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Abstract. Most existing Automatic License Plate Recognition (ALPR)
approaches focus on images containing approximately frontal views. The
considerable variation of LP across complicated environments and per-
spectives remains a massive challenge for a robust ALPR. This work pro-
poses a comprehensive ALPR paradigm emphasizing unrestricted express
screenplays in which the LP may be significantly influenced by diverse
shooting angles, illumination circumstances, and complicated surround-
ings. This system integrates a Spatial Transformer Network, which can
catch and repair numerous distorted LPs in an image so that all the
plates are consistently aligned. Then, a convolutional neural network is
sketched to determine LP characters containing various font styles and
sizes. We evaluated the system with a data set containing annotations
for a challenging LP image set from multiple areas and acquisition states.
The experimental outcomes reveal that our proposed ALPR paradigm
attains adequate recognition accuracy compared to existing methods.

Keywords: Convolutional Neural Network (CNN) · License Plate
(LP) · Spatial Transformer Network (STN) · YOLO

1 Introduction

Automatic License Plate Recognition (ALPR) routines offer various applica-
tions, including identifying stolen vehicles, monitoring traffic, smart toll collec-
tion, etc. [9,23]. The recent advancements in deep learning (DL) and parallel
computing have contributed to achieving excellent performance in several dig-
ital image/video applications, such as optical character recognition and object
detection and recognition, which have tremendously improved ALPR systems.
Recently, convolutional neural network (CNN) has achieved exceptional perfor-
mance and have been the primary machine learning approach for LP detection
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and recognition [2,6,10–13,15,25,27]. Several ALPR commercial systems have
also been employing DL methods. They are usually integrated with web services
and large data centers to process millions of vehicle images daily and constantly
improve the system. Some of the example systems to be mentioned are: Ope-
nALPR1, Sighthound2, and Amazon Rekognition3.

Moreover, the CNN-based object identification routines have become famous
for LPR with the establishment of DL. Typically, faster regions with CNN (R-
CNN) [21], Single Shot MultiBox Detector (SSD) [14], and You only look once
(YOLO) [18] models are employed. Faster R-CNN [21], a modified version of
R-CNN and fast R-CNN that forgoes time-consuming strategy, i.e., selective
search, allows the architecture to understand the area manifestos. In this work,
a NN has been utilized to forecast the region proposals rather than a particular
search procedure to determine the area manifestos on the feature map (FM).
Praveen Ravirathinam and Arihant Patawari in [16] demonstrated the effective
handling of faster R-CNN in the detection of LP. The proposed model could also
detect titled and non-rectangular plates. The mAP of their model went relatively
low since it could not catch small-scale images. The study in [11] presented a
robust object detection model using Fast Yolo and Yolov2 to detect LP in simple
and realistic conditions.

Despite the advances in this field, most approaches focus on recognizing LP
in controlled environments, assuming a frontal view of the vehicles and LP. The
current challenges in ALPR include image distortion, image quality degradation,
weather (snow, rain, etc.), variable illumination conditions, etc. A more permis-
sive picture-gathering setting (e.g., a police car using a camera to track down
an unlawful vehicle) could result in slanting vision. In such cases, the LP may
be severely distorted and, thus, challenging to recognize, for which even existing
standard commercial solutions struggle.

This paper proposes a comprehensive ALPR paradigm capable of perform-
ing well over various unrestricted capture screenplays and camera arrangements.
We integrate a transformation module to estimate and rectify the distortion and
improve the character recognition performance. An additional contribution is
the collection of images from natural scenes, which cover various challenging
scenarios and contain substantial LP distortions. The proposed system could
also discover and identify LPs in independent test data sets using the same
configuration. The data sets employed in this assignment are publicly avail-
able, and the samples can be obtained from SSIG-SegPlate database [4] and the
application-oriented license plate (AOLP) data set [7].

