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Abstract Nitric oxide (NO) is a diffusible free radical and universal messenger that 
is produced from L-arginine by three different isoforms of nitric oxide synthases 
(NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays 
an important role in the regulation of variety of physiological functions including 
myocardial contractility, vascular tone, blood pressure, cell growth, proliferation 
and platelet aggregation. Most of the effects of NO are mediated through the acti-
vation of soluble guanylate cyclase–cGMP system, however, cGMP-independent 
pathways have also been shown to be responsible in mediating its effects. The levels 
of NO are regulated by several factors and cofactors required for the activation of 
NOS, however, reduced bioavailability of these factors results in the decreased levels 
of NO and thereby endothelial dysfunction leading to the pathogenesis of cardio-
vascular diseases including hypertension, diabetes, atherosclerosis etc. This review 
will focus on the role of NO in physiology and pathophysiology of cardiovascular 
system including vascular remodeling, hypertension and the underlying molecular 
mechanisms contributing to these functions. 
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Fig. 2.1 Role of nitric oxide (NO) in the regulation of physiological functions 

Introduction 

Cardiovascular disease that affect the heart and/or the blood vessels is considered 
as leading cause of morbidity and mortality worldwide [1]. Several risk factors 
including hypertension, vascular remodeling, insulin resistance, endothelial dysfunc-
tion, reduced cardiovascular nitric oxide (NO) bioavailability, cardiac hypertrophy 
[2], and alterations in the circulating lipids are implicated in pathophysiology of 
cardiovascular disease [3]. Nitric oxide (NO) is a ubiquitous intracellular messenger 
that acts as an important biological signaling molecule involved in the regulation 
of variety of physiological functions including myocardial contractility, vascular 
tone, blood pressure regulation, cell growth, proliferation, platelet aggregation etc. 
[4] (Fig. 2.1). Under physiological conditions, NO exerts cardiovascular protec-
tion, however, dysregulation of NO production contributes to endothelial dysfunc-
tion leading to the pathogenesis and progression of cardiovascular diseases including 
hypertension, diabetes, atherosclerosis etc. 

Nitric Oxide Synthesis 

NO is short lived free radical generated by the oxidation of L-arginine to L-citruline, 
a reaction catalyzed by nitric oxide synthase (NOS) [5, 6] and requires the pres-
ence of several cofactors including flavin mononucleotide (FMN), flavin adenine 
dinucleotide (FAD), NADPH, tetra-hydrobiopterin (BH4), heme prosthetic group as 
well as the redox cofactor (Fig. 2.2) [7]. Three isoforms of NO synthases are iden-
tified named neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II) 
and endothelial NOS (eNOS or NOS III). In addition, a novel constitutively active 
mitochondrial NOS (mtNOS) has also been identified in mitochondria from liver
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Fig. 2.2 Nitric oxide synthesis a Under physiological conditions, nitric oxide is synthesized by 
the oxidation of L-arginine to L-citrulline, a reaction catalyzed by nitric oxide synthase (NOS) and 
requires the presence of several cofactors including flavin mononucleotide (FMN), flavin adenine 
dinucleotide (FAD), NADPH, tetra-hydrobiopterin (BH4), heme prosthetic group as well as the 
redox cofactor b Under pathphysiological conditions the absence or limited availability of either 
substrate or cofactor BH4 and augmented levels of oxidative stress result in the uncoupled eNOS 
that produces O2- instead of NO and forms ONOO-that further promotes eNOS uncoupling leading 
to endothelial dysfunction and the pathogenesis of cardiovascular diseases

that appears to be involved in Ca2+ regulation [8]. nNOS and eNOS are constitutive 
enzymes and predominantly expressed in neuronal and endothelial cells (EC) as well 
as in other cell types including vascular smooth muscle cells (VSMC) [9]. Both nNOS 
and eNOS are regulated by intracellular Ca2+/ calmodulin (CaM) whereas iNOS is 
inducible at the level of gene transcription, Ca2+—independent and expressed in 
macrophages and other tissues in response to inflammatory mediators including 
cytokines and endotoxins [10–12]. eNOS is also activated independently of Ca2+ 

upon phosphorylation by Akt in response to shear stress, estrogens and insulin [13]. 
In addition, nNOS and iNOS are cytosolic enzymes whereas eNOS is associated with 
the membranes of EC [14, 15]. These two isoforms of NOS are crucial regulators of 
cardiovascular homeostasis and regulate vascular tone and blood flow, inhibit platelet 
aggregation and adhesion, modulate cardiac contractility and inhibit VSMC prolif-
eration [4]. The structures of iNOS, eNOS and nNOS have been determined [16, 17]. 
All three NOS isoforms are dimers and contain two major functional domains fused 
into a single polypeptide. The N-terminal catalytic domain possesses the binding
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sites for heme, redox cofactor, BH4 and CaM. The C-terminal reductase domain has 
binding sites for FMN, FAD and NADPH. NOS activation relies on the presence of 
the cofactor BH4 and the substrate L-arginine to couple the oxidation of molecular 
oxygen to produce NO [18]. Two molecules of BH4 bind to each eNOS dimer and 
facilitate electron transfer for the oxidation of L-arginine. BH4 thus maintains eNOS 
in a dimeric state and preserves the endothelial function [19].

