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Aims and Scope
Optimization has continued to expand in all directions at an astonishing rate. New
algorithmic and theoretical techniques are continually developing and the diffusion
into other disciplines is proceeding at a rapid pace, with a spot light on machine
learning, artificial intelligence, and quantum computing. Our knowledge of all
aspects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in areas
not limited to applied mathematics, engineering, medicine, economics, computer
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to publish
state-of-the-art expository works (monographs, contributed volumes, textbooks,
handbooks) that focus on theory, methods, and applications of optimization. Topics
covered include, but are not limited to, nonlinear optimization, combinatorial opti-
mization, continuous optimization, stochastic optimization, Bayesian optimization,
optimal control, discrete optimization, multi-objective optimization, and more. New
to the series portfolio include Works at the intersection of optimization and machine
learning, artificial intelligence, and quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical
Reviews, and SCOPUS.
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Preface

Space engineering projects frequently require the analysis, modeling, and solution
of advanced optimization problems. The primary concern of the earliest topical
studies was the viability of missions to accomplish. Optimization was aimed
at mission analysis, with specific attention to safety and technical feasibility.
Therefore, space engineering projects required the analysis of mission trajectories,
with paramount consideration given to crew protection and then to the optimization
of fuel consumption.

More recently, commercial interests and cost-efficiency aspects related to space
projects have become increasingly important. A well-known example is the contin-
uing operation of the International Space Station.

For current and forthcoming space engineering projects, today’s higher envi-
ronmental awareness imposes mission constraints that in the past were com-
pletely or almost neglected. The ambitious goals of planned interplanetary explo-
rations – specifically including manned missions – will require advanced analytical
approaches to guarantee safety, to maximize the performance of the systems
adopted, and to make use of mission resources as efficiently as possible.

While the quality of the decisions required by space engineering projects has
been increasing, we have also witnessed continuing innovation regarding theoretical
advances and ready-to-use decision support tools for such applications. The results
of scientific innovation, modeling, and algorithmic developments are enhanced
by today’s advanced computational modeling and optimization environments.
Since the earliest space engineering applications, the solution to increasingly
hard optimization problems has become necessary. Earlier numerical optimization
approaches were limited to handling linear or convex nonlinear continuous models,
as well as integer linear or mixed integer-continuous linear optimization problems.
(For clarity, we note here that integer linear optimization problems are already
non-convex, but their handling can be based on classical approaches.) More recent
advances in the area of optimization enable the handling of continuous and mixed
integer non-convex problem formulations. This development enables the solution of
often more realistic – but, as a rule, significantly harder – optimization problems.

v
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The present volume consists of 14 contributed chapters. These chapters are writ-
ten by leading experts who offer in-depth discussions of the mathematical modeling
and algorithmic aspects of tackling a range of space engineering applications. Next,
we present a brief summary of the topics discussed in the book, citing all chapters
by the alphabetical order of the contributing (first) authors.

Advances in the Control Propellant Minimization for the Next Generation
Gravity Mission, by Alberto Anselmi, Stefano Cesare, Sabrina Dionisio, Giorgio
Fasano, and Luca Massotti, discusses the advancement of previous work by the
same authors, dedicated to the problem of minimizing the control propellant in the
future Next Generation Gravity Mission. The research presented here focuses on the
optimal position and orientation of the thrusters installed on board in the presence
of control requirements.

Transition of Two-Dimensional Quasi-periodic Invariant Tori in the Real-
Ephemeris Model of the Earth-Moon System, by Nicola Baresi, focuses on the
advanced concept of quasi-periodic invariant tori, currently representing a cutting-
edge topic in astrodynamics. Modern numerical continuation techniques for gener-
ating two-dimensional invariant tori in the elliptical restricted three-body problem
of the Earth-Moon system are introduced. The upcoming Lunar Orbital Platform
Gateway serves as reference to demonstrate the applicability of the methodology.

Hypersonic Point-to-Point Travel for the Common Man, by Carlos Bislip and
Erwin Mooij, explores the possibility of identifying, for a chosen route and reference
vehicle, a set of parameters guaranteeing the admissible conditions for “common”
(not specifically selected) individuals. An advanced ad hoc optimization approach
is introduced. Evolutionary procedures are adopted, including the multi-objective
evolutionary algorithm, based on decomposition with differential evolution. The
Sänger II spaceplane and the associated Hypersonic ORbital Upper Stage (HORUS)
have been taken as a reference. The results obtained in terms of optimal trajectory
show the efficiency of the approach proposed.

The necessity of measuring the position and attitude of a target object almost
instantaneously frequently occurs in aerospace engineering. Bifocal Metrology
Applications in Space Engineering, by Fulvio Bresciani, Giorgio Fasano, and János
D. Pintér, proposes a conceptually simple, yet innovative optical approach based
on a compact bifocal projective system and a target identifier consisting of light
spots. The chapter addresses the relevant mathematical aspects, with a special
focus on measurement error analysis and two optimization problems concerning
system sizing and light spot shaping, respectively. A real-world application is briefly
introduced.

A Revisited Analysis of the Radioisotope Sail and Its Possible Application to
Relativistic Spaceflight, by Luca Derosa, addresses the concept of radioisotope
sail with potential application to relativistic space missions. Mathematical models,
based on the special theory of relativity, are considered with reference to different
relativistic spaceflight profiles. A case study, concerning the hypothetical use of
a radioisotope sail as the propulsion system for a mission to Pluto, is presented,
comparing the performances of the proposed technology with classical systems.
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This work provides an inspiring summary of a so far little-investigated topic, i.e.,
space propulsion by virtue of radioactive materials.

The EXTREMA project (Engineering Extremely Rare Events in Astrodynamics
for Deep-Space Missions in Autonomy) addresses a paradigm shift regarding deep-
space guidance, navigation, and control. The ERC-Funded EXTREMA Project:
Achieving Self-Driving Interplanetary CubeSats, by Gianfranco Di Domenico,
Eleonora Andreis, Andrea Carlo Morelli, Gianmario Merisio, Vittorio Franzese,
Carmine Giordano, Alessandro Morselli, Paolo Panicucci, Fabio Ferrari, and
Francesco Topputo, proposes CubeSats (square-shaped miniaturized satellites)
with autonomous maneuvering capabilities. This chapter presents an overview of
EXTREMA, highlighting the relevant approaches, methodologies, and objectives.
Expected outcomes and impact on future space exploration scenarios are also
discussed.

Data Reduction for Optimizing the Attitude Control Dispatch in a Spacecraft,
by Christophe Durand, Giorgio Fasano, and Andrea Forestieri, originates from a
dedicated attitude control dispatch study discussed in another chapter of this volume
by Anselmi et al. The control dispatch optimization approach is based on a time
discretization of the mission scenarios to consider. The chapter proposes an ad
hoc clustering methodology, in order to make the relevant optimization problem
computationally tractable. The k-means and k-medoids methods are considered
together with the Davies-Bouldin index and other evaluation criteria. An experi-
mental analysis is performed for a specific case study.

Second Order Sufficient Conditions of Strong Minimality with applications to
Orbital Transfers, by Leonardo Mazzini, offers a contribution to the topic of indirect
methods for optimal control. It studies second-order extended sufficiency condi-
tions, applicable without strict Legendre conditions and without local controllability
assumptions, also in the frame of saturated and bang-bang control. A procedure
to maximize the interval where the sufficient conditions can be applied using a
Riccati matrix equation is introduced and compared with the classic conjugate
point condition. Applications to finite and infinite thrust orbital transfer cases are
presented.

Evolutionary Optimisation of a Flexible-Launcher Simple Adaptive Control
System, by Erwin Mooij, proposes the application of a simple adaptive approach
to the pitch control of a conventional, flexible launcher. An ad hoc evolutionary
optimization algorithm is introduced: it is based on a floating-point representation of
the design parameters, stochastic universal sampling selection, arithmetic crossover,
non-uniform mutation, and Pareto ranking. The simultaneous minimization of the
state deviation and the control effort is attained, while the oscillation of the control
has been used as optimization criterion. A dedicated simulation study demonstrates
the efficiency of the approach proposed.

Optimization and Solution Approaches in Utilizing Wireless Sensor Networks
for Exploring Moon Planets and Space, by Ömer Özkan, reviews wireless sensor
networking (WSN) applications in space, to explore the Moon, planets, and
associated moons, or asteroids. The detectable physical data include, but are not
limited, to temperature, pressure, radiation, seismic conditions, optical parameters,
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and gas composition. An overall optimization point of view is adopted to maximize
the performances of the WSNs considered.

Near-Optimal Guidance and Pulse-Modulated Reduced-Attitude Control for
Orbit Injection, by Mauro Pontani, Andrea Pianalto, Stefano Carletta, and Paolo
Teofilatto, investigates a new guidance, control, and actuation architecture for
upper-stage orbit injection maneuvers. The proposed explicit near-optimal guidance
algorithm is based on the local projection of the position and velocity variables
and on the real-time solution of the associated minimum-time problem. A new
nonlinear reduced attitude control algorithm is introduced, and the overall dynamics
of the upper stage is modeled using Kane’s method. An upper stage, with realistic
propulsion parameters selected for numerical testing, demonstrates the effectiveness
of the approach proposed, via dedicated Monte Carlo simulations.

A Pareto Front Numerical Reconstruction Strategy Applied to a Satellite System
Conceptual Design, by Gustavo J. Santos, Sebastian Giusti, and Roberto Alonso,
proposes an efficient approach for satellite system design, based on multi-objective
parametric optimization. The objectives considered at system design level are
usually conflicting. For instance, the overall performance has to be maximized,
while (also) minimizing the total mass or volume. The overall global optimization
approach proposed leverages the direct numerical simulation of the optimization
problem and addresses the estimation of the optimal Pareto frontier. A case study,
consisting of a low orbit satellite, is analyzed, comparing the approach proposed
with a genetic algorithm-based multi-objective optimization procedure.

Time-Varying Lyapunov Control Laws with Enhanced Estimation of Distribution
Algorithm for Low-Thrust Trajectory Design, by Abolfazl Shirazi, Harry Holt,
Roberto Armellin, and Nicola Baresi, investigates the general problem of optimal
design of space trajectories via an enhanced optimization algorithm, within the
framework of Estimation of Distribution Algorithms (EDAs), incorporated with
Lyapunov and Q-law feedback control methods. Real-world case studies, relevant
to Earth-orbiting satellites, are analyzed in the chapter, illustrating the potential of
the approach proposed.

In the life of a spacecraft, the launch and early operational phase are among the
most critical, because of the high level of uncertainty present. Indirect Optimization
of Robust Orbit Transfer Considering Thruster Underperformance, by Francesco
Simeoni, Lorenzo Casalino, and Antonio Amelio, proposes an efficient indirect
optimization method to determine robust control laws, taking into account the
possibility of dramatic thruster underperformance. The insertion of a spacecraft in a
highly elliptic orbit with multiple apogee burns is considered a case study analyzing
the effect of non-nominal thrust in the first apogee maneuver.

This book will be of interest for researchers and practitioners working in the field
of space engineering. Since it offers an in-depth exposition of the mathematical
modeling, algorithmic and numerical solution aspects of the topics covered, the
book will be useful also for aerospace engineering graduate and post-graduate
students who wish to expand upon their knowledge, by studying real-world
applications and challenges that they will meet in their professional work. The
contributed chapters are mainly focused on space engineering practice. With this
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aspect in mind, researchers and practitioners in mathematical systems modeling,
operations research, optimization, and optimal control will also benefit from the
case studies presented in this work.

The model development and optimization approaches discussed in the book can
be extended also toward other application areas that are not directly related to space
engineering. Hence, this book can be a useful reference to assist the development of
new modeling and optimization applications. Readers will obtain a broad overview
of some of the most challenging space engineering operational scenarios of today
and tomorrow: this will be useful for managers in the aerospace field, as well as in
other industrial sectors.
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2 A. Anselmi et al.

SSD Satellite-to-Satellite Distance
SST Satellite-to-Satellite Tracking

1 Introduction

The optimization problem described in this chapter arose within the preliminary
(Phase 0) studies of the Next Generation Gravity Mission (NGGM), a candidate
project of the European Space Agency (ESA) dedicated to high-quality measure-
ment of the temporal variations of the Earth’s gravity field by pairs of satellites
flying in formation in Low Earth Orbit (LEO). Currently, a version of the NGGM is
being addressed as part of the ESA-NASA cooperation in the frame of the MAGIC
(Mass Change and Geosciences International Constellation) project. The design
of the MAGIC mission occurs under different assumptions than those taken into
consideration in this paper. Up-to-date information about the mission is provided in
[1, 2].

This chapter extends and enhances earlier research documented in a previous
paper [3]. The mission scenario assumed in [3] and in the present work is as
follows. The NGGM satellite pair will measure the gravity gradient signal between
two satellites flying in loose formation at about 100 km mutual distance, in
high/medium-inclination, low-altitude orbits, by means of a laser interferometer
(Laser Tracking Instrument). Geodetic-quality Global Navigation Satellite System
(GNSS) receivers and high-precision accelerometers mounted on each satellite
make up the rest of the payload complement. The basic NGGM formation consists
of two satellite pairs, each arranged in a “pearl-string” formation (i.e., flying
along the same trajectory), one pair in near-polar (89◦) orbit and another in
medium-inclination (at minimum 65◦) orbit. The mission aims at enabling long-
term monitoring of the temporal variations of Earth’s gravity field at relatively high
temporal (down to 3 days) and increased spatial resolutions (up to 100 km) at longer
time intervals, optimizing the spatial sampling for multiple temporal resolutions
[1]. The fundamental observable is the variation of the distance between the two
satellites in each pair, measured by a laser interferometer [4]. As a necessary
complement, accelerometers measure the non-gravitational accelerations, to be
separated from the gravity signal in the data processing. The mission product is the
data set of positions and ambient accelerations, collected on board each spacecraft
pair over a life of 7 years at minimum 10 Hz rate.

Each NGGM spacecraft, as conceived in the Phase 0 studies, consists of a
modified LEO platform providing the spacecraft services and accommodating a
thermally stabilized payload bay hosting the laser metrology and accelerometer
elements on a high-stability structure. A 10-mN class thruster (drag compensation
thruster, DCT) provides orbit maintenance/formation control and drag control
in the direction of motion. In addition, a functionally redundant set of 1-mN
class thrusters (fine control thruster, FCT) provides acceleration control (orbit
maintenance/formation control as well as attitude/drag control) in the cross-axes.
The type, number, and configuration of the FCTs impose major challenges to the
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spacecraft and mission design. In the following, the FCTs will also be denoted as
mini-thrusters or, when no ambiguity can occur, simply as thrusters.

The thruster set must provide tiny forces, equal and opposite to the ambient
forces due to the residual air drag, with high dynamic range, high resolution, low
noise, fast response time, and low propellant consumption, such as to make a long
duration mission practical. Early trade-off studies established electric thrusters as
the preferred candidate actuators. Given the thruster characteristics, an optimized
design of the control system is fundamental to making the mission feasible.

The general problem is defined as follows: design a system of N thrusters,
with N as small as possible, including redundancy to failure of any one thruster
and power processing unit, capable of matching the environmental forces with
conservative margins, over a long-duration mission, subject to global constraints
(maximum power available at any time; maximum portable propellant mass) and to
technological limits (min/max thrust and total impulse per thruster).

For obvious reasons, the general problem cannot be solved for any ambient
acceleration environment; the solution must be tailored to a specific mission. A
prerequisite is a detailed software model of the interaction of the spacecraft with the
air particles, in the given orbit, with account taken of multiple causes of uncertainty
of the air density, including the epoch, given the dependence of the density on the
solar cycle. Once the spacecraft model is established, the control problem can be
addressed.

It is assumed that the on-board controller receives at any given instant sufficient
measurements of the forces and torques acting on the spacecraft, and a suitable
algorithm exists that can dispatch individual commands to each of the N thrusters
such that the sum total of the forces and torques dispatched matches the ambient
forces and torques within a given tolerance. The problem is then to find the thruster
layout (number, position, and orientation) that minimizes an objective function
under given additional constraints. Normally the objective function is the total mass
of propellant consumed over the lifetime and the most important constraint is the
thrust range of the thrusters. For physical reasons N is equal or greater than 8 and
the position of the thrusters is highly constrained by the spacecraft configuration,
leaving few practical options open. The main variables to be decided are the 2 N
angles defining the orientation in space of the thruster lines of force.

The problem is solved progressively. A number of time profiles of the forces and
torques is generated, representative of the foreseeable external conditions (chiefly
the solar flux driving the atmospheric density at the selected mean altitude). The
time profiles comprise a large fraction of the mission time (order of 1 year) sampled
at a small time step (few seconds). First, a small set of representative control
instances is selected by a clustering algorithm and the problem is solved for this
reduced set. The obtained thruster positions are fixed. Then, given the N thrusters
at the selected positions, the optimal orientations are found by solving the full
optimization problem with the orientation angles as variables. This overall process
can be repeated until a satisfactory solution is found.

The optimal thruster plant found in this way is then tested, by means of a
dedicated simulation environment (E2E simulator, see [5]) against the full 7-year
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time series of the perturbations under a range of solar flux conditions. Occasionally,
the thruster plant may fail to cope with an instantaneous force/torque realization.
Usually these cases are sparse and the controller can handle them without impact.
The number of such failures is taken as an index of the quality of the solution.

The problem and the solution assuming no thruster failures are illustrated in [3].
A realistic system must offer redundancy as well, i.e., the ability to carry on with
the mission without impairment in case of failure. The usual “cold redundancy”
solution (two identical thruster branches, one working and one idle, the idle branch
replacing completely the one in use when a thruster fails) is not practical for electric
propulsion when many thrusters are involved. Therefore, one looks for a solution
with 1 or 2 extra thrusters which can replace any one of the original sets. The
main objective of the new research documented in this chapter was to solve the
optimization problem including this type of redundancy. The focus of the new
research also included a more realistic account taken of the technological constraints
(dynamic range, total impulse) applicable to the candidate thruster types under
consideration for the NGGM.

Section 2 discusses the relevant control problem. Section 3 outlines the thruster
layout optimization problem as considered in the dedicated research and presents
the state-of-the-art analysis, including notably the approach to the redundancy
problem and the solutions found. Section 4 investigates the impacts of the layout
solutions obtained on the real-world mission scenarios. Finally, Section 5 draws the
conclusions and outlines some potential avenues for future research.

2 The Control Problem

To accomplish its scientific objectives, each NGGM satellite shall be designed with
the special concern of minimizing the relevant disturbance to the payload. To this
purpose, each satellite shall be endowed with a dedicated control system capable of
carrying out several tasks in close coordination, as illustrated below.

• Orbit altitude control
As the planned average orbit altitude is subject to decay, it must be constantly

monitored and maintained. Therefore, the control system must properly keep the
orbits for all the cycles involved around their nominal values.

• Formation control
The satellite-to-satellite distance must be bounded around the initial parame-

ters through a continuous control action that must not interfere with the scientific
measurements.

• Non-gravitational acceleration control (drag-free control)
It is necessary to reduce the non-gravitational acceleration acting on each

satellite to a level (to optimize the accelerometer sensitivity as close as possible to
its intrinsic noise) where the measurement errors, arising from the coupling of the
accelerometer imperfections with the residual accelerations, are compatible with
the mission performance. The drag-free control must properly be coordinated
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with the orbit altitude control and the formation control. In particular, the forces
exerted by the drag-free control must not act in opposition to those applied to the
satellite to maintain the orbit altitude and the formation geometry.

• Satellite-to-satellite line pointing control
The alignment between the beam of the laser interferometer and the satellite-

to-satellite line must be controlled and constantly maintained within the tight
requested bounds.

The overall control design considered in this chapter is essentially the same as
that discussed in the previous paper [3]. An extended thruster layout optimization,
however, has been carried out to obtain a highly efficient non-fully-redundant
solution (i.e., where the redundant thrusters are fewer than the nominal ones).

With this perspective, the thruster layout has been refined to account for:

• Possible differences in the force/torque demand profiles between the two satel-
lites of the pair

• Different thrust force/torque profiles corresponding to different atmospheric
density conditions

• The thrust authority required by the other AOCS modes and in case of contin-
gencies.

The above points have been considered focusing mainly on the aspects illustrated
here below:

• The mission duration was reduced to 7 years (from 11, as supposed in the
previous studies). This, in principle, leads to a reduction of the overall fuel
consumption.

• The current limiting factors consist of the admitted thruster range, the power
demand, and the thruster lifetime.

In the all-electric design of Phase 0, to perform the orbit corrections relevant to
the launcher injection errors and to guarantee safe collision avoidance manoeuvres,
the maximum thrust of the DCT must be advantageously exploited. It is assumed
not to exceed 15 mN in order to be compatible with the electric power availability.

In summary, for the thruster layout optimization process the following assump-
tions were made for the control force/torque time-dependent data:

• The orbit altitude is 345 km and the inclination 66◦ for minimum, mean, and
maximum atmospheric density conditions.

• Fusion of time-dependent data between the leader and follower satellites is
performed to obtain two satellites with the same thruster layout configuration,
allowing in-orbit interchangeability of the leader-follower roles.

• Time-dependent data include the initial transient phase of the formation control
to account for stronger force/torque requests w.r.t. the science steady state phase
(in the previous studies, the maximum force along the longitudinal axes was
assumed to be 20 mN, while in the present work it is 15 mN corresponding to the
on-board available power); the inclusion of the transient phases has the specific
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purpose of assessing the control authority in terms of forces/torques during the
orbital manoeuvres, e.g., of an along-track orbital correction/change.

• The DCT misalignment is 0.1◦ at 3σ truncated Gaussian.
• No support from the magnetic torquer equipment to exert the torque control is

considered for the science phases, but for the transient phases only.
• An overall time of approximately 2.5 months is simulated for the science phase,

plus 1 month for the formation transient phase, with a sampling every 400 s
(25,000 samples for each atmospheric density condition).

Figures 1 and 2 show the time-dependent forces and torques acting on the leader
satellite in case of maximum atmospheric density conditions. The effects of the

Fig. 1 Non-gravitational forces acting on the leader satellite – maximum atmospheric density

Fig. 2 Torques acting on the leader satellite – maximum atmospheric density
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transient phase corresponding to the formation control associated to an orbital
correction/change are visible at the beginning of the series in Fig. 1.

3 Thruster Layout Optimization

This section is dedicated to the thruster layout analysis. The relevant problem is
stated and the overall approach outlined. Two case studies are overviewed with the
main purpose of illustrating the focus of the analysis carried out.

3.1 Problem Statement and Overall Approach

The analysis performed by the authors in the preceding NGGM studies showed the
importance of determining an ad hoc (mini-)thruster layout in order to minimize the
overall control propellant during the whole mission. In all these former studies, it
was implicitly assumed that the thrusters involved were able to work as planned with
no breakdown. In addition to what was investigated previously, here the occurrence
of possible thruster failures is considered. More precisely, it is assumed that any one
of these thrusters can stop working at any phase of the mission. The present study
has the further ambition of managing this single-failure issue by avoiding “cold
redundancy”. The idea of a straightforward duplication of any (optimal) thruster
layout in the no-failure hypothesis would actually be impractical (specifically for an
all-electric propulsion design). To this purpose, a number of redundant thrusters are
included.

A possible alternative to the approach here proposed could consider a larger
number of nominal thrusters, always available if necessary (except in the case of
failure), and no redundant thrusters. Although quite suggestive, this option is not
discussed here, representing a possible subject of future research.

The overall optimization framework relevant to the approach followed here
consists in guaranteeing the mission feasibility, while minimizing the propellant
consumption compatible with the minimum number of thrusters involved. Thruster
position and orientation are in general changed, whenever opportune, to set up a
new configuration including both nominal and redundant thrusters. Each redundant
thruster in the new optimal solution is able to replace (at least partially) more than
one of the nominal ones (in order to avoid total duplication).

The situation where no failure affects any nominal thruster (during the whole
mission) is referred to in the following as nominal operational scenario. Failure
operational scenario # refers to the situation in which nominal thruster # has failed,
all the others remaining operational. The general optimization criterion, consisting
in the minimum propellant consumption, may thus assume the following diverse
specific connotations:

• Minimum propellant consumption, considering exclusively the nominal opera-
tional scenario.
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• Minimum propellant consumption considering all possible operational scenarios
(i.e., nominal and all failure scenarios).

• Weighted combinations of the above criteria.

As anticipated, the configuration concerning both the nominal and redundant
thrusters is assumed to be fixed during the whole mission. Therefore, the positions
and orientations of all the thrusters encompassed are parameters to be determined
(once and for all) in the design phase. The primary scope of the analysis described
here consists, as a matter of fact, in finding the most appropriate values for these
parameters, in accordance with the given mission requirements and the specific
optimization criterion selected. In addition, this analysis also aims at identifying
possible drawbacks and even bottlenecks relevant to the thruster typology and
relative sizing.

The approach followed by the authors both in this and the previous studies,
albeit general, is deemed particularly suitable when cutting-edge electric propulsion
technology is involved as in the present case. The optimization methodology
conceived with this perspective (see [6, 7]) adopts mathematical models and
algorithms based on global optimization (GO, see, e.g., [8, 9]), mixed integer
linear/non-linear programming (MILP/MINLP, see, e.g., [9, 10]), as well as ad hoc
heuristics.

To outline the problem in question also from a mathematical point of view, the
interval [0,T] is first introduced. It expresses the given timeframe over which the
relevant analysis has to be fulfilled. As the two satellites involved in this work are
supposed to be identical, the entire control dispatch analysis can simply focus on a
generic spacecraft which can stand for both. This is ideally represented by a dynamic
system S, assumed to be a rigid body. An appropriate S-based orthogonal reference
frame (O, x, y, z), denoted as the main reference frame, is defined (the x axis is
longitudinal). The entire interval [0, T] is then discretized into a set of sub-intervals,
of duration � each, delimited by the NI + 1 instants i ∈ {0, 1, . . . ,NI} = I. At each
instant i a force Fi = (Fxi,Fyi,Fzi) and a torque Ti = (Txi,Tyi,Tzi), representing
the overall control request (determined by the on-board control system), have to be
exerted on the system (constantly) during the relative time sub-interval �, through
the available thrusters.

In light of the above, two major issues, referred to as nominal and redundancy
problems, respectively, arise. The analysis of the former (inclusive of sensitivity
aspects) can actually provide a preliminary understanding for the layout to reshape,
including, for instance, an estimate of the number of nominal thrusters to adopt, as
well as insights on possible operational criticalities. The two problems are stated
here below:

• Nominal problem (PN)
A (suitable) number of (nominal) thrusters have to be selected with given

technical features (not necessarily identical) to provide the force Fi and torque
Ti as requested at each instant i over the whole time frame [0,T]. Their posi-
tions/orientations are determined in order to satisfy the mission requirements, as
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well as the optimization criterion adopted (clearly, a comprehensive dedicated
analysis could contemplate more than one possible choice).

• Redundancy problem (PR)
Extension of the nominal problem, where a single nominal thruster (not

known a priori) is assumed to be non-operative for the whole mission (as the
worst case has to be considered). Redundant thrusters are introduced to overcome
the potential single-failure event, while optimizing the selected performance
criterion (considering different criteria, as appropriate).

The PN mathematical formulation is not reported here, being simply a sub-case
of the PR one. The overall (discretized) model of the redundancy problem (PR), in
consideration of the above assumptions, is outlined herein. In this formulation the
possible contribution of the DCT thruster is not considered for the sake of simplicity
(its inclusion is straightforward). The following basic and additional constraints
(expressed by a compact formalism and allowing for a slight abuse of notation)
are encompassed.

Basic constraints:

∀α ∈ OS∀i ∈ I

(
v v̂

p × v p̂ × v̂

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1αi

. . .

urαi

. . .

uNAαi

. . .

û1αi

. . .

ûr̂αi

. . .

û
N̂

Â
αi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

Fαi

Tαi

)
, (1)

∀r ∈ A ‖vr‖ = 1, (2-1)

∀r̂ ∈ Â
∥∥v̂r̂

∥∥ = 1, (2-2)

∀r ∈ A∀α ∈ Os∀i ∈ I urαi ∈ [
Ur,Ur

]
, (3-1)

∀r̂ ∈ Â∀α ∈ Os∀i ∈ I ûr̂αi ∈
[
Û r̂ , Û r̂

]
, (3-2)

∀r ∈ A prDpr , (4-1)
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∀r̂ ∈ Â p̂r̂ ∈ D̂pr̂ , (4-2)

∀r ∈ A vr ∈ Dvr, (5-1)

∀r̂ ∈ Â v̂r̂ ∈ D̂v̂r̂ . (5-2)

The notations here adopted are explicated in the following.

• Nominal thrusters:
A = {1, . . . , r, . . . ,NA} is the set of (nominal) thrusters;
OS = {0, . . . ,α, . . . ,NA} is the set of (nominal and failure) operational

scenarios;
pr = (xr, yr, zr) is, for each thruster r, the unit vector representing its position;
vr = (vrx, vry, vrz) is, for each thruster r, the unit vector representing its

orientation;
v is the (sub-)matrix whose columns are the (column) vectors (vrx, vry, vrz)T,

i.e.,

v =
((

ν1x, ν1y, ν1z
)T

, . . . ,
(
νrx, νry, νrz

)
T, . . . ,

(
νNAx, νNAy, νNAz

)
T
)

;

pr × vr = (qrx, qry, qrz) is, for each thruster r, the cross product of prand vr;
p × v is the (sub-)matrix whose columns are the column vectors

(qrx, qry, qrz)T, i.e.,

p × v =
((

q1x, q1y, q1z
)T

, . . . ,
(
qrx, qry, qrz

)
T, . . . ,

(
qNAx, qNAy, qNAz

)
T
)

;

urαi is, for each thruster r, the (Euclidean) norm ‖Frαi‖ of the force exerted
by r in operational scenario α at instant i, i.e., Frαi = urαivr;

.Ur,Ur are, for each thruster r, the lower and upper limits (imposed on
the force norms urαi (depending on the specific technical characteristics of the
thrusters);

Dpr ⊂ R3 is, for each thruster r, a compact domain delimiting the admissible
positions (in compliance with the given geometrical/operational requirements);

Dvr ⊂ R3 is, for each thruster r, a compact domain delimiting the admissible
orientations (in compliance with the given geometrical/operational require-
ments);

• Redundant thrusters:

All the above notations relevant to the nominal thrusters are directly carried
over the redundant simply by introducing the hat symbol ( )̂, e.g., .r̂ is the index
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associated with the generic redundant thruster and .Â = {
1, . . . , r̂, . . . , N

Â

}
is the

corresponding set.

• Forces and torques:
Fαi = (Fxαi,Fyαi,Fzαi)T is the overall force (represented as a column vector),

requested by the controller (from the thrusters) in operational scenario α at instant
i;

Tαi = (Txαi,Tyαi, Tzαi)T is the overall torque (represented as a column vector),
requested by the controller (from the thrusters) in operational scenario α at instant
i.

Constraints (1) represent the control dispatch equations; (2-1) and (2-2) are nor-
malization conditions defining the orientation unit vectors. The following additional
constraints, optional depending on the specific analysis focus, can be included.

Additional constraints:

∀r ∈ A∀α ∈ Os∀i ∈ {0, 1, . . . , NI − 1} ∣∣urα(i+1) − urαi

∣∣ ≤ Lr, (6-1)

∀r̂ ∈ Â∀α ∈ Os∀i ∈ {0, 1, . . . , NI − 1} ∣∣ûr̂α(i+1) − ûr̂αi

∣∣ ≤ L̂r̂ , (6-2)

∀r ∈ A∀α ∈ Os

∑
i∈I

urαi ≤ Jr

�
, (7-1)

∀r̂ ∈ Â∀α ∈ Os

∑
i∈I

ûr̂αi ≤ Jr

�
. (7-2)

Here, Lr is a (positive) constant limiting the increments/decrements of the force
exerted by each thruster r in any two subsequent instants of any operational scenario
α (this constraint can be set, for instance, when adopting electric propulsion to take
into account the given response time requirements); for each thruster r Jr is an upper
bound on the total impulse admissible during any one operational scenario α. An
analogous meaning is given to the terms relative to the redundant thrusters.

The general optimization objective, representing the propellant consumption
minimization, is expressed as below:

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
r ∈ A

α = 0

i ∈ I

fr (urαi ) + WS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
r ∈ A

α ∈ OS,α �= 0

i ∈ I

fr (urαi ) +
∑

r̂ ∈ Â

α ∈ OS,α �= 0

i ∈ I

f̂r̂

(
ûr̂αi

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(8)
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Fig. 3 Example of discretized positions (with forbidden zones in red), some thruster orientation
vectors (red arrows), and an orientation semi-sphere (centred in one node of the grid)

where, for each thruster r, fr(urαi) is the propellant consumption function (shaped
on the thruster characteristics and depending on the magnitude of the force exerted)
in operational scenario α at instant i; WS is an appropriate optimization weight
(WS ≥ 0 and WS = 0 when only the propellant consumption of the nominal
operational scenario is minimized). Analogous notations are assumed for the terms
corresponding to the redundant thrusters (where .urαi 0 for α 0).ˆ ˆ = =

In the present study (as well as in the previous ones), the domains Dpr are grids
of admissible (discretized) positions with holes representing forbidden zones. These
grids are virtually placed on the frontal or rear surfaces of the spacecraft. The
domains Dvr consist of semi-spheres each one centred in a node of the grids. Figure
3 shows an example of a grid (with holes) of admissible positions on the rear surface
of a spacecraft and an orientation semi-sphere (associated with a grid node).

The above specification for the Dvr domains can simply be obtained by replacing
the general conditions (5-1) and (5-2) with the following:

∀r ∈ A V r ≤ (
vrx, vry, vrz

)T ≤ V r, (9-1)

∀r̂ ∈ Â V̂ r̂ ≤ (
v̂rx, v̂ry, v̂rz

)T ≤ V̂ r̂ . (9-2)

Here, .V r = (0,−1,−1) or .V r = (−1,−1,−1) depending on the surface
involved (i.e., the former if thruster r is placed on the frontal, the latter if on the
rear); this is analogous for the corresponding upper limit, i.e., .V r = (1, 1, 1) or
.V r = (0, 1, 1). The same notations are adopted concerning the general redundant
thruster .r̂ . As is gathered, actually the semi-spheres in question are determined by
the intersection of constraints (2-1) and (9-1), or (2-2) and (9-2), respectively. In
the study discussed here (as well as in the previous ones), expression (8) has been
linearized as follows:
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min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
r ∈ A

α = 0

i ∈ I

Krurαi + WS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
r ∈ A

α ∈ OS,α �= 0

i ∈ I

Krurαi +
∑

r̂ ∈ Â

α ∈ OS,α �= 0

i ∈ I

K̂r̂ ûr̂αi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(10)

with .Kr, K̂r̂ > 0 (for an in-depth discussion on the general expression (8) see [11]).
As pointed out in [3], the problem PN is NP-hard. This is more the case for

PR and, hence, in general it is deemed to be extremely challenging to undertake
tout court by any global optimization approach. The overall heuristic (recursive)
methodology, purposely conceived [12], has therefore the purpose of finding
satisfactory solutions, albeit non-proven optimal. It is actualized by means of a
dedicated mathematical library, consisting of the following modules:

• Preliminary solution (PS)
• Preliminary solution optimization (PSO)
• Overall solution assessment (OSA)

The PS module performs a search for preliminary (roughly approximate) solu-
tions to a simplified version of the problem (PR). For this purpose, a subset .I ⊂ Iof
instants is selected a priori (by means of clustering techniques) as representative
of the whole operational scenario associated with the entire set I (for an in-
depth discussion of this aspect see [7]). This module has the main purpose of
determining, for each nominal/redundant thruster, the position, as well as the octant
(of the corresponding semi-sphere) in which the force unit vector is supposed to be
oriented.

The PSO module is aimed at refining the PS solution. The thruster positions
deriving from the PS module are fixed, while an approximate orientation within the
selected octants is determined for the force unit vector of each thruster. For the PSO
module, also a subset .I ′ ⊂ I ( .|I | ≤ |I ′|) of representative instants is considered.

The OSA module has first the task (OSA-1) of assessing the solution obtained by
the PSO module over the whole set of instants I (or a subset .I ′′ ⊂ I, |I ′| ≤ |I ′′|).
Furthermore, this module performs local optimization to improve the PSO solution
(OSA-2), suggesting the positions of additional redundant thrusters, if necessary
(OSA-3).

Backward iterations can be performed whenever deemed appropriate and the
solution process reactivated. The overall logic, in its basic conception, is illustrated
by Fig. 4. Different paths of the optimization process define specific solution
strategies. Relevant examples are:

PS + PSO + OSA - 2(+OSA - 1);
PS + OSA - 3 + OSA - 2(+OSA - 1)
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Fig. 4 Basic logic of the
solution process Problem Instance

PS module

PSO module

Satisfactory sol.

OSA module

Satisfactory sol.

END

found?

N

Y

N

Y

execution

execution

execution

found?

existing preliminary PN solution (e.g., from previous analyses) + OSA-3 + OSA-2
(+ OSA-1);

PS + OSA - 2 + PSO + OSA - 2 (+OSA - 1).

3.2 Case Studies

At this stage of the project, a major concern consisted in limiting the overall number
of thrusters (nominal and redundant) as much as possible. From previous research it
had resulted that at least eight thrusters were necessary to solve the nominal problem
(PN) satisfactorily. Additionally, it had been shown that eight nominal thrusters with
only one redundant were not able to yield acceptable solutions to the redundancy
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problem (PR) in practice. The challenge thus became that of envisioning a solution
with eight nominal thrusters and two redundant thrusters. In this perspective,
considering the extremely restrictive operational framework assumed, even close-
to-feasible solutions were admitted. To this purpose, a relaxation of Eq. (1) was
adopted as described in the following.

Considering the redundancy problem (PR) in question, an infeasible instant
occurs when one (or more) of the control dispatch Eq. (1) for forces and torques
is not satisfied. Therefore, even one of these equations, in any single instant, can
become a stumbling block for the whole solution. This can simply be avoided by
introducing in each equation an error variable. These error variables are denoted
(for each axis x, y, z and each instant i) as εFxi, εFyi, εFzi and εTxi, εTyi, εTzi
for the forces and torques, respectively. All these variables have lower and upper
bounds (of equal magnitude), i.e., ∀i εFi = (εFxi, εFyi, εFzi)T ∈ [−EF,EF] and ∀i
εTi = (εTxi, εTyi, εTzi)T ∈ [−ET,ET], where EF, ET > 0 are the admitted tolerances.
Equation (1) is hence substituted by the expressions below:

∀α ∈ OS∀i ∈ I

(
v v̂

p × v p̂ × v̂

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1αi

. . .

urαi

. . .

uNAαi

. . .

û1αi

. . .

ûr̂αi

. . .

û
N̂

Â
αi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

Tαi + εF i

Tαi + εT i

)
(11)

(also in this case, the possible contribution of the DCT thruster is neglected).
A solution that minimizes the sum of infeasibilities is obtained by minimizing

the sum of the error variables (with suitable weights). The relevant optimization
objective is:

ε =
∑
OS,i

[|εFxi | + ∣∣εFyi

∣∣ + |εFzi | + Wε

(|εT xi | + ∣∣εTyi

∣∣ + |εT zi |
)]

, (12)

where Wε is an appropriate constant with physical dimension L−1. This is actually
the approach adopted for the OSA module in the feasibility analysis reported in
this section (where Wε has a unit of m−1). The optimization objective of the
previous modules (i.e., PS and PSO) is instead the minimization of the overall
propellant consumption (adopting objective function (10) with WS = 1), as in
the basic formulation (with no relaxation for Eq. (1)). The utilization of two
redundant thrusters significantly reduces the number of infeasible instants with
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respect to the previous option with a single redundant thruster only. Nonetheless,
these infeasibilities are not totally absent in the final solutions found. The two case
studies are described in Sects. 3.2.1 and 3.2.2.

In both, an average orbit of 345 km is considered. Three different atmospheric
density conditions are examined, i.e., minimum, mean, and maximum. The DCT
thrust level ranges from 0.6 to 15 mN and it is supposed to be always active except
for the science phase in minimum atmospheric density conditions. The default lower
limit for the force of the FCT thrusters (only for the redundant or both nominal
and redundant) is relaxed (from 0.05 to 0 mN). This relaxation has the purpose
of detecting possible operational scenarios during which the deactivation of the
corresponding thrusters, resulting mostly inactive in the solution, could be profitably
imposed. The maximum admissible thrust for both the nominal and redundant
thrusters is 1 mN. The selected (sub-)set s ( .I , .I ′, I ′′) of the representative instants
consist of ~300 elements for both the PS and PSO modules, and ~1500 for the OSA
module. All the results reported in the following refer to those obtained with the
OSA module (final solution).

In this analysis, the science phases are distinguished from the transient ones,
i.e., those occurring after the orbital manoeuvres when the control system acts to
attain a new steady state. Although the leader and follower satellites are assumed
to be identical from a design point of view, their operational conditions (e.g., their
attitude) are different in terms of overall force and torque requested at each instant.
The relevant results are however very similar, therefore, in the following, only the
leader satellite is considered (in both case studies). The analysis here discussed
mostly addresses the following aspects for the different mission phases/operational
scenarios:

• The total impulse exerted by each thruster
• The forces (over time) exerted by each thruster
• The errors (w.r.t. the infeasibility instants)
• The utilization of each thruster, in each instant, with forces exerted below the

(actual) lower limit (i.e., 0.05 mN)

In general, an ideal solution is expected to feature: a uniform distribution of the
impulses, forces, and torques exerted by the thrusters (both nominal and redundant)
in each phase; no infeasibility instants; either thrusters totally inactive (i.e., 0% of
usage) or fully active (i.e., 100% of usage) in each phase/operational scenario; no
thrust saturation occurring (i.e., no forces exerted by the thrusters reach the given
upper limit of 1 mN).

An overall assessment of the results obtained with the analysis reported herein
is provided in Sect. 4. The overall layout optimization approach discussed so
far actually entails a number of approximations due to the significant difficulty
of the problem. A further dedicated analysis based on an advanced dynamic
simulation represents therefore the ultimate step of the study in question. The actual
mathematical models of the on-board control system are adopted for this purpose,
replacing in particular the set of instants I with the actual control steps. In Sects.
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Fig. 5 Case study 1 solution thruster layout

3.2.1 and 3.2.2, only a (very) limited part of the results obtained are reported. An
exposition of the ultimate outcomes relevant to the dynamic simulation analysis
carried out is provided in Sect. 4.

3.2.1 Case Study 1

In this case study, the minimum thrust for the nominal thrusters (when active) is
0.05 mN, while, for the redundant thrusters, this limitation is reduced to 0 mN.
Figure 5 provides a graphical view of the solution obtained.

Figure 6 illustrates the total impulse provided by the nominal and redundant
thrusters of the leader satellite for the science phase in minimum atmospheric
density conditions for the nominal operational scenario. Figure 7 illustrates the
total impulse provided by the nominal and redundant thrusters of the leader satellite
for the science phase in minimum atmospheric density conditions for the failure
scenarios 1–4 (corresponding to the frontal nominal thrusters).

The total impulse figures, when projected over the total time span of 7 years,
are compatible with the upper limit <120 kNs assumed for the thruster technology.
Figure 8 illustrates the forces (mN) over time (s) provided by the nominal and
redundant thrusters of the leader satellite for the science phase in mean atmospheric
density conditions for the nominal operational scenario.
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Fig. 6 Total impulse (kNs) in 3.5 months, science phase, minimum atmospheric density, nominal
operational scenario

Fig. 7 Total impulse (kNs) in 3.5 months, science phase, minimum atmospheric density, failure
operational scenarios

Fig. 8 Forces (mN) over time (s), transient/science phases, mean atmospheric density, nominal
operational scenario

Figure 9 illustrates the time profile of the forces provided by the nominal and
redundant thrusters of the leader satellite for the science phase in mean atmospheric
density conditions for the failure scenarios 1–4 (front thrusters).
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Fig. 9 Forces (mN) over time (s), transient/science phases, mean atmospheric density, failure
operational scenarios 1–4 (in order from top to bottom)

The time profile of failure scenario 1 (top plot of Fig. 9) shows saturation of some
thrusters which reach the assumed upper limit of 1 mN. This is an unwanted effect
and it is treated further on (case study 2). Figure 10 shows the profiles corresponding
to failure of thrusters 5–8 (rear thrusters).

Figure 11 illustrates the force (mN) over time (s) provided by the DCT thruster
of the leader satellite for both the transient and science phases in maximum
atmospheric density conditions, for the nominal operational scenario. This also
indicates that other solutions can be explored for the DCT, like a cluster of thrusters
of smaller class for drag compensation purposes in science phase, and a cluster of
impulsive thrusters of larger class for operations, initial formation acquisition, and
CAM (collision avoidance manoeuvre).

Tables 1 and 2 report the average error magnitudes with respect to the forces and
torques in the (relaxed) control dispatch Eq. (11), and the corresponding atmosphere
conditions (Min, Mean, Max), for the transient and science phases.

Figures 12, 13 and 14 show examples of “infeasibility” occurring when the
calculated force and torque components to be dispatched cannot be met by the
system:
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Fig. 10 Forces (mN) over time (s), transient/science phases, mean atmospheric density, failure
operational scenarios 5–8 (in order from top to bottom)

Fig. 11 DCT force (mN) over time (s), transient/science phases, maximum atmospheric density

• In minimum atmospheric density conditions, failure operational scenario 8, some
Fy components are above the requested values (5 infeasibilities out of about 1500
representative instants).

• In mean atmospheric density conditions, failure operational scenario 5, one Fy

component is below the requested value.
• In maximum atmospheric density conditions, failure operational scenario 2, some

Fy components are above the requested values (5 infeasibilities).
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Table 1 Number of infeasible instances and error magnitude found in the 8 failure scenarios with
the 3 atmosphere conditions – transient phase

Atmosphere Component
Number of
infeasible instances

Average error magnitude
(mN or mNm)

Failure_scen_1 0
Failure_scen_2 0
Failure_scen_3 Min Fy 2 0.00033
Failure_scen_4 Min FyFzTx 1 0.00442

1 0.00183

1 0.00005
Failure_scen_5 Max Fy 2 0.00054
Failure_scen_6 Min Tx 6 0.00201
Failure_scen_7 0
Failure_scen_8 0
TOTAL 13

Table 2 Number of infeasible instances and error magnitude found in the 8 failure scenarios with
the 3 atmosphere conditions – science phase

Atmosphere Component
Number of
infeasible instances

Average error magnitude
(mN or mNm)

Failure_scen_1 Max Fy 2 0.00021
Failure_scen_2 Max Fy 5 0.00228
Failure_scen_3 0
Failure_scen_4 Max Fy 7 0.00051
Failure_scen_5 Mean Fy 1 0.00053
Failure_scen_6 Min Fy 1 0.00002

Max Fy 1 0.000005
Failure_scen_7 Min FxFy 1 0.00006

1 0.00037
Failure_scen_8 Min Fy 5 0.00147
TOTAL 24

Note that one or more infeasibility only indicates that the problem as a whole
admits no solution. The value provided in output does not give any information. The
solver arbitrarily decides whether the value provided as output is above or below the
request.

Summarizing, case study 1 significantly improved the corresponding solutions
obtained in the previous studies involving fewer than two redundant thrusters.
Infeasibility errors are few and sparse and their magnitude is very small (order
of a few μN or μNm). They almost always occur in the components of the force
and torque of the smallest magnitude, Fy and Tx. The global error, as expressed
by objective function (12), is also small: its value, resulting from the optimization
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Fig. 12 Minimum atmospheric density case, transient/science phases, failure operational scenario
8 Fy components (mN) above the requested values

Fig. 13 Mean atmospheric density case, transient/science phases, failure operational scenario 5,
Fy component (mN) below the requested value

process, amounts to 2.4 mN (w.r.t. ~1500 instants). Potential directions for further
improvement were investigated in case study 2.
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Fig. 14 Maximum atmospheric density case, transient/science phases, failure operational scenario
2, Fy components (mN) above the requested values

3.2.2 Case Study 2

Case study 2 was dedicated to assessing the effect on the solutions of the assumed
thrust levels and the error tolerances. In case study 2, a further relaxation relative to
the minimum admissible thrust is introduced by assuming that it is 0 mN also for
the nominal thrusters. As in the solution discussed above, the leader and follower
satellites show only negligible differences in their behaviours. In particular, the
thruster utilization is very similar. The same positions utilized in case study 1 have
been adopted for case study 2 as well. The obtained orientations result in being
essentially unvaried.

The overall error (see objective function (12)) amounts to 0.08 mN (w.r.t. ~1500
instants, neglecting all errors ≤0.000009 mN for the forces and ≤0.000009 mNm
for the torques). In minimum atmospheric density conditions, errors occur exclu-
sively in the transient phase, for the sole failure operational scenarios 3, 4, and 6,
where 0 ≤ Tx ≤ 0.0009 mNm. No error occurs in mean atmospheric conditions
while in maximum atmospheric density conditions, errors appear exclusively
in the science phase for the sole failure operational scenarios 1 and 2, where
0 ≤ Fy ≤ 0.00009 mN. In this case study, the prevalent errors are also associated
with Fy and Tx.

Similar to case study 1, the maximum atmospheric density conditions have
no critical impact on the overall feasibility. The results of the feasibility analysis
carried out for case study 2 have been extended by a dedicated sensitivity analysis.
The relevant outcomes are discussed herein, focusing separately on the following
aspects:
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Fig. 15 Overall error relaxation solution (on top) vs that corresponding to case study 1. Forces
(mN), minimum atmospheric density, failure operational scenario 1

• Overall error relaxation (w.r.t. the minimum value obtained) and fuel consump-
tion minimization.

• Minimum/maximum thrust limit relaxation.

Recalling that in this case study the minimum overall error obtained is 0.08 mN,
the following relaxation is introduced:

ε =
∑
OS,i

[|εFxi | + ∣∣εFyi

∣∣ + |εFzi | + Wε

(|εT xi | + ∣∣εTyi

∣∣ + |εT zi |
)] ≤ 0.09 mN.

With this additional inequality, the original problem PR is solved by considering
the minimization objective expression (10). While the consequent overall error
increment is as a matter of fact irrelevant from a practical point of view, the above
relaxation yields a reduction of approximately 5.2% of the total fuel consumption
(w.r.t. to the corresponding feasibility problem).

Another improvement obtained by this approach (w.r.t. case study 1 and the
original version of case study 2) concerns thrust saturation. Figure 15 compares,
for mean atmospheric conditions and for failure operational scenario 1, the solution
obtained in case study 2 (considering the overall error relaxation) with that of case
study 1. This shows that the thrust saturation problem was an effect of a too tight
error tolerance.

As anticipated, the second part of the sensitivity analysis carried out for case
study 2 considers the potential advantages deriving from the relaxation of the
lower and upper limits on the force associated with the (nominal and redundant)
thrusters. The precise purpose is that of identifying the “cost”, in terms of thrust
range extension, to attain full feasibility (i.e., solutions with zero total error).

As a first result, no fully feasible solution can be found with a maximum thrust
<1.1 mN (albeit with a minimum thrust of 0 mN for both the nominal and redundant
thrusters). Thrust ranges allowing full feasibility are reported in Table 3.



Advances in the Control Propellant Minimization for the Next Generation. . . 25

Table 3 Thrust ranges
allowing full feasibility

Thrust range Lower thrust limit (mN) Upper thrust limit (mN)

(1) 0.014 1.2
(2) 0.026 1.3
(3) 0.036 1.4
(4) 0.05 1.535

The above results suggest that the presence of a thrust minimum limit >0 mN
renders the control dispatch problem very demanding. Fully feasible solutions can
be obtained by relaxing both limits (0.05 mN, 1 mN), as in ranges (1), (2), and (3),
or the upper limit only, as in (4). As can be observed, an extension of the upper
limit can compensate for the presence of lower limits (>0 mN). Range (4) clearly
shows that the cost (in terms of upper limit extension) to obtain an overall error
exactly equal to zero (with the lower limit of 0.05 mN) is very high and therefore
not justifiable from a practical and technological point of view.

3.2.3 General Remarks

Some general remarks on the results of study cases 1 and 2 follow. Further insight
is provided in Sect. 4 aimed at discussing the analysis based on the dynamic
simulation.

• In contrast to the previous studies, here the activation of the DCT thruster, both
in minimum and mean atmospheric density conditions, proves to be significantly
advantageous. This has been possible because its thrust lower limit in the present
analysis has been reduced from 1 to 0.6 mN. This apparently slight modification
actually allows reducing the inclination of the rear (nominal and redundant)
thrusters with respect to the x axis and, consequently, an increased possibility
to exploit their thrust in the y and z axis directions.

• A significant overall error reduction (~90%) with respect to the solutions of the
previous studies has been obtained. The thrust lower-limit relaxation (from 0.05
to 0 mN) has proven to be useful in identifying advantageous thruster switch-offs.
A dedicated analysis is recommended for future developments.

• A limited relaxation with respect to the overall error (e.g., from 0.08 to 0.09 mN)
can provide appreciable fuel consumption reduction.

• A relaxation of the thrust upper limit, for both the nominal and redundant
thrusters (e.g., from 1 to 1.4 mN) is recommended.

• The presence of a minimum thrust limit (>0 mN) has a strong impact on the
overall fuel consumption.
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4 Satellite Control Simulation and Mission Performance

The two layout solutions found and described in Sect. 3.2.1 (Case 1) and Sect.
3.2.2 (Case 2) are reproduced in Fig. 16. It is apparent that the two cases have very
similar thruster inclinations. Consequently, both solutions turn out to have similar
total impulses and show similar robustness of the control problem.

The two layout solutions were evaluated on the complete 3.5-month time series
sampled at a 400 s, from which the 1500 representative instants had been selected.
This verification was done considering the following thruster ranges:

• FCT 50–1000 μN
• DCT 0.6–15 mN

and all possible thruster failure scenarios.
Similar behaviour as found in the case studies (1 and 2) was found in the

complete simulation. Both solutions only sporadically exceed the tolerable error
bounds. In particular, Case 1 is affected by a few errors in Fy (the control force
along the y axis), see Fig. 17. Case 2 is affected by a lower total number of errors,
but these involve both the control force along the y axis (Fy) and the control torque
with respect to the x axis (Tx), see Fig. 18.

The Case 1 layout was subjected to a dedicated verification by the E2E simulator.
Figure 19 shows a sample of the results.

The full simulation confirmed that the sporadic “infeasible” instants do not
affect the controls, which are robust to such occurrences. Further refinement of the
algorithms and procedures will minimize or completely eliminate such defects.

On a functional level, we find that the total impulse per thruster is often a reliable
indicator of which thrusters will be active in each case of failure. Actually, in some
cases, by switching off one thruster, the propellant usage may be considerably
reduced without affecting the overall performance. As an example, Fig. 19 shows
the effect of the failure of thruster 8 in minimum atmospheric density conditions. By
switching off the front redundant thruster RDN1 and activating the DCT thruster, the

Fig. 16 Case 1 and Case 2 thruster layouts
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Fig. 17 Case 1 (sporadic) errors w.r.t. Fy

overall thruster usage is kept under the expected limits and the residual errors are
completely eliminated. Therefore, this leads to a more robust solution.

Given defined mission parameters, all failure scenarios can be studied in advance,
and a dedicated strategy – which nominal thrusters shall be kept on and which
redundant thrusters shall be switched on – can be defined for each failure case.

5 Concluding Remarks and Future Developments

The general problem addressed in this paper was to design a thruster system
able to control all linear and angular degrees of freedom of an NGGM satellite,
affected by air drag, subject to a minimum-propellant criterion and to constraints
as to the number, location, orientation, and thrust range of the actuators. In a
first phase, documented in [3], the problem was solved under idealized conditions:
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Fig. 18 Case 2 (sporadic) errors w.r.t. Tx and Fy
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Fig. 19 Example of thruster switch-off: failure scenario in mean atmospheric density

no redundancy and no special limits to the applicable thrust ranges. Under very
conservative assumptions as to the air drag environment, it was shown that this
“nominal” problem (no redundancy considered) may be solved by a set of 8 mini-
thrusters (FCT, 1-mN class), located on the forward and aft sides of the spacecraft,
plus 1 larger thruster (DCT, 10-mN class) on the aft side.

In a second phase, illustrated here, the redundancy problem was addressed. On
board resource constraints forbid simple duplication of the complete electric thruster
plant as is implemented in conventional thruster systems; therefore, functional
redundancy was sought, i.e., the minimum number of extra thrusters able to
replace any one of the nominal sets. Moreover, thrust range constraints were
introduced including a minimum thrust level of 50μN and a ratio of maximum-to-
minimum thrust level not greater than about 20. Under the same drag environment
assumptions, a fully single-failure-tolerant solution was found using two extra FCT
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thrusters, one on the forward and one on the aft side (the DCT was assumed to be
simply duplicated, as in the GOCE design).

The problem is formulated as an optimization problem with constraints and
solved by a dedicated algorithm [6, 12]. Occasionally and rarely, one of the
equations may not have a solution. This was shown to occur for very small
values of the commanded thrust and the addition of a tolerance variable solves the
problem. The overall control design was shown to be robust to such occurrences.
The solutions found are very sensitive to the allowable thrust range assumed for
the thrusters. Both the lower limit and the upper limit can significantly affect the
solutions.

Two thruster types, DCT and FCT, were assumed, reflecting the non-symmetry
of the drag environment (the force in the direction of motion being generally at
least one order of magnitude larger than the side forces) leading to two different
implementations. However, DCT and FCT may blend into one if the environment
is very mild (high altitude and/or very low solar activity). In [3], the lower limit of
the DCT thrust was assumed to be 1 mN and the DCT was turned off in low and
moderate atmosphere conditions (when 1 mN is too large w.r.t. the ambient forces).
In this new study, the lower limit was reduced to 0.6 mN and this was enough to
make the use of DCT profitable even with low ambient forces, for the specific worst-
case altitude at the lower bound of the admissible orbit range.

A sensitivity analysis showed that a lower limit of the FCT thrust �= 0 has a large
impact on the propellant consumption, and that increasing the upper limit above
1 mN reduces the errors considerably. These results give important inputs to the
technological developments that will determine which thrust limits and range may
be efficiently implemented in a given thruster type.

Many avenues remain open for further research into the electric thruster layout
optimization problem, including:

• Introducing constraints on the instantaneous electric power consumed by the
thruster plant;

• Introducing an upper limit to the total impulse available to each thruster;
• Assessing “hot” vs “cold” redundancy (e.g., 10 FCT thrusters active from the

start, with tolerance of 1 or 2 failures, instead of 8 active plus 2 extra thrusters
activated when a failure occurs).
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Transition of Two-Dimensional
Quasi-periodic Invariant Tori in the
Real-Ephemeris Model of the
Earth–Moon System

Nicola Baresi

1 Introduction

Since the ground-breaking discovery that water ice may be found near permanently
shadowed regions at the lunar poles [1–3], private companies and governmental
entities have turned their attention toward our natural companion. Nowadays,
the Moon is no longer considered as political “high-ground,” but rather as a
scientifically exciting, elusive, and potentially profitable neighbor that will soon be
visited by an increasing number of satellite missions [4].

One of the most ambitious prospects is the Lunar Orbital Platform Gateway
(LOPG), a cislunar outpost that will contribute to land the first female astronaut on
the surface of the Moon by the end of this decade [5]. The LOPG would provide
scientists and engineers with crucial information on how to sustain the human
presence beyond low-Earth orbit regardless of reduced gravity, space radiation, and
scarce resources.

The candidate orbits of the gateway have been down-selected after extensive
trade-off analyses that considered key mission design components such as direct
access to the lunar surface, good coverage, communication budgets, “cheap”
transfer opportunities, and solar eclipses [6]. It was found that the .(2:9) and .(1:4)

synodic resonant southern Near Rectilinear Halo Orbits (NRHO)s offer the best
trade-off performance against the different mission design requirements derived for
a safe return to the lunar surface. These candidate trajectories belong to the .L1
and .L2 halo families of the Circular Restricted Three-Body Problem (CRTBP) [7].
However—differently from the majority of halo orbits—NRHOs are found to be
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nearly unstable and relatively close to the lunar surface (periapsis altitude below
5000 km).

Of particular interest to the astrodynamics community are NRHO trajectories
whose period is a rational fraction of the Sun–Earth–Moon synodic month (i.e., the
time required by the Moon to return to its original angular separation with respect
to the Earth-Sun direction). By choosing appropriate initial conditions, it can be
demonstrated that solar eclipses due to the Moon and Earth can be either minimized
or totally avoided [8, 9]. It follows that a spacecraft mission, launched in a proper
synodic resonant NRHO and at the appropriate timing, can be operated for its entire
life cycle without fear for solar power shortages. This feature has been observed
even when the synodic resonant orbit is continued in the real-ephemeris model
of the Earth–Moon system [9, 10]. However, it remains uncertain whether this is
applicable to all of the synodic resonant orbits within the NRHO subfamily, as well
as if transitioning to the full-ephemeris model of the Earth–Moon system would
not reduce the perilune altitude of the candidate orbit to crash-threatening values.
Finding answers to these questions requires astrodynamics researchers to delve into
higher fidelity models of the Earth–Moon system, thereby replacing the continuum
of periodic orbits with a Cantor set of two- or higher-dimensional Quasi-Periodic
invariant Tori (QPT) [11].

Research on QPT has gained momentum over the past few years. Since the
pioneering work by Castellá and Jorba [12], astrodynamics practitioners have
consolidated numerical procedures that enable fast and robust computation of entire
families of two-dimensional QPT [13]. Gómez and Mondelo have first calculated
the Fourier coefficients of quasi-periodic Lissajous and halo orbits in the CRTBP
based on the invariant curves of stroboscopic mappings [14]. Olikara and Scheeres
modified this approach to operate directly on phase space coordinates and generalize
the algorithm to other systems and orbit families [15]. The resulting procedure,
hereby referred to as GMOS, calculates families of quasi-periodic invariant tori by
solving a two-point boundary value problem (TPBVP) for the invariant curves of
a stroboscopic map [13]. This technique represents an accurate and self-contained
alternative with respect to the methodologies of Schilder et al. and Kolemen et al.,
which calculate either invariant tori of flows (via finite differences) or invariant
curves of Poincaré mappings [16, 17]. More recently, McCarthy, Rosales, Henry,
and Villegas-Pinto have applied the GMOS algorithm to calculate quasi-periodic
invariant tori and their whiskers either in the Sun–Earth–Moon bicircular model or
in the circular-elliptic version of it [18–21]. This was done in parallel to the work of
Haro and De la Llave and Kumar and Anderson, who have recently proposed and
advanced an interesting alternative based on the parametrization method [22, 23].

Regardless of the numerical procedures adopted in the researches above, access
to quasi-periodic solutions of non-integrable problems enables a better understand-
ing of key astrodynamics models such as the Earth–Moon CRTBP and Elliptic
Restricted Three-Body Problem (ERTBP) [24, 25]. Both of these systems are crucial
in planning and designing spacecraft missions to the Moon, as seen in the mission
analyses and design of the LOPG and upcoming lunar CubeSats [26–29].
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This chapter overviews modern astrodynamics techniques for the numerical cal-
culation and continuation of two-dimensional invariant tori. Furthermore, it expands
on two-dimensional torus maps that can be used to visualize key orbital parameters
and dynamical quantities aiding with the trajectory design process. A systematic
procedure to transition of quasi-periodic trajectories in the real-ephemeris model of
the Earth–Moon system is finally proposed building on zero-radial-velocity curves
that can be extracted from the aforementioned torus maps.

The applications of this approach are twofold: one can either generate real-
ephemeris orbits from CRTBP resident objects (e.g., large two-dimensional invari-
ant tori that can be found in the center manifolds of periodic orbits) or provide higher
quality initial guesses for trajectory optimization algorithms aimed at researching
real-ephemeris substitutes of CRTBP orbits. This chapter prioritizes the second
application by first calculating dynamical substitutes of LOPG in the Earth–Moon
ERTBP model and later transitioning these candidate quasi-periodic trajectories
in the real-ephemeris model of the Earth–Moon system. More details on these
dynamical models and numerical techniques can be found in the following sections.

2 Dynamical Models

This section introduces the dynamical models used for this chapter’s analyses.
First, the equations of the ERTBP are derived and analyzed in terms of pulsating
normalized coordinates. Second, the general N-body problem of the Sun–Earth–
Moon spacecraft system is described and considered for the real-ephemeris model
adopted in this research.

2.1 ERTBP

Consider the motion of a spacecraft subject to the gravitational attraction of the
Earth and the Moon. It is assumed that the mass of the spacecraft does not perturb
the motion of the two primaries, as well as that the Moon orbits the Earth in an
eccentric orbit with semi-major axis .a = 384,400 km and eccentricity .e = 0.054.

The equations of motion of the satellite can be derived with respect to a rotating
coordinate frame centered on the Moon and such that the .x̂-axis is constantly aligned
with the Earth–Moon direction, .ẑ is parallel to the orbital angular momentum of the
Moon, and .ŷ = ẑ × x̂ completes the right-handed triad. Such a rotating reference
frame .S is hereby referred to as “synodic” and an illustration of it is provided in
Fig. 1.

Next, pulsating coordinates and a change of independent variable are introduced
so as to further simplify the expressions of the spacecraft dynamics. Let .r and .v be
the position and synodic velocity vectors of the spacecraft as seen with respect to
the Moon such that
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Fig. 1 Earth–Moon synodic frame as seen from the perifocal frame of the Earth–Moon system

.r̃ = γ r/p, ṽ = γ ′ r/p + γ v/(p ω) (1)

may be defined as the pulsating position and velocity vectors of the satellite,
respectively. A convenient and invertible linear transformation can be defined
between the two coordinate sets via

.X̃ =
⎡
⎢⎣

γ

p
I3 03

γ ′

p
I3

γ

p ω
I3

⎤
⎥⎦ X, X =

⎡
⎢⎣

p

γ
I3 03

−ω p γ ′

γ 2
I3

p ω

γ
I3

⎤
⎥⎦ X̃, (2)

where .X = [
rT , vT

]T
, .X̃ = [

r̃T , ṽT
]T

, .γ = 1+ e cos ν, .γ ′ = dγ /dν = −e sin ν,
.I3 is the three-by-three identity matrix, .03 is the zero three-by-three matrix, and .ν is
the true anomaly of the Moon. The time rate of change of .ν is defined as

.ω = dν

dt
= n

γ 2

(1 − e2)3/2
, (3a)

whereas

.n =
√

(μm + μ⊕)/a3, . (3b)

p = a (1 − e2) (3c)
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stand for the Moon’s mean motion and semi-parameter, respectively. It is high-
lighted that .ṽ describes the true anomaly rate of change of .r̃ as seen with respect to
the Moon-centered synodic frame, i.e., .ṽ = r̃ ′ = dr̃/dν, with .μ⊕ = 398600.4354
km.

3/s.2 and .μm = 4902.8001 km.
3/s.2 as the Earth’s and Moon’s gravitational

parameters, respectively.
Using pulsating coordinates, the true anomaly rate of change of .r̃ and .ṽ may be

recast as the system of first-order ordinary differential equations given by

.X̃
′ = f (ν, X̃,p) :=

⎧⎨
⎩

ṽ,
g(r̃)

γ
−

([
Z

] [
Z

] + e
cos ν

γ

[
I3

])
r̃ − 2

[
Z

]
ṽ,

(4)

where .(−)′ denotes differentiation with respect to the Moon’s true anomaly in the
synodic frame and

.
[
Z

] =
⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ . (5a)

Furthermore,

.g(r̃) = − μ

r̃3 r̃ − (1 − μ)

r̃3⊕
r̃⊕ + (1 − μ)

r̃3
m⊕

r̃m⊕, (5b)

where .μ = μm/(μm +μ⊕) = 0.012 is the mass ratio parameter of the Earth–Moon
system, and .r̃⊕ and .r̃m⊕ are the position vectors of the spacecraft and the Moon as
seen from the Earth.

In what follows, the vectorial quantities .X̃ and .p are used to denote the state
and parameter vectors of the system (4), whereas .r̃⊕ = ‖r̃⊕‖ and .r̃m⊕ = ‖r̃m⊕‖
stand for the norm of the .r̃⊕ and .r̃m⊕, respectively. Introducing .r̃ = [

x̃, ỹ, z̃
]T

and .ṽ = [
ũ, ṽ, w̃

]T
as the components of the position and velocity vectors of the

spacecraft as seen from the Moon in the synodic pulsating reference frame, one finds
that the components of .r̃⊕ and .r̃m⊕ in the same coordinate system are given by

.r̃⊕ =
⎡
⎣

x̃ + 1
ỹ

z̃

⎤
⎦ , r̃m⊕ =

⎡
⎣

1
0
0

⎤
⎦ . (6)

It is worth noting that the equations of motion (4) reduce to the equations of the
CRTBP as soon as e is set to zero and length and time units are chosen such that
.a = n = 1. This property is hereby exploited to generate periodic orbits in the
circular restricted three-body problem of the Earth–Moon system and implement
homotopy continuation procedures aimed at calculating quasi-periodic dynamical
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substitutes in the ERTBP problem. These ERTBP trajectories are later utilized to
produce full-ephemeris orbits in the high-fidelity dynamics of Sect. 2.2.

2.2 Full Ephemeris

While the gravitational attraction of the Earth and the Moon is the dominating forces
acting on a spacecraft in the cislunar and circumlunar environment, other forces and
dynamical perturbations do have a non-negligible impact on its orbital propagation.
In particular, both the Sun and the non-spherical shape of the Moon should be taken
into account while trying to capture the dynamical evolution of satellites in libration
point orbits. Additionally, the motion of the Moon about the Earth is far from being
Keplerian as demonstrated by the plots of Fig. 2, in which the time histories of the
Moon’s orbit elements as seen from the Earth are shown.

For all these reasons, the real dynamics of a spacecraft can be best approximated
with a full-ephemeris model in which the location of the Sun, the Earth, and the
Moon is given by precomputed orbit files obtained from high-fidelity propagations
[30]. These orbit files can be downloaded from NASA’s NAIF webpage and
imported into software development platforms such as MATLAB using ad hoc
libraries and code packages [31, 32].

Given the locations of the three celestial objects, the equations of motion of the
satellite can be rewritten in a Moon-centered inertial frame .I such as ECLIPJ2000
and propagated according to the dynamics

.Ẏ = f (Y ) =

⎧⎪⎨
⎪⎩

V ,

∇U − μ⊕

(
r⊕
r3⊕

− rm⊕
r3

m⊕

)
− μ�

(
r�
r3�

− rm�
r3

m�

)
,

(7)

where .(−̇) denotes differentiation with respect to time in the inertial frame, .Y =[
rT , V T

]T
, .V is the inertial velocity of the spacecraft, .μ� is the gravitational

parameter of the Sun, and .r� and .rm� are the relative position vector of the
spacecraft and the Moon as seen from the Sun, respectively. The symbol .∇U denotes
the gradient of the Moon’s gravitational potential, namely [33]

.U = μm

rm

2∑
l=0

l∑
m=0

(
Rm

rm

)l

P l
m(sin θ)

[
Cl,m cos (m λ) + Sl,m sin (m λ)

]
, (8)

where .Rm = 1737.1 km is the equatorial radius of the Moon, .P l
m are the associated

Legendre polynomials of order l and degree m, .θ is the spacecraft’s latitude, and
.λ is its longitude. .Cl,m and .Sl,m are the Moon’s Stokes’ coefficients, and their
values can be found online as estimated by the NASA’s GRAIL mission [34]. In
what follows, the gravitational potential of the Moon is truncated after the eighth
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Fig. 2 Time history of the Moon’s orbit elements from Apr 25, 2023 00:00:00 (UTC)

order and degree due to a necessary compromise between computational runtime
and numerical accuracy. Additional orders and degrees can be included if needed
without affecting the proposed methodologies and continuation strategies.

Finally, it is worth noting that a mapping between inertial and synodic coordi-
nates can be established once the position and velocity vectors of the Moon are
known:

.Y =
[ [I S] 03

[I S][ω̃] [I S]
]

X, (9)

where .ω = [
ωx ωy ωz

]T
is the angular velocity vector of the synodic frame, .S , as

seen from the ECLIPJ2000 frame, .I, and
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.[ω̃] =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ , [I S] =

[
rm⊕
rm⊕

,
hm⊕ × rm⊕

‖hm⊕ × rm⊕‖ ,
hm⊕
hm⊕

]
. (10)

In Eq. (10), .hm⊕ = rm⊕ × V m⊕ is the specific angular momentum vector of the
Moon as seen from the Earth, whereas .ωx , .ωy , and .ωz are the components of the
angular velocity vector obtained via SPICE and its dynamic frame definitions. Given
.ω, Eq. (9) can also be combined with Eq. (2) in order to yield a bijective transfor-
mation between pulsating and inertial coordinates. Such a transformation will be
proven useful when converting ERTBP states on the surface of two-dimensional
invariant tori to inertial Cartesian coordinates for full-ephemeris optimization.

3 Quasi-periodic Orbits in ERTBP

Computing a quasi-periodic invariant torus requires finding a diffeomorphism .u(θ) :
T

d → T ∈ R
n such that motion on the surface of .T can be characterized by d

incommensurate frequencies .ω = θ̇ ∈ R
d [35]. Indeed, T -periodic orbits can be

considered as one-dimensional invariant tori (.d = 1), whereby .θ = θ0 represents
the phase angle and .ω0 = 2π/T is the orbital frequency. Adding an extra angular
coordinate leads to a two-dimensional invariant torus such as the one portrayed in
Fig. 3 and so forth.

Fig. 3 Two-dimensional invariant torus in both torus and phase spaces
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Since the frequencies of a torus are incommensurate by definition, quasi-
periodic trajectories on its surface will densely cover the manifold as time grows
to infinity. Furthermore, after a full revolution in the “toroidal” direction .θ0, it
is excepted that the remaining .d − 1 angular quantities would rotate by .ρ =
2 π

[
ω1/ω0, . . . , ωd−1/ω0

]T
in their corresponding angular domains. The quantity

.ρ is known in the literature as the rotation number or vector of the torus depending
on whether d is equal to or greater than 2. Given .u(·), T , and .ρ, motion on the
surface of the manifold can be fully determined.

For the purposes of this chapter, two-dimensional invariant tori that substitute
one-dimensional CRTBP periodic orbits in the higher fidelity model of the Earth–
Moon ERTBP are considered. These manifolds are computed by means of a
numerical continuation procedure that calculates invariant curves of stroboscopic
mappings as illustrated in Ref. [11, 13, 36]. A summary of the key passages required
for its implementation is offered in the following subsection.

3.1 The GMOS Algorithm

The GMOS algorithm enables fast and robust calculation of two-dimensional
invariant tori by integrating groups of candidate quasi-periodic trajectories over
one full toroidal period. The images of this stroboscopic mapping are later rotated
to undo the effects of the “poloidal” rotation in .θ1 and to construct a system of
nonlinear equations that can be solved via Newton’s method.

To illustrate the GMOS approach, let .ϕT (·) : R
n → R

n be the solution flow
of Eq. (4) integrated over some time T . Such a mapping is usually referred to as
the stroboscopic mapping, and it comes with interesting dynamical properties when
applied to quasi-periodic trajectories on the surface of a two-dimensional invariant
torus. Indeed, given any arbitrary initial condition .X̃0 = u(θ0, θ1) ∈ T , it is
expected that, after some time .T = 2 π/ω0,

.ϕT (u(θ0, θ1)) = u(θ0, θ1 + ρ), (11)

as it follows from the boundary conditions .u(θi +2π, ·) = u(θi, ·). This implies that
the one-dimensional curve .C(·) := u(θ0, ·) would be invariant for the stroboscopic
mapping .ϕT .

Additionally, starting from Eq. (11) and regardless of the initial values of .θ0 and
.θ1, it is possible to introduce a rotation operator .R−ρ such that

.R−ρ [ϕT (u(θ0, θ1))] − u(θ0, θ1) = 0, ∀θ0 , θ1. (12)

To import Eq. (12) into a computer environment, consider N equally distributed
points along the .θ1 direction in torus coordinates, such that
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.Z0 =
[
u (θ0, 0)T , u

(
θ0,

2 π

N

)T

, . . . , u

(
θ0,

2 π (N − 1)

N

)T
]T

(13)

would denote the collection of N candidate quasi-periodic trajectories’ initial
conditions in phase space coordinates. After time .T = 2 π/ω0, the images of the
stroboscopic mapping .ϕT (u(θ0, ·)) may be combined to form

.ZT =
[
u (θ0, ρ)T , u

(
θ0,

2 π

N
+ ρ

)T

, . . . , u

(
θ0,

2 π (N − 1)

N
+ ρ

)T
]T

,

(14)
a new collection of states that can be used to approximate the one-dimensional curve
.C ∈ R

n. Starting from .ZT , the Fourier coefficients of .C can be retrieved via the
Discrete Fourier Transform (DFT) [37]:

.ûT [k] =
N−1∑
n=0

u

(
θ0,

2π n

N
+ ρ

)
e−2πj(n k/N). (15)

Similarly, any point on .C can be approximated using the inverse operation

.u(θ0, θ1) = 1

N

N−1∑
k=0

ûT [k] ej k θ1 , (16)

including

.R−ρ[u(θ0, θ1)] = u(θ0, θ1 − ρ),

= 1

N

N−1∑
k=0

ûT [k] ej k (θ1−ρ),

= 1

N

N−1∑
k=0

û
′
T [k] ej k θ1 . (17)

Equation (17) demonstrates the effects of the rotation operator .R−ρ , which acts on
the Fourier coefficients of .C in order to rotate the ensemble of the N equally spaced
points .ZT by an angular quantity .−ρ.

Perhaps, Eq. (17) is better understood in matrix form via

.[R−ρ] = [D−1][Q−ρ][D], (18)

where .[D] and .[D−1] are the Discrete and Inverse Discrete Fourier transform,
rewritten in matrix form, and .[Q−ρ] is a diagonal matrix that rotates the Fourier
coefficients .ûT [k] by .e−j k ρ [13]. Combined with Eqs. (13) and (14), Eq. (18) yields
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a set of .n×N constraints that must be satisfied by any collection of N equally spaced
points .Z0 on any arbitrary invariant curve .C of .ϕT :

.G(ζ ) := [R−ρ]ZT − Z0 = 0. (19)

To solve for the unknown variables .ζ = [
ZT

0 , T , ρ
]T

, Eq. (19) is usually
augmented with phase conditions, .p(ζ ), and parametrization equations, .q(ζ , s), that
enable the system

.H (ζ , s) :=
⎡
⎣

G(ζ )

p(ζ )

q(ζ , s)

⎤
⎦ (20)

to satisfy the hypotheses of the Implicit Function Theorem (IFT) [38]. In particular,
given an initial solution, .ζ 0, obtained for an initial continuation parameter, .s0, the
existence and uniqueness of a smooth family branch of solutions .ζ (s), such that

• .H (ζ (s), s) = 0, .∀s near .s0
• .ζ (s0) = ζ 0

can be guaranteed as long as

• .∇ζ H (ζ0, s0) is nonsingular.
• .H and .Hζ are smooth near .ζ 0.

Under the umbrella of the IFT, the equations of the GMOS algorithm can
be embedded into a predictor–corrector procedure that enables marching along
different family branches of non-integrable dynamical systems. The problem, for
the purposes of this chapter, is that the initial solutions, .ζ 0, are typically provided in
the lower fidelity model of the CRTBP.