2 Materials

This section provides background information about the various vital compo-
nents employed in the proposed work (Fig. 1).
1 https://www.openalpr.com.
2 https://www.sighthound.com/products/alpr/.
3 https://aws.amazon.com/rekognition/.

https://www.openalpr.com
https://www.sighthound.com/products/alpr/
https://aws.amazon.com/rekognition/
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Fig. 1. Yolov4 architecture [1]

2.1 You Only Look Once (YOLO)

YOLO is one of the one-stage object detector approaches. YOLOv2 [19] model
has been built upon YOLO with several incremental enhancements, such as
batch normalization, excellent resolution, and anchor boxes. To perform better
on smaller objects, YOLOv3 [20] improved upon earlier models by including
the bounding box prediction with an objectness score. Also, it attaches links to
the backbone network layers and performs predictions at three different degrees
of granularity. YOLOv4 [1], a two-stage detector with multiple components,
is currently an upgraded version of earlier generations. The higher versions of
YOLO are volatile to use as a black box for our proposed methodology. The
Yolov4 model consists of Backbone, Neck, and Head, as shown in Fig. 1.

Backbone: It consists of the CSPDarnknet53 model, which detects objects with
higher accuracy. Also, it includes the CSPDarknet53 model because it enhances
through the MISH and other activation functions [1].

Neck: It consists of a spatial pyramid pooling layer (SPP) and Path Aggregation
Network (PAN). SPP plays a crucial role when detecting objects of various scales
for adequate context information and, thus, sits between CSPDarnknet53 and
PAN. It adds a spatial pyramid pooling layer in place of the last pooling layer,
which comes after the final convolutional layer. A maximum pool is applied to
a sliding kernel of various sizes. The result is then created by concatenating the
FMs generated by different kernel sizes [1].

Further, the PAN network’s capacity to reliably maintain spatial information,
which aids in the proper localization of pixels for mask generation, was chosen,
for example, segmentation in YOLOv4. The properties which make PAN so
accurate are Bottom-up Path Augmentation, Adaptive Feature Pooling, and
Fully-Connected Fusion Network [1].

Head: Bounding box location and categorization has performed using the head
(Dense prediction). The procedure is the same as that described for Yolo v3;
hence, it detects the score and the bounding box coordinates (x, y, height, and
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Fig. 2. Proposed system pipeline.

width). The algorithm splits the input image into several grid cells and uses
anchor boxes to forecast the likelihood that each cell will contain an object.
The result is a vector containing the bounding box coordinates and the class
probabilities [1].

2.2 Spatial Transformer Network

Though CNN’s defined as a powerful class of models, they are nonetheless con-
strained by their inability to be computationally and parameter-efficiently spa-
tially invariant to the input data. The Spatial Transformer Network (STN) [8],
a novel teachable module, explicitly permits the spatial modification of informa-
tion within the architecture. Its differentiable module can be added to current
convolutional architectures. It enables the NNs to actively modify FM spatial
relationships based on the FM itself without changing the optimization proce-
dure or adding additional training supervision.

3 Proposed Methodology

The proposed structure is demonstrated in Fig. 2 and comprises three main steps:
LP Detection, LP Transformation and Rectification, and Character Recognition
Network. Given an input image, the custom-trained YOLOv4 model detects LPs
in the scene. The detections are cropped and forwarded to an STN to rectify LP
images with diverse orientations and surroundings details. The corrected images
have a uniform orientation and paltrier surrounding noise. These favorable and
repaired detections are presented to a Character Recognition Network.

3.1 License Plate Detection

Detection of LPs is an essential phase in the ALPR process; hence we adopted a
reliable model to carry it out. To select the best algorithm, we defined the criteria
as 1) The algorithm must have an acceptable performance and recall rate because
even a small amount of missed detection will cause the LP detection process to
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Fig. 3. Examples of detected LP from testing data set

perform worse. 2) For real-time detection to be reliable, the method must have a
high calculation speed. 3) Additionally, since their use in practical applications
won’t be hampered, the calculating costs should be reasonable. As a result, we
carefully chose YOLOv4 as our network for LP detection. When comparing the
cost and speed of calculations, the YOLOv4 algorithm is quite effective. Figure 3
reveals that we have refined the YOLOv4 model configurations according to our
requirements to specialize it for LP detection. Since we need only one class, i.e.,
LP, for object detection, we altered the number of classes from 80 to 1 and, thus,
the modified value of maximum batch size according to the below formula,

max batches = min(training images,min(classes ∗ 2000, 6000)); (1)

Secondly, we altered the number of filters in the convolutional layers using
the formula below.

filters = (classes + 5) ∗ 3; (2)

Thus, we employ a reconfigured model for the detection of LPs.

