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Preface 

Nitric oxide (NO) is a ubiquitous signaling molecule that participates in virtually in 
every cellular and organ function in the body. NO has a fascinating and colorful scien-
tific history, and its evolution from being an environmental pollutant, to a compo-
nent of explosives (dynamite), and now a gasotransmitter was an outcome of several 
interesting observations spanning across three decades. The discovery of NO as a 
signaling molecule in the cardiovascular system was such that three distinguished 
scientists (Robert Furchgott, Louis Ignarro, and Ferid Murad) were jointly awarded 
the Nobel Prize in Physiology or Medicine in 1998 for “NO as a signaling molecule 
in the cardiovascular system.” Since the discovery of NO’s role in cell signaling, NO 
has become one of the most researched molecules in recent history. Nearly 100,000 
scientific articles have been published on NO and its diverse physiologic effects, 
pathophysiological significance, and therapeutic applications. There is now an Inter-
national Society for Nitric Oxide to promote research activity relating to NO, which 
publishes a well-read journal entitled Nitric Oxide. Soon after the identification of 
NO as a signaling molecule, it was reported that specific nitric oxide synthase (NOS) 
catalyzes an enzymatic reaction leading to NO formation from the substrates L-
arginine and molecular oxygen under highly regulated conditions requiring several 
cofactors. Subsequently, an alternative NOS-independent pathway of NO synthesis 
was discovered, based on the simple reduction of nitrate and nitrite, the main oxida-
tion products of NO. During this period, interest in the biological role of NO has 
led to a revolution in pharmacological and physiological research. In addition to 
its key role in regulating the cardiovascular function, NO has been reported to be 
involved in the pathological processes of a variety of human diseases, including, 
metabolic diseases, inflammatory and immunological diseases, cancer, and neuro-
logical diseases. Given the importance of NOSs in the pathophysiology of human 
diseases, these enzymes are considered potential therapeutic targets for the treatment 
of diverse human pathologies. Originally known for its regulatory role in cardiovas-
cular physiology and pathophysiology, the domain of NO and NO signaling pathways 
have now vastly expanded to involve the central nervous system (synaptic plasticity, 
cognitive function, epilepsy, stress and anxiety, etc.), metabolic disorders, respi-
ratory disease, infections and immunological pathology, critical care, and cancer.
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The labeling of NO as a gasotransmitter (alongside CO and H2S) has also opened 
up a completely new dimension in NO biology. Within the family of endogenous 
gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger 
involved in the modulation of several physiological processes, such as blood flow 
and platelet aggregation control, essential to maintain vascular homeostasis. Further, 
their overlapping physiological roles/pathophysiological significance and interac-
tions have given a new impetus to this field. Different roles of NO are now being advo-
cated operating via distinctly varied signaling pathways. The classical GC-cGMP 
pathway has been reinforced by alternative signaling pathways which are unrelated 
to it. NO donors like nitrosoglutathione, NO-releasing nutraceuticals, inhaled NO, 
NO-releasing nanoparticles, etc., are exciting areas of contemporary translational 
NO research. Thus, NO is considered as an emerging molecular target for developing 
therapeutic strategies for a variety of disease states not necessarily restricted to the 
cardiovascular system. Several naturally derived compounds, such as polyphenols, 
are now proposed as modulators of NO-mediated pathways. 

This book entitled Nitric Oxide: From Research to Therapeutics aims to compre-
hensively collate some of the most recent information about the role of NO in 
physiology, pathophysiology, and its translation to potential therapeutics. It is a 
state-of-the-art publication containing the most recent information on NO as a 
physiological regulator and its diverse potential as a therapeutic target for the treat-
ment of various diseases, which are not necessarily restricted to the cardiovascular 
system. Specifically, an attempt has been made to include the most recent research 
developments with NO and its therapeutic implications in a variety of cardiovascular, 
respiratory, gastrointestinal, neuropsychiatric, metabolic, and infectious disorders. 
Its role in pregnancy and fetus-related situations like pre-eclampsia and teratogenesis 
has also received special attention. A special section of the book deals with the 
role of NO directed therapeutics for COVID-19, the most dreaded pandemic of the 
century. Newer drug delivery systems for delivering NO to therapeutic targets are 
also highlighted in this book. 

The editors are vastly experienced and internationally reputed in the field of NO 
research. The authors contributing to the various chapters of the book are all globally 
established researchers and have made meaningful contributions and illuminated 
the expanding role of NO in biology and medicine. The book, with its balanced 
presentation of fundamental and clinically relevant information, will be a state-of-
the-art publication and a comprehensive collection of the most recent information 
on NO and its diverse potential as a therapeutic target. This compilation will be 
of immense value to medical professionals, biomedical scientists, and students from 
both academia and the industry in the areas of basic biomedical and clinical sciences, 
and be a prized possession for the readers. The most recent information provided in 
this book will help in generating new ideas for further research and translation to 
rational therapeutics. 

The editors are especially grateful to Prof. N. S. Dhalla, Series Editor, Springer-
Nature, for providing them with this unique opportunity and for his constant 
encouragement and guidance at every stage during the realization of this project. 
The editors wish to express their sincere thanks to all the authors for their unstinted
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cooperation and support and timely completion of the book in spite of COVID-19 
pandemic situation which has had a major global impact on academic activity. The 
editors express their heartfelt thanks to Dr. Gonzalo Cordova, Ms. Sara Germans-
Huisman, and Mr. Rajan Muthu (all from Springer-Nature), for their unstinted 
cooperation and support in putting together this book. 

New Delhi, India Arunabha Ray 
Kavita Gulati
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Chapter 1 
Translating Nitric Oxide Research 
to Therapeutics: A Critical Appraisal 

Arunabha Ray , Kavita Gulati , and Sana Rehman 

Abstract Nitric oxide (NO) is a signaling molecule with an extensive range of func-
tions in both health and disease. Initially proposed as a regulator of cardiovascular 
function, the significance of NO has now been realized in the neurological, hema-
tological and immune systems. Recent research has indicated complex roles for NO 
in skeletal muscle, myocardium, metabolic effects like insulin signaling, neurotrans-
mission and cancer biology. Its emerging role as a gasotransmitter and interactions 
with other reactive molecules has been in the limelight and both pro and antioxidant 
effects are proposed. Regulation of NO production is determined by numerous factors 
including arginine bioavailability, co-factors and expression of endogenous regula-
tors. Low (physiological) levels of NO are mostly protective, whereas high levels tend 
to be toxic. Mitochondria is also the site for the life-threatening deleterious effects 
arising from inflammation-related excessive NO levels. NO-deficient states are char-
acterized by cell senescence, oxidative stress, inflammation, endothelial dysfunction 
and insulin resistance. In sepsis, NO synthesis is dysregulated leading to cardiovas-
cular dysfunction, bioenergetic failure and cellular toxicity. NO-enriching therapy 
may be of benefit not only for its hemodynamic but also for its metabolic impact 
as well as other effects. In contrast, strategies are needed to curtail excessive NO 
in states such as septic shock. Thus, both lack and excess of NO production can 
have various important implications in which dietary factors can play a modulating 
role. Future research is needed to expand our understanding of the regulation of 
NO production at the organ level and by the different NOS isoforms. An innovative 
bench to bedside approach will facilitate the translation of these biological effects 
at cellular/tissue levels for clinical benefits. Both nutritional and pharmacological 
approaches are being increasingly adopted to device novel therapeutic strategies by 
modulating NO levels/activity for several critical pathophysiological conditions.
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Keywords Nitric oxide · Physiological regulation · Therapeutic application · NO 
modulators 

Introduction 

Nitric Oxide (NO) is a simple yet complex molecule with a multidimensional physio-
logical role and rapidly evolving pathophysiological significance. The unique concept 
that a gas synthesized in one cell diffuses into other cell to exert its biological actions 
revolutionized the field of biology and medicine. The journey of NO from an envi-
ronmental pollutant to a vasoregulator (EDRF) and chemical messenger has opened 
up new vistas in disease biology and therapeutics. All these findings along with their 
therapeutic implications resulted in the Nobel Prize award in 1998 (to Furchgott, 
Ignarro and Murad) for NO research. NO is now recognized as a gasotransmitter 
with regulatory effects on cardiovascular functions (vascular tone and permeability, 
platelet adhesion), neural transmission, immune regulation and mitochondrial func-
tion. The complex role of NO is further highlighted by the fact that it is both protective 
viz antioxidant, inhibits leukocyte adhesion, contribute to antimicrobial defense, as 
well as harmful effects like suppression of enzyme function, facilitation of DNA 
damage and promotion of inflammation. Further concentration dependent effects of 
NO in physiological processes and pathophysiological states have also been docu-
mented. It is thus evident, dysregulation of NO mechanisms could precipitate wide 
range of disease processes which could involve multiple organ. Physiological factors 
in pharmacological agents that modulate NO levels are currently used to emphasize 
the role of NO in health and disease. NO modulatory strategies have been applied 
in cardiovascular, neurological, respiratory, gastrointestinal, endocrinal, reproduc-
tive, and inflammatory/immune disorders. In addition to older and newly developed 
drugs, dietary supplements to boost NO levels for beneficial effects are also being 
widely advocated [1–5]. 

NO Formation 

The primary source of NO production in the body is by the action of NO synthase 
(NOS) enzyme on the precursor amino acid substrate, Arginine—commonly known 
as Arg-NOS-NO pathway. Alternatively, NO can be generated from nitrates and 
nitrites by the action of NO reductase (NOR) known as the nitrate-nitrite-NO 
pathway. The former pathway vizArg-NOS-NO pathway is direct and selective. 
However, in NOS compromised individuals NO deficiency can result into diseases. 
The nitrate-nitrite-NO pathway, however, is more stable as nitrates and nitrites can 
be obtained from diet. The enzyme NOS further, NOR is adequately present in all 
cells/tissues and depletion of NOR is rare. The deficiencies of the Arg-NOS-NO
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Diet 
Body Protein 

Citrulline 
ARGININE 

Urea 

Ornithesal 

Arginase 

NO Citrulline 

NOS (NOS-1, 
NOS-2, NOS-3) 

O2, BH2, Heme, 
Ca(CNDS), etc 

Nitrates/Nitrites 
(Diet) NŌ2/NŌ3 

(Non-Enzymatic) 

NO2 

Signaling Excretion 

GC-cGMP 

S-nitrosothiol Peroxinitrite 

KIDNEYS as NŌ2/NŌ3 

(Urine) 

LUNGS as NO (air) 

Fig. 1.1 Nitric oxide (NO) generation and signalling NOS: Nitric oxide synthase; NOR: Nitrate 
reductase; BH4: Tetrahydrobiopterin 

pathway ae therefore compensated by the nitrate-nitrite-NO pathway and both path-
ways complement each other to ensure the continuous availability of NO in the 
biological system. The role of the Arg-NOS-NO pathway has been implicated in the 
cardiovascular, nervous (central and peripheral) and immune systems. NOS enzyme 
exists in three isoforms all of which—use L-arginine and oxygen as substrates to 
form NO and citrulline throughout the body. This reaction requires cofactors like 
NADPH, FMN, FAD, and BH4. In addition to NO, citrulline is also formed which 
is reconverted back to NO (Fig. 1.1). 

Arginine is derived from both exogenous (Diet) and endogenous sources (body 
protein breakdown). Endogenous arginine is dependent on the availability of 
citrulline which is also the limiting factor for arginine formation. Unlike argi-
nine which undergoes first pass elimination in the gastrointestinal tract, citrulline 
has a better pharmacokinetic profile. Arginine metabolism is dependent on the 
degrading enzymes which are differentially present in various tissues. The enzyme 
NOS accounts for small proportion arginine breakdown and Tetrahydrobiopterin 
(BH4) is a rate limiting cofactor for such NO production. Oxidative stress results 
in BH4 deficiency and contribute to NOS3 uncoupling, and increased production of 
superoxide in place of NO. The fate of arginine is also dependent on intracellular 
transport, degradation and synthesis. Elevated arginase activity can also contribute 
to low arginine bioavailability which has been shown in acute and chronic stress 
situations. Thus it is evident that NO production is not only dependent on arginine 
availability but also on other factors like cofactors/enzymes. The role of differen-
tial arginine metabolism is exemplified in diseases atherosclerosis, hypertension
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diabetes, hypercholesterolemia, and ischemic heart disease where NOS3 uncou-
pling is evident. Strategies to influence endogenous arginine and NO metabolism 
include enhanced substrate availability, targeting specific metabolic pathways and 
blocking of NOS3 uncoupling. This can be achieved by dietary supplements of argi-
nine/citrulline, NO donors, NOS3 modulators or interfering with endogenous NOS 
inhibitor eg asymmetric dimethylarginine [6, 7]. 

Factors Affecting NO Production 

Arginase activity is significant determinant of NO formation. It competes with NOS 
enzyme for the substrate L-arginine and influences NO bioavailability. Arginase 
exists in two forms vizarginase-1 (liver) and arginase-2 (kidney, small intestine and 
endothelial cells). In addition to reduction in NO production, arginase can enhance 
reactive oxygen species formation and endothelial dysfunction. Overexpression of 
arginase has been shown in disease conditions like atherosclerosis, hypertension, 
myocardial ischemia, congestive heart failure, and diabetes mellitus induced compli-
cations. Inhibition of arginase activity results in enhanced NO production, lowered 
oxidative stress and provides cardiovascular protection. Therefore, arginase is the 
potential therapeutic target for cardio-metabolic targets by modulating interactions 
between NO and reactive oxygen species. Recent studies have also shown that 
arginase2 can also contribute to the bioavailability of NO, endothelial dysfunc-
tion, atherosclerosis and other disorders. Further, pathogen induced inflammation 
up regulates arginase1 and iNOS in macrophages which also results in reduced argi-
nine availability and NOS3 dysfunction (via eNOS). Since attenuation of arginase 
activity increases NO production, pharmacological modulation of this enzyme may 
be an exciting option where there is NOS3 dependent reductions in NO formation 
eg sepsis [8–10]. 

Asymmetric dimethyl arginine (ADMA), an arginine analog/variant and endoge-
nous, competitive NOS inhibitor, can also influence NO bioavailability. Arginine 
and ADMA use the same transporter for cellular transport and since both competes 
for NOS, Arginine-ADMA balance determine NO levels in the body. Dysregula-
tion of the ADMA degrading enzyme dimethyl arginine dimethylaminohydrolase 
(DDAH) is also a contributory factor for cardiovascular morbidity and mortality 
via elevated ADMA levels. The cardiovascular effects of ADMA is also due to its 
inhibitory effects on endothelial cell motility and angiogenesis. Clinically, Arginine-
ADMA ratio is a good predictor of NO availability and atherosclerosis. This ratio 
is also a more consistent indicator of mortality from any cause in the geriatric 
agr group, as compared to ADMA alone. Thus, exogenous arginine by normal-
izing Arginine-ADMA ratio can restore NO levels and provide therapeutic benefits 
[11–16]. 

Recent studies have shown that NOS3 (eNOS) uncoupling and superoxide forma-
tion during stress are important factors in cardiovascular and pulmonary pathophysi-
ology. Arginase or ADMA determined arginine deficiency could result in such NOS3
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uncoupling. Thus, targeting NOS uncoupling and the resultant oxidative stress could 
be important therapeutic approaches. Interestingly arginine may play a dual role as 
a NOS substrate and a free radical scavenger. As endogenous arginine availability is 
inconsistent, citrulline appears to be a good alternative/better source of NO. Further, 
it is possible that the availability of citrulline to attenuate oxidative stress could 
inhibit NOS uncoupling. Specific arginase inhibitors or cofactors (BH4) may also 
increase NO formation. In view of the complexity of the factors involved in arginine 
synthesis and availability, a multipronged approach to address the issue of opti-
mizing NO bioavailability could be the focus of future research for conditions with 
dysregulated NO production in a variety of acute and chronic disorders [17–21]. 

Nitric Oxide Dynamics 

Nitric oxide (NO) is a ubiquitous, multi-dimensional, gasotransmitter which regu-
lates a wide array of physiological functions by activating multiple intracellular 
signaling pathways. These signaling events are made possible by its lipophilicity 
and the capacity to signal in both an autocrine and paracrine manner. Importantly, 
cells have evolved exquisite mechanisms to regulate NO biosynthesis, NO diffusion 
and cell responses in order to shape these physiological responses. Classically, NO 
biosynthesis is regulated via L-arginine-dependent mechanisms (i.e. via neuronal, 
inducible and endothelial nitric oxide synthases) or through L-arginine-independent 
mechanisms (i.e. nitrite reduction by NOR enyme). Though a plethora of NO effects, 
sometimes contradictory, have been revealed by research, less is known about the 
dynamics or mechanisms by which these effects occur. Some molecular targets have 
been firmly established (such as the binding of NO to heme groups in guanyl cyclase), 
whereas other potential targets for NO are less clearly elucidated. NO and its metabo-
lites interact with and modify protein targets to generate intracellular signals that can 
affect cellular function and potentially differential gene expression. Following its 
synthesis, the surrounding environment can modulate NO diffusion through reactions 
with other free radicals including superoxide or heme proteins such as hemoglobin 
and cytoglobin. Finally, target receptors for NO (and its derivatives) can activate both 
cGMP-dependent (i.e. soluble guanyl cyclase) or cGMP-independent mechanisms 
[7, 17]. 

NO signaling via the sGC-cGMP pathway is characterized by sGC activation, 
cGMP formation, and lowering of intracellular calcium concentrations—all of which 
collectively result in the vasodilatory effects of NO. In addition to stimulating sGC, 
NO can interact with cysteine thiols to give s-Nitrosothiols, which also reduce intra-
cellular calcium and induce vasorelaxation, Such S-nitrosylation also prevents beta 
adrenoceptor down regulation/internalization and facilitate vasodilation. Interest-
ingly, when NO is produced in excess (via iNOS) it results in the formation of a 
toxic moiety and reactive nitrogen species, OONO (peroxynitrite) after combining 
with superoxide. Recent studies have indicated that the various forms of NOS 
viz. nNOS (neural), iNOS (immune) and eNOS (vascular), may not necessarily be
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organ/tissue specific. For example, NO containing neurons may regulate cardiovas-
cular (blood pressure) and reproductive (erectile dysfunction) effects. Atheroscle-
rosis and hypotension seen in septic shock may involve iNOS. eNOS, which is 
normally cardioprotective, has been identified in extra-vascular tissues and some 
cardiovascular risk factors like oxidative stress and endothelial dysfunction have been 
correlated with eNOS (NOS3) uncoupling. Lipid lowering agents like statins and 
drugs modulating renin–angiotensin–aldosterone axis have been shown to facilitate 
eNOS coupling and block endothelial dysfunction [7, 8, 17, 18]. 

While NO is mainly generated from L-arginine by nitric oxide synthase (NOS) 
enzymes, there is a growing realization that additional NO-generating pathways do 
exist. The most common idea is that nitrite can be reduced back to NO via the nitrite 
reductase (NOR) activity of some proteins and enzymes. While this is generally an 
activity that is associated with prokaryotes, several mammalian proteins and enzymes 
have currently been reported to have a low levels of NOR activity. These include 
xanthine oxidoreductase, cytochrome c oxidase, and, strangely enough, NOS itself. 
Interestingly, deoxygenated hemoglobin also possesses NOR activity. Recently, it has 
been demonstrated that this (NOR) activity represents a mechanism by which plasma 
nitrite can be converted back to vasoactive NO under deoxygenated conditions and 
so represents a hypoxically activated vasodilatory mechanism. Independent of the 
source of NO, the association of NO deficiency (L-arginine dependent or indepen-
dent) with cardiovascular conditions (hypertension, atherosclerosis, ischemic heart 
disease, heart failure, stroke) respiratory/allergic conditions (bronchial asthma) and 
septic shock has now been documented. In view of the significance of various NOSs in 
human health and disease, this enzyme is considered a potential target for developing 
therapeutic strategies in a variety of pathophysiological states where NO homeostasis 
is dysregulated. Further, in depth understanding of complex NO signaling pathways 
has resulted in development of pharmacological agents for rational therapeutics viz. 
organic nitrates (NO releasers), arginine/citrulline (NO precursors), PDE-5 inhibitors 
(NO potentiators), dietary supplements and inhaled NO. The term “gasotransmitter” 
is now used to describe NO (besides CO and H2S), and their complex interactions 
are the subject matter to extensive contemporary NO research [6, 8, 22–25]. 

Sources of Nitric Oxide 

Nutraceutical research has revealed that NO could be derived from dietary sources as 
well. High levels of NO can be achieved by (a) food rich in the amino acid precursor, 
L-arginine, viz. poultry, dairy products, soya bean, peanuts, lentils, chickpeas etc., 
and, (b) Nitrate-rich food matter viz. spinach, red beetroot, lettuce, celery, etc. which 
are converted by salivary bacteria to NO. Arginine supplements are being consid-
ered as a therapeutic strategy for endothelial dysfunction induced atherosclosis, and 
dyslipidemia, with beneficial results. Consumption of nitrate rich veggies (beetroot, 
spinach, lettuce etc.), which are transformed to NO by saliva) improves cardiac 
performance during exercise. Activation of BH4 (co-factor in NO biosynthesis) by
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ascorbic acid is also considered as a strategy for enhancing NO levels. In case of 
arginine deficiency, citrulline can be considered as a viable alternative due to its 
improved pharmacokinetic profile (minimal first pass elimination). High doses of 
cholecalciferol (Vitamin D3) have been reported to stabilize NO homeostasis by 
influencing eNOS and endothelial functions, which in turn could be helpful in several 
cardiovascular conditions. Aerobic and/or anaerobic exercise can also improve NO 
bioavailability and help in endothelial dysfunction [20, 26–30]. 

Therapeutic Potential of NO 

The pleotropic effects of NO signaling pathways have been revisited in cardiovas-
cular disease biology and all three forms of NOS have been implicated. Most recent 
studies have implicated NO in the reversal of genetic factors in cardiovascular hemo-
dynamics via the eNOS pathway [22–25]. However, it is the complex regulatory 
effects of NO outside of the cardiovascular system which has been the focus of 
recent research worldwide. Over expressed or dysregulated iNOS and its complex 
functioning has been proposed in inflammatory disorders like sepsis, cancer, epilepsy, 
neurodegenerative disorders etc. and iNOS inhibitors could be promising therapeutic 
agents. In fact, High levels of NO via iNOS are now known to be crucial in infectious 
diseases whereas, low (non-toxic) levels of NO may induce biofilm dispersal—thus 
making some highly pathogenic bacteria more antibiotic susceptible. The role of 
NO in cancer biology is another emerging field of research. Specific roles for NO 
in tumor cells and microenvironment, cancer progression, angiogenesis, and effec-
tivity of treatment and prognosis have been shown. NO and reactive nitrogen species 
(RNS) via iNOS from macrophages are required for cancer immunotherapy. The 
equivocal role of NO is also highlighted by the eNOS (and VEGF) dependent angio-
genesis. Both NO mimetics and NOS inhibitors could thus impact cancer in different 
ways. The photodynamic therapy against cancer involving NO release (iNOS—NO) 
and concentration dependent effects of NO on cytoprotection and cytotoxicity are 
emerging areas for NO in cancer therapeutics [8, 11, 31–34].  The role of NO in the  
brain and neuromodulation has also received considerable attention and its role in 
stress regulation, stress related pathophysiology and cognitive disorders has been 
proposed [5, 35]. 

From a therapeutic perspective, in addition to the established uses of NO mimetics 
in ischemic heart disease, hypertensive crisis, heart failure and erectile dysfunction, 
inhaled NO gas is rapidly emerging as a effective therapeutic option in pulmonary 
hypertension, acute respiratory distress syndrome (ARDS), high altitude pulmonary 
edema, and lung transplant. NO inhalation therapy is best used in invasively venti-
lated patients. However, NO can also be administered by face mask or nasal cannulae. 
Inhaled NO diffuses through alveolar membrane to reach smooth muscle cells and 
increase cGMP which results in the reduction of vascular tone. NO then diffuses 
into the blood stream and is inactivated. Safety issues are paramount for inhaled
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NO as there is risk of NO2 formation with oxygen. Pulmonary toxicity and meth-
hemoglobinemia can be minimized when NO is given at doses of 40 ppm for up to 
6 months. Careful monitoring of NO levels are crucial as concentrations >100 ppm 
can induce toxicity like pulmonary edema, methemoglobinemia and bleeding tenden-
cies (due to inhibition of platelet aggregation), and treatment with methylene blue 
attenuates most such situations [4, 6–8, 17, 22]. 

The pathophysiological role of NO in cardiovascular hemodynamics in the crit-
ically ill has received a lot of attention, viz. sepsis, cardiogenic shock, acute lung 
injury, etc. The involvement of mitochondrial NOS in sepsis and the correlation 
between enhanced ROS production and compromised mitochondrial respiration has 
been suggested. On the other hand, the vital role for NO in providing protection in 
microcirculation and improving microcirculatory hemodynamics with specific refer-
ence to organ failure in septic shock. Indications are that NO (or NO modulators) 
may play a crucial role in critical care patients, both as a biomarker as well as a 
therapeutic agent, and improve resuscitation. Clinical studies are being conducted 
on efficacy of inhaled NO in patients with compromised end organ function and 
impending failure [8, 36, 37]. 

A potential role for inhaled NO in the COVID-19 pandemic has also been 
suggested. Inhaled NO gas is considered as a potentially useful prophylactic measure. 
In acute respiratory distress syndrome (ARDS), a fatal complication of the viral 
infection, inhaled NO, influenced cardiorespiratory physiology by improving arte-
rial oxygenation, and showed beneficial effects. Earlier, during the SARS epidemic 
(2002–2003), inhaled NO was found to be beneficial by improving arterial oxygena-
tion, lowering pulmonary hypertension and reduction of pulmonary infiltrates. Lung 
oxygenation increased while duration of ventilator support was minimized. An 
anti-viral effect for NO was also shown via the modification of viral proteins and 
nucleic acids as well as modulation of ACE-2/S-protein interactions. An additional 
pulmonary vasodilatory effect could also have contributed to the beneficial effects in 
COVID-19 patients. NO is produced in the paranasal sinuses and nasopharynx epithe-
lium by the L-arginine-NOS pathway. Such low concentration (approx. 10 ppm) 
diffuses into the adjoining bronchii and lung tissue to induce bonchodilation and 
vasodilation. The facilitatory effects of NO on mucus secretions and ciliary move-
ment compliment its respiratory effects. Higher basal levels of exhaled NO are asso-
ciated with fewer common cold symptoms—further indicating an anti-microbial 
role of endogenous NO against airway viruses. In view of the above, it is possible 
that inhaled NO or NO donors may be of potential benefit in COVID-19 infec-
tions. The improvement in lung oxygenation and bronchodilation may reduce the 
requirement of ventilators. On the contrary, lowered NO availability in the respira-
tory tract may actually promote COVID-19 infection development and progress. In 
fact, NO levels are lower in Caucasians and people with history of habitual intake 
of tobacco/alcohol/caffeine/corticosteroids. In addition, modifying life style factors 
(like moth breathing and smoking) to improve the lowered endogenous NO levels 
may also help by reducing viral load and manifestations of pneumonia. All of these, 
could be considered as viable treatment alternatives in view of the lack of appropriate 
specific strategies for COVID-19 infections [38–43] (Table 1.1).
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Table 1.1 Nitric oxide (NO) and therapeutic applications 

Type of therapy Mode of action Indication 
(References in brackets) 

Physiological/natural 

Diet eg. Polyphenols (in tea, red 
wine, etc.), Resveratrol,  
Quercetin 
Green leafy vegetables 
(Flavonoids) 

↑eNOS expression; ↑NO 
production; ↑Sirt 1; ↑Nitrates 

NO deficient states 
For reduction of 
cardio-metabolic risk 
[4, 20, 26–28] 

Exercise (mild to moderate) 
(skeletal muscle, cardiac 
muscle, vasculature) 

↑endothelial eNOS expression 
↑ blood flow 
↑ NO signaling 
↓Oxidative stress and 
pro-inflammatory signaling 

Hypertension, Coronary 
Artery Disease, Heart 
failure [4, 30] 

Pharmacological 

NO inhalation 
(controlled NO gas delivery via 
ventilator) 

Pulmonary vasodilation 
Anti-viral effect 
Bronchodilation 

Pulmonary hypertension in 
neonates and adults 
ARDS (post COVID) 
High altitude pulmonary 
edema 
Lung transplant [38–43] 

NO precursor (Arginine) NO generation (via enzymatic 
pathway) 

Hypertension [7, 20, 26–29] 
CAD 
Erectile dysfunction 
Peripheral arterial disease 

NO donors (Nitroprusside, 
organic nitrates, 
s-nitrosoglutathione, Deta-NO 
NO ates, molsidomine) 

Stable delivery of NO Angina, Heart failure, 
Pulmonary hypertension, 
Hypertensive crises [4, 20, 
26–29] 

ACE inhibitors, ARBs Increase NO bioavailability and 
downstream signaling 
↑Endothelial NO production 
↑eNOS expression 
↓Oxidant inactivation of NO 
↓ADMA formation 

↓Atherosclerosis 
↓Stroke 
↑insulin sensitivity, glucose 
toleranceand ↓T2DM onset 
Hypertension, CAD [4] 

Beta adrenergic blocking agents 
(3rd gen)-Nebivolol, Celiprolol, 
Carvedilol 

β-1 blocker, β-2 stimul. 
(celiprolol), ↑eNOS activity, 
↑NO bioavailability, 
↑endothelial function 
↓oxidative stress, 
↑adiponectin levels 
↓insulin resistance 

CAD, Stroke, insulin 
resistance (T2DM) [4]

(continued)
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Table 1.1 (continued)

Type of therapy Mode of action Indication
(References in brackets)

Phosphodiesterase 5 (PDE-5) 
Inhibitors (sildenafil, verdenafil, 
tadalafil) 

Vasodilation (corpora 
caver-nosa, pulmonary), 
↓cGMPdegrad. (↑cGMP), 
↑eNOS expression, 
↑Adenosine, bradykinin,↑NO 
release, 
Antioxidant, 
↑Insulin sensitivity 

Erectile dysfunction 
Pulmonary hypertension 
Chronic heart failure 
CAD 
T2DM [4, 8, 22–26] 

HMGCoA Inhibitors (Statins) ↑eNOS expression/activity 
↓eNOS down regulation by 
LDL 
↓Caveolin induced eNOS inhib 

Hyperlipidemia 
CAD [4, 8] 

iNOS (NOS-2) inhibitors 
(aminoguanidine) 

↓Excess NO levels Sepsis (and organ 
dysfunction); anaphylactic 
or cardiogenic shock; 
transplant organ rejection 
[4] 

Conclusion 

In summary, after more than three decades of arrival of NO in medicine and biology, 
it continues to play a rapidly evolving role not only in cardiovascular regulation 
but also in other body systems. The role of NO has now extended from a vascular 
regulator to neurotransmitter (gasotransmitter) and immune modulator, with newer 
signaling pathways being identified. Advances in research has led to widespread 
and diverse potential applications of NO and NO modulators in therapeutics. The 
fact that the subtypes of the enzyme NOS are not necessarily localized at specific 
targets have considerably expanded the scope of NO research. Targeting alternative 
pathway by arginase inhibitors to enhance arginine bioavailability is considered a 
promising therapeutic approach. NO signaling pathways other than the conventional 
GC-cGMP pathway are also being explored to identify therapeutic avenues. NO and 
NO modulators are now being considered as treatment moieties in shock, sepsis 
(in critical care), allergy and immunology, gastrointestinal disorders, neuropsychi-
atric/neurodegenerative disorders and cancer. Newer concepts involving NO and its 
translation to novel therapeutic targets may thus play a major role in redefining future 
therapeutics.
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Chapter 2 
Nitric Oxide and Cardiovascular Health 

Yuan Li, Ashok K. Srivastava, and Madhu B. Anand-Srivastava 

Abstract Nitric oxide (NO) is a diffusible free radical and universal messenger that 
is produced from L-arginine by three different isoforms of nitric oxide synthases 
(NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays 
an important role in the regulation of variety of physiological functions including 
myocardial contractility, vascular tone, blood pressure, cell growth, proliferation 
and platelet aggregation. Most of the effects of NO are mediated through the acti-
vation of soluble guanylate cyclase–cGMP system, however, cGMP-independent 
pathways have also been shown to be responsible in mediating its effects. The levels 
of NO are regulated by several factors and cofactors required for the activation of 
NOS, however, reduced bioavailability of these factors results in the decreased levels 
of NO and thereby endothelial dysfunction leading to the pathogenesis of cardio-
vascular diseases including hypertension, diabetes, atherosclerosis etc. This review 
will focus on the role of NO in physiology and pathophysiology of cardiovascular 
system including vascular remodeling, hypertension and the underlying molecular 
mechanisms contributing to these functions. 
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Fig. 2.1 Role of nitric oxide (NO) in the regulation of physiological functions 

Introduction 

Cardiovascular disease that affect the heart and/or the blood vessels is considered 
as leading cause of morbidity and mortality worldwide [1]. Several risk factors 
including hypertension, vascular remodeling, insulin resistance, endothelial dysfunc-
tion, reduced cardiovascular nitric oxide (NO) bioavailability, cardiac hypertrophy 
[2], and alterations in the circulating lipids are implicated in pathophysiology of 
cardiovascular disease [3]. Nitric oxide (NO) is a ubiquitous intracellular messenger 
that acts as an important biological signaling molecule involved in the regulation 
of variety of physiological functions including myocardial contractility, vascular 
tone, blood pressure regulation, cell growth, proliferation, platelet aggregation etc. 
[4] (Fig. 2.1). Under physiological conditions, NO exerts cardiovascular protec-
tion, however, dysregulation of NO production contributes to endothelial dysfunc-
tion leading to the pathogenesis and progression of cardiovascular diseases including 
hypertension, diabetes, atherosclerosis etc. 

Nitric Oxide Synthesis 

NO is short lived free radical generated by the oxidation of L-arginine to L-citruline, 
a reaction catalyzed by nitric oxide synthase (NOS) [5, 6] and requires the pres-
ence of several cofactors including flavin mononucleotide (FMN), flavin adenine 
dinucleotide (FAD), NADPH, tetra-hydrobiopterin (BH4), heme prosthetic group as 
well as the redox cofactor (Fig. 2.2) [7]. Three isoforms of NO synthases are iden-
tified named neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II) 
and endothelial NOS (eNOS or NOS III). In addition, a novel constitutively active 
mitochondrial NOS (mtNOS) has also been identified in mitochondria from liver
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Fig. 2.2 Nitric oxide synthesis a Under physiological conditions, nitric oxide is synthesized by 
the oxidation of L-arginine to L-citrulline, a reaction catalyzed by nitric oxide synthase (NOS) and 
requires the presence of several cofactors including flavin mononucleotide (FMN), flavin adenine 
dinucleotide (FAD), NADPH, tetra-hydrobiopterin (BH4), heme prosthetic group as well as the 
redox cofactor b Under pathphysiological conditions the absence or limited availability of either 
substrate or cofactor BH4 and augmented levels of oxidative stress result in the uncoupled eNOS 
that produces O2- instead of NO and forms ONOO-that further promotes eNOS uncoupling leading 
to endothelial dysfunction and the pathogenesis of cardiovascular diseases

that appears to be involved in Ca2+ regulation [8]. nNOS and eNOS are constitutive 
enzymes and predominantly expressed in neuronal and endothelial cells (EC) as well 
as in other cell types including vascular smooth muscle cells (VSMC) [9]. Both nNOS 
and eNOS are regulated by intracellular Ca2+/ calmodulin (CaM) whereas iNOS is 
inducible at the level of gene transcription, Ca2+—independent and expressed in 
macrophages and other tissues in response to inflammatory mediators including 
cytokines and endotoxins [10–12]. eNOS is also activated independently of Ca2+ 

upon phosphorylation by Akt in response to shear stress, estrogens and insulin [13]. 
In addition, nNOS and iNOS are cytosolic enzymes whereas eNOS is associated with 
the membranes of EC [14, 15]. These two isoforms of NOS are crucial regulators of 
cardiovascular homeostasis and regulate vascular tone and blood flow, inhibit platelet 
aggregation and adhesion, modulate cardiac contractility and inhibit VSMC prolif-
eration [4]. The structures of iNOS, eNOS and nNOS have been determined [16, 17]. 
All three NOS isoforms are dimers and contain two major functional domains fused 
into a single polypeptide. The N-terminal catalytic domain possesses the binding
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sites for heme, redox cofactor, BH4 and CaM. The C-terminal reductase domain has 
binding sites for FMN, FAD and NADPH. NOS activation relies on the presence of 
the cofactor BH4 and the substrate L-arginine to couple the oxidation of molecular 
oxygen to produce NO [18]. Two molecules of BH4 bind to each eNOS dimer and 
facilitate electron transfer for the oxidation of L-arginine. BH4 thus maintains eNOS 
in a dimeric state and preserves the endothelial function [19].

Regulation of Intracellular Levels of Nitric Oxide 

Several factors which are involved in the activation of NOS play a key role in the 
regulation of intracellular levels of NO. These include the substrate L-arginine, cofac-
tors including BH4, asymmetrical dimethylarginine (ADMA), NG -mono-methyl-L-
arginine (L-NMMA), naturally occurring metabolites that circulate in the plasma 
[20]. The absence or limited availability of either substrate or cofactor BH4 and 
increased circulating levels of arginase, a hydrolytic enzyme that converts L-arginine 
to urea and L-ornithine, ADMA and L-NMMA, inhibitors of NOS, result in the 
decreased production of NO leading to endothelial dysfunction and the pathogen-
esis of cardiovascular diseases (Fig. 3a) [20–24]. In addition, oxidative stress also 
contributes to the decreased levels of NO. The augmented oxidative stress oxidizes 
BH4 to BH2 resulting in the destabilization of eNOS dimer which becomes uncou-
pled and leads to the production of superoxide anion (O2− ) instead of NO, the process 
is referred to as eNOS uncoupling (Fig. 2.3a) [25]. O2− reacts with NO forming perox-
ynitrite (ONOO−), a strong cytotoxic oxidant and reactive nitrogen species (RNS) 
that induces nitrosative stress. ONOO− in turn oxidizes BH4 to BH2 and further 
promotes eNOS uncoupling [26]. ONOO− reacts with lipids, DNA, and proteins, 
causing damage to these macromolecule, interferes with important vascular signaling 
pathways and contributes to various cardiovascular dysfunction [27] (Fig. 2.3).

On the other hand, several hormonal factors are also implicated in the regulation 
of intracellular levels of NO. Angiotensin II (Ang II) that promotes vascular remod-
eling, increases oxidative stress and blood pressure, has been shown to decrease the 
levels of eNOS and NO in VSMC [28]. On the other hand, NO donors, antioxidants, 
adiponectin, AT1 receptor blocker, ACE inhibitor, Statins, C-ANP4-23, a specific 
agonist of natriuretic peptide receptor-C (NPR-C) and resveratrol were shown to 
increase the intracellular levels of NO and exert vascular protection and ameliorate 
hypertension (Fig. 2.3b) [29–39].
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Fig. 2.3 a Factors that may contribute to reduced bioavailability of nitric oxide leading to endothe-
lial dysfunction and pathogenesis of cardiovascular diseases. Several factors that could reduce NO 
availability are; the reduced levels of substrate L-arginine, BH4, an essential cofactor and augmented 
levels of circulating inhibitors such as asymmetrical dimethylarginine (ADMA), NG -mono-methyl-
L-arginine (L-NMMA), arginase, Ang II and destruction of NO by reactive oxygen species (ROS). 
b Factors that increase the expression of eNOS and NO levels and exert vascular protection. These 
factors include NO donors, antioxidants, adiponectin, AT1 receptor blocker, ACE inhibitor, Statins, 
C-ANP4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C) and resveratrol

Cross-Talk Between Oxidative Stress and Nitrosative Stress 

Oxidative stress has been shown to play an important role in the pathogenesis of 
cardiovascular diseases [40–43]. Oxidative stress is caused by the overproduction of 
reactive oxygen species (ROS) and a decreased elimination of these ROS by antioxi-
dants. ROS are produced by a wide array of enzymes that include NADPH oxidases, 
xanthine oxidase, peroxidases, lipoxygenases, cyclooxygenases and complex I and 
III of mitochondrial respiratory chain and eNOS uncoupling [44]. NADPH oxidases 
and xanthine oxidase catalyze the formation of (O2− ) by single electron reduction 
of molecular oxygen which is converted to hydrogen peroxide (H2O2) by super-
oxide dismutase (SOD). Several studies have demonstrated a reciprocal relationship 
between ROS and RNS. The augmented levels of ROS decrease the levels of NO, 
whereas decreased levels of ROS have been shown to increase NO synthesis. For 
example, the antioxidant ascorbate that decreases the levels of (O2− ) resulted in 
increased NO synthesis in EC by improving the binding of BH4 to NOS and stabi-
lizing the dimeric structure of NOS [31, 32]. In addition, Huang et al. have also
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demonstrated that ascorbate augmented the activity of NOS in endothelial cells by 
increasing the levels of BH4 [39]. Modulation of O2

− by NO through the regula-
tion of SOD-1 in VSMC has also been reported [45]. In addition, in VSMC from 
spontaneously hypertensive rats (SHR), increased levels of (O2− ) are associated with 
decreased levels of NO and augmented levels of ONOO−. Furthermore, elevating the 
intracellular levels of NO by NO donors decreased the augmented levels of (O2− ) and 
ONOO− in these cells [29, 46]. Similarly, C-ANP4-23 (natriuretic peptide receptor-
C) agonist- induced suppression of enhanced levels of (O2− ) provoked by Ang II 
was associated with augmented levels of NO in VSMC [28]. The increase in ROS 
and subsequent increased ONOO—formation reduces the bioavailability of NO and 
results in endothelial dysfunction. Thus the imbalance between the formation of 
RNS and ROS plays a critical role in the pathogenesis of cardiovascular diseases 
[40, 47–50]. 

Nitric Oxide Signaling 

The canonical signaling mechanism by which NO exerts most of its biological 
effects is through the activation of soluble guanylate cyclase (sGC), The sGC is 
a heterodimeric protein composed of two subunits, α and β, of which the β subunit 
contains a heme moiety that confers the NO-sensitivity of the enzyme [51, 52]. 
Binding of NO to heme results in a conformational change of cGC and activa-
tion of the catalytic domain [52] that converts intracellular GTP into the second 
messenger cyclic guanosine 3'5'-monophosphate (cGMP) [52, 53], cGMP inter-
acts with a variety of effector proteins including cGMP-dependent protein kinases 
(PKGs) [53], cGMP-regulated phosphodiesterases (PDEs) and ion channels. Two 
different types of PKGs, type I (PKG-1) and type II (PKG-2) are expressed in 
mammalian tissues, however, their relative distribution is tissue- and species- depen-
dent [54, 55]. In cardiovascular tissues, a predominant expression of PKG-1 has 
been reported that mediates the anti-proliferatve effect of cGMP [54, 56–58]. PKG-
1 is a serine/threonine kinase and elicits its effects through the phosphorylation of 
multiple targets which include IP3 receptor, phospholamban, troponin, myosin light 
chain phosphatase, c-raf kinase, Ca2+ and K+ channels. All these signaling targets 
are implicated in the reduction of intracellular levels of Ca2+ or in decreasing the 
Ca2+ sensitivity of contraction or both, resulting in the vasorelaxation (Fig. 2.4) [53, 
59–63]. In addition, NO has also been shown to mediate some of its effects through 
cGMP-independent pathways because 1H- [1, 2, 4] oxadiazolol [4,3-α]quinoxalin-
1-one, ODQ, a selective inhibitor of sGC was unable to inhibit these NO-mediated 
effects. For example, NO decreases the levels of Giα proteins as well as proliferation 
of VSMC by cGMP-independent pathway [29]. The cGMP-independent pathways 
implicated in NO-mediated effects include Ras, MAP kinase [46, 64], cyclin depen-
dent kinase inhibitor P21, [65, 66] and cAMP\PKA signaling pathway [67–69]. In 
addition, posttranslational modification such as S-nitrosylation [70, 71], eNOS S-
glutathionylation [72] and tyrosine nitration [73] mediated effects of NO are also
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Fig. 2.4 Signaling mechanisms implicated in NO-mediated cardiovascular protection. NO induces 
vasorelaxation through S-nitrosylation-induced activation of Ca2+-dependent K+ channels as well 
as via sGC/cGMP/protein kinase G-dependent pathway. The beneficial effects of NO on remod-
eling of the vessels include the attenuation of signaling pathways involved in the activation of 
the hypertrophic, migratory and proliferative program in the cardiovascular tissues. NO through 
the inhibition of G12/G13-Rho/ROCK pathway exerts antimigratory and antihypertrophic effects. 
In addition, NO decreases ROS which through the inhibition of growth factor receptor activation 
and MAPK signaling inhibits Giα protein expression and modulates cell cycle regulatory proteins 
leading to decreased proliferation 

independent of sCG and cGMP and regulate downstream pathways contributing to 
cell proliferation [74–77]. Furthermore, S-nitrosylation-induced activation of VSMC 
Ca2+-dependent K+ channels has also been shown as a potential mechanism of 
cGMP-independent vasorelaxation (Fig. 2.4) [78]. 

Nitric Oxide and Cardiovascular Diseases 

NO plays an important role in the protection against the onset and progression of 
cardiovascular disease that include regulation of blood pressure and vascular tone, 
inhibition of platelet aggregation and smooth muscle cell proliferation [4]. Endothe-
lial dysfunction due to the decreased availability of NO is the contributing factor in
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the pathogenesis of cardiovascular diseases. In the following section, the protective 
role of NO will be discussed in different pathologies. 

Vascular Remodeling and Molecular Mechanisms 

Vascular remodeling refers to alterations in the structure of resistance vessels and 
contributes to the pathophysiology of vascular diseases, such as atherosclerosis, 
restenosis, and hypertension [79] and is associated with alteration in VSMC growth, 
hypertrophy, migration etc. [80, 81]. Vascular remodeling is influenced by dynamic 
interactions between local growth factors, vasoactive substances, and hemodynamic 
stimuli [82]. Several intracellular signaling pathways that regulate the expression 
of upstream and downstream target genes are involved in the proliferation, hyper-
trophy and migration of VSMC. Vasoactive peptides such as Ang II and endothelin-
1(ET-1) as well as growth factors receptors such as epidermal growth factor receptor 
(EGFR) and platelet derived growth factor receptor (PDGFR) all contribute to VSMC 
hypertrophy, proliferation and migration through the activation of several signaling 
pathways including Giα/Gqα, MAP kinase and Rho-kinase (ROCK), an effector of 
a small G protein [83–94]. In addition, enhanced oxidative stress induced by Ang 
II is also implicated in the enhanced expression of Giα proteins and proliferation 
of VSMC through the transactivation of EGF-R and MAP kinase signaling [91]. 
Furthermore, the augmented levels of endogenous vasoactive peptides including 
Ang II and ET-1 have also been shown to contribute to hyperproliferation as well 
as hypertrophy of VSMC from SHR through ROS and ROS-mediated transactiva-
tion of EGF-R/PDGF-R and MAP kinase signaling pathways [95–99]. Hyperpro-
liferation of VSMC is associated with accelerated entry of cells from G0/G1 phase 
of cell cycle to the synthetic phase [100]. Ang II- and FBS-induced exaggerated 
growth of VSMC from SHR is associated with progression from G1 to S phase [98, 
101]. The role of enhanced expression of Giα proteins in the overexpression of cell 
cycle proteins including cyclin D1, cyclin D1-dependent kinase (Cdk)4 and phospho-
retinoblastoma protein (pRb) and resultant hyper-proliferation of VSMC from SHR 
has been demonstrated [102, 103]. Furthermore, we and others have demonstrated 
that several distinct signal transduction pathways including c-Src, reactive oxygen 
species (ROS), growth factor receptor transactivation, MAP kinase, PI3Kinase, that 
are implicated in the overexpression of Giα proteins, also contribute to the overex-
pression of the cell cycle proteins and vascular remodeling by promoting VSMC 
proliferation [48, 92, 103–106]. 

Nitric Oxide and Vascular Remodeling 

A multitude of studies using in vitro and in vivo models have shown that an increase 
in the cellular levels of NO, either by direct delivery of NO donors or gene transfer 
of eNOS or iNOS, potently suppressed proliferation, migration and hypertrophy in 
VSMC and, neointimal growth [107–112]. Although the precise molecular events 
that provoke these responses remains elusive, accumulated evidence has suggested 
that modulation of key components of cell cycle regulatory proteins and signaling 
pathways responsible to drive these events play an important role. For example,
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eNOS overexpression in VSMC isolated from pig coronary arteries resulted in atten-
uation of PDGF-induced proliferation that was accompanied by reduced levels of cell 
cycle regulatory proteins cyclin A, and a delayed expression of cyclin E [113]. Simi-
larly, a reduction in the expression levels of cyclin A and cyclin-dependent kinase 
(cdk) 2 was associated with diethylenetriamine NONOate (DETNONOate)-induced 
reduction of fetal calf serum (FCS)-induced cell proliferation in human VSMC [114]. 
S-nitroso-N-acetylpenicillamine (SNAP) was also reported to inhibit FCS- and FGF-
induced cell cycle progression in VSMC via inhibition of Cdk2 and upregulation of 
p21 [115]. In addition, SNAP was also shown to inhibit the overexpression of Giα 
proteins and hyperproliferation of VSMC from SHR by cGMP-independent mecha-
nism and involves ROS and ROS-mediated transactivation of EGF-R/PDGF-R and 
MAP kinase signaling pathways [46]. More recent in vivo studies have demonstrated 
that NO donor, sodium nitroprusside (SNP), reduced the increased BP in SHR and 
reduced the heightened expression of Giα, cyclin D1, Cdk 4 and pRb and augmented 
the reduced levels of cdk inhibitors p27 and p21 (Fig. 2.4) [116]. Interestingly, NO 
has been shown to upregulate p21 levels by preventing its degradation in rat aortic 
VSMC and in pulmonary VSMC [65, 66]. The antihypertensive effect of SNP in 
SHR was associated with a reduction in the overexpression of AT1R, growth factor 
receptor phosphorylation, ERK1/2 activation an Giα protein expression in VSMC 
[116]. SNP as well as 8-bromo cyclic GMP were also reported to block ET-1 and 
EGF-induced Ras/ MEK/ ERK1/2 pathway while suppressing DNA and protein 
synthesis in VSMC [117, 118]. Thus, inhibition of the signaling events involved in 
cell cycle progression appears to be a key mechanism for the antiproliferative effects 
of NO. Furthermore, the implication of both cGMP—dependent and—independent 
pathways have been suggested to elicit this response [46, 109, 119, 120]. 

Several NO donors including SNP, SNAP, DETNONOate, spermineNONOate and 
S-nirosoglutathione have also been shown to reduce Ang II-evoked VSMC migration 
[108, 121, 122]. In addition, increasing the intracellular levels of NO by eNOS 
gene transfer also suppressed the migration of VSMC induced by Ang II or PDGF 
[112, 123, 124]. The molecular mechanism implicated in these events appear to 
be mediated through the inhibition of matrix metalloproteases (MMPs) 2 and 3 as 
well as the Ras family of small G- protein, Rho A and its effector, RhoA kinase 
(ROCK) [112]. However, these effects were shown to be independent of growth 
factor receptor transactivation and ERK signaling pathway [112]. An involvement 
of RhoA/ROCK pathway in mediating the antihypertrophic action of adiponectin 
and NO was also reported (Fig. 2.4) [35]. Interestingly, this inhibitory response was 
associated with a reduction in Ang II-induced phosphorylation of cofilin and actin 
cytoskeletal remodeling as judged by altered F-actin/G-actin ratio [35]. 

Consistent with the antiproliferative, antimigratory and antihypertrophic effects 
of NO, several studies have reported protective effects of NO donors and NOS over-
expression on neointimal growth and hyperplasia in animal models. Among the 
first reports to implicate NO in blocking neointimal hyperplasia in a rabbit model 
of vascular injury, utilized L-arginine, a substrate of NOS to raise tissue levels of 
NO [125]. These studies demonstrated that administration of L-arginine by gavage 
reduced the intimal hyperplasia by about 39% in balloon catheter-injured rabbit
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thoracic aorta and co-administration of L-NAME reversed the protective effect of 
L–arginine and suggest that NO generation was responsible for this effect [125]. 
This observation was quickly confirmed, and showed that as compared to systemic 
delivery, the topical application of L-arginine was slightly more effective in inhibiting 
neointimal growth in a rat carotid artery injury model [126]. These studies prompted 
several investigators to further explore the usefulness of NO donors in conferring 
beneficial effects in rat, rabbit or porcine models of vascular injury [127–131]. 
For example, intravenous infusion of 4-hydoxymethy-furazone-3 carboxylic acid-
2 oxide, an organic NO donor not only reduced neointimal thickening in injured 
rat carotid artery but also inhibited the proliferation of VSMC [127, 129]. In 
addition, continuous chronic inhalation of NO also resulted in a similar response 
and decreased the intimal growth by about 43% after 14 days of therapy [129]. 
Moreover, perivascular, topical delivery of short and long acting NO donors, 1-[2-
(carboxylato)pyrrolidin-1-yl]dazen-1-ium-1,2-diolate (PROLI/NO) (short half-life) 
and diazeniumdiolated poly(acrylonitrile) (PAN/NO) (long half-life) was also found 
to suppress neointimal hyperplasia in rat carotid artery model [132, 133]. This group 
also reported that systemic administration of S-nitrosylated(S-NITROSYL(SNO))-
targeted nanofibre suppressed neointimal hyperplasia in rat model of carotid artery 
injury [45]. Similar to NO donors, local delivery of eNOS or iNOS genes were also 
reported to suppress the neointimal growth in both rodent and porcine models of 
vessel injury [134–141]. Thus, there is ample evidence to support that NO donors or 
gene transfer of NOS exert beneficial effects in suppressing vascular remodeling and 
inhibiting neointimal hyperplasia in cellular and animal model systems. However, 
because of the labile nature of NO and, confounding factors of targeted gene delivery 
and appropriate transfer vectors, some limitations for its translational use have been 
noted [142]. To overcome these issues, several groups are engaged in developing 
nanofiber and stent-based delivery systems for NO production and gene delivery for 
therapy of vasculopathies [143, 144]. 

Hypertension and Molecular Mechanisms 

Hypertension is a multifactorial disease where the interplay between neuronal, 
hormonal and cellular signaling processes contributes to the pathogenesis. Several 
factors including vasoactive peptides, the renin–angiotensin–aldosterone system 
(RAAS), activation of the sympathetic nervous system, abnormalities in G protein-
coupled receptor (GPCR) signaling, oxidative and nitrosative stress and inflammation 
are implicated in the pathophysiology of hypertension. 

Ang II, a dominant player of renin–angiotensin system plays an important role in 
the development of blood pressure through the activation of downstream signaling 
pathways including oxidative stress. Ang II has been shown to increase the levels of 
ROS, ONOO- as well as of Giα proteins and decrease the levels of eNOS and NO in 
aortic VSMC [28], which appear to be important contributing factors in the develop-
ment of hypertension [145, 146]. Furthermore, NO has also been shown to decrease 
the expression of Giα proteins in aortic VSMC [64] which may be one of the molec-
ular pathways responsible for NO-induced reduction in blood pressure in SHR [29]. 
Consistent with this notion, the enhanced oxidative stress, decreased levels of eNOS
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and NO have been shown to be associated with the overexpression of Giα proteins 
and downstream signaling pathways including growth factor receptor transactiva-
tion and MAP kinase and PI3Kinase in VSMC from SHR [147]. Studies showing 
that reduction in ROS generation by C-ANP4-23 and resveratrol attenuated increased 
blood pressure through the inhibition of exaggerated levels of Gi α proteins provide 
additional evidence for the role of this pathway in the pathogenesis of hypertension 
[148, 149]. 

Nitric Oxide and Hypertension 

Accumulating evidence demonstrates that NO produced by the endothelial nitric 
oxide synthase (eNOS) in the vascular endothelium, plays a critical role in the regu-
lation of blood pressure [150, 151]. NO stimulates guanylyl cyclase to increase cGMP 
production, which promotes vasodilatation of VSMC [152, 153], prevents platelet 
adhesion and aggregation, exerts antiproliferative and antimigratory effects on EC 
and VSMC [154, 155]. Reduction in NO bioavailability is the hallmark of endothelial 
dysfunction and contributes to the development of hypertension and other vascular 
diseases [156–158]. This has been demonstrated by several studies using knockout 
mice as well as hypertensive patients and rat models. eNOS knockout mice develop 
high blood pressure and display decreased vasodilation, whereas nNOS or iNOS defi-
cient mice did not show any changes in the blood pressure [159, 160]. In addition, 
the role of sGC and PKG1, the downstream signaling molecules of NO in NO-
mediated vasorelaxation and blood pressure regulation has also been demonstrated 
by using knockout mice. sGC deficient mice (sGCβ1−/−) as well as smooth muscle 
cell specific sGCβ1−/− mice exhibit higher blood pressure than wild type mice [161, 
162], however,in these mice, NO donor was ineffective in reducing the blood pres-
sure and the vasodilatation of isolated aortic rings [162]. These results suggest that 
NO-inducible sGC activity is required for NO in mediating vasorelaxation in these 
vessels. Similarly, PKG1 deficient mice also developed hypertension and elicited an 
impaired dilation of large conductance and small resistance arteries in response to 
NO-cGMP signaling [163, 164]. In addition, the inhibition of eNOS by Nω-nitro-
l-arginine methyl ester (L-NAME) was also shown to result in the development 
of hypertension in rats and was associated with increased levels of Giα proteins, 
decreased cGMP levels and increased levels of Ang II [165, 166]. The decreased 
levels of NO due to increased oxidative stress has also been shown to contribute to 
high blood pressure in other models of hypertensive rats. In SHR, the levels of AT1 
receptor, Giα proteins, (O2− ) and ONOO-were increased whereas the levels of eNOS 
and NO were decreased [116, 148]. Similarly, the expression of eNOS mRNA was 
downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats 
[167]. Deoxycorticosterone acetate-salt hypertensive rats (DOCA-Salt HR) exhib-
ited reduced eNOS phosphorylation that resulted in decreased NO/cGMP signaling 
in mesenteric arteries [168]. In addition, NO-mediated relaxation was depressed in 
mesenteric arteries of hypertensive rats with reduced renal mass, due to decreased 
bioavailabilty of NO [169, 170]. An impairment of NO-mediated vasodilatation in 
patients with essential hypertension has also been demonstrated [171]. On the other 
hand, several studies have demonstrated that the elevation of intracellular NO by NO
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donors ameliorates the development of hypertension in different models of hyper-
tensive rats (HR). SNP was shown to attenuate high blood pressure in SHR through 
the inhibition of oxidative stress, overexpression of AT1 receptor, Giα proteins 
and ONOO− levels [116]. In addition, supplementation of exogenous nitrite that 
augments the intracellular levels of NO [172] also attenuated blood pressure [173] 
and endothelium-dependent relaxation in isolated aortae of SHR through activating 
the eNOS-NO-soluble guanylyl cyclase (sGC)-cGMP pathway [174, 175]. The atten-
uation of hypertension and NADPH oxidase activity by nitrite\nitrate treatment has 
also been demonstrated in two-kidney one-clip (2K1C) HR, DOCA-Salt HR and 
Ang II-induced HR [176–178]. In addition, a cohort study of European ancestry 
also showed that genetic predisposition to enhanced NO signaling is associated with 
decreased blood pressure and reduced risks of coronary artery and peripheral arte-
rial disease [179]. Furthermore, C-ANP4-23 and resveratrol that possess antioxidant 
property were also shown to attenuate hypertension in SHR through the inhibition 
of enhanced levels of Giα proteins, (O2− ) and ONOO− [148]. In addition, several 
studies have shown that antihypertensive drugs including ACE inhibitors and Ang II 
AT1 receptor blocker mediate their effects through the release of NO [33, 34, 38]. 

Role of eNOS uncoupling in hypertension 

eNOS uncoupling occurs when eNOS produces (O2− ) instead of NO resulting in 
the decreased bioavailability of NO and increased oxidative stress causing endothe-
lial dysfunction leading to the pathogenesis and progression of hypertension. The 
decreased levels of L-arginine\cofactors required to activate eNOS and NO synthesis, 
increased NO inactivation by (O2− ) and increased levels of circulating ADMA, 
NMMA and arginase contribute to eNOS uncoupling and endothelial dysfunction 
resulting in the development of hypertension (Fig. 3a) [23, 24, 180–184]. This was 
supported by the study showing that a defect in l-arginine transport exists in hyperten-
sive and genetically predisposed normotensive subjects [183]. In addition, offsprings 
of essential hypertensive patients display a reduced vasodilatory response to acetyl-
choline linked to a defect in the L-arginine-nitric oxide pathway [182]. These studies 
suggest a role of decreased levels of L-arginine in the pathogenesis of hypertension. 
This was supported by the study showing that the intravenous administration of L-
arginine decreased the mean arterial pressure as well as total peripheral resistance 
in hypertensive patients [185]. In addition, L-arginine was also reported to reduce 
blood pressure in animal models of hypertension including salt–sensitive hyperten-
sive rats [186]. Furthermore, perinatal dietary supplementation of L-arginine with 
antioxidants including vitamin C, vitamin E and taurine was also shown to attenuate 
the development of hypertension in aging SHR [187]. In addition, the inhibition of 
arginase that is upregulated in hypertension and decreases the intracellular levels of 
L-arginine also attenuated blood pressure, vascular function and cardiac fibrosis in 
SHR and suggests a link between L-arginine and development of hypertension [188]. 

The cofactor BH4 is an important regulator of eNOS activation and NO gener-
ation. Numerous studies have demonstrated that reduced bioavailability of BH4 is 
associated with endothelial dysfunction contributing to the pathogenesis of vascular 
disease states including hypertension. Inhibition of BH4 biosynthesis has been shown
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to impair endothelium-dependent relaxations in canine basilar artery [22]. In addition, 
BH4 oxidation-induced eNOS uncoupling has also been demonstrated in endothelial 
cells from DOCA-Salt hypertension [189]. Furthermore, in SHR, the supplementa-
tion of BH4 was shown to diminish the eNOS-dependent generation of (O2− ) asso-
ciated with increased production of NO [190]. Coronary endothelial cells from the 
diabetic BB rats also exhibited BH4 deficiency which was attributed to the decreased 
expression of GTP cyclohydrolase, the rate-limiting enzyme for de novo synthesis 
of BH4 [191]. Furthermore, the hypertensive and diabetic patients also displayed the 
reduced levels of BH4 and eNOS uncoupling [184, 192] and supplementation of BH4 
improved endothelial cell function in patients with diabetes, coronary artery disease 
and hypertension [192–196]. The antioxidant ascorbate was shown to increase NO 
synthesis in endothelial cells by increasing the levels of BH4 and improving its 
binding to eNOS [31, 32, 39]. This was further supported by the study showing that 
both ascorbate and BH4 prevented the ONOO−—induced uncoupling of eNOS in 
bovine aortic endothelial cells [26]. 

In addition to L-arginine and cofactor BH4, ADMA an inhibitor of eNOS also 
plays a role in the regulation of NO synthesis [197]. An upregulation of ADMA 
was shown to impair the bioavailability of NO leading to eNOS uncoupling and 
vascular dysfunction [198]. In support of this, several studies showed that increased 
levels of ADMA were associated with the pathogenesis and progression of vascular 
diseases including hypertension and diabetes mellitus [199]. However, exogenous 
supplementation of L-arginine was shown to relieve the inhibitory effect of ADMA 
on NO synthesis and NO-mediated vascular functions [200]. Thus, strategies to 
maintain the physiologically relevant levels of these cofactors is essential to prevent 
eNOS uncoupling associated pathologies. 

Nitric oxide and Atherosclerosis 

Atherosclerosis is a chronic vascular disease that leads to myocardial infarction 
and ischemic stroke due to thrombotic occlusion and stenosis of blood vessels. The 
precise sequence of events responsible for the initiation and progression of atheroscle-
rosis remains currently elusive, however, studies done during the last decade have 
demonstrated an important role of dyslipidemia and associated changes in the milieu 
of the vessel wall as crucial mediators of this process [201, 202]. Exaggerated levels 
of oxidized form of low density lipoproteins (ox-LDL) and endothelial dysfunc-
tion, along with the activation of pro-inflammatory pathway are among the key 
contributors of atherogenesis [201–204]. Enhanced adhesion, migration, accumula-
tion and proliferation of immune and non-immune cells such as monocytes, VSMC, 
macrophages, foam cells, leucocytes have also been associated with thrombogenesis 
[205, 206]. A decreased bioavailability of NO has been suggested as a hall mark of 
endothelial dysfunction associated with atherosclerotic vascular disease [207]. As 
alluded earlier, eNOS ‘uncoupling’ appears to be one of the prominent mechanisms 
resulting in reduced NO generation in the vessel wall. Ox-LDL has been shown to 
suppress NO levels in EC via excessive production of ROS through lectin-like ox-
LDL receptor-1(LOX-1) [208]. Suboptimal concentrations of L-arginine or BH4 or
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higher levels of ADMA may also limit catalytic activity of eNOS to generate suffi-
cient amount of NO in EC. Studies showing that L-arginine supplementation in LDL 
receptor knockout (KO) mice or hypercholesterolemic rabbit models of atheroscle-
rosis resulted in a reduction in the lesion surface area in aorta, support a role of NO 
as an antiatherogenic molecule [209, 210]. Additional support for a role of NO in 
inhibiting the progression of atherosclerotic disease was provided by the observations 
that treatment of either apolipoprotein E (apo-E) KO mice or cholesterol clamped 
rabbits with L-NAME accelerated the plaque formation [211, 212]. 

The molecular mechanisms by which NO exerts its atheroprotective role include 
its ability to increase vasodilation, inhibit platelet aggregation and monocyte adhesion 
to endothelium [213, 214]. NO also suppresses the expression of key mediators of cell 
adhesion including intercellular adhesion molecule-1 (ICAM-1) and vascular cell 
adhesion molecule-1 (VCAM-1) and monocyte chemoattractant-1(MCP-1), [215, 
216] as well as reduces the hypertrophic, proliferative and migratory responses in 
VSMC [46, 107–112, 116]. Thus, modulation of these key cellular pathways by 
NO appear to be responsible for the atheroprotective properties of NO. Consistent 
with this notion, lipid lowering HMG CoA reductase inhibitors of the statin family 
in addition to lowering plasma LDL levels and atherosclerotic plaque stability also 
increased eNOS expression and improved endothelial functions [217]. 

Conclusions 

Nitric oxide (NO) is an important vasoprotective molecule that serves as a vasodilator 
and is a key regulator of endothelial functions. A dysfunctional NO generating system 
causes oxidative and nitrosative stress due to eNOS uncoupling resulting in impaired 
endothelial functions as well as remodeling of the vessels. NO donors or gene transfer 
of NOS exert beneficial effects in improving endothelial functions, lowering hyper-
tension and suppressing vascular remodeling and neointimal hyperplasia in cellular 
and animal model systems. The potential mechanisms by which NO exerts these bene-
ficial effects include the attenuation of signaling pathways responsible for inducing 
the hypertrophic, migratory and proliferative cellular responses that are often upreg-
ulated in cardiovascular pathologies. Thus, NO remains a promising therapeutic 
molecule for the treatment of cardiovascular diseases, however, the labile nature of 
NO and confounding factors of targeted gene delivery, limit its translational use. 
To overcome these issues, several groups are engaged in developing nanofiber and 
stent-based delivery systems for NO production and gene delivery for eventual use 
in cardiovascular therapy. 
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Chapter 3 
Nitric Oxide and Cardiovascular 
Diseases: Cardioprotection, 
Complications and Therapeutics 

Gaurav Kumar, Sanjay Kumar Dey, and Suman Kundu 

Abstract Perpetually increasing cardiovascular complications significantly 
contribute to economic slow-down in developing nations. Indeed, adverse cardio-
vascular events are among the world’s greatest mortality factors. The underlying 
cause behind these events is hypertension, which in advance stages, manifests with 
the development of multifactorial outcomes ultimately leading to organ damage and 
subsequent death of the individual. One of the major reasons behind the onset of 
hypertension is endothelial dysfunction, a physiological and clinical situation where 
normal functions of vascular endothelium are altered. This alteration results in a 
lack of proper production as well as the distribution of nitric oxide, which is a potent 
vasorelaxant. Efforts to maintain adequate NO signaling are always in practice. One 
of such approaches is targeting cytochrome b5 reductase3 at the myoendothelial 
junction, an anatomical location between endothelial cells and vascular smooth 
muscle cells. This chapter highlights the production and distribution of NO by nitric 
oxide synthases and cytochrome b5 reductase3, respectively, its contribution in 
various cascades of vascular homeostasis and its established role in cardiovascular 
disorders followed by different strategies and a glimpse of the clinical studies 
considered to improve NO signaling in vivo. 

Keywords Nitric oxide · Endothelium · Hypertension · Cardiovascular 
homeostasis · Cytochrome b5 reductase3 · Nitric oxide synthase
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Introduction 

Cardiovascular diseases (CVDs) are responsible for significantly high socio-
economic burden in a population. Global incidences of CVDs are ever increasing 
which leads to premature mortalities and disabilities in humans [1]. It is inter-
esting to note that underlying causes and pathologies of most of CVDs, including 
coronary artery diseases, peripheral vascular disease, myocardial infarction, cardiac 
arrhythmia, stroke, atherosclerosis and venous thromboembolism, are of vascular 
origin [1]. Of note, the etiological risk factors of all these CVDs include hyperlipi-
demia, diabetes, obesity, sedentary lifestyle, hypertension and dysfunctional nitric 
oxide (NO) balance in the vasculature [1, 2]. Although, even after high fatalities 
among CVDs, the recognition and attentive anticipation of underlying risk factors 
may reduce the world-wide rising toll of CVDs. However, besides currently available 
effective anti-hypertensive therapeutics, the overall control of CVDs still remains 
sub-optimum [1, 3–6]. In such a scenario, NO signaling offers ample opportunities 
to curb CVDs and related vascular disorders. 

