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1 Introduction

This chapter discusses a novel approach aimed at determining the relative attitude
and position of objects. Such metrological scenarios frequently arise in applications
that include robotics (collaborative robots, robotic arm control), military applica-
tions, and aeronautics (target configuration). One of the significant aeronautical
applications is the autonomous landing control system for aircraft. This application
is relevant, e.g., in radar-silence conditions, for the landing of ultralight aircraft, for
drones in tracks without a control tower, and for aircraft carriers. Figure 1 illustrates
the landing of an aircraft on an aircraft carrier, indicating the optical head (OH), and
the target.

This metrological aspect is becoming increasingly important also in space
engineering: consult Bresciani [1]. To accomplish the task, the technology has to
provide quick and reliable measurements of the attitude and position of a spacecraft
with respect to the other(s). Several examples of real-world space engineering
applications entailing this advanced capability are briefly reviewed next.

The vision system of the STRONG satellite of the European Space Agency
(ESA) represents a significant example. It has the scope of determining the line of
sight and the range of the relative position between two or more satellites. A second
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Fig. 1 Aircraft landing on an aircraft carrier

example of interest concerns PROBA-3, ESA’s first precision formation flying
mission. A pair of satellites fly together maintaining a fixed configuration as a “large
rigid structure” in space to investigate formation-flying technologies. Conceptually,
the PROBA-3 mission consists of two independent, three-axis stabilized mini
satellites flying in a formation with relative position control accuracy of less than
1 mm, see Fig. 2. The two mini satellites are referred to as Coronograph SpaceCraft
(CSC) with metric dimensions of 1.1 × 1.8 × 1.7 m3, and Occulter SpaceCraft
(OSC) with dimensions of 0.9 × 1.4 × 0.9 m3. The paired satellites jointly form a
150-meter-long solar coronagraph to study the Sun’s faint corona more closely to
the solar rim than has ever been achieved before.

A further noteworthy example is the Magsat program, a joint project by the
National Aeronautics and Space Administration (NASA) and the United States
Geological Survey (USGS) to measure near-earth magnetic fields on a global basis.
The spacecraft consisted of two distinct parts, see Fig. 3: the instrument module
that contains a vector and a scalar magnetometer, in addition to its unique basis
apparatus; and the base module that contains the data-handling, power, communica-
tion, command, and attitude-control subsystems to support the instrument module.
The magnetometers were deployed after launch, using a deployable scissor boom,
to a position of 6 m behind the spacecraft. At this distance, the influence of
magnetic materials from the instrument and base module was less than 1 nanotesla.
The directional accuracy of the vector magnetometer was required to be of 20
arc seconds in all three axes (coordinates). The related error allocation analysis
determined that the attitude control subsystem was required to yield an accuracy
of 7 arc seconds per axis to meet the overall system requirements. The performance
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Fig. 2 PROBA-3 CSC (left) and OSC (right). (Credits: ESA)
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Fig. 3 Magsat orbital configuration. (Credits: NASA)

goal was set to 1 arc second for pitch and yaw, and 5 arc seconds for twist (roll). The
pitch-yaw acquisition range required was ±0.5◦ as a goal, with a precision range
over ±3 arc minutes. The twist system required a precision range of ±0.08◦ over
the pitch-yaw precision range. Moreover, the dynamic range in the magnetometer
platform displacement motion was set to ±0.25◦ in any transverse direction.
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Fig. 4 HAYABUSA-2 deployment phase (left) and MASCOT separation (right). (Credits: JAXA)

Another interesting application is represented by HAYABUSA-2, an asteroid
exploration mission by the Japanese Space Exploration Agency (JAXA), aimed at
studying Asteroid 1999 JU3. The spacecraft deploys the MASCOT lander built in
Europe for an in situ study of surface composition and properties, see Fig. 4. The
landing site is selected prior to the MASCOT deployment by evaluating the global
asteroid map, but restricted to the illuminated asteroid side. During a sampling
“dress rehearsal” maneuver, the main spacecraft descends from its home position
(HP) to an altitude of approximately 100 m and deploys the lander by initializing
a proper delta-v (�v) through the separation mechanism. The lander then freefalls
to the surface, while HAYABUSA-2 ascends back to its HP located at a distance of
15 km. During the first phase, after being released, MASCOT reaches the asteroid.
Here, the metrological aspects are particularly demanding due to the requested
accuracy. Similar scenarios occur, e.g., in active debris removal, object rendezvous,
and formation-flying.

The OCSD (Optical Communications and Sensor Demonstration) program is
the first in a new series of six NASA-managed demonstration missions adopting
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Fig. 5 Two CubeSats in close proximity operations. (Credits: Aerospace Corp)

Fig. 6 Athena telescope.
(Credits: ESA Concurrent
Design Facility)

CubeSat to test technologies that enable new uses of these miniature satellites,
measuring approximately 10 × 10 × 10 cm3. The first mission is a technical
demonstration of the various systems testing the laser communication terminal. The
next two satellites will be deployed as a pair to demonstrate the ability to maneuver
small spacecraft in close proximity (approximately 200 m) to one another using low-
cost sensors and a novel water propulsion, see Fig. 5. This technology can enhance
the ability of small spacecraft to work in coordination with other satellites to explore
asteroids, planets, and moons, as well as inspecting other spacecraft.

The Athena (Advanced Telescope for High-ENergy Astrophysics) mission of
ESA, see https://sci.esa.int/web/athena, is selected in this chapter as a specific case
study for the innovative metrological approach proposed. Athena is based on an
X-ray telescope (see Fig. 6) designed to address the Cosmic Vision science theme
“The Hot and Energetic Universe.” This satellite will utilize a telescope with a 12-m
focal length and two primary instruments: the high-resolution X-ray Integral Field
Unit (X-IFU) and the Wide Field Imager (WFI) featuring a moderate resolution and
a large field of view. The high-precision measurement of the telescope line of sight
(LoS) internal misalignments is crucial. The on-board metrological instrument is
expected to be placed as close as possible to the node and focal plane center of the
telescope mirror to detect at a very high precision the errors in the LoS vector, due
to inevitable thermal distortions.

https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
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Metrological problems of the type illustrated above are usually tackled by
adopting very complex systems that often use different technologies in parallel:
for optical metrology, consult, e.g., Tyson [13] and Yoshizawa [14]. The most
frequently used metrological solutions considered in space applications include the
Universal Lateral and Longitudinal Integrated Sensor (ULLIS), Hexa-Dimensional
Optical Metrology (HDOM), ATV Videometer, and Rendezvous Laser Vision
System (RELAVIS).