3.2 Spatial Transformer Network (STN)

The STN suggested in [8] is a differentiable and self-contained module. Thus,
it has been added to current convolutional architectures. It streamlines the
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Fig. 4. Structure of STN [8].

subsequent classification work and improves classification results. It strengthens
a model’s spatial invariance against non-rigid deformations such as translations,
scaling, rotations, and cropping. The suggested model is more resistant to various
shooting angles and noises since the input LP photos are first rectified with the
trained STN to those with a consistent orientation and reduced noise. Figure 4
shows that it is divided into three divisions. 1) The localization network (LN)
derives the affine transformation parameter θ by extracting the key attributes
from the input image I. 2) The initial grid is transformed into a new sampling
grid by the grid generator based on the input θ. 3) The sampler samples the I
by the new grid to create the rectified picture.

Localization Network: The LN accepts the input FM U εRH×W×C with
height (H), width (W ), and channels (C) and outputs (θ), the parameters of
the transformation Tθ operated to the FM: θ = floc(U). The proportion changes
depending on the parameterized kind of transformation; for example, the size
of an affine transformation is six dimensions. A final regression layer must be
present in the LN function floc() to obtain the transformation parameters, but
it can be fully connected or convolutional.

[
x′

y′

]
=

[
θ11 θ12
θ21 θ22

] [
x
y

]
+

[
θ13
θ23

]
(3)

The affine transformation matrix is represented by Aθ.

Aθ =
[
θ11 θ12 θ13
θ21 θ22 θ23

]
(4)
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Table 1. LN Configuration.

Type Configuration

Input Gray-scale distorted LP image

Layer Filters Kernel size Stride size Padding

Max pool 1 – 2× 2 2× 2 0× 0

Conv2D 1 20 5× 5 1× 1 0× 0

Max pool 2 – 2× 2 2× 2 0× 0

Conv2D 2 20 5× 5 1× 1 0× 0

Max pool 3 – 2× 2 2× 2 0× 0

Conv2D 3 20 5× 5 1× 1 0× 0

Fully connected 100 hidden units, tanh activation

Output 6 hidden units, linear output activation

The LN structure summarized in the Table 1 consists of 3 sets of max-pooling
and convolutional layers with a fully connected layer, and finally one output
layer.

Parameterised Sampling Grid: Every pixel of the input LP image has a
corresponding vector of coordinate, i.e., Ki = (xi, yi)T with the pixel index i.
A multiplication operation is performed on theta, and Ki to obtain the affine
converted vector of coordinate, i.e., K ′

i = (x′
i, y

′
i)

T . It is expressed as

(
x′

i

y′
i

)
= Aθ

⎛
⎝xi

yi

1

⎞
⎠ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]⎛
⎝xi

yi

1

⎞
⎠ (5)

K ′ = (K ′
1,K

′
2, ...,K

′
i, ...,K

′
W×H) are set up to obtain the grid generator’s

final output, where W and H in our experiments are 270 and 70, respectively.

Differentiable Image Sampler: In order to generate the rectified image O,
the sampler samples the original image using the sampling grid K ′. Bilinear
interpolation, a differentiable module, is used in this sampling process. The STN,
which may be trained end-to-end alongside other sections of the model, comprises
the LN, the parameterized grid generator, and the image sampler. The STN is
created by combining the LN, parameterized grid generator, and image sampler.
It can be trained end-to-end with other model components. Please refer to [8]
for further information.

3.3 Character Recognition

The recognition process consists of three parts: (1) Preprocessing the rectified
image output of STN; (2) Character Segmentation; (3) Recognition of segmented
characters.
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Fig. 5. (a) Binary conversion of the detected plate. (b) Bounding rectangles containing
contours. (c) Binary images of segmented characters.

