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1 Introduction

Space is an unforgiving environment: if there is an error, a ten-year multibillion-
dollar project may be lost. To avoid this undesirable situation, the space industry
puts a lot of efforts in improving the design of the spacecraft. An intensive testing
campaign is put in place in the spacecraft validation and verification phase before
the launch. Testing is done at equipment level, subsystem level, and system levels.
Some of the functionalities of the integrated system cannot be fully tested on ground,
before the nominal operation phase. In this respect, the in-flight commissioning
phase is meant to be used as preliminary phase where the functionalities can be
verified under flight conditions and the spacecraft performance can be characterized.
Calibration of the sensors and actuators and eventually fine tuning of software
parameters is also part of this phase. One of the most critical spacecraft subsystems
is the propulsion one, in particular, if toxic propellants (such as hydrazine) are used.
The thrusters can be tested and characterized at equipment level but they cannot
be tested once they are integrated in the spacecraft platform. The actuation of the
thrusters is safety hazardous on ground and, even if the tank is loaded with nitrogen,
the electrical-mechanical test is constrained by a limited number of actuation when
not used in vacuum, in order to not damage the catalytic heaters. After launch
the attitude control thrusters are used without being initially commissioned. The
same limitation applies to the main thruster used for delta-V maneuvers that have
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an obvious impact on the orbit itself. Considering this, the first S/C maneuver is
generally a critical moment both because there is a time-criticality and in terms of
the knowledge of the real performance of the thruster. Postponing the maneuver
may require a significantly larger amount of .�V , i.e., propellant, that in turn could
cause to shorten the operational lifetime of the spacecraft or even make the mission
impossible to be concluded.

During a trajectory design process, there are multiple local minima with very
close values of the performance index that can be found. The global optimum
represents the best solution for nominal conditions. However, uncertainties may be
present during the realization of the trajectory (actuators performances, pointing
errors, initial state); also, the possible requirement of changing the final boundary
conditions (after the initial maneuver) may be considered. In these cases, the control
variables of the first part of the trajectory should be computed in order to be robust
in all possible realizations. The design of a trajectory is a process which starts
from the early phase of a mission design, with preliminary assumptions about the
spacecraft properties and performances. Then it is continuously updated with the
design consolidation and assembly until the launch. During the operational phase,
the trajectory must be observed continuously and the future maneuvers updated
based on the current trajectory realization, the observed states and the actuators
estimated performances. The maneuvers that modify the trajectory can be carefully
planned on ground and executed by the spacecraft under operator supervision or can
autonomously be computed by the on-board software. In both cases the maneuvers
are traditionally computed and optimized considering specific nominal values for
the spacecraft performance (nominal case), while the robustness of the designed
trajectory is tested against one or more identified worst-case scenarios or Monte
Carlo simulations.

The baseline configuration is used for the optimization of the control variables
in contrast to compute them for the identified worst-case scenario, because in the
latter case there is the risk to have an over-sizing of the spacecraft. Monte Carlo
simulations assume a stochastic probability distribution of the uncertainties, the
correlation among the uncertainties and the probability density function of the
trajectory realization. The confidence level increases with the number of test runs.
However, in the Monte Carlo approach, the most “dangerous” trajectory realizations
are often at the tails of the distributions (typically Gaussian), so they are very rare.
Besides, Monte Carlo simulations are expensive in terms of CPU time and resources
(disk memory). The approach is clearly not suited for on-board applications.

The need to find a nominal trajectory which is, at the same time, sufficiently
optimal and robust is an active research field (robust optimization). Different
approaches have been proposed and hereafter summarized. The main practical
approach is to check and improve the trajectory robustness to uncertainties a
posteriori, by means of time-consuming iterative procedures, which often bring to
suboptimal solutions and over-conservative margins. This design methodology is
particularly unsuitable for micro-spacecraft missions, where the possibility to have
large propellant margins and hardware redundancy is not a viable option.
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Stochastic robustness is typically defined using chance constraints, which require
that the probability of state constraints being violated is below a prescribed value
(inequality constraints on the state). Prior work showed that in the case of linear
system dynamics, Gaussian noise and convex state constraints, optimal chance-
constrained finite-horizon control results in a convex optimization problem. Solving
this problem in practice, however, requires the evaluation of multivariate Gaussian
densities through sampling, which is time-consuming and inaccurate. An approach
was proposed [1] to chance-constrained finite-horizon control that does not require
the evaluation of multivariate densities. It introduces a conservative bounding
approach to ensure that chance constraints are satisfied, while showing empirically
that the conservatism introduced is small.

Space trajectories are subject to state uncertainty due to imperfect state knowl-
edge, random disturbances, and partially known dynamical environments. Ideally,
such uncertainty and associated risks must be properly quantified and taken into
account in the process of trajectory design, ensuring a sufficiently low risk of caus-
ing hazardous events. An approach based on the indirect method by incorporating
uncertainty and probabilistic path constraints into the primer vector framework [2],
called stochastic primer vector, provides an analytical open-loop optimal control law
that respects a probabilistic path constraint with a user-specified confidence level.

Differential dynamic programming [3, 4] was applied to trajectory optimization
with an expected value formulation for Gaussian-modeled uncertainties. In particu-
lar, the nonlinear constrained stochastic optimal control problem is transformed into
a problem through approximations (the stochastic process is reduced to Gaussian
process). Then the deterministic problem is solved using a trajectory optimization
method such as modified version of the Differential Dynamic Programming. The
method gains robustness against duty cycle, thrust direction changes and thrusting
time shifts.