• The Universal Lateral and Longitudinal Integrated Sensor (ULLIS) is a sensor
composed of a detector, an optical system, and an electronic unit on one side, in
addition to a set of retroreflectors on the other side. This device has the capability
to measure both the lateral and longitudinal positions of one side with respect to
the other.

• The Hexa-Dimensional Optical Metrology (HDOM) is a metrological system
aimed at providing the 3D-position and 3D-attitude of one side with respect to
the reference frame of another side.

• The ATV Videometer is a metrological system based on visual techniques
utilized to support the docking of the Automated Transfer Vehicle (ATV, ESA)
to the International Space Station (ISS).

• The Rendezvous Laser Vision System (RELAVIS) is a system designed to
support autonomous space operations. RELAVIS provides accurate detection,
tracking, and estimation of spacecraft for rendezvous-docking operations, satel-
lite inspection, and servicing operations.

A promising alternative approach is based on the innovative bifocal concept,
see Bresciani and Musso [2–4]. This system is characterized by a double optical
train, which yields information about position and attitude of an object with respect
to another, for all six degrees of freedom. It covers a variable range of possible
distances, i.e., from ten meters to tens of kilometers, depending on the application
and measurement purpose. In the specific case of space engineering (the application
field considered in this chapter), the bifocal metrological systems can provide
precise information about the mutual position and attitude of two spacecraft in a
short, medium, and far range involving only one sensor and covering either fine
or coarse accuracies. In fact, the bifocal metrology is the first optical projective
system able to tackle six degrees of freedom metrological scenarios that adopts
a single sensor. A simple analytical algorithm solves the related six degrees of
freedom problem without the need for high computing power. The optical system is
very simple and compact: in addition to the light target, composed by only three
Light Emitted Diodes (LEDs), has no particular complexity in terms of volume
accommodation, technological developments, space qualifications, and on-ground
characterization. All the components of this metrological system can be selected
among the already space-qualified items.

These key aspects of the bifocal metrology with respect to the existing metrolo-
gies make the new approach suitable for a wide range of space applications:
rendezvous and docking, co-orbiting satellites, large space instruments based on
formation flying technology, extendable structures, and CubeSat networks.
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The remainder of this chapter is structured as follows. Section 2 presents the
bifocal system concept. Section 3 is dedicated to the mathematical aspects, concern-
ing the projected image generation, the inverse problem of reconstructing the target
position and attitude by the projected image measurement, the analytical solution,
and the relative error analysis. Section 4 discusses two optimization problems
regarding the bifocal system sizing and the light spot shaping, respectively. A real-
world application is illustrated in Sect. 5, and conclusions are presented in Sect. 6.

2 Bifocal System Concept

The bifocal system discussed here consists of the following components:

• A light target consisting of three LEDs placed at the vertices of an isosceles
triangle.

• A two-channel optical head (each channel with its own focal length) that focuses
the light target image on an image sensor.

The working principle of the system is shown in Fig. 7, when two spacecrafts
denoted by S1 and S2 are considered. The optical head consisting of the optical
trains OT1 and OT2 is installed on S1, and the three LEDs are positioned on S2.

The joint presence of two focal lengths allows using the device as a single
focal metrology system with different operative ranges (coarse metrology) or as
a metrology system with a better accuracy than a classical projection metrology

S2

S2 S1

Light source targets

OT1(Optical Train 1)

OT2 (Optical Train 2)

works when the S/Cs
are far

works when the S/Cs
are close

Optical Head

OT1

OT2

Optical Head

OT1

OT2

Fig. 7 Bifocal system: basic concept
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Fig. 8 CCD target image projection

system (fine metrology). When the spacecrafts are either far or close, a coarse
measurement can be performed.When both target images are projected on the image
sensor (charged coupled device, CCD) a refined measurement can be carried out: see
Fig. 8.

Considering the target light spots (three for each optical channel) on the projected
image plane, through a simple mathematical algorithm requiring little computing
power, it is possible to determine the position and attitude accurately (considering
six degrees of freedom, including the roll, pitch, and yaw angles), with respect to
the optical head.

3 Mathematical Model

In this section, the analytical computation of position and attitude of a generic target
with respect to all the six degrees of freedom using a bifocal optical system is
described: for further details, consult Bresciani and Musso [2–4].

3.1 3D-Transformation Matrix

Consider an orthogonal right-handed 3D-coordinate system with origin O and axes
x, y, and z. Angular rotations around the axes x, y, and z can be represented by the
following rotation matrices, see, e.g., Ghali [6]:

Rx (θ) =

⎡
⎢⎢⎣

1 0
0 cos θ

0 0
sin θ 0

0 − sin θ

0 0
cos θ 0
0 1

⎤
⎥⎥⎦ , (1-1)
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Ry (β) =

⎡
⎢⎢⎣

cosβ 0
0 1

− sinβ 0
0 0

sinβ 0
0 0

cosβ 0
0 1

⎤
⎥⎥⎦ , (1-2)

Rz (γ ) =

⎡
⎢⎢⎣

cos γ sin γ

− sin γ cos γ

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦ , (1-3)

where θ , β, and γ are the rotation angles with respect to x, y, and z.
The 3D-translation matrix is defined by

Txyz (�x,�y,�z) =

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
�x �y

1 0
�z 1

⎤
⎥⎥⎦ , (2)

where �x, �y, and �z are the displacements along the axes x, y, and z, respectively.
Rotations and translations are applied to a point with coordinates (X, Y, Z) by the

following transformation:

[
X′, Y ′, Z′, 1

] = [X, Y,Z, 1]Rx (θ)Ry (β) Rz (γ ) Txyz (�x,�y,�z)

= [X, Y,Z, 1]M (θ, β, γ,�x,�y,�z)
(3)

Here (X, Y, Z) is the original point, and (X
′
, Y

′
, Z

′
) is the point after the roto-

translation shown above. The matrixM(θ ,β, γ ,�x,�y,�z) = Rx(θ ) Ry(β) Rz(γ ) T
xyz (�x,�y,�z) can be expressed as

M (θ, β, γ, �x, �y, �z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Hence, the explicit form of Eq. (3) is

[
X′, Y ′, Z′, 1

] = [X, Y,Z, 1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cosγcosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The transformation shown above is used as a basic underlying concept for
the optical application discussed in this chapter. Prior to introducing the bifocal
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P

f

D l
Pp

Fig. 9 Mono-focal projective system

approach, the mono-focal case is outlined, consisting of a simple optical projective
system. In this scenario, the relationship between the object P and its projected
image Pp is illustrated in Fig. 9.

In Fig. 9, D is the horizontal distance between the target point P and the lens
utilized, while l is the horizontal distance between the lens center and the projection
Pp. The distance between the lens focus and the projection is denoted by f. The
axes x and y of the right-handed reference frame (x, y, z) considered here lie on the
projection plane (y is the vertical axis); the axis z (oriented toward the target point
P) is parallel to D and l. The following expression holds:

Pp (XP, YP, ZP) = Pp

(
lX

D
,
lY

D
, 0

)
(6)

where (X, Y, Z) are the coordinates of the target point P.
Considering the relation (6), Eq. (5) links the image point Pp(XP, YP,ZP) and

the corresponding P′
p(X′

P, Y ′
P,Z′

P) obtained by the rotations θ , β, and γ and the
displacements �x, �y, and �z along the axes. The following equation holds:

[
X′

P, Y
′
P, 0,

l

D

]
= l

D
[X, Y, 0, 1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

3.2 Bifocal Problem Statement

The bifocal system discussed in this chapter is depicted schematically by Fig. 10.
Here A is the target and B details the positions of the three light sources P1(X1, Y1,
Z1), P2(X2, Y2, Z2), P3(X3, Y3, Z3) selected as the target. C represents the bifocal
optical system as a whole (optical head), consisting of two equal-size lenses and
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Fig. 10 Schematic representation of a bifocal system

four mirrors. D and E are the perpendicular and parallel views, respectively, of the
image plane.

The bifocal system is, in fact, a combination of two mono-focal systems
involving lenses 1 and 2, with l1 and l2 as the corresponding internal optical lengths.
The two generated images (colored in blue and red for lenses 1 and 2) have the
magnitudesM(f1) andM(f2), depending on the focal distances f1 and f2, respectively.
The two associated sets of projected points, generated by the target three (light-
)points for lenses 1 and 2 are denoted by P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1,
Z2p1), P3p1(X3p1, Y3p1, Z3p1), and P1p2(X1p2, Y1p2, Z1p2), P2p2(X2p2, Y2p2, Z2p2),
P3p2(X3p2, Y3p2, Z3p2).

The general bifocal problem consists of determining the position and attitude of
a target (identified by three light sources) with respect to a given initial condition, by
measuring the positions of the corresponding projected six points generated by the
bifocal system. Specifically, it is assumed that the initial positions of the three target
(light-)points P1(X1, Y1, Z1), P2(X2, Y2, Z2), P3(X3, Y3, Z3) are known with respect
to the assigned reference frame (associated with the bifocal optical head), as well
as their projected images P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), P3p1(X3p1,
Y3p1, Z3p1), and P1p2(X1p2, Y1p2, Z1p2), P2p2(X2p2, Y2p2, Z2p2), P3p2(X3p2, Y3p2,
Z3p2), generated by lenses 1 and 2. After rotations θ , β, and γ of the target (around
the axes x, y, and z, respectively), and displacements �x, �y, and �z of the target
along the axes x, y, and z, the projected points P

′
1p1(X

′
1p1, Y

′
1p1, Z

′
1p1), P

′
2p1(X

′
2p1,

Y
′
2p1, Z

′
2p1), P

′
3p1(X

′
3p1, Y

′
3p1, Z

′
3p1), generated by lens 1, are correlated with the

corresponding initial projected points P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1),
P3p1(X3p1, Y3p1, Z3p1), generated by lens 1, by three equations having the general
form of Eq. (5). Similarly, three equations of the general form of Eq. (5) relate the
new projected points P

′
1p2(X

′
1p2, Y

′
1p2, Z

′
1p2), P

′
2p2(X

′
2p2, Y

′
2p2, Z

′
2p2), P

′
3p2(X

′
3p2,
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Y
′
3p2, Z

′
3p2), generated by lens 2, with the corresponding initial projected images

P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), P3p1(X3p1, Y3p1, Z3p1) generated by
lens 2.

In general, a roto-translation of the target θ , β, γ , �x, �y, and �z (with respect
to the known initial condition) can be expressed by a system of six equations of
the form of Eq. (5), each corresponding to one of the projected points P

′
1p1(X

′
1p1,

Y
′
1p1, Z

′
1p1), P

′
2p1(X

′
2p1, Y

′
2p1, Z

′
2p1), P

′
3p1(X

′
3p1, Y

′
3p1, Z

′
3p1), P

′
1p2(X

′
1p2, Y

′
1p2,

Z
′
1p2), P

′
2p2(X

′
2p2, Y

′
2p2, Z

′
2p2), and P

′
3p2(X

′
3p2, Y

′
3p2, Z

′
3p2). The bifocal problem

consists of inverting this system of equations so that the new configuration of the
target (with respect to the initial condition), expressed by θ , β, γ , �x, �y, and �z
can be derived by the direct measurements of the projected points shown above:
here we assume that P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), and P3p1(X3p1,
Y3p1, Z3p1) are known.