To mitigate this issue and develop a self-contained robust numerical continuation
procedure, the vector of unknown variables is augmented in order to include
the eccentricity of the Earth–Moon system as a psuedo-homotopy continuation

parameter. That is, .ζ = [
ZT

0 , T , ρ, e
]T

. The additional variable in .ζ slightly
complicates the expressions of the Jacobian matrix of .H (ζ (s), s) but nevertheless
allows one to grow the original periodic orbit into its corresponding quasi-periodic
dynamical substitutes for different values of e.

To complete the numerical setup of the GMOS algorithm and produce some
examples, recall that ERTBP quasi-periodic invariant tori are known to live in
one-parameter families of solutions that essentially replace the original continuum
of CRTBP periodic orbits [39]. In practice, following the addition of the Moon’s
eccentricity, one phase condition and two parametrization equations should be
sufficient to correctly identify unique QPT members within their corresponding
family branches. Indeed, the second of the two angular quantities is often matched
to the independent variable of the problem—.ν in the ERTBP case—implying
.ω1 = 1 [11]. Quantitatively, this trick removes .ρ from the unknown variables as
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.ρ = 2 π ω1/ω0 = T . Then, .ζ = [
ZT

0 , T , e
]T

. Furthermore, the fact that .ν is also
appearing explicitly in the equations of motion prevents ambiguities in the allocation
of the .X̃0 points along the .C curve, thus removing the need for a second phase
condition in the poloidal direction of the manifold.

As for the remaining phase condition and parametrizing equation, these are
typically provided by [11, 36]

.p(ζ ) := 1

N
[Z0(s) − Z0(s0)]

T ∂Z0

∂θ0
(s0), (21)

.q1(ζ , s) := T (s) − T ∗ (22)

and pseudo-arclength continuation [38]

.q2(ζ , s) := 1

N
[Z0(s) − Z0(s0)]

T ∂Z0

∂s
(s0) + . . .

+ [T (s) − T (s0)]
∂T

∂s
(s0) + [e(s) − e(s0)]

∂e

∂s
(s0) + δs, (23)

respectively, with .δs = (s − s0), and

.
∂Z0

∂θ0
(s0) = 2π

T (s0)

(
F (ν,Z0(s0), e(s0)) − ∂Z0

∂θ1
(s0)

)
, (24)

as demonstrated in Ref. [15]. In Eq. (24), .F (ν,Z0(s0), e(s0)) stands for the
collection of the N vector fields .f (ν + 2 π(i − 1)/N, X̃i ,p), .i = 0, . . . , N − 1,
evaluated for each of the N quasi-periodic trajectories .X̃i = u(θ0, θ1,i ), whereas

.
∂Z0

∂θ1
(s0) stands for the partial derivatives of .Z0 along the .θ1 direction. These partial

derivatives can be calculated via the DFT of .Z0 as

.
∂Z0

∂θ1
(s0) = [D−1][∂−ρ][D]Z0, (25)

where .[∂−ρ] is a diagonal matrix that multiplies the Fourier coefficients .ûT [k] by

a quantity .j k. In contrast, .

[
∂Z0

∂s

]
, .

[
∂T

∂s

]
, and .

[
∂e

∂s

]
stand for the components of

the family tangent .

[
∂ζ

∂s

]
, which can be approximated via the secant method by

comparison between two adjacent solutions [38]:

.

[
∂ζ

∂s

]
(s0) = ζ (s0) − ζ (s−1)

‖ζ (s0) − ζ (s−1)‖ , (26)
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Note that .Z0(s0), .
∂Z0

∂θ0
(s0), .

∂Z0

∂θ1
(s0), .

∂Z0

∂s
(s0), .

∂T

∂s
(s0), and .

∂e

∂s
(s0) are all

evaluated at the known solution .ζ 0 and therefore can be kept constant throughout
the numerical solution of Eq. (20). The same holds true for the desired longitudinal
frequency of the manifold, i.e., the .T ∗ quantity appearing in Eq. (22). This value
is usually set equal to the period of the initiating CRTBP periodic orbit in order to
ensure that the calculated two-dimensional tori are indeed the dynamical substitutes
of the candidate trajectory.

At last, Newton’s method can be finally implemented in order to update the

values of .ζ = [
ZT

0 , T , e
]T

until .‖H (ζ , s)‖ is lower than a given threshold, e.g.,
.10−10. The update equation at the kth iteration reads as

.ζ (k+1) = ζ (k) −
[
∇ζ H (ζ (k), s)

]†
H (ζ (k), s), (27)

where .
[·]†

denotes the left pseudo-inverse of .∇ζ H (ζ (k), s), the non-square Jacobian
matrix of .H (ζ (k), s). A summary of the GMOS algorithm is disclosed in Algo-
rithm 1, along with a table of the GMOS user-defined parameters utilized in this
research (Table 1).

3.2 Initial Guess Generation

As stated in Algorithm 1, the GMOS algorithm can be properly initialized with

appropriate values of .ζ 0, .
∂Z0

∂θ0
(s0), .

∂ζ

∂s
(s0). All of these quantities can be retrieved

from the CRTBP if any candidate periodic orbit is seen as the overlap of N identical
quasi-periodic trajectories in the Earth–Moon ERTBP with .e = 0. Accordingly,
let .X0 be the initial conditions of a periodic orbit in the Earth–Moon CRTBP with
period T . The vector of initial conditions can be repeated N times, where N is the
number of quasi-periodic trajectories chosen to represent an invariant curve .C of the
stroboscopic mapping .ϕT (X0):

.Z0 = [
XT

0 , XT
0 , . . . XT

0

]T ∈ R
6N. (28)

Table 1 GMOS user-defined parameters utilized in this chapter

Parameter Value Meaning

.NQPT 100 Max. number of family members to be computed

MaxIter 10 Max. number of iterations for the corrector step

Tol .10−10 Convergence tolerance

N 201 No. of quasi-periodic trajectories

.δs .10−4 Initial continuation step length
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Algorithm 1 GMOS algorithm

Given s0 = 0, δs = 10−4, ζ 0,
∂ζ

∂s
(s0),

∂Z0

∂θ0
(s0),

for i = 1:NQPT do

Predictor:

ζ (1) = ζ 0 + δs

[
∂ζ 0

∂s

]

Corrector:
for k = 1:MaxIter do

Calculate H (ζ (k), s), ∇ζ H (ζ (k), s)

if ‖H (ζ , s)‖ ≤ T ol then

# Family member has been computed!

Calculate New Family Tangent:
∂ζ

∂s
= (ζ (k) − ζ 0)/‖ζ (k) − ζ 0‖;

Store s, ζ (k),
∂ζ

∂s
;

Set s0 = s, ζ 0 = ζ (k),
∂ζ

∂s
(s0) = ∂ζ

∂s
;

Update partial derivatives with respect to θ0:
∂Z0

∂θ1
(s0) = [D−1][∂−ρ ][D]Z0;

∂Z0

∂θ0
(s0) = 2π

T (s0)

(
F (Z0(s0)) − ∂Z0

∂θ1
(s0)

)
;

Calculate new continuation step length δs;

Break; # Move to next family member
else

end

ζ (k+1) = ζ (k) − [∇ζ H (ζ (k), s)
]†

H (ζ (k), s);
end if

end for
if k == MaxIter then

# Differential Corrector has not converged!
Return; # Quit numerical continuation

end if
end for

The vector of initial conditions can be processed via the DFT in order to estimate

.
∂Z0

∂θ0
(s0). Furthermore, it can be integrated under the augmented dynamical systems

.F (ν,Z, 0) over time T and utilized to construct .∇ζ h(ζ 0, s0), where .ζ 0 =[
ZT

0 , T , 0
]T

, and
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.h(ζ 0, s0) :=
⎡
⎣

G(ζ )

p(ζ )

q1(ζ , s)

⎤
⎦ = 0. (29)

Deprived of the pseudo-arclength continuation equation (23), the system (29) is
satisfied by each quasi-periodic invariant torus of any family branch. It follows that
a Singular Value Decomposition (SVD) of .∇ζ h(ζ 0, s0) should not only demonstrate
this singularity but also provide users with an accurate approximation of the family

tangent .
∂ζ

∂s
evaluated in .ζ 0. Figure 4 displays the initial .(2:9) and .(1:4) CRTBP

periodic orbits along with their initial family tangents obtained via the proposed
SVD-based procedure.

Fig. 4 (Top) .2:9 and .1:4 synodic resonant orbits in the CRTBP model. (Bottom) ERTBP initial
guesses along with their corresponding family tangents
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3.3 Numerical Continuation

Starting from the initial values of .ζ 0, .
∂Z0

∂θ0
(s0), .

∂ζ

∂s
(s0) obtained as in Sect. 3.2,

the GMOS algorithm can be iterated over a user-defined maximum number of
.NQPT family members and stopped prematurely as soon as the algorithm no longer
converges or the value of the eccentricity exceeds the Moon’s average value of
.e = 0.054. Figures 5 and 6 illustrate some of the quasi-periodic invariant tori
obtained throughout the numerical continuation procedure for different values of
e. The .(2:9) and .(1:4) family members obtained for .e = 0.054 are further analyzed
and manipulated in the following subsection.

Fig. 5 Homotopy continuation of the .2:9 ERTBP dynamical substitute

Fig. 6 Homotopy continuation of the .1:4 ERTBP dynamical substitute
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3.4 Post-processing and Torus Maps

Having completed the homotopy continuation from .e = 0 to .e = 0.054 and obtained
two-dimensional invariant substitutes for the LPOG candidate orbits, trajectories on
the surface of these two-dimensional invariant tori can be immediately generated
via

.

{
θ0(ν) = θ0(ν0) + ω0 (ν − ν0),

θ1(ν) = θ1(ν0) + ν,
(30)

where .ω0 = 2 π/T . Considering the simplicity of Eq. (30), it is tempting to
exploit the diffeomorphism that maps trajectories in .R

6 onto trajectories in torus
coordinates and vice versa in order to visualize key dynamical quantities across
the surface of the torus as well as generate initial guesses for full-ephemeris
optimizations. These torus maps can be generated by integrating the output of the
GMOS algorithm over one stroboscopic time and store the Cartesian coordinates
of the quasi-periodic trajectories over a uniform grid of points in .T

2 : [0 , 2 π) ×
[0 , 2 π). This approach works as follows.

First, observe that each of the quasi-periodic orbit initial conditions in .Z0 can
be associated with the torus initial coordinates .θ0(ν0) = 0 and .θ1(ν0) = 2 π (i −
1)/N , . ∀i = 0, 1, . . . , N − 1, as illustrated in Eq. (13). Second, one can integrate
.Z0 according to the augmented dynamics .F (ν,Z, e) and collect the images of the
stroboscopic mapping .Zi = �νi

(Z0) for any arbitrary value of .ν ∈ [0, T ], where
.�ν is the now solution flow of .F (ν,Z, e) over time .ν. At each .ν = νi = i T /M ,
.i = 0, . . . ,M − 1, one can rotate the Fourier coefficients of .Zi by a quantity .−νi

and obtain the values of the N quasi-periodic trajectories in correspondence with
.θ1,i = 2 π (i − 1)/N , .i = 0, 1, . . . , N − 1. After one stroboscopic time T , the
images of the stroboscopic mapping overlap with the initial conditions of the quasi-
periodic torus as prescribed by Eq. (12).

Shown in Figs. 7 and 8 are the .(2:9) and .(1:4) dynamical substitutes along with
their corresponding radial velocity curves obtained in MATLAB using the torus map
pseudo-code of Algorithm 2 with .M = 1000 and .N = 37. Also shown in Figs. 7
and 8 are representative quasi-periodic trajectories initialized in .θ0(ν0) = θ1(ν0) =
0 and integrated over several stroboscopic times. The zero-radial velocity curves
corresponding to the perilunes and apolunes of the quasi-periodic trajectories are
highlighted in magenta so as to emphasize the difference with respect to the periodic
orbit case, in which the points of zero-radial velocity are constantly aligned with the
Earth–Moon direction (.θ0 = 0 and .θ0 = π for the apolune and perilune points,
respectively).

It is also worth noting that the zero-radial velocity contours can be easily
extracted from the MATLAB contourf command in order to calculate spline
coefficients for the apolune and perilune curves. These spline coefficients can be
later passed to ode event functions that detect intersections with arbitrary quasi-
periodic trajectories along the two-dimensional invariant manifold. This passage
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Algorithm 2 Torus map generation
Given Z0, T , e, d = 6, M , and N

Create uniform grid of true anomaly values:
νi = i T /M , i = 0, . . . , M

Integrate augmented dynamics F (ν,Z, e) over ν ∈ [0, T ]

Store or Interpolate Zi values at νi points.

Initialize two-dimensional array Q ∈ R
d N×M :

Q = zeros(d*N, M);

for i = 0:M-1 do

Rotate states on stroboscopic curves:

Q(:, i+1) =R−νi
[Zi ] =

[
u

(
θi

0, 0
)T

, . . . , u

(
θi

0,
2π(N − 1)

N

)T
]T

end for

Copy first column and first d-rows of Q to enforce periodicity at the boundaries of contour plots
and cover entire (0, 2 π) × (0, 2 π) domain:
Q = [Q, Q(:, 1)];
Q = [Q; Q(1:d, :)];

Calculate dynamical quantity of interest in u(θi
0, θ

j

1 ):
for i = 0 : M do

for j = 0 : N do
q(j+1,i+1) = qi,j (Q(d*j+1:d*(j+1), i+1))

end for
end for

### Example Torus Map ###
tht0 = linspace(0, 2*pi, M+1);
tht1 = linspace(0, 2*pi, N+1);
[THT0, THT1] = meshgrid(tht0, tht1)
figure(), contourf(THT0, THT1, q)

Extract q_value contour:
[C, h] = contour(THT0, THT1, q, [q_value, q_value])

is key as it enables the fast and reliable calculation of good initial guesses for
quasi-periodic trajectories in the full-ephemeris model of the Earth–Moon system. It
also works for arbitrary propagation times and hyperbolic QPT, whereby numerical
integration errors can cause trajectories to diverge and escape along the unstable
manifold direction. An overview of the transition to full-ephemeris approach is
offered in the next section.
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Fig. 7 .2:9 dynamical substitute along with its radial velocity torus map. The magenta lines denote
the zero-radial velocity curves found in correspondence with the perilune and apolune points along
the manifold

Fig. 8 .1:4 dynamical substitute along with its radial velocity torus map. The magenta lines denote
the zero-radial velocity curves found in correspondence with the perilune and apolune points along
the manifold

4 Transition to Full-Ephemeris Model

This section deals with the transition of candidate quasi-periodic trajectories
into the full-ephemeris model of the Earth–Moon system. A freeware trajectory
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software developed by Stefano Campagnola and his team has been adopted for the
calculations [40]. jTOP, as it is called, takes as an input discrete points along a
candidate trajectory, their epochs in UTC time coordinates, along with forward and
backward propagation times between consecutive nodes. Internally, the software
propagates the states of the trajectory forward and backward in time, possibly in a
higher fidelity dynamical model, so as to evaluate the residuals in both time and
Cartesian coordinates at user-defined patching points. These residuals and their
partial derivatives are later passed to SNOPT, a shareware trajectory optimization
procedure [41], which nullifies their values in both the space and time domains
while adjusting the nodes, epochs, and forward and backward propagation times of
the candidate trajectory. Figure 9 illustrates the concept of the jTOP approach for
three consecutive nodes along a candidate quasi-periodic trajectory.

For the purposes of this chapter, initial nodes, epochs, and forward and backward
propagation times are generated in the ERTBP model of the Earth–Moon system
starting from the two-dimensional torus maps of Sect. 3.4. Each of the nodes
is later propagated using the full-ephemeris dynamics of Eq. (7), as seen in the
Moon-centered ECLIPJ2000 reference frame. The dynamical model includes the
gravitational influence of a spherical Sun and Earth, as well as an .8 × 8 spherical
harmonics expansion of the Moon’s gravity field. The epoch of the first apolune
point is arbitrarily set to 25 Apr 2023, 00:00:00 (UTC), whereas the
full-ephemeris trajectory is evaluated over one year. One additional revolution is
appended before and after the first and last apolune points so as to robustify the
SNOPT convergence and avoid undesirable edge effects during the nominal duration
of the orbit [42]. These and other considerations affect the creation and optimization
of the full-ephemeris first guess as highlighted in the following subsections.

Fig. 9 Conceptual illustration of the jTOP transition to full-ephemeris strategy
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4.1 First-Guess Generation

Once the epoch of the initial apolune point has been arbitrarily chosen, the initial
value of the Moon’s true anomaly can be easily calculated using SPICE ephemerides
files available in jTOP. Given .ν∗, a horizontal line can be drawn in the torus maps
of Figs. 7 or 8, recalling that the poloidal angular coordinate of the torus, .θ1, was
indeed identified with the true anomaly of the Earth–Moon system (Sect. 3.2). The
intersection of this horizontal line with the magenta curves of Figs. 7 and 8 locates
an initial apolune point for the full-ephemeris initial guess. It also provides mission
designers with the initial conditions of the desired quasi-periodic trajectory in torus
coordinates: .θ0,0 and .θ1,0 = ν∗.

Starting from the initial torus coordinates and .t0 = 0—the time elapsed since the
arbitrarily chosen epoch—it is possible to integrate the augmented torus dynamics

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dθ0

dν
= ω0,

dθ1

dν
= 1,

dt

dν
= (1 − e2)3/2

n γ 2

(31)

and record the exact torus coordinates and time elapsed between consecutive zero-
radial velocity curve crossings. The crossings are detected in MATLAB using ode
event functions that have access to the spline coefficients of the magenta lines of
Fig. 7 and 8. The “events” detected over one year for the .(2:9) and .(1:4) ERTBP
tori are summarized in Fig. 10 along with two extra nodes at the beginning and end
of the initial guess that provide SNOPT with additional flexibility in manipulating
the full-ephemeris orbit. A total of .121 + 4 and .107 + 4 nodes have been registered
for the two synodic resonant orbits considered in this chapter. Each of these nodes
contains the torus coordinates at the apolune and perilune curve crossings, as well
as the time elapsed since the first apolune epoch.

By means of the diffeomorphism .u, obtained using the GMOS algorithm of
Sect. 3.1, each of the torus coordinate pairs can be mapped into position and velocity
vector coordinates in pulsating normalized units. These pulsating normalized
coordinates can be rotated in the ECLIPJ2000 frame using Eq. (9) along with the
reference frame transformations available in SPICE (and, by extension, jTOP). In
parallel, the time elapsed since the beginning of the simulation can be added to
the ephemeris time of the arbitrarily chosen epoch, thereby creating an initial value
for the candidate nodes’ time stamps. Obtaining an initial guess for the forward
and backward propagation times between consecutive nodes is now trivial, as the
difference between adjacent epochs can be calculated and divided by two. The only
quantities left are the backward and forward propagation times of the first and last
nodes, respectively, which can be conveniently set to 0. Passing these values to jTOP
yields the full-ephemeris initial guesses depicted in Fig. 11, as seen from a Moon-
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Fig. 10 Full-ephemeris first-guess generation using the .(2:9) (left) and .(1:4) (right) ERTBP
dynamical substitute torus maps. The cyan line indicates the location of the Moon’s true anomaly
at epoch

Fig. 11 left) .(2:9) and right) .(1:4) full-ephemeris initial guesses as seen in a Moon-centered
synodic frame after propagation in jTOP. Trajectory legs in blue denote forwardly propagated
orbits, whereas red points stand for backwardly propagated ones

centered synodic frame. It can be verified that the residuals at the patching points
are generally nonzero due to the higher fidelity dynamics being integrated between
the different nodes. Nevertheless, the structure of the quasi-periodic torus seems to
be preserved, and it can be fully optimized using the numerical procedure of the
following subsection.
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4.2 SNOPT Optimization

At last, the full-ephemeris initial guesses for the .(2:9) and .(1:4) LOPG baseline
trajectories can be optimized in jTOP using an embedded interface with the
SNOPT optimizer. The goal of this trajectory optimization step is to minimize
the .V consumption at the patching points obtained after forward and backward
propagation of the candidate nodes. While minimizing the .V discrepancies at the
patching points, the optimizer seeks to satisfy a list of nonlinear constraints that
ensure the continuity in both the time and position coordinates. The apsidal nature
of the full-ephemeris nodes is hereby preserved by adding additional constraints to
nullify the dot products between the position and velocity vectors of the candidate
trajectory at the apolune and perilune points. Furthermore, if the magnitude of the
.V difference at any of the patching point is found to be less than 1 mm/s.2, the
.V error of the patching point is removed from the cost function and replaced by a
nonlinear constraint that ensures continuity in the velocity coordinates as well.

Ideally, by the end of the optimization procedure, all of the patching points should
be continuous in the time, position, and velocity domains with a zero cost function
being passed to the SNOPT optimizer. In such a situation, the software seeks for a
feasible solution that satisfies all of the nonlinear requirements. It is at this stage that
the set of nonlinear constraints is augmented in order to guarantee that the epoch of
the first apolune point would remain close to the arbitrarily chosen one. In addition,
the location of the perilune points is confined within a box of .±5000 km and .±3000
km in the x- and z-coordinates of the initial perilune points, respectively. These
additional constraints facilitate the convergence onto the desired full-ephemeris
quasi-periodic trajectory by preventing the optimized SNOPT solution to diverge
far from the original quasi-periodic trajectories. Furthermore, crashes against the
surface of the Moon are avoided by means of inequality constraints that calculate
the altitude of the trajectory at the perilune points and prevent it from being less than
50 km from the surface of the planetary satellite.

The output of the trajectory optimization procedure is depicted in Figs. 12 and 13,
respectively. It can be verified that the size and shapes of the final orbits are indeed
very similar to the candidate initial guesses obtained with the two-dimensional tori
of Sec. 3.1. Each of these candidate trajectories can be now converted into a .bsp
file using the publicly available mkspk executable for more in-depth analyses and
scientific investigations [32].

5 Conclusions

This chapter overviews modern astrodynamics techniques for the numerical cal-
culation of two-dimensional quasi-periodic invariant tori. An algorithm, based on
the invariant curves of stroboscopic mapping, has been implemented and adopted
from the literature in order to calculate dynamical substitutes of synodic resonant



56 N. Baresi

Fig. 12 Final .(2:9)

full-ephemeris orbit as seen
in a Moon-centered synodic
frame after optimization in
jTOP. Trajectory legs in green
denote forwardly propagated
orbits, whereas magenta
points stand for backwardly
propagated ones

Fig. 13 Final .(1:4)

full-ephemeris orbit as seen
in a Moon-centered synodic
frame after optimization in
jTOP. Trajectory legs in green
denote forwardly propagated
orbits, whereas magenta
points stand for backwardly
propagated ones

near rectilinear halo orbits around the Moon. More specifically, the .(2:9) and .(1:4)

NRHOs have been considered as the baselined trajectories of the LOPG.
It has been found that the original CRTBP periodic orbits can be safely continued

in the ERTBP of the Earth–Moon system via a pseudo-homotopy continuation
strategy that grows the eccentricity of the two primaries up to .e = 0.0549. The
obtained two-dimensional invariant tori are later processed a posteriori using two-
dimensional contour plots that can help illustrate key dynamical quantities (e.g.,
the lunar altitude), as well as locate zero-radial velocity curves on the surface of
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the manifold. By extracting the spline coefficients of these curves, reliable initial
guesses for transitioning the candidate solutions in the real-ephemeris model of the
Earth–Moon systems can be generated. This process is demonstrated in jTOP, a
trajectory optimization package that minimizes residuals between forwardly and
backwardly propagated legs at orbit-specific patching points.

References

1. William C Feldman, Sylvestre Maurice, David Jeffery Lawrence, Robert C Little, SL Lawson,
O Gasnault, Roger C Wiens, Bruce L Barraclough, Richard C Elphic, Thomas H Prettyman,
et al. Evidence for water ice near the lunar poles. Journal of Geophysical Research: Planets,
106(E10):23231–23251, 2001.

2. R Sridharan, SM Ahmed, Tirtha Pratim Das, P Sreelatha, P Pradeepkumar, Neha Naik, and
Gogulapati Supriya. ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from
CHACE on MIP of Chandrayaan I. Planetary and Space Science, 58(6):947–950, 2010.

3. Shuai Li, Paul G Lucey, Ralph E Milliken, Paul O Hayne, Elizabeth Fisher, Jean-Pierre
Williams, Dana M Hurley, and Richard C Elphic. Direct evidence of surface exposed water ice
in the lunar polar regions. Proceedings of the National Academy of Sciences, 115(36):8907–
8912, 2018.

4. Leonard David. Moon Rush: The New Space Race. National Geographic Books, 2019.
5. Diane Davis, Sagar Bhatt, Kathleen Howell, Jiann-Woei Jang, Ryan Whitley, Fred Clark,

Davide Guzzetti, Emily Zimovan, and Gregg Barton. Orbit maintenance and navigation of
human spacecraft at cislunar near rectilinear halo orbits. In 27th AAS/AIAA Space Flight
Mechanics Meeting, San Antonio, Texas, February 5–9, 2017. American Astronautical Society,
2017.

6. David E Lee. White paper: gateway destination orbit model: a continuous 15 year NRHO
reference trajectory. Technical report, 2019.

7. KC Howell and JV Breakwell. Almost rectilinear halo orbits. Celestial mechanics, 32(1):29–
52, 1984.

8. Emily M Zimovan-Spreen, Kathleen C Howell, and Diane C Davis. Near rectilinear halo orbits
and nearby higher-period dynamical structures: orbital stability and resonance properties.
Celestial Mechanics and Dynamical Astronomy, 132(5):1–25, 2020.

9. Takuya Chikazawa, Nicola Baresi, Stefano Campagnola, Naoya Ozaki, and Yasuhiro
Kawakatsu. Minimizing eclipses via synodic resonant orbits with applications to EQUULEUS
and MMX. Acta Astronautica, 180:679–692, 2021.

10. Emily M Zimovan, Kathleen C Howell, and Diane C Davis. Near rectilinear halo orbits and
their application in cis-lunar space. In 3rd IAA Conference on Dynamics and Control of Space
Systems, Moscow, Russia, volume 20, 2017.

11. Zubin P Olikara. Computation of quasi-periodic tori and heteroclinic connections in astrody-
namics using collocation techniques. PhD thesis, University of Colorado at Boulder, 2016.

12. Enric Castella and Àngel Jorba. On the vertical families of two-dimensional tori near the
triangular points of the bicircular problem. Celestial Mechanics and Dynamical Astronomy,
76(1):35–54, 2000.

13. Nicola Baresi, Zubin P Olikara, and Daniel J Scheeres. Fully numerical methods for continuing
families of quasi-periodic invariant tori in astrodynamics. The Journal of the Astronautical
Sciences, 65(2):157–182, 2018.

14. G. Gómez, W S Koon, Martin W Lo, Jerrold E Marsden, Josep Masdemont, and Shane D
Ross. Connecting orbits and invariant manifolds in the spatial restricted three-body problem.
Nonlinearity, 17:1571–1606, 2004.



58 N. Baresi

15. Zubin P. Olikara and Daniel J Scheeres. Numerical Method for Computing Quasi-periodic
Orbits and Their Stability in the Restricted Three-Body Problem. Advances in Astronautical
Sciences, 145:911–930, 2012.

16. Frank Schilder, Hinke M. Osinga, and Werner Vogt. Continuation of Quasi-periodic Invariant
Tori. SIAM Journal on Applied Dynamical Systems, 4(3):459–488, Jan 2005.

17. Egemen Kolemen, N. Jeremy Kasdin, and Pini Gurfil. Multiple Poincaré sections method for
finding the quasiperiodic orbits of the restricted three body problem. Celestial Mechanics and
Dynamical Astronomy, 112(1):47–74, Jan 2012.

18. Brian P McCarthy and Kathleen C Howell. Leveraging quasi-periodic orbits for trajectory
design in cislunar space. Astrodynamics, 5(2):139–165, 2021.

19. José J Rosales, Angel Jorba, and Marc Jorba-Cuscó. Families of halo-like invariant tori around
l2 in the Earth–Moon Bicircular Problem. Celestial Mechanics and Dynamical Astronomy,
133(4):1–30, 2021.

20. Damennick Henry and Daniel J Scheeres. Transfers between intersecting quasiperiodic tori. In
Paper AAS 20-588 presented at the 2020 Astrodynamics Specialist Conference, 2020.

21. Daniel Villegas-Pinto, Nicola Baresi, Slim Locoche, and Daniel Hestroffer. Quasi-periodic
near-rectilinear halo orbits in the circular-elliptic restricted four-body problem. In Paper
presented at the 2021 AAS/AIAA Astrodynamics Specialist Conference, 2021.

22. A. Haro and R. de la Llave. A Parameterization Method for the Computation of Invariant Tori
and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown
of Hyperbolicity. SIAM Journal on Applied Dynamical Systems, 6(1):142–207, 2007.

23. Bhanu Kumar, Rodney L Anderson, and Rafael de la Llave. Rapid and accurate computation
of whiskered tori and their manifolds near resonances in periodically perturbed planar circular
restricted 3-body problems. arXiv preprint arXiv:2105.11100, 2021.

24. Victory Szebehely. Theory of Orbit. Elsevier, 1967.
25. R A Broucke. Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA

Journal, 7(6):1003–1009, 1969.
26. Barbara A Cohen, Paul Ottinger Hayne, Benjamin T Greenhagen, and David A Paige. Lunar

flashlight: Exploration and science at the moon with a 6u CubeSat. In AGU Fall Meeting
Abstracts, volume 2015, pages EP52B–07, 2015.

27. Ana M Cipriano, Diogene A Dei Tos, and Francesco Topputo. Orbit design for LUMIO: The
lunar meteoroid impacts observer. Frontiers in Astronomy and Space Sciences, 5:29, 2018.

28. Stefano Campagnola, Javier Hernando-Ayuso, Kota Kakihara, Yosuke Kawabata, Takuya
Chikazawa, Ryu Funase, Naoya Ozaki, Nicola Baresi, Tatsuaki Hashimoto, Yasuhiro
Kawakatsu, et al. Mission analysis for the em-1 CubeSats EQUULEUS and OMOTENASHI.
IEEE Aerospace and Electronic Systems Magazine, 34(4):38–44, 2019.

29. James Pezent, Rohan Sood, and Andrew Heaton. High-fidelity contingency trajectory design
and analysis for NASA’s near-earth asteroid (NEA) scout solar sail mission. Acta Astronautica,
159:385–396, 2019.

30. Jeffrey S Parker and Rodney L Anderson. Low-energy lunar trajectory design, volume 12. John
Wiley & Sons, 2014.

31. Charles H Acton Jr. Ancillary data services of NASA’s navigation and ancillary information
facility. Planetary and Space Science, 44(1):65–70, 1996.

32. Charles Acton, Nathaniel Bachman, Boris Semenov, and Edward Wright. A look towards the
future in the handling of space science mission geometry. Planetary and Space Science, 150:9–
12, 2018.

33. David A Vallado. Fundamentals of astrodynamics and applications, volume 12. Springer
Science & Business Media, 2001.

34. Alex S Konopliv, Ryan S Park, Dah-Ning Yuan, Sami W Asmar, Michael M Watkins, James G
Williams, Eugene Fahnestock, Gerhard Kruizinga, Meegyeong Paik, Dmitry Strekalov, et al.
High-resolution lunar gravity fields from the grail primary and extended missions. Geophysical
Research Letters, 41(5):1452–1458, 2014.

35. Hendrik W Broer, George B Huitema, and Mikhail B Sevryuk. Quasi-periodic motions in
families of dynamical systems: order amidst chaos. Springer, 2009.



Transition of Two-Dimensional Quasi-periodic Invariant Tori in the Real-. . . 59

36. Nicola Baresi. Spacecraft formation flight on quasi-periodic invariant tori. PhD thesis,
University of Colorado at Boulder, 2017.

37. John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
38. Rüdiger Seydel. Practical Bifurcation and Stability Analysis. Springer Science & Business

Media, 2009.
39. Angel Jorba and Jordi Villanueva. On the persistence of lower dimensional invariant tori under

quasi-periodic perturbations. Journal of Nonlinear Science, 7(5):427–473, 1997.
40. Stefano Campagnola, Naoya Ozaki, Yoshihide Sugimoto, Chit Hong Yam, Hongru Chen,

Yosuke Kawabata, Satoshi Ogura, Bruno Sarli, Yasuhiro Kawakatsu, Ryu Funase, et al. Low-
thrust trajectory design and operations of Procyon, the first deep-space micro-spacecraft. In
25th International Symposium on Space Flight Dynamics, volume 7. German Aerospace Center
(DLR) Munich, Germany, 2015.

41. Philip E Gill, Walter Murray, and Michael A Saunders. SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM review, 47(1):99–131, 2005.

42. Kenshiro Oguri, Kenta Oshima, Stefano Campagnola, Kota Kakihara, Naoya Ozaki, Nicola
Baresi, Yasuhiro Kawakatsu, and Ryu Funase. Equuleus trajectory design. The Journal of the
Astronautical Sciences, 67(3):950–976, 2020.



Hypersonic Point-to-Point Travel for the
Common Man

Carlos Bislip and Erwin Mooij

1 Introduction

Hypersonic travel has historically been experienced exclusively by healthy and
heavily trained individuals. The increased accelerations experienced are known to
cause a variety of effects on human physiology, ranging from heavy breathing and
discomfort to gravity-induced loss of consciousness (G-LOC). Furthermore, high
speed travel has not been technologically feasible, nor economically viable for
the population at large. However, advancements in both computational and rocket
technology have shown glimpses of a broader cross section of the population being
able to participate in what is known as space tourism. However, medical screenings
and prior training, if not required, are strongly suggested.

The commercial aviation industry has advanced to the point where, for the most
part, only individuals susceptible to lower ambient pressures are recommended
to avoid travel. Though during a typical flight there are moments where the
accelerations are larger than those experienced while at sea level and constant
velocity, the portion of the population that cannot travel on an aircraft is effectively
negligible. This mass availability is essential for cost reduction and economies of
scale, both of which are key factors relevant to commercial airlines. Hence, even if
hypersonic travel were technically feasible to the point that it became commonplace,
it is reasonable to believe that without the inclusion of a significant portion of the
population, any endeavour would most certainly remain economically out of reach
for the common individual.

This chapter aims to delineate a framework in which the design space is explored
with the goal of identifying a trajectory with hypersonic velocities, for a specified
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route and vehicular configuration, where individuals could travel without health
screenings and prior training. This effectively translates to a trajectory where the
mechanical loads experienced by the passengers are analogous to those experienced
while at sea level and constant velocity or a maximum total mechanical load of 1
g0. However, due to the nature of the vehicle selected and the calculation of the g0-
loads, the 1 g0 maximum is in effect an increase to values experienced while at sea
level and constant velocity. To identify such a trajectory, a three degrees-of-freedom
translational simulator is built in C++ with TU Delft Astrodynamics Toolbox
(Tudat) and Parallel Global Multi-objective Optimiser (PaGMO) libraries. Tudat is
an open-source C++ package that contains a set of publicly available libraries1 of
mathematical tools, environmental models, numerical integrators, and interpolators
(linear and cube spline). PaGMO is ‘an optimisation framework developed within
the Advanced Concepts Team of the European Space Agency (ESA)’.2 It is an
open-source software written in C++ that enables automatic parallelisation of its
optimisers and includes evolutionary algorithms that can be used with multiple
objectives, such as NSGA-II and MOEA/D (DE) [1–3].

The simulator, presented in Sect. 2, employed an open-loop guidance systemwith
idealised navigation and control systems, where node control is the control method
[4, 5]. For use with the evolutionary algorithms, the decision vector parameters are
presented in Sect. 3, while the fitness vector components are discussed in Sect. 4. As
the design space is not well understood, it is unknown how effective these available
evolutionary algorithms would be. Hence, the extensive design space exploration
discussed in Sect. 5 is performed to inform the selection of a genetic algorithm, an
objective function case, and a given number of independent variables.

Finally, in Sect. 6, the trajectory optimisation will be performed via two
approaches. One approach performs separate optimisations for each phase, denoted
throughout as decoupled. Within the decoupled approach, the descent phase is
performed for a variety of starting points. The ascent phase optimisation is then
linked to its corresponding decoupled descent phase, with the goal of producing a
linkable trajectory. The alternate approach combines the ascent and descent phases
into one large problem, denoted throughout as coupled. A sub-optimal trajectory
is found and used as a reference for localised optimisation, followed by a detailed
analysis. Concluding remarks and suggestions for further study are given in Sect. 7.

2 Simulation Model

The most relevant components of the simulation model are sequentially discussed.
These include the reference vehicle and mission in Sects. 2.1 and 2.2. This is
followed by a summary of the simulated flight dynamics and aerodynamic heating in

1 https://github.com/Tudat, accessed on 20-Mar-2022.
2 https://esa.github.io/pagmo2, accessed on 20-Mar-2022.

https://github.com/Tudat
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Sects. 2.3 and 2.4. Finally, a key discussion about the vehicle’s guidance is presented
in Sect. 2.5. It is important to note that though not presented nor discussed, the
simulation model has been successfully validated against known reference missions.

2.1 Reference Vehicle

The reference vehicle is the second stage of the Sänger II system [7]. Though the
first stage was not intended for passenger transport, it did consider an optional
second stage for this express purpose. Known as the Hypersonic ORbital Upper
Stage (HORUS), the second stage would be air launched with the goal of reaching
orbit. The HORUS stage design experienced a series of versions. Of these, the most
relevant are the HORUS-2B and HORUS-3B.

The HORUS-2B, which provides the overall geometric features shown in Fig. 1a,
was a manned winged reusable vehicle with a crew of 2–4 and a small cargo
payload. In this configuration, the vehicle would provide Space Station support,
which was at the time estimated to be at an orbit with an altitude of 450 km at an

(a) (b)

(c)

Fig. 1 DLR’s HORUS cross section, passenger concept, and trimmable envelope [7, 8, 10].
(a) HORUS-2B cross section. (b) Passenger HORUS-3B conceptual design. (c) Trimmable
aerodynamic envelope
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Table 1 HORUS
characteristics [7, 8]

Description Units Value

MBB ATC-700 Engine – 2

Max engine thrust (Tmax) kN 700

Specific impulse s 472

Propellant mass kg 65,000

Max payload mass kg 7000

Re-entry mass kg 26,029

Ixx kg·m2 119,000

Iyy kg·m2 769,000

Izz kg·m2 806,000

inclination of 28.5◦. As the HORUS-3B, shown in Fig. 1b, the vehicle would be
capable of cabin modifications that would facilitate accommodating 36 passengers
for the explicit purpose of space tourism. This version had a complete propulsion
system with 65Mg of propellant and 2 rocket engines. Each engine had a thrust of
700 kN and a specific impulse Isp of 472 s [7].

The HORUS-3B engine characteristics will be used with the HORUS-2B
aerodynamic database provided by MBB [8] and discretised by Mooij [9]. The
vehicle’s trimmable envelope is illustrated in Fig. 1c, whereas Table 1 presents a
summary of the vehicle’s characteristics.

2.2 Reference Mission

The reference mission to simulate will begin post-separation of the second stage
at an altitude .h0 of 35 km and a velocity of Mach 6.6 with an initial heading .χ0
to the destination. The reference origin is the Koninklijke Luchthaven Schiphol
(Amsterdam Airport Schiphol), and the reference destination is Washington Dulles
International Airport. The simulation is terminated upon reaching the terminal area
defined by a distance of 0.75.◦ from the reference destination coordinates. At this
distance, the Terminal Area Energy Management (TAEM) system would guide the
system in the final phases of its flight, analogous to the Space Shuttle’s Orbiter
[15]. This is beyond the scope of the present work. A great circle is created by the
reference origin and destination to define the trajectory’s initial angular distance-to-
go .θT oGo,0, equal to about 55.82◦.

2.3 Flight Dynamics

The translational equations of motion of the system are defined by the gravitational
force, the aerodynamic forces, and the resultant of all thrust forces. These forces are
all defined in their own reference frames, which requires them to be transformed
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to the inertial frame, .FI , through a corresponding rotation matrix .C. The rotation
matrix convention is such that the left arrow symbol .← indicates the direction of
rotation. For example, .CI←A would rotate a vector from the aerodynamic frame .FA

to the inertial frame .FI .

.
dV I

dt
= [ẍI , ÿI , z̈I ]

T = 1

m

(
F g,I + FA,I + F T ,I

)
. (1a)

= 1

m

(
CI←V F g,V + CI←AFA,A + CI←BF T ,B

)
. (1b)

drcm,I

dt
= [ẋI , ẏI , żI ]

T = V I (2)

Though the force terms are each subsequently discussed in more detail, the final
set of equations can then be put together as shown in Eqs. (1a) and (2). Equation (1a)
expresses the time rate of change of the vehicle’s inertial frame velocity V I in
Cartesian coordinates yielding the vehicle’s inertial frame acceleration, also in
Cartesian coordinates. This acceleration, expressed as the second time derivative
of position (i.e. ẍI , ÿI , and z̈I ), is in turn equal to the sum of inertial frame
forces divided by the mass m. Similarly, Eq. (2) expresses the time derivative of the
position of the vehicle’s inertial frame centre of mass rcm,I in Cartesian coordinates
yielding the vehicle’s inertial frame velocity V I , also in Cartesian coordinates and
as the first time derivative of position (i.e. ẋI , ẏI , and żI ).

The gravitational acceleration can be defined with first-order approximations,
such as the Earth’s flattening. The Earth’s flattening can be mostly accounted for
with the J2 zonal harmonic and equivalent to 1.082626523×10−3 [11]. To include
these effects, the gravitational acceleration is defined with spherical coordinates in
the vertical frame, FV .

.F g,V = mgV = m [gn, 0, gd ]
T

. (3)

gn = −3J2
μ

r2

(
RE

r

)2

sin δ cos δ. (4)

gd = μ

r2

[

1 − 3

2
J2

(
RE

r

)2 (
3 sin2 δ − 1

)]

(5)

The gravitational force the Earth imposes on an object is shown in Eq. (3).
In Eqs. (4) and (5), μ is the Earth’s gravitational parameter equal to 398600.440
km3/s2, gn is the gravitational acceleration in the north direction, and gd is
downwards along the radial direction. Furthermore, r is the radial distance of the
reference vehicle to the centre of the Earth and δ is the geocentric latitude. The
dependency on longitude is not present due to an assumed rotational symmetry of
the central mass M of the Earth [11, 12].



66 C. Bislip and E. Mooij

The aerodynamic drag, D, side force, S, and lift, L, are a function of velocity V ,
angle of attack α, and sideslip angle β. These terms are defined in the aerodynamic
frame based on airspeed. Though defined in the airspeed frame FA,A, they must
be used in the groundspeed frame FA,G. However, since wind effects are not
considered, they may be used as is to calculate the vehicle’s dynamic pressure
q = 1

2ρV 2 (where ρ is the local density) and the aerodynamic coefficients for drag
CD , side force CS , and lift CL.

FA,A = − [D, S,L]T = −qSref [CD,CS, CL]
T (6)

Equation (6) presents the relevant expression for the aerodynamic forces. As side
forces are not considered, through the assumption of β = 0, only the drag and
lift coefficients CD and CL are determined from the aerodynamic database. They
are, however, a function of the vehicle’s Mach number M , angle of attack, body
flap deflection angle δb, and elevon deflection angle δel . The deflection angles are
determined to maintain a trimmed flight.

Regarding the thrust force term, the vehicle is modelled to have a single
commanded thrust force Tc = ξTmax that is applied through the x̂-axis of the body
frame, FB . The commanded thrust force is the combined value of the maximum
available thrust from the rocket engines and a throttle setting ξ , which will be
explained further in Sect. 2.5.

.F T ,B = [Tc, 0, 0]
T (7)

2.4 Aerodynamic Heating

The heat input will be evaluated with a simplified expression known as the Chapman
Equation [13]. The expression evaluates the convective heat flux per unit area at the
stagnation point of the vehicle’s nose, which has a known radius .RN .

.qc = CρnV m

(
1 − Tw

Twad

)
. (8)

qrad = εσT 4
w = qc. (9)

Tw = 4

√
qc

εσ
(10)

Equation (8) is the hot-wall generalised form of Chapman’s Equation, where
n = 0.5, m = 3.15, and C = 1.83 × 10−8R−0.5

N . The ratio of wall temperatures
(Tw and Twad

) is determined by assuming thermal equilibrium and equating Eq. (8)
with the radiative heat flux, as shown in Eq. (9). This requires an iterative process
with an initial assumed value of either qc or Tw and sequentially updating each other
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until convergence [14]. In Eq. (10), ε is the surface emissivity and σ is the Stefan-
Boltzmann constant. Following simplified and effective methods, the integrated heat
load will be determined as the numerical integral of the heat flux qc.

2.5 Guidance

Typical control methods used in aerospace applications use some form of feedback
to apply control corrections about a known reference value (see Fig. 2). However,
the current problem does not have known reference values for any control parameter.
Additionally, the ideal controller is to have an instantaneous effect on command
settings and aerodynamic trim. These considerations give reason to the use of node
control, which utilises a set of control nodes to relate control parameters to an
arbitrary independent variable. The control parameters are defined at each control
node and interpolated at all other points. This brings forth the issues of identifying
the number of control nodes, their relative locations, the independent variable, and
the interpolation method.

The number of control nodes and their relative locations have a direct and sig-
nificant effect on the design space and the resulting trajectory. Regarding the design
space, a control node requires the definition of each applicable control parameter.
A maximum of three control parameters are to be on either ascent or descent: angle
of attack α, bank angle σ , and throttle setting ξ . These parameters, being defined
at each control node, then require an associated value in the independent variable
space.

Figure 3 illustrates the time histories of a series of variables for a typical coupled
trajectory that could be considered as candidates for the independent variable.
The general expectation of the independent variable is to be well behaved and
monotonically increasing/decreasing. The overall purpose of this desired behaviour
is to minimise oscillations (well behaved) and avoid ambiguities (monotonic) in the
evaluation of the control parameters. In relation to the application in the problem,
it is also known that a significant amount of energy must be steadily dissipated to

Fig. 2 Pseudo open-loop GNC system with ideal navigation module and ideal control module
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Fig. 3 Typical coupled trajectory time histories of candidate control node independent variables

maintain a reduced increase in g0-loads. This requires the independent variable to be
dynamic enough to change the control parameters as needed yet sufficiently stable
as to not generate sudden changes nor oscillations.

The Space Shuttle’s Orbiter landing guidance system, also known as the TAEM
system, used the concept of energy height [15]. The successful Orbiter landings
indicate that this concept indeed satisfies the requirements, particularly due to the
combination of the vehicle’s height and velocity into a single value. Furthermore,
the expression may also be known as specific energy, effectively removing any mass
term from the relation. The formulation, based on a flat Earth, has clear differences
from the expression that corresponds to a spherical Earth. However, the normalised
distributions of the separate formulations, as implemented within any particular
trajectory, will be equivalent. The variable’s utility with node control, as applied
to re-entry vehicles, has been previously demonstrated by Mooij and Hänninen [4],
Dijkstra et al. [5], and Hess and Mooij [6].

.Ê = E

Emax
= 1

Emax

(
g0h + 1

2
V 2

)
(11)

The maximum specific energy, Emax in Eq. (11), is determined with the max-
imum height hmax and maximum airspeed Vmax parameters defined in Sect. 3.
Though these could be coupled into a single optimisation parameter encompassing
the entire range generated by the separate parameters, it was chosen to not do so
to allow an additional degree of freedom. Naturally, since Emax is effectively an
optimisation parameter that is defined prior to the evaluation of the trajectory and
is also taken as the reference value, the useful range of values will also be affected.
If at any point a trajectory’s scaled specific energy goes beyond 1, all evaluated
control parameters would remain at their corresponding value of a scaled specific
energy value of 1.

Figure 4 illustrates the scaling transformation on the specific energy time history
of a typical trajectory, where the maximum scaled specific energy Êmax,actual
evaluates to a value of 0.93. It is important to note that Emax is set with initialised
values and is not influenced from the trajectory’s values. Initial and final specific
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Fig. 4 Illustration of scaling E → Ê [hmax ≈ 119 km, Vmax ≈ 6.5 km
s ]

Table 2 Nominal initial and
final specific energy state
source parameters

Description Units Initial Final

Mach – 6.6 2.5

Height km 35.0 25.0

Specific energy MJ/kg 2.38 0.518

Scaled specific energya – 0.107 0.023
a Based on sample data from Fig. 4

energy states need not be fixed either; if fixed, four parameters are removed from
the design space. The relevant values are presented in Table 2, where Mach numbers
are converted to velocity with the NRLMSISE-00 atmospheric model. The sample
scaled specific energy values used a scaling factor of Emax = 22.21MJ

kg , as shown in
Fig. 4.

The previous work by Dijkstra et al. [5] concluded the Non-Uniform Independent
Node (NUIN) method to be applicable for trajectory optimisation. Its implementa-
tion requires n − 1 initial values in the range of [0, 1] for n nodes. These values are
then cumulatively summed per each control node i in a node location vector, which
is then scaled by the maximum value (the total sum). This procedure implicitly
generates the control node intervals and ensures all node locations are within [0, 1]

.x = [x1, x2, . . . , xn−1] ∈ [ 0, 1 ] . (12)

xnode,i =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = 1

i∑

j=2

xj−1 if i > 1
. (13)

x̂node,i = xnode,i

xnode,n
. (14)

Ênode,mapped,i =
(
Êmax − Êmin

)
x̂node,i + Êmin. (15)
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Fig. 5 Node mapping to the energy domain is followed by the application of guidance matrix
values and the implementation of Hermite interpolation

Êmin =
⎧
⎨

⎩

Êinitial if ascent

Êfinal if descent
. (16)

Γ =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Êmin α1 σ1 ξ1

Ê2 α2 σ2 ξ2
...

...
...

...

Ên−1 αn−1 σn−1 ξn−1

Êmax αn σn ξn

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(17)

The process is illustrated by evaluating Eqs. (12) through (14), followed by
mapping the node locations to the energy domain through Eq. (15). The resulting
guidance matrix Γ for each phase will then contain the nodal scaled specific energy
as it is related to each control parameter initialisation. Equation (17) shows the
structure of the guidance matrix created for each trajectory phase, where Êmax is
defined by Eq. (16).

As a piecewise polynomial, high degree polynomials could induce large oscilla-
tions (commonly referred to as Runge’s Phenomenon). Figure 5 illustrates that this
issue will be addressed by implementing cubic Hermite interpolators with smooth
and continuous first derivatives at the endpoints, as developed by Han and Guo [16].

2.5.1 Skip Suppression

During descent, the flight-path angle will be controlled to ensure that the vehicle
does not bounce back out of the atmosphere or experience excessive skipping. This
is achieved by elaborating further on the derivation presented by Vinh et al. [17],
followed by setting flight-path angle rate .γ̇ = 0 if the flight-path angle .γ ≥ 0 and
identifying the corresponding values of the remaining parameters. Neither thrust
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vector control (TVC), such as gimballing, nor side forces are included. These
considerations allow for the derivation of an expression from which the bank angle
can be determined. However, this bank angle may be different from the operational
parameter that would be determined via node control.

. cos σss = m

L + Tc sinα
(gd cos γ − gn sin γ cosχ · · ·

· · · −ω2
Er cos δ (cos δ cos γ + sin γ sin δ cosχ) · · ·

· · · −V 2

r
cos γ − 2ωEV cos δ sinχ

)
. (18)

σc =

⎧
⎪⎪⎨

⎪⎪⎩

if descent & ρ > ρmin

{
σ if γ < 0.0

σss if γ ≥ 0.0

otherwise 0.0

(19)

The resulting expression based on the Vinh et al. [17] derivation is shown in
Eq. (18). The skip suppression bank angle σss is shown to be a function of previously
discussed forces, such as lift L, thrust Tc, and gravity in its components gn and
gd . Additional required parameters are the vehicle’s mass m, airspeed V , angle of
attack α, flight-path angle γ , heading angle χ , geocentric latitude δ, and radial
distance r from the Earth’s centre. Finally, though potentially having negligible
effects, the Earth’s angular speed ωE of 7.2921150×10−5 rad

s is largely included
for completion.

Equation (19), on the other hand, introduces the commanded bank angle logic.
The expression shows that the bank angle will be fixed to zero during the ascent
phase. During the decent phase, banking of any kind will be commanded if a
minimum local density is being met. The said banking will be determined by node
control if the flight-path angle γ is lower than zero or by skip suppression with
Eq. (18) if the flight-path angle γ is non-negative.

2.5.2 Lateral Guidance

During descent, the vehicle will use the angle of attack to dissipate excess energy
and the bank angle to ensure that a path that continuously decreases in altitude.
Though a mild slip is not expected to be problematic, the oscillatory behaviour
could also bring about undesired oscillatory evaluations of the guidance variables.
Regardless, these considerations would not guide the vehicle towards its intended
destination.

The vehicle’s lateral guidance is implemented by restricting the heading error
χe with a so-called heading error dead-band χe,db and a bank reversal. The heading
error dead-band χe,db is taken to be a function of angular distance-to-go θT oGo from
the intended target. The bank reversal is a sign change of the bank angle that occurs
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if the magnitude of the heading error continues to increase beyond its corresponding
dead-band. However, the goal is to reach the TAEM, which would allow the lateral
guidance to aim at any point on the boundary of the TAEM. This creates a moving
target that is bound by tangential great circles generated from the vehicle’s location.

Figure 6 illustrates the arbitrary location of the vehicle at point A and the central
target at point B. The circle around B represents the TAEM region, which is tangent
to the great circles that originate from A at T1 and T2. The heading angles required
to follow the great circles would define χT1 and χT2 , and any heading angle within
these bounds would indicate that the vehicle is aiming towards the TAEM region.

.χe =

⎧
⎪⎪⎨

⎪⎪⎩

0 if χT1 ≤ χ ≤ χT2

χ−χT1 if |χ−χT1 | < |χ−χT2 |
χ−χT2 if |χ−χT2 | < |χ−χT1 |

(20)

x

y

z

A

B

T1

T2

rTAEM

θABT

αB→A

NP

Fig. 6 Geometry for deriving the heading to tangent points on an arbitrary circle on the surface of
a sphere
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Equation (20) shows that a heading error only occurs when the vehicle is not
aiming towards the TAEM region. To identify these bounds, the internal angles
θABT1 and θABT2 are identified by using the modified Gram–Schmidt procedure.
Vector algebra and Cartesian coordinates are used through the implementation of
the procedure outlined below.

.U1 = A −
(

A · B̂
B̂ · B̂

)

· B̂. (21)

Û1 = U1

‖U1‖ . (22)

B̂ = B

‖B‖ . (23)

θABT1 = θABT2 = θABT = arccos

[
(A · B) tan rTAEM

A · Û1

]
. (24)

αB→T1,2 = αB→A ± θABT (25)

Equations (21) through (23) facilitate the calculation of the internal angle θABT

with Eq. (24). In this equation, rTAEM is the radius of the TAEM region and
effectively the distance from point B at which the tangent points are located. To
then identify the coordinates of the tangent points, the azimuth αB→A from the
central target (point B) to the vehicle (point A) is first determined. Equation (25)
is then used to calculate the heading αB→T1,2 to tangent points T1 and T2. Once the
coordinates of T1 and T2 are known, the bounding heading angles of the vehicle (χT1

and χT2 ) and the corresponding dynamic target angular distance-to-go θT oGo,dyn are
calculated. In the event that χe = 0, as determined with Eq. (20), the vehicle would
have a heading angle that aims towards the TAEM region. In this case, a similar
approach is used to determine the coordinates of the TAEM boundary intersection
point, which then allows for the calculation of the angular distance θT oGo,dyn.

3 The Decision Vector

The approach to the current problem will be to structure the decision vector into
two sets of optimisation parameters: non-nodal and nodal parameters. Both sets
are a function of the trajectory phase to be evaluated, especially when comparing
coupled and decoupled decision vectors.

All parameters not associated with node control are shown in Table 3. Their
associated exploration bounds are provided for each trajectory type. From these
non-nodal parameters, the additional mass madditional, the phase termination distance
ratio ζ , and the decoupled descent distance-to-go ratio θ̂T oGo,i warrant additional
context.
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Table 3 Non-nodal parameters and exploration bounds

Exploration bounds

Ascent Descent Coupled

Description Parameter Units Lower Upper Lower Upper Lower Upper

Initial flight-path angle γ0 deg 1.5 8.0 −89.9 0.0 1.5 8.0

Maximum airspeed Vmax km/s a 3.0 7.0 3.0 7.0

Maximum height hmax km a 70.0 200.0 70.0 200.0

Additional mass madditional Mg a 0.0 30.0 0.0 30.0

Phase termination distance ratio ζ – a – 0.1 0.7

Ascent optimisation airspeed Vf,ascent km/s a – –

Ascent optimisation height hf,ascent km a – –

Final ascent flight-path angle γf deg a – –

Initial distance-to-go ratiob θ̂T oGo,i – – 0.3 0.9 –

Descent optimisation airspeed V0,descent km/s – 0.75 7.0 –

Descent Optimisation Height h0,descent km – 35.0 200.0 –
a Fixed to corresponding linking value determined by decoupled descent optimisation
b Will be evaluated at fixed intervals of 0.15

Though nominal operations of the reference vehicle would have taken it to orbit,
the current implementation not only limits the total mechanical loads but might also
require longer operations within a thicker atmosphere. The possibility of increased
propellant mass is then considered by also increasing the vehicle’s dry mass as a
function of the additional mass parameter.

.mdryactual = mdry

[
1 + 0.3

(
madditional

m0

)]
(26)

The phase termination distance ratio ζ is used during the ascent phase as a
necessary condition before terminating. It means that a portion of the initial central
target angular distance-to-go θT oGo,0 must be travelled before the next phase can
commence. This translates to the minimum angular distance required θrequired ,
which is the minimum angular distance to travel from the destination coordinates.

.ζ =
(

θrequired

θT oGo,0

)
(27)

The initial decoupled descent distance-to-go ratio θ̂T oGo,i parameter is only used
for a decoupled descent phase to fix the initial location of the vehicle with respect
to the central target. The initial angular distance-to-go θT oGo,i is then the angular
distance from the central target at which the simulation begins.

.θ̂T oGo,i =
(

θT oGo,i

θT oGo,0

)
(28)
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Table 4 Nodal parameters and exploration bounds

Decoupled Coupled

Ascent Descent Ascent Descent

Description Parameter Units Lower Upper Lower Upper Lower Upper Lower Upper

Angle of attack θ deg 10.0 20.0 0.2 50 10.0 20.0 0.0 50

Bank angle σ deg – 0.0 89.0 – 0.0 89.0

Throttle setting ξ – 0.2 1.0 – 0.2 1.0 0.2 1.0

Table 5 Phase termination conditions

Condition

Description Parameter Units Ascent Descent

Ascent phase terminationa Eq. (29) – TRUE –

Minimum allowable mach number Mmin – – 1.05

Minimum allowable height hmin km 9
10h0 10.0

Minimum angular distance from central target θT oGo,min deg 0.75

Change in Angular distance from central targetb ΔθT oGo deg >0
a Not applicable to decoupled ascent trajectories
b Used to indicate that the vehicle is travelling away from the central target

Table 4 presents the nodal parameters along with their general bounds as they
are used in both decoupled and coupled evaluations. Though they are similar, the
distinction lies in the idea that in a decoupled descent phase it is assumed that there
is no more propellant mass available, whereas a coupled descent phase may still
have leftover propellant from its coupled ascent phase.

Table 5 presents the phase termination conditions required throughout the
evaluation of any decision vector. The table first references the necessary condition
for a phase change in either a coupled trajectory or the ascent phase of a decoupled
trajectory type.

.

(
θ̂T oGo ≥ ζ

)
∧ (γ ≤ 0) ∧ (γ̇ ≤ 0) → Terminate ascent phase (29)

Equation (29) shows that a combination of three conditionals must be simulta-
neously met. The first condition being that θ̂T oGo must be equal or greater than ζ ,
which is the phase termination distance ratio defined in Eq. (27). This means that
the vehicle must have first travelled a minimum distance before allowing a phase
change. The second and third conditionals indicate that the vehicle’s flight-path
angle, γ , and corresponding rate, γ̇ , must both be equal to or lesser than zero. These
mean that the vehicle must aim towards the Earth’s surface without levelling back
to a horizontal flight.

The lowest Mach number the descent phase will evaluate, Mmin, is due to the
reference vehicle’s aerodynamic database not being defined for subsonic velocities.
The lowest possible heights are included to terminate ascent phases that neither
maintain nor increase the vehicle’s height and to terminate descent phases that have
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descended far beyond the height required for nominal TAEM interface conditions
(see Table 2 for more details).

4 The Fitness Vector

The evolutionary algorithms available within PaGMO use a combination of objec-
tive functions, equality constraints, and inequality constraints to define an individ-
ual’s fitness. For simplicity, the current implementation will focus on the objective
functions determined by calculating a series of cost functions, constraint violations,
and penalties that must be minimised. The corresponding expressions are computed
according to the nature of the variables in question. Each value is scaled by a
relevant limiting value, yielding a series of non-dimensional values, which can then
be summed in different combinations for the fitness vector.

The costs have been defined to minimise the total angular distance-to-go, the
total propellant mass, and the integrated heat load.

.CθT oGo
= 100θ̂T oGo,f = 100

(
θT oGo,f

θT oGo,0

)
. (30)

Cmass = 100

(
mdryactual − mdry

mdry

)
+ |V0 − Vmaxactual,a|

Ispg0 ln
(
m0actual/mf,a

) . (31)

CQ = 1

ttof qc,a

N∑
qc (t)Δt (32)

Constraint violations are used for all constrained variables, such as the g-load,
dynamic pressure, bending moment, and nose-cone stagnation heat flux. These
constraints, summarised in Table 6, would produce a violation only if the variable
in question goes beyond the imposed constraint. The generic form is given by

Table 6 Summary of operational constraints

Description Symbol Units Value Source

Total g0-Load na g0 1.0 Current study

Dynamic pressure qa kPa 25.0 a

Bending moment (qα)a kPa·deg 250.0 a

Stagnation heat flux qc,a kW/m2 700.0 a

Directional jerkb ja m/s3 2.0b c

a See Dirkx and Mooij [18]
b Secondary constraint, not enforced
c See ISO [19]
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(a) (b)

Fig. 7 Sample data for computation of constraint violations. (a) High peak low duration violation.
(b) Low peak long duration violation

.Vc = xmax − xc

xc
+

∑n
i=1 (xi − xc)Δt

ttof · xc
(33)

where the first term in Eq. (33) corresponds to the effect of the maximum constraint
violation. The second term corresponds to the effect of the magnitude of each
individual violation along with its duration throughout the trajectory, i.e., the
area bounded by the portions of the curve that are beyond the constraint and the
constraint line. Furthermore, Eq. (33) will be applied separately to each trajectory
phase due to the difference in expected dynamics and operating parameters.

Figure 7 illustrates the combined effects of the duration of a phase, the overall
trends, and the constraints being imposed, as expected from Eq. (33). Figure 7a
shows how increased values can have a persistent effect that may be reduced by
a low duration, whereas Fig. 7b shows how lower values can have a more significant
resulting effect if prolonged throughout the trajectory. It is also possible to see the
difference in relative calculation throughout each trajectory phase, accentuating the
importance of calculating separate values for each phase.

Additional penalties are incurred for undesired trajectory characteristics. These
include flight-path angles that have the ‘wrong sign’ during each phase and non-
monotonic scaled specific energy profiles. The rationale for the flight-path angles
is to avoid opposing changes in elevation during each trajectory phase, while the
monotonically increasing/decreasing profiles would ensure unique evaluations of
the guidance variables determined through node control.

.Pγ = 1

360

∣∣
∣∣

(
xmax +

∑n
i=1 xiΔt

ttof

)∣∣
∣∣

{
if ascent, ∀x < 0

if descent, ∀x > 0
. (34)

P
Ê

=
n∑

i=2

|xi − xi−1|
{
if ascent, xi < xi−1

if descent, xi > xi−1
(35)
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Simply put, during ascent, it is desired to have non-negative flight-path angles
and a monotonically increasing scaled specific energy profile, while during descent
it is desired to have non-positive flight-path angles and a monotonically decreasing
scaled specific energy profile. These characteristics can be determined from the
conditionals in Eqs. (34) and (35).

.PEf,a = 10
|E0,d − Ef,a|

E0,d
. (36)

Pγf,a = 10
|γ0,d − γf,a|

γ0,d
(37)

Additional penalties are imposed on decoupled ascent trajectories. Shown in
Eqs. (36) and (37), these are intended to connect the final specific energy and flight-
path angle of the ascent phase to target values corresponding to initial values of the
descent phase.

5 Design Space Exploration

The design space is understood to be prohibitively large, as it is not possible to
evaluate all combinations within a parameter set. Furthermore, the problem is not
well understood given that this particular implementation of the reference vehicle
has not been previously evaluated. Thus, a variety of Monte-Carlo evaluations were
initially performed to guide the selection of individuals for the initial populations
and to inform the ranges of the decision vector parameters. This exercise was done
in an effort to improve the effectiveness of the optimisation process of both the
design space exploration and the trajectory optimisation itself.

Figure 8 shows the results of a Monte-Carlo evaluation. This test was completed
for an unconstrained run of a coupled trajectory type, a population of 100,000
individuals with five (5) control nodes, which were randomly selected from a
uniform distribution with a given random seed. The propagation/guidance step sizes
of 1 s were selected to reduce the computational load while remaining within the
vehicle’s validated performance capabilities.

Figure 8a shows a distribution of values whose ranges for the maximum body
frame mechanical load are significantly higher than desired (much greater than 1
g0) while also remaining far from the intended target. In fact, the figure shows a
high concentration of individuals with nmax of about 5 g0 that reached a minimum
angular distance from the central target of about 48◦. This observation is confirmed
by the top left chart of the violation histograms shown in Fig. 8b, further illustrating
the low probability of randomly identifying feasible individuals.

A design space exploration is performed to evaluate the effectiveness of a
variety of optimisation approaches. This will be done by evaluating various of the
optimisers available in PaGMO with a series of combinations of initial population
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(a) (b)

Fig. 8 Uniformly distributed random individuals with initial random seed 1 and 5 control nodes.
(a) Variable comparison. (b) Violation histogram

Table 7 Fitness vector terms per objective function case (OFC)

Objective function case

Term Eq. Type A B C D E F G H I J K L Ma N

Angular distance-to-go (30) C x x x x x x x x x x x x x x

Fuel mass (31) C x x

Heat load (32) C x x x x

Total g0-Load (33) V x x x x x x x x

Dynamic pressure (33) V x x x x x x x

Bending moment (33) V x x x x x x

Heat flux (33) V x x x x x

Flight-path angle (34) P x x x x x

Monotonic energy state (35) P x x x

Grouping 1b – V x x x x x

Grouping 2c – P x x x

Decoupled ascent Ef,a (36) Pd x x x x x x x x x x x x x x

Decoupled ascent γf,a (37) Pd x x x x x x x x x x x x x x

Term Types: Cost (C), Constraint Violation (V), and Penalty (P)
a OFC-M.1 augments the total g0-load violation by a factor of 10
b Grouping 1 is composed of all V-type terms
c Grouping 2 is composed of all P-type terms
d Applied when linking decoupled phases

sources, a number of control nodes, initial random seed initialisers, objective
function cases, single- vs multi-objective, and constrained vs unconstrained. The
objective function cases are defined in Table 7, where they are composed of different
combinations of the costs, constraint violations, and penalties introduced in Sect. 4.
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Table 8 Design space
exploration factors to
investigate

Factor Options

Number of nodes [5, 6, 7]

PRNG seed initialiser [234998684, 88236, 5927502]

Initial populations PRNG vs. Individual ranking

Number of objectives Single vs. Multi/many

Constraint Type Unconstrained vs. Constrained

Optimization algorithm NSGA-II, MOEA/D (DE), IHS

Objective function case OFC-A to OFC-N (Table 7)

Fig. 9 Generational history of θT oGo,min for an unconstrained single-objective coupled (ascent
phase only), OFC-A, and initial population sourced from fitness vector ranking

With the factors presented in Table 8, the design space exploration optimisations
had a maximum number of generations of Nmax = 500 with a minimum equal to
75% of the maximum. Within the 75% and 100%, the optimisation continued until
the change of the population’s average fitness was negligible.

Figure 9 and Table 9 present an excerpt of the variety of summarising tools
created to analyse the data. Figure 9 shows the generational history of θT oGo,min
corresponding to the population’s top individual for a variety of factors and an OFC-
A. It is possible to observe how, with this particular set of cases, NSGA-II [1] had an
overall tendency to converge to a much higher θT oGo,min, whereas MOEA/D (DE)
[2] was able to reach lower values. Within MOEA/D (DE), it is also possible to
see reduced θT oGo,min as the number of control nodes increased. Additionally, the
MOEA/D (DE) profiles show signs of increased diversity as the overall θT oGo,min
is reduced. This can be observed by the ‘noise’ as the overall trends continue to
decrease the θT oGo,min. Table 9 presents a summary of the minimum values of
the constrained variables for various objective function cases with the MOEA/D
(DE) genetic algorithm. The colour coding corresponds to the number of nodes that
produced the minimum value.

It is clear that the numerous evaluations resulting from the combination of factors
being investigated (see Table 8) yield a dataset from which drawing conclusions
becomes a challenge. As a result, key indicators were used to draw conclusions due
to the overall complexity of the data. Among them was the consistency of satisfying
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Table 10 Trajectory
optimisation input parameters

Parameter Selection

Population size 100

Population source Fitness vector ranking

Max. generations 3000 → 100

Control nodes 7

Objective type Multiple

Objective function case OFC-Na

Optimising Algorithm MOEA/D (DE)

Time steps (Δtp|Δtg) 1s → 0.05s | 1s → 0.1s

Arrow (→): general then localised optimisation
a Parallel evaluation will be done with OFC-I

constraints with the recurrence of low maximum values, reduced dimensionality in
both decision vector and fitness vector space, and the population’s diversity.

Table 10 presents a summary of the resulting optimization primary parameters to
be used for the optimisation of both coupled and decoupled trajectories. From these
parameters, the maximum number of generations and the propagation and guidance
time steps (Δtp and Δtg) show two sets, corresponding to the initial optimisation
and a localised refined optimisation.

6 Trajectory Optimisation

The trajectory optimisation was performed with two separate approaches. The
decoupled approach, presented in Sect. 6.1, begins with the parallel evaluation of
a descent phase optimisation with five different starting points defined by .θ̂T oGo,i .
The initial conditions of these evaluations are then analysed with the purpose
of extracting terminal state target values for ascent phase optimisations. These
evaluations are then intended to be linked such that a continuous trajectory would
then be generated. Details and analysis are presented throughout the section leading
to the conclusion that a continuous trajectory was not found.

Section 6.2, on the other hand, presents the coupled approach, where a general
optimisation is performed and then followed by a localised optimisation. The section
then discusses the resulting sub-optimal individual found from the approach.

6.1 Decoupled Approach

Following the parameter bounds introduced in Table 3 and the optimisation param-
eters detailed in Table 10, the decoupled approach begins by evaluating the descent
phase at five different decoupled descent distance-to-go ratios. These evaluations
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Fig. 10 Decoupled descent single- and multi-objective (SO & MO) variable comparisons at
TAEM for OFC-I and OFC-N with θ̂T oGo,i = 0.30

Fig. 11 Boxplots of phase change values of filtered individuals for all θ̂T oGo,i

were initialised with .θ̂T oGo,i = {0.30, 0.45, 0.60, 0.75, 0.90} and yielded numerous
individuals that satisfied most of the operational constraints shown in Table 6.

Figure 10 shows the maximum g0-load throughout the decoupled decent phase
compared to the maximum values for dynamic pressure, bending moment, and
stagnation heat flux. These point clouds show the resulting individuals throughout
all generations that have reached the TAEM. As calculated, a significant portion of
the population was close to the 1-g0 constraint. Similar distributions were observed
for all other θ̂T oGo,i , though with reduced total populations as θ̂T oGo,i increased.
This was to be expected as larger θ̂T oGo,i mean larger initial angular distances-to-go
at the start of the decoupled descent phase.

The selection criteria from all individuals that reached the TAEM include the
satisfaction of all constraints presented in Table 6 with the distinction of nmax ≤
1.15 g0. The initial specific energyE0,d, initial flight-path angles γ0,d, and additional
mass of the individuals selected from the decoupled descent phase are presented in
Fig. 11.



84 C. Bislip and E. Mooij

The figure shows the distribution of the values as boxplots for each θ̂T oGo,i .
These boxplots illustrate the distribution of data through its quartiles, where outliers
are depicted at red discreet points beyond the black lines. The 25th and 75th
percentiles are, respectively, illustrated by the lower and upper bounds of each blue
box, and the sample’s median (50th percentile) is shown as the single red line within
each box.

The distributions show an increase of the initial specific energy as θ̂T oGo,i

increases, which is to be expected. Curiously, the case of θ̂T oGo,i = 0.60 yielded
values that were within the trend yet with an increasingly small spread, indicating a
significantly small population compared to the other cases. A possible explanation
would be need for additional generations to increase the total individuals found.

The initial decoupled descent flight-path angles were observed to have a trend
towards zero. Though the parameter’s upper bound was fixed at γ0,d,max = 0, there
were clear outliers, especially for the case of θ̂T oGo,i = 0.30. These outliers can be
explained by the understanding that the closer the vehicle is to the TAEM, the lower
the need for an extended downrange, hence the possibility of a more negative initial
flight-path angle. Additional to the outliers, the case of θ̂T oGo,i = 0.60 shows a
median lower than -0.1 deg. However, all values are within a relatively close distance
from zero, which would be compatible with the goal of minimising mechanical
loads throughout the trajectory.

All decoupled decent cases had a tendency to minimise the additional mass to
the point of being borderline negligible. Since the effect of the additional mass
parameter on the decoupled descent cases was to increase the total dry mass of
the vehicle, there was a possibility that the parameter was unnecessarily limiting
the optimisation. Understanding that there was a minimum dry mass (nominal dry
mass of the vehicle), this driver to have almost negligible additional mass opened up
the possibility of the optimiser driving the system to a configuration that carried the
nominal fuel mass or less. However, the spread of outliers indicates a possibility of
potential individuals with additional mass. This led to the definition of three mass
cases for the decoupled ascent optimisation: minimised additional mass, nominal
fuel mass, and minimised fuel mass.

The median values of the selected initial decoupled descent specific energy and
flight-path angle (E0,d and γ0,d) were then taken as optimisation targets for the final
state of the decoupled ascent phase as Ef,a and γf,a, along with the values of the
corresponding trajectory linking parameters introduced in Table 3. The optimisation
parameters for the decoupled ascent phase were the same as for the decoupled
descent, shown in Table 10. Once evaluated, the selection criteria for all mass cases
required a relaxed maximum nmax of 1.50 g0. This was due to the lack of individuals
that had reached their corresponding transition point (θ̂T oGo = θ̂T oGo,i) with tighter
constraints.

The distributions of specific energy at the end the decoupled ascent phase
(θ̂T oGo = θ̂T oGo,i) are shown in the left plot of Fig. 12, with ascent optimisation
targets as black lines. The most significant observation is that none of the distribu-
tions reached the targeted specific energy levels. Most of the distributions followed
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Fig. 12 Decoupled ascent transition point boxplots of filtered individuals for various θ̂T oGo,i for
minimised fuel mass and nmax ≤ 1.50 g0. Ascent optimisation targets shown in black lines

the decreasing trend of the target energy levels as θ̂T oGo,i decreased. However, the
case of θ̂T oGo,i = 0.90 was not only significantly lower than the required target
but it did not follow the decreasing trend. It is understood that this phenomenon
occurs due to the selection of the individuals with a reduced nmax that have reached
θ̂T oGo = 0.90, while they have not had the temporal nor spatial opportunity, or need,
to convert the propellant mass’ energy into kinetic and potential energy. Simply put,
the vehicle reaches the phase transition point too fast without the need to consume
more propellant. Though it is clear that there could be a larger conversion of energy
within the relatively short distance, especially with the available propellant, it is
expected that the g0-loads would be significantly larger. This ultimately would
exclude these individuals from the distributions of interest. Regarding the transition
point flight-path angles, the largest variation was brought about by θ̂T oGo,i = 0.90,
also pointing to the difficulty of identifying individuals that can reach the required
specific energy levels without extreme nmax values. Though not illustrated, all mass
cases showed an overall tendency towards the nominal mass configuration, which
shows a preference of a lighter vehicle to reduce the maximum g0-loads during the
ascent phase.

From these distributions, it can be said that the decoupled ascent optimisation
process successfully drives the populations to the desired phase transition point
(θ̂T oGo = θ̂T oGo,i) yet is unable to produce the specific energy targets required
by the decoupled descent optimisation with reduced nmax. Though the actual fuel
consumption and time histories are not discussed, the fact remains that the current
decoupling of the search space drives the descent phase optimisation into a region of
the design space that does not intersect with the region where the decoupled ascent
phase optimisation yields lower nmax values. This is a reasonable conclusion, given
that the decoupled descent optimisation does not have a strong link to the decoupled
ascent phase optimisation. Hence, a functional relationship is not available with
which the optimisation process can guide the populations towards regions that are
intersecting. As such, a linkable decoupled trajectory was not identified.
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6.2 Coupled Approach

The coupled approached optimisation was performed according to the optimisation
parameters shown in Table 10. Figure 13 shows the maximum .g0-load throughout
the entire trajectory compared to the maximum values for dynamic pressure,
bending moment, and stagnation heat flux. These point clouds show the resulting
individuals throughout all generations that have reached the TAEM. The lower row
shows that with OFC-N the maximum dynamic pressures satisfied the constraint
with sufficient margin, unlike the corresponding decoupled descent phase. The
maximum bending moments had a spread across the constraint line that was skewed
towards satisfying the constraint, and unlike the decoupled decent phase, the heat
flux had a larger concentration around the constraint line. Unlike with the decoupled
approach, the separate phases of the coupled approach did not produce trajectories
with max .g0-loads approaching values as close to 1 .g0.

A sub-optimal individual was identified from the point clouds, as shown in
Fig. 14 with the red dot. This value, denoted as nmax,min for the minimum of the
maximum g0-loads, was found to be 1.19 g0. When comparing the relative location
of the red dot within the distributions of each of the variables shown in Fig. 14, the
maximum bending moment is approximate to its median, whereas the maximum
heat flux is closer to the left tail of the distribution. The additional mass, however,
is at approximately 5500 kg and towards the right tail of the distribution.

To further drive the loads towards the constraint of 1 g0, the sub-optimal point
was then used as a reference for local optimisation. The decision vector was
expanded by 1-, 2-, 5-, and 10%, and a Monte-Carlo test was performed with 5000
individuals and refined time steps ofΔtp = 0.05 s andΔtg = 0.1 s. Not only did this
not drive the nmax,min of the population closer to the constraint, but many individuals
did not reach the TAEM. This may imply that the optimisation process had already

Fig. 13 Coupled trajectory single- and multi-objective (SO & MO) variable comparisons at
TAEM for OFC-I and OFC-N
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Fig. 14 Identification of sub-optimal and reference individuals used for localised global optimi-
sation

converged to a small region and/or the result of the tests were a replication of the
observations from the initial Monte-Carlo design space exploration with 100,000
individuals. This led to the localised optimisation of the population to be with the
same global optimisation method (MOEA/D (DE)), albeit with a reduced design
space.