NO is a pleiotropic molecule with crucial roles in cardiovascular equilibrium. 
Significant evidences have been secured regarding the roles and mechanisms of NO 
signaling in governing the cardiovascular functions. However, it still remains the 
focus of active research as to how this gaseous molecules precisely regulates critical 
cardiovascular events [7]. Uncovering the multiple roles of NO in maintaining the 
wide array of vascular functionalities has led to an appreciable shift in cardiovas-
cular therapeutics. While the dilemmas involving the intricacies of NO have thrived, 
NO still remains one of the under-estimated and under-studied molecules [8]. Since 
NO is an extremely crucial component of the vascular system, efforts in regulating 
the bioavailability of NO to modulate cardiovascular status in humans are always in 
practice. However, the fact that early attempts to regulate NO bioavailability by ther-
apeutic means have enormously failed in clinical trials, cannot be neglected. There-
fore, enhanced empathy has come up with a plethora of novel therapeutic tactics to 
be recognized [9]. While uncovering the complex regulation of NO signaling, we 
first summarize the distribution of the enzymes and their isoforms involved in the 
synthesis and distribution of NO in the microvasculature, followed by the down-
stream effector molecules of NO. We next summarize the involvement of NO in the 
maintenance of vascular homeostasis while linking it with existing CVDs along with 
the novel therapies involved in modulation of NO bioavailability in CVDs. Finally, 
we provide a glimpse of therapeutic modulation in NO signaling and clinical trials 
accompanying NO signaling.
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Nitric Oxide (NO) and NO Synthases (NOS) 

NO, a free radical, is generated by natural electrical discharges, for example, light-
ning [10, 11]. Additionally, it is also released by automobiles and fuel power plants 
as an air pollutant [12]. At industrial scales, NO is produced as a key chemical inter-
mediate [13]. In 1986, the endogenous synthesis of NO as the endothelium-derived 
relaxing factor was initially suggested by Robert Furchgott and Louis Ignarro [14, 
15]. Later on, NO was accepted as a gaseous signaling mediator in organisms [16]. 
Since the abnormalities in production and distribution of NO are linked with several 
CVDs including but not limited to hypertension, it was soon realized that NO plays 
a major part in the homeostasis of the entire cardiovascular system [17–19]. In the 
human body, NO is endogenously synthesized by NOSs; encoded by distinct genes, 
namely NOS1 which forms neuronal NOS (nNOS), NOS 2 which forms inducible 
NOS (iNOS), and NOS 3 which encodes for endothelial NOS (eNOS) [7]. It is note-
worthy that nNOS and eNOS are constitutively expressing isoforms which can be 
controlled by numerous post-translational events including acetylation, phosphory-
lation, S-nitrosylation, S-glutathionylation and even by direct or indirect protein– 
protein interactions. In contrast, iNOS, which is the inducible isoform, is majorly 
under the control of gene transcription governed by the pro-inflammatory and oxida-
tive environment [7]. Since NOSs are the key producers of NO in the human body, 
it becomes important to emphasize these enzymes in cardioprotection and cardiac 
impairment. The following few sections are briefly focused on NOSs in the context 
of their genetic location, structural aspects, physiological location and functional 
roles. 

Neuronal Nitric Oxide Synthase (nNOS) 

nNOS, a 1434 amino acid protein, having molecular mass of 161 kDa, is the product 
of NOS 1 gene located on chromosome 12 (12q24.2) in humans [20]. This constitu-
tively expressing enzyme is found in autonomous cardiac neurons [21], in vascular 
smooth muscle cells (VSMCs) [22, 23] and on sarcoplasmic reticulum present in 
cardiomyocytes [24]. Although, nNOS exists in monomeric and dimeric mixtures, 
only the dimeric form of nNOS is functional. Monomeric nNOS is composed of 
N-terminal and C-terminal oxygenase and reductase domains, respectively. The N-
terminal catalytic domain of nNOS binds with tetrahydrobiopterin (BH4), which acts 
as a redox-co-factor for this enzyme. Apart from BH4, the catalytic domain of nNOS 
also binds with L-arginine (a substrate for NO generation) and zinc ions. In contrast, 
the C-terminal domain in nNOS binds with FMN, FAD and NADH [25–27]. Similar 
to the other forms of NOS, nNOS is also regulated by several intrinsic and extrinsic 
factors, such as availability of co-factors and substrates, interacting partners and a 
plethora of post-translational modifications [28].
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Inducible Nitric Oxide Synthase (iNOS) 

iNOS, a 1,153 amino acid protein, with a molecular mass of 130 kDa, is encoded 
by a gene, i.e., NOS 2, located over chromosome 17 (17q11.2-q12) in humans. 
Structurally, iNOS contains an N-terminal and C-terminal oxygenase and reductase 
domain, respectively. The N-terminal domain of iNOS has heme and binds with L-
arginine, BH4 and calmodulin. Whereas, the reductase domain joins with NADPH 
and is engaged in transferring electron from NADPH to FAD and finally to FMN 
[29]. iNOS mediated NO production is dependent on transcriptionally regulated 
cytosolic expression of the enzyme, which in turn, is dependent on several oxidative 
and pro-inflammatory environment in the cells. iNOS is expressed in several cells 
including, cardiomyocytes, nerves cells, leukocytes, ECs, fibroblasts and VSMSs 
[30–33]. As compared to the other isoforms, iNOS is a calcium-independent enzyme 
[34]. The Vmax of iNOS is surprisingly higher as compared to nNOS and eNOS. 
Therefore, iNOS maintains a higher NO production until the complete expenditure of 
substrates and co-factors or enzyme degradation [35]. Hence, the expression of iNOS 
is majorly linked with the pathological remodeling in cardiovascular biology [36]. 
Apart from this, iNOS-mediated increased NO production following the exposure 
of pro-inflammatory environment is also a major reason behind hypotension, cardio-
depression and lowered reactivity in vasculature with retarded vascular tone [37–41]. 

Endothelial Nitric Oxide Synthase (eNOS) 

eNOS, a 1203 amino acid protein, with a molecular mass of 133 kDa, is encoded by 
NOS 3 gene located over chromosome 7 (7q35-7q36) in humans [42]. In the vascu-
lature, eNOS is majorly prevalent in ECs. However, occasional expression of eNOS 
can also be seen in cardiac myocytes [42, 43], platelets [44] and erythrocytes [45, 46]. 
Similar to nNOS and iNOS, eNOS is also a dimeric enzyme containing oxygenase 
and alpha (α) reductase domains. The α-reductase domain of eNOS transfers the 
electrons from NADPH to FAD and FMN while recruiting calmodulin. Calmodulin 
binding with the α-reductase domain facilitates the transfer of electrons [47]. In the 
presence of heme and BH4, the oxygenase domain in eNOS attaches to α-reductase 
rendering the eNOS efficient in NO synthesis [48, 49]. The expression of eNOS can 
be activated by shear stress and stretch. Both of these events lead to stabilization of 
eNOS mRNA, which leads to nuclear factor-κB (NF-κB) and Krüppel-like factor 2 
(KLF2) aided expression of eNOS [50]. On the other hand, eNOS expression can 
also be activated by reactive oxygen species (ROS) via several oxidant-responsive 
kinases, including p38 mitogen activated protein kinase as an event generated by 
receptor directed or physical stimulus. Furthermore, eNOS expression can be regu-
lated by several genetic polymorphisms, epigenetic modifications, post-translational 
modifications and some cardiovascular therapeutics [7].
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NO Synthesis and Distribution 

Among the above-mentioned NOSs, eNOS has special importance in the vascular 
system. eNOS reacts with a variety of cellular partners while producing NO. eNOS 
mediated NO formation is a two-step reaction. In the initiation phase, L-arginine is 
hydrolyzed to Nω -hydroxy-L-arginine in presence of BH4 and calmodulin. This is 
followed by a second step, which comprises the oxidation of Nω -hydroxy-L-arginine 
to L-citrulline and NO as shown below in Fig. 3.1 [47, 51, 52]. 

Since NO is a lipophilic signaling molecule, it can execute paracrine signaling 
through its rapid diffusion from ECs to VSMCs. Apart from paracrine signaling, NO 
also executes autocrine signaling in cardiac myocytes [42]. Once diffused to adjacent 
VSMCs, NO can bind with α-subunit of hemoglobin (α-globin) located at the MEJ, 
which is a “sandwiched” region between ECs and SMCs. Of note, the redox state of 
α-globin is the chief deciding factor for binding with NO. The ferrous (Fe2+) state 
of α-globin tightly binds with NO creating a hindrance in its diffusion from ECs to 
VSMCs, which leads to vasoconstriction and subsequently result in hypertension. 
Whereas, the ferric (Fe3+) state of α-globin binds with NO transiently and weakly 
allowing it to diffuse into VSMCs, consequently resulting in vasorelaxation. The 
interplay between these two redox states of α-globin is managed by CYB5R3. In 
addition to α-globin, CYB5R3 is also located at MEJ. Active CYB5R3 is capable of 
converting Fe3+α-globin to Fe2+α-globin, which leads to vasoconstriction executed 
by the above-mentioned mechanisms (Fig. 3.2) [53]. Indeed, pharmacological inhi-
bition of CYB5R3 is an emerging strategy to control hypertension and thus asso-
ciated CVDs. The authors of this chapter are working in this direction with initial 
preliminary success.

Fig. 3.1 NOS dependent secretion of NO in the vasculature. Dimeric eNOS efficiently utilizes 
L-arginine as a substrate in the presence of BH4 and heme while producing NO and L-citrulline 
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Fig. 3.2 Role of CYB5R3 in managing vascular tone. CYB5R3 controls the oxidation states of 
α-globin localized heme. This results in the modulation of NO diffusion across ECs and SMCs via 
MEJ, leading to vasoconstriction or vasodilation 

NO and Vaso-Modulation 

There are two different pathways by which NO modulate the vascular tone and hence, 
the cardiovascular functions. One of these is an indirect pathway, which involves the 
stimulation in soluble guanylate cyclase (sGC) activity, followed by cGMP medi-
ated activation of protein kinase (PK) G in VSMCs, which is a major regulator of 
several post-translational events in the sarcoplasmic reticulum [54, 55]. Activated 
PKG blocks the entry of calcium ions via voltage-gated calcium channels as well 
as calcium discharge aggravated by inositol 1,4,5-triphosphate receptor (integrated 
in sarcoplasmic reticulum) leading to vasodilation (Fig. 3.3). Furthermore, PKG 
also modulates sarco/endoplasmic reticulum embedded calcium dependent ATPase, 
which endorses the capture of cytoplasmic calcium, and discharges it to cell exte-
rior [15, 56–59]. This results in a net shortage of available intracellular calcium 
ions subsequently leading to calmodulin inactivation along with the suppression 
of calmodulin-dependent myosin light chain kinase (MLCK). Moreover, intracel-
lular calcium deficiency also leads to an upsurge in myosin light chain phosphatase 
(MLCP) activity. The activation and inactivation of MLCP and MLCK, respectively, 
results in breakage of the actin-myosin-cross bridge ensuring the relaxation of SMCs 
resulting in vasodilation [12].
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Fig. 3.3 Role of NO in homeostasis and different therapeutic approaches and potential targets 
in cardiovascular complications. Several inhibitors of arginase and phosphodiesterases (PDEs) 
contribute to efficient production and distribution of NO in the vasculature. Additionally, supple-
mentation with dietary nitrate, nitrite and folate also results in proper production of NO. Endothelial 
NO activates sGC, which ultimately leads to vasodilation followed by improved homeostasis in vivo 

The Link Between NO and Hydrogen Sulfide (H2S) Signaling 

Although the NO signaling is itself self-sufficient mechanism of vasodilation, H2S 
signaling is also being sought by the scientific community as a “balancing” vasodila-
tory mechanism in cardiovascular biology. In the last 10 years, H2S has established 
itself as a potent vasodilatory factor [60]. H2S enhances and complements NO 
signaling [61, 62]. In the human body, H2S is produced by several enzymes including 
cystathionine β-synthase, 3-mercaptopyruvate sulfurtransferase and cystathionine 
γ-lyase. These three enzymes are known to express in vascular walls [63]. While 
complementing with NO signaling, H2S increases the phosphorylation of eNOS 
at Ser1177, which is an activating post-translational modification, and results in 
increased synthesis of eNOS mediated NO [62]. Apart from phosphorylating eNOS 
at Ser1177, H2S is also considered to prevent the oxidation of Fe2+ heme, an obliga-
tory factor required to dimerize eNOS subunits [64]. Moreover, H2S also inhibits the 
activity of PDEs [65], the enzymes accountable for the indirect breakdown of NO. 
Furthermore, H2S also activates PKG through S-sulfhydration at Cys42 [66]. All 
of these cooperative events synchronously reinforce NO mediated cardioprotection 
[67].
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Cardiovascular Homeostasis Maintenance by NO-NOS 

Homeostasis in Blood Vessels 

eNOS derived NO regulates the vasorelaxation via its paracrine diffusion to VSMCs 
and subsequently activating PKG [68]. Additionally, in coronary microcirculation, 
paracrine NO also modulates left ventricle dependent hemodynamic events [69, 70]. 
As discussed earlier, CYB5R3 is the major regulatory factor at MEJ as it regulates the 
redox state of α-globin, and thus the paracrine diffusion of NO from ECs to VSMCs 
[71]. In addition to α-globin, cytoglobin (Cygb), an oxygen-dependent NO dioxyge-
nase, is also a chief regulator of NO concentration in the microcirculation. Cygb is 
expressed in fibroblasts and VSMCs and it converts NO to nitrates and thus, it lowers 
the available NO, which is otherwise used in the activation of sGC dependent PKG 
[72]. In support of this, Cygb knockout mice have demonstrated greatly prolonged 
NO decay, increased vascular relaxation, lowering in blood pressure and systemic 
vascular resistance [72]. Interestingly, the NO-dependent dioxygenase functionality 
of Cygb is also controlled by CYB5R3. 

In addition to eNOS, blood pressure is also regulated in numerous ways by nNOS. 
In nitrergic nerve fibers, nNOS controls cerebral and renal blood fluidics [73–76]. 
It has been seen that in NOS 3 null mice lacking eNOS expression, flow-induced 
expansion of coronary arteries is partially compensated by nNOS [77]. Likewise, in 
human peripheral and coronary vascular beds, operational nNOS might be seen [78, 
79]. This is supported by the effect of systemic infusion of S-methyl-l-thiocitrulline, 
which is an nNOS preferential inhibitor [80]. The hypertensive outcomes of S-
methyl-l-thiocitrulline were supposed to be dependent on nNOS inhibition in skeletal 
myocytes. In fact, by inhibiting α-adrenergic vasoconstriction, nNOS is considered 
to augment the perfusion of skeletal muscle occurring during contraction [81, 82]. 

Homeostasis in Perivascular Adipose Tissue (PVAT) 

Certain adipocytes, different from those usually found in white or brown adipose 
tissue, forms PVAT. PVAT down-regulates the contractile response of vessels residing 
in close vicinity by releasing adipokines [83]. While controlling the contractile 
response, a variety of mediators including, adiponectin [84], H2S [85, 86], eNOS 
derived NO [87], palmitic acid methyl ester [88], angiotensin (1-7) [89] and H2O2 

[90] are involved, which in turn, depends on the composition, physiological condition 
and localization of PVAT [91]. Many of these cascades converge at eNOS mediated 
NO synthesis in ECs and its diffusion into VSMCs or adipocytes. Apart from this, 
adiponectin itself provokes NO release from adipocytes and ECs, so as to relax 
VSMCs [92–94].
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Homeostasis in Cardiac Myocytes 

The functional aspects of the heart are greatly dependent on eNOS and nNOS. Studies 
with isolated cardiac myocytes have shown that stretched and induced eNOS derived 
NO induces a gentle increase (over 5–10 min) in the shortening of sarcomeres, 
along with calcium transient amplitude by enhancing the secretion of calcium out of 
sarcoplasmic reticulum. This is a positive Anrep effect, as well as an autoregulation 
process where the myocardial contractility intensifies with afterload. This effect is 
facilitated by phosphatidylinositol 3-kinase (PI3K)-AKT dependent phosphorylation 
at Ser1177 in eNOS, which is a permissive post-translational modification, leading 
to an increase in NO release. In support of this, NOS 3 null mice demonstrated 
an abolished Anrep effect, which was restored later by the administration of NO 
donor [95]. NOS also regulates basal contractility and β-adrenergic responsiveness 
in cardiac myocytes by altering calcium ion homeostasis or calcium sensitivity of 
myofilaments [96]. 

Homeostasis in Cardiovascular Nerve Cells 

As mentioned earlier, nNOS is expressed in never cells. Additionally, the expres-
sion of nNOS is also prevalent in cholinergic (vagal) neurons as well as sympa-
thetic ganglia reaching the sinoatrial node of the heart. nNOS derived NO executes 
sGC-cGMP-dependent PDE3 inhibition, consequently resulting into increase in 
cAMP-PKA dependent phosphorylating events in N-type calcium channels of cholin-
ergic neurons. On the other hand, in sympathetic ganglia, nNOS derived NO regu-
lates the activation of sGC-cGMP-PDE2 axis. This results in calcium induced 
release of acetylcholine by exocytosis, which leads to a reduction in cAMP-PKA-
dependent calcium influx, as well as inhibition in calcium-dependent discharge of 
norepinephrine by exocytosis. All these events result in nNOS derived shift in auto-
nomic balance towards a parasympathetic shift, leading to a decrease in heart beat 
[97, 98]. 

Altogether, nNOS diverts the autonomic equilibrium towards a greater parasympa-
thetic effect, thereby decreasing the heart rate. Increase in eNOS or nNOS expression 
levels or activity may be fruitful in certain scenarios of increased adrenergic rush, 
for instance in heart failure [99, 100].
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NOS, NO and Cardiovascular Disease 

Endothelial Dysfunction 

Endothelial dysfunction is a pathophysiological event where its vasoprotective state 
changes to deleterious one. Indeed, endothelial dysfunction is the initial step towards 
atherogenesis [101, 102], which later on results in the development of hypertension 
[103, 104], and associated CVDs. Of note, endothelial dysfunction initiates from 
oxidative stress resulting in rapid uncoupling, and thus the inactivation of dimeric 
eNOS [105]. In addition to a significant decrement in NO bioavailability due to 
dysfunctional endothelium, it is also responsible for the secretion of a variety of 
factors, which are further unfavorable to the vascular intima [106]. 

Fortunately, endothelial dysfunction can be reversed by improving BH4 avail-
ability in hypertension, and atherosclerosis [107–109]. Apart from improving BH4 

availability, endothelial dysfunction can also be reversed by understanding the func-
tional regulation of enzymes, such as by the use of statins to reduce caveolin 1, which 
is a negative regulator of eNOS. Apart from this, co-existence and association of 
NADPH oxidase in caveolae, increase in sirtuin 1 levels [110, 111], supplementation 
with L-arginine [112], use of statins [113], antioxidants [114, 115], Mediterranean 
diet, increased physical activity, body weight management and conventional anti-
hypertensive therapeutics, including but not limited to, calcium channel blockers and 
their combination with renin inhibitors [116–118], some β-blockers, (for instance, 
Nebivolol) and their combination with angiotensin converting enzyme inhibitors 
[119–122], can improve or revert endothelial dysfunction [119]. 

NOS and NO in Cardiac Remodeling 

Loss of eNOS or nNOS function is associated with myocardial damage occurring 
due to infarction or ischemia–reperfusion [123–126]. Conversely, over-expression 
of eNOS or nNOS reduces the infarct size as well as improves left ventricular func-
tion [127–131]. Of note, ischemia–reperfusion activates protein-tyrosine kinase 2β, 
which provokes the inhibition of eNOS through inhibitory phosphorylating events, 
for instance, phosphorylation of Tyr657 [67]. NOS shields the ischemia–reperfusion 
mediated myocardial damage through a variety of mechanisms, including the inhibi-
tion of ROS generation by mitochondrial cytochrome c oxidase, decreasing calcium 
overloads by inhibiting L-type calcium channels in the sarcolemma, inhibition of 
mitochondrial K+-ATP channels and reducing the oxidative stress by inhibition of 
xanthine oxidoreductase [123, 125, 127, 132, 133].
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Contribution of NOS and NO in Common CVDs 

Hypertension 

In hypertension, the endothelium-dependent relaxations are significantly reduced 
[134]. This reduction in response to endothelial vasodilators, including NO, may be 
due to higher circulating profiles of asymmetric dimethylarginine (ADMA) [135], 
which performs as an intrinsic and intracellular competitive eNOS inhibitor. ADMA 
also participates in oxidative stress [136–138], leading to endothelial dysfunc-
tion, and thus hypertension. Similarly, chronic hypoxia in pulmonary hypertension 
also leads to a significant decrement in endothelium-dependent vasorelaxation in 
pulmonary arteries. This may be due to the overproduction of ROS, which reduces 
eNOS activity as a consequence of the tight coupling of caveolin 1 [139, 140]. 

Diabetes 

Though diabetes is itself not a CVD, being a hallmark of many CVDs, it may 
contribute to their onset [106]. Chronic exposure to increased glucose levels, 
which is a common factor in insulin resistance and diabetes, may impair arte-
rial endothelium-dependent relaxation [141–143]. Furthermore, in type 2 diabetes, 
endothelial dysfunction may be dependent on genetic predisposition [143]. Impaired 
NO-dependent vasodilation in diabetes may be dependent on: (1) reduced availability 
of BH4 leading to uncoupling of eNOS [144], (2) overactivity of arginases which 
compete with eNOS for their common substrate [145, 146], (3) elevated ADMA 
levels in circulation [147, 148], (4) NO scavenging by superoxide and increased 
peroxynitrite [143, 149, 150], (5) alteration in the responsiveness of VSMCs [151, 
152] and many more [19]. 

Heart Failure and Ventricular Hypertrophy 

Reduced endothelium-dependent relaxations can be seen in coronary and peripheral 
arteries in vivo in conjugation with heart failure and/or ventricular hypertrophy. It 
may be due to exaggerated oxidative stress budding from under-perfusion of tissues, 
which leads to eNOS downregulation and hence, a reduced NO bioavailability [153– 
155]. Furthermore, impaired responsiveness of VSMCs is also responsible for eNOS 
dysfunction [156]. Interestingly, the extent of endothelium-dependent vasodilation 
forecasts the outcomes of chronic heart failure [157]. It is noteworthy that endothe-
lial dysfunction accompanying heart failure can be reversed temporarily by heart 
transplantation. Additionally, low and calculated doses of ouabain may also improve 
endothelial NO production in vivo [155, 158].
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Coronary Artery Disease (CAD) 

Subjects with a profound risk of CAD are characterized by hampered peripheral 
vasodilation [159]. In coronary circulation, the endothelial dysfunction is repre-
sented by CAD [160–165]. Further, it is also associated with mitochondrial dysfunc-
tion resulting from low physical activity [166] and increased ADMA levels [167]. 
In animals and humans, the occurrence of myocardial infarction and stroke are 
the consequences of endothelial dysfunction [154, 168–171], followed by defective 
eNOS-NO signaling. 

Atherosclerosis 

Atherosclerosis is the manifestation of cellular, biochemical and hemodynamic 
events in blood vessels. It causes vascular injury, which is manifested by endothelial 
dysfunction, cell proliferation, accumulation of oxidized LDL and recruitment of 
inflammatory cells [172]. Endothelial NO suppresses the proliferation of VSMCs in 
response to vascular injury [173]. Additionally, NO usually suppresses the develop-
ment of atherosclerotic plaques by modulating several events, including the suppres-
sion of platelet aggregation and decrement of leukocyte recruitment [174, 175]. 
Therefore, deficiency of vascular NO, endothelial dysfunction, or dysfunctional 
eNOS, results in the predisposition of atherosclerosis. 

NO Signaling and Therapeutics and Pitfalls 

Physiological NO signaling can be restored, and NO production and its bioavailability 
can be altered by targeting downstream elements in NO signaling using therapeutics 
(Fig. 3.3). Here we discuss the emerging therapeutic approaches to manage NO 
bioavailability which are applied in CVDs and related vascular disorders. 

SGC Stimulators or Activators 

sGC activators or stimulators augment the production of cGMP by sGC [176] 
(Fig. 3.3). sGC activators, including ataciguat and cinaciguat, are known to activate 
sGC in either oxidized or heme free state [177]. On the other hand, sGC stimu-
lators, including riociguat and vericiguat bind with sGC in heme bound state and 
amplify the effects endogenous NO. Indeed, cinaciguat has previously been used 
in heart failure. However, trials were terminated owing to exaggerated hypotensive 
effects [178]. Whereas, riociguat has been shown to stimulate favorable events in
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pulmonary atrial hypertension and chronic-embolic pulmonary hypertension with 
an overall improvement in the quality of life and exercise tolerance [179]. 

BH4 or Folate Supplementation 

Since BH4 is a natural coupling agent involved in the dimerization of eNOS, ther-
apeutic administration of BH4 can be considered as among emerging therapeutic 
approaches. Using BH4 supplementation, initial clinical trials done with the diabetic 
and hypertensive subjects have shown promising outcomes [180, 181]. Unfortunately, 
later trials with BH4 as a therapeutic linage (NCT00532844 and NCT00325962) 
[182] have been disappointing, which have been attributed to rapid oxidation and 
clearance of BH4, leading to lowering in its sufficient bioavailability to NOSs. Simi-
larly, folic acid and its products are distributed in plasma in a dose-dependent manner, 
followed by dihydrofolate reductase (DHFR) dependent reduction [183]. Increased 
DHFR activity has been attributed to protective events in vascular endothelium as 
a consequence of augmented reductive recycling of BH4 (Fig. 3.3) as well as direct 
ROS quenching effects of folate, especially superoxide [184, 185]. Folic acid supple-
mentation has been shown promising in improving CAD and an overall decreased 
the risk of CVDs [186–188]. 

Nitroxyl (HNO) 

HNO is generated as a result of either NO reduction or amine oxidation [189]. 
HNO donors viz. Angeli’s salt increases the myocardial contractility in vivo [190– 
192]. Additionally, HNO increases the myofilament responsiveness to calcium ions 
in a cAMP/cGMP independent manner [193]. HNO donors are also known for 
vasodilating events owing to sGC activation [194]. Although, HNO donors, for 
example, CXL-1020, have the distinctive advantage, with their preserved efficacy 
even in oxidative stress, which justifies their use in CVDs, but are known to cause 
inflammatory irritation at the site of infusion [195]. 

Nitrate and Nitrite Supplementation 

Nitrate and nitrite supplementation is beneficial in in vivo models of CVDs including, 
ischemia reperfusion and hypertension [195]. Moreover, treatment considering the 
use of nitrate or nitrite could also be beneficial in pulmonary hypertension (Fig. 3.3) 
[196]. However, a chief drawback of this approach is the difficulty in the accurate 
determination of nitrate or nitrite absorption and reduction to NO especially due to the 
impact of dietary components or concomitant therapeutics. Indeed, treatment with
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proton pump inhibitors may abolish nitrate mediated reduction in blood pressure 
[197]. Similarly, the simultaneous consumption of linoleic acid can also alter the 
metabolic outcome of nitrite, which may abrogate its vasodilatory effects [198]. 

PDE Inhibitors 

Inhibitors of PDEs, especially PDE5, used to be initially developed for the treatment 
of CAD. PDE5 is overexpressed in lung vasculature and its activity is increased 
in pulmonary atrial hypertension. Hence, PDE5 inhibitors are mainly used in the 
treatment of different subtypes of pulmonary hypertension (Fig. 3.3). Some of these 
PDE5 inhibitors are avanafil, sildenafil, tadalafil, vardenafil, sildenafil and tadalafil. 
Of note, sildenafil and tadalafil have been approved for the treatment of pulmonary 
atrial hypertension, as they efficiently curb pulmonary artery pressure and vascular 
remodeling [199, 200]. To a greater extent, the beneficial effects of PDE5 inhibitors 
are limited to animal models and have not been translated to the clinic straightforward 
[201–203]. 

Experiences Form Clinical Studies 

Since cardiovascular complications impart a significant burden on the economy of 
any country, efforts to lower down the mortality rates due to CVDs are always in 
practice. Scientists and clinicians conduct enormous effort worldwide demanding 
clinical studies with the ultimate aim of human welfare [195]. Some of the clinical 
studies considering the use of above-mentioned therapeutic approaches are given 
below in Table 3.1.

Conclusion and Future Perspectives 

Certainly, NO is a crucial molecule in maintaining the homeostasis in cardiovascular 
biology and any adverse alteration in its bioavailability may lead to the development 
of critical clinical situations manifested with severe CVDs. Targeting NOSs in the 
clinical setting of a plethora of CVDs, offers an emerging therapeutic approach since 
these enzymes are directly involved in the production of NO and NO production and 
distribution is the “branching point” in the onset of CVDs and associated pathologies. 
Since eNOS is a regulatory enzyme, alteration in its activity, enhancing its coupling
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Table 3.1 Clinical studies considering emerging therapeutic approaches in the modulation of NO 
signaling in CVDs (Adapted and modified from Farah et al. [7]) 

Category/molecule Phase Duration of treatment Pathological 
condition 

Trial Identity 

sGC stimulators or activators 

Riociguat II 6 months Heart failure with 
preserved ejection 
fraction (HFpEF,) 

NCT0274439 

II 4 months Pulmonary 
hypertension, left 
ventricular systolic 
dysfunction 

NCT01065454 

Vericiguat II b 3 months Heart failure with 
reduced ejection 
fraction (HFrEF) 

NCT01951625 

III ~3.5 years HFrEF NCT02861534 

II b 3 months HFpEF NCT01951638 

Ataciguat II 12 months Aortic valve 
calcination 

NCT02481258 

Nitroxyl 

Infused BMS-986231 II 6 h HFrEF NCT02157506 

Infused BMS-986231 II 48 h HFrEF 

Nitrate and nitrite supplementation 

Nitrite II 2 months HFpEF (>70 years) NCT02918552 

II 3 months Pulmonary 
hypertension- HFpEF 

NCT03015402 

Nebulized nitrite II 1 month HFpEF NCT02742129 

Inhaled nitrite II 3 months HFpEF NCT02713126 

II Acute HFpEF NCT02262078 

Infused nitrite II Acute HFpEF NCT01932606 

PDE5 inhibitors 

Tadalafil III 3 years Congenital systemic 
right ventricle 

NCT03049540 

IV 6 months Aortic stenosis NCT01275339 

Sildenafil III 6 months Chronic heart failure NCT01616381 

III 3 months Pulmonary 
hypertension-systolic 
heart failure 

NCT01913847 

III 3 months Diastolic heart failure NCT00763867
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and regulating its expression in the vasculature either therapeutically or by post-
translation modification also governs the cardiovascular status of a subject. Further-
more, eNOS enhancers, along with antioxidant response enhancers, may amelio-
rate the therapeutic efficacy of current strategies against several CVDs. The clin-
ical trials considering the different therapeutic strategies of CVDs have failed enor-
mously. Under such circumstances, advanced drug-delivering strategies involving the 
virus encapsulation, coupling with nanoparticles, using the novel and small peptides 
against the protein of interest in NO signaling, may also give an efficient trou-
bleshooting and therapeutic sideline approach in CVDs [204]. Furthermore, modu-
lating the distribution of NO by CYB5R3-α-globin-axis is also one of the approaches, 
which is advantageously involved in the alteration of NO signaling within human 
vasculature. Of note, currently available therapeutics for CVDs have a plethora of 
adverse effects. In such situations, targeting NO bioavailability by CYB5R3 may 
prove itself as a boon. 
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Chapter 4 
Nitric Oxide and the Heart Autonomic 
Nervous System 

Bruno Buchholz, Verena B. Franco-Riveros, Nahuel Méndez Diodati, 
and Ricardo J. Gelpi 

Abstract Nitric oxide (NO) is important in physiological cardiovascular regulation 
and is involved in the pathophysiology of cardiac disorders. This chapter describes 
the role of NO in the structure and function of the cardiac nervous system, with 
special focus on the intrinsic ganglia and nerves of the heart. Neuronal nitric oxide 
synthase (nNOS) is the NOS isoform expressed in somata and intracardiac nerve 
fibers, mainly associated with the postganglionic parasympathetic nervous system. 
Intrinsic cardiac ganglia contain parasympathetic postganglionic neurons that are 
nNOS positive or co-localize nNOS with choline acetyltransferase (ChAT). Scarce 
postganglionic sympathetic nitrergic fibers and parasympathetic afferent fibers are 
also observed. NO is a strong modulator of parasympathetic/sympathetic interac-
tion and autonomic action on myocardial function, and of the cardiac conduction 
system and coronary circulation. Loss of endogenous NO modulation predisposes 
to dysautonomia and impaired cardiac function. 
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Nitric Oxide in the Heart 

Nitric oxide (NO) is involved in the regulation of multiple cardiovascular functions, 
both under physiological and pathological conditions. The literature on the subject is 
extensive, having become increasingly relevant, and important advances have been 
made in the knowledge of the biology of NO in the last decades. However, many 
aspects of the nature and exact site of action of NO in the heart and the role that each 
nitric oxide synthase (NOS) isoform performs are not yet fully understood. 

NO is synthesized by three isoforms of NOS: endothelial (eNOS or NOS III), 
neuronal (nNOS or NOS I) and inducible NOS (iNOS or NOS II). All three isoforms 
are present within the heart and are localized in a subcellular compartment. Under 
physiological conditions, the production of NO—stimulated by mechanisms that 
involve NOS-receptor activity—is mediated by the eNOS and nNOS isoforms, while 
the stress response is mediated by iNOS [1]. eNOS is located primarily in the plasma 
membrane and caveolae of myocyte T-tubules of the cardiac myocytes and endothe-
lial cells [2, 3]. nNOS was well identified in intracardiac somata and nerve fibers, 
with a great predominance in the parasympathetic system [4]. Furthermore, at the 
level of myocytes, nNOS is found within the sarcoplasmic reticulum and mitochon-
dria [5, 6]. Additionally its expression in smooth muscle cells of the coronary walls 
was also demonstrated [7]. 

nNOS is the only NOS isoform that is expressed in fibers and cardiac neuronal 
somata in the heart, and, therefore, it is the one isoform that will be expanded upon the 
most throughout this chapter. NO also plays a crucial role in the central regulation 
of cardiovascular autonomic function, but the objective of this chapter will be to 
describe its function within the intrinsic cardiac nervous system. 

Nitric Oxide and Neuronal Nitric Oxide Synthase 
in the Intrinsic Cardiac Nervous System 

The neurochemistry of the intrinsic cardiac nervous system is complex and is being 
investigated in different mammalian species [8]. The presence of nitrergic fibers and 
neurons in the heart has been well documented in recent decades [9–16]. Specifically, 
the nNOS enzyme was found in cardiac plexi in rats [11], rabbits [17], guinea pigs 
[11], mice [18] and humans [19]. 

Studies in guinea pig atria showed that 44% of the neurons contained in the 
cardiac ganglia are positive for nNOS [20]. Intrinsic neurons labeled for nNOS 
also showed immunoreactivity for choline acetyltransferase (ChAT), suggesting that 
postganglionic parasympathetic neurons are the ones expressing nNOS [20]. Further-
more, these intrinsic nitrergic neurons have a long axonal extension that enters a 
nerve bundle and traverses long distances within the heart without making connec-
tions with other neighboring neurons of the originating ganglion. Although the 
intrinsic nitrergic fibers move away from the ganglion where the nNOS-expressing
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neuronal somata are located, immunohistochemical studies demonstrate the pres-
ence of numerous extrinsic fibers [20]. The studies by Calupca et al. suggest that 
these extrinsic fibers labeled for nNOS belong almost completely to parasympathetic 
visceral afferents inputs whose neuronal bodies are located in the inferior ganglion 
of the vagus nerve (ganglion nodosum) [20, 21]. Recently, Navickaite et al. showed 
in rats that the most abundant population of purely nNOS-immunoreactive neuronal 
somata was observed in the nodose ganglia, and a high number of nitrergic nerve 
fibers spread along the vagal nerve and entered its cardiac branches [22] (Fig. 4.1).

Another potential origin of extrinsic nitrergic nerve fibers are the parasympathetic 
preganglionic neurons, located in the vagal cardiovascular regulatory nuclei of the 
medulla, such as the nucleus ambiguus and dorsal motor nucleus of the vagus nerve 
[23–28]. However, the small size and location of the medullary NOS immunoreactive 
neurons suggested they were probably interneurons and not preganglionic neurons 
whose fibers reach the heart [20]. In this same regard, the lack of co-localization 
of nNOS labelling with ChAT suggests that these neurons are not preganglionic 
parasympathetic [29–31]. 

Finally, extrinsic nitrergic fibers of the heart may also belong to the sympathetic 
system, with its afferent component located in the sensory neurons of the dorsal 
root ganglion, and its efferent component provided by postganglionic neurons orig-
inating mainly from the stellate ganglion. Despite the presence of nitrergic fibers 
being thoroughly demonstrated in the stellate ganglion and in dorsal root ganglia [12, 
13, 32–35], the works of Calupca et al. suggest that there are no extrinsic sympa-
thetic fibers that express NOS in the cardiac ganglia in guinea pigs [20]. This is also 
consistent with the absence of intrinsic nerve fibers that co-localize nNOS with tyro-
sine hydroxylase (TH) in rats and guinea pigs [11]. Conversely, NO donors or viral 
gene transfer of nNOS reduces noradrenaline release via a cGMP-PDE2-dependent 
pathway to reduce the tachycardia in response to sympathetic nerve stimulation of the 
right stellate ganglion [36–39]. These studies demonstrate a participation of nNOS 
as a neuromodulator of postganglionic sympathetic activity in the heart, which has 
become the most widely accepted paradigm at present. 

Valuable anatomical contributions were made by Dr. Pauza and his group 
regarding the presence and cardiac distribution of pure nitrergic, or biphenotypic 
cholinergic/nitrergic neurons and fibers [40]. Their studies in rabbits discovered an 
important nervous co-localization of nNOS and ChAT in the ventricles. Furthermore, 
these biphenotypic fibers are distributed in similar amounts in the endocardium and 
epicardium of the left ventricle, but with a predominance at the base and a progressive 
reduction towards the apex. Interestingly, they observed a clear predominant inner-
vation of nitrergic fibers over ChAT positive fibers in the mid-myocardium [40]. The 
presence of a high number of nitrergic or cholinergic/nitrergic neuronal populations 
was also proven in the rabbit sinoatrial node [41]. This vast majority of biphenotypic 
and nitric neurons were also validated by Hoover et al. in nerve ganglia of human 
atria. It is interesting to note that the nitrergic fibers not only behave as afferents or 
efferents of the intracardiac ganglion, but also, many end up within the same ganglion 
as if they were interneurons [19]. This shows that NO possibly plays a critical role 
in the intrinsic local connections between different intraganglionic neurons as well.
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Fig. 4.1 Illustration of the distribution of neuronal somata and nerve fibers immunoreactive 
for diverse chemical phenotypes in the cardiac nervous system. The most frequent source of 
nitrergic fibers of the vagus nerve and cardiac nerves comes from neurons located in the sensory 
ganglia of the vagus (VSG). 37% of the somata in the VSG and a significant number of nitrergic 
neurons located within the nuclei of the solitary tract (NST) express neuronal nitric oxide synthase 
(nNOS). Also worth noting are about 3% of the dorsal vagal nucleus (DVN) which express nNOS 
as well but appear to be small interneurons. About 90% of neuronal somata in the DVN and about 
94% of neuronal somata in the nucleus ambiguus (NAmb) express only choline acetyltransferase 
(ChAT). Only 7% of the somata of the DVN and 6% of the NAmb simultaneously express both 
ChAT and nNOS. Preganglionic sympathetic neurons of the intermediolateral nucleus of the spinal 
cord (Th1-Th5) are predominantly biphenotypic by nNOS and tyrosine hydroxylase (TH); whereas 
postganglionic neurons in the stellate ganglion (SG) poorly express TH and nNOS. Similarly, 
nitrergic neurons are found in small numbers in the dorsal root ganglion (DRG). WRC: white 
ramus communicants; ICG: intrinsic cardiac ganglia. Substance P (SP) or calcitonin gene-related 
peptide (CGRP)

Consistent with the foregoing, recent electrophysiological studies suggest an impor-
tant role of nitrergic fibers in the regional regulation of the intrinsic cardiac nervous 
system [42]. 

The co-localization of nNOS with ChAT and the predominance of neurons with 
a nitrergic phenotype are correlated with functional studies that demonstrate that 
NO acts as a co-transmitter in postganglionic parasympathetic neurons, having a
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critical role in heart rate modulation, and other cardiac functions following vagal 
activation [43, 44]. NO can act as a facilitator of acetylcholine (Ach) release from 
cardiac cholinergic fibers, or directly on the cardiac myocyte through guanylate 
cyclase. That is why, in the face of parasympathetic deterioration in cardiac disease, 
both the decrease in ACh and the loss of NO could be poor prognostic factors for 
patients [19]. 

In summary, the heart contains a considerable number of phenotypically nitr-
ergic neurons and fibers, which can be intrinsic or extrinsic, and all express the 
nNOS subtype. Both the neuronal somata and the intrinsic nitrergic fibers of the 
cardiac nervous system belong to the parasympathetic system. Intrinsic cardiac 
ganglia contain parasympathetic postganglionic neurons that are nNOS positive or 
co-localize nNOS with ChAT. The intrinsic nitrergic cardiac nerve fibers are parasym-
pathetic postganglionic axons. On the other hand, the extrinsic fibers are sensory 
afferents whose somata are located within the nodose ganglion of the vagus, or sympa-
thetic postganglionic efferents originating from the stellate ganglion, although the 
latter are sparse. Furthermore, an additional integrative role is played by the positive 
nNOS interneurons located in intrinsic ganglia and in the vagal nuclei of the brain. 

Role of Nitric Oxide as a Mediator of Cardiac 
Parasympathetic Effects 

Abnormal autonomic activity is a strong prognostic indicator of mortality in patients 
with heart failure [45] or ischemic heart disease [46]. This so-called dysautonomia, 
consisting of an increased sympathetic tone and a reduced parasympathetic tone, 
predisposes patients to sudden death due to lethal arrhythmias such as ventricular 
fibrillation. 

Decreased heart rate variability and decreased baroreflex sensitivity are indicators 
of loss of vagal tone associated with poor prognosis in patients with heart disease. 
For this reason, electrical stimulation of the vagus nerve has garnered great interest 
in recent years as a technique to increase parasympathetic activity in patients with 
heart failure [47]. Although the presence of parasympathetic nerve fibers in the 
ventricles has been well verified [48], the direct effects of vagal nerve stimulation 
(VNS) on ventricular function have not yet been observed [49] or, at most, have been 
found to be controversial [50] for a long time. However, there is consistent evidence 
demonstrating the benefits of increased vagal tone in cardiovascular disease. 

Consistent experimental evidence demonstrates the benefits of VNS on infarct size 
[51, 52], heart failure [53], and arrhythmias [54, 55]. Ng et al. observed that vagus 
nerve stimulation affects the effective refractory period, the ventricular fibrillation 
(VF) threshold and the electrical restitution in the absence of background sympathetic 
tone [56]. They show that the vagal anti-fibrillatory action in isolated ventricles of 
rabbits with preserved innervation occurs via postganglionic efferent nerve fibers, 
independent of activation of muscarinic receptors, the vasoactive intestinal peptide
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(VIP), and the endothelium [57]. Interestingly, the effects of VNS were blocked 
by nonspecific NOS inhibitors. These indirect data include NO for the first time 
as a potential mediator of vagal activity in the ventricles. Subsequent fluorescence 
measurements confirmed this finding through increased myocardial NO levels by 
cervical VNS, which was blocked by a nonspecific NO synthase inhibitor [58]. 

Although increases in NO during VNS were attributed to production by nNOS, 
there is a constitutive production of NO that depends on eNOS [59]. This basal 
production of NO in the myocardium was also studied by measuring its metabolites, 
by chemiluminescence or measurements in the coronary effluent [1, 60–66]. While 
the participation of eNOS in VNS-induced NO production could not be ruled out, 
the work of Brack et al. strongly suggests exclusive activation of nNOS [58]. Firstly, 
selective nNOS blocking completely interferes with NO increases during vagal acti-
vation. Secondly, the increase in NO during VNS does not cause changes in the 
coronary perfusion pressure, as can be seen with the release of endothelial NO. As 
mentioned before, nNOS is located in the nerve terminals of the heart, therefore they 
should be the main source of NO induced by VNS. The administration of the selec-
tive nNOS blocker, 1-(2-trifluoromethylphenyl) imidazole (TRIM), did not modify 
the basal production of NO in the myocardium, which shows that the non-neuronal 
locations of this isoform do not participate in vagal activation [58]. The physiolog-
ical role of NO produced in neurons on the function of the ventricular myocardium 
is not well known. However, perfusion of isolated hearts with TRIM reduced left 
ventricular pressure, suggesting a role in inotropic regulation [58]. These data are 
consistent with previous studies in smooth muscle that demonstrate the role of nNOS 
in the regulation of muscle tension and calcium homeostasis [63]. 

In summary, the studies published by Brack et al. strongly suggest that ACh and 
NO released by the vagus nerve can act through parallel independent signaling path-
ways [64]. At the same time, NO released from the vagal terminals is produced by 
nNOS, independently of the coronary endothelium and regardless of the nicotinic 
and muscarinic cholinergic action of ACh and its co-transmitter, VIP. In addition 
to serving as a physiological regulator of the heart, the NO produced by nNOS 
modulates the presence of severe ventricular arrhythmias. Based on this, Ng et al. 
proposed an interesting theory about the existence of a separate network of parasym-
pathetic nitrergic antifibrillatory neurons within the ventricle [64]. Despite lacking 
demonstration with histochemical and electrophysiological studies, the hypothesis 
proposed by Ng et al. has morphological support given by the presence of parasym-
pathetic neurons in intracardiac ganglia of different mammalian species, as many of 
these neurons and fibers that run through the ventricular myocardium are positive 
for nNOS, as described in the previous section [65, 66]. 

Unlike the aforementioned results, in vivo studies indicate that vagal protec-
tion against arrhythmias [67–69] and its reduction of infarct size in acute myocar-
dial infarction [51, 52, 70] is blocked by atropine, implying muscarinic recep-
tors are necessary steps for parasympathetic protection. Furthermore, NO induced 
by nNOS facilitates both ACh release in vagal terminals, and bradycardia acti-
vated by VNS [71]. According to Herring and Paterson the neuronal NO generated 
by nNOS facilitates ACh release from release sites of the ganglionic projections
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via a cGMP-phosphodiesterase-3-dependent pathway increasing protein-kinase-A-
dependent phosphorylation of N-type calcium channels [71]. Along these same lines, 
using an isolated heart model from rats treated with the ACh analogue carbamyl-
choline, Kalla et al. demonstrate a protective effect of carbamylcholine on the VF 
threshold that depends upon both muscarinic and nicotinic receptor stimulation, 
where the generation of NO is likely to be via a neuronal nNOS-sGC dependent 
pathway [72]. 

Supporting the concept of vagal presynaptic action of NO, in vitro and in vivo 
studies demonstrated that gene transfer of nNOS in cardiac autonomic ganglia 
promotes and facilitates vagal cholinergic transmission and bradycardia by acting 
presynaptically. Furthermore, dysautonomia after myocardial infarction or hyperten-
sion is partially restored by increasing expression of nNOS in cholinergic neurons 
of the heart, with a tendency to improve survival assessed in the short term [73–76]. 
In the same way, studies in mice showed that there is an increase in the expression 
of nNOS in physically trained animals, thus involving NOS in increasing vagal tone 
with physical activity [77]. Taken together, these studies demonstrate that a signif-
icant component of cardiac vagal impairment in cardiac diseases resides at the end 
organ level because of abnormal NO-cGMP signaling in intracardiac ganglia [75]. 
Restoring the neuronal phenotype of nNOS in cardiac neurons facilitates ACh release 
and restores parasympathetic tone in cardiovascular disease, opening up a potential 
opportunity for future treatment through this pathway. 

Over the years, several studies have shed light on the difference between the 
two theories proposed to try to explain the role of muscarinic receptors in nNOS-
mediated parasympathetic cardiovascular regulation. Firstly, and given that the vagus 
nerve contains a higher proportion of afferent than efferent fibers [78], it is possible 
that retrograde afferent stimulation could explain the local generation of nNOS-
produced NO [72] observed by Brack et al. [57]. On the other hand, nNOS was 
also found in myocytes [5], fulfilling numerous physiological functions in the heart, 
such as the regulation of the myocardial calcium cycle [79]. However, a direct link 
between cholinergic receptors and myocyte nNOS has not been found. Therefore, 
this pathway does not appear to be involved in the effects of NO-mediated vagal 
activation [80]. Finally, variations in the experimental model and the species studied 
could be responsible for the differences between the works of Brack and Herring. 
In this sense, the facilitating role of nNOS in cardiac cholinergic regulation was 
demonstrated in rats, dogs and ferrets, but it could not be proven in in vivo studies 
in rabbits or guinea pigs [81], which resonates with Brack’s rabbit heart studies. 
Conversely, the presynaptic regulation of ACh release by NO was demonstrated in 
in vitro studies with guinea pigs [82]. Further work is necessary to determine whether 
NO of neuronal origin acts as a self-contained pathway, independent of the muscarinic 
receptor, or whether it is only a presynaptic facilitator of cardiac parasympathetic 
muscarinic regulation.
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Role of Nitric Oxide as a Modulator of Cardiac Sympathetic 
Effects 

The role of NO in sympathetic regulation at the heart level can occur in the sympa-
thetic postganglionic terminals that come from the sympathetic trunk or at the 
cardiomyocyte level, modulating the activity of the β-adrenergic receptor. 

An inhibitory effect of NO on the release of catecholamines at the cardiac sympa-
thetic terminals was suggested by gene transfer studies of nNOS in postganglionic 
stellate ganglion neurons [36–39]. The modulating capacity of NO on the increase 
in heart rate before sympathetic stimulation was also demonstrated with the use 
of both nonspecific and nNOS-specific inhibitors in the cardiac sympathectomized 
and vagotomized anesthetized rabbit, and in isolated guinea pig atria with intact 
vagus nerves [81]. In pathological conditions with dysautonomia such as arterial 
hypertension, results suggest that the increase in sympathetic tone may be due to 
a loss of the inhibitory effect of the NO-cGMP pathway on the release of nore-
pinephrine in the cardiac postganglionic sympathetic terminals. In hypertension 
models, increased nNOS gene expression in sympathetic neurons restored autonomic 
balance both acutely and in the long term, suggesting future therapeutic potential in 
the management of cardiovascular dysautonomias [76, 83]. 

At the cellular level, many reports have shown that inhibition of NOS induces 
an increase in the chronotropic response to β-agonists at the cellular, myocardial 
tissue, and whole-animal levels [84, 85]. Similarly, experiments using eNOS−/− 
mice in vivo [86] or Langendorff-perfused hearts demonstrated augmented cardiac 
contractility responses to β-agonists [87]. In contrast, the chronotropic response to 
β-adrenergic stimulation was observed in mice with eNOS gene over-expression in 
cardiomyocytes [88]. Some discrepancies in the characteristics of the models and 
experimental conditions used could justify these differences in the role of NO in 
cardiovascular sympathetic modulation. 

Interestingly, in isolated myocytes, NO has been shown to play a role in both 
muscarinic-cholinergic slowing of heart rate and attenuation of the contractile 
response to β-adrenergic stimulation [89]. Additionally, NO also participated in the 
vagal inhibition of the increase of inotropism mediated by β-adrenergic activation 
in in vivo studies [90]. This shows that NO also plays an important role in modu-
lating the sympathetic-parasympathetic interaction, specifically in modulating the 
muscarinic cholinergic inhibition of β-adrenergic cardiac responses. 

As can be seen in previous studies, nNOS and eNOS can mediate independent 
effects on cardiac sympathetic physiological responses. NO inhibits L-type Ca2+ 

channels, but stimulates the release of calcium from the sarcoplasmic reticulum, 
which is why it can generate seemingly contradictory responses on myocardial 
contractility. In other words, the effects of NO will depend on the spatial location 
of specific NOS isoforms [86]. eNOS is located in caveolae, where it compart-
mentalizes with L-type Ca2+ channels and β-adrenergic receptors and, thus, NO 
inhibits sympathetic-induced inotropism. On the other hand, nNOS is related to 
the sarcoplasmic reticulum. There, NO stimulates the release of calcium in the
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sarcoplasmic reticulum via the ryanodine receptor, suggesting that nNOS has a 
facilitating effect on inotropic action, having an opposite effect to that of eNOS 
[86]. 

NO as a Mediator in Autonomic Regulation of the Cardiac 
Conduction System 

In addition to the NO-dependent action of parasympathetic activation on ventricular 
myocardial function, vagal mechanisms dependent on neuronal NO participate in 
the regulation of the conduction system, such as the control of heart rate [91] and 
atrioventricular conduction [92]. The presence of nitrergic and cholinergic/nitrergic 
neurons in the area of the sinoatrial node [41] correlates with the functional capacity 
of NO from nNOS to modulate the vagal response on heart rate [71]. The importance 
of NO in chronotropic function is evidenced by the presence of a greater number of 
nNOS-labeled neurons compared to those that only mark with ChAT, in samples of 
rabbit hearts [41]. Similarly, NO plays a facilitating role for vagal action in reducing 
dromotropism, acting directly on the AV node and independent of heart rate [92]. 

NO as a Mediator in Autonomic Regulation of Coronary 
Flow 

Outside the myocardium and the conduction system, possibly the most studied rela-
tionship between the NO system and the cholinergic pathways is that of the coronary 
vascular endothelium, a substantial source of NO in the heart. Administration of ACh 
to the coronary arteries has a biphasic effect on the vascular response. At low doses, 
ACh generates vasodilation by induction of NO from the eNOS of the endothelium. 
In contrast, high doses of ACh produce a paradoxical effect of vasoconstriction by 
independent direct action of NO on the smooth muscle of the coronary wall [93– 
96]. Interestingly, ACh perfusion-induced vasodilation is blocked by nonspecific 
NOS inhibitors, but not by the specific nNOS inhibitor. Taken together, these data 
suggest that both eNOS and nNOS may be regulated by the cholinergic system, but 
have different origins. ACh perfusion produces NO of endothelial origin (eNOS), 
whereas VS produces NO of nervous origin (nNOS) and independent of endothelial 
function [97, 98]. 

More recent studies have shown that nNOS is expressed in the walls of human 
coronary arteries, more specifically in smooth muscle cells [7], and plays an important 
role in maintaining basal blood flow [99]. Other in vivo studies have also confirmed 
the role of local NO production by nNOS in regulating coronary flow and, further-
more, have shown that coronary vasodilation in response to a pacing-induced increase 
in cardiac workload is exclusively mediated by eNOS-derived NO [100]. Therefore,
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eNOS and nNOS have different local physiological functions in regulating coronary 
vascular tone. While local production of NO by nNOS intervenes in the microvascular 
regulation of basal coronary flow, eNOS responds to ACh and substance P, causing 
vasodilation and increasing coronary flow, which mainly intervenes in response to 
increased demand in situations of stress such as physical exercise or other situations 
that lead to an increase in metabolic demand. 

Conclusion 

Over the past decades, NO has been shown to play an essential role as a mediator 
and modulator of the physiological and pathophysiological neural control of the 
heart. The endogenous neuronal NO of the cardiac parasympathetic system acts in 
a paracrine way on the myocytes or as a facilitator of ACh release in the vagal 
terminals. On the other hand, NO acts as a sympathetic modulator, reducing the β-
adrenergic effect on the increase in heart rate. The loss of endogenous modulation 
of NO on the cardiac nervous system observed in various cardiovascular pathologies 
facilitates the development of dysautonomias with sympathetic hyperactivity and 
loss of parasympathetic tone, which is deleterious for the evolution of the patient. 
Experimental studies showed that the increased expression of NOS in pathological 
hearts favors the restoration of autonomic balance. In turn, NO participates in the 
protection mediated by techniques that increase parasympathetic tone, such as remote 
conditioning or vagal stimulation. 
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Chapter 5 
Exercise Induced NO Modulation 
in Prevention and Treatment 
of Cardiovascular Diseases 

Ivan M. Srejovic, Vladimir I. Zivkovic, Tamara R. Nikolic Turnic, 
Aleksandra B. Dimitrijevic, and Vladimir Lj. Jakovljevic 

Abstract Many aspects of modern life, including lack of physical activity, contribute 
to the primacy of cardiovascular disease as a cause of death worldwide. Endothelial 
dysfunction is recognized as initial step in occurrence of a variety of cardiovas-
cular disorders, wherein the reduced production of nitric oxide (NO) represents the 
pathogenetic basis of endothelial dysfunction. Various therapeutic approaches aim 
to increase NO production or to enhance some of the downstream NO signaling 
cascades. Exercise training is found to be effective modulator in NO synthesis, and 
thus potential tool in prevention and treatment of cardiovascular diseases. Results 
from many authors indicated that exercise training could be protective procedure 
in altering cardiovascular risk factors such as hypertension and atherosclerosis, and 
therapeutic maneuver in cardiovascular diseases such as coronary artery disease, 
stroke and heart failure. Exercise training increases NO production through several 
mechanisms, including increase in nitric oxide synthase (NOS) expression, phospho-
rylation and activity, reduction of oxidative stress, which take place in different cells 
and tissues. We aimed to present some of the mechanisms involved in increased NO
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bioavailability by exercise training, as well as NO mechanisms of action in cardio-
vascular protection. Physical activity, applied as non-pharmacological therapeutic 
approach, may be useful in many ways in the prevention and treatment of cardio-
vascular disorders, if adequate modality of physical activity is used and if it is dosed 
correctly. 

Keywords Nitric oxide · Exercise training · Nitric oxide synthase · Cardiovascular 
disease · Endothelium 

Nitric Oxide and Exercise 

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality 
worldwide regardless of the economic status and development of the country [1, 2]. 
Given that human genome has not been significantly changed in the last 50 millennia, 
the basic anatomical and physiological constants remained unchanged [3]. Dramatic 
changes in life habits in the last century, and even more in last decades, reduced phys-
ical activity and favored sedentary lifestyle. Body functions and overall metabolism 
are adapted for preserving energy due to limited sources of food in the history, and 
further to physical activity needed for food seeking [4]. Due to above fact, there is 
large gap between energy intake (food) and energy consumption (physical activity) 
nowadays. Sedentary lifestyle, characterized by low level of physical activity, is 
recognized as one of the leading contributors of development and progression of 
CVD. On the other hand, it was shown that physical activity and proper exercise 
dramatically reduces predisposition for CVD occurrence and increases overall well-
being [5]. Evan slight increase in cardiorespiratory fitness is associated with signif-
icant reduction of CVD mortality [6], while the sedentary behavior was related to 
reduced cardiorespiratory fitness, defined as ability of cardiovascular and respiratory 
systems to supply enough oxygen to skeletal muscles during physical activity. 

Many aspects of cardiovascular homeostasis may be altered in occurrence of 
CVD. Systolic and diastolic function of the heart refers to myocardial contractility 
and relaxation, while the vascular function mostly relay to the endothelial function 
and arterial stiffness [5]. Endothelium is one of the key determinants of vascular 
homeostasis due to regulation of vasodilation and subsequent reduction of mechan-
ical damage due to shear stress, decrease of vascular permeability and limitation of 
leukocyte interaction to the walls of the blood vessels [7]. Despite the confirmed and 
obvious beneficial effects of physical activity on cardiovascular health, the precise 
mechanisms underlining CVD prevention by frequent exercise are not fully under-
stood. But research data by others and us highlighted nitric oxide (NO) as one of the 
key mediators in regulation and maintaining of cardiovascular homeostasis [8, 9]. 

Somewhat contradictory research results concerning the impact of physical 
activity on NO production and cardiovascular health could be assigned to modality 
and intensity of physical activity. We showed that NO production (measured through
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nitrite (NO2
−) outflow) increases at the beginning of the exercise training in profes-

sional athletes [10]. But increase of exercise intensity led to decrease of plasma level 
of NO2

− and superoxide anion radical (O2
−), suggesting the role of ROS in NO 

inactivation. Furthermore, NO bioavailability seems to be in positive correlation with 
maximal oxygen consumption (VO2max) [11]. Shunting between aerobic and anaer-
obic metabolism appears to be important determinant in signal transduction related 
to O2

− and NO. Another study showed significant increase of NO2
− outflow after 

professional handball training, compared to the graded exercise test [12]. Comparing 
the NO production in athletes and non-athletes upon exercise training, we showed that 
athletes had significantly higher levels of NO and lower levels of O2

− [13]. Increased 
capacity to inactivate ROS, mainly due to increased SOD activity, in athletes appears 
to be important contributor in NO signaling. 

We aimed to review the effects of changes of NO production in CVD occurrence 
as well as to reveal the possibility of altering NO synthesis by exercise training. 
Exercise training, in accordance with the carefully planned intensity and type, could 
be crucial non-pharmacological method in prevention and treatment of CVD. 

Nitric Oxide Synthases 

By its chemical characteristics NO belongs to the free radicals and reactive species. 
Compared to the other reactive species, NO is more stable, moderately reactive, with 
longer half-life in cellular surrounding [14]. NO is small and hydrophobic molecule, 
thus easily diffusible through cellular membranes [15]. Given that it may interact with 
plethora of molecules resulting in production of variety bioactive compounds, NO 
affect various signaling pathways and produce many biological effects. Considering 
all properties of NO, it can be appraised as one of the most versatile signaling 
molecules [14, 16]. Three decades of investigations, since discovery of endogenous 
NO and its effects in vascular regulation, showed that biological effects of NO can 
be exerted by its reactions with specific target molecules or through the generation 
of secondary reactive species formed downstream from NO. Beside the role of NO 
as a second messenger in three systems of the body – cardiovascular, immune and 
neuronal, now it is known that NO is involved in regulation of various functions such 
as orchestration of gastrointestinal peristaltic activity, skeletal muscle metabolism, 
insulin secretion, etc. [17–20]. 

Most of the endogenous NO is created through catalytic activity of three isozymes 
of nitric oxide (NO) synthase (NOS) (EC 1.14.13.39) – neuronal (nNOS), inducible 
(iNOS) and endothelial (eNOS) or NOS1, NOS2 and NOS3, respectively [21, 22]. 
Initially nNOS and eNOS were considered as constitutive forms of NOS involved 
in the synthesis of small (physiological) amounts of NO due to Ca2+ dependent 
regulation. On the other hand, it was believed that iNOS activity and NO production 
is not Ca2+ regulated and depends on induction by endotoxins or pro-inflammatory 
cytokines [23]. More recent data indicated that expression of the constitutive forms
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of NOS, nNOS and eNOS, may be affected by various factors, as well as that iNOS 
may be constitutively expressed in various tissues [24–26]. 

All NOS contain haem and bind calmodulin. Also, all three NOS utilize L-
arginine as the substrate, and molecular oxygen and NADPH (reduced nicotinamide-
adenine-dinucleotide phosphate) as co-substrates [26]. Further, FAD (flavin adenine 
dinucleotide), FMN (flavin mononucleotide) and BH4 ((6R-)5,6,7,8-tetrahydro-L-
biopterin or tetrahydrobiopterin) serve as cofactors for all NOS isoform [21]. The 
process of NO synthesis involves two-step oxidation of L-arginine to L-citrulline. 
In the first reaction L-arginine is hydroxylated to Nω-hydroxy-L-arginine (NOHA), 
an intermediate compound which remains largely bound to the NOS, while in the 
second reaction NOHA is oxidated to L-citruline and NO [27] (Fig. 5.1). All NOS 
isoenzymes bind calmodulin. It was shown that Ca2+ increase in the cytoplasm and 
subsequent binding of calmodulin to NOS, changes conformational state of these 
NOS isoforms and facilitate their catalytic activity [28, 29]. In the case of iNOS, 
calmodulin controls post-translational assembly of the enzyme, enabling formation 
its stable and active form [30]. 

NO, generated through NOS activity, appears to be the regulator of NOS activity. 
Binding of NO to NOS amino acid residues and consequent S-nitrosylation leads 
to reversible NOS inhibition [31]. Availability of L-arginine appears to be one of 
the key determinants in limiting NOS activity [32, 33]. There are several suggested 
mechanisms involved in activation and inactivation of NOS. It is well documented 
that exercise may increase expression of NOS and thus increase production of NO. 
Physical activity mediates in increased NO secretion through several mechanisms, 
involving mechanical, humoral, and metabolic factors, and thus affects many aspects

Fig. 5.1 Synthesis of nitric oxide and related products. Legend: BH4—tetrahydrobiopterin; FAD— 
flavin adenine dinucleotide; FMN—flavin mononucleotide; NADP+—nicotinamide adenine dinu-
cleotide phosphate; NADP – reduced nicotinamide adenine dinucleotide phosphate; NO—nitric 
oxide; NOS—nitric oxide synthase. Figure was created using BioRender.com 
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of cardiovascular homeostasis [34, 35]. One of the molecular links between exer-
cise and increased production of NO is hydrogen peroxide (H2O2) [36]. Recently it 
was shown that enzyme myeloperoxidase can activate eNOS via phospholipase C-
dependent Ca2+ signaling and consequent changes in eNOS phosphorylation status 
[37]. Phosphorilated form of eNOS (1177 serine residue) is active form of enzyme 
and assessment of eNOS phosphorylation is usually used as indicator of eNOS acti-
vation [38, 39]. Exercise induced production of NO represents one of the possible 
explanations or part of the mosaic of exercise induced cardiovascular protection. 

Increased production of NO in pro-oxidant environment could result in formation 
of various reactive nitrogen species (RNS), thus provoking damaging of biolog-
ical structures. The reaction between NO and superoxide anion radical (O2

−) to  
produce peroxynitrite (ONOO−) is one of the best known reactions in RNS forma-
tion [40]. Participation of ONOO− in direct and indirect oxidation reactions result in 
protein tyrosine nitration and consequent changes in protein structure, DNA damage, 
generation of secondary reactive species, creating all together nitrosative stress. 

Nitric Oxide—Mechanism of Action 

NO synthesized in endothelial cells through NOS metabolic activity diffuses into 
tunica media and vascular smooth muscle cells where it activates soluble guanylyl 
cyclase (sGC). Binding of NO to the heme segment of sGC increases production 
of cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP) 
which mediates relaxation [41]. The level of cGMP and tone of vascular smooth 
muscles depend on precise balance between cGMP production by sGC and cGMP 
degradation by phosphodiestrase (PDE). cGMP activates protein kinase G (PKG), 
which catalyzes phosphorylation of different proteins involved in vasodilatation and 
regulation of smooth muscle tone, such as myosin light chain and ion channels. 
cGMP may also activate cyclic-nucleotide gated ion channels [42]. Overall changes 
enhance relaxation of vascular smooth muscles and increment of vascular velocity 
(Fig. 5.2).

Nitric Oxide and Cardiovascular System 

Most of the NO synthesized in the cardiovascular system (CVS) originates from 
catalytic activity of eNOS given this form of NOS is predominantly expressed in 
endothelial cells and some other cell types important for maintaining cardiovascular 
homeostasis, such as cardiomyocytes, erythrocytes, platelets, kidney tubular epithe-
lial cells [21, 43]. Activation of eNOS in the vasculature and consequent production of 
NO can be enhanced by several stimuli such as shear stress, acetylcholine, bradykinin 
or histamine [44–47] (Fig. 5.3).
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Fig. 5.2 Regulation of vascular smooth muscle tone by endothelium-derived NO. Various factors, 
including increased shear stress and neurohumoral mediators, via specific receptors located 
on endothelial cell membrane activate endothelial nitric oxide synthase and increase produc-
tion of nitric oxide. Legend: ATP—adenosine triphosphate; B—bradykinin receptor; GTP— 
guanosine triphosphate; H1—histaminergic 1 receptor; NO—nitric oxide; NOS—nitric oxide 
synthase; M—muscarinic receptor; MLC—myosin light chain; PGI2—prostacyclin; PKG—protein 
kinase G; PI—prostacyclin receptor; P2Y2—purinergic P2Y2 receptors; sGMP—cyclic guanosine 
monophosphate; sGC—soluble guanylyl cyclase. Figure was created using BioRender.com

Shear stress induces eNOS activation through several endothelial surface 
molecules such as glypican-1, syndecan-1 or heparan sulfate which are probably 
anchored near eNOS residues [48]. Integrin-linked kinase (ILK) as mechanosensor 
sensitive to shear stress regulates eNOS activity and NO production. ILK dele-
tion induced eNOS uncoupling followed by decreased bioavailability of NO and 
increased production of O2

− [49]. Namely, although synthesized as monomers, eNOS 
molecules has to create homodimers to produce NO, in monomeric form they can only 
produce O2

−. It is also showed that shear stress mediates increase of erythrocyte NO 
production [50]. Exposure of erythrocytes to shear stress resulted in increase of intra-
cellular Ca2+, NOS phosphorylation and enhancement of NO production. Physical 
activity, regardless vasodilatation, significantly increases shear stress. It is estimated 
that increased cardiac output and blood flow through the arteries induced by moderate 
exercise result in tenfold increase of shear stress in abdominal aorta [51]. There are 
several postulated pathways involved in augmentation of erythrocyte NO synthesis 
due to increased shear stress induced by exercise including pannexin-1, mechanosen-
sitive non-selective cation channels Piezo1 and cytoskeletal protein spectrin [52]. 
Physical activity is recognized as important mechanism for CVD risk reduction in 
advanced age, due to improving of NO synthesis by regular exercise and enhanced 
endothelium-dependent dilation in elderly [53]. Shear stress and physical activity 
increases production of ROS in endothelial cells, which in small concentrations act
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Fig. 5.3 Increase of nitric oxide production in endothelial cells and erythrocytes. Many factors 
mediate increased synthesis of nitric oxide creating complex milieu which can be differently affected 
by physical activity. Legend: ATP—adenosine triphosphate; B—bradykinin receptor; ER—endo-
plasmic reticulum; H1—histamine 1 receptor; Hb—hemoglobin; H2O2—hydrogen peroxide; NO— 
nitric oxide; NO2

−—nitrites; eNOS—endothelial nitric oxide synthase; Er-eNOS—erythrocyte 
endothelial nitric oxide synthase; M—muscarinic receptor; O2

−—superoxide anion radical; P— 
phosphate; PGI2—prostacyclin; P2Y2—purinergic P2Y2 receptors; SOD—superoxide dismutase. 
Figure was created using BioRender.com

as signaling molecules which further increase NO production. Underlining mech-
anism includes exercise-induced activation of superoxide dismutase (SOD) which 
catalyses dismutation of O2

− to H2O2. H2O2 diffuses through the vascular wall and 
increases production of NO by activation of eNOS [54, 55]. 

Acetylcholine binds to G-protein coupled muscarinic receptors resulting in 
transient increase of intracellular Ca2+ which increases production of NO 
(Fig. 5.3), endothelium-derived hyperpolarizing factor (EDHF) and eicosanoids 
[56]. Comparing the functional and structural features of the femoral arteries from 
trained and sedentary rats it was shown that training increases acetylcholine-induced 
relaxation and bioavailability of NO [57]. Increased NO production aroused as a 
consequence of higher eNOS expression, decreased microRNA (miRNA)-124a and 
miRNA-155 and the posttranslational eNOS phosphorylation. Furthermore, other 
study shown that exercise significantly improves acetylcholine-induced vasodilata-
tion in ovariectomized hypertensive rats [58]. Vasodilatation was absent due to 
sodium nitroprusside stimulation, suggesting that vasodilatation was endothelium 
dependent, and NOS inhibition, implying the acetylcholine and NO interaction. 
Results of the study assessing the effects of 2 week immobilization of one leg
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on microvascular function showed that acetylcholine-induced change of vascular 
conductance was significantly reduced compared to control, not immobilized, leg 
[59]. Interestingly, eNOS protein level in skeletal muscles of immobilized leg 
did not change significantly, suggesting variations in NO secretion rather than in 
eNOS expression. Investigation of the effects of exercise in experimental model of 
familial hypercholesterolemia (LDL receptor (LDLr) deficient mice) showed that 
acetylcholine derived endothelium-dependent relaxation was preserved in trained 
LDLr(−/−) mice compared to the sedentary [60]. Such results indicate prophylactic 
effects of physical activity in the prevention of early endothelial dysfunction due to 
hypercholesterolemia, as one of the most common risk factor in CVD occurrence. 

Bradykinin is derived from larger molecule kininogen by proteolytic enzymatic 
action of kallikrein in plasma [61]. Vascular effects of bradykinin are mediated 
through two G-protein-coupled receptors, B1 and B2 (Fig. 5.3). Binding of bradykinin 
to its receptors results in NOS activation and enhanced NO production [61]. Training 
enhanced bradykinin mediated coronary vasodilatation of healthy and ischemic 
hearts of Yucatan pigs [62]. Also, isolated coronary arteries from both control 
and ischemic hearts of trained animals showed prolonged vasodilatation induced 
by bradykinin, which was abolished by NOS inhibition. Thus, physical activity 
improves endothelium-mediated bradykinin vascular relaxation via increased Ca2+ 

signaling and NO production. Another, similar study showed that exercise signif-
icantly increases NO production triggered by bradykinin [63]. Bradykinin also 
induced increased secretion of prostacyclin (PGI2), as potent vasodilatory mediator. 