3.3 Mathematical Solution

In order to solve the inverted system of equations introduced in Sect. 3.2, as per
the initial conditions, the three target light-points are specified with respect to the
optical head reference frame as follows:

P1 (X1, Y1, Z1) = (X0, 0, 0) ,

P2 (X2, Y2, Z2) = (–X0, 0, 0) ,

P3 (X3, Y3, Z3) = (0, Y0, 0) .

As shown above, P1 and P2 are placed (symmetrically) along the x-axis at a
distance X0 from the origin, while P3 is on the y-axis at a distance Y0 from the
origin. Since P1 and P2 are not affected by rotations around the x axis, Eq. (5)
can be applied to both corresponding projected points, obtained either by lens 1 or
2, by adopting the simplifying condition θ = 0. This yields the following specific
equations for the projections P′

1p1 and P′
2p1:

[
X′

1p1, Y
′
1p1, 0,

l1
D + d1

]
= l1

D + d1
[X0, 0, 0, 1]

⎡
⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

− sin γ cos γ 0 0

sinβ cos γ sin γ sinβ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎦

,

(8-1)

[
X′

2p1, Y
′
2p1, 0,

l1

D + d1

]
= l1

D + d1
[−X0, 0, 0, 1]

⎡
⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

− sin γ cos γ 0 0

sinβ cos γ sin γ sinβ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎦

,

(8-2)
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where D + d1 is the working distance of lens 1. After algebraic manipulations that
are omitted, the following equations are obtained:

�X′
12p1 = 2l1

D + d1
X0 cos γ cosβ, (9-1)

�Y ′
12p1 = 2l1

D + d1
X0 sin γ cosβ, (9-2)

where �X′
12p1 ≡ X′

1p1 − X′
2p1 and �Y ′

12p1 ≡ Y ′
1p1 − Y ′

2p1. Further technical
details concerning the mathematical formulation outlined here are presented by
Bresciani and Musso [2–4].

Operating exactly the same way as lens 1, for lens 2 analogous equations are
obtained:

�X′
12p2 = 2l2

D + d2
X0 cos γ cosβ, (10-1)

�Y ′
12p2 = 2l2

D + d2
X0 sin γ cosβ, (10-2)

where �X′
12p2 = X′

1p2 − X′
2p2 and �Y ′

12p2 = Y ′
1p2 − Y ′

2p2.
Combining (9-1), (9-2), (10-1), and (10-2) yields the following relations:

γ = a tan

(
�Y ′

12p1

�X′
12p1

)
, (11)

D = l1d2�X′
12p2 − l2d1�X′

12p1

l1�X′
12p1 − l2�X′

12p2
, (12)

β = a cos

⎛
⎝ �X′

12p1 (D + d1)

2l1X0 cos
(
a tan

(
�Y ′12p1
�X′12p1

))
⎞
⎠ . (13)

Additionally, by (8-1), (8-2), (11), (12), and (13), the displacements �x and �y
can be expressed, respectively, as follows:

�x = X′
1p1

D + d1

l1
− X0 cos γ cosβ (14)

�y = Y ′
1p1

D + d1

l1
− Y0 cos γ cosβ (15)
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Applying Eq. (5) to the projected point P
′
3p1 (generated by lens 1), the following

equations hold:

X′
3p1 = l1Y0

D + d1

(
sinϑ sinβ cos γ − sin γ cosϑ + �x

Y0

)
, (16-1)

Y ′
3p1 = l1Y0

D + d1

(
sinϑ sinβ sin γ + cos γ cosϑ + �y

Y0

)
. (16-2)

Finally, ϑ can be derived by (16-1) and (16-2), giving rise to the following
expressions:

ϑ = a sin

(
B

sinβ

)
, (17)

B =
(
X′
3p1Y0 − �xQ

)
cos γ +

(
Y ′
3p1Y0 − �yQ

)
sin γ

QY0
,

Q = l1Y0

D + d1
.

To summarize the above discussion, the solutions obtained in this section for the
inverted system introduced in Sect. 3.2 are represented by relations (11), (12), (13),
(14), (15), and (17). The following obvious conditions are postulated:

γ ∈
]
−π

2
,
π

2

[
�X12p1 �= 0, (18)

l1�X′
12P1 − l2�X′

12p2 �= 0

(
X′
1p1

l2
�= X′

1p2

l1

)
, (19)

β ∈ ]0, π [ , (20)

ϑ ∈
[
−π

2
,
π

2

]
. (21)

It is understood that X0 > 0, Y0 > 0, l2 > l1 �= 0 , d2 > d2 �= 0. It should be
also noted that, due to the construction of the bifocal system, the following relations
hold:



Bifocal Metrology Applications in Space Engineering 109

�X′
12p1 �= 0,

l1d2�X′
12p2 − l2d1�X′

12p1

l1�X′
12P1 − l2�X′

12p2
> 0, and l1�X′

12P1 − l2�X′
12p2 �= 0.

During the algebraic manipulation carried out to obtain expression (13), it has

been implicitly assumed that .−1 ≤ �X′
12p1(D+d1)

2l1X0 cos γ
≤ 1. Therefore, expression (13) is

well defined for all given values of �X′
12p1 and �Y ′

12p1 (recall also that, by (18),
.γ �= ±π

2 ). Analogous considerations hold for (17) by (20). Note additionally that
the existence conditions for γ can be extended considering the whole angle [0, 2π ]
provided that it is possible to identify, each time, the specific sub-intervals involved

(e.g., .γ ∈ ]−π
2 , π

2

[
or .γ ∈

]
π
2 , 3π

2

[
). In any case, the conditions .γ �= ±π

2 and

.γ �= 3π
2 must be satisfied. Analogous considerations hold for β, while no extension

for ϑ would be of use.

