-hernandez-bled-for-33-minutes-at-scene-report
http://usnews.nbcnews.com/_news/2013/11/15/21471203-lax-shooting-tsa-officer-hernandez-bled-for-33-minutes-at-scene-report
http://usnews.nbcnews.com/_news/2013/11/15/21471203-lax-shooting-tsa-officer-hernandez-bled-for-33-minutes-at-scene-report
https://statesummaries.ncics.org/downloads/TX-screen-hi.pdf
https://www.washingtonpost.com/news/morning-mix/wp/2014/10/27/man-tackled-at-dallas-airport-after-spewing-homophobic-slurs/
https://www.washingtonpost.com/news/morning-mix/wp/2014/10/27/man-tackled-at-dallas-airport-after-spewing-homophobic-slurs/
https://www.washingtonpost.com/news/morning-mix/wp/2014/10/27/man-tackled-at-dallas-airport-after-spewing-homophobic-slurs/
https://doi.org/10.1016/j.jairtraman.2021.102077
https://www.sciencedirect.com/science/article/pii/S0969699721000600
https://www.sciencedirect.com/science/article/pii/S0969699721000600

486 E. Agapaki

37. Ugirumurera, J., et al.: A modeling framework for designing and evaluating
curbside traffic management policies at Dallas-Fort worth international airport.
Transport. Res. Part A: Policy Pract. 153, 130–150 (2021). https://doi.org/
10.1016/j.tra.2021.07.013, https://www.sciencedirect.com/science/article/pii/
S0965856421001956

38. Urazova, N., Kotelnikov, N., Martynyuk, A.: Infrastructure project planning. In:
IOP Conference Series: Materials Science and Engineering, vol. 880, p. 012105.
IOP Publishing (2020)

39. US Department of Homeland Security: National infrastructure protection plan, pp.
29–33 (2013)

40. Van Beusekom, M.: Studies trace Covid-19 spread to international flights (2020).
https://www.cidrap.umn.edu/news-perspective/2020/09/studies-trace-covid-19-
spread-international-flights

41. Wallace, M., Webber, L.: The disaster recovery handbook: a step-by-step plan
to ensure business continuity and protect vital operations, facilities, and assets.
Amacom (2017)

42. Willemsen, B., Cadee, M.: Extending the airport boundary: connecting physical
security and cybersecurity. J. Airport Manag. 12(3), 236–247 (2018)

43. Yang, C.L., Yuan, B.J., Huang, C.Y.: Key determinant derivations for information
technology disaster recovery site selection by the multi-criterion decision making
method. Sustainability 7(5), 6149–6188 (2015)

44. Yanjun, W., Jianming, Z., Xinhua, X., Lishuai, L., Ping, C., Hansen, M.: Measuring
the resilience of an airport network. Chin. J. Aeronaut. 32(12), 2694–2705 (2019)

45. Zhao, J.N., Shi, L.N., Zhang, L.: Application of improved unascertained mathemat-
ical model in security evaluation of civil airport. Int. J. Syst. Assur. Eng. Manag.
8(3), 1989–2000 (2017)

46. Zhou, L., Chen, Z.: Measuring the performance of airport resilience to severe
weather events. Transp. Res. Part D: Transp. Environ. 83, 102362 (2020)

47. Zhou, L., Wu, X., Xu, Z., Fujita, H.: Emergency decision making for natural dis-
asters: an overview. Int. J. Disaster Risk Reduct. 27, 567–576 (2018)

48. Zhou, Y., Wang, J., Yang, H.: Resilience of transportation systems: concepts and
comprehensive review. IEEE Trans. Intell. Transp. Syst. 20(12), 4262–4276 (2019)

https://doi.org/10.1016/j.tra.2021.07.013
https://doi.org/10.1016/j.tra.2021.07.013
https://www.sciencedirect.com/science/article/pii/S0965856421001956
https://www.sciencedirect.com/science/article/pii/S0965856421001956
https://www.cidrap.umn.edu/news-perspective/2020/09/studies-trace-covid-19-spread-international-flights
https://www.cidrap.umn.edu/news-perspective/2020/09/studies-trace-covid-19-spread-international-flights

Strategies for Surviving Aggressive
Multiparty Repeated Standoffs

(Extended Abstract)

Evangelos Kranakis1,2(B)

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
2 Research Supported in Part by NSERC Discovery Grant, Ottawa, Canada

kranakis@scs.carleton.ca

Abstract. A multiparty standoff system, arises from a confrontation
involving quarrelling parties for which no strategy may exist for any
party to achieve victory and the parties cannot withdraw from the con-
flict without suffering a loss (which may even include their demise). In a
repeated standoff the parties are pursuing in rounds an aggressive attack
strategy, which may involve selecting opponents and “repeatedly firing
shots” whose success depends on a random adversary. Each participating
party has been pre-assigned a probability indicating the chance a given
shot will succeed against an opponent.

Eventually, every standoff terminates with the resulting system con-
sisting in the limit (of the number of rounds) of isolated nodes. We
consider confrontation strategies and analyze the resulting survivabil-
ity of the participating parties. We investigate what strategy should co-
operating parties follow so as to maximize the number of surviving nodes.
We are also interested in what strategy should a given party (or group
of parties) follow so as to maximize its chance of survival.

Keywords: Duel · Graph · Node · Parties · Round · Shooting ·
Standoff · Survival

1 Introduction

A confrontation involving quarrelling parties for which there may not exist a
strategy for any party to achieve victory and in which the parties cannot with-
draw from the conflict without suffering a significant loss is called a standoff.
In this research investigation, we consider multiparty, repeated standoffs involv-
ing many peers and study the survival characteristics of the participating peers
involved under the effect of aggressive behaviour in an interconnected system
which is modelled as a graph with (un)directional links.

Repeated standoffs are modelled as synchronous, interconnected systems rep-
resented by graph. The parties are nodes which are acting aggressively attacking
each other according to a certain strategy and causing their neighbors to perish
(or retreat or be eliminated) with a certain probability which may depend on

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 487–504, 2022.
https://doi.org/10.1007/978-3-031-24866-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_35&domain=pdf
http://orcid.org/0000-0002-8959-4428
https://doi.org/10.1007/978-3-031-24866-5_35

488 E. Kranakis

the capabilities of the parties involved. The strategy is executed in synchronous
rounds and may change from round-to-round. In general, we are interested in
developing strategies that optimize the overall probability of survival of the par-
ties as well as the expected number of survivals in the graph.

Consider a synchronous system of nodes forming a connected graph with
(un)directional edges. Assume the nodes of the graph are occupied by shooters,
one shooter per vertex. Shooters may shoot synchronously and in rounds. All
shooters follow their own attack strategy which involves shooting at a chosen
neighboring opponent. They have unlimited ammunition and can shoot at will
anyone of their outgoing neighbors. In a given round a shooter u may attack a
single neignboring node and either eliminate it with probability pu (independent
of the neighbor chosen by u) or fail to eliminate it with probability 1 − pu. The
shooting continues as long as there are non-isolated nodes in the graph, i.e., that
have not been eliminated and have at least one non-eliminated neighbor. A node
survives if it is not eliminated by any of its neighbors.

Given such a directed graph, we are interested in proposing and analyzing
attack strategies and investigate the following questions.

1. What is an optimal survival strategy of a given node as measured by its
maximum survival probability?

2. How do the nodes of a coalition set S (of two or more nodes) in a graph
coordinate their attack strategies so as to maximize the survival probability
of the nodes in S?

3. What is the expected number of surviving nodes for a given strategy?
4. Can we give a node strategy which maximizes the expected number of sur-

vivals in a given graph?

In the sequel, we give strategies for a variety of topologies, including circular
unidirectional and bidirectional ring and complete bipartite graphs, and study
their node and group survival characteristics.

1.1 Model, Notation, and Terminology

In the sequel we describe the basic elements of the model and give necessary
definitions of concepts to be used throughout the paper.

Consider a directed (not necessarily) strongly connected graph G = (V,E)
with directed edges. For each vertex u ∈ V , let N+(u) and N−(u) be the set
of outgoing and ingoing neighbors of u, respectively, and d+(u) and d−(u) the
corresponding out- and in-degree of u.

Each vertex of the graph has the capabilities of a shooter in that it is equipped
with an inexhaustible amount of ammunition and can fire a single bullet at a
time (in a round) to any of its outgoing neighbors which it may select according
to a strategy. A node u (referred to as the aggressor) may attack node v (referred
to as the victim) if (u, v) is a directed arrow (edge) with tail the node u and
head the node v. A shooter at node u ∈ V is associated with a probability
0 ≤ pu ≤ 1 such that when it is attacking a targeted neighbor v, u eliminates v

Strategies for Surviving Aggressive Multiparty 489

with probability pu and fails to eliminate v with probability 1−pu. The parameter
pu is given to each node in advance and cannot be altered during the execution
of an algorithm.

Shooting is done synchronously by all shooters and independently of each
other at random in the given graph. After completing round t−1 all nodes move
to round t. At round t all shooters that are alive in this round may shoot at their
(newly chosen) targets. Following an algorithm, in a round, a node that is alive
chooses to attack a single neighbor. More than one shooter may choose to attack
the same victim. A shooter fatally shot in a given round t will be considered
eliminated (or dead) and will therefore be out of action and withdraw from
all subsequent rounds t′, where t′ > t. Shooters have an inexhaustible supply
of ammunition. At the end of a round t nodes emerge either dead or alive. A
shooter that survives in a round t will shoot again at a target of its own choice
(as this is determined by its own strategy) in the next round t + 1 as long as
there exist nodes within its own target set which have survived.

A repeated standoff (or standoff, for short) is a multiparty confrontation in
which none of the opponents appears to have a measurable advantage. In our
setting a standoff is defined by a directed (not necessarily) strongly connected
graph G = (V,E). As the standoff evolves the original graph is also evolving and
changing. At round t = 0, let G0 := G be the original graph representing an
interconnected system of shooters. If Gt is the graph that has survived in round
t then Gt+1 is the graph resulting from Gt after removing the nodes that were
eliminated after round t as well as their adjacent edges.

During the standoff the in- and out-degree of a node in the graph evolves. A
node u in the current graph is isolated if it can nether attack (either because it
has no outgoing neighbors or because pu = 0) or be attacked by another node in
the graph (either because it has no ingoing neighbors or because every ingoing
node v ∈ N−(u) has attack probability pv = 0).

An attack strategy for shooter u is an algorithm Au = {Au(t) : t ≥ 0} which
is executed by node u (as long as it has not been eliminated) and describes
at which neighbors u should shoot at each round t. Shooters are interested in
designing an algorithm {Au(t) : u ∈ V, t ≥ 0} that will maximize their survival
probability or alternatively minimize the probability that they will be eliminated
in a round.

A duel is a confrontation between two parties, while standoffs are multiparty
confrontations. We use the notation u →t v to indicate that node u attacks node
v in round t and u → v to indicate that u →t v, for some t ≥ 0. When u →t v
then the notation u ⇒t v (resp. u �⇒t v) means that u eliminates (resp. does not
eliminate) v in round t. Similarly, u ⇒ v means that u ⇒t v, for some t ≥ 0.

1.2 Related Work

There are many references of duels in the literature. A historical development can
be found in [2]. In the present paper, a duel can be thought of as a standoff involv-
ing two “aggressive” peers. There are numerous studies on aggression models in
social networks which focus on the causes of aggression and its effects in various

490 E. Kranakis

segments of the population (e.g, education, work-place, etc), e.g., [5,16,21]. Addi-
tional studies are focusing on analyzing how existing (social) network topologies
and network relations between peers are causing verbal aggressive behaviour,
e.g., [3,4]. Ways to reduce aggression and competition in computer games is
studied in [22].

Duelling is a known form of resolution in the animal kingdom and plays
an important role in the evolution of species. The repeated standoffs described
resemble confrontation of battling rams as can be seen in the following video [17].
In addition, there are numerous studies in Behavioural Biology and Ecology
where one is interested in the evolutionary origins and history of animal contests,
and conflict resolution, as well as patterns arising. For example, [1] investigates
models of fight escalation, a game theoretic study on animal contests [19] can be
found in the edited volume [8,13] discusses dyadic (two-party) and multiparty
contests, and [14] discusses patterns in conflicts.

Winkler in [23][page 33] mentions the related problem of Group Russian
Roulette. There are n angry and armed people in a room. At each chime of
the clock each person synchronously spins around and shoots a random other
person. Persons shot fall dead and the survivors spin and shoot again at the
next round; eventually, either everyone is dead or there is a single survivor. The
question posed is what is the limiting probability that there will be a survivor?
This probability does not tend to a limit but rather varies according to the
fractional part of lnn (see also [11]). A related problem has been proposed by
Prodinger [18] in which n people select a loser by flipping coins (whose outputs
are 0 or 1) and recursively selecting one of their peers. It is shown that this
process stops on the average in about log2 n steps. Interestingly, this problem
has an interesting application in randomized leader election whereby at every
stage those peers that survived so far flip a biased coin (whose outcome is Head
or Tail), and those who received, say a Tail. survive for the next round. The
process continues until only one peer remains [15]. An example of a Mexican
standoff (three nodes in a triangle with bidirectional edges) is mentioned in [10].
For the definition of the geometric distribution and other related probability
concepts see any standard textbook, e.g., [20].

It will be seen that finding an optimal (in terms of peer survival) strategy in
aggressive repeated standoffs is anything but a simple problem. In the sequel we
will restrict our attention merely to standoffs on some special graphs, including
rings and complete bipartite. To the best of our knowledge the model proposed
is new and there is no related mathematical literature on the standoff problem
on a graph discussed in our paper.

1.3 Outline of the Paper

In Sect. 2 we begin with observations on general graphs and in Subsect. 2.2 we
analyze the standard dyadic (two-person) duel. In Sect. 3 we consider rings; in
Subsect. 3.1 we analyze standoffs for a unidirectional ring, while in Subsect. 3.2
we analyze the triadic (Mexican) standoff. In Sect. 4 we remind the reader of a
well-known result about structural properties of balanced networks considered

Strategies for Surviving Aggressive Multiparty 491

in social network theory which motivates the next section. In Sect. 5 we consider
standoffs for complete bipartite graphs. We conclude the paper with Sect. 6 where
we discuss additional open problems and possibilities for extension and further
research. Due to space limitations this is an extended abstract and all missing
proofs will appear in a forthcoming full paper.

2 Observations on Standoffs

We begin with some observations on standoffs for general graphs and also discuss
the simple two-person duel.

2.1 General Graphs

Consider a connected graph with n nodes, denoted 1, 2, . . . , n, all of which are
shooters. A standoff in this graph is non-trivial if not all the pi are 0. Two simple
observations are valid for all non-trivial standoff situations in which all nodes
which are alive eventually shoot at all their neighbors at repeated rounds.

Observation 1: If pi > 0, for some i = 1, 2, . . . , n, then the probability that
all nodes survive is 0.

Indeed, the probability that all nodes of the graph survive the t-th round
will be at most (1 − p1)t1(1 − p2)t2 · · · (1 − pn)tn , where t1, t2, . . . , tn− ≤ t and
ti is the number of rounds that the i-th node failed to kill a neighbor, which
converges to 0, if at least one of t1, t2, . . . , tn converges to ∞.

Observation 2: If pi > 0, for all i = 1, 2, . . . , n, then with probability 1 in the
limit as t → ∞ the resulting graph consists only of isolated nodes.

Indeed, consider the final standoff graph and assume that some pair of nodes,
say i, j remain connected for ever. Clearly this is impossible because they will
keep shooting at each other until at least one of the nodes is eliminated.

2.2 Dyadic (One-to-One) Duel

We begin our study by discussing a basic standoff known as “one-to-one duel”
involving only two nodes. Unlike traditional duels in which the two peers send
only a single shot against each other synchronously, we consider a model of duel
in which the peers shoot in synchronous rounds.

Consider a duel with two shooters as depicted in Fig. 1. In this standoff there
is a simple shooting strategy since shooters are not given a choice which neighbor
to shoot at and instead keep shooting synchronously at each other. A shooter
will keep shooting as long as it and its opponent are alive. Eventually, either

Fig. 1. Two parties u and v in a duel.

492 E. Kranakis

both shooters may get eliminated at the same round or a shooter survives the
duel if he is the first to eliminate its opponent and is not eliminated at the same
round. In this setting we can prove the following theorem.

Theorem 1. Consider a one-to-one standoff with two nodes u, v. Then

1. Pr[u declared winner] = pv

pu+pv−pupv

2. Pr[v declared winner] = pu

pu+pv−pupv

3. Pr[both u, v are eliminated] = pupv

pu+pv−pupv

Remark 1. The quantity pu + pv − pupv in the denominator above is the proba-
bility of the event that in a shootout at least one of the two shooters eliminates
its opponent. Therefore pu

pu+pv−pupv
, pv

pu+pv−pupv
, and pupv

pu+pv−pupv
are the proba-

bilities of the events that in a duel, shooter u survives, v survives, and no shooter
survives, respectively, under the condition that at least one of the two shooters
eliminates its opponent.

3 Standoffs on Rings

In this section we analyze standoffs on unidirectional rings and also analyze the
case of the three-node bidirectional ring which is known as the Mexican standoff.

3.1 Standoffs on Unidirectional Rings

First we consider unidirectional rings. Consider a unidirectional ring of n nodes
labeled 0, 1, . . . , n− 1 and placed in this order along the ring. Consider labeling
the nodes in the counter clockwise orientation as depicted in Fig. 2 (the clockwise
orientation is similar). Throughout this section we abbreviate i ± 1 mod n with
i± 1, respectively. Suppose that node i can shoot node i+1 and the probability
of success (resp. failure) is pi (resp. 1 − pi),

Fig. 2. Standoff in a unidirectional ring of n nodes 0, 1, . . . , n − 1 orinted counter
clockwise.

Strategies for Surviving Aggressive Multiparty 493

For simplicity, from now on assume that 0 < pi < 1, for all i. For each i,
let Ki be the random variable that counts the number of rounds until node i is
eliminated by node i−1, Note that Pr[Ki = ki] = (1−pi)ki−1pi. Now we look at
the probability that a node survives the shootout (i.e., never gets eliminated). It
is clear that node i survives iff i− 1 is eliminated by i− 2 before i is eliminated
by i − 1. It follows that Pr[i survives] = Pr[Ki−1 < Ki].

Theorem 2. Consider a ring of n nodes labeled 0, 1, . . . , n − 1, where n ≥ 2.

1. In clockwise orientation, Pr[i survives] = 1 − pi−1
1−(1−pi−1)(1−pi−2)

, and
2. In counter clockwise orientation, Pr[i survives] = 1 − pi+1

1−(1−pi+1)(1−pi+2)
,

for all i.

Proof. Consider only the clockwise direction. The counter clockwise orientation
is similar. Indeed, elementary calculations show that

Pr[i survives] = Pr[Ki−1 < Ki]

=
∑

ki−1<ki

Pr[Ki−1 = ki−1] · Pr[Ki = ki]

=
∞∑

ki=1

ki−1∑

ki−1=1

(1 − pi−2)ki−1−1pi−2(1 − pi−1)ki−1pi−1

Simplifying the righthand side of the last equation above we derive the fol-
lowing

Pr[i survives] = pi−2pi−1

∞∑

ki=1

(1 − pi−1)ki−1
ki−1∑

ki−1=1

(1 − pi−2)ki−1−1

= pi−2pi−1

∞∑

ki=1

(1 − pi−1)ki−1 · 1 − (1 − pi−2)ki−1

1 − (1 − pi−2)

= pi−1

∞∑

ki=1

(1 − pi−1)ki−1 · (1 − (1 − pi−2)ki−1)

= pi−1

∞∑

ki=1

(1 − pi−1)ki−1 − pi−1

∞∑

ki=1

((1 − pi−1)(1 − pi−2))ki−1

= 1 − pi−1

1 − (1 − pi−1)(1 − pi−2)
. (1)

This proves Theorem 2. 	

The probability that i gets eliminated in the clockwise (and counter clock-

wise) orientation is a simple corollary.

Corollary 1. Consider a ring of n nodes 0, 1, . . . , n − 1. If pi > 0 then

Pr[both i and i + 1 survive] = 0.

494 E. Kranakis

Proof. Without loss of generality assume a clockwise orientation. Consider the
event Si that node i survives. Now observe that

Pr[both i and i + 1 survive]
= Pr[all shots by i do not eliminate i + 1 & Si]
= Pr[all shots by i do not eliminate i + 1|Si] · Pr[Si]

=
(

lim
k→∞

(1 − pi)k
)

· Pr[Si] = 0.

This proves Corollart 1. 	

Corollary 2. Consider a ring of n nodes 0, 1, . . . , n − 1. For each i we can
compute the probability that for a given i, nodes i and i + l survive while all
nodes i + 1, . . . , i + l − 1 between i and i + l die.

Proof. Without loss of generality assume a clockwise orientation. The event
describing this probability is the following

(i and i + l survive) & (i + 1 and i + 2 and · · · and i + l − 1 get eliminated)

The probability of each of the events above can be computed from Formula (1).
This proves the proof of Corollary 2. 	

To conclude, consider the simpler case that all nodes have the same shoot-
ing capability, namely pi = p, for all i. We observe the following facts for a
unidirectional ring.

– By Lemma 2, a given node in the ring survives with probability 1−p
2−p and gets

eliminated with probability 1
2−p , and

– By Lemma 2, the expected number of surviving nodes is 1−p
2−pn and the number

of of eliminated nodes 1
2−pn,

– By Corollary 1, with probability 1, no two consecutive nodes survive.

Remark 2. One can study in a similar manner an oriented line of n nodes. Details
are similar to the oriented ring and are left to the reader.

3.2 Triadic (Mexican) Standoff

In the Mexican standoff the three shooters 0, 1, 2 are arranged in a triangle whose
three edges are bidirectional as depicted in Fig. 3 so that shooter 0 (respectively,
1 and 2) can decide which one of 1 and 2 (respectively, 0 and 2, and 0 and 1)
may shoot (one at a time) and can eliminate the chosen one with probability p0
(respectively, p1 and p2) or fail to eliminate with probability 1−p0 (respectively,
1 − p1 and 1 − p2).

Consider the following Change-Orientation Algorithm which is in two phases.
In the first CCW (Counter Clockwise)-phase each node i which is alive attacks
its CCW neighbor i + 1 as long as the latter is alive. If node i eliminates node

Strategies for Surviving Aggressive Multiparty 495

Fig. 3. Depiction of a Mexican standoff represented as a triangle graph with bidirec-
tional links.

i+1 then i enters its second CW (Clockwise)-phase and attacks its CW neighbor
i − 1, as long as the letter is alive.

Observe that in this algorithm, although the shooting is synchronous the
nodes may not necessarily be in the same phase at the same time. Consider the
first node i which changes phase (from CCW to CW) in the above algorithm.
For some t, such a node i will enter the second CW phase of the algorithm at
round t+ 1 if it eliminated its CCW opponent i+ 1 at round t. The probability
that node i enters the second phase at time t + 1 ie given by the formula

t−1∑

s=0

(1 − pi)s(1 − pi−1)spi = pi
1 − (1 − pi)t(1 − pi−1)t

1 − (1 − pi)(1 − pi−1)

= pi
1 − (1 − pi)t(1 − pi−1)t

pi + pi−1 − pipi−1
.

Now the two nodes i− 1 and i will be running a dyadic duel which is starting at
round t+1 with nodes i and i− 1 attacking each other. In this dyadic duel i− 1
(resp. i) is a winner with probability pi−1

pi+pi−1−pipi−1
(resp. pi

pi+pi−1−pipi−1
), while

both are eliminated with probability pipi−1
pi+pi−1−pipi−1

. Multiplying out it follows
that i − 1 survives w.p.

pipi−1
1 − (1 − pi)t(1 − pi−1)t

(pi + pi−1 − pipi−1)2
(2)

and i survives w.p.

p2i
1 − (1 − pi)t(1 − pi−1)t

(pi + pi−1 − pipi−1)2
(3)

Moreover, asymptotically as t → ∞ we have that i − 1 survives w.p.

pipi−1

(pi + pi−1 − pipi−1)2
(4)

and i survives w.p.

p2i
(pi + pi−1 − pipi−1)2

(5)

496 E. Kranakis

Remark 3. We note that the optimal strategy for the triadic Mexican standoff
is not known.

Remark 4. More generally, one could consider the n-node bidirectional ring.
However, the optimal strategy for this graph is not known. Nevertheless, some
special cases can be analyzed. For example, for n = 2 this is the same as the
dyadic duel discussed in Subsect. 2.2. For n = 3 this leads to the triadic (or
Mexican) standoff previously analyzed. For n = 4 this is the complete bidirec-
tional, bipartite K2,2 which is analyzed in Sect. 5 as part of the more bipartite
graph Km.n.