The objective function cases evaluated were OFC-N and OFC-M.1. The selection
of OFC-N was to maintain continuity with the initial evaluation. The nmax −
madditional Pareto front showed a well-behaved trend where an increase in madditional
indicated a possible reduction in nmax. This led to the creation and selection of
OFC-M.1, where the mass cost is no longer included and the total g0-load constraint
violation was increased by an order of magnitude.

The reference points were selected along the nmax − (qα)max and nmax − qc,max
Pareto fronts. Including nmax,min, a total of four points were selected, as shown in
Fig. 14 by the numeric labels in the bottom right panel. Each case had a set of param-
eter bounds created by expanding the decision vector of each individual identified
in Fig. 14. A decision vector expansion of 5% was chosen because it brought about
the most individuals to the TAEM with the localised Monte-Carlo tests. However,
the madditional was arbitrarily defined to have a range of [4000, 15,000] kg. The
initial populations used to seed the localised global optimisation were determined
by identifying the individuals that produced the lowest 100 nmax from the general
global optimisation. The maximum number of generations was set to 100.

Figure 15 illustrates the variable comparisons of all individuals that reached
the TAEM for two cases. The relevant reference individual is identified in the top
left corner of the first panel of each row, and its corresponding placement in each
panel is identified by the intersection of the dashed lines. OFC-N is presented in
green asterisks and OFC-M.1 is presented as dark red squares. It is possible to see
in the figure how each objective function case drives the populations in different
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Fig. 15 Localised multi-objective optimisation variable comparisons for OFC-N and OFC-M.1

directions. OFC-N did not significantly drive nmax values closer to 1 g0. It can also
be seen that this case had a clear tendency of minimising madditional, as it drove
the populations towards the lower bound of 4000 kg. OFC-M.1, on the other hand,
was able drive nmax values further towards the 1 g0 constraint. However, this was
achieved at the expense of significantly increasing madditional.

The nmax − madditional front was chosen for further analysis. The selection was
based on the relatively well-behaved curve and the fact that madditional is a known
input parameter. The improvement on nmax can be clearly visualised in Fig. 16,
where all localised global optimisation populations are aggregated over the general
TAEM population. The figure shows the distributions of each objective function case
for madditional in the top panel and for nmax on the right panel. The additional mass
distributions for OFC-N (blue and green areas) show a trend towards their minimum
bounds (0 kg and 4000 kg). The distribution of OFC-M.1 (red area) has a large
spread with a larger proportion around 10,500 kg. The corresponding distributions
for nmax show that only OFC-M.1 was able drive the population towards a lower
nmax. The lowest value is identified as nmax,min2 with the second red dot and a value
of 1.152 g0. It is also possible to see that madditional values larger than 10,500 kg
only increased nmax, suggesting that further improvement in this relation was no
longer possible. In short, though there is a clear improvement in nmax, the difference
is effectively negligible and comes at the need of a significantly higher additional
mass.

Three Pareto fronts are also shown in Fig. 16. Though the left portions of the
Pareto fronts were from the initial optimisation, it can be seen that as the additional
mass increased, the Pareto points were increasingly selected from the local optimi-
sations. Visual comparisons of their decision vectors, trajectory data, and variable
time histories showed relatively small differences for the individuals near nmax,min2 .
In fact, other than for madditional, the decision vectors showed characteristics of
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Fig. 16 Pareto front of maximum g0-load vs. additional mass, including general (OFC-N) and
local optimisations (OFC-N and OFC-M.1)

Fig. 17 ‘Best’ individual time history: control variables

clustering. However, as a sensitivity analysis has not been completed by modelling
realistic uncertainties, it is unclear how deviations from the clusters may affect the
resulting trajectories.

Figure 17 shows the time histories of the control variables. Angle of attack,
shown in solid blue, presents a saturated segment during the ascent phase, a
significant spike during the phase change that is eased off during the initial descent
and a steep decrease at the end. The steep decrease at the end is a result of the
vehicle’s aerodynamic envelope at lower Mach numbers (see Fig. 1c). The bank
angle, shown in the dashed red line, is zero during the ascent phase and positive
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Fig. 18 ‘Best’ individual time history: g0-loads

during the descent phase. This particular profile implies that the vehicle did not
perform a bank reversal. Additionally, there are two spikes with certain oscillations
occurring as they revert to the lower trend. The large spikes are the result of the
skip suppression, where the bank angle required to avoid skipping is commanded
if γ ≥ 0 and γ̇ ≥ 0. The oscillations are the natural consequence of the vehicle’s
flight-path angle and its time rate of change as the trajectory maintains a horizontal
or slightly negative path. However, the largest oscillation, shown on the inset, is
relatively short-lived. Though the values have an effect on the calculated trajectory,
these oscillations would not be feasibly executed if a controlled flight is performed.
The throttle setting, shown as the yellow dotted line, has an initial decreasing trend
that is shortly interrupted and then continues to decrease. The throttle setting then
has a sudden reduction to zero, engine shut-off, prior to terminating the ascent
phase. This confirms the hypothesis about thrust being present exclusively during
the ascent phase. As the ascent phase extracts the fuel mass’s energy, it is also
expected that higher mechanical loads would be experienced by passengers during
the initial phase of the coupled trajectory.

The overall decreasing trend of the throttle setting works in concert with the
angle of attack in maintaining a relatively low g0-load. Figure 18 illustrates the g0-
load magnitude and its components in the passenger frame, FG. The figure also
shows the points of maximum absolute values. The g0-load magnitude, shown in
solid blue, presents the maximum value of 1.152 g0. Prior to that point, there is a
relatively constant line. However, these values are due to an exchange in component
distribution along the FG,x̂ and FG,ẑ axes. The value has a short decrease and goes
below 1 g0 during a pull-up manoeuver where the angle of attack and throttle setting
both decrease. However, when they increase again, the total g0-load increases to
over 1 g0. The value then shows a short undulation before having a sharp decrease
prior to the phase change. Once in the descent phase, the total g0-load has a step
increase to about 0.5 g0 prior to showing an undulating trend that eventually goes
above 1 g0 for almost the remainder of the trajectory. This undulation along FG,ẑ

can be traced to the vehicle’s height, flight-path angle, and flight-path angle rate
(all during descent). Throughout the trajectory, the FG,x̂ axis dominates during the
ascent phase, while the FG,ẑ axis dominates during the descent phase. In fact, the



Hypersonic Point-to-Point Travel for the Common Man 91

Fig. 19 ‘Best’ individual height over planar trajectory

maximum absolute value of the ascent phase corresponds to nG,x̂ = −1.079 g0 (red
cross on red dashed line), while for the descent phase it corresponds to nG,ẑ = 1.067
g0 (purple diamond on purple semi-dashed line). These directional maxima are not
entirely sustained as they occur within flight segments that are within clear violation
of the 1 g0 constraint. The extended exposure during ascent lasts about 160 s and
about 400 s during descent.

The vehicle’s trajectory is shown in Fig. 19, with its height over a planar
trajectory. Of note is the geographic path of the ground track, where the ascent
phase occurs above the region associated with the United Kingdom and the descent
phase occurs largely above the northeastern coast of the USA. Furthermore, the lack
of bank reversals can be seen as the vehicle aims to the circle defined by the TAEM.
Though not shown, numerous other trajectories presented similar characteristics.

7 Concluding Remarks

The overall exercise could be described in four main segments: development of a
trajectory simulator with the identification of key generalised parameters; objective
function case definition with a variety of costs, constraint violations, and penalties;
design space exploration with different factors, dimensionality considerations, and
objective function cases; and trajectory optimisation execution with subsequent
localised exploitation.

The key generalised parameters used in the trajectory simulator allowed for the
evaluation of ascent and descent profiles with different expected dynamics, albeit at
the expense of increased dimensionality. Similarly, though defining the objective
functions and their combinations required a certain degree of creativity, it was
ultimately their influence on the optimisation that was of both concern and interest.
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The design space exploration executed was an important step in the process.
Though the number of factors investigated brought forth a complex dataset, it did
allow for an improved understanding of the capabilities and limitations of the factors
as applied to the current problem. Visualising and summarising the exploration data
with the ultimate goal of identifying preferred factors for trajectory optimisation is a
challenging task that must be done with care and caution. However, the conclusions
drawn from the observations are understood to shed light on the problem and
provide a reference for future studies. These include the implementation of node
control, objective function case, and the optimisation algorithm selected.

The execution of the trajectory optimisation follows relatively easily once an
increased confidence in the understanding of the design space is acquired. In fact,
this understanding can be used to further exploit the design space, as performed with
the localised global optimisation with the coupled phase approach. It was possible
to see the nmax − madditional front required a significant increase in additional mass
to reduce the nmax. This is understood to be a natural consequence of the decreasing
throttling required to sufficiently accelerate the vehicle to reach the TAEM while
minimising the nmax experienced throughout the trajectory (i.e. longer thrust time
with variable mass flow rate).

That being so, the decoupled phase approach was unable to generate linkable
trajectories, which is understood to have been due to the optimiser driving the
populations of the separate optimisations to regions that did not intersect. Though
the reason may be due to a lack of sufficient implicit linking qualities or the
decoupling rationale, it may also be due to the ranges of parameter bounds and
the selection of the objective function case.

Overall, the problem structure is understood to drive a given population towards
characteristics of interest if sufficient phase coupling is considered. That is to
say that though phase decoupling may be initially preferred due to a reduced
design space, the complex non-linear dynamics of the problem may still require
the evaluation of coupled phases if conditions cannot be ensured for decoupling.

Ultimately, though the coupled approach did require a significant increase in
additional mass for the chosen route and vehicle, the result does indicate the
possibility of using the approach to identify a set of parameters that could drive
the optimal design of a vehicular configuration and associated route such that an
individual could participate in hypersonic travel without health screenings.

Among the recommendations to further study are the augmentation of the
equations of motion and GNC module to consider a more realistic flight; the
evaluation of alternate optimisers; other vehicular configurations and propulsive
systems and the inclusion of no-fly zones.
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Bifocal Metrology Applications in Space
Engineering

Fulvio Bresciani, Giorgio Fasano, and János D. Pintér

1 Introduction

This chapter discusses a novel approach aimed at determining the relative attitude
and position of objects. Such metrological scenarios frequently arise in applications
that include robotics (collaborative robots, robotic arm control), military applica-
tions, and aeronautics (target configuration). One of the significant aeronautical
applications is the autonomous landing control system for aircraft. This application
is relevant, e.g., in radar-silence conditions, for the landing of ultralight aircraft, for
drones in tracks without a control tower, and for aircraft carriers. Figure 1 illustrates
the landing of an aircraft on an aircraft carrier, indicating the optical head (OH), and
the target.

This metrological aspect is becoming increasingly important also in space
engineering: consult Bresciani [1]. To accomplish the task, the technology has to
provide quick and reliable measurements of the attitude and position of a spacecraft
with respect to the other(s). Several examples of real-world space engineering
applications entailing this advanced capability are briefly reviewed next.

The vision system of the STRONG satellite of the European Space Agency
(ESA) represents a significant example. It has the scope of determining the line of
sight and the range of the relative position between two or more satellites. A second
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Fig. 1 Aircraft landing on an aircraft carrier

example of interest concerns PROBA-3, ESA’s first precision formation flying
mission. A pair of satellites fly together maintaining a fixed configuration as a “large
rigid structure” in space to investigate formation-flying technologies. Conceptually,
the PROBA-3 mission consists of two independent, three-axis stabilized mini
satellites flying in a formation with relative position control accuracy of less than
1 mm, see Fig. 2. The two mini satellites are referred to as Coronograph SpaceCraft
(CSC) with metric dimensions of 1.1 × 1.8 × 1.7 m3, and Occulter SpaceCraft
(OSC) with dimensions of 0.9 × 1.4 × 0.9 m3. The paired satellites jointly form a
150-meter-long solar coronagraph to study the Sun’s faint corona more closely to
the solar rim than has ever been achieved before.

A further noteworthy example is the Magsat program, a joint project by the
National Aeronautics and Space Administration (NASA) and the United States
Geological Survey (USGS) to measure near-earth magnetic fields on a global basis.
The spacecraft consisted of two distinct parts, see Fig. 3: the instrument module
that contains a vector and a scalar magnetometer, in addition to its unique basis
apparatus; and the base module that contains the data-handling, power, communica-
tion, command, and attitude-control subsystems to support the instrument module.
The magnetometers were deployed after launch, using a deployable scissor boom,
to a position of 6 m behind the spacecraft. At this distance, the influence of
magnetic materials from the instrument and base module was less than 1 nanotesla.
The directional accuracy of the vector magnetometer was required to be of 20
arc seconds in all three axes (coordinates). The related error allocation analysis
determined that the attitude control subsystem was required to yield an accuracy
of 7 arc seconds per axis to meet the overall system requirements. The performance
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Fig. 2 PROBA-3 CSC (left) and OSC (right). (Credits: ESA)
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Fig. 3 Magsat orbital configuration. (Credits: NASA)

goal was set to 1 arc second for pitch and yaw, and 5 arc seconds for twist (roll). The
pitch-yaw acquisition range required was ±0.5◦ as a goal, with a precision range
over ±3 arc minutes. The twist system required a precision range of ±0.08◦ over
the pitch-yaw precision range. Moreover, the dynamic range in the magnetometer
platform displacement motion was set to ±0.25◦ in any transverse direction.
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Fig. 4 HAYABUSA-2 deployment phase (left) and MASCOT separation (right). (Credits: JAXA)

Another interesting application is represented by HAYABUSA-2, an asteroid
exploration mission by the Japanese Space Exploration Agency (JAXA), aimed at
studying Asteroid 1999 JU3. The spacecraft deploys the MASCOT lander built in
Europe for an in situ study of surface composition and properties, see Fig. 4. The
landing site is selected prior to the MASCOT deployment by evaluating the global
asteroid map, but restricted to the illuminated asteroid side. During a sampling
“dress rehearsal” maneuver, the main spacecraft descends from its home position
(HP) to an altitude of approximately 100 m and deploys the lander by initializing
a proper delta-v (�v) through the separation mechanism. The lander then freefalls
to the surface, while HAYABUSA-2 ascends back to its HP located at a distance of
15 km. During the first phase, after being released, MASCOT reaches the asteroid.
Here, the metrological aspects are particularly demanding due to the requested
accuracy. Similar scenarios occur, e.g., in active debris removal, object rendezvous,
and formation-flying.

The OCSD (Optical Communications and Sensor Demonstration) program is
the first in a new series of six NASA-managed demonstration missions adopting
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Fig. 5 Two CubeSats in close proximity operations. (Credits: Aerospace Corp)

Fig. 6 Athena telescope.
(Credits: ESA Concurrent
Design Facility)

CubeSat to test technologies that enable new uses of these miniature satellites,
measuring approximately 10 × 10 × 10 cm3. The first mission is a technical
demonstration of the various systems testing the laser communication terminal. The
next two satellites will be deployed as a pair to demonstrate the ability to maneuver
small spacecraft in close proximity (approximately 200 m) to one another using low-
cost sensors and a novel water propulsion, see Fig. 5. This technology can enhance
the ability of small spacecraft to work in coordination with other satellites to explore
asteroids, planets, and moons, as well as inspecting other spacecraft.

The Athena (Advanced Telescope for High-ENergy Astrophysics) mission of
ESA, see https://sci.esa.int/web/athena, is selected in this chapter as a specific case
study for the innovative metrological approach proposed. Athena is based on an
X-ray telescope (see Fig. 6) designed to address the Cosmic Vision science theme
“The Hot and Energetic Universe.” This satellite will utilize a telescope with a 12-m
focal length and two primary instruments: the high-resolution X-ray Integral Field
Unit (X-IFU) and the Wide Field Imager (WFI) featuring a moderate resolution and
a large field of view. The high-precision measurement of the telescope line of sight
(LoS) internal misalignments is crucial. The on-board metrological instrument is
expected to be placed as close as possible to the node and focal plane center of the
telescope mirror to detect at a very high precision the errors in the LoS vector, due
to inevitable thermal distortions.

https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena


100 F. Bresciani et al.

Metrological problems of the type illustrated above are usually tackled by
adopting very complex systems that often use different technologies in parallel:
for optical metrology, consult, e.g., Tyson [13] and Yoshizawa [14]. The most
frequently used metrological solutions considered in space applications include the
Universal Lateral and Longitudinal Integrated Sensor (ULLIS), Hexa-Dimensional
Optical Metrology (HDOM), ATV Videometer, and Rendezvous Laser Vision
System (RELAVIS).

• The Universal Lateral and Longitudinal Integrated Sensor (ULLIS) is a sensor
composed of a detector, an optical system, and an electronic unit on one side, in
addition to a set of retroreflectors on the other side. This device has the capability
to measure both the lateral and longitudinal positions of one side with respect to
the other.

• The Hexa-Dimensional Optical Metrology (HDOM) is a metrological system
aimed at providing the 3D-position and 3D-attitude of one side with respect to
the reference frame of another side.

• The ATV Videometer is a metrological system based on visual techniques
utilized to support the docking of the Automated Transfer Vehicle (ATV, ESA)
to the International Space Station (ISS).

• The Rendezvous Laser Vision System (RELAVIS) is a system designed to
support autonomous space operations. RELAVIS provides accurate detection,
tracking, and estimation of spacecraft for rendezvous-docking operations, satel-
lite inspection, and servicing operations.

A promising alternative approach is based on the innovative bifocal concept,
see Bresciani and Musso [2–4]. This system is characterized by a double optical
train, which yields information about position and attitude of an object with respect
to another, for all six degrees of freedom. It covers a variable range of possible
distances, i.e., from ten meters to tens of kilometers, depending on the application
and measurement purpose. In the specific case of space engineering (the application
field considered in this chapter), the bifocal metrological systems can provide
precise information about the mutual position and attitude of two spacecraft in a
short, medium, and far range involving only one sensor and covering either fine
or coarse accuracies. In fact, the bifocal metrology is the first optical projective
system able to tackle six degrees of freedom metrological scenarios that adopts
a single sensor. A simple analytical algorithm solves the related six degrees of
freedom problem without the need for high computing power. The optical system is
very simple and compact: in addition to the light target, composed by only three
Light Emitted Diodes (LEDs), has no particular complexity in terms of volume
accommodation, technological developments, space qualifications, and on-ground
characterization. All the components of this metrological system can be selected
among the already space-qualified items.

These key aspects of the bifocal metrology with respect to the existing metrolo-
gies make the new approach suitable for a wide range of space applications:
rendezvous and docking, co-orbiting satellites, large space instruments based on
formation flying technology, extendable structures, and CubeSat networks.
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The remainder of this chapter is structured as follows. Section 2 presents the
bifocal system concept. Section 3 is dedicated to the mathematical aspects, concern-
ing the projected image generation, the inverse problem of reconstructing the target
position and attitude by the projected image measurement, the analytical solution,
and the relative error analysis. Section 4 discusses two optimization problems
regarding the bifocal system sizing and the light spot shaping, respectively. A real-
world application is illustrated in Sect. 5, and conclusions are presented in Sect. 6.

2 Bifocal System Concept

The bifocal system discussed here consists of the following components:

• A light target consisting of three LEDs placed at the vertices of an isosceles
triangle.

• A two-channel optical head (each channel with its own focal length) that focuses
the light target image on an image sensor.

The working principle of the system is shown in Fig. 7, when two spacecrafts
denoted by S1 and S2 are considered. The optical head consisting of the optical
trains OT1 and OT2 is installed on S1, and the three LEDs are positioned on S2.

The joint presence of two focal lengths allows using the device as a single
focal metrology system with different operative ranges (coarse metrology) or as
a metrology system with a better accuracy than a classical projection metrology

S2

S2 S1

Light source targets

OT1(Optical Train 1)

OT2 (Optical Train 2)

works when the S/Cs
are far

works when the S/Cs
are close

Optical Head

OT1

OT2

Optical Head

OT1

OT2

Fig. 7 Bifocal system: basic concept
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Fig. 8 CCD target image projection

system (fine metrology). When the spacecrafts are either far or close, a coarse
measurement can be performed.When both target images are projected on the image
sensor (charged coupled device, CCD) a refined measurement can be carried out: see
Fig. 8.

Considering the target light spots (three for each optical channel) on the projected
image plane, through a simple mathematical algorithm requiring little computing
power, it is possible to determine the position and attitude accurately (considering
six degrees of freedom, including the roll, pitch, and yaw angles), with respect to
the optical head.

3 Mathematical Model

In this section, the analytical computation of position and attitude of a generic target
with respect to all the six degrees of freedom using a bifocal optical system is
described: for further details, consult Bresciani and Musso [2–4].

3.1 3D-Transformation Matrix

Consider an orthogonal right-handed 3D-coordinate system with origin O and axes
x, y, and z. Angular rotations around the axes x, y, and z can be represented by the
following rotation matrices, see, e.g., Ghali [6]:

Rx (θ) =

⎡
⎢⎢⎣

1 0
0 cos θ

0 0
sin θ 0

0 − sin θ

0 0
cos θ 0
0 1

⎤
⎥⎥⎦ , (1-1)
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Ry (β) =

⎡
⎢⎢⎣

cosβ 0
0 1

− sinβ 0
0 0

sinβ 0
0 0

cosβ 0
0 1

⎤
⎥⎥⎦ , (1-2)

Rz (γ ) =

⎡
⎢⎢⎣

cos γ sin γ

− sin γ cos γ

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎦ , (1-3)

where θ , β, and γ are the rotation angles with respect to x, y, and z.
The 3D-translation matrix is defined by

Txyz (�x,�y,�z) =

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
�x �y

1 0
�z 1

⎤
⎥⎥⎦ , (2)

where �x, �y, and �z are the displacements along the axes x, y, and z, respectively.
Rotations and translations are applied to a point with coordinates (X, Y, Z) by the

following transformation:

[
X′, Y ′, Z′, 1

] = [X, Y,Z, 1]Rx (θ)Ry (β) Rz (γ ) Txyz (�x,�y,�z)

= [X, Y,Z, 1]M (θ, β, γ,�x,�y,�z)
(3)

Here (X, Y, Z) is the original point, and (X
′
, Y

′
, Z

′
) is the point after the roto-

translation shown above. The matrixM(θ ,β, γ ,�x,�y,�z) = Rx(θ ) Ry(β) Rz(γ ) T
xyz (�x,�y,�z) can be expressed as

M (θ, β, γ, �x, �y, �z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Hence, the explicit form of Eq. (3) is

[
X′, Y ′, Z′, 1

] = [X, Y,Z, 1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cosγcosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The transformation shown above is used as a basic underlying concept for
the optical application discussed in this chapter. Prior to introducing the bifocal
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P

f

D l
Pp

Fig. 9 Mono-focal projective system

approach, the mono-focal case is outlined, consisting of a simple optical projective
system. In this scenario, the relationship between the object P and its projected
image Pp is illustrated in Fig. 9.

In Fig. 9, D is the horizontal distance between the target point P and the lens
utilized, while l is the horizontal distance between the lens center and the projection
Pp. The distance between the lens focus and the projection is denoted by f. The
axes x and y of the right-handed reference frame (x, y, z) considered here lie on the
projection plane (y is the vertical axis); the axis z (oriented toward the target point
P) is parallel to D and l. The following expression holds:

Pp (XP, YP, ZP) = Pp

(
lX

D
,
lY

D
, 0

)
(6)

where (X, Y, Z) are the coordinates of the target point P.
Considering the relation (6), Eq. (5) links the image point Pp(XP, YP,ZP) and

the corresponding P′
p(X′

P, Y ′
P,Z′

P) obtained by the rotations θ , β, and γ and the
displacements �x, �y, and �z along the axes. The following equation holds:

[
X′

P, Y
′
P, 0,

l

D

]
= l

D
[X, Y, 0, 1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

sin θ sinβ cos γ − sin γ cos θ sin γ sinβ sin θ + cos γ cos θ sin θ cosβ 0

cos θ sinβ cos γ − sin γ sin θ sin γ sinβ cos θ − cos γ sin θ cos θ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

3.2 Bifocal Problem Statement

The bifocal system discussed in this chapter is depicted schematically by Fig. 10.
Here A is the target and B details the positions of the three light sources P1(X1, Y1,
Z1), P2(X2, Y2, Z2), P3(X3, Y3, Z3) selected as the target. C represents the bifocal
optical system as a whole (optical head), consisting of two equal-size lenses and
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Fig. 10 Schematic representation of a bifocal system

four mirrors. D and E are the perpendicular and parallel views, respectively, of the
image plane.

The bifocal system is, in fact, a combination of two mono-focal systems
involving lenses 1 and 2, with l1 and l2 as the corresponding internal optical lengths.
The two generated images (colored in blue and red for lenses 1 and 2) have the
magnitudesM(f1) andM(f2), depending on the focal distances f1 and f2, respectively.
The two associated sets of projected points, generated by the target three (light-
)points for lenses 1 and 2 are denoted by P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1,
Z2p1), P3p1(X3p1, Y3p1, Z3p1), and P1p2(X1p2, Y1p2, Z1p2), P2p2(X2p2, Y2p2, Z2p2),
P3p2(X3p2, Y3p2, Z3p2).

The general bifocal problem consists of determining the position and attitude of
a target (identified by three light sources) with respect to a given initial condition, by
measuring the positions of the corresponding projected six points generated by the
bifocal system. Specifically, it is assumed that the initial positions of the three target
(light-)points P1(X1, Y1, Z1), P2(X2, Y2, Z2), P3(X3, Y3, Z3) are known with respect
to the assigned reference frame (associated with the bifocal optical head), as well
as their projected images P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), P3p1(X3p1,
Y3p1, Z3p1), and P1p2(X1p2, Y1p2, Z1p2), P2p2(X2p2, Y2p2, Z2p2), P3p2(X3p2, Y3p2,
Z3p2), generated by lenses 1 and 2. After rotations θ , β, and γ of the target (around
the axes x, y, and z, respectively), and displacements �x, �y, and �z of the target
along the axes x, y, and z, the projected points P

′
1p1(X

′
1p1, Y

′
1p1, Z

′
1p1), P

′
2p1(X

′
2p1,

Y
′
2p1, Z

′
2p1), P

′
3p1(X

′
3p1, Y

′
3p1, Z

′
3p1), generated by lens 1, are correlated with the

corresponding initial projected points P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1),
P3p1(X3p1, Y3p1, Z3p1), generated by lens 1, by three equations having the general
form of Eq. (5). Similarly, three equations of the general form of Eq. (5) relate the
new projected points P

′
1p2(X

′
1p2, Y

′
1p2, Z

′
1p2), P

′
2p2(X

′
2p2, Y

′
2p2, Z

′
2p2), P

′
3p2(X

′
3p2,
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Y
′
3p2, Z

′
3p2), generated by lens 2, with the corresponding initial projected images

P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), P3p1(X3p1, Y3p1, Z3p1) generated by
lens 2.

In general, a roto-translation of the target θ , β, γ , �x, �y, and �z (with respect
to the known initial condition) can be expressed by a system of six equations of
the form of Eq. (5), each corresponding to one of the projected points P

′
1p1(X

′
1p1,

Y
′
1p1, Z

′
1p1), P

′
2p1(X

′
2p1, Y

′
2p1, Z

′
2p1), P

′
3p1(X

′
3p1, Y

′
3p1, Z

′
3p1), P

′
1p2(X

′
1p2, Y

′
1p2,

Z
′
1p2), P

′
2p2(X

′
2p2, Y

′
2p2, Z

′
2p2), and P

′
3p2(X

′
3p2, Y

′
3p2, Z

′
3p2). The bifocal problem

consists of inverting this system of equations so that the new configuration of the
target (with respect to the initial condition), expressed by θ , β, γ , �x, �y, and �z
can be derived by the direct measurements of the projected points shown above:
here we assume that P1p1(X1p1, Y1p1, Z1p1), P2p1(X2p1, Y2p1, Z2p1), and P3p1(X3p1,
Y3p1, Z3p1) are known.

3.3 Mathematical Solution

In order to solve the inverted system of equations introduced in Sect. 3.2, as per
the initial conditions, the three target light-points are specified with respect to the
optical head reference frame as follows:

P1 (X1, Y1, Z1) = (X0, 0, 0) ,

P2 (X2, Y2, Z2) = (–X0, 0, 0) ,

P3 (X3, Y3, Z3) = (0, Y0, 0) .

As shown above, P1 and P2 are placed (symmetrically) along the x-axis at a
distance X0 from the origin, while P3 is on the y-axis at a distance Y0 from the
origin. Since P1 and P2 are not affected by rotations around the x axis, Eq. (5)
can be applied to both corresponding projected points, obtained either by lens 1 or
2, by adopting the simplifying condition θ = 0. This yields the following specific
equations for the projections P′

1p1 and P′
2p1:

[
X′

1p1, Y
′
1p1, 0,

l1
D + d1

]
= l1

D + d1
[X0, 0, 0, 1]

⎡
⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

− sin γ cos γ 0 0

sinβ cos γ sin γ sinβ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎦

,

(8-1)

[
X′

2p1, Y
′
2p1, 0,

l1

D + d1

]
= l1

D + d1
[−X0, 0, 0, 1]

⎡
⎢⎢⎢⎢⎣

cos γ cosβ sin γ cosβ − sinβ 0

− sin γ cos γ 0 0

sinβ cos γ sin γ sinβ cosβ 0

�x �y �z 1

⎤
⎥⎥⎥⎥⎦

,

(8-2)
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where D + d1 is the working distance of lens 1. After algebraic manipulations that
are omitted, the following equations are obtained:

�X′
12p1 = 2l1

D + d1
X0 cos γ cosβ, (9-1)

�Y ′
12p1 = 2l1

D + d1
X0 sin γ cosβ, (9-2)

where �X′
12p1 ≡ X′

1p1 − X′
2p1 and �Y ′

12p1 ≡ Y ′
1p1 − Y ′

2p1. Further technical
details concerning the mathematical formulation outlined here are presented by
Bresciani and Musso [2–4].

Operating exactly the same way as lens 1, for lens 2 analogous equations are
obtained:

�X′
12p2 = 2l2

D + d2
X0 cos γ cosβ, (10-1)

�Y ′
12p2 = 2l2

D + d2
X0 sin γ cosβ, (10-2)

where �X′
12p2 = X′

1p2 − X′
2p2 and �Y ′

12p2 = Y ′
1p2 − Y ′

2p2.
Combining (9-1), (9-2), (10-1), and (10-2) yields the following relations:

γ = a tan

(
�Y ′

12p1

�X′
12p1

)
, (11)

D = l1d2�X′
12p2 − l2d1�X′

12p1

l1�X′
12p1 − l2�X′

12p2
, (12)

β = a cos

⎛
⎝ �X′

12p1 (D + d1)

2l1X0 cos
(
a tan

(
�Y ′12p1
�X′12p1

))
⎞
⎠ . (13)

Additionally, by (8-1), (8-2), (11), (12), and (13), the displacements �x and �y
can be expressed, respectively, as follows:

�x = X′
1p1

D + d1

l1
− X0 cos γ cosβ (14)

�y = Y ′
1p1

D + d1

l1
− Y0 cos γ cosβ (15)
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Applying Eq. (5) to the projected point P
′
3p1 (generated by lens 1), the following

equations hold:

X′
3p1 = l1Y0

D + d1

(
sinϑ sinβ cos γ − sin γ cosϑ + �x

Y0

)
, (16-1)

Y ′
3p1 = l1Y0

D + d1

(
sinϑ sinβ sin γ + cos γ cosϑ + �y

Y0

)
. (16-2)

Finally, ϑ can be derived by (16-1) and (16-2), giving rise to the following
expressions:

ϑ = a sin

(
B

sinβ

)
, (17)

B =
(
X′
3p1Y0 − �xQ

)
cos γ +

(
Y ′
3p1Y0 − �yQ

)
sin γ

QY0
,

Q = l1Y0

D + d1
.

To summarize the above discussion, the solutions obtained in this section for the
inverted system introduced in Sect. 3.2 are represented by relations (11), (12), (13),
(14), (15), and (17). The following obvious conditions are postulated:

γ ∈
]
−π

2
,
π

2

[
�X12p1 �= 0, (18)

l1�X′
12P1 − l2�X′

12p2 �= 0

(
X′
1p1

l2
�= X′

1p2

l1

)
, (19)

β ∈ ]0, π [ , (20)

ϑ ∈
[
−π

2
,
π

2

]
. (21)

It is understood that X0 > 0, Y0 > 0, l2 > l1 �= 0 , d2 > d2 �= 0. It should be
also noted that, due to the construction of the bifocal system, the following relations
hold:
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�X′
12p1 �= 0,

l1d2�X′
12p2 − l2d1�X′

12p1

l1�X′
12P1 − l2�X′

12p2
> 0, and l1�X′

12P1 − l2�X′
12p2 �= 0.

During the algebraic manipulation carried out to obtain expression (13), it has

been implicitly assumed that .−1 ≤ �X′
12p1(D+d1)

2l1X0 cos γ
≤ 1. Therefore, expression (13) is

well defined for all given values of �X′
12p1 and �Y ′

12p1 (recall also that, by (18),
.γ �= ±π

2 ). Analogous considerations hold for (17) by (20). Note additionally that
the existence conditions for γ can be extended considering the whole angle [0, 2π ]
provided that it is possible to identify, each time, the specific sub-intervals involved

(e.g., .γ ∈ ]−π
2 , π

2

[
or .γ ∈

]
π
2 , 3π

2

[
). In any case, the conditions .γ �= ±π

2 and

.γ �= 3π
2 must be satisfied. Analogous considerations hold for β, while no extension

for ϑ would be of use.

3.4 Error Analysis

This section studies the impact of measurement errors, relative to the image-points,
on the computation of the position and attitude of the target (by the inverse equation
system corresponding to (11), (12), (13), (14), (15), and (17)). More precisely,
taking a worst-case perspective, the maximum error for the terms ϑ, β, γ , D, �x,
and �y is estimated, assuming that the absolute value of the measurement error
associated with the variables X′

1p1, Y ′
1p1, X′

2p1, Y ′
2p1, Y ′

3p1, .X′
1p2, and .X′

2p2 is
less than a given E. The distance D is deemed to represent the most critical aspect,
especially when large distances are involved. The maximum error |εD|max with
respect to the distance D is briefly discussed next.

Considering Eq. (12), the error �εD� with respect to the actual distance D is
expressed as follows:

| εD |=
∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣ , (22)

where ε′
12p1 and .ε′

12p2 represent the measurement errors corresponding to �X′
12p1

and .�X′
12p2, respectively. Depending on the specific technology adopted, with the

estimated maximum error E, the following bounds are considered:

∣∣∣ε′
12p1

∣∣∣ ≤ E, (23-1)

∣∣∣ε′
12p2

∣∣∣ ≤ E. (23-2)
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Since .
l1d2�X′

12p2−l2d1�X′
12p1

l1�X′
12p1−l2�X′

12p2
= D (D ≥ 0), and l1�X′

12p1 − l2�X′
12p2 < 0

(l2 > l1 and �X′
12p2 > �X′

12p1 due to the way the optical system is constructed),
the following relation holds:

|εD|max = maxϑ,β,γ,�x,�y, ε′
12p1,ε

′
12p2

∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣ ,

(24)

where ϑ, β, γ , �x, �y vary within given intervals (delimiting the roto-translations

to consider). To find a first approximation .

∣∣∣ ∼
εD

∣∣∣
max

for (24) (by involving a reduced

number of variables), the following terms are introduced:

η−
D = maxϑ,β,γ,�x,�y,�z

{
D − l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2E + l2d1E

l1�X′
12p1 − l2�X′

12p2 − l1E − l2E

}
,

(25-1)

η+
D = maxϑ,β,γ,�x,�y,�z

{
l1d2�X′

12p2 − l2d1�X′
12p1 − l1d2E − l2d1E

l1�X′
12p1 − l2�X′

12p2 + l1E + l2E
− D

}
.

(25-2)

Here we assume .
l1d2�X′

12p2−l2d1�X′
12p1+l1d2E+l2d1E

l1�X′
12p1−l2�X′

12p2−l1E−l2E
> 0, and

.
l1d2�X′

12p2−l2d1�X′
12p1−l1d2E−l2d1E

l1�X′
12p1−l2�X′

12p2+l1E+l2E
> 0. The approximate term .

∣∣∣ ∼
εD

∣∣∣
max

( .

∣∣∣ ∼
εD

∣∣∣
max

>

|εD|max) is thus expressed as

∣∣∣ ∼
εD

∣∣∣
max

= max
{
η−
D , η+

D

}
. (26)

Let us remark that more than one single critical roto-translation in (24) or (26)
could occur that gives rise to the maximum error: for example, due to symmetrical
conditions. The issue of identifying the whole set of critical roto-translations is not
trivial, and it is not considered in this chapter: it could be the subject of further
research.

4 Optimization Aspects

Mathematical optimization models have been introduced in Sect. 3.4 concerning
the error analysis of the studied optical system. There, a worst-case approach is
adopted to estimate the maximum possible error with respect to the distance D (due
to measurement errors relative to the projection differences �X′

12p1 and �X′
12p1
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associated with lenses 1 and 2, respectively). In this section, two optimization
problems are discussed with the scope of maximizing the overall performances
of the bifocal system illustrated in this chapter. The first optimization problem,
discussed in Sect. 4.1, is aimed at finding the size of the optical head so that the
error with respect to distance D becomes as small as possible.

The second optimization problem concerns the specific features of the light spots
utilized as the target image for the bifocal system. In fact, the light spots are not
idealized geometrical points (as assumed in the mathematical formulation of Sect.
3), but they have an actual size. Therefore, each light spot is identified as a surface by
the image sensor (CCD). In general, the light energy intensity on this surface does
not have a uniform distribution. The concept of light spot centroid is introduced to
represent the distribution of the light energy intensity on the light spot surface. This
concept is the equivalent to the center of mass for a mass distribution in a geometric
domain. Each light spot centroid is identified with one of the three single light points
utilized by the bifocal system, to determine the roto-translation of the whole target
as discussed in Sect. 3. In general, a roto-translation of the target yields a variation
in the light energy intensity distribution on the surface of each light spot. The
position of each light spot centroid typically varies as well with respect to the CCD.
This centroid displacement is thus due to not only the actual roto-translation of the
whole target, but also to the change in the light energy intensity distribution on the
light spot surface. Therefore, the centroid displacement on each light spot surface,
obtained after a roto-translation of the target, also depends on the light energy
intensity distribution of the spot before the roto-translation. If the roto-translations
of the target are limited with respect to the initial (nominal) condition, then the
light energy intensity distribution of each light spot in the nominal condition can
be properly shaped a priori, to minimize the centroid displacement. Consequently,
under these proximity conditions, the precision of the bifocal metrological approach
is maximized. This optimization aspect is discussed in Sect. 4.2.

4.1 System Sizing Optimization

The maximum error |εD|max related to the distance D, as expressed by (24) depends
implicitly also on the following parameters that characterize the bifocal system:
d1, d2 (corresponding to D + d1, D + d2 working distances of lenses 1 and 2,
respectively), l1, l2 (internal optical lengths of lenses 1 and 2, respectively), and
f1, f2 (focal distances of lens 1 and 2, respectively). These parameters can vary
within their ranges: .d1 ∈ [

D1,D1
]
, .d2 ∈ [

D2,D2
]
, .l1 ∈ [

L1, L1
]
, .l2 ∈ [

L2, L2
]
,

.f1 ∈ [
F1, F1

]
, .f2 ∈ [

F2, F2
]
, where .D1, .D2, L1, .L2, .F1, .F2 and .D1, .D2, L1, .L2,

.F1, .F2 are the lower and upper technological bounds. Next, the following minimax
optimization problem is considered:



112 F. Bresciani et al.

|εD|min = mind1 ,d2 ,l1 ,l2 ,f1 ,f1

{
maxϑ,β,γ,�x,�y,ε′

12p1 ,ε
′
12p2

∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣

}
.

(27)

Here, .|εD|min is the minimum error related to the distance D, with respect
to the parameters d1, d2, l1, l2, f1, and f2, in the worst case as expressed by
(24). Considering the difficulty of this optimization problem, especially if a
global optimization point of view is adopted (see, e.g., [5, 8, 11]), the variables
.ϑ, β, γ,�x,�y, ε′

12p1, ε
′
12p2, and .ε′

12p2 can be fixed in (27) at the values obtained by
solving optimization problem (24). This implies that problem (27) can be simplified
as follows:

|εD|min = mind1,d2,l1,l2,f1,f1

{∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣

}
, (28)

where only d1, d2, l1, l2, f1, f1 are considered as variables, while .�X′
12p2,�X′

12p1,

ε′
12p2, ε′12p1 take instead the values corresponding to the worst-case solution pro-
vided by (24). In this framework it is implicitly assumed that exclusively the critical
roto-translation corresponding to the solution obtained for (24) is considered. If the
number of critical roto-translations providing the same error |εD|max as the solution
of (24) is available, then it is possible to properly extend optimization problem (28)
in order to consider all of these. For this purpose, the error

(|εD|)α =
∣∣∣∣∣
l1d2�X′

12p2 − l2d1�X′
12p1 + l1d2ε

′
12p2 − l2d1ε

′
12p1

l1�X′
12p1 − l2�X′

12p2 + l1ε
′
12p1 − l2ε

′
12p2

− D

∣∣∣∣∣
α

can be associated with each critical roto-translation solution α (fixing the corre-
sponding values .ϑ, β, γ,�x,�y, ε′

12p1, ε
′
12p2 obtained from (24)). The extended

optimization problem can be then expressed as .mind1,d2,l1,l2,f1,f1

∑
α (|εD|)α .

4.2 Light Spot Optimization

In this section, first we recall the concept of light spot centroid: then the spot
optimization model is formulated. As we pointed out, the concept of centroid in
optical metrology is analogous to that of the center of mass relative to a continuous
mass distribution within a given domain. As is known, this is formulated as follows:

uc =
∫
S uβρ(u)du∫
S ρ(u)du

. (29)

Here, uc is the center of mass, in the three-dimensional case uβ with β = 1,
2, 3 are the coordinates in the given reference frame, S is the continuous domain,
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and ρ(u) is the associated density function. In the optical context, an analogous
expression holds, when the mass density is replaced by the light energy intensity
I(u). Regarding the discretized image created on the CCD, the following two-
dimensional light intensity centroid is introduced:

Xc =
∑

i,j Xij I
(
Xij , Yij

)

IT
, Yc =

∑
i,j Yij I

(
Xij , Yij

)

IT
. (30)

Here, (Xij,Yij) ∈ N0 × N0 (denoting non-negative integer coordinates) are the
points (pixels) representing the CCD (discretized) domain with respect to a given
orthogonal reference frame (O, X, Y) associated with the CCD. The integer-valued
function I(Xij,Yij) ∈ N is the light energy intensity. Without loss of generality, it is
assumed that (X00, Y00) = (0, 0), and that Xij, Yij ≥ 0 holds for all pairs i, j. Any roto-
translation of a target (consisting of light spots) generates, in general, a displacement
in the corresponding light spot centroids. Therefore, considering a general light
spot, the relative centroid displacement with respect to the CCD reference frame
coordinates is expressed as follows:

�Xc =
∣∣∣∣∣

∑
ij Xij Iij − ∑

ij Xij I
′
ij

IT

∣∣∣∣∣ , �Yc =
∣∣∣∣∣

∑
ij Yij Iij − ∑

ij Yij I
′
ij

IT

∣∣∣∣∣ .
(31)

Here, Iij and .I ′
ij represent (with a simplified notation) the intensities I(Xij,Yij)

and I ′ (Xij,Yij) before and after the centroid displacement, respectively. Moreover,
IT ≡ ∑

Iij with the intensity conservation condition shown below:

∑
ij

Iij =
∑
ij

I ′
ij . (32)

Therefore, the overall Euclidean centroid displacement is

�c = 1

IT

√
�Xc

2 + �Yc
2. (33)

In the following, it is assumed that the light spots corresponding to the initial
target position and attitude with respect to the bifocal system can be generated
so that their intensity distributions are identical to each other. Therefore, the opti-
mization problem discussed here focuses on a single light spot. Its initial intensity
distribution w(Xij,Yij) ∈ N, expressed in bit units and referred to in the following
as the nominal state, is considered together with a changed state w

′
(Xij,Yij) ∈ N

(also expressed in bit units). In the following, these notations are simplified as
wij and w′

ij. The changed state w′
ij corresponds to an overall intensity distribution

variation, considered as representative of the perturbations of the nominal light spot
in a limited neighborhood of the initial conditions.
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The objective of the optimization approach proposed is to determine an inten-
sity distribution wij for the nominal light spot to minimize the overall centroid
displacement, as expressed by (33) corresponding to the perturbed intensity state
w′

ij. Moreover, we want to determine the intensity distribution wij so that it is highly
“regular,” symmetrical with respect to the centroid and strongly concentrated around

it (while vanishing as more external areas are reached). The function .w′
ij = fij

(
wij ,

ϑ, β, γ , �x, �y, �z) that, for each (Xij,Yij), associates the perturbed intensity w′
ij

with the nominal intensity wij and the general roto-translation ϑ, β, γ , �x, �y, �z
(recall Sect. 3) is very difficult to express mathematically.

Observe that considering all possible perturbations (ϑ, β, γ , �x, �y, �z) in a
limited neighborhood of the nominal condition (corresponding to ϑ = 0, β = 0,
γ = 0, �x = 0, �y = 0, �z = 0) would lead to a challenging minimax problem.
These aspects are therefore omitted in the model discussed here, providing instead
a simplified approximate formulation of the problem. This model is expressed
in terms of mixed integer linear programming (MILP), consult, e.g., Hillier [7],
Minoux [9], and Nemhauser [10]. The convention of using capital letters for
constants and lower-case letters for variables is adopted henceforth.

A discretized domain (sub-domain of the CCD containing the light spot) is
described by the integer coordinates (Xij,Yij) assuming that i ∈ [0,N], j ∈ [0,N],
and N is an even integer. The perturbed intensity distribution .w′

ij is supposed to be

determined by imposing that .∀i, j

∣∣∣wij − w′
ij

∣∣∣ ≤ �W and .
∑

ij

∣∣∣wij − w′
ij

∣∣∣ = PT,

with .�W and PT as appropriately chosen positive constants, in addition to the total
intensity conservation Eq. (32) applied to wij and .w′

ij,, i.e., .
∑

ij w = .
∑

ij w′ij . All
this is, as a matter of fact, just a simplifying trick to avoid the non-trivial challenge

of expressing the actual function .w′
ij = fij

(
wij , ϑ, β, γ , �x, �y, �z) explicitly,

as well as of dealing with a far more challenging minimax problem. The resulting
formulation is therefore a surrogate model, defined in order to provide approximate
practical solutions, while removing excessive complexity.

Following this approach, in addition to the intensity conservation condition (32),
we assume that it is possible to choose .�Wand PT so that the conditions listed
above can realistically condition the intensity distributions .w′

ij as approximately
representative of all considered perturbations. In this perspective, these conditions,
acting on the intensity variations both at a pixel and at an overall level, can be

interpreted as a relaxation of the constraint .w′
ij = fij

(
wij , ϑ, β, γ , �x, �y, �z) and

a significant simplification of the original minimax problem. The values for .�Wand
PT have to be estimated a priori, and this necessarily entails some arbitrariness.
For instance, these parameters could be chosen bearing in mind the most critical or
the most frequent cases. In general, different estimations lead to diverse solutions
for the intensity distribution wij of the nominal light spot. The alternative solutions
obtained can be compared to each other, to select (by means of dedicated numerical
simulations) the most suitable scenario from a practical point of view.
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Considering all aspects stated above, the simplified model is formulated next,
explaining step by step the meaning of the expressions involved. First, the binary
variables σ ij ∈ {0, 1}, .δ−

ij ∈ {0, 1}, and .δ+
ij ∈ {0, 1} are defined as follows:

σij = 1 if pixel (i, j) is active
(
i.e., wij > 0

)
σij = 0 otherwise,

δ−
ij = 1 if wij > w′

ij ,

δ−
ij = 0 otherwise,

δ+
ij = 1 if wij < w′

ij ,

δ−
ij = 0 otherwise.

Here .wij , w
′
ij ∈ N0.

The variables .d−
ij ∈ N0 and .d+

ij ∈ N0are defined next as follows:

d−
ij = wij − w′

ij if wij > w′
ij ,

d−
ij = 0 otherwise,

d+
ij = w′

ij − wij if wij < w′
ij ,

d+
ij = 0 otherwise.

The variables σ ij, .δ
−
ij , .δ

+
ij , .d

−
ij , and .d+

ij are interrelated as shown below:

∀i, j δ−
ij + δ+

ij ≤ σij , (34)

∀i, j d−
ij ≥ �Wδ−

ij , (35-1)

∀i, j d+
ij ≥ �Wδ+

ij , (35-2)

∀i, j d−
ij ≤ �Wδ−

ij , (36-1)

∀i, j d+
ij ≤ �Wδ+

ij . (36-2)
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Here the positive integers .�Wand .�W represent the minimum and maximum
admissible intensity change, expressed in bit units, for each active pixel (i, j). The
lower bounds (35-1) and (35-2) are introduced to easily realize detectable changes
in the intensity distribution .w′

ij . The following lower and upper bounds hold for
both the nominal and perturbed states wij and .w′

ij , respectively, in each active pixel:

∀i, j wij − d−
ij ≥ Wσij , (37-1)

∀i, j wij + d+
ij ≤ Wσij . (37-2)

Here the positive integers .Wand .W represent the minimum and maximum
admissible intensity associated with each pixel (i, j). From (37-1) and (37-2) it can
also be observed that all active pixels in the nominal condition coincide with the
active pixels of the perturbed state: this way, the overall shape of the light spot
remains unaltered.

The next condition represents the overall intensity perturbation imposed,
expressed again in bit units:

∑
ij

(
d−
ij + d+

ij

)
= PT (38)

Here PT is a positive integer.
The overall intensity (WT) conservation condition, involving both the nominal

and the perturbed states wij and w′
ij, is formulated as:

WT =
∑
ij

wij =
∑
ij

w′
ij . (39)

As a reasonable general condition, the intensity distribution wij is expected to
approximate a bell-shaped continuous function with compact support. (For a similar
shape, one can think of an appropriately truncated normal distribution.) The condi-
tions introduced next pursue this overall shape by regularity and symmetry criteria.
Specifically, the conditions given below determine a monotonically increasing or

decreasing trend, with respect to the central pixel .

(
î, ĵ

)
for the nominal intensity

distribution wij:

∀i, j | i < î − 1 wij + DWσij ≤ wi+1,j , (40-1)

∀j w
î−1,j ≤ w

îj
, (40-2)

∀j w
î+1,j ≤ w

îj
, (40-3)
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∀i, j | i > î + 1 wij − DWσij ≥ wi+1,j , (40-4)

∀i, j | j < ĵ − 1 wij + DWσij ≤ wi,j−1, (40-5)

∀i w
i,ĵ−1 ≤ w

iĵ
, (40-6)

∀i w
i,ĵ+1 ≤ w

iĵ ′ (40-7)

∀i, j | j > ĵ + 1 wij − DWσij ≥ wi,j+1. (40-8)

Here, .î, ĵ = N
2 , and the positive integer .DW is the minimum intensity

increment/decrement (expressed in bit units) corresponding to two adjacent indices
i, i + 1 or j, j + 1, except for the indices immediately adjacent to .î and .ĵ . The
following “Lipschitzian” conditions are further imposed to the nominal intensity
distribution wij to prevent sudden increments/decrements in adjacent indices:

∀i, j | i < î wi+1,j − wij ≤ DW, (41-1)

∀i, j | i > î wij − wi+1,j ≤ DW, (41-2)

∀i, j | j < ĵ wi,j+1 − wij ≤ DW, (41-3)

∀i, j | j > ĵ wij − wi,j+1 ≤ DW, (41-4)

where .DW is an appropriate bound, compliant with the given technological
restrictions.

Several “weak” symmetry conditions are introduced additionally, to induce a
desired overall trend of the nominal intensity distribution wi, j. Their formulation
is shown below:

∀j w0j = wNj , (42-1)

∀j w
î−1,j = w

î+1,j , (42-2)
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∀j
∑

i<î

wij =
∑

i>î

wij , (42-3)

∀i wi0 = wiN, (42-4)

∀i w
i,ĵ−1 = wi,j+1, (42-5)

∀i
∑

j<Ĵ

wij =
∑

j>ĵ

wij . (42-6)

To consider realistic scenarios, it can be further imposed that all the pixels
corresponding to non-decreasing intensity with respect to the nominal distribution
(i.e., w′

ij ≥ wij) delimit convex areas of the domain (Xij,Yij). For example, additional

conditions such as ∀i, j .
∑

i>i,j d−
ij ≤ N2

(
1 − δ+

ij

)
can be introduced. These

conditions express the property that from a certain index i (not determined a priori)
all subsequent pixels with index .i > i have a non-decreasing intensity and vice
versa. (However, these aspects are not discussed in this chapter.)

Since in any real context the intensity is expected to be maximal in a central
area of the spot, this criterion is selected as the optimization objective. The overall
centroid displacement is instead bounded by the following inequalities:

∑
ij Xijwij − ∑

ij Xijw
′
ij

WT
≤ �C, (43-1)

∑
ij Yijwij − ∑

ij Yijw
′
ij

WT
≤ �C, (43-2)

Here .�C is an appropriate estimation of the maximum acceptable displacement
for the centroid. Finally, the following optimization criterion is introduced:

max
∑

(i,j)∈AC

wij . (44)

where AC represents a proper central area.
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It can be observed that the model solutions are necessarily related to the choice
of the parameters .�Wand PT, assumed to represent the specific case under study.
As anticipated, a number of different choices can be compared to select the most
suitable option from a practical point of view. This approach could however be
significantly improved by adopting a multi-scenario optimization point of view.
In this perspective, instead of .�Wand PT a set of parameters .�Wαand PTα

(α = 1, . . . , NS) are considered. A perturbed intensity .w′
ijα is associated with

the corresponding parameters .�Wαand PTα , and the whole model is extended
by properly replicating and readjusting the conditions and the objective function
involved. However, this aspect – as a possible topic of future research – is not
investigated here.

5 An Illustrative Case Study

As mentioned in Sect. 1, the bifocal system has recently been considered for
possible utilization for the Athena satellite. The case study is only briefly outlined
here, omitting (for confidentiality reasons) most of the technical details.

The two instruments, high-resolution X-ray Integral Field Unit (X-IFU) andWide
Field Imager (WFI) mentioned in Sect. 1, are accommodated within the Focal Plane
Module (FPM). The Mirror Assembly Module (MAM) is placed at an assigned
distance (12 m) from the FPM. Since the telescope line of sight is determined
by the telescope mirror position and attitude, the on-board metrology is aimed at
supporting the active control of the MAM focal point position with respect to the
FPM instruments. The proposed design for the bifocal metrology on board Athena
considers:

• The bifocal optical head mounted on the MAM and aligned with it
• One light target on each instrument

The overall light target is essentially composed by three LEDs defining an
isosceles triangle. With reference to this specific case study, three main aspects have
been investigated in depth (by applying the concepts discussed in Sects. 3.4, 4.1 and
4.2):

• Error analysis for the measured distance between the MAM focal point position
and the FPM instruments

• Optimal system sizing
• Light spot optimization
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Fig. 11 Case study: nominal
intensity distribution
example 1

Fig. 12 Case study: nominal
intensity distribution
example 2

The optimization models considered for both error analysis and system sizing
have been solved by the global-local nonlinear optimization software package LGO
[12]. Again, technical details are not reported here for confidentiality reasons. As
a main result, a trade-off concerning the optimal focal distances f1 and f2 has been
made. On the one hand, these terms should be close to each other (f1 ~ f2) and
as large as possible, compatibly with the maximum admissible dimension of the
optical head. On the other hand, a small difference between f1 and f2 can give rise
to possible partial overlapping between the light spot projections on the CCD.

The MILP model adopted for the light spot optimization has been solved by
the IBM ILOG CPLEX solver (version 12.3). Several possible solutions have been
considered. Figures 11 and 12 illustrate two examples of optimal nominal light spots
obtained for the case study (the physical units have been omitted for confidentiality
reasons).
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6 Concluding Remarks

The work presented here discusses an innovative metrological approach, based
on a recently patented bifocal optical system [2–4]. This system is aimed at
measuring the position and attitude of a target item, identified by means of three
light spots, almost instantaneously and with high precision. The approach proposed
is simple and efficient: here it is discussed in relation to advanced space engineering
applications, but not limited to these.

In this chapter, the concept of the bifocal optical system is discussed in depth,
investigating some mathematical aspects relevant the overall methodology adopted,
including error analysis, system sizing optimization, and light spot optimization.
Finally, a real-word case study is highlighted.

Future research can be aimed at advancements in relation to both the error anal-
ysis and system sizing optimization problems discussed here. In this perspective,
enhancements of the global optimization approach followed aimed at improving the
global search can be expected. Concerning the light spot optimization problem, to
extend solution adaptability and reliability, the corresponding MILP model could be
considered in a multi-scenario optimization approach.
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A Revisited Analysis of the Radioisotope
Sail and Its Possible Application
to Relativistic Spaceflight

Luca Derosa

1 Introduction

The radioisotope sail as a propulsion system has already been preliminarily
described in previous works, as in [1–3], but in the author’s opinion it is possible to
enrich what has already been done.

The study was conducted within the framework of the Special Theory of
Relativity as the performance level achievable by the propulsion system is not
known a priori, not only in this first study but also in subsequent ones which will
tend to make it obtain even better results and therefore potentially suitable for the
relativistic context.

Specifically, in this study:

• We have defined the mathematical models of different possible spaceflight
profiles under relativistic conditions, also considering specific profiles never
previously studied

• We have defined the mathematical models of the radioisotope sail, obtaining
every formula for the case of single decay, double decay, and decay chain related
to alpha decay, and therefore showing a novel treatment not present in literature

• We analyzed the possible compatibility between the behavior of the radioisotope
sail and the flight profiles studied, showing novel considerations

• We calculated the hypothetical performance of this propulsion system for a
mission to Pluto
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The study was conducted in the context of the Special Relativity, in order to
provide a useful mathematical tool in the event that humanity in the future will be
able to fly at relativistic speeds.

2 Fundamentals of Relativistic Spaceflight

In this section we report the main expressions of spaceflight in relativistic condi-
tions, in the framework of the Special Theory of Relativity.

2.1 Rocket Equation

We can derive the rocket equation, the most significant equation of the space
engineering, in two different forms: the classical version still used today as a
reference base in all space missions and the relativistic version useful for future
missions at speeds that are not negligible compared to that of light.

2.1.1 Classical Rocket Equation or Tsiolkovsky Equation

We consider at time t a spacecraft with velocity V and mass m.
Then we consider at time t + dt that the same spacecraft ejects a mass mp

at the velocity we (i.e., the exhaust velocity), relative to the spacecraft itself, and
consequently the latter assumes a velocity equal to V + dV and a mass equal to
m − dmp.

We can write the momentum of the whole system (spacecraft) at time t:

q0 = m· V (1)

and at the time t + dt (spacecraft + ejected mass):

q1 = (m − dmp
) · (V + dV ) + dmp· (V − we) (2)

Considering the conservation of momentum, we have that q0 = q1, and after a
few simple steps we can derive the thrust T:

m· dV

dt
= dmp

dt
· we → ṁp· we = T (3)

From that formula we can integrate in t, between an initial instant and a final
instant, and obtain a possible formulation of Tsiolkovsky equation:
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�V = we· ln
mi

mf
(4)

If we consider the specific impulse, defined as:

Isp = T

ṁp· g0
= we

g0
(5)

we can yield the Tsiolkovsky equation in a different formulation:

�V = g0· Isp· ln
mi

mf
(6)

We can also rewrite the equation in other different ways:

mf = mi · e− �V
we = mi · e− �V

g0 ·Isp (7)

2.1.2 Relativistic Rocket Equation or Ackeret Equation

In this section we can study the behavior of a spacecraft flying at relativistic speed,
in order to derive the corresponding rocket equation by following one of the many
possible ways.

With respect to a coordinate reference system (a reference system at rest,
compared to the spacecraft) we can write:

d (m· V ) − we· dmp = 0 (8)

and for the law of conservation of mass-energy:

dm + dmp = 0 → dm = −dmp (9)

From (8) and (9) one then finds:

d (m· V ) + we· dm = 0 → (V + we) · dm + m· dV = 0 (10)

Remembering the link in Relativity between the rest mass m
′

(or proper mass)
and the relativistic mass m (or coordinate mass), using c to represent the speed of
light in vacuum:

m = m′
√

1 − V 2

c2

(11)
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and the law of relativistic velocity addition applied to the exhaust velocity (we in the
coordinate reference system and we

′ in the proper reference system, i.e., a reference
system that moves together with the spacecraft):

we
′ = V + we

1 + V ·we
c2

(12)

we can insert them in Eq. (10), considering we
′

a constant value (fundamental
requirement for the relativistic rocket), and after a few simple steps we can obtain a
formulation of Ackeret equation:

�V = c·
1 −

(
mf

′
mi

′
) 2·we ′

c

1 +
(

mf
′

mi
′
) 2·we ′

c

(13)

It is possible to see the explicit derivation of the Ackeret equation in many texts,
following as many different approaches, including for example the Robert Forward’s
well-known AIAA publication “A Transparent Derivation of the Relativistic Rocket
Equation [1].”

We can rewrite the last equation introducing the specific impulse:

�V = c·
1 −

(
mf

′
mi

′
) 2·g0·Isp ′

c

1 +
(

mf
′

mi
′
) 2·g0 ·Isp ′

c

(14)

Another way to write the Ackeret equation is with hyperbolic functions:

�V = c· tanh

(
we

′

c
· ln

mi
′

mf
′

)
or �V = c· tanh

(
g0· Isp

′

c
· ln

mi
′

mf
′

)
(15)

2.2 Relativistic Spaceflight Profiles

In this section we present the analysis results of the most important flight profiles in
relativistic conditions. In all cases we assume we

′ as a constant.

2.2.1 Uniform Linear Motion

In relativity like in classical physics the simplest type of motion is the uniform linear
one.
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We assume the coordinate velocity V as a constant, then we can calculate the
relation between the proper time τ and the coordinate time t:

dt = dτ
√

1 − V 2

c2

→ t (τ ) = τ
√

1 − V 2

c2

(16)

and the inverse relation is:

τ(t) =
√

1 − V 2

c2
t (17)

The value of coordinate space is:

V = dx

dt
→ x(t) = V t (18)

or as a function of τ is:

x (τ) = V
τ

√
1 − V 2

c2

(19)

The inverse relation of the last two are, respectively:

t (x) = x

V
(20)

τ(x) = x

V

√

1 − V 2

c2 (21)

2.2.2 Hyperbolic Motion

For a generic motion, from the scalar form of the relativistic second law of motion
we have:

T = d (m V )

dt
(22)

and if we explicitly derive it we obtain:

T = dm

dt
V + m a (23)

where T is the thrust applied to the spacecraft, a is the coordinate acceleration
expressed by dV/dt, and m is the coordinate mass.
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We can replace the expression of proper mass in Eq. (23) and solve it with respect
to the coordinate acceleration to have:

a(t) = dV

dt
= T (t)

m′(t)

(

1 − V (t)2

c2

)3/2

(24)

If we integrate and solve it with respect to V we obtain:

V (t) = T (t) t

m′(t)
1

√

1 +
(

T (t) t
m′(t) c

)2
(25)

To derive the specific characteristics of the hyperbolic motion, we assume that
the proper acceleration is constant and equal to a

′ = T/m
′
. So we can rewrite the last

two equations as follows:

a(t) = a′
(

1 − V (t)2

c2

)3/2

(26)

V (t) = a′ t
√

1 +
(

a′ t
c

)2
(27)

We can invert the last relation to yield:

t (V ) = V

a′·
√

1 − V 2

c2

(28)

and rewrite the coordinate acceleration as follows:

a(t) = a′
[

1 +
(

a′ t
c

)2
]3/2 (29)

We can introduce the well-known relation:

T (τ) = we
′· ṁ′ (τ) (30)

where .ṁ′ is the mass flow rate with respect to the proper reference frame, and we
obtain:
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dV

dτ

dτ

dt
= we

′· ṁ′

m′

(
1 − V 2

c2

)3/2

→ dV

dτ

√

1 − V 2

c2 = we
′· ṁ′

m′

(
1 − V 2

c2

)3/2

(31)

that after integration gives the aforementioned Ackeret equation (here we define a
generic expression, function of the proper time):

V (τ) = c·
1 −

(
m′(τ )
m′(0)

) 2·we ′
c

1 +
(

m′(τ )
m′(0)

) 2·we ′
c

or V (τ) = c· tanh

[
we

′

c
· ln

(
m′(0)

m′ (τ )

)]
(32)

Following a few simple steps, we can rewrite the Ackeret equation as an explicit
function of the proper acceleration:

V (τ) = c· 1 − e
2·a′ ·τ

c

1 + e
2·a′ ·τ

c

or V (τ) = c· tanh

(
a′ τ

c

)
(33)

that can be inverted to yield:

τ(V ) = c

a′ · artanh

(
V

c

)
(34)

We can also get proper mass as an explicit function of proper time:

m′ (τ ) = m′(0)· e− a′ τ
we ′ (35)

And, consequently, the mass flow rate:

ṁ′ (τ ) = −dm′ (τ )

dτ
= m′(0) a′

we
′ · e− a′ τ

we ′ → ṁ′ (τ ) = ṁ′(0)· e− a′ τ
we ′ (36)

being .ṁ′(0) = (m′(0)· a) /we
′ and consequently .a′ = (we

′· ṁ′(0)
)
/m′(0).

Since V(t) = dx(t)/dt we can obtain the following expressions:

x(t) = c2

a′

⎡

⎣

√

1 +
(

a′ t

c

)2

− 1

⎤

⎦ (37)

t (x) = c

a′

√(
1 + a′ x

c2

)2

− 1 (38)
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We can also obtain the relation between proper time and coordinate time:

τ(t) = c

a′ arsinh

(
a′ t

c

)
or τ(t) = c

a′ ln

⎡

⎣

√

1 +
(

a′ t

c

)2

+ a′ t

c

⎤

⎦ (39)

t (τ ) = c

a′ sinh

(
a′ τ

c

)
(40)

Thanks to the last expressions we can find the relation between space travelled
and proper time:

x (τ) = c2

a′

[
cosh

(
a′ τ

c

)
− 1

]
(41)

and between coordinate acceleration and proper time:

a (τ) = a′
[
1 + sinh2

(
a′ τ
c

)]3/2 (42)

Finally, we can obtain the following expressions about space travelled:

τ(x) = c

a′ acosh

(
1 + a′ x

c2

)
(43)

V (x) = c·
√√
√√1 − 1

(
1 + a′ x

c2

)2 (44)

x(V ) = c2

a′

[
1 −

√
1 − V 2

c2

]

√
1 − V 2

c2

(45)

2.2.3 Constant Thrust Motion – Exhaust Velocity we
′ �= c

In this case we assume the thrust is constant, so mass flow rate must be constant as
well:

ṁ′ = T

we
′ = constant (46)
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and, as a consequence, we can recalculate some quantities already defined.
The first quantity we can calculate is the proper mass in terms of proper time as

follows:

ṁ′ = −dm′ (τ )

dτ
→ m′ (τ ) = m′(0) − T

we
′ · τ (47)

from which one gets the definition of the proper acceleration as a function of the
proper time:

a′ (τ ) = T

m′ (τ )
= T

m′(0) − T
we ′ · τ

(48)

As done in the previous section, we can refer to the relation (31) that in this case
becomes:

dV

dτ

√

1 − V 2

c2
= T

m′(0) − T
we ′ · τ

(
1 − V 2

c2

)3/2

(49)

that after integration yields the Ackeret equation:

V (τ) = c·
1 −

(
1 − T ·τ

m′(0)·we ′
) 2·we ′

c

1 +
(

1 − T ·τ
m′(0)·we ′

) 2·we ′
c

(50)

or proper time as a function of velocity, inverting it:

τ(V ) = m′(0)·we
′

T

[

1 −
(

c − V

c + V

) c
2·we ′

]

(51)

It is impossible to analytically calculate the other remaining quantities, so the
only way is the numerical approach.

2.2.4 Constant Thrust Motion – Exhaust Velocity we
′ = c

If we study the particular case where we
′ = c, i.e., the case when the particles

emitted are photons, we can explicitly calculate almost all quantities unlike the
previous case.
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First of all we rewrite the expressions already seen in the previous section
(Ackeret equation is also valid for massless particles):

ṁ′ = T

c
= constant (52)

m′ (τ ) = m′(0) − T

c
· τ (53)

a′ (τ ) = T

m′(0) − T
c
· τ (54)

V (τ) = c·
1 −

(
1 − T ·τ

m′(0)·c
)2

1 +
(

1 − T ·τ
m′(0)·c

)2 (55)

τ(V ) = m′(0) c

T

[

1 −
√

c − V

c + V

]

(56)

Now we can obtain the relation between the proper time and the coordinate time:

t (τ ) =
2 m′(0) c T τ − T 2 τ 2 + 2 m′(0)2 c2 ln

(
m′(0) c

m′(0) c−T τ

)

4 m′(0) c T
(57)

and the inverse relation:

τ(t) = m′(0) c

T

[

1 −
√

W

(
e

m′(0) c−4 T t

m′(0) c

)]

(58)

where W is the Lambert W-function (also called Omega function), i.e., the inverse
function of f (W) = W · eW . Even for every number x we have x = W(x) · eW(x).

Thanks to the last expressions we can find the relations between velocity and
coordinate time:

V (t) = c·
1 − W

(
e

m′(0) c−4 T t

m′(0) c

)

1 + W

(
e

m′(0) c−4 T t

m′(0) c

) (59)
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t (V ) = m′(0)· c
4 T

[
2 V

c + V
− ln

(
c − V

c + V

)]
(60)

and between coordinate acceleration and time (coordinate and proper):

a(t) =
8 T W

(
e

m′(0) c−4 T t

m′(0) c

)

m′(0)

[
1 + W

(
e

m′(0) c−4 T t

m′(0) c

)]3 (61)

a (τ) = 8 T m′(0)3 c4
[
m′(0) c − T τ

]2

[
2 m′(0)2 c2 − 2 m′(0) c T τ + T 2 τ 2

]3 (62)

If we want to calculate the relation between coordinate distance x and the proper
time, before doing so we need to define the following expression:

V (τ) = dx

dτ

dτ

dt
(63)

and consequently, we have to integrate:

∫ x

0
dx =

∫ τ

0
V (τ)

dt

dτ
dτ (64)

The solution is:

x (τ) =
−2 m′(0) c T τ + T 2 τ 2 + 2 m′(0)2 c2 ln

(
m′(0) c

m′(0) c−T τ

)

4 m′(0) T
(65)

and the inverse relation is:

τ(x) = m′(0) c

T

√√√√
− 1

W

⎛

⎝−e
− 4 T x+m′(0) c2

m′(0) c2

⎞

⎠

− 1

√√√√
− 1

W

⎛

⎝−e
− 4 T x+m′(0) c2

m′(0) c2

⎞

⎠

(66)
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The last formula can also be written in an alternative form:

τ(x) = m′(0) c

T
·
⎡

⎣− exp

⎛

⎝−
4 T x + m′(0) c2 + m′(0) c2 W

(
− exp

(
− 4 T x+m′(0) c2

m′(0) c2

))

2 m′(0) c2

⎞

⎠+ 1

⎤

⎦

(67)

It is possible to yield the relation between x and t:

x(t) = c

2 T

[
2 T t − m′(0) c + m′(0) c W

(
e

m′(0) c−4 T t

m′(0) c

)]
(68)

and between velocity and space (direct and inverse relation):

V (x) = c·
1 + W

(

−e
− 4 T x+m′(0) c2

m′(0) c2

)

1 − W

(

−e
− 4 T x+m′(0) c2

m′(0) c2

)
(69)

x(V ) = −m′(0) c2

4 T

[
2 V

c + V
+ ln

(
c − V

c + V

)]
(70)

2.2.5 Negative Exponential Acceleration Motion

In this case we assume a negative exponential trend of the mass flow rate and the
thrust, which are, respectively:

ṁ′ (τ ) = K1· e−K2 τ

(71)

T (τ) = we
′· ṁ′ (τ ) = we

′·K1· e−K2 τ (72)

where K1 and K2 are coefficients that characterize every specific negative exponen-
tial trend.

We can obtain the negative exponential trend of proper mass in terms of proper
time as follows:

m′ (τ ) = m′(0) − K1

K2

(
1 − e−K2 τ

)
(73)

and also the proper acceleration behavior that turns out to be of a negative
exponential type (this trend gives the name to this motion):
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a′ (τ ) = we
′·K1· e−K2 τ

m′(0) − K1
K2

(
1 − e−K2 τ

) (74)

As previously done, we can refer to the relation (31) that in this case becomes:

dV

dτ

√

1 − V 2

c2 = we
′·K1· e−K2 τ

m′(0) − K1
K2

(
1 − e−K2 τ

)
(

1 − V 2

c2

)3/2

(75)

that after integration yields the Ackeret equation:

V (τ) = c·
1 −

[
1 − K1·

(
1−e−K2 τ

)

K2·m′(0)

] 2·we ′
c

1 +
[

1 − K1·
(
1−e−K2 τ

)

K2·m′(0)

] 2·we ′
c

(76)

or proper time as a function of velocity, inverting it:

τ(V ) = − ln

[

1 + K2

K1
m′(0)

((
c − V

c + V

) c
2 we ′

− 1

)]

(77)

It is impossible to analytically calculate the other remaining quantities, so the
only way is the numerical approach.

2.2.6 Characteristic Formulas of All Profiles Studied

In this section we collect all the formulas derived in the previous sections for every
type of motion studied (we exclude here the uniform linear motion only, since its
simplicity), in order to have the possibility to compare them with each other with a
single glance (Table 1).

We can also graphically represent some of the relations expressed in Table 1
(Figs. 1, 2, and 3), to show more clearly their behavior, considering equal initial
proper acceleration a

′
(0) and initial proper mass m

′
(0).

The behavior of mass flow rate is similar to the thrust, so we can avoid drawing
it.

3 Fundamentals of Radioactive Decay

Every radioactive material, i.e., unstable, naturally emits particles at relativistic
speeds. This phenomenon is called radioactive decay.
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T 

τ

Hyperbolic motion 

Constant thrust motion 

Negative exp. acceleration motion 

Fig. 1 Qualitative comparison between the behavior of thrust T for constant thrust motion (black
line), hyperbolic motion (light blue line), and negative exponential acceleration motion (red line)

a′

τ

Hyperbolic motion 

Constant thrust motion 

Negative exp. acceleration motion 

Fig. 2 Qualitative comparison between the behavior of proper acceleration a
′

for constant thrust
motion (black line), hyperbolic motion (light blue line), and negative exponential acceleration
motion (red line)

Due to the particles emitted, the initial material is transformed into a different
material. The new material obtained can be stable, i.e., unable to transform itself
further, or it can be unstable too and continue in a subsequent decay. In the latter
case we speak of a decay chain.

The particles emitted constitute the so-called ionizing radiation and are different
according to the type of radioactive material under examination. These include beta
minus particles β− (electrons), beta plus particles β+ (positrons), alpha α2+ (doubly
ionized helium), and gamma rays γ . They can be ejected from the material in any
direction, which cannot be defined a priori.
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V 

τ

Hyperbolic motion 

Constant thrust motion 

Negative exp. acceleration motion 

Fig. 3 Qualitative comparison between the behavior of velocity V for constant thrust motion
(black line), hyperbolic motion (light blue line), and negative exponential acceleration motion (red
line)

Radioactive decay is a natural phenomenon that does not need to be started, but
equally it cannot be accelerated, slowed down, or stopped (some research groups
have actually modified the decay rate, but the variations are currently numerically
negligible for the purposes discussed here). Furthermore, a secondary effect of the
decay is the heating of the material in which it occurs.

Radioactive decay takes place according to the so-called radioactive decay law,
which states that the probability per unit time that a nucleus will decay is constant,
independent of time. This constant is called the decay constant and is denoted by λ.
In other words, the radioactive decay law states that the number of particles emitted
by each material decreases over time, more or less quickly depending on the material
itself, while the average speed of the particles remains unchanged.

In view of using radiation for propulsive purposes, we can make some initial
considerations.

Alpha particles are potentially suitable for propelling a spacecraft: they have
a high momentum, thanks to their electric charge they can be deflected by an
appropriate magnetic field, in order to direct them in the desired direction (opposite
to flight direction), and they can be shielded very easily to protect the spacecraft.
However, the ease of absorption is also a problem, as a part of particles can be
reabsorbed by the same material that emitted them. To try to exploit at least half of
such particles it is necessary to hypothesize the use of an extremely thin sail, so that
“only” half of the particles emitted are reabsorbed by the material of the sail and the
other half is expelled.

Gamma rays are neutral and have a penetration power too high so we cannot
deflect them in the desired direction and cannot exploit their energy to thrust the
spacecraft.
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Beta minus particles could be suitable to thrust a spacecraft because they can be
deflected by a magnetic field in the desired direction and they have a penetration
power intermediate, so they escape from a thin plate but at the same time we can
easily shield the spacecraft from them. However, they have a small momentum, due
to their very small mass, and therefore the thrust generated could be negligible.

Beta plus particles have a tendency to react very easily with the same material
that emitted them, through the annihilation process, making them very difficult to
use for propulsive purposes.

Following these considerations, among the possible types of decay we assume to
consider only alpha type.

3.1 Alpha Decay

In alpha decay a nuclide (called parent) emits a helium nucleus (doubly ionized
helium), and is transformed into another nuclide (called daughter) with an atomic
number (number of protons) decreased by 2 and a mass number (sum of protons and
neutrons) decreased by 4:

Nparent → Ndaughter + He2+ (78)

If the daughter nuclide is stable the process stops, otherwise the daughter nuclide
generates a second decay and so on until a stable nuclide is obtained.

It is important to stress that the decays that occur along a chain, which began with
alpha decay, are not necessarily all of the alpha type. But in this study we consider
for simplicity that they are so.

The energy Q released in alpha decay is equal to the difference in mass energy
between the parent nuclide and the final products, and appears as kinetic energy of
the latter. We can write:

Q = [m1 − (m2 + me)] · c2 = Ek,2 + Ek (79)

where m1, m2, and me are, respectively, the masses of the parent, daughter, and
emitted particle (alpha particle), and Ek, 2 and Ek are the kinetic energies of the
daughter and emitted particle.

Assuming the parent nuclide is at rest, the daughter must recoil in the opposite
direction to the alpha particle, and with the same momentum:

m2wD = mewe (80)

where wD and we are, respectively, the speeds of the daughter and emitted particle.
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If we calculate the ratio between their kinetic energies we have:

Ek,2

Ek
=

1
2 m2w

2
D

1
2 mew2

e

= (m2wD)2·me

(mewe)
2·m2

= me

m2
(81)

then we can then derive the relation:

Q = Ek

(
1 + me

m2

)
(82)

4 Radioisotope Sail as Propulsion System

We investigated the possible application of a radioisotope sail as space propulsion
system, in particular considering the use of only radioactive material emitting alpha
particles along the considerations done in the previous section.

In the following sections we will describe a simplified configuration to indicate
the main characteristic elements of the system and we will report the mathematical
model defined for different types of alpha decay (single or multiple decay).