Preprocessing Stage: The rectified LP image is processed to make the charac-
ter extraction easier. With a single 8-bit channel and values ranging from 0–255,
where 0 and 255 indicate black and white, the input image is transformed into
a grayscale image. This image is then further altered to become a binary image,
where each pixel has a value of either 0 or 1, as shown in Fig. 5(a). Black is
represented by the value 0, and white by the value 1. A threshold with a value
between 0 and 255 is used to achieve it. We set the threshold value at 200 value.
A pixel over 200 value in the grayscale image will be given a value of 1; otherwise,
the value is 0.

The binary image is further processed for erosion. Erosion [5] is a technique
applied to eliminate unwanted pixels from the object’s boundary, i.e., pixels that
have a value of 1 but should contain a value of 0. First, it considers each pixel in
the image, then its neighbors (kernel size determines the number of neighbors).
The pixel only receives a value of 1 if all of its neighbors also have values of 1,
otherwise, it receives a value of 0.

The noise-free image is further processed for dilation. Dilation [5] fills up the
absent pixels, i.e., pixels that should have a value of 1 but have a value of 0.
Every pixel in the image is first taken into account, followed by its neighbors
(kernel size determines the number of neighbors); a pixel is given a value of 1 if
at least one of its neighbors is also a 1.

Discovering every contour in the input image is essential for extracting the
individual characters from the LP. Curves with the same hue or intensity that
connect all the continuous points (along the boundary) are called contours. After
locating each contour, we examine it individually and determine the size of each
bounding rectangle, as shown in Fig. 5(b). Once we have the dimensions of the
bounding rectangles, we adjust the parameters and filter the necessary rectangles
that contain the required text.

W = range{0,
input length

character count
} (6)

L = range{W

2
, 4 ∗ (

W

5
)} (7)

Using the above equations, we perform a dimension comparison. The rectan-
gles accepted have width and length in the range specified. To achieve this, we
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Table 2. The layout of the designed CNN.

Type Configuration

Input 220× 70 × 1 rectified image

Layer Filter size Kernel size Stride size Padding

Conv2D 1 64 3× 3 1× 1 1× 1

Batch norm 1 – – – –

ReLU 1 – – – –

Max pool 1 – 2× 2 2× 2 0× 0

Conv2D 2 128 3× 3 1× 1 1× 1

Batch norm 2 – – – –

ReLU 2 – – – –

Max pool 2 – 2× 2 2× 2 0× 0

Conv2D 3 256 3× 3 1× 1 1× 1

ReLU 3 – – – –

Conv2D 4 256 3× 3 1× 1 1× 1

Batch norm 4 – – – –

ReLU 4 – – – –

Max pooling 3 – 2× 2 2× 2 0× 0

Conv2D 5 512 3× 3 1× 1 1× 1

ReLU 5 – – – –

Conv2D 6 512 3× 3 1× 1 1× 1

Batch norm 5 – – – –

ReLU 6 – – – –

Max pool 4 – 2× 2 2× 2 0× 0

Dropout Rate: 0.4

Flatten – – – –

Dense Units: 128, Activation: ReLU

Dense Units: 36, Activation: Softmax

perform dimension comparison by accepting only rectangles that have width in
a range of 0, (length of input)/(number of characters) and length in the range
of (width of the input)/2, 4* (width of the input)/5. This process results in
segmenting all the characters as binary images, as shown in Fig. 5(c).

Recognition of Segmented Characters: CNN, a trainable feature extrac-
tor, has recently achieved significant success in computer vision problems. The
success of CNNs results from advancements in two technical areas: developing
methods to prevent overfitting and creating more robust models [3,17]. CNNs are
formed of artificial neurons with self-optimizing properties, making them capable



262 A. Bakshi et al.

Fig. 6. Architecture of the proposed CNN

of extracting and classifying features from images more precisely than any other
algorithm. Since the LP text consists of various font styles and sizes, we trained
a more powerful deep network for this task. We want to give the model a more
instinctive comprehension of the text or character. Among these fundamental
characteristics lower-level text features like character labels and explicitly placed
text pixels. We propose a Deep LPR CNN to accomplish this by training it on
highly supervised text information at multiple levels, including segmentation of
character regions, character labels, and text/non-text binary information. The
additional supervised information provides the model with more specific textual
features, enabling it to do tasks of high-level classification and low-level region
segmentation. It allows our model to systematically recognize where and what
the character is, which is crucial to make a reliable decision.