4 Relationships

There is a strong connection between standoffs and Positive/Negative relation-
ships whereby positive represents “friendship” and negative “antagonism;; whose
structure is studied extensively in social network theory, e.g., see [9][Chapter 5].
Consider Peaceful/Aggressive relationships whereby in a Peaceful (resp., Aggres-
sive) relationship opponents have no incentive (resp. attack) each other.

As depicted in Fig. 4, one could distinguish four possible relationships, namely
Peaceful (P) and Aggressive (A), between three entities (forming a triangle). The
two triangles to the left have an odd number of Peaceful relationships while the
two triangles to the right have an even number of Peaceful relationships.

Fig. 4. Triangles representing relationships between three entities: the left two rela-
tionships are considered stable while the right two are unstable.

As in [9][Chapter 5], it can be argued that the two triangles to the left
represent stable social relationships in that the entities which are connected with
a Peaceful relationship have no (or little) incentive to flip to an Aggressive one.
However, the two triangles to the right represent unstable social relationships in
that the entities which are connected with an Aggressive relationship have an
incentive to flip to a Peaceful one and thus change the overall structure of the
relationship between the three entities. Based on this reasoning, one refers to
triangles with one or three P’s as balanced, since they are free of these sources
of instability, while triangles with zero or two P’s are referred to as unbalanced.

The (un)balanced property defined above refers only to three nodes form-
ing a triangle. More generally, a complete graph of n nodes all of whose edges

Strategies for Surviving Aggressive Multiparty 497

are labeled either with P or A is called balanced if every one of its triangles
is balanced. An interesting structural characterization of balanced complete
graphs is due to [6,12] and is presented as a theorem below (for a proof see
the book [9][Chapter 5]).

Theorem 3 ([6,12]). If every triangle in a complete graph is Stable then there
is a bipartition of the nodes into two parts X,Y such that 1) every pair of nodes
in X is Peaceful, 2) every pair of nodes in Y is Peaceful, 3) every pair of nodes
one from X and the other from Y is Aggressive, and vice versa.

As depicted in Fig. 5, Theorem 3 gives a structural characterization of a
balanced complete graph with a Bipartition.

Fig. 5. Bipartition of a balanced complete graph.

We note that Theorem 3 can be extended in many ways. First to non-
complete graphs in which only the edges that are present have Peaceful or
Aggressive relationships. Also, a similar theorem holds for approximately bal-
anced networks whereby an asymptotically large number of the edges form a
balanced network. Further, one can also study the concept of weakly stable in
which no triangle can have exactly two Peaceful relationships: such graphs are
called weakly stable and can be proved that they correspond to multipartite
graphs [7]. For additional details and proofs of the results listed above the inter-
ested reader may consult the book [9][Chapter 5] by Easley and Kleiberg.

5 Standoffs on Complete Bipartite Graphs

Motivated from the structural balance property presented in Sect. 4, in this
section we consider standoffs on complete bipartite graphs, a graph whose vertex
set is partitioned into two parts A,B so that each pair of vertices {u, v} with
u ∈ A, v ∈ B are connected with a bidirectional edge.

498 E. Kranakis

5.1 One-to-Many Standoff

Consider the bipartite configuration depicted in Fig. 6 in which A = {a1} is a
singleton and B = {b1, b2, . . . , bn}. Shooter a1 has probability p1 (resp. 1−p1) for
a successful (resp. unsuccessful) attack, while shooter bi ∈ B has probability qi
(resp. 1−qi) for a successful (resp. unsuccessful) attack. In the sequel we analyze
the survival probabilities of the nodes under a variety of attack algorithms.

Fig. 6. There is a shooter a1 ∈ A in the left and n shooters b1, . . . , bn to the right in a
bipartite standoff.

We are interested in the following question: Given that node a1 knows the
attack probabilities of all the nodes in B, what strategy will maximize its survival
probability? Consider the following algorithm.

Algorithm 1. AttackInOrder-a1 Shooting Algorithm
1: for t = 0, 1, . . .; do
2: as long as there are nodes alive in round t not all of whose outgoing neighbors

are dead;
3: if a1 is alive; then
4: attack the surviving node in B with the smallest index i;
5: else
6: stop;

Intuitively, in Algorithm 1 node a1 in round t, where t = 1, 2, . . ., attacks
the node i which has the smallest index among the nodes in B surviving in this
round. We can prove the following lemma.

Lemma 1. If node a1 follows Algorithm 1 then the probability that it eliminates
all opponent nodes in B is given by the formula

P

1 − P
·
(

p1
1 − p1

)n

·
n−1∏

i=1

P
(1−qi)···(1−q1)

1 − P
(1−qi)···(1−q1)

, (6)

where P = (1 − p1)(1 − q1) · · · (1 − qn).

Strategies for Surviving Aggressive Multiparty 499

Proof. Consider the event E which describes that node a1 eliminates all its
opponents in the standoff. For each k define the random variable K1,...,k so
that that K1,...,k = t iff node a1 eliminates all its k opponents b1, . . . , bk in this
order and is not itself eliminated in round t or before, i.e., b1 is eliminated first,
followed by b2 second, etc., until bk is eliminated last, and no one eliminates a1 in
round t or before. Let E1,...,k be the event

⋃
t≥1(K1,...,k = t). Since by definition,

Algorithm 1 attacks the nodes of B in the order b1, b2, . . . , bn, the event E is
equivalent to the event E1,...,n.

Now we proceed with the calculation of the related probabilities. Let us define
P := (1 − p1)(1 − q1) · · · (1 − qn). Due to the independence of the actions of the
parties involved, elementary calculations show that

Pr[K1 = 1] = P
p1

1 − p1
,

and more generally for all t ≥ 1,

Pr[K1 = t] = P t p1
1 − p1

and therefore we conclude from the discussion above that

Pr[E1] =
p1

1 − p1

∞∑

t=1

P t =
p1

1 − p1

P

1 − P
.

Using conditional probabilities, the last formula above, and elementary cal-
culations we see that

Pr[E1,2] = Pr[E2|E1] · Pr[E1]

=
P

1−q1

1 − P
1−q1

(
p1

1 − p1

)2
P

1 − P
, (7)

where the last identity is valid because after eliminating node b1 ∈ B, node
a1 ∈ A is only shooting at node b2 among the surviving nodes b2, . . . , bk ∈ B.

Using Formula (7), a similar formula can be derived for the subsequence
1, 2, 3, namely

Pr[E1,2,3] = Pr[E3|E1,2] · Pr[E1,2]

=
P

(1−q2)(1−q1)

1 − P
(1−q2)(1−q1)

p1
1 − p1

· Pr[E1,2]

=
P

(1−q2)(1−q1)

1 − P
(1−q2)(1−q1)

P
1−q1

1 − P
1−q1

(
p1

1 − p1

)3
P

1 − P
(8)

Finally, using induction on k and arguing as above we derive the more general
formula

Pr[E1,2,...,k] =
P

(1−qk−1)···(1−q1)

1 − P
(1−qk−1)···(1−q1)

· · ·
P

1−q1

1 − P
1−q1

(
p1

1 − p1

)k
P

1 − P
. (9)

This proves Formula (6) in Lemma 1. 	

500 E. Kranakis

Now instead of Algorithm 1, consider the following algorithm in which node
a1 ∈ A in round t = 1, 2, . . . attacks the node which has the highest attack
probability among the nodes surviving in this round.

Algorithm 2. AttackMax Shooting Algorithm
1: for t = 0, 1, . . .; do
2: as long as there are nodes i = 1, 2, . . . , n alive in round t not all of whose

outgoing neighbors are dead;
3: if a1 is alive; then
4: attack a surviving node i whose attack probability qi is highest among all

the nodes that survived this round;
5: else
6: stop;

Theorem 4. Algorithm 2 under which node a1 in round t = 1, 2, . . . attacks
the node which has the highest attack probability among the nodes surviving in
this round gives the highest overall survival probability for node a1. Moreover,
if i1, i2, . . . , in is a permutation of the nodes 1, 2, . . . , n so that the eliminating
probabilities in descending order are qi1 ≥ qi2 ≥ · · · ≥ qin then the survival
probability of node a1 is equal to

(
p1

1 − p1

)n

· P

1 − P
·

P
(1−qin−1)···(1−qi1)

1 − P
(1−qin−1)···(1−qi1)

· · ·
P

(1−qi2)(1−qi1)

1 − P
(1−qi2)(1−qi1)

·
P

1−qi1

1 − P
1−qi1

,

where P = (1 − p1)(1 − q1) · · · (1 − qn).

Proof. As shown in the proof of Lemma 1, Formula (6) is valid if node a1 attacks
the remaining nodes b1, b2, . . . , bn of the graph in the order 1, 2, . . . , n. Lets use
the notation A(1, 2, . . . , n) for this product formula. Clearly, for any permutation
i1, i2, . . . , in of the nodes b1, b2, . . . , bn, if node a1 attacks the nodes b1, b2, . . . , bn
in the order i1, i2, . . . , in then the resulting formula for the survival probability
of node a1 will be A(i1, i2, . . . , in), by which we mean that one replaces in the
formula each index k by ik while it is assumed that node a1 attacks the nodes
in the order i1, i2, . . . , in.

We would like to prove that the product A(i1, i2, . . . , in) is maximized when
the permutation i1, i2, . . . , in is chosen so that qi1 ≥ qi2 ≥ · · · ≥ qin , Indeed, it
is easy to observe the following monotonicity: since qi1 ≥ q1 we must have that

P
1−qi1

1 − P
1−qi1

≥
P

1−q1

1 − P
1−q1

Similarly, since qi1 ≥ q1 and qi2 ≥ q2 we must have that

P
(1−qi2)(1−qi1)

1 − P
(1−qi2)(1−qi1)

≥
P

(1−q2)(1−q1)

1 − P
(1−q2)(1−q1)

Strategies for Surviving Aggressive Multiparty 501

The reader can easily verify that the same monotonicity argument will work for
any n ≥ 3. This proves Theorem 4. 	

Next we look at the survival probability of the remaining nodes, namely bi,
for i ≥ 1. All these nodes do not have any attack flexibility because they are
not connected to each other and are only connected to the node a1 ∈ A. Let
the random variable I be defined as the first i = 1, 2, . . . , n such that node bi+1

is not eliminated by node a1 when following Algorithm 1. Thus, I = i denotes
the event that all nodes bj , for 1 ≤ j ≤ i, are eliminated by node a1 but bi+1

is not, while I = n denotes the event that all nodes bi, for i = 1, 2, . . . , n, are
eliminated by node a1.

In the sequel we indicate how to compute Pr[I = i] as well as derives a
formula for the expectation E[I] =

∑n
i=1 iPr[I = i]. To this end, observe that

I = i iff (a1 ⇒ b1) & (a1 ⇒ b2) & · · · & (a1 ⇒ bi) & (a1 �⇒ bi+1), (10)

where a1 ⇒ bk denotes the event that node a1 eliminates node bk. Let P =
(1 − p1)(1 − q1) · · · (1 − qn). Recall that according to the algorithm eliminated
nodes are withdrawn. Therefore using conditional probabilities we can compute

Pr[a1 ⇒ b1] =
∞∑

t=1

P t−1p1 =
1

1 − P
p1

Pr[a1 ⇒ b1 & a1 ⇒ b2] = Pr[a1 ⇒ b2|a1 ⇒ b1] Pr[a1 ⇒ b1] =
1

1 − P
1−q1

1
1 − P

p21

...

Pr[a1 ⇒ b1 & · · · & a1 ⇒ bi] =
1

1 − P
(1−qi−1)···(1−q1)

· · · 1
1 − P

1−q1

1
1 − P

pi1

Combining the last formula with Equation (10) we compute that

Pr[I = i] =
1

1 − P
(1−qi)···(1−q1)

1
1 − P

(1−qi−1)···(1−q1)

· · · 1
1 − P

1−q1

1
1 − P

pi1qi+1

Clearly, a formula for E[I] =
∑n

i=1 iPr[I = i] easily follows from the last identity
for Pr[I = i] derived above.

5.2 Many-to-Many Complete Bipartite Standoff

This standoff forms a complete bipartite graph consisting of two parts, the first
with m nodes and the second with n nodes (see Fig. 7). The two parts consist
of the sets A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} with corresponding
attack probabilities pi, qj , for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Consider the following shooting Algorithm 3 (which is a generalization of
Algorithm 1) in which nodes attack nodes in their opposite part in order.

502 E. Kranakis

Fig. 7. A bipartite standoff with m shooters a1, a2, . . . , am in the left part A and n
shooters b1, b2, . . . , bn in the right part B.

Algorithm 3. AttackInOrderAll Shooting Algorithm
1: for t = 0, 1, . . .; do
2: as long as there are nodes alive in round t not all of whose outgoing neighbors

are dead;
3: if two alive nodes ai, bj , where i ≤ m and j ≤ n exist; then
4: the first such node ai ∈ A attacks the surviving node in bj ∈ B with the

smallest index j and the first such node bj ∈ B attacks the surviving node in ai ∈ A
with the smallest index i;

5: else
6: stop;

Similarly, one is led to the following Algorithm 4 which is a generalization of
Algorithm 2.

Algorithm 4. AttackMaxAll Shooting Algorithm
1: for t = 0, 1, . . .; do
2: as long as there are nodes alive in both parts A and B;
3: if ai ∈ A (resp. bj ∈ B) are alive; then
4: attack a surviving node bj ∈ B (resp. ai ∈ A) whose attack probability qj

(resp. pi) is highest among all the nodes in B (resp. A) that survived this round;
5: else
6: stop;

We can prove the following theorem.

Theorem 5. Algorithm 4 under which nodes ai, bj in round t = 1, 2, . . . attack
the node which has the highest attack probability among the nodes surviving in
this round gives the highest overall survival probability for each of the nodes of
the graph. 	

Strategies for Surviving Aggressive Multiparty 503

Moreover, we can compute the survival expectations of the nodes.

Theorem 6. The expected number of survivors in the Algorithm 4 in the com-
plete bipartite graph with two parts A,B of size m,n, respectively, is given by the
formulas E[XA] =

∑m
i=1 pA(i) and E[XB] =

∑n
j=1 qB(j), where pA(i), qB(j) are

given by closed Formulas. The AttackMax algorithm has the maximum number
of survivors among all attack-in-order algorithms. 	

6 Conclusion

We considered attack algorithms for aggressive standoffs on a graph in which the
nodes shoot at a single neighbor per round for a variety of topologies including
rings, and complete bipartite. We also studied the survivability of a node result-
ing from various attack strategies. We looked at various graphs and analyzed the
unidirectional ring on n nodes with arbitrary attack probabilities. In addition,
for the case of complete bipartite graphs we determined the optimal strategy for
surviving the standoff.

There are many interesting additional questions to be investigated concerning
various graphs. One may want to look at standoffs on specific classes of graphs,
like bidirectional rings of n nodes (the special case of which for n = 3 is known as
the Mexican standoff) as well as trees and complete graphs. Interesting problems
concern the survivability on general social graphs with strong and weak links,
as well as on small world graphs.

Additional questions concern the attack model used. All the algorithms con-
sidered were offline in that the peers had complete knowledge of the abilities of
their opponents (e.g., they are aware of their attack probabilities). However, very
little is known about oblivious strategies in which peers have incomplete knowl-
edge of their opponents. Moreover, in the strategies discussed in this paper, the
attack probability of a peer u is independent of the opponent v as well as the cur-
rent round. An interesting generalization would be for the attack probability of
u, v to depend either on both neighbors u and v or the current round. Additional
questions include survivability for peers with limited amount of ammunition or
when peers are allowed to withdraw from the standoff. Finally, one could also
consider standoffs in which peers may form collisions.

References

1. Archer, J., Huntingford, F.: Game theory models and escalation of animal fights.
The dynamics of aggression: biological and social processes in dyads and groups,
pp. 3–31 (1994)

2. Baldick, R.: The Duel: a history of duelling. Hamlyn Publ Group Ltd., (1965)
3. Bekiari, A., Deliligka, S., Koustelios, A.: Examining relations of aggressive com-

munication in social networks. Soc. Netw. 6(1), 38–52 (2016)
4. Bekiari, A., Pachi, V., Hasanagas, N.: Investigating bullying determinants and

typologies with social network analysis. J. Comput. Commun. 5(7), 11–27 (2017)

504 E. Kranakis

5. Cairns, R.B., Cairns, B.D., Neckerman, H.J., Gest, S.D., Gariepy, J.-L.: Social
networks and aggressive behavior: peer support or peer rejection? Dev. Psychol.
24(6), 815 (1988)

6. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory.
Psychol. Rev. 63(5), 277 (1956)

7. Davis, J.A.: Clustering and structural balance in graphs. Hum. Relat. 20(2), 181–
187 (1967)

8. Dugatkin, L.A., Reeve, H.K.: Game Theory and Animal Behavior. Oxford Univer-
sity Press on Demand, Oxford (2000)

9. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, Cambridge (2010)

10. Eastaway, R., Standoff, M.: Electronic Edition of The New Scientist, Puzzle
Section, 21 Apr 2020

11. Fill, J.A., Mahmoud, H.M., Szpankowski, W.: On the distribution for the duration
of a randomized leader election algorithm. Ann. Appl. Probab. 6(4), 1260–1283
(1996)

12. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2(2),
143–146 (1953)

13. Hardy, I.C.W., Briffa, M.: Animal Contests. Cambridge University Press, Cam-
bridge (2013)

14. Huntingford, F.A.: Animal conflict. Springer Science & Business Media (2013).
https://doi.org/10.1007/978-94-009-3145-9

15. Janson, S., Szpankowski, W.: Analysis of an asymmetric leader election algorithm.
Electron. J. Comb. 4, R17–R17 (1997)

16. Kolanowski, A.: Aggressive behavior in institutionalized elders: a theoretical frame-
work. Am. J. Alzheimer’s Disease 10(2), 23–29 (1995)

17. YouTube Video of Duelling Rams. These rams go head to head - literally. https://
www.youtube.com/watch?v=5NTvMDEyDpg. Accessed 29 May 2021

18. Prodinger, H.: How to select a loser. Discrete Math. 120(1–3), 149–159 (1993)
19. Riechert, S.E.: Game theory and animal contests. In: Dugatkin, L.A., Reeve, H.K.

(eds.) Game Theory and Animal Behavior, pp. 64–93. Oxford University Press,
Oxford, New York (1998)

20. Ross, S.M.: Probability Models for Computer Science. Harcourt Academic Press,
San Diego (2002)

21. Huesmann, L.R.: An information processing model for the development of aggres-
sion. Aggressive Behav. 14(1), 13–24 (1988)

22. Williams, R.B., Clippinger, C.A.: Aggression, competition and computer games:
computer and human opponents. Comput. Hum. Behav. 18(5), 495–506 (2002)

23. Winkler, P.: Mathematical Puzzles: a Connoisseur’s Collection. CRC Press, Boca
Raton (2003)

https://doi.org/10.1007/978-94-009-3145-9
https://www.youtube.com/watch?v=5NTvMDEyDpg
https://www.youtube.com/watch?v=5NTvMDEyDpg

A Hybridization of GRASP
and UTASTAR for Solving the Vehicle

Routing Problem with Pickups
and Deliveries and 3D Loading

Constraints

Themistoklis Stamadianos, Magdalene Marinaki, Nikolaos Matsatsinis,
and Yannis Marinakis(B)

School of Production Engineering and Management, Technical University of Crete,
Chania, Greece

tstamadianos@tuc.gr, magda@dssl.tuc.gr, nikos@dpem.tuc.gr,

marinakis@ergasya.tuc.gr

Abstract. As urban centers grow, demand for goods transportation
grows as well. The emergence of e-commerce has been a great catalyst,
with online sales placing a big load on transportation companies. Cur-
rent social conditions further amplify the effect. An unnoticed segment has
been the delivery of large-size items in urban centers, where restrictions of
different kinds impose the use of small vehicles. This research presents a
novel combination of UTASTAR with Vehicle Routing Problem with Pick-
ups and Deliveries and three-dimensional loading constraints to provide
solutions. Scenarios of demand exceeding capacity are considered. A Deci-
sion Support System (DSS) is created to assist Decision Makers (DMs) of
logistics companies get routing suggestions based on their priorities. The
considerable size and weight of the items require careful handling of the
smaller vehicles. The utilization of heuristic methods for routing expedites
the solution process, enabling the formation of multiple solutions, which
get ranked by the UTASTAR method on four criteria. The criteria val-
ues and thresholds are set indirectly by the DM. The model is tested on
modified instances from the literature and a case study.

Keywords: Vehicle routing problem · GRASP · UTASTAR ·
Multi-criteria VRP · Three dimensional loading

1 Introduction

Planning deliveries in urban environments is a demanding task. Unpredictable
traffic, small roads, and weight restrictions are some of the most commonly
faced issues. Most of the research has been on the public transport scope, with
freight remaining largely unregulated and neglected. The research that exists on
urban deliveries, excluding research solely on vehicle routing, is on the subject
of sustainability [2,3].
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 505–520, 2022.
https://doi.org/10.1007/978-3-031-24866-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_36&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_36

506 T. Stamadianos et al.

This research paper aims to solve a Vehicle Routing Problem (VRP) in an
urban context, with the potential for real-life application, and provide tools to
assist Decision Makers in creating delivery plans that correspond to their current
needs. For example, different parts of the city, days of the week, or even types
of customers, may require different handling.

The discussed problem arises when the transportation of large items needs to
take place in a restrictive environment, like an urban one. The problem is viewed
from the perspective of a carrier company specializing in large item transporta-
tion. They get hired by businesses and tasked with picking up items from their
premises and transporting them within city limits. The scenario of transportation
demand exceeding capacity is explored. While, many customers are interested in
delivery services, the fleet of the company cannot provide service for everyone.

A formulation of the problem as a Vehicle Routing Problem (VRP) with
Pickups and Deliveries and three-dimensional loading constraints (3L-VRPPD)
is proposed and a novel combination of the UTASTAR method for preference dis-
aggregation analysis and of the Greedy Randomized Adaptive Search Procedure
(GRASP) for solving the routing problem, helps solve the described problem.
GRASP algorithm is used to generate multiple solutions for the VRP. Then,
UTASTAR takes over and ranks them according to the preferences of the Deci-
sion Maker (DM). By ranking a few dummy solutions, UTASTAR can quickly
and accurately determine the DM’s preferences as long as the DM’s choices
remain consistent. The described process allows the DM to shift policies and get
tailored suggestions for the needs of the business.

The rest of the paper is organized as follows. In Sect. 2 the Vehicle Rout-
ing Problem is discussed. UTASTAR is described in Sect. 3. The instances and
the computational results are given in Sect. 4. Finally, conclusions and future
research are presented in Sect. 5.

2 Vehicle Routing Problem with Pickups and Deliveries
and 3D Loading Constraints

2.1 Problem Description

Designing a viable loading plan would be an essential element for a business
model such as the one described. The items to be transported are large in size;
therefore, their dimensions and total weight need to be taken into account. An
item may also get classified as fragile. The VRP solved combines the Pickup
and Delivery problem, and the three-dimensional loading problem. The problem
presented is well suited to be solved as a Vehicle Routing Problem with some
necessary extensions. A number of vehicles are employed to serve the customers’
transportation needs. The items get picked up at a certain location and delivered
to another one. Each location is either a pickup point or a delivery point. A
routing example is provided in Fig. 1.

The limited size of the vehicles used for urban transportation is an important
factor, not just for item volume, but for item weight as well. Since the concept

GRASP and UTASTAR for 3L-VRPPD 507

of split delivery is not considered, and the size of the vehicles is small, only the
total customer weight is needed. Further weight limitations may also be imposed
by local authorities in order to protect older roads (i.e. roads of historic centers)
and other roads susceptible to weight damages ([6,7,10]).

Fig. 1. Pickup and delivery example

Some of the most important three-dimensional loading rules are described in
short in the following list.

– Initially, the only available space has the dimensions of the loading bay of the
vehicle.

– The items being placed must be positioned as far back and as left as possible.
– When placing new items, the first spaces to be checked should be those above

other items.

508 T. Stamadianos et al.

– Available spaces closest to the cabin will be preferred.
– A slight box overhang is allowed, however, modifications will have to be made

to other spaces being affected. At least 75% of both the width and length must
be supported in order to consider the space as a viable placement option.

– When an item is placed a maximum of three new spaces may be generated
while the one used gets removed. The new spaces may be above, besides, or,
in front of the previous item.

– If an item is fragile, then only fragile items may be placed above it (a common
practice in VRPs).

– In case of empty spaces overlapping, merging is considered, to create bigger
spaces.