An approach based on evidence theory to model uncertainty was developed [5]
for the robust optimization of transfers under system and dynamical uncertainties.
Optimal Control problems under specific epistemic uncertainty in system param-
eters (thrust, specific impulse, magnitude of the excess velocity vector) can be
solved using Evidence Theory to model the uncertainties, Belief functions, and then
transform the exact but discontinuous Belief problem to an inexact but continuous
Statistical problem. The optimization stage is carried on the uncertainty space rather
than the control space so to minimize the computational time. The target problem is
low-thrust transfer from Earth to an asteroid.

A Belief-based procedure for stochastic optimal control problems has been used
[6] for the robust design of a space trajectory under stochastic and epistemic
uncertainties that incorporates navigation analysis to update of the knowledge of
the spacecraft state in presence of observations. The target problem is one part of
the Europa Clipper flyby tour.

The use of a deep neural network as machine learning tool has been proposed
[7]. The training strategy is based on a Reinforcement Learning (RL) approach. The
RL approach is used for the robust design of a low-thrust interplanetary trajectory in
presence of various sources of uncertainty, which are (1) dynamic uncertainty, due
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to possible un-modeled forces acting on the spacecraft; (2) navigation errors, which
bring to an inaccurate knowledge of the spacecraft state; (3) control errors, due
to erroneous actuation of the commanded control; and (4) a Missed Thrust Event
(MTE), related to the unexpected occurrence of a safe mode during a thrusting
period. The target problem is time-fixed low-thrust Earth–Mars rendezvous mission.

The authors used an indirect method for the deterministic optimization of the
deployment of two satellites into a highly elliptical orbit [8]. In this chapter, they
look for a relatively simple method to be introduced in their already available code
to provide a robust solution to tackle underperformance during the first maneuver
of the .�V thruster. In order to make comparisons with their past works, the authors
took in consideration the problem of the transfer orbit of a satellite into a highly
elliptical orbit in presence of luni-solar perturbation and a J8x8 Earth gravitational
model. The optimal solution found in the past for this specific problem was a perigee
maneuver followed by one or more apogee maneuvers [8].

The novelty of the approach, based on the knowledge of the authors, is to use
an indirect optimization method for a robust optimization that does not include
any stochastic information of the uncertainties but rather selects a limited number
of possible realizations of spacecraft trajectories and optimizes the chosen perfor-
mance index, e.g., sum of the final mass, considering all the selected scenarios.
The resulting optimal control, if exists, allows to reach the final boundary values for
each scenario, modifying the control strategy to include all realizations. The selected
scenario can be extreme, such as thrust level reduced before a long maneuver, but
the switching times can be adjusted to mitigate the impact of such negative event on
the final performance.

2 Indirect Method Optimization

The application of an indirect method to robust optimization is described in this
chapter. Indirect methods are based on the theory of optimal control [16] and the
basic concepts are here summarized.

Time t is here the independent variable, the n-component vector .x contains the
state variables, and .u is the control vector (m components). Differential equations
in the form .ẋ(t) = f(x,u, t) rule the state variables. A q-component vector of
constraints on the state variables .ψ = 0 ∈ Rq is considered.

The Bolza problem looks to find the extremal path .x(t) and the corresponding
optimal control law .u(t) that satisfy the differential equation .ẋ(t) = f(x,u, t) and
the boundary equations, maximizing (or minimizing) the performance index J .

.J = φ(x0, x1±, . . . , xf , t0, t1±, . . . , tf ) +
f∑

j=i

∫ t(j)−

t(j−1)+
�(x, ẋ, t)dt (1)

In this chapter Meyer’s formulation will be used and .� = 0.
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The trajectory is split into j phases. The variables can have different values
before and after the points at phase junctions, so that discontinuity can be handled.

The j -th interval goes from .t(j−1)+ to .t(j)− and the variable values at the
extremities are indicated as .x(j−1)+ to .x(j)− .

The boundary conditions are written as

.ψ(x(j−1)+ , xj− , t(j−1)+ , tj−) = 0 j = 1, . . . , f (2)

An augmented index can be introduced to consider differential equations and
boundary conditions:

.J ∗ = φ + μψ +
f∑

j=i

∫ t(j)−

t(j−1)+
[� + λT (f − ẋ)]dt (3)

Adjoint variables .λ (n-component vector) and constants .μ are introduced. When
boundary conditions and differential equation are satisfied (the solution is feasible),
.J = J ∗ for any choice of .λ and .μ, which can be selected to nullify the first variation
of .J∗ (necessary condition for optimality).

Introducing the Hamiltonian defined as .H = � + λT f, the differential equation
for the adjoint variables, i.e., the Euler–Lagrange equations, is obtained

.
dλ

dt
= −

(
∂H

∂x

)T

(4)

In addition, m algebraic equations for the control variables

.