Regulation of Intracellular Levels of Nitric Oxide 

Several factors which are involved in the activation of NOS play a key role in the 
regulation of intracellular levels of NO. These include the substrate L-arginine, cofac-
tors including BH4, asymmetrical dimethylarginine (ADMA), NG -mono-methyl-L-
arginine (L-NMMA), naturally occurring metabolites that circulate in the plasma 
[20]. The absence or limited availability of either substrate or cofactor BH4 and 
increased circulating levels of arginase, a hydrolytic enzyme that converts L-arginine 
to urea and L-ornithine, ADMA and L-NMMA, inhibitors of NOS, result in the 
decreased production of NO leading to endothelial dysfunction and the pathogen-
esis of cardiovascular diseases (Fig. 3a) [20–24]. In addition, oxidative stress also 
contributes to the decreased levels of NO. The augmented oxidative stress oxidizes 
BH4 to BH2 resulting in the destabilization of eNOS dimer which becomes uncou-
pled and leads to the production of superoxide anion (O2− ) instead of NO, the process 
is referred to as eNOS uncoupling (Fig. 2.3a) [25]. O2− reacts with NO forming perox-
ynitrite (ONOO−), a strong cytotoxic oxidant and reactive nitrogen species (RNS) 
that induces nitrosative stress. ONOO− in turn oxidizes BH4 to BH2 and further 
promotes eNOS uncoupling [26]. ONOO− reacts with lipids, DNA, and proteins, 
causing damage to these macromolecule, interferes with important vascular signaling 
pathways and contributes to various cardiovascular dysfunction [27] (Fig. 2.3).

On the other hand, several hormonal factors are also implicated in the regulation 
of intracellular levels of NO. Angiotensin II (Ang II) that promotes vascular remod-
eling, increases oxidative stress and blood pressure, has been shown to decrease the 
levels of eNOS and NO in VSMC [28]. On the other hand, NO donors, antioxidants, 
adiponectin, AT1 receptor blocker, ACE inhibitor, Statins, C-ANP4-23, a specific 
agonist of natriuretic peptide receptor-C (NPR-C) and resveratrol were shown to 
increase the intracellular levels of NO and exert vascular protection and ameliorate 
hypertension (Fig. 2.3b) [29–39].
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Fig. 2.3 a Factors that may contribute to reduced bioavailability of nitric oxide leading to endothe-
lial dysfunction and pathogenesis of cardiovascular diseases. Several factors that could reduce NO 
availability are; the reduced levels of substrate L-arginine, BH4, an essential cofactor and augmented 
levels of circulating inhibitors such as asymmetrical dimethylarginine (ADMA), NG -mono-methyl-
L-arginine (L-NMMA), arginase, Ang II and destruction of NO by reactive oxygen species (ROS). 
b Factors that increase the expression of eNOS and NO levels and exert vascular protection. These 
factors include NO donors, antioxidants, adiponectin, AT1 receptor blocker, ACE inhibitor, Statins, 
C-ANP4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C) and resveratrol

Cross-Talk Between Oxidative Stress and Nitrosative Stress 

Oxidative stress has been shown to play an important role in the pathogenesis of 
cardiovascular diseases [40–43]. Oxidative stress is caused by the overproduction of 
reactive oxygen species (ROS) and a decreased elimination of these ROS by antioxi-
dants. ROS are produced by a wide array of enzymes that include NADPH oxidases, 
xanthine oxidase, peroxidases, lipoxygenases, cyclooxygenases and complex I and 
III of mitochondrial respiratory chain and eNOS uncoupling [44]. NADPH oxidases 
and xanthine oxidase catalyze the formation of (O2− ) by single electron reduction 
of molecular oxygen which is converted to hydrogen peroxide (H2O2) by super-
oxide dismutase (SOD). Several studies have demonstrated a reciprocal relationship 
between ROS and RNS. The augmented levels of ROS decrease the levels of NO, 
whereas decreased levels of ROS have been shown to increase NO synthesis. For 
example, the antioxidant ascorbate that decreases the levels of (O2− ) resulted in 
increased NO synthesis in EC by improving the binding of BH4 to NOS and stabi-
lizing the dimeric structure of NOS [31, 32]. In addition, Huang et al. have also
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demonstrated that ascorbate augmented the activity of NOS in endothelial cells by 
increasing the levels of BH4 [39]. Modulation of O2