4.1 Configuration

In defining a very simplified scheme (see Fig. 4), useful for a first approach to
the topic, we indicate the main elements that can constitute the radioisotope sail
propulsion system:

• Radioisotope sail – it is made of a radioactive material characterized by alpha
decay (single or multiple decay) and emitting alpha particles which generate the
wanted thrust.

• Radiation shield – it shields the spaceship by radiations (in the case of alpha
particles only, it can be made of a very lightweight material).

• Focusing elements – they redirect the radiation emitted by the sail using suitable
magnetic fields in order to focus it in a single direction opposite to the flight
direction.

Furthermore, it is necessary to introduce some characteristic quantities of the
hypothetical spacecraft useful for the study:

• Propellant mass Mprop, i.e., the mass of the propellant used for propulsion (in this
case radioisotope material)

• Dry mass Mdry, i.e., the sum of spacecraft mass and payload mass, excluding
propellant mass only
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Fig. 4 Simplified scheme of
a radioisotope sail propulsion
system

– Spacecraft mass, i.e., the mass of structures, mechanisms, subsystems, radia-
tion shields, focusing elements, etc.

– Payload mass, e.g., the mass of scientific instruments, experiments, astronauts,
and everything that justified the spaceflight

• Total mass Mt, i.e., the launch mass (=Mdry + Mprop)

All mass quantities are considered in the proper reference frame.
Considering the simple configuration presented, we can therefore report the

results of the physical-mathematical study of the propulsion system in a first version
that can be improved in future studies.

Note
To make expressions more readable, from the following section onward, the quotes
′

for the quantities referring to the proper reference system will not be shown (but
they will be in any case defined at the terminology level, to avoid misunderstanding).

4.2 Single Decay Mathematical Model

The simplest case that can be studied is the single decay: a radioactive nuclide N1
decays in a stable nuclide N2 emitting at least one particle. In particular in this study
we take into consideration an alpha particle α at high energies. In the Fig. 5 is shown
a simple scheme of the decay process.

To derive behavior and performance of radioisotope sails, we have to set up the
following mathematical model using well-known formulas of nuclear physics and
special relativity.
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Fig. 5 Single alpha decay
scheme

The first step is to assign the following characteristics of the radioactive
material:

• Atomic mass m1 of the parent nuclide N1
• Atomic mass m2 of the stable daughter nuclide N2
• Rest mass of emitted particle me (i.e., helium nucleus in this study) during the

decay from N1 to N2
• Half-life τ 1/2 of the nuclide N1
• Decay energy Q (value known from literature) released during the decay from N1

to N2

Above and following quantities are defined in the proper reference frames.

4.2.1 Decay Characteristics

The first quantity calculated is the decay constant:

λ = ln 2

τ1/2
(83)

and, knowing the decay energy Q, we can also yield the kinetic energy Ek of emitted
alpha particle inverting the relation (82):

Ek = Q

1 + me
m2

(84)

4.2.2 Dynamical Characteristics and Masses

Knowing Ek we can calculate the following quantities:

• Average momentum p · c of emitted particles (it is usually multiplied by c to give
results in MeV), considering the recoil of N2

p· c =
√

Ek
2 + 2· Ek·me· c2 (85)
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or in a more classical way we can have p alone

p =
√

Ek
2 + 2·Ek·me· c2

c
(86)

• Average gamma factor γ of emitted particles

γ = 1 + Ek

me· c2
(87)

• Average speed we of emitted particles

we = c·
√

1 − 1

γ 2
(88)

• Average specific impulse Isp of emitted particles

Isp = we

g0
→ Isp = c

g0
·
√

1 − 1

γ 2 (89)

It is also necessary to calculate some quantities related to the mass.
First of all, we can calculate the number of atoms of nuclide N1 at time zero as:

N1(0) = N0 = Mprop,0

m1
(90)

where Mprop, 0 is the propellant mass at initial time τ = 0.
Then the following important quantities can be calculated:

• Number of atoms of the nuclide N1 as a function of proper time (taking into
account the number of nuclides already decayed into N2)

N1 (τ ) = N0· e−λ·τ (91)

• Number of atoms of the stable nuclide N2 as a function of proper time, that it is
also equal to the number of alpha particles generated Ne

N2 (τ ) = N0 − N1 (τ ) = N0·
(
1 − e−λ·τ ) = Ne (τ ) (92)

• Lost mass Mlost as a function of proper time, equal to the sum of the masses lost
during decay

Mlost (τ ) = me·N2 (τ ) = me·N0·
(
1 − e−λ·τ ) (93)
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• Propellant mass Mprop as a function of proper time

Mprop (τ ) = Mprop,0 − me·N0·
(
1 − e−λ·τ ) (94)

= m1·N0 − me·N0·
(
1 − e−λ·τ ) (95)

= N0·
[
m1 − me·

(
1 − e−λ·τ )] (96)

• Total mass Mt as a function of proper time

Mt (τ ) = Mt(0) − me·N0·
(
1 − e−λ·τ ) (97)

= Mdry + Mprop,0 − me·N0·
(
1 − e−λ·τ ) (98)

= Mdry + N0·
[
m1 − me·

(
1 − e−λ·τ )] (99)

• Mass flow rate .ṁ (τ ) as a function of proper time

ṁ (τ ) = dMlost (τ )

dτ
= −dMt (τ )

dτ
= me·N0· λ· e−λ·τ (100)

that can be rewritten as:

ṁ (τ ) = me· Ṅ (τ ) (101)

if we define .Ṅ (τ) as the particle flow rate:

Ṅ (τ ) = dNe (τ )

dτ
= N0· λ· e−λ·τ (102)

4.2.3 Propulsion Performance

It is possible to calculate the thrust provided by the radioisotope sail, as a function of
proper time, using the well-known formula coming from space propulsion theory:

T (τ) = we· ṁ (τ ) = we·me·N0· λ· e−λ·τ (103)
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We can notice that thrust trend is negative exponential and we stress that for the
sake of simplicity has not been introduced a correction coefficient that takes into
account the geometric losses due to the expulsion directions of the alpha particles
(which can be expelled in any direction with equal probability). The absence of this
correction is however acceptable as the geometric losses are compensated by the
configuration of the propulsion system which involves the use of focusing elements,
hypothesized precisely to reduce these losses to a minimum.

We can also calculate the total impulse:

It (τ ) =
∫ τ

0
T (τ) dτ = we·me·N0·

(
1 − e−λ·τ ) (104)

To find achievable �V (in the case of relativistic flight) as a function of proper
time, it is necessary to use the Ackeret equation already seen:

�V (τ) = c·
1 −

(
Mt(τ )
Mt(0)

) 2·we
c

1 +
(

Mt(τ )
Mt(0)

) 2·we
c

= (105)

= c·
1 −

(
Mt(0)−me·N0·

(
1−e−λ·τ )

Mt(0)

) 2·we
c

1 +
(

Mt(0)−me·N0·(1−e−λ·τ )
Mt(0)

) 2·we
c

(106)

or in a different form:

�V (τ) = c· tanh

(
we

c
· ln

Mt(0)

Mt (τ )

)
(107)

= c· tanh

(
we

c
· ln

Mt(0)

Mt(0) − me·N0·
(
1 − e−λ·τ )

)

(108)

Finally, it is possible to calculate the proper acceleration:

a (τ) = T (τ)

Mt (τ )
= we·me·N0· λ· e−λ·τ

Mt(0) − me·N0·
(
1 − e−λ·τ ) (109)
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Note
As already said in the Chap. 3 of this paper, alpha particles are easily reabsorbed
by sail material itself. It is therefore necessary to hypothesize the use of a very thin
layer of radioactive material, to limit this problem as much as possible.

However, we must take into account that half of the particles emitted by the
sail will go in the flight direction (forward direction) and will be absorbed by the
protective shield, while the other half will go in the opposite direction (rearward
direction) and generate thrust. The alpha particles ejected in the rearward direction
in a preliminary and approximate way will all be considered effective, thanks to the
presence of the focusing elements.

We can therefore introduce a corrective coefficient that takes this problem into
account, reducing the effective value of Mlost by 50% and consequently the other
quantities connected to it: .ṁ, T, It, �V, and a.

4.2.4 Compatibility with Negative Exponential Acceleration Motion

The proper acceleration shown in the relation (109) is clearly time depending, in
particular it is decreasing following a trend that is of a negative exponential type.

Thus, a single decay radioisotope sail follows exactly the negative exponential
proper acceleration motion described in Sect. 2.2.5, and it is then not compatible
with the other trends seen (e.g., hyperbolic motion).

4.3 Double Decay Mathematical Model

In this second case there is a radioactive nuclide N1 which decays in a daughter
radioactive nuclide N2 emitting one alpha particle at high energies, and later the
nuclide N2 decays, emitting the same kind of particle, in a stable nuclide N3,
granddaughter of N1. In Fig. 6 is shown a simple scheme of the decay process.

Fig. 6 Double alpha decay scheme
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The first step is to assign the following characteristics of the radioactive
material:

• Atomic mass m1 of the parent nuclide N1
• Atomic mass m2 of the daughter nuclide N2
• Atomic mass m3 of the stable granddaughter nuclide N3
• Rest mass of emitted particle me during the decay from N1 to N2 and from N2 to

N3
• Half-life τ 1/2, 1 of the nuclide N1
• Half-life τ 1/2, 2 of the nuclide N2
• Decay energy Q1 released during the decay from N1 to N2
• Decay energy Q2 released during the decay from N2 to N3

Above and following quantities are defined in the proper reference frames.

4.3.1 Decay Characteristics

The first quantities calculated are the decay constants of N1 to N2:

λ1 = ln 2

τ1/2,1
(110)

λ2 = ln 2

τ1/2,2
(111)

and, knowing the decay energy Q, we can also define the average kinetic energy Ek
of each emitted particle, considering the recoil in each step of decay chain:

Ek,1 = Q1

1 + me
m2

(112)

Ek,2 = Q2

1 + me
m3

(113)

4.3.2 Dynamical Characteristics and Masses

Knowing Ek we can calculate the following quantities:

• Average momentum p · c of emitted particles

p1· c =
√

Ek,1
2 + 2·Ek,1·me· c2 (114)
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p2· c =
√

Ek,2
2 + 2·Ek,2·me· c2 (115)

or in a more classical way we can have p alone

p1 =
√

Ek,1
2 + 2·Ek,1·me· c2

c
(116)

p2 =
√

Ek,2
2 + 2·Ek,2·me· c2

c
(117)

• Average gamma factor γ of emitted particles

γ1 = 1 + Ek,1

me· c2 (118)

γ2 = 1 + Ek,2

me· c2 (119)

• Average speed we of emitted particles

we,1 = c·
√

1 − 1

γ 2
1

(120)

we,2 = c·
√

1 − 1

γ 2
2

(121)

• Instantaneous average speed of all emitted particles, defined using alpha particle
flow rates of the first and second steps of decay chain

we,ave (τ ) = we,1· Ṅe,1 (τ ) + we,2· Ṅe,2 (τ )

Ṅe,1 (τ ) + Ṅe,2 (τ )
(122)

where .Ṅe,1 (τ ) is the particle flow rate emitted in the first decay and .Ṅe,2 (τ )

is the particle flow rate emitted in the second decay
• Integral average speed of all emitted particles in the proper time interval τ

considered, since the instantaneous average speed changes in time

we = 1

τ

∫ τ

0
we,ave (τ ) dτ (123)

• Instantaneous average specific impulse Isp for the whole system
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Isp (τ ) = we,ave (τ )

g0
= 1

g0
· we,1· Ṅe,1 (τ ) + we,2· Ṅe,2 (τ )

Ṅe,1 (τ ) + Ṅe,2 (τ )
(124)

• Integral average specific impulse in the proper time interval τ considered, since
the instantaneous average specific impulse changes in time

I sp = we

g0
= 1

g0· τ
∫ τ

0
we,ave (τ ) dτ (125)

It is also necessary to calculate some quantities related to the mass.
First of all, we can calculate the number of atoms of nuclide N1 at time zero as:

N1(0) = N0 = Mprop,0

m1
(126)

Then the following important quantities can be calculated:

• Number of atoms of the nuclide N1 as a function of proper time (taking into
account the number of nuclides decayed into N2)

N1 (τ ) = N0· e−λ1·τ (127)

• Number of atoms of the nuclide N2 as a function of proper time (taking into
account also the number of nuclides decayed into N3)

N2 (τ ) = N0· λ1

λ2 − λ1
· (e−λ1·τ − e−λ2·τ ) (128)

• Number of atoms of the nuclide N2t generated from N1 as a function of proper
time, that it is also equal to the number of alpha particles generated in the first
decay Ne, 1(τ )

N2t (τ ) = N0 − N1 (τ ) = N0·
(
1 − e−λ1·τ ) = Ne,1 (τ ) (129)

• Number of atoms of the stable nuclide N3 as a function of proper time, that it is
also equal to the number of alpha particles generated in the second decay Ne, 2(τ )

N3 (τ ) = N0 − N1 (τ ) − N2 (τ ) = N2t (τ ) − N2 (τ ) (130)

= N0·
(

1 − λ2

λ2 − λ1
· e−λ1·τ + λ1

λ2 − λ1
· e−λ2·τ

)
= Ne,2 (τ ) (131)

We can now explicitly calculate the particle flow rates .Ṅe,1 (τ ) and .Ṅe,2 (τ ) as
follows:
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Ṅe,1 (τ ) = dNe,1 (τ )

dτ
= N0·λ1· e−λ1·τ (132)

Ṅe,2 (τ ) = dNe,2 (τ )

dτ
= N0· λ1· λ2

λ2 − λ1
· (e−λ1·τ − e−λ2·τ ) (133)

and thanks to these two relations, we can also explicitly yield the instantaneous
average speed of Eq. (122)

we,ave (τ ) = we,1 + we,2· λ2
λ2−λ1

· (1 − e(λ1−λ2)·τ )

1 + λ2
λ2−λ1

· (1 − e(λ1−λ2)·τ ) (134)

the integral average speed of Eq. (123)

we = we,1 − we,2

(2· λ2 − λ1) · τ · ln
λ1 + λ2·

(
e(λ1−λ2)·τ − 2

)

λ1 − λ2
+ λ2·we,2 − (λ1 − λ2) ·we,1

2· λ2 − λ1
(135)

the instantaneous average specific impulse of Eq. (124)

Isp (τ ) = 1

g0
· we,1 + we,2· λ2

λ2−λ1
· (1 − e(λ1−λ2)·τ )

1 + λ2
λ2−λ1

· (1 − e(λ1−λ2)·τ ) (136)

and the integral average specific impulse of Eq. (125)

I sp = we,1 − we,2

g0· (2· λ2 − λ1) · τ · ln
λ1 + λ2·

(
e(λ1−λ2)·τ − 2

)

λ1 − λ2
+ λ2·we,2 − (λ1 − λ2) ·we,1

g0· (2· λ2 − λ1)

(137)

• Lost mass Mlost as a function of proper time, equal to the sum of the masses lost
of the first and the second decays

Mlost (τ ) = Mlost,1 (τ ) + Mlost,2 (τ ) = me· (N2t (τ ) + N3 (τ )) (138)

= me·N0·
(

2 − 2· λ2 − λ1

λ2 − λ1
· e−λ1·τ + λ1

λ2 − λ1
· e−λ2·τ

)
(139)

• Propellant mass Mprop as a function of proper time

Mprop (τ ) = Mprop,0 − Mlost (τ ) (140)
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= m1·N0 − me·N0·
[

2 − 2· λ2 − λ1

λ2 − λ1
· e−λ1·τ + λ1

λ2 − λ1
· e−λ2·τ

]
= (141)

= N0·
{
m1 − me·

[
2 − 2· λ2 − λ1

λ2 − λ1
· e−λ1·τ + λ1

λ2 − λ1
· e−λ2·τ

]}
(142)

• Total mass Mt as a function of proper time

Mt (τ ) = Mdry + Mprop (τ ) (143)

= Mdry + N0·
{
m1 − me·

[
2 − 2· λ2 − λ1

λ2 − λ1
· e−λ1·τ + λ1

λ2 − λ1
· e−λ2·τ

]}

(144)

• Total mass flow rate .ṁ (τ ), sum of the mass flow rates of particles emitted both
in the first and the second decay, as a function of proper time

ṁ (τ ) = dMlost (τ )

dτ
= −dMt (τ )

dτ
(145)

= me·N0· λ1

λ2 − λ1
· [(2· λ2 − λ1) · e−λ1·τ − λ2· e−λ2·τ ] (146)

where the mass flow rate of alpha particles emitted in the first decay is

ṁ1 (τ ) = me·N0·λ1· e−λ1·τ (147)

and the mass flow rate of alpha particles emitted in the second decay is

ṁ2 (τ ) = me·N0· λ1· λ2

λ2 − λ1
· (e−λ1·τ − e−λ2·τ ) (148)

4.3.3 Propulsion Performance

It is possible to calculate the thrust provided by the radioisotope sail, as a function
of proper time, using the instantaneous average speed:

T (τ) = we,ave (τ ) · ṁe (τ ) = we,1· ṁ1 (τ ) + we,2· ṁ2 (τ ) (149)

=
[
we,1 + we,2· λ2

λ2 − λ1
·
(

1 − e(λ1−λ2)·τ
)]

·me·N0·λ1· e−λ1·τ (150)
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We can also find the total impulse:

It (τ ) =
∫ τ

0
T (τ) dτ =

∫ τ

0

(
we,1· ṁ1 (τ ) + we,2· ṁ2 (τ )

)
dτ (151)

= me·N0·
{
we,1

(
1 − e−λ1·τ )+ we,2

λ2 − λ1

[
λ2
(
1 − e−λ1·τ )− λ1

(
1 − e−λ2·τ )]

}

(152)

To find achievable �V (in the case of relativistic flight) as a function of proper
time the Ackeret equation is necessary, using the integral average speed calculated
in the same proper time interval (since Ackeret equation requires constant exhaust
speed and using this average value we can simulate this condition):

�V (τ) = c·
1 −

(
Mt(τ )
Mt(0)

) 2·we
c

1 +
(

Mt(τ )
Mt(0)

) 2·we
c

(153)

= c·
1 −

(
Mdry+N0·

{
m1−me·

[
2− 2·λ2−λ1

λ2−λ1
·e−λ1·τ + λ1

λ2−λ1
·e−λ2·τ

]}

Mdry+N0·m1

) 2·we
c

1 +
(

Mdry+N0·
{
m1−me·

[
2− 2·λ2−λ1

λ2−λ1
·e−λ1·τ + λ1

λ2−λ1
·e−λ2·τ

]}

Mdry+N0·m1

) 2·we
c

(154)

or in a different form:

�V (τ) = c· tanh

(
we

c
· ln

Mt(0)

Mt (τ )

)
(155)

= c· tanh

⎛

⎝we

c
· ln

Mdry + N0·m1

Mdry + N0·
{
m1 − me·

[
2 − 2·λ2−λ1

λ2−λ1
· e−λ1·τ + λ1

λ2−λ1
· e−λ2·τ

]}

⎞

⎠

(156)

We do not use the explicit expression of the integral average speed .we in order
not to compromise the readability of the last formulas.

Finally, it is possible to calculate the proper acceleration:

a (τ) = T (τ)

Mt (τ )
=

[
we,1 + we,2· λ2

λ2−λ1
· (1 − e(λ1−λ2)·τ )

]
·me·N0·λ1· e−λ1·τ

Mdry + N0·
{
m1 − me·

[
2 − 2·λ2−λ1

λ2−λ1
· e−λ1·τ + λ1

λ2−λ1
· e−λ2·τ

]}

(157)
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The proper acceleration expression is of the same type of that indicated in Sect.
2.2.5, which therefore appears to be the reference motion also for the radioisotope
sail with double decay.

4.4 Generalized Mathematical Model for Any Decay Chain

After having studied the two most common and simple cases of decay, single and
double, we define a generalized mathematical model suitable for any decay chain,
but in any case, considering only the decay with the formation of alpha particles.

The first step consists of assigning the following characteristics of the radioactive
material, considering i a positive integer:

• Atomic mass mi of a generic parent nuclide Ni.
• Atomic mass mi + 1 of a generic daughter nuclide Ni + 1
• Atomic mass m1 of the initial parent nuclide N1
• Atomic mass mn of the final stable nuclide Nn

• Rest mass of each emitted particle me

• Half-life τ 1/2, i of the nuclide Ni

• Decay energy Qi released during the decay from Ni to Ni + 1
• Last step of the decay chain n

4.4.1 Decay Characteristics

The first quantity calculated is the decay constant of each nuclide:

λi = ln 2

τ1/2,i

(158)

and, knowing the decay energy Qi, we can also define the average kinetic energy
Ek, i of emitted alpha particle:

Ek,i = Qi

1 + me
mi+1

(159)

4.4.2 Dynamical Characteristics and Masses

Knowing Ek, i we can calculate the following quantities:

• Average momentum pi · c of emitted particles (it is usually multiplied by c to
give results in MeV)
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pi · c =
√

Ek,i
2 + 2·Ek,i ·me· c2 (160)

or in a more classical way we can have p alone

pi =
√

Ek,i
2 + 2·Ek,i ·me· c2

c
(161)

• Average gamma factors γ i of emitted particles

γi = 1 + Ek,i

me· c2
(162)

• Average speeds we, i of emitted particles

we,i = c·
√

1 − 1

γ 2
i

(163)

• Instantaneous average speed we, ave of all emitted particles

we,ave (τ ) =
∑n−1

i=1

(
we,i · Ṅe,i (τ )

)

∑n−1
i=1 Ṅe,i (τ )

(164)

• Integral average speed .we of all emitted particles in the proper time interval τ

considered

we = 1

τ

∫ τ

0

∑n−1
i=1

(
we,i · Ṅe,i (τ )

)

∑n−1
i=1 Ṅe,i (τ )

dτ (165)

• Instantaneous average specific impulse Isp for the whole system

Isp (τ ) = 1

g0
·
∑n−1

i=1

(
we,i · Ṅe,i (τ )

)

∑n−1
i=1 Ṅe,i (τ )

(166)

• Integral average specific impulse in the proper time interval τ considered, since
the instantaneous average specific impulse changes in time

I sp = we

g0
= 1

g0· τ
∫ τ

0

∑n−1
i=1

(
we,i · Ṅe,i (τ )

)

∑n−1
i=1 Ṅe,i (τ )

dτ (167)

As in the previous section, we can calculate the number of atoms of nuclide N1
at time zero as:
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N1(0) = N0 = Mprop,0

m1
(168)

Then the following important quantities can be calculated:

• Number of atoms of the nuclide Ni (taking into account the number of nuclides
Ni already decayed into Ni + 1), as described by Bateman equation

Ni (τ) =
{

N0· e−λ1·τ i = 1

N0·∏i−1
r=1 λr ·

(∑i
r=1Cre

−λr ·τ
)

i > 1
(169)

where .Cr = 1/
[∏i

s=1,s �=r (λs − λr)
]

• Number of emitted particles generated in the i-th decay or the total number of
nuclides Ni + 1 generated from Ni (from here we consider only the case of i > 1)

Ne,i (τ ) = N0 −
∑i

g=1
Ng (τ) (170)

Ne,i (τ ) = N0

(
1 −

∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Cre

−λr ·τ
)))

(171)

We can also calculate the particle flow rates as

Ṅe,i (τ ) = dNe,i (τ )

dτ
= −

∑i

g=1

dNg (τ)

dτ
(172)

= N0·
∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Crλre

−λr ·τ
))

(173)

and thanks to that relation, we can also yield an explicit version of the instantaneous
average speed of Eq. (165)

we,ave (τ ) =
∑n−1

i=1

{
we,i ·

[∑i
g=1

(∏g−1
r=1 λr ·

(∑g

r=1Crλre
−λr ·τ )

)]}

∑n−1
i=1

[∑i
g=1

(∏g−1
r=1 λr ·

(∑g

r=1Crλre−λr ·τ )
)] (174)

and of the instantaneous average specific impulse of Eq. (167)

Isp (τ ) = 1

g0
·
∑n−1

i=1

{
we,i ·

[∑i
g=1

(∏g−1
r=1 λr ·

(∑g

r=1Crλre
−λr ·τ )

)]}

∑n−1
i=1

[∑i
g=1

(∏g−1
r=1 λr ·

(∑g

r=1Crλre−λr ·τ )
)] (175)
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We cannot explicitly derive the integral average speed and the integral average
specific impulse.

• Lost mass Mlost as a function of proper time, equal to the sum of the all masses
lost

Mlost (τ ) =
∑n−1

i=1
Mlost,i (τ ) =

∑n−1

i=1

(
me·Ne,i (τ )

)
(176)

= me·N0·
∑n−1

i=1

(
1 −

∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Cre

−λr ·τ
)))

(177)

• Propellant mass Mprop as a function of proper time

Mprop (τ ) = Mprop,0 − Mlost (τ ) (178)

= N0·
(

m1 − me·
∑n−1

i=1

(
1 −

∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Cre

−λr ·τ
))))

(179)

• Total mass Mt as a function of proper time

Mt (τ ) = Mdry + Mprop (τ ) (180)

= Mdry + N0·
(

m1 − me·
∑n−1

i=1

(
1 −

∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Cre

−λr ·τ
))))

(181)

• Total mass flow rate .ṁ (τ ), sum of all mass flow rates, as a function of proper
time

ṁ (τ ) = dMlost (τ )

dτ
= −dMt (τ )

dτ
(182)

= me·N0·
∑n−1

i=1

(∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Crλre

−λr ·τ
)))

(183)

From this relation we can yield the mass flow rate of alpha particles emitted in
the i-th decay as
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ṁi (τ ) = me·N0·
∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Crλre

−λr ·τ
))

(184)

4.4.3 Propulsion Performance

It is possible to calculate the thrust provided by the radioisotope sail, as a function
of proper time:

T (τ) = we,ave (τ ) · ṁ (τ ) =
∑n−1

i=1

(
we,i · ṁi (τ )

)
(185)

= me·N0·
n−1∑

i=1

{
we,i ·

[∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Crλre

−λr ·τ
))]}

(186)

We can also obtain the total impulse:

It (τ ) =
∫ τ

0
T (τ) dτ =

∫ τ

0

∑n−1

i=1

(
we,i · ṁi (τ )

)
dτ (187)

=
∑n−1

i=1
we,i

∫ τ

0
ṁi (τ ) dτ =

∑n−1

i=1
we,iMlost,i (τ ) (188)

= me·N0·
∑n−1

i=1
we,i

(
1 −

∑i

g=1

(∏g−1

r=1
λr ·
(∑g

r=1
Cre

−λr ·τ
)))

(189)

To find achievable �V (in the case of relativistic flight) as a function of proper
time the Ackeret equation is necessary, using the integral average speed calculated
in the same proper time interval:

�V (τ) = c·
1 −

(
Mt(τ )
Mt(0)

) 2·we
c

1 +
(

Mt(τ )
Mt(0)

) 2·we
c

(190)

= c·
1 −

(
Mdry+N0·

(
m1−me·∑n−1

i=1

(
1−∑i

g=1

(∏g−1
r=1 λr ·

(∑g
r=1Cre

−λr ·τ )
)))

Mdry+N0·m1

) 2·we
c

1 +
(

Mdry+N0·
(
m1−me·∑n−1

i=1

(
1−∑i

g=1

(∏g−1
r=1 λr ·

(∑g
r=1Cre−λr ·τ )

)))

Mdry+N0·m1

) 2·we
c

(191)

or in a different form:
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�V (τ) = c· tanh

(
we

c
· ln

Mt(0)

Mt (τ )

)
(192)

= c· tanh

⎛

⎝we

c
· ln

Mdry + N0·m1

Mdry + N0·
(
m1 − me·∑n−1

i=1

(
1 −∑i

g=1

(∏g−1
r=1 λr ·

(∑g

r=1Cre−λr ·τ )
)))

⎞

⎠ (193)

Finally, it is possible to calculate the proper acceleration:

a (τ) = T (τ)

Mt (τ )
=

me·N0·∑n−1
i=1

{
we,i ·

[∑i
g=1

(∏g−1
r=1 λr ·

(∑g

r=1Crλr e
−λr ·τ )

)]}

Mdry + N0·
(
m1 − me·∑n−1

i=1

(
1 −∑i

g=1

(∏g−1
r=1 λr ·

(∑g

r=1Cre−λr ·τ )
))) (194)

The proper acceleration expression is of the same type of that indicated in Sect.
2.2.5, which therefore appears to be the reference motion for the radioisotope sail in
general.

4.5 Example of Application

We suppose to use a radioisotope sail as the main propulsion system for a robotic
mission to Pluto, in two different cases: single alpha decay and double alpha decay.

We suppose to send New Horizons spacecraft, assuming to replace only the
propulsion system, in order to be able to compare the performance between the
real NASA mission and this hypothetical as well as simplified one. In this first study
we are neglecting problems related to launch of radioactive materials, storage of
radioactive materials, limited availability or production difficulties of radioactive
materials, inability to delay the decay start before launch (here we considered that
the start of the decay coincided with the start of the spacecraft’s flight, already in
terrestrial parking orbit), focusing system, etc.

The main data of NASA mission and spacecraft were:

Mdry = 401 kg
Mprop, 0 = 77 kg
Mtot(0) = 478 kg
Dpluto = 32 AU = 4.79 · 109 km
τ f = 9.5 y

where τ f is the total time to fly from the Earth to Pluto (mission time).
In this study we assume to carry onboard the same quantity of propellant as New

Horizons mission, i.e., 77 kg. This mass is equivalent to a sail of more than 60 m2, if
we consider a thickness of less than 0.1 mm and the materials listed in the following
tables.
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4.5.1 Pluto Mission with a Single Decay Radioisotope Sail

In the first part of the study we hypothesized the use of radioactive materials
characterized exclusively by single alpha decay, thus ignoring any subsequent steps
in the chain. In Table 2 are collected all the results obtained thanks to the expressions
seen in the previous sections and corresponding to this first configuration (single
decay).

We can see that, with the simplified assumptions made, it is theoretically possible
to achieve better results than New Horizons mission in terms of flight time.

4.5.2 Pluto Mission with a Double Decay Radioisotope Sail

In the second part of the study we hypothesized the use of radioactive materials
characterized by double alpha decay, thus ignoring any subsequent steps in the
chain. In Table 3 are collected all the corresponding results.

We can see that the double decay configuration allows to further improve
theoretical performance.

5 Conclusions

The radioisotope sail represents a propulsion system with interesting potential.
As demonstrated in this study, from a theoretical point of view and considering a

series of simplifying hypotheses, the achievable performances are high in compari-
son with the classical propulsion systems for exploration within the Solar System.

The achievable speeds do not, however, allow to consider, in this phase of the
study, the use of such a propulsion system for relativistic interstellar missions. In
the best case of those studied, it would take thousands of years to reach the Alpha
Centauri System. Future studies will tell whether it is possible to optimize the
system to a level that makes such journeys plausible or whether it is appropriate
to focus on less ambitious use.

It is certainly necessary to deepen the study by expanding the mathematical
models to the more generic case of a decay chain in which the emitted particles
can be both alpha and beta minus, and optimizing the choice of the best performing
radioactive material among all those possible. In addition, various additional factors
will have to be considered, including the (pejorative) effects due to geometric
losses; the design, possible consumption and performance of the particle focusing
system; the difficulties related to the procurement, production, storage and handling
of radioactive materials; the condition for which the decay cannot be considered
incipient when the spacecraft arrives in the parking orbit, but must necessarily be
considered already started; natural heating due to decay and the possible positive
contribution of thermal radiation to propulsion.
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1 Introduction

Since the beginning of the space era, interplanetary probes have commonly been
operated from ground. Operations are conducted by flight control and involve
performing a number of routine tasks, mainly of scientific, systems engineering,
and flight-related nature. Governing the space flight consists of determining the
spacecraft position, planning its trajectory, and controlling its motion. Accordingly,
these activities are known as a whole as Guidance, Navigation and Control (GNC).

The EXTREMA project (Engineering Extremely Rare Events in Astrodynamics
for Deep-Space Missions in Autonomy) aims toward a paradigm shift on how
deep-space GNC is performed, enabling CubeSats with autonomous capabilities.
The project has received a consolidator grant from the European Research Council
(ERC), a prestigious acknowledgment that funds cutting-edge research in Europe.

This chapter is intended to give an overview of EXTREMA, highlighting
the approaches, methodologies, and objectives; moreover, the expected results,
outcomes, and impact on future space exploration scenarios are also discussed.

1.1 Framing

The space sector is experiencing a flourishing growth. Space economy is booming.
Integrated space-based services will soon benefit mankind at unprecedented levels.
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Private companies are establishing several artificial constellations composed of
thousands of satellites. Space tourism is progressively becoming reality. The
momentum characterizing the near-Earth space will soon affect outer space as
well. At this pace, a multitude of miniaturized probes will soon pervade the inner
solar system. The abundantly variegated minor bodies (asteroids and comets) will
be the destination of numerous missions. Rocky planets will feature networks of
artificial satellites to support science and operations. A shift from space exploration
to systematic space exploitation will take place due to the steady reduction of natural
resources on the Earth. All in all, evidence is mounting that the near future will be
characterized by a large number of deep-space missions.

Deep-space GNC is the subject of EXTREMA. The acute increase of deep-space
missions will shortly lead to saturation of ground-based facilities. State-of-the-art
operations require dedicated teams and infrastructures, which is expensive. The
rapid proliferation of deep-space assets induces a dramatic urgency of granting
autonomy to space probes. At the actual pace, human-in-the-loop, flight-related
operations for deep-space missions will soon become unsustainable. Autonomous
deep-space GNC is the gateway for a sustainable exploration and exploitation of the
outer space. This involves a significant paradigm shift:

•? Research Question

To what extent can we navigate the solar system free of human supervision?

EXTREMA addresses the research question above, by challenging the current
paradigm under which spacecraft are piloted in interplanetary space. In this
perspective, self-driving spacecraft become the main focus: machines that can
travel in deep space and reach their destination in a totally autonomous fashion.
These systems are used to engineer ballistic capture (BC), an extremely rare event
in astrodynamics that is characterized by high sensitivity, thereby proving the
effectiveness of autonomy in a complex scenario. Validating this technology will
be a step toward uncharted territories in space exploration: missions will no longer
be limited by our capability to operate spacecraft. Space and ground systems will be
unchained. It will be a disruptive innovation in access to outer space, especially
when combined with system miniaturization. CubeSats, nanosatellites made of
cubic modular units (10 cm edge and 1.3 kg mass [1]), have granted research
institutions and small companies access to the near-Earth space, once a prerogative
of few large agencies.

Although the success of CubeSats for the Earth observation is unquestionable,
deep-space exploration is still dominated by conventional monolithic spacecraft.
Several technological gaps prevent realizing interplanetary CubeSats: with their
minute budgets, power production, communication, micro propulsion, attitude
pointing, orbit control, and radiation shielding become extremely challenging.
However, the recent success of the two MarCO CubeSats [2] indicates that inter-
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planetary CubeSats are bound to thrive in the near future. Nevertheless, it can
be proven that the overall cost for interplanetary missions scales with the system
mass, except for what concerns operations: under the current paradigm, operating
a 1-kg spacecraft requires the same effort as operating a 1-ton one. Self-driving
interplanetary CubeSats have the potential to demolish this last barrier, favoring
full mission scalability. A reduced effort required for operation will further lower
the overall mission cost, making it even easier for small institutions to access outer
space. Interplanetary CubeSats have been envisaged either as payloads of flagship
missions or as stand-alone systems. The former are released in situ by a mothership,
while the latter must undertake a deep-space cruise. Stand-alone interplanetary
CubeSats are considered in EXTREMA, as they are more amenable to the conceived
experiments. Moreover, in their role as technological demonstrators, self-driving
interplanetary CubeSats will represent a milestone toward autonomous GNC of
larger platforms. Due to their limited resources and large distances, leading to low
data rates and communication delays, self-driving capability in deep-space cruise for
CubeSats is imperative. This leads to postulate EXTREMA’s research hypothesis:

Enable deep-space limited-budget spacecraft to determine their position using
information embedded in the environment, plan their trajectory using on-
board available computational resources, and govern their motion using
on-board low-thrust propulsion, for the whole duration of an interplanetary
mission.

The hypothesis denotes that the spacecraft has to:

(a) Infer information from the surrounding environment and analyze them to
determine the position

(b) Generate a plan for the trajectory that reaches the target mission destination
(c) Execute the plan and correct for possible deviations arising from unmodeled

disturbances

It is assumed that the three actions are executed recursively during the cruise, until
the mission destination is reached. The conceptual logic of the research hypothesis
introduces two actors: the spacecraft and the environment. They interact by virtue of
the information inferred by the former and through its dynamics, which in turn alters
their relationship. This paradigm is challenging because the deep-space environment
is scarce of information, and the spacecraft has limited control authority. The
logic is executed in a totally autonomous fashion; no intervention from ground is
contemplated in the research hypothesis.
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1.2 State of the Art

EXTREMA is a research project of intra-disciplinary nature. Various fields of space
engineering are examined under the same umbrella in order to answer the research
question. Particularly involved are the spacecraft guidance, navigation, and control,
as well as the BC, a phenomenon of highly nonlinear astrodynamics that is proposed
to allow limited-control spacecraft to enter a temporary orbit about a planet.

1.2.1 Guidance

Guidance design is the process of determining the trajectory connecting two
points. The nominal solution is usually found by solving a trajectory optimization
problem since one wants to minimize, e.g., the propellant spent or the time of
flight. Designing the guidance can take days, if not months [3]; the solution has
to be validated against system and mission constraints before being flown. The
guidance is always found on ground. As is, it is one of those operations that
requires a significant human intervention. Any algorithm deficiency or solution non-
compliance is taken care of by the operator. Performing this task on board poses a
significant challenge: the solution has to be found in near real time and with limited
computing power.

Depending on the propulsion technology, the guidance considers either impulsive
or continuous maneuvers. The former originate from high-thrust chemical propul-
sion, and the latter stems from low-thrust electric propulsion. The two models lead
to different optimization schemes. Nonlinear programming problems are faced in
high-thrust propulsion [4, 5], where one solves for a finite number of unknowns.
Nonlinear optimal control problems are treated in low-thrust propulsion[6, 7], the
solution being infinite-dimensional. The hypothesis in EXTREMA involves using
low-thrust propulsion, which is more efficient when maneuvering in deep space
(impulses are instead desirable when imparted near major bodies). Therefore, the
focus is on automating the search for continuous steering laws by using the available
on-board computing power.

Metaheuristics methods (global optimization algorithms that employ heuristic
rules [8, 9]) and indirect methods (based on the calculus of variations [10, 11]) are
not suitable for on-board applications; they suffer from high sensitivity to initial
guesses. Although improvements have been proposed, e.g., through smoothing
[12, 13] and initialization techniques [14, 15] or by adding a migration scheme [16]
and scaling factors [17], the convergence issues remain unsolved. Direct methods
transform a continuous problem into a discrete one. They result in computationally
expensive large-scale problems [18, 19] and cannot be handled on board. However,
due to their robustness, some studies refined the discretization techniques [20, 21]
and applied convex [22, 23] and differential dynamic programming [24, 25] to
lower the computational burden. Feedback-driven Lyapunov-based methods are
computationally affordable. Effort has been put to improve their general non-
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optimality by including additional constraints [26] and optimizing parameters
[27, 28]. Recent approaches use artificial intelligence to design robust, but less
optimal and less flexible on-board guidance schemes [29–31]. Yet, none of the
existing methods guarantees convergence, which is crucial in EXTREMA.

1.2.2 Navigation

Navigation is the process of determining the spacecraft orbit in space. Traditional
navigation techniques for the Earth-orbiting satellites and deep-space probes rely
on radiometric tracking and ground-based orbit determination. Radiometric observ-
ables (two-way ranging and range rate) yield position accuracies in the order of
meters in a low-Earth orbit and kilometers in deep space [32]. The drawback of
using traditional radiometric-based navigation is in their interaction with ground.
This is unavoidable and yields large costs.

The vision in EXTREMA predicts a large number of spacecraft wandering in
the solar system. In this scenario, radiometric navigation is not an option: ground-
based facilities can track a few spacecraft per time and will be congested soon.
Moreover, the research involves using limited-budget systems, which brings in low
data rates. On-board autonomous navigation detaches the spacecraft from ground
control. Consistently with the hypothesis, the focus is on those methods capable
of analyzing the information inherent in the environment to extract the spacecraft
position. Optical navigation is the key to guaranteeing these features.

Optical navigation exploits images to reconstruct the observation geometry
between the spacecraft and the observed celestial object. In close proximity to
asteroids or moons, features like craters are used to estimate an observer position
[33]. Landmarks are associated with sharp variations in image brightness [34, 35]
(e.g., shadowing due to a crater’s rim). The image can be further processed with
ellipse fitting methods to retrieve the craters’ geometry [36]. This is correlated to
the object surface map via template matching to estimate the observer position [37].
At mid-range to an ellipsoidal celestial object, when its full shape is visible in an
image (e.g., the Moon), its contour can be resolved via edge detection algorithms
and used for relative navigation [38, 39]. The object size and shape in the image
are linked to the actual ones to estimate the relative camera-to-object range, while
the object position in the image is related to the actual camera-to-object line of sight
[40, 41]. For the deep-space case, methods able to extract the line-of-sight directions
to some visible moons or planets, detected via centroid finding algorithms [42], can
be used to feed triangulation schemes [43, 44]. In all cases, state filtering is required
to estimate the actual spacecraft orbit based on past measurements [45].

1.2.3 Control

Trajectory control handles the deviations of the actual spacecraft trajectory from
the one planned. In space flight, this discrepancy is mainly due to unmodeled
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perturbations, uncertain initial state, and thrust magnitude/pointing errors. Owing to
their permanent and unpredictable nature, closed-loop trajectory control is applied
routinely. The aim is either to cancel the anomalies in order to adhere to the
nominal solution (trajectory tracking) or to recompute the baseline at regular
intervals starting from the off-nominal state (closed-loop guidance). Like guidance,
spacecraft trajectory control is always performed on ground.

The most classic and robust way to perform trajectory tracking consists of
linearizing the equations of motion about the nominal solutions [46]. Although
solid, this method is suboptimal and neglects nonlinearities [47]. Classical tracking
techniques include neighboring optimal control (NOC) and model predictive control
(MPC). NOC finds the feedback control corrections to obtain locally optimal paths
[48], while MPC corrects a finite-horizon control profile based on the predicted and
desired output [49].

Nevertheless, for a near real-time implementation, the sustainability of numerical
computations is paramount. Several techniques have been developed to reduce the
computational burden [50, 51]. Machine learning-based applications have recently
been proposed for spacecraft guidance and control [29]. Deep learning techniques
have been used for on-board guidance and control; the key is to learn a large dataset
of optimal state–control pairs computed offline [52]. Reinforcement learning has
also been applied to design and train controllers for proximity motion [53] and fuel-
optimal pinpoint landing [54].

1.2.4 Ballistic Capture

BC is a process through which a spacecraft can approach a planet and enter a
temporary orbit about it without requiring maneuvers in between. The mechanism
arises when at least two gravitational pulls are considered. As such, one must
go beyond the classic Keplerian decomposition of the solar system to infer these
solutions. BC was discovered in the attempt to reduce the propellant required to
reach the Moon [55]; its effectiveness was proven in the rescue of Hiten [56].

The method based on stable sets [57] allows extracting BC orbits with prescribed
features [58]. BC is very rare: it occurs 1 out of 10,000 times when performing grid
sampling [59]. In EXTREMA, BC is used because it is a desirable solution for
limited-control platforms, which cannot afford to enter into orbits about a planet
because they lack significant orbit control. For years it was thought that BC could
not occur about inner planets. In [60], it was shown that BC orbits at Mars exist, and
they are cheaper, safer, and more flexible than the classical maneuvers. The key is to
accomplish low-thrust orbits culminating in BC, as shown in Fig. 1. A mechanism
similar to BC has been observed in the motion of natural objects [61–63].
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Fig. 1 Earth–Mars low-thrust transfer culminating in ballistic capture at Mars

1.3 The EXTREMA Project

The challenge set in EXTREMA is ambitious. Freeing deep-space probes from
human control will determine a significant reduction of the overall operation costs.
The goal is to put an end to the supervision in the cruise phase and let the spacecraft
reach autonomously its final destination. Because the focus is on interplanetary
CubeSats, proving the research hypothesis will guarantee the sustainability of deep-
space missions at moderate costs.

The challenges and innovative nature of EXTREMA are summarized in the
following key aspects:

(a) Determining the spacecraft position in deep space has always relied on radio-
metric tracking from ground. Spacecraft have never been conceded the possibil-
ity to determine their position in autonomy. To do so with no contacts, one has
to be able to extract information from the surrounding environment.

(b) The scarce number of high-cost deep-space probes has imposed a highly
cautious operations approach. With their number increasing, their size reducing,
and in turn their cost lowering, one has to take more risks when operating deep-
space probes.

(c) Orbits about a planet are achieved with large propulsive maneuvers. Proving the
feasibility of ballistic capture allows systems characterized by low or no control
to enter a temporary orbit about a planet, which is not currently possible.

A comprehensive overview of EXTREMA is given in Fig. 2. The project is
supported by three pillars, each one designed to answer an Operational Research
Question (ORQ):

1. Pillar 1 deals with autonomous navigation and aims to develop algorithms and
techniques to reconstruct the state of the spacecraft through optical navigation.
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2. Pillar 2 deals with autonomous guidance and control and aims to develop
state-of-the-art trajectory computing algorithms under a closed-loop guidance
paradigm, in which a new trajectory is recomputed on board whenever required.

3. Pillar 3 faces autonomous BC and aims to validate the previous algorithms in a
complex scenario that is also appealing for CubeSats missions.

Three experiments are foreseen, one within each pillar. The experiments will
produce intermediate results and are instrumental for the EXTREMA Simulation
Hub (ESH). The ESH is an integrated infrastructure to carry on dynamic simulations
of the spacecraft–environment interaction, allowing high-fidelity testing of deep-
space autonomous GNC systems for CubeSats.

2 Methodology

In this section, an overview of the methodology that will be employed in
EXTREMA to attain its objectives and answer the ORQs and the main research
questions is provided.

2.1 Autonomous Navigation

Optical navigation relies on image processing to extract relevant information
about the external environment and the probe position. The current trend in space
community is to enable optical navigation in proximity with uncooperative objects
[64, 65] and with irregular small bodies [66, 67]; EXTREMA wants to depart from
the state of the art and, in particular, extend it to deep space.

When in deep space, a spacecraft camera working in the visible band can observe
stars, planets, and minor bodies. The geometry of the stars is fixed in common
mission time frames; this enables a robust and reliable attitude estimation [68, 69].
Instead, planets and minor bodies move at shorter time scales: while the inertial
geometry of a known object is a predictable function of the epoch, its apparent
geometry depends also on the observer location. Therefore, planets and minor
bodies can be thought of as light beacons that can be exploited to solve for the
observer position [70, 71]. This leads to the first EXTREMA ORQ:

•? Operative Research Question 1

What information can we extract from the environment to estimate the
spacecraft state in autonomy?
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Fig. 3 Example of triangulation schemes. The geometry of the problem allows for the reconstruc-
tion of the spacecraft state in the solar system

It is possible to determine the spacecraft trajectory by acquiring and tracking
the line-of-sight directions to the visible planets and minor bodies, whose motion is
known via ephemeris models. The line-of-sight directions are given to a navigation
filter to triangulate the spacecraft orbit, provided that the attitude is estimated from
star asterisms (Fig. 3). This method is completely autonomous because:

(a) The ephemerides of the major planets and the minor bodies in the solar system
are stored on board and accessed to retrieve the inertial states of the light
beacons.

(b) The line-of-sight directions to non-stellar objects are acquired by cameras
working in the visible band (e.g., star trackers) and determined via image
processing algorithms already used in space (e.g., centroid finding algorithm
[42, 69, 72]).

(c) The spacecraft trajectory is estimated via on-board navigation filtering with
triangulation embedded methods [73].

The accuracy of the deep-space optical navigation depends on the accuracy of
the inertial line-of-sight directions to the navigation beacons. These directions are
affected by:

(a) Image processing errors.When an image containing a light beacon is acquired,
it is processed via centroid finding algorithms: a region of interest binds the light
dot in the image and its center of brightness is computed, thus introducing a shift
with respect to the real beacon location.

(b) Camera performances. Optical techniques work better with high-resolution
cameras, narrow fields of view, and sensible limit magnitudes, as these can
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detect more objects and with higher accuracy with respect to the less performing
sensors. Because of that, high-performance sensors provide better attitude and
line-of-sight estimates. Unfortunately, such equipment is not always available
on space assets, especially when dealing with CubeSat missions characterized
by low budgets.

(c) Uncertainties in attitude estimation mounting errors. These introduce errors
when transforming the line-of-sight directions from the sensors to the inertial
frames.

These aspects can heavily affect navigation performances. The assessment of their
influence on the navigation is done within a hardware-in-the-loop (HIL) experiment,
described in Sect. 3.1.

2.2 Autonomous Guidance and Control

The Guidance and Control (GC) process aims to determine the optimal transfer
trajectory to reach the target point by responding to any deviation from the
nominal trajectory with a proper guidance and control plan. It therefore requires
the knowledge of the current spacecraft position and velocity, which is the output
of the navigation. The low-thrust trajectory design is complex, time-consuming,
and computationally expensive since the GC scheme must also fulfill all trajectory
constraints and keep the spacecraft within the operational envelope.

One of the EXTREMA objectives is to enable new capabilities in the area of GC,
with the goal of automatizing the process by identifying algorithms suitable for on-
board use, without the intervention of ground operators. We can therefore state the
second EXTREMA ORQ:

•? Operative Research Question 2

Given current and target states, how can we plan the path to follow and enforce
it autonomously?

Currently, the operator has to monitor the GC and manually take appropriate
actions in case of deviations from the nominal trajectory. On the contrary, on-board
computation of guidance and control exposes the mission to risks as the following
three requirements must be fulfilled [74] :

(a) Robustness. On-board GC must guarantee convergence, in the sense that
a feasible solution must be obtainable at any instant. This is crucial for
autonomous GC as algorithm deficiencies cannot be tolerated.

(b) Computational efficiency. GC must be compatible with available on-board
computational resources. This is a major problem as GC planning is complex,
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and traditional techniques require a considerable amount of computing power,
requiring the employment of on-ground computing resources.

(c) Optimality. A cost function is to be minimized, usually the fuel consumption.
This is essential for small satellite deep-space missions due to their structurally
limited propellant budgets.

The most common state-of-the-art methods used to solve the low-thrust space
trajectory optimization problem have been mentioned and briefly described in
Sect. 1.2.1. Here, we focus on the approach that has been selected to be a candidate
for autonomous spacecraft guidance. Convex Programming (CP) [75] is a direct
optimization method particularly suited for real-time applications since it requires
little computational effort [76]. The GC system will trigger the CP method to
generate new reference trajectories when off-nominal conditions are detected or
the deviation is beyond a predefined tolerance. However, the low-thrust minimum-
fuel problem is non-convex. For this reason, in order to be solved by means of
convex optimization algorithms, some convexification techniques must be employed
to obtain an equivalent convex problem. The original problem is eventually solved
through iterative strategies that solve a sequence of convexified problems, as
Sequential Convex Programming [77]. These techniques will be adapted to the
EXTREMA project to obtain a Deep-Space Closed-Loop Guidance (DSCLG)
algorithm.

The aim of EXTREMA is to demonstrate the feasibility of autonomous Cube-
Sats, and therefore the guidance and control scheme will be validated with a
dedicated experiment, as described in Sect. 3.2. Given initial and target states,
the reference trajectory and the corresponding control profile are generated by an
Single-Board Computer (SBC) with characteristics in line with those of actual on-
board computers (OBCs) and actuated with a physical engine whose force output is
recorded by a set of force transducer before being fed to a high-fidelity numerical
propagator.

2.3 Autonomous Ballistic Capture

BC mechanism is suited for limited-control platforms, which cannot afford to enter
into orbits about a planet because of the lack of proper means.

In Pillar 3, the object of study is how a spacecraft can attain BC in autonomy.
The spacecraft assumed already in deep space has to acquire BC at Mars without
relying on any information provided from ground. Mars is chosen without loss
of generality due to its relevance in long-term exploration. This leads to the third
operative research question:
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•? Operative Research Question 3

Given the initial state, how can we achieve ballistic capture at Mars without
any a priori instruction?

BC is an event that occurs on extremely rare occasions and requires acquiring a
proper state (position and velocity) far away from the target planet [60]. Massive
numerical simulations are required to find the specific conditions that support
capture. In the method shown in [57], stable sets are computed via grid sampling and
propagation. Millions of initial conditions are integrated and classified according to
the orbits they generate. The initial conditions that grant capture define a capture set,
which in turn is used to find the capture corridors [78]: these are streams of orbits
that can be targeted far away from the planet and that guarantee BC (interior and
exterior corridors are shown in Fig. 4).

The method based on stable sets is preferred due to its versatility: it works for
any model, energy, and epoch [59]. The key is to grant the spacecraft the capability
to manipulate the stable sets in order to self-compute BC corridors. Nevertheless,
stable set computation on board is not an option. Moreover, these sets depend on
both capture epoch and osculating eccentricity, so they cannot be computed once
for all [57]. Thus, the challenge is to develop and validate an algorithm compatible
with the on-board resources.

Fig. 4 BC corridors from
capture epoch .t0 to .t0 − 600
days. Interior and exterior
corridors are colored in pink
and green, respectively.
Trajectories are represented in
nondimensional coordinates
in the roto-pulsating frame
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The proposed strategy is based on the offline computation of a catalog of stable
sets, computed for a predefined grid of values of (1) Mars true anomaly (which can
be linked with the position of Mars on its orbit and thus to the epoch of the first close
encounter), (2) the osculating eccentricity of the orbit at the first encounter, and (3)
the number of post-capture revolutions. The offline simulations will be carried out
using the GRavity TIdal Slide (GRATIS) software. GRATIS implements a high-
fidelity model of a three-dimensional full-ephemeris restricted n-body problem,
including non-spherical gravity terms as well as solar radiation pressure [79].

Once the stable set catalog is computed, it will be stored on the same breadboard
used in the experiment introduced in the previous sections. Because this process
may require significant amount of storage, the boundaries of stable sets will be
extracted and stored. These are the only elements that matter when manipulating
the sets. Therefore, a propagation scheme for the integration of the capture
trajectories compatible with the computational performances of the breadboard
will be developed. The epochs not covered by the catalog are retrieved through a
multi-dimensional interpolation like the ones implemented in [80]. In this way, the
spacecraft will be granted the possibility of self-computing the capture corridors for
any arrival epoch.

The validation will involve the experimental setup described in Sect. 3.2, with
the exception that the guidance and control algorithms will be upgraded to manage
target points defined on a moving manifold. This will be done by adding terminal
constraints expressed as a time-varying vector-valued function.

3 Modeling

In order to test and validate the outcomes of the three pillars, proper modeling
of the phenomena and systems characterizing the interplanetary transfer must be
performed. This is not a trivial task, as these are characterized by strong interactions
between physical domains and involve sub-phenomena acting at very different
scales.

Historically, the modeling of interplanetary transfers has heavily relied on
mathematical approximations, system decoupling, and numerical and computational
tools to build models for predicting and analyzing the evolution of the quantities of
interest. Statistical approaches have been employed to guarantee the robustness of
the outcomes against effects not included in the original models.

Given the advances in the capabilities of micro-computing and technologies for
embedded systems, a different kind of models, mixing numerical tools with physical
implementations of the systems of interest, emerged. Depending on which parts of
the systems were physically represented, these have been named hardware-in-the-
loop (HIL), processor-in-the-loop (PIL), or even human-in-the-loop simulations.
The advantages of such approaches can be seen in terms of:
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(a) Simulation fidelity, as the approximations brought by numerical models of
physical elements do not introduce errors in the simulations

(b) Resources required, as it is possible to relieve the numerical integrators
from the need to propagate the evolution of physical systems; this benefits, in
particular, those simulations involving phenomena happening at very different
time scales

(c) Simulation flexibility, as it is possible to obtain a faithful simulation of harsh
environment and phenomena employing tailored sets of sensors and actuators,
without leaving the safety of the lab environment

In the past years, multiple frameworks for HIL simulations have been proposed.
However, they all were characterized by a single critical drawback that would make
them unsuitable for deep-space applications. As the evolution of physical models
is subject to certain time scales, the synchronization of the virtual part of the
model with the physical one hinders all the speed advantages brought by numerical
simulation: no matter how powerful the computing platform is; since they need
inputs from the real world to go on with the simulation, they are bounded to the time
scale of the physical models. As interplanetary transfers are usually long-lasting,
this means that a single simulation could span months, if not years: this would make
the development and testing of the models a task spanning decades.

Luckily, this issue can be cleverly avoided by employing particular mathematical
tools. In particular, the dynamic similarity, already known in simulation engineering
for applications related to aerodynamics [81], fluid dynamics [82], electronics, [83],
and hydraulics [84], can be exploited for deep-space simulations too. The idea is
to map the original system, represented by the original spacecraft and the original
environment as they are in the real world, to a faster-evolving system, linked to the
original by a set of definite mathematical relationships involving the quantities of
interest (Fig. 5). The simulation models can mimic the behavior of the scaled system,
benefiting from shorter simulation times and keeping all the advantages brought by
HIL simulations.

Moreover, by manipulating the mapping-defining parameters, it is possible to
tailor the simulation to better comply with the availability of resources in the lab
environment. For instance, as it will be better described in Sect. 3.2, it will be
possible to map an ion engine characterized by high exhaust velocities (and low-
thrust values, requiring precision measuring equipment to be properly read) to a
simpler cold gas thruster, guaranteeing at the same time high levels of fidelity.

3.1 Modeling of Optical Navigation Systems

EXTREMA will assess the accuracy of the deep-space optical navigation method
through hardware-in-the-loop simulations using analogs of both the CubeSat and the
environment. This is to perform verification and validation of navigation algorithms
developed for autonomous deep-space operations with an optical facility. This is



182 G. Di Domenico et al.

S
im

u
la

te
s

S
im

u
la

te
s

Mapping

function

Simulation path

Real system

(slower)

Scaled system

(faster)

Simulation hub #1 Simulation hub #2

Fig. 5 Conceptual scheme of the mapping approach. The information on the original system is
retrieved from the simulations performed on the scaled one through a defined mapping function,
following the simulation path highlighted in red

achieved during ground testing by providing the OBC high-fidelity images as if
they were taken in space.

The main components of the optical facility, shown in Fig. 6, are:

(a) A high-fidelity deep-space scene renderer, capable of producing an image given
the information on the spacecraft state, i.e., position, velocity, and orientation

(b) A high-resolution screen to stimulate the camera with rendered images
(c) A system of lenses that makes sure that the observed objects are seen as if they

were at an infinite distance
(d) An optical camera consistent with the ones carried on board the CubeSats
(e) A processing unit that receives the raw image as taken by the camera and

processes it to perform both image processing, i.e., the beacon line-of-sight
extraction, and filtering

The camera, the system of lenses, and the screen are mounted on an optical
breadboard and placed in a dark box. To ensure the developed algorithm is as general
as possible and robust to different hardware, the facility employs a lens system that
is able to adapt the light cast from the screen to different cameras and fields of view.

The optical facility is used as a means to perform validation and verification of
the navigation within a HIL Experiment: EXTREMA Experiment 1.
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Experiment 1

Experiment 1 will embed on a computing board the image processing and
navigation algorithms to process images taken with the camera mounted on
the optical facility.

The breadboard is an industrial Single-Board Computer (SBC), e.g., 64-
bit ARM, equipped with a CPU that is representative of the typical on-board
CubeSat processors. The data interface between the camera and the SBC will
have bandwidths comparable to the ones typical of CubeSats’ data buses.

During its operations, the true spacecraft state is provided to the renderer
which produces an image of the deep-space sky as observed by a flying
camera. The image is then projected on a high-resolution screen to stimulate
the laboratory camera which is mounted on its support. The spacecraft
camera, which has been previously calibrated with respect to the screen
and the optical breadboard, observes the screen and acquires images of the
environment through the lenses system to reproduce the same conditions in
space. Then, the taken image is sent to the SBC which estimates the spacecraft
attitude from star asterisms, identifies the planets in the images, extracts its
line of sight, and performs navigation by providing this information to the
navigation filter. Finally, the navigation error statistics and its robustness are
assessed by comparison between the true spacecraft state used to render the
image.

Experiment 1 will be executed in three steps:

(a) First, the aforementioned image processing and navigation algorithms will be
developed. This includes the robust attitude determination, the autonomous
planet identification in the images, their line-of-sight extraction, and the
implementation of ad hoc navigation filters.

(b) The optical facility will be designed, integrated, and tested. This includes the
selection of the components to reduce collimation errors, limit the facility
mass and size, and design a flexible hardware system for different camera and
simulation conditions. Furthermore, a dedicated calibration procedure will be
developed to correct misalignments and distortions due to mounting and optical
devices.

(c) Once the optical navigation algorithm is developed, the experimental facility of
Pillar 1 has to be designed, integrated, and tested. A static test will be performed
to quantify the position error; a dynamic test with a given spacecraft orbit will
be needed to assess the filter performances.
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Fig. 6 Logic of the Optical Facility to test the navigation algorithms

Experiment 1 will not only validate the proposed deep-space optical navi-
gation and assess its feasibility but also enable to understand its robustness.
Moreover, Experiment 1 is a building block for the EXTREMA Simulation
Hub (Sect. 4.1).

3.2 Modeling of Low-Thrust Propulsion Systems

The thruster test bench is used to validate the GC algorithm for self-driving deep-
space CubeSats. As outlined in Sect. 2.2, the thrust facility shall model the real
actuation of a low-thrust propulsion system, measure the produced thrust, and feed
the measurement to a high-fidelity numerical propagator.
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It is worth noting that a true real-time simulation would require an extremely long
time: an interplanetary transfer requires many months or even years. EXTREMA
aims at exploiting a scaled model of the system, correlating the results to the original
one thereafter. Through a mapping between the original system and a fast-evolving
one, it will be possible to execute the simulations on shorter time frames, lasting a
few hours or days.

Employing the accelerating framework also brings a significant advantage in
terms of experiment feasibility. Indeed, applying the mathematical relationships
governing the dynamic similarity results in higher thrust levels in the lab envi-
ronment: this frees the experiment from the employment of complex, expensive
electrical engines that also require ad hoc setups to be operated (i.e., vacuum
chambers or bulky pipes to avoid the interaction of the plume with the surroundings)
and ultra-high-accuracy measurement rigs to sense the tiny thrust force output. It is
instead possible to tailor the scaling parameters to adapt the scaled thruster to the
technological limits and safety requirements of the lab environment.

Currently, no traditional engine can guarantee both high levels of thrust and
reduced fuel mass consumption. However, by properly fixing its remaining degrees
of freedom, the accelerating framework allows lowering the requirements on the
specific impulse of the thrusters, mapping a high-efficient low-thrust ion engine
to a higher-thrust technology with lower efficiency levels, like a cold gas thruster.
While this translates in levels of fuel mass consumption that cannot comply
with a CubeSat, these can be achieved with simple laboratory equipment such as
pressurized tanks or supply pipes. By selecting compressed air as fuel, even the
need for tanks is removed, since it is possible to directly compress the surrounding
air with a mechanical compressor and regulate it with a tailored pipeline before
feeding the fuel to the thruster.

Of course, the feeding system and the thrusting test bench shall take into account
the fundamental differences in the typical thrust profiles of ion and cold gas
thrusters. While the dynamic similarity allows to freely choose the thrust level and
the specific impulse of the thruster, additional requirements on multiple parameters
and characteristics of the thrust profile — like rising and fall times, oscillations, and
stability of response — cannot be avoided nor neglected, calling for a careful design
of the thrust test bench.
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Experiment 2
The functional layout of Experiment 2 is represented in Fig. 7. The current
state (estimated by the navigation algorithm) and target state, together with the
propagated state (assumed as ground truth), are fed as inputs to the guidance
and control algorithm, which is installed on a single-board computer. The
output of the GC scheme is used to actuate the cold gas thruster that is installed
on the thruster test bench. The produced force is measured by the load cell and
then transmitted to the orbital propagator.

The thrust test bench is composed of three parts:

1. The thrust balance, where the thruster and the load cell are positioned
2. The pneumatics feeding line, which provides the required pressure level to

the thruster
3. The single-board computer, which computes the optimized trajectory,

applies the scaling, and actuates the thruster by acting on the solenoid valve
and pressure regulators

The thrust balance is installed on a laboratory workbench and has a
vertical layout, with the thrust force that acts vertically from bottom to top.
A hole on the worktop increases the distance between the thruster outlet
and the underlying lower surface, reducing all possible interferences due to
turbulence. The two main drivers of this design choice are:

(a) The magnitude of the scaled thrust forces, which is of the order of a few
Newtons instead of the mN or .μN of a low-thrust engine

(b) The simpler calibration process with respect to the horizontal or torsional
thrust balances

More accurate and precise models of thrust balance, like the torsional
and horizontal thrust balance, exist and are usually employed for accurate
measurement of the performances of low-thrust engines [85]. Anyway, their
calibration and setup are much more complex, and additional care must be
taken in the preparation of the experiment. Additionally, they often require
amplification mechanisms [86], which might also introduce nonlinear effects
if the force variation throughout the execution of the experiment varies and
gets close to the full scale of the force sensor.

The described setup shall, therefore, guarantee the repeatability and high
fidelity of measurements. This is a key aspect in the EXTREMA simulations:
an interplanetary or deep-space transfer employs multiple thrust arcs, which
are in turn interrupted by multiple navigation sessions. Therefore, multiple
activations of the cold gas thruster are needed, and it will not be advisable
to perform intermediate calibrations during the execution of a simulation.
The simpler design shall therefore guarantee an easier setup and smoother
execution of the experiment.
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Fig. 7 Logic of the thrust test bench to test the robustness of guidance algorithms

Experiment 2 will be executed in three steps:

1. First, the DSCLG algorithm will be developed. It will be a computationally
inexpensive and robust algorithm suitable for on-board applications.

2. The thrust facility will be designed, integrated, and tested. At first, pneumatic
components will be selected, the support structure will be designed and opti-
mized, and finally, the focus will be on the design of the nozzle. Once the
structure weight is known, the load cell will be selected and integrated. The
second step will be concluded by the definition of a calibration procedure and
testing of the facility.

3. The third step aims at integrating the outcome of the previous ones: the guidance
algorithm will be deployed on the SBC, which will also actuate the scaled
thruster. Functional tests will be performed to assess the actuation errors, and
fine-tuning will be performed to guarantee that these will be within the expected
operational thruster misperformance.
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Experiment 2 will validate the Guidance and Control scheme and assess
its robustness. Experiment 2 is also a building block for the EXTREMA
Simulation Hub (Sect. 4.1).

4 Integrated Simulation of Interplanetary Transfers

In this section, an approach to integrate the outcomes from the previously described
experiment will be explained, along with the associated challenges and potential
solutions to them.

4.1 The EXTREMA Simulation Hub

As said, the outcomes from each one of the three pillars will be validated with
a tailored experiment featuring the model of the associated CubeSat subsystems.
However, this does not guarantee the functionality of the interactions between the
latter. For this reason, an integrated experiment involving all the components of
a CubeSat GNC system is required. This experiment will be carried on in the
EXTREMA Simulation Hub, an integrated facility that will simulate an interplane-
tary transfer with a hardware-in-the-loop setup.

The ESH

The EXTREMA Simulation Hub will represent the validation and success of
the EXTREMA project.

Figure 8 represents a functional scheme for the integrated simulation. The
subsystems already presented in the previous sections are here fully integrated.

4.1.1 On-board Computer

The aim of the ESH is to test autonomous GNC systems for CubeSats. Therefore,
the core of the facility will be represented by the GNC computing unit, carefully
selected to mimic the computational performance of a typical CubeSat OBC; this
will host the algorithms developed in Pillars 1, 2, and 3 (Fig. 9):



The ERC-Funded EXTREMA Project: Achieving Self-Driving Interplanetary CubeSats 189

 OBC

Thruster test bench

Initial and
target state

ThrusterThrust Load cells

Orbital

propagator

Pressure

regulator

Guidance and control unit
 
 

Guidance algorithm

Control allocation

Perturbations

Final
state

Optical Facility

HD Screen Lens system

Sensed image data

CubeSat

camera

Estimated State

Raw image data

Rendering unit

Attitude simulator

FlatSat Attitude

Control System

Air-bearing

spherical joint
Thrust pointing

Attitude sensing

suite

Attitude 

control

Throttle

Navigation processing unit

Navigation algorithm

Fig. 8 Functional logic of the EXTREMA Simulation Hub

(a) The navigation algorithm, which will extract information from the raw sensor
outputs and reconstruct the spacecraft state

(b) The numerical approximation and offline database of ballistic capture corridors,
in order to achieve ballistic capture

(c) The guidance algorithm, which will use the previous information as initial
and target conditions, respectively, and will compute a feasible and optimal
trajectory

In order to tailor the specifics of the OBC to be representative of the ones of
a typical CubeSat, different approaches can be followed. In general, bare-metal
measures as the number of computing cores, clock frequency, or instructions per
second (IPS) cannot be trusted, not only because actual performances of computers
are application-dependent [87] but also because spacecraft computers are also
subjected to power constraints that can make actual specifications deviate from
datasheet ones. Alternative measures, like Dhrystone MIPS of Whetstone MIPS
[88, 89], can offer more reliable measures; still, a generic and reliable benchmark
measure for deep-space applications does not exist at the moment.
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4.1.2 Attitude

Multiple approaches to simulate the attitude evolution of a space system exist in the
literature, including robotic arms [90] and frictionless anti-gravitational platforms
[91]. In EXTREMA, an air-bearing spherical joint is employed: these systems
exploit a thin film of air to guarantee rotational freedom around three axes. With
proper care, the motion of the overlying platform can be considered frictionless.

The platform to be mounted on top of the joint is characterized by the following
sub-assemblies:

(a) A mass balancing system, which will guarantee the absence of gravitational
torques on the platform by moving the center of mass of the system toward the
center of rotation of the joint

(b) The systems and units of the CubeSat, typically referred to as flatsat. This will
include the OBC and the CubeSat’s attitude determination and control system
(ADCS).

(c) A wireless power generation and distribution system, since no cabling is
allowed to avoid perturbations affecting the attitude evolution of the platform.
This will include a set of high-efficiency solar cells and a lamp that will emit
radiation with the spectrum that will guarantee maximum power output from
the system.

The information on the platform attitude is to be used to reconstruct the actual
pointing of the spacecraft thruster. This information will then be fed to the numerical
integrator to propagate the position of the spacecraft in the interstellar space.
Despite air-bearing platforms being renowned for their frictionless capabilities, a
proper estimation of the perturbations arising from aerodynamic forces acting on
the platform must be considered. Indeed, despite being accelerated, the simulations
to be performed in EXTREMA will span multiple days, leading to accumulation
of errors and the actual behavior or the platform departing from the expected one.
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A proper modelization of the perturbing effects is needed, in order to compensate
them and ensure higher fidelity over longer timespans.

4.1.3 Orbital Control System

The GC unit will also command the thruster, mounted on a setup similar to the
one described in Sect. 3.2 and employed in the experiment associated with Pillar 2.
This will make sure that unmodeled perturbations arising from the physicality of the
engine will be considered when evaluating the robustness of the algorithms.

The approach described in Sect. 3 for what concerns the acceleration of the
simulation allows employing different kinds of thrusters instead of electric ones. The
thrust output, after being measured, must or must not be scaled according to whether
the system represented in the numerical integrator is subjected to the accelerating
framework.

4.1.4 Navigation System

The experimental setup described in Sect. 3.1 for what concerns the EXTREMA
Optical Facility can be easily adapted to be integrated in the ESH. However, there
is a set of additional issues to consider:

(a) The generation of the deep-space scene must take into account the actual
attitude of the platform; subtle errors in the reading of the platform orientation
could lead to images not representative of the actual environment surrounding
the probe.

(b) The deep-space scene must be triggered immediately after the computing of the
spacecraft state by the numerical integrator; moreover, it must happen before
the time interval associated with the single timestep has passed.

(c) The raw image data must be relayed to the OBC wirelessly; a proper commu-
nication framework, including state-of-the-art interfaces and protocols, must be
set up to avoid large communication lags.

4.1.5 Numerical Integrator

While deep-space phenomena have long characteristic times, the spacecraft rota-
tional dynamics, together with sensors and actuators, works at higher frequencies.
This leads to stiff ordinary differential equations for the dynamics, which require
special attention in the integration scheme choice. Moreover, the integrator must
have real-time capabilities, i.e., the equations of motion have to be generated and
numerically solved fast enough and in a fixed time-frame, and it cannot evaluate
the right-hand side in future time steps. For this reason, semi-implicit fixed step
size and fixed order methods are the most suitable choice [92]. Inside this group,
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the so-called singly diagonally implicit Runge-Kutta (SDIRK) algorithms [93] are
advisable for real-time applications, since they are computationally efficient, while
providing good stability and accuracy, even at lower order.

4.1.6 Additional Systems and Components

Apart from the ones already described, the faithfulness of the simulation and the
functionality of the facility must be guaranteed with additional systems. Debugging
units, schedulers, and fault generation units allow to monitor the progress of the
simulation, ensure that all the internal clocks of the different sub-components
are initially synchronized, and provide a framework to test the robustness of the
algorithms and techniques to be tested against unexpected faults, respectively.

Moreover, the interaction between additional CubeSats subsystems (e.g., the
thermal control one) must be properly analyzed and weighed against the drawbacks
of a more complex, less flexible setup that envisions their implementation in the
facility.

4.2 Remarks

While the determination and implementation of the different elements and sub-
systems for an integrated facility are not trivial, it is not sufficient to reach the
objectives of the simulation. Indeed, particular attention must be given to how these
components interface between themselves.

The choice of the simulation sampling rate is critical by itself. Indeed, any HIL
facility mixes physical and virtual systems and both analog and digital signals,
requiring setting a certain sampling frequency for handling data. Interplanetary
transfers happen on large time scales; however, the presence of an accelerating
framework, the long duration of the simulations, and the requirement of wireless
connections to interface with the FlatSat subsystems call for strict requirements
on the accuracy of time sampling, ultimately requiring soft real-time systems to
guarantee the fidelity of the simulation.

5 Expected Outcomes

As said, the success of the EXTREMA project is represented by the realization and
validation of the EXTREMA Simulation Hub. Currently, there are no analogs that
simulate entire deep-space missions. It will be a valuable asset to conduct research
and experiments in the field of deep-space astrodynamics and will act as a research
cluster in which interested researchers could test systems for small probes, opening
new ways to perform complementary research and test alternative scenarios.
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5.1 Case Studies

The project itself will exploit the ESH to analyze two case studies, easily relatable
to existing concepts for interplanetary missions:

(a) Mission to an asteroid. An interplanetary transfer toward an asteroid in the
inner solar system is simulated. The target object will be placed at around
1.2AU from the Sun. At the initial time, the spacecraft will be assigned position
and velocity corresponding to the Sun–Earth Lagrange point L2. A thrust level
of 2mN will be selected. The case study will mimic the M-ARGO mission
concept, which successfully completed Phase A [94].

(b) Mission to Mars. A stand-alone CubeSat mission to Mars will be simulated,
moving the target to 1.5 AU from the Sun. The spacecraft will depart from an
Earth orbit and has to achieve ballistic capture. The level of thrust will vary
according to the distance from the Sun. This case study will reproduce the
MARIO mission concept proposed in [95].

5.2 Potential Impact

EXTREMA is an ambitious project located at the fringe of current research in
astrodynamics. It addresses an emerging problem in space engineering: to let future
generations of spacecraft be independent of human interaction. In particular, it
focuses on deep-space CubeSats. Until now, the approach to deep-space missions
has been overly cautious due to high costs to sustain to carry on a space mission.
Despite the tremendous benefits brought by CubeSat technology, operations still
represent an obstacle to the flourishing growth of deep space. The success of
EXTREMA would facilitate access to deep space for a multitude of small insti-
tutions not backed by big budgets. An increased number of small interplanetary
missions will improve our knowledge of the physics of the Solar System and will
favor a comprehensive exploration of diverse, yet unknown, minor bodies.

Moreover, another consideration is to be made. By focusing on CubeSats,
characterized by skeletal budgets and subsystems with mediocre performances, the
success of EXTREMA would allow a seamless technological transfer to bigger,
better-performing spacecraft. This means that the project will impact also large
interplanetary probes. By definition, the latter have more generous budgets and can
therefore retain a much better orbit control compared to CubeSats.

EXTREMA aims to fill the gap between interplanetary CubeSats and
autonomous interplanetary CubeSats, as shown in Fig. 10. Moreover, as bigger
spacecraft have also access to better, more diverse payloads, it could be the key to
paving the way to a new era of space exploitation, enabling applications not feasible
under the current paradigm.
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Fig. 10 Qualitative overview of the potential impact of EXTREMA

6 Conclusions

The challenge set in the EXTREMA project is ambitious. The objective to free
interplanetary spacecraft from ground supervision emerges from the realization that
the current deep-space GNC paradigm will be unsustainable in the near future.

The tasks the project must face are multiple and stem from different sub-fields
of space engineering. By targeting CubeSats, the project will make sure that the
autonomous capabilities developed for navigation and guidance will be attainable by
any kind of spacecraft. Given the complexity of its objectives, EXTREMA should
be seen as a high-risk/high-gain project, which outcomes can potentially be of major
prominence for the future of space exploration and exploitation.
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Data Reduction for Optimizing the
Attitude Control Dispatch in a Spacecraft

Christophe Durand, Giorgio Fasano, and Andrea Forestieri

1 Introduction

This work originates from the challenging problem of optimizing the attitude control
dispatch of a spacecraft during its whole lifetime by an ad hoc layout of the thrusters
(as well as their appropriate utilization on-board). The ultimate scope consists in
minimizing the total propellant consumption (and/or different objective functions, if
necessary). Actually, the positions and orientations of the attitude thrusters on-board
a spacecraft can significantly affect the way the requested overall force and torque
are exerted by means of propulsion. Although this issue does not always represent
a major design concern in space engineering, it can be of utmost importance when
in the presence of extremely demanding attitude control requirements. This occurs,
for instance, in the upcoming Next Generation Gravity Mission (NGGM, see [4]),
funded by the European Space Agency (ESA), and it is expected to characterize an
increasing number of advanced missions in the near future.

While an efficient solution to the aforementioned attitude dispatch optimization
problem should take into account the presence of redundant thrusters, aimed at
replacing the nominal ones in case of failure (see [1]), this aspect is not considered
here. The following simplified formulation (see [1]), sufficient for the task of
this chapter, is outlined hereinafter to illustrate the reference context of the work
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discussed (an extended version of the problem and a dedicated approach is discussed
in depth in [6]).