(
∂H

∂u

)T

= 0 (5)

and optimality conditions

. − λT
j− + ∂φ

∂xj−
+ μT

[
∂ψ

∂xj−

]
= 0 j = 1, . . . , f . (6)

λT
j+ + ∂φ

∂xj+
+ μT

[
∂ψ

∂xj+

]
= 0 j = 0, . . . , f − 1 (7)

.Hj− + ∂φ

∂tj−
+ μT ∂ψ

∂tj−
= 0 j = 1, . . . , f . (8)

−Hj+ + ∂φ

∂tj+
+ μT ∂ψ

∂tj+
= 0 j = 0, . . . , f − 1 (9)

complete the boundary value problem.
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Without bounds on state and control variables, the maximization of H implies
.Hu = 0 and .Huu negative definite (local conditions),where the subscript indicates
derivative with respect to the variable. This means that if H is linear with respect to
a control variable .uj , . ∂H

∂uj
= 0 does not contain .uj , that is, it is indeterminate. The

problem has a solution only if .uj is bounded. In this case the optimal control value
is the one that maximizes H according to Pontryagin’s maximum principle (PMP).
This is called a Bang-Bang control.

The Optimal Control Theory exposed here formulates a multi-point boundary
value problem (BVP), where initial values of some state values and adjoint variables
and some constants (e.g., discontinuities at internal boundaries) are unknowns. An
iterative procedure [17] based on Newton’s method is used to obtain a converged
solution.

3 Transfer between Highly Elliptic Orbits with Luni-Solar
Perturbations

The problem of satellite deployment in highly elliptic orbit considering luni-solar
perturbation is presented as example of application of the robust approach. The
example is taken by Simeoni [8]. The initial orbit is an elliptic orbit with a perigee
of 6728 km and an apogee above 191,116 km, while the final orbit has the same
apogee with a perigee of 21,378 km (see also Sect. 3.3). In space trajectory design,
the simplest gravitational model used is the two-body problem. The only way to
modify the satellite trajectory is by using the thrust (generally the only available
control). This model is well suited for some conceptual design (i. e. interplanetary
trajectories) but it has strong limitations in some scenarios, such as missions around
the Earth. In low Earth orbit a big issue is certainly the drag of the highest layers
of the atmosphere. If the spacecraft is close to the Earth, it is also influenced by the
perturbations due to the non-spherical shape of our planet. When the altitude of the
orbit grows, other two actors come on the stage: the Moon and the Sun.

The perturbations included in this problem are:

• perturbations due to the asphericity of the Earth
• the presence of Sun and Moon
• the effects of solar radiation pressure

The perturbations are relative small in comparison to Earth’s gravity so the effects
can be seen and appreciated only in a mid-long period [9–15]. Aerodynamic can be
neglected due to the relatively high altitudes involved.



Robust Orbit Transfer Optimization 355

3.1 Differential Equation

The relevant perturbations are added to the two-body problem equations to write
the state differential system in vectorial form. All quantities have been made
dimensionless using as reference length the Earth radius (.Rconv = 6378.1363 km),
as reference velocity .Vconv = √

μ/Rconv , as mass .m = 1000 kg. After that, the other
dimensionless quantities (time, acceleration) have been derived. The gravitational
parameter in adimensional form is .μ = 1.

.dr/dt = V. (10)

dV/dt = −μr/r3 + T/m + ap. (11)

dm/dt = −T/c (12)

where .−μr/r3 is the central body spherical gravitational acceleration, while .ap

collects the perturbing accelerations. For further details about the derivation of
perturbations components in the differential equations and for the derivation of
adjoint variables equations see [8]. In the mass differential equation c is the effective
exhaust velocity and .T/c is the mass flow rate. The thrust vector is the only control
of the trajectory and can vary its magnitude between maximum and minimum
values. The specific impulse, and so c, is considered constant in this problem. In
the specific problem of orbital transfer between elliptic orbits, the central body is
the Earth and the perturbations, which are considered in this work are:

.ap = aJ + alsg + asrp (13)

where .aJ are the perturbations due to Earth asphericity, .alsg are the gravitational
forces of “third bodies,” in particular, the subscript l indicates the lunar perturbation,
while s indicates solar ones. .asrp represents the perturbations due to solar radiation
pressure, that is the pressure of the photons coming from the Sun. Different frames
are used: The Earth Mean Equator and Equinox of Epoch J2000 (i.e., EME2000)
reference frame is adopted to write the equations in a compact form. In this reference
frame the unit vectors are indicated as .I, .J, .K. The first vector points towards the
Vernal Equinox, the third is perpendicular to the equatorial plane and points towards
the celestial North Pole, and the second one is chosen in order to have a right hand
frame. Precession and nutation are neglected. For integration, a proper set of scalar
variables must be used, and spherical coordinates are selected for position, which is
described by radius r , right ascension .ϑ , and declination .ϕ. Velocity is defined by
components in the radial eastward and northward directions, u, v, w, respectively, in
a topocentric frame centered at the spacecraft and defined by unit vectors .ı (radial or
zenith), .j (eastward), and .k (northward) (see Fig. 1). The position of the Moon and
the Sun is computed in EME2000 reference frame from JPL ephemeris [18, 19]. The
thrust vector direction is defined also in the inertial reference frame EME2000. Once
the positions of the celestial bodies have been retrieved, the accelerations acting on
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Fig. 1 Spherical Reference
frame

the S/C are projected in the topocentric reference frame (see also Eq. (36)) and the
differential equations are integrated in this rotating reference frame.