− by NO through the regula-
tion of SOD-1 in VSMC has also been reported [45]. In addition, in VSMC from 
spontaneously hypertensive rats (SHR), increased levels of (O2− ) are associated with 
decreased levels of NO and augmented levels of ONOO−. Furthermore, elevating the 
intracellular levels of NO by NO donors decreased the augmented levels of (O2− ) and 
ONOO− in these cells [29, 46]. Similarly, C-ANP4-23 (natriuretic peptide receptor-
C) agonist- induced suppression of enhanced levels of (O2− ) provoked by Ang II 
was associated with augmented levels of NO in VSMC [28]. The increase in ROS 
and subsequent increased ONOO—formation reduces the bioavailability of NO and 
results in endothelial dysfunction. Thus the imbalance between the formation of 
RNS and ROS plays a critical role in the pathogenesis of cardiovascular diseases 
[40, 47–50]. 

Nitric Oxide Signaling 

The canonical signaling mechanism by which NO exerts most of its biological 
effects is through the activation of soluble guanylate cyclase (sGC), The sGC is 
a heterodimeric protein composed of two subunits, α and β, of which the β subunit 
contains a heme moiety that confers the NO-sensitivity of the enzyme [51, 52]. 
Binding of NO to heme results in a conformational change of cGC and activa-
tion of the catalytic domain [52] that converts intracellular GTP into the second 
messenger cyclic guanosine 3'5'-monophosphate (cGMP) [52, 53], cGMP inter-
acts with a variety of effector proteins including cGMP-dependent protein kinases 
(PKGs) [53], cGMP-regulated phosphodiesterases (PDEs) and ion channels. Two 
different types of PKGs, type I (PKG-1) and type II (PKG-2) are expressed in 
mammalian tissues, however, their relative distribution is tissue- and species- depen-
dent [54, 55]. In cardiovascular tissues, a predominant expression of PKG-1 has 
been reported that mediates the anti-proliferatve effect of cGMP [54, 56–58]. PKG-
1 is a serine/threonine kinase and elicits its effects through the phosphorylation of 
multiple targets which include IP3 receptor, phospholamban, troponin, myosin light 
chain phosphatase, c-raf kinase, Ca2+ and K+ channels. All these signaling targets 
are implicated in the reduction of intracellular levels of Ca2+ or in decreasing the 
Ca2+ sensitivity of contraction or both, resulting in the vasorelaxation (Fig. 2.4) [53, 
59–63]. In addition, NO has also been shown to mediate some of its effects through 
cGMP-independent pathways because 1H- [1, 2, 4] oxadiazolol [4,3-α]quinoxalin-
1-one, ODQ, a selective inhibitor of sGC was unable to inhibit these NO-mediated 
effects. For example, NO decreases the levels of Giα proteins as well as proliferation 
of VSMC by cGMP-independent pathway [29]. The cGMP-independent pathways 
implicated in NO-mediated effects include Ras, MAP kinase [46, 64], cyclin depen-
dent kinase inhibitor P21, [65, 66] and cAMP\PKA signaling pathway [67–69]. In 
addition, posttranslational modification such as S-nitrosylation [70, 71], eNOS S-
glutathionylation [72] and tyrosine nitration [73] mediated effects of NO are also
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Fig. 2.4 Signaling mechanisms implicated in NO-mediated cardiovascular protection. NO induces 
vasorelaxation through S-nitrosylation-induced activation of Ca2+-dependent K+ channels as well 
as via sGC/cGMP/protein kinase G-dependent pathway. The beneficial effects of NO on remod-
eling of the vessels include the attenuation of signaling pathways involved in the activation of 
the hypertrophic, migratory and proliferative program in the cardiovascular tissues. NO through 
the inhibition of G12/G13-Rho/ROCK pathway exerts antimigratory and antihypertrophic effects. 
In addition, NO decreases ROS which through the inhibition of growth factor receptor activation 
and MAPK signaling inhibits Giα protein expression and modulates cell cycle regulatory proteins 
leading to decreased proliferation 

independent of sCG and cGMP and regulate downstream pathways contributing to 
cell proliferation [74–77]. Furthermore, S-nitrosylation-induced activation of VSMC 
Ca2+-dependent K+ channels has also been shown as a potential mechanism of 
cGMP-independent vasorelaxation (Fig. 2.4) [78]. 