To this purpose, the interval .[0, T ], representing the timespan of interest for the
relevant attitude control problem, is introduced, in addition to a spacecraft-based
orthogonal reference frame .(O, x, y, z). Since the corrective actions exerted by the
thrusters are executed at separate time steps, the interval .[0, T ] may be considered
as discretized, i.e., equipartitioned into a set of sub-intervals of duration .Δ each,
delimited by .NI + 1 instants .i ∈ {0, 1, . . . , NI } = I . At each time instant i (during
the whole time sub-interval .Δ ), the force .Fi = Fxi, Fyi, Fzi and torque .Ti =
Txi, Tyi, Tzi represent the overall control request to be dispatched to the set A of
available .NA thrusters (indexed as .r ∈ {1, . . . , NA} = A). The (major) constraints
of the problem are thus expressed (in a compact formalism and allowing a slight
abuse of notation) as follows:

.∀i ∈ I,

(
ν

p × νr

) ⎛
⎜⎜⎝

u1i

. . .

uri

uNAi

⎞
⎟⎟⎠ =

(
Fi

Ti

)
(1)

.∀r ∈ A, ||νr || = 1

.∀r ∈ A,∀i ∈ I, uri ∈ [
Ur,Ur

]

.∀r ∈ A,pr ∈ Dpr, ν ∈ Dνr

Here, .ν = (
(ν1x, ν1y, ν1z)

T , . . . , (νrx, νry, νrz)
T , . . . , (νNAx, νNAy, νNAz)

T
)
is

the sub-matrix whose columns are the column vectors associated with each .νr =
(νrx, νry, νrz), the unit vector representing the orientation of thruster r .

.p × ν = (
(q1x, q1y, q1z)

T , . . . , (qrx, qry, qrz)
T , . . . , (qNAx, qNAy, qNAz)

T
)
is

the sub-matrix whose columns are the column vectors associated with each cross
product .pr × νr , where .pr = (prxpry, prz) is, for each thruster r , the application-
point vector of the exerted force:

• .uri is, for each thruster r , the (Euclidean) norm of the force exerted at instant i.
• .Ur and .Ur are, for each thruster, the lower and upper bounds imposed on,

respectively.
• .Dpr ⊂ R

3 is the domain delimiting the admissible positions of thruster r .
• .Dνr ⊂ R

3 is the domain delimiting the admissible orientations of thruster r .

The matrix equations above are the dispatch constraints, while those involving
the unit orientation vectors express normalization conditions (w.r.t. the Euclidean
norm). Here, it is understood that the position and orientation of each thruster have
to be kept fixed during the whole period .[0, T ] envisaged. The following objective
optimization criterion can be considered:



Data Reduction for Optimizing the Attitude Control Dispatch in a Spacecraft 203

.min
∑

r ∈ A

i ∈ I

fr(uri) (2)

where .fr(uri) indicates the propellant consumption associated with each .uri . As
is gathered, any realistic time discretization of the whole interval (also taking
into account potential reductions in virtue of occurring orbit periodicities) would
inevitably make the above optimization problem intractable in practice. The basic
idea of the approach proposed in this chapter consists in reducing the original set of
instants to a selection of representative elements that enable a satisfactory (although
not necessarily optimal) design of the thruster layout in terms of positions and
orientations (see [1, 5]).

In this perspective and without any loss of generality, we can consider the
(original) set of .NI +1 instants (corresponding to the time discretization adopted) as
associated with .NI + 1 “observations,” each consisting of a six-dimensional object.
As a matter of fact, these observations represent the .NI + 1 demands (at each
discretization instant) from the controller, in terms of overall forces and torques
to keep the attitude of the spacecraft (constantly) in compliance with the mission
requirements. More precisely, each instant i is associated with the three spatial
components of force and torque, i.e., .Fi = (

Fxi, Fyi, Fzi

)
and .Ti = (

Txi, Tyi, Tzi

)
.

Therefore, the .NI + 1 × 6 matrix .Dext = (
Fx, Fy, Fz, Tx, Ty, Tz

)
represents the

extended data set to be reduced.
Cluster analysis is a powerful tool that comes in handy when addressing data

reduction problems, the objective of this work. The basic idea is to split matrix
.Dext into K collections of observations, which are similar to one another. Then, one
selected observation for each cluster is adopted as its representative. The resulting
set of these K representatives defines the reduced mission scenario in terms of force
and torque requests. This method is based on a suitable proximity measure and
clustering criterion. The former can be expressed as a distance function determining
the closeness between observations. The latter is a cost function (to be minimized),
which is properly defined to evaluate the within-cluster cohesion and separation
between clusters.

The remainder of this chapter is structured as follows. Section 2 introduces the
overall clustering approach (referring the reader to the topical literature for a more
in-depth discussion on the subject). Section 3 looks into the application of clustering
techniques to the control dispatch optimization problem in question. Section 4
considers a case study inspired by the real-world NGGM exercise (not reported for
confidentiality reasons). Section 5 concludes this chapter with some remarks and
suggestions for future research activity.
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2 Clustering Approach

The choice of the proximity measure and clustering criterion is strongly related
to the specific problem under study, and there is no general rule to choose one
over another. In the present work, k-means clustering (see [7]) represents the basic
method and K-medoids (see [7]) that is actually a variant of k-means with its
different versions has been considered as the reference framework for a comparative
analysis.

2.1 Algorithmic Framework

Although k-means and k-medoids are actually quite similar clustering methods, they
are overviewed separately hereinafter to pinpoint the relevant specificities.

2.1.1 K-means

K-means is arguably one of the most popular partitional clustering methods. The
objective of k-means is to identify K clusters that minimize the sum-of-squared-
error objective function. If the set of K clusters is .C = C1, ..., CK0 , the task of
k-means consists in determining:

.
argmin

C

K∑
i=1

∑
x∈Ci

||x − μi ||2 (3)

where x is the generic observation and .μi is the mean (centroid) of cluster .Ci .
Although this problem is NP-hard (see [7]), there exists a vast variety of heuristic
algorithms that converge rapidly to a local optimum. The best known is Lloyd’s
algorithm (see [7]), which operates as follows:

1. Select K initial-guess cluster centers (centroids). This can be done randomly or
based on some initialization strategies.

2. Assign each observation to the nearest centroid.
3. Compute the averages of the observations in each cluster, which become the K

new centroids.
4. Repeat Steps 2 and 3 until the objective function is no longer improved. The

way it is formulated, k-means attempts to minimize the sum of within-cluster
variances. Intuitively, the most appropriate choice as a proximity measure for
Step 2 is the Euclidean distance because the sum of squared errors is the sum of
squared Euclidean distances.
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Initial Partition

The result of Lloyd’s algorithm is highly dependent on the K initial clusters, and
different initial partitions can converge to different local minima. Usually, the
algorithm is run a number of times with different initial centroids in order to improve
the solution. Among the possible initialization algorithms, K-means.++ (see, e.g.,
[2]) improves both the quality of the solution and the overall running time. K-
means.++ (see, e.g., [2]) starts by randomly selecting an observation from the data
matrix .Dext . The observation selected becomes the first centroid .c1.

Let, at any given time, .d(x) be the distance from the observation x to the closest
centroid we have already chosen. The next centroids, until we have a total of k, are
chosen randomly from .Dext with probability:

.
d2(x)∑

x∈Dext
d2(x)

(4)

At every step, each point has a probability of being chosen as a centroid that is
proportional to its squared distance from the closest centroid. The idea behind this
algorithm is to choose initial centroids as far as possible from one another and to
use a weighted probability to avoid picking outliers.

Convergence and Time Complexity

Lloyd’s algorithm converges in a finite number of iterations. The time complexity of
the algorithm and its variations is .O(nKdi), where n is the number of observations,
d is the dimension of the observations, K is the number of clusters, and i is
the number of iterations required for convergence. Most changes to the cluster
partitioning typically occur during the first iterations. Because of this, i is often
a small number and the algorithm can be considered to be linear in n.

2.1.2 K-medoids

The centroids of the clusters computed with the k-means algorithm are not nec-
essarily observations, as the centroids are the mean of the observations within the
clusters. As opposed to k-means, k-medoids methods choose actual observations as
centers of the clusters (medoids). The objective of k-medoids is the minimization
of the sum of the distances between the points belonging to the clusters and the
corresponding medoids. Since the clustering criterion is based on a distance metric,
any arbitrary dissimilarity measure can be used.
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Partitioning Around Medoids (PAMs)

Among the k-medoids algorithms, Partitioning Around Medoids (see [7]) is the best
known. The procedure of the PAM algorithm is summarized as follows:

A first “build” phase selects k initial medoids. This is done randomly or by using
some initialization method. Then, each observation is assigned to its closest medoid.
During a second “swap” phase, within each cluster, the medoids are swapped with
each member of the cluster, and the algorithm checks if the corresponding sum of
distances decreases. If this is the case, the point becomes the new medoid. Every
point is then assigned to the closest medoid. The PAM algorithm iterates these two
steps until the medoids stop changing. Alternatively, other termination criteria such
as maximum iteration number can be adopted. The time complexity of the PAM
algorithm per iteration is .O(K(nK)2). Although this complexity can be reduced to
.O(n2) with some variations, for a non-exiguous number of observations, the needed
computational time to converge becomes prohibitive.

Clustering LARge Applications (CLARA) is a variation of the PAM algorithm
that aims to shorten the running time for clustering large data sets by using samples
of the set. First, CLARA draws a number of samples from the set of observations
and clusters them with the PAM algorithm. Subsequently, it assigns the observations
from the full set to the closest medoid. The algorithm iterates the sampling and
clustering until the medoids change. Typically, the sampling is performed a limited
number of times in order to limit the computational effort. In practice, CLARA
trades optimality for speed.

2.2 Cluster Evaluation

Different methods/algorithms will create different clusters and yield different
representatives. In order to evaluate how well the representatives fit the initial data
and what is the effect of a particular method/algorithm on the final partition, some
sort of quantitative index is needed. The evaluation criteria are typically classified as
external, internal, or relative depending on the kind of information used to evaluate
the clusters (see [9]).

External criteria evaluate clusters according to pre-classified data that were not
used for clustering. On the other hand, internal criteria evaluate clustering based
on solely the observations contained in the initial data set. Finally, relative criteria
compare the clusters with other clusters yielded by other algorithms or the same
algorithm but with different parameters. That is, a relative criterion can be used to
evaluate how the same algorithm performs with different values for K . A family
of simple internal criteria that can be adopted to evaluate the results of clustering
methods/algorithms in comparison with others is based on the sum of errors.

Another internal criterion for evaluating the goodness of the representatives is
the Davies–Bouldin index (DBI, see [3]). It is defined as follows. Let us introduce,
for each cluster, the quantity
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.Si =
√√√√ 1

Ni

∑
x∈Ci

||x − xrepi
||2 (5)

where .Ni is the number of elements in cluster .Ci . As defined, .Si is a measure of the
within-cluster scattering. On the other hand, let us estimate the separation between
clusters i and j with the quantity

.Mij = ||xrepi
− xrepj

||

Let us now define

.Rij = Si + Sj

Mij

and

.Di = maxj �=iRij

The Davies–Bouldin index is defined as

.DB = 1

K

K∑
i=1

Di (6)

In accordance with Dunn’s and Silhouette criteria (see, e.g., [8]), a good
clustering algorithm is expected to yield compact and well-separated clusters. This
means that each of these clusters features a small variance and the means of the
different clusters are sufficiently distant if compared to the within-cluster variance.
Concerning, in particular, the DBI (which is a specific case of Dunn’s matrix), the
lower its value is, the better the clustering scheme results.

3 A Clustering Approach Tailored to the Problem

Clustering methods find extended applications in a significant number of scien-
tific and industrial areas, including big data analysis, computer graphics, pattern
recognition, machine learning, and bioinformatics. Cluster analysis is expected to
be adopted ever more frequently in space engineering as well. The overall approach
outlined in Sect. 2 is applied hereinafter to the attitude control dispatch optimization
problem, as stated in Sect. 1.
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3.1 Data Normalization

The problem in question displays different data typologies. Actually, different
dimensional units are involved, i.e., those associated with the given forces and
torques, respectively. Additionally, also when the same physical quantities are
concerned, different orders of magnitude may occur. For instance, the magnitudes
of the longitudinal forces (along the motion direction) could prevail with respect
to the others. This is the operational framework considered in this chapter. Since
k-means minimizes the sum of squared deviations (respectively, multiplied by the
cluster cardinality), clusters with the same cardinality and variance but different
mean values yield the same deviation (i.e., error) contribution. Although they have
the same cost with respect to the minimization criterion, they are not equivalent
in terms of the relative errors (which are higher for the lower mean values). This
means that in the overall partition, clusters with lower mean values may be poorly
represented. As is gathered, the larger the oscillation range and the closer to zero the
mean value, the more critical the corresponding quantity becomes. To overcome the
abovementioned difficulties, the forces and torques can be normalized as follows:

.F ∗
xi = Fxi

||Fx || F ∗
yi = Fyi

||Fy || F ∗
zi = Fzi

||Fz|| T ∗
xi = Txi

||Tx ||

T ∗
yi = Tyi

||Ty || T ∗
zi = Tzi

||Tz|| (7)

Here, .F ∗
xi , . . . , and .T ∗

xi , . . . are the normalized force and torque components,
respectively. .|| || is the Euclidean norm (in .R

NI +1). The following observations
offer an intuitive justification for the choice of the Euclidean norm. If x is the generic
variable and .x∗ is the normalized one, the variance of .x∗ is .σ 2

x∗ = σ 2
x /||x||2. The

expression below holds

.σ 2
x = ||x||2

N
− x2 (8)

where .x is the mean value of x and .σ 2 and N are the variance of x and the number
of observations, respectively. Namely, Eq. (8) can be derived as follows:

.σ 2
x =

∑N
i=1(xi − x)2

N

=
∑N

i=1(x
2
i − 2xix + x2)

N

=
∑N

i=1 x2
i − 2x

∑N
i=1 xi + Nx2

N
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=
∑N

i=1 x2
i − 2Nx2 + Nx2

N

=
∑N

i=1 x2
i − Nx2

N

= ||x||2
N

− x2

Therefore, .||x||2 = N(σ 2
x + x2) and consequently .σ 2

x = σ 2
x /

(
N(σ 2

x + x2)
)
, or

equivalently

.σ 2
x = 1

N

(
1 − x2

σ 2
x + x2

)
(9)

From Eq. (9), it can be observed that .σ 2
x∗ varies in the range .[0, 1/N] (i.e., .σ 2

x∗ = 0
when .σ 2

x = 0 and .x2 �= 0, whereas .σ 2
x∗ = 1/N when .x2 = 0 and .σ 2

x �= 0).
Additionally, for any .σx fixed and different from zero, .σ ∗

x �= 0. It can further be
seen from the same expression that if x and y are two variables, the inequality

.σ 2
x∗ > σ 2

x∗ holds if and only if .
σ 2

x

σ 2
x

> x2
y2
. This is true, in particular, when .σ 2

x = σ 2
y and

.|x| < |y|. In this case, in the minimization process carried out by k-means (for the
same cardinality of the sets .Sx and .Sy), the cost associated with .Sx (corresponding
to the variable that has the smaller absolute mean value) is higher than that relevant
to .Sy (corresponding to the variable that has the larger absolute mean value). On the
contrary, if no variable normalization were adopted, .Sx and .Sy would have exactly
the same cost (and therefore the representation of .Sx could be significantly biased).
On the other hand, if .|x| = |y| (with .x, y �= 0) and .σ 2

x > σ 2
y , then again .σ 2

x∗ > σ 2
y∗ .

That is, in the optimization process operated by k-means, given two variables with
equal absolute mean values (for the same cardinality of .Sx and .Sy), the one with
larger variance is dominant also when adopting the Euclidean normalization.

Therefore, the proposed normalization rescales the variances of the variables
according to how critical they are to the attitude control dispatch problem.

3.2 Adopted Clustering Methodology

Since the k-means method yields a set of K centroids that generally do not belong
to the set of observations, its implementation requires some adjustments to suitably
define the representatives after clustering the set of observations. One way to
proceed is described here below.
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3.2.1 Adjusted k-means

The overall k-meansmethod has been reshaped on the basis of the following steps:

1. Start k-means with k-means.++ as an initialization method.
2. Compute the Euclidean distances from the first centroid to the whole set of

observations.
3. Select the nearest observation as the first representative.
4. To choose (the general) representative j:

• Compute the Euclidean distances from the centroid to the whole set of
observations.

• If the closest observation has not been already chosen as representative, select
it as a representative. If it is already a representative, do not assign any other
representative.

Although the above algorithm may end up with fewer representatives than the
number K chosen initially, this outcome is deemed to occur very rarely. The
approach however avoids having representatives too similar to one another. One
of the major drawbacks of k-means is its sensitivity to outliers. Since centroids are
mean values of clusters, the selected representatives are likely to be affected by
observations that differ significantly from the others within the clusters. In light of
this observation, the PAM algorithm would theoretically yield better representatives
for the set (medoids). However, the effectiveness of its implementation will depend
on the scale of the observation set. On the other hand, the implementation of
the CLARA algorithm is likely to yield worse solutions than those related to k-
means. One other solution to the outlier problem consists in applying a variant of
Lloyd’s algorithm to the k-medoids clustering, as described in Sect. 3.2.2, where the
procedure is adapted to the problem object of this work.

3.2.2 Lloyd-Like Algorithm for K-medoid

The basic Lloyd algorithm is redefined by the following steps:

1. Select K initial medoids with k-means.++.
2. Assign each observation to the closest medoid.
3. For each observation in each cluster, compute the sum of distances from the

observation to every other observation in the cluster.
4. Select, for each cluster, the observation that minimizes the sum as the new

medoid.
5. Assign each observation of the whole set to the closest medoid.
6. Repeat Steps 2 through 4 until no further updates occur.

The complexity of this algorithm is .O(nK), equivalent to that of k-means. The
quality of the algorithm can also be improved by a PAM-like update. After Lloyd’s
iterations, the algorithm can select, for each cluster, the observations furthest from
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and the closest to the corresponding medoid. Then, it checks if the sum of distances
improves by using the selected observations as medoids. Namely, it performs a swap
step limited to a small subset of observations. This variant aims to escape local
minima and enhance the quality of the solution. Although the Lloyd-like k-medoids
algorithm yields better results than CLARA, it has to be compared with the adapted
k-means algorithm in order to draw valid conclusions.

3.2.3 Hybrid k-means–k-medoids

A further alternative consists in a hybrid algorithm, based on a joint use of k-means
and k-medoids. The procedure is defined by the following steps:

1. Run the adapted k-means algorithm.
2. Run the Lloyd-like algorithm, using the output of the adapted k-means algorithm

as the initial medoid instead of using k-means.++.

Heuristically, this hybrid algorithm will refine the representatives chosen by k-
means and locally improve the representation of the initial set.

3.3 Approach Evaluation and Practical Implementation

In accordance with the normalization for forces and torques introduced in Sect. 3.1,
the clustering evaluation approach concerning the dispatch problem under study
can be carried out on the basis of the specific error definition reported here below.
Letting i denote the i-th row of matrix .Dext and j denote its j -th column, the generic
normalized i-th observation is

.o∗
i = (Fx∗ , Fy∗ , Fz∗ , Tx∗ , Ty∗ , Tz∗) (10)

Its normalized representative is

.o∗
i = (Fx∗

rep
, Fy∗

rep
, Fz∗

rep
, Tx∗

rep
, Ty∗

rep
, Tz∗

rep
) (11)

We can define the error of representation of the observation as the vector:

.ei = (Fx∗ − Fx∗
rep

, Fy∗ − Fy∗
rep

, Fz∗ − Fz∗
rep

, Tx∗ − Tx∗
rep

, Ty∗−, Ty∗
rep

, Tz∗ − Tz∗
rep

)

(12)
Using this notation, we can build a matrix E with the same size as .Dext where

each row is the error of representation .ei of the i-th observation of matrix .Dext .
The element .eij is therefore the error of representation of the j -th component of the
i-th observation. That is, for example, .e45 is the error of representation of .Ty of the
fourth observation of matrix .Dext . We can now define some useful internal indexes.
The mean error is given by
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.ME = 1

N

N∑
i=1

||ei ||2 (13)

and it represents the average distance between each observation and its representa-
tive. The mean squared error is instead given by

.MSE = 1

N

N∑
i=1

||ei ||22 (14)

Since this index takes into account the sum of squared distances, the cost is
shifted on observations with bigger errors of representation. Algorithms increment-
ing significantly the value of this index are therefore expected to provide subsets
of observations that are poorly represented. When performing clustering evaluation,
it may happen that an algorithm performs better than the others in terms of ME,
yet worse in terms of MSE. This is an indication that although this algorithm is on
average better than the others in representing the whole set, it performs poorly when
comparing the worst represented observations. Analogous conclusions can be drawn
using the maximum error index, which is useful to compare the worst represented
observation:

.MAX = max
i

||ei ||2 (15)

In any case, cluster evaluation should be carried out by comparing each one of
the indexes. It is also strongly recommended to evaluate the DBI. By plotting DBI

against K , the index is supposed to decrease monotonically until the correct number
of clusters is achieved. However, the value of K for which this happens may not be
appropriate for the problem under study, as the resulting complexity of the problem
could become unacceptable. If possible, in practice, it is recommended to choose
a value for K according to the elbow criterion. Namely, by plotting DBI against
K , a good compromise between the representation error and the computational
complexity is attained when the value of K corresponds to a sharp elbow (see Fig. 1).
Assuming this happens, exceeding that number of clusters corresponds to a drop of
added quality to the representation. If this does not happen, the number of K should
be chosen according to an acceptable running time of the whole solution process.

Once K is assigned with a value, it is recommended to run each one of the
three algorithms described above several times and choose the best representa-
tion according to the evaluation indexes. Moreover, extreme values, in terms of
forces and torques, are expected to be included as representatives. That is, the
observations that correspond to the maximum and minimum values of each one
of the variables are considered. This way, twelve time instants are forcedly added to
the representatives. Furthermore, the observations corresponding to the maximum
and minimum values of .Fk and .Tk should be included as representatives. Thus,
the total number of new representatives is sixteen. The corresponding adjustment
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(involving the aforementioned sixteen elements) is recommended in order to be
certain of finding solutions to the optimal control dispatch problem that can satisfy
the maximum and minimum requests. The forced addition of new representatives
modifies the clustering schemes. Therefore, prior to the evaluation of the internal
indexes, clusters have to be redefined at the end of the procedure. This can be done
by simply assigning each observation to its closest representative.

4 Case Study

4.1 Instance Reduction

The work discussed here has been prompted by the NGGM project. NGGM aims
at providing an accurate description of the Earth gravitational eld by utilizing two
pairs of satellites in low orbit. A very precise measurement of the gravitational
eld is carried out by means of a laser interferometer that detects the distance
variations between the satellites of each pair. To satisfy the extremely demanding
measurement requirements, a very efficient attitude control must be exerted on each
spacecraft. For the work here discussed, a time discretization of 150,000 samples
(time intervals) is considered. A three-dimensional force and a three-dimensional
torque are associated with each time interval.

The clustering approach proposed in this chapter is adopted to select a number
of representative forces and torques, thus making the thruster layout optimization
problem treatable. The results of the clustering approach relevant to the NGGM
study are however not reported here for confidentiality reasons. A similar case study
(a constructed example, still involving 150,000 samples) is considered instead to
illustrate the methodology discussed.
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The relevant clustering analysis consists of three steps. For each step, the
algorithms Adjusted k-means, Lloyd-like k-medoids, and Hybrid are executed
twenty times. The DBI is adopted to identify the best result for each algorithm.
A subsequent comparative analysis is carried out to select the best algorithm. The
evaluation is based on the average error, the average squared error, the vector
maximum difference, and the DBI.

4.2 Applied Methodology

In the following, the results obtained are reported separately for each of the
abovementioned steps.

4.2.1 First Step

The first step is based on the most complex optimization model, involving a large
number of variables (including binary variables). This model is computationally
very hard to solve and empirically allows a maximum value for K around 50. A
quick evaluation of the DBI for increasing values of K (using all three algorithms)
shows that the elbow mentioned in Sect. 3.3 corresponds to a much bigger value
than 50. Therefore, the quality of the representation of this step is constrained by the
computational burden of the model. The resulting representation given by the best
run of each model is quite coarse (see Table 1). Figures 2 and 3 display the results
given by the best performing algorithm, namely the hybrid one. Even though Lloyd-
like k-medoids gives better results in terms of ME, the difference is not substantial
and the hybrid performs better according to all other internal indexes.

4.2.2 Second Step

The second step refines the result of the first. The relevant model is simpler than that
adopted in the first step since it does not include binary variables. The corresponding
degrees of freedom are in fact set on the basis of the first step. In this case, the limit
for K can be higher. Using the elbow method (Sect. 3.3), .K = 250 is chosen as a
reasonable compromise to significantly increase the precision of the representation

Table 1 Algorithm comparison for .K = 50

Algorithm ME MSE MAX DBI

Adjusted k-means .0.0035997 .0.154313e − 04 .0.017872 .28.660082

Lloyd-like k-medoids .0.0035569 .0.157626e − 04 .0.020397 .30.591099

Hybrid .0.003579 .0.153366e − 04 .0.017043 .28.576472
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Fig. 2 Force samples and their representation for .K = 50 (first 2 days)

(see Table 2, Figs. 4 and 5). Once again, the figures refer to the best run of the hybrid
algorithm, which clearly performs better than the other two. In a real-case scenario,
this algorithm would therefore be the obvious choi00ce.

4.2.3 Third Step

The third step is aimed at assessing the previous results (Steps 1 and 2). K is
allowed to reach 1000 since, according to the elbow criterion for the DBI, the
actual benefits of a higher value for K would be limited. This choice is made as
an acceptable compromise taking into account both the computational effort and
the given memory limitations. The final results are reported in Table 3, Figs. 6 and
7. The hybrid algorithm was chosen for this final step. However, it is interesting
to note that the best run of the adjusted k-means algorithm performs better than
the best run of the hybrid in terms of maximum error. This is a clear sign that the
local refinement provided by the second step of the hybrid algorithm (Sect. 3.2.3)
improves the representation of the initial set in terms of ME and MSE.
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Fig. 3 Torque samples and their representation for .K = 50 (first 2 days)

Table 2 Algorithm comparison for .K = 250

Algorithm ME MSE MAX DBI

Adjusted k-means .0.0023661 .0.659904e − 05 .0.012811 .13.818361

Lloyd-like k-medoids .0.002378 .0.709510e − 05 .0.014988 .14.790639

Hybrid .0.002332 .0.641512e − 05 .0.011494 .13.548339

5 Conclusive Remarks

This work originates from a very challenging optimization problem in the context
of the NGGM ESA study.

This problem involves finding an appropriate layout for the attitude thrusters on
board the spacecraft to minimize the propellant mass consumption. The relevant
mathematical model is based on a time discretization yielding a huge set of
time intervals. This chapter considers a dedicated clustering approach aimed at
reducing the scale of the original problem by identifying a subset of time intervals
representative of the whole discretization set.
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Fig. 4 Force samples and their representation for .K = 250 (first 2 days)

The general thruster layout problem is briefly introduced first and the clustering
issue, i.e., the subject of this chapter, stated. An overview of clustering algorithms is
provided, focusing on the well-known k-means and k-medoids basic algorithms. The
mean error, mean squared error, maximum error, and the DBI index are examined
as the reference evaluation criteria.

The specific clustering problem associated with the thruster layout optimization
issue is further discussed, and an ad hoc normalization is introduced for the vectors
involved (forces and torques). A clustering case study similar to that relevant to
NGGM (not reported here for confidentiality reasons) is investigated, providing
the satisfactory results obtained simply by utilizing industry-standard computing
equipment and available clustering software. The analysis carried out is tailored to
the specific problem in question, with careful consideration of the efficiency of the
representativeness attained.
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Fig. 5 Torque samples and their representation for .K = 250 (first 2 days)

Table 3 Algorithm comparison for .K = 1000

Algorithm ME MSE MAX DBI

Adjusted k-means .0.001691 .0.341172e − 05 .0.008483 .7.233099

Lloyd-like k-medoids .0.001672 .0.351313e − 05 .0.010104 .7.224523

Hybrid .0.001642 .0.321973e − 05 .0.008897 .6.797483
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Fig. 6 Force samples and their representation for .K = 1000 (first 2 days)

The results obtained in this work appear to confirm that the presented hybrid
algorithm performs better than k-means and k-medoids. However, the results
obtained refer to a specific case, and further investigation is needed to corroborate
this result. Future research should therefore focus on different case studies and
provide evidence for the intuitive explanation given in Sect. 3.2.3.
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Fig. 7 Torque samples and their representation for .K = 1000 (first 2 days)
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Second-order Sufficient Conditions of
Strong Minimality with applications to
Orbital Transfers

Leonardo Mazzini

1 Introduction

In optimal control problems, the first-order necessary conditions (NC) allow to
identify extremals which are candidate to be optimal solutions. Then, second-
order sufficient conditions should be checked to confirm the optimality. We present
in this chapter the results demonstrated by the author in Ref. [1] concerning
Extended Sufficiency Conditions (SC) which are applicable without Strict Legendre
Conditions (SLC), without local controllability assumptions also in the frame of
saturated and bang–bang control.

These conditions can be found in orbital transfers applications, where SLC are
normally not verified and the thrust acceleration of the engine is bounded.

Extended Jacobi SC, using the method of the Verification Functions (VF), were
introduced, to our knowledge, by V. Zeiden in a series of papers [2–4]. Our objective
is to bring this approach to deal with a class of Irregular Hamiltonians that are
typical in Space Trajectory optimization when the SLC are not verified. To reach
this objective, we have used a class of discontinuous VFs which are presented in
Ref. [1] and are solvable using a generalization of the classic Riccati Equations. It
is possible to show that the extremal is always a minimum if .t0 is sufficiently close
to .tf . The use of Riccati comparison theorems allows to determine the maximal
interval where the extremal verifies the SC for the given class of VFs. When the SC
are not verified, the extremal could still be a minimum not possessing a VF which
can be resolved in terms of a solution of a Riccati Equation.
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The classic approach to demonstrate SC is based on the non-existence of the
conjugate point and rest on a wide literature whose examples are Ref. [5–7] which
discuss the weak minimum problem with fixed and free time conditions. We show
in this chapter that the conjugate point condition is weaker than our Extended SC
A more detailed study of the literature is presented in Ref. [1] where some modern
contributions in Ref. [8, 9, 11] are evaluated with respect to the present work.

At the end of the chapter, we present applications of Theorem 1 to space
trajectory optimization with numerical cases of practical interest in finite and infinite
thrust optimization. The first example is based on the minimization of a low-thrust
transfer with quadratic cost. It is a case taken from the literature, and we demonstrate
that when the firing is too long, we lose the minimality of the extremal. The second
case is a low-thrust problem with linear cost which is not tractable by classical
methods, and we demonstrate that when the firing is too long we lose the Extended
SC The third case also, an impulsive transfer problem with three pulses, is not
tractable by classical methods. In this case, we use a sequence of Riccati problems
to extend the interval where SC can be verified.

2 The Bolza Problem and the First-order NC

The Bolza problem consists in finding an admissible pair .(x, u) that minimizes the
cost function:

.J (x, u) = l(xtf , tf ) + ∫ tf
t0

�(xt , ut )dt

where .tf can be fixed or variable and .(x, u) satisfies the constraints:

.

x ∈ AC([t0, tf ],Rn), u ∈ L∞([t0, tf ], U), U ⊂ R
m

ẋt = f (xt , ut )

xt0 = x0, xtf ∈ E ⊆ R
n, dim(E) = d

(1)

Any pair .(x, u) satisfying Eq. (1) is called an admissible pair.
An admissible pair .(x̂, û) realizes a strong minimum of the cost if .∃ ε >

0 | J (x̂, û) ≤ J (x, u), ∀(x, u) | max[t0,tf ]|xt − x̂t | ≤ ε.1

An admissible pair .(x̂, û) realizes a weak minimum of the cost if .∃ ε >

0 | J (x̂, û) ≤ J (x, u),∀(x, u) | (max[t0,tf ]|xt − x̂t | ≤ ε, ess sup[t0,tf ]|ut − ût | ≤ ε).
Let us define the pre-Hamiltonian .HP (x, p, u) = (pT f (x, u) − �(x, u)) and

the associated Hamiltonian .H(x, p) = supu∈U(pT f (x, u) − �(x, u)).

1 The symbol .| | will be used to mean the Euclidean Norm.
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Typically, the target variety E is represented implicitly with a system of
equations. Thus, .x ∈ E if and only if .θi(x) = 0, i = 1, .., n − d a set of functions
with linearly independent gradients. We introduce the following hypotheses H0:2

1. .f,�, l, θi , i = 1, .., n − d, are globally .C1 in all their arguments.
2. U is compact and constant in time.

With H0, .HP (x, p, u) = (pT f (x, u) − �(x, u)) is .C1 in all its arguments.
Calling .z = (x, p), .Fb(z) the multi-valued feedback law derived from the

Maximum Principle, we have (see [10])3

.Fb(z) = {u|HP (z, u) = H(z)} , ∂zH(z) = cou∈Fb(z)∂zHP (z, u)

.H(z) is a Lipschitz Continuous (in short Lip) function differentiable in z, where
.Fb(z) is a singleton. .∂zH is the generalized gradient which extends the concept of
derivative. The first-order Necessary Conditions for a minimum weak or strong—
excluding the abnormal case—require the existence of a pair .(x̂, p̂), which we call
extremal, that satisfies the following conditions:

.

∃p̂ ∈ AC([t0, tf ],Rn), ∃νi ∈ R, i = 1, .., n − d :
˙̂x ∈ ∂pH |(x̂,p̂),

˙̂p ∈ −∂xH |(x̂,p̂)

x̂t0 = x0, x̂tf ∈ E ⊆ R
n, p̂tf + ∂xg|x̂tf

= 0
(2)

where .g(x) = l(x)+∑
i=1,..,n−d νiθi(x). In the Open Time problems where .tf is not

defined, we have the additional condition: .H |(x̂tf
,p̂tf

,tf ) = 0. The state and co-state
dynamics are here represented as differential inclusions. When .∂zH is a singleton,
the NC are written in the more usual form: . ˙̂x = ∂pH |(x̂,p̂) and . ˙̂p = −∂xH |(x̂,p̂).

3 The Basic Assumptions on the Hamiltonian and the
Extremal

We assume that the Hamiltonian is smooth in a neighborhood of the extremal,
outside a finite number of surfaces where .H(z) is not differentiable. The feedback
is piecewise continuous with jumps when the extremal crosses these surfaces of
discontinuity that play the same role of the switching functions often used in the
literature.

Given the extremal .ẑt = (x̂t , p̂t ), consider a finite set of smooth hypersurfaces
.Sk(z) = 0, k = 1, . . . ,M . Let .G = ∪k=1...M z | Sk(z) = 0 be the union of all these
hypersurfaces. The Hamiltonian .H(z) ∈ C0(R2n) and .H(z) ∈ C3(R2n/G). Under

2 Both hypotheses can be relaxed, and we introduce them in this form for simplicity.
3 We refer to the Clarke generalized gradient, see [10], which is a non-empty closed convex set; we
use the same symbol to mean the generalized gradient set and the partial derivative, the ambiguity
being resolved by the logical statement.
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these conditions, the Hamiltonian can be represented in a neighborhood of a generic
surface .S(z) = 0 as

.H(z) = H0(z) + k(S(z)) S(z) (3)

where .k(S)|S<0 = 0, k(S)|S≥0 = 1, and .H0(z) and .S(z) are two smooth functions
in .R

2n whose properties will be specified hereunder.
In addition, the extremal crosses these surfaces transversally and never crosses

them at the intersection of different hypersurfaces. The crossing times are finite in
number.

This kind of Hamiltonians is very general for problems with saturated or bang–
bang control.

Let us formalize all the hypotheses. Let .Bρ(x) be the closed ball of radius .ρ and
center x, we will study Hamiltonians verifying, for a given extremal .ẑt = (x̂t , p̂t )

and for some .ρ > 0, the following hypotheses H0/I:

1. .(l, θi, i = 1, .., n − d) ∈ C2(�) where .� ∈ R
n is open and .Bρ(x̂tf ) ⊂ �.

2. Let .Nρ = {
(x, p, t)|t ∈ [t0, tf ], (x, p) ∈ Bρ(x̂t , p̂t )

}
be a tubular neighborhood

of radius .ρ around the candidate extremal.
3. There is a sequence of strictly increasing times .tck

, k = 1, .., Nc, with .t0 < tc1
and .tcNc

< tf where the extremal makes a jump in the first derivative. Let us call
.	 = ∪1,..,Nc tck

and .ẑtck
cross points.

4. There is a finite set of connected compact smooth hypersurfaces

.Sk
ρ =

{
z ∈ Bρ(ẑtck

) | Sk(z) = 0
}
, .k = 1, .., Nc, with .Sk ∈ C3(R2n), that

intersects the extremal transversally only at the corresponding cross point .ẑtck
;

.Sk(ẑt ) is strictly monotonic in a neighborhood of .tck
and .Sk(ẑtck

) = 0.

5. Each hypersurface .Sk
ρ separates the tube .Nρ into two subsets .Nk

ρ−, which

contains the extremal arc in .[t0, tck
), and .Nk

ρ+, which contains the extremal arc
in .(tck

, tf ]. All together the hypersurfaces decompose the tube .Nρ in .Nc + 1

tube sections: .N1
ρ = N1

ρ−, .Nk
ρ = Nk−1

ρ+ ∩ Nk
ρ−, k = 2..Nc, .N

Nc+1
ρ = N

Nc
ρ+ not

intersecting each other .Nk
ρ ∩ Nk+1

ρ = ∅, k = 1, .., Nc.
6. .H ∈ C0(Nρ), each restriction .Hk in .Nk

ρ , can be smoothly continued, i.e., .Hk ∈
C3(
k), where .
k ⊃ Cl(Nk

ρ) are open subsets.
7. The Hamiltonian can be represented as .H(z) = H0(z) + k(S)S(z), if z ∈ 
k ∩


k+1, where .k(S)|S<0 = 0, k(S)|S≥0 = 1. Two cases are possible: or .H0 =
Hk, S = Hk+1 − Hk, Ṡtc > 0, either .H0 = Hk+1, S = Hk − Hk+1, Ṡtc < 0.4

8. .Fb(z) is a singleton in each .Nk
ρ and .u = Fb ∈ C1(Nk

ρ , U).

The assumptions chosen do not allow to treat some problems, like singular arcs
where the extremals lay on the hypersurface for a finite interval of time or chattering

4 This representation structurally satisfies the Maximum Principle and is a general presentation of
the H0/I Hamiltonians close to cross points. It is easy to verify that .H(z) = H0(z) − k(S)S(z)

does not agree with the Maximum Principle.
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arcs, where we have an infinite number of crossings in a finite interval of time.
However, they are applicable to all problems treated by the author in space trajectory
optimization where a finite number of transversal crossings of these hypersurfaces
are typical. In addition, they work without the controllability or the Legendre–
Clebsh conditions, generating relatively easy procedures which we believe useful
in many applications.

From the hypotheses H0/I, it follows that the second derivatives of .H(z)

calculated along the candidate extremal are continuous functions of t in the intervals
.[t0, tc1), .(tc1, tc2),..,.(tcNc

, tf ]. When the hypersurfaces of discontinuity are not
present and .H ∈ C2(
), with .
 open set and .
 ⊃ Cl(Nρ) and .Fb ∈ Lip(Nρ,U),
we will call the Hamiltonian Regular and the hypotheses H0/R.

Finally, we will call H0/IOR those Hamiltonians and extremals that fullfill
hypotheses H0/R or H0/I.

3.1 An Example of Irregular Hamiltonian

We consider an optimization problem with a multidimensional control implement-
ing a Hamiltonian model covering many applications and also providing a good
insight on the discontinuity surfaces in the phase space.

.

ẋ = f0(x) + fk(x)uk

x ∈ R
n, uk ∈ [−1, 1], k ∈ 1, ..n1, ..n2,

� = l0(x) + ∑
k=1,n2 lk(x)uk + (1/2)

∑
k=n1+1,n2 Lku

2
k

Lk ∈ R+

(4)

We can easily find the Hamiltonian and the controls using the Maximum Principle,
and the controls will be

.

uk = sign(pT fk(x) − lk(x)), k = 1 . . . n1

uk = sat ((pT fk(x) − lk(x))/Lk), k = n1 + 1 . . . n2

sat (y)||y|>1 = sign(y), sat (y)||y|≤1 = y

sign(y)|y>0 = 1, sign(y)|y≤0 = −1

(5)

Consequently, the Hamiltonian is

.

H(x, p) = y0 + ∑
k=1,n1 |yk| + ∑

k=n1+1,n2(Lkyksat (yk) − (Lk/2)sat (yk)
2)

y0 = pT f0(x) − l0(x)

yk = pT fk(x) − lk(x), k = 1..n1
yk = (pT fk(x) − lk(x))/Lk, k = n1 + 1..n2

(6)
From this expression, we see that we have two kinds of singular hypersurfaces.
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On the surfaces .yk = 0, k = 1..n1, we have a discontinuity of the first derivatives
of the Hamiltonian, and we can put it in the standard representation form using the
following equality: .|yk| = −yk + k(2yk)(2yk), k = 1..n1.

On the surfaces .yk−1 = 0, yk+1 = 0, k = n1+1..n2, we have a discontinuity of
the second derivatives of the Hamiltonian. This can be checked using the following
equality:

.y sat (y) − 0.5 sat (y)2 = y2/2− 1/2(k(y − 1)(1− y) + k(−1− y)(−1− y))2

which is a parabola that outside the saturation points is continued linearly with the
tangent. We assume that these hypersurfaces do not intersect inside the .Nρ tube
around the candidate optimal trajectory.

4 The Extended Sufficient Conditions

We synthesize here all the results obtained in Ref. [1] for the Sufficient Conditions
of a strong minimum of the Bolza Problem. We will assume the Hamiltonian and
the target as time independent. A transformation of the problem that allows to deal
with the time dependent case is given in Ref. [1]. For a given Hamiltonian .H(x, p)

and extremal .x̂t , p̂t verifying the H0/IOR conditions, we consider

.

Aij (t) = ∂2H
∂pi∂xj

|x̂t ,p̂t
i = 1, .., n, j = 1, .., n,

Bij (t) = ∂2H
∂pi∂pj

|x̂t ,p̂t
i = 1, .., n, j = 1, .., n,

Cij (t) = ∂2H
∂xi∂xj

|x̂t ,p̂t
i = 1, .., n, j = 1, .., n

(7)

These matrices will be time continuous in the H0/R case, and for the general H0/I
case they are not defined in a finite set of cross points .tc ∈ 	. In both cases, we can
define a solution of the following Riccati differential equation:

.Q̇ + QA + AT Q − QT BQ − C = 0 (8)

In the H0/R case, the solution is classic. When the Hamiltonian and the extremal
verifyH0/I, the solution of Eq. (8) is classic between the cross points and, following
Ref. [1], the matrix .Qt has jumps at each cross point .tc:

.Q+ − Q− = �Q = q−qT−
(|Ṡtc | + qT−∂pS(x̂tc , p̂tc ))

(9)

where the function .S(x, p) is taken from the local representation of the Hamiltonian
at the cross point and
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.

Q± = limε→0+Qtc±ε

q− = ∂xS(x̂tc , p̂tc ) − Q−∂pS(x̂tc , p̂tc )

|Ṡ|tc = |∂xS
T
tc

˙̂xtc− + ∂pST
tc

˙̂ptc−| = |∂xS
T
tc

˙̂xtc+ + ∂pST
tc

˙̂ptc+|
(10)

In order to express the final conditions at the final time, we use the coordinates
defined by the .[�,] transformation, whose columns represent the tangent and the
normal vectors of the target variety E at the final point .x̂tf . We label the components
after such transformation with subscripts .(σ, π).5

Let us define . ˙̂xπ = T ˙̂x, the vector listing the .n − d components of the state
velocity in the space normal to the target variety E at .x̂tf .

Let us define the unit vector .N = T x̂/| ˙̂xπ |. Introduce .ν as subscript to mean
the component of a matrix or vector along the direction N . Taking the first column
of the . matrix the unit vector N , and calling the space of . columns orthogonal
to N as M , with component index .μ, we can pose . = [N,M]. Thus, .Qtf is
decomposed as

.Qtf =
⎛

⎝
Qσ,σ Qσ,ν Qσ,μ

Qν,σ Qν,ν Qν,μ

Qμ,σ Qμ,ν Qμ,μ

⎞

⎠ (11)

We also define .ζ = ˙̂x/| ˙̂xπ |, λ = ˙̂p/| ˙̂xπ |.
In Ref. [1], we have derived the following propositions:

Proposition 1 Given a Hamiltonian and an extremal .x̂t , p̂t verifying the H0/IOR
conditions and the Fixed Time NC, the existence of a symmetric matrix .Qt solution
of the differential equation Eq. (8), having at each cross point the .�Q jump
determined by Eq. (9) strictly positive definite, with the boundary conditions

.∂σ,σ g(x̂tf ) ≥ Qσ,σ (tf ) (12)

is an SC that this extremal is a strong minimum of the Fixed Time problem.

Proposition 2 Given a Hamiltonian and an extremal .x̂t , p̂t verifying the H0/IOR
conditions and the Open Time problem NC and .| ˙̂xπ | �= 0, the existence of a
symmetric matrix .Qt solution of the differential equation Eq. (8), having at each
cross point the .�Q jump determined by Eq. (9) strictly positive definite, with the
boundary conditions:

5 To clarify the notation used, .∂σ,σ g = �T ∂x,xg�. .xσ = �T x, so .σ, π, ν, and .μ are multi-indices
that indicate the components of a matrix after a transformation by .�,,N,M; .01,π = 0ν,π =
01,dim(π), and .Iσ,σ is the identity matrix of dimension .dim(σ).
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.

(
∂σ,σ g −∂σ,σ gζσ − λσ

(−∂σ,σ gζσ − λσ )T ζ T
σ ∂σ,σ gζσ + ζ T

σ λσ − ζ T
π λπ

)

≥
(

Qσ,σ Qσ,ν

Qν,σ Qν,ν

)

(tf )

(13)
is an SC that this extremal is a strong minimum of the Open Time problem.

If the extremal is such that .| ˙̂xπ | = 0 and

. ˙̂xT
σ ∂σ,σ g ˙̂xσ + ˙̂pT

σ
˙̂xσ > 0 (14)

the same proposition applies with the following boundary conditions in place of
IEq. (13):

.

(

∂σ,σ g − (∂σ,σ g ˙̂xσ + ˙̂pσ )(∂σ,σ g ˙̂xσ + ˙̂pσ )T

˙̂xT
σ ∂σ,σ g ˙̂xσ + ˙̂pT

σ
˙̂xσ

)

≥ Qσ,σ (tf ) (15)

4.1 The Jacobi Field

The “Jacobi Field” is the system of equations of variations of the Hamiltonian
Flow. Given .H(x, p) and its extremal that satisfy H0/IOR, the solutions of the
Hamiltonian Flow verify in the sense of Filippov (see [13] Ch2) a system of ordinary
differential equations with discontinuous second members. The solutions close to
the extremal .(x̂t , p̂t ) satisfy (see [13] Ch2.11)

.xt − x̂t = x̄t + o(|x̄t0 | + |p̄t0 |), pt − p̂t = p̄t + o(|x̄t0 | + |p̄t0 |) (16)

where .(x̄t , p̄t ) are the solutions of the following system of equations of variations:6

. ˙̄xt = ∂xpĤt x̄t + ∂ppĤt p̄t , ˙̄pt = −∂xxĤ x̄t − ∂pxĤt p̄t (17)

The solution .(x̄t , p̄t ) is called the variation of the Hamiltonian Flow.
In the case H0/I, the solution jumps across the discontinuity surfaces following

the rules defined in Ref. [1]. Using Filippov theory, we derive the jump in state and
co-state variations:7

.

�x̄|tc =
(

∂pS∂xST

|Ṡ|
)

|tc x̄tc− +
(

∂pS∂pST

|Ṡ|
)

|tc p̄tc−
�p̄|tc = −

(
∂xS∂xST

|Ṡ|
)

|tc x̄tc− −
(

∂xS∂pST

|Ṡ|
)

|tc p̄tc−
|Ṡ|tc = |∂xS

T
tc

˙̂xtc− + ∂pST
tc

˙̂ptc−| = |∂xS
T
tc

˙̂xtc+ + ∂pST
tc

˙̂ptc+|
(18)

6 .∂α,βĤt are the second derivatives of the Hamiltonian on the candidate extremal arc.
7 .� gives the jump of the variable in the time positive direction, i.e., .x̄|t = x̄|t+ − x̄|t−
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.|Ṡ|tc �= 0 at all the cross points guarantees the existence and uniqueness of the
Jacobi Field Dynamics. Equations (18) are valid also substituting .(x̄tc−, p̄tc−) with
.(x̄tc+, p̄tc+). The solution .(x̄t , p̄t ) is called the variation of the Hamiltonian Flow
and represents the variation between neighboring extremals and our candidate
extremal. We introduce an n-dimensional family of variations of the Hamiltonian
Flow through the following positions: .x̄t = Ut k, p̄t = Vt k, ∀k ∈ R

n, in such
family, if .det (Ut ) �= 0, .p̄t = Vt U−1

t x̄t . The pair of matrices .(Ut , Vt ) verifies the
following matricial version of the Jacobi Field:8

.

U̇ = AtU + BtV

V̇ = −CtU − AT
t V

Bt = Bt
T ≥ 0, Ct = Ct

T .

(19)

For Irregular Hamiltonians, these equations are not defined at the cross points where
the solution .(Ut , Vt ) undergoes a discontinuity jump. In Ref. [1] we developed
expressions for the jumps of the .(Ut , Vt ) solution at the cross points, which are
useful for the numerical integration of the Jacobi Field along an extremal of a H0/I
Hamiltonian. At a generic cross point placed in .tc = 0 to give an example . ˙̂pt and . ˙̂xt

have a jump in the state and co-state derivative:

.
� ˙̂x = ˙̂x0+ − ˙̂x0− = sign(dS/dt)∂pS|(x̂0,p̂0)

� ˙̂p = ˙̂p0+ − ˙̂p0− = −sign(dS/dt)∂xS|(x̂0,p̂0)

(20)

and a jump in the .(Ut , Vt ) matrices, coherent with Eq. (9):

.
U+ − U− = (−� ˙̂x� ˙̂pT U− + � ˙̂x� ˙̂xT V−)/|Ṡ|,
V+ − V− = (−� ˙̂p� ˙̂pT U− + � ˙̂p� ˙̂xT V−)/|Ṡ| (21)

For the backward integration, we use the equivalent formulae:

.
U− − U+ = (� ˙̂x� ˙̂pT U+ − � ˙̂x� ˙̂xT V+)/|Ṡ|,
V− − V+ = (� ˙̂p� ˙̂pT U+ − � ˙̂p� ˙̂xT V+)/|Ṡ| (22)

These last expressions are the more convenient for the applications considering that
we have to perform normally a backward integration.

Equations (19) are strictly linked to Eq. (8) as discussed in many references
(e.g., [4]), and consequently the pair .(Ut , Vt ) allows to reformulate the SC by
checking .det (Ut ) in the given interval. We have the following proposition from
Ref. [1]:

8 Calling as before in Eqs. (7) .At = ∂xpĤt , Bt = ∂ppĤt , Ct = ∂xxĤ .
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Proposition 3 Let .Utf and .Vtf satisfy the so-called self-conjugate initial condi-
tions, .Ktf = UT

tf
Vtf − V T

tf
Utf = 0, then the backward integrated solution .Ut, Vt of

Eqs. (19), with jumps defined by Eqs. (22) at the cross points remains self-conjugate
.∀ t ∈ R − 	, and in a time interval where .det (Ut ) �= 0 the matrix .Qt = −VtUt

−1

is symmetric and solves Eq. (8) with jumps defined by Eq. (9) at the cross points.

Proposition 4 In Propositions 1 and 2, under hypotheses H0/I, the SC for an
extremal verifying the NC to be a minimum are defined by the existence of a matrix
.Qt in .t ∈ [t0, tf ] that verifies:
1. Equation (8) in the intervals between the cross points .tc ∈ 	.
2. Boundary Conditions (BC) on .Qtf verifying the conditions of Proposition 1 for

the Fixed Time case and Proposition 2 for the Open Time case.

3. Jump discontinuities .�Q = q−qT−
(|Ṡtc |+qT−∂pS)

at the cross points.

4. .Qt is bounded in .t ∈ [t0, tf ]
5. .|Ṡtc | + qT−∂pS > 0 at the cross points .tc ∈ 	.

The above conditions 1, 2, 3, 4, 5 can be expressed in terms of the pair .Ut, Vt in
.t ∈ [t0, tf ] as follows:
1. Equation (19) in the intervals between the cross points .tc ∈ 	

2. Self-conjugate BC in .tf with .det (Utf ) �= 0 and .Qtf = −Vtf Utf
−1. For example,

.Utf = In,n, Vtf = −Qtf . .Qtf verifies the conditions of Proposition 1 for the
Fixed Time case and Proposition 2 for the Open Time case.

3. Jump discontinuities as per Eqs. (21) or (22) at the cross points .tc ∈ 	.
4. .det (Ut ) �= 0, in .t ∈ [t0, tf ] − 	.
5. .det (Utc+)det (Utc−) > 0 at the cross points .tc ∈ 	.

With the choice .Utf = In,n, Vtf = −Qtf , the last two items are equivalent to ask
that .det (Ut ) > 0 in .t ∈ [t0, tf ] − 	

5 Maximal Interval for the Extended Sufficient Conditions

Propositions 1 and 2 can be improved in order to maximize the existence interval for
the Extended SC by pushing back as much as possible the interval of existence of
the Riccati solution using the BC To better clarify this pushing back, we introduce
the following definition:

Definition 5.1 Take a matrix .Qt that verifies Eq. (8) in some interval including .tf
for some final condition .Qtf . Consider the pair .(Ut , Vt ) self-conjugate that satisfy
Eqs. (19), with jumps defined by Eqs. (22) at the cross points, such that .Qt =
−VtUt

−1 and .Utf = In,n, Vtf = −Qtf . Let us associate with this matrix a time .aQ

defined as follows:
Given the two sets:
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.
Z = [ t |t < tf , t �∈ 	, det (Ut ) = 0]
D = [ t |t < tf , t ∈ 	, det (Ut+)det (Ut−) < 0] (23)

If .Z ∪ D = �, aQ = −∞, else .aQ = sup(Z ∪ D).

Thus, .aQ is the first time at the left of .tf when .Qt diverges or a cross point does not
satisfy the positivity condition. Note that .aQ is well defined even if .det (Utf ) = 0,
in such a case if .Ut is singular in a neighborhood of .tf , then .aQ = tf , if instead .tf
is an isolated zero of the determinant then .aQ < tf .

5.1 Maximal Interval for the Extended Sufficient Conditions

Using a Riccati comparison theorem, we provide in Ref. [1] a theorem that allows
to maximize the interval where the Extended Sufficient Conditions can be applied.
In particular we can define a point .aQ∞ that is the infimum among all matrices
verifying the Boundary conditions, to do that we use this proposition from Ref. [1]
(Proposition 5.2):

Proposition 5 Consider a .Q̂t that verifies conditions 1, 2, 3, 4, and 5 in .t ∈ [a, tf ]
of Proposition 4. Any .Qt that verifies conditions 1, 2, and 3 in .t ∈ [a, tf ], such that
.Qtf > Q̂tf verifies also conditions 4 and 5 of Proposition 4. In addition, .Qt > Q̂t

in .t ∈ [a, tf ] and .aQ ≤ a
Q̂
. Given .Ŵt = ∫ t

tf
Û−1

s BsÛ
−T
s ds ≤ 0, the following

representation formula applies .ÛT
t (Qt − Q̂t )Ût = ((Qtf − Q̂tf )−1 − Ŵt )

−1 to any
.Qt that verifies conditions 1,2, and 3 in an interval .t ∈ [s, tf ], s ≥ a, where the
second member is not singular.

We use this proposition to implement a sequence of Riccati problems that can
be used to find the minimum possible .aQ among all the matrices that fulfill the
boundary constraints for the SC

Definition 5.2 In the Fixed Time problem, take an integer .N > 0 and define a .QN
t

that verifies Eq. 8 whose terminal value .QN
tf

is represented in the target variety E

basis (see Eq. (11)), as follows:

1. .QN
σ,σ is formed using IEqs. (12) with the equal sign.

2. .QN
σ,π = 0.

3. .QN
π,π = In−d,n−d , N .

.QN
tf

=
(

∂σ,σ g(x̂tf ) 0σ,π

0π,σ In−d,n−d , N

)

(24)
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In the Open Time problem, take an integer .N > 0 and define a .QN
t that verifies

Eq. 8 whose terminal value .QN
tf

is represented in the target variety E basis ( see
Eq. (11) ), as follows:

if .| ˙̂xπ | �= 0:

1. .QN
σ,σ ,QN

σ,ν, and .QN
ν,ν follow from IEq. (13) with equal sign.

2. .QN
σ,μ = 0,QN

ν,μ = 0 .

3. .QN
μ,μ = In−d−1,n−d−1 N .

.QN
tf

=
⎛

⎝
∂σ,σ g −∂σ,σ gζσ − λσ 0σ,μ

(−∂σ,σ gζσ − λσ )T ζ T
σ ∂σ,σ gζσ + ζ T

σ λσ − ζ T
π λπ 0ν,μ

0μ,σ 0μ,ν In−d−1,n−d−1 N

⎞

⎠

(25)
if .| ˙̂xπ | = 0 and IEq. (14) is verified:

1. .QN
σ,σ is formed using IEqs. (15) with the equal sign.

2. .QN
σ,π = 0.

3. .QN
π,π = In−d,n−d N .

.QN
tf

=
⎛

⎝ ∂σ,σ g − (∂σ,σ g ˙̂xσ + ˙̂pσ )(∂σ,σ g ˙̂xσ + ˙̂pσ )T

˙̂xT
σ ∂σ,σ g ˙̂xσ + ˙̂pT

σ
˙̂xσ

0σ,π

0π,σ In−d,n−d N

⎞

⎠ (26)

In all above cases, any .QM with .M > N will be such that .aQM ≤ aQM .
The monotonic sequence .aQ1 , aQ2 . . . aQN converges to .aQ∞ , for .N → ∞,

where .−∞ ≤ aQ∞ < tf .

Then, using the above propositions, we can proceed to demonstrate the following
theorem.

Theorem 1 The condition .t0 > aQ∞ is a Sufficient Condition for the strong
minimality of the extremal (we call it Extended SC). There is no matrix .Q̄ that
verifies the Riccati Equation and the Boundary conditions for the Fixed Time or
the Open Time problem such that .aQ̄ < aQ∞ . If a matrix .Q̄ verifies the SC given by

Propositions 1 or 2, then .t0 > aQ̄ ≥ aQ∞ and there is an .N such that .QN as by
definition 5.2 verifies the Sufficient Conditions.

Proof The first part of the theorem comes easily from the application of Proposi-
tions 1 and 5. We assume first that the Hamiltonian is regular.

If .Q̄πσ = 0, the demonstration is trivial. So let us assume .||Q̄πσ Q̄σπ || > 0.
Consider a generic .Q̄ that verifies the Riccati Equation and the Boundary conditions
for the Fixed Time problem. Define .JN = maxxT x=1x

T (Q̄tf − QN
tf

)x, and then

.JN = max(σT σ+πT π=1)2π
T Q̄πσ σ + (πT Q̄πππ − N πT π) (27)

When .Q̄πσ �= 0, the maximum is obtained with .σ = λQ̄σππ for some .λ > 0.
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From .σT σ + πT π = 1, we get .λ =
√

1−πT π

πT Q̄πσ Q̄σππ
.

Thus, .JN = max(πT π≤1)2
√
1 − πT π

√
πT Q̄πσ Q̄σππ + πT Q̄πππ − N πT π .

.JN ≥ 0 because this is the value obtained in the previous formula at .π = 0.
Let us introduce .q1 = ||Q̄πσ Q̄σπ ||, .q2 = ||Q̄ππ ||, .y = √

πT π .
Clearly, .0 ≤ JN ≤ max(0≤y≤1)2q1y

√
1 − y2 − (N − q2)y

2.
If we derive the second member in y to look for the maximum, we find that it

is obtained in .y = q1/N + O(1/N 2) and by substitution .0 ≤ JN ≤ q2
1/N +

O(1/N 2). Consequently, .limN →∞JN = 0.
Now, we prove by contradiction that .aQ̄ ≥ aQ∞ , and we assume that .aQ̄ <

aQ∞ . We consider a matrix solution of the Riccati equation .Q̃
δN
t so that .Q̃

δN
tf

=
Q̄tf − δN for a small positive parameter .δN = 2q2

1/N so that .(Q̃δN
tf

− QN
tf

) =
(Q̄tf − QN

tf
) − δN is negative for .+∞ > N > Nq . From Proposition 5, .aQ∞ ≤

aQN ≤ a
Q̃δN . At the same time, for construction and continuity of the Riccati

solutions with the data, .a
Q̃δN → aQ̄, which is not compatible with .aQ̄ < aQ∞ . It

follows that the assumption is false and .aQ̄ ≥ aQ∞ . From this last property, an .N
such that .t0 > aN surely exists because by assumption .t0 > aQ̄.

In the case of Irregular Hamiltonians, we can apply the same proof given here on
the Regularized Hamiltonian .Hδ introduced in Ref. [1] for the proof of Propositions
5.2 and 5.3 arriving to the same conclusions by sending .δ to zero. ��

This theorem shows that .aQ∞ is uniquely defined for any given problem and that
there are no Sufficient Conditions that can be obtained using the solution of a Riccati
Equations better than .t0 > aQ∞ . This justifies the name of Extended SC The classic
Jacobi conditions are weaker than the Extended SC as will be demonstrated in the
next chapter.

6 The Conjugate Point Condition

The Jacobi condition (JC) refers to the existence of a non-degenerate “Neighboring
Extremals Field” or “Jacobi Field” close to the extremal candidate to be a minimum.
This is the classic approach to study the sufficiency. The point where the field
becomes degenerate is called conjugate point, and we will label it .aJ to underline
its link with the Jacobi Field. Studying the Classic Auxiliary Problem for Regular
Hamiltonians under Legendre–Clebsh strict conditions and controllability, the JC
provides Sufficiency and Necessity results based on the position of the conjugate
point with respect to .t0.
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By definition, the Jacobi Field must satisfy the linearized BC of the problem at .tf
and the system of equations of the variations of the Hamiltonian Flow Eqs. (19).9 We
will investigate on the connections between the JC and the Extended SC provided
with Theorem 1 in the frame of our H0/IOR assumptions. As already shown,
Eqs. (19) provide the dynamics of the state and co-state variation through the
following positions:

.x̄t = Ut k, p̄t = Vt k, ∀k ∈ R
n (28)

We define as Jacobi matrices .(UJ
t , V J

t ) a solution of Eqs. (19), which satisfies at the
terminal .tf the BC obtained taking the linearized form of the Boundary Condition
of the NC

We introduce the suffix .(·)f to indicate the value of any extremal at its final
time .tf + t̄f in the general Open Time case, while the Fixed Time relationships are
derived setting .t̄f = 0. From the NC given by Eq. (2) (see also Ref.[6]), we have

.

g(x) = l(x) + ∑
i=1..n−d νiθi(x)

p̂f = −∂xg|x̂f
,⇒

p̄f = −∂xxg|x̂tf
x̄f − ∑

i=1..n−d ν̄i∂xθi |x̂tf

(29)

The .ν̄i can be solved introducing the orthonormal basis .[�,] which defines the
tangent and the normal space of the variety E in .x̂tf . The following relationships
hold:

.x̄f ∈ Range(�), [∂xθ1, ∂xθ2 . . . , ∂xθn−d ] |x̂tf
∈ Range() (30)

Clearly, .rank() = n − d, and we can write

.p̄f = −∂xxg|x̂tf
�k1 − k2, k1 ∈ R

d , k2 ∈ R
n−d (31)

In the Time Open problem, the difference in state and co-state at their final time of
two close extremals is

.x̄f = x̄tf + ∂pH |tf t̄f , p̄f = p̄tf − ∂xH |tf t̄f (32)

From Eqs. (29), (30), (31), and (32), we have all the ingredients to determine the
BC in matricial form .(UJ

tf
, V J

tf
) for the Fixed and the Open Time cases.

9 .At , Bt , and .Ct are defined by Eqs. (7).
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6.1 The Jacobi Sufficiency Conditions in the Fixed Time Case

In this section, we will see how the Jacobi SC is related to the Extended SC exposed
in the previous chapters.

From Eqs. (29), (30), (31), and (32) and setting .t̄f = 0 (see also [6]), we get

.x̄tf = � k1, p̄tf = −∂xxg x̄tf +  k2, ∀k1 ∈ R
d , k2 ∈ R

n−d (33)

These conditions are equivalent to the following BC for the system Eqs. (19):

.UJ
tf

= [�, 0n,n−d ], V J
tf

= [−∂xxg �,], ∂xxg = ∂xx(l(x) + νiθi(x)). (34)

.(UJ
tf

, V J
tf

) are self-conjugate as per Proposition 3, integrating them backward using
Eqs. (19) and using the jumps Eqs. (22) at the cross points, they provide a self-
conjugate pair .(UJ

t , V J
t ) and from Proposition 3 in an interval where .det (UJ

t ) �= 0
the matrix

.QJ
t = −V J

t Ut
J−1 (35)

is a symmetric solution of Eq. (8) and .QJ
t x̄t = − p̄t .

The existence of a bijective local mapping between .x̄t and .k = [k1, k2]T depends
on the invertibility of the linear mapping .UJ

t . To provide such invertibility, we must
have not only .det (Ut ) �= 0 in any open interval between two adjacent cross points
but also the determinant must not change sign at the cross points; in fact in Ref.[1], it
is shown that this condition guarantees that passing through the discontinuity surface
the flow does not lose the bijective mapping property. With this premise, we state
the JC10 for an extremal of a Fixed Time problem as follows:

Definition 6.1 The JC for a Fixed Time extremal and Hamiltonian verifying
H0/IOR is .aQJ < t0, and this is equivalent to say that an invertible relationship
between .k = [k1, k2]T ∈ R

n and .x̄t ∀t ∈ [t0, tf ) − 	 exists.

In all the problems where .dim(�) < n, .QJ
t diverges in .tf because .det (UJ

tf
) = 0,

so we cannot use Proposition 4 to demonstrate SC However, from the Jacobi matrix,
.QJ is possible to derive easily with a small perturbation of the matrix .UJ

tf
another

matrix with the characteristics requested by Proposition 4, and the following result
applies:

Theorem 2 If a Hamiltonian and its Fixed Time extremal verify H0/IOR and the
JC, that extremal is a local strong minimum. In addition, .aQJ ≥ aQ∞ .

10 This is an extension of the classic ones which do not take into account the jumps at the cross
points.
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Proof The method of proof is simple. We construct a pair of matrices .(Ut , Vt ) close
to the Jacobi ones that verify the SC from Theorem 1. Let us use coordinates where
the .[�,] frame is the identity matrix. We label

.gσ,σ = �T ∂x,xg�, gπ,σ = T ∂x,xg�, gπ,π = T ∂x,xg (36)

Pre-multiplying Eqs. (34) by .[�,]T , we get

.UJ
tf

=
(

Iσ,σ 0σ,π

0π,σ 0π,π

)

V J
tf

=
( −gσ,σ 0σ,π

−gπ,σ Iπ,π

)

(37)

Let us define for .β > 0:

.U
β
tf

=
(

Iσ,σ 0σ,π

βgπ,σ −βIπ,π

)

V
β
tf

= V J
tf

(38)

It follows

.U
β−1
tf

=
(

Iσ,σ 0σ,π

gπ,σ −Iπ,π/β

)

(39)

From which we derive .Q
β
tf
:

.Q
β
tf

= −V
β
tf

U
β−1
tf

=
(

gσ,σ 0σ,π

0π,σ Iπ,π/β

)

(40)

By setting .N = β−1, it follows that .Qβ
tf

= QN
tf

, the same defined in Theorem 1,
so .a

Qβ=0+ = aQ∞ . The following sentences hold:

– .Q
β
t verifies Proposition 1 in .(aQβ , tf ] and provides SC if .t0 > aQβ .

– From the Riccati Comparison Theorem (see Ref.[1]), we have that .Qβ
t > Q

β+ε
t

and .aQβ+ε ≥ aQβ , .∀ε ∈ R
+ , t ∈ (aQβ+ε , tf ].

– The pair .(U
β
t , V

β
t ) backward propagated from .(U

β
tf

, V
β
tf

) with Eq. (8) and the

jumps, Eqs. (22), at the cross points converge uniformly to .(UJ
t , V J

t ) .∀t ∈
[t0, tf ] − 	.11 Consequently, .limβ→0+U

β
t →UJ

t , ∀t ∈ [t0, tf ] − 	 and .∀ε >

0, ∃β̂ : |det (U
β
t ) − det (UJ

t )| < ε,∀β < β̂.

11 The solution at a given time .t ∈ [t0, tf ]−	 can be seen as a finite chain of continuous functions.

From the terminal point to the first crossing point, .(Uβ
t , V

β
t ) are locally continuous with respect to

.β due to the classic ODE theorems and the continuity of .At , Bt , and .Ct , at the crossing point the
left limit of the solution is continuous with respect to the right limit (see Eqs. (22)), and then we
sequentially continue this process in a finite number of steps until we reach the point t .
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– By assumption, .aQJ < t0, and consequently there is a .β̂ enough small so that
.a

Qβ̂ < t0.
– If in the previous bullet we substitute .t0 with a decreasing sequence .tk → aQJ

and .β̂ with a decreasing sequence .β̂k > 0 such that .|det (U
β̂k
t )| > 0, t ∈ [tk, tf ],

we get .a
Qβ̂k

< tk and at the limit .aQ∞ ≤ aQJ .

The last two sentences contain the proposition we wanted to demonstrate. ��

7 Applications to Space Orbital Transfers

We will consider three study cases. The first example is based on the minimization
of a low-thrust transfer with quadratic cost. It is a case taken by the literature,
and we demonstrate that when the firing is too long we lose the Extended SC
of the extremal. The second case is a low thrust problem with linear cost, we
have studied the NC for this class of problems in Ref. [17]. Here to study the
Sufficient Conditions we use Theorem 1, and also in this case, which is not tractable
by classical methods, we demonstrate that when the firing is too long we lose
the Extended SC The third study case is based on the minimization of Impulsive
firing transfers that lead to an Irregular Hamiltonian. We use the Extended SC and
Theorem 1 on Irregular Hamiltonians to establish SC of minimality.

7.1 Low-thrust Planar Orbital Transfer with Quadratic
Integral Cost and Regular Hamiltonian

We consider a planar transfer problem with low thrust using polar coordinates
already presented in Ref. [14] who elaborates SC from Ref. [15]. The context is
that of SLC with a Regular Hamiltonian. The coordinates are .x1 = ρ, the orbit
radius, .x2 = ϑ , the polar anomaly, .x3 = νρ = ρ̇, and .x4 = νϑ = ρϑ̇ .

Calling .μ = GMEarth, where G is the Universal Gravitational Constant, .� =
T/m, where T is the thruster force and m is the satellite mass, the equation of the
orbital dynamics is

.

ρ̇ = νρ

ϑ̇ = νϑ/ρ

ν̇ρ = ν2ϑ/ρ − μ/ρ2 + � sin(β)

ν̇ϑ = −νρνϑ/ρ + � cos(β)

(41)

We introduce also the energy per unit mass .E = (ν2ϑ + ν2ρ)/2 − μ/ρ

and the cost .J = −E(xtf ) + χ
∫ tf
t0

�2/2dt , where .χ is a weighting factor.
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The optimal transfer that is obtained minimizing the cost J tends to realize a
compromise between maximizing the energy of the final orbit and minimizing the
propellant consumed to reach this orbit.

When the integral cost is quadratic, it represents the minimum propellant
consumption cost for a Plasmic Thruster working at constant power. This model
of integral cost is often used outside its domain of applicability because it simplifies
the optimization task.

If we consider a Plasmic Thruster as propulsor (see Ref. [18], Ch.8), the
consumed mass rate is .ṁ = −m2�2/(2ηP ), where P is the power of the motor
and .η is its efficiency.

If the motor works at constant power—which is not the case in the majority of
the applications—then we get that the mass evolves as

.m−1
t − m−1

0 = (ηP )−1
∫ tf
t0

�2/2dt .

This formula justifies the selection we have done for the integral cost; minimizing
it equals minimizing the mass consumption for this type of motor.

By scaling space and time coordinates, we can set .μ = 1.
With the given cost and dynamics, we obtain a pre-Hamiltonian:

.HP = p1x3 + p2 x4

x1
+

(

− 1

x12
+ x4

2

x1
+ � sinβ

)

p3 − χ �2

2
− p4x3x4

x1

+ p4� cosβ (42)

We introduce the control .us = � sinβ, uc = � cosβ. The problem control set U is
still undefined. Because the Hamiltonian verifies the SLC everywhere, an optimal
control exists in .U = R

2, and to make applicable our theorem, we choose .U =
B(2maxt∈[t0,tf ]

√
ûs(t)2 + ûc(t)2). By taking the sup of .HP , we get the feedback

law:

.� =
√

p2
3 + p2

4/χ, us = p3/χ, uc = p4/χ (43)

and consequently the Hamiltonian:

.H(x, p) = p1 x3 −
(

1

x12
− x4

2

x1

)

p3 + p3
2 + p4

2

2χ
+ p2 x4

x1
− p4 x3 x4

x1
(44)

The first derivatives of the Hamiltonian that allow to calculate the extremal flow
are

.∂xH =
(

2p3−p3 x1 x4
2−p2 x1 x4+p4 x1 x3 x4

x1
3 0 p1 − p4 x4

x1

2p3 x4−p4 x3+p2
x1

)
(45)

.∂pH =
(

x3
x4
x1

x4
2

x1
− 1

x1
2 + p3

χ
p4
χ

− x3 x4
x1

)
(46)
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From which we can derive the second derivatives that allow to calculate the
.At, Bt , and .Ct matrices necessary to propagate the Riccati solution and assess the
SC given by Theorem 1.

.∂xxH =

⎛

⎜
⎜
⎜
⎜
⎝

− 2
(
3p3−p3 x1 x4

2−p2 x1 x4+p4 x1 x3 x4
)

x1
4 0 p4 x4

x1
2 − 2 p3 x4−p4 x3+p2

x1
2

0 0 0 0
p4 x4
x1

2 0 0 −p4
x1

− 2p3 x4−p4 x3+p2
x1

2 0 −p4
x1

2p3
x1

⎞

⎟
⎟
⎟
⎟
⎠

(47)

.∂pxH =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0
− x4

x1
2 0 0 1

x1

− x1 x4
2−2

x1
3 0 0 2 x4

x1
x3 x4
x1

2 0 − x4
x1

− x3
x1

⎞

⎟
⎟
⎟
⎟
⎠

(48)

.∂ppH

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1

χ
0

0 0 0 1
χ

⎞

⎟
⎟
⎟
⎠

(49)

With the selected Hamiltonian, we consider a Bolza Problem with Fixed Time
and Free Final state, and we set .χ = 100 as in Ref.[14]. In this case, the first-order
NC provide the co-state as a function of the final state. To avoid solving the Two-
Boundary-Value Problem, we fix arbitrarily the final state and study the extremal
strong minimality for the given Bolza Problem varying the initial time .t0. We choose
as final state

.xtf = [10, 0, 0, 1/√(10)]T
Being the final cost .l(x) = −E(x), it follows that .ptf = −Dl(x) = DE(x):

.ptf = [1/100, 0, 0, 1/√(10)]T .
The resulting extremal is plotted in the following Figs. 1, 2, 3, 4, and 5.

In this problem, the target variety is the complete state space .R
4, so .� = I4,4

and . = �.
Theorem 1 gives the conditions for the SC To establish the SC, we need to

verify that .det (U(t)) �= 0 in .[t0, tf ). The terminal conditions for the Jacobi Field
Eqs. 19 are .Utf = I4,4, Vtf = −Qtf , and .Qtf = ∂xxl(xtf ) = −∂xxE(xtf ).
The determinant of .Ut is plotted in Fig. 6, it shows that the extremal satisfies the
sufficiency conditions for strong minimality when .t0 ∈ [−56.4, 0], and outside
this interval the SC are not verified. In this example, we can also use some NC of
the second-order which we find in Ref.[12] because the quadratic problem verifies
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the SLC and the additional Normality conditions requested.12 We conclude that
the extremal is a strong minimum for .t0 > −56.4 and is not a strong minimum
.t0 < −56.4.

7.2 Low-thrust Planar Orbital Transfer with Linear Integral
Cost and Irregular Hamiltonian

We consider the planar transfer problem of the previous chapter with a linear
different integral cost and the controls limited to be in a circular domain.

.

ρ̇ = νρ

ϑ̇ = νϑ/ρ

ν̇ρ = ν2ϑ/ρ − μ/ρ2 + � sin(β)

ν̇ϑ = −νρνϑ/ρ + � cos(β)

� ≤ �̄

(50)

The cost will be .J = −E(tf ) + χ
∫ tf
t0

�dt , where .χ is a weighting factor.
By scaling space and time coordinates, we can set .μ = 1.
With the given cost and dynamics, we obtain a pre-Hamiltonian:

Fig. 1 Plane extremal: .ρ(ϑ)
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12 The additional Normality condition requested in Ref.[12] is the Strong Normality of both
terminals. The condition for the right terminal is obviously satisfied because . = �. The condition
for the left terminal can be easily proved because .pT f (x̂, û) − pT f (x̂, u) = p3(p̂3/χ − us) +
p4(p̂4/χ − uc) ≥ 0,∀(us, uc) ∈ U admits as only solution .p = 0 (it suffices to choose
.us = 2p3/χ, uc = 2p4/χ to make this expression strictly negative for any .p �= 0).
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Fig. 2 Plane extremal: orbital radius

Fig. 3 Plane extremal: orbital anomaly

Fig. 4 Plane extremal: orbital radial velocity
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Fig. 5 Plane extremal: orbital tangential velocity

Fig. 6 Plane extremal: .det (UJ (t))

.HP = p1x3 + p2 x4

x1
+

(

− 1

x12
+ x4

2

x1
+ � sinβ

)

p3 − χ � − p4x3x4

x1
+ p4� cosβ

(51)
We introduce the control .us = � sinβ, uc = � cosβ, .U = [(us, uc)|

√
u2s + u2c ≤

�̄]. By taking the sup of .HP , we get the feedback law:

.

√
p2
3 + p2

4 ≥ χ, us = �̄p3/

√
p2
3 + p2

4, uc = �̄p4/

√
p2
3 + p2

4,√
p2
3 + p2

4 < χ, us = 0, uc = 0
(52)

and consequently the Hamiltonian:

.

H(x, p) = p1 x3 −
(

1
x1

2 − x4
2

x1

)
p3 + p2 x4

x1
− p4 x3 x4

x1
+

�̄ k(

√
p2
3 + p2

4 − χ)(

√
p2
3 + p2

4 − χ)
(53)
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We see that the Irregular Hamiltonian is set in the standard form. We report the
first and second derivatives for the case .k(S) = 1, and to recover those of the case
.k(S) = 0, it suffices to set .�̄ = 0.