Binding of histamine to endothelial histamine 1 (H1) receptors, which belong to 
Gq-protein coupled receptors, results in activation of phospholipase C and mobiliza-
tion of intracellular Ca2+ [64] (Fig. 5.3). Increase of intracellular Ca2+ induces eNOS 
activation and NO production. Blocking of H1 receptors or histidine decarboxylase 
(HDC), an enzyme that catalyzes histamine synthesis, reduced endurance in mice 
[65]. Application of H1 receptors in the same time reduced NO availability. On the 
other hand, exercise in mice provoked increased amount of HDC mRNA, as well as 
increased activity of HDC in quadriceps femoris muscles. 

Erythrocyte Derived NO and Exercise 

NO also may be produced in erythrocytes through non-enzymatic reaction from 
nitrites (NO2

−) under catalytic orchestration of deoxyhemoglobin (the nitrite reduc-
tase hypothesis) especially under hypoxic conditions [52]. Erythrocytes may be 
considered as reservoir of NO-associated metabolites which can provide NO medi-
ated vasodilatation in hypoxia when eNOS activity is compromised [66, 67]. 
Decreased saturation of hemoglobin with oxygen between 40 and 60% provides 
maximal NO production rate from NO2

− [68] (Fig. 5.3). S-nitrosohemoglobin (SNO-
Hb), compound aroused from reaction between NO and hemoglobin was first recog-
nized as bioactive NO-metabolite in non-enzymatic NO production [69]. Measure-
ment of NO metabolites in plasma and erythrocytes from cerebral and leg arteries
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and veins at resting, hypoxia and physical activity showed increased consumption 
of nitrites [70]. The authors indicated that increased NO2

− consumption during 
exercise was accompanied with increased formation of iron nitrosyl hemoglobin 
(HbFeNO), but the increased formation SNO-Hb was not observed. Precise mech-
anisms mediating non-enzymatic NO synthesis in erythrocytes remain speculative 
due to variations in understanding of hemoglobin chemistry and allostery. 

Another mediating mechanism in erythrocyte control of blood flow implies the 
release of ATP from erythrocytes into the blood. Although lacking in mitochondria, 
ATP synthesis occurs in erythrocytes through glycolytic pathways [71]. Erythrocyte 
ATP release occurs upon increased mechanical deformation of erythrocytes, acidity, 
CO2 concentration or temperature [72–75]. Released ATP binds to purinergic recep-
tors (probably P2Y2) on the surface of the endothelial cells and initiating Ca2+ release 
and eNOS activation [76, 77] (Fig. 5.3). Increased shear stress induced ATP release 
from erythrocytes in significantly higher amount in comparison to the endothelial 
cells [78]. Increased shear stress induced by perfusion of blood vessels with full 
blood enabled sufficient Ca2+ influx into the endothelial cells to increase enough 
NO production. Conversely, shear stress of endothelial cells induced by perfusion 
with erythrocyte-free solutions increased endothelial NO production, but failed in 
endothelial Ca2+ increase. Within the same research it was shown that shear stress-
induced Ca2+ influx into endothelial cells was mediated through erythrocytes ATP 
release via pannexin-1 channel [78]. 

It also known that erythrocytes contain functional eNOS (Er-eNOS) localized in 
the plasma membrane and the cytoplasm [79]. The Er-eNOS activity is conditioned 
by availability of L-arginine as a substrate, by Ca2+ concentration and phosphoryla-
tion status. Er-eNOS activity is important in regulation of erythrocyte deformability 
and functionality, as well as in inhibition of platelets activation [80]. Supporting the 
role of Er-eNOS in regulation of vascular homeostasis it was shown that moderate 
physical activity increases phosphorylation of Akt kinase and Er-eNOS, suggesting 
their increased activity and Er-eNOS activation via Akt kinase [81] (Fig. 5.3). 
The NO release by Er-eNOS was also increased after moderate exercise, as well 
as downstream NO/cGMP signaling cascade. Erythrocytes conditioned with shear 
stress preserved deformability and Er-eNOS phosphorylation upon exposure to O2

− 
[82]. Increased oxidative stress decreases erythrocyte deformability and Er-eNOS 
activity due to impaired Akt kinase activity. Such results suggest protective mech-
anism of exercise and increased shear stress. Still, there are some inconsistent 
conclusions regarding the effects of intensive training on Er-eNOS activity. Suhr 
and colleagues showed that intensive physical activity induces down-regulation of 
Er-eNOS and subsequent decrease in NO production and erythrocyte deformability 
[83]. Koliamitra and coauthors showed that only high intensity training, in compar-
ison to the high volume training and moderate intensity training, was able to increase 
Er-eNOS mediated NO production [84]. 

Taking altogether it can be concluded that erythrocytes are important sources, 
carriers and scavengers of NO thus affecting blood rheology and physiological 
features of vasculature. Exercise induced changes of rheological properties of the 
blood strongly suggest the important role erythrocyte-mediated secretion of NO in
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vascular regulation and complex relationship between erythrocytes, endothelial cells, 
NO production and modality of physical activity. 

Neuronal Nitric Oxide Synthase in Cardiovascular System 
and Physical Activity 

Neuronal NOS (nNOS), first discovered in 1990 upon its neuronal isolation, poses 
many important roles in regulation of various neurological functions [85]. Beside 
nervous system nNOS appears to be important mediator in regulation of non-neural 
cells and tissues including CVS [86]. Cardiac nNOS appears to be important regu-
lator of Ca2+ handling and basal cardiac contractility [87]. Deletion of nNOS, as well 
as its pharmacological inhibition, resulted in increased Ca2+ influx and basal contrac-
tion in isolated cardiomyocytes and myocardium in vivo. Similarly, contraction of 
nNOS(−/−) cardiomyocytes were higher in basal state and due to beta-adrenergic 
stimulation with isoproterenol compared to wild type (WT) [88]. Underlining mech-
anism implies enhancing effects of NO generated from nNOS on Na+/K+ ATP-ase 
activity and thus indirectly advanced activity on Na+/Ca2+ exchanger located on 
sarcoplasmic reticulum membrane [89]. Furthermore, nNOS derived NO activates 
guanylate cyclase and cGMP/protein kinase G (PKG) cascade resulting in inhibition 
of L-type Ca2+ channels and decrease of Ca2+ influx [90, 91]. 

Beside predominant role of eNOS in NO production in the vasculature, nNOS is 
also present in various cells present in blood vessels. nNOS significantly contributes 
to regulation of vascular tone, vasodilatation, vascular conductance and blood flow 
[92–94]. Seddon and coauthors implicated divergent roles of eNOS and nNOS 
derived NO in regulation of human microvascular tone [95]. Application of selective 
nNOS inhibitor S-methyl-l-thiocitrulline (SMTC) resulted in significant reduction in 
basal blood measured by venous occlusion plethysmography. Interestingly, SMTC 
did not affect eNOS mediated arterial vasodilatation induced by acetylcholine. Simi-
larly, nNOS blockade by SMTC also induced significant reduction of coronary blood 
flow in patients subjected to cardiac catheterization [96, 97]. This selective inhibition 
of coronary nNOS and reduction in blood flow, measured by intracoronary Doppler 
and angiography, had no effects on coronary vasodilatation induced by substance 
P. Production of NO by nNOS in blood vessels is also important in regulation of 
newborn kidneys circulation [98]. Administration of SMTC into renal artery of new 
born piglets induced significant reduction of blood flow and glomerular filtration 
rate combined with increase of vascular resistance in renal vascular bed. The effects 
of eNOS blockade by L-nitro-arginine methyl ester (L-NAME) were similar, but in 
the adults only L-NAME had effect on circulatory dynamics. SMTC also induced 
increase of mean arterial pressure and decrease of skeletal muscle and renal blood 
flow in rats [99]. 

Physical activity, as well as application of tempol, metal-independent superoxide 
dismutase (SOD) mimetic, induced increased expression of eNOS and nNOS in the
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aorta and kidney of the spontaneously hypertensive rats (SHR) and their normoten-
sive controls [36]. Exercise induced increase of SOD activity and increased produc-
tion of H2O2 stimulated augmentation of NO production. Aerobic exercise induced 
increased expression of β3-adrenergic receptors (β3AR), activation of cardiac nNOS 
and NO outflow in experimental model of transverse aortic constriction induced heart 
failure [100]. Protective role of β3AR-NOS interaction in cardiovascular pathophysi-
ology was previously shown on transgenic mouse model expressing the human β3AR 
in cardiomyocytes [101]. Increased activation of nNOS by β3AR results in cGMP 
increase and PCG signaling with pleiotropic protective effects on CVS [102]. Further-
more, aerobic exercise resulted in increased activity of cardiac SOD and decreased 
production of heart ROS. Such results imply the involvement of β3AR-nNOS-NO 
signaling cascade in exercise mediated cardioprotection. It was also shown that low-
intensity resistance training also induced increase of eNOS and nNOS protein expres-
sion in mesenteric artery of trained rats [103]. Exercise mediated nNOS protection 
in cardiovascular system is unquestionably at least partly based on augmentation of 
antioxidative potential [104]. Physical activity induced nNOS driven positive shift in 
the nitroso-redox balance. Altogether, nNOS/NO aroused as complex and important 
mediator in maintaining of cardiovascular homeostasis which may be altered by phys-
ical activity. Assessing the changes in nNOS/NO signaling due to different models 
modalities of physical activity could further clarify the interconnection between 
nNOS and exercise in cardioprotection. 

NO, Exercise and Cardiovascular Diseases 

Hypertension 

Hypertension is the most common chronic non-communicable disease which signif-
icantly increases risk for development of serious cardiovascular disorders including 
coronary artery disease, congestive heart failure, stroke, kidney insufficiency. Several 
clinical and experimental investigations dealt with the effects of exercise on NO 
synthesis and reduction of blood pressure in hypertensive patients. Comparing the 
two modalities of exercise, moderate-intensity continuous training (MICT) and high-
intensity interval training (HIIT) it was shown that patients in both groups showed 
increased NO release and improvement in flow-mediated dilation, but these bene-
fits were more pronounced in HIIT group [105]. Similarly, it was shown that HIIT 
increases nitrite/nitrate followed by decrease in blood pressure of hypertensive older 
individuals [106]. Contrary to these results, experimental study conducted on SHR 
indicated beneficial effects of MICT compared to the HIIT [107]. Assessing the 
capacity of MICT and HIIT in treatment of detrimental changes in endothelial ultra-
structure and function induced by hypertension it was shown that MICT increased 
NO bioavailability and decreased oxidative damage. Such effects of MICT reversed 
remodeling of endothelial function and ultrastructure. HIIT had opposite effects due
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to increased production of ROS and decreased synthesis of NO. Another clinical 
investigation showed that submaximal isometric exercise session involving large 
muscle mass induced significant increase of NO outflow and reduction of blood 
pressure in hypertensive patients [108]. These effects on NO and blood pressure 
were followed by decrease in TBARS values as measurement of oxidative stress, and 
increase in catalase (CAT) activity as measurement of antioxidative capacity. Regular 
exercise increases expression of eNOS, tissue inhibitor of matrix metalloproteinases 
2 (MMP-2), connexin 43 (Cx43) and extracellular superoxide dismutase-3 (SOD-3) 
in hypertensive patients [109] (Fig. 5.4). Hypertensive individuals improved eNOS 
expression and antioxidative capacity by regular physical activity. Assessment of 
the effects of heated water-based exercise on resistant hypertension showed that 
exercise succeeded to decrease systolic and diastolic blood pressures [110]. Simul-
taneously, NO level was increased while endothelin-1, rennin and norepinephrine 
were decreased. 

Mediation of melatonin through MT2 melatonin receptor in exercise induced NO 
increase indicated possibly new mechanism of increasing of NO bioavailability [111]. 
Exercise induced reduction of blood pressure in SHR was diminished by application 
of melatonin receptor antagonist. Furthermore, hypertension induced decrease of 
MT2 and eNOS co-localization in endothelial cells, but exercise induced restoration 
of their co-localization. Such results indicate potential activation of eNOS via MT2. 
Another study showed that melatonin was able to decrease blood pressure in rats with 
metabolic syndrome, while eNOS and nNOS protein expressions were unchanged 
in heart and aorta, but increased in brain cortex and cerebellum [112]. 

Exercise training applied in various protocols exerted beneficial effects on 
menopausal hypertension through changes in NO handling [113]. One of the studies

Fig. 5.4 Protective effects of exercise training in prevention and treatment of cardiovascular 
diseases. Figure was created using BioRender.com 
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showed aerobic exercise in duration of eight weeks induced significant increase 
in plasma nitrite/nitrate, as measurement of NO outflow, and decrease in of systolic 
blood pressure [114]. Another study assessing the effects of the same training process 
indicated similar effects [115]. The plasma values of nitrite oxide, reflecting NO 
synthesis, and cGMP were significantly improved by physical activity. Combina-
tion of aerobic and resistance exercise training also increased NO production and 
decreased systolic blood pressure, but such combination of exercise modalities seems 
to be less efficient compared to the aerobic exercise in postmenopausal hypertensive 
women [116]. Comparing the effects of resistance training and power training in older 
women showed that both estimated types of physical activity induced increased NO 
outflow combined with hypotensive and bradicardic effects, respectively [117]. 

Preeclampsia (PE) represents complex hypertensive disorder of pregnancy in 
which hypertension develops suddenly, de novo after 20 weeks of gestation and 
is usually (but not necessarily) combined with proteinuria [118]. The pathogenesis 
and etiology of PE are not fully understood, but several mechanisms involved in 
PE onset are recognized. The main cause of abnormal placentation and endothe-
lial dysfunction, underlining the PE development, is reduced bioavailability of NO 
[118]. Decreased availability of NO disrupts sinthesis of vascular endothelial growth 
factor (VEGF) resulting in disturbed maternal-placental circulation [119]. One of 
the dominant mechanisms in reduction of NO availability is oxidative stress due 
to augmented production of ROS in PE [120]. Increased ROS results in eNOS 
uncoupling and reduced NO synthesis combined with increased O2

− production. 
In the same time, increased O2

− production additionally reduces NO through the 
formation of ONOO− [40]. Assessing the effects of combined aerobic and resistance 
exercise training during pregnancy it was shown that such physical activity lead to 
increased placental expression of eNOS, and even more robust increase in NO avail-
ability [121]. Such increase in NO production was accompanied with decrease of 
O2

− and H2O2 production rate in the placental mitochondria. Meta-analysis of 17 
trials showed that 30–60 min of aerobic exercise two to seven times per week applied 
during pregnancy significantly reduced risk of gestational hypertension and cesarean 
delivery [122]. Another meta-analysis confirmed such conclusion suggesting that 
exercise training could reduce the occurrence of gestational hypertension in over-
weight pregnant women [123]. Conversely, other authors showed that changes in diet 
and increased exercise failed to reduce the risk of PE in overweight or obese preg-
nant women [124]. There lot of unknowns and doubts in pathogenesis of gestational 
hypertension and PE, but the importance of nitric oxide in maintaining physiological 
pregnancy is unquestionable, and physical activity can only be beneficial. 

Regular physical activity and downstream increase in NO bioavailability repre-
sents powerful tool in the treatment of hypertension and related cardiovascular 
disease (Fig. 5.4). Future investigations will probably focus on individual approach 
in exercise treatment of hypertension, in search of a model of physical activity that 
will achieve the most desirable effect in a particular patient.
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Atherosclerosis, Coronary Artery Disease, Stroke 

Atherosclerosis is characterized by chronic inflammation of the tunica intima and 
tunica media of the medium and large arteries. Endothelial dysfunction is recognized 
as one of the first steps in atherosclerosis development. Atherosclerotic complications 
and related cardiovascular disorders, such as coronary artery disease (CAD) and 
stroke, remain the leading causes of death worldwide. Enormous scientific effort 
has been dedicated to finding novel therapeutic advantages in treatment of these 
conditions and improvement of disease outcome. Due to proved beneficial effects 
of exercise on NO synthesis and consequent reduction of CVD risk factors, several 
experimental and clinical investigations dealt with possible application of physical 
activity, as non-pharmacological healing maneuver, in reduction of atherosclerotic 
complications. 

Results of the clinical study aimed to assess the effects of exercise on eNOS 
expression and Akt-dependent eNOS phosphorylation in patients with sable CAD 
showed exercise mediated improvement of vasodilatory capacity [125] (Fig. 5.4). The 
changes were investigated in left internal mammary artery due to response to acetyl-
choline, and exercise was followed with significant improvement of acetylcholine-
induced vasodilatation compared to control, sedentary patients with stable CAD. 
Furthermore, changes in vasodilatative response were mediated by exercise induced 
increase of shear stress was followed with higher eNOS expression, Akt and eNOS 
(Ser1177) phosphorylation. Exercise was also able to increase the pool of circulating 
endothelial progenitor cells in patients with stable CAD and reduce their apoptosis 
[126]. Experimental part of the same study showed that training-induced increase of 
endothelial progenitor cells in mice was NO mediated. Namely, the increase of circu-
lating endothelial progenitor cells after physical activity was significantly attenuated 
in eNOS deficient mice, as well as after application of L-NAME as eNOS inhibitor. 
Augmentation of NO production was followed by increased production of VEGF and 
decreased apoptosis of endothelial progenitor cells in trained mice. Similar results 
were obtained in patients with metabolic syndrome [127]. Eight week of exercise 
training improved endothelium-dependent vasodilation and NO availability, as well 
as capacity of endothelial progenitor cells in NO production. Transplanted endothe-
lial progenitor cells of trained subjects to into nude mice with carotid endothelial 
injury showed increased endothelial repair capacity. Physical activity significantly 
improved endothelial recovery in LDLr(−/−) mice fed for six weeks with a high-
fat diet [128]. The exercise training conducted two weeks before and four weeks 
after arterial injury exhibited the most protective effects, including increase of eNOS 
expression, promoting endothelial cell growth and inflammation decrease. 

The measurement of plasma NO2
−, as major oxidation product of NO, showed 

significant increase in patients suffering from peripheral arterial disease (PAD) after 
three months of exercise training [129]. Increase in NO2

− flux was accompanied 
with reduction of disease symptoms such as claudication onset pain time and peak 
walking time. Another study, including 442 patients with stable intermittent clau-
dication, showed that treatment with NO-donor drug for 6 months significantly
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reduced progression of atherosclerosis in patients [130]. Studies of similar design 
showed that supplementation with inorganic nitrate, as NO donor, lasting for eight 
weeks significantly improved NO production, blood flow and pressor response due 
to moderate exercise in PAD patients [131, 132]. Acute resistance exercise also 
increased production of NO, blood flow and reactive hyperemia in patients with 
PAD [133]. 

Diabetes mellitus type 2 (DM2) could be the limiting factor in desirable effects of 
exercise training in patients with PAD [134]. In patients suffering from the DM2 and 
PAD physical activity failed to achieve improvements in endothelial functions and 
NO production in comparison to the patients suffering from PAD only. Such results 
indicate possibility of reduced ability of endothelium to increase production of NO 
outflow during exercise in DM2 patients. On the other hand, it was shown that low 
volume HIIT lasting for 12 weeks significantly increased the plasma nitrite/nitrate 
level and flow-mediated dilatation in DM2 patients [135]. 

The intensity of physical activity could be important seesaw factor that determines 
the effects on CVS. Graduated and moderate swimming exercise induced increase 
of NO production and reduction of atherosclerotic lesions in hypercholesterolemic 
mice [136]. L-arginine supplementation combined with training elicited the most 
pronounced protective effect. Results of another study also showed that swimming 
training significantly reduced formation of atherosclerotic plaques via NO in experi-
mentally induced atherosclerosis [137]. Apolipoprotein-E (apoE)-deficient mice fed 
with high-fat diet underwent swimming exercise training, 3 times per weeks for 
8 weeks. Exercise decreased formation of fatty streak plaque lesions and increased 
expression of eNOS. The involvement of NO in protective effects of swimming 
training against development of atherosclerosis was confirmed by application of L-
NAME in trained animals. Trained mice treated with eNOS blocker L-NAME devel-
oped atherosclerotic lesions, and expression of eNOS was also suppressed. Study 
of similar methodological approach showed that attenuation of atherosclerosis in 
apoE(−/−) mice by swimming training was also mediated by reduction of oxidative 
damage and production of ROS which were mediated by increased NO produc-
tion [138]. Another study indicated possibility that swimming exercise increases the 
sensitivity to acetylcholine induced vasodilatation and extends the signaling actions 
of NO [139]. 

Experimental data indicated that aerobic exercise improves collateral circulation 
of the brain and prevents loss of pial collaterals due to increased expression of 
eNOS in aged mice [140]. Enhanced brain collateral circulation reduced infarct 
size induced by ligation of middle cerebral artery. Similarly, exercise significantly 
improved cerebral blood flow, endothelium-dependent vasorelaxation ad reduced 
infarct size in trained mice [141]. In the eNOS(−/−) mice neuroprotective effects 
of physical activity were absent. Furthermore, trained mice had more endothelial 
progenitor cells in circulation and exhibited improved functional outcome after stroke 
induction [142]. Again, protective effects of exercise training were diminished by 
eNOS inhibition or eNOS gene deletion. 

It can be concluded that exercise training significantly reduces progression of 
atherosclerosis and related complications, certainly in part (and perhaps mostly),
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through NO mediated mechanisms (Fig. 5.4). Intensity and type of physical activity 
has to be adjusted to specific characteristics of the patients and severity of the disease 
in order to achieve the most pronounced protective effect. 

Heart Failure 

Heart failure (HF) is deadly and disabling disease with major share in population. 
One of the key determinants in HF pathophysiology is decreased NO bioavail-
ability. Several authors investigated the possibilities exercise training in improve-
ment of endothelial function and reduction of HF symptoms. Assessment of the 
endothelial function through noninvasive methods, such as flow-mediated (FMD) 
and nitrate-mediated dilation (NMD) in HF patients indicated the relation between 
the severity of diastolic and endothelial dysfunction [143]. Rehabilitation strate-
gies for HF should be directed toward enhancement of endothelial function and 
attenuation of endothelial dysfunction. 

Results of the study by Cuoto and coauthors pointed out one of the possible 
molecular mechanisms underlining the beneficial effects of exercise training in HF 
[144]. In experimentally induced HF in rats by coronary artery ligation exercise 
training induced restoration of acetylcholine and sodium nitroprusside-provoked 
vasodilatation, and increased expression of eNOS and sGC. Increased production 
of NO in trained HF rats was exerted through increased expression of BH4 secreting 
enzyme, GTP cyclohydrolase 1, and augmented availability of BH4. Increase in 
BH4 production induced eNOS coupling and increased NO synthesis. L-arginine 
supplementation, in trained rats after experimentally induced myocardial infarction 
and consequent HF, enhanced hemodynamic responses, decreased oxidative stress 
and pro-inflammatory cytokines [145]. Experimentally induced HF showed dramatic 
changes in endothelial function [146]. In HF Dahl salt-sensitive rats expression of 
eNOS in aorta was reduced by half, while the expression of MMP-2 and MMP-9 
were extremely increased. All these detrimental modifications were diminished by 
HIIT. Conversely, in SHR model of hypertension induced HF MICT elicited protec-
tive effects reflected through decrease of myocardial fibrosis, increased angiogenesis 
and eNOS expression [147]. In this model HIIT exerted mostly detrimental effects. 

Another NO mediated molecular mechanism involved in the development of HF 
that could be altered by exercise training is NO signaling in sympathetic regions in 
the medulla and hypothalamus. Reduction of NO availability in these regions was 
shown in experimental models of HF [148, 149]. Reduction of NO bioavailability 
occurs partly due to a decrease in NOS protein expression and partly due to increased 
production of O2

− and further reaction to NO [150–152]. Exercise training increases 
expression of nNOS in the paraventricular nucleus of the hypothalamus of the rats 
with HF and restores NO-mediated changes [153]. 

Moderate-intensity treadmill exercise in patients with HF significantly improved 
activity of platelet NOS activity, followed by reduction of platelet aggregation and 
reduction of risk of thrombotic events [154]. Augmented NOS activity was combined
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with increase in SOD and CAT activity, and decrease of inflammation in trained HF 
patients. Furthermore, comparing the effects several exercise modalities in patients 
with stable HF it was shown that swimming induced the most significant increase of 
plasma NO2

−, while every single training program improved the cardiorespiratory 
capacity of patients [155]. Assessing the effects of various models of swimming 
training in rats we showed that if the intensity of the training stays within the moderate 
range there are no adverse effects [156]. The ability of the coronary endothelium to 
significantly enhance synthesis of NO is also observed. 

Measurement of L-arginine consumption revealed increased L-arginine clear-
ance in trained HF patients [157]. Such results justified the attempts of modulation 
NOS/NO system in treatment of HF [158, 159]. It was shown that inhaled NO2

− 
reduced pressures in ventricles during exercise and rest, as well as pulmonary blood 
pressure [160]. Similarly, acute infusion of sodium nitrite or orally applied inorganic 
nitrate mitigated hemodynamic disturbances in HF patients induced by exercise and 
augmented exercise capacity [161, 162]. 

Beyond all therapeutic approaches in HF, physical activity remains the oldest, but 
unsurpassed curing method in HF treatment (Fig. 5.4). Exercise training should be 
considered as adjuvant therapeutic modality for HF, able to improve the quality of 
life, work capability and longevity in HF patients. Future investigations in this area 
should be directed to finding the most adequate type of physical activity for each 
patient as well as the degree of load that brings the greatest benefits. 

Concluding Remarks 

Endothelial dysfunction plays a capital role in the initiation, progression and 
adverse outcome in many CVD. Ability of endothelium to produce NO appears 
to be key determinant of healthy blood vessels. Thus, decreased NO bioavail-
ability and impaired NO mediated vasodilatation assembles the main pathophysio-
logical feature of endothelial dysfunction. Variety of pharmacological approaches in 
modern medicine targeted endothelial NO synthesis and downstream NO cascades 
in preventing and treatment of CVD with varying degrees of success. Most often 
the effects of these approaches do not meet expectations. On the other hand, 
exercise training and different models of physical activity has emerged as a non-
pharmacological therapy, effective in both prevention and treatment of CVD. Taking 
into account the variety of signaling cascades in which NO participates, as well as 
complex changes initiated by exercise training into vasculature, the mutual condi-
tioning of NO, physical activity and achieved effects are not fully understood. The 
future scientific attempts in this field should be directed toward discovering the most 
satisfying and the most beneficial type of physical activity for each CVD, as well as 
to the most benevolent degree of physical load depending on the functional state of 
the patient.
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Chapter 6 
Nitric Oxide-cGMP-PKG Signaling 
in the Cardioprotective Effects 
of Phosphodiesterase 5 Inhibitors 

Rakesh C. Kukreja , Anindita Das , Saisudha Koka , 
Arun Samidurai , and Lei Xi 

Abstract Phosphodiesterase 5 (PDE5) is an enzyme that catalyzes the degradation 
of cGMP to its inactive form, 5'-GMP. The inhibition of PDE5 leads to the increase 
in bioavailability of cGMP which exerts its downstream signaling effects through the 
activation of protein kinase G (PKG). The dysregulation of cGMP-PKG signaling 
cascade plays a critical role in the pathology of several cardiovascular disorders. 
PDE5 inhibitors including sildenafil and tadalafil are widely prescribed drugs for 
the treatment of erectile dysfunction and pulmonary hypertension in patients. In the 
pre-clinical setting, treatment with PDE5 inhibitors protect against several cardiovas-
cular pathologies including ischemia/reperfusion (I/R) injury, heart failure, pressure 
overload-induced hypertrophy, and cardiomyopathy associated with type 2 diabetes 
and metabolic syndrome. Mechanistic studies reveal that nitric oxide (NO)-cGMP-
PKG signaling driven multiple signaling pathways are involved in protection against 
most of these pathologies. Moreover, the PDE5 inhibitors generate other gasotrans-
mitters including hydrogen sulfide, carbon monoxide in addition to NO that may 
play a critical role in cardioprotection. 

Keywords Nitric oxide · cGMP · Hydrogen sulfide · Phosphodiesterase ·
Ischemia · Reperfusion injury 

Introduction 

Ischemic heart disease is the leading cause of death in the world. During ischemia, 
the sudden occlusion of coronary artery reduces or eliminates the flow of oxygenated 
blood to the myocardium. As a result, the supply of oxygen trapped in the tissue is 
depleted within seconds of ischemia resulting in the rapid changes in metabolism as
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well as contractile function of the heart. If ischemia persists, many of the cardiomy-
ocytes become irreversibly injured and die even if ischemia were eliminated. There-
fore, the goal is to re-establish blood flow to the ischemic area as quickly as possible 
to rescue cardiomyocytes that would be permanently damaged by ischemia. While 
reperfusion is necessary for tissue survival, a major caveat is that reperfusion itself 
can also cause tissue damage, termed “reperfusion injury” [1]. As more tissue is 
irreversibly injured, the prognosis becomes worse because terminally differentiated 
cardiomyocytes have very limited or no regenerative potential [2]. Thus, the loss of 
contractile muscle exerts extraordinary load on the surviving tissue, which becomes 
hypertrophic resulting in adverse remodeling of the left ventricle (LV) leading to 
heart failure. Therapeutic strategies that would make the cardiomyocytes resistant 
to death from ischemia/reperfusion (I/R) injury would greatly improve the chances 
of survival following acute myocardial infarction (AMI) in patients with coronary 
artery disease. 

In the 1980s, a cardioprotective strategy was discovered where multiple bouts of 
brief ischemia and reperfusion were shown to reduce infarct size following sustained 
I/R injury [3]. This unique phenomenon, called ischemic preconditioning (PC) was 
found to occur in two phases: an early phase which occurred immediately after 
short bursts of ischemia and disappeared within 2–3 h [4]. A second phase of PC 
was observed after 24 h of the initial stimulus which was called “delayed PC” or 
“second window of PC” [3–5]. The protective effect of the delayed phase lasted up 
to 96 h after the initial stimulus of brief episodes of ischemia. The possible cellular 
and molecular mechanisms of PC have been extensively studied and a number of 
mechanistic pathways have been suggested (see [5, 6] for reviews). 

While the clinical application of PC is difficult, searching for pharmacological 
agents or drugs that could mimic early and delayed PC has been the subject of 
interest because of their potential direct clinical application in lieu of PC. In fact, 
the identification of the cellular and molecular basis of PC has provided an excellent 
conceptual framework for developing several novel therapeutic strategies aimed at 
mimicking the cardioprotective effects with pharmacological agents. For example, 
endogenously released agents were identified during PC, which included adenosine 
[7], norepinephrine [8], opioids [9], free radicals [10] and bradykinin [11, 12]. In addi-
tion, a number of pharmacological activators of the pathways of PC including adeno-
sine receptor agonists [7, 13–16], nitric oxide (NO) donors [17–19], bradykinin [12, 
20, 21], p38 MAP kinase activator, anisomycin [22], chemical inducer of hypoxia-like 
responses, cobalt chloride [23], hypoxia-inducible factor-1 [24, 25], ATP-sensitive 
potassium channel (KATP) opener, diazoxide [26, 27] and Ca2+-activated potassium 
channel opener NS1619 [28, 29], have been shown to induce PC-like cardioprotec-
tive effects. Thus, the discovery of PC had huge impact in identifying previously 
unknown new pathways of cardioprotection.
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Nitric Oxide (NO)—A Key Signaling Molecule 
in Cardioprotection 

NO is a short-lived intracellular messenger, which has been shown to regulate 
blood pressure, platelet adhesion, neutrophil aggregation, as well as synaptic plas-
ticity in brain [30–32]. NO and its secondary oxidants including the peroxynitrite 
(ONOO–) can also form major cytotoxic agents produced by activated macrophages 
and neutrophils. Peroxynitrite protonates and decomposes by homolytic fission to 
generate the hydroxyl radical (•OH) or some other potent oxidant with similar reac-
tivity. NO also reacts with lipophilic peroxyl radicals to generate alkyl peroxyni-
trates (LOONO) [33]. NO is produced by the oxidation of L-arginine by nitric 
oxide synthase (NOS) which has three isoforms including endothelial NOS (eNOS), 
neuronal (or brain) NOS (nNOS), and an inducible isoform (iNOS) [34, 35]. eNOS 
produces NO via a complex reaction that is stimulated by calcium and requires 
NADPH, among other co-factors [34]. Inducible NOS was the first isozyme of NOS 
identified as a source of NO during the second phase of PC [36, 37]. NO was shown 
to increase the resistance against I/R injury through inhibition of calcium influx, 
blockade of β-adrenergic stimulation, reduction in myocardial oxygen demands, 
opening of sarcolemmal and/or mitochondrial KATP (mitoKATP), activation of COX-
2 which increased synthesis of prostaglandins. The eNOS-derived NO triggered 
signaling cascade which included activation of protein kinase C, and MAP kinases 
[38, 39], various transcription factors including NF-kappa B, STAT1/3 resulting in 
the increased synthesis of cardioprotective genes such as iNOS, COX-2, and HO-1, 
which contributed to the long-lasting protection of the heart following PC [40–43]. 

Cyclic Nucleotide Phosphodiesterases 

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 
(cGMP) are important intracellular second messenger that mediate multiple tissue 
and cellular responses [44]. Their levels are maintained by a family of enzymes 
named cyclic nucleotide phosphodiesterases (PDEs) [41, 45, 46]. The PDEs degrade 
the phosphodiester bond of 3'-5'cAMP and 3'-5'cGMP and convert them to their 
inactive forms: 5'AMP and 5'GMP, respectively [47]. PDEs have 11 families (PDE1– 
PDE11) with more than 80 enzyme variants generated from multiple promoters and as 
a consequence of alternative splicing [46]. PDE5 is the primary enzyme with cGMP-
hydrolyzing activity in human corpus cavernosal tissue which plays an important 
role in the mechanism of penile erection. Sexual stimulation either physically or 
psychologically induces release of NO from non-cholinergic, non-adrenergic neurons 
in the penis, as well as from endothelial cells [48]. NO diffuses into smooth muscle 
cells and activates soluble guanylate cyclase (sGC) which converts GTP to cGMP 
and initiates protein phosphorylation cascade. This decreases intracellular calcium 
levels which results in the dilation of the arteries bringing blood to the penis thereby
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leading to the compression of spongy corpus cavernosum. PDE5 inhibitors help in 
erection by blocking the enzymatic hydrolysis of cGMP in the corpus cavernosum. 

PDE5 as Therapeutic Target for Cardiac Protection 

We hypothesized that PDE5 inhibitors may trigger NO-cGMP pathway in the heart 
which could lead to protection against I/R injury. In support of this notion, for the 
first time we showed that treatment of rabbits with sildenafil prior to prolonged 
(index) ischemia significantly reduced myocardial infarct size which was blocked by 
5-hydroxydecanoate, a blocker of mitoKATP [49]. Vardenafil is 20-fold more potent 
than sildenafil for inhibiting PDE5 [50] and as a result, 50-fold lower concentration 
of this drug (compared to sildenafil) had similar protective effect against I/R injury 
in the rabbit model of myocardial I/R injury [51]. Tadalafil is a long-acting PDE5 
inhibitor with a half-life of 17.5 h [52] and is effective for erectile function up to 36 h. 
Like other PDE5 inhibitors, tadalafil also reduced infarct size and improved cardiac 
function following I/R in mice [53]. We confirmed these findings in our in vivo as well 
as isolated perfused hearts models of I/R injury [54–56] and in the in vitro cell culture 
model in which the isolated cardiomyocytes were subjected to simulated ischemia 
and reoxygenation [57]. In the mouse heart and isolated primary cardiomyocytes, we 
demonstrated that treatment with sildenafil increased iNOS and eNOS protein [55]. 
Moreover, the activation of PKG, phosphorylation of extracellular signal-regulated 
kinase (ERK) as well as glycogen synthase kinase-3β (GSK-3β) led to the increased 
Bcl-2 expression and inhibition of cardiomyocyte apoptosis [58]. PKG has also its 
own independent effect on I/R injury as it may directly open the mitoKATP channel 
and limit infarct size through preserving ATP and decreasing the calcium (Ca2+) 
influx into the mitochondria [59, 60] as outlined in Fig. 6.1.

Myocardial infarction and other stimuli, including pressure and volume overload, 
trigger a complex process of myocardial remodeling, including myocyte hypertrophy 
and loss, ventricular wall thinning and dilatation, and fibrosis [61]. These patho-
physiological changes lead to maladaptive remodeling with a progressive contractile 
dysfunction and heart failure. To demonstrate whether sildenafil prevents remodeling, 
we treated mice immediately or 72 h following coronary artery occlusion [62]. The 
results showed reduced infarct size as well as improved cardiac function, survival rate 
and decrease in cell death in the border zone of the infarcted myocardium. Nitric oxide 
generated following sildenafil treatment appeared to be the key molecule in reducing 
damage of the myocardium after infarction because eNOS and iNOS isozymes were 
increased in the hearts. Also, treatment with the non-specific NOS inhibitor, blocked 
the protective effect of sildenafil in this model of heart failure [62, 63]. These studies 
suggested that PDE5 inhibition with subsequent generation of NO may potentially 
have beneficial effect in patients with heart failure [63]. 

In a mouse model of transaortic constriction induced pressure overload, the 
chronic administration of sildenafil also prevented and reversed cardiac hyper-
trophy [64]. In these studies, sildenafil treatment suppressed myocyte hypertrophy,
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Fig. 6.1 Nitric oxide (NO) triggered signaling pathways in cardioprotection with PDE5 inhibitors. 
Regulation of cGMP by PDE5 inhibition activates PKG which causes phosphorylation of ERK 
1/2 and phosphorylated glycogen synthase kinase-3β (pGSK3β) in conjunction with an increase 
in Bcl-2, and inhibition of apoptosis as well as MPTP. PKG opens mitochondrial ATP-sensitive 
mitoKATP channels, which limits I/R injury through preservation of ATP and a decrease in Ca2+ 

influx in the mitochondria. In the diabetic heart, PKG can also increase in PGC-1α through 
AMPK phosphorylation and deacetylation of Sirt1 leading to decreased ROS production, improved 
mitochondrial biogenesis/function through preservation of ETC complex I. PKG activation also 
enhances post-translational protein quality control via carboxyl terminus of CHIP leading to 
decreased cell death and ischemic injury. NO may also activate the novel isoforms of PKC 
including ε, α, δ, and  θ, which may translocate to the particulate fractions including the nuclear 
fractions to increase gene expression of VEGF and angiogenesis. PKC α-Src module enhances 
PKCε-associated Src enzymatic activity which is linked to cardioprotection. NO derived from 
PDE5 inhibitors may also activate HO-1 and CSE to produce CO and H2S which may reduce 
ischemia injury through increased angiogenesis or improvement of vascular tone. See text for 
further details. Abbreviations AMPK—5'AMP-activated protein kinase; CHIP—carboxyl terminus 
of Hsc70-interacting protein; CO—carbon monoxide; CSE—cystathionine γ lyase; ERK—extra-
cellular signal-regulated kinase; ETC—electron transport chain; GTP—guanosine triphosphate; 
H2S—hydrogen sulfide; I/R—ischemia/reperfusion; PGC-1α—peroxisome proliferator activated 
receptor γ coactivator 1α; PKC—protein kinase C; PKG—protein kinase G; pGSK3β—phos-
phorylated glycogen synthase kinase-3β; ROS—reactive oxygen species; sGC—soluble guany-
late cyclase; mitoKATP—mitochondrial ATP-sensitive K+; MPTP—mitochondrial permeability 
transition pore

improved contractile dysfunction and decreased fibrosis. Sildenafil also reversed pre-
established hypertrophy induced by pressure overload while restoring LV function 
to normal. PDE5 expression increased in pressure-loaded hearts which was asso-
ciated with increased cGMP catabolism. PDE5 inhibition also led to restoration of 
cGMP signaling and activation of PKG. The anti-hypertrophic effect was associ-
ated with activation of PKG, and its targets included regulator of G protein-coupled 
signaling-2, as well as calcineurin-NFAT and transient receptor potential channel 6,
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one of the nonselective and non-voltage-gated ion channels that convey signaling 
information linked to a broad range of sensory inputs [65]. Another study suggested 
that chronic treatment with sildenafil attenuated LV remodeling and exercise intol-
erance following chronic mitral regurgitation [66]. This benefit was associated with 
the anti-apoptotic and anti-inflammatory effects of sildenafil. 

Cardioprotective Signaling in Ischemia/Reperfusion Injury—Role of Gasotrans-
mitters It has been recognized that NO may interact with other two other major gaso-
transmitters in cellular signaling, i.e. hydrogen sulfide (H2S) and carbon monoxide 
(CO), either by inhibiting or potentiating the level and activity of the other, depending 
on their physiological milieu in various organs and tissues [67]. These signaling 
molecules possess significant differences in physiological half-lives, i.e. CO is more 
stable and effective distal to the site of its production, whereas NO and H2S are short 
lived and act only close to sites of their production [67]. H2S is produced enzymati-
cally on a continuous basis at micromolar levels in mammalian organs including the 
cardiovascular system. Early studies showed the cardioprotective effect of H2S via  
administration of a donor, sodium hydrosulfide (NaHS) which was mediated through 
opening of KATP channel [68]. Treatment with H2S donor (NaHS, 40 μM) in isolated 
rat hearts improved I/R-induced cardiac dysfunction and tissue injury markers, while 
increased tissue NO production [69]. The H2S-producing enzyme, cystathionine-γ-
lyase (CSE), is expressed in the heart. Interestingly, the cardiac expression of CSE 
was suppressed by L-NAME, a pan inhibitor of NOS suggesting that H2S and NO 
interact to cooperate in protection against myocardial I/R injury [69]. Also, H2S is  
capable of regulating the generation of NO [70] and to facilitate release of NO in 
vascular tissues [71]. H2S can regulate the availability of NO by increasing its release 
from nitrosothiols [72]. It was also suggested that the cooperative action of NO and 
H2S were essential in increasing and maintenance of intracellular levels of cGMP as 
well as activation of PKG, angiogenesis, and vasorelaxation [73]. The H2S-induced 
wound healing and microvessel growth are suppressed by pharmacological inhibition 
or genetic ablation of eNOS [73]. 

We first reported the cardioprotective effect of PDE5 inhibitor tadalafil in mice. 
Mice treated with tadalafil had reduced infarct size and improved cardiac function 
[53]. These studies further showed an essential role of H2S producing enzyme, CSE 
because the cardioprotective effect of tadalafil was abolished by the enzyme inhibitor, 
dl-propargylglycine (PAG) as well as in CSE-knockout mice. Interestingly, a previous 
study also showed that sildenafil enhanced production of both NO and CO, by stimu-
lating expression of iNOS and heme oxygenase (HO-1), a CO-producing enzyme in 
vascular smooth muscle cells [74]. These studies suggested that sildenafil stimulated 
the expression of iNOS and HO-1 likely via soluble guanylate-cGMP pathway. Also, 
it was shown that CO inhibited NOS activity [75] or directly stimulated NO forma-
tion [76] in vitro. CO also acts as a tonic regulator of NO-dependent vasodilation 
in the rat brain [77]. Thus, PDE5 inhibitors may have therapeutic benefit where the 
gasotransmitters, NO, H2S or CO may act alone or in concert in cardioprotective 
signaling (Fig. 6.1).
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Protein Kinase C in Cardioprotection One of the major intracellular signal trans-
duction pathways of preconditioning involves NO mediated activation of PKC [78]. 
The PKC family, which has 12 members, is comprised primarily of three sub-families: 
the conventional, the novel isoforms which are calcium dependent (α, βI, βII, and γ) 
and the calcium independent isoforms including the δ, ∊, η, θ, and μ. The activity of 
these isoforms is determined by their translocation from the cytosolic to the partic-
ulate fraction (sarcolemmal, mitochondrial, nuclear fractions) which subsequently 
bind to the specific receptors of activated C kinase (RACK) localized in membranes 
[79]. The translocated-specific PKC isoforms have been linked to the opening of 
mitoKATP channels as well as gene expression [80]. The PKC-mediated cardiopro-
tection is isoform specific: the ∊- and η-isoforms have been shown to be the medi-
ators of ischemic and pharmacological PC in the heart and cardiomyocytes [16, 
81–84]. The NO-PKC (especially the novel isoforms, PKCε and PKCδ) signaling 
pathway has been connected to a number of cardioprotective modalities such as 
pharmacological PC with acetylcholine [85], mitoKATP channel opener, diazoxide 
[27], δ-opioid receptor agonist BW373U86 [86], KATP channel opener, nicorandil 
[87], bradykinin [88], oxytocin [89], as well as several mechanical/physiological 
approaches, e.g. delayed ischemic PC [39], chronic continuous normobaric hypoxia 
[90] and short-term mild exercise [38]. 

It has been shown that NO-induced late preconditioning forms PKCε-Src module 
which results in enhanced PKCε-associated Src enzymatic activity. Inhibition of PKC 
blocked cardioprotection, the PKCε-Src module formation, and PKCε-associated Src 
activity [91]. It was also demonstrated that NO donors promoted translocation and 
activation of PKCε in an NO- and peroxynitrite-dependent fashion (Fig. 6.1) [92]. 
NO/peroxynitrite-mediated tyrosine nitration of PKCε was observed in both rabbit 
cardiomyocytes in vitro and NO donor-preconditioned rabbit myocardium in vivo 
[92]. There was also a peroxynitrite-dependent increase in PKCε-RACK2 interac-
tions in NO donor-treated cardiomyocytes, indicating post-translational modifica-
tion (nitration) of PKCε by NO donors would facilitate interaction with RACK2 and 
promote translocation and activation of PKCε [92]. We demonstrated that sildenafil 
induced cardioprotection in the rabbit was also mediated by PKC because the protec-
tive effect was abolished by the inhibitor, chelerythrine [93]. However, in contrast to 
PKCε, we observed selective translocation of PKC α, δ, and θ isoforms from cytosol 
to membrane fractions suggesting their potential role in sildenafil-induced cardio-
protection. Further studies are required to identify whether α, δ, and θ isoforms also 
have the ability to form module with Src during sildenafil-induced protection. 

Improvement of Protein Quality Control Another potential mechanism of cardio-
protection could be the improvement in protein quality control by sildenafil-triggered 
cGMP-PKG pathway for quality control during ischemic stress. Proteotoxicity from 
insufficient clearance of misfolded or the damaged proteins is the cause for many 
diseases [94]. The carboxyl terminus of Hsc70-interacting protein (CHIP) functions 
as an E3-ligase and co-chaperone that facilitates protein degradation (Fig. 6.1) [95]. 
CHIP mediates protein degradation via the proteasome, as well as by autophagy-
lysosome-dependent pathways [96]. Genetic loss of CHIP causes worsening of
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hemodynamic or ischemic stress [97, 98]. Conversely, upregulation of CHIP caused 
angiogenic effect, attenuated inflammation, improved cardiac function as well as 
survival post MI [99]. More recent work has shown that PKG activation enhanced 
post-translational protein quality control via carboxyl terminus of CHIP [100]. Down-
regulation of PKG activity decreased CHIP-S20 phosphorylation and protein, exac-
erbated proteotoxicity and worsened heart function following ischemia. On the other 
hand, CHIP-S20E knock-in mice demonstrated improved clearance of ubiquitinated 
proteins and showed protection against ischemic injury. These studies suggested a 
new role of PKG activation in providing post-translational enhancement of protein 
quality control via CHIP. 

Cardioprotection in Diabetes and Metabolic Syndrome 

Endothelial dysfunction is common in vessels of diabetic patients than in the non-
diabetic population. With the progression of disease, there is increase of macrovas-
cular and microvascular complications which is one of the main causes of increased 
mortality in patients with diabetes mellitus [101]. Reduced levels of NO within 
the vascular endothelium contributes to impaired insulin utilization in patients 
with insulin resistance [102]. Vascular NO is critical for normal vasodilatation 
and endothelial function, and impairment of NO bioavailability and the NO-cGMP 
signaling. Epidemiologic studies demonstrate that eNOS mutations are associated 
with hypertension, increased atherosclerosis, and worse outcomes from MI, cardiac 
arrest, and stroke [103]. An epidemiological study provided evidence of a strong 
correlation between the risk factors associated with metabolic syndrome (i.e. obesity, 
elevated fasting glucose levels, dyslipidemia, hypertension) and urinary cGMP excre-
tion, suggesting that a reduction of NO bioactivity concurs with these CV risk 
factors [104]. In streptozotocin-induced diabetic rats, sildenafil improved vasore-
laxation through enhanced endogenous NO signaling [105]. Another major issue 
is that the diabetic myocardium is more vulnerable to I/R injury [106, 107] and 
refractory to many cardioprotective modalities, such as PC [108] and ischemic post-
conditioning [109]. In our studies, we found that chronic treatment with tadalafil 
significantly reduced myocardial infarct size following I/R injury in mice with Type 
2 diabetes (T2D) [110, 111]. There was significant reduction in fasting glucose and 
triglyceride levels with tadalafil treatment although body weight remained unaltered. 
Treatment with tadalafil also enhanced plasma levels of NO. NO can activate SIRT1 
which regulates peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), 
which is a key regulator of mitochondrial biogenesis and co-activator of transcription 
factors impacting energy homeostasis. We found that myocardial SIRT1 and PGC-
1α expression and phosphorylation of Akt as well as AMPK were increased in the 
diabetic hearts. Interestingly, these signaling changes were associated with attenu-
ated mitochondrial dysfunction as shown by improved mitochondrial glutamate state 
3 respiration rates and reduced ROS production from complex I [112] as outlined in 
Fig. 6.1.
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Metabolic syndrome (MetS) is a cluster of risk factors characterized by abdominal 
obesity, dyslipidemia, hypertension, and insulin resistance [113, 114]. The MetS is 
associated with increased risk of multiple chronic diseases, including the cardiovas-
cular, T2D, arthritis, chronic kidney disease, cancer, and all-cause mortality [115– 
117]. NO plays a crucial role in the pathogenesis of MetS because its reduced 
bioavailability may be a contributing factor in this condition [118]. Interestingly, 
chronic treatment with tadalafil enhanced NO production in the db/db diabetic as 
well as MetS mice in addition to the positive effect on metabolic health status by 
improving insulin sensitivity, lowering circulating lipids, and protecting the heart 
against I/R injury [119]. More importantly, treatment with tadalafil improved LV 
diastolic dysfunction in MetS mice. These studies suggested that tadalafil treatment 
in MetS mice could clinically benefit MetS patients who are at high risk for cardio-
vascular diseases. Thus, tadalafil may turn out to be promising therapeutic strategy 
providing dual benefit of treating ED as well as reducing cardiovascular injury in 
MetS patients. 

Conclusions 

Over the past 5 decades, enormous progress has been made in our understanding 
of the basic cellular and molecular mechanisms underlying the development of I/R 
injury and the protective actions of therapeutic interventions including PC and several 
pharmacological agents. The role of NO elicited from NOS, particularly the eNOS 
or iNOS isoforms has been well established in cardioprotection in a variety of ther-
apeutic modalities including PC and pharmacological agents. Preclinical studies 
have shown that PDE5 inhibitors have powerful cardioprotective effects against I/R 
injury and doxorubicin-induced cardiomyopathy [120–122], post-infarction heart 
failure [62], pressure overload hypertrophy [64], T2D and MetS [110, 111, 119]. 
As summarized in Fig. 6.1, a large body of work has provided insights into the 
critical role of NO-cGMP signaling in cardioprotection. Therefore, drugs such as 
PDE5 inhibitors which trigger NO-dependent signaling pathway could be promising 
therapeutics against I/R injury and several other cardiovascular disorders. 
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Chapter 7 
Role of Nitric Oxide Synthases 
in Doxorubicin-Induced Cardiomyopathy 

Gauri Akolkar, Akshi Malik, Ashim K. Bagchi, Dinender K. Singla, 
Neelam Khaper, and Pawan K. Singal 

Abstract Since the discovery of Doxorubicin (Dox), its safe use is under intense 
discussion due to its cardiotoxic side effects manifested in patients at different times 
during the treatment or even after years of treatment. Several therapeutic approaches 
to replace conventional Dox or use of other drugs in combination have exhausted 
the clinicians and researchers without much success. When the replacement strate-
gies failed to show any rigor, a better understanding of Doxorubicin’s mechanism 
of action seemed like the only gateway to the discovery of a new targeted thera-
peutic approach. An increase in reactive oxygen species and the resultant oxidative 
stress as the mechanism of Dox-induced cardiomyopathy, proposed by us as well 
as others has gained some traction. However, this explanation has not been enough 
to alleviate concerns with Dox and we are still in search for a solution for its safe 
use. More recently, our laboratory and others have also shown the importance of 
nitrosative stress. Furthermore, we have shown that Vitamin C not only mitigates 
nitrosative stress but it also modulates Dox-induced cardiotoxic changes in isolated 
cardiomyocytes as well as in whole animals exposed to Dox. The present review 
chapter focusses on the mechanism of Dox-induced nitrosative stress and the role of 
Vitamin C in mitigating the cardiotoxic effects of Dox. 
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Introduction 

Doxorubicin (Dox), also known as Adriamycin, is an antitumor antibiotic isolated 
from bacterium Streptomyces peucetius var caesius [1]. Dox belongs to the family of 
anthracyclines which also includes other antitumor antibiotics such as daunomycin, 
rubidomycin, idarubicin, and epirubicin. Dox is the primary chemotherapeutic drug 
used for a wide range of cancers, including lymphomas, soft-tissue sarcomas, solid 
tumors, and hematological cancers. 

Dox-Induced Cardiac Effects 

The usage of Dox is limited by its acute as well as chronic side effects. Acute effects 
such as nausea, vomiting, fatigue, bone marrow suppression, alopecia, arrhythmia, 
and injury to non-targeted tissues are generally reversible and/or clinically manage-
able. However, chronic use of Dox is mainly limited by its cardiac toxicity seen 
during or even years after the end of treatment. These adverse cardiac effects of 
Dox are irreversible and are generally life-threatening. These are manifested in 
different forms, including loss of myofibrils, dilation of the sarcotubular system, 
aberrant arrhythmias, ventricular dysfunction, dilated cardiomyopathy, congestive 
heart failure which is generally refractory to most cardiotonic drugs and ventricular 
assist devices approaches and is the most serious side effect [2–5]. 

Mitigation of Dox-Induced Cardiac Effects 

Over time, several attempts have been made to address Dox-induced cardiotoxicity. 
The most common strategy attempted has been to reduce the cumulative dose and 
minimize the peak plasma concentration of the drug by delivering intravenously 
over 2448 h but this has not reduced the risk of cardiac toxicity in patients [6]. Even 
though Dox can be administered as a single agent, however, in order to reduce the total 
amount used oncologists have tried combining it with other antitumor drugs such as 
vincristine, cyclophosphamide to form ‘cocktails’ which had shown lower cytotoxic 
effects on malignant cells [7]. Another approach has been to synthesize different 
analogs with the goal of reducing or eliminating the life threatening cardiotoxic 
side effects while keeping the antitumor efficacy [8]. In this regard, more than 2000 
analogs have been synthesized without any notable success. Only some had received 
approval for usage such as, daunorubicin, 5-imino, 13-deoxydoxorubicin (GPX-150) 
even though it had lower oncologic efficacy but did not confirm lower cardiotoxicity 
than conventional Dox [9]. Packaging of the drug and targeting delivery to tissues 
was also proposed to have improved safety profile and better efficacy. While the 
FDA approved PEGylated liposomal doxorubicin formulation such as Doxil®, it
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is restricted only for ovarian cancer and AIDS-related Kaposi sarcoma [10, 11]. 
Moreover, several solution-based materials, nanoparticles or nanoparticles embedded 
in a matrix were studied but did not achieve the targeted goal [12, 13]. 

The Challenge 

Despite the above mentioned approaches, nothing has replaced the use of conven-
tional Dox in cancer treatment even after the risk of developing cardiomyopathy 
and this risk remains high even many years after treatment [3, 14]. Thus a complete 
understanding of the biology of Dox-induced cardiomyopathy appears to be the only 
answer. 

An understanding of the subcellular basis of the cardiotoxic effects of Dox, 
remains under intense debate and have not been completely settled even after 60 years 
of extensive research. In this regard, several different possible pathways have been put 
forward to explain the complex pathophysiology of Dox-induced cardiomyopathy. 
This list includes, oxidative stress (OS), nitrosative stress (NS), inflammation, iron 
metabolism, calcium dysregulation, structure/function changes in the mitochondria 
and the sarcoplasmic reticulum, and cell apoptosis [3, 4, 15]. Among these different 
mechanisms for Dox-induced cardiotoxicity, OS has been the most accepted mech-
anism of action and has been the subject of many high quality reviews [3, 4, 16]. 
The focus of this chapter is nitrosative stress subsequent to Dox exposure and its 
mitigation. 

Nitrosative Stress 

As a molecular basis of the pathogenesis of Dox-induced cardiotoxicity, increasing 
evidence also suggests involvement of the nitrosative stress. Nitrosative stress which 
is implied in the pathogenesis of various conditions including heart failure, myocar-
dial infarction, diabetes, acute ischemia, sepsis and cancer is brought about by an 
increase in the generation of reactive nitrogen species (RNS) [17–21]. It is character-
ized by an increase in peroxynitrite leading to protein nitration and nitrosylation. The 
nitrosative stress is exacerbated by the oxidant environment in the cellular milieu. In 
myocardium, nitrosative stress adversely affects cardiac performance by disruption 
of nitric oxide (NO) mediated signaling of Ca2+ channels responsible for normal 
systolic and diastolic functions [22]. It also enhances loss of cardiomyocytes via 
peroxynitrite mediated activation of apoptosis [20, 21, 23]. It also upregulates proin-
flammatory cytokines such as TNF-α, IL-/1B and IL-6 to promote inflammation 
[20, 21]. 

There is a long list of RNS such as peroxynitrite (ONOO−), nitrogen 
dioxide (●NO2), peroxynitrous acid (HNO3), dinitrogen trioxide (N2O3), nitroxyl 
(HNO), peroxynitrous acid (ONOOH), peroxynitrate (O2NOO−), peroxynitric acid
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(O2NOOH), nitrosonium cation (NO+), nitrate (NO3−), nitrite (NO2−) and nitroxyl 
anion (NO−) [24]. Despite their short half-life, these RNS are able to diffuse into the 
intracellular organelles and can still react at extremely higher rates [20, 21, 23, 25]. 

Peroxynitrite (ONOO−) 

Cytokine mediated upregulation of inducible nitric oxide synthase (iNOS) expres-
sion promotes formation of NO and thereby results in NO/redox disequilibrium. 
Near diffusion limited reaction of NO with superoxide anion results in the formation 
of ONOO− which is a strong biological oxidant (Fig. 7.1). Increased generation of 
ONOO− is a major mechanism associated with pathogenesis of a number of cardio-
vascular pathologies such as Dox-induced cardiomyopathy, myocardial infarction, 
chronic HF and diabetes [17, 20, 21, 23, 26]. Although ONOO− exerts its delete-
rious effects via targeting multiple signaling pathways in the cell, direct oxidation of 
cellular biomolecules such as lipid, protein and DNA are also the basis for its cytotox-
icity (Fig. 7.1). Peroxynitrite mediated nitration of proteins at their tyrosine residues 
can result in either inactivation or hyperactivation of their activity [27]. Furthermore, 
nitration can prevent subsequent phosphorylation, alternatively enhance phospho-
rylation of proteins, or alter degradation of proteins. Nitration is involved in the 
initiation and progression of a number of diseases [28].

It has also been reported that, ONOO− acts as a major effector of apoptosis in 
cardiomyocytes via the activation of caspase-3 and PARP. Reduction in ONOO− 
suppressed protein nitration and apoptosis in H9C2 cells [29]. Peroxynitrite induced 
oxidation of sulfhydryl groups inhibited mitochondrial respiratory chain enzymes 
and irreversibly damaged mitochondrial membranes resulting in excess generation 
of ROS [17, 27, 30]. Furthermore, ONOO− impaired the antioxidant defense by 
inhibiting activities of SOD and GPx [31] as well as decrease the levels of other 
endogenous antioxidants such as Vit C and plasma thiols via enhanced nitration 
resulting in increased generation of ROS [32]. 

Peroxynitrite impairs cardiac contractility in two ways: (i) by enhanced nitration 
of various proteins such as myofibrillar creatine kinase [33], Ca2+ handling proteins 
(Ryanodine receptor, Phospholamban) [34] and (ii) by causing loss of bioactive NO 
via uncoupling of eNOS. Peroxynitrite can trigger eNOS uncoupling via nitration of 
eNOS and/or oxidation of its cofactor BH4 or alternatively via disrupting endothelial 
caveolae [34, 35]. Functional alteration of proteins through enhanced nitration has 
significant impact on the pathogenesis of cardiovascular diseases. 

Nitric Oxide (NO) 

NO or nitrogen monoxide is one of the oxides of nitrogen along with nitrous oxide 
(N2O) and nitrogen dioxide (NO2). N2O, commonly known as laughing gas is popular
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ONOO-
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Depressed Antioxidants 
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NO 
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NO + O-
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Direct Cytotoxic 
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Fig. 7.1 Formation of peroxynitrite and its cytotoxic effects. Superoxide (O2
−) together with Nitric 

Oxide (NO) leads to Peroxynitrite (ONOO−) formation which alters cellular functions by targeting 
several biomolecules. Peroxynitrite can cause direct or indirect cytotoxic effects by protein nitration, 
loss of bioactive NO, oxidation of DNA, proteins and lipids. It also leads to an escalation of oxidative 
stress (OS), through an overproduction of ROS and decrease in antioxidant enzymes, increases 
inflammation and causes inactivation of ion channels

for its medicinal use due to its anesthetic properties. In contrast, NO2 is an air 
pollutant also used as an oxidizer in rocket fuel as well as nitrating agent in chemical 
explosives. NO is a free radical and considered as an environmental pollutant at high 
concentrations, whereas at low concentration it is a crucial signaling molecule with 
a key role in various physiological as well as pathological functions in mammalian 
systems [36, 37]. 

Although initially recognized as endothelium derived relaxing factor (EDRF) 
involved in vascular functions, NO also plays an important role in cardiomyocyte 
contraction. It is produced in a variety of cell types such as endothelial cells, smooth 
muscle cell (SMC), cardiomyocytes, skeletal muscle, neuronal cells as well as inflam-
matory cells such as macrophages and monocytes [36, 38]. Alterations in NO concen-
tration are associated with progression of many conditions such as diabetes, cancer, 
atherosclerosis, hypertension, arthritis and myocarditis [38]. 

Although the physiological importance of NO was recognized in 1998, medical 
use of nitrate containing compounds such as nitroglycerin has been practiced since 
1895 for relief from angina pectoris [39]. In 1977, Murad’s laboratory demonstrated 
that NO mediated the activation of soluble Guanylate Cyclase (sGC) and the upregu-
lation of cyclic guanosine monophosphate (cGMP) as being the mechanisms involved
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in the vasodilatory effect exerted by nitroglycerin and nitroprusside in vascular SMC 
relaxation [40]. Furchgott and Zawakzki (1980) later identified that NO is same as 
EDRF [41]. Three individuals, Robert Furchgott, Louis Ignarro and Ferid Murad 
were honored with Nobel Prize in Medicine or Physiology in 1998 for their contri-
butions for the identification of crucial role of NO and NO was declared as “molecule 
of the year”. 

At physiological concentrations in the range of pico molar (pM) to low nano molar 
(nM) amounts, NO provides beneficial effects; whereas at higher concentration i.e. 
in the μM range, it can be toxic and proinflammatory resulting in deleterious effects 
[36, 42–44]. NO is a transient free radical with a half-life of about 5 s. This could 
be a result of its high reactivity with proteins, lipids and DNA or reaction with 
ROS or interaction with sGC [36]. Given such a short half-life, spatially regulating 
NO production closer to its target molecule is critical to facilitate its precise signal 
transduction and specific targeting as well as reducing its deleterious reactions [45]. 
Endogenously, this is achieved by the action of various NOS isoforms to produce 
NO as discussed in the later section. 

Although the function of NO is less defined in the heart, it is a key regulator 
of excitation–contraction and hence myocardial contractility [22, 46, 47]. Ballingad 
and associates (1993) first demonstrated the role of endogenous NO in influencing β 
adrenergic receptor (β-AR) mediated signaling. Low concentration of NO is produced 
in cardiac myocytes, in a pulsatile manner, in phase with the cardiac excitation– 
contraction cycle [22, 46, 47]. 

Nitric Oxide Synthases (NOS) 

There are different isoforms of NOS: neuronal NOS (nNOS) or NOS1, inducible 
NOS (iNOS) or NOS2 and endothelial NOS (eNOS) or NOS3 [22, 38, 43]. The 
names of the isoforms do not indicate exclusive localization of the isozyme in a 
particular cell type, but is indicative of the cell type where they were first discov-
ered. NOS isoforms are encoded by different genes on separate chromosomes [38] 
and demonstrate about 50–60% homology in their sequence with respect to cofactor 
binding regions [48]. Although all three isoforms have similar enzymatic reactions 
and cofactor requirement, each of the isoform has distinct expression pattern, regula-
tion of their activity and subcellular localization thereby possessing distinct catalytic 
activity. 

All the isoforms of NOS require L-arginine as the substrate and molecular oxygen 
(O2) as well as NADPH as co-substrate. The catalytic activity of the enzyme also 
requires binding of other cofactors such as FAD, FMN, (6R) 5, 6, 7, 8-tetrahydro-L-
biopterin (BH4) and adenosine to the enzyme. Catalytically active enzyme converts 
L-Arginine to L-citrulline and NO [49]. NOS enzymes are usually present as two 
monomeric proteins bound together by BH4 and heme [50]. Oxidation of BH4 results 
in the dissociation of NOS dimers leading to uncoupling of NOS and the monomeric
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forms are unable to produce NO [51–53]. BH4 thereby has a crucial role in main-
taining functionally active forms of NOS [52, 53]. All of the NOS isoforms have a 
reductase and an oxygenase domain. While the substrate L-arginine, O2 and BH4 
bind to the oxygenase domain, transfer of electrons occurs from NADPH in the 
carboxy reductase domain to the heme in oxygenase domain of the enzyme [49, 50]. 
The flow of electron is facilitated by conformational changes in NOS as a result 
of binding of Ca2+ to calmodulin in the enzyme. However, the requirement for the 
concentration of Ca2+, facilitating the binding of calmodulin and the concentration 
of NO produced by different NOS isoforms varies [43, 49]. 

Endothelial Nitric Oxide Synthase (eNOS) 

eNOS is a constitutively expressed, Ca2+/Calmodulin dependent enzyme generating 
NO in pM-nM concentrations for a short period of time [54]. Hence upon stimula-
tion it is produced rapidly causing direct and short acting effects [48]. Even though 
initially thought to be exclusively present in endothelial cells, eNOS is found in a 
number of cell types such as cardiomyocytes, platelets, SMC and certain neuronal 
cells [20, 21, 38, 49]. eNOS is involved in several cellular functions such as vasodi-
lation, modulation of platelet aggregation, cardiomyocyte and SMC contraction, 
leukocyte-endothelial cell interaction as well as inhibition of SMC proliferation 
[37, 46, 54]. 

eNOS function is regulated via phosphorylation of the enzyme. Activation of the 
inactive eNOS dimer occurs via Ca2+ mediated protein modification through myris-
tolyation, phosphorylation and palmitoylation resulting in a conformational change 
of the enzyme. Although phosphorylation of eNOS can occur at its multiple Serine 
(Ser) or Threonine (Thr) sites, phosphorylation at Ser1177 and Thr495 sites are 
more commonly studied and observed to be involved in its regulation [20, 21, 55, 
56]. In cardiomyocytes, phosphorylation of Ser1177 is observed to activate enzyme 
activity, whereas phosphorylation of Thr495 has inhibitory effect [20, 21]. Under 
non-stimulated condition Thr495 tends to be phosphorylated by Protein kinase C 
(PKC), which results in interference for binding of calmodulin to its binding site 
on the enzyme resulting in inactivation of eNOS [56, 57]. In contrast, phospho-
rylation at Ser1177 stimulates the flux of electrons within the reductase domain 
thereby activating the enzyme [49, 56]. Although Ser/Thr kinase (Akt) and adenosine 
monophosphate activated protein kinase (AMPK) are involved in the phosphoryla-
tion of Ser1177, Akt is the major regulator of phosphorylation in response to various 
triggers such as estrogen, vascular endothelial growth factor (VEGF) and insulin 
[49, 58]. 

eNOS derived NO exerts its biological effects by targeting various Ca2+ channels 
such as L-type calcium channels (LTCC), ryanodine receptor (RyR), sarcoplasmic 
Calcium ATPase (SERCA) via c-GMP dependent and independent signaling path-
ways [46, 59, 60], which is discussed later in this chapter. Nonetheless, for effective 
and targeted signaling, eNOS is primarily localized in plasmalemma caveolae in the
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spatial vicinity of its target proteins [46, 61, 62]. Myristolyation and palmitoylation 
of eNOS on glycine and cysteine target eNOS to plasmalemma caveolae. Alterna-
tively, it can translocate to other subcellular compartments including Golgi apparatus, 
cytosol and endothelial cell junctions [63]. Dissociation of eNOS from caveolin by 
interaction of proteins such as heat shock protein 90 promotes phosphorylation of 
eNOS by recruitment of Akt [38, 46, 61, 64]. Heat shock protein 90 also plays an 
important role in maintaining dimeric form of eNOS [65]. 

At low level of eNOS, derived NO is involved in maintaining various cardiovas-
cular functions. Loss of bioactive NO as a result of eNOS uncoupling is implicated in 
the progression of many cardiovascular dysfunctions [53, 66]. Loss of cofactor BH4 
leads to uncoupling of NOS changing it from NO producing enzyme to superoxide 
producing enzyme [67, 68]. 

Neuronal Nitric Oxide Synthase (nNOS) 

nNOS, a 161 kDa NOS isoform, although first characterized in neuronal cells, is also 
expressed in several other cell types such as cardiomyocytes, smooth muscle and 
skeletal muscle. Similar to eNOS, nNOS is constitutively expressed where enzyme 
activity is regulated by Ca2+/calmodulin to produce low (pM-nM) amount of NO 
[46, 47]. In cardiomyocytes, nNOS is localized in the sarcoplasmic reticulum (SR) 
membrane and nNOS mediated NO is involved in the regulation of Ca2+ handling 
proteins such as SERCA, LTCC and phospholamban [47, 60, 69]. In cooperation with 
eNOS, nNOS mediated NO plays an important role in β-AR mediated excitation– 
contraction coupling in cardiomyocytes [69, 70]. Although the exact mechanism for 
the cardioprotective role of nNOS is unclear, genetic manipulations resulting in loss 
of nNOS manifested in blunting of βAR response [70]. However, nNOS mediated 
NO plays a major role in the regulation of blood pressure in the central nervous 
system [49]. 

Inducible Nitric Oxide Synthase (iNOS) 

This NOS isoform is not constitutively expressed, rather its expression is induced 
particularly in the presence of pathological stimuli such as cytokines, bacterial LPS 
or stress [38, 44]. Though initially recognized to be restricted to inflammatory cells, 
recent evidence confirms that the expression of iNOS can be induced in several 
cell types including cardiomyocytes [20, 21, 46, 49, 69]. Unlike eNOS and nNOS, 
once expressed iNOS is constantly active and produces μM concentration of NO. 
iNOS is active even in the absence of changes in Ca2+ and does not depend on post 
translational modifications or Ca2+ for the regulation of its activity [43, 44]. Although 
NO produced by iNOS has a crucial role in defense against pathogens, parasites,
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tumor cells and microbes; it also exerts deleterious effects on neighbouring healthy 
cells [42, 43]. 