3.4 Error Analysis

This section studies the impact of measurement errors, relative to the image-points,
on the computation of the position and attitude of the target (by the inverse equation
system corresponding to (11), (12), (13), (14), (15), and (17)). More precisely,
taking a worst-case perspective, the maximum error for the terms ϑ, β, γ , D, �x,
and �y is estimated, assuming that the absolute value of the measurement error
associated with the variables X′

1p1, Y ′
1p1, X′

2p1, Y ′
2p1, Y ′

3p1, .X′
1p2, and .X′

2p2 is
less than a given E. The distance D is deemed to represent the most critical aspect,
especially when large distances are involved. The maximum error |εD|max with
respect to the distance D is briefly discussed next.

Considering Eq. (12), the error �εD� with respect to the actual distance D is
expressed as follows:

| εD |=
∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣ , (22)

where ε′
12p1 and .ε′

12p2 represent the measurement errors corresponding to �X′
12p1

and .�X′
12p2, respectively. Depending on the specific technology adopted, with the

estimated maximum error E, the following bounds are considered:

∣∣∣ε′
12p1

∣∣∣ ≤ E, (23-1)

∣∣∣ε′
12p2

∣∣∣ ≤ E. (23-2)
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Since .
l1d2�X′

12p2−l2d1�X′
12p1

l1�X′
12p1−l2�X′

12p2
= D (D ≥ 0), and l1�X′

12p1 − l2�X′
12p2 < 0

(l2 > l1 and �X′
12p2 > �X′

12p1 due to the way the optical system is constructed),
the following relation holds:

|εD|max = maxϑ,β,γ,�x,�y, ε′
12p1,ε

′
12p2

∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣ ,

(24)

where ϑ, β, γ , �x, �y vary within given intervals (delimiting the roto-translations

to consider). To find a first approximation .

∣∣∣ ∼
εD

∣∣∣
max

for (24) (by involving a reduced

number of variables), the following terms are introduced:

η−
D = maxϑ,β,γ,�x,�y,�z

{
D − l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2E + l2d1E

l1�X′
12p1 − l2�X′

12p2 − l1E − l2E

}
,

(25-1)

η+
D = maxϑ,β,γ,�x,�y,�z

{
l1d2�X′

12p2 − l2d1�X′
12p1 − l1d2E − l2d1E

l1�X′
12p1 − l2�X′

12p2 + l1E + l2E
− D

}
.

(25-2)

Here we assume .
l1d2�X′

12p2−l2d1�X′
12p1+l1d2E+l2d1E

l1�X′
12p1−l2�X′

12p2−l1E−l2E
> 0, and

.
l1d2�X′

12p2−l2d1�X′
12p1−l1d2E−l2d1E

l1�X′
12p1−l2�X′

12p2+l1E+l2E
> 0. The approximate term .

∣∣∣ ∼
εD

∣∣∣
max

( .

∣∣∣ ∼
εD

∣∣∣
max

>

|εD|max) is thus expressed as

∣∣∣ ∼
εD

∣∣∣
max

= max
{
η−
D , η+

D

}
. (26)

Let us remark that more than one single critical roto-translation in (24) or (26)
could occur that gives rise to the maximum error: for example, due to symmetrical
conditions. The issue of identifying the whole set of critical roto-translations is not
trivial, and it is not considered in this chapter: it could be the subject of further
research.

4 Optimization Aspects

Mathematical optimization models have been introduced in Sect. 3.4 concerning
the error analysis of the studied optical system. There, a worst-case approach is
adopted to estimate the maximum possible error with respect to the distance D (due
to measurement errors relative to the projection differences �X′

12p1 and �X′
12p1
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associated with lenses 1 and 2, respectively). In this section, two optimization
problems are discussed with the scope of maximizing the overall performances
of the bifocal system illustrated in this chapter. The first optimization problem,
discussed in Sect. 4.1, is aimed at finding the size of the optical head so that the
error with respect to distance D becomes as small as possible.

The second optimization problem concerns the specific features of the light spots
utilized as the target image for the bifocal system. In fact, the light spots are not
idealized geometrical points (as assumed in the mathematical formulation of Sect.
3), but they have an actual size. Therefore, each light spot is identified as a surface by
the image sensor (CCD). In general, the light energy intensity on this surface does
not have a uniform distribution. The concept of light spot centroid is introduced to
represent the distribution of the light energy intensity on the light spot surface. This
concept is the equivalent to the center of mass for a mass distribution in a geometric
domain. Each light spot centroid is identified with one of the three single light points
utilized by the bifocal system, to determine the roto-translation of the whole target
as discussed in Sect. 3. In general, a roto-translation of the target yields a variation
in the light energy intensity distribution on the surface of each light spot. The
position of each light spot centroid typically varies as well with respect to the CCD.
This centroid displacement is thus due to not only the actual roto-translation of the
whole target, but also to the change in the light energy intensity distribution on the
light spot surface. Therefore, the centroid displacement on each light spot surface,
obtained after a roto-translation of the target, also depends on the light energy
intensity distribution of the spot before the roto-translation. If the roto-translations
of the target are limited with respect to the initial (nominal) condition, then the
light energy intensity distribution of each light spot in the nominal condition can
be properly shaped a priori, to minimize the centroid displacement. Consequently,
under these proximity conditions, the precision of the bifocal metrological approach
is maximized. This optimization aspect is discussed in Sect. 4.2.

4.1 System Sizing Optimization

The maximum error |εD|max related to the distance D, as expressed by (24) depends
implicitly also on the following parameters that characterize the bifocal system:
d1, d2 (corresponding to D + d1, D + d2 working distances of lenses 1 and 2,
respectively), l1, l2 (internal optical lengths of lenses 1 and 2, respectively), and
f1, f2 (focal distances of lens 1 and 2, respectively). These parameters can vary
within their ranges: .d1 ∈ [

D1,D1
]
, .d2 ∈ [

D2,D2
]
, .l1 ∈ [

L1, L1
]
, .l2 ∈ [

L2, L2
]
,

.f1 ∈ [
F1, F1

]
, .f2 ∈ [

F2, F2
]
, where .D1, .D2, L1, .L2, .F1, .F2 and .D1, .D2, L1, .L2,

.F1, .F2 are the lower and upper technological bounds. Next, the following minimax
optimization problem is considered:
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|εD|min = mind1 ,d2 ,l1 ,l2 ,f1 ,f1

{
maxϑ,β,γ,�x,�y,ε′

12p1 ,ε
′
12p2

∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣

}
.