2.2 Solution Method

A detailed view of the routing strategy is provided in Algorithm 1. As long as a
customer’s items fit in the vehicle (by weight and by dimensions) the customer
gets served by that vehicle. If immediate delivery is a beneficial move, then the
algorithm proceeds to immediate delivery before continuing. When all customers
have been checked for possible delivery with the current vehicle and no more
can fit, then a new vehicle is employed and the process starts again. If no more
vehicles exist, then this solution is considered complete, and the construction of
a new solution begins.

The two main parts of the solution process, selecting a customer and then
packing the customer’s items, are described in the following subsections, along
with the dilemma of immediate delivery faced in this problem.

Customer Selection Algorithm. Vehicle routing takes place in a famil-
iar manner. The algorithm that selects customers to check if they are eligible
for service is a variant of the Greedy Randomized Adaptive Search Procedure
(GRASP), first presented by Feo and Resende (1995) [4]. A group of poten-
tial following customers is created and one of them is randomly picked. These
groups are created at the beginning and updated throughout the solving process
as customers get served. Having a customer selection algorithm, able to provide
a diverse range of solutions is highly important for the scenario considered. The
criterion upon which the groups are created is a metric of distance. Algorithm
2 describes the process.

Packing Algorithm. To load the vehicles, a packing algorithm is developed.
Each time a new customer is considered, the packing algorithm has to check if
a feasible packing plan that includes this customer exists. A common concept
in three-dimensional packing problems is the use of maximal spaces. At each
step of the loading process, a number of spaces are available for loading. The
plans must follow the Last In First Out (LIFO) concept, meaning that the last
items to be loaded belong to the customer that will be served first. To serve a
customer, no additional movement of items should take place. This principle is

GRASP and UTASTAR for 3L-VRPPD 509

Algorithm 1: VRP solver
Data: Customer Information (pickup coordinates, delivery coordinates,

number of items, dimensions, fragility, weight), Vehicle Information
(number of vehicles, loading bay dimensions, maximum payload),
Depot coordinates.

Result: Feasible VRP Solution
First customer = pickAcustomer();
while There are unserved customers do

Pick the next vehicle.;
if The current customer is served then

customer = pickAcustomer();

while Termination condition is not met do
if Adding customer’s weight does not exceed vehicle capacity then

if Customer’s items fit in the loading bay then
The customer gets served by the current truck;

if Delivering the items that were just picked is beneficial then
Immediately deliver the items that were picked;
Termination condition is met.;

customer = pickAcustomer();
if Too many checks have been made then

Termination condition is met.;

Add the delivery points to the route.;

Algorithm 2: pickAcustomer
Data: Restricted Candidate List (RCL), Customers
Result: A potential customer to be served with the current vehicle.
Pick a random and eligible customer.
if The customer belongs to the RCL then

Pick the customer.
else

Pick the closest customer.

Mark the chosen customer as an already explored customer for the vehicle.

exceptionally important when dealing with large items. The algorithm employed
in this research makes an exhaustive search. When a feasible packing plan is
found, the algorithm immediately stops.

The Delivery Dilemma. A critical decision is made just after the items of
customer 1 are loaded and before the vehicle leaves to visit the pickup point
of customer 2. There is the option to deliver the items of customer 1 before
visiting customer 2. If it is considered to be a beneficial move, then a diversion
is made, and the delivery takes place immediately. If not, the vehicle proceeds
to the pickup point of customer 2. This takes place after every customer pickup,

510 T. Stamadianos et al.

in an effort to free space and serve more customers along the way, without the
need for extra vehicles.

Whether immediate delivery is beneficial or not, is determined partly by the
ratio between the distance with delivery and without delivery and partly by the
number of items of customer 1. Intuitively, close deliveries and a higher number
of items commend a higher chance of immediate delivery.

3 UTASTAR

After the algorithm has generated the predefined number of solutions, the UTAS-
TAR method is used in order to evaluate them. UTA (UTility Additives), origi-
nally developed by Jacquet-Lagreze and Siskos (1982) [8], is a method of Multi-
Attribute Utility Theory (MAUT). Various methods can be employed in order
to attain information about the DM’s value system. These may include previous
decisions of the DM or the creation of a set of representative alternatives for the
DM to rank. In this case, the provided alternatives are the routing plans. This
information is used to create a function or functions, able to provide rankings
according to the DMs values. These functions are referred to as additive utility
functions and when combined they form a model which can be used to evaluate
future options. In this research paper, an extension of the UTA method was used,
UTASTAR (or UTA*), introduced by Siskos and Yannacopoulos (1985) [11].

UTASTAR is the tool employed to rank the different solutions provided by
the VRP algorithm. A number of solutions, differing significantly in many cases,
are the result of the VRP algorithm. This differentiation is allowing for a greater
chance to generate and select a good solution as opposed to a static approach
which would provide moderate results in a predictable manner. The solutions
are judged upon four different points of quality. The level of customer service is
a very important factor. Being able to provide service to as many customers as
possible yields a higher income. To ensure that the vehicles are used efficiently,
the total weight transferred and the total volume of items are also observed.
The last criterion, the total traveled distance, is a good indicator of operational
costs. All the above help provide a proper customer experience.

The most important part of UTASTAR is the data related to the DM’s
preferences, regardless of the method employed to acquire them. The DM has to
be consistent to avoid errors. In this case, the DM is presented with a total of
8 different plans to rank, as shown in Table 1. The first column enumerates the
alternatives. The Distance column refers to the total travel distance, the Serviced
column to the total number of served customers, and the next two refer to the
total Load and Volume of the items. The last column contains a hypothetical
Ranking of the alternatives by the DM, from best (1) to worst (8). This ranking
is the required input for the UTASTAR algorithm.

GRASP and UTASTAR for 3L-VRPPD 511

Table 1. UTASTAR alternatives

Alternative Distance Serviced Load Volume Ranking (DM)

1 100 12 225 525 8

2 100 19 340 660 7

3 250 19 260 830 6

4 250 19 390 720 5

5 250 26 660 750 4

6 400 37 700 1080 2

7 400 19 870 920 1

8 400 26 660 940 3

The Linear Program (LP) concerning UTASTAR is presented below. The
objective function is provided in Eq. 1, under constraints 2 to 10. The objective
function minimizes the sum of all overestimation and underestimation errors of
the utility functions.

The constraints 2 to 8 describe the maximum possible utility difference
between the alternatives in the parenthesis. Multiple tests were carried to define
the level of difference needed to set apart two of the alternatives. The smallest
possible difference was found to be 0.00005, and this value was used through-
out all the experiments. Such a small delta will pick apart even the smallest
differences, but it bears the danger of failure if the DM gets inconsistent. Con-
straint 9 denotes that the sum of the weights must be one. These weights are the
transformed utilities. Lastly, constraints 10 ensure that all weights and errors
are equal or greater than zero.

All delta functions are described in Table 2. The variables are presented in
the first column, while the rest of the columns correspond to their values in the
delta function each column describes.

min : F = Σ[σ(a)+ + σ(a)−] (1)

Under Constraints:

Δ(7, 6) ≥ 0.00005 (2)

Δ(6, 8) ≥ 0.00005 (3)

Δ(8, 5) ≥ 0.00005 (4)

Δ(5, 4) ≥ 0.00005 (5)

Δ(4, 3) ≥ 0.00005 (6)

Δ(3, 1) ≥ 0.00005 (7)

Δ(2, 1) ≥ 0.00005 (8)

Σ(wij) = 1 (9)

512 T. Stamadianos et al.

wij , σ(a)+, σ(a)− ≥ 0,∀i, j, a (10)

Table 2. Delta values

Var. Δ(7, 6) Δ(6, 8) Δ(8, 5) Δ(5, 4) Δ(4, 3) Δ(3, 2) Δ(2, 1)

w11 0 0 −1 0 0 0 0

w12 0 0 0 0 0 −1 0

w21 0 0 0 0 0 0 1

w22 −1 0 0 1 0 0 0

w23 −1 1 0 0 0 0 0

w31 0 0 0 0.2326 0.6047 −0.3721 0.5349

w32 0 0 0 1 0 0 0

w33 0.7907 0.1860 0 0.0233 0 0 0

w41 0 0 0 0 0 0.2703 0.7297

w42 0 0 0.7838 0.1622 −0.5946 0.6486 0

w43 −0.8649 0.7568 0.2432 0 0 0 0

σ−
1 0 0 0 0 0 0 1

σ+
1 0 0 0 0 0 0 −1

σ−
2 0 0 0 0 0 1 −1

σ+
2 0 0 0 0 0 −1 1

σ−
3 0 0 0 0 1 −1 0

σ+
3 0 0 0 0 −1 1 0

σ−
4 0 0 0 1 −1 0 0

σ+
4 0 0 0 −1 1 0 0

σ−
5 0 0 1 −1 0 0 0

σ+
5 0 0 −1 1 0 0 0

σ−
6 1 −1 0 0 0 0 0

σ+
6 −1 1 0 0 0 0 0

σ−
7 −1 0 0 0 0 0 0

σ+
7 1 0 0 0 0 0 0

σ−
8 0 1 −1 0 0 0 0

σ+
8 0 −1 1 0 0 0 0

After solving the LP, the objective function was equal to zero, meaning no
errors were present, hinting at the existence of multiple optimal solutions.

A new LP was created with four new objective functions, one for each crite-
rion, as presented in Eqs. 11 to 14. Constraints 2 to 8 have to be modified. The
sigma variables are no longer necessary; therefore, they are not included in the
delta constraints of the new LP. Constraints 9 and constraints 10 remain the
same.

GRASP and UTASTAR for 3L-VRPPD 513

The average solution of these objective functions is presented in Table 3. It
is called the centroid and it forms the utility function, representing the DM. In
essence, to compute the utility of a solution, the distance, number of served cus-
tomers, total load and total volume are multiplied to the respective coefficients
from Table 3, and then summed.

min : F1 = w11 + w12 (11)

min : F2 = w21 + w22 + w23 (12)

min : F3 = w31 + w32 + w33 (13)

min : F4 = w41 + w42 + w43 (14)

Table 3. UTASTAR Utility function

Utility Distance Served Load Volume

u(g) = 0.0559 ∗ u1(g1) +0.217 ∗ u2(g2) +0.3576 ∗ u3(g3) +0.3696 ∗ u4(g4)

4 Computational Experiments

4.1 Instances

The VRP [12] variant addressed in this paper is a combination of Capacitated
VRP with three-dimensional loading constraints, and the one-to-one Pickup
and Delivery VRP. Each of these have publicly available benchmarks; however,
no combination of the above exists. Subsequently, the creation of appropriate
instances is a necessity in this case. The item dimensions and fragility represent
a great part of the problem; thus, instances from the 3L-CVRP literature are
the best candidates.

In the literature, 3L-CVRP instances were created by Gendreau, Iori,
Laporte, and Martello (2006) [5] by adding item dimensions, fragility, and vehicle
dimensions in the classic CVRP benchmark instances. It is worth noting that the
item dimensions were produced randomly, in relevance to the size of the vehicle.
Furthermore, about a quarter of the items to be delivered in each instance are
fragile, with one instance having about 40% fragile items. These instances were
also modified and used in [1,9].

In this research, instances of [5] are used as well as a basis for the new
instances. The data provided by these instances contains the set of customer
coordinates, the dimensions (height, width, and length), fragility, and weight
of the items to be transported, the total weight per customer, the number of
available vehicles (homogeneous fleet) and the dimensions (height, width, and
length), as well as the maximum capacity of the vehicles.

To create appropriate instances, the following modifications and additions
were necessary, the included set of customer coordinates were used as the pickup

514 T. Stamadianos et al.

locations. For each customer, new coordinates were generated and used as deliv-
ery locations. The number of available vehicles was lowered by one to create a
scenario in which serving all customers is not possible. It is worth noting, that
the new delivery coordinates were created randomly, within the same area of the
original ones. Designing instances with the LIFO aspect in mind is deliberately
avoided, since it would not be a realistic approach to the problem.

4.2 Case Study

Fig. 2. Chania Case Study, Source: Google Maps

To further study the feasibility of such a plan and analyze how effective the pro-
posed strategies are, a Case study was conducted. The city of Chania, Greece,
was chosen as a test area. Chania is densely populated with small roads and gen-
erally bad accessibility, especially during summer months, when tourists visit the
city. Most of the businesses are located close to or within the center and the his-
toric part of the city, which is comprised of small roads and heavy traffic. While
pickup points may lay outside the city center and be easier to reach, the major-
ity of the delivery points will be inside the city center. Figure 2 includes all the
Pickup and Delivery points and the location of the depot. These points represent
realistic transport scenarios within the city and are presented in Table 4. The
coordinates of the depot are provided in the last row of the table.

The vehicles used in this case study are assumed to carry a maximum of
700 kg and have a cargo space of 2000 mm in length, 1500 mm in width, and
1350 mm in height, for 4.05 cubic meters of space. The dimensions and the capac-
ity are similar to most small commercial cargo vans for sale today. According to
the total weight of the items, a minimum of four vehicles would be necessary to
fully satisfy the demand. To make the scenario infeasible, only three vehicle will
be used for the case study. The items to be transferred are described in Table 5.

GRASP and UTASTAR for 3L-VRPPD 515

Table 4. Pickup and delivery coordinates

Customer Pickup Delivery

X Y X Y

1 35,50913 24,00842 35,51385 24,01825

2 35,50623 24,0252 35,51502 24,01245

3 35,51039 24,01795 35,51608 24,03528

4 35,51259 24,0073 35,51764 24,02412

5 35,5115 24,0273 35,51007 24,01292

6 35,49736 24,01837 35,51028 24,00224

7 35,51388 24,02104 35,51744 24,01159

8 35,51454 24,01005 35,50763 24,0164

9 35,51227 24,01254 35,51063 24,02335

10 35,51503 24,02949 35,5063 24,00846

Depot 35,50529 24,00503

4.3 Computational Results

Both the solution algorithm and UTASTAR were implemented in MATLAB and
tested on a Laptop computer equipped with an Intel i3 8130u and 6.0 GB of
DDR4 RAM. A total of five runs for each of the instances took place. In each
run, four solutions were created and then evaluated by the UTASTAR method.
Only the best suited solution from each run is kept, according to the ranking of
UTASTAR. The results presented are the average of these five runs per instance.

The results of the modified instances from the literature are presented in
Table 6. The number of vehicles employed and the customers are provided in the
parenthesis in the first column. Relative standard deviation is a better way to
compare results, due to the different orders of magnitude used between instances.
This way, the deviation is expressed as a percentage rather than a simple differ-
ence of values. The results can be found in Table 7. The second column of Table 7
refers to the average computational value, which can be described as reasonable.
However, it may significantly deviate due to the randomness of the algorithm.
The rest of the values described are more predictable. The total carried load, the
total distance traveled, and the number of served customers have a relative stan-
dard deviation below 10%, except for a single case. In some cases, the relative
standard deviation between the number of served customers is 0%, meaning the
same number of customers were served in every run of the algorithm, providing
a reassuring sense of stability.

516 T. Stamadianos et al.

Table 5. Items characteristics

Customer Item Height
(Meters)

Width
(Meters)

Length
(Meters)

Fragile Total Weight
(Kilograms)

1 1 0,65 0,8 0,5 No 124

2 1 0,5 0,5 1,2 No 533

2 0,4 0,3 0,3 No

3 1 0,25 0,6 1 No 104

4 1 0,3 1 0,5 No 80

5 1 1 0,8 0,7 No 332

2 0,3 0,8 0,8 No

6 1 0,8 0,9 0,9 Yes 184

7 1 0,5 1 0,8 No 362

8 1 0,65 0,8 0,5 No 205

2 0,7 0,5 1 No

3 0,25 0,3 0,3 Yes

9 1 1,2 0,75 1 Yes 260

10 1 1 1 0,3 No 319

Sum: 14 2503

Table 6. Average results

Instance Time (sec) Load Distance Served

1 (3,15) 11,3241 166,6 447,701 12,2

2 (4,15) 0,1831 218,8 524,69136 13

3 (4,20) 26,68202 299,6 811,12284 16

4 (5,20) 12,3129 332,8 966,93202 18,2

5 (5,21) 114,7398 181,6 914,64212 19

6 (5,21) 14,50276 178 940,39068 19,2

7 (5,22) 49,64232 358,7 1603,48 19,6

8 (5,22) 20,95414 309,64 1645,62 19,6

Table 7. Relative standard deviation

Instance Time (sec) Load Distance Served

1 (3,15) 44,39% 8,28% 2,97% 3,28%

2 (4,15) 38,66% 2,79% 7,82% 0,00%

3 (4,20) 68,06% 4,85% 5,23% 0,00%

4 (5,20) 75,18% 2,49% 3,21% 2,20%

5 (5,21) 34,35% 2,88% 11,18% 0,00%

6 (5,21) 61,20% 4,42% 3,18% 2,08%

7 (5,22) 31,68% 5,60% 2,97% 2,50%

8 (5,22) 39,64% 7,06% 4,17% 2,50%

GRASP and UTASTAR for 3L-VRPPD 517

Although the VRP could not provide solutions that fully satisfy the demand,
the results can be described as acceptable. The deviation in number of served
customers is exceptionally low, while the deviation in vehicle load demonstrates
that different customers are being checked, and the algorithm is not trapped
in any local optimum. The execution of the solution algorithm along with the
UTASTAR ranking takes place quickly, enabling the DM to add new customers,
and possibly vehicles too, and generate new solutions in a matter of seconds.

There are many cases, where pickup and delivery take place separately, one
after the other. An algorithm that follows this notion was created and tested
against the more complex system employed in the present research article, for
comparison purposes only. The simpler algorithm variation, will pick up all the
items to be transported and then plan routes to deliver them, as opposed to
the more advanced system, which considers the delivery of loaded items between
pickups. Table 8 shows the differences between the two methods. Computational
time seems to be the most volatile aspect of the problem, albeit, still in a reason-
able time frame. The number of served customers marginally improved, despite
the lower carried load. This can be attributed to the selection of different cus-
tomers to serve, since not all customers can be served, due to the removal of
a vehicle. The most impacting change can be observed in the total traveled
distance, which on average was lowered by 16% without any drawback in the
number of served customers.

Table 8. Performance difference to sequential Pickup and Delivery

Instance Time (sec) Load Distance Served

1 (3,15) 55,50% −26,02% −26,43% −5,43%

2 (4,15) −57,03% −3,01% −16,61% 0,00%

3 (4,20) −1,21% 6,58% −15,58% −5,88%

4 (5,20) 1,94% 11,23% −10,37% −1,62%

5 (5,21) −23,46% −7,16% −13,56% 5,56%

6 (5,21) 4,33% −13,30% −313,29% 2,13%

7 (5,22) −22,89% −9,09% −20,66% 4,26%

8 (5,22) −38,88% −4,68% −13,76% 2,62%

Average −10,21% −5,68% −16,28% 0,20%

Figure 3 is a visual representation of a vehicle from a solution of the second
problem instance. On the left side (a) is the solution provided by the algorithm
developed in this paper. The other side (b) is solved with the algorithm that
completes all the pickups before the deliveries. An arrow is present in both sides
to indicate the direction of travel. As demonstrated, the items of customer 5
are the first to be picked up, and they are delivered immediately. There is a
twofold benefit with this method. First, the vehicle will have more free space
(the maximum possible in this example), allowing for the possibility to serve

518 T. Stamadianos et al.

more customers with this vehicle. Secondly, when compared to the routing of the
same vehicle on side (b), it is obvious that the immediate delivery had a positive
effect on the total travelled distance without changing the order of visits or the
number of customers. Figure 3 is, also, a visual representation of the restrictive
LIFO order of service, imposed by the significant size of the transported items.

Fig. 3. Visual comparison of the two pickup and delivery variants.

Case Study. A separate analysis was carried out for the case study at Chania,
Greece. The problem described in Sect. 4.2 was solved using the same algorithm
that was used for the larger instances derived from literature. The least number
of vehicles needed according to weight were four, whereas it was just two when
judging by volume. However, to create an infeasible scenario, the number of
vehicles was lowered by one, hence the least number of vehicles is three in this
case. The fact that only two vehicles would be needed when judging only by
volume does not mean that there will be lots of available space in the cargo
space of the vehicles. The shape of the items to be delivered could be of a
peculiar shape, rendering part of the cargo space unusable. Also, the presence
of fragile items should be kept in mind.

Thorough experimentation resulted in the same single best solution every
time, which is presented in Table 9. The small size of the problem commended
more runs, therefore, 100 runs were made in just about a second. By making
deliveries between pickups, the algorithm eliminated the need for one of the four
trucks, originally presumed to be needed. This way, operational costs are proven
to get lower while all customers get served.

GRASP and UTASTAR for 3L-VRPPD 519

Table 9. Average results of case study

Instance Time (sec) Load (kg) Distance Served

Case Study 1,0298 2503 2,2 10

In contrast to the previous tests, in the case study, the algorithm was able
to provide a solution in which all customers get served, despite having a vehicle
less than the ideal number.

5 Conclusion

Vehicle routing in urban spaces is a delicate matter. It is of high importance for
businesses and residents alike and a determining factor to uneventful daily activ-
ities. A unique scenario where transportation demand exceeds the transportation
capacity of the carrier is explored.

In this research paper, the Vehicle Routing Problem with Pickup and Deliv-
ery, and three-dimensional Loading was solved in an urban context. The inclu-
sion of three-dimensional loading makes for a strong approach towards managing
urban transportation logistics. New instances of appropriate characteristics were
created through a combination of instances from the literature and new elements
where needed. A case study for the city of Chania, Greece, was conducted as
well. A total of 10 customer requests were fulfilled using vehicles modeled after
the most common commercial vans, and pairs of origin and destination points
were created.

To solve these routing problems heuristic methods were employed. A GRASP-
inspired algorithm was developed to select customers to serve, while a savings
algorithm was used to locate the closest customers. The solution process allows
for delivery of the loaded items between pickups in order to free up cargo space,
lower the travel distance, and subsequently, cost. Fewer vehicles may be needed
as a side effect, as observed in the case study. Multiple solutions are created on
each run for the sake of variety. Each of them will have different strengths and
weaknesses, stemming from the randomness of the customer selection process.
The goal is to provide the DM with a single solution, fitted to his priorities.
To solve this issue, UTASTAR was involved. UTASTAR has the ability to ana-
lyze previous choices of an individual and take decisions based upon the same
principles, effectively eliminating the need for manual evaluation of the provided
solutions, unless the DM’s priorities change.

Numerous tests were carried to assess the quality of the proposed algorithm.
Average results were presented along with relative standard deviation. Computa-
tional time was the most volatile, albeit short and reasonable. When compared
to a sequential pickup and delivery plan, the plan of this research was supe-
rior. Total driving distance was substantially lowered, about the same amount
of customers were served; however, it was customers with lower demands.

520 T. Stamadianos et al.

As for the case study, the small size of the problem allowed for more runs,
thus, more experimentation. Different thresholds were used when exploring the
option to deliver immediately or later. Having a higher tolerance on a slightly
longer trip gives the ability to serve more customers on a single route with a
single vehicle. Both the case study and the rest of the instances were carried
using the same UTASTAR inputs.

Many opportunities for future research exist. Further refinement to the rout-
ing algorithm could provide solutions better suited to each specific problem,
instead of taking a generic approach, able to generate results for each and every
case but with a differing rate of success. Another important factor to consider
altering would be the method through which decisions are made when consider-
ing to deliver the items loaded last or not. In this case, a rule of thumb was used
through experimentation. At last, it is worth mentioning the potential for the
adoption of Electric Vehicles, which are well-suited for urban use and the future
of mobility, in general.