The production of NO by iNOS is controlled at the level of transcription via 
nuclear factor κB (NFκB). Activation of pro-inflammatory cytokines such as TNFα 
and IL-1 also facilitates activation of iNOS via translocation of NFκB from the 
cytosol to nucleus or upregulation of IFNγ mediated Jak-STAT signaling [44, 71, 
72]. The promoter region of iNOS gene has binding regions for several transcriptional 
factors like NFκB, AP1, Jun/Fos, CREB and STAT family of transcription factors. 
The binding of NFκB and AP1 transcription factors to the promoter region mediate 
expression of various inducible genes such as iNOS, COX-2, ICAM-1 and VCAM-1 
[43, 73]. 

iNOS mediated NO exerts deleterious effects in healthy cells via multiple mech-
anisms. NO can bind to iron and inhibit the activity of key iron containing enzymes 
such as in the mitochondrial electron transport chain, cis-aconitase, enzymes of 
complex I and II as well as ribonucleotide reductase [30, 74, 75]. NO at high concen-
tration can also directly interfere with DNA resulting in strand break and fragmen-
tation [49, 74]. It can also form peroxynitrite resulting in apoptosis through the 
activation of various caspases and PARP [17]. iNOS upregulation can exacerbate the 
pathophysiological conditions of myocardium and can modulate cardiac contrac-
tility by targeting multiple Ca2+ handling proteins involved in EC coupling [38, 47]. 
Increased myocardial iNOS can also initiate various cardiac remodeling events such 
as ventricular hypertrophy and dilatation [42, 60]. 

Nitric Oxide Signaling 

Nitric oxide (NO) mediated intracellular signaling is mainly via two distinct path-
ways: cGMP dependent and cGMP independent. The initial discoveries identified 
increased cGMP as a critical mediator to carry out biological action of NO. NO 
induced increase in sGC was observed to be crucial to mediate vaso-relaxation 
in response to an increase in NO [37, 76]. Constitutively active NOS mediated 
generation of NO interacts with heme moiety of sGC. The latter further causes 
activation of sGC leading to conversion of guanosine triphosphate (GTP) to cyclic 
guanosine monophosphate (cGMP) [77]. cGMP activates cGMP dependent kinases, 
protein kinase G (PKG) resulting in phosphorylation of a number of proteins 
involved in Ca2+ regulation, reducing the levels of [Ca2+]i [22, 47]. This stimulates 
muscle relaxation, increase in vascular permeability, anti-platelet and anti-oxidant 
effects through targeting protein kinases and ion channels [48]. The stimulatory 
effect of NO is abrogated by enzyme phosphodiesterase-5 which converts cGMP to 
GMP [76]. 

Another alternative mechanism for NO signaling was discovered to be indepen-
dent of an activation of sGC. NO was observed to directly alter proteins by the 
formation of NO-protein adducts resulting in more stable complex [76, 78]. NO 
triggers nitrosylation of proteins by targeting the sulfhydryl groups of the proteins
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resulting in reversible nitrosothiol compounds or nitration of proteins at tyrosine 
residue [48]. These reactions are highly specific and require low concentration of 
NO compared to cGMP mediated alterations [63]. However, the propensity of nitro-
sylation depends on many factors including the redox microenvironment [48]. Upon 
nitrosylation, proteins can change their properties similar to the effect of protein 
phosphorylation. Low level of nitrosylation is critical for the activation of a number 
of proteins [38, 77, 78]. In fact, s-nitrosylation in coordination with phosphoryla-
tion regulates the function of many Ca2+ handling proteins such as LTCC, SERCA, 
RyR and phospholamban involved in β-AR mediated cardiac contractility [79]. The 
formation of S-nitrosothiols is maintained and cleared by enzyme S-nitrosothione 
reductase degrading the former into glutathione disulphide (GSSG) and ammonia 
(NH3) [22, 79]. Hence, deficiency of s-nitrosothione reductase results in enhanced 
levels of s-nitrosothiols in tissue and contributes to pathological signaling [60]. To 
achieve specificity, NO is produced in close vicinity of the target molecule allowing 
direct interaction between NO and its target. In fact NOS is believed to be part of 
protein complex in which s-nitrosothiol signaling occurs [63, 78]. Extensive protein 
nitration is involved in disease initiation and progression as a result of gain or loss of 
function by stimulation or inhibition of protein phosphorylation respectively [28, 36]. 

Nitrosative Stress 

Reactive nitrogen species (RNS) such as peroxynitrite are involved in the pathogen-
esis of a variety of cardiovascular pathologies such as myocardial infarction, chronic 
heart failure, diabetes, neurological diseases such as Alzheimer’s and Parkinson’s 
disease [26, 80–82]. Increased plasma levels of NO and peroxynitrite are reported 
in patients with cardiovascular complications including Dox-induced cardiotoxicity 
[80, 83]. Dox treatment also lead to increased NO, peroxynitrite and protein nitro-
sylation levels in isolated adult cardiomyocytes [20]. Peroxynitrite plays a critical 
role in exacerbating Dox mediated cardiotoxicity [21]. These changes not only exac-
erbates the toxicity by direct oxidation of DNA, proteins and lipids [29], but they 
also inhibit the activity of antioxidant enzymes [32] and accelerate the production 
of ROS such as superoxide [35]. As peroxynitrite is formed by near diffusion reac-
tion of superoxide with NO [23, 29, 82], it has been speculated that an increase in 
the generation of superoxide through the upregulation of NADPH oxidase, xanthine 
oxidoreductase would act as an initial trigger for the generation of peroxynitrite 
[84]. Further stimulation for the production of higher concentration of peroxynitrite 
is through increased generation of NO by upregulation of iNOS [84]. 

Although low level of nitrosylation has an important role in cardiovascular 
signaling and regulation of angiogenesis, cardiac contractility, vascular relaxation, 
apoptosis and inflammation [78, 79, 85, 86], high levels of nitrosylation have 
inhibitory effects [85]. Peroxynitrite at higher levels induce nitration and nitrosy-
lation of various proteins and thereby alter their function and downstream signal 
transduction (Fig. 7.1). Extensive protein nitration and nitrosylation is observed in



7 Role of Nitric Oxide Synthases in Doxorubicin-Induced Cardiomyopathy 137

both in vitro and in vivo models of Dox- induced cardiotoxicity [20, 21]. Increased 
peroxynitrite leads to nitration and nitrosylation of cardiac myofibrils, apoptosis, 
inflammation as well as calcium handling proteins resulting in ventricular dysfunc-
tion (Fig. 7.1) [25, 33, 86]. Under the conditions of increased oxidative stress, high 
levels of NO had an inhibitory effect on mitochondrial respiratory chain enzymes 
by increased nitrosylation [85]. S-nitrosylation of proteins is dependent on the redox 
state of the cell and can be reversed in the presence of antioxidants such as glutathione, 
thioredoxin and ascorbic acid [85, 87]. We demonstrated that the treatment with Vit 
C significantly reduced Dox mediated nitration and nitrosylation of proteins [20, 21] 
(Fig. 7.2). 

DOXORUBICIN 

RNS 
Peroxynitrite,  NO 

Inflammation 
TNF-α; IL-1β; IL-6 

Vitamin C 

Reduced Cardiac Functions 
EDSP,     ESP,     EF,    FS 

HEART FAILURE 

Cell Death/ Loss of 
Cardiomyocytes 

Pro-apoptotic protein, vacuolization 

Nitrosative Stress 
Protein nitration/Nitrosylation, iNOS 

Fig. 7.2 Doxorubicin induced nitrosative stress is mitigated by Vitamin C. Doxorubicin induced 
nitrosative stress involves production of peroxynitrite leading to an increase in proinflammatory 
cytokines which collectively cause cell death and contribute to depressed cardiac function eventually 
leading to heart failure. These cardiotoxic effects of doxorubicin are mitigated by Vitamin C. RNS, 
Reactive nitrogen species; NO, Nitric oxide; iNOS, inducible nitric oxide synthase; TNF-α, Tumor 
necrosis factor alpha; IL-1β, Interleukin 1 beta; IL-6, Interleukin-6; EDSP, End diastolic pressure; 
ESP, End systolic pressure; EF, Ejection fraction; FS, Fractional shortening
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Various experimental models demonstrated upregulation of iNOS expression by 
Dox administration [20, 21, 23, 83, 88–91]. Additionally, an imbalance in the expres-
sion of iNOS and eNOS is observed after administration of Dox [90]. Reduction in 
peroxynitrite using peroxynitrite scavenger abolished Dox-induced apoptosis and 
NT formation [23]. Peroxynitrite leads to increased NT formation after administra-
tion of Dox in isolated cardiomyocytes and cardiac tissue of Dox treated animals [33, 
89]. Dox causes extensive protein nitration and nitrosylation of cardiac myofibrils 
and contractile proteins and affects cardiac contractility resulting in LV dysfunction 
[25]. Thus reduction of Dox induced nitrosative stress is critical for attenuation of 
its cardiotoxicity. We have recently demonstrated a reduction in nitrosative stress by 
Vitamin C in isolated cardiomyocytes as well as animals exposed to Dox [20, 21]. 

Modulation of NOS 

Physiologically NO produced by different NOS isoforms has differential function 
as well as regulation. Since eNOS is compartmentalized in plasmalemma caveoli 
[46] which is in close proximity to the sarcoplasmic reticulum, eNOS derived NO in 
physiological levels (low concentration) plays an important role in cardiomyocyte 
contraction [49, 69]. As all forms of NOS are stable in their dimeric state, maintaining 
the dimeric form of eNOS is crucial for its catalytic activity [49, 92, 93]. Neverthe-
less, dissociation of the dimeric form into monomeric form under the conditions of 
nitrosative stress or cofactor oxidation can lead to uncoupling of enzyme resulting 
in the production of superoxide instead of NO [65]. Despite iNOS being a more 
potent source of generation of NO and superoxide than eNOS, uncoupling of eNOS 
is implicated in many pathological conditions. This is because of its inability to 
produce physiological levels of eNOS derived NO crucial for normal cardiovascular 
function. 

Uncoupling of eNOS is associated with the progression of many pathological 
conditions such as endothelial dysfunction, diabetes, obesity and aging [67, 94, 95]. 
Although the mechanism for uncoupling of eNOS is not clearly understood, it can be 
a consequence of monomerization of eNOS as a result of oxidation of the cofactor 
BH4, involved in binding of two monomers. However, conditions involving increased 
production of ROS can also trigger uncoupling of eNOS. The disruption of dimeric 
form of eNOS into monomeric subunits is enhanced in Dox treated cardiomyocytes 
[20, 51, 67]. Enhanced nitrosylation of eNOS also results in the disruption of dimer 
stability [87]. Monomerization and uncoupling of NOS results in synthesis of super-
oxide anion instead of NO [51]. On the other hand, maintaining redox potential 
through an upregulation of thioredoxin reductase resulted in the protection of eNOS 
dimer and restoration of enzyme activity [87]. Furthermore, loss of eNOS in the 
eNOS knockout mice provides cardioprotection against Dox-induced cardiotoxicity 
[96, 97].
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eNOS being constitutively expressed, phosphorylation is the key mechanism for 
regulation of its activity. eNOS enzyme activity is regulated by differential phos-
phorylation of the enzyme at its activating site Ser1177 or inhibitory site Thr495. 
Phosphorylation at Ser 1177 enhances enzyme activity, whereas, phosphorylation 
at Thr495 reduces enzyme activity [49, 58]. Phosphorylation of eNOS at its acti-
vating site leads to conformational change in eNOS resulting in its activation [49]. 
Under non-stimulated conditions, eNOS is phosphorylated at Thr495. Phosphory-
lation of eNOS is regulated by various factors such as estrogen, VGEF, bradykinin 
which activates various kinases such as Akt, AMP activated protein kinase (AMPK) 
and protein kinase C (PKC) as well as protein phosphatase 2A (PP2A) [49, 58]. 
Akt dependent phosphorylation is required for the activation of NOS in endothelial 
cells [98]. We reported a downregulation in the protein expression of phosphorylated 
eNOS at Ser1177, while an upregulation of phosphorylated eNOS at Thr495 in Dox 
treated cardiomyocytes. This may be possibly due to Dox mediated downregulation 
in Ser1177 activating kinases Akt and AMPK [16]. In our studies on the rat animal 
model we found a downregulation of Akt by Dox which was prevented by Vit C [21]. 

Inflammatory Responses 

An increased protein expression of iNOS in Dox-treated cardiomyocytes as well 
as in Dox treated animals has been reported by us [20, 21]. Under physiological 
conditions, iNOS is usually not expressed in cells, but pathological stimuli such as 
lipopolysaccharide and Dox exposure can induce its expression [21, 63]. Upregula-
tion of iNOS is implicated in various pathological conditions including heart failure 
[99]. Increased iNOS activity and expression were demonstrated in the myocardium 
and vasculature of both animals and patients with heart failure [34, 83]. iNOS medi-
ated enhanced NO levels in high μM range for prolonged period of time are respon-
sible for enhanced peroxynitrite formation as well as protein modification by s-
nitrosylation and nitration. Studies using genetic and pharmacological modulation 
of iNOS have highlighted the role of iNOS in the pathogenesis of heart failure [38]. 
Disruption of iNOS has been shown to reduce protein nitrosylation [100] as well as  
improve cardiac function [101] via reduction in cardiac NO. Thus an increase in NO 
levels and total NOS activity by Dox treatment in isolated cardiomyocytes as well 
as in adult rat cardiac tissue observed in this laboratory can be attributed to upregu-
lation of iNOS protein expression and not via eNOS which is rendered inactive by 
the interplay of phosphorylation at the Thr495 and Ser1177 sites [20, 21]. 

An increase in pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in 
isolated cardiomyocytes as well as in the hearts has also been observed following 
treatment with Dox in dose-dependent manner [20, 21, 89, 102]. These cytokines 
are involved in nuclear translocation of NF-ƘB, which then activates the iNOS and 
generates more NO [103]. Dox possibly recruits these cytokines and induce apoptosis 
through activation of iNOS-mediated nitrosative stress. In this regard, Vit C has been
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shown to be beneficial in reducing the translocation of NF-ƘB via inhibiting TNF-α 
and IL-1β and subsequently resulting in attenuation of iNOS activation [20, 21, 104]. 

Conclusions 

A production of RNS through elevated cardiac NO levels under Dox treatment is 
well documented. In our lab, we demonstrated change in different NOS isoforms 
in in-vitro and in-vivo models of Dox-induced nitrosative stress. Dox was involved 
in the production of NO and peroxynitrite. The latter is able to activate different 
stress signaling molecules to cause protein nitrosylation and cell death. In the in-
vivo rat model, Dox was able to significantly decrease systolic function and increase 
in cardiac levels of inflammatory cytokines like TNFα, IL-1β and Il-6. Vitamin C (Vit 
C), which is a potent water soluble antioxidant crucial for maintaining redox state and 
scavenging reactive free radicals, was able to mitigate dox-induced cardiomyopathy. 
Vit C reduced activation of iNOS by Dox and thus, reduced protein nitrosylation 
and overall NO production. The reduced action of iNOS by Vit C decreased the 
load of pro-inflammatory cytokines in dox-treated animals as well as in isolated 
cardiomyocytes. These inhibitory effects of Vit C were enough to promote overall 
survival of cardiomyocytes and improve cardiac function in Dox-treated animals. In 
any adjuvant therapy, it is important to maintain anti-tumor activity of Dox without 
causing damage to the heart. Thus it is important to understand the molecular basis 
of cellular actions of Dox separately not only in cardiomyocytes but also in cancer 
cells. 
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Chapter 8 
Role of Nitric Oxide Synthase and Nitric 
Oxide Signaling in the Neutrophil 
Ontogeny and Functions 

Sachin Kumar, Samreen Sadaf, and Madhu Dikshit 

Abstract Neutrophils are the essential guards of the immune system that inacti-
vate different pathogens as well as instruct specific immune responses. Nitric oxide 
(NO), a pleiotropic signaling molecule produced from nitric oxide synthases, regu-
lates neutrophils at diverse levels. This includes the development of neutrophils 
from hematopoietic stem cells through granulopoiesis processes; furthermore, nitric 
oxide regulates neutrophil maturation from committed progenitor cells. In addition, 
nitric oxide regulates most of the neutrophil functions, such as adhesion, chemo-
taxis, respiratory burst, apoptosis, NETosis, intruder killing, and tissue damage. 
Intriguingly, neutrophils provide substantial amount of NO with the presence of 
nitric oxide synthases and their regulation in inflammatory conditions. Overall, this 
work discusses the role of nitric oxide signaling in neutrophil ontogeny and functions. 

Keywords Neutrophil functions · Ontogeny · Inflammation · Nitric oxide · NO 
synthase · NADPH-Oxidase 

Neutrophil Ontogeny 

Neutrophils (PMNs), the most abundant yet short-lived leukocytes in the blood, are 
produced in the bone marrow by the hematopoiesis process in an adult subject. They 
are the prominent players of innate immunity and provide the first line of defense 
by directly killing the intruders through phagocytosis and/or NETosis. The indis-
criminate killing is due to the high amount of reactive oxygen species (ROS), nitric 
oxide (NO), the release of myeloperoxidase, proteases, and cytotoxic peptides in the
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phagolysosomes. Methodological advancements in cell biology research unfolded 
several vital aspects of neutrophil biology and helped identify their crucial role in 
immunity. 

Neutrophils have a high turnover rate i.e., 1011 cells per day in a healthy human and 
that is under circadian rhythmic regulation. PMNs are derived from hematopoietic 
stem cells (HSCs) by the processes of proliferation, differentiation, and matura-
tion [1, 2]. HSCs reside in a specific local microenvironment in the bone marrow, 
known as the stem cell niche that modulates survival, self-renewal, and cell fate deci-
sion [3]. HSC niche was initially divided into two main zones i.e., endosteal niche 
and vascular niche, however, currently, it is believed that almost every hematopoi-
etic or non-hematopoietic cell in the bone marrow regulates HSC function [4]. 
Stromal or non-hematopoietic cells in the BM include majorly osteoblast cells, 
mesenchymal stromal/stem cells (MSCs), and CXCL12-abundant reticular (CAR) 
cells adjacent to sinusoids colocalize with HSCs and are also required for their main-
tenance. HSCs derived short-term HSCs (ST-HSCs) and multipotent progenitors 
(MPPs) that give rise to common myeloid progenitors (CMPs) or common lymphoid 
progenitors (CLPs) [5, 6]. CMPs form the megakaryocyte-erythrocyte progenitors 
(MEPs) and granulocyte–macrophage progenitors (GMPs). Granulocytes and mono-
cytes differentiate from GMPs [7, 8]. The earliest recognizable neutrophil precur-
sors are myeloblasts (MBs), which differentiate into promyelocytes (PMs), myelo-
cytes (MCs), metamyelocytes (MMs), band cells (BCs) and segmented neutrophils 
[9]. The high demand for neutrophil generation is met through a highly controlled 
granulopoiesis process in the bone marrow. 

Granulopoiesis engages the orchestration of different transcription factors, growth 
factors, cytokines, and cell cycle regulators (Zhu and Emerson 2002). Thrombopoi-
etin (TPO), stem cell factor (SCF), FMS-like tyrosine kinase-3 (FLT-3) ligand, and 
cytokines (IL3, IL6) released from stromal cells promote HSCs self-renewal and 
number in vitro as well as in vivo [10–14]. G-CSF and its receptor (G-CSFR) are 
critical for PMNs differentiation [15]. Homologues deletion of G-CSF and G-CSFR 
in mice reduces neutrophil maturation (about 20% of normal levels) and induces 
their mobilization [16, 17]. 

G-CSF released from the stromal cells enhances the release of matrix metallo-
proteinases (MMPs), elastase, and cathepsin G from neutrophils. These disrupt the 
interaction of stromal-derived factor-1 (SDF1) or CXCL12 with receptor CXCR4, as 
well as vascular cell adhesion molecule 1 (VCAM-1) and very late antigen-4 (VLA-4, 
CD49d/CD29, alpha4 beta1) interaction or N-cadherin dimerization between HSCs 
and osteoblasts, to promote mobilization of HSCs and neutrophils into circulation 
[18–22]. CXCR4 is expressed on the neutrophil surface, and its level is altered 
during different stages of maturation and activation. The interaction of SDF1 with the 
chemokine receptor CXCR4 is essential for neutrophil retention in the bone marrow. 
Cultured peripheral neutrophils or aged neutrophils increased CXCR4 expression 
over 48 h [23]. Moreover, CXCR4 and CXCL12 are down-regulated by G-CSF [24, 
25]. Chemokine receptors CXCR2 and CXCR4 are thus indispensable to sustain 
neutrophils in the bone marrow pool, and their expression augments the number 
of aged neutrophils [26]. CXCR4 mutation or deletion of CXCR2 also induces
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neutrophil retention in the bone marrow [27, 28]. Moreover, CXCR4 deficient mice 
die perinatally due to excessive release of PMNs in the circulation [28]. CXCR4 
modulates neutrophil extravasation [26], while its inhibition impedes neutrophil 
homing [25]. CXCR4 deficiency results in the decrease of bone marrow neutrophils 
but increased peripheral neutrophils in mice [29, 30]. 

NOS/NO Signaling 

Nitric oxide (NO) was initially identified as the regulator of vasodilation and neuro-
transmission, however, it was subsequently recognized as a critical regulator of 
immune responses and immune functions [31–33]. 

NO synthesis is catalyzed by enzyme nitric oxide synthase (NOS) from substrate 
L-arginine in the presence of oxygen and several cofactors. Three isoforms of NOS 
include neuronal (nNOS), endothelial (eNOS), and inducible (iNOS), designated 
based on their initial identification in a particular cell type. Interestingly, nNOS 
and eNOS are constitutive and depend on calcium-calmodulin for their enzymatic 
activity, while iNOS is inducible in nature, and its activity is independent of calcium. 
Constitutive NOSs produce a low level of NO, in contrast to the inducible iNOS 
isoform that produces higher NO for a prolonged duration [34]. Initially, iNOS was 
found to be present in the immune cells like macrophages and neutrophils, however, 
subsequent studies demonstrated the presence of almost all three isoforms in the 
bone marrow cells and neutrophils both at mRNA and protein levels [35]. Impor-
tantly, circulating neutrophils help to maintain blood pressure by suppressing bacte-
rial and IFNγ-dependent iNOS expression in the vasculature of healthy mice [36] as  
neutrophil depletion led to a decrease in blood pressure, suggesting the requirement 
of PMNs in maintaining the optimal vascular tone. 

NOS/NO and Granulopoiesis 

All three NOS isoforms, are expressed in hematopoietic stem cells as well as in 
the circulating blood cells [37–42]. In hematopoietic system, NO by modulating the 
action of several cytokines and growth factors, regulate HSC self-renewal, prolifer-
ation, and differentiation in human [43–46] and rodents [47–51]. Studies conducted 
using NO donors, or NOS inhibitors suggested that NO mediates TNFα, IFNγ, and 
GM-CSF induced hematopoiesis and hematopoietic maturation [47, 52, 53]. Punjabi 
et al. [52] observed that inflammatory stimuli, IFN-gamma, and LPS caused NO 
production in bone marrow cells [52]. Likewise, granulocyte–macrophage (GM)-
CSF, IL-3, and TNF-alpha act synergistically with IFN-gamma and LPS to produce 
NO. Among the hematopoietic BM cells, granulocytes are the primary cells to 
generate NO. High NO generation by the combined action of GM-CSF and LPS 
or IFN-gamma markedly suppresses cellular proliferation in the BM, which was
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reversed by NOS inhibitor, NG-monomethyl-L-arginine [52]. Moreover, inhibition of 
NOS by L-NAME in LPS-treated rats increased neutrophil infiltration by enhancing 
the expression of ICAM-1. At the same time, NO donors prevented neutrophil migra-
tion [54], suggesting the role of NO in bone marrow cell growth and development. 
Exposure of NO to BM or CD34+ cells inhibited colony formation in a dose-
dependent manner [53]. iNOS mRNA was present in the highly purified CD34+ 
cells. It was further induced by IFN-gamma or TNF-alpha, leading to the apoptosis 
of progenitor cells, which was reversed by NG-Monomethyl-L-arginine [53]. NO 
thus seems to be an essential mediator of cytokine-induced hematopoietic suppres-
sion [53]. Another study identified that NO donors sodium nitroprusside (SNP) and 
S-nitroso-acetyl penicillamine (SNAP) in vitro differentially regulate growth and 
differentiation of normal human bone marrow cells and CD34+ cells as inhibition 
of colony-forming unit-erythroid (CFU-E), while increase in the colony-forming 
unit-granulocyte macrophages (CFU-GM) [47]. 

On the other hand, stromal cells derived NO from nNOS, iNOS, or eNOS 
modulated actin conformation and cell–cell adhesion to regulate HSCs prolifera-
tion, differentiation, and mobilization [55–58]. Moreover, induction of iNOS in the 
bone marrow and CD34+ cells following stimulation with IFNγ or TNFα adversely 
affected the hematopoiesis [53]. North et al. demonstrated induction of HSCs number 
by NO donor, SNAP, while nNOS/eNOS knockdown blocked HSCs development 
[44]. Moreover, a previous study on murine bone marrow HSCs exhibited prefer-
ential myeloid commitment of HSCs following an in vitro exposure to NO donor 
[59]. In addition, NO, through its antioxidant and anti-proliferative effects, maintains 
HSCs quiescence [60]. In hematopoietic cells, neutrophils are known to generate a 
large amount of NO at a rate of 10–100 nmoles/5 min/106 cells [61]. Furthermore, 
neutrophils and their precursors constitute the significant fraction of the BM niche, 
and NO produced from these cells might acts as a paracrine effector to regulate 
hematopoiesis in the BM. NOS inhibition was found to augment the number of 
neutrophils in the mouse bone marrow and blood; this study however did not investi-
gate neutrophil apoptosis [62] which is also regulated by NO [63]. NO thus regulates 
hematopoiesis [62], and also erythropoiesis [64], while monocytic differentiation 
from non-lymphocytic leukemia cells [65], HL60 cells [66] and U-937 (Yamazaki 
et al. 1995) has also been demonstrated using NO donors. 

Further studies suggested the role of NO in neutrophil generation by the applica-
tion of NO donors and NOS inhibitors in vivo, interestingly NOS inhibitors treatment 
in mice led to an increase in the number of stem and progenitor cells in the bone 
marrow without any significant change in the peripheral neutrophils [62]. While in 
the irradiation-transplantation model, this HSPC increase was followed by a transient 
increase in the number of circulating neutrophils [62]. Another study identified the 
role of nNOS in the regulation of hematopoiesis, which is mainly expressed in the 
stromal cells [55]. Levels of nNOS expression and the ability of different stromal cell 
lines to support hematopoietic stem cells were strongly correlated [55]. The additive 
effect of NO donors was also observed by stromal cell lines to support hematopoi-
etic stem cells, suggesting that NO produced by stromal cells regulate hematopoietic 
cells in a paracrine manner [55]. The role of NO is also being investigated in the



8 Role of Nitric Oxide Synthase and Nitric Oxide Signaling … 151

development of HSC during embryogenesis [44], and NO plays a critical role in the 
shear stress-induced hematopoiesis from mouse embryonic stem cells [67]. 

Further, Nasrallah et al. have suggested the role of NO in hematopoiesis by moni-
toring hemogenic endothelium (HE) transition to hematopoietic cells. Endoglin 
(ENG) is an accessory TGF-β receptor required for the normal development of 
hemogenic precursors [68]. A high ENG expression in ES cell line, mesodermal, or 
HE cells accelerated the emergence of CD45+ definitive hematopoietic cells and thus 
hematopoiesis [68]. The increased pSMAD2/eNOS expression and NO synthesis 
in hemogenic precursors were observed with high ENG expression. Blocking of 
eNOS activity mitigated the ENG-induced increase in hematopoiesis [68]. NO is 
also known to regulate ESC differentiation by arresting the loss of self-renewal 
markers and promoting cell survival by inhibiting apoptosis [69], and a high amount 
of NO increases ESC differentiation towards definitive endoderm, cardiomyocytes, 
and neurons [70]. While another study suggested that bone marrow mesenchymal 
stromal cells exhibited rapid differentiation of CD11b+ myeloid cells from progen-
itors in the presence of NO [71]. Interestingly, more neutrophils (CD11b+Gr1hi) 
cells were formed from NOS2 deficient MSCs [71]. This study thus suggests the 
fundamental role of stromal NOS2 in hematopoietic homeostasis. 

Treatment of murine Lin−/LSK-CD34− cells, the hematopoietic stem cells, with 
SNP, a NO donor, enhanced the numbers of LSK-CD34+ cells [43]. Furthermore, 
it was observed that the acquisition of CD34 expression by LSK-CD34− cells was 
not due to the proliferation of LSK-CD34+ cells [43]. During the development, 
mouse hematopoietic stem cells switch their phenotype from CD34+ to CD34– 
cells in between 6–8 weeks of life span. This contrasting effect of NO observed 
in 6–8 weeks of juvenile mice than 10–12 weeks young mice was due to the up-
regulation of self-renewal and differentiation genes by differentially affecting their 
reconstitution potential [43]. Tiribuzi et al. observed that depletion of paracrine or 
autocrine NO using oxy-hemoglobin and NOS inhibitor during the commitment stage 
blocks CD34+ HSCs differentiation towards dendritic cells, and sustains undiffer-
entiated highly proliferating cell population [72]. Moreover, hematopoietic stem 
cell development has shown to be dependent on blood flow, NO donors regulated 
HSC numbers even when treatment occurred before the initiation of circulation and 
also rescued HSCs. Knockdown of nNOS/eNOS blocked HSC development [44]. 
Endogenous NO causes vasodilation in rat bone marrow, bone, and spleen during 
accelerated hematopoiesis [73]. A recent study from our group demonstrated the 
role of NO generated from iNOS in neutrophil differentiation by using diverse 
approaches [74]. iNOS-overexpressing K562 cells and iNOS KO murine progen-
itor cells shown to increase and decrease in neutrophilic differentiation respectively 
[74]. An enhanced neutrophil differentiation with NO donor was also observed in 
these models. Furthermore, a significant upregulation in NO levels was observed 
during neutrophil differentiation and apoptosis [45, 46], together establishing the 
role of iNOS-NO in neutrophil proliferation and differentiation.
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Molecular Mechanisms in NOS/NO Driven Granulopoiesis 

NO stimulation results in the dynamic cooperation of multiple signaling pathways 
to promote the expansion and differentiation of HSCs [59]. Overall hematopoietic 
niche in BM via angiopoietin 1 and its receptor Tie2 maintains the quiescence of 
hematopoietic stem cells [60, 75]. Interestingly, NO has been shown to induce the 
expression of angiopoietin 1 as well as Tie2 [76]. Cell surface expression and mRNA 
of CXCR4 on CD34+ cells were reported to be increased in a dose- and time-
dependent manner in response to NO donors [77]. SDF1 and its receptor CXCR4, 
along with matrix metalloproteinases, regulate stem cell migration and mobilization 
into circulation. Stem cell mobilization is mediated by SDF1 and its receptor CXCR4 
and proteinases such as elastase, cathepsin G, and MMPs [78]. Similarly, expression 
of PU.1, elastase, cathepsin G, and MMPs were found to be increased in iNOS-
derived NO-mediated neutrophil differentiation [45, 46]. Furthermore, Hall et al., 
using a zebrafish model, showed that C/EBPβ-dependent iNOS activity was neces-
sary for the enhanced shift toward neutrophil lineage in response to infection [79]. 
They also observed that macrophages produce elevated serum GCSF during inflam-
mation resulting in the increased expression of C/EBPβ by GCSF-responsive HSPCs. 
This consequently elevated iNOS expression and maintenance of HSPC prolifera-
tion/expansion dispensable for neutrophil commitment [62]. Moreover, MSC, the 
myeloid DC precursors when treated with GM-CSF suppressed allogeneic and OVA-
specific CD4 + and CD8 + T cell responses via cell contact and NO production [80]. 
In yet another study, bone marrow stromal-cell- eNOS was identified as an impor-
tant component of the stem cell niche and is essential for the mobilization of stem 
and progenitor cells [58]. Studies in mice lacking eNOS, which showed a reduction 
in hematopoietic recovery and dysfunctional endothelial cell mobilization, further 
deciphered the significance of eNOS in hematopoiesis in adult animals [58, 81]. 
IL-17 upregulates the expression of mRNA for both iNOS and eNOS isoforms in 
murine bone marrow cells, as well as enhances the phosphorylation of p38 MAPK 
[82]. Asthma exacerbates the number of CD34+ circulating progenitors expressing 
high levels of iNOS, implicating the role of NO in preventing cell growth and colony 
formation in a paracrine and autocrine manner but it was not sufficient to prevent 
their proliferation in the circulation [83]. Blocking of endogenous NO increases 
white blood cell accumulation in rat lung [84], suggesting cell specific paracrine and 
autocrine effect of NO. 

Studies from our lab characterized the presence of NOS isoforms in rat neutrophils 
and their precursors by using biochemical and molecular techniques [49]. Subse-
quently, NOS as well as NO were demonstrated to contribute to the generation 
of reactive oxygen species (ROS) in human PMNs [85]. Furthermore, we have 
reported a proliferative effect of nitrite on HL-60 cells, which was NO-mediated 
and Cdk2 activation-dependent [86]. Moreover, the DETA-NO-mediated biphasic 
effect on HL60 cells depended on the Cdk2 nitrosylation/activation and the loss of 
mitochondrial potential to mediate proliferation and cell death, respectively [51].
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NO/NOSs in Neutrophils 

Neutrophils, representing 50–60% of the total circulating leukocytes, could add a 
substantial amount (10–100 nmole/5 min/106 cells) of NO in circulation, impacting 
circulating cells and vascular homeostasis [87, 88]. Neutrophil’s nitric oxide synthase 
activity was first established by its ability to relax aortic rings [89] or platelet aggrega-
tion [90]. NOS activity in rat and human PMNs was demonstrated by the conversion 
of radiolabeled L-Arginine to radiolabeled L-citrulline in the presence of active NOS 
enzymes [91]. The inhibitory activity of neutrophils was found to be prevented by 
the pre-incubation of cells with NG-monomethyl L-Arginine [90, 92]. An increase 
in the release of NO from PMNs after thrombosis [90] and hypoxia-reoxygenation 
[93] indicate an essential role of PMNs in the regulation of homeostasis. 

Reports depicting the characteristics of NOS present in neutrophils were initially 
limited compared to the investigations in other cells/cell lines, possibly due to high 
proteolytic activity in neutrophils. Expression of iNOS mRNA and protein, as well as 
iNOS enzymatic activity, was first observed in cultured neutrophils [94] in cytokine-
stimulated [95] or bacteria-infected human neutrophils and in the primary granules 
[96]. Failure in the detection of constitutive expression of iNOS in human PMNs 
was explained based on the incomplete release of membrane-bound enzyme and 
inadequate proteinase inhibition in the resting PMNs [97], as more than 90% of 
iNOS is tightly bound to membrane in human PMNs [96]. Wheeler et al. (1997) 
identified neutrophils as the primary source of iNOS in leukocyte-enriched pellets 
isolated from the urine of patients with bacterial infection [96]. iNOS mRNA, protein 
and enzymatic activity was also reported in circulating rat PMNs after culture Miles 
et al. [94] and in human PMNs after cytokine-treatment [95] and bacterial infec-
tion [96]. Human and rat neutrophils have been shown to also express neural nitric 
oxide synthase mRNA constitutively [98, 99]. However, Greenberg et al. [98] failed 
to detect the presence of NOS protein, while the presence of nNOS mRNA and 
150 kDa protein in circulating human PMNs was found by Wallerath et al. [100]. Later 
constitutive expression of iNOS in human neutrophils was also observed by flow 
cytometry, Western blotting and enzymatic activity [97]. Western blotting revealed 
that iNOS protein was highly dependent on di-isopropylfluorophosphate mediated 
potent protease inhibition. Immunofluorescent staining further documented the pres-
ence of nNOS and iNOS in human PMNs, while eNOS was not detected [100]. 
Similarly, RT-PCR transcripts for nNOS and iNOS but not of eNOS were detected 
in human PMNs [100]. The presence of eNOS in neutrophils is still controversial as 
there is only one report on the presence of endothelial nitric oxide synthase isoform 
in human neutrophils [101]. Furthermore, decreased eNOS expression has been 
suggested during acute myocardial infarction or TNFα treatment. This study also 
demonstrated that the 3’-untranslated region of eNOS mRNA binds with cytosolic 
proteins of human neutrophils [101]. The presence of both nNOS and iNOS in human 
and rodent neutrophils has now been accepted unequivocally [38, 97, 99, 102, 103]. 

Studies conducted in our lab using RT-PCR, Western blotting, and immuno-
electron microscopy demonstrated the presence and localization of nNOS/iNOS
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in nucleus, granules, phagosome, and mitochondria and in the membrane of rat 
and human neutrophils [38]. NOS activity and expression was found to be regu-
lated by ascorbate in guinea pig, rodent, and human PMNs [103]. Availability of 
reduced tetrahydrobiopterin, L-arginine, and oxygen is crucial for the NOS activity 
regulation in resting and activated human, guinea pig, and rat neutrophils [38, 40, 
41, 93, 103–112]. Moreover, NO-mediated free radical generation was noted in 
PMNs under reoxygenation after hypoxic conditions [93]. Neutrophil iNOS was 
augmented in LPS treated [105], spontaneously hypertensive rat neutrophils [104]. 
Moreover, neutrophil nitrite content and NO generation as well as circulating/CSF 
nitrite content, were altered during various CNS and other diseases, indicating their 
role in pathology and possible marker of some of the pathological indications. 

Further studies revealed that the expression of iNOS was constitutively augmented 
following the maturation of rat neutrophils, while nNOS expression was almost 
comparable during the various stages of neutrophil development [49]. In contrast, 
maximum eNOS expression in the immature rat neutrophils was attenuated with 
neutrophil maturation [49]. Detailed and multipronged studies conducted in iNOS 
and nNOS overexpressed K562 cells, mice Lin−ve cells, and CD34+ cells from human 
marrow have further helped in establishing the role of NOS in human neutrophil 
differentiation and survival [45, 46]. 

Pathological Conditions 

Leukocyte-enriched pellets from the urine of urinary tract infections patients and 
bacterial-infected leukocytes exhibited induction in iNOS levels [96]. Plasma nitrate 
concentration has been reported to be significantly higher in patients with septicemia 
who have a normal or elevated number of neutrophils in peripheral blood than in 
those with neutropenia [113]. Similar results were obtained by us, with a signifi-
cant increase in plasma nitrate, nitrite, and TNF alpha levels in patients with sepsis 
[114]. Likewise, we also observed an increase in the plasma MPO levels in sepsis 
correlating with increased neutrophil proliferation, a marker of the severity of inflam-
mation [115]. Enhanced ROS and RNS generation as well as secretion of inflamma-
tory mediators, led to apoptosis in the dropsy patients [116]. Moreover, neutrophil 
ROS and RNS have been associated with tissue damage in myocarditis, myocardial 
infarction, and ischemia–reperfusion injury, thus, inhibition of neutrophil recruitment 
and ROS generation improve cardiac function [117]. Furthermore, nitrite levels in 
neutrophil precursors as well as in blood plasma and BM fluid, were significantly 
less in CML patients compared to the values in controls [118]. 

Additionally, high oxidative stress led to reduced iNOS expression in PMNs of 
CML patients [119]. It has been demonstrated that neutrophil-derived NO is respon-
sible for the augmented free radical generation following hypoxia-reoxygenation 
[93]. On the contrary, induction of thrombosis in rats was associated with a reduc-
tion in the free radical generation and augmentation in NO release [107]. However, 
an increased release of NO by PMNs was found to be associated with the inhibition
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of platelet aggregation by the neutrophils obtained after pulmonary thromboem-
bolism [90]. An increase in the neutrophil nitrite content and its role in Parkinson’s 
disease has also been suggested [108]. On the contrary, unaltered nitrite level is also 
observed in CSF of Parkinson’s disease patients as compared to the controls [120]. A 
significant decrease in NO synthesis while an unaltered antioxidant enzyme activity 
was observed in PMN of schizophrenia patients suggesting that the decrease in NO 
synthesis by PMN might lead to oxidative stress in such patients [121]. Similarly, 
PMNs of patients with affective disorders displayed altered NOS activity [122]. 
In addition, during the head-ache-free period of patients with migraine, the blood 
nitrite levels were not significantly altered [123]. Similar results were obtained from 
the patients suffering from motor neuron disease [124]. Moreover, no significant 
change was found in neutrophil ROS levels in migraine patients compared to controls 
suggesting that neutrophils are not the cause of oxidative stress observed in migraine 
patients [125]. Moreover, in diseases like sepsis, diabetes, glucose-6-phosphate dehy-
drogenase deficiency, glycogen storage diseases (GSDs), systemic lupus erythe-
matosus (SLE), rheumatoid arthritis, and cancer the metabolic reprogramming of 
neutrophils by inflammatory mediators or during pathologies are desired to be under-
taken [126]. Circulating neutrophils from hypertensive patients release more ROS 
than their normotensive counterparts [127]. In the hypertensive rat model, the induc-
tion of NOS in neutrophils along with augmented oxidative stress was observed, 
suggesting the association of oxidative stress with endothelium might be leading to 
inflammatory changes in hypertensive conditions [40, 104]. Circulating neutrophils 
have also been shown to maintain the physiological level of blood pressure by 
suppressing bacterial, and IFNy-dependent iNOS expression in the vasculature of 
healthy mice [36] as neutrophil depletion led to low blood pressure and suggested 
the requirement to maintain optimal vascular tone. NO generation by neutrophils is 
also involved in their antimicrobial function [128]. During inflammation, the rate of 
synthesis of NO and superoxide is increased leading to the generation of peroxynitrite 
mainly by mitochondria and immune cells including macrophages and granulocytes 
[129]. 

Nitric Oxide-Mediated Modulation of PMNs Functions 

Nitric oxide has been shown to regulate most of the neutrophil functions, such as 
chemotaxis, respiratory burst, adhesion, apoptosis, NETosis, and bacterial killing or 
tissue damage [42, 51, 61, 130–134]. Here we discuss the key functions of neutrophils 
and their modulation by NOS/NO. 

(a) Rolling & adhesion 

NO is an important homeostatic regulator of leukocyte rolling and adhesion [135– 
137]. Extravasation of neutrophils is a complex and highly coordinated phenomenon 
that involves initial low-affinity rolling of neutrophils mediated by L, P, and E



156 S. Kumar et al.

selectins followed by high-affinity interactions with integrins on vascular endothe-
lium facilitating the process of transmigration [138]. It has been demonstrated that 
inhibition of NO synthesis promotes P-selectin-dependent leukocyte rolling [139]. 
Surprisingly exogenous NO also decreases leukocyte rolling [140, 141]. In the iNOS 
deficient mice increase in the leukocyte-endothelium interaction and neutrophil trans-
endothelial migration following LPS-induced endotoxemia has been reported [142]. 
A similar observation was also observed in NOS inhibitors; L-NAME, amino guani-
dine, 1400 W or with guanylate cyclase inhibitor, ODQ treated mice, or endothelial 
cells [142–144]. 

L-Arginine supplementation enhanced and prolonged fMLP triggered neutrophil 
aggregation in a NO-dependent manner involving ADP ribosylation and rearrange-
ment of the actin cytoskeleton [145]. NO prevents neutrophil-endothelium inter-
action by reducing CD11b/CD18b expression and inhibiting β2 integrins by inter-
fering with the cell surface transduction of signals linked to particulate guanylate 
cyclase activity [135, 146]. LPS treatment induced NOS and upregulated expres-
sion of E-selectin and ICAM-1, thus influencing intercellular adhesion [147, 148], a 
phenomenon opposed by NO donors. NO donors generating NO in higher than phys-
iological levels inhibited LPS or TNF-α induced neutrophil adhesion to endothelial 
cells. Furthermore, endogenous NO or supplementation with L-arginine was effective 
in preventing reperfusion injury and target organ infiltration and damage attributed 
to neutrophils, as in sepsis [149–151]. NO prevents the leukocyte-endothelial cell 
adhesion by reducing the CD11/CD18 expression [135, 137], and also by inhibiting 
the β2 integrins in a concentration-dependent fashion by dampening the transduc-
tion of signals linked to the activity of membrane-bound guanylate cyclase [146]. 
Cell permeable analogs of cGMP also inhibit leukocyte-endothelial cell adherence 
[152], suggesting involvement of NO/cGMP signaling in leukocyte-endothelial cell 
adherence. 

(b) Chemotaxis 

Chemotaxis is the directed movement of cells in response to a concentration gradient 
of a chemo-attractant stimulation inducing a cascade of events, which include actin 
reorganization, shape changes, development of polarity, and reversible adhesion, 
culminating in directed migration. NO from both exogenous and endogenous sources 
limit leukocyte recruitment into normal and inflamed vessels [141, 153, 154]. While 
NO also enhanced neutrophil adhesion to endothelial cells [155, 156]. Moreover, 
exogenous NO enhanced the random migration of rabbit peritoneal neutrophils in 
a concentration-dependent manner, which was associated with a rapid and transient 
increase in cGMP levels [157]. The role of endogenous NO in migration has also 
been assessed by using NOS inhibitors and L-arginine [152, 153]. 

Neutrophil chemotaxis in response to invading pathogens and chemokines upreg-
ulated iNOS. Intra-peritoneal inoculation of a lethal dose of Staphylococcus aureus 
in a sepsis model prevented neutrophil migration to the site of infection, which was 
prevented by aminoguanidine pretreatment [158]. In a similar study, Benjamin et al.
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[159] observed that iNOS (-/-) mice subjected to lethal sepsis induced by cecal liga-
tion and sublethal sepsis by cecal ligation and puncture (SL-CLP) suffered high 
mortality due to a lack of microbicidal activity in neutrophils of iNOS(-/-) mice. 
Zymosan injection into the peritoneal cavity in both wild-type and iNOS knockout 
mice elicited a similar chemotactic response of neutrophils yet a subtle difference 
in the kinetics pointing towards fortifying effects of NO on neutrophil chemotaxis 
[160]. 

Higher concentrations of NO donors inhibit chemotaxis in a cGMP-dependent 
manner, whereas lower concentrations promote this response, suggesting a biphasic 
regulation of chemotaxis by NO [157, 161]; [147, 162–164]. An increase in chemo-
taxis at lower concentrations of NO was cGMP-independent [157, 161]. A subse-
quent study on NO-induced cGMP-independent neutrophil chemotaxis was found to 
be mediated by IL-8 production [165]. 

(c) Phagocytosis 

Neutrophils eliminate microbes and segregate them intracellularly into the phago-
cytic vacuole by phagocytosis. NO production in the human PMNs, along with ROS 
and myeloperoxidase (MPO), is important to execute the antimicrobial activity. 
Human neutrophils require the cytokine trigger in the form of interleukin-1 (IL-
1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFNγ) to induce iNOS and 
subsequently nitration or nitro-tyrosine modification of the bacterial target proteins 
following the formation of peroxynitrite [95]. 

Endogenous enzymatic generation of NO has been implicated in bacterial endo-
cytosis and subsequent killing by neutrophils. These observations can be further 
categorized as a response of peripheral and peritoneal neutrophils. Rat peritoneal 
neutrophils constitutively generate NO and exhibit pronounced fungal killing in vitro, 
in comparison to the peripheral neutrophils, which produce less amount of NO. The 
phagocytic activity of human neutrophils was augmented by supplementation with 
L-arginine, but was antagonized by NG nitro-L-arginine (L-NNA), L-canavenine 
(L-CAN), or aminoguanidine [166]. Reduction in phagocytosis and pathogen killing 
was also observed in L-NG-mono-methyl arginine (L-NMMA) pre-treated anucleate 
granule-poor neutrophil, which was neutralized in the presence of L-arginine [128]. 
Following phagocytosis, sustained NO production in the PMNs was well-maintained 
by redox-sensitive cofactor, BH4, and substrate, L-arginine, to enable microbial 
killing [167]. 

Moreover, phagocytosis-induced NO production in CGD patients was nearly 
half compared of healthy individuals and is associated with poor survival of the 
patients. Phagocytosis-induced NO generation persuades nitro-tyrosine formation 
through intermediate production of peroxynitrite [95]. NO donors at high concen-
trations, however, inhibited phagocytosis [168]. Furthermore, the immune func-
tions of neutrophils were found to be neutralized by microbial siderophore’s iron-
scavenging property by depleting ROS [169]. Enhanced nitrosative stress resulted 
in S-glutathionylation of L-plastin, leading to impaired chemotaxis, polarization, 
and bactericidal activity of human PMNs, providing a mechanistic basis for their 
impaired functions in diabetes mellitus [133].



158 S. Kumar et al.

(d) Degranulation 

Neutrophil activation involves the degranulation of its enzymes in the phagocytic 
vacuoles or the extracellular milieu. Enzyme release is a complex multi-step process, 
which is influenced by migration, membrane recognition, adherence of particle 
and ingestion, as well as granule exocytosis. Among the various granules present 
in the neutrophils, azurophilic and specific granules show different degranulation 
dynamics, specific granules being mobilized selectively, albeit to a varying extent, in 
response to most soluble stimuli. This is primarily due to different Ca2+ requirements 
for exocytosis, specific granules being more sensitive to a rise in intracellular Ca2+ 

and, consequently, released before the azurophil granules [170]. Moreover, Moilanen 
et al. found that NO donors inhibited degranulation in PMNs [171], supporting the 
idea that PMNs-derived NO could act as a negative feedback signal to restrict the 
inflammatory processes. Exogenous NO enhances fMLP induced exocytosis in rabbit 
peritoneal neutrophils. Higher concentrations, however, strongly inhibited exocytosis 
[172]. Cyclic GMP and its analogs or agents, which increase intracellular cyclic GMP, 
enhance degranulation [173]. NO donors impede the release of β glucuronidase from 
human PMNs. 

(e) Respiratory burst/Free radical generation 

A respiratory burst was first reported by Baldridge and Gerald [174] observed during 
the process of phagocytosis in neutrophils due to the activation of NADPH oxidase, 
a multi-subunit enzymatic complex. Respiratory burst is responsible for more than 
90% of the total oxygen consumption by these leukocytes [175]. This leads to the 
generation of O2- into the phagosomes or to the exterior milieu. Superoxide anions are 
relatively noxious, but form additional, toxic oxygen species, in particular H2O2, by  
spontaneous dismutation, which may then oxidize halides, in particular, Cl−, to hypo-
halous acid, e.g., HOCl, catalyzed by myeloperoxidase, released from the azurophil 
granules following degranulation. After the encounter the invading organisms, the 
neutrophils sequester the organism into an enclosed vacuole, known as a phago-
some. Upon stimulation, cytoplasmic proteins p47Phox, p67Phox, and a Rac-related 
GTP protein translocate to the plasma membrane, binding to the sites located on a 
unique b-type hemoprotein, Cytochrome b558. This hemoprotein, a dimer consisting 
of gp91Phox and p22Phox, binds FAD and NADPH which results in a flow of elec-
trons to the terminal acceptor Cytochrome b558 [176, 177]. Transfer of an electron 
from the Cytochrome to oxygen yields superoxide. The production of superoxide 
initiates a series of oxidative events, which result in the microbial killing. Patients 
with the chronic granulomatous disease face life-threatening infections primarily 
because their phagocytic cells are unable to generate superoxide [176], highlighting 
the importance of phagocyte-derived superoxide in host defense. 

NO and oxidative burst in neutrophils have been extensively investigated in our 
lab [38, 40, 41, 93, 103–112]. The observations convincingly indicate NO-mediated 
augmentation of free radical generation from PMNs [93, 105, 106]. Moreover, 
PMNs have preferential oxygen utilization for ROS generation over NO synthesis 
[178]. Furthermore, sustained ROS generation by PMNs is associated with S-
Glutathionylation of NADPH subunit p47phox [179]. Intracellular and extracellular
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calcium levels also have a modulatory impact on NOS activity and free radical 
generation [109]. Ascorbate enhances RNS generation in the PMNs by maintaining 
the levels of redox-sensitive tetrahydrobiopterin [110]. Ascorbate also enhanced 
NOS expression and activity in vivo and reinforced the anti-microbial activity of 
neutrophils by augmenting oxidative mechanisms [111]. Further, the release of 
NO from the PMNs was observed to be enhanced by intracellular ascorbate that 
prevents the activation of platelets by subsequently activating guanylyl cyclase in 
the platelets [180]. ONOO− exhibited a biphasic effect like NO, being stimulatory 
at lower concentrations through the MEK/ERK/MAPK pathway but inhibitory at 
higher concentrations due to the direct inhibition of NADPH oxidase [93]. NO donor-
augmented respiratory burst also involved the activation of K+ channels and various 
kinases [181]. Clancy et al. [182] showed direct interaction of NO with the membrane 
subunit of the NADPH oxidase complex, while Fuji et al. [183] demonstrated an 
inhibitory association of NO with both membranous and cytosolic subunits. Lee 
et al. [184] also reported an inhibitory effect at a higher NO concentration. Recently, 
NO donors were found to decrease PMA- and/or fMLP-induced phosphorylation of 
p47 on tyrosine and serine/threonine residues and PKC on serine residues and ROS 
production with MAPK phosphorylation [185]. Recent studies from our lab also 
demonstrated that the sustained release of ROS was due to S-glutathionylation of 
p47phox cysteine residues in the activated PMNs (Nagarkoti et al., 2018). Moreover, 
the use of different probes like DCF and DHE to assess the superoxide scavenging 
ability of NO requires confirmation by other methodologies [85, 179]. 

The antioxidant defense mechanisms are on constant vigil to maintain the redox 
balance of the neutrophils. Neutrophils are protected against self-destruction by the 
intracellular superoxide dismutase, ascorbate, GSH, and catalase [186]. Factors insti-
gating oxidative burst may simultaneously trigger NOS in neutrophils. Lipopolysac-
charide (LPS), a membrane component of gram-positive bacteria, a potent inducer of 
iNOS lead to a significant increase in L-arginine uptake and free radical generation 
from peripheral and peritoneal neutrophils [105]. NOS inhibitors, aminoguanidine, 
and 7-nitroindazole, inhibited arachidonic acid-induced free radical generation from 
LPS-treated neutrophils. Moreover, pre-incubation with nitrite also elevated the free 
radical generation and myeloperoxidase (MPO) activity [105]. Moreover, hypoxic 
neutrophils following oxygenation exhibited a significant increase in the respiratory 
burst in a NO-dependent manner [93]. Thus NO seems to mediate the damaging 
effects of neutrophils in the hypoxic environment at the inflammatory loci. 

(f) Apoptosis 

NO and apoptotic regulation of neutrophils is indicated, but a decisive and distinc-
tive picture is still awaited. The role of NO in modulating gene expression and cell 
survival has been extensively elaborated [130, 131, 187–189]. The role of endoge-
nous NO is controversial, showing both pro and anti-apoptotic outcomes. Levels 
of nitrite increase in spontaneously aging neutrophils, and the anti-apoptotic effect 
of GM-CSF in prolonging neutrophil survival is associated with decrease of nitrite 
content in these cells [190]. On the contrary apoptotic trigger from anti Fas ligand 
or TNF-α relates to a reduction in the nitrite content suggesting a survival signal
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from NO [190]. Exogenous NO or ONOO− delivered by the NO donors at much 
higher than average physiological concentrations clearly showed enhancement in the 
rate of spontaneous apoptosis [191–193]. We have also demonstrated a crucial role 
of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 
mediated activation of the mitochondrial death pathway [63]. During inflammation, 
neutrophil survival is prolonged, and it is interesting to see that both NO donors and 
NOS inhibitors provide protection. It thus highlights the complexity in the action of 
such a simple molecule like NO on neutrophils. Prolonged treatment of human PMNs 
or mice neutrophils with NO led to enhanced ROS generation, caspase-8/caspase-
3 cleavage, reduced mitochondrial membrane potential, and finally apoptosis [63]. 
Upon induction of apoptosis in the thymus by x-ray, iNOS KO mice exhibited higher 
levels of neutrophil infiltration and production of MIP-2 and keratinocyte-derived 
chemokine (KC) [194]. Mechanistically we have shown that extenuation of cata-
lase activity by S-glutathionylation by NOX, and mitochondrial ROS compromised 
neutrophil survival [195]. Recently we have reported that cell death in the human 
leukemic cell line, K562 of myeloid origin upon overexpression of iNOS and nNOS 
by activating distinct mechanisms leads to pyroptosis and apoptosis of K562 cells, 
respectively [45]. Furthermore, NO generated from iNOS induced neutrophil differ-
entiation by using a multipronged approach of inducing NOS in K562 cells, mice, 
or human HSCs [45, 46]. 

(g) NETosis 

Following the sensing of pathogens, neutrophils also release web-like structures or 
amalgams of nuclear DNA, histones, and granular proteases as neutrophil extracel-
lular traps (NETs) to extracellularly eliminate pathogens [196]. This process is also 
termed as NETosis and is distinct from apoptosis of PMNs. NETosis release decon-
densed euchromatin and heterochromatin along with granular protein in the extra-
cellular space. NETosis is regulated by ROS, myeloperoxidase, azurophilic granu-
lated proteins, and neutrophil elastase (NE) [197, 198]. NE released from azurophilic 
granules degrades the linker histone H1 and the core histone proteins following chro-
matin decondensation [199]. Moreover, NE release and chromatin decondensation 
are significantly augmented in the presence of MPO [199]. In addition, hypercitrul-
lination of histone H3 following conversions of histone arginine to citrulline by 
peptidyl arginine deiminase 4 (PAD4) is critical for chromatin decondensation [200, 
201], as it reported that PAD4 knockout mice decreased histone hypercitrullination 
and NETs release [202]. NETosis can be grouped into two main categories based on 
the dependency on ROS production. The molecular basis of NETosis is still the least 
defined/poorly understood. However, accumulated pieces of evidence on the type of 
inducers have grouped it into two types: The inducers which involve activation of 
NOX2-mediated oxidative burst are termed NOX-dependent NETs inducers like pro-
inflammatory cytokines [203], chemokines [204], PMA [196, 197], NO [205] and 
oxLDL [206]. An essential role is attributed to NOX2 in regulating NETosis as PMA-
induced NETs are prevented either by using diphenylene iodonium, DPI, inhibitor of 
NOX activity or in patients with chronic granulomatous disease (CGD) which have 
congenital defect in NOX2 subunits [207]. Moreover, the NOX-dependent pathway
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occurs slowly over 2–4 h. In contrast, the other types of inducers do not require 
the formation of ROS and NOX activation. These include calcium ionophore [208], 
uric acid [209], soluble immune complexes [210], and a few microorganisms [211] 
and are termed as NOX- independent NETs inducers. NOX-independent NETosis is 
known to occur rapidly, and NETs release is observed at an early time point i.e. within 
1 h. Moreover, recent evidence suggests that neutrophils can catch and kill pathogens 
extracellularly using the similar bactericidal approach as NETs. Studies have shown 
that cells with very long and very thin filopodia can directly communicate with cells 
across a distance of many cell diameters. These filopodia, also called cytonemes were 
first observed in a variety of embryonic cells [212–214]. Live neutrophils are also 
reported to create a cytoneme network using filamentous tubulovesicular secretory 
protrusions. Granular bactericides are localized in membrane vesicles and tubules of 
which cytonemes are composed. The cytonemes are comparatively short-lived struc-
tures. Unlike NETs these are formed within 10–20 min and can begin to break down 
almost immediately as a result of the splitting and lysis of the vesicles at the end of the 
cytoneme or because of the detachment of cytonemes from the neutrophil surface. By 
proteomic analysis it was discovered that cytonemes contain the primary (myeloper-
oxidase, cathepsin G, and defensins) and secondary (lactoferrin, lipocalin) secretory 
granules of neutrophils and numerous cytosolic proteins. Cytosolic proteins include: 
(i) energy metabolism enzymes such as a number of glycolytic enzymes and glucose-
6-phosphate dehydrogenase; (ii) cytoskeletal proteins like beta and/or gamma actin, 
L-plastin etc. [215–219]. In addition to antibacterial activity, cytonemes are also 
involved in the cell adhesion and communications [218]. 

Studies from this lab demonstrated that treatment of human neutrophils with 
NO donors induced NETs formation in a concentration and time-dependent manner, 
which was attenuated in the presence of NADPH oxidase inhibitor, N-acetyl cysteine, 
DPI and MPO inhibitor, ABAH [205]. In addition, NO-induced NETs contained both 
nuclear and mitochondrial DNA as well as proteolytic enzymes [203, 220]. Further-
more, NADPH oxidase and MPO-mediated enhanced NETs release was observed 
in human PMNs following in vitro stimulation with inflammatory cytokines (TNFα, 
IL-1β, and IL-8) or treatment with the plasma of SIRS patients showing high pro-
inflammatory cytokines induced NETosis [203, 220]. Inhibition of inflammatory 
cytokines (TNFα, IL-1β, and IL-8) or pre-incubation of SIRS patient plasma with 
inflammatory cytokines antibodies attenuated the NETs formation [203]. Further-
more, we also demonstrated ROS-dependent activation of ERK and p38 MAPK, 
leading to PMA-induced NETs release from human neutrophils [221]. Further studies 
unraveled the significance of glycolysis in both NOX-dependent and independent 
NETosis and revealed the importance of lactate in NETs formation [134]. More-
over, ROS depletion led to attenuating neutrophil functions like NETosis using iron-
scavenging bacterial siderophores [169]. In addition, inhibition of NOS by L-NAME 
or 7-NI inhibited PMA-induced NETs formation in mice and human neutrophils 
[36, 222]. Participation of Rac2 in PMA or LPS-induced NETs formation in mice 
neutrophils, has also been shown [223]. Reportedly, NETs formation is completely 
abrogated in Rac2 null mice or Rac2 mutants as compared to Rac1 or wild-type 
control mice, as they are unable to produce ROS, suggesting that Rac2 isoform is
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crucial for NETosis [223]. However, Rac2 mutants can be rescued by the exposure 
of H2O2 to neutrophils. Thus, the involvement of iNOS in NETs formation can 
be speculated as Rac2 has been observed to interact with iNOS [42]. Furthermore, 
phosphorylation of eNOS was found to be increased upon treatment of diabetic mice 
with ruboxistaurin, which accelerated wound healing, thereby suggesting inhibiting 
NETs formation in these mice by PKCb inhibition [224]. Furthermore, a study of 
PMA or bacterial infection-induced NETs formation in teleost (Cynoglossus semi-
laevis) demonstrated enhanced production of factors like ROS, NO, and MPO in 
NETs in this fish which was inhibited upon blocking these factors indicating the 
formation of NETs in teleost with antibacterial effects in a ROS-, NO-, and MPO-
dependent manner [225]. Furthermore, enhanced NETs release was observed in our 
lab in iNOS overexpressed-neutrophil differentiated K562 cells, further suggesting 
a direct role iNOS derived NO in NETs formation [46]. Similarly, a recent report 
demonstrated RNS, ROS, and PI3K-dependent NETs formation when stimulated 
with PMA and calcium ionophore (A23187) in PMNs and human promyelocytic 
leukemic cells (HL60) [226]. NADPH oxidase activity was required to release NETs 
upon stimulation with NO, as shown in NADPH-deficient neutrophils isolated from 
patients with the chronic granulomatous disease [226]. Additionally, the role of NO 
is reported in cytoneme formation, from live neutrophils which possess bactericidal 
activity like NETs. Cytonemes can develop within minutes of infection through the 
action of NO or actin-depolymerizing alkaloids of invading pathogens [218]. It is 
speculated that the formation of cytonemes in neutrophils is initiated by intercellular 
NO. In a study by Galkina et al., NO-induced binding and aggregation of Salmonella 
enteric serovar Typhimurium bacteria extracellularly by tubulovesicular extensions 
was observed. This was not observed using NOS inhibitor L-NAME; rather, a phago-
cytic response was generated [219]. In yet another study, by the same group it was 
observed that extensions were formed on the neutrophil cell bodies and in the presence 
of NOS inhibitor, neutrophils were well spread and had no micro extensions. These 
tubulovesicular extensions were observed under scanning microscopy as extensions 
of neutrophils having the capacity of distant adhesion and binding substances for 
phagocytosis, such as serum-opsonized zymosan particles and erythrocytes [227]. 
However, in our lab, it has been demonstrated that the addition of NO donors (SNAP 
and SNP) to adhered PMNs led to a time and concentration-dependent NETs release 
as observed under scanning electron microscopy/Confocal microscopy. The NO-
mediated NETs formation was further confirmed by extracellular DNA release, and 
NET-bound elastase activity. The NETs formation was abrogated upon inhibition of 
NOX using NOX inhibitor NAC, suggesting the role of free radicals in NO-induced 
NETs generation [205]. Host NO often inhibits microbial cell-to-cell contact and 
eliminates staphylococcal virulence by attacking the Agr quorum sensing mecha-
nism and destroys zinc homeostasis in Salmonella enterica Serovar typhimurium 
[228]. The scope of antimicrobial activity by NO involves the ability of this natural 
agent to cause cytonemes formation and change the interaction of bacterial and fungal 
pathogens with neutrophils from phagocytosis to binding of microbes extracellularly 
by cytonemes. NETs made of DNA and protein expulsion trap bacterial pathogen 
and kill them [219, 227, 229]. Unlike NETs, the activation of neutrophils and the
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formation of reactive oxygen species (ROS) are not necessary but hinder the forma-
tion of cytonemes. Commonly used ROS activators, such as LPS, fMLP and PMA, 
did not initiate cytonemes formation in neutrophils [230]. Activation of neutrophils 
with PMA or other stimuli results in the formation of superoxide anion radicals (O2) 
produced by NOX. The NO radical interacts rapidly with the O2 radical, producing 
ONOO (peroxynitrite) anions [231]. This reaction lowers the NO bioavailability 
which plays a crucial role in the formation of cytonemes. In addition, peroxynitrite 
formed in the form of reactive oxygen can initiate oxidative processes responsible for 
the destruction of neighboring cells and tissues [232], including oxidative destruc-
tion of cytonemes. Nitric oxide may initiate cytoneme formation through glycolysis 
inhibition and/or V-type ATPase [233]. A recent study demonstrated that pediatric 
patients with childhood asthma showing all the symptoms of asthma showed more 
NETs formation when induced with SNP (NO donor) than the conventional inducers 
like PMA and LPS [234]. Furthermore, the NETs forming ability in these patients 
was blocked by inhibiting NOS using NOS inhibitors and L-NAME [234]. Thus, 
NOS inhibitors could serve as a therapeutic target for childhood asthma. Interest-
ingly, iNOS was found to be upregulated in ICAM-1+ neutrophils present in the 
lungs of sepsis patients [235]. Together, these reports suggest a positive regulation 
of iNOS/NO in NETs for the destruction of invading microbes. This information can 
be exploited for the therapeutic intervention of NETs in diseases like sepsis, cystic 
fibrosis, SLE etc. where the prevalence of NETs is significantly exaggerated. 

Conclusion and Future Perspective 

Neutrophils produce a high amount of NO via constitutive iNOS and nNOS. 
Neutrophils abundance in the blood and BM seem to impact hematopoiesis via 
NO signaling. In the BM, diverse hematopoietic and non-hematopoietic stromal 
cells also express NOS isoforms and produce NO in the hematopoietic niche. We 
have discussed the role of NOS/NO in granulopoiesis and also described the molec-
ular mechanisms involved in NOS/NO-mediated modulation of granulopoiesis by 
multiple mechanisms under steady state and various disease conditions. Furthermore, 
NO in BM niche has been suggested to function in both autocrine and paracrine 
manner. In addition, recent research have identified novel pathways and molec-
ular mechanisms regulating NOS/NO-mediated neutrophil functions that might have 
future translational applications.
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Chapter 9 
Cell Death-NO-Today: Effect of NO 
and RNS on Non-apoptotic Regulated 
Cell Death 

Ayantika Sengupta, Subhamoy Chakraborty, Sampurna Datta, 
and Sanjay Ghosh 

Abstract Nitric oxide (NO), generated either enzymatically or non-enzymatically 
plays a significant role in cellular physiology. At low concentration, NO acts as 
a signalling molecule in cell, however, deregulated production of NO generates 
several reactive nitrogen species (RNS). Through diffusion controlled reaction NO 
and RNS can exert detrimental effects on cellular lipids, proteins and DNA. NO and 
RNS influence glycolysis, mitochondrial respiration, permeability of different ion 
channels and even release of proinflammatory cytokines. NO and RNS are known 
to regulate positively or negatively many essential enzymes, transcription factors 
and proteins through post translational modifications which can also stimulate cell 
death. Apoptosis is one of the major forms of programmed/regulated (PCD/RCD) 
cell death and NO mediated induction or suppression of apoptosis is well compre-
hended. NO and RNS have been found to be associated with an increasing number 
of non-apoptotic RCD in tumor etiology and various neurodegenerative, autoim-
mune, inflammatory, infectious diseases in recent times. Hence use of NO and its 
derivatives might prove beneficial to manipulate different non apoptotic RCD path-
ways to develop novel pharmacological strategies. Here we summarize the cutting 
edge evidences supporting pleiotropic nature of NO and reactive nitrogen species 
influencing nonapoptotic cell death. 
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Necroptosis

Ayantika Sengupta and Subhamoy Chakraborty are contributed equally. 

A. Sengupta · S. Chakraborty · S. Datta · S. Ghosh (B) 
Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, 
Kolkata 700019, West Bengal, India 
e-mail: sgbioc@caluniv.ac.in 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. Ray and K. Gulati (eds.), Nitric Oxide: From Research to Therapeutics, 
Advances in Biochemistry in Health and Disease 22, 
https://doi.org/10.1007/978-3-031-24778-1_9 

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24778-1_9&domain=pdf
mailto:sgbioc@caluniv.ac.in
https://doi.org/10.1007/978-3-031-24778-1_9


178 A. Sengupta et al.

Introduction 

Nitric oxide is a colourless, odourless ubiquitous signalling molecule that is produced 
enzymatically or non-enzymatically in almost every biological system. Being a 
pleotropic regulator, it is involved in neuronal regulation, vasodilation, redox home-
ostasis, regulation of iron uptake, tumorigenesis, pathogen killing etc. [1, 2]. NO 
interacts with the heme moiety of soluble guanyl cyclase and couples with cGMP 
dependent protein kinase G and other metal containing enzymes. Enzymatic synthesis 
of NO can be catalysed by three nitric oxide synthase (NOS) isoforms namely eNOS, 
nNOS and iNOS [3]. Under acidic condition NO can be generated from nitrite also 
[4]. NO shows a Janus faced function, at low concentration it plays an important 
role in signalling whereas at high concentration it causes ER stress [5], mitochon-
drial dysfunctionality [6], ATP depletion, DNA damage etc. which can stimulate 
cell death. Furthermore, it regulates activity of cell signalling proteins and transcrip-
tion factors by post translational modifications. Regulated cell death (RCD) path-
ways have specific effects on disease pathology. Recently, Nomenclature Committee 
on Cell Death (NCCD) has categorized almost 12 types of RCD [7]. Remarkable 
conflicting finding regarding NO and ONOO− mediated initiation or prevention of 
apoptosis, necroptosis and other cell death modalities are present in the literature. 

In this review we tried to emphasize on the effect of nitric oxide and reac-
tive nitrogen species (RNS) on major non apoptotic RCDs, including—autophagy 
dependent pathway, pyroptosis, ferroptosis, parthanatos, necroptosis and netotic cell 
death. 