(27)

Here, .|εD|min is the minimum error related to the distance D, with respect
to the parameters d1, d2, l1, l2, f1, and f2, in the worst case as expressed by
(24). Considering the difficulty of this optimization problem, especially if a
global optimization point of view is adopted (see, e.g., [5, 8, 11]), the variables
.ϑ, β, γ,�x,�y, ε′

12p1, ε
′
12p2, and .ε′

12p2 can be fixed in (27) at the values obtained by
solving optimization problem (24). This implies that problem (27) can be simplified
as follows:

|εD|min = mind1,d2,l1,l2,f1,f1

{∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣

}
, (28)

where only d1, d2, l1, l2, f1, f1 are considered as variables, while .�X′
12p2,�X′

12p1,

ε′
12p2, ε′12p1 take instead the values corresponding to the worst-case solution pro-
vided by (24). In this framework it is implicitly assumed that exclusively the critical
roto-translation corresponding to the solution obtained for (24) is considered. If the
number of critical roto-translations providing the same error |εD|max as the solution
of (24) is available, then it is possible to properly extend optimization problem (28)
in order to consider all of these. For this purpose, the error

(|εD|)α =
∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣
α

can be associated with each critical roto-translation solution α (fixing the corre-
sponding values .ϑ, β, γ,�x,�y, ε′

12p1, ε
′
12p2 obtained from (24)). The extended

optimization problem can be then expressed as .mind1,d2,l1,l2,f1,f1

∑
α (|εD|)α .

4.2 Light Spot Optimization

In this section, first we recall the concept of light spot centroid: then the spot
optimization model is formulated. As we pointed out, the concept of centroid in
optical metrology is analogous to that of the center of mass relative to a continuous
mass distribution within a given domain. As is known, this is formulated as follows:

uc =
∫
S uβρ(u)du∫
S ρ(u)du

. (29)

Here, uc is the center of mass, in the three-dimensional case uβ with β = 1,
2, 3 are the coordinates in the given reference frame, S is the continuous domain,
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and ρ(u) is the associated density function. In the optical context, an analogous
expression holds, when the mass density is replaced by the light energy intensity
I(u). Regarding the discretized image created on the CCD, the following two-
dimensional light intensity centroid is introduced:

Xc =
∑

i,j Xij I
(
Xij , Yij

)

IT
, Yc =

∑
i,j Yij I

(
Xij , Yij

)

IT
. (30)

Here, (Xij,Yij) ∈ N0 × N0 (denoting non-negative integer coordinates) are the
points (pixels) representing the CCD (discretized) domain with respect to a given
orthogonal reference frame (O, X, Y) associated with the CCD. The integer-valued
function I(Xij,Yij) ∈ N is the light energy intensity. Without loss of generality, it is
assumed that (X00, Y00) = (0, 0), and that Xij, Yij ≥ 0 holds for all pairs i, j. Any roto-
translation of a target (consisting of light spots) generates, in general, a displacement
in the corresponding light spot centroids. Therefore, considering a general light
spot, the relative centroid displacement with respect to the CCD reference frame
coordinates is expressed as follows:

�Xc =
∣∣∣∣∣

∑
ij Xij Iij − ∑

ij Xij I
′
ij

IT

∣∣∣∣∣ , �Yc =
∣∣∣∣∣

∑
ij Yij Iij − ∑

ij Yij I
′
ij

IT

∣∣∣∣∣ .
(31)

Here, Iij and .I ′
ij represent (with a simplified notation) the intensities I(Xij,Yij)

and I ′ (Xij,Yij) before and after the centroid displacement, respectively. Moreover,
IT ≡ ∑

Iij with the intensity conservation condition shown below:

∑
ij

Iij =
∑
ij

I ′
ij . (32)

Therefore, the overall Euclidean centroid displacement is

�c = 1

IT

√
�Xc

2 + �Yc
2. (33)

In the following, it is assumed that the light spots corresponding to the initial
target position and attitude with respect to the bifocal system can be generated
so that their intensity distributions are identical to each other. Therefore, the opti-
mization problem discussed here focuses on a single light spot. Its initial intensity
distribution w(Xij,Yij) ∈ N, expressed in bit units and referred to in the following
as the nominal state, is considered together with a changed state w

′
(Xij,Yij) ∈ N

(also expressed in bit units). In the following, these notations are simplified as
wij and w′

ij. The changed state w′
ij corresponds to an overall intensity distribution

variation, considered as representative of the perturbations of the nominal light spot
in a limited neighborhood of the initial conditions.
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The objective of the optimization approach proposed is to determine an inten-
sity distribution wij for the nominal light spot to minimize the overall centroid
displacement, as expressed by (33) corresponding to the perturbed intensity state
w′

ij. Moreover, we want to determine the intensity distribution wij so that it is highly
“regular,” symmetrical with respect to the centroid and strongly concentrated around

it (while vanishing as more external areas are reached). The function .w′
ij = fij

(
wij ,

ϑ, β, γ , �x, �y, �z) that, for each (Xij,Yij), associates the perturbed intensity w′
ij

with the nominal intensity wij and the general roto-translation ϑ, β, γ , �x, �y, �z
(recall Sect. 3) is very difficult to express mathematically.

Observe that considering all possible perturbations (ϑ, β, γ , �x, �y, �z) in a
limited neighborhood of the nominal condition (corresponding to ϑ = 0, β = 0,
γ = 0, �x = 0, �y = 0, �z = 0) would lead to a challenging minimax problem.
These aspects are therefore omitted in the model discussed here, providing instead
a simplified approximate formulation of the problem. This model is expressed
in terms of mixed integer linear programming (MILP), consult, e.g., Hillier [7],
Minoux [9], and Nemhauser [10]. The convention of using capital letters for
constants and lower-case letters for variables is adopted henceforth.