References

1. Bortfeldt, A.: A hybrid algorithm for the capacitated vehicle routing problem
with three-dimensional loading constraints. Comput. Oper. Res. 39(9), 2248–2257
(2012)

2. Chaovalitwongse, W., Furman, K. C., Pardalos, P.M., (Eds.) Optimization and
logistics challenges in the enterprise, Springer-Verlag (2009).https://doi.org/10.
1007/978-0-387-88617-6

3. Cinar, D., Gakis, K., Pardalos, P.M. (eds.): Sustainable Logistics and Transporta-
tion. SOIA, vol. 129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69215-9

4. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob.
Optim. 6(2), 109–133 (1995)

5. Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a
routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006)

6. Heng, K., Li, R., Li, Z., Wu, H.: Dynamic responses of highway bridge subjected
to heavy truck impact. Eng. Struct. 232, 111828 (2021)

7. Henning, T., Alabaster, D., Greenslade, F., Fussell, A., Craw, R.: The relationship
between vehicle axle loadings and pavement wear on local roads June 2017 (2017).
(Technical Report)

8. Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for
multicriteria decision-making, the UTA method. Eur. J. Oper. Res. 10(2), 151–
164 (1982)

9. Lacomme, P., Toussaint, H., Duhamel, C.: A GRASP× ELS for the vehicle routing
problem with basic three-dimensional loading constraints. Eng. Appl. Artif. Intell.
26(8), 1795–1810 (2013)

10. Pais, J.C., Amorim, S.I., Minhoto, M.J.: Impact of traffic overload on road pave-
ment performance. J. Transp. Eng. 139(9), 873–879 (2013)

11. Siskos, Y., Yannacopoulos, D.: Utastar: an ordinal regression method for building
additive value functions. Investigaçao Operacional 5(1), 39–53 (1985)

12. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)

https://doi.org/10.1007/978-0-387-88617-6
https://doi.org/10.1007/978-0-387-88617-6
https://doi.org/10.1007/978-3-319-69215-9
https://doi.org/10.1007/978-3-319-69215-9

Packing Hypertrees and the k-cut
Problem in Hypergraphs

Mourad Bäıou1 and Francisco Barahona2(B)

1 Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

2 IBM Research AI, New York, USA

barahon@us.ibm.com

Abstract. We give a combinatorial algorithm to find a maximum
packing of hypertrees in a capacitated hypergraph. Based on this we
extend to hypergraphs several algorithms for the k-cut problem, that
are based on packing spanning trees in a graph. In particular we give
a γ-approximation algorithm for hypergraphs of rank γ, extending the
work of Ravi and Sinha [24] for graphs. We also extend the work of
Chekuri, Quanrud and Xu [7] in graphs, to give an algorithm for the
k-cut problem in hypergraphs that is polynomial if k and the rank of the
hypergraph are fixed. We also give a combinatorial algorithm to solve a
linear programming relaxation of this problem in hypergraphs.

Keywords: k-cut · Packing hypertrees · Hypergraphic matroids

1 Introduction

Hypergraphic matroids were introduced by Lorea [18] and later studied by Frank,
Kiraly and Kriesell [11]. They showed that the notion of circuit-matroid of graphs
can be generalized to hypergraphs. The notion of spanning trees generalizes to
hypertrees. Then Frank et al. [11] extended a theorem of Tutte [27] and Nash-
Williams [23] about spanning trees, to a similar theorem giving the maximum
number of disjoint hypertrees contained in a hypergraph. Based on this we give
an algorithm to find a maximum packing of hypertrees in a capacitated hyper-
graph.

Spanning tree packing has been used to study the k-cut problem in graphs.
It was used by Naor and Rabani [21] to derive a linear programming relaxation,
and by Thorup [26] to develop an algorithm that is polynomial for fixed k. The
linear programming relaxation was further studied by Chekuri, Quanrud and Xu
[7], shedding light on the connections among several of these results. Here we
show that hypertree packing and other algorithms for hypergraphic matroids,
can be used to extend to the k-cut problem in hypergraphs, several of the results
mentioned above.

Below we describe previous work, then we give more details about our con-
tribution, and we outline the organization of this paper.
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 521–534, 2022.
https://doi.org/10.1007/978-3-031-24866-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_37&domain=pdf
https://doi.org/10.1007/978-3-031-24866-5_37

522 M. Bäıou and F. Barahona

1.1 Previous Work

Based on the Theorem of Tutte [27] and Nash-Williams [23], polynomial algo-
rithms for packing spanning trees in a graph have been given by Barahona [2]
and Gabow and Manu [14]. The k-cut problem in graphs is NP-hard if k is part
of the input, see [16]. If k is fixed, Goldschmidt and Hochbaum [16] gave the first
polynomial algorithm. Later other algorithms improving the running time have
been found. For a graph G = (V,E), let n = |V | and m = |E|. Thorup [26] gave
an O(mn2k−2) algorithm. Chekuri, Quanrud and Xu [7] improved the running
time to O(mn2k−3). Also they presented a framework that unifies the tree pack-
ing approach of Thorup [26] and the linear programming approach of Naor and
Rabani [21]. When k is part of the input, several 2-approximation algorithms
have been developed. Saran and Vazirani [25], gave a (2 − 2/k) approximation.
Nagamochi and Kamidoi [20], and Kapoor [17], found a similar approximation.
Narayanan, Roy and Patkar [22] used submodular functions to give a 2(1−1/n)
approximation algorithm. Naor and Rabani [21] used a linear programming relax-
ation to obtain a 2(1−1/n) approximation. Ravi and Sinha [24] used Lagrangian
relaxation to also give a 2(1− 1/n) approximation. Under the Small Set Expan-
sion hypothesis [19], a factor of 2 is the best possible approximation. For more
references on the k-cut problem see [7].

For a hypergraph H = (V,E), let n = |V |, m = |E|, and γ = max{|e| : e ∈
E}. This last number is called the rank of H. For the k-cut problem in hyper-
graphs, Fukunaga [13] extended Thorup’s algorithm and gave an O(m2nγk−1)
algorithm. Chandrasekaran, Xu and Yu [5] obtained a randomized algorithm
that runs in Õ(pn2k−1) time, where p =

∑
e∈E |e|. Fox, Panigrahi and Zhang [10]

improved the randomized run-time to Õ(mn2k−2). Recently Chandrasekaran and
Chekuri [4] gave two deterministic algorithms with complexities O(n3k(k−1)/2)
and O(n8k). When k is part of the input, the k-cut problem in hypergraphs is
hard to approximate to within large factors under the Exponential Time Hypoth-
esis, see [6], [19]; recall that for graphs there are several 2-approximation algo-
rithms.

1.2 Our Contribution

We give a combinatorial algorithm for packing hypertrees in a hypergraph. Then
we use this algorithm and the tools developed in [1], to study the k-cut problem
in hypergraphs. First we extend the algorithm of Ravi and Sinha [24] for graphs,
to obtain a γ-approximation algorithm for hypergraphs of rank γ. Then we study
a linear programming relaxation for hypergraphs similar to the one used by Naor
and Rabani [21] for graphs. We give a combinatorial algorithm to solve this linear
relaxation. Then we extend to hypergraphs the analysis done by Cheruki et al. [7]
for graphs, and show that the integrality gap is γ. We also build on their analysis
to show that a maximum hypertree packing gives an O(mnγk−3) algorithm for
k-cut in hypergraphs of rank γ. This improves by a factor of O(mn2) the time
of the algorithm of [13], that is based on an approximate hypertree packing.
In summary, our work shows that the use of hypergraphic matroids leads to

Packing Hypertrees and the k-cut Problem in Hypergraphs 523

natural extensions of several algorithms for the k-cut problem, that were initially
developed for graphs.

1.3 Organization

Section 2 contains definitions, notation and some preliminary results. In Sect. 3
we give the algorithm for packing hypertrees. Section 4 contains lower and upper
bounds for the value of a minimum k-cut. In Sect. 5 we study a linear program-
ming relaxation. Section 6 contains a polynomial algorithm for fixed k and fixed
rank.

2 Preliminaries

Let H = (V,E) be hypergraph. For a non-empty set X ⊂ V and F ⊆ E, F [X]
denotes the set of hyperedges in F contained in X. For S ⊂ V we use H(S)
to denote the hypergraph (S,E[X]). Let P = {V1, . . . , Vk} be a family of non-
empty subsets of V with Vi ∩ Vj = ∅ for i �= j, we denote by δF (P) the set
of hyperedges in F included in ∪iVi and that intersect at least two sets in P.
Notice that P is not necessarily a partition of V . For a hypergraph H ′ = (V,E′)
sometimes we use δH′(P) instead of δE′(P). Also when there is no confusion
we use δ(P) instead of δF (P). We say that H is connected if δ(S, V \ S) �= ∅,
for all S ⊂ V , ∅ �= S �= V . For S ⊂ V , shrinking S means creating a new
hypergraph H ′ = (V ′, E′). Here V ′ = (V \ S) ∪ {s}, where s is a new node
that represents S. And E′ = E1 ∪ E2, where E1 = {e ∈ E : e ∩ S = ∅}, and
E2 = {(e \ S) ∪ {s} : e ∈ E, e ∩ S �= ∅, e ∩ (V \ S) �= ∅}. For a vector x ∈ R

E ,
and S ⊆ E we use x(S) to denote

∑
e∈S x(e).

Let D = (V,A) be a directed graph, for S ⊆ V , we denote by δ+(S) the set
δ+(S) = {(u, v) ∈ A |u ∈ S, v /∈ S}. Given two distinguished vertices s and t,
for a set S ⊂ V , with s ∈ S, t /∈ S, the set of arcs δ+(S) is called an st-cut.
Given a capacity vector c ∈ R

A
+, a minimum st-cut is an st-cut δ+(S) such that

c(δ+(S)) is minimum. A minimum st-cut can be found in O(|V |3) time with the
push-preflow algorithm of [15].

For a hypergraph H = (V,E), a hyperforest is a set F ⊆ E such that |F [X]| ≤
|X| − 1 for every non-empty X ⊆ V . A hyperforest F is called a hypertree of
H if |F | = |V | − 1. If H is a graph, F ⊆ E is a hypertree if and only if
F is a spanning tree. It was proven by Lorea [18] that the hyperforests of a
hypergraph form the family of independent sets of a matroid. These are called
hypergraphic matroids. Frank et al. [11] further studied hypergraphic matroids.
In particular they gave the following formula for the rank r(F) of F ⊆ E,
r(F) = min{|V | − |P| + |δF (P)| : P is a partition of V }. Notice that matroid
rank and rank of a hypergraph are completely different concepts.

Remark 1. It follows from the formula above that if T is a hypertree then
|δT (P)| ≥ |P| − 1, for every partition P of V .

524 M. Bäıou and F. Barahona

Frank et al. [11] extended a theorem of Tutte [27] and Nash-Williams [23]
giving the maximum number of spanning trees in a graph. They gave a similar
formula for the maximum number of disjoint hypertrees contained in a hyper-
graph. This is in the theorem below.

Theorem 2 [11]. A hypergraph contains k disjoint hypertrees if and only if

|δ(P)| ≥ k(|P| − 1) (1)

holds for every partition P of V .

Based on this theorem we give an algorithm to find a maximum packing of
hypertrees in a hypergraph. For that we use three algorithms mentioned below,
that were developed in [1].

2.1 Separation of Partition Inequalities

Since there is an exponential number of inequalities (1), we need a polynomial
algorithm to test if there is any of them that is violated. For that we assume
that x̄ ∈ R

E
+ is an input vector and we solve

minimize x̄(δ(P)) − β(|P| − 1). (2)

where the minimum is taken among all partitions P of V , and β > 0 is a fixed
number. Since P = {V } is a partition, the minimum is always less than or equal
to zero. This gives us a most violated inequality, if there is any. In [1] this was
reduced to a sequence of |V | minimum cut problems in a graph with O(|V |+ |E|)
nodes.

2.2 Strength of a Network

Given a hypergraph H = (V,E), with a capacity vector c ∈ R
E
+, we also need to

find the maximum value of k so that c(δ(P)) ≥ k(|P| − 1), for all partitions P of
V . We compute s = min c(δ(P))

|P|−1 , where the minimum is taken over all partitions
P of V , with |P| ≥ 2. For graphs this was called Network Strength in [8]. Thus
we call the value s, the strength of H. Then k = �s�. The strength can be found
with the same asymptotic complexity as |V | applications of the push-preflow
algorithm [15], in a graph with O(|V | + |E|) nodes, see [1].

2.3 Network Reinforcement

The following problem was studied in [8]. Given a graph, a number k and a set
of candidate edges, each of them with an associated cost, find a minimum cost
set of candidate edges to be added to the network so it has strength equal to k.
We need to solve a similar problem for a hypergraph. An algorithm for it was
given in [1]. It requires to solve |E||V | minimum cut problems in a graph with
O(|V | + |E|) nodes.

Packing Hypertrees and the k-cut Problem in Hypergraphs 525

3 Packing Hypertrees

Here we give an algorithmic proof of Theorem 2. If H contains k disjoint hyper-
trees then it follows from Remark 1 that (1) holds for every partition. So we
have to prove the other direction.

A partition is called tight if (1) holds as equation. We proceed by induction
on |V |+ |E|. So we assume that the statement is true for any hypergraph H ′ =
(V ′, E′) with |V ′| + |E′| < |V | + |E|. If an edge does not belong to any tight
partition, we remove it and we apply the induction hypothesis. So we assume
that every edge appears in a tight partition.

Case 1. Suppose that the partition {S1, . . . , Sp} is tight, and at least one set,
S1 say, has |S1| > 1. We shrink S1 to form the hypergraph H ′. From the induction
hypothesis we know that there are k disjoint hypertrees in H ′. Now consider
H ′′ = H(S1). If there is a partition T1, . . . , Tl of S1 with δH′′(T1, . . . , Tl) <
k(l − 1), then δH(T1, . . . , Tl, S2, . . . , Sp) < k(l − 1) + k(p − 1) = k(l + p − 2), a
contradiction. Thus by our induction hypothesis there are k disjoint hypertrees
in H(S1). Lemma 3 below shows that any hypertree of H ′ can be combined with
a hypertree of H ′′ to obtain a hypertree of H.

Lemma 3. Let T ′ be a hypertree of H ′, and T ′′ a hypertree of H ′′. Then T =
T ′ ∪ T ′′ is a hypertree of H = (V,E).

Proof. Suppose that for a partition {U1, . . . , Up} of V , we have |δT (U1, . . . , Up)|
< (p − 1). After renumbering the sets {Ui}, we can assume that S1 ⊆ ∪i=r

i=1Ui,
and S1 ∩ Ui �= ∅ for i = 1, . . . , r. Also |δT (U1, . . . , Up)| < (r − 1) + (p − r) =
(p − 1). But this is not possible because |δT (U1, . . . , Ur)| ≥ (r − 1), and
|δT (∪i=r

i=1Ui, Ur+1, . . . , Up)| ≥ (p − r). Thus |δT (P)| ≥ |P| − 1, for every parti-
tion P of V . Since r(T) = min{|V |− |P|+ |δT (P)| : P a partition of V }, we have
r(T) = |V |− 1. In view of |T | = |V |− 1, we conclude that T is a hypertree of H.

Case 2. Now we assume that the partition {S1, . . . , Sp} is tight, and all sets
{Si} are singletons. We have

|E| = k(|V | − 1). (3)

If every hyperedge has exactly two elements we have a graph. Then the result
follows from the Theorem of Tutte [27] and Nash-Williams [23]. In this case the
algorithms of [2] or [14] give the packing of spanning trees.

Suppose that a hyperedge e has at least three elements. We remove one
element v from e, and test if all inequalities (1) are satisfied. If so we keep
working with the new hypergraph. If not, there is a tight partition P whose
inequality becomes violated after removing v from e. This is not the partition of
all singletons, because (3) is not violated after removing v from e. Then we can
treat P as in Case 1. This completes the proof.

526 M. Bäıou and F. Barahona

3.1 Integral Packing

Based on the above proof, now we derive an algorithm. We assume that for a
hypergraph H = (V,E), we have a capacity vector c ∈ Z

E
+. We denote by T(H)

the set of hypertrees of H. A maximum integral packing of hypertrees is a solution
of the following.

max
∑

T∈T(H)

yT ;
∑

T : e∈T

yT ≤ c(e), for each edge e; y ≥ 0, integer valued. (4)

The algorithm has several stages as follows.

– First we compute

k = min
⌊

c(δ(P))
|P| − 1

⌋

, (5)

over all partitions P of V . This is the maximum value of k such that c(δ(P)) ≥
k(|P| − 1) for every partition P of V . This is the strength of the hypergraph,
as defined in Sub-section 2.2. For that we use the algorithm in [1]. This
requires |V | applications of the push-preflow algorithm [15], in a graph with
O(|V |+ |E|) nodes. This gives the value of the maximum in (4), but not the
values for the variables y.

– Once the value k is known, we should adjust the capacities so that every
hyperedge appears at least in a tight partition. For that we solve the linear
program below.

min x(E) (6)
x(δ(P)) ≥ k(|P| − 1), for all partitions P of V, (7)
0 ≤ x(e) ≤ c(e). (8)

This is called Network Reinforcement, and as mentioned in Sub-section 2.3,
it reduces to |E||V | minimum cut problems in a graph with O(|V | + |E|)
nodes, see [1]. If the capacities are integers, this algorithm produces an integer
solution. Denote by x̄ the solution obtained. We lower the capacities c to x̄,
i.e., we set c ← x̄.

– Now we have to treat Cases 1 and 2 above. We have to find a tight partition.
For that we pick an edge e, we decrease by one its capacity c(e), and find
a most violated partition inequality, with the algorithm of [1]. This involves
|V | minimum cut problems in a graph with O(|V | + |E|) nodes. A violated
inequality is a tight inequality if we do not decrease c(e). Let {S1, . . . , Sp} be
the associated partition of V .
In Case 1 we assume that one set, S1 say, has |S1| > 1. We shrink S1 to a
single node and we denote by H ′ the resulting hypergraph. Then we look for
a packing of hypertrees of value k in H ′. We also denote by H ′′ = H(S1), and
look for a packing of hypertrees of value k in H ′′. Then we combine hypertrees
in H ′ with hypertrees in H ′′ to obtain a packing of hypertrees of value k in
H. This is done as below.

Packing Hypertrees and the k-cut Problem in Hypergraphs 527

Let S′ = {T ′
1, . . . , T

′
r} be a set of hypertrees of H ′ with positive weights

{α1, . . . , αr}, and let S′′ = {T ′′
1 , . . . , T ′′

s } be a set of hypertrees of H ′′ with pos-
itive weights {β1, . . . , βs}. Pick any hypertree in the first set, T ′

1 say, and any
hypertree in the second set, T ′′

1 say, and form a hypertree in H, T = T ′
1 ∪ T ′′

1

with weight γ = min{α1, β1}. Subtract γ from α1 and β1, and remove from S′

and S′′ any hypertree with zero weight. Continue until S′ and S′′ are empty.
This procedure produces at most r + s hypertrees of H. If the weights {αi}
and {βj} are integers, then the new weights are also integer.
In Case 2 we assume that {S1, . . . , Sp} is the partition of all singletons. If
all hyperedges have exactly two elements, we have a graph. Then we can
apply the algorithms of [2] or [14]. If the capacities are integer these two
algorithms produce an integral packing. The algorithm of [14] has complex-
ity O(|V |3|E| log(|V |2/|E|)) and produces at most 2|E| + 2|V | − 2 spanning
trees. Assume now that there is a hyperedge e with at least three nodes and
with capacity c(e). We remove a node v and look for a most violated parti-
tion inequality. If there is none, we keep working with the new hypergraph.
Otherwise, let α be the violation. We create a new hyperedge e′ = e \ {v}
with capacity c(e) − α, and give a capacity α to e. Then we have a tight
partition that is treated as in Case 1. Notice that Case 1 arises at most |V |
times, therefore during the entire execution of this algorithm, at most |V |
new hyperedges are created.

Since all arithmetic operations are additions and subtractions, and the capacities
are integer, this algorithm produces an integral packing. Now we analyze the
complexity of this algorithm. Notice that it requires finding at most |V | violated
partition inequalities. This amounts to at most |V |2 minimum cut problems in
a graph with O(|V |+ |E|) nodes. So the complexity of this part is O(|V |2(|V |+
|E|)3). This dominates the complexity of the algorithm for finding a packing of
spanning trees that is O(|V |3|E| log(|V |2/|E|)).

After some transformations our algorithm requires finding packings of span-
ning trees in graphs. For each of these trees, each edge is contained in a hyper-
edge of the original hypergraph. The algorithm of [14] produces 2m+2n different
spanning trees for a graph with n nodes and m edges. Thus we conclude that
our algorithm produces at most O(|E| + |V |) hypertrees.

If the capacities are all equal to one, packing hypertrees is a special case of
Matroid Partition, and can be solved as Edmonds showed in [9]. However it is not
clear to us how to use Edmonds approach when the capacities are nonnegative
integers, or for fractional packing. This last case is the key for the algorithm in
Sect. 5.

3.2 Fractional Packing

Now we consider problem (4), but without requiring integrality of the variables
y. The only difference here is that formula (5) is replaced by k′ = min c(δ(P))

|P|−1 .

Then k′ might be a non-integer number. All other steps of the algorithm remain
the same. Notice that in Case 2 when a new hyperedge is created, it receives a

528 M. Bäıou and F. Barahona

fraction of the capacity of the original hyperedge. We illustrate this below with
a simple example.

Consider H = (V = {a, b, c, d}, E = {V }). Let c(V) = 1. Then using for-
mula above we get k′ = 1/3, given by the partition of all singletons. Thus in
our algorithm, this partition is tight. As in Case 2, removing node a from the
hyperedge V gives a violation of 1/3 for the partition inequality associated with
{{a}, {b, c, d}}. Thus we give capacity 1/3 to V and capacity 2/3 to the new
hyperedge {b, c, d}; then the partition {{a}, {b, c, d}} is tight. When we shrink
{b, c, d} to single node we obtain a graph with one edge. Then we have to keep
working with H({b, c, d}). Here the partition of all singletons is tight, so we
remove b from the hyperedge {b, c, d}. Then the partition inequality associated
with {{b}, {c, d}} is violated by 1/3. Thus we give capacity 1/3 to {b, c, d}, and
capacity 1/3 to {c, d}. When we shrink {c, d}, we obtain a graph with one edge,
and the hypergraph H({c, d}) is also a graph with one edge. In both cases the
packing is trivial to find. In summary, the algorithm made three copies of the
hyperedge V (or subsets of it), each of them with capacity 1/3, and gave the
weight 1/3 to the resulting hypertree.

4 A Relaxation of the k-cut Problem

Consider a hypergraph H = (V,E), with a weight vector w ∈ R
E
+, and a fixed

number k. The k-cut problem consists of finding a partition {S1, . . . , Sk} of V
that minimizes w(δ(S1, . . . , Sk)). Let λk(H) denote the value of the minimum.
For a non-negative number b, a lower bound of λk(H) is

l(b) = min
p≥1

{
w(δ(S1, . . . , Sp)) − b(p − k)

}
. (9)

Here the minimum is taken over all partitions of V , and b is a fixed non-negative
number. The function l(·) is concave and piece-wise linear, and it has at most n
break-points. The maximum of l is found at a break-point b̄. In what follows we
study how to find all break-points bi ≤ b̄. For graphs, a similar lower bound was
proposed in [3] and independently in [24].

4.1 Break-Points of l

We start with b = 0, then the trivial partition P = {V } gives the minimum in
(9). The following lemma gives us a way to generate the subsequent break-points.

Lemma 4. Let P′ = {S1, . . . , Sp} be a solution of (9) for b = b′. Assume that
for b = b′′, b′′ ≥ b′, P′ and P′′ = {T1, . . . , Tq} are both solutions of (9), with
q > p. Then b′′ is the strength of one of the sets {Si}. Recall that the strength
was defined in Sub-section 2.2.

Proof. Since q > p, we can assume that after renumbering, S1 ⊆ ∪r
i=1Ti and

Qi = Ti ∩ S1 �= ∅, for i = 1, . . . , r, r > 1.

Packing Hypertrees and the k-cut Problem in Hypergraphs 529

Since P′ is a solution for b = b′′, we have w(δ(Q1, . . . , Qr)) ≥ b′′(r − 1). If
this is not the case, we would have w(δ(Q1, . . . , Qr)) < b′′(r − 1), and we could
improve the solution P′ by removing S1 and adding the sets {Qi}. With the
same argument we conclude that a similar inequality holds for any partition of
S1.

Since P′′ is also a solution for b = b′′ we cannot have w(δ(Q1, . . . , Qr)) >
b′′(r − 1). If that was the case, we could improve the solution P′′ replacing the
sets Ti, 1 ≤ i ≤ r, with their union.

Therefore w(δ(Q1, . . . , Qr)) = b′′(r − 1), and w(δ(R1, . . . , Rt)) ≥ b′′(t − 1),
for any partition {R1, . . . , Rt} of S1. Thus b′′ is the strength of S1.

This suggests the following procedure.

Algorithm 1

Step 0. Start with P0 = {V }, b = b̄ = 0, j = 0.
Step 1. Compute the strength of each set in Pj . Among them, let Sq be a set

with minimum strength sq.
Step 2. Update b̄ ← sq, and to obtain Pj+1, replace Sq in Pj with a partition

of Sq giving its strength. Set j ← j + 1, if |Pj | < k go to Step 1, otherwise
stop.

The sequence of partitions produced here can be studied in the context of
submodular functions as in [12].

4.2 The Maximum of l

Consider the last value j, we have |Pj | ≥ k. Let b̄ be the associated value of the
parameter. The corresponding lower bound is

μ = w(Pj−1) − b̄(|Pj−1| − k) = w(Pj) − b̄(|Pj | − k). (10)

If |Pj | = k, this is a solution of the k-cut problem. Now we treat the case when
|Pj | > k.