Sources of Nitric Oxide 

Endogenous NO is synthesized by Nitric Oxide synthase (NOS) enzyme that catal-
yses the conversion of L-Arginine into L-Citrulline and Nitric oxide (NO). Activity 
of NOS is dependent on NADPH, FAD, FMN and tetrahydrobiopterin (BH4) that 
serve as coenzymes [3, 8]. NOS are classified in to three groups- 1. Neuronal NOS 
(nNOS/NOSI) expressed in central and peripheral nervous system and other cells. 
2. Inducible NOS (iNOS/NOSII) expressed in many cells (macrophage, leuko-
cytes) in response to proinflammatory cytokines, lipopolysaccharides (LPS), damage 
associated molecular patterns (DAMP) etc. and finally 3. Endothelial NOS 
(eNOS/NOSIII) expressed mainly in vascular endothelial cells [8]. In addition, α-
isoform of nNOS has been reported to be constitutively expressed in mitochondria 
hence named mitochondrial NOS [9]. All three NOSs have a calmodulin binding site. 
Calmodulin binding brings conformational change in structure, which is necessary 
for proper transfer of electron between N terminal oxygenase and C terminal reduc-
tase domain of NOS enzyme [8]. Interestingly, while CAM binding of nNOS and 
eNOS has been discovered to be highly dependent on cellular Ca2+ status, iNOS was 
found to be independent of Ca2+ level [10]. NOS enzymes can exist in two forms. In its
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homodimeric form, it mainly produces NO in the presence of O2. However, release of 
tetrahydrobiopterin (BH4) leads to uncoupling of NOS, i.e., depletion of BH4 uncou-
ples oxygen reduction and oxidation of L-Arginine and keeps NOS in monomeric 
form, which results in oxygen becoming the terminal electron acceptor instead of 
L-Arginine. This results in the formation of superoxide and thereby increases gener-
ation of reactive nitrogen species (RNS) [8, 11]. Many physiological conditions can 
trigger superoxide generation from NOS such as-i. inhibition of hsp90 and nNOS 
coupling or ii. low level of L-Arginine or increase in arginase activity [12, 13]. Inter-
estingly, peroxynitrite has been demonstrated to oxidize both Zinc-thiolate cluster of 
eNOS and BH4 and prevents binding of BH4 to eNOS. Moreover, activity of eNOS 
has been demonstrated to be regulated by S-glutathionylation [8]. Clinically NO and 
RNS can be generated in cells using a group of chemicals known as NO Donors. Some 
most common NO donors used in experimental setups are- sodium nitroprusside 
(SNP), S-nitroso-N-acetylpenicillamine (SNAP), nitrates, nitrites, NONOates (Sper-
minNONOate, DETA NONOate), Sydnonimines (SIN1) etc. [14–17]. NO donors 
are capable of producing NO, nitrosonium ion (NO+) or nitroxyl anion (NO−) 
independent of endogenous NOS. Interestingly, exogenous GSNO, which can act 
as an endogenous NO reservoir, has been identified to modulate iNOS activity by 
S-glutathionylation [18]. All these events indicate the presence of a complex feedback 
mechanism by which NO and RNS can regulate NOS activity. 

Reactive Nitrogen Species (RNS) and Nitrosative Stress 

Superoxide radical (O2
−) either generated in mitochondria or by NADPH oxidase 

or Xanthine Oxidase [8] readily reacts with excess NO and produces deleterious 
peroxynitrite (ONOO−) and other primary reactive nitrogen species. In acidic pH, 
peroxynitrite transforms into peroxynitrous acid (ONOOH) that can either 1. Disso-
ciate into ·NO2 and ·OH radical or, 2. Isomerize into NO3

− [8, 19]. All these are 
strong oxidizing agent and can modify nucleic acids, proteins, lipids etc. Further-
more, ·NO can interact with ·NO2 to produce N2O3 and all together they take part in 
protein nitration [20]. 

ONOOH → NO3 + H+ 

ONOOH + ONOO− → NO· 
2 +· OH 

2NO2 + 2NO → 2N2O3 

Thus excess amount of NO and other reactive nitrogen species give rise to a condi-
tion termed as Nitrosative stress, a phenomenon associated with many inflammatory, 
autoimmune disease, cancer etc.
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Protein Modification in NO Signalling 

NO and other RNS are capable of modifying protein activity through post transla-
tional modifications. The major post translational modifications (PTMs) involved in 
NO signalling are S-nitrosylation, S-glutathionylation, nitration and oxidation. 

The mechanism of S-nitrosylation involves transformation of cysteine thiol firstly 
into thiolate (R-S−) followed by oxidation into thiyl radical (RS·) that interacts with 
NO to form SNO-protein [8]. This particular reversible modification is highly depen-
dent on overall NADPH/NADP+, GSH/GSSG ratio [21]. Furthermore, NO can be 
transferred from one nitrosylated protein (-SNO protein) to thiol group of another 
protein by a process known as transnitrosylation [22]. Activity of many crucial 
proteins like RIPK3, TSC2, ERK1/2, transcription factors like, NF-κB, enzymes like 
GSNOR, Catalase, COX2 etc. have been reported to be modulated by S-nitrosylation 
[17, 23, 24]. As Cysteine is abundant in the catalytic and active sites of many enzymes 
as well as in their co-enzymes, it is presumable that dysregulated S-nitrosylation is 
bound to cause trouble. 

S-glutathionylation is the formation of di-sulfide bond between protein and GSH 
and it is catalysed by Glutathione-S-transferase [8]. S-glutathionylation not only 
regulates functionality of different proteins but also helps to maintain GSH-GSSG 
pool [25]. 

Finally, covalent attachment of NO2 to the phenolic group of tyrosine leads to 
the formation of 3-Nitro-Tyrosine, which is considered as footprint of nitrosative 
stress [8]. Like S-nitrosylation, tyrosine nitration also depends on bio-availability of 
oxidants, RNS generation, and subcellular compartmentalization, which facilitates 
nitration of certain proteins [26–28]. Because of mitochondrial genesis of superoxide 
and abundance of metal centre rich proteins, mitochondrial proteins have been found 
to be enriched in nitration. Tyrosine nitration may impart both loss of function or 
gain of function outcome on the target proteins [16, 24, 29]. 

S-nitrosylation has been shown to regulate ubiquitination of many proteins. 
S-Nitrosylation prevents proteosomal degradation of BCL2 and stabilizes HIF1α 
[30]. Both positive and negative correlations have been established between 
S-glutathionylation and S-nitrosylation [31]. Jin et al. showed that S-nitrosylation 
of ERK1/2 prevents its phosphorylation and subsequent activation [32]. All these 
examples give us a mere idea of why nitrosative stress mediated PTMs are so much 
important and how it can affect different crucial protein through molecular crosstalk 
and influence the cellular outcome under stress. 

Defence Against Nitrosative Stress 

The antioxidant system plays pivotal role in maintaining cellular homeostasis by 
fighting against Oxidative and Nitrosative stress and involves both enzymatic and non 
enzymatic components. Examples of non enzymatic ROS/RNS scavenger include
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vitamin C, α- tocopherol, retinol, GSH and other metal ions like Fe+2, Cu+2, 
Mn+2, Zn+2 etc. On the other hand, the key enzymes that play important func-
tions in maintaining cellular homeostasis are Superoxide Dismutase (SOD), Cata-
lase (CAT), Glutathione Peroxidase (GPx), Glutathione Reductase (GR), GSNO 
Reductase (GSNOR), Thioredoxin Reductase (TRX) and Peroxiredoxin. Apart from 
the conventional role of SOD in conversion of O2

− into H2O2 and O2, it limits 
formation of peroxynitrite from NO thus confer protection against mitochondrial 
dysfunction [8]. Catalase eliminates H2O2 from the system by converting it to H2O 
and O2. Furthermore, it has been reported that catalase can slowly consume NO to 
protect against nitrosative stress and on the other hand, NO can also inhibit hydrogen 
peroxide scavenging activity of catalase [33, 34]. 

Nitrosative stress is also kept in check by GSNO that serves as a reservoir of 
endogenous NO. GSNO takes part in trans-nitrosylation and gets converted to GSSG 
by GSNOR. GPx contributes to the GSSG pool as well. As the ratio of reduced 
Glutathione to oxidized form (GSH/GSSG) is a well-known marker of cellular oxida-
tive stress, it is strictly maintained by GR that catalyses reduction of GSSG to GSH 
using NADPH/H+ [35]. Thioredoxin and its associated TrxR enzyme are one of the 
major system that take part in protein denitrosylation the other being GSNOR system. 
In addition, peroxiredoxin (a Trx dependent peroxidase) is able to reduce peroxyni-
trite. Now all these may seem enough to combat nitrosative and oxidative stress, the 
fact is all these enzymes has been demonstrated to be regulated by NO and other 
RNS. Peroxynitrite has also been documented to modify catalytic activity of Catalase 
[36, 37]. In plants also S-nitrosylation of GSNOR has been observed to induce its 
autophagic degradation indicating the crucial role of GSNOR in maintaining cellular 
homeostasis [38]. Mitochondrial SOD, GSNOR, Trx, all are negatively regulated by 
peroxynitrite mediated nitration or S-nitrosylation [39]. Endogenous NO has been 
found to induce peroxiredoxin I and VI synthesis in murine macrophage [40] and 
this phenomenon adds up another dimension to the redox control machinery. 

Programmed Cell Death 

The balance between cell survival and death is the foundation of tissue home-
ostasis in any living organism. In 1973, Schweichel and Merker classified cell 
death into 3 forms. Type I referred to as apoptosis that exhibits distinguishable 
features like pyknosis, karyorrhexis, chromatin condensation, membrane blebbing. 
Type II-autophagy dependent cell death which involves formation of autophagic 
vacuoles and subsequent degradation of cytosolic components and type III- Necrosis, 
a rather unregulated form characterized by oncosis and disintegration of plasma 
membrane [41]. However, many regulated forms of necrosis have gained recogni-
tion later including necroptosis, pyroptosis. Regulated cell death (RCD), also known 
as programmed cell death [42] that involves different subtle molecular machineries 
during normal physiological modulation. These molecular machineries can be regu-
lated by different physical, chemical or mechanical stimuli and protein modification
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which distinguishes RCD from Accidental Cell Death (ACD). Specific cell death 
pathways are involved in pathology of autoimmune disease, senescence, aging, 
tumour growth, infection, inflammation and enormous knowledge regarding new 
pathways have surfaced over time. At present about 12 types of distinct cell death 
forms are recognized by NCCD based on genetic, biochemical, and pharmacological 
characteristics [43]. One of the most studied forms of programmed cell is apoptosis 
which is also referred to as the PCD I. This form of cell death is characterized by 
distinctive morphological features like rounding-up of the cell, membrane blebbing, 
shrinkage of cytoplasm, chromatin condensation and nuclear fragmentation [44, 45]. 
The role of NO in inducing apoptotic response has been extensively investigated and 
been linked with regulation of molecules that are part of apoptosis, like p53, Bcl-2, 
caspases and heat shock proteins [46]. NO has been reported of being capable of 
regulating both intrinsic and extrinsic modes of apoptotic pathways [47, 48]. But 
we in this current issue will be focusing mainly on non-apoptotic programmed cell 
deaths. 

NO in Autophagy Induction 

Numerous studies in the past implied a complex association between nitrosative stress 
and autophagic machinery (Fig. 9.1) [49]. NO reacts with cGMP to produce 8-nitro-
cGMP in the presence of ROS and it is a known regulator of autophagy. It has been 
reported that 8-nitro-cGMP triggers S-guanylation of cell surface proteins of Group 
A Streptococcus (GAS) bacteria. This S-guanylation induces Lys63-linked ubiqui-
tination of the bacteria and facilitates its recognition by the autophagic machinery. 
Exogenous 8-Nitro-cGMP even induces non cytotoxic autophagy without involving 
mammalian target of rapamycin (mTOR) [50, 51]. NO and peroxynitrite mediated 
PTM is also vital for induction of mitophagy and mitochondrial dysregulation related 
cell demise. Recruitment of Dynamin-related protein 1 (Drp1) to damaged mitochon-
dria is one of the crucial steps in regulating induction of mitophagy as Drp1 regu-
lates the mitochondrial fission. Peroxynitrite (ONOO−) and exogenous NO donor 
have been reported to induce post translational modification of Drp1, which then 
translocate and get recruited in mitochondria. This translocation of Drp1 results 
in increased mitophagy which also involves PTEN-induced kinase 1 (PINK1) and 
Parkin RBR E3 ubiquitin-protein ligase (PARKIN) [52]. Another key factor in this 
cascade is GSNOR. Impairment of GSNOR activity is linked with mitophagy and 
autophagy as it regulates denitrosylation of many proteins and its inactivity triggers 
protein misfolding. Again, protein misfolding cause ER stress and upregulation of 
Ca2+ in cytoplasm which further activate NO production. In pericyte cells, treat-
ment with ZnO nanoparticle resulted in generation of ONOO− which increased 
S-nitrosylation of transient receptor potential melastatin-related 2 (TRPM2). This 
turnover of TRPM2 resulted in ER stress induced autophagy. This study also iden-
tified calmodulin to be one of the TRPM2-interacting proteins. Thus it not only 
expresses the complex relation between NO mediated PTM but also reported the
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involvement of calmodulin in ER stress induced autophagy facilitated cell death 
[53]. One of the major pathological outcomes of dysregulated mitochondrial activity 
has been observed in Parkinson disease. PINK1 and Parkin were found to play a 
regulatory role in mitophagy. Upon dissipation of mitochondrial membrane potential 
PINK1 phosphorylates Parkin and ubiquitin. Phosphorylation of ubiquitin facilitates 
translocation of phosphorylated Parkin to mitochondria and this activated parkin then 
triggers mitophagy by polyubiquitinating mitochondrial outer membrane proteins. 
Impairment of mitochondria leads to S-nitrosylation of PINK1 and thereby inhibits its 
kinase activity which in turn inhibits Parkin phosphorylation and thereby blocking 
mitophagy [54]. On the other hand, reports show that S-nitrosylation in parkin at 
Cys323 residue activates its E3 ligase activity to induce mitophagy [55]. However, 
in PINK1 null dopaminergic neurone, nNOS derived NO was found to compen-
sate for PINK1. Mitochondrial accumulation of p-nNOS (ser1414) can facilitate 
NO generation at optimal concentration. Moreover, nitrosative stress caused by SNP 
and other NO donor failed to translocate Parkin [56]. ATG4 and LC3II oxidation 
affect their activity. In endothelial cells, knockdown of ATG3 was found to inhibit 
autophagy which resulted in impairment of NO production in response to shear 
stress due to reduced phosphorylation of eNOS [57]. Continuous laminar stress has 
shown to increase NO/RNS induced autophagy, though the molecular mechanism 
remained unclear [58]. RNS induced autophagy has been found to play pro-survival 
as well as cytotoxic role. SNP has been found to regulate autophagy by increasing 
expression of BCL2 related Ovarian Killer (BOK) and reducing expression of Bcl2 
family protein Myeloid Cell Leukemia Sequence 1 (MCL1). Administration of SNP 
reduced MCL1 level thus disrupting MCL1-Beclin1 interaction. Upregulated BOK 
was also suspected to disrupt MCL1-Beclin1 association by interaction with MCL1. 
Beclin1 thus released from inhibitory effect of MCL1, upregulates Autophagy [59]. 
In osteoblast cell, SNP activate Autophagic cell death under GSH depleted condition 
[60]. In many cells, NO can induce both autophagy and apoptosis where apoptosis 
was the cause of cell death, autophagic upregulation was found to be protective 
or assisting apoptosis [61]. In human umbilical vein endothelial cells, IR injury was 
observed to induce migration and apoptosis in an iNOS, autophagy dependent manner 
[62]. Furthermore, in these cases it was found that NO induced autophagy through 
upregulation of AMPK that inhibits mTORC1 and its downstream target proteins, 
as well as activates the Unc-51 like autophagy activating kinase 1 (ULK1) via phos-
phorylation [63–65]. NO donor, S-nitrosocysteine (SNOC) has been found to induce 
cell death and mitophagy in mixed cortical neuronal cultures by inducing mito-
chondrial fission [66]. However, the concept of NO being a stimulus of autophagy 
mediated or dependent cell death has been established quite recently. MCF7 breast 
cancer cells showed increased mortality when subjected to steady state NO. Sper-
minNONOate and NO were found to induce p-ATM, ACC and p-AMPK expression 
level which correlated with upregulated TSC2 level and inactivation of mTORC1 
pathway. Indeed, reduction in pp70S6K, p-S6K and 4EBP1 and raptor (inhibitory 
phosphorylation by p-AMPK) expression was found by western blot analysis [67]. 
It is worthy of mentioning that AMPK mediated phosphorylation of raptor aids 
its association with 14–3-3 and that inhibits mTOR activity [68]. Upregulation of
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p-AMPK is also important because it phosphorylates Beclin 1 present in Vps34-
Atg14L-Beclin1 proautophagic complex thus induce autophagy, while upon stress 
condition, inhibit nonautophagic Vps34-beclin1 complex by phosphorylating Vps34 
[69]. While inhibitor studies and flow cytometry analysis proved that the cell death 
was not related to apoptosis or necrosis; upregulation of p-ULK1 (phosphorylation 
at S317 site was increased by AMPK and phosphorylation at S757 was decreased), 
ATG5, LC3II puncta proved this to be autophagic cell death [67]. In accordance 
with this data our lab [70] reported that treatment with DETA NONOate for 8 h 
caused reduced viability in MCF7 cell line expressing features of autophagy depen-
dent cell death but not of apoptosis. Increased cell morbidity was associated with 
increased expression of SIRT1, pAMPK and p53 and its target DRAM1. Although 
Mitochondrial Membrane Potential (MMP) and cellular redox status remain unal-
tered, treated cell expressed 2 folds increase in NAD+/NADH ratio which correlate 
with SIRT1 induction. In depth analysis revealed that SIRT1 stability was depen-
dent on phosphorylation status of AMPK. SIRT1 knockdown by si-RNA treatment 
showed that the cell death process was indeed dependent on it and SIRT1 maintained 
p53 in its de-acetylated state. It has previously been reported that p53 can induce 
autophagy through DRAM1 [71, 72] and while deacetylated p53 induce autophagy 
its acetylation leads to apoptosis [73–74]. Interestingly, in caloric restricted condi-
tion SIRT1 is capable of inducing eNOS activity without involving AMPK [75, 76] 
and can trigger autophagy by regulating FOXO1, or TSC2 [77]. NO upregulates 
ULK1 expression and that stabilizes SIRT1, independent of autophagy. eNOS knock 
down in rat abrogates SIRT1 stabilization. ULK1 was found to negatively regu-
late 26S proteasomal function which was partly mediated by O-linked GLCNAC 
transferase activity [78]. Previously our lab reported distinct apoptotic or autophagy 
associated cell death in CML K562 cell line based on RNS species. Exposure to 
DETA-NONOate for 8 h resulted in increased acidic vacuole formation (AVO), 
autophagic flux, Beclin1, ATG5, LC3II expression which indicated autophagy induc-
tion. Whereas, absence of PARP or Caspase3 cleavage, no loss of membrane integrity 
and unaltered MMP showed no involvement of apoptosis; indicating autophagy was 
responsible for lowered cell viability. While peroxynitrite and SIN1 induced cell 
death was found to be apoptotic and partly necrotic. Moreover, it was found that the 
autophagy dependent cell death occurred only in the presence of pure NO, not RNS. 
NO induced autophagy was mediated by phosphorylation and subsequent activation 
of AMPK. Inhibition of autophagy or p-AMPK shifted the mode of cell death towards 
apoptosis which clearly indicate crosstalk between these two RCDs under NO stress 
[79]. We also found that TAP73α was related to this autophagy dependent cell death. 
Tebbi et al., previously reported upregulation of p73 by Chk1/2 phosphorylation 
upon administration NO donor [80]. It is noteworthy to mention that p73 can initiate 
autophagy by modulating ATG5 and DRAM1 [81, 82]. S-nitrosylation of ERK1/2 
prevents its phosphorylation [32]. Phospho-ERK1/2 blocks TSC2 activity and thus 
inhibits autophagy [83]. Another NO donor JS-K has been found to induce apop-
totic and autophagy dependent cell death in many cancer cell lines such as (MDA-
MB-435, SK-BR-3 MDA MB 231) however, cytotoxic effect was more severe in 
malignant cell lines compared to premalignant, non-malignant and non-malignant



9 Cell Death-NO-Today: Effect of NO and RNS on Non-apoptotic … 185

immortalized cells [84]. JS-K induced autophagic and apoptotic cell death in mouse 
tumor xenograft and ovarian cancer cells in vitro [85]. A variety of drugs have been 
found to affect autophagy and autophagy dependent cell death through modulation 
of either NOS or NO [86]. In cardiac HL1 cells, LPS induced autophagy was found 
to be dependent on NO [87]. Administration of Cocaine triggers autophagic cell 
death via NO-GAPDH axis. S-Nitrosylation of GADPH was found to be essential in 
this event [88]. Oxygen–glucose deprivation (OGD) induced autophagy was found 
to be attenuated by eNOS knockdown in endothelial cells [89]. Cotreatment with 
Vitamin D and menadione prevent MCF7 proliferation through oxidative/nitrosative 
stress and induced autophagy [90]. Caloric restriction protects kidney cells from 
ischaemia/reperfusion (I/R) injury by upregulation of autophagy via eNOS-PGC-1α 
axis [91]. Platinum coated gold nanoparticles were found to induce non-apoptotic 
cell death in A549 cells with features like NO mediated mitochondrial dysfunction 
and increased autophagy [92]. In breast cancer, quinacrine initiate autophagic and 
apoptotic cell death. Quinacrine (QC) has been reported to upregulate p21 and DR5 
by inhibiting mTOR-PI3K-Akt pathway which leads to excessive generation of ROS 
and RNS. This induced both autophagy and apoptosis through the increased inter-
action between DR5 and p21 in the death-inducing signalling complex (DISC) [93]. 
Nitro polycyclic aromatic hydrocarbons are known substrates of NOS, Nitro reduc-
tase and Xanthine Oxidase. One such metabolite has shown to elicit caspase inde-
pendent RCD (having autophagic characters) in Hepa-1c1c7 cell [94]. In Oxaliplatin 
resistant cells, cotreatment with Oxaliplatin and Cannabidiol have been reported 
to cause autophagic cell death by changing expression of p-NOS3 and NO, RNS 
generation [95]. HeLa cells subjected to Silibinin (extract from Silybummarianum) 
showed increased ROS/RNS generation accompanied with p53 mediated GSH deple-
tion that results into cell mortality [96, 97]. From the same group, it was reported 
that Silibinin mediated cell death regulated by ROS-JNK-p53 positive feedback loop. 
Silibinin upregulation increased ROS-p-JNK mediated upregulation of p53 which in 
turn increased ROS generation and mitochondrial dysregulation by modulating MMP 
and PUMA [98]. Similar effect was observed in A431 cells [99]. In Clamydomonas 
reinhardtii, high intensity light increases NO that interacts with H2O2 and generates 
ROS/RNS stress which in turn induces upregulation of autophagic genes and cause 
autophagic cell death [100]. Gangliosides activate NF-κB that a) Induces autophagic 
cell death and b) Increase inflammatory response through iNOS-NO generation in 
astrocyte [101]. Erythrocytic stage of Plasmodium falciparum shows autophagy like 
cell death characterized by cytoplasmic vacuolization under SNP treatment [102]. Air 
pollutants with aerodynamic diameter 2.5 μM upregulates inflammatory cytokines, 
NOS2 and cause autophagy dependent cell death of bronchial epithelial cells [103]. 
In human bronchial cells single wall carbon nanotubes elicit autophagic cell death 
by causing mitochondrial dysregulation and NO synthesis [104].
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Fig. 9.1 Nitric oxide can induce autophagy by various mechanisms. Nitrosative stress activates 
AMPK either by inducing ATM pathway or by decreasing ATP/AMP ratio. Activated AMPK 
phosphorylates TSC2 and enhances TSC1/TSC2 interaction which in turn blocks mTORC1 by 
inactivating RHEB. p-AMPK activates ULK1 complex to induce autophagy. Nitrosative stress can 
also increase NAD+/NADH to induce SIRT1. SIRT1 and AMPK can be in a feedback activating 
network. SIRT1 de-acetylates p53 to induce autophagy by DRAM1 upregulation. Upregulation of 
p73 by NO/RNS directly or by CHK1 can induce autophagy by activating ATG 5. NO induced 
TRPM2 S-nitrosylation can also induce autophagy by causing ER stress. Formation of 8-nitro-
cGMP can also activate autophagy by S-glutathionylation of bacterial surface proteins. NO mediated 
nitration of DRP1 enhances its translocation to mitochondria leading to Parkin phosphorylation by 
PINK1 which finally activates mitophagy. NO mediated S-nitrosylation of PINK1 or Parkin can 
inactivate or activate respective proteins to regulate autophagy 

NO Mediated Inhibition of Autophagy 

On the contrary to the reports indicating positive regulatory role of NO in inducing 
autophagy, inhibitory effects of NO on autophagy has also been well documented 
in previous studies (Fig. 9.2). The most extensive evidence of the negative impact 
of Nitric Oxide on Autophagy was reported by Sarkar et al. [105]. They showed 
that treatment with different NO donors such as DEANONOate, DETANONOate or 
SIN-1 were able to inhibit autophagy in primary cortical neurones, HeLa cells and in 
Huntington disease models in vivo. Inhibition of NOS had the same effect on HEK293 
cells. NO was found to inhibit autophagy by two separate pathways independent of 
cGMP. S-Nitrosylated JNK1 (p-JNK1 level was reduced) was found to be unable to 
phosphorylated Bcl2 which hindered Beclin1-hVps34 complex formation leading to 
inhibition of autophagosome formation (inhibition of early autophagosome forma-
tion was also prominent by reduced expression of Atg16). In fact, there have been 
previous reports suggesting JNK1 S-nitrosylation could reduce its phosphorylation 
modification [106, 107]. In meniscal cells NO donor inhibits autophagy by JNK1 
suppression [108]. It is important to mention that JNK1 can transactivate autophagic



9 Cell Death-NO-Today: Effect of NO and RNS on Non-apoptotic … 187

machinery through DRAM1 and Sestrin 2 [109–111]. The second pathway involved 
inhibition of IKK - AMPK - TSC2 mediated inactivation of mTORC1. IKKβ has 
been found to be nitrosylated in presence of NO. S-nitrosylation of IKKβ leads to 
its inactivation by reduced phosphorylation was previously reported [112–113]. Lee 
et al. stated that IKKβ is also able to activate m-TOR and increase tumor angiogen-
esis by interacting with TSC1 following its inactivation by phosphorylation [114]. 
BCL2 protein, though majorly related to its role in apoptosis it also plays a crucial 
role in autophagy. Under starvation JNK1 mediated phosphorylation of BCL 2 or 
DAPK mediated Beclin 1 phosphorylation releases Beclin 1 from BCL-Beclin 1 
complex to induce autophagy [115–117]. Interestingly, BCL2 has also been demon-
strated to be S-nitrosylated at Cys158 and Cys229 [118, 119]. Furthermore, NO 
mediated oxidation, S-nitrosylation of Bcl2 was found to inhibit its ubiquitination 
degradation [118]. Interestingly, the contradiction between activation and inhibition 
of AMPK by NO can be explained by the fact that AMPK phosphorylation is also 
regulated by lowered ATP/AMP ratio or by its upstream liver kinase B1 (LKB1) 
or through sGC-Ca2+-CaMKKβ, eNOS and inactivation of these components due 
to post translational modifications or mutation might have a severe effect on the 
outcome [120, 121]. Thus the effect of NO might be cell specific or depend upon 
crosstalk between these kinases in this case. In human melanoma cells A375, inhi-
bition of iNOS by pharmacological inhibitor or by the use of si-RNA resulted in 
suppression of p-mTOR and its downstream targets - p70S6K, pS6RP, p-4EBP1 
are responsible for protein translation and cell proliferation. Exogenous NO was 
found to reversibly nitrosylate TSC2 (along with Bcl2) and that affected its inter-
action with TSC1 and GTPase activity. Moreover, NO has been reported to reverse 
the inhibitory effect of BRAF inhibitor vemurafenib on mTOR [122]. Intriguingly 
previous reports suggest a positive correlation between high levels of BRAF and 
autophagy as BRAF has been known to activate ERK and inhibit mTORC signalling 
[123]. Autophagy inhibitor bafilomycin (BAF) was found to inhibit insulin induced 
eNOS and this suggests NO bioavailability is also autophagy dependent [124]. In 
LPS induce macrophages; IRF-1 induces mTOR by eliciting NO production by iNOS 
[125]. In Ovine Trophectoderm cell, administration of arginine which is the substrate 
for endogenous NO production, elicits PI3K-Akt pathway and subsequent mTOR 
activation [126]. Previously Rapamycin was found to inhibit eNOS activity through 
PKB/Akt pathway causing reduction in NO synthesis thus the idea of positive corre-
lation among eNOS and mTOR cannot be neglected [127, 128]. NO nitrosylates 
PTEN (a known suppressor of PI3K I/AKT/mTOR pathway) at Cys 83 site causing 
its subsequent degradation by NEDD4-1 and activation of Akt-mTOR pathway which 
results in inhibition of autophagy [129–133]. Many drugs have been shown to selec-
tively upregulate particular cell death pathway via modifying expression of NOS 
enzymes. Very recently 2 enantiomers of Goniothalamin (Goniothalamus derived 
styryl lactone) have been shown to anti proliferative effect on renal cancer cells by 
reducing nNOS and eNOS expression which was further increased by co admin-
istration of L-NAME. Interestingly, while the natural R enantiomer was found to 
induce apoptosis, the synthetic one (ENT1) induced autophagic cell death [134]. 
In hepatic stellate cells NO was demonstrated to inhibit autophagy while inducing
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Fig. 9.2 Different pathways are involved to inhibit autophagy by nitric oxide. S-Nitrosylation of 
JNK and BCL2 proteins enhance BCL2-Beclin interaction and thereby inhibit autophagy induction. 
JNK S-nitrosylation can also inhibit autophagy by blocking DRAM 1 and Sestrin 2. IKKβ S-
nitrosylation by NO/RNS blocks AMPK activation to inhibit autophagy. NO can also S-nitrosylate 
TSC2 protein to block autophagy or can S-nitrosylate PTEN to induce its degradation culminating 
in inhibition of autophagy. NO mediated S-nitrosylation of Atg 4B can also inhibit autophagy by 
blocking LC3B formation 

apoptosis [135]. Another way by which NO inhibits autophagy is by activating Akt-
mTORC1. Akt phosphorylates TSC2 [136], thus activates mTOR. NO mediated 
PTM of PI3K and JAK-STAT pathway leads to upregulation of Akt [137, 138]. In 
glioma cell, hypothermic shock and administration of NO donor has been reported 
to inhibit autophagy [139]. In neural culture cell and hippocampus of GK (Goto– 
Kakizaki) rat high glucose stress cause S-nitrosylation of ATG4B by NO and impair 
autophagy [140]. 

Positive Interaction Between Nitric Oxide 
and Inflammasome 

Several studies indicate a positive correlation between pyroptosis and NO (Fig. 9.3). 
Cytoplasmic flagellin triggered NLRC4 induces NOS2 activation through Caspase1 
and NF-κB and PARP1 activation [141]. NLRC4 and Naip5 inflammasome can 
also upregulate iNOS expression in macrophages treated with extra or intracellular 
flagellin in Caspase1 independent or dependent manner respectively [142]. On the 
other hand, inhibition of iNOS or nNOS has been found to reduce neural inflam-
mation by abrogating NLR1, NLR3, Caspase1 and IL-β1 [143]. Overexpression 
of iNOS and nNOS cause cells to accumulate in G0/G1 phase of cell cycle, alter 
mitochondrial membrane potential, reduced PI3K/Akt/mTOR signalling, increased
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Fig. 9.3 Nitrosative stress can regulate pyroptotic cell death. Inflammasome is formed in response 
to PAMPs and DAMPs. Active caspase activates IL-18 and IL-1β to induce NO generation either 
in MAPK dependent pathway or in NF-κβ–INFγ–JAK-STAT mediated pathway. NO generation 
from iNOS leads to mitochondrial dysfunction and pyroptosis. NO can also activate NLRP3, a key 
component of inflammasome by nitrosylating LIM protein which aids in pyroptosis. On the other 
hand, direct S-nitrosylation of NLRP3 and Caspase1 by NO results in inhibition of pyroptosis 

generation of ROS and NOS and upregulation of JNK-p38 MAPK-ERK1/2 path-
ways in K562 leukemic cells. Apoptotic gene microarray, western blot analysis and 
gene microarray showed upregulation of extrinsic and intrinsic apoptotic pathway 
and induction of caspase-1/4 and caspase-3 in iNOS and nNOS expressing cells 
respectively. Treatment with LPS in iNOS expressing cell showed an increase in 
release of IL-1β indicating overexpression of iNOS primes the cells towards pyrop-
totic cell death whereas nNOS overexpressing K562 stimulated apoptotic cell death 
[144]. Pyroptosis is often associated with mitochondrial dysfunctionality, disruption 
of mitochondrial membrane, electron transport chain, excessive ROS generation and 
a shift from oxidative respiration to glycolysis to produce more ATP. Fleetwood et al. 
reported that macrophage cells when treated with OMV (outer membrane vesicle) of 
P.gingivalis, showed increased iNOS/NO expression, secretion of pro-inflammatory 
cytokines and increased glycolysis. They suggested that NO modulate mitochondrial 
activity by itaconate generation that might have a role in induction of pyroptosis [145]. 

NO as Inflammasome Inhibitor 

Though the previously mentioned studies show the role of NO in inflammasome 
inductions, some reports have also been documented about the inhibitory role of 
NO in inflammasome activation. Nitric Oxide can exhibit cytoprotective activity
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and inhibit inflammasome activation. In fact, nitric oxide acts as a vital regulator 
of inflammation and host- pathogen interactions. It is well known that host cell 
produces NO and RNS as a defence mechanism, interestingly there are few deni-
trifying bacteria that can produce NO to inactivate inflammatory response of the 
host cell. Brucella abortus is such bacteria which have been found to produce NO 
with its nitrate reductase enzyme within the host cell and the NO thus produced 
reduces secretion of proinflammatory cytokines via suppression of inflammasome 
[146]. In mice, LPS induces hyperalgesia (an inflammatory condition characterized 
with enhanced sensation of pain and reduced pain threshold), which was found to 
be associated with rise in expression of NF-κB, Caspase 1 p20, Caspase 11, p20, 
NLRP3, ASC, NOX2, gp91phox, gp47phox, IL-1β and protein nitration. LPS has also 
been found to reduce expression of iNOS, eNOS and overall NO bioavailability. 
MCC950 (3 mg/kg dose), a NLRP3 inhibitor prevented LPS mediated activation 
of NF-κB, inflammatory complex proteins and increased expression of NOS and 
NO level indicating antagonistic relationship between NO and NLRP3 [147]. NO 
prevents mitochondrial dysfunctionality and inhibits NLRP3 mediated activation of 
Apoptosis associated spec like protein containing a CARD (ASC) inflammasome, 
ASC oligomerization, ASC caspase1 colocalization, caspase1 activation and lL-1β 
secretion in LPS primed human and in murine cells treated with pyroptotic inducers 
such as ATP, nigericinetc (Fig. 9.3) [148]. 

Inflammasome and S-nitrosylation 

NO can also directly modulate the key proteins present in inflammasome positively 
or negatively via S-nitrosylation. Endogenous NO can inhibit NLRP3 activation 
in response to IFN-β or long time exposure to LPS and SNAP, a NO donor has 
been found to directly inhibit NLRP3 by S- nitrosylation. However, NLRC4 and 
AIM2 seemed to have more resistance against NO mediated inactivation [149]. 
LPS induced NO prevents IL-1β secretion from macrophages by S-nitrosylating 
NLRP3, Caspase1 and pro-apoptotic Akt [150]. IFN-γ or LPS primed macrophage 
and RAW264.7 cells showed reduced Caspase-1 activity and IL-1β level in response 
to NO donor SNAP. While NO inhibitor NG-Monomethyl-L-Arginine reversed the 
inhibitory effect on caspase1. Treatment with DTT reversed caspase1 inhibition by 
NO suggesting involvement of S- nitrosylation [151]. 

On the other hand, NO can help in NLRP3 activation through S-nitrosylation 
of NLRP3 associated proteins. In Cardiac hypertrophy, a condition characterized 
by increase in cardiac muscle fibre or cell mass due to prolonged stress or injury, 
S-nitrosylation of Muscle Lim Protein at Cys79 site aided NLRP3 activation. 
Thoracic Aortic Constriction or ANG II induced hypertrophy showed an alleviated 
GSNOR level which was associated with increased SNO-MLP. Furthermore, SNO-
MLP interacted with TLR3 and RIPK3 without affecting cellular mortality and these 
complexes activated NLRP3 and induced IL-1β secretion [152]. Taken together the 
knowledge of relationship between NO, inflammasome and pyroptosis still remains
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fragmentary; however, it is clear that they are critically regulated by cellular redox 
system, cytokines and other signalling molecules. 

Ferroptosis and Nitric Oxide 

In recent reports NO has been documented to play a regulatory role in ferroptosis 
induction. 

Intriguingly, a recent study demonstrated in M1 macrophage that does not show 
sensitivity to RSL3 (GPx4 inhibitor) induced ferroptosis, knockdown of iNOS in M1 
type RAW 264.7, EOC 20 or microglial cells induced cell mortality. Moreover, RAW 
264.7 and MLE cells when primed with LPS and IFN-γ showed increased level of 
iNOS/NO and provided protection against ferroptosis. On the other hand, M2 cells 
which do not express iNOS/NO undergo cell death under different ferroptotic stimuli 
such as RSL3, ML162 or IKE which was abrogated by overexpression iNOS or use 
of NO donors like DPTA NONOate or DETANONOate [153]. Furthermore, using 
in vivo and in vitro study they found out that the activity of iNOS can compensate 
antiferroptotic functions of GPx4. Employing different experiments such as genetic 
knockdown, fluorescence microscopy, MS etc. it was found that RSL3 mediated 
ferroptosis was associated with accumulation of lipid hydroperoxides, oxidised PE, 
15-HP ETE-PE and 15 LOXA enzyme which can be abolished by endogenous or 
exogenous NO. In light of this data it was evident that iNOS can bestow resistance 
against ferroptosis by two distinct mechanisms i.e. 

(a) NO can inhibit catalytic activity of LOXA by reducing its non-haem iron and 
thereby inhibits lipid peroxidation which in turn blocks ferroptosis. Indeed, dioxygen 
molecule mediated inhibition of LOX family protein has been reported previously 
[154], and (b) NO interacts with lipid radical intermediates to produce oxidatively 
truncated derivatives which are not capable of inducing ferroptosis [155]. Now it is 
worthy of mentioning that the balance between NO and RNS is critically important 
for regulation of lipid peroxidation. In fact, NOS uncoupling in absence of BH4 has 
been reported to induce superoxide generation instead of NO as mentioned earlier 
[155]. Interestingly, a study showed that upregulation of BH4 via overexpression of 
GTP Cyclohydrolase-1 can inhibit ferroptosis independent of iNOS expression [156]. 
Various reports have showed a connection between upregulated RNS and induction 
of ferroptosis. Fer-1, a ferroptotic inhibitor has been found to inhibit ROS-RNS 
production in SH-5Y5y cells administered with rotenone [157]. Deng et al., revealed 
that in Concanavalin A (ConA) induced liver hepatitis and Erastin (a common ferrop-
totic inducer) treated LO2 cells, ferroptosis was associated with increased expres-
sion of redox activated iron, malondialdehyde, iNOS, ONOO− and 3-NitroTyrosine. 
However, treatment with 1400 W (an iNOS inhibitor) and PDC (peroxynitrite scav-
enger) could revert these effect. Using GdCl3 (another iNOS inhibitor) they found 
that reduction in the number of Kupffer cell can help to subdue ferroptosis. In the light 
of these data they suggested that as Kupffer cells are known source of NO [158],
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the overall production of RNS accompanied with redox iron and other inflamma-
tory condition regulate AIH associated ferroptosis. Moreover, using in vivo and 
in vitro model they found that the induction of ferroptosis in hepatocytes was associ-
ated with reduced expression of Caveolin-1 [159]. Indeed, Cav-1 has been found to 
protect against binge drinking-related liver injury and hepatic ischemia–reperfusion 
injury by regulating nitrosative stress [160, 161]. In a parallel study it was found that 
indoleamine 2, 3-dioxygenase 1 (IDO1) works upstream of antiport system Xc−in 
ConA aggravated ferroptosis in AIH (Autoimmunity mediated hepatitis). IDO1 nega-
tively regulates Xc− and GPx4, helps in accumulation of RNS thus provide sensitivity 
to ferroptosis [162]. 

Lipid Oxidation, Iron and Nitrosative Stress 

As mentioned earlier, the two metabolic keystones of ferroptosis are lipid peroxida-
tion and iron metabolism. Peroxynitrite can modify biomolecules such as unsaturated 
fatty acids, thiols and protein tyrosine residues, arachidonic acid, low density lipopro-
tein by nitration or oxidation and produce nitrito, nitro, nitroso, peroxo, nitrated 
lipid monoaldehyde conjugates, lipid hydroperoxide. Both peroxynitrite anion and 
peroxynitrous acid (ONOOH) can participate in these reaction in a pH dependent 
manner. A recent study demonstrated that a group of drug consists of a Phenoth-
iazine core can inhibit NO consumption in brain and inhibit lipid peroxidation [163]. 
However, antioxidant properties of Nitroxides are not yet clear [164]. ONOO− has 
been found to negatively regulate COX1, COX2 through nitration at Tyr430, 385 
[19]. The primary substrates of lipid oxidation are phosphatidyl ethanolamine (PE) 
phospholipids and esterified polyunsaturated fatty acids (PUFA) which are catalysed 
to produce lipid peroxides and aldehydes [165]. Lipoxygenase family (ALOX5, 
ALOX12, ALOX15) catalyse PUFA while free fatty acids can be oxidized by 
cyclooxygenase and cytochrome 450 [166–168]. Acetyl CoA Synthetase Long chain 
family member 4 (ACSL4) catalysed Arachidonoyl (AA) or Adrenoyl (AdA) acetyl 
CoA are esterified by Lyso-phosphatidylcholine Acetyltransferase 3 (LPCTA3) into 
Phosphatidyl ethanolamines (AA PE, AdA PE) which are finally oxidised by 15-
lipoxygenase to generate lipid hydroperoxides [169, 170]. Intracellular Iron pool 
is maintained in four forms- vesicular iron, labile iron pool (LIP) in Fe+2 form, 
functional iron and stored in proteins. Fe facilities ROS generation trough Fenton 
reaction, where Fe2+catalyzes H2O2, to produce hydroxyl radicals. Fe also assists 
ALOXs to produce PUFA-PEOH and NOXs to produce NO. A complex inter-
action is present between NO, ONOO− and iron. Having an affinity for heme and 
nonheme iron [171], NO is also capable of influencing the binding of iron responsive 
elements to iron regulatory proteins [172]. NO reacts with ribonucleotide reductase, 
ferritin and heme containing proteins [171]. S- nitrosylation of iron regulatory protein 
2 (IRP2) results in its degradation followed by accumulation of iron and ferritin in 
cell [173]. HNO nitroxyl ion can react with thiols and heme proteins [171]. NO
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regulate ferritin, HO-1 (catalyzes Fe+2 from heme protein) and ferroprotein tran-
scription via Nrf2/ARE axis [174]. Nrf2 Is a transcription factor that under oxidative 
stress translocate to nucleus and activates GCLC (glutamate cysteine ligase), GPx4, 
Transferrin receptor (TfR1), Ferritin, Ferroprotein (FPn), HO-1 (extracts Fe from 
heme) and thus provides cytoprotectivity in cancer cells [175, 176]. Intriguingly, NO 
has been found to inhibit Fenton reaction [177]. The bidirectional relationship has 
been supported by more observations. In mice lacking Nrf2, upregulation of eNOS 
provide protection against myocardial ischemia reperfusion (I/R) injury [178]. ERK 
and p38 pathways are involved in NO mediated translocation of Nrf2 and antioxidant 
response in vascular endothelium [179]. While NO has been found to activate IRP1, 
NO+, ONOO− are capable of inhibiting IRP1 and IRP2 [180, 181] and this helps 
to understand how macrophage polarity can influence activities of IRP1 and IRP2 
[182]. 

Peroxynitrite Mediated DNA Modifications 

N2O3 and ONOOH (peroxynitrous acid) catalyse nitrosation of primary and 
secondary amines and nucleic acid [183]. Peroxynitrite is able to damage both 
nitrogenous base and sugar phosphate backbone [184]. Peroxynitrite (ONOO−) 
removes hydrogen atom from deoxyribose forming single strand breaks (SSBs) that 
can be recognized by PARP1 [185, 186]. SSB forming interaction between ONOO− 

and 2’deoxyriobose or deoxynucleotides yields malondialdehyde [187]. 
Peroxynitrite (ONOO−) affects cytosine methylation, and convert guanine into 8-

oxoguanine, 8-nitoguanine. Nitration of 3-alkyladenine DNA glycosylase (AAG) 
hinders DNA repair [188, 189]. 5-hydroxy hydantoin, 5-hydroxy methyl uracil, 
thymine glycol,4–6-diamino-5- formamide pyramide (FAPy adenine), 2,6-diamino-
5-formamide pyrimidine (FAPy Guanine), 8 oxoadenine, hypoxanthine are notable 
among other base modification that are caused by nitrosative stress [184]. Moreover, 
exo- and endogenous NO inhibits binding of DNA repairing proteins like ligase, 
alkyl transferase, SP1 etc. at the repair site [190]. Peroxynitrite can also hinder DNA 
repair by inactivating PARP by S-nitrosylation in its zinc motif [191]. In fact, NO 
can S-nitrosylate PARP and regulate its binding to iNOS promoter which creates a 
negative feedback loop [192]. In macrophage induced tumor cell, iNOS was found to 
disrupt dNTP supply by ribonucleotide reductase (RNR) thus hamper DNA synthesis 
and impart cytotoxicity [193]. 

NO Mediated Parthanatos 

The pathophysiology of COPD includes remodelling of bronchial tissue due to death 
of human bronchial epithelial cells. This event is often found associated with cigarette 
smoking which imparts oxidative stress in human bronchial epithelial cells (HBE
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cells) and ultimately develops ROS, ONOO− mediated DNA stand breaks [194, 195]. 
Kunzi et al. observed that fully differentiated HBE cells exposed at air–liquid inter-
face of smoke resulted in PARP1 activation and subsequent nuclear translocation of 
AIF (apoptosis inducing factor) and Endonuclease G leading to parthanatos (Fig. 9.4) 
[196]. LPS mediated drastic production of superoxide and reduced iNOS activity 
in murine peritoneal as well as J774.2 macrophages orchestrate the production of 
ONOO− that causes NAD+and ATP depletion and PARP activation following DNA 
damage [197]. Abrogation of nicotinamide phosphoribosyl transferase (NAMPT) 
involved in NAD biosynthesis increases ROS, RNS, CO2, H2O2 expression that 
induce in Jurkat an ML2 cells upon APO866 treatment [198]. Parthanatos is also 
documented to be involved in neural degradation. Death of basal ganglia and accu-
mulation of α-syn fibrils (termed as Lewy body) are observed in Parkinson’s disease. 
In primary cultured neuron or mice brain, administration of α-syn PFF induces PARP 
activation by inducing NO expression and DNA damage. PARP1 increases PAR accu-
mulation which accelerates α-syn fibrillization and conversion to more toxic form and 
activates parthanatos. Indeed, PAR- α-syn was found to be more neurotoxic [199]. In 
human cortical neuron culture system, excitotoxicity or ischemia developed due to 
O2 and glucose deprivation triggers parthanatos which has been found to be regulated 
by NMDA (N-methyl D-asparate) receptors, NO and PARP. Using nNOS inhibitor 
(NPLA) and PARP inhibitors and knockdown of PARP it was discovered that NO 
acts upstream of PARP as PARP inhibition was only able to abolish cell death but 
could not alter NMDA or NO expression. In essence, glutamate (can be upregulated 
by nNOS) triggers NMDA receptor and increases Ca2+ influx and nNOS expression 
that causes ONOO− mediated DNA damage [200]. Administration of exogenous 
NO has been found to induce PAR activation in RAT brain [201]. The positive asso-
ciation between nNOS and excitotoxicity was further justified by observation of 
inhibition of neuronal death upon NPLA administration and occurrence of less cell 
mortality in retinoic acid deprived neuron culture where nNOS expression remains 
marginal [200]. In contradiction, nNOS derived NO can inactivate NMDA receptor 
by S-nitrosylation and confer protection against excitotoxicity [202, 203].

NO and RNS as Necroptosis Inducers 

The association between Nitric Oxide and necroptosis is quite complicated. NO 
mediated PTMs have been found to exert profound effect on major effector proteins 
involved in necroptosis (Fig. 9.5). RNS trigger nitration of proteins and impaired 
mitochondrial respiration by modulating respiratory chain complex 1 leading to apop-
tosis and RIPK1, RIPK3 dependent necrosis [204]. In line with this data another 
publication showed that NO mediated nitration of mitochondrial complex I subunit 
NDUFB8 alters mitochondrial homeostasis and triggers RIPK1/3 dependent necrosis 
[205]. These discoveries prove peroxynitrite and RNS to be potent inducer of necrop-
tosis. Vast number of drugs has been found to upregulate proinflammatory NO which
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Fig. 9.4 Nitric Oxide mediated Parthanatos. Formation of peroxynitrite from NO can lead to DNA 
damage. Excessive DNA damage leads to PARP hyper-activation resulting in PAR polymerization. 
PARG and ARH3 mediated PAR depolymerization results in the formation of PAR oligomers. 
PAR oligomers block the DNA repair enzymes like topoisomerase and DNA ligase. PAR can also 
translocate to mitochondria from nucleus leading to mitochondrial membrane depolarization drop 
in glycolysis rate and ATP level. BAX activation in an TRMP2-calpain mediated pathway or PAR 
translocation to mitochondria leads to release of AIF from mitochondria. Released AIF along with 
MIF further translocate to nucleus to aggravate DNA damage and parthanatos

then elicit TNF α, IL-6 expression etc. and thus triggers necroptosis or RIPK depen-
dent apoptosis in many scenarios. Recent study projected NO to be a regulator of 
BPA (BisphenolA) mediated necroptosis in SH-SYY cells [206]. In A549 lung cancer 
cells, mediated necroptosis which involves H2O2 dependent JNK-iNOS upregula-
tion [207]. Gallic Acid has been identified to confer protection against neuroin-
flammation caused by increased apoptosis and necroptosis by lowering proinflam-
matory IL-β and NO [208]. eNOS plays a protective role in myocardial IR injury, 
recently a drug named Baicalin has been shown to reduce this damage by upregula-
tion of PI3k-ATK-eNOS mediated NO production and down regulation of necrop-
tosis which accounts for about 50% cell death during IR injuries in heart [209]. 
Nonetheless, S-nitrosylation has been proven to be a great modulator of this pathway. 
Glyceryl-trinitrate (GTN) promotes S-nitrosylation of cIAP1, thus treatment with 
GTN inhibits ubiquitination and by stabilizing RIPK1 it induces RIPK1 dependent 
apoptosis [210]. Interestingly, NO has been found to inhibit many Caspases [3, 8, 9] 
through S-nitrosylation and their inactivity might evoke the cells to undergo necrop-
tosis [211–214]. Moreover, exogenous and endogenous NO can directly facili-
tate necroptosis by nitrosylating RIPK3. In HEK293 cells, treated with GSNO or 
NMDAR-nNOS mediated cerebral ischemia, S-nitrosylation of RIPK3 at cys119
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Fig. 9.5 Necroptosis can be regulated by nitric oxide. Release of pro-inflammatory cytokines like 
TNF-α, IL-6 induce association of TNFR and TRADD which in turn leads to formation of Complex-
I. Further association of CIAP1/2, LUBAC and IKK induces RIPK1 ubiquitinylation in the Complex-
I. RIPK 1 phosphorylation by TAK complex culminates in NF-κB activation and cell survival. CYLD 
can de-ubiquinylate RIPK 1 to form either Complex 2B or Complex-2A. Complex 2B formation 
results in RIPK1 phosphorylation and apoptosis; whereas Complex 2A formation leads to RIPK1 
independent caspase 8 mediated apoptosis. NO enhances the phosphorylation of RIPK1 and RIPK3 
by S-nitrosylation and also inactivates Caspase 8 which leads to increased interaction between 
RIPK1 and RIPK3 resulting in phosphorylation and activation of MLKL. Activation of MLKL 
leads to induction of necroptosis 

facilitates its activation by phosphorylation. This phosphorylation further facilitates 
interaction between RIPK3 and RIPK1 [215]. 

Role of RNS in NETs Formation 

nNOS and iNOS produce considerable amount of NO and it regulates free radical 
generation in neutrophils [216–218] in a NOX dependent (ERK mediated activation 
of NADPH oxidase) and independent manner [219]. NETs are involved in pathology 
of many NO stress related disease such as sepsis, Alzheimer’s etc. [2, 220–222]. Patel 
et al. provided the first evidence of involvement of NO or RNS in NETosis in human 
Neutrophil. Addition of NO donor SNAP or SNP to adherent PMN induced NETs 
formation in a time and concentration dependent manner. Furthermore, inhibitor 
study suggested the involvement of NOX, MPO and free radicals in NET generation 
by NO [223]. Later on, treatment with pure NO donor DetaNONOate (100–500 μM) 
was found to significantly increase NOX and myeloperoxidase (MPO) mediated 
superoxide and free radical production that in turn facilitated NETs release from
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human neutrophil. Using confocal microscopy and PCR (for nuclear and mitochon-
drial DNA specific genes) they concluded that the NET contains both nuclear and 
mitochondrial DNA. Elastase was found to be abundant in these NETs. Platelets and 
THP-1 cells when incubated with NETs released IL-1β, IL-8 TNFα which further 
supports proinflammatory and pathogen killing properties of NETs [224]. Interest-
ingly, these proinflammatory cytokines are capable of enhancing ROS/RNS gener-
ation which further attribute to NETs generation in SIRS (Systemic Inflammatory 
Response Syndrome) suggesting presence of a positive feedback mechanism [225]. 
PMA is a common inducer of NETosis. In murine bone marrow derived neutrophils, 
NOS inhibition by L-NAME attenuated effect of PMA. RAC 1 and 2, two Rho-
GTPases are involved in ROS formation by NOX and they also regulate NOS activity 
[226]. Interestingly, RAC2 has been found to be involved in NO mediated NETosis 
[226, 227]. The role of NO derived RNS/ROS was further explored by Manda et al. It 
was found that exogenous NO and peroxynitrite mainly exert its function by produc-
tion of RNS. Apart from NOX and MPO, the process is strictly dependent on PI3K 
and ROS generation and is autophagy independent. Astonishingly they found that 
RNS mediated NETs formation did not require histone citrullination for chromatin 
relaxation rather occurred due to H2A and H2B degradation. Most importantly they 
found that in human PMN, PMA or calcium ionophore induced NETosis can be 
diminished by inhibition of NOS or NO and ONOO− scavenging further confirming 
positive role of nNOS and eNOS in NETs formation. Moreover, in chronic gran-
ulomatous disease granulocyte, SNAP reduced NET formation which is plausible 
because of NOX deficiency. In this condition, NO produced by SNAP might not be 
able to produce RNS, however, administration of ONOO− successfully produced 
NETS suggesting they can act without involving NOX [228]. 

Conclusion and Further Perspective 

In this review we tried to put together the pieces of information on the impact of 
NO and other RNS on various cellular moieties engaged in non-apoptotic RCDs. 
In spite of the complexity and diversity of NO and NO derived RNS, it is evident 
that the balance between NO and other radicals and their interaction with other 
proteins, lipids, metal ions tune the fate of cell survival. A wealth of data convicted 
nitrosative stress to be the accelerator of inflammation, tumour metastasis, autoim-
munity and regulated or unregulated cell death. While excess NO, ONOO− have 
been proved to be detrimental for nucleic acid structure or integrity of mitochon-
dria, ER or plasma membrane; contrarily NO at lower concentrations could act as 
cytoprotectant. Thus it seems that the effect of NO is indeed dependent on the redox 
status, pH, concentration, proximity and bioavailability of interacting molecules and 
other biochemical aspects. However, the effect of NO and its derivatives are not 
at all limited only by dysregulation of these cellular modalities. Over the past few 
decades, NO mediated S-nitrosylation, nitration, oxidation, S-glutathionylation have 
gained concern and tons of research are going on to dismantle their effect and their
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implication to modulate cell signalling nexus. It is now clear that regulated cell 
death does not only include apoptosis but other highly complex non apoptotic path-
ways such as autophagy dependant pathway, necroptosis, pyroptosis, ferroptosis, 
parthanatos, etc are also involved. Moreover, all of them were found to be some-
what interconnected and to have specific impact on cellular pathology or physiology. 
While apoptosis is considered to suppress inflammation, other regulatory pathways 
such as necroptosis or parthanatos have been identified to trigger neuroinflamma-
tion. In fact, there are pathways designated to specific cells such as netosis that can 
be regulated by RNS. NO interacts with the key regulatory proteins of cell death 
such as Caspase, RIPK1/3, MLKL, NLRP3, GPx, PARP etc., modulates transcrip-
tion factors such as p53, KEAP1, NF-κB etc. and triggers cytokine release or can act 
as secondary messenger which could initiate or inhibit the specific pathway. These 
vast activities make it understandable why the effect of nitric oxide depends on NO 
donor, the genetic background of the cell and RNS that are generated. In addition, it 
has been found that NO mediated inhibition of one pathway can induce another form 
of RCD. Although large numbers of studies have unveiled how ROS and thiol system 
control specific RCDs, they are mostly related to apoptosis and how exogenous and 
endogenous RNS are involved in regulation of non-apoptotic RCD is still quite not 
clear. From the early discrimination of three types of cell death, today RCD includes 
more than 12 forms and new pathways such as oxeiptosis, autosis [229, 230] are  
still getting unravelled. It is intriguing that NO has been found to interact with some 
of the modulator of these pathways such as KEAP1 (involved in oxieptosis) [231] 
which needs to be investigated further. NO mediated depletion of ATP has been 
found to upregulate AMPK which in turn upregulate autophagy by activating ULK1 
or TSC2, on the other hand NO has been shown to activate MLKL [232]. Many 
tumor cells have been found to become resistant against a specific type of cell death 
pathway. So it would be beneficial if it is possible to decipher the alternative cell 
death pathway elicited by NO and RNS. Thus further elucidation is required to solve 
the puzzle so that NO or RNS can be used as novel therapeutic strategies. 
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Chapter 10 
Involvement of Nitric Oxide in Insulin 
Secretion to Carbohydrate Metabolism 

Somanjana Khatua, Sarbashri Bank, and Krishnendu Acharya 

Abstract Since the discovery of nitric oxide (NO) as an important mediator of 
vasoregulation, the molecule has been found to be involved in several physiological 
and pathological processes in human. One area of recent interest is the potential role 
of NO in modulation of insulin secretion. Emerging data suggest that NO augments 
insulin release from pancreatic beta cells through increasing intracellular Ca2+ level 
or via S-nitrosylation of glucokinase, as well as vasodilation of islet vasculature. 
Besides, synthesis of NO is also a prerequisite for effective insulin sensitivity in 
targeted tissues. Thus, NO is involved in glucose uptake and disrupted NO pathways 
play a role in pathogenesis of insulin resistance in hypertension, obesity and type 
2 diabetes mellitus. In this review, we summarize the updated paradigms on the 
involvement of NO in insulin secretion from islets of Langerhans and glucose uptake 
by various tissue system. Hence, a better understanding of nitric oxide synthase 
(NOS)–NO system in regulation of glucose homeostasis can hopefully facilitate the 
development of new treatments. 
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Introduction 

Nitric oxide (NO) is one of the smallest molecules in chemistry and its structural and 
functional properties have been studied by the chemists for years. NO was primarily 
considered as an environmental pollutant until the late 1980s, when the three-pioneer 
worker Furchgott, Ignarro and Moncada recognized NO as an endothelial-derived 
relaxing factor (EDRF). Their research showed that NO can work as a signalling 
factor for regulation of blood pressure and vasodilation, thereby triggering research 
worldwide [1–3]. In the year 1992, Science journal attributed NO as “Molecule 
of the Year” because hundreds of research articles unveiled the importance of this 
simple molecule from digestion to blood pressure regulation to antimicrobial defense 
[4]. In 1998, three pioneer workers of this field got Nobel prize for discovering the 
signaling role of NO in cardiovascular function. Since the discovery of its role in 
biological system, it received special attention from most of the branches of biological 
sciences like physiology, medicine, genetics and biochemistry. NO is produced by 
the enzyme nitric oxide synthase (NOS) which catalyzes a five electron oxidation 
of amidine nitrogen of amino acid L-arginine to an intermediate L-hydroxyarginine 
that is tightly bound to the enzyme to generate NO and L-citrulline (Fig. 10.1) [5]. 
The enzyme comprises three main isoforms: endothelial NOS (eNOS), inducible 
NOS (iNOS) and neuronal NOS (nNOS) isoforms [6, 7]. Due to its ubiquity and 
versatile properties it has been recognized as a key molecule in different patho-
physiological conditions as a regulator of blood pressure [8], signal molecule in 
smooth muscle and nerve [5, 9], inhibitor of platelet aggregation and addition [10], 
antioxidant [11], neuromodulator of central nervus system, inhibitor of neutrophil 
adhesion [5], modulator cytokine production [12], antithrombotic [13], wound healer 
[14], antineoplastic [15] and immune generator [16]. 

Fig. 10.1 Biosynthesis of NO: Nitric oxide synthase (NOS) catalyses a five electron oxidation of 
amidine nitrogen of L-arginine to generate NO and L-citrulline. L-hydroxyarginine is formed as an 
intermediate that is tightly bound to the enzyme
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Recent data suggest that NO has an important role in glucose metabolism which 
is the primary source of metabolic energy for most cells of the body and is of critical 
importance for the brain and red blood cells. Rising of blood sugar level leads to secre-
tion of insulin from pancreatic beta cells. Insulin, an endocrine dipeptide hormone 
composed of an A chain of 21 amino acids and a B chain of 30 amino acids connected 
together by disulphide bond with a molecular weight of ~6000 Da. It is primarily 
responsible for carbohydrate metabolism [17]. The key function of insulin is to help 
the entry of glucose and amino acids in three most responsible energy storage tissues 
i.e. muscle, liver and adipose tissue. After release to the circulatory system, insulin 
travels through the blood and binds to insulin receptor of the target cell. Binding of 
insulin with receptor initiates signal transduction and activates glucose transporter 
properties. Glucose transport protein binds to cell membrane to uptakes glucose 
leading to fall blood glucose level. Lowering of sugar level in the blood inhibits 
insulin secretion by β-cells through a negative feedback mechanism [17]. In resting 
state of the body, insulin acts as a primary hormonal regulator of metabolism [18, 
19]. In the absence of insulin, glucose uptake by the tissue decreases and metabolism 
of lipids in adipocytes increases [20]. Major functions of insulin are (a) facilitating 
the transport of glucose, (b) decelerating the gluconeogenesis and glycogenesis, (c) 
stimulating enzyme system responsible for conversion of glucose to glycogen and 
(d) regulating lipogenesis, promoting protein synthesis and growth [17]. 

In this review, we have tried to draw a systematic correlation between NO and its 
involvement in insulin secretion to action on carbohydrate metabolism. 

NO in Insulin Secretion 

The pancreas is an organ of the digestive system which serves two major functions (a) 
exocrine function (helps in digestion) and (b) endocrine function (regulation of blood 
sugar level). Millions of islet of Langerhans are scattered within the pancreas and 
are responsible for the endocrine function. About three hundred β cells are present in 
each islets of Langerhans that secrete insulin, which is responsible for the regulation 
of glucose metabolism. Each β cell contains about one hundred insulin secretary 
granules. The release of insulin is stimulated by glucose and other secretagogues 
oscillate with a reproducible frequency [17]. 

Glucose enters β cells through glucose transporter protein (GLUT) [21]. The 
GLUT 2, glucose transporter isoform, is expressed in hepatocytes, pancreatic islet 
beta cells, intestinal mucosa, kidney and in the central nervous system. GLUT-2 is a 
facilitated diffusion glucose transporter with a high capacity of glucose transport and 
low affinity for glucose (Km 17 mM) [22, 23]. Glucose is then phosphorylated by 
glucokinase and pyruvate is generated through glycolysis in the cytoplasm of β cells 
[24]. Pyruvate metabolism by pyruvate dehydrogenase leads to increase adenosine 
triphosphate (ATP) in cytoplasm thereby changes ATP/ADP (adenosine diphosphate) 
ratio in the cytoplasm. Elevation of cytoplasmic ATP/ADP ratio blocks ATP-sensitive 
K+ channels (KATP) in the  β cells [25, 26]. As KATP channel is the primary determinant
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of the membrane potential, closing of the channels depolarizes the membrane. The 
membrane depolarization opens Ca2+ channels (voltage-dependent Ca2+ channels) 
and subsequently elevates cytosolic Ca2+ concentration due to Ca2+ influx, which 
rapidly increases the release of insulin from storage granules via exocytosis [24]. 

In pancreatic β-cell, glucokinase is associated with insulin secretary granules 
which is controlled by interaction with NOS, reversed by S-nitrosylation of glucoki-
nase [27–29]. Insulin secretion is regulated by NO and NO donor, sodium nitroprus-
side (SNP), that stimulates insulin secretion in rat islets. At the same time, increase of 
NO production and insulin secretion was also reported in HIT-T15 (clonal pancreatic 
β cell line) and in isolated mouse islets [30, 31]. Inhibition of NO production by NG-
Monomethyl-L-arginine monoacetate (L-NMMA) in rat islet or by scavenging of 
NO by carboxy-2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (CPTIO) 
in glucose-responsive INS-1 cells reduces insulin secretion [32, 33]. Treatment of 
Mim6 β-cells with NO resulted activation of pancreatic and duodenal homeobox 
factor-1, the insulin gene promoter thereby increases insulin mRNA level within the 
cells [34]. Similar observation was also recorded in isolated islet cells in rat [35, 
36]. Henningsson et al. [37] reported that cNOS and iNOS of islet of Langerhans 
cell are activated differently by glucose concentration. Among three NOS isoforms 
(nNOS, eNOS and iNOS), nNOS is mainly found in insulin secretary granules (ISG) 
[38]. Exposure of β-cells with higher cytoplasmic glucose concentration (>10 mM) 
increases the level of expression of iNOS whereas it is not detectable at the basal 
glucose concentration (7 mM) [37, 39]. Increase of NO via nNOS activation stimu-
lates glucokinase activity that mediates glucokinase dissociation from ISG and helps 
in insulin secretion [29]. cNOS derived NO is found to cause intracellular Ca2+ mobi-
lization from mitochondria and endoplasmic reticulum or through the blocking of 
KATP channels (Fig. 10.2) [33, 40]. NO also induces cGMP (Cyclic GMP) eleva-
tion, sequestration of Ca2+ into ER, thereby protecting β-cells from increased Ca2+ 

concentration [41]. Furthermore, secreted insulin pool is also maintained by the inhi-
bition of a cytosolic protease, an insulin degrading enzyme by NO via S-nitrosylation 
[42]. Decrease in insulin secretion is also observed in case of β-cells dysfunction by 
interleukin 1β [43].

NO in Insulin Sensing 

Insulin binds to plasma membrane receptor to trigger its known physiological effects. 
Insulin stimulates the rate of entry of glucose into the cells in a selective fashion. The 
insulin receptor consists of two identical α chains protruding from the outer face of 
the plasma membrane and two transmembrane subunits with their carboxyl termini 
protruding into the cytosol [45, 46]. Alpha subunits of insulin receptor bind to insulin 
resulting a conformational change in the intracellular domains of the β-chains that 
contain the protein kinase activity which transfers a phosphoryl group from ATP to 
hydroxyl group of Tyr residues i.e. cis-auto inhibition to trans-auto phosphorylation 
of tyrosine kinase domain [44]. The binding of insulin to the receptors is the initial
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Fig. 10.2 Insulin secretion from pancreatic β cells

step in the signal transduction process and triggers the consumption and metabolism 
of glucose [45]. Similarly, membrane bound phosphatidylinositol 3-kinase is also 
activated by insulin which is involved in hormone signaling pathway. Administration 
of physiological concentration of insulin in mice model resulted in the reduction of 
plasma glucose concentration and formation of methaemoglobin signifies the produc-
tion of NO in the system [13]. Kahn et al. [46] reported that incubation of different 
types of whole tissue from mice and human red blood cells with insulin showed 
NO production by activating a membrane bound NOS. Insulin does not show any 
effects on cytosolic NOS and the activity of insulin-activable membrane bound NOS 
(IANOS) is not dependent on ATP and NADPH, but the presence of Ca2+ is essential 
for the production of NO. The effect of NO on IANOS is biphasic in nature. At low 
concentrations of NO, it is activated, whereas at higher concentration of NO, the 
degree of stimulation decreases gradually. The purified IANOS showed some simi-
larities to the insulin receptor itself [47]. Insulin activated NOS has a very important 
role in the pathophysiological condition where there is severe impairment of NO 
production [15]. Enzyme kinetics demonstrated that the insulin mediated activation 
of NOS activity is directly correlated with the increase in Vmax and simultaneous 
decrease in Km. The blocking of insulin receptor by anti-insulin receptor antibody 
also inhibits NO production. Use of L-NAME (NG-Nitro-L-arginine Methyl Ester), a 
potent inhibitor of NOS, in the reaction mixture totally inhibits the insulin-inducible 
NOS activity and insulin activated carbohydrate metabolism both in vitro and in vivo. 
This inhibition by L-NAME has no effect on tyrosine and PI3-kinase activity which
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signifies that activation of tyrosine kinase and PI3-kinase is not obligatory in the 
transduction of insulin effects for the carbohydrate metabolism [46]. In contrast, 
genestein mediated inhibition of tyrosine kinase or wortmannin mediated inhibition 
of PI3-kinase inhibits insulin mediated NO production [49]. Young et al. [48] also  
reported that NO can stimulate glucose transport and metabolism in vitro in the 
skeletal muscle of rat. Insulin increases eNOS activity by phosphorylation at serine 
1177 in the endothelium cells through PI3-AKT-eNOS pathway, one of the major 
pathways for insulin mediated insulin action [50–53]. Kahn et al. [46] proposed NO 
as the “second messenger” of insulin for its diverse effects in various physiologic 
and pathologic events. 

NO in Glucose Metabolism 

NO has a significant role in glucose uptake and glucose transport [54, 55]. In glucose 
uptake, the role of NO was first understood when inhibition of NOS in rat limb muscle 
attenuated 2-deoxyglucose uptake [55]. This observation was further supported by 
the application of exogenous NO that increased the uptake of 2-deoxyglucose. Local 
infusion of L-NMMA, a well-known NOS inhibitor, inhibits glucose uptake in 
skeletal muscle [56]. Furthermore, Young et al. [48] reported that NO stimulates 
glucose transport and oxidation in vitro in rat skeletal muscle. Skeletal muscle is the 
primary target for glucose transport for glucose homeostasis during insulin stimula-
tion. The occluded intracellular tubulo-vesicular reservoir of the cells stores glucose 
transporter protein 4 (GLUT 4). Insulin activates translocation of GLUT 4 from the 
reservoir to cell surface [57]. 