Nitric Oxide and Cardiovascular Diseases 

NO plays an important role in the protection against the onset and progression of 
cardiovascular disease that include regulation of blood pressure and vascular tone, 
inhibition of platelet aggregation and smooth muscle cell proliferation [4]. Endothe-
lial dysfunction due to the decreased availability of NO is the contributing factor in
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the pathogenesis of cardiovascular diseases. In the following section, the protective 
role of NO will be discussed in different pathologies. 

Vascular Remodeling and Molecular Mechanisms 

Vascular remodeling refers to alterations in the structure of resistance vessels and 
contributes to the pathophysiology of vascular diseases, such as atherosclerosis, 
restenosis, and hypertension [79] and is associated with alteration in VSMC growth, 
hypertrophy, migration etc. [80, 81]. Vascular remodeling is influenced by dynamic 
interactions between local growth factors, vasoactive substances, and hemodynamic 
stimuli [82]. Several intracellular signaling pathways that regulate the expression 
of upstream and downstream target genes are involved in the proliferation, hyper-
trophy and migration of VSMC. Vasoactive peptides such as Ang II and endothelin-
1(ET-1) as well as growth factors receptors such as epidermal growth factor receptor 
(EGFR) and platelet derived growth factor receptor (PDGFR) all contribute to VSMC 
hypertrophy, proliferation and migration through the activation of several signaling 
pathways including Giα/Gqα, MAP kinase and Rho-kinase (ROCK), an effector of 
a small G protein [83–94]. In addition, enhanced oxidative stress induced by Ang 
II is also implicated in the enhanced expression of Giα proteins and proliferation 
of VSMC through the transactivation of EGF-R and MAP kinase signaling [91]. 
Furthermore, the augmented levels of endogenous vasoactive peptides including 
Ang II and ET-1 have also been shown to contribute to hyperproliferation as well 
as hypertrophy of VSMC from SHR through ROS and ROS-mediated transactiva-
tion of EGF-R/PDGF-R and MAP kinase signaling pathways [95–99]. Hyperpro-
liferation of VSMC is associated with accelerated entry of cells from G0/G1 phase 
of cell cycle to the synthetic phase [100]. Ang II- and FBS-induced exaggerated 
growth of VSMC from SHR is associated with progression from G1 to S phase [98, 
101]. The role of enhanced expression of Giα proteins in the overexpression of cell 
cycle proteins including cyclin D1, cyclin D1-dependent kinase (Cdk)4 and phospho-
retinoblastoma protein (pRb) and resultant hyper-proliferation of VSMC from SHR 
has been demonstrated [102, 103]. Furthermore, we and others have demonstrated 
that several distinct signal transduction pathways including c-Src, reactive oxygen 
species (ROS), growth factor receptor transactivation, MAP kinase, PI3Kinase, that 
are implicated in the overexpression of Giα proteins, also contribute to the overex-
pression of the cell cycle proteins and vascular remodeling by promoting VSMC 
proliferation [48, 92, 103–106]. 

Nitric Oxide and Vascular Remodeling 

A multitude of studies using in vitro and in vivo models have shown that an increase 
in the cellular levels of NO, either by direct delivery of NO donors or gene transfer 
of eNOS or iNOS, potently suppressed proliferation, migration and hypertrophy in 
VSMC and, neointimal growth [107–112]. Although the precise molecular events 
that provoke these responses remains elusive, accumulated evidence has suggested 
that modulation of key components of cell cycle regulatory proteins and signaling 
pathways responsible to drive these events play an important role. For example,
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eNOS overexpression in VSMC isolated from pig coronary arteries resulted in atten-
uation of PDGF-induced proliferation that was accompanied by reduced levels of cell 
cycle regulatory proteins cyclin A, and a delayed expression of cyclin E [113]. Simi-
larly, a reduction in the expression levels of cyclin A and cyclin-dependent kinase 
(cdk) 2 was associated with diethylenetriamine NONOate (DETNONOate)-induced 
reduction of fetal calf serum (FCS)-induced cell proliferation in human VSMC [114]. 
S-nitroso-N-acetylpenicillamine (SNAP) was also reported to inhibit FCS- and FGF-
induced cell cycle progression in VSMC via inhibition of Cdk2 and upregulation of 
p21 [115]. In addition, SNAP was also shown to inhibit the overexpression of Giα 
proteins and hyperproliferation of VSMC from SHR by cGMP-independent mecha-
nism and involves ROS and ROS-mediated transactivation of EGF-R/PDGF-R and 
MAP kinase signaling pathways [46]. More recent in vivo studies have demonstrated 
that NO donor, sodium nitroprusside (SNP), reduced the increased BP in SHR and 
reduced the heightened expression of Giα, cyclin D1, Cdk 4 and pRb and augmented 
the reduced levels of cdk inhibitors p27 and p21 (Fig. 2.4) [116]. Interestingly, NO 
has been shown to upregulate p21 levels by preventing its degradation in rat aortic 
VSMC and in pulmonary VSMC [65, 66]. The antihypertensive effect of SNP in 
SHR was associated with a reduction in the overexpression of AT1R, growth factor 
receptor phosphorylation, ERK1/2 activation an Giα protein expression in VSMC 
[116]. SNP as well as 8-bromo cyclic GMP were also reported to block ET-1 and 
EGF-induced Ras/ MEK/ ERK1/2 pathway while suppressing DNA and protein 
synthesis in VSMC [117, 118]. Thus, inhibition of the signaling events involved in 
cell cycle progression appears to be a key mechanism for the antiproliferative effects 
of NO. Furthermore, the implication of both cGMP—dependent and—independent 
pathways have been suggested to elicit this response [46, 109, 119, 120]. 