Since b̄ = w(Pj)−w(Pj−1)
|Pj |−|Pj−1| , we obtain the expression below that is needed in

the next sub-section.

μ =
|Pj | − k

|Pj | − |Pj−1|w(δ(Pj−1)) +
k − |Pj−1|

|Pj | − |Pj−1|w(δ(Pj)). (11)

4.3 An Upper Bound

Now we produce an approximate solution for the k-cut problem. Let l = k −
|Pj−1| and γ = max{|e| : e ∈ E}. Let {T1, . . . , Tr} be the partition of the last
set Sq obtained in Step 2 of Algorithm 1. We number the sets {Ti} so that
w(δ(Ti)) ≤ w(δ(Ti+1)), for i = 1, . . . , r−1. We choose {T1, . . . , Tl}, and combine
{Tl+1, . . . , Tr} into one set. A similar procedure was proposed for graphs in [24].

530 M. Bäıou and F. Barahona

Theorem 5. The value of this solution is at most γ(1 − 1
n)λk(H).

Proof. We have

l∑

i=1

w(δ(Ti)) ≤ l

r

r∑

i=1

w(δ(Ti)) ≤ γ
l

r
w(δ(T1, . . . , Tr)) =

γ
r − 1

r

l

r − 1
w(δ(T1, . . . , Tr)).

Thus the value of this solution is at most

w(Pj−1) + γ(1 − 1
r
)

l

r − 1
w(δ(T1, . . . , Tr)) =

w(Pj−1)
(
1 − γ(1 − 1

r
)

l

r − 1

)
+ γ(1 − 1

r
)

l

r − 1
w(Pj) ≤

γ(1 − 1
r
)w(Pj−1)(

r − 1 − l

r − 1
) + γ(1 − 1

r
)

l

r − 1
w(Pj) =

γ(1 − 1
r
)μ ≤ γ(1 − 1

r
)λk(H) ≤ γ(1 − 1

n
)λk(H).

Thus we have a γ-approximation algorithm for hypergraphs of rank γ. Recall
that the k-cut problem in hypergraphs is hard to approximate to within large
factors under the Exponential Time Hypothesis, see [6,19]. Also recall that for
γ = 2, under the same hypothesis, a factor of 2 is the best possible approxima-
tion, cf. [19].

5 A Linear Programming Relaxation for k-cut

Let H = (V,E) be a connected hypergraph, and w ∈ Z
E
+. Let T(H) denote the

set of hypertrees of H. We study the linear program

min
∑

w(e)x(e) (12)
∑

e∈T

x(e) ≥ k − 1 for T ∈ T(H) (13)

0 ≤ x(e) ≤ 1 for e ∈ E (14)

An integer solution of this gives a solution of the k-cut problem. For graphs
a similar linear program was proposed in [21].

Now we extend to hypergraphs the analysis used in [7] for graphs. Let Pj be
the last partition produced by Algorithm 1, and let {T1, . . . , Tr} be the partition
of the last set Sq obtained in Step 2 of Algorithm 1. The vector x̄ defined below
is a feasible solution of (12)–(14).

– x̄(e) = 1 for e ∈ δ(Pj−1); x̄(e) = 0 for e ∈ E \ δ(Pj).
– x̄(e) = α for e ∈ δ(Pj) \ δ(Pj−1), where α = k−|Pj−1|

|Pj |−|Pj−1| .

Packing Hypertrees and the k-cut Problem in Hypergraphs 531

Its value is

w(δ(Pj−1)) +
k − |Pj−1|

|Pj | − |Pj−1|w(δ(T1, . . . , Tr)) = (15)

|Pj | − k

|Pj | − |Pj−1|w(δ(Pj−1)) +
k − |Pj−1|

|Pj | − |Pj−1|w(δ(Pj)).

This is the value μ as in (11).
Now consider the dual problem.

max(k − 1)
∑

T∈T(H)

yT −
∑

e∈E

z(e) (16)

∑

T : e∈T

yT ≤ w(e) + z(e)∀e ∈ E (17)

y ≥ 0, z ≥ 0 (18)

To obtain a dual solution define

w(e) + z̄(e) =

{
(bj/bi)w(e) for e ∈ δ(Pi) − δ(Pi−1), i < j,

w(e) otherwise.

Using w + z̄ as capacities leads to a hypergraph whose strength is bj . Thus this
set of capacities yields a maximum (fractional) hypertree packing ȳ of value bj .
Now we compute the objective value for the dual vector (ȳ, z̄). This is

(k − 1)bj −
j−1∑

i=1

(
bj

bi
− 1)(w(Pi) − w(Pi−1)) =

(k − 1)bj −
j−1∑

i=1

(
bj − bi

bi
)(w(Pi) − w(Pi−1)) =

(k − 1)bj −
j−1∑

i=1

(bj − bi)(|Pi| − |Pi−1|) =

(k − 1)bj − (|Pj−1| − 1)bj + w(Pj−1) =
k − |Pj−1|

|Pj | − |Pj−1|w(δ(T1, . . . , Tr)) + w(Pj−1).

Here we obtained expression (15). Thus x̄ and (ȳ, z̄) have the same value, there-
fore they are optimal solutions. Hence we have polynomial combinatorial algo-
rithms to produce optimal primal and dual solutions of (12)–(14). For graphs,
other authors have suggested the use of the ellipsoid method, or the use of
approximate tree packing, see [7,13,21,26]. Having fast algorithms to produce
lower and upper bounds gives the possibility of embedding this in a branch and
bound procedure.

The optimal value of this linear program is exactly the lower bound μ defined
in (10). Hence from Theorem 5 we obtain the following.

532 M. Bäıou and F. Barahona

Theorem 6. The integrality gap of this linear program is at most γ(1 − 1
n).

Notice that as long as the hypergraph is connected, the algorithm from Sub-
sect. 3.2 makes fractional copies of the hyperedges to produce a fractional pack-
ing of hypertrees. Consider the example in Subsect. 3.2, with k = 2. The value
of the linear program is 1/3 and the value of a minimum 2-cut is 1. Here we have
exactly the gap given by Theorem 6. We can extend this example to a hyper-
graph with n nodes, and one hyperedge with weight 1, containing all nodes.
Then for k = 2 the lower bound is 1/(n − 1). Again we have exactly the gap
given by Theorem 6.

Consider now a non-connected hypergraph. Assuming that the weights are
integer, we propose the following. We multiply by n all the weights, and add a
minimal set of artificial edges to make the hypergraph connected. We give the
weight 1 to each artificial edge. Then minimum k-cuts in the new hypergraph
correspond to minimum k-cuts in the original one.

6 A Polynomial Algorithm for Fixed γ and k

Now we show that the algorithm for graphs given in [7] can be extended to
hypergraphs. The lemma below was proved in [7] for γ = 2, the proof for larger
values of γ is similar.

Lemma 7. Let (ȳ, z̄) be an optimal solution of (16)–(18). Let E′ be any set of
hyperedges such that w(E′) ≤ αλk(H) for some α ≥ 1. For each hypertree T let
lT = |E′ ∩ E(T)|. Let τ =

∑
T ȳT and pT = ȳT /τ . For an integer h ≥ (k − 1),

let qh =
∑

T :lT ≤h pT . Then

qh ≥ 1 − γα(k − 1)(1 − 1
n)

h + 1

Corollary 8. Let (ȳ, z̄) be an optimal solution of (16)–(18). Define the support
of ȳ as {T : ȳT > 0}. For every optimum k-cut A ⊆ E there is a hypertree T in
the support of ȳ such that |E(T) ∩ A| ≤ γk − 3.

Proof. We apply Lemma 7 with h = γk − 3 and α = 1. We obtain

qh ≥ 1 − (γk − γ)(1 − 1
n)

γk − 2
,

and for γ ≥ 2 we have qh > 1.

This suggest the following algorithm: For each hypertree in the support of
ȳ, choose γk − 3 hyperedges, contract the remaining hyperedges, and find a
minimum k-cut in the resulting hypergraph. This has to be repeated for every
choice of γk−3 hyperedges. Recall that the packing algorithm produces O(m+n)
hypertrees, so this leads to an O((m + n)nγk−3) algorithm that enumerates all
minimum k-cuts. Fukunaga has given an O(m2nγk−1) algorithm based on a

Packing Hypertrees and the k-cut Problem in Hypergraphs 533

greedy packing of hypertrees. Using an optimal packing leads to decrease the
complexity by a factor of O(mn2), and to a simpler derivation. Chandrasekaran
and Chekuri [4] gave two algorithms with complexities O(n3k(k−1)/2) and O(n8k),
(that are independent of γ). Thus the hypertree packing approach seems to be
of interest for hypergraphs of small rank.

The theorem below was proved in [7] for γ = 2, a similar proof works for
larger values of γ, so we omit it.

Theorem 9. For α ≥ 1 the number of α-approximate minimum k-cuts is
O(n�γα(k−1)�).

7 Concluding Remarks

We have given an algorithm for (fractional) packing of hypertrees. This and
other algorithms for hypergraphic matroids allow us to use in hypergraphs, many
algorithms originally developed for the k-cut problem in graphs.

References

1. Baiou, M., Barahona, F.: On some algorithmic aspects of hypergraphic matroids.
arXiv 2111.05699 (2021)

2. Barahona, F.: Packing spanning trees. Math. Oper. Res. 20(1), 104–115 (1995)
3. Barahona, F.: On the k-cut problem. Oper. Res. Lett. 26(3), 99–105 (2000)
4. Chandrasekaran, K., Chekuri, C.: Hypergraph k-cut for fixed k in deterministic

polynomial time. In: 2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 810–821. IEEE (2020)

5. Chandrasekaran, K., Xu, C., Yu, X.: Hypergraph k-cut in randomized polynomial
time. Math. Program. 186(1), 85–113 (2021)

6. Chekuri, C., Li, S.: A note on the hardness of approximating the k-way hypergraph
cut problem. Manuscript, http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.
pdf (2015)

7. Chekuri, C., Quanrud, K., Xu, C.: LP relaxation and tree packing for minimum
k-cut. SIAM J. Discrete Math. 34(2), 1334–1353 (2020)

8. Cunningham, W.H.: Optimal attack and reinforcement of a network. J. of ACM
32, 549–561 (1985)

9. Edmonds, J.: Lehman’s switching game and a theorem of Tutte and Nash-Williams.
J. Res. Nat. Bur. Standards Sect. B 69, 73–77 (1965)

10. Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k-cut in hypergraphs
via branching contractions. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 881–896. SIAM (2019)

11. Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected
sub-hypergraphs. Discrete Appl. Math. 131(2), 373–383 (2003)

12. Fujishige, S.: Theory of principal partitions revisited. In: Research Trends in Com-
binatorial Optimization, pp. 127–162. Springer, Berlin, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-76796-1 7

13. Fukunaga, T.: Computing minimum multiway cuts in hypergraphs. Discrete
Optim. 10(4), 371–382 (2013)

http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf
http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf
https://doi.org/10.1007/978-3-540-76796-1_7
https://doi.org/10.1007/978-3-540-76796-1_7

534 M. Bäıou and F. Barahona

14. Gabow, H.N., Manu, K.: Packing algorithms for arborescences (and spanning trees)
in capacitated graphs. Math. Program. 82(1), 83–109 (1998)

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
Assoc. Comput. Mach. 35(4), 921–940 (1988)

16. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19, 24–37 (1994)

17. Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees. In:
Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS,
vol. 1084, pp. 132–146. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61310-2 11

18. Lorea, M.: Hypergraphes et matroides. Cahiers Centre Etudes Rech. Oper. 17,
289–291 (1975)

19. Manurangsi, P.: Inapproximability of maximum edge biclique, maximum balanced
biclique and minimum k-cut from the small set expansion hypothesis. In: 44th
International Colloquium on Automata, Languages, and Programming (ICALP
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

20. Nagamochi, H., Kamidoi, Y.: Minimum cost subpartitions in graphs. Inf. Process.
Lett. 102(2–3), 79–84 (2007)

21. Naor, J., Rabani, Y.: Tree packing and approximating k-cuts. In: SODA. vol. 1,
pp. 26–27 (2001)

22. Narayanan, H., Roy, S., Patkar, S.: Approximation algorithms for min-k-overlap
problems using the principal lattice of partitions approach. J. Algorithms 21(2),
306–330 (1996)

23. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. London
Math. Soc. 36, 445–450 (1961)

24. Ravi, R., Sinha, A.: Approximating k-cuts using network strength as a Lagrangean
relaxation. Eur. J. Oper. Res. 186(1), 77–90 (2008)

25. Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. SIAM J. Com-
put. 24(1), 101–108 (1995)

26. Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In: Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp.
159–166 (2008)

27. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J.
London Math. Soc. 36, 221–230 (1961)

https://doi.org/10.1007/3-540-61310-2_11
https://doi.org/10.1007/3-540-61310-2_11

Maximizing the Eigenvalue-Gap
and Promoting Sparsity of Doubly

Stochastic Matrices with PSO

Panos K. Syriopoulos(B), Nektarios G. Kalampalikis,
and Michael N. Vrahatis

Computational Intelligence Laboratory, Department of Mathematics, University of
Patras, 26110 Patras, Greece

{p.syriopoulos,nkalamp,vrahatis}@math.upatras.gr

Abstract. The eigenvalue-gap of doubly stochastic matrices with spar-
sity constraints is maximized using the unified particle swarm optimizer.
This is possible through the use of an iterative normalization procedure
that maps the search space of the swarm to the set of doubly stochas-
tic matrices with given sparsity pattern. We extend the method to the
problem of finding doubly-stochastic matrices of given dimensions that
are as sparse as possible, and attain a given eigenvalue-gap target.

Keywords: Eigenvalue-gap · Particle swarm optimization · Sparse
matrix identification · Distributed averaging

1 Introduction

The study of complex networks is a fascinating subject with far reaching results
both in terms of their practical applications and in their theoretical foundations.
Understanding complex networks is crucial for the cooperation and control of
autonomous agents. It is fair to say that complex networks occur in various
aspects of life. Interestingly, one of the pioneers of the study of complex net-
works was a psychiatrist, and founder of group-therapy, Jacob Moreno (1889–
1974), with his paper “Statistics of social configurations” [18]. The study of social
networks still remains an active area of research [3]. In engineering the appli-
cations of complex networks are numerous. For example, after the introduction
of the multiprocessor, consensus networks were quickly applied for the task of
dynamic load balancing [4]. Modern data centers require more sophisticated solu-
tions to be scalable and reliable [14,25]. Among other applications, energy micro
grids is a recent area for distributed control and presents new challenges [11,13].
Additionally, sensor networks have several modern day applications [12], while
significant attention has been given to autonomous vehicle control [22]. Complex
networks also model many natural processes such as bird flocking [10]. In gen-
eral, one has to consider the dynamics of the network (how the network structure

c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 535–548, 2022.
https://doi.org/10.1007/978-3-031-24866-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_38&domain=pdf
http://orcid.org/0000-0001-8357-7435
https://doi.org/10.1007/978-3-031-24866-5_38

536 P. K. Syriopoulos et al.

changes) and the dynamics in the network (how nodes interact). The major con-
cepts can be found, among others, in [1]. A lot of the theoretical interest is on
emergent phenomena such as the unidimensionality of beliefs [6].

A basic but integral part of distributed control is consensus. The purpose is
for all agents in the network to agree on an underlying state of their environment.
A special case is distributed averaging. In this instance, the nodes have to agree
on the average of their initial measurements by communicating through the
network [8]. We consider linear update rules. In each communication round,
each node updates its estimate by taking a weighted sum of the estimates of
its neighbors. To mention a few applications, the distributed Kalman filter can
be seen as a distributed averaging problem [19], while, distributed averaging is
heavily leveraged in modern distributed optimisation applications [7].

We are concerned with two key problems related to (a) the speed of conver-
gence to the average and (b) the problem of optimizing the network itself. In
other words, for problem (a) we want to minimize the number of communication
rounds required for all the nodes to approximate the average within an error
bound. It turns out that the asymptotic speed of convergence is bounded above
by the second largest eigenvalue in magnitude. The problem is to optimize the
network weights for speed, while respecting the network connectivity constraints.
For problem (b), given a target for the asymptotic speed of convergence, we aim
to find a network structure that is as sparse as possible. We tackle these problems
using the unified particle swarm optimization UPSO (see [21], the correspond-
ing MATLAB code and references therein), which is an effective and efficient
evolutionary algorithm, and can also be considered as a complex network. The
algorithm consists of particles that perform random search locally, and exchange
information in the framework of their network connectivity in order to minimize
a given objective function. The ability of the algorithm to optimize arbitrary
functions is an emergent phenomenon of the dynamics between the particles.
There are also several advantages. Firstly, the algorithm is easily applied and
widely accessible. Secondly, it is incredibly capable in solving hard problems:
the objective function can be non-differentiable and even discontinuous, and the
algorithm can be applied to spaces with non connected regions. These character-
istics appear frequently in difficult real life applications and UPSO can effectively
tackle these issues. As a result, we are interested to study how the algorithm
performs in aforementioned problems (a) and (b). In any case, we believe that
this work is a useful demonstration of the ability of evolutionary algorithms in
optimization. Our contribution is in the use of an iterative normalization scheme,
which enables the application of evolutionary algorithms in this context.

The paper is structured as follows. Section 2 contains the background mate-
rial. In Sect. 3 the objective functions are formulated. Finally, Sect. 4 contains
experiments, while, in Sect. 5, a synopsis and concluding remarks are given.

2 Preliminaries

This section provides a basic understanding of the background material. To moti-
vate the problem of eigenvalue gap maximization, we examine the effect of eigen-

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 537

values in the context of consensus networks [8]. We exhibit that the consensus
speed depends on the magnitude of the second largest eigenvalue in modulus (for
the diagonalizable case). In general, the consensus problem is grounded in the
theory of Markov chains. Details can be found in [15]. Alternatively, we refer the
interested reader to [17] for further mathematical treatments of bounds for con-
sensus speed. Furthermore, we describe the unified PSO algorithm (UPSO) [21]
with which we tackle the eigenvalue gap maximization problem.

Throughout the remainder of the paper, the structure of a network is repre-
sented by a graph G(V,E) where V = {1, 2, . . . , n} is the vertex set and E is the
ordered set containing the edges E = {(i, j) : node i listens to node j}. The set
of weights that nodes give to their neighbors can be represented by a matrix W
with elements Wi,j such that:

Wi,j =

{
Wi,j > 0, if {i, j} ∈ E,

0, if {i, j} /∈ E.
(1)

2.1 Consensus and Eigenvalues

Suppose W ∈ R
n×n is a stochastic matrix with non-negative entries so that each

row sums to one, i.e.
∑n

j Wi,j = 1, for all i ∈ {1, 2, . . . , n}. Given any x(0) ∈ R
n,

we are concerned with the convergence speed of the sequence x(t), t = 0, 1, . . .
defined by:

x(t + 1) = Wx(t) = W t+1x(0). (2)

This is known as the consensus model of DeGroot and was initially formulated as
a method for pooling probability distributions [5]. Intuitively x(0) can be seen as
the vector of beliefs of each node at time 0 (their initial approximations), and W
is the matrix of the network’s edge weights. The application of W updates the
belief of the nodes by taking a linear combination of the beliefs of their neighbors.
The consensus vector denoted by xc is given by the following limit, provided it
exists:

xc = lim
t→∞ x(t) = lim

t→∞ W tx(0). (3)

It can be seen that the existence of the limit in Eq. (3) depends on the existence
and uniqueness of a left eigenvector with eigenvalue 1. Suppose π ∈ R

n such
that πX = π is the unique eigenvector (up to normalization) with eigenvalue 1.
Then we have that:

πx(t + 1) = π(Wx(t)) = (πW)x(t) = . . . = πx(0). (4)

Taking the limit as t → ∞ above we obtain:

πxc = πx(0).

At this point it can be seen that if W is doubly-stochastic (rows and columns
sum to one), then π = [1/n, 1/n, . . . , 1/n]� is a left eigenvector, and the system
converges to the average of the values of x(0).

538 P. K. Syriopoulos et al.

We can derive sufficient conditions for the existence of the limit in Eq. (3)
using linear algebra. It is known that the dominant eigenvalue of any stochastic
matrix has modulus one. Additionally, we know from the Perron-Frobenius the-
orem that strictly positive matrices have simple dominant eigenvalues. Since the
eigenpairs of the matrices W t are the same for all t = 1, 2, . . ., we simply require
that W t0 is strictly positive for some t0 ∈ N. In terms of the graph induced by
W , the interpretation of this condition is that for all t � t0, any vertex can be
reached from any other vertex in exactly t steps. This is equivalent to requiring
that the graph of the network is irreducible and aperiodic. These conditions are
also necessary for consensus. To this end, consider, for example, the following
periodic matrix:

T =
(
0 1
1 0

)
.

The beliefs of the nodes will swap in every iteration, thus, never reaching con-
sensus. If, on the other hand, the network is reducible, the independent strongly
connected components of the network can reach consensus on their respective
averages, but not on the total average of all nodes in the network (since infor-
mation does not flow from some independent component to others).

We showcase that the convergence speed depends directly on the second
largest eigenvalue for diagonalizable matrices. We do this by considering the
spectral decomposition. Supposing W is diagonalizable, we can write:

(a) W = PDP−1,
(b) W t = PDtP−1,

where D is a diagonal matrix D = diag{λ1, λ2, . . . , λn}, P = [f1, f2, . . . , fn]�

where fi’s are the right eigenvectors of W , and P−1 = [π1, π2, . . . , πn] where
πi’s are the left eigenvectors of W . Assuming, W is generic (i.e. non-singular)
we have that:

fiπj =

{
0, if i �= j,

1, if i = j.

We can define matrices Mi for i = 1, 2, . . . , n such that:

Mk = fkπ
�
k =

⎡
⎢⎣

fk(1)πk(1) . . . fk(1)πk(n)
...

. . .
...

fk(n)πk(1) . . . fk(n)πk(n)

⎤
⎥⎦ .

Then we can check that:

MiMj =

{
0, if i �= j,

Mi, if i = j.
(5)

with these definitions, one can see that the above relation W = PDP−1 is
equivalent to:

W = PDP−1 = λ1M1 + λ2M2 + · · · + λnMn.

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 539

By taking powers of the above equation, and due to property (5), we can see
that:

W t = λt
1M1 + λt

2M2 + · · · + λt
nMn. (6)

Eq. (6) shows that the convergence in Eq. (2) directly depends on the eigenvalues
of W . For simplicity, index the eigenvalues so that:

|λ1| � |λ2| � · · · � |λn|.

Since we are working with doubly stochastic matrices, λ1 = 1 is the dominant
eigenvalue. By the Perron-Frobenius theorem, λ1 is simple, i.e. |λ2| < |λ1| = 1,
and so limt→∞ |λ2|t = 0. Clearly, the smaller the magnitude |λ2|, the faster the
decay, and the faster the convergence of Eq. (2). The works cited in the beginning
of this section provide several proofs for the general case of irreducible and
aperiodic Markov Chains. In general, the second largest eigenvalue in magnitude
bounds the convergence speed of Eq. (2) from above.

2.2 Relevant Approaches

The previous subsection demonstrated that in order to maximize the asymptotic
speed of convergence of the DeGroot model, one has to minimize the second
largest eigenvalue in modulus. In the literature, the second largest eigenvalue
magnitude is often abbreviated as SLEM and its minimization solves the Fastest
Mixing Markov Chain (FMMC) problem. It has been solved for medium and
large, symmetric problems by Boyd et al. using a sub-gradient method [2,26].
In fact, they show that SLEM minimization can be cast as a Semi-Definite
Program (SDP). To see the formulation of the problem one can simply observe
that the complete graph with equal weights yields the fastest possible network.
It corresponds to full connectivity (all nodes communicate with all other nodes),
and it converges to the average in one iteration. Obviously this particular case is
of no practical interest. We would like to impose the network’s communication
restrictions. The maximisation of the asymptotic convergence speed and the
per-step convergence speed are defined by the following two problems:

min �(W − 11�n−1),

s.t. W ∈ S,

1�W = 1�,

W1 = 1.

and

min
∥∥W − 11�n−1

∥∥ ,

s.t. W ∈ S,

1�W = 1�,

W1 = 1.

(7)

respectively. The matrix 11�n−1 is known as the averaging matrix and corre-
sponds to a complete graph with all weights equal to 1/n. The first problem
minimises the spectral radius (i.e., the largest absolute value of the eigenvalues
of the matrix) and is generally hard to solve because it is non-convex and not
Lipschitz continuous [20]. The second problem minimises the spectral norm, that

540 P. K. Syriopoulos et al.

is, ‖W‖ is the largest singular value of W . If W is constrained to be symmet-
ric, then the two problems coincide. The set S is the network’s communication
restrictions and it corresponds to Eq. (1).