.∂pH =
(

x3,
x4
x1

, x4
2

x1
− 1

x1
2 + �̄ p3√
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2
,
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2+p4
2

− x3 x4
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)
(54)
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2
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(55)
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(58)

As before, we consider a Bolza Problem with Fixed Time and Free Final state.
In this problem, the target variety is the complete state space .R

4, so .� = I4,4
and . = �. We can produce a spiral similar to the one obtained for the quadratic
cost case and test the sufficiency (see Figs. 7 and 8). We select .�̄ = 0, 004 and
.χ = 0, 31. The switching function is always positive. We integrate Riccati using
the BC .Utf = I4,4, Vtf = −Qtf ,Qtf = ∂xxl(xtf ) = −∂xxE(xtf ). The zero of the
.det (Ut ) appears at .t = −156.65, as we can verify by Figs. 9 and 10. This conjugate
point can be used only to demonstrate sufficiency, that is, we cannot demonstrate,
as was done in the case of quadratic cost, that, for .t0 < −156.65sec the extremal
is not a minimum. This is due to the fact that the Strong Normality property can be
demonstrated at the right terminal but not at the left terminal.
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Fig. 7 Plane extremal: .ρ(ϑ)
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Fig. 8 Plane extremal: .ρ(ϑ)
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7.3 Three Impulse Orbital Transfer

We verify in this example the SC for a general three impulse transfer moving all the
orbital coordinates but the semimajor axis .a0. The extremal under study is the same
extremal given in Ref. [16] Ch. IX, with .45deg. rotations of .g, I, h. Specifically,
.e0 = 0.5, ef = 0.5, a0/af = 1, g0 = 0, gf = 45deg, I0 = 90deg, If =
45deg, h0 = 0, hf = 45deg, .x0 = [0.6666, 0, 1.3333, 0, 0, 0]T

.xf = [0.4714, 0.4714, 1.3333, 0.7071, 0.7853, 5.9015]T
The final co-state is .pf = [−0.2083, 0.0812, 0.2177,−0.1604, 0.2289, 0]T .

The extremal is the result of a Two-Boundary-Value Problem where we have fixed
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Fig. 9 Plane extremal: .det (U)
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Fig. 10 Plane extremal: .det (U)

the values of .x(0) and .x1(sf ), x2(sf ), x3(sf ), x4(sf ), x5(sf ), p6(sf ),H(xsf , psf ).
The values of .x6(sf ) and .sf are free. The target is reached at .sf = 0.7799.

The overall trajectory in the Cartesian space is shown in Fig. 11. The large
rotations maneuvers are obtained by raising the transfer orbit apogee. The dynamics
of the extremal in the invariant coordinates is shown in Figs. 12 and 13. The tangent
space of the target variety at the final terminal is .� = (0, 0, 0, 0, 0, 1)T . The
orthogonal complement can be written as
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Fig. 11 Transfer trajectories

Fig. 12 .x1, x2, x3 vs s

Fig. 13 .x4, x5 vs s
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Fig. 14 .det (U)/|U |, .N = 1

Fig. 15 .det (U)/|U |, .N = 10

. = (
I5,5, 05,1

)T

.N = T ˙̂xsf /|T ˙̂xsf |, M = [�,N ]⊥, ζ = ˙̂xsf /|T ˙̂xsf |, λ = ˙̂psf /|T ˙̂xsf |

.Qsf is written following Theorem 1 with .∂σ,σ g = 0 in the target coordinates:

.

⎛

⎝
0 −λσ 01,4

−λT
σ ζ T

σ λσ − ζ T
π λπ 01,4

04,1 04,1 N I4,4

⎞

⎠ =
⎛

⎝
Qσ,σ Qσ,ν Qσ,μ

Qν,σ Qν,ν Qν,μ

Qμ,σ Qμ,ν Qμ,μ

⎞

⎠ (59)

We then transform the .Qsf from the local target coordinates to the natural
coordinates using the transformation .[�, ν,M] and then backward integrate .Qs

for .N = 1, 10, 20.

With .N = 1, we get .det (Us)/|Us | as in Fig. 14. With .N = 10, we get
.det (Us)/|Us | as in Fig. 15. With .N = 20, we get .det (Us)/|Us | as in Figs. 16,
17. This last .Qs confirms the minimality of the extremal.



248 L. Mazzini

Fig. 16 .det (U)/|U |, .N = 20

Fig. 17 .det (U)/|U |, .N = 20 zoom on the final part
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Evolutionary Optimisation
of a Flexible-Launcher Simple Adaptive
Control System

Erwin Mooij

1 Introduction

From the early days in aeronautical engineering, where aircraft design problems
have ranged from wing divergence and control reversal to dynamic flutter calcu-
lations for avoiding wing failure, static, and dynamic aeroelasticity issues have
caused many control challenges and even loss of (fighter) aircraft during high-
speed manoeuvring (Schwanz and Cerra 1984). Not only can aircraft suffer from
aeroelastic effects, but also (small) conventional launch systems, which have long
and slender bodies, may suffer from an unwanted coupling between the rigid body
and its flexible modes. Even more so than for aircraft, this is not an isolated problem.
During the launcher’s flight, it uses a large amount of oxidiser and fuel, giving rise
to large changes in mass properties and thus the flexible response. Because also
the operational and atmospheric environment varies significantly, the entire flight
profile should be examined rather than a single worst-case point, to identify the
stability and controllability characteristics of the launch vehicle.

To control such a (very) non-linear system, robust non-linear control systems
are required to stabilise the system and respond to both modelled and unmod-
elled disturbances. Two (non-linear) controllers that can potentially handle the
aforementioned perturbations are an Incremental Non-linear Dynamic Inversion
(INDI) controller and a system based on Simple Adaptive Control (SAC). Amongst
others, INDI controllers have shown robust performance when applied to quadrotors
(Smeur et al. 2016), both in a simulation environment and during flight tests, as well
as hydraulic robot motion control (Huang et al. 2019). The alternative candidate,
SAC, has shown good performance for a variety of applications in the fields of
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autopilot design (Barkana 2004), space-telescope control (Mehiel and Balas 2004),
flexible structures (Barkana 2016), entry systems (Mooij 2018) and satellites with
flexible appendages (Gransden and Mooij 2018).

The focus of this chapter is, however, not to design the best possible control
system, but to develop a methodology to improve the performance of a controller
with multiple design parameters. The design of linear control systems, such as
the traditional proportional, integral, and derivative (PID) controllers, can be
easily done, using, for instance, Bode plots, Nyquist criteria, etc. For non-linear
controllers, the design criteria are much harder to formulate. Having concrete
performance indices, though, would facilitate the use of optimisation algorithms
that can then be used to improve the controller performance. To show the benefit
of such a methodology, we will centre it around the design of a SAC system, as
it has many more design parameters and would show the benefit of the proposed
methodology.

Due to the nature of the control system design, performance optimisation is
relatively difficult for the following reasons: (i) a large number of design parameters,
(ii) a complex system, (iii) no analytical gradient information, (iv) a large parameter
search space, (v) non-linear constraints and (vi) multiple objectives that may
be conflicting. One (global) optimisation technique that may prove useful for
this particular problem is the one based on evolutionary strategies. These have
arisen from the desire to model the biological processes of natural selection and
population genetics, with the original aim of designing autonomous learning and
decision-making systems (Holland 1975). Evolutionary algorithms, and their binary
counterparts genetic algorithms, have found widespread use in engineering systems
(Zalzala and Fleming 1997), e.g., aerodynamic plan-form design, optimal motion of
industrial robot arms, and the design of VLSI layouts. Also, in the field of control
engineering, many applications can be found: Tanaka and Chuang (1995) applied a
genetic algorithm in combination with a neural network to the scheduling of linear
controllers for the X-29, whereas Menon et al. (1995) used genetic programming
for the synthesis of a non-linear flight control system of a high-performance
aircraft. Fleming and Purshouse (2001) have given an extensive overview of genetic
algorithms in control systems engineering: applications include controller design
and system identification, as well as fault diagnosis, stability analysis and sensor–
actuator placement.

It is stressed that the proposed design methodology could well be connected
to other (multi-objective) optimisation algorithms, such as particle swarm optimi-
sation, differential evolution or ant-colony optimisation, to name but just a few.
The evolutionary algorithm has been selected as a showcase, mainly for its ease
of implementation, not claiming that it is the best method to use. For similar
reasons as the selection of the simple adaptive control system, we want to present a
design approach for control systems with multiple design parameters and potentially
conflicting performance objectives, thereby highlighting several steps in the design
process.
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As a reference, the two-stage PacAstro launcher for small payloads up to 225 kg
has been selected for its availability of some geometrical and structural data.1

The launcher is treated as a flexible beam with lumped masses to account for the
subsystems and the fuel. Its design and modelling has been extensively discussed
in earlier work, see, for instance, the work by Mooij and Gransden (2016), and will
only be summarised here to have some insight in the system that we will be working
with.

The layout of the rest of this chapter is as follows. In Sect. 2, the simulation model
is introduced, i.e., the pitch-plane state-space model of a flexible launcher. In Sect. 3,
the control system design is covered, starting with the definition of performance
metrics to be used in the (numerical) optimisation procedure, then followed by
the theory on simple adaptive control systems, and concluded by a summary of
the implementation and application of this control system to the flexible launcher.
The optimisation problem is formulated in Sect. 4, including a top-level description
of the evolutionary algorithm. Section 5 presents the results, divided into those
obtained with a single-objective and multi-objective approach. Section 6 concludes
this chapter with some final remarks.

2 Pitch-plane State-space Model of Flexible Launcher

For a first analysis towards investigating the stability and control characteristics of
flexible launchers, it suffices to consider the (linearised) pitch-plane motion only.
Mooij and Gransden (2016) describe a state-space model, derived for the error
dynamics of a flexible launcher, and the configuration for which is shown in Fig. 1.
For that error dynamics model, input is a modal description as a function of current
mass, the normal-load and pitch-moment distribution, and, of course, the flight
conditions. The mass matrix is created using a consistent formulation for a linearised
beam element. Furthermore, the launcher is assumed to move with a steady-state
velocity .u0, and the local deformation is determined by the combination of thrust,
T , gravity, .mgd , aerodynamic normal force, N , and aerodynamic pitch moment, M .

In its general form, the system equation of this state-space model is given by

.ẋ = Ax + Bu (1)

with .A and .B being the system and control matrix, respectively. Due to the different
nature of groups of state variables, it makes sense to partition .A and .B into sub-

1 PacAstro was a US transportation service company, formed in 1990, to provide low-cost
transportation of small satellites to Low Earth Orbit for approximately $5 million per launch
using proven technology (Fleeter et al. 1992). Unfortunately, the launcher never came to operation
despite several engine tests and three launch contracts, due to the lack of development funding.
The company ceased to be in 1997. In Appendix A, some geometrical and mass properties have
been provided.
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Fig. 1 Flexible vehicle definitions

matrices representing the rigid-body motion, the engine dynamics, and the flexible-
body motion, thereby identifying the coupling terms between the different sets. The
corresponding state-space matrices are then written as

.A =
⎡
⎣
ARR ARE ARF

AER AEE AEF

AFR AFE AFF

⎤
⎦ and B =

⎛
⎝
BR

BE

BF

⎞
⎠ (2)

with

1. R for the rigid-body states angle of attack,2 .α, pitch angle, .θ , and pitch rate, q
2. E for the engine states .ε̈T (angular acceleration), .ε̇T (angular velocity), and .εT

(the angular position or swivel angle). These states originate from the assumption
that the engine is modelled as an electro-hydraulic servo system, represented by
a third-order transfer function.

3. F for the flexible-body states .η̇i and .ηi for mode i. The total number of states in
this group depends on how many bending modes .nf are taken into account.

2 Pitch-plane translational motion is defined by .u0 and the vertical velocity, w. However, to study
the rotational motion for a single point in the trajectory, it makes more sense to use the angle of
attack, .α, which can be derived from the (small) w through the relation

.Δα = Δw

u0
⇒ Δα̇ = Δẇ

u0
(3)
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The state vector, .x, is thus given by .xT = (
α θ q ε̈T ε̇T εT η̇1 η1 . . . η̇nf

ηnf

)T. The
only control is the commanded swivel angle, so .u = εT ,c. The corresponding sub-
matrices, derived by Mooij and Gransden (2016), are given in Appendix B.

The engine is considered to be an electro-hydraulic servo system, approximated
by a third-order system (Rolland Collette 1967),

.

(
s3 + 2ζeωes

2 + ω2
e s + Keω

2
e

)
εT = Keω

2
eεT ,c (4)

with defining parameters .ωe and .ζe, the natural frequency and damping of the engine
dynamics, and a gain, .Ke, an amplification factor that improves the response (time).
The values used in this study are .ωe = 50 rad/s, .ζe = 0.7, and .Ke = 15. Given
the above transfer function means that the acceleration derivative (.

...
ε T ) is excited by

.Keω
2
eεT ,c, with the latter parameter being the commanded swivel angle. In case of

a significant attitude correction, .εT ,c may be deflected at its limit value (of .±6◦),
which means that .

...
ε T = 3927 rad/s.3. Consequently, even after a mere 0.01 s, the

acceleration .ε̈T will be about 40 rad/s.2. It is clear that therefore some (mechanical)
limits should be imposed on the engine states. As mentioned, .εT ,max = 6◦, but the
values for the maximum acceleration are not known for the PacAstro. Sutton and
Biblarz (2017) mention a value of .ε̈T = 30 rad/s.2 and .ε̇T = 20 rad/s for the Space
Shuttle main engines. Even though these engines may be heavier than the one of the
current study, they give a good indication. Considering smaller (and lighter) nozzles,
the acceleration limit is put to .ε̈T ,max = 50 rad/s.2.

In Fig. 2, the reference trajectory of the PacAstro until first-stage burnout (.tf =
126 s, .hf = 67.7 km) is plotted. The figure shows an almost linear increase in
velocity with altitude and, similarly, also in Mach number up to a maximum value
of .M = 8.8. The dynamic pressure peaks at .q̄ = 43.5 kPa at around .h = 11.1 km
(time of maximum dynamic pressure (TMDP), .t = 63 s, .M = 1.83). With an initial
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Fig. 2 PacAstro reference trajectory until first-stage burnout
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Fig. 3 Natural frequencies of the launch vehicle during flight

mass of .m0 = 32,475 kg and a constant mass flow of .ṁ = −186.6 kg/s, the final
mass is .mf = 8963.4 kg.

The normalised bending modes, necessary to find the in-flight bending defor-
mations of the longitudinal axis, were calculated in Matlab® using an in-house
finite-element mesher and solver. At .t = 0 s, the four lowest initial natural
frequencies are 5.2, 16.2, 29.7, and 40.0Hz, respectively, whereas their variation
as a function of the flight time is shown in Fig. 3.

To generate an N -degree-of-freedom approximate differential equation model
for a continuous system, the displacement of the continuous system is expanded as a
linear combination ofN prescribed shape functions. In other words, the deformation
.u(x, t) is approximated by

.ud(x, t) =
N∑

i=1

φi(x)ηi(t) (5)

where x is the spatial coordinate, t is the time, .φi(x) is the ith assumed mode shape,
.ηi(t) is the ith generalised coordinate, and N is the number of terms or modes
that are included in the approximation. The rotation .ϕd(x, t) of (an element of) the
structure is given by

.ϕd(x, t) = −
N∑

i=0

σi(x)ηi(t) (6)

with .σi(x) = − dφi(x)
dx . In the current research, for the mode shapes, .φi , the

eigenvectors, derived from the finite-element model’s mass and stiffness matrices,
will be used.
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3 Control System Design

3.1 Introduction

As benchmark, we assume a feedback law with proportional and derivative gains of
.Kp = 2.8 (on .θ ) and .Kd = 0.9 s (on q) (Mooij and Gransden 2016). This design
is based on a closed-loop rigid-body requirement of 3 rad/s .≤ ωr ≤ 8 rad/s, with
a damping factor of .ζ ≈ 0.7, and designed for the point of maximum dynamic
pressure (.t = 63 s).3

The Bode plot for the elastic system is given in Fig. 4 for the moment of
maximum dynamic pressure. It shows that the elastic mode may pose a problem
while controlling high-frequency oscillations due to, for instance, turbulence. It is
clear that perturbations will be amplified while controlling an error in the pitch angle
(by using the engine swivel angle). However, in case the deformations remain small,
the problems will most likely remain limited. At its natural frequency of 37.3 rad/s,
the bending mode spikes. The second bending mode spikes at a frequency around
105 rad/s and will probably have marginal to no effect on the control.

Section 3.2 will summarise the design elements of the selected robust control
system that should be able to counter the (non-linear) effects of engine dynamics
and flexible modes.
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Fig. 4 Bode plots for the time of maximum dynamic pressure (t = 63 s)

3 The achieved closed-loop natural frequencies for rigid body and engine were .ωr,cl = 4.9 rad/s
(rigid body) and .ωe,cl 37.1 rad/s (engine), with damping factors .ζcl = 0.75 and .ζe = 0.64.
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To allow for comparison of the different control system designs, the performance
of a controller can be judged by several metrics. For the current control system
design, we may look at the minimum state deviation of the plant with respect to
the guidance commands. Another objective in the design could be to minimise the
control effort that is required to influence the launcher’s behaviour. For instance, in
the case of launcher control system design, these two objectives can be expressed as
the integrated pitch-angle deviation and the integrated swivel angle (equivalent to,
for instance, the total hydraulic power required), and are given by

.

∑
θerr

=
t∫

0

|θc(t) − θp(t)|dt
∑
εT

=
t∫

0

|εT (t)|dt (7)

A graphic representation of the above metrics is shown in Fig. 5a, represented by
the grey areas enclosed by the curves. It may be obvious that both individual areas
should be as small as possible for optimal controller performance, which means that
their numerical equivalent can be used to evaluate different controller designs. In
the given example, .

∑
θerr

= 6.55◦s and .
∑
εT

= 17.21◦s.

Another metric could be the oscillatory behaviour of either the state or control
variables. Oscillations in the control may not only be energy expensive and a
burden on the hardware, and it could also lead to instabilities. To detect oscillations
or otherwise discrete changes in the controls, the cumulative moving standard
deviation can be used. For a subset j of .ns out of a total of N samples of an

arbitrary control signal u, the moving mean is defined as .ȳj = 1
ns

j+ns−1∑
i=j

ui .

Here, j will run from .j = 1+.ns /2 to N -.ns /2, so each subsequent subset will
shift by only one sample. Let the squared deviation from this mean be defined as
.su,j = (uj+ns/2 − ȳj )

2, which represents the value at the midpoint of subset j . The
cumulative standard deviation, .Fu, for subset j is then

.Fuj
=

√√√√ 1

N − ns − 1

j∑
k=1

sk (8)

Figure 5b shows the oscillation pattern of the swivel angle for two (poor) controller
performances. The cumulative standard deviation increases more rapidly when a
discrete jump occurs or when there is an interval with persistent oscillations. As a
metric, the grey area under the curve can be used, which, while minimised, would
lead to a smoother behaviour. For the two cases shown, the numerical values are
.FεT

= 36.2◦ and 116.9◦, respectively.
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Fig. 5 Controller performance indices. (a) Integrated state deviation and control effort: .
∑
θerr

=
6.55◦s and .

∑
εT

= 17.21◦s. (b) Oscillation metrics: .FεT
= 36.2◦ (left) and .116.9◦ (right)

3.2 Simple Adaptive Control

The concept of so-called simple adaptive control (SAC) is based on the principle
of tracking the output of a reference model (Kaufman et al. 1998). Therefore, this
system could also be classified as a model reference adaptive control (MRAC)
system, although a principal difference from the original MRAC is that full state
knowledge of the plant to be controlled is not required. A schematic overview of
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Fig. 6 Basic architecture of a simple adaptive control algorithm

a simple adaptive controller is shown in Fig. 6. The (single-actuator) control law is
given by

.up(t) = Kr(t)r(t) (9)

where .r(t) = (
ey(t) xTm(t) uTm(t)

)T
and .Kr(t) = (

Ke(t) KT
x (t) Ku(t)

)
. It can be

seen that the model input .um and model state .xm are required to form part of the
input signal .up to the plant. Moreover, the so-called output error .ey serves as a
feedback quantity to form the third element that composes .up. The three gains, i.e.,
.Ke, .Kx, and .Ku, are adaptive.

To compute the adaptive gains, .Kr is defined to be the sum of a proportional and
an integral component:

.Kr(t) = Kp(t) + Ki(t) (10)

with

.Kp(t) = ey(t)rT(t)Tp (11)

.Ki(t) = Ki,0 +
t∫

0

eyrT(t)Tidt (12)

In Eqs. (11) and (12), the weighting matrices .Tp and .Ti are positive semi-definite
and positive definite, respectively. Note that the proportional gain component has
a direct influence on the transient tracking behaviour but is strictly speaking not
required to enforce asymptotic tracking, as .Tp can be zero; tracking is guaranteed
by the integral gain. To improve the transient response by only using an integral
gain, a constant gain value has been added to .Ki. An advantage over the use of the
proportional gain is that this constant value is independent of .ey and is therefore
non-zero even if .ey is zero.
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One way to improve the damping of the system is to include the error derivatives
in the output error vector and apply a form of PD error scaling. The attitude
controller aims at simultaneously reducing both the pitch angle, .θ , and the pitch
rate, q (which equals .θ̇ ). This means that if errors in both are added together (with a
proper scaling), the combined error would be similar to the output of a PD controller.
And we know of such controller that the D term improves stability and damping of
the control. Thus, the generic formulation of the output error becomes in that case

.ey = K
(
ym − yp

) = K
(
Cmxm(t) − Cp(xp, t)xp(t)

)
(13)

where .K includes the appropriate ratio of adding the proportional and derivative
signals together.

So far, an ideal environment has been considered. To cope with environmental
disturbances, such as wind gust and turbulence, that lead to a persistent non-zero
error and therefore to a continuous change in the integral gain .Ki, a robust design
can be applied to adjust the integral gain and preventing it from reaching very high
values. The integral term of Eq. (11) is adjusted as follows:

.K̇i = ey(t)rTTi − σiKi(t) (14)

Without the .σi-term, .Ki(t) is a perfect integrator and may steadily increase (and
even diverge) whenever perfect output-following is not possible. Including the .σi-
term, .Ki(t) is obtained from a first-order filtering of .ey(t)rTTi and, therefore, cannot
diverge, unless the output error diverges.

3.3 Implementation

The current application of SAC focuses on a flexible launch vehicle with third-
order engine dynamics. As a reference model, a simplified model is chosen: a rigid
representation of the same launcher, stabilised by a PD controller and ideal engine
dynamics. The reference model includes pitch angle and pitch rate only, contrary
to the rigid-body model given by Eq. (B.1). In this way, the model is insensitive to
angle-of-attack perturbations and will provide a more stable model that is easier to
follow. The reference model is excited by the output error, i.e., the current difference
between model output and plant output, and transformed to equivalent model state
errors. If at every control sample the difference between the current state error
and the one of the previous sample is added to the model state vector, the model
controller will bring this error back to zero. In that way, the signals .um and .xm are
created. Together with .ey , Eq. (13), the vector .r is composed, and the plant input .up

can be calculated according to Eq. (9), after having calculated .Kp and .Ki, Eqs. (11)
and (12).
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Fig. 7 Reference-model response to a 2◦ step command in pitch angle: difference between the
two-state and three-state models (includes angle of attack)

So, the reference model is given by the reduced rigid-body model, and the full
form of which is given in Appendix B:

.

(
θ̇m

q̇m

)
=

[
0 1

0
Cmq q̄Sref dref

Iyy

] (
θm

qm

)
+

[
0

LeT
Iyy

]
εT ,m (15)

so .xm = (
θm qm

)T
and .um = εT ,m. The reference model is controlled by the

benchmark PD controller, with .Kp = 2.8 on the pitch-angle error and .Kd = 0.9
on the pitch-rate error. The attitude command that the launcher has to follow
is now enforced on the reference model, which will provide a smooth transient
response that the plant will try to follow. The output error, .ey , will be formed as
.ey = Kp(θm − θp) + Kd(qm − qp), with the initial setting for the gains to be
the same as for the reference-model controller. It is noted that both the model-
controller gains and the output-error gains could be part of the optimisation process
and do not necessarily have to be the same. However, initial runs showed that using
the selected gains gives a good model performance. To avoid having an excessive
number of design variables, we will keep these values for now. Finally, the nominal
controller frequency is set to 100Hz. This may seem like a rather large value, but it
is, unfortunately, one of the characteristics of SAC (Messer et al. 1994).

Figure 7 shows the transient response of the reference model, while being
subjected to a pitch-angle command of .θc = 2◦ for the time of maximum dynamic
pressure (.t = 63 s). For each plot, two curves are shown, i.e., one for the model with
two states, given by Eq. (15), and one for a three-state model. The latter model also
includes the angle of attack, see Eq. (B.1) for the corresponding state matrix. The
difference in response is immediately clear. Due to the strong coupling between
angle of attack and pitch motion, a large angle of attack is induced. Because the
launcher is unstable (.Cmα > 0), it takes a lot longer and more control effort to
stabilise the system. The two-state model settles almost immediately, and this is
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exactly the kind of behaviour that we want the plant to have, thus confirming the
choice of reference model.

The design parameters of the adaptive controller are the weighting matrices, .Tp
and .Ti, the initial values of the integral gain, .Ki,0, and, as a safeguard against
diverging output errors, the filter parameter, .σi . The full form of either .Tp or .Ti
is given by

.T =

⎡
⎢⎢⎢⎣

Teyey Teyθm Teyqm TeyεT ,m

Tθmey Tθmθm Tθmqm TθmεT,m

Tqmey Tqmθm Tqmqm TqmεT,m

TεT,mey TεT,mθm TεT,mqm TεT,mεT ,m

⎤
⎥⎥⎥⎦ (16)

which represents 16 design parameters per matrix. However, it is common practise
to restrict to diagonal matrices, and thus only four parameters per matrix remain.
With four initial gain values, .Ki,0, and a single filter parameter .σi associated with
.ey , the total number of design parameters can vary between 13 and 37.4

4 Optimisation Problem

Ever since its conception in the 1970s, there has been a non-wavering interest
in problem-solving systems based on the principles of evolution: such systems
maintain a population of potential solutions and include some selection process,
which is based on the fitness of individuals, and some “genetic” operators that
allow for the creation of new individuals. Almost each genetic (operating on
binary strings) or evolutionary (operating on “real-life” parameters, e.g., floating-
point variables) algorithm has the following structure (Goldberg 1989, Michalewicz
1996):

begin
initialise population .P(0) with N individuals;
evaluate .P(0) and assign fitness to individuals;
t := 1;
repeat

select .P(t) from .P(t − 1);
recombine .P(t) through crossover and mutation;
evaluate .P(t) and assign fitness to individuals;
t := t + 1;

until (termination condition)
end

4 The minimum number could actually be four, as the principal requirement that .Ti is positive
definite dictates four diagonal elements larger than zero. The positive semi-definite condition of .Tp
could in principle lead to .Tp = 0. All other parameters can be non-zero to improve the performance
but can be zero in the baseline algorithm.
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The above pseudo-code represents a probabilistic algorithm, which maintains
a population of individuals, .P(t) = {xt1 · · · xtN} for iteration t . Each individual
.xti , which represents a potential solution to the problem at hand, is evaluated to
give some measure of its “fitness.” A new population is formed by selecting the
more fit individuals. Some members of the new population undergo transformations
by means of genetic operators: unary transformations (mutation), which create
new individuals by a small change in a single individual, and higher order
transformations (crossover), which create new individuals by combining parts from
two or more individuals. The termination condition can be a predefined number of
iterations (also called generations) or a convergence criterion.

The applied operators in this study are a combination of simple, arithmetic and
heuristic crossover, and multi non-uniform mutation. A detailed description of these
(and other) operators can be found in the book by Michalewicz (1996). Here, we
will restrict to a brief description. In simple crossover, two parents .p1 and .p2
are selected, and a simple single-point crossover is applied. This means that an
independent parameter in .p1 is selected at random and one child is formed by taking
the first part of .p1 (up to the selected parameter) and the second part of .p2 (onwards
from the selected parameter). A second child is formed by the two remaining parts.
Arithmetic crossover takes two parents .p1 and .p2 and performs an interpolation over
a random distance along the line formed by the two parents. Heuristic crossover,
finally, takes two parents .p1 and .p2 and performs an extrapolation along the line
formed by the two parents outward in the direction of the better parent.

Non-uniform mutation randomly selects one variable .xj of an individual .pi and
sets it equal to a non-uniform random number, with a (random) dependency on the
generation number. This latter Gaussian distribution starts wide and narrows to a
point distribution as the current generation approaches the maximum generation. In
multi-non-uniform mutation, this operator is applied to each independent variable
of the chosen individual.

For the selection method, we use stochastic universal sampling (SUS) (Baker
1987), which is some variation of roulette wheel selection (RWS) in the sense
that the fitness determines the probability that the individual is selected. However,
contrary to RWS where only one individual is selected, in SUS up to N individuals
can be selected with multiple equally spaced pointers. By applying SUS, clustering
of individuals in subsequent generations (genetic drift) will be reduced.

The fitness .Φi of an individual i can either be directly or indirectly derived from
its objective function(s). In single-objective optimisation, any one of the above
defined performance metrics can be used directly. In case two or more objective
functions are used, a trade-off has to be made if improving one objective will result
in the simultaneous degradation of the other. From the available methods to derive a
single fitness value from multiple objectives, the concept of Pareto ranking is used
(Cvetković 2000, Fonseca 1995).

Pareto-based fitness assignment was first proposed by Goldberg (1989), who
suggested the use of non-domination ranking and selection to move a population
towards the Pareto front in a multi-objective optimisation problem. Fonseca (1995)
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discusses a variation of this ranking method, which will be used in this study and is
summarised below.

The problem under consideration is to simultaneously minimise the k compo-
nents of a vector function .f = (f1, f2, . . . , fk), each of which is a function of
the design variables .x = (x1, x2, . . . , xn). The problem has usually no unique
solution, but a set of equally efficient (or non-inferior) alternative solutions, which
together form the so-called Pareto-optimal set or Pareto front when they are plotted
in relation to the inferior solutions. For a minimisation problem, a vector .f =
(f1, f2, . . . , fk) is said to be inferior to .g = (g1, g2, . . . , gk) if .g is partially less
than .f, i.e.,

.∀i ∈ {1, 2, . . . , k}, gi ≤ fi ∧ ∃i ∈ {1, 2, . . . , k}, gi < fi (17)

Consider now an individual .xf at generation t with corresponding objective
vector .f, and let .rf(t) be the number of individuals in the current population which
are preferable (or superior) to it. The current position of .xf in the individuals’ rank
is then given by

.rank(xf, t) = r
(t)
f (18)

Note that by definition the individuals that form the Pareto front all have rank zero.
The rank-based fitness assignment is further developed as follows:

1. Sort population according to rank.
2. Assign fitness .Φ by interpolating from the best individual to the worst according

to some function. In the current study, an exponential function of the form

.Φ
(
r
(t)
f

)
= sρ

r
(t)
f (19)

is used, where s is the relative fitness (.s > 1), whereas the parameter .ρ should
fulfil

.

N−1∑
i=0

= N

s
(20)

with N being the population size. In the limit case of N approaching infinity, the
above power series equals .

1
1−N

, which yields .ρ = 1 − s
N
.

3. Average the fitness assigned to individuals with the same rank, to sample them at
the same rate while keeping the global population fitness constant.



266 E. Mooij

5 Results

In this section, we present the results of the optimisation study, where different
combinations of design variables will be explored. Note that the results are in
support to present (and discuss) the design methodology for control systems with
more than just a few design parameters. All simulations are run for a single point in
the trajectory, i.e., the point of maximum dynamic pressure (.t = 63 s). We will not
try to get the best possible design and establish its robustness by doing an extensive
sensitivity analysis. To do so would require quite some more space than we have
available in this chapter.

To begin with, in Sect. 5.1, the parameter ranges will be established by doing a
simple Monte Carlo simulation. Inspecting the results and varying the ranges will
quickly lead to a design space that is not too large (and non-linear) and will allow
the optimisation algorithm to find an optimal design. In case the design space is too
large, convergence may become an issue for some evolutionary algorithms.

Section 5.2 will present the results for a single-objective optimisation. There,
the focus is on minimising the integrated pitch-angle deviation, without looking
at the associated control effort and possible oscillations in either state or control.
Finally, in Sect. 5.3, the exercise is repeated by optimising multiple objectives
simultaneously.

5.1 Design Space Exploration

The design space exploration will be done for the rigid launcher, as the optimisation
later will be carried out for a so-called nominal (.= ideal) system. The effect of
engine dynamics and flexible modes will be studied later, after an optimal control
system design has been established.

Assuming diagonal .Tp and .Ti, four initial integral gains, and one filter parameter,
the 13 parameters are varied according to a uniform distribution. After some trial
and error, the final ranges that were determined are the following:

1. .Tp: .Teyey ∈ [0,400], .Tθmθm ∈ [0,800], .Tqmqm ∈ [0,1600], and .TεT,mεT ,m
∈

[0,1600].
2. .Ti: .Teyey ∈ [0.15,60], .Tθmθm ∈ [25,10000], .Tqmqm ∈ [1.5,600], and .TεT,mεT ,m

∈
[1,400].

3. .Ki,0: each gain is sampled from the interval [0, 5].
4. .σi is sampled from [0, 2].

A total of .N = 2500 runs were executed, using the Mersenne Twister random
generator, initialised with random seed 0.

In Fig. 8, the four objectives, integrated state deviation, .
∑
θerr

, integrated control

effort, .
∑
εT

, and the two corresponding oscillatory indices, .Fθ and .FεT
, have been

plotted. It is obvious that there is a large variation in performance, but it appears



Evolutionary Optimisation of a Flexible-Launcher Simple Adaptive Control System 267

0 10 20 30 40
integrated state deviation (deg s)

0

20

40

60

80

100
in

te
gr

at
ed

 c
on

tro
l e

ffo
rt 

(d
eg

 s
)

0 20 40 60 80 10
control oscillation index (deg)

0

5

10

15

20

st
at

e 
os

ci
lla

tio
n 

in
de

x 
(d

eg
)

1 1.5
14.5

15

5 5.5 6 6.5
1

1.2

1.4

0 120

Fig. 8 Design space exploration: four objectives, N = 2500 Monte Carlo runs (.t = 63 s)

that for each of the objectives there are quite small values. Just looking at the two
plots indicates a dense band of points that seem to converge in the direction of
some minimum value. Obviously, the integrated control effort can never reach zero
because that would mean that the launcher is not controlled, immediately leading
to a large integrated pitch-angle error. However, the two oscillation indices could
converge to values close to zero, as that would imply a very smooth control. Note,
though, that even a relatively smooth change of the control or state would already
increase these objectives, so they could never be exactly zero.

It should also be noted that a small value in one objective does not necessarily
mean a small value for all other objectives as well. In other words, the Pareto front in
a four-dimensional objective space does not necessarily lie close to the bottom-left
corner (the origin). In Sect. 5.3, the Pareto concept will be discussed in more detail.

Now that we have established the ranges of the independent parameters, we can
move on to the next step, i.e., the single-objective optimisation.

5.2 Single-objective Optimisation

Before any optimisation process can start, it is important to tune the algorithm, i.e.,
to determine the (optimal) values of algorithm-specific settings, in relation to the
problem at hand. The optimisation of the integrated state deviation by means of the
evolutionary algorithm is done for 30 generations, with an initial population size of
50 individuals. The settings (and operators) we found to work well for the problem
at hand were:

• Stochastic universal sampling as selection method, with the number of spins
being 1
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• Arithmetic crossover, with the total number of crossovers5 being 40 and the
number of retries to obtain a valid design with respect to the constraints being
10 (if no valid design is obtained, the objective value is penalised with a large
value of 10.5).

• Multi-non-uniform mutation, with the number of mutations being 10, the maxi-
mum number of generations, .Gmax = 30, and the shape parameter, .b = 3

To eliminate the random effect, the runs were repeated with different random seeds.
We found that the solutions converged to (almost) the same value; nonetheless, re-
running the optimisation multiple times should be standard practise.

For the first batch, the objective is the integrated state deviation, with the
reference-model pitch angle being the target value. Figure 9a shows the average
objective value, .ȳ, as a function of generation number. Also included are the .ȳ ±
1-.σ lines, to show the spread of individuals in objective space as a function of the
successive generations.6 The results show a quick convergence, with reaching the
best value after about eight generations. The response curves for the best individual
are shown in Fig. 9b. The plant responds a bit faster than the reference model,
which is most likely due to the perturbing angle of attack. As we mentioned,
this perturbation is absent in the reference model. However, it induces a deviation
between reference-model and plant pitch angle, which leads to larger gains to
anticipate on the induced error. The global response of the plant becomes thus a
bit more “aggressive.” As the plant is faster, it will also slow down a bit quicker,
thus becoming slower than the reference model close to the set point. Finally, the
swivel angle remains non-zero for a much longer time than would be suggested by
the practically zero error in the pitch angle. This is easily explained by the fact that
the angle of attack needs quite a long time to be “pushed back” to zero.

In case we change the objective to be minimised to the integrated state deviation
with respect to the guidance command,7 i.e., the step command, the results shown in
Fig. 10a, b are obtained. At first sight, the results seem to be similar, but some small
differences can be seen. In the first place, the converged minimum value is a bit
smaller and convergence is slightly faster. In the second place, because the response
is even faster than before, there is a slight overshoot of the plant pitch angle.

To compare the two final designs, in Table 1, the design parameters are listed.
It is clear that both designs are not the same, although with some imagination one

5 A crossover involves two parents and will produce two children. This means that given a number
of crossovers and depending on their fitness (and selection), the population size is not constant and
could be even double of the one with what we started.
6 This figure shows that there is a significant spread in the initial (= first) generation, implying a
good coverage of the design space. However, it is important to realise that a large standard deviation
can also be caused by just a few outliers, not necessarily in the direction of the optimum.
7 Note that the adaptive algorithm still aims at tracking the reference model. However, since the
optimiser is forced to follow the guidance command, the resulting response is somewhat of a
compromise: the optimiser pushes forward to the guidance command, whereas the controller pulls
back towards the reference model.
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Fig. 9 Single-objective optimisation (reference-model tracking): mean fitness as a function of
generation number and best individual’s response. (a) Average fitness. (b) Best individual

0 5 10 15
generation (-)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

in
te

gr
at

ed
 s

ta
te

 d
ev

ia
tio

n 
(d

eg
 s

)

mean + 1-sigma

mean - 1-sigma

mean objective value

(a)

0 5 10 15 20 25 30 35 40
time (sec)

0

0.5

1

1.5

2

pi
tc

h 
an

gl
e 

(d
eg

) command
state
reference model

0 5 10 15 20 25 30 35 40
time (sec)

-3

-2

-1

0

1

2

sw
iv

el
 a

ng
le

 (d
eg

)

2 3 4
1.5

2

(b)

Fig. 10 Single-objective optimisation (command-value tracking): mean fitness as a function of
generation number and best individual’s response. (a) Average fitness. (b) Best individual

could say that the order of magnitude is the same. Conclusion from this is that there
will be multiple solutions possible, leading to more or less the same performance,
i.e., there are possibly many local optima. That means that it is not always easy
for the optimiser to find the optimal solution. Concerning the adaptive algorithm, it
may be possible that minute changes in the design parameters have no effect on the
performance; only relatively large variations will show in a change in performance.

Until now we have kept both the reference-model-controller gains, .Kp and .Kd ,
and the output-error gains, Eq. (13), constant and in both cases the same. However,
as they are directly related to both the reference model and the plant response, it
may be interesting to see whether the optimiser will also keep the gains constant
(and the same). We will therefore add four more independent parameters: .Km =
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Fig. 11 Single-objective optimisation including with reference-model gains and output gains:
response plots. (a) Reference-model tracking. (b) Guidance-command tracking

Table 1 Optimal design parameters simple adaptive controller (single-objective optimisation)

Reference-model tracking Guidance-command tracking

.Tp .Ti .Ki,0 .σi .Tp .Ti .Ki,0 .σi

.ey 290 45 1.37 4.43 317 33 1.31 3.96

.θm 670 5952 0.0 1.43 698 4248 0.0 1.48

.qm 737 279 0.0 0.63 419 151 0.0 3.20

.εT ,m 1238 246 0.0 1.02 803 125 0.0 1.59

(
Km,p Km,d

)T
, with each gain varied over the range [0.5,5], and the output-error

gains, .Ke = (
Ke,p Ke,d

)T
, varied over the range [0.5,4].

With otherwise the same settings, the optimiser is run twice, once for reference-
model tracking and once for guidance-command tracking. The response curves for
the optimal designs are shown in Fig. 11, with corresponding gain values .Km =
(3.50, 2.79)T and .Ke = (2.84, 2.58)T for the former and .Km = (3.06, 1.53)T and
.Ke = (3.31, 1.20)T for the latter. Tracking the reference model leads to a more
relaxed response and a much lower control effort. However, one should not forget
that the reference-model response should meet with the requirements set to the
attitude controller design. Thus, it might be that the response is too slow. A separate
optimisation of the reference model is thus always required. In case of guidance-
command tracking, one can also see that the reference model is quicker to act, with
a steeper transient response. Comparing the results with those of Figs. 9b and 10b
does show a smoother response, so it would be a good idea to keep the gains as
design variables.

Comparing .Km and .Ke, they are obviously not the same, as we had assumed in
our initial runs. Also, if we compare the gain sets between the two designs, they are
not the same. Inspecting the other design parameters, they differ as well from the
values listed in Table 1. All in all, we can conclude that the design space and its
relation with the objective space is a complex one, which should be kept in mind.
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Fig. 12 Multi-objective optimisation (command-value tracking), rigid launcher. Initial population
size 50 individuals. (a) Pareto front, initial and final. (b) Number of Pareto individuals

What we saw from the above results is that a smaller integrated state deviation
means that the plant is closer in following the reference model or the guidance
command. However, as found by Messer et al. (1994), this may indicate that the
control effort is ever increasing. Comparing the two profiles of the swivel angle,
we see that while tracking the command the swivel angle is indeed slightly larger.
Therefore, it would be wise to include minimisation of the integrated control effort
in the optimisation process. This will be addressed in the next section.

5.3 Multi-objective Optimisation

From the single-objective optimisation results, we found that a closer model or
command-following would require more control effort, which was not taken into
account in the optimisation process. Furthermore, we established that the design
parameters to be included are .Tp, .Ti, .Ki,0, .σi , .Km, and .Ke, representing a total of
17 design parameters.

For our first batch of simulations, we will include the integrated control effort,
.
∑
εT

, besides the integrated state deviation, .
∑
θerr

. With otherwise the same algorithm

settings, the results shown in Figs. 12 and 13 are obtained. Two initial population
sizes have been used, i.e., 50 and 200, to try and find out which minimum population
size we can use. Figure 12a shows the progression of the Pareto front for the
50-individual initial population. The progression of the front is clear, i.e., in the
midrange an improvement in .

∑
θerr

of more than 10% is achieved. Also, the initial

front was quite sparse, whereas the final front is much denser and seems to have
converged quite well.
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Fig. 13 Multi-objective optimisation (command-value tracking), rigid launcher. Initial population
size 50 individuals. (a) Pareto front, initial and final. (b) Number of Pareto individuals

The total range of variation for either objective is 2◦s for the control effort and
17◦s for the state deviation. Each of the Pareto individuals represents a(n)(sub-) opti-
mal control system design: selecting a better control effort has obviously an adverse
effect on the state deviation, and vice versa, as was already established from the
single-objective optimisation runs. In case either or both have a minimum/maximum
requirement, a plot like this will allow for the selection of the right design.

One should not forget, however, that for any of these so-called heuristic methods
it cannot be proven that the Pareto front has indeed converged to its “theoretical”
value and that the global optimum has been found. It could be, after all, that the
algorithm got stuck in a local minimum. A way to check this is to let the algorithm
run for more generations, but looking at the “clustered” condition of the final front—
as well as the total number of individuals in the front, see Fig. 12b—it does not seem
likely that more progress can be made. A second check could be to do a localised
small-scale Monte Carlo run around each Pareto individual, with, for instance, a
5% variation of the original range of the design parameters. Having done this, only
showed a marginal shift of the front, so with this method it is as far as we can go. It
is curious to note, though, that one individual of the initial front is ahead of the final
front, so the conclusions are not black and white. It would be good to keep track of
all fronts and compose a final Pareto front from all individual fronts. In that respect,
we will include elitism for the remainder of the runs, i.e., the best individual for each
objective is carried over to the next generation, to avoid losing out on potentially
good individuals.

Figure 13 shows the same plots, but now for an initial population size of 200.
Apart from the much larger number of individuals in the Pareto fronts, the final front
is more stretched out, and at the lower right corner, it is also more rotated towards
the origin. In the mid-region, the values seem to be more or less the same, but at
the edges a better performance in the individual objectives is found. In conclusion,
for the number of design parameters, a population size of 50 seems on the low side.
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Fig. 14 Multi-objective
optimisation, including
off-diagonal elements in .Tp,
rigid launcher. Initial
population size 200
individuals
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However, for mid-level performance individuals, it is sufficient. The advantage is, of
course, that with a smaller initial population (and correspondingly a smaller number
of crossovers and mutations), the CPU load of the algorithm is far less.

One additional test is done, to verify whether off-diagonal elements in one (or
both) of the weighting matrices has an advantage. Since there are 10 more design
parameters per matrix, we decided to extend only .Tp, as the integral gains already
have a (constant) initial value. The range of the off-diagonal elements is taken
as .±10% of the corresponding diagonal element in that row. Any .Tp that is not
positive semi-definite, taken as a constraint, is penalised with a very large objective
value and effectively “killed off.” Doing the run, with an initial population of 200
to account for the 25 design parameters, resulted in the plot of Fig. 14a. Some
interesting aspects came forward. Despite the large variation in performance in the
initial population, the converged Pareto front only occupies a small region in the
objective space. The integrated state deviation has decreased to quite low values,
albeit at the expense of a slightly larger control effort. The final Pareto front could
have progressed more, as is evident from the initial Pareto front, that intersects
with the final one.8 The conclusion is that including off-diagonal elements may
be beneficial and should be studied in more detail. Because of the different focus of
this chapter, unfortunately we have to leave it at that.

8 These results show that the elitism operator should not be limited to keeping only the best values
for each objective, as has been implemented here, but should potentially include the complete
Pareto front. A good algorithm to do so has been proposed by Tan et al. (2003), involving Tabu
search. This method keeps an archive of the latest Pareto individuals, and in each successive
generation the current Pareto front is removed from the population to maintain search diversity
and added to the archive. From this archive, the newly dominated individuals are removed such
that the absolute best Pareto front is maintained. It is possible to insert a few Pareto individuals
back into the population, e.g., every fifth generation, as it may help convergence to the (global)
optimum.
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Fig. 15 Controller designed for a rigid body applied to one with engine dynamics. Controller
frequency 100Hz. (a) Rigid-body response. (b) Rigid body with engine dynamics

So far, we have been studying the response of the rigid launcher. Let us now
include engine dynamics and see how this changes the picture. In principle, we
would expect that if the engine dynamics is sufficiently fast—which should be
the case with .ωe = 50 rad/s—adding the dynamics will not change the response.
However, upon inspection, selecting a Pareto individual from the final front with
small state deviation and slightly larger control effort (such that engine dynamics
will be excited a bit more), this is not the case. For the rigid system, the response is
smooth (Fig. 15a), with performance indices given by .

∑
θerr

= 1.73◦s, .
∑
εT

= 14.31◦s,

.Fθ = 1.28◦s, and .FεT
= 3.50◦. The value of the oscillation indices is mainly

driven by the discrete changes in the system. Changing to a rigid launcher with
engine dynamics, the response deteriorates significantly, with performance indices
of .

∑
θerr

= 6.09◦s, .
∑
εT

= 211.86◦s, .Fθ = 2.78◦s, and .FεT
= 126.37◦. Looking at the

corresponding response in Fig. 15b, the high oscillation index means that the system
is in a high-frequency bang–bang state.

The SAC system is in principle a high-gain system, which will amplify the noise
that enters the system. From the theoretical model of a rigid launcher with engine
dynamics (Eq. (B.2)), we find there is a (strong) coupling between the engine and
the angle of attack and, through the aerodynamics, the pitch rate and thus pitch
angle. Having fast dynamics in the system requires a high controller frequency, as
was also confirmed by Messer et al. (1994). They found, for their experimental
setup of a suspended mass system, that for successful realisation of the controller a
sampling frequency 40–80 times the Nyquist frequency is required. Going back to
the results we got, it could lead to two changes in the approach: the control system
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Fig. 16 Pareto front for
three-objective optimisation,
rigid launcher with engine
dynamics. Initial population
size 100 individuals

2

4

6

8

16

10

co
nt

ro
l o

sc
illa

tio
n 

(d
eg

 s
)

12

14

16

15
int. control

effort (deg s)

108

int. state deviation (deg s)

14 642

has to be re-optimised, but now with engine dynamics included, or the frequency of
the controller is significantly increased, and then the system is re-optimised. Being
able to find a good design with controller frequency set to 100 Hz would be the best,
of course, in terms of on-board computer load. Unfortunately, a proper design could
not be found. Thus, we will increase the frequency to 500 Hz and add the swivel
oscillation index to the objectives.

The results of the three-objective optimisation are shown in Fig. 16. What is
immediately clear is that there is an almost linear relationship between the integrated
control effort and the control oscillation. That means that in principle we can do with
one of the two, most notably the control oscillation, because lowering the oscillation
seems to lower the control effort as well. This was indeed confirmed by doing a two-
objective optimisation with .

∑
θerr

and .FεT
, which gave almost the same final Pareto

front.9

From the obtained results, we will now select a design with a low oscillation
index, which, unfortunately, will give us a large pitch-angle deviation. In a way this
makes sense because a slower control response would induce smaller oscillations
that are then less amplified. But a slower response would also yield a larger
state deviation. Running the design does indeed show that the oscillations have
almost disappeared. The optimisation process has thus led to a conceptual design
of the control system that forms a good basis for further refinement. To show the
final result, we will run the simulation once more, with the same settings for the
controller, but now also including the first and second flexible modes. The result
can be seen in Fig. 17.

Figure 17a shows the pitch-angle response, which is on the slow side, as
expected. Even though the reference model tracks the command very well (in part

9 The alternative of keeping the integrated control effort as objective was not as effective to reduce
the oscillation index, though.
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Fig. 17 Final controller design applied to flexible launcher with engine dynamics. (a) Rigid-body
response. (b) First flexible mode

due to the high frequency), the plant response lags behind due to the lower swivel
command. Because the swivel oscillations are virtually absent, also the flexible
modes are not more excited than what is due to the rigid-body coupling (Fig. 17b).
The corresponding performance indices are .

∑
η̇f,1

= 94.7 s, .
∑
ηf,1

= 7.4 s, .Fη̇f,1 = 5.1 s,

and .Fηf,1 = 0.6 s.10

6 Concluding Remarks

In this chapter, a methodology has been presented to design and analyse control
systems with multiple design parameters and possibly conflicting objectives. These
objectives have been formulated in a numerical way, i.e., the integrated state
deviation, integrated control effort, and an oscillation index using a moving-average
technique. Because of such a formulation, numerical optimisation can be applied
to go through a large number of designs and converge towards an optimum. As
an example of the methodology, an evolutionary algorithm has been applied to the
design of a simple adaptive control system.

Design space exploration helps to establish the bounds on the independent
variables. Too large bounds can lead to a random behaviour of the optimisation
algorithm, and with too narrow bounds the algorithm may miss the global optimum

10 For comparison, if the simulation with results shown in Fig. 15b would be repeated for a
flexible launcher, the indices would be .

∑
η̇f,1

= 774.5 s, .
∑
ηf,1

= 75.2 s, .Fη̇f,1 = 650.1 s, and

.Fηf,1 = 53.5 s. These very high values indicate severe deflections/vibrations, which could lead
to hardware damage or even a complete breakup of the launcher.
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and get stuck in a local one. The first step in the design process was to use single-
objective optimisation. This led to a small integrated state deviation, but without
guarantee that the control effort would be low. Adding this objective and executing
the next step in the design process gave a Pareto front with converged close-
to-optimal solutions. Finally, by adding also a control oscillation index as third
objective, an attempt was made to lower the oscillatory behaviour of the control.
It was observed that the same could be achieved by using only the integrated state
deviation and the oscillation index.

In terms of controller performance, the results worked well enough for the rigid
launcher. However, when engine dynamics was added, the same controller could
not stabilise the system, and a strong oscillatory behaviour was the result. This
could be solved by increasing the controller frequency and redoing the optimisation
by including the aforementioned oscillation index. The final design was practically
oscillation free and worked also well on the flexible launcher.

The introduced control system design methodology was shown to work well in
a conceptual design environment, where baseline controllers (with multiple design
parameters and thus quite a number of design degrees of freedom) can be quickly
analysed, and their performance improved. Depending on the complexity of the
design space, convergence will sometimes quickly come to a stop. Local refinement
by using a limited Monte Carlo analysis around the Pareto solutions could serve as
a confirmation for convergence. To account for the random effect, it is advised to
always redo the optimisation with multiple seeds to initialise the random generator.

As recommendations for future work, one could think of confirming the versa-
tility of this methodology by designing different control systems, possibly using
different (and more complex) design criteria. Because the evolutionary algorithm
was applied without a proper trade-off, other (global) optimisation techniques could
be tried to improve the efficiency of the methodology.

Zooming in on the application at hand, it should be verified what the computa-
tional load means for an on-board implementation. Requiring a controller frequency
of 100 or even 500Hz is perhaps not a trivial requirement. For the flexible launcher,
it would be interesting to study whether the same controller compared to one for
the rigid launcher comes out of the optimisation process and whether the use of
a different reference model may lead to an improved performance. Finally, the
controlled flight from launch to payload separation should be verified to ensure that
the controller always meets the performance requirements, taking transient effects
due to the rapidly changing flight conditions, aerodynamic properties, and depletion
of the fuel and oxidiser tanks into account. In principle, the adaptive controller
should be able to adapt to those changes, but re-optimising the controller parameters
for different conditions and using some form of interpolation in between design
points may ultimately yield the best possible performance.
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Appendix A: Pac Astro Mass Properties and Geometry

Tables A.1 and A.2 show the mechanical properties and additional masses of the
launch vehicle model.

Table A.1 Mechanical properties of the launch vehicle structural model

End

coordinate

. m

Moment

of inertia

.
[
m4

]
Young’s

Modulus

.[GPa]
Area

. m2
Thickness

. mm

Mass

.[kg]
Density

.
[
kg/m3]Section [ ] [ ] [ ]

Aft stage 1 3.07 3.93e.−3 0.69 1.63e.−3 30.46 72.4 2740

Fuel 1 6.03 1.51e.−2 2.64 6.28e.−3 230.91 73.8 2710

Intertank 1 8.63 1.78e.−2 3.10 7.37e.−3 102.69 72.4 2740

LOX 1 14.36 1.98e.−2 3.46 8.23e.−3 546.42 73.8 2710

Forward stage 1 16.79 1.48e.−2 2.59 6.16e.−3 67.30 72.4 2740

Aft stage 2 17.91 1.48e.−2 2.59 6.16e.−3 67.30 72.4 2740

Fuel 2 18.30 9.45e.−3 1.65 3.92e.−3 16.29 73.8 2710

Intertank 2 19.87 1.28e.−2 2.24 5.33e.−3 55.21 72.4 2740

LOX 2 20.96 1.03e.−2 1.79 4.27e.−3 49.62 73.8 2710

Forward stage 2 21.97 9.16e.−3 1.60 3.81e.−3 25.37 72.4 2740

Fairing 22.97 8.36e.−3 1.46 3.47e.−3 22.70 113 4430

Frustrum 25.58 7.04e.−3 1.23 2.93e.−3 53.54 113 4430

Nose 25.77

Table A.2 Additional
masses of the launch vehicle
model (excluding fuel
masses)

Stage 1 Stage 2

Mass

[kg]

Location

[m]

Mass

[kg]

Location

[m]Subsystem

Engine 225 1.54 60 16.79

Thrust structures 55 2.20 20 21.46

Gimbal system 80 2.20 20 17.35

Pressurant 130 7.50 30 19.87

Valves and lines 130 7.50 50 19.00

GNC electronics 40 21.97

Payload adapter 20 22.47

Payload 225 22.97
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Appendix B: State-space Matrices

The rigid-body sub-matrices (including coupling terms), .ARR, .ARE, and .ARF are
given by

.ARR =

⎡
⎢⎢⎣

−CNα q̄Sref

mu0
− gd sin θ0

u0

CNq q̄Sref

mu0
+ 1

0 0 1
Cmα q̄Sref dref

Iyy
0

Cmq q̄Sref dref

Iyy

⎤
⎥⎥⎦ (B.1)

.ARE =
⎡
⎢⎣

meΔLe

mu0
0 T

mu0

0 0 0
meLeΔLe+Ie

Iyy
0 LeT

Iyy

⎤
⎥⎦ (B.2)

.ARF =
⎡
⎣

aα,η̇1 aα,η1 . . . aα,η̇N
aα,ηN

0 0 . . . 0 0
aq,η̇1 aq,η1 . . . aq,η̇N

aq,ηN

⎤
⎦ (B.3)

with, for .i = 1, . . . , nf :

.aα,η̇i
= −CNη̇i

q̄Sref aα,ηi
= −CNηi

q̄Sref − T σi(xe)

mu0

.aq,η̇i
= Cq,ηi

q̄Sref dref

Iyy

aq,ηi
= Cmηi

q̄Sref dref − LeT σi(xe) − T φi(xe)

Iyy

In the above equations, m and .Iyy are the (current) mass and moment of inertia
of the launcher, .me and .Ie are the mass and moment of inertia of the engine, and
.ΔLcm,e is the distance from gimbal point to centre of mass of the engine. .CNα and
.CNq are the normal force gradients with respect to .α and q, and .Cmα and .Cmq are the
corresponding pitch-moment gradients. Due to the bending of the launcher frame,
local aerodynamic force and moment effects are introduced through the gradients
.CNηi

, .CNη̇i
, .Cq,ηi

, and .Cmηi
, and the details of which are provided by Mooij

and Gransden (2016). Finally, .φi(x) and .σi(x) are the modal-mass normalised .ith

bending shape and slope at location x, in this case the engine location .xe.
The engine is modelled as third-order transfer function, with input parameters .ωe,

.ζe, and .Ke, which are the natural frequency and damping of the engine dynamics
and an amplification gain, respectively. The 3.×3 engine sub-matrix, .AEE, is defined
to be
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.AEE =
⎡
⎣

−2ζeωe −ω2
e −Keω

2
e

1 0 0
0 1 0

⎤
⎦ (B.4)

where the corresponding coupling matrices are zero, i.e., .AER = .AEF = .0.
Each bending motion depends on the generalised force for that specific motion.

This generalised force is found by multiplying all the external loads with the
eigenvector of that mode. As before, the external loads are a function of the bending
motion and the position along the vehicle. Note that the subscripts i and j below
both indicate a flexible mode, up to the maximum of .nf . So, for .AFR, .AFE and .AFF,
we have

.AFR =

⎡
⎢⎢⎢⎢⎢⎢⎣

aη̇1,α aη̇1,θ aη̇1,q

0 0 0
...

...
...

aη̇nf
,α aη̇N ,θ aη̇nf

,q

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.5)

with

.aη̇i ,α = −q̄Sref

Ltot∫

0

C′
Nα

φi(x)dx aη̇i ,θ = −gd sin θ0

Ltot∫

0

φi(x)m(x)dx

.aη̇i ,q = − q̄Sref

u0

Ltot∫

0

(x − xcm)C′
Nα

φi(x)dx

.AFE =

⎡
⎢⎢⎢⎢⎢⎢⎣

aη̇1,ε̈T
0 aη̇1,εT

0 0 0
...

...
...

aη̇nf
,ε̈T

0 aη̇nf
,εT

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.6)

with

.aη̇i ,ε̈T
= meΔLcm,eφi(xe) + Ieσi(xe) aη̇i ,εT

= T φi(xe)
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.AFF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

aη̇1,η̇1 aη̇1,η1 . . . aη̇1,η̇nf
aη̇1,ηnf

aη1,η̇1 aη1,η1 . . . aη1,η̇nf
aη1,ηnf

...
...

...
...

...

aη̇nf
,η̇1 aη̇nf

,η1 . . . aη̇nf
,η̇nf

aη̇N ,ηN

aηnf
,η̇1 aηnf

,η1 . . . aηnf
,η̇nf

aηnf
,ηnf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B.7)

with, for .i �= j :

.aη̇i ,η̇j
= − q̄Sref

u0

Ltot∫

0

φi(x)C′
Nα

φj (x)dx

.aη̇i ,ηj
= −q̄Sref

Ltot∫

0

φi(x)C′
Nα

σj (x)dx − T φi(xe)σj (xe)

.aηi ,η̇j
= aηi ,ηj

= 0

and for .i = j

.aη̇i ,η̇i
= aη̇i ,η̇i

− 2ζf,iω
2
f,i aη̇i ,ηi

= aη̇i ,ηi
− ω2

f,i

.aηi ,η̇i
= 1 aηi ,ηi

= 0

Lastly, to complete the model description, the components of .B are stated:

.BR = BF = 0 (B.8)

and

.BE =
⎛
⎝

Keω
2
e

0
0

⎞
⎠ (B.9)
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Optimization and Solution Approaches in
Utilizing Wireless Sensor Networks for
Exploring Moon, Planets, and Space

Omer Ozkan

1 Introduction

The trends and studies in micro-electro-mechanical systems and wireless com-
munications have led to the invention of small-sized, low-cost, low-power, and
multifunctional sensor nodes (SNs) that are deployed to the environment to sense
the following [1]:

• Temperature
• Humidity
• Gas
• Vehicular movement
• Color
• Lightning condition
• Pressure
• Soil composition
• Noise levels
• Light
• Smoke
• The presence or absence of certain objects
• Mechanical stress levels on attached objects and
• Current characteristics such as speed, direction, acceleration, and object size, etc.

The large number of these seismic, low-sampling-rate mechanical, magnetic,
thermal, visual, infrared, chemical, biological, optical, acoustic, or radar wireless
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Table 1 WSN types [2, 3]

Types Cost Deployment Challenges

Terrestrial WSN Low Structured, unstructured Energy

Underground WSN High Structured, unstructured Energy, signal loss, attenuation

Underwater WSN High Structured, unstructured Energy, bandwidth, signal fading

Multimedia WSN Low Structured, unstructured Energy, high data rate, high bandwidth

Mobile WSN High Initial spreading Energy, localization, placement

sensors, which make up the wireless sensor network (WSN), aim to sense, process
data, and communicate collaboratively about the physical characteristics of the
located field [1, 2]. The deployment positions of the sensors across the field
should be determined carefully and should be located to increase data-collection
efforts while minimizing costs. Coverage, energy consumption, reliability, security,
communication range, memory, and network lifetime are other properties that can be
included in the problem definition. Possible WSN applications include monitoring
or tracking health, military, environment, agriculture, building (home, office, etc.),
security, energy, traffic, infrastructure, and space fields [1–4].

WSN types can be classified into five categories, as presented in Table 1.
According to the sensor type, a WSN can also be categorized as static, mobile,
hybrid, or mobile robot [5]. The WSN protocol consists of the application, transport,
network, data links, and physical layers with power management, mobility man-
agement, and task management planes. ZigBee and Bluetooth are the two standard
communication tools utilized in WSNs [6], and the network design topologies in
WSNs can be defined as point-to-point, star, tree, or mesh [7].

In this study, WSN applications for exploring the Moon, planets, and space are
analyzed, and the literature is summarized. The optimization and solution method-
ologies in these applications are presented, and the opportunities and challenges of
using WSNs in space-based missions are revealed. The remainder of this paper is
organized as follows: Sect. 2 gives an overview of studies exploring the Moon using
WSNs. Section 3 includes papers about exploring planets, and Sect. 4 discusses
several WSN applications in space. Section 5 concludes this chapter.

2 Exploring the Moon by Using WSNs

Throughout the entire existence of humanity, the Moon has consistently affected
the musings and beliefs of numerous societies, and it has been used as a source to
comprehend and measure time. Beginning after the 1950s, technology has allowed
people to reach the Moon physically and discover it more profoundly. Up to today,
hundreds of missions have been devoted to exploring the Moon, and in addition
to the USA and Russia, new countries have joined the competition in recent
years. Since the Apollo 11 landing on the Moon in 1969, governments and private



WSNs for Exploring Moon, Planets, and Space 287

companies still aim to explore the entirety of and create settlements for humans on
the Moon.

WSNs can be a highly efficient and effective alternative to explore the Moon as
the closest target to Earth in space (Fig. 1). In the literature, [8] intend to reveal the
theoretical aspects of the deployment problem of WSNs on the Moon. The deploy-
ment methodology of water ice sensors on the Moon differs from those deployed
at a site on Earth. The sensor deployment, area coverage, wireless connectivity, and
sensor deployment cost are considered by using placement topologies via MATLAB
and the number of sensors are minimized.

Pabari et al. [9] study radio frequency modeling of WSNs on the Moon and
propose a model using fundamental physical phenomena resulting from wave
propagation on the Moon. Digital Elevation Model of four sites of the Moon are
used by the proposed model and the models of sites are obtained by Terrain Mapping
Camera on Chandrayan-1 which is an Indian probe to the Moon. The results in
the paper provide information about the area coverages of sensors, potential sensor
deployment sites and usage of sensors in path planning of rovers on the Moon.

Prasad and Murty [10] present several scenarios in single and multi-tier WSN
architectures for searching for water or ice on the Moon. The study reveals positive
opinions about the feasibility for the sensor node hardware based on current
progresses while [11] also discusses the chance of the in-situ exploration of lunar

Fig. 1 A possible network on the Moon



288 O. Ozkan

ice via WSNs. In recent works, lunar ice has been detected via using remote sensing
techniques by lunar programs and it is expected that the ice has been formed in
permanently dark areas of the Moon at very low temperatures. The study proposes
to use WSNs for in-situ measurement of the potential ice.

Meanwhile, [12] study the design and implementation of data aggregation
algorithms for lunar missions via WSNs. The size of the data packet is optimized for
better energy consumption in WSNs, and the effectiveness of the data aggregation
scheme is maximized. The presented data aggregation algorithms are also applied
successfully on a system-on-a-chip embedded platform utilizing a Xilinx Zynq
FPGA tool. The life time of the WSN is increased via the saved energy and the
original data accuracy is protected by using data aggregation. It is assumed that this
research can be helpful for security and safety related studies about the Earth by
using the Moon, such as monitoring the space or preventing military bases on the
lunar surface.

Lopez-Matencio [13] develops an ant colony optimization-based metaheuristic
algorithm for deploying SNs and compares the results with the four-directional
placement heuristic. The multi-objective optimization problem in the study aims
to select optimal observation sites and to maximize the WSN lifetime. The
methodology aims to solve a multi-objective WSN placement problem by focusing
on node placement, sensing capacities, network connectivity and network lifetime.
In the study, a network is designed to explain the distribution of helium-3, a potential
enabling element for fusion reactors, on the Moon.

In addition, [14] define a comprehensive mass-constrained deployment model for
missions exploring the Moon’s surface. The problem includes heterogeneous rele-
vance on the map, detailed lifetime, node airborne launch, or propellant calculations.
Since the defined problem is too complex, a simulated annealing algorithm is also
proposed to solve it. The placement positions of sensors are optimized to describe
water distribution in the Bullialdus Crater on the Moon.

Further, [15] studies the WSN deployment problem on the Moon to maximize
coverage and develop a hybrid memetic algorithm. Sixty-four scenarios are created
based on the real 3-D digital elevation model of the surface of the Moon for two
different terrains near the South Pole. The results of the hybrid memetic algorithm
are compared with local search and simulated annealing algorithms. It is presented
that the hybrid memetic algorithm has better coverage values in reasonable CPU
times.

In summary, the deployment, coverage, energy consumption, and communication
characteristics of WSNs are the most studied properties for optimizing the utiliza-
tion of WSNs on the Moon’s surface. In the literature, different scenarios are solved
with exact or approximate optimization approaches specific to the characteristics of
the Moon.
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3 Exploring the Planets by Using WSNs

In the literature, WSNs are also proposed to be used in exploring planets. However,
the planet environments are harsh, with some example values listed below [16,
17]:

• Temperature range: .−133 to .+22 ◦C on the surface of Mars, .−173 to .+427 ◦C
on the surface of Mercury

• Pressure range: up to 90 bar on the surface of Venus
• Irradiation: krad to several mrad depending on orbit, solar activity, and mission

duration
• Atmospheric constituents: hydrogen, helium, and methane in Uranus and Nep-

tune
• Vibrations: up to 20 G from 5 to 2000 Hz at launch
• Shocks: up to 10,000 Gat separation of stages and heat shield

The detailed information about the atmospheres, surfaces, and tectonic behaviors
of the planets and Titan (the largest moon of Saturn and the second-largest natural
satellite in the Solar System) can be found in [18–24], and because of these
compelling physical conditions, the deployed WSN nodes on the planets should
be resistant to these conditions. Duboisa et al. [16] consider physical and chemical
sensing of the atmosphere, surface, and soil on a Solar System object by utilizing
WSNs, including two scenarios with static or moving SNs. The SNs can be located
on the ground or in the atmosphere of a Solar System object. Self-organization
and localization are the main challenges to design a reliable network in such
environments. The study explains the diversity of environmental and operational
constraints and also covers the specific requirements of WSNs when using them
to explore the space. Trebi-Ollennu et al. [25] conduct an extensive analysis,
simulations, and experiments concerning a sun sensor to be used in Field Integrated,
Design and Operations (FIDO) rover to explore planets. The study aims to develop a
sun sensor that fills the current cost/performance gap, utilizes the power of subpixel
interpolation, makes use of available hardware on the rover, and needs very little
computational overhead. The sensor is used to estimate the heading of planetary
rovers including integration of noisy rotational-speed evaluations.

Because the planet environments can be dangerous, [26] study a reliable WSN
design for planet exploration. The WSNs can serve remote monitoring of not easily
reachable regions in preparation of human or robotic missions. Therefore, the
study presents a method named “confidence weighted voting” that can increase the
reliability of the data and the fault tolerance in WSNs. The method is compared
with the traditional approaches, such as majority voting and distance weighted
voting. The results present the confidence weighted voting has as much as 49%
more resilient and better performance values than the traditional approaches.

In addition, [27] work on a hardware design for sensors to be used in planetary
exploration missions. The seismic, chemical, temperature, and visual properties in a
sensor payload are proposed, and the power and communication features needed
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to achieve these kinds of planetary exploration missions are also included. The
experiment offers a positive assertion of feasibility for the sensor node hardware,
provided current levels of MEMS and VLSI technologies. The study also points
out the necessity about the works in the wireless ad-hoc networking sides of the
proposed deployment approach.

Further, [28] propose to utilize WSNs to explore planets (for instance, on the
surface, on rover platforms, etc.) and summarize the objectives of using WSNs in
exploring planets as follows:

• Decide whether life ever arose on a specific celestial object
• Define the geology and topology of the land surface
• Describe the climate
• Make ready for human discovery

Medina et al. [28] propose that the WSNs have more scientific and economic
benefits than the traditional devices while exploring space and planets, such as:

• Increased spatial and temporal sampling capabilities
• Increased reliability
• Decreased payload weight
• Decreased overall costs
• Decreased mission programmatic

Medina et al. [28] also outline the deployment strategies of sensors in exploring
scenarios as follows:

• Dropped by an orbiter and with individual propulsion
• Dropped by the Lander
• Dropped while using small parachutes, balloons, or rotors (that depends on the

target body)
• Dropped by a rover
• Fired by the Lander

Pabari et al. [29] design and develop an extremely compact impedance-based
WSN node to infer the existence of water/ice in a soil sample to be used in planetary
explorations. The proposed sensor aims to evaluate the permittivity of lunar regolith
and make out the presence of water ice and it runs in the frequency domain with
a provided range by sweeping the frequency. This wireless sensor requires only
electrical contact with the ground surface that helps to save energy. The sensor data
are transmitted at 2.4 GHz to the aggregator. Sand-type terrestrial soil, lunar soil
simulant JSC-1A, and Milli-Q water are tested to present the performance of the
sensor.

Prasad et al. [30] design a sensitive ambient light-sensing module with a wide
dynamic range to be used in WSNs for planetary exploration missions. The perfor-
mance of the sensor is tested under different circumstances. The variance in light
intensities differentiates from .<1 to .1.2 × 105 lx that could be noticed from dawn
to dusk. Meanwhile, the European Space Agency (ESA) funded a project named
RF Wireless for Planetary Exploration (RF-WIPE) to research the deployment of
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several self-organizing WSNs for exploring a planetary body [31]. This real project
aims to simulate and prototype a WSN to be used in planetary exploration and to
present the potential and limitations of the proposed methodology. In the work,
a distributed sensor network-based instrument and networked planetary surface
exploration are studied as case scenarios with different network configurations.
Energy models, node deployment, and communication protocols are advanced,
simulated, and validated with laboratory and outdoor tests.

Rodrigues et al. [32] study the design of nodes and the WSN architecture
with data fusion for planetary discovery. The paper summarizes the difficulties,
principles, and solutions to design issues. In addition, the study presents supporting
data fusion architecture in terms of node and network structures that affects the
performance of WSNs. Meanwhile, [33] illustrate the issues and challenges of
using WSNs on planet surfaces, especially with the Mars example. The application
includes node placement, coverage, communication, and data transfer issues.

Space Wireless Sensor Networks for Planetary Exploration (SWIPE) is another
real project funded by the European Commission, and it aims to transfer WSN
technology to space [34]. Radiation, temperature, illumination, and dust deposition
sensor types are used with clustered network topology to generate a WSN in SWIPE.
Planetary surface environment monitoring scenario in SWIPE is presented in Fig. 2

Fig. 2 Planetary surface environment monitoring scenario [34]
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Fig. 3 SWIPE node configuration [34]

and SWIPE node configuration is illustrated in Fig. 3. The project ended in 2015
after achieving several scientific and technical objectives, such as:

• Defining complexities and needs
• Improving hybrid satellite–mobile ad-hoc network routing algorithms
• Applying multi-sensor data-processing and fusion
• Designing seven node prototypes
• Conducting detailed tests in high-fidelity environments

Zhai and Vladimirova [35], as a part of SWIPE, propose data-processing/fusion
algorithms for WSNs on planets and aim to integrate the sensor data and to reduce
data volume using satisfying energy constraints. Extensive simulations are done
and the performance of the proposed data-processing/fusion algorithms are tested.
The results reveal that the algorithms can decrease the node energy necessity
significantly, and the data transmission energy up to 91% while preserving the
original data up to 99% accuracy.

Meanwhile, [36] develop an ad-hoc routing algorithm and with several simula-
tions to achieve five objectives as:

• Making sure of any-cast communications with multiple data sinks
• Decreasing the control overhead for routing maintenance
• Being light in terms of memory/computational necessities, to be deployed into

low-power and low-memory/processing devices
• Acting rapidly to restructure in the occurrence of node failures
• Making optimal choices about the routes to balance and save energy
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Fig. 4 A possible network on the Mars

Mars is the most studied planet on which to deploy WSNs, and they could be
effective in the network that is aiming to prepare the first human settlements (Fig. 4).
Ulmer et al. [37] propose a distributed WSN model performing measurements and
data transfers in the Mars environment, while [38] present a poll-reply scheme for
gathering sensor data on Mars while considering energy conservation and network
lifetime. The study proposes a clustering assisted, energy aware polling model. The
methodology uses passive clustering protocol and maintains an efficient forwarding
mesh with more equally distributed energy consumption. By this way, the lifetime
of the network is increased while satisfying connectivity and latency constraints.

Again, [39] develop an efficient routing scheme for Mars WSNs using sensors,
rovers, and packet radio network connections that considers energy conservation and
network lifetime. A multi-path routing scheme is developed with a mesh structure
that decreases the congestion and increases the energy efficiency and reliability.
The energy aware path selection helped the network to increase its lifetime. Del Re
et al. [40] and Pucci et al. [41] investigate the performance of an IEEE 802.15.4
standard-based WSN working at 2.4 GHz in the Mars environment with several
simulations on Simulink and OMNET.++. A characterization of the most preferred
five frequency channels is considered with Martian geomorphologic, atmospheric,
and eolian features to test the performance of the IEEE 802.15.4 standard. Bit Error
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Rate (BER), Symbol Error Rate (SER), and Throughput are evaluated to present the
network performance.

Further, [42] studies CubeSats-aided WSNs in discovering Mars and Venus, and
details about the design, development, testing, and possible mission architectures of
the proposed instruments are revealed. The results present that these devices can
operate in such extreme environments. Despite the average surface temperature
being .+462 .

◦C on Venus, it is the second-most studied planet in the literature
in terms of discovery via WSNs. Ponchak et al. [43] also describe and prove
the possible utilization of a high-temperature wireless seismometer sensor to be
deployed on Venus.

In the NASA Venus Technology Plan published in 2014 [44], one of the
technological improvements needed for operation in the Venus ambient is the
development of high-temperature electronics, sensors, and thermoelectric power
sources for future missions. In the plan, it is emphasized that sensors should operate
at temperature levels from 100 .

◦C to above 460 .
◦C on Venus. Geophysical, chemical,

imaging, infrared, and other types of sensors can be used in missions, and the WSNs
must work for long durations (i.e., months). Glaze et al. [45] also state that the
sensors developed for exploring Venus must be temperature-resistant and should
have long-term surface survival.

In many of the studies, Mars and Venus are the most studied planets that can be
discovered by deploying WSNs on their surfaces. The requirements for the WSNs
to be operable on the planet surface are mostly described and studied in the papers.
Titan can also be added to the exploration list soon.

4 Using WSNs in Space Missions

Clare et al. [46] propose a communications architecture for space-based SNs and
a method that reveals the link activation schedule (transmit/receive mode and
communications neighbor choosing) and routes utilized for efficient traffic relay.
Since the inter-spacecraft distances are long, directional antennas are utilized with
a single half-duplex transceiver per spacecraft to decrease the cost. An illustrative
example by evaluating throughput and latency performance is covered in the study.
An extension to the networking approach is also defined which is traffic adaptive.

Then, [47] study integrated vehicle health monitoring (IVHM) sensor technology
to be used in future spacecraft for keeping the crew and the vehicle safe. This
technology has high costs and its weight, size, and other specifications can be
obstacles for them to be integrated onto a spacecraft. The study presents a few
new wireless sensing technologies such as IVHM for future spacecraft and it also
emphasizes the challenges about utilizing WSNs for aerospace vehicles.

Vladimirova et al. [48] introduce a picosatellite SN. The research is carried
out at the Surrey Space Centre and aims at space weather missions in low Earth
orbit (LEO). The satellite SN demonstrates improvements in the modified IEEE
802.11 wireless standard for inter-satellite links, the distributed computing for inten-
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sive onboard signal processing, and the reconfigurable system-on-a-chip design.
Meanwhile, [49] deal with the design issues of the satellite SNs, and a distributed
computing platform is presented. Distributed satellite system scenarios considering
the flower constellation set are presented. Communication subjects of a space
based-WSN (SB-WSN) in reference to the Open Systems Interconnection (OSI)
networking scheme are covered. A new configurable inter-satellite communications
module for picosatellites is summarized.

Sun et al. [50] express some application scenarios for space-based WSNs as
very-small-satellite cluster/swarms, autonomous formation flying, onboard sensor
networks, fractionated spacecrafts, and surface vehicles on the Moon, planets, and
asteroids. Network scale, link range, degree of dynamics, data rate, power consump-
tion, time intensive requirement, and degree of cooperation criteria are presented
to categorize applications and to select the most potentially feasible technologies.
The difficulties about implementing the application are also divided into levels
and compared. Wagner [51] surveys two WSN protocols as Wireless HART (from
the HART Communication Foundation) and ISA100.11a (from the International
Society of Automation) for both spaceflight and terrestrial implementations and
illustrates a new standards-based SN architecture. The research also illustrates the
structure for a new standards-based SN for networking and applications.