The Hamiltonian in the vectorial form is quite simple

.H = λT ẋ = H2B + HT + Hp. (14)

H2B = λT
r V + λT

V g. (15)

HT = λT
VT/m − λm(T /c). (16)

Hp = λT
V ap = HJ + Hlsg + Hsrp. (17)

HJ = λT
V aJ . (18)

Hlsg = λT
V alsg. (19)

Hsrp = λT
V asrp (20)

and Euler–Lagrange equations are written (when the thrust direction is free and
thrust is independent of the state variables) as

.dλr/dt = (∂g/∂r + ∂ap/∂r)T λV . (21)

dλV /dt = −λr . (22)

dλm/dt = λVT/m2 (23)

The subscripts stand: J for geopotential perturbation, lsg for luni-solar gravity, and
srp stands for solar radiation pressure.
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3.2 Optimal Controls

The control is the vector .T that can vary in magnitude and direction. The thrust
magnitude will be either maximum or minimum in order to fulfill optimality
condition. For the sake of clearness here the Hamiltonian of Eq. (14) is re-written
in a compact form, emphasizing the dependence on thrust and where .H ′ collects all
the terms that do not contain the control:

.H = λT x = H ′ + λV
T T/m − λm(T /c) (24)

.λV is the adjoint vector to velocity and in literature is called primer vector [20]; its
magnitude is .λV . The expression of the primer vector is:

.λV = λuı + λvj + λwk (25)

The projection of the thrust vector direction on the primer vector is indicated as

.	T = λuTu/T + λvTv/T + λwTw/T (26)

The Hamiltonian can be written as

.H = λT x = H ′ + T (	T /m − λm/c) = H ′ + T · SF (27)

where

.SF = (	T /m − λm/c) (28)

is the Switching function and it is called in this way because its sign determines if
the thruster is switched ON or OFF. From optimal control theory, the optimal thrust
magnitude should be derived from .∂H/∂T = 0, but the Hamiltonian is linear with
the thrust magnitude. However, PMP states that the optimal control is the value that
maximizes the Hamiltonian. So if the switching function is positive, the optimal
value of thrust is .Tmax , otherwise is null. In equation is

.T =
{

Tmax for SF > 0

0 for SF < 0
(29)

The control is bang-bang.
The optimal thrust elevation angle .γT and thrust heading angle .ψT are found by

posing .∂H/∂γT = 0 and .∂H/∂ψT = 0. These equations provide

. sin γT = λu/λV . (30)

cos γT cosψT = λv/λV . (31)
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cos γT sinψT = λw/λV (32)

These are the cosine director of the primer vector. In other words the optimal
direction of the thrust is parallel to the primer vector. If the optimal strategy is
adopted .	T = λV . For this chapter, optimal thrust direction is not used but the
thrust direction of each burn is instead fixed in the inertial reference frame. In fact,
for this type of transfer, the thrust direction is mainly perpendicular to the line of
apses, with little components out of plane or along apses, and little penalty occurs
with the simplified control law and obtained thrust arcs.

The simplest solution is to keep an inertial fixed attitude during the .�V

maneuver, so the optimization problem takes into account the thrust angles .αj

and .βj for each single burn. A different approach could optimize the thrust vector
direction taking into account also the maximum angular rate of the Spacecraft.
During the j -th burn, thrust components in the geocentric inertial reference frame
(.I, .J, .K) are written as

.Tx = T cosαj cosβj . (33)

Ty = T sinαj cosβj . (34)

Tz = T sinβj (35)

where .αj and .βj are the thrust angles. A simple change of reference frame provides
the component in the topocentric frame .ı, .j , .k,

.

⎧
⎨

⎩

Tu

Tv

Tw

⎫
⎬

⎭ =
⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

Tx

Ty

Tz

⎫
⎬

⎭ (36)

So the thrust components in local frame .Tu, .Tv , and .Tw now depend also on the
state variables .ϑ and .ϕ. The Euler–Lagrange equations for the corresponding adjoint
variables must take this dependence into account and a further component is added
to Eq. (21):

.dλr/dt = (∂g/∂r + ∂ap/∂r + ∂T/(m∂r))T λV (37)

Further details have been presented in [8]. In this case .	T �= λV (see 26) and the
general expression of the Switching function has to be taken in account.

First fixed values are considered for the thrust angles of the reference satellite
mission. A tentative solution is needed: in this case, the target orbit has the line
of the apses along y axis and is coincident with the line of the nodes, .α = 0 and
.β = −i0 (where .i0 is the inclination of the initial orbit) are adopted during the
perigee burn, whereas .α = π and .β = i0 are used during the apogee burns. This
thrust vector lays on the orbital plane and it is always accelerating. Convergence to
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optimal solutions is easily achieved using as tentative guess an orbit transfer with J2
perturbations only and a continuation technique as described in the following.

The two thrust angles .α and .β remain fixed in the inertial frame during the burn
arc, but they change from one arc to another. Optimal control theory is applied
to determine the optimal thrust angles. Each thrust angle for each burn arc is a
standalone variable, i.e., there are jx2 variables, but they are independent between
them (they are not “‘active”’ at the same time) so they can be stored in the same
array in the implementation. There will be the optimal thrust angles .αj and .βj and
their adjoint variables .λαj and .λβj . For each pair of angles with subscript j there
are the correspondent Euler–Lagrange equations .dλαj /dt = −∂H/∂αj , that is and
.dλβj /dt = −∂H/∂βj

.λ̇α = −T

m

(
λu

∂(Tu/T )

∂α
+ λv

∂(Tv/T )

∂α
+ λw

∂(Tw/T )

∂α

)
. (38)

λ̇β = −T

m

(
λu

∂(Tu/T )

∂β
+ λv

∂(Tv/T )

∂β
+ λw

∂(Tw/T )

∂β

)
(39)

The partial derivative of the cosines director of the with respect to .α and .β are:

.