Table 2 and Fig. 6 display the detailed configuration and structure of the
proposed CNN. The number of channels, stride, padding, and kernel sizes are
similar to the VGGNET [26]. Other LP Recognition Tasks [12,13] have success-
fully applied these configurations.

4 Results and Discussion

The proposed ALPR paradigm is verified for effectiveness; thus, Tensorflow and
Keras frameworks have been utilized to implement the model. Our system config-
uration for evaluation is as follows: Intel core 9th Gen i7 CPU, NVIDIA GeForce
GTX 1650Ti with 4 GB memory, and RAM of 16 GB.

4.1 Data Sets Description

As per our work, a general data set for distorted LP images is unavailable. The
use of robust DL algorithms in the smart recognition of distorted LP is hampered
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Fig. 7. Data set samples of distorted LPs.

Fig. 8. Data set samples of characters of various fonts.

by the absence of enough images. To effectively train our custom YOLOv4, we
created a data set of vehicles with deformed LP in different shooting angles and
complex backgrounds, as shown in Fig. 7. The images were collected from google
images and natural scenes. We collected 3000 images of vehicles with various LP
styles and annotated them to train the model.

We have a data set of 37,623 images to train our CNN model. The data
set includes letters (A–Z) and numbers (0–9) with 50+ unique fonts that are
commonly found on various LP, as shown in Fig. 8. To make the model resistant
to various oblique views, data augmentation methods, including random rotation
and perspective transformations, were used. Therefore, each class of alphabet or
digit contains 1045 images of size 28 × 28. We randomly select 33,861 character
images for training and the remaining 3762 images for testing. Besides, Table 3
provides the comparative analysis of various data sets.

4.2 Result Analysis

The objective is to create a method that works well in several uncontrolled
situations but simultaneously functions adequately in controlled ones (such as
primarily frontal views). We have selected four online data sets: AOLP (RP),
SSIG, and OpenALPR (EU and BR), which, as shown in Table 3, cover a wide
range of scenarios. We have considered two variables: LP angles (frontal and
oblique), as well as the separation between the vehicle and the camera (close
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Table 3. Comparative analysis of various data sets.

Data sets LP angle Images Vehicle Dist

AOLP (Road Patrol) Frontal + oblique 611 Close view

SSIG (test set) Frontal 804 Medium, distant

OpenALPR (BR) Frontal 108 Close view

OpenALPR (EU) Frontal 104 Close view

Proposed data set Oblique 100 All views

Table 4. Performance analysis and comparison for multiple data sets.

Methods AOLP (RP) SSIG test OpenALPR Proposed data set

EU BR

Proposed method
(with no STN)

83.11% 82.01% 92.88% 89.71% 70.67%

Proposed method
(with STN)

96.56% 89.55% 91.35% 92.69% 85.00%

OpenALPR (See
footnote 1)

69.72% 87.44% 96.30% 85.96% 75.32%

Sighthound (See
footnote 2)

83.47% 81.46% 83.33% 94.73% 50.98%

Severo et al. [11] – 85.45% – – –

Wang et al. [13] 88.38% – – – –

Shen et al. [12] 83.63% – – – –

G.S. Hsu et al. [6] 85.70% – – – –

view, intermediate view, distant view). Although these data sets cover various
scenarios, a more general-purpose data set for challenging scenes is still a lim-
itation. Thus as an additional contribution from our collected images, we have
selected and manually annotated a set of 104 images that cover various chal-
lenging scenarios. The images contain substantial LP distortions but are still
viewable to humans. A few images are shown in Fig. 7.