The problem of optimizing the network itself is concerned with finding the
sparsest possible communication graph, on a given set of nodes, for a given
asymptotic convergence speed target (given in terms of the modulus of the sec-
ond largest eigenvalue). Our solution to this problem is inspired by the work of
authors in [16]. Their work is concerned with continuous time distributed con-
sensus, but it is easily relatable to the discreet equivalent. Their aim is to solve
the following problem:

min J(W) + γ card(W), (8)

where J(W) is a measure of performance, card(W) is the number of non-zero
elements of the matrix W , and γ is a scalar factor. They do this by considering a
relaxation of the card(·) function and forming an SDP. They solve problem (8),
and follow with a “polishing step” (of the sparse network) to optimize for conver-
gence speed. Our work differs in the fact that the “sparsification” of the network
is done simultaneously with the convergence speed optimization. Moreover, we
treat the convergence speed as an input: a target for asymptotic convergence
speed given in terms of SLEM, and the final output is a network optimized for
sparsity with given speed.

2.3 Unified Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization method
inspired by the aggregating behaviors of populations. Given an objective func-
tion to be minimized, a population of candidate solutions (particles) is moved
around in the search space in accordance with a set of mathematical formulas
which dictate the particles’ positions and velocities. The movement of each par-
ticle of the swarm is influenced by its local best-known position, and also by
the best-known positions of the swarm. Iterating the process is expected to shift
the swarm towards a good candidate solution. We can distinguish between two
approaches: the local approach and the global approach. In the global approach,
particles take into account the overall best position ever found by all particles in
the swarm. Known as global PSO variant (gbest), this approach has a good con-
vergence ability towards the global best positions found during the optimization
process, and is distinguished for its exploitation abilities. On the other hand,
in the local PSO variant (lbest), particles take into account the best position
ever found by neighboring particles only, thus, having better exploration ability.
The local variant is better at detecting the most favorable regions of the search
space. The Unified Particle Swarm Optimization (UPSO) [21] variant harnesses
both properties. Through the use of a new parameter u ∈ (0, 1), called unifica-
tion factor, it controls the impact of exploitative and exploratory characteristics.
Suppose N is the swarm size, n is the dimension of the problem at hand, Vi is
the velocity of the particle xi, Xi is the position of the particle xi, Pi is the best
position ever visited by particle xi. Also, let Gi(t+1) denote the velocity update

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 541

of the i-th particle, xi, for the global PSO variant with constriction coefficient χ,
which is defined as:

Gi(t + 1) = χ
(
Vi(t) + c1r1(Pi(t) − Xi(t)) + c2r2(Pg(t) − Xi(t))

)
, (9)

and Li(t+1) denote the corresponding velocity update for the local PSO variant:

Li(t + 1) = χ (Vi(t) + c′
1r

′
1(Pi(t) − Xi(t)) + c′

2r
′
2(Pli(t) − Xi(t))) , (10)

where r1, r2, r
′
1, r

′
2 are stochastic parameters uniformly distributed within the

range [0,1], χ is a parameter called constriction coefficient or constriction factor
(with typical value χ = 0.729), c1, c2, c

′
1, c

′
2 are weighting constants called cogni-

tive and social parameter respectively (usually set to 2.05), g denotes the index
of the overall best position, and li denotes the best position in the neighborhood
of xi. Then, the velocity Vi and the position of the particle Xi are updated as
follows:

Vi(t + 1) = uGi(t + 1) + (1 − u)Li(t + 1), (11)

Xi(t + 1) = Xi(t) + Vi(t + 1). (12)

Eqs. (11) and (12) indicate that the new shifted position of a particle in UPSO is
made up of a weighted combination of the Global and Local PSO position shifts.
Consequently, both the local’s inherent exploration capabilities and the global’s
inherent exploitation capabilities contribute. In the special cases where the uni-
fication factor u = 0 and u = 1, UPSO coincides with the original local and
global PSO variant, correspondingly. Values around the middle point, u = 0.5,
are expected to produce more balanced behaviors with respect to the explo-
ration/exploitation abilities. Several additional PSO methods, together with
standard parameter settings have been proposed (see e.g., [21]).

3 Problem Formulation

In this section we formulate objective functions for the key problems presented in
the introduction: (a) eigenvalue gap maximization, and (b) the maximally sparse
network given asymptotic convergence speed target. Our approach is relatively
straight forward. We utilize the UPSO algorithm because it can be effectively
applied to difficult problems, including among others, problems with a discontin-
uous function. It is also worth noting that an effective solution of aforementioned
problem (b) is enabled by an effective solution of the problem (a).

Start by fixing a graph G(V,E), and a corresponding doubly-stochastic
weight matrix W ∈ R

n×n. We index the eigenvalues of W so that:

1 = |λ1| � |λ2| � · · · � |λn|.

Note that |λ1| = |λ2| occurs in three cases: (i) W induces a periodic graph, (ii)
W induces a graph with more than one strongly connected components, (iii)

542 P. K. Syriopoulos et al.

both (i) and (ii). As indicated in Subsect. 2.1 these cases are of no interest to
us. Denote the eigenvalue gap of W as:

egap(W) = ||λ1| − |λ2|| , (13)

we define the function:

L(W) =

{
−egap(W), if egap(W) �= 0,

∞, if egap(W) = 0.
(14)

There are several things to note. First, eigenvalues need to be calculated, a task
which is computationally expensive. We can ease the computational burden by
using Lanczos algorithm for the approximation of dominant eigenvalues (see for
example [23]). Secondly, the loss function disregards reducible and/or aperiodic
matrices by giving them maximum penalty. This should not be a problem for
evolutionary algorithms. Last but not least, the loss function (14) has to be
minimized for weight matrices satisfying the following restrictions:

(a) W1 = 1�W = 1 (doubly-stochastic).
(b) Wi,j = 0 if {i, j} /∈ E.

The second restriction can be satisfied naturally by a vectorization of the sparse
matrix W . If there are k = |E| edges (here |E| denotes the cardinality of the
edge set E), then vec(W) ∈ R

k. The first restriction is crucial and needs to be
discussed. There are several ways by which one might try to restrict the atten-
tion of the particles to doubly-stochastic matrices. One of them is to penalize
deviations of the sum of the rows and columns from unity. According to our
experience this procedure is not efficient. Allowing the particles to search the k-
dimensional Euclidean space (where k = |E|) makes it very difficult to randomly
come across a doubly stochastic matrix. Even if that happens, the evolution of
the velocity vectors makes it very difficult to reach a different doubly-stochastic
matrix. To get around this issue, we find a map from the Euclidean space to the
set of doubly-stochastic matrices with a given sparsity pattern. This way, the
particles will be able to search the Euclidean space, then map their position into
the set of doubly-stochastic matrices, and retain the relevance of the velocity
vectors. The loss function, then, essentially becomes a composition of Eq. (14)
with that mapping.

We present an iterative normalization scheme for constructing a doubly
stochastic matrix. The idea is to normalize the rows and the columns of W
iteratively until the matrix becomes doubly stochastic. The proposed iterative
normalization scheme is exhibited in Algorithm 1.

Iterative normalization is related to the Sinkhorn-Knopp algorithm [24]. It
is shown that it converges in linear time and the only requirement is that the
initial matrix W has support. It should also be seen that the sparsity pattern of
W remains unchanged.

Denoting the iterative normalization function as N(·) there are two ways to
incorporate iterative normalization in the UPSO algorithm and both of them

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 543

Algorithm 1. Iterative Normalization I
1: function Normalize(W , k = 10)
2: dim ← the dimension of W , i.e. n
3: for i = 0, 1, . . . , k do
4: for j = 0, 1, . . . , dim do
5: Wj ← Wj/

(∑dim
k=1 Wj,k

)

6: W ← W�

7: if W is doubly-stochastic then
8: return W

9: else
10: Normalize(W)

are viable. One way is to incorporate it into the loss function. Then, the loss for
problem (a) becomes:

La(W) = L ◦ N(W) = L(N(W)). (15)

The other is to incorporate N(·) into the UPSO step. In that case the UPSO
equations for particle i become:

Gi(t + 1) = χ (Vi(t) + c1r1(Pi(t) − Xi(t)) + c2r2(Pg(t) − Xi(t))) ,

Li(t + 1) = χ (Vi(t) + c′
1r

′
1(Pi(t) − Xi(t)) + c′

2r
′
2(Pli(t) − Xi(t))) ,

Vi(t + 1) = uGi(t + 1) + (1 − u)Li(t + 1),

Xtemp
i (t + 1) = Xi(t) + Vi(t + 1),

Xi(t + 1) = N
(
Xtemp

i (t + 1)
)
.

(16)

In our experience, without iterative normalization, the velocity vector is tasked
with determining the absolute change necessary of the state vector Xi =
vec(Wi). In contrast, the output of N(Wi) is determined by the relative mag-
nitudes of the elements of Wi. By composing the loss function (14) with N(·),
the velocity vectors are now tasked with determining favorable changes for the
relative magnitudes of the elements of Xi(t + 1) instead. To elaborate a little
further, the elements of the velocity vectors may contain positive elements only
(although not necessarily). The relative magnitudes of these elements translate
to changes in the relative magnitudes of the elements of the state vectors Xtemp

i .
These, in turn, determine a doubly-stochastic matrix through iterative normal-
ization. Both schemes (15) or (16), results in effective solutions for eigenvalue-gap
maximization with UPSO and other evolutionary algorithms.

For the problem of optimizing the network itself, we would like to provide the
number of nodes n, and a target eigenvalue gap denoted by etgtgap ∈ (0, 1). The
task is to find a positive weight matrix W ∗ ∈ R

n×n which satisfies the following:

(a) It is doubly-stochastic: W ∗1 = 1�W ∗ = 1.

544 P. K. Syriopoulos et al.

(b) It attains the target eigenvalue gap: L(W ∗) = etgtgap.
(c) It is as sparse as possible, i.e. card(W ∗) is as small as possible.

We achieve the above by allowing for a trade-off between the deviation from
the target eigenvalue gap, and the number of non-zero elements of the corre-
sponding weight matrix W . When the trade-off is favorable, particles in UPSO
will remove an edge of W , and continue subsequent iterations by improving the
loss until the next trade-off is favorable. Note that this is happening with a single
initialization, a single UPSO swarm. Doing this is enabled by UPSO’s ability to
perform well in problem (a). Furthermore, to facilitate the process, we find a
suitable relaxation for the card(·) function that penalizes small entries of W .
First we add a safety loop in the iterative normalization scheme. If an entry of
W is sufficiently small, we turn it to zero. To this end we give the following
Algorithm 2:

Algorithm 2. Iterative Normalization II
1: function Normalize(W , k = 10, threshold = 0.01)
2: dim ← the dimension of W , i.e. n
3: for every entry of W do
4: if Wi,j < thresholds then Wi,j ← 0

5: for i = 0, 1, . . . , k do
6: for j = 0, 1, . . . , dim do
7: Wj ← Wj/

(∑dim
k=1 Wj,k

)

8: W ← W�

9: if W is doubly-stochastic then
10: return W

11: else
12: Normalize(W)

This will enable us to reliably identify the graph associated with the weight
matrix W . For the remainder of the paper at hand, for the sake of readability,
we simply write W for the matrix that results after iterative normalization (c.f.,
Algorithm 2). We define the adjacency matrix AW associated with W whose
entries are given by:

AW
i,j =

{
0, if Wi,j = 0,
1. if Wi,j > 0.

Then, the relaxation of the card(·) function for a particular W matrix is given
by:

C(W) =
∑
i,j

(AW
i,j − Wi,j). (17)

Clearly, C(·) is positive and increasing with the number of non-zero elements
of W . Additionally, the smaller the entry Wi,j , the larger its contribution

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 545

to C(W). Thus, C essentially penalizes small entries. When a small entry Wi,j

falls below the threshold value, i.e. Wi,j < threshold, Algorithm 2 turns it to
zero, and C(W ′) ≈ C(W) − (1 − threshold). Of course, C(·) is a discontinuous
function.

To control the eigenvalue gap, we define the following function:

D(W) = min
(|L(W)|

etgtgap
,

etgtgap

|L(W)|
)

. (18)

That is, 0 < D(W) < 1 if the eigenvalue gap of W deviates from the target,
while D(W) = 1 if W attains the target eigenvalue gap. Then, the loss function
can be written as follows:

Lb(W) =
C(W)
D(W)2

. (19)

In the loss function (19), the denominator is maximized when W attains the
target eigenvalue-gap, and the numerator is minimized when W is as sparse as
possible. The square in the denominator guarantees that reaching the target gap
is prioritized over removing edges from the graph associated with W . In our
experience, when a certain entry of the W matrix approaches the user defined
threshold value (in Algorithm 2), the particle swarm faces a trade-off between
the numerator and the denominator. If the edge associated with that entry of W
is removed, then the numerator is reduced by approximately (1 − threshhold),
however, a deviation from the eigenvalue-gap target is induced, and is reflected
in the denominator. The next section shows that UPSO performs nicely in both
problems: eigenvalue gap maximization, and, maximization of network sparsity
given an asymptotic convergence speed target.

A final note concerns the restriction of search to symmetric matrices. The
simplest way to do this is to augment the Eqs. (16) with an extra equation to
“symmetrize” the doubly-stochastic matrix. That is, supposing Wi(t + 1) is the
matrix corresponding to vector Xi(t + 1), the following step is taken directly
after iterative normalization:

W
′
i (t + 1) =

(
Wi(t + 1) + W�

i (t + 1)
)
/2. (20)

The new vectorized position of the particle is X
′
i(t + 1) = vec(W

′
i (t + 1)).

4 Experiments

The experiments carried out are restricted to symmetric edge weights. We con-
sider two 5×5 graphs with known optimal eigenvalue-gaps. The graphs are shown
in Fig. 1. We use loss function in Eq. (14) with the augmented UPSO Eqs. (16)
together with Eq. (20) for “symmetrization”. In our experiments we find optimal
or near-optimal eigenvalue-gaps. We employ the widely used convention of 4 |E|
particles. Then, we test objective (19) on the sparse matrix identification prob-
lem. We do this on a graph of 30 nodes, with eigenvalue-gap target of 0.2. The

546 P. K. Syriopoulos et al.

result is comparable to that of [16], however, in contrast to [16], we have chosen
the asymptotic speed of convergence. In addition we have observed that UPSO
on the “sparsification” problem with the objective function of Eq. (19) usually
finds effective solutions with way less than 4 |E| particles. In all cases, the swarm
particles communicate with 4 neighbors in a cyclic manner.

With optimal SLEM values of 0.4286 and 0.25, the optimal eigenvalue-gaps
of the graphs in Fig. 1 are 0.5714 and 0.75 respectively [2]. Our experiments
indicate that UPSO can find the optimal, or near-optimal values. The results
can be seen in Table 1.

For the considered sparsification problem, on a graph of 30 nodes, UPSO
with objective function of Eq. (19) and etgtgap = 0.2 produced a graph with 57
bidirectional edges. The number of particles used was 200, and the number of
iterations was 400. The final eigenvalue-gap is exactly 0.2 (Fig. 2).

Fig. 1. Two small networks with known optimal eigenvalue-gaps e∗ and optimal edge
weights given in [2].

Table 1. Maximal eigenvalue-gaps produced by UPSO for several unification parameter
values u. The optimal eigenvalue gap of Graph (a) is 0.5714 and the optimal eigenvalue
gap of Graph (b) is 0.5. Number of iterations: 400. Bold-face entries indicate optimal
values.

u Graph (a) Graph (b)

0 0.5634 0.7500
0.25 0.5714 0.7500
0.5 0.5660 0.7489

0.75 0.5714 0.7492

1 0.5714 0.7498

Eigenvalue-Gap and Sparsity of Doubly-Stochastic Matrices 547

Fig. 2. Graph on 30 nodes with symmetric weight matrix. It contains 57 bidirectional
edges and 5 non-zero diagonal elements.

In a future correspondence, we will also examine the case of asymmetric
weight matrices. A relevant work can be found in [9].

5 Synopsis and Concluding Remarks

We tackled two difficult problems using unified particle swarm optimization
(UPSO). Namely, (a) eigenvalue-gap maximization on doubly-stochastic matri-
ces with sparsity constraints, and, (b) sparse doubly-stochastic matrix identifica-
tion with given eigenvalue-gap target. The intricacy we faced is that the domains
of these problems are hard to navigate. We get around this issue by using an
iterative normalization procedure that maps the Euclidean space to the domain
of the respective problem. UPSO seems to provide optimal or near optimal solu-
tions to problem (a) with symmetric edge weights, and yields effective solutions
to problem (b). In a future correspondence, we would like to study the prop-
erties of the iterative normalization scheme, and assess the ability of UPSO to
find optimal eigenvalue-gaps for matrices with asymmetric edge weights, and
compare with other evolutionary algorithms.

References

1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex net-
works: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

2. Boyd, S., Diaconis, P., Xiao, L.: Fastest mixing Markov chain on a graph. SIAM
Rev. 46(4), 667–689 (2004)

3. Chandrasekhar, A.G., Larreguy, H., Xandri, J.P.: Testing models of social learning
on networks: evidence from two experiments. Econometrica 88(1), 1–32 (2020)

4. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput. 7(2), 279–301 (1989)

5. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
6. DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and

unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)
7. Duchi, J.C., Agarwal, A., Wainwright, M.J.: Dual averaging for distributed opti-

mization: convergence analysis and network scaling. IEEE Trans. Autom. Control
57(3), 592–606 (2011)

548 P. K. Syriopoulos et al.

8. Hadjicostis, C.N., Domínguez-García, A.D., Charalambous, T.: Distributed aver-
aging and balancing in network systems. Now Foundations (2018)

9. Hao, H., Barooah, P.: Improving convergence rate of distributed consensus through
asymmetric weights. In: 2012 American Control Conference (ACC), pp. 787–792.
IEEE, (2012)

10. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001
(2003)

11. Jirdehi, M.A., Tabar, V.S., Ghassemzadeh, S., Tohidi, S.: Different aspects of
microgrid management: a comprehensive review. J. Energ. Storage 30, 101457
(2020)

12. Kandris, D., Nakas, C., Vomvas, D., Koulouras, G.: Applications of wireless sensor
networks: an up-to-date survey. Appl. Syst. Innov. 3(1), 14 (2020)

13. Khan, M.R.B., Jidin, R., Pasupuleti, J.: Multi-agent based distributed control
architecture for microgrid energy management and optimization. Energ. Convers.
Manag. 112, 288–307 (2016)

14. Koponen, T., et al.: Onix: a distributed control platform for large-scale produc-
tion networks. In: 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10), (2010)

15. Levin, D.A., Peres, Y.: Markov chains and mixing times. Am. Math. Soc. 107,
(2017)

16. Lin, F., Fardad, M., Jovanović, M.R.: Identification of sparse communication
graphs in consensus networks. In: 2012 50th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), pp. 85–89. IEEE, (2012)

17. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains.
Foundations and Trends R© in Theoretical Computer Science 1(3), 237–354 (2006).
https://doi.org/10.1561/0400000003

18. Moreno, J.L., Jennings, H.H.: Statistics of social configurations. Sociometry, pp.
342–374 (1938)

19. Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In:
Proceedings of the 44th IEEE Conference on Decision and Control, pp. 8179–8184.
IEEE (2005)

20. Overton, M.L., Womersley, R.S.: On minimizing the special radius of a nonsym-
metric matrix function: optimality conditions and duality theory. SIAM J. Matrix
Anal. Appl. 9(4), 473–498 (1988)

21. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization and intelligence:
advances and applications. Information Science Publishing (IGI Global) (2010)

22. Peng, Z., Wang, J., Wang, D., Han, Q.-L.: An overview of recent advances in
coordinated control of multiple autonomous surface vehicles. IEEE Trans. Ind.
Inform. 17(2), 732–745 (2020)

23. Saad, Y.: Numerical methods for large eigenvalue problems: revised edition. SIAM
(2011)

24. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic
matrices. Pacific J. Math. 21(2), 343–348 (1967)

25. Thramboulidis, K., Perdikis, D., Kantas, S.: Model driven development of dis-
tributed control applications. Int. J. Adv. Manuf. Technol. 33(3), 233–242 (2007)

26. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control
Lett. 53(1), 65–78 (2004)

https://doi.org/10.1561/0400000003

Value of Information in the Mean-Square
Case and Its Application to the Analysis

of Financial Time-Series Forecast

Roman V. Belavkin1(B) , Panos Pardalos2 , and Jose Principe3

1 Department of Computer Science, Middlesex University, London NW4 4BT, UK
r.belavkin@mdx.ac.uk

2 Department of Industrial and Systems Engineering, University of Florida, P.O. Box
116595, Gainesville, FL 32611–6595, USA

pardalos@ufl.edu
3 Department of Electrical and Computer Engineering, University of Florida, P.O.

Box 116130, Gainesville, FL 32611–6130, USA
principe@cnel.ufl.edu

Abstract. The advances and development of various machine learning
techniques has lead to practical solutions in various areas of science,
engineering, medicine and finance. The great choice of algorithms, their
implementations and libraries has resulted in another challenge of select-
ing the right algorithm and tuning their parameters in order to achieve
optimal or satisfactory performance in specific applications. Here we
show how the value of information (V (I)) can be used in this task to
guide the algorithm choice and parameter tuning process. After estimat-
ing the amount of Shannon’s mutual information between the predictor
and response variables, V (I) can define theoretical upper bound of per-
formance of any algorithm. The inverse function I(V) defines the lower
frontier of the minimum amount of information required to achieve the
desired performance. In this paper, we illustrate the value of informa-
tion for the mean-square error minimization and apply it to forecasts of
cryptocurrency log-returns.

Keywords: Value of information · Shannon’s information ·
Mean-square error · Time-series forecast

1 Introduction

The value of information V (I) is the maximum gain in performance one can
achieve due to receiving the amount I of information (mathematical meaning
of ‘performance’ and ‘information’ will be clarified later). This concept was dis-
cussed in various settings in the literature, but the main advances of the theory
behind it were made by Ruslan Stratonovich and his colleagues in the 1960 s s
[10,15–17,19,20]. Inspired by Shannon’s rate-distortion theory [12], Stratonovich
first extended the ideas to more general class of Bayesian systems and various
c© Springer Nature Switzerland AG 2022
D. E. Simos et al. (Eds.): LION 2022, LNCS 13621, pp. 549–563, 2022.
https://doi.org/10.1007/978-3-031-24866-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24866-5_39&domain=pdf
http://orcid.org/0000-0002-2356-1447
http://orcid.org/0000-0001-9623-8053
http://orcid.org/0000-0002-3449-3531
https://doi.org/10.1007/978-3-031-24866-5_39

550 R. V. Belavkin et al.

types of information. He then used original techniques and some methods of sta-
tistical physics to derive very deep results on asymptotic equivalence of the value
functions for different types of information. Stratonovich and his colleagues also
studied the value of information in different settings, from the simplest Boolean
and Gaussian systems to stochastic processes in continuous time. Many of these
examples are covered in the classical monograph [18], which has recently been
published in English [14].

Recent advances of intelligent and learning systems combined with exponen-
tial growth of the size and dimensionality of datasets facilitated by the growth
in computer performance has prompted a new interest in the value of infor-
mation theory and its applications. Some results of the theory have facilitated
better understanding of the role of randomization in machine learning algorithms
[1,2,5]. For example, the value of information was used to derive optimal control
functions of mutation rates in genetic algorithms [3,4,8]. It was shown also that
the value of information theory is closely related to optimal transport [7] and
can have unexpected applications in explaining some decision-making paradoxes
in behavioural economics [6].

The purpose of this paper is to demonstrate how the value of information
can be used to evaluate the performance and tune parameters of different data-
driven models with a specific focus on the mean-square error criterion. In the
next section, we briefly overview the VoI theory for the case of translation invari-
ant objective functions, such as the mean-square deviation. We derive a simple
expression for the smallest root-mean-square error (RMSE) as a function of
Shannon’s mutual information between the predictor and response variables.
This function is then used in Sect. 3 as performance frontier for several models
attempting to forecast daily log-returns of some cryptocurrencies. We conclude
by the discussion of these results, the importance of correct estimation of the
amount of information in data as well as the choice of objective functions to
evaluate the models.