⎧
⎪⎨

⎪⎩

∂(Tu/T )
∂α

∂(Tv/T )
∂α

∂(Tw/T )
∂α

⎫
⎪⎬

⎪⎭
=

⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

− sinα cosβ

cosα cosβ

0

⎫
⎬

⎭ (40)

.

⎧
⎪⎨

⎪⎩

∂(Tu/T )
∂β

∂(Tv/T )
∂β

∂(Tw/T )
∂β

⎫
⎪⎬

⎪⎭
=

⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

− cosα sinβ

− sinα sinβ

cosβ

⎫
⎬

⎭ (41)

According to these equations the .λαj and .λβj are always null except in the .j − th

arc and so the optimal boundary conditions are

.λαj
= 0 j = 1, . . . , f − 1. (42)

λβj
= 0 j = 1, . . . , f − 1 (43)

at the beginning and at the end of the arc. The thrust components

.Tu = T sin γT . (44)

Tv = T cos γT cosψT . (45)

Tw = T cos γT sinψT (46)

are obtained with Eq. (36), the angles are shown in Fig. 2
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Fig. 2 Thrust direction

Table 1 Initial and final orbit characteristics

a, km e i, deg .�, deg .ω, deg .ν .rp ,km .ra ,km

Initial 98,922 0.931985 5.2 90.0 270.0 0.0 6728 191,116

Final 106,247 0.798788 – – – 180.0 21,378 191,116

Table 2 Satellites properties Data

Launch 1250

mass (kg)

Propellant 200

mass (kg)

Mean 4.2

surface (.m2)

Initial S/m .3.36 · 10−3 m2/kg

Isp [s] 220

Nominal T [N] 4N

Failure scenario T [N] 2N

3.3 Boundary Conditions

In the following Table 1 it is possible to see the initial and final orbit parameters
considered in the problem. The final orbit is defined only in semi-major axis and
eccentricity, so the other final orbital parameters are free Satellites properties are
defined in Table 2.

The thruster exploits hydrazine as propellant. The satellite is injected by the
launcher directly at the perigee of the initial orbit and has to perform, with its own
propellant, the orbit transfer to the final orbit. For operational reason no burns are
permitted in the first revolution, so the first phase is pure coasting and only at the
following apogee or perigee passage the satellite can fire its engine.

The initial and final orbit are both HEOs, but the initial reference orbit has a low
perigee, so the influence of the non-sphericity of the Earth is relevant. Since the first
simulation runs it was also clear that J2 perturbations were very important in the
first revolution and also in the overall strategy of the burns times. The J2 effects on
semi-major axis are null in average in a complete revolution, but if the satellite is
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injected at the perigee, the results are an instant drop of the semi-major axis that will
change the optimal strategy. The high apogee makes Moon and Sun perturbations
very important. Satellites perigee shows significant variations even considering only
the ballistic flight.

Lunar perturbation brakes or accelerates the spacecraft when it is at the apogee,
changing its semi-major axis, perigee, and orbital period. The period changes the
next apogee passage (when compared with the 2 body solution) and so it is difficult
to forecast the position of the Moon and its influence at the next revolution. The
effect of these perturbations on the switching structures for the optimal fuel save
deployment is hard to predict.

The perturbation of the Moon in the first revolution of the spacecraft, that is
ballistic, can lower the perigee and makes the spacecraft plunge into the atmosphere.
The impossibility of controlling the spacecraft orbit in the first phase of the mission
makes important the analysis of moon influence and the choice of the departure
date. For this chapter this constraint is not considered because it depends only on
the launch window, it does not affect the control law.

4 Reference Satellite Transfer and Boundary Conditions

Most of the considerations and the procedure developed for the optimization of the
reference (or baseline) satellite optimization are valid even for robust approach.

The statement of the problem is described in Sect. 1. From the statement the
mathematical formulation of the boundary conditions has to be derived. The
dynamical equations, the differential equations for adjoint variables, optimality and
transversality conditions define the problem.

The dynamical equations and differential equations are defined in Sect. 3
At the initial point .j = 0 all state variables are assigned. In the optimal procedure

the initial time .t0 is considered to be given. A parametric analysis to evaluate the
influence of the departure date on the mission has been performed. At the final point
.j = f apogee radius .rA and orbit semilatus rectum .p = a(1 − e2) are given. The
final point is the apogee. The conditions of the state variables at the terminal point
are:

.rf − rA = 0. (47)

uf = 0. (48)

v2f + w2
f − μp/r2A = 0 (49)

The performance index to be maximized is the final mass, implying .φ = mf and
.� = 0 in Eq. (1). The optimality conditions (6–7), eliminating the adjoint constants,
are:
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.λϑf = 0. (50)

λϕf = 0. (51)

λvf wf − λwf vf = 0. (52)

λmf = 1 (53)

The final time is free, so the transversality condition (9) gives Hamiltonian null
at the end.