Several NO donors including SNP, SNAP, DETNONOate, spermineNONOate and 
S-nirosoglutathione have also been shown to reduce Ang II-evoked VSMC migration 
[108, 121, 122]. In addition, increasing the intracellular levels of NO by eNOS 
gene transfer also suppressed the migration of VSMC induced by Ang II or PDGF 
[112, 123, 124]. The molecular mechanism implicated in these events appear to 
be mediated through the inhibition of matrix metalloproteases (MMPs) 2 and 3 as 
well as the Ras family of small G- protein, Rho A and its effector, RhoA kinase 
(ROCK) [112]. However, these effects were shown to be independent of growth 
factor receptor transactivation and ERK signaling pathway [112]. An involvement 
of RhoA/ROCK pathway in mediating the antihypertrophic action of adiponectin 
and NO was also reported (Fig. 2.4) [35]. Interestingly, this inhibitory response was 
associated with a reduction in Ang II-induced phosphorylation of cofilin and actin 
cytoskeletal remodeling as judged by altered F-actin/G-actin ratio [35]. 

Consistent with the antiproliferative, antimigratory and antihypertrophic effects 
of NO, several studies have reported protective effects of NO donors and NOS over-
expression on neointimal growth and hyperplasia in animal models. Among the 
first reports to implicate NO in blocking neointimal hyperplasia in a rabbit model 
of vascular injury, utilized L-arginine, a substrate of NOS to raise tissue levels of 
NO [125]. These studies demonstrated that administration of L-arginine by gavage 
reduced the intimal hyperplasia by about 39% in balloon catheter-injured rabbit
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thoracic aorta and co-administration of L-NAME reversed the protective effect of 
L–arginine and suggest that NO generation was responsible for this effect [125]. 
This observation was quickly confirmed, and showed that as compared to systemic 
delivery, the topical application of L-arginine was slightly more effective in inhibiting 
neointimal growth in a rat carotid artery injury model [126]. These studies prompted 
several investigators to further explore the usefulness of NO donors in conferring 
beneficial effects in rat, rabbit or porcine models of vascular injury [127–131]. 
For example, intravenous infusion of 4-hydoxymethy-furazone-3 carboxylic acid-
2 oxide, an organic NO donor not only reduced neointimal thickening in injured 
rat carotid artery but also inhibited the proliferation of VSMC [127, 129]. In 
addition, continuous chronic inhalation of NO also resulted in a similar response 
and decreased the intimal growth by about 43% after 14 days of therapy [129]. 
Moreover, perivascular, topical delivery of short and long acting NO donors, 1-[2-
(carboxylato)pyrrolidin-1-yl]dazen-1-ium-1,2-diolate (PROLI/NO) (short half-life) 
and diazeniumdiolated poly(acrylonitrile) (PAN/NO) (long half-life) was also found 
to suppress neointimal hyperplasia in rat carotid artery model [132, 133]. This group 
also reported that systemic administration of S-nitrosylated(S-NITROSYL(SNO))-
targeted nanofibre suppressed neointimal hyperplasia in rat model of carotid artery 
injury [45]. Similar to NO donors, local delivery of eNOS or iNOS genes were also 
reported to suppress the neointimal growth in both rodent and porcine models of 
vessel injury [134–141]. Thus, there is ample evidence to support that NO donors or 
gene transfer of NOS exert beneficial effects in suppressing vascular remodeling and 
inhibiting neointimal hyperplasia in cellular and animal model systems. However, 
because of the labile nature of NO and, confounding factors of targeted gene delivery 
and appropriate transfer vectors, some limitations for its translational use have been 
noted [142]. To overcome these issues, several groups are engaged in developing 
nanofiber and stent-based delivery systems for NO production and gene delivery for 
therapy of vasculopathies [143, 144]. 