2 Value of Information for Translation Invariant
Objective Functions

Let us review some of the main ideas of the value of information theory in the
context of optimal estimation, although the context of optimal control is also
relevant. Let (Ω,P,A) be a probability space, and let x ∈ X be a random variable
(i.e. a measurable function x = x(ω) on a probability space, and P (X) = P{ω :
x(ω) ∈ X} is the corresponding push-forward measure). Consider the problem
of finding an element y ∈ Y maximizing the expected value of utility function
u : X × Y → R. Let us denote the corresponding optimal value as follows:

U(0) := sup
y∈Y

EP (x){u(x, y)}

where zero in U(0) designates the fact that no information about specific value
of x ∈ X is given, only the prior distribution P (x). At the other extreme, full

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 551

information entails that there is an invertible function z = f(x) such that x ∈ X
is determined uniquely x = f−1(z) by the ‘message’ z ∈ Z. The corresponding
optimal value is

U(∞) := EP (x){sup
y(z)

u(x, y(z))}

where optimization is over all mappings y(z) (i.e. y : Z → Y). In the context of
estimation, variable x is the response (i.e. the variable of interest), and z is the
predictor. The mapping y(z) represents a model with output y ∈ Y .

Let us denote by U(I) the intermediate values in the interval [U(0), U(∞)]
for all information amounts I ∈ [0,∞]. The value of information is then defined
as the following difference [14]:

V (I) := U(I) − U(0)

There are, however, different ways in which information amount I and the
quantity U(I) can be defined leading to different types of function V (I). For
example, suppose that z ∈ Z partitions X into a finite number of subsets. This
corresponds to a mapping z : X → Z with a constraint on the cardinality of its
image |Z| ≤ eI < |X|. Then, given such a partition z : X → Z, one can find
optimal y(z) maximizing the conditional expected utility EP (x|z){u(x, y) | z} for
each subset f−1(z) � x. The optimal value U(I) is then defined by repeating the
above and optimizing over all partitions z(x) satisfying the cardinality constraint
ln |Z| ≤ I:

U(I) := sup
z(x)

[
EP (z)

{
sup
y(z)

EP (x|z){u(x, y) | z}
}

: ln |Z| ≤ I

]
(1)

Here P (z) = P{x ∈ f−1(z)}. The quantity I = ln |Z| is called Hartley’s informa-
tion, and the difference V (I) = U(I)−U(0) in this case is the value of Hartley’s
information.

Example 1. Let X ≡ R
n and u(x, y) = − 1

2‖x− y‖2. Then the optimal estimator
is the expected value y = E{x}, which is found from the stationary condition:

∂

∂y
EP (x)

{
−1
2
‖x − y‖2

}
= y − E{x} = 0

The optimal value is U(0) = − 1
2σ2

x, where σ2
x is the variance of x. Given a

partition z : X → Z of X into k = |Z| subsets, one can compute k estimators
given by conditional expectations y(z) = E{x | z}. The value U(ln k) can be
estimated by computing and minimizing the average of conditional variances
σ2

x(z) over several partitions.

One can see from Eq. (1) that the computation of the value of Hartley’s
information is quite demanding, and Example 1 suggests that it might involve
a procedure such as the k-means clustering algorithm or training a multilayer

552 R. V. Belavkin et al.

neural network. Indeed, computing the error at the output layer of a percep-
tron and adjusting the output weights corresponds to finding optimal output
function y(z) in equation (1); back-propagation of the error into hidden layers
and adjusting their weights corresponds to finding optimal partition z(x) in (1).
Although there exist efficient algorithms for such optimization, it is clear that
using the value of Hartley’s information is not practical due to high cost of the
computations involved. The main result of the theory [14] is that the value of
Hartley’s information (1) is asymptotically equivalent to the value of Shannon’s
information, which is much easier to compute.

Recall the definition of Shannon’s mutual information [12]:

I(X,Y) := EW (x,y)

{
ln

P (x | y)
P (x)

}
= H(X) − H(X | Y)

= H(Y) − H(Y | X)

where W (x, y) = P (x | y)Q(y) is the joint probability distribution on X × Y ,
and H(·) = −EP {lnP (·)} is the entropy function. The following inequality is
valid:

0 ≤ I(X,Y) ≤ min{H(X),H(Y)} ≤ min{ln |X|, ln |Y |}
The value of Shannon’s information is defined using the quantity:

U(I) := sup
P (y|x)

[EW {u(x, y)} : I(X,Y) ≤ I] (2)

where optimization is over all conditional probabilities P (y | x) (or joint mea-
sures W (x, y) = P (y | x)P (x)) satisfying the information constraint I(X,Y) ≤
I. Contrast this with U(I) for Hartley’s information (1), where optimization is
over the mappings y(x) = y◦z(x). As was pointed out in [7], the relation between
functions (1) and (2) is similar to that between optimal transport problems in
the Monge and Kantorovich formulations.

Function U(I) defined in (2) is strictly increasing and concave, and it has
the following inverse:

I(U) := inf[I(X,Y) : EW {u(x, y)} ≥ U] (3)

It is a proper convex and strictly increasing function, where it is finite. The
strictly increasing and concave (resp. convex) properties of U(I) (resp. I(U)) can
be shown in more general settings, when information is defined by any closed
functional (see Proposition 3 in [5]). This means that solutions to these condi-
tional extremum problems can be found by the standard method of Lagrange
multipliers (see [5,14] for details). Thus, the optimal joint distributions belong
to the following exponential family:

W (x, y;β) = P (x)Q(y)eβu(x,y)−γ(x;β) (4)

where P and Q are the marginal distributions of W , and function γ(x;β) is
defined by the normalization condition

∫
X×Y

dW (x, y;β) = 1. Parameter β is

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 553

called the inverse temperature, and it is the Lagrange multiplier associated to
the constraint E{u} ≥ U in (3). The temperature β−1 is associated respectively
to the constraint I(X,Y) ≤ I in (2). Their values are defined by the following
conditions:

β−1 = U ′(I) , β = I ′(U)

In fact, this can also be seen from the following considerations. Function U(I)
is a proper concave function, and therefore it is the Legendre-Fenchel dual (see
[11,21]) of some proper concave function F (β−1):

U(I) = inf{β−1I − F (β−1)} ⇐⇒ I = F ′(β−1) ⇐⇒ β−1 = U ′(I)

Function I(U) is a proper convex function, and therefore it is the Legendre-
Fenchel dual of some proper convex function Γ (β):

I(U) = sup{βU − Γ (β)} ⇐⇒ U = Γ ′(β) ⇐⇒ β = I ′(U)

Convex function Γ (β) is the cumulant generating function of distribution (4). In
particular, U(β) = Γ ′(β) is the expected value EW (β){u(x, y)}. Concave function
F (β−1) is sometimes referred to as free energy, and I(β−1) = F ′(β−1) is equal
to Shannon’s mutual information EW (β){lnW − ln(P ⊗ Q)} of distribution (4).
Functions F and Γ have the following relation:

F (β−1) = −β−1Γ (β)

The following procedure can be used to obtain the dependencies U(I) or
I(U) and the value of Shannon’s information V (I) = U(I) − U(0). Optimal
solution (4) is used to define the expression for function Γ (β), which is then
used to derive two functions:

U(β) = Γ ′(β) , I(β) = β Γ ′(β) − Γ (β)

The dependency U(I) (or I(U)) is then obtained either parametrically from U(β)
and I(β) or explicitly by excluding β from one of the equations. Alternatively,
one can use free energy F (β−1) and define U(I) from I(β−1) = F ′(β−1) and
U(β−1) = β−1I(β−1) − F (β−1).

Let us now consider function Γ (β) for distribution (4). Taking partial traces
of solution (4) and using the law of total probability leads to the following system
of integral equations:∫

X

dW (x, y) = dQ(y) =⇒
∫

X

eβ u(x,y)−γ(x;β) dP (x) = 1 (5)∫
Y

dW (x, y) = dP (x) =⇒
∫

Y

eβ u(x,y) dP (y) = eγ(x;β) (6)

If the linear transformation T (·) = ∫
X

eβ u(x,y)(·) has inverse, then from (5) we
have e−γ(x;β)dP (x) = T−1(1) or

γ(x;β) = − ln
∫

Y

b(x, y) dy + ln[dP (x)/dx] = γ0(x;β) − h(x)

554 R. V. Belavkin et al.

where b(x, y) is the kernel of the inverse linear transformation T−1, γ0(x;β) :=
− ln

∫
Y

b(x, y) dy, and h(x) = − ln[dP (x)/dx] is random entropy or surprise.
Integrating the above with respect to measure P (x) we obtain

Γ (β) :=
∫

X

γ(x;β) dP (x) = Γ0(β) − H(X)

where Γ0(β) :=
∫

X
γ0(x;β) dP (x). Notice that Γ ′(β) = Γ ′

0(β) = U(β), and
therefore

I(β) = β Γ ′(β) − Γ (β) = H(X) − [Γ0(β) − β Γ ′
0(β)]

Function Γ0(β) − β Γ ′
0(β) is clearly the conditional entropy H(X | Y), because

I(X,Y) = H(X) − H(X | Y).
Further analysis is complicated by the dependency of solution (4) on marginal

distribution P (x). Generally, P (x) influences not only the output distribution
Q(y) (i.e. as dP (x) �→ ∫

X
dP (y | x) dP (x) = dQ(y)), but also the conditional

probability P (x | y) = P (x)eβ u(x,y)−γ(x;β). However, as was shown in [14], this
dependency on P (x) disappears, if the product e−γ(x;β)P (x) is independent of
x. Indeed, let e−Γ0(β) = e−γ(x;β) dP (x)/dx = const. Then from equation (5) we
obtain

e−Γ0(β)

∫
X

eβ u(x,y)dx = 1 =⇒ Γ0(β) = ln
∫

X

eβ u(x,y) dx

It turns out that e−γ(x;β) dP (x)/dx = const, if the objective function is trans-
lation invariant: u(x, y) = u(x + z, y + z). Indeed, using translation invariance
and equation (5) gives∫

X

eβ u(x+z,y+z)−γ(x+z;β) dP (x + z) =
∫

X

eβ u(x,y)−γ(x+z;β) dP (x + z) = 1

Combining this with equation (5) implies that

e−γ(x+z;β)dP (x + z)/dx = e−γ(x;β)dP (x)/dx = const

Many objective functions u(x, y) are defined using the difference x − y, which
means they are translation invariant.

Example 2 (Squared error and Gaussian case). Let u(x, y) = − 1
2 (x − y)2. Then

u(x, y) = u(x + z, y + z), and

Γ0(β) = ln
∫ ∞

−∞
e− 1

2 β (x−y)2 dx = ln
√

2π
β

U(β) = Γ ′
0(β) = − 1

2β

I(β) = −1
2

− Γ (β) = −1
2
+ H(X) − Γ0(β) = H(X) − 1

2
[ln(2π) + 1 − lnβ]

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 555

The latter expression allows us to express β = 2πe2[I−H(X)]+1 and write explicit
dependency

U(I) = − 1
4π

e2[H(X)−I]−1 (7)

The value of information in this case is

V (I) = U(I) − U(0) =
1
4π

e2H(X)−1
(
1 − e−2I

)

For Gaussian density dP (x)/dx = 1√
2πσ2

x

e
− x2

2σ2
x we have

H(X) =
1
2

[
ln(2πσ2

x) + 1
]

, e2H(X)−1 = 2πσ2
x

and in this case

U(I) = −1
2
σ2

xe−2I , V (I) =
1
2
σ2

x(1 − e−2I)

Example 3 (Root-mean-square error). The root-mean-square error (RMSE or
standard error) is one of the most important criteria to evaluate data-driven
models. The result from Example 2 can be used to compute the smallest RMSE
as a function of information. Indeed, RMSE(I) =

√−2U(I), where U(I) is given
by equation (7):

RMSE(I) =
1√
2πe

eH(X)−I

If x is assumed to have normal distribution with variance σ2
x, then eH(X) =

σx

√
2πe and

RMSE(I) = σx e−I (8)

If the amount of information I can be estimated from data (e.g. as mutual
information I(X,Z) between the predictors and response variables), then the
functions above define the smallest possible standard error.

3 Application: Analysis of Forecasts of Cryptocurrency
Log-Returns

In this section, we illustrate how the value of information can facilitate the
analysis of performance of data-driven models. Here we use time-series forecasts
applied to daily log-returns of cryptocurrency exchange rates.

The dataset used contains daily prices s(t) of several cryptocurrency pairs
during the period between Jan 1, 2019 and Jan 11, 2021. Figure 1 shows an
example of prices of Bitcoin in US$s (BTC/USD) and the corresponding log-
returns, which are defined as

r(t + 1) := ln
[
s(t + 1)

s(t)

]

556 R. V. Belavkin et al.

Jan 01
2019

May 01
2019

Sep 01
2019

Jan 01
2020

May 01
2020

Sep 01
2020

Jan 01
2021

BTC / USD 2019−01−01 / 2021−01−11

10000

20000

30000

40000

10000

20000

30000

40000

Jan 02
2019

May 01
2019

Sep 01
2019

Jan 01
2020

May 01
2020

Sep 01
2020

Jan 01
2021

BTC / USD log−returns 2019−01−02 / 2021−01−11

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

Fig. 1. Close day prices of BTC/USD (left) and the corresponding log-returns (right).

Figure 2 shows the distribution of log-returns r(t) for BTC/USD. They are
approximately zero-mean with r(t) > 0 corresponding to a price increase and
vice versa. Although it is quite common to model log-returns by a Gaussian dis-
tribution, it is easy to see that the distribution has heavy tails (see the QQ-plot
on Fig. 2 comparing the distribution with a Gaussian), and some extreme price
changes are not unusual (e.g. notice the significant price decrease on March 12,
2020, which was caused by the announcements related to the COVID-19 pan-
demic).

log−return

Fr
eq

ue
nc

y

−0.4 −0.2 0.0 0.2 0.4

0
40

10
0

−4 0 2 4

−4
0

4

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

Fig. 2. Distribution of BTC/USD log-returns (left) and its comparison with normal
distribution (right).

Predicting price changes is very challenging. In fact, the existence of such
forecasts would create an arbitrage, which should quickly disappear in an open
market. The left chart on Fig. 3 plots log-returns for two consecutive days: r(t)
(abscissa) and r(t+1) (ordinates). One can see that there is no obvious relation
between r(t) and r(t + 1), and they are often assumed to be independent (and
hence prices s(t) are often modelled by a Markov process).

On the other hand, in continuous time independence of log-returns would
mean that {r(t)} is a so-called δ-correlated stochastic process (i.e. its autocor-
relation function is proportional to the Dirac δ-function). It is well-known that

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 557

−0.4 0.0 0.4

−0
.4

0.
0

0.
4

log return (t)

lo
g

re
tu

rn
 (t

+1
)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

Fig. 3. Relation between log-returns on two consecutive days (left) and the autocorre-
lation function (right).

such processes are unphysical, because any δ-correlated stochastic process must
have infinite variance σ2 (indeed, one can show that σ2 is the integral of spec-
tral density, which is the Fourier transform of the autocorrelation function; the
Fourier image of the δ-function is a constant function [13]). Therefore, there
must be some small information about future log-return r(t + 1) contained in
the past values r(t), r(t − 1), . . . , r(t − n). This can be seen from the plot of the
autocorrelation function for BTC/USD shown on the right chart of Fig. 3.

The idea of autoregressive models is to use the small amount of information
between the past and future values for forecasts. Here, we shall employ sev-
eral techniques to learn models y = f(z), where the predictor z = (r(t), r(t −
1), . . . , r(t − n)) is a vector of previous values of log-returns, and the model
output y(z) is the forecast of the unknown future log-return x = r(t + 1) (the
response). The hypothesis is that increasing the number n of lags should increase
the amount of information used for the forecasts.

In addition to autocorrelations (correlations between the values of {r(t)} at
different times), information can be increased by using cross-correlations (corre-
lations between log-returns of different symbols in the dataset). Thus, the vector
of predictors is an m × n-tuple, where m is the number of symbols used, and
n is the number of time lags. In this paper we report result of predicting log-
returns of BTC/USD using the range m ∈ {1, 2, . . . , 5} of symbols (BTC/USD,
ETH/USD, DAI/BTC, XRP/BTC, IOT/BTC) and n ∈ {2, 3, . . . , 20} of lags.
This means that the models used predictors (z1, . . . , zm×n), where m×n ranged
from 2 to 100.

In order to analyse the performance of models using the value of informa-
tion, one has to estimate the amount of information between the predictors
z1, . . . , zm×n and the response variable x. Here we employ the following Gaus-
sian formula for Shannon’s mutual information [14]:

I(X,Z) ≈ 1
2
[ln detKz + ln detKx − ln detKz⊕x]

558 R. V. Belavkin et al.

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Lags

In
fo

rm
at

io
n

(b
its

)

5
4
3
2
1

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Lags

In
fo

rm
at

io
n

(b
its

)

5
4
3
2
1

Fig. 4. The average amount of mutual information between predictors and response in
the training sets (left) and test sets (right). Abscissa shows the number n of lags, and
different curves correspond to different numbers m of symbols used.

where Kz is the covariance matrix of predictors z ∈ R
m×n, Kx is the covariance

of response x (for one dimension detKx = σ2
x), and KZ⊕X is the covariance of

Z ⊕ X. We use the approximate sign ≈, because the distributions of log-returns
are generally not Gaussian (in fact, the above formula gives a lower bound for
non-Gaussian random variables). Natural logarithm corresponds to measuring
information in ‘nats’; for ‘bits’ one has to use log2.

For each collection of predictors (z1, . . . , zm×n) and response x, the data
was split into multiple training and testing subsets using the following rolling
window procedure. Here we used 100 and 25 d data windows for training and
testing respectively. After training and testing the models, the windows were
moved forward by 25 d. Thus, the data of approximately 700 d (Jan 2019 to Jan
2021) was split into (700 − 100)/25 = 24 pairs of training and testing sets. The
results reported here are the average results from these 24 subsets.

Figure 4 shows the average amounts of information I(X,Z) in the training
sets (left) and testing sets (right). Information (ordinates) is plotted against the
number n of lags (abscissa) and for m ∈ {1, 2, . . . , 5} symbols (different curves).
The data was used to train and test the following types of models:

1. Multiple mean-square linear regression (LM).
2. Partial least squares regression (PLS).
3. Feed-forward neural network (NN).

The first model has no hyperparameters; the PLS regression used here employed
SIMPLS algorithm [9] with 3 components; NN used here had just one hidden
layer with 3 logistic units and trained for 30 epochs. This is admitably not an
optimal choice of models, but finding the best model or a set of hyperparameters
was not the purpose of this study. The models were used to illustrate their
performance from the point of the value of information theory.

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 559

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Multiple Linear Regression

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Partial Least Squares

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Neural Network

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

Fig. 5. RMSE results of fitted values of three types of models on training data as
functions of information in the training data. Theoretical RMSE(I) curve (8) is plotted
for standard deviation of response σx ≈ .0386 estimated from the training sets.

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Multiple Linear Regression

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5

0.
02

0.
04

0.
06

0.
08

0.
10

Partial Least Squares

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

0.0 0.5 1.0 1.5
0.

02
0.

04
0.

06
0.

08
0.

10

Neural Network

Information (bits)

R
M

SE

5
4
3
2
1

RMSE(I)

Fig. 6. RMSE results of predicted values from three types of models on testing data as
functions of information in the training data. Theoretical RMSE(I) curve (8) is plotted
for standard deviation of response σx ≈ .0361 estimated from the testing sets.

Figures 5 and 6 show standard errors (RMSE) of the models as function
of the information amount I contained in the training data. Different curves
are plotted for different numbers of symbols m ∈ {1, . . . , 5}. Theoretical lower
bounds are shown by the RMSE(I) curves computed using formula (8) with
standard devition of response x estimated from the training and testing sets.
Figure 5 shows RMSE of the models fitting the training data after training, while
Fig. 6 shows the errors of prediction on testing data. The following observations
can be made from the results shown on Figs. 5 and 6:

1. Errors of fitting the training data closely follow theoretical curve RMSE(I).
One can see that LM and NN achieve errors on the training data close to
theoretical. PLS has higher errors, which can be explained by the fact that the
aim of the PLS algorithm is not to minimize squared errors, but to maximize
covariance between predictors and reponse [9].

2. All models show higher errors on the testing data. PLS achieved smaller and
more stable errors in forecasts than LM or NN in this experiment.

3. Increasing information leads to decreasing errors on the training data, but
not necessarily on new data (testing or prediction).

560 R. V. Belavkin et al.

4. Models using m > 1 symbols achieve smaller errors on the testing data than
models with just one symbol. We note also that when using m = 4 or 5 sym-
bols, the amount of information of say I = .1 bits can be achieved using only
n ≤ 5 lags (see left chart on Fig. 4). The same amount of information in data
with m = 1 symbol requires n > 20 lags. Thus, cross-correlations potentially
provide more valuable information for forecasts than autocorrelations.

5. Linear models, and in particular PLS, appear to have more robust perfor-
mance than the simple neural network used here. The large variance of stan-
dard errors for NN shown on Figs. 5 and 6 are potentially due to random
initialization and higher uncertainty in the setting of hyper-parameters (e.g.
hidden nodes, the number of epochs to train, activation functions).

Remark 1. RMSE can also be plotted against mutual information in the test
set shown on the right chart of Fig. 4. However, this information was not used
to learn the models, and hence we do not report these plots here. One can also
notice from Fig. 4 that mutual information in the test sets achieves higher values
(approaching 2 bits) than in the training sets. This can be explained by random
effects, as the test sets were four times smaller than the training sets.

0.0 0.5 1.0 1.5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Multiple Linear Regression

Information (bits)

C
or

re
la

tio
n

5
4
3
2
1

0.0 0.5 1.0 1.5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Partial Least Squares

Information (bits)

C
or

re
la

tio
n

5
4
3
2
1

0.0 0.5 1.0 1.5

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Neural Network

Information (bits)

C
or

re
la

tio
n

5
4
3
2
1

Fig. 7. Correlation between predicted values from models and desired response in the
test data as functions of information in the training sets.

Let us point out that RMSE is a general, but certainly not the only and
potentially not the most useful measure to assess model’s performance. Figure 7
reports correlations between the predicted and the desired log-returns (i.e. cor-
relation between the model output y(z) and the desired response x). One may
notice that the best linear models (LM and PLS) are those using m ∈ {2, 3} sym-
bols, and the maximum correlations are generally achieved at higher amounts of
information than those achieving the minimums of RMSE.

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 561

0.0 0.5 1.0 1.5

−0
.0

04
0.

00
0

0.
00

4

Multiple Linear Regression

Information (bits)

M
ea

n
ra

te
 o

f r
et

ur
n

5
4
3
2
1

0.0 0.5 1.0 1.5

−0
.0

04
0.

00
0

0.
00

4

Partial Least Squares

Information (bits)

M
ea

n
ra

te
 o

f r
et

ur
n

5
4
3
2
1

0.0 0.5 1.0 1.5

−0
.0

04
0.

00
0

0.
00

4

Neural Network

Information (bits)

M
ea

n
ra

te
 o

f r
et

ur
n

5
4
3
2
1

Fig. 8. Mean rates of return as functions of information for different models.

Finally, we estimated the mean rates of return (MRR) from the model fore-
casts, if they were used for trading. Here, we used the following formula:

MRR := eE{sign(y(z)) sign(x)|x|} − 1

where y(z) is the predicted log-return, x is the ‘true’ log-return from the test
data, and sign is the signum function. Thus, when the signs of y(z) and x coin-
cide, then the log-return from trading is positive |x|; otherwise, the log-return
is −|x|. The expected value E{sign(y(z)) sign(x)|x|} is the mean log-return from
trading 〈r〉, which is converted into the effective rate of return by the formula
e〈r〉 −1. Thus, the value of MRR = .01 means 1% return per day without taking
into account trading fees. Figure 8 reports the estimated mean rates of return
for the three types of models. Some models achieve mean rates of return .3%
and .4% per day, which is slightly higher than the average rate of return of .26%
from BTC/USD in the testing sets. Note also that the mean rate of return from
the models can also be as low as −.5% per day.

4 Discussion

We have reviewed the main mathematical ideas of the value of information the-
ory in the context of translation invariant objective functions. These functions
are important for data-driven models, such as the mean-square cost or stan-
dard error. We have derived simple expressions for the lower bound of RMSE
as a function of mutual information and applied it to the analysis of perfor-
mance of time-series forecasts using cryptocurrency data. We showed how these
information-theoretic ideas can enrich our understanding of data and the mod-
els and potentially lead to a more intelligent learning and optimization of model
parameters.

Acknowledgements. Stefan Behringer is deeply acknowledged for additional discus-
sion of the example, Roman Tarabrin is deeply acknowledged for providing a Mac-
BookPro laptop used for the computational experiments. This research was funded in
part by the ONR grant number N00014-21-1-2295.