.Hf = 0 (54)

Application of Eqs. (6) and (7) at every switching point gives Hamiltonian
continuity. State and adjoints variables are also continuous and so the switching
function has to be null at the switch points (Points where engines turns OFF-ON or
vice versa)

.SFj = 0 j = 1, . . . , f − 1 (55)

The numerical problem consists of 14 differential equations represented by
Eqs. (10–12) and (21–23). The state variables initial values are given, but the initial
values of the adjoint state variables are unknown. The lengths of the coast and burn
arcs are also unknown; an equal number of boundary conditions, given by Eqs. (47)–
(55), completes the MPBVP. The problem is homogeneous in the adjoint variables
and Eq. (53) can be replaced by assigning the initial value .λm0 = 1 in order to
reduce the number of unknowns.

The optimal deployment strategy consists in a perigee (P) burn followed by
a series of burns at the following apogee (A) passages. In this chapter the 3.5-
revolution transfer is considered and the burn sequence is P-A-A. Indirect methods
need a tentative solution. Since it is easier to estimate the burn angular positions (i.e.,
it is at the apes) than the corresponding time, a change of independent variables is
adopted. The right ascension .ϑ is introduced as new independent variable, and the
differential equations are obtained by multiplying the time derivatives by .dt/dϑ .
The independent variable is further normalized as:

.ε = j − 1 + ϑ − ϑj−1

ϑj − ϑj−1
(56)

A continuation technique using the perturbation fraction as parameter is intro-
duced to improve solution convergence. Moon’s influence may cause the vanishing
of an apogee burn and one cannot know the switching structure in advance.
The solution for the problem that only considers J2 has always burns at each
apogee passage and is easily found. Then, the additional perturbations are gradually
introduced with a multiplying factor that grows from 0 to 1. Failed convergence
occurs when the switching structure changes and a burn arc must be removed, but
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the switching function behavior of the previous converged solution suggests how it
should be modified [8]. The perturbation fraction is increased with step 0.2. This
procedure failed to obtain convergence in only 2% of the treated cases. The use of a
reduced perturbation step solves the problem when convergence is not immediately
obtained.

5 Robust Approach

The single satellite optimization helps to understand the influence of the perturba-
tion and it is also a good testbed to build a robust procedure for seeking the optimal
solution and optimal structure. The first perigee burn is critical. Thruster failure
during this maneuver would dramatically change the trajectory and a dedicated
recovery maneuver would be needed. In this chapter, thruster failure during the
apogee burns is considered, as a robust trajectory may be capable of easily
compensate for this anomaly, as shown in the following.

Three different optimization procedures are developed to test the solution
robustness. The same variables and differential equations characterize the three
scenarios. Two trajectories are integrated simultaneously with 28 state variables.
One satellite represents the nominal case, while the other corresponds to the failure
scenario. Thrust is 4 N in the nominal case. A reduced 2 N thrust is adopted for
apogee burns A1 and A2 in case of failure.

Ideal Failure Recovery
In the ideal case the thruster failure is known in advance, before A1 is performed.
The trajectory can, therefore, be optimized with the new thrust value, obtaining
the maximum theoretical performance in case of failure. This case is equivalent to
the solution of two separate single satellite scenarios as the equations of the two
trajectories are uncoupled. These solutions represent the global optimum for the
maneuvers with nominal and reduced thrust.

Failure Recovery for the Nominal Solution
In a real scenario, the failure is discovered after the A1 burn. The first apogee burn
is, therefore, performed with commanded values (start and final time, thrust angles)
of the nominal solution. After A1 the reached state of the satellite is not the desired
one and the optimization procedure re-computes the A2 apogee burn. The solution
will be suboptimal with respect to the failed scenario trajectory of the ideal case.

The nominal solution is found first. At the switching points, H continuity requires
the switching function to be null:

.SFj = 0 j = 1, . . . , f − 1 (57)

and the optimal thrust angles are found in each burn. In the failed scenario, start
and end of the A1 burn are constrained and must be the same as the nominal ones.
At .j = 4, 5 Eq. (57) does not hold for the trajectory with reduced thrust, but these
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conditions are replaced by

.t4f ail = t4nom. (58)

t5f ail = t5nom (59)

On top of that also the thrust angles are fixed in the inertial reference frame of
the failed scenario in the A1 burn and shall be equal to the angles of the nominal
scenario.

.α2f ail = α2nom. (60)

β2f ail = β2nom (61)

The second apogee burn is instead re-optimized, with the same boundary conditions
as in the nominal solution.

In the re-optimization procedure the solution imposed to the satellite representing
the failed scenario is far the optimal one, so the convergence to the suboptimal
solution is generally slower than the ideal procedure. The nominal solution is
independent of the failed scenario and equal to the ideal case (maximum .mf S1); the
other trajectory separately maximizes .mf S2 with the constraints on A1 determined
by the nominal solution.