Hypertension and Molecular Mechanisms 

Hypertension is a multifactorial disease where the interplay between neuronal, 
hormonal and cellular signaling processes contributes to the pathogenesis. Several 
factors including vasoactive peptides, the renin–angiotensin–aldosterone system 
(RAAS), activation of the sympathetic nervous system, abnormalities in G protein-
coupled receptor (GPCR) signaling, oxidative and nitrosative stress and inflammation 
are implicated in the pathophysiology of hypertension. 

Ang II, a dominant player of renin–angiotensin system plays an important role in 
the development of blood pressure through the activation of downstream signaling 
pathways including oxidative stress. Ang II has been shown to increase the levels of 
ROS, ONOO- as well as of Giα proteins and decrease the levels of eNOS and NO in 
aortic VSMC [28], which appear to be important contributing factors in the develop-
ment of hypertension [145, 146]. Furthermore, NO has also been shown to decrease 
the expression of Giα proteins in aortic VSMC [64] which may be one of the molec-
ular pathways responsible for NO-induced reduction in blood pressure in SHR [29]. 
Consistent with this notion, the enhanced oxidative stress, decreased levels of eNOS
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and NO have been shown to be associated with the overexpression of Giα proteins 
and downstream signaling pathways including growth factor receptor transactiva-
tion and MAP kinase and PI3Kinase in VSMC from SHR [147]. Studies showing 
that reduction in ROS generation by C-ANP4-23 and resveratrol attenuated increased 
blood pressure through the inhibition of exaggerated levels of Gi α proteins provide 
additional evidence for the role of this pathway in the pathogenesis of hypertension 
[148, 149]. 

Nitric Oxide and Hypertension 

Accumulating evidence demonstrates that NO produced by the endothelial nitric 
oxide synthase (eNOS) in the vascular endothelium, plays a critical role in the regu-
lation of blood pressure [150, 151]. NO stimulates guanylyl cyclase to increase cGMP 
production, which promotes vasodilatation of VSMC [152, 153], prevents platelet 
adhesion and aggregation, exerts antiproliferative and antimigratory effects on EC 
and VSMC [154, 155]. Reduction in NO bioavailability is the hallmark of endothelial 
dysfunction and contributes to the development of hypertension and other vascular 
diseases [156–158]. This has been demonstrated by several studies using knockout 
mice as well as hypertensive patients and rat models. eNOS knockout mice develop 
high blood pressure and display decreased vasodilation, whereas nNOS or iNOS defi-
cient mice did not show any changes in the blood pressure [159, 160]. In addition, 
the role of sGC and PKG1, the downstream signaling molecules of NO in NO-
mediated vasorelaxation and blood pressure regulation has also been demonstrated 
by using knockout mice. sGC deficient mice (sGCβ1−/−) as well as smooth muscle 
cell specific sGCβ1−/− mice exhibit higher blood pressure than wild type mice [161, 
162], however,in these mice, NO donor was ineffective in reducing the blood pres-
sure and the vasodilatation of isolated aortic rings [162]. These results suggest that 
NO-inducible sGC activity is required for NO in mediating vasorelaxation in these 
vessels. Similarly, PKG1 deficient mice also developed hypertension and elicited an 
impaired dilation of large conductance and small resistance arteries in response to 
NO-cGMP signaling [163, 164]. In addition, the inhibition of eNOS by Nω-nitro-
l-arginine methyl ester (L-NAME) was also shown to result in the development 
of hypertension in rats and was associated with increased levels of Giα proteins, 
decreased cGMP levels and increased levels of Ang II [165, 166]. The decreased 
levels of NO due to increased oxidative stress has also been shown to contribute to 
high blood pressure in other models of hypertensive rats. In SHR, the levels of AT1 
receptor, Giα proteins, (O2− ) and ONOO-were increased whereas the levels of eNOS 
and NO were decreased [116, 148]. Similarly, the expression of eNOS mRNA was 
downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats 
[167]. Deoxycorticosterone acetate-salt hypertensive rats (DOCA-Salt HR) exhib-
ited reduced eNOS phosphorylation that resulted in decreased NO/cGMP signaling 
in mesenteric arteries [168]. In addition, NO-mediated relaxation was depressed in 
mesenteric arteries of hypertensive rats with reduced renal mass, due to decreased 
bioavailabilty of NO [169, 170]. An impairment of NO-mediated vasodilatation in 
patients with essential hypertension has also been demonstrated [171]. On the other 
hand, several studies have demonstrated that the elevation of intracellular NO by NO
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donors ameliorates the development of hypertension in different models of hyper-
tensive rats (HR). SNP was shown to attenuate high blood pressure in SHR through 
the inhibition of oxidative stress, overexpression of AT1 receptor, Giα proteins 
and ONOO− levels [116]. In addition, supplementation of exogenous nitrite that 
augments the intracellular levels of NO [172] also attenuated blood pressure [173] 
and endothelium-dependent relaxation in isolated aortae of SHR through activating 
the eNOS-NO-soluble guanylyl cyclase (sGC)-cGMP pathway [174, 175]. The atten-
uation of hypertension and NADPH oxidase activity by nitrite\nitrate treatment has 
also been demonstrated in two-kidney one-clip (2K1C) HR, DOCA-Salt HR and 
Ang II-induced HR [176–178]. In addition, a cohort study of European ancestry 
also showed that genetic predisposition to enhanced NO signaling is associated with 
decreased blood pressure and reduced risks of coronary artery and peripheral arte-
rial disease [179]. Furthermore, C-ANP4-23 and resveratrol that possess antioxidant 
property were also shown to attenuate hypertension in SHR through the inhibition 
of enhanced levels of Giα proteins, (O2− ) and ONOO− [148]. In addition, several 
studies have shown that antihypertensive drugs including ACE inhibitors and Ang II 
AT1 receptor blocker mediate their effects through the release of NO [33, 34, 38]. 