Insulin increases blood flow in skeletal muscle and glucose uptake in a NO-
dependent mechanism [58]. Blocking of NOS activity in skeletal muscle results 
in the impairment of insulin-mediated glucose uptake, hyperglycemia and insulin 
resistance [59]. Furthermore, treatment of isolated muscle tissue with NO donor, 
SNP or S-nitrosoglutathione increases insulin-stimulated glucose transport, uptake 
and oxidation [55, 60, 61]. Change in the energy level in cells, the AMP-activated 
protein kinase (AMPK) plays the key role in the regulation of energy metabolism [62]. 
Activation of AMPK by 5-amino-4-imidazolecarboxamide riboside, an indicator of 
AMPK in muscle increases glucose transport through the translocation of GLUT 4 
to the plasma membrane and inhibition of NO production by NOS inhibitor nullifies 
the AMPK mediated glucose uptake [63–65]. 

In hepatocytes, glucose uptake is physiologically controlled by the balance 
between intercellular glucose phosphorylation and dephosphorylation. Glucokinase 
activity stimulated by insulin also helps in glucose uptake across plasma membrane 
indirectly [66]. iNOS expression is found in periportal hepatocytes, while eNOS 
expression is found in hepatocytes and endothelium of hepatic arteries [67]. Increase 
in NO level by NO donor or treatment with L-arginine or tetrahydrobiopterin plays an 
important role in carbohydrate metabolism by decreasing PEP-Carboxylase activity
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and by suppressing hepatic gluconeogenesis [68]. NO also modulates activities of 
different enzymes involved in glycogenesis and glycogenolysis in the hepatic tissue. 

Cardiac muscles are highly dependent on glucose as a rich energy source. So, the 
expression of GLUT 4 is subjected to change the metabolic activity and endocrine 
regulation. During ischemia, GLUT 4 translocation, stimulated by AMPK cascade, 
leads to the activation of glucose uptake and glycolysis [48, 69]. Besides AMPK 
mediated glucose uptake, NO/cGMP pathway also plays an important role [70]. 
Jensen and his colleagues [71] reported that treatment of cardiomocytes with SNP 
activates nitrogen activated protein kinase which stimulates glucose uptake. It has 
also been reported that lipid has a role on the downregulation of GLUT4 gene and 
reduces insulin-stimulated glucose uptake in the heart [72]. 

Insulin induced NOS activity helps in glucose uptake in adipocytes [73]. In human 
adipose tissue, eNOS expression was first reported by Ribiere and collegue [74]. Later 
on, the expression of eNOS and iNOS was reported in murine white adipocytes (3T3-
L1) [75]. Blocking of NOS activity in brown and white adipocytes inhibits glucose 
uptake by insulin action [73]. In adipose tissue mainly eNOS is membrane bound and 
iNOS is cystolic [76]. Treatment of 3T3-L1 adipocytes with SNP increases glucose 
uptake via GLUT 4 translocation. Glucose uptake due to SNP mediated stimulation 
is inhibited by cPTIO signifies the role of NO in glucose uptake in adipose tissue 
[75]. 

Conclusion 

Endogenous NO is involved in insulin secretion, insulin sensing and glucose uptake 
and thus play a key role in carbohydrate homeostasis. Thus NO-releasing drugs can 
restore disrupted NO signalling and improve carbohydrate metabolism. Designing 
such rational therapies to improve insulin action in vascular endothelium might have 
beneficial effects on disorders with metabolic syndrome, such as in type 2 diabetes. 
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Chapter 11 
Nitric Oxide as a Diagnostic 
and Therapeutic Tool in Respiratory 
Diseases 

Kavita Gulati, Suresh Kumar Thokchom, and Arunabha Ray 

Abstract Nitric oxide (NO) is a gasotransmitter that plays a vital role in diverse 
biological processes. NO is a fundamental component in regulating cardiovas-
cular functions, smooth muscle tone, and neurotransmission. It acts as a critical 
signaling molecule in the body that widens blood vessels in the lungs when inhaled. 
Several lines of evidence indicate that endogenous NO is responsible for the phys-
iological regulation of airways and is involved in various respiratory diseases. The 
primary sources of NO in the respiratory tract are epithelial cells, inflammatory cells 
(macrophages, neutrophils, mast cells), and endothelial. The highest output of NO 
is from epithelial cells and macrophages. The concentrations of NO are different for 
each airway inflammatory disease, and these changes in the level help in the evalua-
tion and management of respiratory disorders. The amount of NO found in expired 
air is detectable by a non-invasive method in animals and humans. Several research 
findings have pointed out the role of NO in the pathogenesis of various diseases 
affecting airways, and this can be translated to future application in clinical prac-
tice. This review summarizes the basic understanding of NO in various respiratory 
disorders, and the fractional exhaled levels of NO can be an important non-invasive 
economical diagnostic marker. Further, the current version of the role of endogenous 
NO may provide new insight into the regulation of the airways, and inhaled NO 
may potentially contribute as treatment strategies to various respiratory diseases in 
clinical practice. 
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Introduction 

Nitric oxide (NO) is a colorless, tasteless, and short-lived endogenously produced 
gas. It acts as a signaling molecule in nearly almost every organ. It acts as a ubiquitous 
intercellular messenger in all vertebrates, regulating blood circulation, blood clots, 
and neuronal networks. Interestingly, neurons in the human brain can produce NO 
for 80 years without causing toxicity [1]. However, during pathological conditions 
such as cerebral ischemia, the formation of NO may increase a great danger to the 
neurons in only a very few minutes. Such damaging action results from the reaction of 
NO with superoxide anion (O2·− ), forming a strong intoxicant oxidant, i.e., perox-
ynitrite (ONOO −), which results in the production of contradictory characteristics 
of NO in the body, mediating tissue destruction, inflammation, and vasoconstric-
tion, especially in various lung diseases [2]. Several studies have shown the role of 
endogenous NO in regulating airways physiology and its involvement in respiratory 
diseases. The primary purpose of this review is to summarize the basic understanding 
of endogenous NO in the physiological regulation of airways and its application as 
a diagnostic and therapeutic tool in patients with respiratory diseases. 

Source and Biosynthesis of NO 

NO is endogenously generated in mammalian cells by the oxidation of L-arginine 
to NO and L-Citrulline, catalyzed by nitric oxide synthase (NOS) enzyme. NO is 
produced via two successive mono-oxygenation reactions in the presence of at least 
five cofactors. The cofactors involved in this process include oxygen, nicotinamide-
adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin 
mononucleotide (FMN) and tetrahydrobiopterin (BH4) [3]. The physiological effects 
of NO are mediated through to produce per mole of NO, two moles of O2 and 1.5 mol 
of NADPH are utilized. 

Nitric oxide synthase enzymes exist in three closely related isoforms. They 
are mainly categorized into either calcium- and calmodulin-dependent (cNOS) or 
calcium- and calmodulin-independent (iNOS). The isoforms of NOS are neuronal 
(nNOS), macrophase (iNOS), and endothelial cells (eNOS). Both endothelial (eNOS) 
and neuronal (nNOS) isoforms of NOS are chiefly expressed in mammalian cells 
(e.g., cardiovascular system and nervous system, respectively) and inducible (iNOS) 
isoforms of NOS are expressed only when activated by an immune response [4]. 
Thus, the expression of iNOS is triggered by exposure to bacterial endotoxin and 
pro-inflammatory cytokines such as TNF-α, INF-γ, and IL1-β. The activity of iNOS 
is regulated at the transcriptional level and is not affected by the changes in intracel-
lular calcium concentrations or by the cofactors, i.e., NADPH and BH4 [5]. High NO 
levels indicate increased iNOS expression, which is raised in circumstances involving 
inflamed airways, such as asthma, pollen inhalation, and airway infections. iNOS can
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Fig. 11.1 Schematic representation of nitric oxide synthesis and its major effector targets 

produce a higher NO concentration than cNOS, and it may last for several hours or 
days [6]. 

The physiological effects of NO are mediated by forming cyclic guanosine 
monophosphate (cGMP), a signal transduction molecule. NO diffuses easily into 
surrounding cells, where it activates soluble guanylate cyclase, resulting in the forma-
tion of cGMP. Heme protoporphyrin IX is present as hemoglobin in soluble guany-
late cyclase. This hemoglobin presence is associated with iron in the form of ferrous, 
which has a great affinity in binding with NO. In the targeted site, cGMP activates 
cGMP-dependent kinases, which leads to the modulation of intracellular calcium 
levels, thereby regulating varieties of functions in the target tissues. Thus, the main 
three effector sites of NO include (i) Metalloproteins, in which NO interacts with 
metals, especially iron in the heme group; (ii) Thiols, where NO interacts with thiols 
compounds having the -SH group (thiol) and forms nitrosothiols; (iii) Tyrosine nitra-
tion, where peroxynitrite (ONOO-) is formed when NO combines with superoxide 
[7]. Figure 11.1 shows the simplified representation of nitric oxide synthesis and its 
primary effector targets. 

Therefore, the fast reactivity of NO with metals, oxygen, and reactive oxygen 
species (ROS) determines its labile factor or inactivation in vivo. Proteins haviing 
iron-containing prosthetic groups, such as heme and hemoproteins, react with NO 
the fastest. Thus, the reaction of NO with hemoglobin or S-nitrosylation leads to its 
inactivation and its transport throughout the vasculature. Inactivation of NO is also 
achieved by reacting NO with O2 to form nitrogen dioxide. Further, it reacts with 
superoxide to form peroxynitrite, an endogenously produced and highly reactive 
oxidizing species for the NO-associated pathogens [7].
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Nitric Oxide—Cytotoxicity Versus Cytoprotection: 
A Question of Balance 

NO acts as a signaling molecule in many physiological functions at optimal concen-
trations. At high concentrations, it is a cytotoxic mediating defensive mechanism 
against pathogens. Thus, it’s perplexing that NO can serve as a physiological inter-
cellular messenger molecule while potentially cytotoxic in vivo. The factors that 
decide whether NO is beneficial or harmful include (i) the cellular environment 
where NO is released; (ii) the influx rate of NO depends on the activation of the NOS 
enzyme, and (iii) the variety of second messenger cascades that might be used to 
signal beneficial or harmful cells [8]. NO may serve as an antioxidant at low concen-
trations and as a pro-oxidant at higher concentrations. In the cells, the antioxidant 
effects of NO are acquired by the activation of signaling transduction pathways. This 
increases the synthesis of endogenous antioxidants and thus downregulates the pro-
inflammatory stimuli [9]. NO shows cytoprotective interaction with lipid radicals and 
iron. The cytotoxic effects of pro-oxidants, H2O2, or t-Butyl hydroperoxide (tBH) 
are decreased by NO-releasing diazen-1-ium-1,2-diaolates [10]. NO can inhibit the 
neutrophils’ superoxide anion formation via inhibition of NADPH oxidase [10]. 

Further, NO has also been reported to reduce the involvement of neutrophils by 
lowering neutrophil deformity. That results in decreased interleukin-8 (IL-8) forma-
tion and endothelial adhesion molecules by lung epithelial cells [11]. NO has also 
been reported to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-kB) activation triggered by inflammatory stimuli (e.g., lipopolysaccharide) [12]. 
The mechanism responsible for this inhibition of NF-kB binding to DNA induced by 
NO may be due to inhibition of IkBa degradation and nitrosation of cysteine residues 
on the p50 subunit of NF-kB bringing NF-kB to maintain in its inactive form [13, 
14]. NF-kB is a transcription factor responsible for many inflammatory chemokines, 
cytokines, and growth factors; therefore, this character of NO may be responsible 
for protecting against inflammation by pathogens. 

Generally, NO exhibits low reactivity as a free radical. In high doses, however, the 
interaction of NO with superoxide (O2●) produces peroxynitrite (ONOO), a potent 
neurotoxic oxidant that causes tissue destruction, inflammation, and vasoconstriction. 
It is responsible for mediating the cytotoxic effect, especially in various lung diseases 
[2]. NO’s reaction with O2●− takes place at a close diffusion-limited rate and is irre-
versible. Peroxynitrite is a powerful oxidant, and its reaction with tyrosine residues 
gives nitrotyrosine. This nitrosation leads to changes such as interruption of the actin 
filament, mitochondrial enzyme inhibition, oxidation of surfactant protein A, deple-
tion of plasma sulfhydryls and antioxidants [15]. Peroxynitrite-induced oxidative 
damage has been linked to enhanced lipid peroxidation and DNA damage. Further, 
this results in the inactivation of enzymes and proteins, thereby enhancing tumor 
formation and proliferation. Besides, NO plays a pro-inflammatory role by acti-
vating NF-kB in response to inflammatory agents [2, 16]. This activation of NF-kB 
is associated with the presentation of tumor necrosis factor-alpha (TNF-α) as well as  
interferon-γ (IFN-γ) [17, 18]. Further, NO generators have been reported to enhance
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the formation of prostaglandin E2 (PGE2) by lung fibroblasts in vitro and alveolar 
macrophages [19]. 

Role of NO in the Physiology of the Lungs 

Nitric oxide (NO) is involved in various functions in the airways, including 
immunomodulation, bronchodilation, secretion control, and cell signaling. Several 
reports have highlighted the potential role of NO in the airways. The following is a 
summary of the physiological significance of NO in the airways: 

NO and Bronchodilation 

Since its discovery, the ability of inhaled NO to produce a bronchodilator response 
in humans and animals has been explored. NO is the neurotransmitter inducing the 
dilatation of the human airways by activating guanylate cyclase and raising cGMP. 
Dupuy et al. [20] found that breathing NO in a dose-related way reduces bronchocon-
striction caused by methacholine inhalation in sedated guinea pigs. They discovered 
that inhaling a large concentration of NO resulted in a small amount of baseline bron-
chodilation. Further, adding 80 ppm of NO to inspiration gas prevented enhanced 
resistance to nebulized methacholine [21]. But, a NO concentration of 80 ppm had 
no impact in healthy people or individuals having chronic obstructive pulmonary 
disease (COPD), however, it did have a minor bronchodilator response in those with 
bronchial asthma. NO is also implicated in the dilation of airways through a different 
mechanism than guanylyl cyclase activation. NO is engaged in thiol metabolism to 
generate nitrosothiols (RS-NO), which are found in healthy people’s airways. RS-
NO has substantial bronchodilator properties, and they are independent of the cGMP 
cascade. They generally present in healthy humans in adequate amounts to modu-
late bronchial tone. In severe asthma, the concentration of RS-NO is reduced in the 
airways. This suggests that the lack of such endogenous bronchodilator substances 
may be responsible for inflammation and the degradation process in the airways 
of severe asthmatic patients. This contributes to the severity and refractory bron-
chospasm in bronchial asthma. There is a nonadrenergic noncholinergic (NANC) 
neural system that directs bronchomotor tone in addition to the classical adrenergic 
and cholinergic network. This system regulates whether airways constrict (excita-
tory NANC) or relax (inhibitory NANC) in both animals and humans [22]. NOS 
immunoreactive nerves in parasympathetic and sympathetic and sensory ganglia 
support providing bronchial smooth muscles, vessels, and the lamina propria. When 
comparing the proximal and distal airways, NOS immunoreactive neurons are more 
prevalent in the proximal airways. nNOS mediates NO’s release from peripheral 
nerves, and calcium entry in a depolarized state activates it. Approximately half 
of the inhibitory nonadrenergic noncholinergic (iNANC) response is mediated by
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NO. In the second step of the iNANC relaxant response, the vasoactive intestinal 
peptide is implicated. In humans, however, NO is entirely responsible for the iNAMC 
response in both the central and peripheral airways [23]. Besides, cholinergic neural 
bronchoconstriction is potentiated by NOS inhibitors without any impact on neural 
acetylcholine release. Thus, it demonstrates that NO generated by nNOS serves as 
a functioning antagonist to the excitatory cholinergic network in the postjunctional 
state but not in the prejunctional state. Although there is no change in nNOS expres-
sion, allergic airways inflammation causes a failure in neural NO-induced relaxation. 
This suggests that the activity of nNOS is altered in the presence of airway allergic 
inflammation, which leads to exacerbation in asthmatic patients [24]. 

NO and Bronchoprotection 

Increased bronchoconstriction in response to several direct and indirect stimuli is 
a fundamental hallmark of obstructive airway disorders (OAD) such as asthma and 
COPD. Endogenous NO plays a vital role in airway hyperresponsiveness in animal 
models, suggesting that NO is bronchoprotective in OAD [25, 26]. Histamine causes 
bronchoconstriction (in vivo and in vitro), potentiated by NOS inhibitors, implying 
that endogenous NO plays a modulator function in airway hyperresponsiveness. 
Within the airways, NO triggers soluble guanylyl cyclase in target cells, thereby 
increasing cGMP and relaxation of the smooth muscle. In asthmatic patients, inhala-
tion of a high amount of NO causes bronchodilatation. The inhibition of NO produc-
tion with NOS inhibitors accentuates airway responsiveness to various stimuli in 
experimental and clinical asthma studies [27]. Apart from its direct action on respi-
ratory smooth muscle, NO plays an essential role in stabilizing mast cell activity, a 
necessary step as these cells are involved in the pathogenesis of asthma and airway 
responsiveness [28]. Based on these findings, several clinical studies have been under-
taken to corroborate the potential of endogenous NO to protect against excitatory 
airway responses during allergen exposure. The effect of the inhaled NOS inhibitor 
N (G)-monomethyl-L-arginine (L-NMMA) on the airway hyperresponsiveness to 
bradykinin before and after the allergen challenge was studied in asthmatic patients. 
According to the findings, allergen exposure in asthma increased airway hyperre-
sponsiveness to bradykinin by impairing the generation of bronchoprotective nitric 
oxide, which was linked to the downregulation of NOS isoforms (ecNOS) [29]. 

In another study, the bronchoprotective role of NO in hyperpnea-induced bron-
choconstriction and airway microvascular permeability was studied in animals. The 
results suggested that constitutive (but not inducible) NO seems to have a bronchopro-
tective effect on hyperpnea-induced bronchoconstriction [30]. Further, researchers 
have investigated the bronchoprotective mechanism of a potent peroxynitrite-
releasing compound named S-morpholinosydnonimine (SIN-1). They have a consid-
erable bronchoprotective effect against acetylcholine. Bronchoprotection by SIN1 
appears to be mediated in part by peroxynitrite and NO regeneration, which may 
involve glutathione (GSH) and airway thiols due to peroxynitrite exposure [31].
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Lee et al. evaluated the possible involvement of the eNOS gene and its association 
with patients with bronchial asthma [32]. When comparing the asthma group to the 
control group, the presence of one genotype (bb) of eNOS was striking. However, 
there was no significant difference within the group of subjects with varying degrees 
of asthma. These data suggest that variations in the eNOS gene may be linked to 
asthma development; however, the severity of the disease is not to be affected by 
polymorphisms of the eNOS gene. 

NO and Pulmonary Vasculature 

The NO is a key signaling molecule that regulates blood flow and tissue oxygena-
tion. NO plays an essential function in controlling O2 supply through paracrine 
modulation of vasomotor tone locally and respiratory responses centrally. It can 
account for the biological activity of endothelium-derived relaxing factor (EDRF), 
an endogenous vasodilator that causes vascular smooth muscle to relax. The impor-
tance of pulmonary NO generation in the management and mechanism of the systemic 
vasculature is still being explored through extensive research. NO regulates vascular 
tone and blood flow in the vascular smooth muscle by activating soluble guanylate 
cyclase (sGC). In the classical NO signaling pathway, activation of sGC emphasizes 
cGMP formation, which ultimately brings vasodilatation. Further, mitochondrial 
O2 consumption is controlled by inhibiting cytochrome c oxidase. NO is involved in 
regulating pulmonary circulation that prevents the vascular basal tone and counter-
acts hypoxic vasoconstriction. Lung diseases with chronic hypoxia have decreased 
NO release [33, 34]. The oxidation of NO to nitrite or the interactions of NO with 
protein thiols to create S-nitrosothiols (SNOs) are two alternate NO signaling path-
ways. These NO derivatives can serve as vasodilators or post-translational protein 
function modifiers [35, 36]. New theories about the relationship between nitrite and 
SNOs with hemoglobin have developed. The allosteric characteristic of hemoglobin 
inside red blood cells is exploited, resulting in NO signal transmission towards the 
periphery. Its vasodilator capabilities allow it to deliver oxygenated blood to hypoxic 
tissue selectively. 

The results of genetically modified experimental studies in each NOS isoform have 
greatly simplified our understanding of the importance of individual NOS isoforms 
in pulmonary vascular biology. The endothelium of pulmonary arteries contains 
isoforms of eNOS in healthy persons, however, its activity is diminished in individ-
uals with a diagnosed pulmonary hypertension [37, 38]. Reduced eNOS expression 
causes respiratory vasoconstriction and a rise in the smooth muscle layer in the 
airway arterial system, which are common signs of the condition. A loss of NO 
bioavailability causes endothelial dysfunction and vascular pathology in pulmonary 
hypertension. COPD patients’ pulmonary arteries have been found to have reduced 
endothelium-derived NO release [39]. Moreover, the basal bronchial vascular tone is
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regulated by endogenous NO, whereas pulmonary vasodilatation following inhala-
tion of cigarette smoke results from exogenous NO. In experimental studies, the 
dilatation of the bronchial vasculature is greatly influenced by endothelial NO [38]. 

NO and Airway Secretions 

The respiratory system possesses a complex muociliary protective network to main-
tain the delicate mucosal system’s balance. The respiratory mucosa is made up of 
pseudostratified and ciliated epithelium interspersed with mucus-secreting submu-
cosal glands and goblet cells. Mucociliary transport helps remove inhaled particles 
from the respiratory mucosal surface and is a crucial defense system for the airway 
mucosa, and it increases the mucus secretion in the airways. A large quantity of NO 
produced by iNOS during pathological conditions triggers the chemotaxis of inflam-
matory cells, mainly due to the recruitment of eosinophils and T-lymphocytes to the 
lung. This results in vasodilatation, plasma extravasations, and mucus secretion in the 
airways [40]. On the other hand, the reaction of NO with anion superoxide enhances 
the oxidative stress pathway [41]. It thus causes cellular injury by dysfunction of the 
protein or DNA injury and airway hyperresponsiveness. NO can regulate the arginase 
pathway by substrate competition and cause bronchial remodeling, smooth muscle 
contraction, and mucus production [40]. 

In healthy individuals, NO is produced by persistent expression of iNOS in epithe-
lial cells; thus, it plays a vital role in protecting the airways from several respira-
tory infections. NG-nitro-L-arginine-methyl ester (L-NAME) is a cNOS inhibitor, 
and its topical application reduces nasal NO concentrations. The NO donor sodium 
nitroprusside increases nasal NO while lowering nasal saccharine transit time, indi-
cating mucociliary activity. Furthermore, L-NAME is shown to prolong the transport 
time. Such findings show that altering nasal NO generation artificially could change 
mucociliary activity in the airways [42]. NO concentrations are reduced by prolonged 
cough, rhinosinusitis (acute and chronic), primary ciliary dysfunction, cystic fibrosis, 
etc. Exposure to cigarettes and alcohol produces the same result. Changes in upper 
airway ciliary mucosal histology are linked to these disorders [43]. Patients with 
rhinosinusitis and septicemia have lowered NO levels due to decreased iNOS expres-
sion in the maxillary sinuses, which is linked to a lower defensive capacity and a 
higher risk of secondary infections [44]. Blanco et al. [44] investigated NO’s effect 
in controlling ciliary mobility under normal conditions. They looked at how NO 
synthase enzyme inhibitors (L-NAME and aminoguanidine) affected mucociliary 
transportability. The data suggest that NO can promote or reduce mucociliary trans-
port depending on the pathway, demonstrating that NO has a dual role in mucociliary 
transport. Thus, on one hand, NO can act as an essential physiological regulator and 
on other hand, it involves the pathogenesis of airways, leading to hypersecretion of 
surface liquid.
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Exhaled NO as a Non-invasive Biomarker for a Variety 
of Respiratory Conditions 

Analysis of exhaled human breath constituents has recently become a fast-expanding 
subject of study, particularly for analyzing chest diseases and oxidative stress of the 
lungs. Nowadays, it has given a great impetus to medical diagnosis and monitoring 
of diseases in a non-invasive way, particularly respiratory diseases [45]. Volatile 
organic compounds/gas present in expelled air becomes the fingerprints of biophys-
ical processes in the human body and thus helps in the early detection of diseases. 
The presence of an excess amount of organic compounds/gas in exhaled breath is 
an indicator of disease state, and thus it is used as a biomarker of different diseases. 
NO is one of the most extensively studied markers among various exhaled markers. 
It is now recognized as a biological mediator of many physiological functions in 
animals and humans. Several airway diseases have reported irregularities in exhaled 
NO levels [46, 47]. Under physiological conditions, fractions of NO are found in the 
exhaled breath. It is derived endogenously from pro-inflammatory cells of airway 
epithelium by the action of the inducible isoform of NOS (iNOS). The fractions of 
gaseous mediators, i.e., NO present in the expelled air, can be measured quantita-
tively by a non-invasive method and used as a clinical biomarker to evaluate and 
manage various respiratory disorders. Many study reports have emphasized the role 
of NO as a non-invasive biomarker for assessing airway inflammation, particularly 
in chronic respiratory diseases. 

The NO fractions in exhaled breath are measured directly by using NO analyzers 
and expressed in parts per billion. Fractional exhaled Nitric Oxide (FeNO) is an 
excellent marker that a high value (>50 parts per billion) strongly suggests airway 
eosinophilic airway inflammation and steroid responsiveness [48]. Lung diseases, 
including asthma, COPD, bronchiectasis, cystic fibrosis, interstitial lung disease, etc., 
are characterized by chronic airways inflammation. However, because of the chal-
lenges in assessing inflammation, they are not directly quantified in ordinary clinical 
practice. The significance of FeNO monitoring in various respiratory disorders, as 
well as its future potential, are highlighted here. 

FeNO and Asthma 

Asthma is a disease of airway inflammation accompanied by altered exhaled breath 
composition. Measurement of FeNO level in asthmatic patients is a valid and repro-
ducible non-invasive marker with a high discriminatory capacity. It can be used with 
more than 90% specificity for diagnosing asthma in both adults and children. In 
asthmatic patients, the level of FeNO is found to be increased. These increased NO 
levels in asthmatic patients indicate inflammation in the lower respiratory tract [47]. 
Exhaled NO levels rise in untreated asthma or during acute asthma exacerbations 
and decrease with appropriate anti-inflammatory corticosteroid treatment. Hence,



232 K. Gulati et al.

the determination of NO fractions in exhaled air may be considered an ideal tool 
for monitoring the corticosteroid response in patients with bronchial asthma [49]. In 
the area of therapeutic monitoring of asthma, it has been observed that FeNO corre-
lated with the frequency of respiratory symptoms. Thus, clinicians can recommend 
a specific bronchodilator or dosage based on FeNO level but not FEV1 [50, 51]. The 
level of FeNO rapidly decreases after inhaled corticosteroids and anti-leukotriene 
treatment. However, such a response is not observed in the case of theophylline 
or nedocromil therapy. Early anti-inflammatory medication can prevent subsequent 
airway remodeling and worsen asthma symptoms. Thus, the change in FeNO level 
with corticosteroid therapy helps identify the disease pattern, whether poor disease 
control or uncontrolled airway inflammation, making it easy for the clinicians to 
decide on further dose regimens [52]. Therefore, the monitoring of FeNO has great 
potential in the diagnosis and monitoring of asthma. 

The high levels of FeNO in asthma predominantly reflect the lower airway origin. 
They are most likely because of the activation of iNOS isoform of NOS in airways 
inflammatory and epithelial cells [53]. Yet little involvement from nNOS may be 
involved as the expression of nNOS gene connects with FeNO [54]. The level of 
FeNO may further increase by increased L-arginine (substrate for NO), not specific 
for asthma; however, an elevated level of it may pose a significant indication in 
distinguishing asthma from other reasons behind chronic cough [55]. In a study by 
Dupont and colleagues [56], the FeNO value was used to distinguish between healthy 
participants with or without airway symptoms and asthmatic patients. In another 
study, the intra-individual coefficient of variation was used as a variation index to 
measure the change in the level within a defined interval. Results showed that the 
FeNO in normal subjects within seven days was 15.8%, increasing to 16.8% within 
23 days. The study’s finding suggests that the percentage change in FeNO level by 
30−35% or even more within the time interval (1–3 weeks) was considered abnormal 
[57]. In another study on mild to moderate asthmatic patients, the increased FeNO 
level was reduced significantly after three months of yogic intervention, thereby 
reducing the inflammation in the airways [58]. Several studies have investigated the 
performance of FeNO as an indicator for measuring the severity of asthma, but the 
findings are equivocal. Some studies reported increased levels of FeNO in asthmatic 
patients [59–61]; however, many failed to prove such correlations [62, 63]. The 
estimation of FeNO as a novel biomarker for the control of future asthma outcomes 
is more accurate when combined with spirometric parameters [64, 65]. Therefore, an 
integrated FeNO and pulmonary function test assessment are suggested in clinical 
care. This could aid clinicians in predicting the response to pharmacological treatment 
in terms of asthma control. 

FeNO and Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD) is a common preventable and treat-
able disease characterized by progressive airflow limitation that is not fully reversible.
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The incorporation of FeNO into clinical practice is currently undergoing critical 
assessment. Measurement of FeNO level has been considered a surrogate marker for 
eosinophilic airway inflammation, especially in asthma. There have been few studies 
to characterize the clinical values of FeNO in individuals with established COPD, and 
the results are conflicting. Smoking is considered to be one of the important factors 
that influence the level of exhaled NO in these patients. Recent findings show a mild 
elevation in FeNO levels in stable patients with COPD than in healthy volunteers; 
however, much higher FeNO levels were found in ex-smokers than current smokers. 
The reduction in FeNO in current cigarette smokers maybe because of tobacco, 
which down-regulates the expression of eNOS, indicating a high risk of developing 
the pulmonary disease. Besides, the relatively low value of FeNO in current smoking 
COPD patients is maybe because of the presence of more peripheral inflammation 
when compared to asthma patients. The down-regulation of eNOS and increased 
oxidative stress consumes NO to form peroxynitrite [66]. However, high levels of 
FeNO are documented in patients with unstable COPD when compared to the stable 
COPD patients with present or former smokers [67]. Thus, there is a chance that 
cigarette smoke may dramatically conceal any likelihood of a disease-associated 
rise in exhaled NO levels [67, 68]. A significant number of patients with COPD 
comprise some of the features of asthma conditions such as infiltration of airway 
inflammatory cells, eosinophilic inflammation, etc. The illness is defined as asthma– 
COPD overlap syndrome (ACOS). It is characterized by chronic airway obstruction 
and various symptoms common in asthma and COPD [69]. The assessment of both 
FeNO level and blood eosinophils count helps differentiate ACOS from COPD [70]. 

As per a recent finding, patients with corticosteroid-naive having FeNO level > 
25 ppb associated with a blood eosinophil count >250 cells/μl is indicative of high 
specificity (96.1%) for differentiating ACOS from COPD [71]. However, in the case 
of stable COPD, a FeNO level > 50 ppb is considered eosinophilic inflammation 
[72]. Further, some studies reported that patients with stable COPD with elevated 
FeNO levels are likely to respond better to corticosteroids [73] and may predict better 
FEV1 response to inhaled corticosteroids [74]. 

COPD exacerbations are linked to a significant increase in airway eosinophilia 
capable of expressing eNOS and generating NO [75]. Respiratory acidosis is 
usually seen during COPD exacerbation, leading to a further rise in FeNO level. 
Patients with mild/moderate COPD, particularly in combination with cor pulmonale, 
have a higher concentration of FeNO than severe patients [76]. FeNO levels 
have been shown to increase during acute exacerbations and return to normal levels 
after a few months of appropriate steroid treatment. Therefore, pharmacotherapy 
with anti-inflammatory agents may be beneficial in preventing the progression of 
the disease and the subsequent damage to the lungs [68]. Thus, the change of FeNO 
level after pharmacotherapy with corticosteroids may help the clinicians identify 
the disease pattern, whether poor disease control due to uncontrolled airway inflam-
mation and help decide on a different dose regimen [74]. Exhaled NO monitoring 
may thus be a valuable biomarker for early identification and illness management 
in inflammatory diseases like COPD. A significant reduction in the FeNO level
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following three months of the yogic intervention was observed in the case of asth-
matics [59] and COPD patients [77]. Further, it was accompanied by a reduction 
in the specific markers of inflammation, thus correlating the levels of FeNO with 
airway inflammation. 

FeNO and Cystic Fibrosis 

In contrast with asthma and COPD, the expression of NOS and its function in the 
lungs of cystic fibrosis (CF) is little known. FeNO measurements at various flow 
rates assist distinguish between alveolar and bronchial NO emissions in CF patients. 
Therefore, the measure of FeNO concentration may be beneficial to estimating NO 
deficit in the airways of patients with CF. Lower FeNO value with moderate to severe 
grade of CF is probably due to lower bronchial NO output. FeNO levels in CF patients 
are lower than in healthy people. Strong neutrophilic inflammation in the airways 
produces superoxide anions, converting NO to nitrate and potentially producing 
peroxynitrite [78]. According to Thomas et al. [79], FeNO levels are lowered in 
patients with CF despite the airway inflammation. However, it does not correlate 
with cystic fibrosis genotype. The mechanism for the decreased level of FeNO in CF 
patients is incompletely understood. However, the possible reasons may be reduced 
expression of eNOS or deficiency of the enzymes in airway epithelial cells, or reduced 
availability of L-arginine in the airways [80]. Further, the enhancement of eNOS 
expression by neutrophils is seen in the epithelial cells of normal human airways, but 
it was not observed in patients with CF [81]. Sexual hormones may also play a role 
in cystic fibrosis transmembrane mRNA expression. Worsening of lung symptoms 
before menstruation in female patients with CF has been reported. Further, the lowest 
value of FeNO levels with a significant lowering of FEV1 values has been observed 
during the menstrual cycle. However, the physiologic significance of this finding is 
far from clear [82]. 

Further, the FeNO levels assessment may help differentiate the underlying 
diseases having common symptoms of inflammation. As a result, measuring FeNO 
levels can assist in distinguishing cystic fibrosis patients from those with atopic 
bronchial asthma. FeNO levels in adults having atopic bronchial asthma are substan-
tially greater than those in individuals with extensive cystic fibrosis [83]. Eshghi 
et al. [84] investigated the proportion of expelled nitric oxide in CF children and 
its relationship with sputum culture to monitor infections. After weeks of antibi-
otic treatment, sputum culture was negative, and FeNO levels in these patients 
were substantially lower than FeNO before starting treatment. Participants having 
pseudomonas sputum culture did not differ considerably from others with non-
pseudomonas sputum culture in terms of original FeNO levels and changes following 
treatment.
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FeNO and Bronchiectasis 

Bronchiectasis is a lung disease marked by chronic airway inflammation and infec-
tion, as well as abnormal airway dilation. The clinical applications of exhaled nitric 
oxide in bronchiectasis are less evident. An increase in FeNO level is found in 
bronchiectasis but lower than in other respiratory diseases. The rise in FeNO levels in 
patients with bronchiectasis may correlate with the severity of the disease. Shoemark 
et al. [85] investigated the use of FeNO levels to determine airway inflammation in 
bronchiectasis patients. Results showed that bronchiectasis patients had higher FeNO 
levels than healthy controls. Thus, its level reflected the severity of bronchiectasis, 
but it didn’t provide enough information to guide treatment options. 

The elevated FeNO level in bronchiectasis may suggest the presence of active 
inflammation in the airways. Therefore, it has the potential to anticipate the severity 
of the disease. It is further strengthened by observing the increased expression of 
eNOS in the airways of bronchiectasis patients [86]. But contradictory results were 
reported by Foley et al. [87], who showed no elevation in FeNO level in clinically 
stable patients with bronchiectasis compared to normal subjects. NO was thought to 
be removed or trapped in viscous airway secretion due to its interaction with ROS. 
Therefore, to clarify these contradictory results, further research is highly needed 
to fully explain the mechanism involved and the role of NO in the induction and 
progression of the disease. 

FeNO and Rhinitis 

FeNO is rarely measured in allergic rhinitis patients. However, measuring FeNO 
may be considered a valid, promising, non-invasive inflammatory marker adjunct to 
clinical assessment, used in other airway diseases (such as asthma, COPD, etc.) and 
in people who have persistent rhinitis. It may help diagnose and manage patients 
with rhinitis and can be useful to rule out the difficulties in the clinical interpreta-
tion of the disease [88]. The amount of NO emitted by the upper airways is 100 
times more than that released by the lower airways. Thus, it causes a large release 
of NO in human paranasal sinuses [89]. In normal subjects, nasal NO may remark-
ably decrease by the action of L-NAME. Thus, inhibition of NOS by activation of 
eNOS can cause airway hyperresponsiveness in the nasal mucosa [90]. High eNOS 
and low iNOS immunoreactivity has been suggested in the submucosal glands and 
nasal epithelium in healthy participants. However, iNOS expression was found to be 
increased in rhinitis patients. Further, in patients with permanent perennial rhinitis, 
the immunoreactivity of nitrotyrosine was found to be increased in the nasal mucosa, 
which can be correlated with the severity of the sinonasal symptom. However, the 
increase in the expression of iNOS may not be associated with the increased inten-
sity of nitrotyrosine labeling. This reflects that NO derived from iNOS can have the 
power to take part in the pathophysiology of rhinitis [91]. However, peroxynitrite
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generation in rhinitis sufferers is dependent on iNOS levels. Eotaxin is an eosinophil-
specific chemoattractant that raises the immunoreactivity of nitrotyrosine in the nasal 
mucosa, resulting in increased nasal NO availability in clinically severe allergic 
rhinitis patients [92]. Patients with allergic and persistent rhinitis have been also 
found to have higher levels of nasal NO [89]. 

FeNO and Interstitial Lung Diseases 

The application of exhaled NO has become a potential marker of many intersti-
tial lung diseases (ILD), including systemic sclerosis, idiopathic pulmonary fibrosis 
(fibrosing alveolitis), and sarcoidosis. Many ILDs have unclear etiologies, which 
necessitates ongoing monitoring due to the disease’s creeping, unpredictable, and 
irreversible character. Many studies have been conducted to explore the utility of 
FeNO in monitoring disease progression and response to therapy in patients with 
ILD. 

Systemic sclerosis: FeNO levels in patients with systemic sclerosis, whether they 
have pulmonary hypertension or not, are lower than in healthy people. The possible 
reason behind this is a decrease in the pulmonary vascular endothelial surface or 
a reduction in the expression of eNOS in pulmonary vessels. But studies on the 
expression of eNOS in airway vessels in patients with systemic sclerosis are limited, 
and the results are equivocal. Recently, increased FeNO levels have been reported in 
systemic sclerosis patients with fibrosing lung disease, whereas those with pulmonary 
hypertension have relatively low FeNO levels [93, 94]. 

Idiopathic pulmonary fibrosis (fibrosing alveolitis): ILD remains a life-
threatening, heterogeneous group of disorders. When diagnosed at the stage of 
idiopathic pulmonary fibrosis (fibrosing alveolitis), the underlying lung disease can 
sometimes be difficult to identify. Fractions of exhaled NO are modulated during 
the pathogenesis of ILD and can be used to determine the differences in subtypes 
of fibrotic ILD [95, 96]. The expression of iNOS in macrophages, nitrotyrosine, 
neutrophils, and alveolar epithelium was observed in the airways of ILD patients 
with active inflammation [97]. This was found to be consistent with increased levels 
of FeNO in patients with idiopathic pulmonary fibrosis. The level of FeNO is directly 
associated with disease severity. A high FeNO value may indicate the need for 
systemic treatment, and thus FeNO can be a useful biomarker for ILD management 
[98]. 

Sarcoidosis: As sarcoidosis is characterized by granulomatous airway inflamma-
tion, studies have been conducted to evaluate whether exhaled NO levels change in 
sarcoidosis and correlate with the morphological extent and functional severity of the 
disease. However, conflicting FeNO levels have been reported in clinical practices. 
Exhaled NO levels in pulmonary sarcoidosis are not elevated, according to several 
investigations [99, 100], but in contrast, opposite results are reported summarizing 
increased expression of eNOS in airway epithelium and granulomata in sarcoidosis 
patients [101]. The rise in the level of FeNO in patients with sarcoidosis may reflect
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the severity and progression of the disease. The raised level of FeNO in sarcoidosis 
is lowered by pharmacotherapy with steroids, and this may be the reason behind 
conflicting results reported in patients with pulmonary sarcoidosis. 

FeNO and Pulmonary Hypertension 

The pathogenesis of pulmonary hypertension (PH) or pulmonary arterial hyperten-
sion (PAH) is complex and not well understood. Reduced NO availability is one of 
the characteristic features of the pathogenesis of PAH. Vasoconstriction of arteries 
of the lungs causes increased blood pressure, and a decrease in endogenous NO 
is directly correlated to the development of PAH. In contrast to asthma or COPD, 
earlier investigations have found low exhaled NO levels in PAH patients, indicating 
decreased endothelial NO release. This may be due to reduced endothelial expression 
of eNOS, which reduces NO concentration in the airway wall [102, 103]. The use of 
FeNO as a precise measure of NO generation may not be suitable in the case of PAH. 
Further, there are previous studies that have reported contradictory results. Malek-
mohammad et al. [104] investigated the association between FeNO levels and disease 
severity in PAH patients and therapy outcomes. The data showed no differences in 
FeNO between healthy controls and PAH patients. Further, continued treatment for 
three months had no significant effect on FeNO levels. Thus, the use of FeNO as 
a marker for monitoring severity or therapy was not recommended in patients with 
PAH. Inhaled prostacyclins, such as epoprostenol, have been developed to treat PAH. 
In one study, nebulized epoprostenol increased FeNO levels in PAH patients but not in 
healthy people, suggesting that PAH is regulated by a NO-related mechanism [105]. 
However, the opposite effect was observed by treatment with enalapril (inhibitor of 
angiotensin-converting enzyme) used to treat PAH, which elevates the level of FeNO 
in subjects with normal arterial pressure, but not in subjects with systemic arterial 
hypertension [106]. 

FeNO and Infections 

NO is thought to play a critical role in diverse functions, including microbial defense 
against various bacteria and virus infections. One possible host defense mechanism 
involving NO is S-nitrosylation of cysteine proteases by NO that creates unfavorable 
for replication or virulence of several bacteria, viruses, and parasites. The decreased 
production of endogenous NO causes a declining level of FeNO. This may be one of 
the contributing factors for recurrent airway infection, particularly in patients with 
CF, as discussed earlier. 

The level of endogenous NO was found to be higher during experimental human 
influenza and thus demonstrated that NO contributes to the pathogenic outcome of 
viral infections [107, 108]. The increased respiratory NO levels were also reported
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in experimental studies [109]. The high generation of NO during viral infection 
appears helpful as it blocks the synthesis of viral RNA and S-nitrosylation of cysteine 
proteases [110]. NO has been reported for its antimicrobial activity against various 
viruses, including the influenza virus. However, in a study, inhaled NO therapy failed 
to improve outcomes in severe experimental influenza, and no difference in viral 
lung load was observed between experimental groups [111]. In another experiment, 
exhaled NO was evaluated in babies with acute respiratory syncytial virus (RSV) 
bronchiolitis [112]. It was observed that there was a temporary decrease in FeNO 
level during acute RSV, which was elevated during recovery to normal levels and 
higher. In a recent study, inhaled NO therapy was given in acute bronchiolitis and 
showed rapid oxygen saturation improvement and a reduced length of stay in the 
hospital [113]. 

The therapeutic potential of NO in coronavirus disease 2019 (COVID-19) infec-
tion is currently being explored. COVID-19 is associated with respiratory illness 
caused by a beta-corona virus closely linked to the severe acute respiratory syndrome 
(SARS) coronavirus. Recent evidence suggests that NO has a potentially signifi-
cant role in suppressing the replication of a respiratory coronavirus and thus may 
help in the clinical management of patients with COVID-19 by restoring pulmonary 
physiology [114]. Alvarez et al. [115] recently evaluated the major therapeutic bene-
fits of inhaled NO in COVID-19 and summarized multiple properties, including 
selective pulmonary vasodilatation, improved ventilation, and oxygenation restora-
tion. Moreover, early clinical investigations suggested that NO could act as an 
anti-inflammatory, antibacterial, antiviral, and antithrombotic properties in vitro and 
in vivo. 

NO Inhalation: A Therapeutic Tool in Respiratory Diseases 

NO is a gas that regulates smooth muscle cell relaxation in the vascular system. 
Considering the understanding that NO relaxes endothelial smooth muscles, several 
studies were conducted to analyze NO’s effects on airway vasculature [116, 117]. NO 
has a strong affinity for reacting with oxyhemoglobin. The gas is quickly scavenged 
by oxyhemoglobin in red blood cells. The vasodilating actions of inhaled NO are 
restricted to ventilate lung regions. NO has the unique ability to cause pulmonary 
vasodilation exclusively in areas of the lungs with excellent ventilation, improving 
blood oxygenation and decreasing intrapulmonary right to left shunting. Clinically, 
NO is presently used as a selective pulmonary vasodilator to treat a variety of respi-
ratory disorders in children and adults, including pulmonary hypertension, hypox-
emia, airway inflammation, and pulmonary edema. The US Food and Drug Admin-
istration (FDA) permitted the use of inhaled NO for the management of hypoxic 
respiratory failure in term and near-term (>34 weeks) newborns with clinical or 
echocardiographic indications of pulmonary hypertension in December 1999. Low-
concentration inhalation of gaseous NO enhances oxygenation and reduces the extra-
corporeal membrane oxygenation required [118, 119]. Conditions like persistent
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pulmonary hypertension of the neonate (PPHN) and COPD can benefit from inhaled 
NO. Although the widespread use of inhaled NO is unappealing for logistical and 
budgetary reasons, it is the only allowed indication for the treatment of PPHN. 

The mechanism of vasodilatation involves eNOS-induced NO that acts on 
endothelial smooth muscle cells. NO interacts with the soluble guanylyl cyclase 
and converts GMP to cGMP by entering the cellular membrane. Further, cGMP 
binds to cGMP-dependent protein kinase, triggering a cascade of actions that lower 
smooth muscle tone. In simple words, the active protein kinase binds to ionic chan-
nels in the cellular membrane and the sarcoplasmic reticulum, reducing calcium 
influx, increasing calcium ejection, sequestering calcium inside the sarcoplasmic 
reticulum, and lowering calcium mobilization. These processes have the net effect of 
reducing the amount of calcium supplied for depolarization and contraction, resulting 
in smooth muscle relaxation. NO then diffuses into the bloodstream and is subse-
quently inactivated. The concentration of NO reported to relax vascular smooth 
muscle is 10−10 M [120]. 

Inhaled NO in Lung Transplantation 

The development of Lung Ischemia/Reperfusion Injury (LIRI) is commonly seen in 
patients after lung transplantation. It is the main reason for the incidence of early 
postoperative mortality and acute primary graft dysfunction. The donor’s alveolar 
macrophage appears to be important in the induction of lung damage following 
reperfusion. Currently, it’s unclear what role NO has in LIRI management; however, 
several animal studies have conducted the positive effects of inhaling NO in LIRI 
therapy. In an experimental study, pretreatment with inhaled NO preceding lung 
harvest or lung ischemia in the donating animal was found to dramatically minimize 
reperfusion of pulmonary injury. The mechanism involved may be due to a decrease 
in IL-8 production, neutrophil infiltration, and free radicals [121, 122]. Further, intra-
venous administration of nitroglycerin was found to improve lung damage in models 
of LIRI [123, 124]. 

Inhaled NO In Respiratory Distress Syndrome 

Adult respiratory distress syndrome (ARDS) has a morbidity and mortality rate in 
the United States and Europe that ranges from 10 to 90%, depending on how the 
disorder is defined. ARDS was classically described as an acute-onset inflammatory 
disease with increased vascular permeability linked with clinical, radiologic, and 
physiologic abnormalities but may coexist with left atrial or pulmonary capillary 
hypertension [125]. The alveoli are inflamed and filled with an exudate containing 
blood protein, water, and electrolytes that reduce the surface area available for gas 
exchange. This results in more volume of blood passing through the lungs without
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participating in gas exchange. This possibly leads to a reduction in PaO2, despite 
breathing 100% oxygen [126]. 

Inhaled NO therapy may help in treating ARDS partially due to its vasodilator 
properties. It causes vasodilation of the blood vessels that supply the ventilated 
regions [127]. This reduces the pulmonary artery pressure and thus shunt fraction 
and causes a concomitant increase in PaO2. Although inhaled NO therapy takes care 
of the pulmonary component of ARDS, this disease is a condition with a systemic 
inflammatory component complicated by multiple organ failures, and the treatment 
is still being researched. Various investigations have already shown the impacts of 
inhaled NO on gas exchange and hemodynamics. Rossaint et al. [128] conducted a 
study to evaluate the effects of inhaled NO in individuals with severe ARDS. They 
have suggested that inhaling NO reduced mean pulmonary pressure and enhanced 
arterial oxygen pressure (PaO2). In another study, Young et al. [129] found that the 
magnitude of improvement in PaO2 following NO inhalation therapy is proportional 
to the severity of pulmonary hypertension before treatment. 

Inhaled NO in Chronic Obstructive Pulmonary Disease 
(COPD) 

COPD is one of the leading causes of illness and mortality worldwide. There is 
epidemiological evidence of an increase in cases of COPD, especially in elderly 
subjects. Cigarette smoking is the leading cause of developing COPD. The treatment 
of COPD includes pharmacotherapy, cessation of smoking, controlling exacerba-
tions, etc. Inhaled NO therapy in COPD helps to improve pulmonary function by 
maintaining sufficient gas exchange, but continuous inhalation of NO (at concentra-
tion 10–40 ppm) may worsen gas exchange in the lungs [130]. This seems paradoxical 
as NO inhalation is beneficial in ARDS and improves the situation, but it may exac-
erbate COPD. This can be explained on the basis that in ARDS, NO cannot reach 
many alveoli as they are filled with fluid and unventilated. NO predominantly func-
tions as a vasodilator in well-ventilated lung areas. Shunting, however, is not the only 
factor that contributes to the pattern of COPD ventilation/perfusion mismatch. There 
are several partially ventilated zones in the lungs of COPD patients, as opposed to 
completely ventilated or unventilated areas. Thus, if inhaled NO produces vasodi-
lation in certain sections of the lungs, it will reduce the amount of blood moving 
through better-ventilated regions, resulting in a lower PaO2 level. 

Therefore, one of the other ways to approach this problem is to deliver a combined 
supplementation of oxygen and NO. However, the results of investigations conducted 
utilizing this strategy are mixed. Studies show increasing PaO2 levels, and others 
that show the opposite by supplementing oxygen and NO [130, 131]. Alternatively, 
NO can also be administered to well-ventilated parts of the lungs alone or with 
oxygen. Pulsed inhaled NO administration at predetermined intervals at the start or 
throughout inhalation may help control COPD.
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Inhaled NO in Severe Acute Respiratory Syndrome 
in Response to COVID-19 

Currently, infection with severe acute respiratory syndrome coronavirus-2 (SARS-
CoV2) is associated with a number of health issues. Inhaled nitric oxide possesses 
antiviral properties, improves oxygenation, and is safe in infants with respiratory 
conditions. In research by Goldbart et al. [113], inhaled nitric oxide was utilized as a 
therapy in hospitalized babies with acute bronchiolitis. They were given a high dosage 
of inhaled nitric oxide (160 ppm) with oxygen/air for 30 min or oxygen/air alone 
(control) five times per day for up to five days. In comparison to standard therapy, 
they found that high dosage inhaled nitric oxide (160 ppm) was safe, well-tolerated, 
decreased hospital stay, and improved oxygen saturation quickly. 

Several potential roles of inhaled nitric oxide in managing COVID-19 associated 
lung complications have been reported by recent studies. Fakhr et al. [132] used high  
concentrations of inhaled nitric oxide as a rescue therapy to manage and stop further 
progression of COVID-19 infection in patients with hypoxic respiratory failure. They 
found that breathed nitric oxide at a concentration of 160–200 ppm is simple to 
utilize, well responded, and is beneficial in patients with COVID-19 with hypoxic 
respiratory failure. In another research, inhaled NO was administered in COVID-
19 patients spontaneously breathing [133]. For all patients, the beginning dose of 
inhaled nitric oxide was 30 parts per million, and the average treatment time was 
2.1 days. They discovered that more than half of spontaneously breathing COVID-19 
patients who received inhaled nitric oxide treatment won’t require respiratory support 
(mechanical ventilation). This evidence proves that inhaled nitric oxide therapy could 
help COVID-19 patients avoid future hypoxic respiratory failure. 

Conclusions 

The recent discovery of multiple roles of endogenous NO in the balance of several 
physiological processes, particularly in cellular functions in the airways, has brought 
a new, rapidly growing field in the science of the respiratory system. It has enhanced 
our understanding of the potential role as a diagnostic and therapeutic tool in respira-
tory diseases. NO, along with its metabolites, serves as a non-invasive biomarker that 
helps evaluate the severity of various chronic inflammatory airway disorders. The 
potential bronchoprotective effects of NO include relaxation of the smooth muscle, 
and reducing airway hyperresponsiveness to bronchoconstrictor stimuli. As NO has 
already made it from the bench to the bedside, it is not really strange to think that this 
potent molecule will become a therapeutic target in the coming years. Pharmaceutical 
companies may develop techniques to alter the expression of specific NOS enzymes, 
which could keep the equilibrium between the beneficial and harmful actions of NO 
and could be a viable therapy option for a variety of respiratory disorders. However,
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some studies revealed various contradictory findings in many aspects; therefore, 
further detailed investigations are required to use NO as a therapeutic tool to validate 
its efficacy in various respiratory disorders. 
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Chapter 12 
Therapeutic Potential of Nitric Oxide 
in the Management of COVID-19 
Induced Acute Respiratory Distress 
Syndrome (ARDS) 

Jagdish Chandra Joshi and Bhagwati Joshi 

Abstract The severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), 
transmitted by human to human, is a causative pathogen of the fatal Corona virus 
disease 2019 (COVID-19) pandemic. The SARS-CoV-2 virus has caused massive 
health as well as the socioeconomic crisis globally. The virus induces an airway infec-
tion, affecting gas exchange by primarily targeting alveolarepithelial and endothe-
lialvessels,resulting in acute respiratory distress syndrome (ARDS) followed byacute 
lung injury (ALI)and leads to multiple organ failure and death. There is no specific 
pharmacological agent for the treatment of COVID 19, only symptomatic and 
supportive therapy are used to treat patients. Various endogenous agents generated 
during the pathological insult of COVID-19 are critical to regulatethe homeostasis 
and repairing lung injury. Nitric oxide (NO) is one of the essential gaseous substances 
synthesized via various respiratory cells. It is well-known for its bronchodilator and 
pulmonary vasodilator function to ease the breath. It also plays a significant role as 
viricidal and microbicidal. These potential activities of NO in the pulmonary system-
make ita likely candidate to treat the COVID-19 induced ARDS. In this chapter, we 
addressed the possible mechanism and targets of NO to suppress the SARS-CoV-2 
induced ALI/ARDS and its complications. 

Keywords Acute lung injury · ARDS · SARS-CoV-2 · COVID-19 · Nitric oxide ·
iNOS 

Introduction 

There have been various global epidemics caused by viral pathogens over the past 
240 years, such as influenza A (H1N1), Zika virus, SARS-CoV, Ebola virus, and, 
recently, SARS-CoV-2. COVID-19 pandemic caused by a novel SARS-CoV-2 is 
the biggest disaster of 2020. It has resulted in more than 63 million infections and
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1.46 million deaths globally which is less than a year of its appearance, [1–3]. The 
lack of effective drugs or vaccines was the major hindrance for adequate protection 
against these emerging viral threats [4]. Thus, it remains a significant challenge and 
is of supreme importance to develop therapeutic strategies for the emerging COVID-
19 pandemic. COVID 19 outbreak, a zoonotic transmitted viral infection, was first 
observed in a patient of Wuhan city of China on December 12, 2019. The patient 
was showing the presence of unknown etiology of pneumonia in bronchoalveolar 
lavage (BAL) [3, 5–7]. It drew global attention quickly due to its rapid spread all 
over the world [5, 8, 9]. The rate of COVID-19 transmission is very high through air 
droplets and direct contact of human to human [2]. SARS-CoV-2 primarily attack 
respiratory cells in the same way as other SARS coronaviruses [3, 5]. Newborn 
babies, geriatric, pregnant women, immunocompromised patients, or patients having 
comorbidities like diabetes mellitus and cardiovascular disease are more prone to 
COVID-19 infection [10–12]. 

According to the WHO database, approximately 3000 studies are being conducted 
by variousresearch institutes, pharmaceutical and biotech companies. However, to 
date, there is nospecific pharmacological tool to combat the deadly virus so far, 
only maintaining social distance and quarantine is the most effective way to stop 
its transmission. As the scientists are in the arduous search for its proper cure, this 
chapter focuseson how NO can act as a promising compoundfor the prevention of 
ALI/ARDS in COVID-19 patients (https://clinicaltrials.gov/ct2/who_table). 

SARS-CoV2 or COVID-19 Induced Pathological Changes 

SARS-CoV-2 infection shows a broad spectrumof symptoms ranging from asymp-
tomatic/mild symptomatic to severe life-threatening conditions. The primary clinical 
sign includes cough, fever, expectoration, throat pain, Chest tightness, chill, fatigue, 
and myalgia. The atypical manifestations are productive cough, dyspnea, pleuritic 
chest pain, lymphopenia, hemoptysis, diarrhea, GI distress, nausea, and vomiting 
[12–18]. In most cases, it is associated with severe pneumonia and ARDS, leading to 
respiratory failure and multiple organ dysfunction. The primary cause of morbidity 
and mortality in SARS-CoV-2 infected patients is ARDS, which isaccomplished with 
alveolar microvascular disruption, infiltration of polymorphonuclear cells, and acti-
vation of platelet-activating factors [2, 19]. The virulence of SARS-CoV-2 starts with 
the endocytosis or internalization of its positive single-stranded RNA genome into the 
host cell cytoplasm. SARS-CoV-2 virus RNA is enclosed in a phospholipid bilayer 
envelope that contains various types of structural proteins, viz. the spike trimeric 
glycoprotein (S), membrane (M) glycoprotein, envelop (E), and nucleocapsid (N) 
[4, 20]. The densely present trimeric S glycoprotein, critical in the pathogenesis, 
has two subunits (S1 and S2).The glycoprotein spike (S) of SARS-CoV-2 must be 
cleaved at two different sites by host cell proteases, furin, and TMPRSS2, to enter 
the cell. The furin enzyme that is highly expressed in human lungs cleaves the 
trimeric S protein of the virus at a specific furin-like protease recognition pattern,

https://clinicaltrials.gov/ct2/who_table
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making it ten-times more efficacious for host cells [21, 22]. After cleavage of trimeric 
spike protein S, it divided into an N-terminal S1-ectodomain and a C-terminal S2 
membrane-anchored protein [20, 21]. The S1 subunit of the glycoprotein recognizes 
the ACE2 in the surface of the hostcell [4, 22–24], while the S2 subunit helps in the 
fusion of the virus membrane to the host cell membrane. In the airway, the cellular 
proteasetransmembrane protease serine 2 (TMPRSS2) is the primary protease to 
cleave COVID-19 S protein [22]. TMPRSSs proteases co-expressed with ACE-2 in 
upper respiratory epithelial cells and detach the ACE2 receptor along with the viral 
glycoprotein. This further leads to the internalization of viral RNA into the cyto-
plasm of various cell types viz., lymphocytes, alveolar macrophages, epithelial and 
dendritic cells [5, 25]. Incorporated and internalized viral RNA reaches the nucleus 
of the host cells, where it is transcribed and translated, thereby multiply its genome 
number [21]. The viral RNA also activates various signaling pathways through the 
membrane receptors. Several membrane receptors, prominently Toll-like receptor4 
(TLR4) or cytosolic TLR7, and retinoic acid-inducible gene 1-like receptors (RLRs) 
referred to as pattern recognition receptors (PRRs) recognize the ssRNA of SARS-
CoV-2 virus. Recognition of viral ssRNA by PRRs is essential to initiate an innate 
immune response and synthesize various inflammatory cytokines including type 1 
interferon (Fig. 12.1). The cytokines storm induced by COVID-19 leads to severe 
pneumonia, ARDS, septic shock, resultant multiple organ failure, and death [21, 
25–29]. Patients infected with SARS-CoV-2 showed a promisingly higher level of 
TNF-α, IFN-γ, IL2, IL7, IL8, IL9, IL10, IL15, IL17, GCSF, GMCSF, MCP1, MIP1α, 
and increased various growth factor viz. PDF, FGF2, VEGFA [18], and markedly 
decrease the number of natural killers (NK), CD4+, and CD8+ T cells, which are 
critical for the control of viral infection and immune response [25, 30].

The radiological studies from multicentric hospitalized patients showed abnormal 
features, such as RNAaemia, acute cardiac injury, patchy lesion, and incidence of 
grand-glass opacities in subpleural regions [31, 32]. X-ray radiography at nine to ten 
days of COVID-19 infection showed increased left basilar opacity, atypical pneu-
monia, which was rising over time [13, 33]. Histological examination of biopsy 
studies showed bilateral diffuse alveolar damage with cellular fibromyxoid exudates, 
desquamation of pneumocytes, and formation of the hyaline membrane [15]. Patho-
logical changes are associated with a localized and systemic immune response that 
results in the influx of neutrophils, leukocytes, and recruitment of proinflamma-
tory cytokines. Blood analysis showed increased leukocytes, D-dimer, and ESR, 
lymphocytopenia, and thrombocytopenia [13, 15, 34]. Biochemistry of blood samples 
shows increase lactate dehydrogenase, creatinine level, elevated creatinine kinase, 
liver enzymes, (alanine aminotransferase, aspartate aminotransferase), increased C-
reactive protein, decrease in total protein level [13, 15, 17, 32, 34, 35]. Sputum 
of COVID-19 patientsshows a positive real-time polymerase chain reaction [15, 
32]. The pathological study confirms the influx of proteinaceous fluid, multinuclear 
cells, edema formation, accumulation of fibrinoid cells, vascular congestion, the 
proliferation of pneumocytes [25, 34].
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Fig. 12.1 Pathogenesis of COVID-19 and immune response, ACE2 receptor on the cell membrane 
recognizes the COVID-19 virus. The cellular protease transmembrane protease serine 2 (TMPRSS2) 
detaches the ACE2 receptor along with the viral glycoprotein and leads to the internalization of 
the viral RNA into the human cell. TLR4 is activated by virus glycoprotein, while internalized 
ssRNA is recognized by cytosolic TLR7 and retinoic acid-inducible gene 1-like receptors. Binding 
of viral ssRNA to 4 and TLR7 leads to the recruitment of the adaptor protein MyD88 complex 
with TRAF6. Adaptor protein MyD88 directly or indirectly recruits and activates the 5, IRF7, and 
NFkBsignaling and promotes transcription of proinflammatory cytokines. The activated MyD88 
recruit TRAF6 and IRAs, which, in turn, results in the activation of TAK1. TAK1 phosphorylates 
IKK, leading to activation of NF-kB. NF-kB translocates to the nucleus to promote the transcription 
of proinflammatory genes (such as IL-1α/β, IL-18, IL-6, and TNFα). In other cytosolic pathways, 
the ssRNA genome of the virus binds with RIG-1 and gets oligomerize. Following oligomerization, 
on the mitochondrial membrane, RIG-I activates and dimerizes MAVS. After that, dimerized MAVS 
associate with TRAF-3 and TRAF family member-associated NF-kappa B activator (TANK) leads 
to the activation of Tank binding kinase-1 (TBK1) and I kappa B kinase (IKK). TBK1 and IKK 
phosphorylate IRF3 and IRF7, which then homodimerize and translocate to the nucleus to promote 
the expression of type I IFNs

Classification of Drugs for COVID-19 Treatment 

To date, there are no specific drugs developed against COVID-19. Clinicians have 
the only choice to provide symptomatic relief and reduce the respiratory discomfort 
associated with COVID-19 induce infection.
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Following drugs are currently under use for symptomatic reliefin COVID-19 
patients. 

a. Antivirals: Remdesivir, Lopinavir, Ritonavir, Favipiravir, Umifenovir 
b. Corticosteroids: Methylprednisolone, Dexamethasone 
c. Antibodies to neutralize the virus: Immunoglobulins or convalescent plasma 
d. Nitric Oxide: Inhaled nitric oxide (iNO) and oral nitric oxide (NOViricid) 
e. Monoclonal antibodies and other: Tocilizumab, Siltuximab, Sarilumab, 

bevacizumab, eculizumab, Bamlanivimab, REGN10933 and REGN10987, 
GSK4182136, Anakinara 

f. Antibiotics: Azithromycin 
g. Immunosuppressant: Sirolimus 
h. Anti-coagulant 
i. Anti-inflammatory 
j. Miscellaneous: ACE-2 inhibitors, Vasoactive intestinal peptide, Neurokinin 1 

antagonist, Baricitinib, Nitazoxanide, Niclosamide and Ivermectin, Colchicin, 
QingfeiPaidu, Lianhuaqingwen, Yinqiao San, and Vitamin C 

Apart from the medication, patients with severe respiratory infections, hypoxemia, 
or shock need oxygen therapy with an initial flow rate of 5 L/min to reach the required 
oxygen saturation level. 

Nitric Oxide and its Impact on the Pulmonary System 

Nitric oxide (NO) is an essential gaseous signaling molecule that plays a broad role 
in the various physiological and pathological processes [36]. In the airway, different 
cell types, viz., alveolar macrophages, alveolar type II cells, and pulmonary endothe-
lial cells synthesizeNOconstitutivelyusing nitric oxide synthase3 (NOS3),precursor 
L-arginine,and oxygen in the presence of NADPH [37–39]. Another NOSen-
zyme,NOS2, also called iNOS, is activated by cytokines released during infectious 
and inflammatory injury such as IFN-γand chemotactic peptideproduced inducible 
NO [37, 38]. However, NO has a very short half-life (0.1–2 s), but because of its high 
diffusion capability and reactivity to the cellular and free radical, it reached almost 
all the cells. Diffused NO activates soluble guanylate cyclase (sGC) and generate 
cyclic-guanosine 3’, 5’-monophosphate (cGMP). cGMPplays a vital role in physi-
ological tasksand regulates various ion channels, oxygen consumption, and cellular 
contraction [39, 40]. NO also increasesmucus secretion and ciliary movement, which 
helps remove viral particles from the airways. It is well known that NO generated 
by iNOS modifying proteins and nucleic acids and have viricidal activity [41].
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NO and it’s Potential in COVID-19 Induced Lung Injury 

In vitro studies suggested that treatment with organic NO precursor following post-
infection and induction of iNOS in cells reduced the growth of SARS-CoV signifi-
cantly and inhibited its replication during early steps [36, 42–44]. Apart from this, 
comorbidities associated with the low NO production in the pulmonary system, such 
as cystic fibrosis or Kartagener’ssyndrome, are more prone to infect SARS-CoV-
2/COVID-19. Studies in mice model found thatinhibition of NO, using its inhibitor, 
have more susceptible to COVID-19 infection [44]. A clinical study suggested that 
following inhalation NO (iNO) therapy 83% of patients were negative fornasopha-
ryngeal swab test within twenty-two days of SARS-CoV-2 infection (https://www. 
massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-covid-patients). 

ACE-2 is a carboxypeptidase enzyme responsible for the synthesis of Ang-1–7 
bybreaking Ang-II, a vasoconstrictor, andconstitutively produced NO by binding to 
its receptors (Fig. 12.2). ACE-2 is also the cell surface receptor for SARS-CoV-2. 
The binding of SARS-CoV-2 to ACE-2 reduces its availability to Ang-II and thus 
reduces the generation of NO. This results in pulmonary vasoconstriction, increase 
platelet aggregation, thrombosis, and reduced viral clearance, which leads to the 
precipitation of ALI/ARDS and its complication in COVID-19 patients (Fig. 12.2) 
[45–47].

Infiltration of neutrophils,which leads to neutrophilic lung injury,is common in 
SARS-CoV-2 virus infection. Evidencedemonstrated that iNO reduced the neutrophil 
infiltration and their activation, suppresses the release of inflammatory cytokines, 
regulate the cell-mediatedlung injury,and inhibits the lung parenchymal damage 
[48, 49]. 

(https://www.massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-
covid-patients). 

Pulmonary macrophages play a significant role in recognition of pathogenic infec-
tion and initiation of innate immunity. They are very plastic and play a significant role 
in regulating ALI/ARDS induced by pathogenic insultand secreting various inflam-
matory and anti-inflammatory cytokines. However, persistent activation and their 
proliferation at the M1 stage aggravate the ALI/ARDS and responsible for unresolved 
lung inflammation [50]. Evidence suggested that NO orchestratesmetabolic repro-
gramming in macrophages and suppresses the secretion of inflammatory cytokines 
viz. TNF-α, IL-1β, etc. and promote the conversion of inflammatory macrophage to 
anti-inflammatory, thus helping in the resolution oflung inflammation in ALI/ARDS 
patients [49, 51]. 

Inflammatory cytokines storm due to SARS-CoV-2 infection disturbs the 
pulmonary endothelial barrier, thereby reducing endothelial release relaxing factor, 
nitric oxide, and increased vasoconstrictor endothelin level results in endothelial 
dysfunction and thrombus formation which precipitate the ARDS [42, 48]. Studies 
suggested that iNO and dietary organic nitrate use in COVID-19 patients reduce vaso-
constriction, thrombus formation, leukocyte adhesion, thus improve endothelial func-
tion and pulmonary performance [42, 48]. SARS-CoV-2virus infection cause early

https://www.massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-covid-patients
https://www.massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-covid-patients
https://www.massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-covid-patients
https://www.massgeneral.org/news/press-release/nitric-oxide-benefit-pregnant-covid-patients
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Fig. 12.2 Effect of SARS-CoV-2 in the constitutive production of NO. ACE-2 is a crucialvascular 
system enzyme, and in normal physiological processes, it generates Ang I, Ang II, and Ang-1–7 
sequentially from plasma globulin angiotensinogen. Later product of angiotensinogen, i.e., Ang-
1–7 binds with MAS-GPCR. MAS-GPCR activates PI3K-dependent Akt phosphorylation, results 
in the phosphorylation and activation of endothelial NO synthase, finally leads to the generation of 
constitutive NO.In the case of SARS-CoV-2 infection, the virus binds to ACE-2 to get entry into the 
host cells. The binding of SARS-CoV-2 leads to the shedding of ACE2 on cell surface receptors and 
loss of its protective function. The MAS-GPCR get inactivated and thus pause NO production. Thus, 
loss of ACE-2 leads to an imbalance of Ang-II and An-1–7, results in vasoconstriction, thrombosis, 
endothelial dysfunction

arterial hypoxia by Ventilation/Perfusion [V/Q) mismatch, thereby increase P(A-a) 
O2gradient [48, 52]. Inhaled-NO has been used to improve the arterial oxygenation 
and PaO2/FIO2 in COVID-19 patients. Clinical evidence suggested that inhaled nitric 
oxide provides rapid relief from shortness of breathing and decreases respiratory rate 
[43, 44]. 