A discretized domain (sub-domain of the CCD containing the light spot) is
described by the integer coordinates (Xij,Yij) assuming that i ∈ [0,N], j ∈ [0,N],
and N is an even integer. The perturbed intensity distribution .w′

ij is supposed to be

determined by imposing that .∀i, j

∣∣∣wij − w′
ij

∣∣∣ ≤ �W and .
∑

ij

∣∣∣wij − w′
ij

∣∣∣ = PT,

with .�W and PT as appropriately chosen positive constants, in addition to the total
intensity conservation Eq. (32) applied to wij and .w′

ij,, i.e., .
∑

ij w = .
∑

ij w′ij . All
this is, as a matter of fact, just a simplifying trick to avoid the non-trivial challenge

of expressing the actual function .w′
ij = fij

(
wij , ϑ, β, γ , �x, �y, �z) explicitly,

as well as of dealing with a far more challenging minimax problem. The resulting
formulation is therefore a surrogate model, defined in order to provide approximate
practical solutions, while removing excessive complexity.

Following this approach, in addition to the intensity conservation condition (32),
we assume that it is possible to choose .�Wand PT so that the conditions listed
above can realistically condition the intensity distributions .w′

ij as approximately
representative of all considered perturbations. In this perspective, these conditions,
acting on the intensity variations both at a pixel and at an overall level, can be

interpreted as a relaxation of the constraint .w′
ij = fij

(
wij , ϑ, β, γ , �x, �y, �z) and

a significant simplification of the original minimax problem. The values for .�Wand
PT have to be estimated a priori, and this necessarily entails some arbitrariness.
For instance, these parameters could be chosen bearing in mind the most critical or
the most frequent cases. In general, different estimations lead to diverse solutions
for the intensity distribution wij of the nominal light spot. The alternative solutions
obtained can be compared to each other, to select (by means of dedicated numerical
simulations) the most suitable scenario from a practical point of view.
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Considering all aspects stated above, the simplified model is formulated next,
explaining step by step the meaning of the expressions involved. First, the binary
variables σ ij ∈ {0, 1}, .δ−

ij ∈ {0, 1}, and .δ+
ij ∈ {0, 1} are defined as follows:

σij = 1 if pixel (i, j) is active
(
i.e., wij > 0

)
σij = 0 otherwise,

δ−
ij = 1 if wij > w′

ij ,

δ−
ij = 0 otherwise,

δ+
ij = 1 if wij < w′

ij ,

δ−
ij = 0 otherwise.

Here .wij , w
′
ij ∈ N0.

The variables .d−
ij ∈ N0 and .d+

ij ∈ N0are defined next as follows:

d−
ij = wij − w′

ij if wij > w′
ij ,

d−
ij = 0 otherwise,

d+
ij = w′

ij − wij if wij < w′
ij ,

d+
ij = 0 otherwise.

The variables σ ij, .δ
−
ij , .δ

+
ij , .d

−
ij , and .d+

ij are interrelated as shown below:

∀i, j δ−
ij + δ+

ij ≤ σij , (34)

∀i, j d−
ij ≥ �Wδ−

ij , (35-1)

∀i, j d+
ij ≥ �Wδ+

ij , (35-2)

∀i, j d−
ij ≤ �Wδ−

ij , (36-1)

∀i, j d+
ij ≤ �Wδ+

ij . (36-2)
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Here the positive integers .�Wand .�W represent the minimum and maximum
admissible intensity change, expressed in bit units, for each active pixel (i, j). The
lower bounds (35-1) and (35-2) are introduced to easily realize detectable changes
in the intensity distribution .w′

ij . The following lower and upper bounds hold for
both the nominal and perturbed states wij and .w′

ij , respectively, in each active pixel:

∀i, j wij − d−
ij ≥ Wσij , (37-1)

∀i, j wij + d+
ij ≤ Wσij . (37-2)

Here the positive integers .Wand .W represent the minimum and maximum
admissible intensity associated with each pixel (i, j). From (37-1) and (37-2) it can
also be observed that all active pixels in the nominal condition coincide with the
active pixels of the perturbed state: this way, the overall shape of the light spot
remains unaltered.

The next condition represents the overall intensity perturbation imposed,
expressed again in bit units:

∑
ij

(
d−
ij + d+

ij

)
= PT (38)

Here PT is a positive integer.
The overall intensity (WT) conservation condition, involving both the nominal

and the perturbed states wij and w′
ij, is formulated as:

WT =
∑
ij

wij =
∑
ij

w′
ij . (39)

As a reasonable general condition, the intensity distribution wij is expected to
approximate a bell-shaped continuous function with compact support. (For a similar
shape, one can think of an appropriately truncated normal distribution.) The condi-
tions introduced next pursue this overall shape by regularity and symmetry criteria.
Specifically, the conditions given below determine a monotonically increasing or

decreasing trend, with respect to the central pixel .

(
î, ĵ

)
for the nominal intensity

distribution wij:

∀i, j | i < î − 1 wij + DWσij ≤ wi+1,j , (40-1)

∀j w
î−1,j ≤ w

îj
, (40-2)

∀j w
î+1,j ≤ w

îj
, (40-3)
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∀i, j | i > î + 1 wij − DWσij ≥ wi+1,j , (40-4)

∀i, j | j < ĵ − 1 wij + DWσij ≤ wi,j−1, (40-5)

∀i w
i,ĵ−1 ≤ w

iĵ
, (40-6)

∀i w
i,ĵ+1 ≤ w

iĵ ′ (40-7)

∀i, j | j > ĵ + 1 wij − DWσij ≥ wi,j+1. (40-8)

Here, .î, ĵ = N
2 , and the positive integer .DW is the minimum intensity

increment/decrement (expressed in bit units) corresponding to two adjacent indices
i, i + 1 or j, j + 1, except for the indices immediately adjacent to .î and .ĵ . The
following “Lipschitzian” conditions are further imposed to the nominal intensity
distribution wij to prevent sudden increments/decrements in adjacent indices:

∀i, j | i < î wi+1,j − wij ≤ DW, (41-1)

∀i, j | i > î wij − wi+1,j ≤ DW, (41-2)

∀i, j | j < ĵ wi,j+1 − wij ≤ DW, (41-3)

∀i, j | j > ĵ wij − wi,j+1 ≤ DW, (41-4)

where .DW is an appropriate bound, compliant with the given technological
restrictions.