Role of eNOS uncoupling in hypertension 

eNOS uncoupling occurs when eNOS produces (O2− ) instead of NO resulting in 
the decreased bioavailability of NO and increased oxidative stress causing endothe-
lial dysfunction leading to the pathogenesis and progression of hypertension. The 
decreased levels of L-arginine\cofactors required to activate eNOS and NO synthesis, 
increased NO inactivation by (O2− ) and increased levels of circulating ADMA, 
NMMA and arginase contribute to eNOS uncoupling and endothelial dysfunction 
resulting in the development of hypertension (Fig. 3a) [23, 24, 180–184]. This was 
supported by the study showing that a defect in l-arginine transport exists in hyperten-
sive and genetically predisposed normotensive subjects [183]. In addition, offsprings 
of essential hypertensive patients display a reduced vasodilatory response to acetyl-
choline linked to a defect in the L-arginine-nitric oxide pathway [182]. These studies 
suggest a role of decreased levels of L-arginine in the pathogenesis of hypertension. 
This was supported by the study showing that the intravenous administration of L-
arginine decreased the mean arterial pressure as well as total peripheral resistance 
in hypertensive patients [185]. In addition, L-arginine was also reported to reduce 
blood pressure in animal models of hypertension including salt–sensitive hyperten-
sive rats [186]. Furthermore, perinatal dietary supplementation of L-arginine with 
antioxidants including vitamin C, vitamin E and taurine was also shown to attenuate 
the development of hypertension in aging SHR [187]. In addition, the inhibition of 
arginase that is upregulated in hypertension and decreases the intracellular levels of 
L-arginine also attenuated blood pressure, vascular function and cardiac fibrosis in 
SHR and suggests a link between L-arginine and development of hypertension [188]. 

The cofactor BH4 is an important regulator of eNOS activation and NO gener-
ation. Numerous studies have demonstrated that reduced bioavailability of BH4 is 
associated with endothelial dysfunction contributing to the pathogenesis of vascular 
disease states including hypertension. Inhibition of BH4 biosynthesis has been shown
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to impair endothelium-dependent relaxations in canine basilar artery [22]. In addition, 
BH4 oxidation-induced eNOS uncoupling has also been demonstrated in endothelial 
cells from DOCA-Salt hypertension [189]. Furthermore, in SHR, the supplementa-
tion of BH4 was shown to diminish the eNOS-dependent generation of (O2− ) asso-
ciated with increased production of NO [190]. Coronary endothelial cells from the 
diabetic BB rats also exhibited BH4 deficiency which was attributed to the decreased 
expression of GTP cyclohydrolase, the rate-limiting enzyme for de novo synthesis 
of BH4 [191]. Furthermore, the hypertensive and diabetic patients also displayed the 
reduced levels of BH4 and eNOS uncoupling [184, 192] and supplementation of BH4 
improved endothelial cell function in patients with diabetes, coronary artery disease 
and hypertension [192–196]. The antioxidant ascorbate was shown to increase NO 
synthesis in endothelial cells by increasing the levels of BH4 and improving its 
binding to eNOS [31, 32, 39]. This was further supported by the study showing that 
both ascorbate and BH4 prevented the ONOO−—induced uncoupling of eNOS in 
bovine aortic endothelial cells [26]. 