Robust Case
With the robust approach, the nominal trajectory is replaced by a robust trajectory.
Nominal and off-nominal trajectories are now coupled and optimized simulta-
neously. The Hamiltonian is the sum of the contributions of the two satellites
.HSYS = Hnom + Hf ail and the sum of the nominal and off-nominal final masses is
maximized

.ϕ = mf S1 + mf S2 (62)

In the robust solution .t4nom, .t5nom, .α2nom, .β2nom assume different values with
respect to the nominal optimal solution in order to maximize the sum of nominal
and off-nominal final masses. At .j = 4, 5:

.t4f ail = t4nom. (63)

t5f ail = t5nom (64)

and during the burn

.α2f ail = α2nom. (65)

β2f ail = β2nom (66)
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At the A1 switching points the Hamiltonian of the coupled system shall still be
continuous. For example, at the beginning of the arc, with .j = 4

. (Hdyn,nom)j− + (Hdyn,f ail)j− = (Hdyn,nom)j+ + (Hdyn,f ail)j+
+λαnom,j+αnom,j+ + λαf ail,j+αf ail,j+ + λβnom,j+βnom,j+
+λβf ail,j+βf ail,j+ + SFnom,j+Tnom + SFf ail,j+Tf ail (67)

For .j = 4, 5, considering Eqs. (65) and (66), one has:

.λαnom,j + λαf ail,j = 0. (68)

λβnom,j + λβf ail,j = 0. (69)

SFnom,jTnom + SFf ail,j Tf ail = 0 (70)

The problem stated in this way has .(λm)f = 1 as final condition and .λm0 as
unknown parameter to be determined (for each satellite). But adjoint differential
equations are homogeneous (.gλ(λ) = 0), so it is possible to scale all .λ in order to
have an easier BVP problem to solve. So the final boundary conditions are:

.λ′
αnom,j /λ

′
mnom,f + λ′

αf ail,j /λ
′
mf ail,f = 0. (71)

λ′
βnom,j /λ

′
mnom,f + λ′

βf ail,j /λ
′
mf ail,f = 0. (72)

SF ′
nom,j /λ

′
mnom,f Tnom + SF ′

f ail,j /λ
′
mf ail,f Tf ail = 0 (73)

.λ′
m0nom

= 1

λ′
m0f ail

= 1

6 Results

The indirect approach to robust optimization is here applied for the deployment of a
satellite in a highly elliptic orbit. The deployment is accomplished in 3.5 revolutions.
The satellite is assumed to be injected by a launcher in an already elliptic orbit. The
satellite has then to perform in sequence:

• An initial perigee burn to achieve the required apogee.
• Two apogee burns to adjust the perigee.

A sketch of the nominal trajectory is shown in Fig. 3.
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Fig. 3 Deployment trajectory

6.1 Ideal Failure Recovery

In the ideal case the trajectory of the baseline scenario (.4N , thrust for each burn)
and the failed scenario (.4N at perigee burn and .2N at the two apogee burns) are
considered separately. It is assumed the perfect knowledge of the system, i.e., the
best performance of the baseline scenario and the maximum achievable performance
of the failed one. This translates to six switching points (initial and final for each
burn) where the Switching Function is 0 for each satellite (optimality condition).
Figure 4 shows the final mass of the SC in the baseline scenario (.4N , optimal
solution) and the failed scenario (2 N). The horizontal axis shows the departing
date in Modified Julian Date (MJD) while the vertical axis has the evolution of
the final mass. For both cases the influence of the Sun/Moon perturbations can be
appreciated.

The difference in the final mass between optimal baseline scenario and failed
scenario is between 1.8 and 2 kg based on 1 year data. Figure 5 shows the peak
to peak mass difference in a shorter range of time to improve the readability of
the picture. The differences are mainly due to the higher gravitational losses. The
apogee burn is not an impulsive maneuver, so the .�V is not perpendicular to the
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Fig. 4 Ideal recovery final mass
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Fig. 6 Duration of the burns

radius of the orbit and to the gravitational acceleration. The failed scenario, with a
lower thrust, needs a large time to perform its own .�V and so the gravitational
losses increase. This effect can be reduced if a larger number of revolutions is
foreseen, e.g., 4.5 or 5.5 revolutions instead of 3.5 revolutions. In this way the
apogee burn arcs are smaller and so the maneuver is closer to the ideal one.

For each departure date the duration of the burns has been computed. Figure 6
(left) shows the duration of the three burns for the optimal trajectory of the 4N thrust
nominal scenario. The perigee burn is very small compared to the apogee ones. The
two apogee burns (for a fixed MJD) are similar in duration (about 10 h). It is worth
noting that large durations of A1 indicate that there is a benefit in reducing the
satellite angular rate, in order to have a more favorable influence from the Moon
at the following apogee passage. Short durations happen when faster rotation is
needed. Figure 6 (right) shows the optimal trajectory for the 2N failed case, with
larger duration of the burns (up to 1 day), but a similar trend along the MJD axis.

6.2 Failure Recovery of Optimal Solution

This case assumes the discovery of the failure after the A1 burn (no perfect
knowledge). The commanded .�V times are the same as planned for the baseline
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Fig. 7 Final mass comparison: Ideal vs. optimal solution recovery

optimal scenario. After the discovery of the failure, the trajectory is re-optimized
from the conditions after the A1 burn. Ground can re-compute the optimal duration
of the A2 apogee burn to meet the final orbit.

The re-optimized case assumes the first arc to be in common (perigee burn) but
with the optimality conditions of the optimal solution de-coupled from the failed
scenario. This is equivalent to a re-optimization after a state determination. From
mathematical point of view the re-optimized case is obtained imposing a constraint
on the first apogee burn so that the initial and final instant of the maneuver are
coincident with those of the baseline scenario.