Experimental Results: This section expresses the experimental outcome anal-
ysis of the proposed ALPR mechanism and the comparison with other imple-
mented methods. To testify to the overall performance of the presented model,
we take the percentage of accurately identified LPs (CL) from the total number
of testing LP images (TL). The recognition accuracy is given by

A = CL/TL (8)

A point to note is that all the test data sets have been tested on the same
network. No additional fine-tuning was performed to the network for a specific
data set.
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Table 5. mAP comparison of proposed YOLOv4.

Models mAP

Proposed YoloV4 90%

YOLOv3 [22] 89%

YOLOv2 [24] 76.8%

Fig. 9. Training performance of custom YOLOv4.

Table 4 indicates that the proposed method performs well with various data
sets. Compared to other alternatives, it is superior on AOLP (RP) and SSIG Test
data sets. The AOLP (RP) and SSIG Test data sets manifest the performance
of 96.56% and 89.55% on the proposed method. The variation in performance
on AOLP (RP) data set is approximately 27.0% for different approaches. Simi-
larly, it is nearly 8.0% for the SSIG Test data set. Also, the error rate reduction
due to the proposed method is 88.63% and 79.19%, respectively, compared to
OpenALPR and Sighthound. Table 4 shows the comparison with other imple-
mented systems. Our system has achieved recognition rates comparable to com-
mercially available systems representing controlled scenes, where the LPs have
frontal views and less complicated environments. Our system has achieved the
best performance in AOLP RP and the proposed oblique LPs data sets.

Furthermore, the proposed ALPR method performance on the OpenALPR
data set is inferior compared to other alternatives. The proposed ALPR app-
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Fig. 10. Training accuracy and loss analysis of proposed model.

roach attains more than 90.0% performance but less than 4.95% and 2.04%,
respectively, compared to OpenALPR and Sighthound methods. In addition,
the proposed method, OpenALPR, and Singhhound approaches vary by 7.01%,
26.58%, and 13.27%, respectively, on AOLP (RP), SSIG Test, and OpenALPR
data sets. It indicates the stability of the proposed mechanism in comparison to
other alternatives.

Moreover, the proposed system presents superior outcomes than other mech-
anisms on proposed data sets. The performance of 85.0% is attained for the
proposed data set, and it is better than 10.0% and 35.0%, respectively, com-
pared to OpenALPR and Sighthound. Besides, it is essential to note that STN
has a beneficial impact on identification outcomes. We remove the STN module
from the proposed mechanism to demonstrate the effect. The recognition perfor-
mance in oblique scenes of AOLP and the presented data sets have a significant
gap, as seen in Table 4. This performance difference demonstrates how STN
contributes to improved performance in identifying distorted LP.

Table 5 and Figure 9 illustrates the training performance of the custom
Yolov4 model. The model achieved 90.0% mAP with 2800 iterations which out-
performed the Yolov2 and Yolov3 used in [22,24]. Also, Fig. 10 indicates that the
model is not overfitted on given input data. The continuous decrease in error
trend is observed for the proposed model. Besides, character recognition perfor-
mance is analyzed by a confusion matrix, and it is illustrated in Fig. 10. It is
observed that the presented APLR method misclassified the ‘O’ and ‘0’.
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Fig. 11. Confusion matrix of the character recognition model per class.

5 Conclusion

This work demonstrated a comprehensive approach for ALPR in uncontrolled
environments. Results indicate that the presented ALPR paradigm performs sig-
nificantly better than the existing methods in challenging data sets with License
Plates captured at severely oblique viewpoints. The use of the spatial trans-
former network, which aids in rectifying the distorted license plates, is the pri-
mary contribution of this work. This step helps the Recognition Network (Con-
volutional Neural Network) to understand the character patterns in a simplified
way because it has to deal with far minimal distortion. Besides, we generated a
complex data set by augmenting the images to detect license plates in skewed
views. Currently, the system proposed can recognize the license plate number in
English. For future work, we intend to enhance the current paradigm to recognize
multilingual license plates written in the Devanagari language.
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