In addition to L-arginine and cofactor BH4, ADMA an inhibitor of eNOS also 
plays a role in the regulation of NO synthesis [197]. An upregulation of ADMA 
was shown to impair the bioavailability of NO leading to eNOS uncoupling and 
vascular dysfunction [198]. In support of this, several studies showed that increased 
levels of ADMA were associated with the pathogenesis and progression of vascular 
diseases including hypertension and diabetes mellitus [199]. However, exogenous 
supplementation of L-arginine was shown to relieve the inhibitory effect of ADMA 
on NO synthesis and NO-mediated vascular functions [200]. Thus, strategies to 
maintain the physiologically relevant levels of these cofactors is essential to prevent 
eNOS uncoupling associated pathologies. 

Nitric oxide and Atherosclerosis 

Atherosclerosis is a chronic vascular disease that leads to myocardial infarction 
and ischemic stroke due to thrombotic occlusion and stenosis of blood vessels. The 
precise sequence of events responsible for the initiation and progression of atheroscle-
rosis remains currently elusive, however, studies done during the last decade have 
demonstrated an important role of dyslipidemia and associated changes in the milieu 
of the vessel wall as crucial mediators of this process [201, 202]. Exaggerated levels 
of oxidized form of low density lipoproteins (ox-LDL) and endothelial dysfunc-
tion, along with the activation of pro-inflammatory pathway are among the key 
contributors of atherogenesis [201–204]. Enhanced adhesion, migration, accumula-
tion and proliferation of immune and non-immune cells such as monocytes, VSMC, 
macrophages, foam cells, leucocytes have also been associated with thrombogenesis 
[205, 206]. A decreased bioavailability of NO has been suggested as a hall mark of 
endothelial dysfunction associated with atherosclerotic vascular disease [207]. As 
alluded earlier, eNOS ‘uncoupling’ appears to be one of the prominent mechanisms 
resulting in reduced NO generation in the vessel wall. Ox-LDL has been shown to 
suppress NO levels in EC via excessive production of ROS through lectin-like ox-
LDL receptor-1(LOX-1) [208]. Suboptimal concentrations of L-arginine or BH4 or
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higher levels of ADMA may also limit catalytic activity of eNOS to generate suffi-
cient amount of NO in EC. Studies showing that L-arginine supplementation in LDL 
receptor knockout (KO) mice or hypercholesterolemic rabbit models of atheroscle-
rosis resulted in a reduction in the lesion surface area in aorta, support a role of NO 
as an antiatherogenic molecule [209, 210]. Additional support for a role of NO in 
inhibiting the progression of atherosclerotic disease was provided by the observations 
that treatment of either apolipoprotein E (apo-E) KO mice or cholesterol clamped 
rabbits with L-NAME accelerated the plaque formation [211, 212]. 

The molecular mechanisms by which NO exerts its atheroprotective role include 
its ability to increase vasodilation, inhibit platelet aggregation and monocyte adhesion 
to endothelium [213, 214]. NO also suppresses the expression of key mediators of cell 
adhesion including intercellular adhesion molecule-1 (ICAM-1) and vascular cell 
adhesion molecule-1 (VCAM-1) and monocyte chemoattractant-1(MCP-1), [215, 
216] as well as reduces the hypertrophic, proliferative and migratory responses in 
VSMC [46, 107–112, 116]. Thus, modulation of these key cellular pathways by 
NO appear to be responsible for the atheroprotective properties of NO. Consistent 
with this notion, lipid lowering HMG CoA reductase inhibitors of the statin family 
in addition to lowering plasma LDL levels and atherosclerotic plaque stability also 
increased eNOS expression and improved endothelial functions [217]. 

Conclusions 

Nitric oxide (NO) is an important vasoprotective molecule that serves as a vasodilator 
and is a key regulator of endothelial functions. A dysfunctional NO generating system 
causes oxidative and nitrosative stress due to eNOS uncoupling resulting in impaired 
endothelial functions as well as remodeling of the vessels. NO donors or gene transfer 
of NOS exert beneficial effects in improving endothelial functions, lowering hyper-
tension and suppressing vascular remodeling and neointimal hyperplasia in cellular 
and animal model systems. The potential mechanisms by which NO exerts these bene-
ficial effects include the attenuation of signaling pathways responsible for inducing 
the hypertrophic, migratory and proliferative cellular responses that are often upreg-
ulated in cardiovascular pathologies. Thus, NO remains a promising therapeutic 
molecule for the treatment of cardiovascular diseases, however, the labile nature of 
NO and confounding factors of targeted gene delivery, limit its translational use. 
To overcome these issues, several groups are engaged in developing nanofiber and 
stent-based delivery systems for NO production and gene delivery for eventual use 
in cardiovascular therapy. 
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