Several “weak” symmetry conditions are introduced additionally, to induce a
desired overall trend of the nominal intensity distribution wi, j. Their formulation
is shown below:

∀j w0j = wNj , (42-1)

∀j w
î−1,j = w

î+1,j , (42-2)
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∀j
∑

i<î

wij =
∑

i>î

wij , (42-3)

∀i wi0 = wiN, (42-4)

∀i w
i,ĵ−1 = wi,j+1, (42-5)

∀i
∑

j<Ĵ

wij =
∑

j>ĵ

wij . (42-6)

To consider realistic scenarios, it can be further imposed that all the pixels
corresponding to non-decreasing intensity with respect to the nominal distribution
(i.e., w′

ij ≥ wij) delimit convex areas of the domain (Xij,Yij). For example, additional

conditions such as ∀i, j .
∑

i>i,j d−
ij ≤ N2

(
1 − δ+

ij

)
can be introduced. These

conditions express the property that from a certain index i (not determined a priori)
all subsequent pixels with index .i > i have a non-decreasing intensity and vice
versa. (However, these aspects are not discussed in this chapter.)

Since in any real context the intensity is expected to be maximal in a central
area of the spot, this criterion is selected as the optimization objective. The overall
centroid displacement is instead bounded by the following inequalities:

∑
ij Xijwij − ∑

ij Xijw
′
ij

WT
≤ �C, (43-1)

∑
ij Yijwij − ∑

ij Yijw
′
ij

WT
≤ �C, (43-2)

Here .�C is an appropriate estimation of the maximum acceptable displacement
for the centroid. Finally, the following optimization criterion is introduced:

max
∑

(i,j)∈AC

wij . (44)

where AC represents a proper central area.
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It can be observed that the model solutions are necessarily related to the choice
of the parameters .�Wand PT, assumed to represent the specific case under study.
As anticipated, a number of different choices can be compared to select the most
suitable option from a practical point of view. This approach could however be
significantly improved by adopting a multi-scenario optimization point of view.
In this perspective, instead of .�Wand PT a set of parameters .�Wαand PTα

(α = 1, . . . , NS) are considered. A perturbed intensity .w′
ijα is associated with

the corresponding parameters .�Wαand PTα , and the whole model is extended
by properly replicating and readjusting the conditions and the objective function
involved. However, this aspect – as a possible topic of future research – is not
investigated here.

5 An Illustrative Case Study

As mentioned in Sect. 1, the bifocal system has recently been considered for
possible utilization for the Athena satellite. The case study is only briefly outlined
here, omitting (for confidentiality reasons) most of the technical details.

The two instruments, high-resolution X-ray Integral Field Unit (X-IFU) andWide
Field Imager (WFI) mentioned in Sect. 1, are accommodated within the Focal Plane
Module (FPM). The Mirror Assembly Module (MAM) is placed at an assigned
distance (12 m) from the FPM. Since the telescope line of sight is determined
by the telescope mirror position and attitude, the on-board metrology is aimed at
supporting the active control of the MAM focal point position with respect to the
FPM instruments. The proposed design for the bifocal metrology on board Athena
considers:

• The bifocal optical head mounted on the MAM and aligned with it
• One light target on each instrument

The overall light target is essentially composed by three LEDs defining an
isosceles triangle. With reference to this specific case study, three main aspects have
been investigated in depth (by applying the concepts discussed in Sects. 3.4, 4.1 and
4.2):

• Error analysis for the measured distance between the MAM focal point position
and the FPM instruments

• Optimal system sizing
• Light spot optimization
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Fig. 11 Case study: nominal
intensity distribution
example 1

Fig. 12 Case study: nominal
intensity distribution
example 2

The optimization models considered for both error analysis and system sizing
have been solved by the global-local nonlinear optimization software package LGO
[12]. Again, technical details are not reported here for confidentiality reasons. As
a main result, a trade-off concerning the optimal focal distances f1 and f2 has been
made. On the one hand, these terms should be close to each other (f1 ~ f2) and
as large as possible, compatibly with the maximum admissible dimension of the
optical head. On the other hand, a small difference between f1 and f2 can give rise
to possible partial overlapping between the light spot projections on the CCD.

The MILP model adopted for the light spot optimization has been solved by
the IBM ILOG CPLEX solver (version 12.3). Several possible solutions have been
considered. Figures 11 and 12 illustrate two examples of optimal nominal light spots
obtained for the case study (the physical units have been omitted for confidentiality
reasons).
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6 Concluding Remarks

The work presented here discusses an innovative metrological approach, based
on a recently patented bifocal optical system [2–4]. This system is aimed at
measuring the position and attitude of a target item, identified by means of three
light spots, almost instantaneously and with high precision. The approach proposed
is simple and efficient: here it is discussed in relation to advanced space engineering
applications, but not limited to these.

In this chapter, the concept of the bifocal optical system is discussed in depth,
investigating some mathematical aspects relevant the overall methodology adopted,
including error analysis, system sizing optimization, and light spot optimization.
Finally, a real-word case study is highlighted.

Future research can be aimed at advancements in relation to both the error anal-
ysis and system sizing optimization problems discussed here. In this perspective,
enhancements of the global optimization approach followed aimed at improving the
global search can be expected. Concerning the light spot optimization problem, to
extend solution adaptability and reliability, the corresponding MILP model could be
considered in a multi-scenario optimization approach.
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