Phosphodiesterase are the group ofenzymes that degrades the cGMP, an important 
secondary messenger produced by NO, into its inactive component. Several phospho-
diesterase inhibitors are being used to treat pulmonary hypertension and respiratory 
disorder, for instant, COPD and asthmatic inflammation. These phosphodiesterase 
inhibitors are FDA-approved and mimic the NO signaling by protecting cGMP degra-
dation, a secondary messenger produced by NO [53–55]. There are extensive exper-
imental studies that suggest the beneficial effect of phosphodiesterase inhibitors in 
protecting pathogen induced ALI/ARDS, suppressing neutrophil accumulation, and 
inflammatory cytokine release [56]. 

Various clinical trials are being conducted for the iNO, and few are in the phase-
II study in mechanically ventilated COVID-19 ARDS patients [48]. A clinical 
Phase, IIb/IIIa outpatient study for the safety and efficacy of the 30 mg sodium 
nitrite oral lozenge (NO viricid], has been approved by the US Food and Drug
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Administration(FDA]for treating African Americans patient who is diagnosed with 
SARS-CoV-2 infection. 

https://www.europeanpharmaceuticalreview.com/news/131413/trial-to-evaluate-
oral-nitric-oxide-therapy-in-covid-19-patients/. 

Conclusion 

In summary, preclinical and clinical evidence suggests that NO is an excellent 
anti-inflammatory compound to reduce the infiltration of neutrophils, adhesion of 
leukocytes, enhance pulmonary circulation, and ease breathing. NO is a pharma-
coeconomic and safe compound and has been used to treat various respiratory 
disorders, including pulmonary hypertension.Thus, it may be a promising thera-
peutic compound for COVID-19 induced ALI/ARDS treatment and to reduce its 
complications. 
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Chapter 13 
Emerging Novel Therapies 
for COVID-19: Implications for the Use 
of Nitric Oxide as an Anti-COVID-19 
Therapy 

Ramesh K. Goyal, Chandragouda R. Patil, and Kalpesh R. Patil 

Abstract The pandemic of COVID-19 is an unprecedented calamity that has seri-
ously affected entire human race. The treatment guidelines for COVID-19 were 
obviously unavailable to the lack of prior data on the mode of transmission of this 
viral infection and due to the unknown pathogenesis of symptoms associated with it. 
Due to an obvious lack of guidelines for selecting proper therapeutic modalities, led 
to a chaotic situation and numerous clinical trials were simultaneously undertaken to 
evaluate the clinical efficacy of antivirals, steroids, hydroxychloroquine and so on. 
These trials were based on the prior evidences of antiviral and cytokine suppressing 
effects of such drugs. Nitric oxide (NO) is known to exert antiviral effect, induces 
vasorelaxation and suppresses the cytokine storm. On the basis of this, NO has been 
extensively studied in preclinical and clinical trials for its therapeutic utility in the 
COVID-19 infection and its consequences. Present chapter highlights the rationale 
for therapeutic use of NO in COVID-19 infections and provides an update on its 
status as a treatment modality for COVID-19. 
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Introduction 

Corona viruses are RNA viruses affecting livestock and birds. These viruses may 
sometimes induce cross-species infections including humans. The earlier pandemics 
of coronavirus like SARS (severe acute respiratory syndrome) and MERS (Middle 
East Respiratory syndrome) induced sporadic infections and deaths during the last 
couple of decades. However, the recently discovered novel coronavirus, which is 
also named as SARS-2 and COVID-19 is the most contagious strain of the coron-
avirus [1]. COVID-19 has affected almost 48.5 million and killed more than 1.23 
million people worldwide. With the increasing number of infected individuals, more 
clinical data on the pathogenesis is emerging. This accumulation of the clinical data 
has provided insights into the therapeutics regimens which may prevent, cure, and 
salvage the critically affected patients of COVID-19 infection. Multiple drugs have 
been clinically tested for the prevention and treatment of the COVID-19 associated 
morbidity and mortality. 

COVID-19 virus can stay active in the atmosphere and on the surfaces for a 
quite long time (3 days) [2]. The incubation period for common flu is 1−4 days 
whereas for the COIVID-19 it is 1−14 days. During incubation and even after infec-
tion, a large proportion of patients may remain completely asymptomatic. Unfortu-
nately, these asymptomatic carriers can spread the infection, and hence, the spread 
of COVID-19 may occur more rapidly. The case fatality rate for the COVID-19 
infections ranges from 2.2 to 3.9% which is comparatively higher than the common 
flu infection (<0.1%) [3] (Johns Hopkins University. Coronavirus (COVID-2019) 
Global Cases). In certain countries, the average mortality rates have been reported 
as high as 4.34 to 28.37% in countries like Yemen [4]. Even after reduction of 
the viral load, the patient may still suffer from the consequences of the COVID-19 
infection like neurological ailments (headache, dizziness, encephalopathy, demyeli-
nation, seizures, CNS vasculitis, skeletal muscle damage, optic nerve neuritis, and 
generalized myoclonus) along with the cardiovascular problems (myocardial injury, 
myocarditis, acute myocardial infarction, arrhythmias, shock and cardiac arrest, 
venous thromboembolic events [5, 6]. The typical clinical biochemistry findings in 
the COVID-19 patients include increased serum levels of C-reactive protein, gluta-
mate pyruvate transaminase, creatine kinase, and creatinine [7, 8]. The clinical symp-
toms of COVID-19 infection include sore throat, cough, weakness, headache, fatigue, 
shortness/difficulty in breathing, and pneumonia (Public Health Agency of Canada). 

During the initial stages of this pandemic, there was a scarcity of clinical data 
on the mechanisms of morbidity and mortalities dues to COVID-19 infection. Rapid 
spread of the infection and considerably higher incidences of mortality necessitated 
rapid development of the therapeutic regimens and multiple drugs and their combi-
nations were evaluated as a treatment for COVID-19. These approaches included 
use of antiviral agents to reduce the viral load, use of angiotensin converting enzyme 
(ACE) inhibitors and angiotensin receptor blockers to prevent the interaction of virus 
with the lung cells, antibiotics to prevent secondary infections, drugs and biologicals
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to suppress the cytokine storm, convalescent plasma therapy, and, therapy to prevent 
intravascular blood clotting. 

COVID-19 Problems and Challenges in the Treatment 

The COVID-19 infection is a terrible, rapidly spreading infection with higher 
morbidity and mortality rates. Unfortunately, there is no vaccine available for this 
viral infection during the emergence of pandemic. Though multiple COVID-19 
vaccines are available or in the pipeline, their safety and efficacy is still being inves-
tigated. The logistics and costs involved in the vaccination may keep awaiting a 
large portion of the human population. The availability of the vaccine may provide 
protection to the frontline health workers. However, the duration of protection after 
each cycle of vaccination may still remain a major concern for the usefulness of 
the vaccine. Along with the systemic vaccines, nasal spray vaccines targeting the 
viral load in nasal and respiratory tract are also being clinically tested for their effi-
cacy. Further, questions are being raised regarding the significance of vaccinating 
the individuals who are naturally immune to the COVID-19 infection. 

Presently, there are no specific anti-viral agents to be used in the treatment of 
this infection. The antivirals like remdesivir, favipiravir, ribavirin, lopinavir, and 
ritonavir have been proved to either provide a marginal protection or no benefits 
in terms of survival of the severely affected COVID-19 patients [9]. Recently, US-
FDA approved the use of remdesivir in the treatment of adults and children above 
12 years age with corona infection. The controlled clinical trials have concluded 
that remdesivir reduces the hospital stay of the patients, however it does not alter 
the outcome in term of death indicating that it may not prove effective as a life-
saving drug in the severe infections. None of the other antivirals have shown any 
significant clinical benefits above the remdesivir. Even in case of remdesivir, certain 
adverse effects like hepatotoxicity, rectal haemorrhage, vomiting, and nausea [10]. 
Apart from the antiviral agents, the repurposed drugs to inhibit the binding of virus 
to target host cells has also been extensively evaluated in the treatment of COVID-19 
infection. 

ACE2 (Angiotensin converting enzyme II) is a widely expressed in multiple organ 
systems and receptors for ACE-2 (ACR-2) are present on the cell surface of various 
organs. ACE-2 functions as a carboxiypeptidase enzyme and plays important role 
in cardiovascular physiology. The COVID-19 virus enters the human cells through 
the receptor binding domain of the S protein which has a strong affinity for the 
ACR-2 [11]. Thus, the drugs that bind to ACR-2 receptors have been proposed to 
inhibit the binding of this virus to the human cells and this blocking the entry of the 
virus into the cells and making them more vulnerable to the antiviral therapy. Both 
chloroquine (CQ) and hydroxylchloroquine (HCQ) are reported to interfere with the 
binding of S protein domain of COVID-19 to the ACR-2 on the host cells. These 
drugs also increased the endosomal pH and thereby affecting the viral replication. 
These drugs also alter the MAPK pathway and affect the process of viral integration
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and replication [12]. Initial clinical trials projected both these drugs as effective 
in treating the COVID-19 infection and reducing the associated complications like 
pneumonia [13]. However, the severe cardiovascular adverse effects of these drugs 
led to their reduced clinical use. Ultimately, the WHO suggested discontinuation 
of these drugs in the treatment of COVID-19 patients (Solidarity clinical trial for 
COVID-19 treatments]. 

Thus even today, the main focus of the treatment of COVID-19 infections remains 
the supportive care in which severely affected patients are provided with oxygen, 
ventilation, and symptomatic treatment with steroids, immunosuppressant and antibi-
otics [14]. In summary, we are facing a terrible virus with greater infectivity than 
the SARS-CoV pandemic of 2003. There is presently no specific anti-SARSCoV-2 
drug regimen to treat critically ill patients. Most of the potential drugs for treatment 
of COVID-19 are being investigated for safety and efficacy against SARS-CoV-2. 
Remdesivir is the most promising agent. However, the emerging data from the recent 
clinical trials has revealed only marginal or no benefit of remdesivir treatment in the 
COVID-19 patients. In addition, favipiravir and combination therapy with hydrox-
ychloroquine plus azithromycin appear to be acceptable alternatives for treatment 
of COVID-19 patients. For patients with SARSCoV-2 infection. Finally, low-dose 
steroid (hydrocortisone) might be prescribed for treatment of refractory shock in 
patients with COVID-19. 

Failures of Repurposed Drugs in Treatment of COVID-19 

Chloroquin (C) and hydroxychloroquin (HC) are decades-old drugs being used in the 
treatment of malaria. Mutliple mechanisms were proposed for their anti-COVID-19 
actions. The C and HC inhibit the endocytosis of COVID-19 virus and release of its 
genetic material. The C exerts alkalinisation of the cellular pH, inhibits the proteases 
that cleave the viral S protein and thus inhibit the interaction of the virus particles 
with the lung epithelium [15]. The C also inhibits the fusion of the lysosomes with 
autophagosomes which is necessary for the release of the viral genome into host cells. 
Thus, it prevents both endocytosis of virus and release of viral genome. The HCQ 
inhibits the transfer of virus particles from endosome to lysosome and thus prevents 
the release of the viral genome into cytoplasm of the host cells [16]. Considering these 
mechanisms of anti-COVID-19 effects, both C and HC were clinically evaluated for 
their efficacy and safety in the COVID-19 patients. Unfortunately, the meta-analysis 
of the clinical studies recently concluded that both these drugs do not reduce the 
death associated with COVID-19 and also do not provide any clinical benefits either 
as prophylaxis or as treatment of COVID-19 infection [17]. Though C and HC are 
used in treatment of malaria, their use in absence of medical supervision can lead to 
severe adverse effects including arrhythmia, changes in vision, headache, dizziness, 
vertigo, and skin reactions. Thus, the adverse effects of C and HC overwhelm the 
proposed meagre clinical benefit and hence their use in the COVID-19 infections is 
not recommended [18].
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Another repurposed drug extensively tested through clinical trials in azithromycin, 
an antibacterial antibiotic of macrolide class. This class of antibiotics have 
immunomodulatory potentials and have been tested in the treatment of viral infec-
tions. Azithromycin has ability to reduce the pro-inflammatory cytokines like TNF-α, 
IL-1, IL-6 along with oxidative stress and alteration of the helper T-cell functions 
[19]. However, azithromycin is devoid of any antiviral properties [20]. Despite of 
its claimed efficacy in viral infections, the clinical trials on combination of HC and 
azithromycin revealed no advantage of this combination in reducing the death rate 
in the COVID-19 patients [21]. However, certain recent clinical trials on the combi-
nation of HC and azithromycin or these drugs administered alone have reported 
clinical benefits of azithromycin in reducing the COVID-19 associated deaths [22]. 
The oxford University scientists conducted a clinical trial named Randomised Eval-
uation of Covid-19 Therapy (RECOVEY Trial) indicated that low dose dexametha-
sone reduces the COVID-19 associated death by one third of the patients on ventila-
tion. The low dose dexamethasone (approximately half of the active corticosteroid 
dose) therapy also increased the survival of patients who developed acute respiratory 
distress syndrome. 

Similar to these repurposed drugs, an approach of using the convalescent plasma 
from the recovered COVID-19 patients has also been sufficiently tested through the 
clinical trials. The basis for the use of convalescent plasma is the presence of anti-
bodies against the COVID-19 in the plasma of recovered patients which can provide 
passive immunity against the virus. A propensity score–matched control study on the 
use of convalescent plasma in the treatment of COVID-19 patient indicated that this 
transfusion therapy provides clinical benefits to the patients and reduces the oxygen 
requirements in the hospitalized COVID-19 patients. This study involved only 39 
patients and raised hopes for the efficacy of the convalescent plasma therapy [23]. 
However, an open-labled, phase–II, multicentric clinical trial conducted in Indian 
adult patients (PLACID trial) has concluded that the convalescent plasma therapy 
did not provide any clinical benefits either in terms of reduction in the progression 
of severe COVID-19 or in terms of reducing death rate [24]. This trial included 464 
Indian patients and has concluded about the lack of clinical benefits of the plasma 
therapy. Thus, the repurposed drugs which had appeared promising in the treatment 
of the COVID-19 proved to exert only marginal clinical benefits and these clinical 
failures of the repurposed drugs necessitated further exploration of novel approaches. 

Emerging Anti-COVID-19 Therapies 

Antivirals 

Immediately after the onset of COVID-19 pandemic, antivirals including riton-
avir, lopinavir, remdesivir and hydroxychloroquine possessing in vitro activity
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against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replica-
tion were emerged as the treatment for COVID-19 [25]. Monotherapy with antiviral 
drugs might not be sufficient to defend against COVID-19 in moderate to severe 
cases of infection. However, combination of antivirals and immunomodulators is 
promising approach to treat the more severe cases of COVID-19 [26]. Fusion 
inhibitors including umifenovir and camostat mesylate demonstrated antiviral 
activity against SARS-CoV-2. It was noted from the in silico computational studies 
that protease inhibitors like lopinavir, elbasvir, carfilzomib, eravacycline and valru-
bicin were found to inhibit the main protease in SARS-CoV-2. Reverse transcrip-
tion inhibitors including remdesivir and ribavirin showed promising effects against 
COVID-19 infection. Currently, there are no FDA approved antiviral drugs as an 
anti-COVID therapies. However, the fusion, protease and transcription inhibitors 
targeting at various steps of SARS-CoV-2 life cycle could be promising therapies 
[27]. 

Immunosuppressants 

The immunosuppression is recommended for patients of COVID-19 disease. 
However, the corticosteroid therapy at higher dosage and presence of risk 
factors for severe COVID-19 disease are contraindications for the use of 
immunosupressants [28]. Few immunosuppressive drugs including IL-6 inhibitors 
(tocilizumab) and corticosteroids have ability to decrease the mortality and 
mechanical ventilation in COVID-19 patients. Based on the results of in-
vitro studies conducted against SARS-CoV and MERS-CoV, thiopurine analogues 
and mTOR (mammalian target of rapamycin) inhibitors could be effective 
against SARS-CoV-2 [29]. Immunosupressants like rituximab having long term 
effects need cautious use in COVID-19 disease. However, systemic immunoglob-
ulins & doxycycline that do not alter the antiviral immunity as well as 
calcineurin inhibitors, chloroquine, and hydroxychloroquine can be the suggested 
alternatives [30]. 

ACE Inhibitors 

SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) are linked with each 
other. ACE2 is a co-receptor for SARS-CoV-2 viral entry and possess role in COVID-
19 pathology. It is suggested that angiotensin-converting enzyme inhibitors (ACEIs) 
could inhibit ACE2. However, the clinically prescribed ACE inhibitors are ineffective 
in direct inhibition of ACE2 [31]. Although theoretical benefit of ACEIs are demon-
strated in the physiological SARS-CoV infection model, the same outcomes are 
not inferred to SARS-CoV-2 responsible for the development of COVID-19 [32]. 
Evidence based literature search suggested that patients at the risk of COVID-19
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including hypertensive patients should be continued with the ACE inhibitors and 
angiotensin receptor blockers therapy [33]. Some reports signifies the lack of suffi-
cient evidence regarding effectiveness of ACE inhibitors or angiotensin receptor 
blockers (ARBs) in COVID-19 [34]. However, other studies suggested the use of 
ACE inhibitors and ARBs in hypertensive COVID-19 patients [35]. 

Vitamins 

Dysregulated vitamin D metabolism is linked with the respiratory diseases which 
implies the raised vitamin D deficiency during pulmonary inflammation [36]. Vitamin 
D is recommended for healthy and COVID-19 susceptible population for the preven-
tion and protection against COVID-19 [37]. Risk of severe COVID-19 event has been 
linked with the vitamin D deficiency. Covid-19 pandemic resulted into decreased 
opportunities to sun exposure and vitamin D synthesis. Fortified foods, dietary advice 
and vitamin supplementation are suggested to prevent this deficiency states, espe-
cially in the COVID-19 pandemic [38]. Risk of COVID-19 infection and mortality 
is proposed to be decreased with the Vitamin D supplementation. Higher vitamin 
D3 doses are recommended for the treatment of COVID-19 patients [39]. However, 
further evidences like cohort studies and clinical trials are warranted to establish the 
link between severity of COVID-19 and vitamin D levels [40]. 

Add on Therapies 

Bromhexine in combination with HC or quercetin is proposed as an effective add 
on therapy for the prophylaxis and treatment of COVID-19 infection [41]. Add on 
use of ivermectin to hydroxychloroquine (HC) and azithromycin (AZT) in COVID-
19 treatment suggested that ivermectin is effective, safe and reduces the hospital 
stay. However, it is recommended to validate such effects through further extensive 
studies [42]. Use of azithromycin in severe COVID-19 patients receiving standard 
of care treatment including hydroxychloroquine showed no improvement in clin-
ical outcomes. Therefore, the use of azithromycin along with hydroxychloroquine 
is discouraged in treating severe cases of COVID-19 [43]. COVID-19 infection is 
associated with the risk of thromboembolism. Low molecular weight heparin such as 
enoxaparin is projected for prophylactic anticoagulation in moderate to severe cases 
[44].
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Nitric Oxide 

Nitric oxide (NO) has pivotal role in the vascular function maintenance and inflam-
matory cascades regulation. No therapy targeted at optimal infection stage could be 
convincing and approachable option for COVID-19 treatment [45]. Nitric oxide (NO) 
has been effective in reducing hypoxia and SARS-CoV replication in severe acute 
respiratory syndrome patients. On the basis of in vitro studies against SARS-CoV 
and clinical trials, NO is suggested for the treatment of COVID-19 [46]. 

Respiratory Tract Pathology During COVID-19 Infection 

SARS-CoV-2 is single-stranded RNA virus that possess a spike (S)-protein at the 
envelope. Host proteases mediated activation leads to its binding with human ACE2 
receptor and subsequent viral fusion and endocytosis. Arrival of virus in the cell 
causes transcription and translation of viral genome through viral RNA-dependent 
RNA polymerase and host ribosomes, respectively. Synthesised viral proteins in the 
form of virions are assembled for exocytosis [47]. Angiotensin-converting enzyme 2 
(ACE2) is established receptor for SARS-CoV-2 [48]. Normally, ACE2 is expressed 
on both types of alveolar epithelial cells. However, the type-II alveolar epithelial cells 
have maximum ACE2 expression. Increased ACE2 expression occurs following the 
SARS-CoV-2 binding with ACE2 that leads to alveolar cell damage. Furthermore, 
it promotes several systemic reaction and even the death [49]. 

Multistep pathology of COVID-19 infection involves asymptomatic phase, inva-
sion & infection of upper and lower respiratory passage followed by development of 
acute respiratory distress syndrome. Asymptomatic phase involves entry of SARS-
CoV-2 through highly expressed ACE-2 in the nasal epithelial cells. Virus prop-
agates through replication and ciliated cell infection. This phase is short lasting 
having limited immune response. Upper respiratory tract is infected through viral 
migration from the nasal epithelium. The involvement of immune response is mani-
fested as release of interferons and C-X-C motif chemokine ligand 10 (CXCL-10) 
from infected cells [50]. Severe symptoms of COVID-19 develop at the stage which 
involves the lower respiratory passage and progress to the acute respiratory distress 
syndrome. Viral nucleocapsids are developed following the viral invasion of alveolar 
epithelial cells through ACE-2 receptor. Virus infected pneumocytes releases various 
inflammatory markers and cytokines including tumour necrosis factor-α (TNF-α), 
interleukins (ILs), interferons (IFs), CXCL-10, macrophage inflammatory protein-
1α (MIP-1α), and monocyte chemoattractant protein-1 (MCP-1) [51]. Association 
of these inflammatory mediators termed as cytokine storm, chemoattract the several 
cells including neutrophils, CD8 and CD4 T cells. While, fighting against the virus 
these cells develop an inflammation and lung injury. Host cell apoptosis followed by 
release of viral particles and infection of alveolar (type-2) epithelial cells leads to 
severe alveolar damage and acute respiratory distress syndrome [44].



13 Emerging Novel Therapies for COVID-19: Implications for the Use … 267

Rationale for Nitric Oxide Use in COVID-19 

The treatment of COVID-19 is based on the knowledge of acute respiratory distress 
syndrome (ARDS). The contemporary supportive ARDS therapies are limited to 
mechanical ventilation and endotracheal intubation. As the NO has potent vasodilator 
effect primarily on the pulmonary vasculature and circulation, the inhaled NO can be 
considered as rescue therapy for hypoxemia associated with ARDS and COVID-19 
[52]. NO is produced by several types of cells including endothelium and unique 
signaling molecule. NO is reported to improve survival rate of SARS-CoV infected 
mammalian cells by inhibiting the viral replication. SARS-CoV-2 the causative agent 
of COVID-19 infection shares most of the SARS-CoV genome. This implies the 
potential of inhaled NO therapy as a promising anti-COVID-19 therapy [53]. Most 
frequent complication and cause of death in critically ill COVID-19 patients is acute 
respiratory distress syndrome (ARDS) [54]. It is characterized as raised intrapul-
monary blood shunting and pulmonary hypertension. NO has a unique ability to 
cause vascular smooth muscle relaxation and vasodilatation. Therefore, NO induced 
pulmonary vasodilation leads to improved oxygenation of blood and declined intra-
pulmonary shunting. Accumulating evidences suggests the efficacy of inhaled NO 
therapy in decreasing the severity of ARDS [55]. 

Preclinical Evidences on Role of NO/iNOS Inhibitors 
in Viral Infections 

Respiratory mucosal epithelium is common site of viral contact and inflammation 
and infection. Nitric oxide (NO) derived from the respiratory epithelium is important 
with respect to antiviral defence in the airway. Impaired NO synthesis is associated 
with declined antiviral defence and NO therapeutics shown promises in patients 
with weakened antiviral defence [56]. NO is vital molecule in the infectious disease 
pathology [57]. 

The inducible nitric oxide (iNOS) is produced in response to viral infection and 
NO cause inhibition of viral replication. In-vivo evidence showed that viral infection 
induces iNOS expression in the heart. NO demonstrated protective effect against 
virus mediated injury in murine model of CVB3 myocarditis. NO is proposed as 
in vivo nonspecific immune defence against viruses [58]. 

L-NG-monomethyl-arginine (L-NMMA) supress NO production in experi-
mental animals. L-NMMA is studied along with oseltamivir against influenza 
A/California/04/2009 (H1N1) virus infection in BALB/c mice. Results demon-
strated that L-NMMA combined with oseltamivir is beneficial against influenza virus 
infections [59]. 

Arenaviruses cause haemorrhagic fever characterized by edematous skin swelling, 
pleural effusions, cytokine storm and hypovolemic shock. Earlier study conducted 
using HLA-A2-expressing mice infected with a monkey-pathogenic strain of
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lymphocytic choriomeningitis virus showed that the edema formation and hypo-
volemic shock is abolished in mice lacking iNOS. Thus iNOS was identified as a 
mediator of arenavirus haemorrhagic fever and prevention of iNOS induction by 
Interferon-γ blockade decreases vascular leakage and terminal shock [60]. 

NO production in response to Rabies virus (RABV) causes dose dependent 
increase in T cell differentiation or T cell function suppression. Earlier study eval-
uated in vivo effect of NO in the immune response regulation during Rabies virus 
infection in mice. Intracerebral challenge of mice with RABV resulted in altered 
population of NK, CD4+, CD8+ cells in blood and raised NO levels. However, the 
subsequent treatment of mice with iNOS inhibitor, aminoguanidine showed NK, 
CD4+, CD8+ cells and decreased NO level. This in vivo study suggests role of NO 
and iNOS in immune response against RABV infection [61]. The antiviral effect 
of NO was studied in suckling C57BL/6 and C57BL/6 iNOS–/–mice. NO exerted 
potent in vivo inhibition of hantavirus replication in infected mice [62]. Infection 
of animals with varity of viruses and treatment with NO inhibitors showed raised 
viral replication [63]. Mouse model was used to study the role of NO in HSV-2 
vaginal infection. NO demonstrated in vitro and in vivo antiviral activity against 
HSV-2. NO could be the antiviral effector mechanism against viruses. However, NO 
may contribute to pathology during immune response and can be damaging [64]. To 
understand the role of NO in viral infection it is suggested to examine the stage of 
viral diseases at which NO exerts prominent antiviral effects [65]. 

NO in Physiology and Pathology of Viral Infection 

Nitric oxide (NO) plays a variety of roles in physiological and pathophysiological 
processes. During viral infections and also may exert direct antiviral effects on certain 
type of virus [62]. NO exerts effects like the generation of the peroxynitrite radicals 
and modulation of the innate as well as acquired immune responses. During microbial 
and viral infections there is activation of the iNOS which exerts increased production 
of NO which further participates in generation of oxidative radicals and modulation 
of T-cell response from Th1 type to Th2-biased response. It is also proposed that the 
viral mutations are accelerated by the NO. It has been observed in the experimental 
studies involving various types of viral infections (herpes simplex virus, rabies virus, 
influenza virus, and coxsackievirus) in mice trigger the iNOS which leads to a consis-
tent increase in the generation of the NO in the localised tissues [66]. It is proposed 
that the morbidity associated viral pneumonia arises as a consequence of the over-
production of NO. The production of the NO in respiratory system epithelium is also 
triggered during the viral infection of respiratory tract. This increased level of NO 
is also proposed to exert antiviral effects and contribute to the exacerbation of the 
asthma [56, 67]. The in vitro experimental study has clearly indicated that the NO 
inhibits the replication of cycle of the SARS CoV during the initial phase of infec-
tion. This indicates that the iNOS induced NO has direct antiviral activity [68]. The 
age-related decline in the immune response is also correlated with the decreasing
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levels of NO and bradykinin. Such a reduction in the NO is further correlated to the 
severity of the COVID-19 infection [69]. 

Clinical Studies on NO in Treatment of Viral Infections 

The benefit of inhaled NO therapy was reported in spontaneously breathing patients of 
Covid-19. Among the 39 spontaneously breathing patients of Covid-19 who received 
the inhaled NO therapy, fifty percent patients didn’t required mechanical ventilation. 
These results implies the potential role of inhaled NO therapy in preventing the 
respiratory failure in COVID-19 patients [70]. The potential of inhaled NO for the 
treatment of COVID-19 patients with pulmonary hypertension was studied retro-
spectively in critically ill COVID-19 patients. Inhaled NO therapy was found to 
beneficial through the reduction and stabilization of raised pulmonary artery systolic 
pressure and reduced risk of COVID-19 associated heart failure [55]. The summary 
of clinical trials related with use of NO as anti-COVID-19 therapy is summarized 
as Table 13.1. However, majority of these trials are still recruiting the patients and 
volunteers and none of them have yielded any outcomes to support the clinical use of 
NO in the health workers or COVID-19 patients. The case reports however, support 
its use in prevention and treatment of the COVID-19.

NO in COVID-19/Viral Infections 

NO is recognised therapy for the treatment of viral diseases like influenza and coro-
naviruses [71]. Recently, NO treatment was employed for the treatment of immuno-
compromised SARS-CoV-2 positive patient. It was observed that NO has important 
role in the treatment of impaired alveolar perfusion and hypoxic pulmonary vasocon-
striction [72]. Viral infection is manifested as “cytokine storm” having elevated levels 
of inflammatory mediators that leads to pulmonary hypertension and pneumonia [73]. 
Monocyte activation induces iNOS which generates the NO that is reported to inhibit 
SARS CoV replication cycle. Inflammation signaling including cytokine storm stim-
ulates iNOS and generate NO against viral infection [71]. NO is potent vasodilator 
and antimicrobial agent effective against SARS-CoV replication and hypoxia in 
SARS patients. Recent study evaluated the in vitro effect of NO on SARS-CoV-2 
replication. NO inhibited the viral replication and proposed as therapy for the treat-
ment of other human coronavirus infections including COVID-19 [46]. The role of 
NO in COVID-19 is depicted as Fig. 13.1.
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Fig. 13.1 Role of NO in COVID-19 

Conclusion 

The efforts to repurpose antiviral agents like remdesivir, antibiotics like azithromycin, 
steroids like dexamethasone and others have yielded marginal benefits in the preven-
tion and treatment of COVID-19 infection and its consequences. The inflammatory 
and fibrotic consequences affecting lungs and thromboembolic events post-COVID-
19 infection appear to be the major contributors to morbidity and mortality during 
this pandemic. There is continued search for the novel therapies and also repurposed 
drugs in preventing the spread of infection and also to treatment consequences of 
COVID-19. Recent evidences on the antiviral, anti-inflammatory, immunomodula-
tory and cardiovascular effects of NO have raised hope for its use as a therapy at 
different stages of COVID-infection and its consequences. However, these claims 
will be reinforced only through systematic clinical studies and in near future there
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is possibility of addition of NO in the therapeutic arsenal against the COVID-19 
infections. 
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Chapter 14 
Sex Differences in Stress and Stress 
Related Neuropsychiatric Disorders: 
Focus on Nitric Oxide 

Ayanabha Chakraborti, Kavita Gulati, and Arunabha Ray 

Abstract Sex differences in neuropsychiatric disorders are well reported although 
the mechanisms remain poorly understood. The prevalence of major depressive 
disorders and anxiety disorders are substantially higher in women as compared 
to men. Moreover, sex differences also exist in terms of symptom severity as 
well as comorbidities of such ailments with other neurological disorders. Nitric 
oxide containing neurons are widely distributed within the brain and nitric oxide 
synthase may co-localize with gonadal hormones’ receptors. Estrogen as well as 
other gonadal hormones may influence nitric oxide synthase expression. Neuronal 
nitric oxide synthase (nNOS), is abundant in multiple regions of the brain closely 
associated with the pathophysiology of affective disorders including the prefrontal 
cortex, hippocampus, amygdala, and the hypothalamus. This review article critically 
examines the clinical and basic research findings on sex differences in stress-related 
neuropsychiatric diseases with a particular focus on the role of nitric oxide action 
in the pathophysiology of such disorders. The interplay between gonadal hormones 
and NO signaling in the brain, as well as how such interactions affect mood disor-
ders, are also discussed. Recent advances in therapeutic approaches for developing 
appropriate NO modulators and targeting NO signaling pathways for stress related 
disorders have been briefly covered, as well as priorities for future research. 
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Introduction 

Stress has an important role in the pathophysiology of a wide range of neuropsychi-
atric disorders, and the incidence and prevalence of psychiatric ailments including 
anxiety, depression, schizophrenia, and bipolar disorder differs between men and 
women [1]. Anxiety and depressive disorders are most common in adolescence and 
early adulthood, with females having a higher risk than males [2]. Females have 
greater lifetime incidence for depression and most anxiety disorders [3]. Gender 
variations in the monoamine transmitter system and the HPA axis have been discov-
ered, implying that these could be the underlying causes of depression susceptibility. 
Serotonin, norepinephrine, and dopamine are monoaminergic neurotransmitters that 
have sex-related differences in their receptor expression and binding, according to 
rodent research [4]. Pronounced sex differences in baseline HPA axis activity have 
been reported, i.e., females have been shown to have a stronger HPA response to 
stressors [5]. Multiple brain areas have shown sexual dimorphism in neuronal gene 
expression [6]. However, the molecular mechanisms that mediate sex differences in 
stress-related neuropsychiatric illnesses, remain poorly understood. 

Nitric oxide (NO) is an important signaling molecule that regulates a wide range 
of brain functions. Overproduction of NO, on the other hand, stimulates the gener-
ation of peroxynitrite, protein SNO and tyrosine nitration, all of which have been 
linked to the pathophysiology of a variety of neuropsychiatric and neurodegenerative 
brain disorders [7, 8]. NO has the ability to regulate neurotransmitter production [9]. 
NO also influences hippocampus neurogenesis, brain plasticity, nerve growth factor 
synthesis, hypothalamic-pituitary-adrenal (HPA) axis activity, and other depression-
related targets [10]. As a result, NO dysfunction in the brain has been related to the 
pathogenesis of anxiety disorders, major depressive disorder, bipolar disorder, and 
schizophrenia [11]. 

Gender differences in NO production and oxidative/nitrosative stress in a variety 
of brain regions have been reported and such changes have been associated to 
both gonadal hormones and genetic variables [12]. Estradiol, positively modulate 
hippocampal NO generation in nNOS-deficient mice via receptor mediated mecha-
nism [13]. Stress was observed to boost males’ glucocorticoid-dependent NO produc-
tion while reducing females’ NO production in the hippocampus. In the anterior 
hypothalamus and preoptic area, sex-dependent differences in nNOS mRNA expres-
sion have been described [14]. Females have been shown to be significantly more 
resilient to oxidative/nitrosative stress than men in both in vitro and in vivo inves-
tigations [15]. Synaptic processes related with NO and SNO differ between male 
and female mice. In fact, in contrast to males, the female cortex was shown to be 
considerably enriched in these activities. The neurochemical mechanisms that drive 
sexually dimorphic synaptic patterning, on the other hand, are largely unknown. 

The findings of clinical and basic research on sex differences in stress-related 
neuropsychiatric diseases are critically examined in this review, with a particular 
focus on the role of nitric oxide action in the pathophysiology of such disorders. 
The connection of gonadal hormones and NO signaling in the brain, as well as
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how such interactions affect mood disorders, are also discussed. Current therapeutic 
approaches for developing appropriate NO modulators and targeting NO signaling 
pathways for affective disorders have been briefly covered, as well as priorities for 
future research. 

NO Signaling in the CNS: An Overview 

Garthwaite and colleagues’ seminal study [16] demonstrated that stimulation of 
NMDA receptors boosted the release of a diffusible messenger in a calcium depen-
dent way, which was eventually identified as NO. NO is produced from L-arginine 
via enzymatic conversion by NO synthase enzymes [17]. NO synthase comprises of 
three isoforms-neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS 
(iNOS). nNOS and eNOS enzymatic activity are regulated by calcium-calmodulin 
and more prominently active in neurons and endothelial cells, respectively. Normally 
there is modest iNOS level expression under basal conditions, but under inflamma-
tory stimuli the expression is increased resulting in significant NO generation [18]. 
The nNOS that is connected to the NMDA receptors, serves as the primary source 
of NO generation in neuronal cells [16], although all the NOS isoforms can affect 
CNS signaling. Other stimuli including muscarinic activation, changes in seroton-
ergic neurotransmission relevant receptor/transport proteins that alters intracellular 
calcium concentration can modulate nNOS in the brain [19]. cGMP is activated via 
protein–kinase G (PKG) dependent signaling, and NO-cGMP pathway also plays 
key role in CNS physiology and pathophysiology [20]. Furthermore nitrosylation of 
neuronal proteins can lead to change in their activity and have important implications 
for neuronal signaling and plasticity [21]. 

NO Signaling in the Brain and Gonadal Hormones 

Gonadal hormones can affect NO production and NO-mediated signaling in both 
peripheral and CNS tissues. Endothelial nitric oxide synthase (eNOS) and neuronal 
and nitric oxide synthase (nNOS) in neural tissues increase the activity, expression, 
and synthesis of NO [22]. In mouse brains, both testosterone and estrogens affect the 
expression of neuronal nitric oxide synthase [23]. Furthermore, nitric oxide synthase 
and gonadal hormone receptors may co-localize. Endocrine hormones can change the 
expression of nitric oxide synthase during maturity and development [24]. Deletion of 
ER alpha in rodents have been shown to substantially reduce NO synthase expressing 
neurons in specific areas of the brain. Although they are crucial in physiological 
conditions like the estrous cycle, the impacts of sex steroid hormones have primarily 
been studied after long-term therapy [25]. 

In mammalian brains, the distribution of nNOS overlaps that of gonadal hormone 
receptors in numerous brain locations. In the bed nucleus of the stria terminalis, the
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amygdala, the preoptic area, and the mediobasal hypothalamus, estrogen receptors 
(ER-alpha and ER-beta), androgen receptors (AR), and progesterone receptors (PR) 
are abundant [26]. Sex differences in colocalization of ER-alpha with nNOS cells in 
different brain areas have been reported. For example, in males ER-alpha colocalizes 
with 90% nNOS cells in medial amygdala and 50% nNOS cells in the BNST while 
a relatively small number of nNOS cells are colocalized with the receptor in these 
brain areas in females [27]. 

Studies have shown that nNOS expression in different areas of the brain are 
controlled by steroid hormones and immunoreactivity of nNOS in preoptic hypotha-
lamic area have been shown to be reduced by castration in rodent studies [28]. The 
effect of hormonal therapies on nNOS expression in brain areas have been inconclu-
sive. E2 treatment has been shown to increase nNOS-positive neurons in the PVN 
[29]. On the other hand, nNOS expression in hypothalamus have been shown to 
have minimal effect by hormonal treatment [30]. Using Aromatase knockout mice 
it has been demonstrated that the immunoreactivity of nNOS is reduced in PVN and 
VMH of the brain [27]. As compared to wild type mice, substantial alterations in 
hypothalamic and limbic areas of the brain are found in ER alpha knockout mice 
[31]. suggesting a key role of estrogens in modulation NO signaling in the limbic-
hypothalamic areas of the brain. Studies using a double mutant mouse deficient in 
both functional ER and AR, has shown that ER and AR interact in a site-specific 
manner to modulate NOS in males and females. E2 treatment increases the number 
of nNOS-IR cells in the posterior ventral area of MeA and the PVN while testos-
terone treatment results in more nNOS-IR cells and immunoreactive area staining in 
the MPA. Overall, these studies highlight a critical role of gonadal hormones in the 
regulation of nitrergic signaling in the brain. 

NO and Sex Differences in Brain and Behavioral Responses 
to Stress 

In animal and human studies, gender disparities in specific cognitive capacities 
have been established, particularly under stressful situations [32, 33]. Sex dependent 
changes in neuronal function and oxidative stress markers in the hippocampus due to 
prenatal stress has been reported. Stressful experiences facilitate associative learning 
and memory consolidation in males, but when females are exposed to the same stress, 
their cognitive abilities are severely affected. An expanding amount of research 
suggests that structural differences in the brain play a role in how stress affects 
memory consolidation in men and women. Functional dimorphisms are known to 
exist between male and female brains in the realm of emotional control and other 
higher order brain functions. There have been reports of significant sex differences in 
the function of the amygdala during processing of emotional stimuli [34]. Differences 
in emotional state perception and experience between the sexes have been associated 
to subtle structural differences brain areas. Limbic system activation due to negative
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emotions occurs significantly more in women than in men, who rely more on cortical 
components. Female rats, on the other hand, do not demonstrate the spatial memory 
loss seen in male rats after chronic restraint stress. Acute stress also changes males’ 
anxiety behaviors and impeded escape learning, but not females’ [2]. 

Corticotropin-releasing factor (CRF), a stress neuropeptide has been shown to 
contribute to the pathophysiology of stress related disorders. Sex related varia-
tions in CRF receptor density, expression, distribution, trafficking, and signaling 
are well known and differences in CRF responses between males and females may 
play a prominent role in the sex specific vulnerability in neuropsychiatric disorders 
[35]. Important studies on sex differences in CRF receptors in the brain has been 
summarized in Table 14.1. 

Both human and preclinical studies show that exposure to stress induces neurobe-
havioral alterations and elevated corticosterone levels [45]. Stress effects on the 
brain is dependent on the intensity, type, and duration of stressors. While exposure 
to chronic unpredictable stress leads to behavioral dysfunction, homotypic stressors

Table 14.1 Summary of key studies on sex differences in corticotropin releasing factor (CRF) 
factor in the brain 

CRF receptor Reported sex difference References 

Receptor binding CRF1 receptor binding is higher in amygdala and cortex in 
adult female rats as compared to male rats. 
CRF2 receptor binding is higher in regions of the amygdala 
and hypothalamus in male rats and as compared to females. 

[35–37] 

Receptor number CRF1 receptor expression is elevated in the dorsal and 
ventromedial portion of dorsal raphe in female as compared 
to male rats. 
CRF2 receptor expression is also higher in females than 
males in ventrolateral dorsal raphe. 

[35, 38] 

Receptor distribution CRF1 receptor co-localizes with dorsal raphe parvalbumin 
neurons more in male than in female mice. 
In hippocampal CA1 area female rats have more CRF 
receptors in delta opioid receptor-containing dendrites than 
males. 

[35, 39, 40] 

Receptor trafficking In male but not female rats’ exposure to acute stress causes 
β-arrestin2 to bind to the CRF1 receptor and CRF1 receptor 
internalization in locus coeruleus (LC) dendrites. 
LC neurons in CRF-OE female mice fire three times faster 
than those of males leading to increased arousal in the 
females but not in males 

[35, 41, 42] 

Receptor signaling CRF1 receptor signals more through β-arrestin2-mediated 
pathways in males and more through Gs-mediated 
pathways in females 
Overexpression of CRF increased the phosphorylation of 
proteins in Alzheimer’s disease pathways more in female 
than male mice 

[35, 43, 44] 
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often result in diminished responses suggesting stress adaptation, an inbuilt protec-
tive mechanism to counter the effects of chronic stress [46, 47]. Exposure to acute 
or chronic stress may have varied biological responses and the processes underlying 
these reactions are poorly understood and need to be clarified [48]. 

Studies from our lab has demonstrated that acute restraint stress induces anxiogen-
esis which ameliorated by pretreatment with L-arginine, an NO precursor suggestive 
protective role of NO under stressful conditions. In a subsequent study we inves-
tigated the role of NO following acute and recurring restraint stress using behav-
ioral and biochemical approaches [49]. The interplay between reactive oxygen and 
nitrogen species, was also investigated under such situations. Both 1 hr. and 6 hrs. 
of RS evoked anxiogenic responses which were ameliorated by prior administration 
of L-arginine. The levels of nitric oxide metabolites, lipid peroxidation marker and 
antioxidant GSH levels were altered in brain homogenates and were associated with 
the behavioral changes. Interestingly there was increased lipid peroxidation in the 
brain while the levels of NOx and GSH were lower indicating that RS contributes to 
prooxidant-antioxidant imbalance in the brain. 

Although men and women differ in their sensitivity to stress and how they react to 
it, the mechanism underlying these variances is unknown. Using a rodent model of 
stress, we therefore investigated the role of nitric oxide in stress induced anxiogenesis 
and how such responses vary as a function of sex. Exposure to RS caused anxiogen-
esis in the elevated plus maze (EPM), and these changes were more pronounced t 
in males than females. Behavioral changes were associated with higher asymmetric 
dimethylarginine (ADMA) and lower levels of NOx in rat brain homogenates, and 
effects being of higher magnitude in males than females. This was the first demon-
stration of that ADMA, an inhibitor of endogenous nitric oxide synthase, plays a 
crucial role in stress-induced neurobehavioral changes [50]. RS induced behavioral 
and neurochemical changes were reversed by L-Arginine in a dose dependent manner 
while NO synthase inhibitor exhibited opposite effects suggesting that both re-active 
oxygen and nitrogen species have a substantial modulatory role in the differential 
anxiogenic stress response between males and females [50]. 

In addition to neurobehavioral responses, stress also induces gastric ulcerogen-
esis via complex brain-gut axis interaction. The role of NO during gender-specific 
stomach ulcerogenesis during cold constraint stress has been explored (CRS). CRS 
exposure caused gastric ulcers in both male and female rats, although the rate of ulcer-
ation was substantially higher in male rats than female rats, L-arginine administered 
prior to CRS reduced the number and severity of ulcers in both male and female rats 
in a dose-dependent manner, but the effect was substantially more evident in males. 
Inhibition of NO production by L-NAME, on the other hand, consistently increased 
stress ulcerogenesis in males. CRS-induced stomach ulcerogenesis was linked to 
lower NOx and GSH levels and elevated MDA levels in male and female brain 
homogenates, and the responses were more pronounced in males than females, which 
is intriguing. Pre-treatment with formestane (an aromatase inhibitor) but not tamox-
ifen (an estrogen receptor blocker) exacerbated the development of stress ulcers in 
female rats when compared to vehicle-treated exposed CRS rats. Formestane admin-
istration resulted in larger reductions of brain NOx and GSH, as well as higher brain
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MDA levels, when compared to vehicle-treated CRS rats. These findings suggested 
that estrogen, and its interactions with oxidative stress markers and NO, play a key 
role in sex related differences in stress-induced stomach ulcerogenesis, CRS may lead 
males to have lower brain NO levels and more oxidative injury, which may contribute 
to the severity of stomach ulcers. Estrogen’s protection, on the other hand, may be 
due to females’ greater tolerance of CRS’ ulcerogenic effects, which appear to be 
linked to interactions with brain NO [51]. 

NO and Sex Differences in Neuropsychiatric Disorders 

(i) Anxiety Disorders 

Anxiety disorders are a type of neuropsychiatric ailment that is characterized by 
persistent anxiety with a wide range of associated physiological and behavioral 
responses [52]. Anxiety disorders include generalized anxiety disorder, phobia, panic 
disorder, post-traumatic stress disorder. A variety of neurotransmitters and transcrip-
tion factors have been implicated in the etiology of anxiety [52]. Benzodiazepines 
(BZPs) increase the activity of GABA on the GABAA receptor, causing calming 
effects [53]. Anxiety has been linked to changes in the serotonergic and gluta-
matergic systems. Anxiogenesis is aided by inhibiting the 5-HT1A receptor, and 
selective serotonin reuptake inhibitors (SSRIs) are extensively used as anxiolytics 
[54]. Both neuropeptide Y and CREB signaling has been linked to pathophysiology 
of anxiety [55]. 

According to epidemiological studies, the incidence and prevalence of anxiety 
disorders are higher (~2-fold) in women as compared to men [56]. Such higher 
prevalence among females is true for all the disorders under anxiety disorders spec-
trum including social anxiety, generalized anxiety and panic disorder. Anxiety symp-
toms in women may exacerbate during different stages of the reproductive cycle like 
adolescence, pregnancy, post-partum when hormonal fluctuations are prominent [57]. 
These times of increased risk that correlate with hormonal changes suggest a key 
influence of that gonadal hormones in the precipitation and exacerbations of anxiety 
disorders in women. The sex specific vulnerability of developing anxiety disorders 
may also be linked to variations in the controlling negative emotional responses to 
stressors between the two sexes. 

Several studies have linked NO to anxiety [58–60] and NO synthase expressing 
neurons are found in amygdala, hypothalamus, hippocampus etc.–the brain regions 
that play a key role in regulating anxiety [61, 62]. 7-NI, a common nNOS inhibitor, 
exhibits anxiolytic effects similar to that of diazepam. Rodent studies have shown 
that 7-NI lowers anxiety induced by social stressors [63, 64]. NO decrease has an 
anxiolytic impact, as evidenced by the relationship between NO and typical anxi-
olytic drugs. Fluoxetine has been suggested to work as an anti-anxiety medication 
by reducing nNOS activity and CREB expression. Zhang et al. [65] discovered 
that the fluoxetine 5-HT1A receptor’s regulatory role is mediated by suppression
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of the nNOS-NO pathway in the hippocampus, resulting in anxiolytic effects [65]. 
Anxiolytic effects were seen in the actions of neurosteroid dehydroepiandrosterone 
sulphate (DHEAS), which was potentiated by the NO precursor L-arginine [66]. 
On the other hand, pretreatment with L- NAME [66] a kind of NOS inhibitor, 
entirely reduced DHEAS’ anxiolytic effects. Furthermore, the anxiolytic effects of 
morphine have been found to be partially regulated by NO. However, whether and 
how increased nNOS-NO signaling contributes to anxiety is still poorly understood. 
Anxiety-inducing stress has been associated to increased nNOS expression in the 
PFC and hippocampus [67]. An increase in 5-HT in the hippocampus following a 
stressful situation contributes to the development of anxiety. 5-HTR1 is deactivated. 
A signaling mechanism that control anxiety-related behaviors regulate the expression 
of nNOS in the hippocampus [65]. ERK phosphorylation is significantly inhibited 
by the nNOS-NO pathway [68]. The nNOS-CAPON-Dexras 1 complex is activated 
in response to mild stress, inhibiting ERK phosphorylation. The anxiolytic impact 
of disrupting the interaction between nNOS and CAPON reverses this strategy. 

There are few studies that have investigated the role of NO in sex differences 
in anxiety. Using ovariectomized (OVX) rats, [69], the effects of the NOS inhibitor 
L-NAME and the NO precursor L-arginine on the anxiety modulatory capabilities 
of exogenous ovarian hormones have been investigated. Cycling rats spent more 
time in open arms and had lower serum NOx levels during metestrus than other 
cycle phases and OVX rats, while they spent less time in open arms and had lower 
serum NOx levels during proestrus. L-NAME had an anxiolytic effect in OVX rats, 
whereas L-arginine had no impact. Estradiol benzoate significantly elevated serum 
NOx levels and had an anxiogenic impact when compared to controls, which was 
dose-dependently decreased by L-NAME but not by L-arginine. Progesterone, on 
the other hand, dramatically reduced serum NOx levels and had an anxiolytic effect, 
which was eliminated by L-arginine but not by L-NAME. These findings suggested 
that the NO system may be involved in variations in anxiety levels associated with 
the estrous cycle, most likely via regulating the influence of ovarian sex hormones. 
Munoz-Castaneda et al. [70] examined sex differences in motor coordination and 
anxiety-related responses in response to nicotine therapy and genetic NOS1 activity 
depletion. The open-field and rotarod tests were used as behavioral assays in both 
male and female mice. NOS1 knockout mice were studied to better understand the 
role of NO. Nicotine was delivered continuously via osmotic mini pumps over a 
2-week period. Control NOS1 KO males exhibited an enhanced anxiogenesis as 
compared to control NOS1KO females and control wild-type (WT) males. However, 
these differences were not apparent in the nicotine administered NOS1 KO males. 
NOS1 deletion also differentially affected motor function in the males and females. 
Overall, these findings suggested that NO affects motor and anxiety behaviors in a 
sex-dependent manner. 

(ii) Depression 

Major Depressive Disorder (MDD) is a neuropsychiatric condition characterized 
by a persistent feeling of sadness, reduced motivation and sometimes may also be 
life threating [71]. Several neurotransmitters including serotonin, norepinephrine,
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and dopamine have been linked to pathogenesis of depression Postmortem brain 
studies have suggested that patients with depression have a deficiency of serotonin 
and several antidepressants increase the concentration of serotonin in multiple brain 
regions [72]. Sex differences exist not only in the in the prevalence and symptoms 
of MDD [73] but also the determinants of functional outcomes differ between males 
and females [74]. 

nNOS has been shown to play an important role in the regulation, synthesis, 
release, and absorption of 5-HT. nNOS knockout mice has elevated 5-HT levels 
in various brain areas including hypothalamus, hippocampus, cerebral cortex, and 
amygdala. NO donors have been found to differentially regulate 5-HT release in 
raphe nucleus and frontal cortex [75]. Intracranial as well as systemic infusion of 
7-NI elevates 5-HT levels in the hippocampus. Both glucocorticoids and chronic 
stress have been demonstrated to cause a decrease in 5-HT1A receptor density and 
messenger RNA (mRNA) content in the hippocampus Endogenous NO produced 
from nNOS may thus have a role in the pathophysiology of depression by modu-
lating the 5-HT pathway in the hippocampus in response to chronic stressors [76]. 
Treatment with the nNOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole (TRIM) 
increased the behavioral effects of imipramine, citalopram selective serotonin reup-
take inhibitor (SSRI), and fluoxetine or tianeptine [77]. The antidepressant-like action 
of bupropion, a dopamine reuptake inhibitor, was inhibited when it was pretreated 
with L-arginine, a nitric oxide synthase substrate. Furthermore, pretreatment of mice 
with 7-nitroindazole enhanced the impact of bupropion [78]. The behavioral effects of 
imipramine and fluoxetine were improved when they were given the nNOS inhibitor 
7-nitroindazole [79]. 

Studies investigating the role of nitric oxide in the context of sex differences in 
depressive behavior is limited. Hu et al. [13] showed that hippocampal NO contributes 
to the sex difference of depression-like behavior in mice. Chronic mild stress 
promotes nNOS expression and elevates NO expression in the male hippocampus, 
while it inhibits nNOS expression and causes NO shortage in the female hippocampus 
and NO donor infusion in the female hippocampus mended the sex gap of affective 
behaviors. Heydarpour et al. [80] conducted a study to investigate the antidepressant-
like effects of acute estradiol administration in female ovariectomized (OVX) mice 
and the possible role of nitric oxide (NO)/cyclic GMP (cGMP) pathway. OVX mice 
showed significantly prolonged immobility time in comparison with the sham group. 
Estradiol administration 1 h prior to FST, exerted antidepressant-like effects in OVX 
mice. Both L-NAME and 7-NI significantly reduced the immobility times of OVX 
mice. Administration of a sub-effective dose of L-NAME 15 min after a sub-effective 
dose of estradiol had a robust antidepressant-like effect in OVX mice. Both L-arginine 
and sildenafil prior to estradiol treatment prevented the antidepressant like effect of 
a potent dose of estradiol suggesting that suppression of the NO synthase/NO/cGMP 
pathway may be involved in the antidepressant-like effects of estradiol in OVX mice. 

(iii) Bipolar Disorder 

Bipolar disorder (BD) is a serious psychiatric condition characterized by recurrent 
bouts of mania and depression [80, 81]. About 1% of the population globally is
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affected with this disorder and is an important cause of morbidity [82]. Sex differences 
in the clinical symptoms and course of this disorder has been reported. The general 
course of BD varies between men and women with marked differences between 
episodes of mania or depression, length of individual depressive episodes as well as 
the age of onset of the disease [83]. 

Alterations in NO signaling have been linked to the pathophysiology of BPD [84]. 
Lower levels of systemic nitric oxide levels have been reported in BD patients [85]. 
Lithium- a drug commonly used in the treatment of BD has been reported to elevate 
NO levels especially during depressive episodes [86]. On the other hand, increased 
NO and total nitrite levels in BD patients have also been reported with serum NO 
levels have been found to be higher in patients with euthymic-phase BD [87]. Reports 
on nNOS mediated nitrergic dysfunction in the locus coeruleus has been linked to BD 
pathogenesis. The levels of nNOS protein in the LC of suicidal people is considerably 
lower than in controls, according to a postmortem investigation [88]. However, more 
research into the relationship between NO signaling and BD pathogenesis especially 
with reference to sex specific variations is warranted. 

(iv) Schizophrenia 

Schizophrenia is a neuropsychiatric condition with clinical symptoms and cognitive 
changes differing by gender. Both neurodevelopmental and social factors contribute 
to the sex disparities in this disorder. Sexual dimorphism in brain areas that regulate 
mood and emotions has also been associated to the differences in prevalence and 
symptoms severity between males and females. Sex differences between cognitive 
deficits and white matter abnormalities in first episode and drug-naive schizophrenia 
has been reported [89]. Levels of Asymmetric dimethylarginine (ADMA), an endoge-
nous inhibitor of nitric oxide synthase, was found to be higher in patients with 
schizophrenia, suggesting that ADMA may play a role in the pathophysiology of 
schizophrenia-related cognitive impairments and that plasma ADMA could be used 
as a peripheral biomarker for assessing cognitive function in schizophrenia [90]. 
Patients with schizophrenia had significantly higher plasma nitrate and nitrite concen-
trations, with female patients having significantly higher quantities than male patients 
[91]. Because of its role in glutamate neurotransmission, the nitric oxide synthase 1 
adapter protein gene (NOS1AP) had previously been identified as a schizophrenia 
susceptibility gene. Cheah et al. [92] looked at the link between NOS1AP polymor-
phisms and schizophrenia depressive characteristics. A cohort of 235 schizophrenia 
patients were genotyped for nine SNP variants and one NOS1AP SNP was linked to 
the general diagnosis of schizophrenia, while eight others were linked to depression-
related phenotypes in schizophrenia. Overall, these studies implicate a critical regu-
latory role of NO in the pathogenesis of schizophrenia and sex related factors may 
modulate such changes.
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Targeting NO and NO-Mediated Signaling as a Treatment 
for Stress and Mood Disorders 

The role of the NO cascade on depressive pathophysiology is becoming increas-
ingly recognized in clinical and preclinical research [93, 94]. Several studies have 
implicated that NO synthase inhibitors exert antidepressant effects. L-NAME, a non-
specific NO synthase inhibitor has been shown to have antidepressant like response 
in forced swim test and those effects were reversed by L-Arginine treatment. Another 
non preferential NO synthase inhibitor L-NNA was found to potentiate the behav-
ioral effects of antidepressants. Co-treatment with the certain 5-HT receptor antag-
onists have also been found to attenuate the L-NA-induced reduction of immobility 
in forced swim test [95]. NOS inhibitors, including as L-NAME, aminoguanidine, 
and sildenafil, were found to reduce LPS-induced depression-like behavioral and 
neurochemical alterations [96, 97]. 

Selective nNOS inhibitors like 7-NI have been shown to produce antidepressant 
behavioral effects and improve imipramine and fluoxetine behavioral effects in the 
FST. Stress induced cFos expression and immunoreactivity levels are also reduced by 
7-NI and TRIM in a similar manner like classical antidepressants indicating that these 
drugs have similar neurobiological substrates [97, 98]. 7-NI also modulates CREB 
signaling pathway suggesting a possible involvement of this signaling mechanism in 
7-NI induced antidepressant effects [99]. It has been demonstrated that mice in which 
the nNOS gene has been knocked out, display an antidepressant phenotype. Chronic 
stress increased nNOS expression in the hippocampus and inhibiting nNOS function 
ameliorates stress-induced depressive like behaviors [76]. Chronic treatment with 
7-NI via increasing BDNF protein levels in the hippocampus exerts protective effect 
in the learned helplessness model of depression [97, 100]. Role of nitric oxide in 
the antidepressant-like effects of ketamine has also been suggested [101]. Taken 
together, extensive data suggest that the nNOS-NO-sGC pathway has a critical role 
in mood and depression and NO signaling pathway can serve as a therapeutic target 
in such disorders. 

Conclusion and Perspectives 

Male and female pathophysiology of stress-related neuropsychiatric diseases differs 
significantly, according to compelling data from both clinical and pre-clinical inves-
tigations. The mechanisms that cause sex variations in stress responses and create 
sex biases in disease risk or resilience are complex, but they appear to include an 
interaction of sex chromosome genes with periods of dynamic hormonal changes that 
may compound over time. Women’s dynamic hormonal variations and other aging-
related cellular processes in limbic brain regions contribute to sex-specific variations 
in stress reactivity in the aging brain. For homeostasis and survival, the brain’s ability
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to sense and respond effectively to stress must be maintained throughout one’s life-
time. As a result, it is critical to understand how gender differences in stress reac-
tions can predict disease risk and resiliency when creating prevention and treatment 
strategies. As part of our best effort in mental health, studies that incorporate sex 
as a factor remain a vital necessity across the lifespan. Many stress effectors are 
known to be regulated by NO. Under both basal and stressful situations, there is a 
preponderance of evidence that NO mediated signaling in the brain differs between 
females and males. There is still a need for a more comprehensive study of sex 
related variations in brain and behavioral responses to stress to better understand 
the mechanisms that mediate differential vulnerability between males and females. 
Studies focusing on time-specific measures in relation to the period of stress are 
crucial for establishing a temporal relationship between stress and NO in females, as 
well as the influence of the estrous/menstrual cycle. More research into the interac-
tion of stress and NO in specific brain regions could aid in the identification of NO’s 
role in stress-related diseases in both men and women. Male and female monoamin-
ergic systems are structurally and functionally distinct, which is thought to underpin 
sex-bias in mood disorders. An important translational goal would be to identify 
disease pathways associated with the sex bias in NO signaling. One possible strategy 
for achieving this goal is to compare phosphoproteomes under optimal NO over-
expression conditions. Another method for determining causality is to manipulate 
NO-expressing neurons to have a specific signaling bias and then observe the effects. 
Another crucial topic is how sex differences in NO coupling to interacting proteins 
emerge. Recent advancements in transgenics, neuroimaging, and in vivo optoge-
netics are opening the way for a deeper understanding of gonadal hormone-NO 
interactions at the molecular, cellular, and circuitry level. Although NO is unlikely 
to be the only sex-specific component underlying brain sex differences, a greater 
understanding of its role in the regulation and function of the brain will likely lead to 
better prevention and treatment options for devastating neurological illnesses. Further 
research into the sex differences in the NO system could provide new vistas on the 
mechanisms underlying females’ increased sensitivity to stress-related neuropsy-
chiatric illnesses, as well as in developing better therapeutic strategies. Inhibiting 
NO production has shown promise to have antidepressant-like effects in preclinical 
studies. Direct inhibition of nNOS and/or iNOS, are some of the pharmacological 
strategies that can be used to produce these results. As a result, lower NO levels 
may allow for proper monoaminergic signaling during stressful situations, which 
could aid behavioral adaptability. Continuous reduction of NO generation, in this 
circumstance, may enhance neuroplastic pathways connected to the antidepressant 
effect, such as increased BDNF-TrkB signaling and neurogenesis, following chronic 
stress exposure. Despite substantial progress, developing drugs that differentially 
inhibit the ‘correct’ NOS isoform at the appropriate brain region remains a chal-
lenge. However, in the future development of antidepressants and antipsychotics, 
NO signaling pathway definitely can serve as a viable therapeutic target.



14 Sex Differences in Stress and Stress Related Neuropsychiatric … 291

References 

1. Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: from fruit flies to humans. 
Nat Rev Neurosci 11(1):9–17 

2. Altemus M (2006) Sex differences in depression and anxiety disorders: potential biological 
determinants. Horm Behav 50(4):534–538 

3. Riecher-Rossler A (2017) Sex and gender differences in mental disorders. Lancet Psychiatry 
4(1):8–9 

4. Bangasser DA, Wiersielis KR, Khantsis S (2016) Sex differences in the locus coeruleus-
norepinephrine system and its regulation by stress. Brain Res 1641(Pt B):177–188 

5. Heck AL, Handa RJ (2019) Sex differences in the hypothalamic-pituitary-adrenal axis’ 
response to stress: an important role for gonadal hormones. Neuropsychopharmacol 44(1):45– 
58 

6. Gegenhuber B, Tollkuhn J (2020) Signatures of sex: sex differences in gene expression in the 
vertebrate brain. Wiley Interdiscip Rev Dev Biol 9(1):e348 

7. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric 
oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 
8(10):766–775 
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Chapter 15 
Nitric Oxide in Major Depressive 
Disorder 

Gregers Wegener and Sâmia R. L. Joca 

Abstract The pathogenesis of mood disorders remains elusive, but it is evident 
that multiple factors, genetic and environmental, play a crucial role in adult 
psychopathology and neurobiology. Concerning therapy, a significant proportion 
of affective disorder patients are partial or non-responders. There has been no break-
through in finding novel, valuable drug targets since introducing the current marketed 
antidepressant drugs in the 1950s to the 1980s, which all are based on monoamin-
ergic pharmacological effects. Consequently, there is a pressing need to develop 
novel treatment strategies—and ultimately understand the aetiology and pathophys-
iology of affective disorders. Nitric Oxide serves an essential role in the nervous 
system. It acts as a messenger molecule in several physiological processes, including 
processes linked to major psychiatric diseases. The present chapter will review the 
general aspects of the NO system in Major depressive disorder (MDD) and focus on 
reducing NO production as putative therapeutic agents towards depression. 

Keywords Major depressive disorder ·Mental health disorders · Stress ·
Inflammation · Serotonin · Neuroplasticity · Nitric oxide 

Introduction 

Data from Europe [1–3] indicate that brain disorders account for 12% of all direct 
costs in the health system, and 9% of the total drug consumption was used to treat 
brain diseases. Expenses for brain diseases constituted 3–5% of the gross national 
products, and the whole European expenditures for all investigated brain diseases 
reaching almost 800 billion EURO in 2010 [4, 5]. Among brain disorders, affective
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disorders were among the costliest diseases (110 billion Euro), and anxiety disorders 
were among the most prevalent. 

The pathogenesis of mood disorders remains elusive, but it is evident that multiple 
factors, genetic and environmental, play a crucial role in adult psychopathology and 
neurobiology [6]. Concerning therapy, a significant proportion of affective disorder 
patients are partial or non-responders. Consequently, there exists a pressing need 
to develop novel treatment strategies—and ultimately understand the aetiology and 
pathophysiology of affective disorders. 

Nitric Oxide (NO), described initially as the Endothelial-derived relaxing factor 
(EDRF) with essential roles in the cardiovascular system and macrophages [7, 8], 
has also been shown to have a crucial role in the nervous system [9, 10]. It serves as a 
messenger molecule in several physiological and pathological processes, including 
processes linked to major psychiatric diseases [11–14]. The present chapter will 
review the evidence for the involvement of the NO signalling in Major Depressive 
Disorder (MDD), the role of NO in antidepressant action, and the role of NO synthesis 
inhibitors as putative therapeutic agents. 

General Aspects of Nitric Oxide in the Brain 

The initial evidence indicating NO as a possible signalling molecule in the brain 
came from the seminal work by Garthwaite and colleagues [15, 16], showing that 
the activation of N-methyl-D-aspartate (NMDA) increased intracellular Ca2+ and 
cyclic GMP (cGMP) levels in cerebellar cells. Since both the NMDA antagonist and 
haemoglobin (which traps EDRF/NO) blocked the increase in cGMP after NMDA 
stimulation, it was suggested that EDRF was released in brain cells in response to 
NMDA receptor activation by glutamate. Later on, it was identified that increased 
intracellular Ca2+ could activate the NO synthase, which then converts L-arginine to 
NO and L-citrulline, as reviewed by Guix and colleagues [17]. L-citrulline has no 
signalling function, but NO can influence several targets, as described below. 

Three major isoforms of NOS have been identified: neuronal NOS (nNOS or 
NOS1), endothelial NOS (eNOS or NOS3), and inducible NOS (iNOS or NOS2). 
NOS1 and NOS3 are Ca2 calmodulin-dependent enzymes constitutively expressed 
primarily in neurons and endothelial cells, respectively. The constitutive isoforms 
produce low NO concentrations, usually associated with soluble guanylyl cyclase 
(sGC) activation. NOS1 is widely expressed throughout the brain, especially in the 
cerebellum, the basal ganglia, hippocampus, hypothalamus, frontal cortex, raphe 
nuclei, amygdala, and other regions [18]. NOS2, on the other hand, is not expressed 
or is expressed in very low levels under basal conditions, requiring de novo synthesis 
triggered by immunological or inflammatory stimulation in macrophages, astro-
cytes, microglia, and other cells, to produce NO [19]. Because NOS2 has a high 
affinity for Ca2+-calmodulin, it is usually active when expressed in the cell, thus 
producing large amounts of NO for longer periods, thereby causing several cytotoxic 
and immunotoxic effects [19].



15 Nitric Oxide in Major Depressive Disorder 299

The enzyme sGC remains the primary target for NO in the brain. The binding 
of NO to this enzyme increases its activity more than 200 times and catalyzes GTP 
conversion into cGMP. cGMP activates protein kinase G (PKG)-dependent signalling 
[20, 21]. Both NOS1 and sGC are co-localized in several limbic brain regions, 
supporting the idea of an integrated NO-cGMP signalling system in the brain [22]. 
In addition to that, NO can also interfere with different signalling mechanisms by 
inducing “S-nitrosylation” of many other proteins, thereby affecting their activity. 
S-nitrosylation is characterized by adding a NO group to a cysteine thiol/sulfhydryl 
(RSH) with significant consequences for neuronal signalling and neuroplasticity [23]. 

Various upstream signalling cascades regulate NOS1 activation. Specifically, 
NOS1 is physically attached to the NMDA receptor complex via the Postsynaptic 
density protein 95 (PSD-95) [24] in glutamatergic neurons [25], as NOS1 has a PDZ-
domain interacting with the PDZ2 domain belonging to PSD-95, thereby anchoring 
NOS1 at the post-synaptic density [26]. Moreover, the GluN2 subunits of the NMDA 
complex attach to the PDZ domains of PSD-95, bringing the NMDA receptor 
complex close to NOS1. The physical proximity allows NMDA receptor-mediated 
Ca2+ influx to interact with CaM, activating NOS1 by phosphorylation, increasing 
NO synthesis. NO interacts not only with the NMDA receptor via the PDZ domains 
but also with other proteins. For example, the interaction between NOS1 and CaM is 
blocked by the Calmodulin protein kinase (CaMKII) via phosphorylation of nNOS 
[27, 28]. Another important example is the NOS1 adapter protein (NOS1AP - previ-
ously known as CAPON). As NOS1AP binds directly to NOS1, it competes with the 
interaction between NOS1 and PSD-95. It may thereby alter the subcellular localiza-
tion of NOS1 [29], making it less likely to be activated following NMDA mediated 
Ca2 + influx or facilitating interaction of NOS1 with other proteins [30, 31]. The 
binding of NOS1 to NOS1AP has also been shown to shift the signalling towards 
the activation of a downstream MAP kinase (MAPK) cascade and, thus, modulate 
nuclear transcription of cAMP-response element-binding protein (CREB), as well as 
other transcription factors such as N-myc proto-oncogene protein (N-Myc), nuclear 
factor kappa B (NF-κB) [28, 32–35]. 

The amount of NO produced can vary significantly between tissues and even 
within cells. The levels and bioavailability of NO will be dependent on varia-
tions of NOS enzyme levels, glutamate receptor coupling/expression, and inactiva-
tion/scavenging mechanisms in a given tissue/cell, therefore determining the domi-
nant role of NO (signalling, neuroprotection, vs neurotoxicity). An excessive amount 
of NO and neurotoxicity are often associated with increased iNOS expression rather 
than nNOS activation. The promoter region of the iNOS gene contains binding sites 
for transcription factors such as NF-κβ, and high levels of proinflammatory mediators 
can thus promote iNOS expression in resting cells, including macrophages, astro-
cytes, and microglia, which can therefore synthesize NO in high amounts lasting 
hours or days independent of intracellular calcium [36]. The combination of NO 
and free radicals like the superoxide anion will form peroxynitrite, which is highly 
reactive and can then nitrate tyrosine residues on proteins to 3-nitrotyrosine, induce
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lipid peroxidation, and cause DNA damage. Therefore, under pathological condi-
tions involving high levels of reactive oxidative or nitrosative species (RONS), NO 
can severely damage and facilitate neurotoxicity [37]. 