562 R. V. Belavkin et al.

References

1. Belavkin, R.V.: Bounds of optimal learning. In: 2009 IEEE International Sympo-
sium on Adaptive Dynamic Programming and Reinforcement Learning, pp. 199–
204. IEEE, Nashville, TN, USA (2009)

2. Belavkin, R.V.: Information trajectory of optimal learning. In: Hirsch, M.J., Parda-
los, P.M., Murphey, R. (eds.) Dynamics of Information Systems: Theory and Appli-
cations, Springer Optimization and Its Applications Series, vol. 40, pp. 29–44.
Springer, New York (2010). https://doi.org/10.1007/978-1-4419-5689-7_2

3. Belavkin, R.V.: Mutation and optimal search of sequences in nested Hamming
spaces. In: IEEE Information Theory Workshop. IEEE (2011)

4. Belavkin, R.V.: Dynamics of information and optimal control of mutation in evo-
lutionary systems. In: Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P.M. (eds.)
Dynamics of Information Systems: Mathematical Foundations, Springer Proceed-
ings in Mathematics and Statistics, vol. 20, pp. 3–21. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-3906-6_1

5. Belavkin, R.V.: Optimal measures and Markov transition kernels. J. Global Optim.
55, 387–416 (2013)

6. Belavkin, R.V.: Asymmetry of risk and value of information. In: Vogiatzis, C.,
Walteros, J.L., Pardalos, P.M. (eds.) Dynamics of Information Systems. SPMS, vol.
105, pp. 1–20. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10046-
3_1

7. Belavkin, R.V.: Relation between the Kantorovich–Wasserstein metric and the
Kullback–Leibler divergence. In: Ay, N., Gibilisco, P., Matúš, F. (eds.) IGAIA IV
2016. SPMS, vol. 252, pp. 363–373. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-97798-0_15

8. Belavkin, R.V., Channon, A., Aston, E., Aston, J., Krašovec, R., Knight, C.G.:
Monotonicity of fitness landscapes and mutation rate control. J. Math. Biol. 73(6),
1491–1524 (2016)

9. de Jong, S.: Simpls: an alternative approach to partial least squares regression.
Chemom. Intell. Lab. Syst. 18(3), 251–263 (1993)

10. Grishanin, B.A., Stratonovich, R.L.: Value of information and sufficient statistics
during an observation of a stochastic process. Izvestiya of USSR Academy of Sci-
ences, Technical Cybernetics 6, 4–14 (1966). in Russian

11. Rockafellar, R.T.: Conjugate Duality and Optimization, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, vol. 16. Society for Industrial and Applied
Mathematics, PA (1974)

12. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423 and 623–656 (July and October 1948)

13. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Martino Fine
Books (2014)

14. Stratonovich, R.L. Theory of Information and its Value. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-22833-0

15. Stratonovich, R.L.: On value of information. Izvestiya of USSR Academy of Sci-
ences, Technical Cybernetics 5, 3–12 (1965). in Russian

16. Stratonovich, R.L.: Value of information during an observation of a stochastic pro-
cess in systems with finite state automata. Izvestiya of USSR Academy of Sciences,
Technical Cybernetics 5, 3–13 (1966). in Russian

17. Stratonovich, R.L.: Extreme problems of information theory and dynamic pro-
gramming. Izvestiya of USSR Academy of Sciences, Technical Cybernetics 5, 63–77
(1967). in Russian

https://doi.org/10.1007/978-1-4419-5689-7_2
https://doi.org/10.1007/978-1-4614-3906-6_1
https://doi.org/10.1007/978-3-319-10046-3_1
https://doi.org/10.1007/978-3-319-10046-3_1
https://doi.org/10.1007/978-3-319-97798-0_15
https://doi.org/10.1007/978-3-319-97798-0_15
https://doi.org/10.1007/978-3-030-22833-0

VoI in the Mean-Square Case and Analysis of Time-Series Forecast 563

18. Stratonovich, R.L.: Theory of Information. Sovetskoe Radio, Moscow, USSR
(1975). in Russian

19. Stratonovich, R.L., Grishanin, B.A.: Value of information when an estimated ran-
dom variable is hidden. Izvestiya of USSR Academy of Sciences, Technical Cyber-
netics 3, 3–15 (1966). in Russian

20. Stratonovich, R.L., Grishanin, B.A.: Game-theoretic problems with information
constraints. Izvestiya of USSR Academy of Sciences, Technical Cybernetics 1, 3–
12 (1968). in Russian

21. Tikhomirov, V.M.: Analysis II, Encyclopedia of Mathematical Sciences, vol. 14,
chap. Convex Analysis, pp. 1–92. Springer-Verlag (1990)

Author Index

Agapaki, Evangelia 411, 467
Alexiou, Sotiris 460
Al-Saedi, Ahmed 93
Amoura, Yahia 58
Archetti, Francesco 232, 248, 263

Bai, Yulan 43
Baïou, Mourad 521
Barahona, Francisco 521
Barkalov, Konstantin 123
Basirati, Mohadese 205
Belavkin, Roman V. 549
Berenov, Dmitriy A. 145
Billot, Romain 205
Bosio, Anna 263
Boukli-Hacene, Fouad 58
Brito, Thadeu 178

Candelieri, Antonio 232, 248, 263
Cappello, Giorgia Maria 445
Celic, Berina 15
Colajanni, Gabriella 445

Daniele, Patrizia 445
de Souza, Marcelo 347
Delazeri, Gustavo 347
Dong, Xiaomeng 292, 306
Draguns, Andis 334
Dritsas, Elias 460
Drousiotis, Efthyvoulos 191

Erzin, Adil 394

Faleiros, Thiago de Paulo 278
Fernandes, Florbela P. 319
Ferreira, Ângela 58
Flamia Azevedo, Beatriz 319
Freivalds, Kārlis 334

Gaile, Elı̄za 334
Gainanov, Damir N. 145
Galluccio, Laura 445
Garn, Bernhard 15
Giordani, Ilaria 263

Gomes, Helder T. 178
Grasso, Christian 445
Grishagin, Vladimir 123
Guarracino, Mario R. 27

Halbersberg, Dan 361
Halevi, Matan 361
Hladík, Milan 27, 136
Hottung, André 108

Irpino, Antonio 263

Jalui, Sandeep 411
Joaquim, Carlos Eduardo de Lima 278

Kalampalikis, Nektarios G. 535
Ketabchi, Saeed 27
Kieseberg, Klaus 15
Kotsiantis, Sotiris B. 379
Kozinov, Evgeny 123
Kranakis, Evangelos 487
Krylatov, Alexander 220
Kumar, Gaurav 292, 306

Ladygin, Ilya 394
Lima, José 58, 178
Liu, Suyun 77
Lonyagina, Yulia 220

Marinaki, Magdalene 505
Marinakis, Yannis 505
Matsatsinis, Nikolaos 505
Mawlood-Yunis, Abdul-Rahman 93
Meyer, Patrick 205
Moosaei, Hossein 27, 136
Moustakas, Konstantinos 460

Nikolaev, Egor A. 145
Nourmohammadzadeh, Abtin 429

Olinick, Eli 43
Ozoliņš, Emı̄ls 334

Pacheco, Maria F. 319
Papadimitriou, Christos H. 3

566 Author Index

Pardalos, Panos 549
Pereira, Ana I. 58, 178, 319
Plotnikov, Roman 394
Ponti, Andrea 232, 248, 263
Potter, Michael 292, 306
Principe, Jose 549

Raevskaya, Anastasiya 220
Rasskazova, Varvara A. 145
Righini, Ermanno 130
Righini, Giovanni 130
Ritt, Marcus 347
Rocha, Ana Maria A. C. 319

Salhov, Moshe 361
Sarhani, Malek 429
Saripalli, V. Ratna 292, 306
Schembra, Giovanni 445
Schmitt-Ulms, Fynn 108
Scrimali, Laura Rosa Maria 445

Sellmann, Meinolf 108
Silva, Adrián M. T. 178
Silva, Adriano S. 178
Simos, Dimitris E. 15
Spirakis, Paul G. 191
Stamadianos, Themistoklis 505
Syriopoulos, Panos K. 379, 535

Tan, Tao 292
Tierney, Kevin 108, 162
Trafalis, Theodore 292, 306
Tsai, Yun-Chan 292, 306
Tuesta, Jose L. Diaz de 178
Turcu, Denis 3

Vicente, Luis Nunes 77
Voß, Stefan 429
Vrahatis, Michael N. 379, 535

Weiss, Dimitri 162

	 Preface
	 Organization
	 Contents
	Invited Papers
	Optimal Scheduling of the Leaves of a Tree and the SVO Frequencies of Languages
	1 Introduction: The Leaf Scheduling Problem
	2 The Greedy Algorithm
	3 Generating Sentences in the Brain
	3.1 Scheduling Cost Explains SVO Frequencies
	3.2 Leaf Scheduling Cost as Energy
	3.3 A Statistical-Mechanical Argument

	4 Discussion
	References

	From Design of Experiments to Combinatorics of Disasters: A Conceptual Framework for Disaster Exercises
	1 Introduction
	2 Motivation
	2.1 Design of Experiments
	2.2 Exercise Scenarios
	2.3 Event Coverage

	3 A Conceptual Combinatorial Framework for Disaster Scenario Generation
	3.1 Exercise Formulation
	3.2 Acquisition of Data
	3.3 Exercise Design
	3.4 Exercise Generation
	3.5 Execution and Assessment
	3.6 Post-processing

	4 Conclusion and Future Work
	References

	Separating Two Polyhedra Utilizing Alternative Theorems and Penalty Function
	1 Introduction
	2 Separation of Two Polyhedra
	3 Algorithm
	4 Numerical Results
	5 Conclusion
	References

	Contributed Papers
	A Composite Index Method for Optimization Benchmarking
	1 Introduction
	2 Performance Evaluation Using Composite Index Method (CIM)
	3 The Backhaul Profit Maximization Problem (BPMP)
	3.1 Node-arc Formulation
	3.2 Triples Formulation

	4 Node-Arc Summary
	4.1 Computing Environment and Weight Selection
	4.2 Initial Incumbent Formulation
	4.3 Technique 1: Conditional Arc Flow
	4.4 Technique 2: Relax Node-Degree Constraints
	4.5 Technique 3: Single-Node Demand Cuts
	4.6 Best Node-Arc Model

	5 Triples Summary
	6 Conclusions
	References

	Optimal Energy Management of Microgrid Using Multi-objective Optimisation Approach
	1 Introduction
	2 Microgrid Description
	3 Modeling of the Energy Storage System
	4 Optimisation Problem
	4.1 Objective Functions
	4.2 Constraints Functions
	4.3 The Multi-objective Optimisation Problem

	5 Pareto-Search Algorithm
	6 Numerical Results and Discussion
	6.1 Economic Criterion
	6.2 Environmental Criterion

	7 Conclusions and Future Work
	References

	A Stochastic Alternating Balance k-Means Algorithm for Fair Clustering
	1 Introduction
	2 The Mini-Batch k-means Algorithm
	3 A New Stochastic Alternating Balance Fair k-means Method
	3.1 The Bi-objective Balance k-means Formulation
	3.2 The Stochastic Alternating Balance Fair k-means Method

	4 Numerical Experiments
	4.1 Pareto Front SAfairKM Algorithm
	4.2 Numerical Results

	5 Concluding Remarks
	A Description of an Existing Approach for Comparison
	B More Numerical Results
	References

	Binary Black Widow Optimization Algorithm for Feature Selection Problems
	1 Introduction
	2 BBWO Algorithm for FS
	2.1 The Pseudo-code of the Proposed Method (BBWO)

	3 Experiments
	3.1 Implementation Setup
	3.2 Evaluation Criteria and Parameters Setting
	3.3 Experiment Results and Discussion of BBWO

	4 Conclusion and Future Works
	References

	Learning to Solve a Stochastic Orienteering Problem with Time Windows
	1 Introduction
	2 Related Work
	3 Background
	4 The TDOP
	5 Solving the TDOP
	5.1 POMO for the TDOP
	5.2 EAS for Stochastic Problems
	5.3 Solution Construction Using Monte Carlo Rollouts

	6 Computational Results
	6.1 RQ1: Test Set Performance
	6.2 RQ2: EAS
	6.3 RQ3: Monte Carlo Rollouts

	7 Conclusion
	References

	ML-Based Approach for Accelerating Global Search Algorithm for Solving Multicriteria Problems
	1 Introduction
	2 Problem Statement
	3 General Computational Scheme
	4 Approaches to Improving Search Efficiency
	5 Results of Computational Experiments
	References

	The Skewed Kruskal Algorithm
	1 Kruskal Algorithm
	2 Improvements
	2.1 QuickKruskal Algorithm
	2.2 FilterKruskal Algorithm
	2.3 SkewedFilterKruskal Algorithm

	3 Computational Results
	4 Conclusions and Open Questions
	References

	Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model
	1 Introduction
	2 K-support Vector Classification Regression
	3 Lower Bound for Nonzero Components of Solutions
	4 Conclusion
	References

	Integer Linear Programming in Solving an Optimization Problem at the Mixing Department of the Metallurgical Production
	1 Introduction
	2 Statement of the Problem
	3 Variable Set
	4 Coefficients
	5 Constraints
	6 Objective
	7 Computational Results
	8 Conclusion
	References

	Realtime Gray-Box Algorithm Configuration
	1 Introduction
	2 Automated AC
	2.1 Offline AC
	2.2 RAC

	3 Gray-box Method
	3.1 Identifying Underperforming Configurations
	3.2 Applying Cost-Sensitive Classification
	3.3 Terminating Underperforming Configurations
	3.4 Utilizing Freed Resources

	4 Computational Experiments
	4.1 Dataset and Solver
	4.2 RQ1: Does CPPL Find the Best Configuration?
	4.3 RQ2: Quality of Prediction Based on Gray-Box Data
	4.4 RQ3: Black-Box vs. Gray-Box CPPL

	5 Conclusion and Future Work
	References

	Dynamic Urban Solid Waste Management System for Smart Cities
	1 Introduction
	2 Related Literature
	2.1 Waste Collection in Smart Cities
	2.2 Waste Collection Route Problems
	2.3 Algorithms for Route Optimization

	3 Methodology
	3.1 Problem Assembly
	3.2 Level of Dumpsters
	3.3 Dynamic Selection

	4 Results and Discussion
	4.1 Waste Level Throughout Days
	4.2 Numerical Results Discussion

	5 Conclusions and Future Work
	References

	Single MCMC Chain Parallelisation on Decision Trees
	1 Introduction
	2 Markov Chain Monte Carlo in General and Most Recent Work
	2.1 Probabilistic Trees Packages and Level of Parallelism

	3 Markov Chain Monte Carlo in Decision Tree
	3.1 Specification of the Metropolis-Hastings Search Algorithm on Decision Trees

	4 Parallelising a Single Decision Tree MCMC Chain
	5 Results
	5.1 Quality of the Samples Between Serial and Parallel Implementation
	5.2 Practical Gains

	6 Conclusion
	References

	An Extension of NSGA-II for Scaling up Multi-objective Spatial Zoning Optimization
	1 Introduction
	2 Related Work
	3 Problem Resolution
	3.1 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
	3.2 Solution Encoding Schema
	3.3 The Initialization Operators
	3.4 Crossover Operators
	3.5 Mutation Operators
	3.6 Check and Repair Operators
	3.7 Evaluation and Selection Operators
	3.8 Stop Condition

	4 Response Surface Methodology for Parameters Tuning
	4.1 Multi-Response RSM (MRRSM) Optimization
	4.2 Final Tuned Parameters

	5 Results
	5.1 Performance Measures
	5.2 Comparison Analysis

	6 Conclusion
	References

	Competitive Supply Allocation in a Distribution Network Under Overproduction
	1 Introduction
	2 Equilibrium Flow Allocation in a Single-Commodity Network
	3 Competitive Supply Allocation in a Distribution Network Under Overproduction
	4 Strategies of Suppliers Under Overproduction
	5 Conclusion
	References

	Safe-Exploration of Control Policies from Safe-Experience via Gaussian Processes
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Contribution

	2 Reference Problem
	2.1 Control of a Dynamic System
	2.2 Problem Formulation and Usual Solving Methods

	3 Novel Approach: Safe-Exploring from Safe Experience
	4 Case Studies
	4.1 Case Study 1: Optimal Control of a Water Tank
	4.2 Case Study 2: Optimal Control of a House Heating System

	5 Experiments and Results
	5.1 Results on Case Study 1
	5.2 Results on Case Study 2
	5.3 Software and Data

	6 Conclusions, Limitations, and Perspectives
	References

	Bayesian Optimization in Wasserstein Spaces
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Background
	2.1 Wasserstein Distance
	2.2 Bayesian Optimization

	3 The WST-BO Algorithm
	3.1 BO in the Wasserstein Space
	3.2 Mapping W into X

	4 Computational Results
	4.1 Convergence

	5 Conclusions and Perspectives
	References

	Network Vulnerability Analysis in Wasserstein Spaces
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Wasserstein
	2.1 Basic Definitions
	2.2 The Space of Quantile Functions
	2.3 The Wasserstein Distance for Discrete Distributions: The Optimal Transport Approach
	2.4 The Wasserstein Distance for Discrete Distributions: A Statistical Approach
	2.5 Barycenter and Clustering

	3 Distributional Representation of Networks
	4 Vulnerability Measures
	4.1 Efficiency-Based Vulnerability
	4.2 Wasserstein-Based Vulnerability

	5 Data and Software Resources
	5.1 Networks
	5.2 Software

	6 Computational Results
	6.1 Vulnerability
	6.2 Clustering

	7 Conclusions and Perspectives
	References

	BERT Self-Learning Approach with Limited Labels for Document Classification
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data
	3.2 BERTimbau
	3.3 Self-Learning

	4 Results and Discussion
	5 Conclusion
	References

	Autonomous Learning Rate Optimization for Deep Learning
	1 Introduction
	2 Challenges and Constraints
	3 Methods
	3.1 Framing LR Control as a Learning Problem
	3.2 Generating the Dataset
	3.3 Correcting Ground Truth
	3.4 Building the Model

	4 Experiments
	4.1 Image Classification on CIFAR10
	4.2 Object Detection on MSCOCO
	4.3 Language Modeling on PTB

	5 Limitations and Unexpected Behaviors
	6 Conclusion
	References

	Optimizing Data Augmentation Policy Through Random Unidimensional Search
	1 Introduction
	2 Methods
	2.1 Dimensionality Reduction: 2D to 1D
	2.2 More Search with Less Computation
	2.3 RUA Augmentation Parameters
	2.4 Selecting a Maximum N

	3 Experiments
	3.1 RUA Performance Assessment
	3.2 Ablation Study

	4 Conclusion
	References

	Evaluating Student Behaviour on the MathE Platform - Clustering Algorithms Approaches
	1 Introduction
	2 An Overview on Clustering Algorithms and Related Works
	3 Clustering Approaches
	3.1 Davies-Bouldin Index
	3.2 Evolutionary Bio-inspired Clustering Algorithms
	3.3 K-means Clustering Algorithm

	4 Dataset
	5 Results and Discussion
	6 Conclusions
	References

	Unsupervised Training for Neural TSP Solver
	1 Introduction
	2 Related Work
	3 Unsupervised TSP
	3.1 Unsupervised Loss
	3.2 Variable Discretization
	3.3 Implementation

	4 Neural Model
	4.1 Graph Neural Network

	5 Evaluation
	6 Conclusions
	References

	Comparing Surrogate Models for Tuning Optimization Algorithms
	1 Introduction
	1.1 Related Work

	2 Surrogate Models for Optimization Algorithms
	3 Experimental Results
	3.1 Methodology
	3.2 Effects of Instance Representation and Pre-processing
	3.3 Accuracy of the Surrogate Models
	3.4 Agreement in Reproduction of Effects

	4 Conclusions
	References

	Search and Score-Based Waterfall Auction Optimization
	1 Introduction
	2 Background and Related Works
	3 Proposed Method
	3.1 Estimate the Valuation Matrix
	3.2 The Search Procedure

	4 Empirical Evaluation
	4.1 Synthetic Data
	4.2 The Real-World Auction Data

	5 Summary
	6 Appendix
	References

	Survey on KNN Methods in Data Science
	1 Introduction
	2 Challenges
	3 Choice of Distance Metric
	4 Variations of KNN
	5 Feature Selection and Data Reduction
	6 Nearest Neighbor Matching Algorithms
	7 Synopsis and Concluding Remarks
	References

	Constrained Shortest Path and Hierarchical Structures
	1 Introduction
	1.1 Our Contribution

	2 Problem Formulation
	3 Hierarchical Structures
	3.1 Algorithm k-HSpmax

	4 Algorithm A
	5 Simulation
	6 Conclusion
	References

	Investigation of Graph Neural Networks for Instance Segmentation of Industrial Point Cloud Data
	1 Introduction
	2 Background on Point Cloud Instance Segmentation Methods
	2.1 Geometric Deep Learning Methods
	2.2 Projection Based Methods
	2.3 Graph Neural Networks

	3 Experiments
	3.1 Dataset
	3.2 Implementation

	4 Discussion
	5 Conclusions
	References

	Fitness Landscape Ruggedness Impact on PSO in Dealing with Three Variants of the Travelling Salesman Problem
	1 Introduction
	2 Fitness Ruggedness
	2.1 Fitness Landscape Features
	2.2 Ruggedness Measures

	3 Particle Swarm Optimization for TSP Landscapes
	3.1 PSO for the TSP
	3.2 Fitness Landscape Analysis for PSO
	3.3 TSP Hardness and Fitness Landscape PSO Assessment

	4 Experiments
	4.1 Experimental Setup
	4.2 Investigation of PSO Ruggedness on the Sets of Three Different TSP Variants

	5 Conclusion and Discussion
	References

	A Multi-UAVs' Provider Model for the Provision of 5G Service Chains: A Game Theoretic Approach
	1 Introduction
	2 The Mathematical Formulation
	3 Generalized Nash Equilibrium Problem Formulation
	4 Illustrative Numerical Example
	5 Conclusion and Future Works
	References

	Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques
	1 Introduction
	2 Dataset Description
	3 Data Preprocessing and Feature Importance
	4 Performance Evaluation of ML Models
	5 Conclusions
	References

	Airport Digital Twins for Resilient Disaster Management Response
	1 Introduction
	1.1 Background on Airport Resilience
	1.2 Resilience Indexes

	2 Airport Digital Twin Framework
	2.1 Exploration of Threats and Hazards for Airport Digital Twins
	2.2 Data Sources for the Generation and Maintenance of Airport DTs

	3 Investigation of Environmental Digital Twin Metrics
	4 Discussion
	5 Conclusion
	References

	Strategies for Surviving Aggressive Multiparty Repeated Standoffs (Extended Abstract)
	1 Introduction
	1.1 Model, Notation, and Terminology
	1.2 Related Work
	1.3 Outline of the Paper

	2 Observations on Standoffs
	2.1 General Graphs
	2.2 Dyadic (One-to-One) Duel

	3 Standoffs on Rings
	3.1 Standoffs on Unidirectional Rings
	3.2 Triadic (Mexican) Standoff

	4 Relationships
	5 Standoffs on Complete Bipartite Graphs
	5.1 One-to-Many Standoff
	5.2 Many-to-Many Complete Bipartite Standoff

	6 Conclusion
	References

	A Hybridization of GRASP and UTASTAR for Solving the Vehicle Routing Problem with Pickups and Deliveries and 3D Loading Constraints
	1 Introduction
	2 Vehicle Routing Problem with Pickups and Deliveries and 3D Loading Constraints
	2.1 Problem Description
	2.2 Solution Method

	3 UTASTAR
	4 Computational Experiments
	4.1 Instances
	4.2 Case Study
	4.3 Computational Results

	5 Conclusion
	References

	Packing Hypertrees and the k-cut Problem in Hypergraphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Separation of Partition Inequalities
	2.2 Strength of a Network
	2.3 Network Reinforcement

	3 Packing Hypertrees
	3.1 Integral Packing
	3.2 Fractional Packing

	4 A Relaxation of the k-cut Problem
	4.1 Break-Points of l
	4.2 The Maximum of l
	4.3 An Upper Bound

	5 A Linear Programming Relaxation for k-cut
	6 A Polynomial Algorithm for Fixed and k
	7 Concluding Remarks
	References

	Maximizing the Eigenvalue-Gap and Promoting Sparsity of Doubly Stochastic Matrices with PSO
	1 Introduction
	2 Preliminaries
	2.1 Consensus and Eigenvalues
	2.2 Relevant Approaches
	2.3 Unified Particle Swarm Optimization

	3 Problem Formulation
	4 Experiments
	5 Synopsis and Concluding Remarks
	References

	Value of Information in the Mean-Square Case and Its Application to the Analysis of Financial Time-Series Forecast
	1 Introduction
	2 Value of Information for Translation Invariant Objective Functions
	3 Application: Analysis of Forecasts of Cryptocurrency Log-Returns
	4 Discussion
	References

	Author Index