Figure 7 shows the comparison of the final mass between the ideal recovery and
the recovery of the optimal solution (Rec-opt 2N, dashed line) in the failed scenario.
This case is the closest to the reality. In fact the command to start the maneuver is
sent by ground at a planned time or released by the on-board software considering
a reference mission timeline. Even if the most recent generation missions use on-
board accelerometers to estimate the executed .�V , a timeout duration is, however,
imposed for safety. Future application of inertial position navigation based on pulsar
can improve.�V estimation and orbit control.

Figure 8 shows the burn duration of the baseline case (left) and the duration of
the burns in case of the re-optimization (right). The duration of the first apogee
burn for the re-optimized case is the same of the baseline one, as it is imposed
by the boundary conditions. The second apogee burn of the failed scenario has to
recover all the difference in energy lost during the first apogee burn with increased
gravitational losses.
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Fig. 8 Duration of the burns for the re-optimized case

Figure 9 shows the difference between the nominal scenario and failed scenario.
In case of re-optimization the difference between the failed scenario and the baseline
(rec-opt, dashed line) is larger, as expected. It is possible to note that in the ideal case
optimization the difference between the two scenarios (.mf S1 − mf S2) varies from
1.67 to 1.82 kg, while in the re-optimized scenario the difference is larger between
3.22 and 4.08 kg and the trend is not regular. The hypothesis is that the suboptimal
solution for the failed case prevents the possibility to exploit the Moon gravitational
pull or to avoid its interference.

6.3 Robust Case

The robust solution takes into account the event of failure when the nominal
solution is selected; the nominal solution and the failed solution are optimized
simultaneously with coupled boundary conditions. The sum of the final masses for
the two cases is maximized. The failed case has again the same A1 burn times
of the nominal solution, but these values are now determined also considering
the performance of the failed trajectory. The boundary conditions for optimality
state that at the A1 switching times the sum of the switching function of the
two cases (weighted with the with the thrust magnitude) must be equal to zero.
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After the new (“robust”) first apogee burn, thruster magnitude underperformance is
discovered and a re-optimized solution is found for the trajectory with failure. The
continuous lines (Fig. 10) represent the nominal scenario while the dashed ones are
the failed ones. The lines with circle markers refer to the two scenario optimized
separately (optimal, rec-ideal), the dashed line with triangle markers refers to the
recovery of the optimal solution (Rec-opt), which shows a large penalty in case
of the failed scenario. The lines with square markers are the robust approach that,
despite the small penalty in the nominal scenario (Rob, dashed), allows a recovery
of performance in the failed one (rec-Rob, dash-dotted).

The robust nominal solution is close to the baseline optimal one with only a
small penalty in terms of final mass (less than 1 kg). However, when thruster failure
is considered, the mass decrease of the robust solution is much lower compared to
the re-optimization of the nominal trajectory and the final mass is instead almost
coincident with the ideal recovery.

The starting and ending instant of the maneuvers depend on the departing date.
The first apogee burn (A1) is shorter for the nominal scenario (Fig. 11, left) in case
of ideal optimization (Ideal) with respect to the robust one (Rob). This is expected
because in the robust approach the first apogee burn is longer in order to take
into account the possible thruster failure. Conversely, the duration of the second
apogee burn for the nominal robust scenario (Rob) is shorter than the ideal one. In
fact the most of the perigee raise has already been performed in the apogee burn
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A1. The thruster switch-off instant is similar to the nominal scenario in the ideal
optimization, signaling that the thruster switch-on has been delayed.

The difference in final mass between each nominal solution and the correspond-
ing failed solution is shown in Fig. 12. The nominal mass of the robust solution is
lower than the optimal one, but failure recovery requires a very small penalty, as it is
even less demanding than the ideal recovery of the optimal solution, notwithstanding
the advanced knowledge of the failure in the latter case.

7 Conclusions

This chapter presents a robust approach to the design of optimal trajectories and
its application to the deployment of a satellite in highly elliptic orbit. Thruster
partial failure at apogee burns (thrust 50% of the nominal value) is considered. The
use of an indirect optimization procedure allows for a robust approach, which is
easy to be implemented and can be used in the preliminary phase of a trajectory
design. The robust solution is obtained with a continuation technique that varies the
perturbations, and less than ten minutes are typically required with a PC based on
a Intel® Core™ i5-6198DU CPU @ 2.30GHz 2.40 GHz (a single core was used in
this analysis). RAM usage is negligible.
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When the nominal optimal trajectory is adopted, severe performance degradation
is obtained in the case of thruster failure, even after re-optimization of the second
burn. On the contrary, the robust solution is only slightly worse than the optimal one
for nominal behavior, but greatly mitigates the mass reduction in the case of failure.
If the failed-thrust scenario performance is a requirement for the mission, the robust
solution may be preferable to the optimal solution.

This robust optimization method can be readily extended to different scenarios.
Future possible works can concern the application of the same approach to multiple-
failure scenarios (e.g., intermediate thrust levels and different points where the
failure can occur). The use of different weights for the final masses in the definition
of the performance index can provide alternative solutions with different degrees of
“optimality” and “robustness.” Extension to multiple-failure scenarios (e.g., thrust
magnitude and direction errors) is straightforward, by increasing the number of
trajectories that are simultaneously optimized.
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