Meanwhile, [52] and [53] conduct an overview of the chances for partnerships to
develop new wireless sensors to be used in space applications. The studies empha-
size the benefits of utilizing small, passive, wireless sensors in space environments
from ground tests to operations on orbit. The sensors can decrease the launch and
fabrication costs because of their wireless structure. The studies also mention that
using VHMSs can increase safety, provide examples from NASA applications, and
suggest that to the universities, industry, and other governmental agencies work
together about new wireless sensors.

Wagner and Barton [54] perform a comparison of the relative performance of
the ZigBee Pro and ISA100.11aWSN protocols in a crewed aerospace scenario
and the WSN protocols in an aerospace analog environment are analyzed. The
study compares message delivery rates succeeded by both under different levels
of 802.11g Wi-Fi traffic while [55] focus on the design issues of space-based WSNs
and study the network architecture. An algorithm is also proposed to schedule
communications while satisfying the SN traffic with the least latency. Further, [56]
present the design and measurement of an ultrasonic WSN in the on-earth Columbus
Module that is a replication of the main module connected to the International Space
Station (ISS). The module is testing new hardware before deployment to the ISS.

In brief, utilizing WSNs in spacecraft and space stations or sometimes using
satellites as SNs is the most studied topic under this subject. Besides the Moon
and planets, asteroids can also be targets of WSN utilization. According to NASA
findings, there are currently 1,064,044 known asteroids and 3,714 known comets
awaiting exploration [57].
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5 Conclusion

In this chapter, studies of the utilization of WSNs in space missions are investi-
gated and summarized. In conclusion, the technological developments in wireless
communication technologies allow WSNs to be utilized in space applications and to
discover the Moon, planets, natural moons of the planets, or asteroids. Humankind
sent humans and vehicles to the Moon, rovers to explore the surface of Mars, and
vehicles to investigate Venus and an asteroid named Eros. Thus, WSNs can be good
alternatives to gather critical physical data including temperature, seismic, visual,
infrared, light, pressure, radiation, and gas data, among others about target objects.
Nevertheless, the environments on the planets or on other space bodies can be highly
difficult for such instruments. Therefore, there are still many areas to be studied by
researchers and scientists so the capabilities of sensors and their communication
skills can be adapted to space applications.
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Near-Optimal Guidance
and Pulse-Modulated Reduced-Attitude
Control for Orbit Injection

Mauro Pontani, Andrea Pianalto, Stefano Carletta, and Paolo Teofilatto

1 Introduction

Multistage launch vehicles are employed to place satellites in their operational
orbits. Ascent path optimization plays a crucial role in the preliminary analysis of
the performance of a launch vehicle, with prescribed aerodynamics and propulsion
characteristics. The scientific literature includes a number of relevant contributions
on trajectory optimization of multistage launch vehicles. Calise et al. [1] and
Gath and Calise [2] proposed a hybrid analytic/numerical approach, based on
homotopy. Lu and Pan [3] and Lu et al. [4] applied a multiple-shooting method
to optimize exoatmospheric trajectories composed of two powered phases and a
coast arc, whereas Weigel and Well [5] focused on the ascent trajectories of two
launch vehicles with splash-down constraints. Miele [6] introduced and applied the
multiple-subarc gradient restoration algorithm for the purpose of optimizing the
ascent path of a three-stage vehicle, in the presence of constraints. These represent
a common issue, especially for the first two stages, which encounter significant
atmospheric density and thus are subject to relevant dynamical stress. Pontani
[7] considered the constraint related to the dynamical pressure, and proposed a
geometrical method to enforce it,based on the Pontryagin minimum principle.
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Palaia et al. [8] included the same constraint, while adopting a very accurate
modeling for aerodynamics and propulsion. These works [7, 8] employed the
indirect heuristic method for ascent path optimization, based on the joint use of the
necessary conditions for optimality and a heuristic technique. While the preceding
publications focused on methodologies that are essentially indirect in nature, other
scientific contributions [9–11] dealt with direct approaches applied to multistage
rocket trajectory optimization.

In the early phases of the ascent path, the existence of constraints greatly affects
the performance of a launch vehicle. Along the powered arcs of the first two stages,
the feedback compensation of nonnominal flight conditions must avoid violating
these constraints. In fact, at low and moderate altitudes, where the atmospheric
density is relevant, the dynamical constraints are usually enforced by maintaining a
modest angular displacement between the relative velocity and the longitudinal axis
of the ascent vehicle.

Ignition of the upper stage occurs at altitudes where the previously mentioned
constraints are no longer effective. This circumstance allows the use of efficient real-
time guidance and control approaches, tailored to driving the upper stage toward the
desired injection conditions. Precision of orbit insertion, which occurs at burnout
of the upper stage, represents a crucial issue, and potentially affects the subsequent
phases of spaceflight, because corrective maneuvers may be needed if orbit injection
is completed with unsatisfactory accuracy. Traditionally, two different approaches
to guidance exist. Explicit algorithms stem from the idea of re-defining the flight
trajectory at the beginning of each guidance interval, at which an updated trajectory
(leading to the target final condition) is computed [12, 13]. Implicit algorithms
consider the perturbations from a specified nominal trajectory, and define the
feedback control corrections aimed at maintaining the vehicle in the proximity of
the nominal path [14–16]. Neighboring optimal guidance (NOG) can be regarded as
an implicit guidance technique that relies on the analytical second-order optimality
conditions, in order to find the corrective control actions in the neighborhood of
the reference (optimal) path. Most recently, Variable-Time-Domain NOG [17–19]
emerged as an effective algorithm, capable of circumventing the major difficulties
of former contributions focused on NOG. However, only a limited number of
works dealt with the joint application of guidance and control (G&C) algorithms to
aerospace vehicles. In Ref. [20] proportional-derivative (PD) control is employed for
both G&C algorithms. Guidance and control based on Nonlinear Dynamic Inversion
is studied by Marcos et al. [21] and a comparison between Dynamic Inversion
and State Dependent Riccati Equation approaches is presented in Ref. [22]. An
integrated G&C method is proposed by Tian et al. [23], while the use of G&C
based on sliding-mode is investigated in Ref. [24]. Most recently, Pontani and Celani
[25–27] proposed two distinct guidance and attitude control architectures based on
VTD-NOG. In particular, Ref. [27] addresses the problem of orbit injection of ascent
vehicles using VTD-NOG&CPD (“Constrained Proportional-Derivative Control”).
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It is apparent that NOG schemes represent a very attractive solution for guidance
of aerospace vehicles, because perturbed paths are strictly related to the nominal
(optimal) solution. This means that in most cases the vehicle performance, in
terms of propellant consumption or time of flight, is subject to modest degradation
with respect to the optimal solution. However, the major shortcoming of implicit-
type guidance algorithms is in the need of a precomputed nominal trajectory.
Furthermore, all NOG schemes assume that the reference path is optimal, and this
requires the availability of all the state and co-state variables that appear in the
necessary conditions for optimality. Although NOG schemes outperform all the
explicit guidance algorithms, the latter have the great advantage of not requiring
any nominal trajectory. Moreover, usually explicit guidance techniques are more
robust than implicit algorithms.

The work that follows is aimed at (i) introducing a new explicit near-optimal
guidance, based on the local projection of the position and velocity variables, (ii)
formulating and addressing the reduced-attitude-control problem, which consists
in driving the actual longitudinal axis of the upper stage toward the commanded
thrust direction, and (iii) providing an accurate modeling of the actuation dynamics,
based on thrust vectoring and modulated side jets for roll control. Near-optimal
guidance (i), reduced-attitude control (ii), and actuation (iii) are integrated in
a unified architecture. The explicit guidance, control, and actuation approach
proposed in this study does not require the offline preliminary computation of any
reference trajectory or quantity. Monte Carlo simulations are run, for the purpose of
ascertaining the effectiveness and accuracy of the G&C architecture at hand, in the
presence of significant displacements from the nominal initial conditions.

2 Dynamics of the Upper Stage of a Launch Vehicle

This work is concerned with the accurate orbit insertion of the upper stage of
a launch vehicle, tailored to injecting the payload into its operational orbit. The
spacecraft of interest is assumed to be subject to the gravitational attraction of a
single body (i.e., the Earth). This section describes the equations that govern both
trajectory and attitude.

2.1 Trajectory

The spacecraft motion takes place about the Earth, and the dynamics of its mass
center is investigated under the following assumptions:

(a) The Earth has spherical mass distribution.
(b) The propulsive thrust is continuous and has constant magnitude T.
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Fig. 1 Reference frames for trajectory (a) and thrust angles (b)

Assumption (a) implies that the gravitational attraction is directed radially. Due
to (b), the thrust acceleration aT is

aT = T

m
= n0

η
where η := m

m0
and n0 := T

m0
(1)

where m is the spacecraft instantaneous mass and m0 denotes the respective initial
value.

The spacecraft motion can be described in a convenient inertial reference frame,
associated with the right-hand sequence of unit vectors .

(
ĉ1, ĉ2, ĉ3

)
. Its origin is

located at the center of the attracting body, and the target orbit lies on the .
(
ĉ1, ĉ2

)
-

plane (cf. Fig. 1a). The time-varying position can be identified by the following
three variables: radius r, right ascension ξ , and declination φ, portrayed in Fig. 1a.
The spacecraft velocity can be projected into the rotating frame .

(
r̂ , t̂ , n̂

)
, where .r̂ is

aligned with the position vector r and .t̂ is parallel to the .
(
ĉ1, ĉ2

)
-plane (and in the

direction of the spacecraft motion, cf. Fig. 1a). The related components are denoted
with (vr, vt, vn) and termed, respectively radial, transverse, and normal velocity
component. The upper stage is controlled through the thrust direction, defined by
the in-plane angle α and the out-of-plane angle β, both illustrated in Fig. 1b (in
which .T̂ is aligned with the thrust direction).

The trajectory equations involve (r, ξ ,φ, vr, vt, vn, η),

ṙ = vr (2)

ξ̇ = vt

r cosφ
(3)

φ̇ = vn

r
(4)

v̇r = − μ

r2
+ v2t + v2n

r
+ aT sinα cosβ (5)
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v̇t = vt

r
(vn tanφ − vr) + aT cosα cosβ (6)

v̇n = −v2t

r
tanφ − vrvn

r
+ aT sinβ (7)

η̇ = −n0

c
(8)

where c is the effective exhaust velocity of the propulsion system, aT is given by
Eq. (1), and μ (=398600.4 km3/s2) is the Earth gravitational parameter.

2.2 Attitude

The spacecraft instantaneous orientation is associated with the body frame. Its origin
is in the center of mass of the vehicle, while its axes are aligned with the right-hand

sequence of unit vectors .

(
ι̂, ĵ , k̂

)
, with .ι̂ pointing toward the longitudinal axis of the

upper stage. Vectrix .B is composed of .

(
ι̂, ĵ , k̂

)
, i.e., .B :=

[
ι̂ ĵ k̂

]
; similarly, the

right-hand sequence .
(
ĉ1, ĉ2, ĉ3

)
, corresponding to the inertial frame, forms vectrix

.N := [
ĉ1 ĉ2 ĉ3

]
.

In this research, the instantaneous attitude is referred to .N and is described
through Euler parameters (quaternions), denoted with {q0, q}, where q0 is the scalar
part, whereas q is the (3 × 1)-vector part. If .

N ω−→
B
denotes the vector angular rate of

.B with respect to .N, the attitude kinematics equations are [28]

q̇0 = −1

2
qTω (9)

q̇ = 1

2

[
q0I3×3 + q̃

]
ω (10)

where ω denotes the (3 × 1)-vector that contains the three components of .
N ω−→B in

.B, i.e., .N ω−→B = Bω, .q̃ is the skew-symmetric matrix associated with q, and I3 × 3

is the (3 × 3) identity matrix.
Under the (approximating) assumption that the mass center C does not move

during the entire time of flight, the attitude dynamics equations are decoupled from
the trajectory equations, and involve the spacecraft angular momentum with respect
to C, .HC−→. If HC denotes the (3 × 1)-vector that includes the three components of

.HC−→ in .B, then [28]

ḢC = −ω̃HC + MC (11)
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where .ω̃ denotes the skew-symmetric matrix associated with ω, whereas MC is a
(3 × 1)-vector that includes the components of the external torque in .B. Let .J(B)

C
denote the spacecraft inertia matrix with respect to C, resolved in .B. Because .HC =
J(B)
C ω, and taking into account the torque .T C−→ due to thrust misalignment (related to

thrust vectoring or side jets), Eq. (11) becomes

ω̇ =
[
J(B)
C

]−1 (−ω̃J(B)
C ω − J̇

(B)

C ω + MC + T C

)
, with T C−→ = BT C (12)

In Eq. (12), .J̇
(B)

C is the time derivative of the inertia matrix, which is nonzero due to
propellant consumption. In this research, external torques are considered negligible,
thus MC = 0 hence forward.

The nonlinear differential system composed of Eqs. (9), (10), and (12) govern the
instantaneous attitude and angular rate of the spacecraft. The torque components of
TC represent the control input.

3 Near-Optimal Guidance

In the great majority of spacecraft guidance scenarios, explicit real-time guidance
algorithms are aimed at identifying the optimal thrust direction capable of driving
the space vehicle toward the final desired conditions. This study proposes a near-
optimal guidance scheme based on local projection of the spacecraft position and
velocity, under the assumption that the instantaneous trajectory is sufficiently close
to the .

(
ĉ1, ĉ2

)
-plane, which contains the target orbit. This is assumed to be a circular

orbit, with radius Rf.

3.1 Local Projection of Position and Velocity

The guidance algorithm is run repeatedly and starts at equally spaced discrete
times {tk}k = 0, . . . , N − 1. The symbol �tS denotes the sampling time interval, i.e.,
�tS = tk + 1 − tk (k = 1, . . . ,N − 2); the last interval is shorter, because the
guidance and control algorithm stops when the desired conditions are reached with
satisfactory accuracy. At time tk, the spacecraft position and velocity are denoted
with .rk−→ and .vk−→, and are associated with (rk, ξ k,φk, vr, k, vt, k, vn, k) and .

(
r̂k, t̂k, n̂k

)

(i.e., .
(
r̂ , t̂ , n̂

)
at tk, cf. Fig. 1b). Let .

(
x̂k, ŷk, ẑk

)
denote three unit vectors obtained

from .
(
r̂k, t̂k, n̂k

)
through a counterclockwise rotation about axis 2 by angle φk (cf.

Fig. 2). Vectors .rk−→ and .vk−→ are projected along .
(
x̂k, ŷk, ẑk

)
,

rk−→ = rk
[
cosφk 0 sinφk

] [
x̂k ŷk ẑk

]T
(13)
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Fig. 2 Reference frame for
the near-optimal guidance

vk−→ = [
vr,k vt,k vn,k

]
R2 (−φk)

⎡

⎣
x̂k

ŷk

ẑk

⎤

⎦ =
⎡

⎣
vr,k cosφk − vn,k sinφk

vt,k

vr,k sinφk + vn,k cosφk

⎤

⎦

T⎡

⎣
x̂k

ŷk

ẑk

⎤

⎦

(14)

Then, the locally flat variables (x, y, z, vx, vy, vz) are introduced, with values at tk
corresponding to the components of .rk−→ and .vk−→ along .

(
x̂k, ŷk, ẑk

)
, i.e.,

xk = rk cosφk yk = 0 zk = rk sinφk (15)

vx,k = vr,k cosφk − vn,k sinφk vy,k = vt,k vz,k = vr,k sinφk + vn,k cosφk

(16)

The locally flat variables are governed by the following equations of motion [19]:

ẋ = vx ẏ = vy ż = vz (17)

v̇x = ãT sin θ1 cos θ2 − g v̇y = ãT cos θ1 cos θ2 v̇x = ãT sin θ2 (18)

where angles (θ1, θ2) identify the thrust direction in .
(
x̂k, ŷk, ẑk

)
, g denotes the

(local) gravitational acceleration, and .ãT is the thrust acceleration. Because the final
orbit is circular, using (x, y, z, vx, vy, vz), the desired conditions at orbit injection are
rewritten as

xf = Rf zf = 0 vx,f = 0 vy,f =
√

μ

Rf
vz,f = 0 (19)
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It is worth remarking that these projected variables are used only in the context
of the guidance algorithm, and allow a sufficiently accurate approximate description
of the spacecraft trajectory, provided that the injection arc is sufficiently short.

3.2 Optimal Control

In general, the numerical solution of spacecraft trajectory optimization problems
is an offline task, which cannot be demanded to onboard guidance algorithms.
In this study, the projected variables, in conjunction with the related governing
Eqs. (17), (18) and boundary conditions (19), are employed for the purpose of
identifying the optimal thrust direction that minimizes the time of flight. Let .x =
[
x y z vx vy vz

]T
and .u = [

θ1 θ2
]T

represent, respectively, the state and control
vector. The following optimal control problem is introduced:

u∗(t) = argmin
u

tf subject to Eqs.(17) − (19)

where the star denotes the optimal value of the related vector.
The problem at hand admits an analytical solution that depends on the initial

values of the adjoint vector conjugate to the state Eqs. (17) and (18), if .ãT and g
are assumed constant in Eq. (18). To prove this, a Hamiltonian H and the auxiliary
function 
 are introduced,

H = λ1vx+λ2vy+λ3vz+λ4 (ãT cos θ2 sin θ1 − g) +λ5ãT cos θ2 sin θ1 + λ6ãT sin θ2
(20)


 = tf + υ1 (xf − Rf) + υ2zf + υ3vx,f + υ4

[
vy,f −

√
μ

Rf

]
+ υ5vz,f (21)

where {λj}j = 1, . . . , 6 are the adjoint variables conjugate to the state Eqs. (17) and
(18). The necessary conditions for optimality include the boundary conditions for
the adjoint variables [14],

λ1,f = υ1 λ2,f = 0 λ3,f = υ2 λ4,f = υ3 λ5,f = υ4 λ6,f = υ5 (22)

accompanied by the adjoint equations

λ̇1 = −∂H

∂x
= 0 ⇒ λ1 = λ1,0 (23)
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λ̇2 = −∂H

∂y
= 0 ⇒ λ2 = λ2,0 = λ2,f = 0 (24)

λ̇3 = −∂H

∂z
= 0 ⇒ λ3 = λ3,0 (25)

λ̇4 = − ∂H

∂vx

= −λ1 ⇒ λ4 = λ4,0 − λ1,0t (26)

λ̇5 = − ∂H

∂vy

= −λ2 ⇒ λ5 = λ5,0 − λ2,0t = λ5,0 (27)

λ̇6 = −∂H

∂vz

= −λ3 ⇒ λ6 = λ6,0 − λ3,0t (28)

where subscript 0 denotes the value of the corresponding variable at the initial time
t0. The Pontryagin minimum principle leads to expressing the control angles in
terms of the adjoint variables,

u∗ = argmin
u

H ⇒

⎧
⎪⎨

⎪⎩

sin θ1 = − λ4√
λ24+λ25

cos θ1 = − λ5√
λ24+λ25

θ2 = − arcsin λ6√
λ24+λ25+λ26

(29)

The condition λ5, 0 = 0 leads to θ1 = ± π /2, which implies the violation of
the final conditions, therefore λ5, 0 �= 0. Hence, the closed-form expressions of
{λ1, λ3, λ4, λ5, λ6} can be scaled by λ5, 0, to yield

sin θ1 = − λ̃4,0 − λ̃1,0t√[
λ̃4,0 − λ̃1,0t

]2 + 1

cos θ1 = ∓ 1
√[

λ̃4,0 − λ̃1,0t
]2 + 1

(30)

θ2 = − arcsin
λ̃6,0 − λ̃3,0t√[

λ̃4,0 − λ̃1,0t
]2 + 1 +

[
λ̃6,0 − λ̃3,0t

]2
(31)

where .λ̃j,0 = λj,0/λ5,0 (j = 1, 3, 4, 6). These quantities are collected in .λ0 :=
[
λ̃1,0 λ̃3,0 λ̃4,0 λ̃6,0

]T
. The analytical expressions (30) and (31) are used in Eqs.

(17) and (18), and lead to obtaining closed-form solutions for all of the state
variables,

x = f1 (λ0, t) y = f2 (λ0, t) z = f3 (λ0, t)

vx = f4 (λ0, t) vy = f5 (λ0, t) vz = f6 (λ0, t)
(32)
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where {fj}j = 1, . . . , 6 are nonlinear functions of (λ0, t). The explicit expressions for
{fj}j = 1, . . . , 6, written in terms of elementary functions, are omitted for the sake
of conciseness. The preceding solutions for {x, z, vx, vy, vz} are evaluated at tf and
inserted in the boundary conditions (19),

f1 (λ0, tf) − Rf = 0 f3 (λ0, tf) = 0 f4 (λ0, tf) = 0

f5 (λ0, t) −
√

μ
Rf

= 0 f6 (λ0, tf) = 0
(33)

Equation (33) contains a system of 5 nonlinear equations in 5 unknowns, i.e., tf and
the 4 components of λ0. Numerical solvers (such as the embedded routine fsolve in
Matlab) can be employed to find the numerical solution of this system in extremely
short times (of order of 0.01 s), provided that a proper guess is supplied. To do
this, the analysis described in Ref. [19] can be used. In fact, for planar trajectories,
corresponding to z = 0 and vz = 0, a suitable first-attempt solution is proven to be
[19]

tf = − vy,f−vy,0
ãT

tan θ
(G)
1,0 −tan θ

(G)
1,f

asinh
(
tan θ

(G)
1,f

)
−asinh

(
tan θ

(G)
1,0

)

λ̃
(G)
1,0 = − tan θ

(G)
1,0 −tan θ

(G)
1,f

tf
λ̃

(G)
4,0 = − tan θ

(G)
1,0

(34)

where .θ
(G)
1,0 and .θ

(G)
1,f are two guess values for the thrust angle θ1 at t 0 and tf,

respectively; in this work, .θ
(G)
1,0 is set to arctan(vy, 0/vx, 0), whereas .θ

(G)
1,f = 0.

These two values correspond to a thrust direction pointing toward the instantaneous
velocity (at t0) and the desired velocity (at tf). The remaining two guess values, for
.λ̃

(G)
3,0 and .λ̃

(G)
6,0 , are both set to 0. Moreover, in the second relation of Eq. (31) the sign

+ is chosen [19].
The guidance algorithm repeats the preceding solution process at each sampling

time tk, which becomes the initial time t0 of the optimal control problem. The final
time tf can be regarded as the time-to-go, and will be denoted with tgo hence forward.
However, constant values of g and .ãT are needed in each guidance interval, which
has duration �tS. For the gravitational acceleration, the initial value is chosen, i.e.,
.g = μ/r2k . Instead, for the thrust acceleration, the average value of .ãT in [tk, tk + 1]
is employed. Letting nk :− (T/m(tk)), in [tk, tk + 1] the thrust acceleration equals
nkc/[c − nk(t − tk)]. Hence, .ãT is set to

ãT = 1

�tS

∫ tk+1

tk

nkc

c − nk (t − tk)
dt = − c

�tS
ln
(
1 − nk

c
�tS

)
(35)

It is worth noticing that Eq. (30) resembles the linear tangent steering law
[29, 30]. However, preceding formulations of this well-consolidated guidance
technique introduce approximate assumptions [29] or employ complicated geo-
metric analyses [31] to solve the problem. Instead, the three-dimensional guidance
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approach proposed in this work is based on the real-time numerical solution of the
minimum-time problem formulated in flat coordinates, through enforcement of all
the necessary conditions of optimality and without any further approximation or
arbitrary assumption on the initial thrust angles θ1 and θ2.

3.3 Commanded Attitude

The real-time numerical solution of the preceding optimal control problem provides
the thrust angles (θ1, θ2), which identify the desired thrust direction in .

(
x̂k, ŷk, ẑk

)
.

The latter sequence is obtained from .
(
ĉ1, ĉ2, ĉ3

)
through a single counterclockwise

elementary rotation about axis 3 by angle ξ k. Therefore, the commanded thrust
direction .T̂ (C) is

T̂ (C) = [
cos θ2 sin θ1 cos θ2 cos θ1 sin θ2

] [
x̂k ŷk ẑk

]T

= [
cos θ2 sin θ1 cos θ2 cos θ1 sin θ2

]
R3 (ξk)

[
ĉ1 ĉ2 ĉ3

]T (36)

Under the assumption that the thrust is aligned with the longitudinal axis of the
upper stage, unit vector .T̂ (C) identifies the commanded direction .ι̂(C). The actual
body axis .ι̂ must be driven toward .ι̂(C) by the attitude control system. The remaining
two commanded body axes, .ĵ (C) and .k̂(C), are defined as

k̂(C) := ĉ3 × ι̂(C)

∣∣ĉ3 × ι̂(C)
∣∣ and ĵ (C) := k̂(C) × ι̂(C) (37)

These three unit vectors form vectrix .C, i.e., .C := [
ι̂(C) ĵ (C) k̂(C)

]
. Because closed-

form expressions are available for (θ1, θ2), the components of .ι̂(C) (cf. Eq. (36)),
.ĵ (C), and .k̂(C) can be written in closed form, as well as the rotation matrix that

relates .

(
ι̂(C), ĵ (C), k̂(C)

)
to .
(
ĉ1, ĉ2, ĉ3

)
, i.e., . R

C←N
. Using the kinematics equation

that governs the time evolution of rotation matrices, it is straightforward to obtain
the commanded angular velocity. In fact,

Ṙ
C←N

= −ω̃C R
C←N

⇒ ω̃C = − Ṙ
C←N

RT

C←N
(38)

Because analytical expressions are available for both . R
C←N

and . Ṙ
C←N

, matrix .ω̃C

contains the closed-form expressions of the three components of the commanded

angular rate .
N ω−→

C
(
= CωC

)
along .

(
ι̂(C), ĵ (C), k̂(C)

)
. The time derivative of ωC

supplies .ω̇C, which is necessary for nonlinear attitude control (cf. Sect. 4).
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Fig. 3 Block diagram of the guidance, control, and actuation architecture

3.4 Guidance Algorithm

The guidance algorithm is intended to provide the commanded orientation and
angular rate to the attitude control system. Therefore, the guidance algorithm has

Input : rk, ξk, φk, vr,k, vt,k, vn,k, nk (at tk) → Output : tgo and R
C←N

,ωC, ω̇C (in [tk, tk+1])

In summary, the following steps are completed at each sampling time tk:

1. The spherical coordinates of position and velocity are converted into locally flat
variables (cf. Eqs. (15) and (16)).

2. The guess solution for the optimal control problem is identified (cf. Eq. (34)).
3. The equation system (33) is solved numerically.
4. tgo and the closed-form expressions for θ1, θ2, . R

C←N
, ωC, and .ω̇C in [tk, tk + 1]

are obtained.

The last guidance interval occurs when tgo ≤ �tS.
It is worth stressing that the guidance approach at hand requires no interpolation

or finite-difference method for finding . Ṙ
C←N

and .ω̇C, thanks to the availability of

analytical expressions for the previously mentioned variables.
Figure 3 depicts the block diagram of the guidance, control, and actuation

architecture for the upper stage. The nonlinear attitude control algorithm and
the actuation systems, corresponding to the blocks named “Pulse modulation
algorithm” and “TVC system” (where TVC is the acronym for thrust vector control),
are being described in Sects. 4 and 5, respectively.
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4 Nonlinear Quaternion-Based Reduced-Attitude Control

The guidance algorithm provides the desired orientation and angular rates, which
must be pursued by the attitude control system. However, only the alignment of
the longitudinal axis .ι̂ with .ι̂(C) is crucial for the purpose of pointing the thrust
toward the correct direction. A reduced-attitude-tracking algorithm, which aims at
pursuing the desired alignment for a single axis, represents a suitable solution to
the problem of interest. This section addresses a new feedback quaternion-based
reduced-attitude-tracking algorithm.

4.1 Relative Attitude Kinematics

As a preliminary step, the commanded Euler parameters (quaternions) are obtained

from . R
C←N

and denoted with .

{
q

(C)
0 , q(C)

}
. The actual body axes are aligned with

the unit vectors that form .B. The rotation matrix that relates .B and .C, associated
with the commanded body axes, can be written in terms of the error quaternion

.

{
q

(E)
0 , q(E)

}
[28],

R
B←C

= R
B←N

RT

C←N
=
{[

q
(E)
0

]2 −
[
q(E)

]T
q(E)

}
I3×3 + 2q(E)

[
q(E)

]T − 2q(E)
0 q̃(E)

(39)

From inspection of the first row of . R
B←C

, it is apparent that correct alignment of .ι̂

and .ι̂(C), i.e., .ι̂ ≡ ι̂(C), corresponds to

[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 0 (40)

where subscripts 2 and 3 refer to the components of q(E). Moreover, the kinematics

equations for .

{
q

(C)
0 , q(C)

}
are [32]

q̇
(E)
0 = −1

2

[
q(E)

]T
ωE (41)

q̇(E) = 1

2

[
q

(E)
0 I3×3 + q̃(E)

]
ωE (42)

where .ωE := ω − R
B←C

ωC. The time evolution of the rotation matrix . R
B←C

is

governed by the following Eq. (32):

Ṙ
B←C

= −ω̃E R
B←C

(43)
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4.2 Feedback Control Law and Stability Analysis

The target set for the attitude tracking problem is

[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 0 and ωE = 0 (44)

and corresponds to achieving ωE = 0 and the correct alignment of axis 1, while the
commanded orientation of the remaining two axes is not tracked.

Proposition 1 For the torque vector TC, the following feedback control law is
introduced:

T C = ω̃J(B)
C ω + J̇(B)

C ω + J(B)
C

[
R

B←C
ω̇C − ω̃E R

B←C
ωC

]
− J(B)

C A−1
[
BωE + f

(
q

(E)
0 , q(E)

)]

(45)

where

f
(
q

(E)
0 , q(E)

)
:=
[
0 q

(E)
0 q

(E)
2 + q

(E)
1 q

(E)
3 q

(E)
0 q

(E)
3 − q

(E)
1 q

(E)
2

]T
(46)

and A and B are two constant positive definite matrices; A is also symmetric. The
control law (45) drives the dynamical system described by Eqs. (12), (41) and (42)
toward the attracting set associated with ωE = 0.

Proof As a first step, the following candidate Lyapunov function is introduced:

V = 1

2
ωT
EAωE +

[
q

(E)
2

]2 +
[
q

(E)
3

]2
(47)

It is apparent that this function is always positive definite and vanishes only in the
target set. Second, V has continuous partial derivatives. Using Eqs. (12), (42), and
(43), the time derivative of V equals

V̇ = ωT
EA
{[

J(B)
C

]−1 (−ω̃J(B)
C ω − J̇

(B)

C ω + T C

)
− R

B←C
ω̇C + ω̃E R

B←C
ωC

}

+
[
q

(E)
0 q

(E)
2 + q

(E)
1 q

(E)
3

]
ωE,2 +

[
q

(E)
0 q

(E)
3 − q

(E)
1 q

(E)
2

]
ωE,3

(48)

where ωE, j denotes component j of ωE. Insertion of the feedback law (45) leads to

V̇ = −ωT
EBωE (49)

which is negative (because B is positive definite), except at ωE = 0, where .V̇

vanishes. Definitely, V is a positive definite function, with continuous partial
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derivatives and such that .V̇ < 0 (unless ωE = 0), therefore V is a Lyapunov function
[33]. �

Because the attracting set, denoted with A, does not coincide with the target set
(44), Proposition 1 does not ensure asymptotic convergence toward the desired final
conditions (44). However, the LaSalle’s invariance principle can be used to identify
the invariant set.

Proposition 2 The control law (45) drives the dynamical system described by Eqs.
(12), (41) and (42) toward the invariant set composed of the following two subsets:

1. ωE = 0 and .

[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 0

2. ωE = 0 and .

[
q

(E)
1

]2 +
[
q

(E)
0

]2 = 0

Proof Because .V̇ is continuous and negative (except at ωE = 0), the condition

.V
(
q

(E)
0 (t), q(E)(t),ωE(t)

)
≤ V

(
q

(E)
0 (t0) , q(E) (t0) ,ωE (t0)

)
defines a compact

set C. The invariant set, which plays a crucial role in the LaSalle’s principle, is to
be sought in A ∩ C, i.e., in the portion of the attracting set A contained in C. By
definition, the invariant set collects all the dynamical states (in the attracting set)
that remain unaltered. This means that once the invariant set is reached, ωE = 0 at
future times, which implies .ω̇E = 0, i.e.,

ω̇E = ω̇ − R
B←C

ω̇C + ω̃E R
B←C

ωC = ω̇ − R
B←C

ω̇C = 0 (50)

Using Eqs. (12) and (45), the preceding relation simplifies to

A−1f
(
q

(E)
0 , q(E)

)
= 0 ⇒ f

(
q

(E)
0 , q(E)

)
= 0 (51)

i.e.,

q
(E)
0 q

(E)
2 + q

(E)
1 q

(E)
3 = 0 and q

(E)
0 q

(E)
3 − q

(E)
1 q

(E)
2 = 0 (52)

Let .

{
R

B←C

}

jk

denote element (j, k) of . R
B←C

. Insertion of the two conditions (52)

in . R
B←C

, written in terms of the error quaternion (cf. Eq. (39)), leads to obtaining

.

{
R

B←C

}

11
= ±1. Thus, the invariant set includes two subsets:

1. ωE = 0 and .

{
R

B←C

}

11
= 1 or, equivalently, ωE = 0 and .

[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 0

2. ωE = 0 and .

{
R

B←C

}

11
= −1 or, equivalently, ωE = 0 and .

[
q

(E)
1

]2 +
[
q

(E)
0

]2 =
0 �
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Hence, the invariant set includes two subsets, denoted with (1) and (2). It is
apparent that subset (1) is the target set, whereas subset (2) corresponds to the
alignment of body axis 1 toward a direction opposite to the desired one. However,

convergence toward subset (2) is only theoretical. In fact .

[
q

(E)
1

]2 +
[
q

(E)
0

]2 = 0

. ⇐⇒
[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 1, and this implies that V has a maximum in subset

(2). Although .V̇ = 0 in subset (2), if .

[
q

(E)
2

]2 +
[
q

(E)
3

]2 = 1 − ε (where ε is

a positive and arbitrarily small constant), then .V̇ < 0, and the reduction of V
leads the dynamical system to converge toward the target set, i.e., subset (1) of
the invariant set. In other words, subset (2) represents an unstable equilibrium,
whereas the target set corresponds to a stable equilibrium. This circumstance has
the very interesting practical consequence that – from the numerical point of view –
the dynamical system of interest enjoys global convergence toward the desired
alignment conditions, provided that the feedback control law (45) is adopted.

4.3 Gain Selection

The feedback control law (45) is defined in terms of two constant, positive definite
matrices, i.e., A and B. Selection of these matrices affects the transient behavior
and the convergence time of the actual attitude toward the commanded one. In this
research, these two matrices are selected by assuming that both of them are diagonal
and written as

A−1 = k1I3×3 and B = k2I3×3 (53)

where k1 and k2 are two positive constants.
For the purpose of a preliminary selection of the control gains, in three-axial (full-

attitude) maneuvers, the rotation is assumed to occur about the eigenaxis, and the
gains of the quaternion-based nonlinear feedback law are found using the second-
order Eq. (32)

ϕ̈E + k1k2ϕ̇E + k1 sin
ϕE

2
= 0 (54)

where ϕE is the principal angle. If ϕE is sufficiently small, then sin(ϕE/2) ≈ ϕE/2,
and Eq. (54) assumes the form of a second-order linear differential equation:

ϕ̈E + 2ζωnϕ̇E + ω2
nϕE = 0 with k1 = 2ω2

n and k2 = ζ

ωn
(55)

The associated second-order system has damping coefficient ζ and natural fre-
quency ωn. Selection of these two parameters, which have a straightforward
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interpretation in relation to the transient behavior, leads to selecting two proper
values of k1 and k2. Although the reduced-attitude control algorithm differs to
some extent from the full-attitude control scheme, this methodology for preliminary
selection of A and B is adopted and implemented.

5 Actuation

Upper stages of launch vehicles employ two distinct actuation strategies for roll
motion and pitch/yaw motion. In fact, thrust vectoring, based on modest deviations
of the direction of exhausted gases from the longitudinal axis of the spacecraft,
provides a torque action with components along body axes 2 and 3 (cf. Fig. 4a). The
reaction control system (RCS) based on side jets supplies the required roll torque
about axis 1 (cf. Fig. 4b) [34, 35]. This section describes the dynamical modeling of
thrust vectoring, using the Kane’s method for multibody spacecraft dynamics, and
pulse modulation applied to side jets.

5.1 Pulse Modulation for Side Jets

The RCS consists of 4 thrusters ignited in couples, to generate the clockwise (2,
3) or counterclockwise (1, 4) roll torque. Because each actuator can only provide
a constant thrust (with magnitude TSJ), the instantaneous value of the roll torque
.T C−→

(RCS) is constant and given by

T C−→
(RCS) = DT SJ ι̂ (56)

Fig. 4 Thrust deflection angles and thrust direction .T̂ (a) and illustrative sketch of the RCS (b)
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Fig. 5 Scheme of the PWPF modulator

When a lower torque magnitude εDTSJ (ε < 1) is required, the RCS is activated
in pulse mode, consisting in a sequence of ON-OFF cycles of relatively short length
Ti. For any given i-th cycle, one couple of thrusters is ignited only for a fraction
of time Di = (ti, ON/Ti), named the duty cycle, and is off for the remaining time
ti, OFF = Ti(1 − Di), such that the average torque produced over Ti equals εDTSJ
[36]. It is worth outlining that the minimum nonzero duty cycle strictly depends on
the specifics of the RCS [37, 38], in particular on the minimum actuation frequency
of the thrusters when used in pulse-mode. Actuation of the RCS in pulse-mode
generates a nonlinear control action. Therefore, the continuous time history of the
required roll torque, yielded by the attitude control algorithm and denoted with Ui, r
in Fig. 5, is processed through pulse-width pulse-frequency (PWPF) modulation,
aimed at determining the appropriate values of Di and Ti.

The PWPF modulator, illustrated in Fig. 5, includes a Schmitt trigger, whose
ON and OFF trigger values are indicated as UON and UOFF, and a linear lag filter
characterized by a gain km, a lag time constant Tm, and the following transfer
function Tf [39, 40] in the Laplace domain:

Tf = km

Tms + 1
(57)

For each cycle of duration Ti, the input to the filter is the error signal ei, i.e., the
difference between the required control torque component (Ui, r), computed by the
attitude control algorithm at the beginning of the duty cycle, and the output of the
Schmitt trigger (Um), representing the actual control torque demanded to the RCS.
The filtered signal (Fi) is processed by the Schmitt trigger, which provides one of
the following outputs:

{
Um sign (Fi) if | Fi |> UON

0 if |Fi | < UOFF
(58)

The values of Di and Ti can be easily determined based on the parameters of the
PWPF modulator (km, Tm, Um, UON, UOFF). First, the ON and OFF time can be
computed through the following Eq. (41):
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ti,ON = −Tm ln

[

1 + UON − UOFF

km
(
Ui,r − Um

)− UON

]

and ti,OFF = −Tm ln

(
1 − UON − UOFF

kmUi,r + UOFF

)

(59)

Then, the total duration for the i-th modulation is given by the sum of the two
relations in Eq. (59), i.e., Ti = ti, ON + ti, OFF . Finally, the duty cycle is the ratio
Di = (ti, ON/Ti). The parameters of the PWPF modulator must be accurately selected
through a quasi-static analysis, to obtain the desired performance for the RCS.
Typically, this is an iterative process, which can require long time and could benefit
from dedicated techniques available in the literature [41, 42]. A compact expression
relating the PWPF modulator parameters with the maximum pulse frequency of the
thruster, δ, is [43]

δ = 1

Tm

[
1 − UON − UOFF

kmUm

]
(60)

Once the actuators are selected, Eq. (60) helps reducing by one the number of
PWPF parameters to select.

5.2 Thrust Vectoring

Thrust vectoring is assumed to be implemented through deflection of the nozzle.
As a preliminary step, the desired deflection angles, depicted in Fig. 4a, must be
obtained from the required torque .T

(C)
C , yielded by the nonlinear control algorithm.

From inspection of Fig. 4a, it is straightforward to obtain the torque due to thrust
vectoring:

T
(C)
C = ĵT l cos�(C)

z sin�(C)
y − k̂T l sin�(C)

z (61)

where T is the thrust magnitude, l is the distance of the nozzle from the center of
mass of the entire spacecraft, and superscript (C) denotes the commanded value
of the respective variable. Inversion of the preceding relations yields the two
commanded values of the thrust deflection angles, denoted with .�

(C)
y and .�

(C)
z .

These represent the input variables for the thrust vector control mechanism.
Because the nozzle is deflected, the spacecraft can be modeled as a system of

two rigid bodies, i.e., the nozzle (body 2) and the remaining portion of the upper
stage (body 1), termed also main body henceforth. They are connected through a
two-degree-of-freedom joint, and the two-body system has 8 degrees of freedom (6
degrees for the main body and 2 additional degrees related to the type of joint). Two
vectrices are associated with the axes of these two bodies, i.e., .B

1
and .B

2
. They are

related through a sequence of two elementary rotations:

B1 = B2R3 (�z)R2 (−�z) (62)
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5.3 Kane’s Description of the Spacecraft Dynamics

Kane’s method [44, 45] has recently emerged as a general and effective technique
tailored to modeling the overall dynamics of multibody spacecraft. It is based on
introducing a number of generalized velocities, which equal the number of degrees
of freedom of the system. The angular rate and the velocity of the center of mass of
each rigid body can be expressed in terms of generalized velocities by introducing
the partial velocities. These may be regarded as operators that project the trajectory
and attitude dynamics equations onto the subspace of allowed motion, identified by
the existing constraints.

This research adopts the formalism introduced by Stoneking [46] for multibody
spacecraft. First, each partial velocity is projected along a specific reference frame.
Then, the components of the partial velocities are collected in two fundamental
matrices, i.e., � and V. Let .r21−→ and .r2,G1−−→ denote the vectors that connect the center

of mass of body 2 to the center of mass of body 1 and to the joint, respectively. For
the problem at hand, the two matrices � and V are

� =
[
I3×3 03×2 03×3

R
2←1

�G1 03×3

]

(63)

V =
[

03×3 03×2 I3×3

˜r21 R
N←1

˜r2,G1 R
N←2

�G1 I3×3

]

(64)

where .r21−→ = B2r21, .r2,G1−−→ = B2r2,G1; . R
N←j

(j = 1, 2) is the rotation matrix from

body j to the inertial frame, whereas . R
2←1

(= R3 (�z)R2 (−�z)) relates body 1 to

body 2. Because the joint has two degrees of freedom, the joint partial is

�G1 =
⎡

⎣
− sin�y 0

0 1
cos�y 0

⎤

⎦ (65)

The number of columns of � and V equals the number of degrees of freedom

of the system, i.e., 8. Using � and V the angular rates, .
N ω−→

1
and .

N ω−→
2
, and the

velocities of the mass centers, .vC1−→ and .vC2−→, can be retrieved for both bodies:

[
ωT
1 ωT

2

] = �uG and
[
vTC1 vTC2

] = VuG (66)

where .
N ω−→

1 = B1ω1, .
N ω−→

2 = B2ω2, .vC1−→ = NvC1, and .vC2−→ = NvC2 (with .vCj−→
denoting the velocity of the center of mass of body j). The symbol uG denotes the
(8 × 1) generalized velocity vector, given by
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uG = [
ωT �̇z �̇y vTC1

]T
(67)

Kane’s equations provide the time derivatives of uG and can be written in terms
of � and V as [46]

u̇G =
(
�TJ� + VTMV

)−1 [
�T (T I − αR − ωJ − J̇ω

)+ VT (F − MaR)
]

(68)

where αR and aR denote the (6 × 1) remainder acceleration vectors [46], whose
expressions are omitted for the sake of brevity, whereas

J :=
[
J(B1)
C1 03×3

03×3 J(B2)
C2

]

, M :=
[

m1I3×3 03×3

03×3 m2I3×3

]

, ωJ :=
[

ω̃1J
(B1)
C1 ω1

ω̃2J
(B2)
C2 ω2

]

(69)

In the preceding relations superscripts and subscripts 1 and 2 refer to body 1 and 2,
mj is the instantaneous mass of body j, and

J̇ :=
[
J̇
(B1)
C1 03×3

03×3 03×3

]

, with J̇
(B1)
C1 = −n0

c
J(B1)
C1 (t0) (70)

Moreover, the term F includes the components of the propulsive forces (T and
.DT SJ ι̂) and the external forces Fext, j on each body (projected in .N), whereas TI
collects the components of the contributing interaction torque due to the electric
motor,

F =
[

F ext,1 + DT SJ ι̂

F ext,2 + T

]

and T I =
[

T I,1

T I,2

]

, with T I,1−−→ = B
1
T I,1 and T I,2−−→ = B

2
T I,2

(71)

Because .T I,1−−→ and .T I,2−−→ are two interacting torques, respectively, on body 1 and body

2, .T I,1−−→ = −T I,2−−→. The motor torque on the nozzle represents a control input and is

chosen in order to drive the instantaneous deflection angles, �y and �z, toward the

desired values, .�(C)
y and .�

(C)
z :

T I,2−−→ = B1

⎡

⎢⎢
⎢
⎣

[
kP

(
�z − �

(C)
z

)
+ kD�̇z

]
sin�y

kP

(
�y − �

(C)
y

)
+ kD�̇y

−
[
kP

(
�z − �

(C)
z

)
+ kD�̇z

]
cos�y

⎤

⎥⎥
⎥
⎦

= B2

⎡

⎢⎢
⎢
⎣

[
kP

(
�y − �

(C)
y

)
+ kD�̇y

]
sin�z[

kP

(
�y − �

(C)
y

)
+ kD�̇y

]
cos�z

−
[
kP

(
�z − �

(C)
z

)
+ kD�̇z

]

⎤

⎥⎥
⎥
⎦

(72)
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In the last relation, Eq. (62) was used. Once the constant, positive gains kP and
kD have been selected, Eq. (72) allows identifying the net motor torque (both in

magnitude and direction) needed to drive (�y,�z) toward .

(
�

(C)
y ,�

(C)
z

)
.

6 Orbit Injection at GEO

This section considers the orbit injection of an upper stage with initial mass of
1515 kg and inertia matrix (at t0) .J(B1)

C (t0) = diag {751.5, 814.4, 814.4} kg m2.
The thrust magnitude T, which is assumed constant, equals 24.4 KN, whereas the
effective exhaust velocity is 3 km/s. The thrust yielded by the side jet thrusters is
350 N, and their effective exhaust velocity equals 2.080 km/s. The main thruster
and each side jet have distance from the center of mass C equal to 1.19 m and
1.09 m, respectively (i.e., l = 1.19 m and D = 1.09 m). Moreover, the commanded

deflection angles are constrained to .

∣
∣
∣�(C)

y/z

∣
∣
∣ ≤ 3 deg. Using the methodology

described in Sect. 4.3, the following gains were selected for the attitude control
system: c1 = 4.1 · 10−3 s−2 and c2 = 6.4 · 10−2 s. Instead, using a trial-and-
error approach, for the thrust vector mechanism the following gains were chosen:
kP = 320 Nm and kD = 3.03 N m sec. These values lead to net motor torques
not exceeding 25 Nm in magnitude. The sampling time is �tS = 1 s, whereas the
following parameters were chosen for implementing the PWPF:

km = 100.2 Tm = 1.5 s UON = 0.2 Nm UOFF = 0.067 Nm Um = 770 Nm
(73)

The target orbit is geostationary, and the (nominal) conditions for position and
velocity at t0 are

r (t0) = 42163.9 km ξ (t0) = 0 φ (t0) = 0 (74)

vr (t0) = 8.3 m/s vt (t0) = 1.618 km/s vn (t0) = 0 (75)

The nominal attitude at t0 corresponds to the alignment of the longitudinal axis
with the spacecraft velocity vector at t0, whereas nominally the remaining two body
axes are aligned with the respective commanded values (cf. Eq. (37)). The nominal
angular rate ω(t0) is zero.

A Monte Carlo (MC) campaign, composed of 100 simulations, was performed,
assuming initial errors on trajectory and attitude. More specifically, for position and
velocity stochastic displacements from the nominal initial conditions (74)–(75) were
assumed, with zero mean and standard deviations (denoted with superscript (σ )):
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Table 1 Orbit injection at GEO: statistics obtained from the MC campaign

.�rf (m) .�φf (deg) .�vrf (m/s) .�vtf (m/s) .�vnf (m/s) .t f (s)

1.41 1.3e−6 0.37 −0.84 0.60 75.9
.r

(σ )
f (m) .φ

(σ)
f (deg) .v

(σ)
rf (m/s) .v

(σ)
tf (m/s) .v

(σ)
nf (m/s) .t

(σ )
f (s)

4.02 5.5e−6 3.88 3.22 3.60 2.9

r(σ) = 10 km ξ (σ) = 0.0136 deg φ(σ) = 0.0136 deg (76)

v(σ)
r = 50 m/s v

(σ)
t = 50 m/s v(σ)

n = 50 m/s (77)

The two standard deviations ξ (σ ) and φ(σ ) correspond to spatial displacements equal
to 10 km. Each component of ω(t0) is associated with a stochastic value, with zero
mean and standard deviation of 1 deg/s. The initial attitude misalignment is defined
in terms of a sequence 3–2-1 of displacement angles. This means that the displaced
initial attitude, identified by .BD, is obtained from the nominal attitude .BN through

BD
T = R1 (�ϕ)R2 (��)R3 (�ψ)BN

T (78)

The three displacement angles (�ψ ,��,�ϕ) are stochastic variables with zero
mean and standard deviation equal to 10 deg.

Table 1 reports the statistics for all the quantities of interest, i.e., radius,
declination, velocity components, and time of flight. Figures 6, 7, 8, 9 and 10 depict
the time histories of the position and velocity variables. Figure 11 illustrates 
E,
which is the angle between the instantaneous (actual) longitudinal axis and the
commanded one. Moreover, Fig. 12 portrays the time history of the commanded
and actual thrust deflection angles in a single Monte Carlo simulation. Figure 13
depicts the modulated torque provided by the RCS. In particular, Fig. 14 shows
a zoom that illustrates the time histories of some characteristic functions that are
used for the implementation of pulse modulation. Both the figures and the statistics
collected in Table 1 point out the satisfactory convergence toward the desired final
conditions, even in the presence of large initial displacements from the nominal
flight conditions. Starting from nominal initial conditions and under the assumption
of modeling the ascent vehicle as a point mass, the minimum time required for
orbit injection is 72.2 s, i.e., 4.8% less than the average value obtained from
MC simulations (75.9 s), performed by modeling guidance, control, and actuation.
In light of the numerical results and the preceding considerations, the guidance,
control, and actuation architecture at hand turns out to be a valuable and efficient
option for successful precise orbit injection.
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Fig. 6 Altitude time histories obtained in the MC campaign

Fig. 7 Declination time histories obtained in the MC campaign

7 Concluding Remarks

This research proposes a new guidance and control architecture for upper stage
orbit injection maneuvers. A novel, semi-analytic explicit near-optimal guidance
algorithm is introduced that is based on the local projection of the position and
velocity variables. A minimum-time problem is defined using the locally flat
coordinates of position and velocity, and consists in finding the optimal thrust
direction that minimizes the time of flight for achieving the desired orbit insertion
conditions. The optimal control problem at hand is proven to be amenable to
an analytical solution. This circumstance allows translating the minimum-time
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Fig. 8 Time histories of the radial velocity, obtained in the MC campaign

Fig. 9 Time histories of the transverse velocity, obtained in the MC campaign

problem of interest into five nonlinear equations in five unknowns. Their numerical
solution can be performed as a real-time process, because a suitable guess, related to
intuitive dynamical variables, is available. The guidance scheme at hand yields the
commanded thrust direction, which must be pursued by the attitude control system.
Unlike three-axial control, reduced-attitude-control has the purpose of aligning a
single axis of the vehicle with a desired direction. This work introduces and applies
a new quaternion-based nonlinear reduced-attitude control algorithm. This leads
to defining an effective feedback law, which supplies the required torque. The
Lyapunov theorem and the LaSalle’s invariance principle provide the theoretical
background needed to prove that the feedback law at hand enjoys quasi-global
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Fig. 10 Time histories of the normal velocity, obtained in the MC campaign

Fig. 11 Time histories of the displacement angle 
E, obtained in the MC campaign

Fig. 12 Time histories of the thrust deflection angles, in a single MC simulation
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Fig. 13 Time history of the modulated thrust (with y-axis normalized to the maximum torque
magnitude), in a single MC simulation

Fig. 14 Zoom on the time history of the modulated thrust (with y-axis normalized to the maximum
torque magnitude), in a single MC simulation

convergence properties. Actuation is demanded to thrust vectoring, in conjunction
with PWPF-modulated side jets for roll control. The overall dynamics of the upper
stage, regarded as a system of two connected bodies, is modeled using the Kane’s
method, for accurate prediction of the system behavior. To test the guidance, control,
and actuation architecture at hand, a Monte Carlo campaign is run, assuming
significant displacements from the nominal initial conditions. The numerical results
unequivocally demonstrate that the joint use of the locally flat near-optimal guidance
and pulse-modulated reduced-attitude control introduced in this research represents
an effective approach for upper stage precise orbit injection.
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A Pareto Front Numerical
Reconstruction Strategy Applied to a
Satellite System Conceptual Design

Gustavo J. Santos, Sebastián M. Giusti, and Roberto Alonso

1 Introduction

The most important and crucial decisions in the life-cycle of a space mission are
made during the conceptual design phase. The satellite architecture has to: (i) fulfill
the mission’s requirements (the objective) and (ii) reduce the resources applied to
materialize the selected solution (the implementation).

Later project stages are focused on the detailed implementation, checking,
verification, and testing of the selected architecture during that conceptual design
phase.

In the process of designing complex systems the concurrence of multidisciplinary
teams is required. Specialists in structures, thermal, power, navigation, communi-
cations, software, and control systems, among others are needed. Each of these
team-work carries out their design based on requirements imposed by the system
engineering office, leaving room on each subsystem to obtain a locally optimal
design. It is important to remark that each specialist group receives the set of
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requirements addressed to their subsystem and the connection between subsystems
is managed by the system engineering group.

The usual procedure to close the satellite conceptual design phase is based on the
overlapping of these optimal subsystems to obtain a system that is not optimal (in
almost all cases). Note that each individual solution (at subsystem level) is optimal
in its search region, that is related to the others (in the overlapping process) until
completing the region that covers all the satellite subsystems.

Each particular solution is located on the border of the solution set generated at
the subsystem level, because of its optimal condition. The superposition of all the
subsystems moves each solution towards the interior of this new larger space defined
by the union of the smaller set. See [1–3] for a detailed understanding.

The process to design a satellite is characterized by having conflicting require-
ments that cannot be directly satisfied by a maximization or a minimization. As
a quick example, the instrument room needs to be as large as possible, but the
launching cost should be as low as possible. These two variables are not directly
correlated. But, since the launching cost is proportional to the mass of the satellite,
a detailed analysis of the influence of the instrument roommust be performed during
the modeling of the whole problem.

Complex systems are characterized by mixing, in the search space, discrete
sequences and/or continuous functions. In these cases, the usual concept of the
derivative or gradient takes a different meaning. In mono-objective problems,
usually a procedure to follow the direction indicated by the gradient path to find
the minimum objective value (optimization solution) is defined.

According to the theory of Pareto, in the multi-objective optimization problems,
there is not a unique optimal solution. In fact, a family of possible optimal
configurations can be obtained. This means that any other solution can not improve
at least one of the design variables without worsening at least one of the oth-
ers (Pareto definition). To use the steepest descent method in a multi-objective
optimization problem, the set of objective functions must be reformulated in a
mono-objective function. However, the obtained solution strongly depends on how
the objective functions are combined. Therefore, the solution is sub-optimal for
the multi-objective problem. Optimization of a complex system by considering
simultaneously several disciplines and engineering constraint can be made by
Multidisciplinary design optimization (MDO) frameworks. Developments of these
techniques in spacecraft and satellite conceptual design can be found, among others,
in [24–26].

To deal with the optimization problem at hand, it is essential to define the
mathematical model for the satellite, involving both systems and subsystems as a
whole. See, for example, [5–10] for the description of each satellite component.

The set of algebraic, differential equations (continuous) and difference equations
(discrete) represent as close as possible the set of objective variables and the
constraints imposed on the system and on each component.

The output obtained from the optimization algorithm presents several admissible
configurations. Each one of them represents a suitable architecture according to the
set of high-level requirements. The selection of the best one among the possible
solutions involves technical and non-technical reasons, as it is discussed later.
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In this chapter, a new strategy to accomplish the conceptual design of a satellite
system is addressed. The Pareto theory supplies the theoretical background needed
to select the optimal solutions from a cloud of possible configurations. Our strategy
is based on the Direct Numerical Simulation (DNS) of the optimization problem,
which computes all possible admissible configurations. Clearly, the global minimum
belongs to the set composed by all combinations.

The Pareto front allows us distinguishing the optimal solution from the other
admissible configurations. The DNS techniques have increased their popularity in
the scientific community because of the increasing capability of computers. Some
applications of this numerical method in space engineering can be found in [11–14].

Other approaches dealing with multi-objective schema involving continuous and
discrete variables are the ones based on heuristics and/or meta-heuristics methods,
where the genetic algorithms (GA) are the most well-known. These ones find
a subset of local minimum solutions, some of them are discarded during the
selection process based on the values of some parameters, previously established
with heuristic reasoning. Later, this concept is demonstrated with a study case.
Examples of application in engineering problems of these optimization approaches
are found in [15–23]

The content of the chapter covers most of the subjects needed to understand the
proposed strategy and to point out the importance of having a global optimizer for a
complex system. Section 2 deals with a description of the satellite subsystems and
the components and equipment which are inside of each one. The multi-objective
optimization problem is presented in Sect. 3 by indicating the role of each variable
in the problem. The proposed methodology to solve this particular problem is
presented in Sect. 4. In order to obtain a comparison framework, a complete study
case is analyzed by using numerical algorithms of DNS and GA in Sect. 5. The work
ends in Sect. 6 where some concluding remarks are presented.

2 Satellite System

The satellites are usually divided into two sections, the payload, and the service
module. The payload basically contains the instruments and their support equip-
ment, calibrators, etc. which are in charge of fulfilling the mission objectives. The
service module contains the equipment and components to guarantee the proper
functioning of the payload. Basically, it has actuators, sensors, mass memories,
transmitters and receivers in different bands, GPS, computers, solar arrays, batteries,
antennas, etc.

The proposed approach is focused to design the service module, while other
characteristics related to the payload and the orbit are taken into account for the
elaboration of the system constraints. However, the method is not restricted to a
particular module, it can be used for the complete system at once. To mathematically
model the system and/or subsystems of the service module, see the works [5–10]

The service module is divided into different subsystems each one specialized in
a particular function:
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• Attitude Determination and Control (ADC): controls the satellite orientation.
Its design variables are the sensors and actuators. The typical space sensors are
star trackers, Earth and Sun sensors, GPS, and magnetometers. The common set
of actuators are momentum wheels, reaction wheels, torque roads, and thrusters
(propulsion subsystem). The constraints associated with this subsystem are the
accuracy of the control pointing, the attitude determination knowledge, and the
agility for satellite maneuvering.

• Structure (STR): provides mechanical support and its design variables usually
are the shape and materials of the structure. The size is considered a constraint,
obviously as smaller its diameter, the greater the number of launchers where it
can fit in.

• Communications (COM): is the interface with the ground segment, allowing
to download science data and housekeeping telemetry, also allows receiving
commands and software patches from the ground station. The design variables
are the type of transmitter/receiver, the RF amplifier, and the antenna, while its
main restriction is the maximum bit rate and the tolerable bit error rate.

• Electrical Power Subsystem (EPS): provides electrical energy to the rest of the
satellite. The design variables are the kind of technology and size of batteries and
solar arrays. The constraints associated with this subsystem are the bus voltage,
demanded power consumption, and satellite autonomy (without Sun exposure).

• Thermal Control Subsystem (TCS): maintains the temperature inside the
allowable range according to the thermal requirements on each component or
equipment. Its design variables are the radiator’s material and the characteristics
of the heater (number, power, etc.), while the constraints are the maximum and
minimum temperatures required and the power used to warm the system.

3 Multi-Objective Optimization Problem

In general terms, the multi-objective problem can be written as:

.Minimize F(X) = [f1(X), f2(X), ..., fk(X)]T
Subject to gi(X) = 0, i = 1, 2, . . . .m

Subject to hi(X) ≤ 0, i = 1, 2, . . . .n .

Where Xinf ≤ X ≤ Xsup,

where .F(X) is the set of the complete objective functions of the system, .gi(X) and
.hj (X) are the equality and inequality constraints, respectively, and .X is the input
vector for the optimization or decision variables, see [1, 2].

Usually, there is not a single optimal solution to the exposed problem, but there
are several potential solutions, each one having different strengths and weaknesses,
called optimal Pareto solutions or Pareto front. These solutions are also called non-
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Fig. 1 Pareto front of a
two-objectives minimization
problem. The non-dominated
solutions are on the border of
the Pareto region. It is
observed, from this sketch,
that each solution cannot be
improved in one variable
without leaving the border,
that it is quitting the optimal
condition. This is the
definition of optimally
according to the Pareto
theory. The solutions located
inside the Pareto region are
not optimal, because each one
can move to the border
without worsening any one of
the variables

dominated solutions since no variable can be improved without damaging another
in its optimally. Figure 1 shows an optimization problem based on two objective
functions in order to show both types of solutions.

The above optimization problem can be solved using many methods, most
of them are heuristic algorithms, on the other side there is the direct numerical
simulation method, later explained. See [3] for further details.

Heuristic methods have been successfully used to find solutions in many appli-
cations in a large number of areas. In the aerospace industry, the most frequently
used are those of evolutionary approaches, such as genetic algorithms, simulated
annealing, tabu search, or hybrid algorithms.

These techniques are of the utmost importance in optimization problems that
contain wide search spaces with sets of design variables of different nature.
Generally, the main objectives are: minimizing mass and cost, maximizing system
performance and reliability [4, 23].

The direct numerical simulation (DNS) is a tool that finds a solution on a
constrained set of equations that describe the behavior of the true physical model, by
computing on the entire mathematical model, without any approximation or tuning
which may reduce the number of admissible solutions.

This technique intends to reconstruct the objective function through a direct
evaluation of all possible values and/or combinations of variables (in brief: all
against all). Once the objective function is obtained numerically, the minimum is
identified as well as the values of each variable that contribute to this minimum.
For continuous optimization variables, the DNS technique is not completely
appropriated. Due to the computational times required to obtain the optimal solution



336 G. J. Santos et al.

or Pareto front grows exponentially with the number of variables (the continuous
set of design variables must be numerically discretized). Then in a continuous
optimization framework, a standard optimization procedure could be recommended.

In summary, the genetic algorithms require lower computational capacity, but
they need to be configured properly and their result may not contain the overall
minimum, because the natural selection may leave some solutions out of the
admissible set. On the other hand, the numerical simulation (DNS) gets the global
minimum, but it demands a much greater computing capacity, time, and effort to
obtain the solution set.

Selecting the appropriate method depends on the resources and available time
to deal with the problem at hand. For example, in the feasibility phase, the genetic
algorithms are more attractive because require a shorter time to reach some solution
even if it is not exactly the best one. In the design phase, the DNS is more useful
because generates the complete map of solutions to obtain the global optimum.

4 Proposed Methodology

The diagram in Fig. 2 describes the steps related to the proposed methodology
for designing. The process begins with the acceptance of the requirements of the
highest level, which define the objectives of the mission, the characteristics of the
payload, the orbit parameters, and the main characteristics of the service module
needed to accomplish the mission. This data is strictly necessary to feed the process.
The requirement document also contains programmatic issues, which cannot be
translated into a mathematical language, but the decision-maker after the admissible
solutions map is set has to include these elements to adopt the best system concept.
The best configuration is the conjunction between technical and programmatic
results.

Initially, a possible architecture is proposed as the first guess that can qualitatively
fulfill the mission objectives. This design skeleton allows the design variables of the
optimization model to be defined. The decision taken during this step is simple and
to some extend binary, for example, the system needs (yes/no) a propulsion system
on-board if orbit maintenance is required. For a deeper understanding of the design
variables which define the space project, see, [5, 6].

The next step is to adopt a first approximation to the architecture, once the
requirements have been deeply interpreted. After that, an analytical description of
the system, by means of the mathematical equation set on which the optimization
process works, must be obtained. The mathematical modeling represents the rela-
tionship between the system input and output, including the objective functions and
the constraints imposed by the requirements and some by the selected architecture.

The algorithm operates on the model in order to obtain the admissible outputs.
The region, where the solutions live, is obtained by the direct application of the
optimization algorithm to solve multi-objective schemes.
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Fig. 2 Steps necessary to complete the proposed method to design the complex system. It is noted
that all the activities are in series

The admissible solutions have to be on the Pareto front, later one of these choices
is selected by the decision-maker taking into account not only the mathematical
solution but also the programmatic requirements. For example, the need to have
some percentage of in-house development may leave some solutions out of consid-
eration.

5 Application to a Study Case

The proposed methodology is applied to a study case, which is the design of the
service module of an Earth Observation Satellite at low altitude orbit, similar to
those manufactured by many satellite suppliers.

5.1 High-Level Mission Requirements

As it was pointed out in the previous section, the high-level requirement’s document
is mandatory to start the satellite design, by using the proposed methodology or
by applying the nominal procedure (non-optimal) of partitioning the satellite in
subsystems and then integrate the parts to recompose the system.

The set of requirements imposes hard constraints to the design of the service
module, most of them are listed in Table 1. Most of these values were taken from
past satellite missions of the Argentinean Space Agency -CONAE- (designed for
remote sensing) in order to create a feasible set of requirements.
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Table 1 Study case mission requirements

Requirement Variable Value Unit

Mission lifetime .myears 5 years

Orbit altitude .horb 702 km

Orbital period .torb 98.8 min

Eclipse time .tecl 30 min

Payload mass .massPL 20 Kg

Payload cost cost.PL .1 × 106 USD

Payload power .PPL 50 W

Launcher diameter .Dlauncher 2 m

Launcher height .hlauncher 2.2 m

Minimum structure fundamental frequency .f olauncher 2 Hz

S Band Tx frequency .fBS 2.03 GHz

X Band Tx frequency .fBX 8.20 GHz

Minimum antenna elevation .Elmin 10 .◦

S Band bit rate .BRBS 32,768 bit/s

X Band bit rate .BRBX .1.20 × 108 bit/s

S Band max. bit error rate .BERBS−req .100 × 10−5 1/bit

X Band max. bit error rate .BERBX−req .1.00 × 10−6 1/bit

S Band Eb/No margin .Eb/NoMarg−BS 3 dB

X Band Eb/No margin .Eb/NoMarg−BX 3 dB

Maximum pointing error (control) .σpointing 180 arc-sec

Maximum attitude determination error .σθ 3.6 arc-sec

Maximum single maneuver angle .Θman−req 90 .◦

Maximum maneuver time .tman−req 240 sec

Bus voltage .VBUS−req 28 V

Maximum battery DOD .DODreq 25 %

Minimum OBC processing capacity .OBCMIPS−req 5 MIPS

OBC flight heritage .OBCFHer−req Yes –

Minimum operation temp. .Tmin−req 0 .◦C
Maximum operation temp. .Tmax−req 30 .◦C

5.2 System Architecture

Initially, a feasible architecture must be selected. This topology can be considered
as the first guess and it is based on the designer group’s knowledge and heritage
from previous projects.

The reason for having this preliminary configuration is to size and reduce the
search region to speed up the process by shrinking the number of admissible
solutions.

A simple example for easy understanding: let us consider that the download data
rate can be satisfied with the type of solid-state transmitter. Therefore, other can-
didates using high power, cost, volume, temperature control constraints, etc., based
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on higher technology, can be deleted from our database. The proposed strategy can
exclude solutions with this high-tech transmitter, to reduce the processing time. For
this reason, some rules on the design to size the design variables according to the
selected architecture must be imposed.

Since the case under analysis is focused on the service module, the design
variables are the representative characteristics of each subsystem. In fact, the
concept of the subsystem is introduced here just for easy understanding, because the
proposed methodology is not based on rigid subsystem or parts, the method adopts
the concept of integrity which is clear in the formulation of the mathematical model.
Figure 3 represents the selected architecture with each characteristic elements. The
main components of each one are shown.

Fig. 3 Conceptual design of the satellite’s service module. The system is divided into subsystems,
where the main components are shown
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5.3 Optimization Problem

The mathematical model for the optimization problem includes the objective func-
tions (representing the parameters subject to minimize/maximize), the constraints
(that limit the design options), and the design variables (depicting the components
of the system to be analyzed, such as inertia wheels, batteries, etc.).

Design Variables For the present study case, the selected design variables are
shown in Table 2. For example, in the EPS subsystem, each combination of solar
cell and battery technologies, the size of the solar panel, and the battery array are
determined to fulfill the power requirement of the mission. A cylinder structure
made of Aluminum 7075 (Al 7075) is taken into account for the satellite. In this
case, as a structural design variable, the commercial thickness of the cylinder is
considered and must fulfill the requirement on the natural frequency of the launcher
vehicle. Four materials were considered for the design of the radiators: Aluminum
6061-T6 (Al 6061-T6), Aluminum 6061-T6 (finishing: polished) (Al 6061-T6),
Silverized Teflon (Ag/FEP), and Aluminized-Teflon (Al/FEP). For each one, the
heater system and radiator size are obtained to fulfill the TCS requirements.

Objective Functions In this study case, the cost and mass of the system were
chosen to be optimized simultaneously in the multi-objective framework. Although
other characteristics of the system such as reliability or volume were not considered
as objective functions, some of them are taken into account as constraints to set a
more realistic solution.

Table 2 Study case design
variables

Variable Description Subsystem

.x1 S-band transceiver COM

.x2 S-band antenna COM

.x3 S-band amplified COM

.x4 X-band transceiver COM

.x5 X-band antenna COM

.x6 X-band amplified COM

.x7 Star-Tracker ADC

.x8 Gyro ADC

.x9 Momentum wheel ADC

.x10 Magnetorquer ADC

.x11 Battery (technology and size) EPS

.x12 Solar cell technology EPS

.x13 OBS CDH

.x14 Radiator material TCS

.x15 Heaters TCS

.x16 Thickness of structure STR
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Constraints The constraints are introduced to distinguish between viable options
from the non-admissible solutions, see [7, 8]. Table 1 shows the considered mission
requirements.

Table 3 compiles the parts of the model that characterize the optimization
problem proposed for this study case.

5.4 Optimization Schemes. Application

The design variables define the architecture of the system associated with its
mathematical model, used to find the (optimal) selection of space components
that generate the (optimal) system. To this end, both genetic algorithms and direct
numerical simulation are applied to the same study case to check differences in their
respective performance.

Table 3 Study case mathematical model summary

Objective functions

Equation Description System/subsystem

f1 : Masssat = MassPL + ∑
MassSS Satellite mass Satellite

f2 : Costsat = CostPL + ∑
CostSS Satellite cost Satellite

Restrictions

g1 : BERBS−req − fBER

(
Eb

No
− MargBS

)
≤ 0 S band link Communication

g2 : BERBX−req − fBER

(
Eb

No
− MargBX

)
≤ 0 X band link Communication

g3 : σθ−req − σn

√

1 − (f racxsu)2le0 Maximum attitude Attitude control

determination error

g4 : σpointing−req − (σθ + σact ) ≤ 0 Maximum pointing Attitude control

error

g5 : 4 ∗ Θman−req
Isat

tman−req
− τADC ≤ 0 Torque required Attitude control

g6 : 100 PSat tecl
VbusηdCbat

− DODreq ≤ 0 Battery capacity Electrical power

g7 : AreaSA − 4 ∗ Dlauncher ∗ hlauncher ≤ 0 Solar panels area Electrical power

g8 : OBCMIPS−req − OBCMIPS ≤ 0 OBC processing Command and data

velocity handling

g9 : OBCFHer−req − OBCFHer ≤ 0 OBC flight Command and data

heritage handling

g10 : Tmax − Tmax−req ≤ 0 Maximum temperature Thermal control

g11 : Tmin−req − Tmin ≤ 0 Minimum temperature Thermal control

g12 : f olanzador − f oSat ≤ 0 Structure natural Structure

frequency
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5.4.1 Direct Numerical Simulation

The optimization problem is solved by using a direct numerical simulation to build
up the Pareto front. The Pareto map contains all possible combinations among the
design variables (all against all). Each possible solution is computed and placed in
the Pareto chart according to its final values.

The system under analysis has 16 design variables each one with its database,
which implies a search space of 764,411,904 elements. To determine the feasibility
of each of these cases, a cluster of eight computers was used. The technical
characteristics of this cluster are shown in Table 4.

The feasibility analysis has determined that 86,190,912 combinations fulfill the
restrictions and constraints. The following step is to build up the Pareto front from
this solution subset. Figure 4 shows this result.

The Pareto front shown in Fig. 4 consists of 105 solutions grouped into 31
different points which are all optimal. The determination process to find the
solutions took approximately six hours using the hardware described in Table 4.

Table 4 Technical
specifications of the computer
cluster used to resolve this
study case

Computer quantity 8

Processor Intel Core I7-4790 @ 3.60GHz x 8

RAM memory 32 GiB

Hard disk 512 GB

Operative system Ubuntu 16.04 LTS

Fig. 4 Pareto front obtained by applying DNS to the case under analysis
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5.4.2 Genetic Algorithm

To solve the same problem using genetic algorithms, a modified version of
MATLAB gamultiobj function is applied. The modification of this routine
consists of changing the type of design variables from continuous to discrete.

The gamultiobj function enables the setting of the parameters which have
a direct relation to the solution of the optimization problem. In this case, the
parameters are the population size, the total number of generations, and the global
tolerance of the algorithm. Table 5 shows the different configurations used to run
the case under analysis and the obtained results are presented in Fig. 5. Note that
the variation of the parameters does not significantly affect the results obtained, the
only factor that changes considerably is the time used.

Table 5 Genetic algorithm configurations and its results

Characteristics Config. 1 Config. 2 Config. 3 Config. 4

Population 1000 1000 2500 2500

Generations 200 500 200 500

Global tolerance .1 × 10−5 1 .×10−5 .1 × 10−5 .1 × 10−5

Solutions obtained 12 11 12 12

Processing time 3 [min] 4 [min] 5 [min] 9 [min]

Fig. 5 Pareto fronts obtained using genetic algorithms
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5.5 Comparison between DNS and GA

The results obtained using both algorithm strategies are evaluated by comparing
each individual Pareto fronts in Fig. 6.

As is expected, the solution set delivered from the DNS is better than that
obtained using the genetic algorithm. This difference appears because in the direct
numerical simulation the objective functions are reconstructed, so all of them are
considered without any loss. It takes longer processing time, but all of the possible
solutions are firmly evaluated. On the other hand, the genetic algorithm only studies
a subset of the entire search space; therefore, some admissible solutions can be left
out from our consideration.

Although this seems to be a clear disadvantage for the genetic algorithms
compared to direct numerical simulation, if we compare it with other non-optimal
solutions, it is notable that all the fronts obtained comprise quite good solutions.
This can be seen in Fig. 7.

Fig. 6 Pareto fronts obtained with genetic algorithms and direct numerical simulation
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Fig. 7 Pareto fronts obtained with genetic algorithms and direct numerical simulation together
with some random dominated solutions

5.6 Final Selection Process

The last step of the methodology is the final selection of the solution given by the
Pareto front. Three different criteria are proposed for decision-makers to determine
which of the solutions fit best the requirements. Each of the criteria will be analyzed
based on the global optimum given by the Pareto front constructed by the DNS.

The approaches are written below:

1. Minimum distance to the origin: If the stated objectives are equally important,
the best solution will be the one that is closest to the origin (as long as it is
necessary to minimize the objective functions). Figure 8 shows the solution
selected under this criterion on the Pareto front of the study case.

2. Weighting selection: This selection criterion is based on giving different priority
levels to each proposed objective, taking the multi-objective problem to a single
dimension. In this case, it will be necessary to normalize the objective functions
and then perform the following operation:

.F(x) =
n∑

i=1

Ki fi(x), f or 0 ≤ Ki ≤ 1, (1)

where .F(x) is the new objective function composed of the original objective
functions .fi(x) and .Ki a weighting factor that will be determined by the designer
and whose value is lower as the importance of this requirement is lower.
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Fig. 8 Determination of the closest to the origin solution. (a) Referred to origin. (b) Zoom to the
selected solution

3. Reducing the problem to a single objective: As with the criterion presented
above, it is possible to reduce a multi-objective problem to one of a single
objective by translating the rest of the functions in terms of the first one. For
example, it is common to transfer all targets to a monetary value or to working
hours. In this case, the total cost of the satellite can be calculated with Eq. 2.

.F(x) = f1(x) +
n∑

i=2

Cifi(x), (2)

where .Ci are the different constants that relate the units of the objective function
.f1 with the other objective functions. In the proposed study case, for example,
it is easy to relate the cost of the satellite to its mass knowing the price of the
launch service, which depends directly on the weight of the object to be put into
orbit.

6 Final Remarks

A comprehensive design strategy is presented in this chapter in order to reduce
the subjectivity of the designer group by defining a satellite as a system. A multi-
objective optimization problem is formulated, based on the high-level requirements
and exploring a set of admissible solutions. The proposed procedure is based on the
numerical reconstruction of the Pareto front. After that, some criteria are exposed to
select the best solution according to technical issues. The programmatic items are
not taken into account in this presentation of the methodology. A comparison with
a genetic algorithm, a common tool to solve this class of optimization problem, was
performed. These two strategies are compared in terms of computational time spent
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and the quality of the obtained results, instead of function evaluations. Both the
genetic algorithms and the numerical simulations offer the possibility of finding the
optimal solutions through their application in dedicated software, taking the design
problem to a modeling problem. In the case of DNS, an expensive computational
time is required to obtain the solution. In fact, from our numerical test DNS takes
6 h to obtain the solution and GA only 9min. However, only the direct numerical
simulation can guarantee the global minimum (optimal solution). To decide the best
technique to solve the multi-objective optimization problem applied to a large-scale
satellite model, an equilibrium between computational cost and processing time
must be found.
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Indirect Optimization of Robust Orbit
Transfer Considering Thruster
Underperformance

Francesco Simeoni, Lorenzo Casalino, and Antonio Amelio

1 Introduction

Space is an unforgiving environment: if there is an error, a ten-year multibillion-
dollar project may be lost. To avoid this undesirable situation, the space industry
puts a lot of efforts in improving the design of the spacecraft. An intensive testing
campaign is put in place in the spacecraft validation and verification phase before
the launch. Testing is done at equipment level, subsystem level, and system levels.
Some of the functionalities of the integrated system cannot be fully tested on ground,
before the nominal operation phase. In this respect, the in-flight commissioning
phase is meant to be used as preliminary phase where the functionalities can be
verified under flight conditions and the spacecraft performance can be characterized.
Calibration of the sensors and actuators and eventually fine tuning of software
parameters is also part of this phase. One of the most critical spacecraft subsystems
is the propulsion one, in particular, if toxic propellants (such as hydrazine) are used.
The thrusters can be tested and characterized at equipment level but they cannot
be tested once they are integrated in the spacecraft platform. The actuation of the
thrusters is safety hazardous on ground and, even if the tank is loaded with nitrogen,
the electrical-mechanical test is constrained by a limited number of actuation when
not used in vacuum, in order to not damage the catalytic heaters. After launch
the attitude control thrusters are used without being initially commissioned. The
same limitation applies to the main thruster used for delta-V maneuvers that have
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an obvious impact on the orbit itself. Considering this, the first S/C maneuver is
generally a critical moment both because there is a time-criticality and in terms of
the knowledge of the real performance of the thruster. Postponing the maneuver
may require a significantly larger amount of .�V , i.e., propellant, that in turn could
cause to shorten the operational lifetime of the spacecraft or even make the mission
impossible to be concluded.

During a trajectory design process, there are multiple local minima with very
close values of the performance index that can be found. The global optimum
represents the best solution for nominal conditions. However, uncertainties may be
present during the realization of the trajectory (actuators performances, pointing
errors, initial state); also, the possible requirement of changing the final boundary
conditions (after the initial maneuver) may be considered. In these cases, the control
variables of the first part of the trajectory should be computed in order to be robust
in all possible realizations. The design of a trajectory is a process which starts
from the early phase of a mission design, with preliminary assumptions about the
spacecraft properties and performances. Then it is continuously updated with the
design consolidation and assembly until the launch. During the operational phase,
the trajectory must be observed continuously and the future maneuvers updated
based on the current trajectory realization, the observed states and the actuators
estimated performances. The maneuvers that modify the trajectory can be carefully
planned on ground and executed by the spacecraft under operator supervision or can
autonomously be computed by the on-board software. In both cases the maneuvers
are traditionally computed and optimized considering specific nominal values for
the spacecraft performance (nominal case), while the robustness of the designed
trajectory is tested against one or more identified worst-case scenarios or Monte
Carlo simulations.

The baseline configuration is used for the optimization of the control variables
in contrast to compute them for the identified worst-case scenario, because in the
latter case there is the risk to have an over-sizing of the spacecraft. Monte Carlo
simulations assume a stochastic probability distribution of the uncertainties, the
correlation among the uncertainties and the probability density function of the
trajectory realization. The confidence level increases with the number of test runs.
However, in the Monte Carlo approach, the most “dangerous” trajectory realizations
are often at the tails of the distributions (typically Gaussian), so they are very rare.
Besides, Monte Carlo simulations are expensive in terms of CPU time and resources
(disk memory). The approach is clearly not suited for on-board applications.

The need to find a nominal trajectory which is, at the same time, sufficiently
optimal and robust is an active research field (robust optimization). Different
approaches have been proposed and hereafter summarized. The main practical
approach is to check and improve the trajectory robustness to uncertainties a
posteriori, by means of time-consuming iterative procedures, which often bring to
suboptimal solutions and over-conservative margins. This design methodology is
particularly unsuitable for micro-spacecraft missions, where the possibility to have
large propellant margins and hardware redundancy is not a viable option.
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Stochastic robustness is typically defined using chance constraints, which require
that the probability of state constraints being violated is below a prescribed value
(inequality constraints on the state). Prior work showed that in the case of linear
system dynamics, Gaussian noise and convex state constraints, optimal chance-
constrained finite-horizon control results in a convex optimization problem. Solving
this problem in practice, however, requires the evaluation of multivariate Gaussian
densities through sampling, which is time-consuming and inaccurate. An approach
was proposed [1] to chance-constrained finite-horizon control that does not require
the evaluation of multivariate densities. It introduces a conservative bounding
approach to ensure that chance constraints are satisfied, while showing empirically
that the conservatism introduced is small.

Space trajectories are subject to state uncertainty due to imperfect state knowl-
edge, random disturbances, and partially known dynamical environments. Ideally,
such uncertainty and associated risks must be properly quantified and taken into
account in the process of trajectory design, ensuring a sufficiently low risk of caus-
ing hazardous events. An approach based on the indirect method by incorporating
uncertainty and probabilistic path constraints into the primer vector framework [2],
called stochastic primer vector, provides an analytical open-loop optimal control law
that respects a probabilistic path constraint with a user-specified confidence level.

Differential dynamic programming [3, 4] was applied to trajectory optimization
with an expected value formulation for Gaussian-modeled uncertainties. In particu-
lar, the nonlinear constrained stochastic optimal control problem is transformed into
a problem through approximations (the stochastic process is reduced to Gaussian
process). Then the deterministic problem is solved using a trajectory optimization
method such as modified version of the Differential Dynamic Programming. The
method gains robustness against duty cycle, thrust direction changes and thrusting
time shifts.

An approach based on evidence theory to model uncertainty was developed [5]
for the robust optimization of transfers under system and dynamical uncertainties.
Optimal Control problems under specific epistemic uncertainty in system param-
eters (thrust, specific impulse, magnitude of the excess velocity vector) can be
solved using Evidence Theory to model the uncertainties, Belief functions, and then
transform the exact but discontinuous Belief problem to an inexact but continuous
Statistical problem. The optimization stage is carried on the uncertainty space rather
than the control space so to minimize the computational time. The target problem is
low-thrust transfer from Earth to an asteroid.

A Belief-based procedure for stochastic optimal control problems has been used
[6] for the robust design of a space trajectory under stochastic and epistemic
uncertainties that incorporates navigation analysis to update of the knowledge of
the spacecraft state in presence of observations. The target problem is one part of
the Europa Clipper flyby tour.

The use of a deep neural network as machine learning tool has been proposed
[7]. The training strategy is based on a Reinforcement Learning (RL) approach. The
RL approach is used for the robust design of a low-thrust interplanetary trajectory in
presence of various sources of uncertainty, which are (1) dynamic uncertainty, due
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to possible un-modeled forces acting on the spacecraft; (2) navigation errors, which
bring to an inaccurate knowledge of the spacecraft state; (3) control errors, due
to erroneous actuation of the commanded control; and (4) a Missed Thrust Event
(MTE), related to the unexpected occurrence of a safe mode during a thrusting
period. The target problem is time-fixed low-thrust Earth–Mars rendezvous mission.

The authors used an indirect method for the deterministic optimization of the
deployment of two satellites into a highly elliptical orbit [8]. In this chapter, they
look for a relatively simple method to be introduced in their already available code
to provide a robust solution to tackle underperformance during the first maneuver
of the .�V thruster. In order to make comparisons with their past works, the authors
took in consideration the problem of the transfer orbit of a satellite into a highly
elliptical orbit in presence of luni-solar perturbation and a J8x8 Earth gravitational
model. The optimal solution found in the past for this specific problem was a perigee
maneuver followed by one or more apogee maneuvers [8].

The novelty of the approach, based on the knowledge of the authors, is to use
an indirect optimization method for a robust optimization that does not include
any stochastic information of the uncertainties but rather selects a limited number
of possible realizations of spacecraft trajectories and optimizes the chosen perfor-
mance index, e.g., sum of the final mass, considering all the selected scenarios.
The resulting optimal control, if exists, allows to reach the final boundary values for
each scenario, modifying the control strategy to include all realizations. The selected
scenario can be extreme, such as thrust level reduced before a long maneuver, but
the switching times can be adjusted to mitigate the impact of such negative event on
the final performance.

2 Indirect Method Optimization

The application of an indirect method to robust optimization is described in this
chapter. Indirect methods are based on the theory of optimal control [16] and the
basic concepts are here summarized.

Time t is here the independent variable, the n-component vector .x contains the
state variables, and .u is the control vector (m components). Differential equations
in the form .ẋ(t) = f(x,u, t) rule the state variables. A q-component vector of
constraints on the state variables .ψ = 0 ∈ Rq is considered.

The Bolza problem looks to find the extremal path .x(t) and the corresponding
optimal control law .u(t) that satisfy the differential equation .ẋ(t) = f(x,u, t) and
the boundary equations, maximizing (or minimizing) the performance index J .

.J = φ(x0, x1±, . . . , xf , t0, t1±, . . . , tf ) +
f∑

j=i

∫ t(j)−

t(j−1)+
�(x, ẋ, t)dt (1)

In this chapter Meyer’s formulation will be used and .� = 0.
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The trajectory is split into j phases. The variables can have different values
before and after the points at phase junctions, so that discontinuity can be handled.

The j -th interval goes from .t(j−1)+ to .t(j)− and the variable values at the
extremities are indicated as .x(j−1)+ to .x(j)− .

The boundary conditions are written as

.ψ(x(j−1)+ , xj− , t(j−1)+ , tj−) = 0 j = 1, . . . , f (2)

An augmented index can be introduced to consider differential equations and
boundary conditions:

.J ∗ = φ + μψ +
f∑

j=i

∫ t(j)−

t(j−1)+
[� + λT (f − ẋ)]dt (3)

Adjoint variables .λ (n-component vector) and constants .μ are introduced. When
boundary conditions and differential equation are satisfied (the solution is feasible),
.J = J ∗ for any choice of .λ and .μ, which can be selected to nullify the first variation
of .J∗ (necessary condition for optimality).

Introducing the Hamiltonian defined as .H = � + λT f, the differential equation
for the adjoint variables, i.e., the Euler–Lagrange equations, is obtained

.
dλ

dt
= −

(
∂H

∂x

)T

(4)

In addition, m algebraic equations for the control variables

.

(
∂H

∂u

)T

= 0 (5)

and optimality conditions

. − λT
j− + ∂φ

∂xj−
+ μT

[
∂ψ

∂xj−

]
= 0 j = 1, . . . , f . (6)

λT
j+ + ∂φ

∂xj+
+ μT

[
∂ψ

∂xj+

]
= 0 j = 0, . . . , f − 1 (7)

.Hj− + ∂φ

∂tj−
+ μT ∂ψ

∂tj−
= 0 j = 1, . . . , f . (8)

−Hj+ + ∂φ

∂tj+
+ μT ∂ψ

∂tj+
= 0 j = 0, . . . , f − 1 (9)

complete the boundary value problem.



354 F. Simeoni et al.

Without bounds on state and control variables, the maximization of H implies
.Hu = 0 and .Huu negative definite (local conditions),where the subscript indicates
derivative with respect to the variable. This means that if H is linear with respect to
a control variable .uj , . ∂H

∂uj
= 0 does not contain .uj , that is, it is indeterminate. The

problem has a solution only if .uj is bounded. In this case the optimal control value
is the one that maximizes H according to Pontryagin’s maximum principle (PMP).
This is called a Bang-Bang control.

The Optimal Control Theory exposed here formulates a multi-point boundary
value problem (BVP), where initial values of some state values and adjoint variables
and some constants (e.g., discontinuities at internal boundaries) are unknowns. An
iterative procedure [17] based on Newton’s method is used to obtain a converged
solution.

3 Transfer between Highly Elliptic Orbits with Luni-Solar
Perturbations

The problem of satellite deployment in highly elliptic orbit considering luni-solar
perturbation is presented as example of application of the robust approach. The
example is taken by Simeoni [8]. The initial orbit is an elliptic orbit with a perigee
of 6728 km and an apogee above 191,116 km, while the final orbit has the same
apogee with a perigee of 21,378 km (see also Sect. 3.3). In space trajectory design,
the simplest gravitational model used is the two-body problem. The only way to
modify the satellite trajectory is by using the thrust (generally the only available
control). This model is well suited for some conceptual design (i. e. interplanetary
trajectories) but it has strong limitations in some scenarios, such as missions around
the Earth. In low Earth orbit a big issue is certainly the drag of the highest layers
of the atmosphere. If the spacecraft is close to the Earth, it is also influenced by the
perturbations due to the non-spherical shape of our planet. When the altitude of the
orbit grows, other two actors come on the stage: the Moon and the Sun.

The perturbations included in this problem are:

• perturbations due to the asphericity of the Earth
• the presence of Sun and Moon
• the effects of solar radiation pressure

The perturbations are relative small in comparison to Earth’s gravity so the effects
can be seen and appreciated only in a mid-long period [9–15]. Aerodynamic can be
neglected due to the relatively high altitudes involved.
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3.1 Differential Equation

The relevant perturbations are added to the two-body problem equations to write
the state differential system in vectorial form. All quantities have been made
dimensionless using as reference length the Earth radius (.Rconv = 6378.1363 km),
as reference velocity .Vconv = √

μ/Rconv , as mass .m = 1000 kg. After that, the other
dimensionless quantities (time, acceleration) have been derived. The gravitational
parameter in adimensional form is .μ = 1.

.dr/dt = V. (10)

dV/dt = −μr/r3 + T/m + ap. (11)

dm/dt = −T/c (12)

where .−μr/r3 is the central body spherical gravitational acceleration, while .ap

collects the perturbing accelerations. For further details about the derivation of
perturbations components in the differential equations and for the derivation of
adjoint variables equations see [8]. In the mass differential equation c is the effective
exhaust velocity and .T/c is the mass flow rate. The thrust vector is the only control
of the trajectory and can vary its magnitude between maximum and minimum
values. The specific impulse, and so c, is considered constant in this problem. In
the specific problem of orbital transfer between elliptic orbits, the central body is
the Earth and the perturbations, which are considered in this work are:

.ap = aJ + alsg + asrp (13)

where .aJ are the perturbations due to Earth asphericity, .alsg are the gravitational
forces of “third bodies,” in particular, the subscript l indicates the lunar perturbation,
while s indicates solar ones. .asrp represents the perturbations due to solar radiation
pressure, that is the pressure of the photons coming from the Sun. Different frames
are used: The Earth Mean Equator and Equinox of Epoch J2000 (i.e., EME2000)
reference frame is adopted to write the equations in a compact form. In this reference
frame the unit vectors are indicated as .I, .J, .K. The first vector points towards the
Vernal Equinox, the third is perpendicular to the equatorial plane and points towards
the celestial North Pole, and the second one is chosen in order to have a right hand
frame. Precession and nutation are neglected. For integration, a proper set of scalar
variables must be used, and spherical coordinates are selected for position, which is
described by radius r , right ascension .ϑ , and declination .ϕ. Velocity is defined by
components in the radial eastward and northward directions, u, v, w, respectively, in
a topocentric frame centered at the spacecraft and defined by unit vectors .ı (radial or
zenith), .j (eastward), and .k (northward) (see Fig. 1). The position of the Moon and
the Sun is computed in EME2000 reference frame from JPL ephemeris [18, 19]. The
thrust vector direction is defined also in the inertial reference frame EME2000. Once
the positions of the celestial bodies have been retrieved, the accelerations acting on
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Fig. 1 Spherical Reference
frame

the S/C are projected in the topocentric reference frame (see also Eq. (36)) and the
differential equations are integrated in this rotating reference frame.

The Hamiltonian in the vectorial form is quite simple

.H = λT ẋ = H2B + HT + Hp. (14)

H2B = λT
r V + λT

V g. (15)

HT = λT
VT/m − λm(T /c). (16)

Hp = λT
V ap = HJ + Hlsg + Hsrp. (17)

HJ = λT
V aJ . (18)

Hlsg = λT
V alsg. (19)

Hsrp = λT
V asrp (20)

and Euler–Lagrange equations are written (when the thrust direction is free and
thrust is independent of the state variables) as

.dλr/dt = (∂g/∂r + ∂ap/∂r)T λV . (21)

dλV /dt = −λr . (22)

dλm/dt = λVT/m2 (23)

The subscripts stand: J for geopotential perturbation, lsg for luni-solar gravity, and
srp stands for solar radiation pressure.
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3.2 Optimal Controls

The control is the vector .T that can vary in magnitude and direction. The thrust
magnitude will be either maximum or minimum in order to fulfill optimality
condition. For the sake of clearness here the Hamiltonian of Eq. (14) is re-written
in a compact form, emphasizing the dependence on thrust and where .H ′ collects all
the terms that do not contain the control:

.H = λT x = H ′ + λV
T T/m − λm(T /c) (24)

.λV is the adjoint vector to velocity and in literature is called primer vector [20]; its
magnitude is .λV . The expression of the primer vector is:

.λV = λuı + λvj + λwk (25)

The projection of the thrust vector direction on the primer vector is indicated as

.	T = λuTu/T + λvTv/T + λwTw/T (26)

The Hamiltonian can be written as

.H = λT x = H ′ + T (	T /m − λm/c) = H ′ + T · SF (27)

where

.SF = (	T /m − λm/c) (28)

is the Switching function and it is called in this way because its sign determines if
the thruster is switched ON or OFF. From optimal control theory, the optimal thrust
magnitude should be derived from .∂H/∂T = 0, but the Hamiltonian is linear with
the thrust magnitude. However, PMP states that the optimal control is the value that
maximizes the Hamiltonian. So if the switching function is positive, the optimal
value of thrust is .Tmax , otherwise is null. In equation is

.T =
{

Tmax for SF > 0

0 for SF < 0
(29)

The control is bang-bang.
The optimal thrust elevation angle .γT and thrust heading angle .ψT are found by

posing .∂H/∂γT = 0 and .∂H/∂ψT = 0. These equations provide

. sin γT = λu/λV . (30)

cos γT cosψT = λv/λV . (31)
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cos γT sinψT = λw/λV (32)

These are the cosine director of the primer vector. In other words the optimal
direction of the thrust is parallel to the primer vector. If the optimal strategy is
adopted .	T = λV . For this chapter, optimal thrust direction is not used but the
thrust direction of each burn is instead fixed in the inertial reference frame. In fact,
for this type of transfer, the thrust direction is mainly perpendicular to the line of
apses, with little components out of plane or along apses, and little penalty occurs
with the simplified control law and obtained thrust arcs.

The simplest solution is to keep an inertial fixed attitude during the .�V

maneuver, so the optimization problem takes into account the thrust angles .αj

and .βj for each single burn. A different approach could optimize the thrust vector
direction taking into account also the maximum angular rate of the Spacecraft.
During the j -th burn, thrust components in the geocentric inertial reference frame
(.I, .J, .K) are written as

.Tx = T cosαj cosβj . (33)

Ty = T sinαj cosβj . (34)

Tz = T sinβj (35)

where .αj and .βj are the thrust angles. A simple change of reference frame provides
the component in the topocentric frame .ı, .j , .k,

.

⎧
⎨

⎩

Tu

Tv

Tw

⎫
⎬

⎭ =
⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

Tx

Ty

Tz

⎫
⎬

⎭ (36)

So the thrust components in local frame .Tu, .Tv , and .Tw now depend also on the
state variables .ϑ and .ϕ. The Euler–Lagrange equations for the corresponding adjoint
variables must take this dependence into account and a further component is added
to Eq. (21):

.dλr/dt = (∂g/∂r + ∂ap/∂r + ∂T/(m∂r))T λV (37)

Further details have been presented in [8]. In this case .	T �= λV (see 26) and the
general expression of the Switching function has to be taken in account.

First fixed values are considered for the thrust angles of the reference satellite
mission. A tentative solution is needed: in this case, the target orbit has the line
of the apses along y axis and is coincident with the line of the nodes, .α = 0 and
.β = −i0 (where .i0 is the inclination of the initial orbit) are adopted during the
perigee burn, whereas .α = π and .β = i0 are used during the apogee burns. This
thrust vector lays on the orbital plane and it is always accelerating. Convergence to
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optimal solutions is easily achieved using as tentative guess an orbit transfer with J2
perturbations only and a continuation technique as described in the following.

The two thrust angles .α and .β remain fixed in the inertial frame during the burn
arc, but they change from one arc to another. Optimal control theory is applied
to determine the optimal thrust angles. Each thrust angle for each burn arc is a
standalone variable, i.e., there are jx2 variables, but they are independent between
them (they are not “‘active”’ at the same time) so they can be stored in the same
array in the implementation. There will be the optimal thrust angles .αj and .βj and
their adjoint variables .λαj and .λβj . For each pair of angles with subscript j there
are the correspondent Euler–Lagrange equations .dλαj /dt = −∂H/∂αj , that is and
.dλβj /dt = −∂H/∂βj

.λ̇α = −T

m

(
λu

∂(Tu/T )

∂α
+ λv

∂(Tv/T )

∂α
+ λw

∂(Tw/T )

∂α

)
. (38)

λ̇β = −T

m

(
λu

∂(Tu/T )

∂β
+ λv

∂(Tv/T )

∂β
+ λw

∂(Tw/T )

∂β

)
(39)

The partial derivative of the cosines director of the with respect to .α and .β are:

.

⎧
⎪⎨

⎪⎩

∂(Tu/T )
∂α

∂(Tv/T )
∂α

∂(Tw/T )
∂α

⎫
⎪⎬

⎪⎭
=

⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

− sinα cosβ

cosα cosβ

0

⎫
⎬

⎭ (40)

.

⎧
⎪⎨

⎪⎩

∂(Tu/T )
∂β

∂(Tv/T )
∂β

∂(Tw/T )
∂β

⎫
⎪⎬

⎪⎭
=

⎡

⎣
cosϑ cosϕ sinϑ cosϕ sinϕ

− sinϑ cosϑ 0
− cosϑ sinϕ − sinϑ sinϕ cosϕ

⎤

⎦

⎧
⎨

⎩

− cosα sinβ

− sinα sinβ

cosβ

⎫
⎬

⎭ (41)

According to these equations the .λαj and .λβj are always null except in the .j − th

arc and so the optimal boundary conditions are

.λαj
= 0 j = 1, . . . , f − 1. (42)

λβj
= 0 j = 1, . . . , f − 1 (43)

at the beginning and at the end of the arc. The thrust components

.Tu = T sin γT . (44)

Tv = T cos γT cosψT . (45)

Tw = T cos γT sinψT (46)

are obtained with Eq. (36), the angles are shown in Fig. 2



360 F. Simeoni et al.

Fig. 2 Thrust direction

Table 1 Initial and final orbit characteristics

a, km e i, deg .�, deg .ω, deg .ν .rp ,km .ra ,km

Initial 98,922 0.931985 5.2 90.0 270.0 0.0 6728 191,116

Final 106,247 0.798788 – – – 180.0 21,378 191,116

Table 2 Satellites properties Data

Launch 1250

mass (kg)

Propellant 200

mass (kg)

Mean 4.2

surface (.m2)

Initial S/m .3.36 · 10−3 m2/kg

Isp [s] 220

Nominal T [N] 4N

Failure scenario T [N] 2N

3.3 Boundary Conditions

In the following Table 1 it is possible to see the initial and final orbit parameters
considered in the problem. The final orbit is defined only in semi-major axis and
eccentricity, so the other final orbital parameters are free Satellites properties are
defined in Table 2.

The thruster exploits hydrazine as propellant. The satellite is injected by the
launcher directly at the perigee of the initial orbit and has to perform, with its own
propellant, the orbit transfer to the final orbit. For operational reason no burns are
permitted in the first revolution, so the first phase is pure coasting and only at the
following apogee or perigee passage the satellite can fire its engine.

The initial and final orbit are both HEOs, but the initial reference orbit has a low
perigee, so the influence of the non-sphericity of the Earth is relevant. Since the first
simulation runs it was also clear that J2 perturbations were very important in the
first revolution and also in the overall strategy of the burns times. The J2 effects on
semi-major axis are null in average in a complete revolution, but if the satellite is
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injected at the perigee, the results are an instant drop of the semi-major axis that will
change the optimal strategy. The high apogee makes Moon and Sun perturbations
very important. Satellites perigee shows significant variations even considering only
the ballistic flight.

Lunar perturbation brakes or accelerates the spacecraft when it is at the apogee,
changing its semi-major axis, perigee, and orbital period. The period changes the
next apogee passage (when compared with the 2 body solution) and so it is difficult
to forecast the position of the Moon and its influence at the next revolution. The
effect of these perturbations on the switching structures for the optimal fuel save
deployment is hard to predict.

The perturbation of the Moon in the first revolution of the spacecraft, that is
ballistic, can lower the perigee and makes the spacecraft plunge into the atmosphere.
The impossibility of controlling the spacecraft orbit in the first phase of the mission
makes important the analysis of moon influence and the choice of the departure
date. For this chapter this constraint is not considered because it depends only on
the launch window, it does not affect the control law.

4 Reference Satellite Transfer and Boundary Conditions

Most of the considerations and the procedure developed for the optimization of the
reference (or baseline) satellite optimization are valid even for robust approach.

The statement of the problem is described in Sect. 1. From the statement the
mathematical formulation of the boundary conditions has to be derived. The
dynamical equations, the differential equations for adjoint variables, optimality and
transversality conditions define the problem.

The dynamical equations and differential equations are defined in Sect. 3
At the initial point .j = 0 all state variables are assigned. In the optimal procedure

the initial time .t0 is considered to be given. A parametric analysis to evaluate the
influence of the departure date on the mission has been performed. At the final point
.j = f apogee radius .rA and orbit semilatus rectum .p = a(1 − e2) are given. The
final point is the apogee. The conditions of the state variables at the terminal point
are:

.rf − rA = 0. (47)

uf = 0. (48)

v2f + w2
f − μp/r2A = 0 (49)

The performance index to be maximized is the final mass, implying .φ = mf and
.� = 0 in Eq. (1). The optimality conditions (6–7), eliminating the adjoint constants,
are:
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.λϑf = 0. (50)

λϕf = 0. (51)

λvf wf − λwf vf = 0. (52)

λmf = 1 (53)

The final time is free, so the transversality condition (9) gives Hamiltonian null
at the end.

.Hf = 0 (54)

Application of Eqs. (6) and (7) at every switching point gives Hamiltonian
continuity. State and adjoints variables are also continuous and so the switching
function has to be null at the switch points (Points where engines turns OFF-ON or
vice versa)

.SFj = 0 j = 1, . . . , f − 1 (55)

The numerical problem consists of 14 differential equations represented by
Eqs. (10–12) and (21–23). The state variables initial values are given, but the initial
values of the adjoint state variables are unknown. The lengths of the coast and burn
arcs are also unknown; an equal number of boundary conditions, given by Eqs. (47)–
(55), completes the MPBVP. The problem is homogeneous in the adjoint variables
and Eq. (53) can be replaced by assigning the initial value .λm0 = 1 in order to
reduce the number of unknowns.

The optimal deployment strategy consists in a perigee (P) burn followed by
a series of burns at the following apogee (A) passages. In this chapter the 3.5-
revolution transfer is considered and the burn sequence is P-A-A. Indirect methods
need a tentative solution. Since it is easier to estimate the burn angular positions (i.e.,
it is at the apes) than the corresponding time, a change of independent variables is
adopted. The right ascension .ϑ is introduced as new independent variable, and the
differential equations are obtained by multiplying the time derivatives by .dt/dϑ .
The independent variable is further normalized as:

.ε = j − 1 + ϑ − ϑj−1

ϑj − ϑj−1
(56)

A continuation technique using the perturbation fraction as parameter is intro-
duced to improve solution convergence. Moon’s influence may cause the vanishing
of an apogee burn and one cannot know the switching structure in advance.
The solution for the problem that only considers J2 has always burns at each
apogee passage and is easily found. Then, the additional perturbations are gradually
introduced with a multiplying factor that grows from 0 to 1. Failed convergence
occurs when the switching structure changes and a burn arc must be removed, but
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the switching function behavior of the previous converged solution suggests how it
should be modified [8]. The perturbation fraction is increased with step 0.2. This
procedure failed to obtain convergence in only 2% of the treated cases. The use of a
reduced perturbation step solves the problem when convergence is not immediately
obtained.

5 Robust Approach

The single satellite optimization helps to understand the influence of the perturba-
tion and it is also a good testbed to build a robust procedure for seeking the optimal
solution and optimal structure. The first perigee burn is critical. Thruster failure
during this maneuver would dramatically change the trajectory and a dedicated
recovery maneuver would be needed. In this chapter, thruster failure during the
apogee burns is considered, as a robust trajectory may be capable of easily
compensate for this anomaly, as shown in the following.

Three different optimization procedures are developed to test the solution
robustness. The same variables and differential equations characterize the three
scenarios. Two trajectories are integrated simultaneously with 28 state variables.
One satellite represents the nominal case, while the other corresponds to the failure
scenario. Thrust is 4 N in the nominal case. A reduced 2 N thrust is adopted for
apogee burns A1 and A2 in case of failure.

Ideal Failure Recovery
In the ideal case the thruster failure is known in advance, before A1 is performed.
The trajectory can, therefore, be optimized with the new thrust value, obtaining
the maximum theoretical performance in case of failure. This case is equivalent to
the solution of two separate single satellite scenarios as the equations of the two
trajectories are uncoupled. These solutions represent the global optimum for the
maneuvers with nominal and reduced thrust.

Failure Recovery for the Nominal Solution
In a real scenario, the failure is discovered after the A1 burn. The first apogee burn
is, therefore, performed with commanded values (start and final time, thrust angles)
of the nominal solution. After A1 the reached state of the satellite is not the desired
one and the optimization procedure re-computes the A2 apogee burn. The solution
will be suboptimal with respect to the failed scenario trajectory of the ideal case.

The nominal solution is found first. At the switching points, H continuity requires
the switching function to be null:

.SFj = 0 j = 1, . . . , f − 1 (57)

and the optimal thrust angles are found in each burn. In the failed scenario, start
and end of the A1 burn are constrained and must be the same as the nominal ones.
At .j = 4, 5 Eq. (57) does not hold for the trajectory with reduced thrust, but these
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conditions are replaced by

.t4f ail = t4nom. (58)

t5f ail = t5nom (59)

On top of that also the thrust angles are fixed in the inertial reference frame of
the failed scenario in the A1 burn and shall be equal to the angles of the nominal
scenario.

.α2f ail = α2nom. (60)

β2f ail = β2nom (61)

The second apogee burn is instead re-optimized, with the same boundary conditions
as in the nominal solution.

In the re-optimization procedure the solution imposed to the satellite representing
the failed scenario is far the optimal one, so the convergence to the suboptimal
solution is generally slower than the ideal procedure. The nominal solution is
independent of the failed scenario and equal to the ideal case (maximum .mf S1); the
other trajectory separately maximizes .mf S2 with the constraints on A1 determined
by the nominal solution.

Robust Case
With the robust approach, the nominal trajectory is replaced by a robust trajectory.
Nominal and off-nominal trajectories are now coupled and optimized simulta-
neously. The Hamiltonian is the sum of the contributions of the two satellites
.HSYS = Hnom + Hf ail and the sum of the nominal and off-nominal final masses is
maximized

.ϕ = mf S1 + mf S2 (62)

In the robust solution .t4nom, .t5nom, .α2nom, .β2nom assume different values with
respect to the nominal optimal solution in order to maximize the sum of nominal
and off-nominal final masses. At .j = 4, 5:

.t4f ail = t4nom. (63)

t5f ail = t5nom (64)

and during the burn

.α2f ail = α2nom. (65)

β2f ail = β2nom (66)
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At the A1 switching points the Hamiltonian of the coupled system shall still be
continuous. For example, at the beginning of the arc, with .j = 4

. (Hdyn,nom)j− + (Hdyn,f ail)j− = (Hdyn,nom)j+ + (Hdyn,f ail)j+
+λαnom,j+αnom,j+ + λαf ail,j+αf ail,j+ + λβnom,j+βnom,j+
+λβf ail,j+βf ail,j+ + SFnom,j+Tnom + SFf ail,j+Tf ail (67)

For .j = 4, 5, considering Eqs. (65) and (66), one has:

.λαnom,j + λαf ail,j = 0. (68)

λβnom,j + λβf ail,j = 0. (69)

SFnom,jTnom + SFf ail,j Tf ail = 0 (70)

The problem stated in this way has .(λm)f = 1 as final condition and .λm0 as
unknown parameter to be determined (for each satellite). But adjoint differential
equations are homogeneous (.gλ(λ) = 0), so it is possible to scale all .λ in order to
have an easier BVP problem to solve. So the final boundary conditions are:

.λ′
αnom,j /λ

′
mnom,f + λ′

αf ail,j /λ
′
mf ail,f = 0. (71)

λ′
βnom,j /λ

′
mnom,f + λ′

βf ail,j /λ
′
mf ail,f = 0. (72)

SF ′
nom,j /λ

′
mnom,f Tnom + SF ′

f ail,j /λ
′
mf ail,f Tf ail = 0 (73)

.λ′
m0nom

= 1

λ′
m0f ail

= 1

6 Results

The indirect approach to robust optimization is here applied for the deployment of a
satellite in a highly elliptic orbit. The deployment is accomplished in 3.5 revolutions.
The satellite is assumed to be injected by a launcher in an already elliptic orbit. The
satellite has then to perform in sequence:

• An initial perigee burn to achieve the required apogee.
• Two apogee burns to adjust the perigee.

A sketch of the nominal trajectory is shown in Fig. 3.
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Fig. 3 Deployment trajectory

6.1 Ideal Failure Recovery

In the ideal case the trajectory of the baseline scenario (.4N , thrust for each burn)
and the failed scenario (.4N at perigee burn and .2N at the two apogee burns) are
considered separately. It is assumed the perfect knowledge of the system, i.e., the
best performance of the baseline scenario and the maximum achievable performance
of the failed one. This translates to six switching points (initial and final for each
burn) where the Switching Function is 0 for each satellite (optimality condition).
Figure 4 shows the final mass of the SC in the baseline scenario (.4N , optimal
solution) and the failed scenario (2 N). The horizontal axis shows the departing
date in Modified Julian Date (MJD) while the vertical axis has the evolution of
the final mass. For both cases the influence of the Sun/Moon perturbations can be
appreciated.

The difference in the final mass between optimal baseline scenario and failed
scenario is between 1.8 and 2 kg based on 1 year data. Figure 5 shows the peak
to peak mass difference in a shorter range of time to improve the readability of
the picture. The differences are mainly due to the higher gravitational losses. The
apogee burn is not an impulsive maneuver, so the .�V is not perpendicular to the
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Fig. 6 Duration of the burns

radius of the orbit and to the gravitational acceleration. The failed scenario, with a
lower thrust, needs a large time to perform its own .�V and so the gravitational
losses increase. This effect can be reduced if a larger number of revolutions is
foreseen, e.g., 4.5 or 5.5 revolutions instead of 3.5 revolutions. In this way the
apogee burn arcs are smaller and so the maneuver is closer to the ideal one.

For each departure date the duration of the burns has been computed. Figure 6
(left) shows the duration of the three burns for the optimal trajectory of the 4N thrust
nominal scenario. The perigee burn is very small compared to the apogee ones. The
two apogee burns (for a fixed MJD) are similar in duration (about 10 h). It is worth
noting that large durations of A1 indicate that there is a benefit in reducing the
satellite angular rate, in order to have a more favorable influence from the Moon
at the following apogee passage. Short durations happen when faster rotation is
needed. Figure 6 (right) shows the optimal trajectory for the 2N failed case, with
larger duration of the burns (up to 1 day), but a similar trend along the MJD axis.

6.2 Failure Recovery of Optimal Solution

This case assumes the discovery of the failure after the A1 burn (no perfect
knowledge). The commanded .�V times are the same as planned for the baseline
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Fig. 7 Final mass comparison: Ideal vs. optimal solution recovery

optimal scenario. After the discovery of the failure, the trajectory is re-optimized
from the conditions after the A1 burn. Ground can re-compute the optimal duration
of the A2 apogee burn to meet the final orbit.

The re-optimized case assumes the first arc to be in common (perigee burn) but
with the optimality conditions of the optimal solution de-coupled from the failed
scenario. This is equivalent to a re-optimization after a state determination. From
mathematical point of view the re-optimized case is obtained imposing a constraint
on the first apogee burn so that the initial and final instant of the maneuver are
coincident with those of the baseline scenario.

Figure 7 shows the comparison of the final mass between the ideal recovery and
the recovery of the optimal solution (Rec-opt 2N, dashed line) in the failed scenario.
This case is the closest to the reality. In fact the command to start the maneuver is
sent by ground at a planned time or released by the on-board software considering
a reference mission timeline. Even if the most recent generation missions use on-
board accelerometers to estimate the executed .�V , a timeout duration is, however,
imposed for safety. Future application of inertial position navigation based on pulsar
can improve.�V estimation and orbit control.

Figure 8 shows the burn duration of the baseline case (left) and the duration of
the burns in case of the re-optimization (right). The duration of the first apogee
burn for the re-optimized case is the same of the baseline one, as it is imposed
by the boundary conditions. The second apogee burn of the failed scenario has to
recover all the difference in energy lost during the first apogee burn with increased
gravitational losses.
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Fig. 8 Duration of the burns for the re-optimized case

Figure 9 shows the difference between the nominal scenario and failed scenario.
In case of re-optimization the difference between the failed scenario and the baseline
(rec-opt, dashed line) is larger, as expected. It is possible to note that in the ideal case
optimization the difference between the two scenarios (.mf S1 − mf S2) varies from
1.67 to 1.82 kg, while in the re-optimized scenario the difference is larger between
3.22 and 4.08 kg and the trend is not regular. The hypothesis is that the suboptimal
solution for the failed case prevents the possibility to exploit the Moon gravitational
pull or to avoid its interference.

6.3 Robust Case

The robust solution takes into account the event of failure when the nominal
solution is selected; the nominal solution and the failed solution are optimized
simultaneously with coupled boundary conditions. The sum of the final masses for
the two cases is maximized. The failed case has again the same A1 burn times
of the nominal solution, but these values are now determined also considering
the performance of the failed trajectory. The boundary conditions for optimality
state that at the A1 switching times the sum of the switching function of the
two cases (weighted with the with the thrust magnitude) must be equal to zero.
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Fig. 9 Separated and Re-optimized difference in final mass

After the new (“robust”) first apogee burn, thruster magnitude underperformance is
discovered and a re-optimized solution is found for the trajectory with failure. The
continuous lines (Fig. 10) represent the nominal scenario while the dashed ones are
the failed ones. The lines with circle markers refer to the two scenario optimized
separately (optimal, rec-ideal), the dashed line with triangle markers refers to the
recovery of the optimal solution (Rec-opt), which shows a large penalty in case
of the failed scenario. The lines with square markers are the robust approach that,
despite the small penalty in the nominal scenario (Rob, dashed), allows a recovery
of performance in the failed one (rec-Rob, dash-dotted).

The robust nominal solution is close to the baseline optimal one with only a
small penalty in terms of final mass (less than 1 kg). However, when thruster failure
is considered, the mass decrease of the robust solution is much lower compared to
the re-optimization of the nominal trajectory and the final mass is instead almost
coincident with the ideal recovery.

The starting and ending instant of the maneuvers depend on the departing date.
The first apogee burn (A1) is shorter for the nominal scenario (Fig. 11, left) in case
of ideal optimization (Ideal) with respect to the robust one (Rob). This is expected
because in the robust approach the first apogee burn is longer in order to take
into account the possible thruster failure. Conversely, the duration of the second
apogee burn for the nominal robust scenario (Rob) is shorter than the ideal one. In
fact the most of the perigee raise has already been performed in the apogee burn
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A1. The thruster switch-off instant is similar to the nominal scenario in the ideal
optimization, signaling that the thruster switch-on has been delayed.

The difference in final mass between each nominal solution and the correspond-
ing failed solution is shown in Fig. 12. The nominal mass of the robust solution is
lower than the optimal one, but failure recovery requires a very small penalty, as it is
even less demanding than the ideal recovery of the optimal solution, notwithstanding
the advanced knowledge of the failure in the latter case.

7 Conclusions

This chapter presents a robust approach to the design of optimal trajectories and
its application to the deployment of a satellite in highly elliptic orbit. Thruster
partial failure at apogee burns (thrust 50% of the nominal value) is considered. The
use of an indirect optimization procedure allows for a robust approach, which is
easy to be implemented and can be used in the preliminary phase of a trajectory
design. The robust solution is obtained with a continuation technique that varies the
perturbations, and less than ten minutes are typically required with a PC based on
a Intel® Core™ i5-6198DU CPU @ 2.30GHz 2.40 GHz (a single core was used in
this analysis). RAM usage is negligible.
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When the nominal optimal trajectory is adopted, severe performance degradation
is obtained in the case of thruster failure, even after re-optimization of the second
burn. On the contrary, the robust solution is only slightly worse than the optimal one
for nominal behavior, but greatly mitigates the mass reduction in the case of failure.
If the failed-thrust scenario performance is a requirement for the mission, the robust
solution may be preferable to the optimal solution.

This robust optimization method can be readily extended to different scenarios.
Future possible works can concern the application of the same approach to multiple-
failure scenarios (e.g., intermediate thrust levels and different points where the
failure can occur). The use of different weights for the final masses in the definition
of the performance index can provide alternative solutions with different degrees of
“optimality” and “robustness.” Extension to multiple-failure scenarios (e.g., thrust
magnitude and direction errors) is straightforward, by increasing the number of
trajectories that are simultaneously optimized.
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Time-Varying Lyapunov Control Laws
with Enhanced Estimation of
Distribution Algorithm for Low-Thrust
Trajectory Design

Abolfazl Shirazi, Harry Holt, Roberto Armellin, and Nicola Baresi

List of Acronyms

EA Evolutionary Algorithm
EDA Estimation of Distribution Algorithm
EEDA Enhanced Estimation of Distribution Algorithm
GA Genetic Algorithm
PSO Particle Swarm Optimization
Q-law Proximity Quotient Control Law

1 Introduction

Low-thrust many-revolution trajectory design and orbit transfer are becoming
increasingly important with the development of high specific impulse, low-thrust
engines such as electric propulsion (EP) systems. Finding an optimal transfer
trajectory is a challenging task due to the nonlinearity of the system’s dynamics and
the problem complexity. Many approaches have been developed so far to overcome
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Te Pūnaha Ātea - Space Institute, University of Auckland, Auckland, New Zealand
e-mail: roberto.armellin@auckland.ac.nz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Fasano, J. D. Pintér (eds.), Modeling and Optimization in Space Engineering,
Springer Optimization and Its Applications 200,
https://doi.org/10.1007/978-3-031-24812-2_14

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24812-2protect T1	extunderscore 14&domain=pdf

 885 47989
a 885 47989 a
 
mailto:ashirazi@bcamath.org
mailto:ashirazi@bcamath.org

 885 51863
a 885 51863 a
 
mailto:h.holt@surrey.ac.uk
mailto:h.holt@surrey.ac.uk
mailto:h.holt@surrey.ac.uk
mailto:h.holt@surrey.ac.uk

 8941 51863 a 8941 51863
a
 
mailto:n.baresi@surrey.ac.uk
mailto:n.baresi@surrey.ac.uk
mailto:n.baresi@surrey.ac.uk
mailto:n.baresi@surrey.ac.uk

 885 55738 a 885 55738
a
 
mailto:roberto.armellin@auckland.ac.nz
mailto:roberto.armellin@auckland.ac.nz
mailto:roberto.armellin@auckland.ac.nz
mailto:roberto.armellin@auckland.ac.nz
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14
https://doi.org/10.1007/978-3-031-24812-2_14


378 A. Shirazi et al.

the difficulty of finding optimal transfer trajectories of the space systems. In general,
these can be divided into one of the two categories: indirect and direct methods.
Direct methods convert a continuous optimal control problem into a parameter
optimization problem, often via discretization and subsequent transcription, to find
an approximate solution to the original problem. Indirect methods, on the other
hand, use calculus of variation to reduce the optimal control problem to the solution
of a two-point boundary value problem [1–3]. Both techniques can be used to
solve low-thrust trajectory design problems, and however, they are computationally
intensive and still present many challenges. Direct methods generate a large
optimization problem and result in approximate solutions. Indirect methods can
produce rigorously optimal solutions, but they need a good initial guess and have
difficulties in handling discontinous controls. Both methods provide point solutions,
i.e., for the assumed initial condition, and cannot be used as guidance laws due to
time limitations and difficulties in ensuring convergence [3].

In recent years, advances in artificial intelligence and evolutionary computations
have shifted the attention of the aerospace community toward the employment
of evolutionary algorithms (EAs) in spacecraft trajectory optimization [3]. The
motivation for utilizing EAs is based on their ability in dealing with local optimal
region of the solution domain and handling nonlinear constraints that naturally
appear in nonlinear optimal control problems. The development of novel EAs in
these applications covers the vast types of space missions. Such developments are
mainly within the framework of well-known EAs. For instance, in [4], a fuzzy goal
programming-based Genetic Algorithm. The proposed algorithm is a hybrid tech-
nique based on the combination of a gradient-based method and Genetic Algorithm
(GA). This algorithm is used to solve an optimal flight path design for a constrained
multi-objective aero-assisted vehicle trajectory optimization problem. An improved
NSGA-II algorithm is developed in [5] for solving non-coplanar orbit transfers
in multi-impulse Lambert rendezvous problems. The proposed algorithm benefits
from a self-adaptive differential evolution technique to increase the efficiency of the
algorithm. In another recent research by Pontani [6], Particle Swarm Optimization
(PSO) is utilized in an indirect approach based on Pontryagin principle. This
approach is used to solve low-thrust Earth to Mars trajectory optimization problem.
Englander and Conway [7] presented a modified GA and incorporated it in low-
thrust interplanetary trajectory optimization problem. Algorithmmodification in this
research is toward the elitism operator within GA which preserves the best members
of the population and encourages diversity at the same time. Many other algorithm
enhancements have been proposed for various types of space applications including,
satellite formation [8], mission planning [9], asteroid exploration [10], and orbit
determination [11].

Following the progress in evolutionary methods with application in astrodynam-
ics, it can be observed that the algorithm improvements are mostly based on the
traditional evolutionary algorithms. One of the frameworks that did not receive
much attention in spacecraft trajectory optimization is Estimation of Distribution
Algorithms (EDAs) [12]. EDAs are a class of EAs. EDAs are a class of EAs that
work based on probabilistic models. In an EDA, a probabilistic model is learned
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at each iteration, and new solutions are sampled from that model. The obtained
solutions have similar characteristics as those used for learning the model. One
of the characteristics of EDAs is to have an explicit description of the promising
solutions in terms of probabilistic models. Due to this feature, they have a great
potential for enhancement toward further improvements. This characteristic is the
main motivation in this research, and the effort here is to enhance the mechanisms
of EDAs for obtaining higher quality solutions in spacecraft trajectory optimization.

The emergence of closed-loop feedback-driven (CLFD) controllers, particularly
those based on Lyapunov control theory, has allowed the computation of sub-
optimal trajectories with minimal computational cost [13–15]. The control profile
is readily available as they only require knowledge of the current and target
spacecraft states to compute it, making them suitable as initial guesses for indirect
and direct methods [16, 17]. However, as they treat the problem from a targeting
perspective, Lyapunov controllers are inherently sub-optimal and often have many
user-defined parameters which significantly affect their performance [18–20]. One
method for improving their performance involves EA. Both Lee et al. 2005 [18]
and Varga et al. 2016 [19] used a multi-objective genetic algorithm to optimize
Petropoulos’s Lyapunov-based Q-law design parameters for a variety of Earth orbit
transfers, with the design parameters remaining fixed throughout the transfer. Yang
et al. [21] used an artificial neural network and improved cooperative evolutionary
algorithm optimizer to make the design parameters of a Lyapunov-based Q-law
state-dependent.

In this research, both a simple Lyapunov function and a Q-law are formulated
in Classical Orbital Elements (COEs) to provide a closed-loop low-thrust trajectory
profile. Both control formulations are considered in order to access whether the
EEDA is capable of recovering the finer nuances embedded within the analytical
expressions in the Q-law when using a simple Lyapunov controller. The optimal
variations of weighting coefficients are interpolated via Hermite interpolation. The
time series of weighting coefficients are turned into decision variables, and a
black-box optimization problem is formed. Having the transfer time and the fuel
mass as the objective functions, an enhanced EDA (EEDA) is proposed to find
the unknown weighting coefficients. The proposed optimizer benefits from a new
learning mechanism based on a mixture of Gaussian distribution. The mechanism
prevents diversity loss of the population during the optimization process of EDA.
The approach is tested in some time-optimal and fuel-optimal cases, and the
optimality of the obtained solutions is analyzed.

The outline of the chapter is as follows. In Sect. 2, the two-body dynamical model
is given and the proposed simple Lyapunov Controller is presented alongside the
Petropoulos Q-law. Section 3 is dedicated to the optimization process in finding
the optimal weighting coefficients for minimum-time and minimum-fuel transfer
trajectories. Numerical simulations are provided in Sect. 4, where several cases of
the orbit transfer missions are considered as the benchmark problems. The problems
are solved using the proposed approach with a variety of settings as algorithm
parameters. Finally, Sect. 5 contains the conclusions remarks and future works.
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2 Low-Thrust Trajectory Design

2.1 Two-Body Dynamics

The spacecraft’s motion about a central body is described in terms of the classical
orbit element (COEs) semi-major axis a, eccentricity e, inclination i, right ascension
of the ascending node (RAAN) .Ω , and argument of periapsis .ω. If the perturbing
acceleration .ad is described in the radial, transverse, and normal (RTN) frame, then
the set of variational equations in .a, e, i,Ω,ω and the true anomaly .ν take Gauss’s
form of the Lagrange Planetary Equations [22]. These can be expressed as

.

[
Ẋ

ν̇

]
=

[
B

p cos(ν)
he

−(p+r) sin(ν)
he

0

]
ad +

[
0
h
r2

]
, (1)

where .Ẋ represents the dynamics of the COE state, .p = a(1− e2) is the semi-latus
rectum, .μ is the gravitational parameter, and .h = √

μp. The matrix .B represents
the Gauss Variational Equations (GVEs) for the slow variables and is required later
to compute the control.
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(2)

When examining Eq. (2), it is clear that singularities occur when .i = 0 or .e = 0.
The modified equinoctial elements (MEEs) p, f , g, h, k and fast variable L are used
in the dynamical integrator instead of COEs to avoid these issues[23]. However,
the control remains in COEs in order to preserve the physical interpretation of the
variables and extract insights from the observed behavior.

2.2 Lyapunov Control

Lyapunov functions offer a method for computing continuous-thrust trajectories
with minimal computational cost. Obtaining an estimate of the low-thrust profile
required for the acquisition of the different target orbits is straightforward thanks
to the computation ease and closed-loop nature. The most well known and widely
used is perhaps the Petropoulos Q-law [14, 15]. We provide an outline of this
control law here, although the interested reader should refer [15] for full details. We
also propose a very simple Lyapunov feedback control law, formulated in Classical
Orbital Elements (COEs). Although the Q-law is a more optimal Lyapunov feedback
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control laws exist, the simplicity gives the subsequent enhanced EDAmore freedom
and avoids potential singularity issues. As such, it is interesting to compare the
performance of these two controllers.

2.2.1 Simple Lyapunov Controller

The proposed simple Lyapunov control function can be written as

.V =
∑
X

WXδ(X,XT )2, (3)

where .δ(X,XT ) = X−XT for .X = a, e, i, while .δ(X,XT ) = arccos(cos(X−XT ))

for .X = Ω,ω. The weights .WX can be used to prioritize which elements to target.
As written above, the control law is a proportional function and as such .W are
normalized.

2.2.2 Proximity Quotient Controller (Q-law)

The Q-law is best thought of as a weighted squared summation of the time
required to change the current state .X = [a, e, i,Ω,ω]T to the target state .XT =
[aT , eT , iT ,ΩT , ωT ]T. It can be written as

.V = Q = (1 + WP P)
∑
X

SXWX

(
δ(X,XT )

maxν(Ẋ)

)2

, (4)

where Q and V can be used interchangeable in the following formulas. Here, .WP

and P form a penalty function and .SX are scaling functions. These are functions of
the state and can be found in Ref [15]. Again, .δ(X,XT ) = X − XT for .X = a, e, i,
while .δ(X,XT ) = arccos(cos(X − XT )) for .X = Ω,ω. The expressions .maxν(Ẋ)

are the maximum rate of change of each COE over the current osculating orbit
and can be calculated analytically for all elements except .ω. For a more detailed
breakdown of the components of the Q-law, the reader is encouraged to look at
Refs. [15], [24], and [25]. All user-defined parameters aside from the weights .WX

(for instance, those in .WP , P , and .SX) are assumed constant, as these terms are only
activated to prevent particular behavior that we also want to prevent. The values are
given in Table 1.

Table 1 Table of standard Q-law parameters from Ref. [15]

Parameter Value Parameter Value Parameter Value

r 2 k 100 b 0.01

.rp-min 6578 km m 3 n 4



382 A. Shirazi et al.

2.2.3 Control Direction

Lyapunov’s second theorem states that for a system .Ż = f (Z), .Z = X − XT,
the equilibrium point .XT is asymptotically stable if there exists a scalar Lyapunov
function .V (Z) such that .V (0) = 0, it is positive-definite (.V (Z) > 0,∀Z �= 0),
the derivative is negative-definite (.V̇ (Z) < 0,∀Z �= 0), and .lim|Z|→∞, V (Z) = ∞
[26]. A very thorough discussion on the implications of this for trajectory design
using nonlinear control can be found in Ref. [27].

A stable control is therefore one that ensures .V̇ < 0 throughout the transfer. One
way of doing this is to select a controller that minimizes the rate of change of the
Lyapunov function (in this case, the most negative value).

.V̇ = ∂V

∂X
Ẋ = ∂V

∂X
Bu. (5)

Given an engine thrust T and a spacecraft mass m, the control vector is computed
as (using .f = T/m)

.u = −f
BT

(
∂V
∂X

)T
∣∣∣∣( ∂V

∂X

)
B

∣∣∣∣ . (6)

Coasting can be introduced using effectivity thresholds .ηthresh. These attempt to
quantify the effectivity of changing an orbital parameter at a given point in an orbit
compared to the optimum point for changing the same orbital parameter. Definitions
for both the absolute and relative effectivity parameters exist. Studies [18] have also
shown that when varying other control law parameters in addition to the effectivity,
there is a little difference in performance between relative and absolute effectivity,
and, instead, the specific transfer will determine which is more applicable. Hence,
in this work, the absolute effectivity

.ηa = minα,β V̇

minν(minα,β V̇ )
(7)

is used. .α and .β are the in-plane and out-of-plane angles of the thrust vector,
while .minν(minα,β V̇ ) is computed numerically by scanning through the possible
true anomaly .ν values to find the maximum and minimum .V̇ for the particular
osculating orbit. The authors note that an alternative approach first found in Ref. [19]
can be used, which now avoids any numerical derivations thanks to recent work in
Ref. [25].
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3 Optimization Approach

Following the proposed approaches including the Q-law and the Lyapunov methods,
achieving optimal transfer trajectory lies upon finding a suitable set of values for
unknown weighting coefficients of the proposed techniques. In this research, the
unknown weighting coefficients are defined as

.�x = [ηa Wa We Wi WΩ Wω] (8)

which include the normalized state weights .WX = [Wa We Wi WΩ Wω]
and the absolute effectivity threshold .ηa . Tuning these parameters for a given orbit
design problem yields time-optimal or mass-optimal transfer trajectories. Basically,
constant values are the primary choice for these parameters. However, in this
research, these parameters are considered as functions of transfer time. Therefore,
the problem turns into finding proper time series for the weighting coefficient to
achieve optimal transfer trajectories.

3.1 Direct Interpolation

Parameterizing the unknown weighting coefficients has a significant impact on the
convergence of the optimization algorithm, and consequently, obtaining optimal
transfer trajectories. In this research, the time series of decision variables .�x is
approximated by considering .Np number of interpolation points in the desired time
of flight interval .0 < t < tf . Noting the fact that all weighting coefficients are
normalized, the weights’ variation are in the limits of .0 < �x < 1. Having .Np

number of uniformly discretized points, the overall time span is divided into .Np −1
sub-intervals. The interpolating polynomial for the time interval can be represented
by:

.x̂(t) =
N∑

k=1

⎛
⎝∏

j �=k

t − tj

tk − tj

⎞
⎠ pk (9)

where .x̂(t) denotes any of the unknown weighting coefficients in .�x, .tk are the
discretized times, and .pk are the discrete points within the time interval. Given
the number of discrete points .Np for each decision variable, the time series of
the corresponding weighting coefficient may be interpolated with different shapes.
One of the most popular methods is using piecewise cubic Hermite interpolating
polynomials [28]. Various types of splines can be obtained depending on the
choice of tangents in each node. One type of spline from the family of Hermite
splines, which is frequently used in many applications, is illustrated in Fig. 1 for
approximating the weighting coefficients.
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Fig. 1 Weighting coefficient interpolating with piecewise cubic Hermite splines

This interpolation represents Catmull Rom spline [29], which has a continuous
first derivative. The difference between this polynomial and other types of Hermite
interpolation schemes is the choice of tangents in the internal and end nodes. This
spline has a balanced smoothness, and the slope of the spline at data points depends
directly on the points before and after. The resulting piecewise cubic does not have
a continuous second derivative, and it does not always preserve shape. However,
it can be evaluated quickly by a convolution operation. More details regarding the
derivation of this spline and its difference from the other types of interpolations are
beyond the scope of this research, and the reader is urged to refer to the provided
references for details [29–31].

Regarding this explanation, the low-thrust trajectory design can be defined as
an unconstrained optimization problem. The general form of such an optimization
problem is

.
Minimize F (x) x = (x1, x2, . . . , xn)

Subject to xmin < xi < xmax,
(10)

where .n is the number of decision variables, and .F(x) represents the objective
function, which is the actual transfer time for time-optimal transfers and fuel mass of
the spacecraft for mass-optimal transfers. Based on the proposed formulation of the
low-thrust space orbit transfer problem, the decision variables .x = (x1, x2, . . . , xn)

are the interpolation points for unknown weighting coefficients of the proposed
controller:
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.x = pi (i = 1, . . . , Nv × Np), (11)

where .Nv is the number of unknown weighting coefficients (i.e., .Nv = size(�x)). As
can be seen, an equal number of interpolation points are dedicated to every unknown
variable in this research. However, in a more general concept, one may consider
different interpolation points for each of the weighting coefficients. To deal with
this unconstrained continuous optimization problem, an EDA-based algorithm is
proposed in the following section.

3.2 Enhanced Estimation of Distribution Algorithm

EDAs are a type of population-based optimization algorithms, designed for solving
numerical optimization problems. Based on machine learning techniques, at each
iteration, EDAs learn a probabilistic model from a subset of the most promising
solutions, trying to explicitly express the interrelations between the different
variables of the problem. Then, by sampling the probabilistic model learned in the
previous iteration, a new population of solutions is created. In other words, EDAs
work based on two major key methods: learning and sampling, where a probabilistic
model that estimates the probability distribution of the selected solutions is learned
and then utilized for sampling new individuals [32]. In this work, an improved
learning mechanism is presented and applied to an EDA based on multivariate
Gaussian distribution. It will be shown that the new enhanced algorithm outperforms
traditional EAs within the proposed optimization problem.

The overall pseudo code of the proposed algorithm is presented in Algorithm 1.
Following the pseudo code, the optimization process begins with .N as the popu-
lation size and .M as the maximum number of iterations. Initially, the SEEDING
mechanism is utilized to generate an initial population. Having the initial feasible
solutions, with corresponding objective values .f obtained from EVALUATION,
the main optimization loop starts. At each iteration, the algorithm begins by
selecting the top promising individuals in the current population according to
the SELECTION method. The truncation selection method [32] is used in this
research, with .γ as the truncation factor. In this method, the .γ fraction .γ ∈ (0, 1]
of the best individuals is selected. All the individuals have the same selection
probability defined as

.Pj =
⎧⎨
⎩

1

Ns

1 < j < Ns

0 Nn < j < N,

(12)

where .Ns is the number of selected individuals as .Ns = γN . Having the selected
population .xsel and the corresponding objective values .fsel , a probability model
is learned via the LEARNING mechanism. In the proposed learning mechanism,
the selected population is divided into two types of clusters. These clusters include
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Algorithm 1: Overall pseudo code of EDA
Input: F(x), xmin, xmax

Parameters: N,M, γ, α, λ,Nc

1 x ← SEEDING(xmin,xmax ,N )
2 f ← EVALUATION(x,F(x))
3 if i < M then
4 for iter ← i to M do
5 [xsel , fsel] ← SELECTION(x,f ,γ )
6 [Φ,φ] ← LEARNING(xsel ,fsel , α,λ,Nc)
7 xsam ← SAMPLING(Φ,φ,N )
8 xrep ← REPAIRING(xsam,xmin,xmax )
9 frep ← EVALUATION(xrep ,F(x))
10 [x, f ] ← REPLACEMENT(xrep ,frep ,x,f )
11 EXTRACT [xbest , fbest ] FROM [x, f ];
12 if stopping criteria are met then
13 BREAK;
14 end if
15 end for
16 else
17 EXTRACT [xbest , fbest ] FROM [x, f ];
18 end if

Output: xbest , fbest

Algorithm 2: Pseudo code of the learning mechanism
Input: xsel , fsel , α,λ, Nc

1 [ι, μ] ← k-means(xsel ,i);
2 CONSTRUCT Φ FROM [μ, xsel (ι)]
3 for i ← 1 to Nc do
4 EXTRACT [x̂, f̂ , μ̂, σ̂ ] FROM Φ(i)

5 [x̂sel , f̂sel] ← SELECTION(x̂,f̂ ,α)
6 d ← ||x̂sel − μ̂||
7 j ← 0
8 if d > λ × σ̂ then
9 j ← j + 1

10 CONSTRUCT φ̂ FROM [μ̂, x̂sel]
11 φ(j) ← φ̂

12 end for
Output: Φ,φ

parent clusters, denoted by .Φ, and smart clusters denoted by .φ. The pseudo code
of the learning mechanism is shown in Algorithm 2.

The main idea of the learning process is based on utilizing a mixture of Gaussian
distributions as a probabilistic model whose density function is formalized as

.P(x) =
Nc∑
k=1

πkfk(x|μk,Σk), (13)
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where each .fk(x|μk,Σk) component of the mixture is a multivariate Gaussian
distribution, and .μk and .Σk are the mean value (the centroid) and the covariance
matrix of the .k model for .k = 1, . . . , Nc, respectively, with .πk as the mixing
coefficient for the .kth component.

In the proposed learning stage, the Gaussian mixture model is constructed in two
steps. The first step consists of clustering the selected population according to .Nc

number of parent clusters. In this research, k-.means ++ is chosen as the clustering
method [33]. However, other methods could also be considered. Following the
clustering process, the mixture of Gaussian distributions model is learned by
calculating the maximum likelihood estimators of the parameters of the components
in this mixture, using the solutions in the respective clusters. This process is the first
step of the learning process. Finalizing the process, the components .Φ, referred to as
the parent clusters, are extracted, which contain corresponding solutions .x̂, objective
values .f̂ , centroids .μ̂, and covariances .σ̂ . In the next step of the learning process,
more components are added to the model. This step is to compensate the covariance
loss during the optimization process after the sampling stage. In this step, for each
component .Φi , first, the top .α percentage of the best solutions (.x̂sel and .f̂sel) are
selected. Then, the selected set of solutions is analyzed to see if they have outliers
using the Z-score outlier detection method [34]. This method is represented as

.
||x̂sel − μ̂||

σ̂
> λ, (14)

where .λ is the distance threshold from the centroids .μ̂. According to this mech-
anism, if an outlier solution is at the top .α percentage of the best solutions, it
will be considered as the centroid of a new component in the mixture .φ̂, referred
to as an outlier-based cluster. For the newly formed components, we assume
an independent multivariate Gaussian distribution, where the variance of each
dimension is calculated as half of the distance from the initial centroid in each
component.

By the end of the learning mechanism, a mixture of models is learned, one
component on top of each cluster, in such a way that the probability of sampling
top quality solutions becomes high. Having the mixture of models, new solutions
are sampled via the SAMPLING method as .xsam. Then, the REPAIRING method
simply refines the newly sampled solutions based on the boundaries of the solution
domain .xmin and .xmax . Following the repairing process, new individuals will be
obtained as .xrep. After evaluating the objective value of the obtained solutions,
.frep, via the EVALUATION process, the new individuals are combined with the
individuals from the previous population, and the REPLACEMENT mechanism is
invoked to form the new population and the corresponding objective values .f in the
current iteration. Population aggregation method is used for this mechanism in this
research. The process mentioned continues until at least one stopping criteria is met.
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4 Numerical Simulations

The presented algorithm is incorporated with two aforementioned low-thrust tra-
jectory optimization schemes including Lyapunov and Q-law feedback control
methods. In this section, the presented optimization approach is tested in two
experiments, with respect to the orbit transfer missions from the literature. Both
time-optimal and mass-optimal trajectories are considered in each experiment and
the results are analyzed accordingly.

In the first experiment, a low-thrust orbital maneuver from a Geostationary
Transfer Orbit to Geostationary Orbit (GTO to GEO) is considered [21, 35]. Owing
to the almost circular nature of the target orbit in this case, .Ω and .ω are free
variables, and the algorithm needs to target only a, e, and i. In this experiment,
EEDA is incorporated in both Lyapunov and Q-law control methods in order to
compare their performances. Results indicate that the proposed approach outper-
forms the other method based on averaging technique and another Q-law-based
method from the literature. Furthermore, we observe a similar performance between
the EEDA+Lyapunov and EEDA+Q-law approaches in some circumstances. This
shows the potential of the EEDA to extract nuances in the behavior that allows
the simple Lyapunov controller to match the much more advance Q-law controller
performance.

The second experiment is a transfer from a Geostationary Transfer Orbit to a
retrograde Molniya-type orbit (GTO to Molniya) [18, 20, 36]. In this case, the
weighting coefficients corresponding to all slowly varying orbital elements are
considered to be optimized. The Lyapunov feedback control method incorporated
with the proposed EEDA is implemented in this experiment. It will be shown that
the obtained solutions have higher quality in terms of fuel consumption and transfer
time in comparison to the results from other references based on nominal Q-law
methods. Also, the quality of the obtained solutions and the convergence of the
algorithm are compared with other EAs. However, when compared to other Genetic
Algorithm Q-law solutions, there is a gap in performance that can arise due to the
use of a simple Lyapunov controller instead of the Q-law.

In the case of time-optimal transfers, the cost function provided to the optimizer
is simply the final time of flight. A penalty term is added for not converging to
the target orbit, along with a residual on the orbit elements. The mass-optimal
transfers are more complex. It is unclear if truly mass-optimal low-thrust transfers
will converge to the target orbit within a practical time frame, and thus it is
necessarily to impose a time restriction. This can be done by fixing the arrival time
and incorporating this as a constraint in the optimization process. However, relaxing
this to a maximum time constraint is easier to solve whilst ensuring the same mass-
optimal solution as long as the dynamics remain Keplerian. Hence, the cost function
includes the propellant mass used and a penalty term when the time of flight exceeds
the desired maximum arrival time. Again a penalty term on the residual is provided
to encourage trajectories to converge.
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Table 2 EEDA parameter
settings

Parameter Value

Number of parent clusters .3 � Nc � 8

Truncation factor .0 � γ � 1

Outlier detection parameter .0.01 � α � 0.1

Distance threshold .λ = 1

Number of iterations .N = 100

Population size .M = 100

Table 3 Initial and final orbital parameters for GTO to GEO transfer

a (km) e i (deg) .Ω (deg) .ω (deg) .ν (deg)

Initial orbit 24505.9 0.725 7 0 0 0

Final orbit 42,165 0 0 .f ree .f ree .f ree

Convergence 36.0 8.5e−4 0.1 – – –

In order to realize the best choice for the interpolation spline, several numbers
of interpolation points have been considered. It is possible to consider a very high
number of interpolation points. However, increasing the number of interpolation
points results in having more number of decision variables to be optimized and an
increase in the optimization problem complexity. Having this insight, the number
of interpolation points is considered as .Np = 1 to .Np = 5. The optimization has
been run 10 times for each case. Therefore, a total number of 50 optimization runs
have been processed, including 10 runs for each .Np = 1, . . . , 5. Some of the EEDA
parameters are randomly selected for each individual run, while some other settings
have been set to constant values. The algorithm settings are provided in Table 2.

According to the provided settings, the total number of decision variables .�x
varies with the number of interpolation points and the number of weights that are
considered for the problem. In GTO to GEO mission, we have .4 × Np decision
variables to consider in the optimization since two orbital elements are considered
free, along with the absolute effectivity threshold. However, in GTO to Molniya
mission, the number of decision variables is .6 × Np since all orbital elements
are considered in optimization. Also, the boundaries of the decision variables are
.xmin = 0 and .xmax = 1 since the weights are normalized as mentioned previously.

4.1 GTO to GEO

First, a GTO to GEO transfer with an inclination change is considered in Keplerian
dynamics, and the details for which are provided in Table 3.

The parameters are chosen to compare with [21] and [35]. The modeled
spacecraft has the mass of .2000 kg, the thrust level of .0.35N , and the specific
impulse (Isp) of .2000s, giving an initial thrust-to-mass ratio of .0.000175 ms.−2. In
the mass-optimal case, the upper bound on the time of flight is 150 days. Following
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the insights from the previous experiment, the incorporation of EEDA with Lya-
punov method is competitive to Q-law methods. Therefore, in this experiment, the
proposed algorithm is implemented in both Lyapunov and Q-law control methods
in this space mission, and time-optimal and fuel-optimal transfers are solved. The
best obtained transfer trajectories for the Q-law method are shown in Fig. 2a and b
for fuel-optimal and time-optimal transfers, respectively. Also, Fig. 3a and b show
the best obtained solutions for the Lyapunov method, similarly for fuel-optimal and
time-optimal transfers, respectively.

Fig. 2 3D visualization of trajectories for GTO to GEO transfer based on Q-law method

Fig. 3 3D visualization of trajectories for GTO to GEO transfer based on simple Lyapunov
method
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As the figures indicate, the transfer trajectories have small difference, mainly due
to the very low amount of thrust level. In order to realize the differences within the
transfer trajectories, the time variation of state variables is depicted in Figs. 4 and 5
for the Q-law method and simple Lyapunov method, respectively.

The exact values of the transfer time and the actual fuel mass consumption for
this problem are provided in Table 4.

Several observations can be made from Table 4. First, the implementation of the
proposed algorithm with Lyapunov method ends up in the solutions with almost the
same quality of the averaging method in [35]. However, the implementation of the
proposed algorithm with Q-law method results in a slightly better solutions in both
time-optimal and fuel-optimal transfers. Comparing the obtained results from the
Q-law implementation with the results from [21] shows that the proposed approach
is able to find a solution close to the one presented in the literature in the time-
optimal problem. However, in fuel-optimal problem, the amount of fuel mass is a
bit higher than the solution from [21]. Overall, the proposed approach is shown to
be competitive to the recently developed methods for obtaining low-thrust transfer
trajectory design and optimization.

Fig. 4 State variables for fuel-optimal and time-optimal transfers based on Q-law method in GTO
to GEO transfer
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Fig. 5 State variables for fuel-optimal and time-optimal transfers based on simple Lyapunov
method in GTO to GEO transfer

Table 4 Comparison of the obtained solutions for GTO to GEO transfer

Min-time Min-fuel

Time (day) Fuel mass (kg) Time (day) Fuel mass (kg)

Q-law.+EEDA method 137.34 211.76 149.99 190.40

Lyapunov.+EEDA method 137.5 212.01 149.70 192.34

Averaging method [35] 137.5 212 150 192

Q-law method [21] 137.3 211.72 150 187.97

The corresponding variation of the optimized weights for Q-law method is
depicted in Fig. 6a and b for fuel-optimal and time-optimal transfers, respectively.

As shown in the figures, the variations of weights for semi-major axis, eccen-
tricity, and inclination start with the values which are close in fuel-optimal and
time-optimal transfers. The significant difference between the two is the mean value
of the absolute threshold, which is higher in fuel-optimal transfer in comparison to
time-optimal transfer. Similarly, the optimized variation of weights for Lyapunov
method is illustrated in Fig. 7a and b
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Fig. 6 Weighting coefficient profiles for GTO to GEO transfer based on Q-law method

Fig. 7 Weighting coefficient profiles for GTO to GEO transfer based on simple Lyapunov method

Analyzing the weighting coefficients in Lyapunov method reveals a noticeable
difference. According to the time variation of the weighting coefficients for
Lyapunov method, the low-point interpolation seems to be more beneficial for
the optimizer to find high-quality solutions in both fuel-optimal and time-optimal
transfers. In this regard, the best obtained solution for time-optimal and fuel-optimal
transfers for Lyapunov method is associated with .Np = 2, leading to conclude
that the Lyapunov method requires less variation of weights for achieving optimal
solutions, while Q-law method is more sensitive to time-variation of weights.

4.2 GTO to Molniya

In the second experiment, a GTO to Molniya transfer is considered, and the orbital
elements of the initial and final orbits are provided in Table 5.
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Table 5 Initial and final orbital parameters for GTO to Molniya transfer

.a (km) e i (deg) .Ω (deg) .ω (deg) .ν (deg)

Initial orbit 24505.9 0.725 0.06 0 0 0

Final orbit 26,500 0.7 116 270 180 f ree

Convergence 10.0 0.005 1.0 1.0 1.0 –

Fig. 8 3D visualization of trajectories for GTO to Molniya transfer based on simple Lyapunov
method

As is evident from the table, this case involves large changes. The required plane
change is about .116◦. The modeled spacecraft has the mass of .= 2000 kg, the thrust
level of .T = 0.35N , and the specific impulse of .Isp = 2000s, giving an initial
thrust-to-mass ratio of .0.000175 ms.−2. In the mass-optimal case, the upper bound
on the time of flight is 150 days.

For this case, the proposed algorithm is implemented in Lyapunov control
method, and time-optimal and fuel-optimal transfers are solved. Figure 8a and b
show the initial and final orbits along with the transfer trajectory, corresponding to
the best obtained solution in min-fuel and min-time problems, respectively.

As can be seen, the time-optimal transfer trajectory significantly has more
revolutions to reach the final orbit relative to fuel-optimal transfer. The time
variation of state variables for this example is shown in Fig. 9.

The details of the transfer time and the actual fuel mass consumption for this
problem are provided in Table 6.

Table 6 also includes the corresponding transfer time and fuel mass of the
obtained solutions from other methods in the literature. As can be seen, the obtained
solutions by the proposed method in this research significantly have higher quality
than the Lyapunov method in [36] and even the Q-law method in [20]. This
comparison shows that the incorporation of the proposed optimizer within the
Lyapunov control method is competitive to the Q-law method, which is a more
complicated control technique. The variation of the weighting coefficients for the
obtained transfers is illustrated in Fig. 10a and b.



Time-Varying Lyapunov Control Laws with EEDA 395

Fig. 9 State variables for fuel-optimal and time-optimal transfers based on simple Lyapunov
method in GTO to Molniya transfer

Table 6 Comparison of the obtained solutions for GTO to Molniya transfer

Min-time Min-fuel

Time (day) Fuel mass (kg) Time (day) Fuel mass (kg)

Lyapunov.+EEDA method 70.83 624.01 138.34 492.89

Lyapunov method [36] 96.6 677.2 N. A. N. A.

Q-law method [20] 84 734 150 580

Fig. 10 Weighting coefficient profiles for GTO to Molniya transfer based on simple Lyapunov
method

Following the variation of the optimized weighting coefficients, some remarks
can be highlighted. It can be observed that there are some small similarities between
time-optimal and fuel-optimal transfers. For instance, the absolute threshold .ηa
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Fig. 11 Obtained solutions after optimization for GTO to Molniya transfer based on simple
Lyapunov method

begins with a high value in both transfers. However, it slightly changes based on
the desired objective. The semi-major axis weight has similar variation, and the
weights of inclination are low in both problems.

It is noteworthy that the best obtained solution in both time-optimal and fuel-
optimal cases corresponds to .Np = 4 in this scenario. Other solutions have been
obtained as well out of 50 optimization runs, and they have more or less similar
objective values. However, the absolute best solutions (min-time and min-fuel)
indicate that 4-point interpolation can interpret the optimal variation of weights
better than other number of interpolation points. In other words, a simple increase
in the number of interpolation points does not necessarily lead us to high-quality
solutions. The spread of the obtained solutions, depicted in Fig. 11a and b, confirms
this fact.

Figure 11a and b show the relative position of the obtained solution in each
optimization run. In these figures, solutions that correspond to a higher number of
interpolation points are plotted with bigger markers. As can be observed, it can
be highlighted that in fuel-optimal transfer (Fig. 11a), the optimizer did not find
any high-quality solutions with 5-point interpolation, and the majority of the points
with lower fuel mass correspond to 3-point and 4-point interpolation. The existence
of some of the points near the transfer time of 150 days (the maximum allowable
simulation time) with fuel mass less than 500 kg indicates that this region has the
potential for finding better solutions. Interesting remarks can be highlighted from
the distribution of the obtained solutions in time-optimal transfer (Fig. 11b) as well.
Unlike the previous case, the distribution of the 5-point interpolation shows that
increasing the number of interpolation points leads the optimizer to find solutions
with better quality. As can be seen, the solution with the lowest fuel mass in time-
optimal solution belongs to .Np = 5 with a transfer time of .70.95 days and the fuel
mass of .614.1 kg. This solution can also be selected as a substitute for the absolute
best solution provided in Table 6. Other remark in this figure is the stock of the
solutions for .Np = 1 in a specific region far from the desired region. This is another
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Fig. 12 Convergence of the algorithms for GTO to Molniya transfer based on simple Lyapunov
method

observation which confirms the fact that increasing the number of interpolation
points eventually leads the optimizer to find high-quality solutions.

The other analysis in this space mission is the comparison of the performance of
EEDA with other well-known EAs. Such a comparison is shown in Fig. 12a and b.

In Fig. 12a and b, the convergence of the proposed algorithm EEDA is compared
with normal EDA, PSO, and GA for fuel-optimal and time-optimal transfers.
Comparing EEDA and EDA confirms the effectiveness of the proposed learning
mechanism in enhancing the optimization process. Also, it is evident that EDA-
based algorithms outperform traditional EAs such as PSO and GA in finding optimal
transfer trajectories in this research.

5 Conclusion

In this chapter, the problem of optimal design of low-thrust Earth-orbiting tra-
jectories for space missions is considered. When considering complex trajectory
optimization problems with non-convexity and strong nonlinearity, it has been
demonstrated that intelligent optimization algorithms are effective in optimal
trajectory design. To tackle the extreme complexity of the search space, an
enhanced evolutionary algorithm within the framework of EDAs, named EEDA,
is proposed and applied to an approach based on Lyapunov and Q-law methods.
In both methods, the unknown weighting coefficients are interpolated with Hermite
polynomials, and the optimizer is implemented to optimize the variation of weights
for minimizing the transfer time and the fuel consumption. Simulation results
are carried out to demonstrate the effectiveness of the proposed approach. It has
been realized that the implementation of EEDA with simple Lyapunov function is
competitive to the Q-law method. The comparison shows the potential of the EEDA
in enabling the simple Lyapunov controller to recover the finer nuances explicitly
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given within the analytical expressions in the Q-law. Also, it has been discovered
that increasing the number of interpolation points does not necessarily increase the
chance of achieving the optimal solution. In other words, the choice of the proper
number of interpolation points is problem-dependence and needs to be adjusted
according to the type of the orbit transfer mission.

Current research can be extended in various aspects. Regarding the algorithm
enhancement, various further improvements can be the aim for the future research.
As for the seeding mechanism, the improvement can be toward obtaining initial
feasible population in a more efficient method. For instance, the current mechanism
does not use any information from the gradient of the solution domain. Therefore,
future works can be conducted in considering gradient-based methods within the
seeding mechanism to improve the process. Incorporation of such techniques, more
specifically, gradient-based stochastic operators, in minimization of the objective
function is also a new area for further research.
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