Therefore, by distinct mechanisms, NO can modulate several neuronal physio-
logical functions ranging from cell excitability and synaptic plasticity to learning 
and memory. On the other hand, due to its multifaceted nature, NO can also trigger 
important mechanisms associated with cell death and neurodegeneration, as well 
as behavioural abnormalities [28, 33–35], described further in the text below in 
Fig. 15.1.

No and Mental Health Disorders 

The NO signalling pathway has been established in several different psychiatric 
disease entities, including Schizophrenia, Bipolar Disorder, and Major Depressive 
Disorder. A detailed overview of all these disorders is beyond the scope of this 
text. Therefore, the present summary will primarily relate to the diagnostic construct 
‘Major Depressive Disorder,’ where several lines of evidence support an association 
between abnormalities in NO and mood disorders. However, it should be noted that 
since diagnosis in psychiatry is phenomenological, significant overlaps between the 
diagnostic entities exist. 

Clinical Evidence 

Postmortem Studies 

Although not with unequivocal results, postmortem material from patients with major 
depression has reduced NOS1 activity and protein content in various brain regions. 
In a study of 8 patients (including two with schizoaffective diagnosis and two with 
bipolar depression) diagnosed according to DSM-IIIR, a reduced number of NOS1 
containing neurons in the paraventricular hypothalamic nucleus was observed [38]. 
This finding was later expanded and confirmed in 11 patients and 11 matched controls 
[39]. In another study, a strong trend (p < 0.06) in decreased activity of the constitutive 
NOS in the prefrontal cortex of 15 patients with unipolar depression diagnosed versus 
15 non-psychiatric controls from the Stanley Consortium was observed [40]. A study 
examining 12 depressed subjects and 12 psychiatrically normal control subjects, 
obtained at autopsy at the Coroner’s Office of Cuyahoga County, Cleveland, OH, 
USA, found a significantly lower amount of NOS1 in locus coeruleus of depressed 
subjects [41]. However, no changes were observed in the cerebellum. 

Since the hippocampus is a crucial region in affective disorders’ pathophysiology, 
the possible hippocampal involvement is of great interest. Findings from the CA1 
hippocampal area in brains from the Stanley Consortium have reported an increase in
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NOS1 immunoreactivity in depression and bipolar disorder [42]. In the same study, 
no changes were observed in the brains of schizophrenic patients. 

More recently, alterations in NOS1AP were examined in a sample from the 
Netherlands Brain. It was found that NOS1AP-immunoreactivity was significantly 
increased in the dorsolateral PFC and anterior cingulate cortex in major depres-
sive disorder, accompanied by an upregulation of spinophilin and downregulation of 
synapsin [43]. Given the potential role of NOS1AP competing with NOS proximity to 
the NMDA receptor, this may indirectly decrease NO production in the postmortem 
brains. Whether this finding is relevant in the living brain remains to be established. 

Peripheral Markers 

Several studies have examined peripheral NO metabolism in major depression, 
however, with somewhat mixed results. In a study of suicide attempters, increased 
NO metabolites (NO2 and NO3) have been observed [44, 45], indicating a nitrergic 
system’s hyperfunction. The same finding was reported a few years earlier, where it 
was found that 17 drug-naïve patients suffering from depression, diagnosed according 
to DSM-IV, had elevated nitrite levels [46]. In the same study, treatment with antide-
pressants normalized the nitrite levels, correlating with clinical response [46]. Finally, 
in a study including 36 depressed patients, diagnosed according to DSM-IV, and 20 
healthy subjects, there was no correlation between depressive symptoms and nitrate 
levels, but a significant effect of antidepressant treatment, lowering the nitrate levels 
[47]. Besides, some studies demonstrate NO’s involvement in some, but not all, forms 
of IFN alpha-induced depression [48]. However, measurement of nitrate in serum 
will only detect the overall nitrate pool. Indeed, a study by Srivastava and co-workers 
examining 66 cases of depression and 114 controls revealed a 73% decrease in nitrite 
content in the polymorphonuclear leukocytes [49]. Since human polymorphonuclear 
leukocytes express NOS1 like neurons [50], this measure may be hypothesized to be 
more relevant than serum values. This assumption is also reflected in a study where 
decreased platelet NOS activity and plasma NO metabolites in depressed patients 
were found [51, 52]. 

Interestingly, in a recent extensive study, 460 patients with a current episode of 
depression were compared to 895 healthy controls for NOS activity (L-Cit/L-Arg 
plasma ratio); depressed patients had a lower NOS activity than healthy controls at 
baseline, which increased significantly after antidepressant treatment [53]. The study 
is in disagreement with the other studies previously discussed but also uses another 
methodology. However, as recently reported, this finding may reflect the lower 
bioavailability of arginine in depressed subjects, reflected in lower NO production 
[54]. 

Finally, several human association studies have been published linking endoge-
nous inhibitors of NOS with the disease. The levels of the endogenous inhibitors, 
NG-monomethyl-L-arginine (SDMA) and NG-dimethyl-L-arginine (ADMA) [55– 
58], are changed in Depression, Schizophrenia, and Alzheimer’s disease [59–62]. 
However, it is not clear whether these associations are clinically meaningful.
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Taken together, although human studies have been predominantly carried out 
on peripheral tissue samples (e.g., plasma or serum), support for the role of the 
NO system in psychiatric disease exists. Findings from the peripheral tissue are 
conflicting and suggest both a decreased and an elevated NO metabolism in depres-
sive states. However, it is worth mentioning that very different methodologies 
were used. Several of the measures discussed here were carried out on specific 
sub-components in the blood compartment, and the generalization may be limited. 

Genetic Studies 

Several association studies have been performed with the emergence of genetic tech-
niques, linking abnormalities in the NO system’s genetic architecture with depres-
sion. A recent review examining the whole mental health spectrum can be found 
elsewhere [63]. 

A population-based association study investigating NOS1 in unipolar depression 
tested whether the NOS1 C276T polymorphism confers susceptibility to unipolar 
depression and treatment response to fluoxetine. No association with disease or SSRI 
treatment response was found in Chinese patients [64], but due to the study’s restricted 
design, it was concluded that other variants of the NOS1 gene might play a role. 
Similarly, in a study from Denmark and Britain, no significant differences in the 
frequencies of SNP rs2682826 were observed among the study subjects. However, 
a difference in genotypes between the Danish and control groups was observed. 
However, no overall allelic association was reported due to the smaller Danish sample 
size versus the British [65]. In another Japanese genetic association analysis of case– 
control samples, using single nucleotide polymorphism, no associations between 
one marker in NOS1 and mood disorder patients were detected [66]. However, the 
paper did not perform an association analysis based on linkage disequilibrium and a 
mutation scan of NOS1 [66]. 

Similarly, in a more recent study of the association between polymorphisms of the 
genes related to oxidative and nitrosative stresses (including NOS1 and NOS2 genes) 
in a Polish population and a risk of depression, the frequency of NOS1 failed to reveal 
significant differences between samples [67]. In a large genome-wide association 
study, an association of NOS1 with the disease was present. However, the size of the 
NOS1 gene makes the authors cautious about the finding [68]. Similarly, it was shown 
that polymorphisms associated with the NOS2A and NOS1 genes might confer an 
increased risk of recurrent depressive disorder [69]. Again, NOS1 was shown to 
influence the human life span and the quality of life in old age [70]. In another study, 
the effect between the most common NOS1 SNP, stress, and depressive disorders 
was examined, with significant associations between 8 out of 20 different NOS1 
polymorphisms and human liability to depression during conditions of financial and 
psychosocial stress factors [71]. NOS2 transcription is increased in the peripheral 
blood of patients with recurrent MDD, and a polymorphism in the NOS2 promoter 
associates with a higher risk of recurrent depressive disorder [72, 73].
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While the following studies are not directly related to NOS1, it is (due to the 
regulatory function on NO production) relevant also to highlight importing findings 
examining NOS1AP in a cohort of Vietnamese combat veterans with PTSD and a 
group of healthy control individuals, suggesting that the NOS1AP gene is associ-
ated with PTSD and that a genetic variant in NOS1AP may increase the suscepti-
bility to severe depression in patients with PTSD, and increased risk for suicide in 
untreated combat veterans [74]. Similarly, another study reported that the NOS1AP) 
was associated with a broad diagnosis of schizophrenia, and eight NOS1AP SNPs 
were associated with depression-related phenotypes within schizophrenia rs1415259 
SNP showed a strong association with sleep dysregulation phenotypes of depression 
[75]. 

Limited information regarding NOS3 is available, and in a Japanese study, no 
associations were observed between any of the polymorphisms of the eNOS gene 
and the Hamilton Rating Scale for Depression. However, plasma NOx level was 
significantly associated with a polymorphism of the eNOS gene [76]. 

In conclusion, a diverse spectrum of findings related to the NOS1 and NOS2 gene 
exists. Several more extensive genetic replication studies are needed before a firm 
conclusion upon NO’s role in depressive disorders, based on genetic evidence, can 
be made. 

Preclinical Evidence 

Stress Effects on NO Signalling in the Brain 

Stress is a major environmental factor contributing to depression development. A 
large number of evidence indicates that both acute and chronic exposure to stress 
can enhance the expression and activity of NOS1 in brain regions related to the 
pathophysiology. For example, the dorsal hippocampus’s nitrite and nitrate level was 
increased following acute restraint stress [77]. Another study elevations in NADPH-
or NOS1-positive neurons in the entorhinal cortex and hippocampal CA1/CA3 sub-
regions following acute and chronic restraint stress [78]. Similarly, a 21 established 
mild stress paradigm elevated NOS1 expression in hippocampal CA1, CA3, DG, 
and subiculum area [79]. A 5 day escapable/inescapable water stress paradigm 
increased NOS1 gene expression, NOS1 protein levels, and NOS1 activity in the 
whole hippocampus in the FSL rats, a genetic animal model depression [80]. 

Increased iNOS levels have also been detected in the hippocampus and prefrontal 
cortex of animals exposed to acute and chronic stress, contributing to the delayed 
and sustained NO levels observed after stress exposure [81]. It has been identi-
fied that the increased expression of iNOS in microglia is one crucial mechanism 
mediating neuronal death under chronic stressful situations and neuroinflammatory 
stimuli [82, 83]. Interestingly, increased neuroinflammation is observed in chroni-
cally stressed rodents and depressed patients, thus posing an essential role for iNOS
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as a central mediator of the stress-induced neuroinflammation associated with depres-
sion [84]. Accordingly, the immunological challenge with LPS promotes increased 
iNOS expression and neuroinflammation in the hippocampus and the prefrontal 
cortex and precipitates depressive-like behaviour in animals [85]. Excessive NO 
levels can further aggravate neuroinflammation induced by stress and mediate neuro-
plasticity impairments in brain regions relevant to mood, emotion, and cognition, 
such as the prefrontal cortex and the hippocampus [86]. 

Increased expression of both nNOS and iNOS has also been described in hypotha-
lamic regions. The prefrontal cortex and hippocampus play an essential modulatory 
role in the HPA axis activation during stress [87]. Although increased NO levels can 
promote activation of the HPA axis and glucocorticoid release, the role played by NO 
in the regulation of HPA activation during stress is rather complex [88, 89]. Of partic-
ular importance, hippocampal NOS1-derived NO significantly downregulated local 
glucocorticoid receptor expression in chronically stressed mice and elevated HPA 
axis activation, thus implicating NO in the HPA dysregulation observed in depressed 
patients [79]. 

Behavioural Changes in Mice with Impaired NO Synthesis 

The synthesizing enzymes and the main targets for NO are expressed in different 
brain regions, including many areas involved in controlling emotional, behavioural, 
and endocrine responses to stress [18, 90–92]. Consistent with that idea, mice with 
a targeted disruption of the NOS1, NOS2, or NOS3 show behavioural changes that 
reflect an important role for NO in controlling behaviours associated with stress 
consequences and depression development. For example, NOS1 knockout mice 
exhibit increased locomotor activity in a novel environment, increased social interac-
tion, decreased depression-related behaviour, impaired spatial memory retention, and 
impaired social recognition memory [93–98]. Therefore, the lack of NOS1-derived 
NO synthesis indicates decreased anxiety and depressive-like behaviours, but this 
can also result from impaired cognitive skills due to neurodevelopment changes in 
the absence of NO. Nevertheless, NOS1 knockout mice present significant neuro-
chemical changes in different brain regions and increase resistance to stress-induced 
behavioural consequences, consistent with a large body of evidence showing that NO 
can control the release of various neurotransmitters that affect behavioural regulation. 
Furthermore, deficient NOS1 mice present fewer impairments in neurogenesis and 
anhedonia induced by chronic stress exposure [98]. This indicates that NOS1-derived 
NO contributes to stress-induced depression by suppressing neurogenesis. 

Consistent with the primary role of NOS2-derived NO in mediating inflammatory 
responses, NOS knockout animals are more resistant to developing behavioural and 
endocrine changes induced by neuroinflammatory and neurotoxic stimuli [99–101]. 
The absence of iNOS could protect from excessive NO and peroxynitrite levels that 
would be formed under such circumstances [102]. NOS2 deficient mice have also 
shown increased struggling in the forced swimming test, similar to the treatment 
with conventional antidepressant drugs in this model [103]. These mice, however,
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present increased NOS1-derived NO levels in the prefrontal cortex, which renders 
them more anxious and makes it more challenging to understand the role of NO in 
regulating depressive-like behaviours [104]. 

Surprisingly, mice lacking NOS3 also show impaired exploratory behaviour in the 
open-field test, increased anxiety in the elevated plus-maze, and facilitated learning 
in the water-maze test, along with imbalanced levels of acetylcholine noradrenaline 
and serotonin in the striatum [105, 106]. 

Another study indicated that NOS3 provides tonic levels of NO in the vessels 
that could affect neuronal signalling, whereas NOS1 provides phasic changes in 
neuronal NO levels with both being able to control LTP in the hippocampus, thus 
influencing learning and memory [107]. This could explain, for example, cognitive 
changes observed in knockout animals or individuals with depression. 

Altogether, the information from animals deficient in specific NOS indicates that 
NO derived from the three isoforms may play essential roles in controlling neuro-
transmitter release, neuronal signalling, and behaviour. It is, however, necessary to 
have in mind that neurodevelopmental changes due to the absence of the specific 
gene might have contributed to the differences observed later in life. In this context, 
pharmacological tools have been crucial in understanding the NO involvement in 
stress and depression neurobiology. 

Behavioural Effects of NO Synthesis Inhibition 

In 1996, Jefferys and co-workers demonstrated that the unspecific NOS inhibitors 
L-N-arginine methyl ester or NG-nitro-L-arginine methyl ester (L-NAME) decreased 
the immobility of rats in the FST, an effect counteracted by pretreatment with the 
NOS substrate L-arginine [108]. Similarly, not only acute, but also chronic L-NAME 
and NG-monomethyl-L-arginine (L-NMMA) displayed antidepressive-like response 
in the FST [109], and later work extended these findings, since NG-nitro-L-arginine 
(L-NA or L-NNA) also resulted in antidepressant-like effects in the FST, together 
with augmentation of behavioural effect of conventional SSRI antidepressants [110– 
112]. More selective NOS1 inhibitors such as 7-nitroindazole (7-NI), Nω-propyl-
L-arginine (NPA), and 1-(2-trifluoromethylphenyl)imidazole (TRIM) were subse-
quently tested and shown to produce antidepressant-like effects in the FST [113–116] 
0.7-NI was also shown to augment the behavioural outcome in the FST of a TCA and 
an SSRI [110]. Selective inhibition of iNOS can also promote an antidepressant-like 
effect in the FST, thus indicating that NO derived from both nNOS and iNOS can 
modulate depressive-like behaviours [103]. 

Since the FST has a questionable face and construct validity, the effect of NOS 
inhibitors has been tested in more valid animal models. Selective inhibition of nNOS 
induced antidepressant effects in animals submitted to the learned helplessness [117] 
and the chronic mild stress [98, 118]. However, contradictory results have been 
described with nNOS inhibitors inducing similar chronic stress exposure changes 
[119].
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Both inhibiting the downstream NO signalling by inhibiting the sGC using [1H-
[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one] (ODQ) and scavenging NO by Carboxy-
PTIO (c-PTIO) induced an antidepressant-like effect [118, 120, 121]. 

The inhibition of NO synthesis in specific brain regions has been proven suffi-
cient to elicit antidepressant effects since central administration of 7NI into the 
hippocampus [114] or the prefrontal cortex [122] produced antidepressant-like 
effects in the FST. These brain regions seem to play a central role in stress adaptation 
and depression neurobiology, thus indicating that increased NO in response to stress 
in both regions can predispose to depressive behaviours. 

Interestingly, a class of antagonists may be considered endogenous inhibitors. 
These include L-Citrulline, Agmatine, NG, ADMA, SDMA, and arginNOS2uccinic 
acid. While L-citrulline is a very weak inhibitor, a derivate L-Thiocitrulline is much 
more potent [123]. Agmatine, de-carboxylated arginine [124], is potentially signif-
icant, as there is evidence of antidepressant effects in animal models of depression 
[125–128], as well as in humans [129–132]. No reliable preclinical data exist for the 
other endogenous inhibitors, although there are reports of their presence in animals 
[133]. 

It was also demonstrated that the antidepressant action of ketamine, which has 
proven to be efficacious for treating a patient with severe treatment-resistant depres-
sion, could be attenuated with L-Arginine, supporting the hypothesis that NO may 
play an essential role in the mechanism of action of ketamine [134]. Curiously, the 
inhibition of NO synthesis does not elicit acute antidepressant effects, and repeated 
treatment is required to promote behavioural effects in the learned helplessness model 
[117]. 

As mentioned above, NOS1AP has been implicated in depressive 
psychopathology. Preclinically, NOS1AP was increased in the PFC of mice 
exposed to the Chronic Unpredictable Mild Stress procedure [43]. Interestingly, 
the indirect disruption of the NOS1/PSD-95/NMDA receptor complex has been 
proposed to control NO synthesis. It has been shown that both lentiviral disruption 
and the use of small-molecule inhibitors of the PSD-95/nNOS interaction may 
produce antidepressant-like effects in preclinical assays. For example, IC87201 
and ZL006 produce antidepressant-like responses in the forced swimming test 
(FST) and tail suspension test (TST) following a single administration in mice 
[26, 135]. Viral-mediated NOS1AP downregulation in the medial PFC reversed 
the depression-like behaviours in mice exposed to the Chronic Unpredictable Mild 
Stress procedure [43], although not all studies could detect an effect [136]. In 
later studies, it was observed that the small molecule inhibitors protected against 
glutamate-induced neuronal atrophy in primary cortical neurons [137], a finding 
relevant for the potential pathophysiology of depression.
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NO, and Classical Antidepressants 

Direct interaction between clinically used antidepressants and nitrergic signalling 
has been shown in a few studies. In a study with patients with ischemic heart 
disease and depression, 17 received paroxetine and 14 patients nortriptyline. It was 
observed that serum nitrite and nitrate levels were significantly decreased following 
paroxetine treatment but not nortriptyline [138]. Besides, paroxetine was also a 
considerably more potent inhibitor of the NOS enzyme activity than nortriptyline 
[138]. Similarly, several established antidepressants of distinct chemical classes, 
including imipramine, paroxetine, citalopram, and tianeptine, have been shown to 
inhibit hippocampal NOS activity in vivo applied locally in the brain in therapeutic 
relevant concentrations [139]. This can result from antidepressant effects on gluta-
matergic signalling and NMDA receptor activation and directly impact nNOS activity 
[140, 141]. 

It has also been reported that the precursor of NO, L-Arg, antagonizes the effects 
of the classic tricyclic antidepressant, imipramine [109]. This observation has led 
to hypotheses regarding the potential contribution of serotonergic/noradrenergic 
mechanisms in the observed antidepressant-like effects of the NOS inhibitors (see 
below). Corroborating this hypothesis, a recent study reported that treatment with 
7-NI, venlafaxine, and fluoxetine attenuate stress-induced neuronal activation in 
overlapping brain regions, thus suggesting that NOS1 inhibitors and monoamine 
antidepressants may share common neurobiological substrates [115]. 

Subsequently, it has been demonstrated that low and ineffective L-NAME doses 
could potentiate the behavioural effects of imipramine and fluoxetine but not reboxe-
tine, a noradrenaline reuptake inhibitor, in the FST [110, 142]. It was also shown that 
a serotonergic mediation of the antidepressant-like effects of L-NA, 7-NI was present 
since serotonergic depletion abolished the antidepressant-like effect of the inhibitors 
[142]. In the hippocampus, the antidepressant-like effect induced by local adminis-
tration of a selective NOS1 inhibitor (N-propyl-L-arginine) could be prevented by 
co-administering a 5-HT1a antagonist, implicating endogenous serotonin in such 
impact [143]. However, not all inhibitors seem to display this profile, as it was 
also demonstrated that agmatine’s effect was independent of the 5-HT depletion 
[128]. However, as already discussed, agmatine likely has multiple impacts on several 
receptor systems. 

Finally, NO has also been implicated in the antidepressant role of several other 
substances, like tramadol [144], bupropion [145], and lithium [146]. 

Although these studies further corroborate the idea that 7-NI shares common 
molecular mechanisms. Monoaminergic antidepressants, a recent study that 
compared the gene expression pattern in rats treated with imipramine or 7-NI by 
serial analysis of gene expression (SAGE), found that there are also significant 
differences in the genes regulated by such treatments [147]. Nevertheless, this study 
conformed to the overlapping regulation of genes involved in oxidative stress and 
neuroplastic responses. However, further studies are still necessary to evaluate the 
contribution of such molecular changes for the antidepressant-like effects induced 
by NOS1 inhibition.
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NO and Serotonin 

A substantial number of studies show close interaction between NOergic and 
5HTergic signalling, and NOS1 transgenic mice have been shown to have elevated 
levels of 5-HT in several brain regions involved in emotion, such as the cerebral 
cortex, hypothalamus, hippocampus, and amygdala [148]. It has been suggested that 
NOS1 contributes to regulating the synthesis, release, and reuptake of 5-HT. First, 
the rate-limiting enzyme in the biosynthesis of 5-HT, Tryptophan Hydroxylase, is 
inactivated by peroxynitrite in a concentration-dependent manner [149]. Second, 
modulating NO in distinct brain areas is followed by alterations in 5HT in a brain 
region-dependent manner. For example, systemic administration of the NO donor 
S-nitroso-N-penicillamine (SNAP) decreased 5 HT release in the raphe nucleus but 
increased release in the frontal cortex [150]. 

In contrast, local administration of SNAP induced NO increases in the striatum 
[151]. Both local and systemic administration of the NOS1 inhibitor 7-NI into the 
hippocampus significantly increased the extracellular level of 5-HT [152, 153]. In 
contrast, administration of the NO precursor L-arginine decreased hippocampal 5HT 
[154] but increased 5HT in the striatum [155]. Third, using rat brain synaptosomes, 
some NO donors inhibited the reuptake of 5-HT without affecting the serotonin 
transporter [156]. Still, distinct NO donors were shown to inhibit 5HT uptake through 
human SERT expressed in COS cells [157]. Finally, a substantial number of NOS1 
immunoreactive cells co-labelled with 5HT or SERT can be found in the DRN [141, 
158]. It was also observed that NOS1 had a physical association with the SERT 
through a PDZ domain, attenuating SERT activity in DRN [141]. 

NO and Neuroplasticity 

Neuroplasticity is an essential property of neuronal adaptation, and it is compro-
mised in depression [159, 160]. It is believed that various neurotrophins, such as 
Brain-derived neurotrophic factor (BDNF), regulate neuroplasticity, which includes 
proliferation, differentiation, survival, and death of neuronal cells and supporting 
tissue [161]. BDNF binds to the Tropomyosin kinase B (TrkB) receptor and 
subsequently activates intracellular signalling pathways governing transcription and 
dendritic translation of proteins necessary for cellular survival, differentiation, and 
learning/memory formation in the hippocampus [162]. Interestingly, NO seems to 
modulate BDNF levels since it was demonstrated that NO donors (SNP, NOR3] 
decrease BDNF release in hippocampal cell culture, whereas the inhibition of NO 
production increase these levels [163]. Accordingly, in vivo experiments showed 
that chronic treatment with L-NAME increased BDNF mRNA and protein levels 
in the hippocampus and rats’ prefrontal cortex [164, 165]. In line with that obser-
vation, the antidepressant-like effect induced by chronic treatment with the selec-
tive NOS1 inhibitor 7-NI was associated with increased expression of hippocampal 
BDNF protein levels [117].
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Similarly, increased levels of BDNF have also been observed after treatment with 
other NOS inhibitors, either in cultured or in vivo neocortex [166]. However, in 
another study, the antidepressant effect induced by aminoguanidine, a preferential 
NOS2 inhibitor, was not correlated with increased BDNF signalling in the prefrontal 
cortex of FSL rats [167]. On the other hand, mice with deficient NOS2 expres-
sion presented increased BDNF levels in the PFC and hippocampus associated with 
the antidepressant-like phenotype [168]. Therefore, it is likely that both NOS2 and 
NOS1-derived NO can modulate BDNF signalling in stress adaptation. Although 
NO usually has been shown to downregulate BDNF levels, peroxynitrite formation 
derived from NO and O2− was observed to trigger trkB signalling [169], suggesting 
BDNF signalling to be affected. Evidence from cultured hippocampal neurons indi-
cates that BDNF secretions’ inhibition is more pronounced in response to exogenous 
NO levels or under exacerbated NO concentrations. 

In contrast, low endogenous levels of NO would facilitate BDNF-TrkB signalling 
[170]. Bioinformatic analysis has predicted a direct action of NO on the amino acid 
residues of BDNF or TrkB, suggesting protein s-nitrosylation or tyrosine nitration 
in both rodents and humans quoted molecules [171]. These direct actions of NO on 
BDNF or TrkB proteins could trigger useful negative feedback to control protein 
function or drive a reinforcement of downstream BDNF/TrkB signalling. 

Conversely, neurotrophins can modulate NO or NOS levels since BDNF has 
been found to upregulate NO signals in either hippocampal or neocortical neurons 
[166, 170]. Similarly, the ratio of NOS1-positive neural progenitor cells (NPCs) is 
increased following treatment with BDNF [172]. On the other hand, BDNF can 
suppress NO production in microglia, thus counteracting the brain’s inflammatory 
processes [173]. 

More recent evidence indicated that the interplay between NO and BDNF-TrkB 
signalling is more complex and involves more signalling cascades. Both NMDA and 
TrkB can be associated with PSD-95 and induce downstream signalling mechanisms 
that regulate synaptic plasticity [174]. In this scenario, PSD-95-NOS1 interaction 
may down-regulate BDNF expression via inhibiting ERK activation. On the other 
hand, NMDA-PSD-95 uncoupling would increase BDNF levels and facilitate BDNF-
TrkB-PSD-95 signalling mechanisms related to the contribution of neuroplasticity to 
the behavioural effect of these drugs. These results could help to explain the impact 
of NOS inhibitors on BDNF expression. 

Despite the evidence mentioned above that NO might regulate BDNF levels 
in stress and depression, evidence about NOS inhibitors’ effects in promoting 
recovery of impaired synaptogenesis and dendritic branching in stressed animals 
is scarce. However, it is known that NO is critically involved in establishing and 
activity-dependent refinement of axonal projections during the later stages of devel-
opment [175]. Under physiological concentrations, NO signal downstream, either 
through sGC activation or through nitrosylation to promote the growth of presy-
naptic filopodia that rapidly leads to the formation of new synaptic contacts in vitro 
experiments [176]. Conversely, high levels of NO, as in nerve injury, can produce 
the opposite effect, with reduced synaptogenesis through cGMP-dependent and



15 Nitric Oxide in Major Depressive Disorder 311

S-nitrosylation-mediated mechanisms [176]. Although this can be blocked by treat-
ment with NOS inhibitors [176], and since inhibition of NO synthesis in adult 
rats increase hippocampal expression of synaptophysin [177], it is not known 
whether blocking NO synthesis may prevent a stress-induced decrease in synapto-
genesis and dendritic arboring. However, this seems likely, since PSD-95 promotes 
synaptogenesis and multi-innervated spine formation through nitric oxide signalling 
[178]. However, further research is needed, and the question is open for investiga-
tion. A proper answer would contribute to a better understanding of NO’s role in 
stress-induced neuroplasticity related to neuropsychiatric disorders. 

Another important neuroplasticity factor affected by NOS inhibitors is neuro-
genesis, which has been exhaustively reviewed elsewhere [179, 180].  Only a brief  
overview is presented here. Neurogenesis is the process of neural stem cells (NSCs) 
to foster newborn neurons in replacement for damaged neurons or maintain function. 
Neurogenesis has attracted significant interest, and although somewhat controver-
sial in humans, it has been suggested that neurogenesis may be linked to recovery 
from clinical depression [181–183], and even in a controversial paper, it may be a 
prerequisite for antidepressant response [184]. In the brain, neurogenesis has been 
observed in the subventricular zone (SVZ) and the subgranular zone of the dentate 
gyrus (DG) [183, 185]. 

Interestingly, it has also been demonstrated that the subventricular zone is 
surrounded by NOS1 positive neurons [186], and cells expressing NOS1 also have 
been identified in neuronal precursors in DG [187], suggesting that NOS1 could 
participate in the regulation of neurogenesis. Indeed, it has been demonstrated that 
the NOS1-mediated suppressing on neurogenesis effect may be caused by NO gener-
ated from neurons, not from NSCs [188]. Besides, evidence that the subcellular local-
ization of NOS1 in neurons and NSCs seem to be distinct, implying that the role of 
NOS1 in neurons and NSCs is different [188]. It has also been demonstrated that 
inhibition of NO synthesis with 7-NI increases the proliferation of neural precur-
sors isolated from the postnatal mouse subventricular zone [189]. However, another 
report has demonstrated that NOS1 inhibition with 7-NI enhanced progenitor cells’ 
proliferation in the dentate gyrus. The antidepressant-like effect of this drug was 
dependent on this neurogenic effect [190]. These results are in line with findings 
using a NOS1 knockout mouse line, where the number of new cells generated in 
neurogenic areas of the adult brain, the olfactory subependyma, and the dentate 
gyrus was strongly augmented, indicating that division of neural stem cells in the 
adult brain can be negatively controlled by NO [191]. It has also been reported 
that the NOS1 inhibitor L-VNIO or deletion of the NOS1 gene could affect the 
differentiation of NSCs into neurons and astrocytes [188]. Specifically, it was found 
that NOS1 could facilitate differentiation of hippocampal neural progenitor cells 
[192], suggesting that NOS1 in NSCs is essential for neurogenesis. In the DG of 
the hippocampus, NSCs forms into granule neurons contributing to neuroplasticity, 
learning, and memory. Impairments in these cognitive functions have been observed 
in NOS1 transgenic mice, suggesting that NOS1 affects differentiation of NSCs in the 
DG [94]. High levels of the NOS1 are found in granule neurons in the DG [193], and 
NO generated from NOS1 in these neurons may therefore be speculated to negatively
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govern granule neuronal precursor proliferation and further reduces differentiation 
of granule neuronal precursors. Given these observations, it is possible to speculate 
that the behavioural effects of NOS inhibitors observed in animals under exposure 
to chronic stress might involve positive regulation of hippocampal neurogenesis. 

One of the unique physiological properties of NO is its function as a retrograde 
messenger, influencing synaptic properties, such as LTP and LTD [194, 195]. Such 
processes are crucial in synaptic homeostasis, and, conversely, affecting NO levels 
may virtually affect the plasticity and homeostasis of all known synapses [196, 197]. 
NO is likely to play a significant role in diseases where synaptic dysfunction, such as 
depression, is essential. NO has been shown to mediate local activity-dependent exci-
tatory synapse development and spine dynamics [198]. A change in NO levels during 
development has been shown to promote axon pruning in a cGMP-independent 
mechanism and enable a switch between neuronal degeneration and regrowth [199]. 

Nitric Oxide and Neuroinflammation 

An essential role for neuroinflammation in depression pathophysiology has been 
proposed since increased levels of inflammatory mediators (e.g., IL-1, IL6, TNF, 
among others) have been described in the brain of animals repeatedly exposed 
to stress and in the blood and the brain of depressed patients [200, 201]. More-
over, the response to antidepressants is usually associated with decreased levels of 
proinflammatory cytokines. In contrast, administration of such molecules and other 
immunological stimuli triggers depressive-like behaviour in animals and depressive 
episodes in humans [202–204] (references). Furthermore, anti-inflammatory drugs 
induce antidepressant effects in animal models and are effective as add-on therapy 
to antidepressant medication in patients [205]. 

Increased proinflammatory cytokines can trigger iNOS expression, as mentioned 
above (Fig. 15.1), and lead to increased NO levels in different brain regions. Exces-
sive NO can then promote nitrosative stress and further microglial activation and 
neuroinflammation [206]. Inhibition of iNOS activation during stress could then 
attenuate neuroinflammation and protect against its effects on brain plasticity and 
behavioural adaptation. 

Conclusion 

Although the studies cited in the current chapter utilize different methodologies, 
from a preclinical genetic approach to human postmortem material, the role of NO in 
depression pathophysiology is unquestionable. The information reviewed indicates 
that NO derived from different sources can influence several mechanisms associ-
ated with depression neurobiology, such as the HPA axis activation, neuroinflamma-
tion, and neuroplasticity (Fig. 15.2). Furthermore, dysfunctional regulation of NO 
synthesis has been described in the blood and the brain of depressed patients and
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stressed animals, providing an essential anatomical substrate for a NO role in depres-
sion. This is further corroborated by evidence from animal models indicating that 
inhibition of iNOS or nNOS promotes antidepressant effects associated with amelio-
rating stress-induced impairments in neuroplasticity and neuroinflammation. There-
fore, the NO system continues to be an exciting approach in the future development 
of antidepressants.

On the other hand, increased iNOS expression contributes to increased reactive 
oxygen and nitrogen species (RONS) and oxidative stress. As in inflammatory condi-
tions, activated microglia can also promote iNOS expression and increased NO levels, 
further aggravating neuroinflammatory conditions. NO can regulate BDNF levels 
directly or indirectly by the mechanisms mentioned above and therefore impact 
synaptic plasticity. Dysfunctional neural circuits under such conditions can then 
predispose the brain to depressive behaviour. Conversely, inhibition of iNOS or 
nNOS can promote antidepressant effects.
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An inducible nitric oxide synthase polymorphism is associated with the risk of recurrent 
depressive disorder. Neurosci Lett 486(3):184–187 

74. Lawford BR, Morris CP, Swagell CD, Hughes IP, Young RM, Voisey J (2013) NOS1AP is 
associated with increased severity of PTSD and depression in untreated combat veterans. J 
Affect Disord 147(1–3):87–93 

75. Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J (2015) Association of NOS1AP 
variants and depression phenotypes in schizophrenia. J Affect Disord 188:263–269 

76. Ikenouchi-Sugita A, Yoshimura R, Kishi T, Umene-Nakano W, Hori H, Hayashi K et al 
(2011) Three polymorphisms of the eNOS gene and plasma levels of metabolites of nitric 
oxide in depressed Japanese patients: a preliminary report. Hum Psychopharmacol Clin Exp 
26(7):531–534



15 Nitric Oxide in Major Depressive Disorder 319

77. Moraes-Neto TB, Scopinho AA, Biojone C, Corrêa FMA, Resstel LBM (2014) Involvement 
of dorsal hippocampus glutamatergic and nitrergic neurotransmission in autonomic responses 
evoked by acute restraint stress in rats. Neurosci 258:364–373 

78. Echeverry MB, Guimaraes FS, Del Bel EA (2004) Acute and delayed restraint stress-induced 
changes in nitric oxide producing neurons in limbic regions. Neurosci 125(4):981–993 

79. Zhou QG, Zhu LJ, Chen C, Wu HY, Luo CX, Chang L et al (2011) Hippocampal neuronal 
nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by 
downregulating glucocorticoid receptor. J Neurosci 31(21):7579–7590 

80. Wegener G, Harvey BH, Bonefeld B, Muller HK, Volke V, Overstreet DH et al (2010) Increased 
stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal 
model of depression. Int J Neuropsychopharmacol 13(4):461–473 
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Chapter 16 
Nitric Oxide in Parkinson’s Disease: 
Insights into Research and Therapeutics 

Bhupesh Vaidya and Shyam S. Sharma 

Abstract Parkinson’s disease (PD) is characterized by the symptoms of motor and 
cognitive deficits. There are several approaches available for the treatment of PD, but 
most of them are only aimed at providing symptomatic relief. Pathophysiological 
mechanisms involved in the aetiology of PD are complex. Several mechanisms like 
oxidative stress, inflammation, apoptosis, play important role in the pathophysiology 
of PD. There are various reports implicating the involvement of NO in PD. In this 
book chapter we have highlighted the importance of nitric oxide and its targeting for 
the development of new therapeutics against PD. It also emphasizes the molecular 
partners and downstream pathways affected by the increased levels of NO and nitric 
oxide synthase (NOS) in the in vitro and in vivo PD models has also been emphasized. 
Additionally, in-depth insights into the clinical evidence are also provided to support 
and warrant these preclinical findings. Although most of the studies have observed 
a direct correlation between increased levels of NOS and neuronal death in PD, 
few scattered reports have found otherwise. Utilizing this evidence, several of the 
nNOS and iNOS inhibitors and antioxidants demonstrated to relieve the effects of 
nitrosative stress in PD have also been discussed. 

Keywords Nitric oxide · Major depression · Neuroinflammation ·
Neuroplasticity · iNOS · nNOS 

Introduction 

PD is a neurodegenerative condition characterized by symptoms of muscle rigidity, 
tremors, bradykinesia, and akinesia [1]. This is also accompanied by non-motor 
symptoms of cognitive decline, depression, and sexual dysfunction [2]. Amongst the 
different dopamine signaling pathways, it’s the nigrostriatal pathway which under-
goes maximum degeneration leading to loss of tyrosine hydroxylase positive neurons
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in the substantia nigra pars compacta and the striatum [3]. As it is a progressive 
neurodegenerative condition, first symptoms appear only after eighty per cent of 
the dopaminergic neurons have undergone neurodegeneration [4]. There are several 
in vitro and in vivo models which have been made using knock out or knockdown 
approaches and/or toxins such as MPTP, 6-OHDA, rotenone, paraquat and maneb 
for understanding the PD pathophysiology [5]. 

Role of different molecular pathways and signaling molecules have already been 
elucidated with the help of these models but with little translational success [6]. 
Hence, there is a need to look for new mechanisms which could serve as therapeutic 
targets in PD. Nitric oxide (NO) is one such target which could be explored more 
extensively in PD at the clinical stages. Synthesis of NO is controlled by nitric 
oxide synthase (NOS) [7]. Expression of the different isoforms of NOS including 
neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), 
and inducible nitric oxide synthase (iNOS) is widespread in the brain with nNOS 
being the most abundant amongst them [8]. 

nNOS serves as a common interneuronal marker in the nervous system because 
of its presence in the interneurons. It is expressed both in the GABAergic and gluta-
matergic interneurons of the ventral tegmentum and substantia nigra pars compacta 
[9]. nNOS mediated nitric oxide–soluble guanylyl cyclase–cyclic GMP signaling in 
the striatum was observed to control the locomotor activity besides opposing the 
inhibitory effects of D2 dopaminergic receptor activation on the corticostriatal trans-
mission [10]. Additionally, co-localization studies have shown that nitrergic termi-
nals are located in the close proximity of the tyrosine hydroxylase positive terminals 
suggesting the role of nitric oxide in the dopamine release and/or metabolism [11, 12]. 

iNOS is not normally present in the CNS but owes its presence to any inflamma-
tory response or toxic insult [13]. Under such conditions, it gets expressed both in 
the neurons as well as the glial cells like microglia and astrocytes [13–15]. iNOS 
levels are closely correlated with the degeneration of dopaminergic neurons and the 
expression of tyrosine hydroxylase in PD. Hence, its role has been widely explored 
and illustrated in PD with the help of different model systems [16]. 

eNOS is another NOS isoform which is majorly present in the endothelial cell, but 
some expression has also been reported in the brain [17]. Owing to its lower levels 
in the CNS, its physiological relevance with respect to the dopaminergic system is 
limited and hence has little pathophysiological significance in comparison to the 
other two isoforms [18]. 

Molecular Targets of Nitric Oxide in PD 

There are different genetic and environmental factors which alone or in combination 
are responsible for the onset and progression of PD. Mutations in several genes 
like PINK1, PRKN, DJ-1, LRRK2, SNCA, GBA and HLA has been linked to the 
pathogenesis of PD. Nitric oxide in close association with these mutations contributes
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to the PD pathogenesis. Some of the byproducts of these genes which owe a part of 
their pathophysiological relevance to nitric oxide have been listed below (Fig. 16.1).

PINK1: Mutations in Phosphatase and Tensin homolog (PTEN)-induced Kinase 
1 (PINK1) is known to be responsible for the autosomal recessive forms of familial 
PD [19]. Loss of PINK1 activity causes mitochondrial dysfunction mediated by 
inhibition of complex 4 activity by mitochondrial associated chaperons like Hsp90, 
Hsp60 and LRPPRC [20, 21]. A study done on PINK1 null dopaminergic cell lines 
demonstrated that complex 4 activity could be rescued by the restoration of the NO 
signaling using optimum doses of sodium nitroprusside or ginsenoside Re. However, 
higher doses of these compounds didn’t show enough rescue of the complex 4 activity 
suggesting that there is a fine line which demarcates the neuroprotective effects of 
NO in PD [20]. These results were further confirmed when optimum levels of NO and 
nNOS were found to regulate the PINK1 dependent translocation of Parkin for the 
induction of mitophagy in the PINK1 null dopaminergic cell lines [22]. On the other 
hand, PINK1 deficient mixed astroglia/microglia cultures showed elevated levels of 
NO and COX-2 mediated by the increased expression of iNOS upon exposure with 
lipopolysaccharides (LPS)/IFN-γ. LPS and IFN-γ further led to upregulation of the 
TGF-β1, which was responsible for the increased iNOS expression specifically in the 
astrocytes [23]. Additionally, it has also been reported that NO causes S-nitrosylation 
of the PINK1 at cysteine 568, resulting in its diminished kinase activity and altered 
Parkin translocation to the mitochondria leading to reduced mitophagy [24, 25]. 

Alpha-synuclein: Another gene which is responsible for early-onset cases of 
familial PD is SNCA which codes for alpha-synuclein [26]. A missense mutation 
in SNCA gene is known to be responsible for the Lewy body pathology seen in 
PD, Alzheimer’s disease (AD) and Lewy body dementia [27]. A study done in SH-
SY5Y cell lines looked at the nitration pattern of α-synuclein in the presence of a 
nitrating agent NaNO2. Nitrated α-synuclein formed amorphous cytotoxic aggre-
gates besides increasing the production of NO via iNOS induction. These cellular 
changes in totality led to increased caspase 3 expression and hence apoptotic cell 
death in the SH-SY5Y cell lines [28]. Similar results were obtained in the presence of 
the intracellularly generated nitrate using N-propyl-1,3-propanediamine/NO in the 
HEK 293 cell lines [29]. Recently a new model system making using of controlled 
iNOS expression with the help of bicistronic α-syn-IRES-tTA adeno-associated virus 
(AAV) was developed to study the nitration pattern and its effects on α-synuclein 
aggregation. Studies done on this model system demonstrated the dose-dependent 
increase in α-synuclein aggregation with the increasing iNOS expression suggesting 
the possible role of homeostatic machinery in maintaining the optimum levels of 
NO in the brain [30]. Moreover, neuron to neuron and neuron to glial propagation 
of α-synuclein is also well established as a pathological change in PD. In order to 
mimic this in the model systems, the effect of extracellular administration of α-
synuclein on NOS expression has been investigated by several researchers [31–33]. 
They have provided useful insights into mechanisms of neuronal death in PD as 
a result of nitrosylation of important proteins like Parkin, GAPDH, HSP-70 and 
DJ-1 [33]. Additionally, it has also been shown that α-synuclein mediated increase 
in iNOS expression is responsible for the impaired axonal transport, mitochondrial
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Fig. 16.1 Molecular targets of nitric oxide in PD: Toxic insults from neurotoxins like MPTP, 6-
OHDA, paraquat and rotenone or genetic mutations in PINK1, PRKN, SNCA, DJ-1 and LRRK2 
lead to increased synthesis of iNOS. Latter further stimulates a cascade of events which contribute 
to PD pathology. Nitric oxide generated as a result of increased iNOS expression leads to increased 
S-nitrosylation of PINK1 and alters the Parkin activity. This results in impaired mitophagy of the 
damaged mitochondria and generation of the ROS. The ROS species can then combine with the 
NO to form the RNS contributing towards the impairment of the ubiquitin proteasomal system. 
This leads to the increased aggregation of the alpha-synuclein into Lewy bodies. Furthermore, 
increased NO levels under the pathological conditions leads to increased levels of the oxidized 
form of DJ-1, which remodels the already present alpha-synuclein aggregates into the more toxic 
and insoluble aggregates. These events in totality contribute to the neuronal death and aggravate 
the pathophysiology of PD
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dysfunction, neurite retraction and inflammatory response specific to the dopamin-
ergic neurons [34, 35]. Methamphetamine induced dopaminergic neurotoxicity was 
also observed to induce changes resulting in nitration of α-synuclein at tyrosine 9 
residue, which coincided with activation of PARP and caspase 3 enzymes. These 
molecular changes were reversed following inhibition of NOS, suggesting a critical 
role of latter in the pathophysiology of PD [36]. Besides its role in the PD pathology 
in the central nervous system, its effect on the enteric nervous system has also been 
investigated. It has been observed that α-synuclein aggregates were present in several 
neuronal subtypes in the enteric nervous system, but it was poorly colocalized with 
nNOS [37]. Thus, it is likely that NOS plays a critical role in the Lewy body formation 
in CNS in PD with no possible involvement in the enteric nervous system. 

DJ-1: DJ-1 is another candidate gene which is linked to the cases of the familial 
PD [38]. It codes for DJ-1 protein which is responsible for regulation of oxidative 
stress, mitochondrial function and proteasome system. In the sporadic cases of PD, its 
increased oxidation resulted in the disruption of cellular antioxidant machinery and 
progressive neuronal death [39]. Furthermore, it was also demonstrated that though 
partially oxidized DJ-1 inhibited primary nucleation and α-synuclein aggregation 
cascades, it remodelled the mature α-synuclein aggregates rendering them more 
neurotoxic. In the similar study, nitric oxide levels measured by Diaminofluorescein-
FM diacetate dye through Fluorescence-activated cell sorting (FACS) showed a two-
fold increase in cells having remodelled α-synuclein aggregates than the ones having 
the mature fibrils [40]. Moreover, a recent report suggested that moderate levels of NO 
can S-nitrosylate DJ-1 at Cys106 and the latter then served as a nitrate donor to PTEN 
in the transnitrosylation reaction which led to inhibition of PTEN’s phosphatase 
activity. This accorded neuroprotection from the increased phosphatase activity of 
PTEN, which is otherwise involved in increased neuronal death in PD [41]. Apart 
from these studies, the effects of DJ-1 mutations on NO production have also been 
studied with respect to the glial cells, including astrocytes. Exposing a transgenic 
zebrafish model, Tg (gfap:egfp-2A-flag-zDJ-1 (TgDJ-1) to MPP+ led to an increased 
iNOS expression in the astrocytes. However, DJ-1 overexpression inhibited iNOS 
induction, besides protecting other cellular proteins from undergoing S-nitrosylation 
[18]. Similar findings were obtained in the primary astrocytic cultures where DJ-1 
knockout generated ten times more NO inside the astrocytes in comparison with the 
astrocytes of the wild type littermates. The basal levels were however restored once 
the DJ-1 was reintroduced using a lentiviral transfection. The changes observed 
in the DJ-1 knockout were accompanied by the induction of iNOS and MAPK 
activation [42]. Use of MAPK inhibition was observed to rescue the LPS induced 
iNOS expression, which suggested a possible correlation between these pathways 
[42, 43]. Nevertheless, there is a contradictory report which has looked at mRNA 
levels of iNOS in the DJ-1+/+ and DJ-1−/− astrocytes with no significant difference 
between them [43]. This difference pointed out at the possibility that the iNOS 
expression might be regulated at the translational levels without any change in the 
levels of the transcription products. 

LRRK2: Mutations in other PD specific genes such as leucine-rich repeat kinase 
2 (LRRK2) is also accompanied by pathological changes associated with increased
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iNOS expression [44]. Missense mutations in the LRRK2 are responsible for the late-
onset autosomal dominant form of PD [45]. It regulates immune responses in the brain 
by microglia and modulates TNF secretion and induction of nitric oxide synthase 
[46]. Besides this, LRRK2 also interacts with α-synuclein and latter increased the 
iNOS expression in the myeloid cells of the substantia nigra, which overexpressed 
LRRK2 [47]. 

Above studies point out the effects and interactions of NO and NOS with other 
molecular targets in PD. 

Nitric Oxide and Nitrosative Stress in PD 

Nitrosative stress is known to play a critical role in the neurodegeneration associated 
with PD. Hence, its role has been investigated thoroughly in different PD models. 
MPTP injected mice showed increased expression and activity of iNOS in the glial 
cells [48]. Moreover, a significant increase in the levels of iNOS mRNA was also 
observed, suggesting the transcriptional regulation of this process following MPTP 
administration. This was later confirmed with the help of iNOS−/− phenotypes which 
were more resistant to the neurotoxic effects of MPTP [49]. In some of the earlier 
studies, reducing or knocking out nNOS also accorded protection to the dopaminergic 
neurons from MPTP besides making the phenotype resistant to the effects of the 
latter [50]. A recent study involving iPSCs (Induced pluripotent stem cell) looked 
at the effects of nitrosative stress on other critical proteins involved in PD. It was 
demonstrated that under the influence of mitochondrial toxins, paraquat and maneb, 
there was increased nitrosative stress which led to S-nitrosylation and inhibition of 
the myocyte enhancer factor 2C (MEF2C) transcription activity. This event further 
inhibited transcription of PGC1α, which is a known master regulator of mitochondrial 
activity [51]. It provided new insights into mechanisms of mitochondrial dysfunction 
caused by nitrosative stress. 

Reduction in the glutathione (GSH) levels has been invariably shown in a number 
of studies with respect to PD models [52, 53]. In line with the same, a report showed 
that inhibition of mitochondrial GSH transport yielded the neurons more suscep-
tible to oxidative and nitrosative stress. The same study found increased apoptosis 
following inhibition of dicarboxylate (DIC)-dependent mitochondrial GSH trans-
port in primary cultures of rat cerebellar granule neurons [54]. Moreover, it led to 
the possibility that mitochondrial dysfunction could amplify the effects of nitrosative 
stress contributing to neuronal death in PD. 

Other cellular targets of nitrosative stress include endoplasmic reticulum. NO 
was found to S-nitrosylate the ER stress sensors like IRE1α and PERK following 
treatment of SH-SY5Y cells with the MPP+. This led to the downstream inactivation 
of eIF2α, which is an important mediator for autophagy [55]. Furthermore, increased 
nitrosative stress also affected the activity of the molecular chaperons in the sporadic 
cases of PD by S-nitrosylation of protein-disulphide isomerase. It led to a series of
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events which aggravated the ER stress and led to an increased accumulation of the 
polyubiquitinated proteins [56]. 

Clinical Evidence for the Involvement of Nitric Oxide in PD 

Levels of nitric oxide and accompanying nitrite level have been estimated in several 
clinical studies. Most of the earlier studies had suggested that there are no significant 
differences in the levels of NO or nitrates in the plasma and cerebrospinal fluid of 
the PD patients with respect to the control group. Additionally, no correlation was 
found between plasma nitric oxide levels of PD patients when compared on the 
basis of age, duration, onset and scores of the Unified Parkinson’s Disease Rating 
scales and Hoehn and Yahr scale [57]. Similar results were obtained when nitrite 
and malondialdehyde levels were compared in the CSF of the PD patients [58, 59]. 
Moreover, none of the NO biomarkers, including nitrite, nitrate and cGMP showed 
any alteration in the levels following the onset of PD in the patients [60]. However, a 
study done on a smaller cohort in the state of West Bengal in India found that though 
there was an increase in the plasma nitrite levels in the PD patients, the difference 
became significant only after a longer duration of the onset of PD [61]. A study done 
on isolated neutrophils showed that NO was elevated both in the newly diagnosed and 
treated patients of PD following stimulation with phorbol myristate acetate (PMA) 
[62]. This result suggested that nitrate levels might play a critical role in the PD 
pathology, but the reduction in its levels isn’t achieved by the currently available 
drug therapy. In line with these findings, most of the recent studies have observed an 
elevation in the levels of NO and associated products such as dimethyl arginine and 
peroxynitrite in the serum of the PD patients [63, 64]. 

The difference in the results observed across years may be due to the improved 
instrumentation and measures of quantification for the estimation of the NO. This 
discrepancy in the results obtained across studies could be one of the reasons there is 
no drug yet in the clinical trials aimed at targeting the NO levels. However, with more 
clear understanding and improved limit of detection, some are expected to reach the 
clinics soon. 

Pharmacological Agents Targeting Nitric Oxide 
in Preclinical PD Models 

Nitric Oxide Synthase Inhibitors 

There has been little to no translational success with the inhibitors of the nitric oxide 
synthesis in PD patients. However, several of the specific nNOS and iNOS inhibitors
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have been studied at the preclinical stages for their neuroprotective effects in the 
in vitro and in vivo models, as shown in Table 16.1.

Though there are some contradictory reports related to the beneficial effects 
of nNOS inhibitors, the role of iNOS inhibitors has been well elucidated in PD. 
Administration of the nNOS inhibitor 7-nitroimidazole led to a significant reduc-
tion in the number of glial fibrillary acidic protein (GFAP) positive reactive astro-
cytes after MPTP administration [66] besides reducing the levels of isolectin B4 
positive microglia cells in the striatum and substantia nigra of the C57BL/6 mice 
[66]. It also improved the motor performance of the animals in the rotarod test 
following the stereotaxic injection of 6-OHDA in the right medial forebrain bundle 
[65, 66]. Similarly, the beneficial effects of another nNOS inhibitor NG-nitro-L-
arginine were also observed in the 6-OHDA model, where it accorded protection 
from the levodopa-induced dyskinesias [65]. These effects have also been validated 
in the higher mammals including baboons where administration of 7-nitroimidazole 
led to decrease in the reduction of TH+ neurons in the substantia nigra as well as 
improvement in the cognitive performance [74]. 

On the contrary, there are reports which have attributed the protective effect of 7-
nitroimidazole in the MPTP model to its inhibitory effects on MAO-B [75]. Moreover, 
a study was done on the ventral mesencephalic (VM) primary culture demonstrated 
that application of the selective nNOS inhibitor ARR17477 following MPP+ treat-
ment had no effect on the reduced number of TH-positive neurons. Furthermore, it 
didn’t increase the number of GFAP- and OX-6-positive cells and hence did little to 
reduce the glial cell immunoreactivity [71]. 

On the other hand, the levels of iNOS were elevated in different models of PD 
including MPTP, MPP+, Paraquat, 6-OHDA and maneb. Moreover, inhibition of 
iNOS using 1400 W in the same model system where nNOS inhibition was ineffec-
tive, conferred dose-dependent neuroprotection in the MPP+ treated ventral mesen-
cephalic (VM) primary culture besides reducing the glial cell immunoreactivity 
[71]. Other iNOS inhibitors which have been tested positive in the MPTP induced 
parkinsonism in mice include QFF205, QFF212 and melatonin [67–69]. Since mela-
tonin also inhibits nNOS by the calcium calmodulin dependent mechanisms (IC50 of 
0.1 μM in the rats), this may also be one of the factors responsible for its neuropro-
tective effect in PD [76]. GW274150 a selective iNOS inhibitor showed bell-shaped 
dose–response curve and protected TH+ neurons in the nigrostriatal pathway [70]. 
Similar results were obtained with aminoguanidine which led to a reduction in the 
lipid peroxidation and protection from maneb and paraquat-induced neurotoxicity 
[72]. Furthermore, norfluoxetine which is the pharmacologically active metabolite 
of fluoxetine conferred neuroprotection by a reduction in the nitrate production by 
iNOS in the lipopolysaccharides treated cortical microglial culture [73]. 

These results point out at the possible involvement of nitric oxide and NOS in the 
pathophysiology of PD. Modulation of the NOS activity in the brain by exogenous 
drugs is, however, still a translational challenge owing to the complex physiological 
action of NO in the central nervous system [77].
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Potential of Antioxidants Acting Through Nitric Oxide 
Pathway in PD 

Besides reducing the nitric oxide levels with the help of NOS inhibition, the other 
most common approach which has been tried is the use of antioxidants to protect the 
cells in the CNS from the effects of nitrosative stress. A different class of chemicals, 
including polyphenolics, carotenoids, flavonoids, phenols, and amino acid deriva-
tives, have been used as antioxidants for the protection from nitrosative stress. Table 
16.2 gives an insight into some of the antioxidants which have been tried in the PD 
models but are yet to translate into clinics as relevant therapeutic strategies.

Many of the polyphenolic compounds have been tried in the in vitro and in vivo 
model systems to protect against nitrosative stress in PD. The most common being 
curcumin which has been used extensively in a variety of neurodegenerative disor-
ders including PD, AD and Huntington’s disease [53, 97, 98]. It owes a part of 
its beneficial effect on the reduction of nitrosative stress. Additionally, following 
curcumin administration immunohistochemistry analysis of the tyrosine hydroxy-
lase positive neurons in the substantia nigra demonstrated that it prevented the loss 
of dopaminergic neurons [53]. Besides this, derivatives of curcumin have also been 
tried and tested in PD. Di-glutamoyl curcumin also protected against nitrosative 
stress, reduced the peroxynitrite levels and prevented mitochondrial dysfunction 
[78]. Another curcumin analog, EF-24 (3,5-bis(2-flurobenzylidene)piperidin-4-one) 
accorded protection from the rotenone-induced synphilin aggregation and nitrosative 
stress in the SH-SY5Y cell lines [79]. Furthermore, polyphenolics from green tea 
also conferred protection to dopaminergic neurons in the midbrain and striatum from 
elevated levels of NO, nitrate, nitrite, iNOS and protein-bound 3-nitro-tyrosine [80]. 
Other phenolic compounds such as Arbutin and Carvacrol have also been tested in 
the MPTP and 6-OHDA model of PD. These compounds showed improvement in 
the motor deficits besides providing relief from the oxidative and nitrosative stress. 
Estimation of the nitrite levels in the midbrain in these studies demonstrated the 
potential of these compounds to be useful in improving the biochemical parameters 
in PD [84, 88]. 

Other classes of compounds helpful in providing relief from nitrosative stress 
include carotenoids, flavonoids and monoterpenoids. Crocin, a carotenoid obtained 
from Crocus sativus is a commonly used dye which was also found effective in the 
6-OHDA hemiparkinsonian model to improve the behavioural deficits and reduce 
the nitrite levels in the striatum [86]. A similar reduction was also observed with 
the use of flavonoids, quercetin and sesamin, which were tested in the Microglial 
(N9)-Neuronal (PC12) co-culture and chrysin in the 6-OHDA model [92]. 

A herbal extract from Juniperus communis, animal-derived products like mela-
tonin and amino acid derivative L-carnitine have also been tried in the PD models 
and have been found effective in the reduction of nitric oxide and the associated 
products [89–91]. 

There has been significant progress in the study of antioxidants for the reduction 
of oxidative and nitrosative stress. However, due to variation in the dose and lack of
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stringent quality control of the herbal drugs and plant-derived products, not much has 
translated into the clinics. Though some of the antioxidants have undergone clinical 
trials for their beneficial effects, a relevant drug targeting nitric oxide associated 
nitrosative stress is yet to come out in the market [99]. 

Concluding Remarks and Future Directions 

This chapter summarizes the key findings related to the role of nitric oxide in PD. 
There are several underlying mechanisms involved in the pathophysiology of PD but 
have failed to translate into the clinics as useful therapeutic strategies. In line with 
these lies the nitric oxide which has been extensively explored in the context of other 
risk factors in PD but demands more attention for it to be targeted in the clinics. 
Drugs reducing the iNOS expression work well in the preclinical stages and can be 
taken up for clinical trials for the management of PD and associated complications. 
Moreover, there are several dietary supplements available which work towards the 
reduction of the nitrosative stress and NO-mediated neuronal death in the PD models. 
However, most of these approaches suffer from lack of specificity and side effects 
related to the use of non-standardized dosage regimens. Therefore, there is a need 
for deeper insights so that therapies targeting nitric oxide could be taken up for the 
management of PD. 
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Abstract Stable gastric pentadecapeptide BPC 157 is known with very safe profile 
when used to be in ulcerative colitis and now multiple sclerosis trial, lethal dose 
(LD1) not achieved. Its pleiotropic beneficial effects were largely combined with 
its particular modulatory effect on NO-system functions, providing that BPC 157 
may counteract adverse effect of nitric oxide synthase (NOS)-blocker L-NAME and 
NOS-substrate, L-arginine. Previous review emphasized the large range of relation-
ships between and NO-system. These relationships were described as those on (i) 
gastric mucosa and mucosal protection, following alcohol lesions, in cytoprotection 
course, NO-generation, and blood pressure regulation; (ii) alcohol acute/chronic 
intoxication, and withdrawal; (iii) cardiovascular disturbances, chronic heart failure, 
pulmonary hypertension, and arrhythmias; (iv) disturbances after hypokalemia and 
hyperkalemia, and potassium-cell membrane dysfunction and (v) complex healing 
failure, proved by the fistulas healing. Further studies revealed additional particular 
relations on sphincter function, free radicals induced injuries, bleeding, non-specific 
and specific NSAIDs-induced lesions, general anesthesia (thiopental)- and local 
anesthesia (lidocaine)-induced disturbances, rat models that resemble schizophrenia-
positive symptoms and most importantly, with organs lesions, or with vessels occlu-
sion, the effect on the vessels presentation, and recruitment of additional collateral 
pathways to bypass occlusion. All of the studies used the triple relationships L-
NAME versus L-arginine versus L-NAME + L-arginine, all together, as an indicator 
how NO-system may be involved. In a series of more than 80 targets investigated, 
L-NAME and L-arginine exhibited the opposite, but also the parallel effects. We 
proposed the presentation of new additional receptor(s) to resolve the matching of 
NO agents commonly supposed that negatively or positively affected the NO system 
and BPC 157 central role. 
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Stable Gastric Pentadecapeptide BPC 157 

Stable gastric pentadecapeptide BPC 157 is known with very safe profile when used 
to be in ulcerative colitis and now multiple sclerosis trial, lethal dose (LD1) not 
achieved [1–17]. Its pleiotropic beneficial effects were largely combined with its 
particular modulatory effect on NO-system functions [7], providing that BPC 157 
may counteract adverse effect of nitric oxide synthase (NOS)-blocker N(G)-nitro-L-
arginine methylester (L-NAME) and NOS-substrate, L-arginine [7]. 

Of note, such modulatory effect since very beginning (i.e., BPC 157 antago-
nized L-NAME-induced hypertension as well as L-arginine-induced hypotension 
[18]) opposes the common concept (i.e., [19]). Generally, that NO-system common 
concept [19] mostly works based on the NOS-blocker effect alone, and NO-inhibition 
[19]. Much less frequently, that NO-system common concept was based on the NOS-
substrate effect, and even less frequently on the combined application of the NOS-
blocker and NOS-substrate, and their mutual antagonization (for review see, i.e., [7]). 
Thus, considering these obvious limitation in the studies, it is evident that commonly 
accepted concept [19], in general, may only assume the opposite effects of NOS-
blocker and NOS-substrate, as well as their responses to antagonize each other’s 
response. On the other hand, the modulatory effect ascribed to BPC 157 application 
that would provide an alike antagonization of both opposite adverse effects [7] was  
outside the commonly accepted NO-system concept (i.e., [19]) and required an addi-
tional approach. Thereby, we introduced the administration of L-NAME (for NOS-
blockade), administration of L-arginine (for NOS-substrate), and L-NAME + L-
arginine application, thus, NOS-blockade (L-NAME) versus NOS-over-function (L-
arginine) versus NO-immobilization (NOS-blockade/NOS-over-function, L-NAME 
+ L-arginine) [7], triple relationships L-NAME versus L-arginine versus L-NAME 
+ L-arginine, all together, as an indicator how NO-system may be involved [7]. 

The additional important points may be that BPC 157 may interact in a particular 
way with dopamine system as well. This may be the counteraction of the adverse 
effects of dopamine agonists as well as the counteraction of the adverse effects 
of dopamine antagonists application and the counteraction of dopamine-neurotoxin 
(methyl-4-phenyl-1,2,3,6-tetrahydrophyridine) [20–24]. Also, a similar interaction 
is possible with prostaglandins system. BPC 157 largely counteracted toxicity of 
non-steroidal anti-inflammatory drugs [6], both non-specific and specific [6] as well  
as exhibited particular anti-inflammatory action of its own, i.e., both prevented and 
reversed adjuvant arthritis, periodontitis, or peritoneal adhesions in rats [6, 25–27]. 

Stable Gastric Pentadecapeptide BPC 157 and NO 

Previously, we reviewed [7] the large range of relationships between stable gastric 
pentadecapeptide BPC 157 [1–17] and NO-system. These relationships were 
described depending on the target affected. An important point includes gastric
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mucosa and mucosal protection, following alcohol lesions, in cytoprotection course, 
NO-generation, and blood pressure regulation [18, 28]. The next point was alcohol 
acute/chronic intoxication, and withdrawal [19]. Additional studies include cardio-
vascular disturbances, chronic heart failure, pulmonary hypertension, and arrhyth-
mias [29–33]. Evidenced were also disturbances after hypokalemia and hyper-
kalemia, and potassium-cell membrane dysfunction [32–34]. Final point includes 
complex healing failure, proved by the fistulas healing, duodenocutaneous [35], 
colocutaneous [36], and esophagocutaneous [37]. Further studies revealed additional 
particular relations on the quite distinctive targets. Illustratively, studies revealed the 
sphincter function [28, 38–40], free radicals induced injuries [39–41], bleeding [42, 
43], non-specific and specific NSAIDs-induced lesions [44, 45], general anesthesia 
(thiopental)- and local anesthesia (lidocaine)-induced disturbances [46, 47], and rat 
models that resemble schizophrenia-positive symptoms [20]. Likely, the most impor-
tant point may be, with organs lesions, or with vessels occlusion, the effect on the 
vessels presentation, and recruitment of additional collateral pathways to bypass 
occlusion [27, 42, 48–50]. In addition, in the healing process, BPC 157 was shown 
to interact with many molecular pathways [15, 17, 37, 51–59]. 

It was also emphasized that BPC 157 is formed constitutively in the gastric 
mucosa, stable and present in human gastric juice [1–17]. Thereby, along with 
suggested significance of NOS and the basal formation of NO in stomach mucosa, 
greater than that seen in other tissues [19], BPC 157 may alone induce the release 
of NO in ex-vivo condition [18], even in the conditions that annihilate the effect of 
L-arginine [60]. Consequently, it may exhibit a general, effective competing with 
both L-arginine analogues (i.e., L-NAME) and L-arginine [7]. Finally, the most 
recent study demonstrates that BPC 157 can modulate the vasomotor tone of an 
isolated aorta in a concentration- and NO-dependent manner [55]. BPC 157 can 
induce NO generation likely through the activation of Src-Cav-1-eNOS pathway 
[55]. However, how this advantage of modulating NO-system (i.e., BPC 157 may 
counteract both L-NAME-induced hypertension and L-arginine-induced hypoten-
sion [18]) may be practically translated into an enhanced clinical performance still 
remains to be determined. 

Particular Relationships Between the NO-System 
as a Follow Up of the NO-Agents Effects 

Triple Relationships L-NAME Versus L-Arginine Versus 
L-NAME + L-Arginine, All Together, as an Indicator How 
NO-System May be Involved 

Now, this review further revealed the particular relationships between the NO-system, 
taken as the main basic bodily system, and stable gastric pentadecapeptide BPC 157 
[1–17], as a system that may interact with [7]. In principle, for the NO-system
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interactions with other systems, we could claim, the more points identified where 
the two systems may interact, the closer may be their relationships [7]. Likewise, 
we could argue in vivo studies, the more agents employed (NOS-blockers, NOS-
substrate, combination of the NOS-blocker and NOS-substrate), the more precise 
relationships to be defined [7]. At the end, with respect to the established significance 
of the NO-system, we can, also with suited addition, (re)-evaluate the real significance 
of the other system, BPC 157, employed in the noted interactions. In theory–practice 
application, the significance of the NO-system that may be estimated, depends on 
the effect(s) of the NO-agents, given alone and/or together—that may be seen on the 
one or more of the particular targets. These are the effect or no effect of NOS-blocker 
(L-NAME), the effect or no effect of NOS-substrate (L-arginine), the effect or no 
effect of their combination (L-NAME + L-arginine), and their ability or no ability to 
oppose (or not oppose) each other effect, the effects opposite or the effects parallel. 
This means triple relationships L-NAME versus L-arginine versus L-NAME + L-
arginine, all together, as an indicator how NO-system may be involved [7]. Evidently, 
this triplet complex approach largely exceeds general presumption that holds the 
opposite relation between the NO synthase (NOS)-blocker and NOS-substrate, and 
that NO synthase (NOS)-blocker administration and NOS-substrate administration 
have to have the opposite effect. Contrarily, they may have also parallel effects. 
Thereby, it strongly opposes the use of only either NOS-blocker (i.e., NO studies are 
usually limited to the blunted generation of NO only (and thereby less precise [7]) or 
NOS-substrate, alone, to substantiate the particular involvement of NO-system [7]). 

In general, NO-system, taken as the main basic bodily system, with tight interac-
tions between NO-synthases, implies effective control of the entirety of the bodily 
functions, permanent maintenance of the close balance [7]. Together, this significance 
and complexity may overwhelm the common concept that beneficial or harmful effect 
of either NOS-blocker or NOS-substrate would exclude the possibility of the similar 
effect of other one. Thus, this triplet concept directly opposes general concept of the 
mandatory opposite effects holding that controversial is the existing application of 
the both L-NAME and L-arginine in the similar disease condition (i.e., [61]). 

Both L-NAME and L-Arginine in the Similar Disease 
Condition 

Of note, the list of possible “controversy” is appreciable. It includes, at least, cere-
bral ischemia [62, 63], and schizophrenia [64, 65] (including in the animal models 
resembling ‘positive-like’ symptoms of schizophrenia (i.e., amphetamine applica-
tion [66–69])). Questioned were also the inhibition of endogenous NO production 
in severe sepsis [70–72] and administration of exogenous NO in acute lung injury 
[73, 74]. In gastrointestinal tract, for instance, L-NAME blocks the diarrheal effect 
of castor oil while worsens the apparent injury to the mucosa [75].
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Recently, using the above described triplet complex approach [20], we ratio-
nalize in the further schizophrenia therapy, the evidenced use of both NOS-inhibitor, 
L-NAME, and NOS-substrate, L-arginine [64, 65, 76]. This would anticipate distinc-
tive patterns of the disease that would be responsible to either NOS-blocker or 
NOS-substrate administration. We used the rat models that resemble “positive-
like” symptoms of schizophrenia [20], acutely [66–69] and chronically [77], to 
induce sensitivity [77]. Also, we employed also the rat extrapyramidal symptoms 
models [23, 78], known to be related to the more severe psychiatric symptoms [79]. 
Two distinctive patterns, “L-NAME non-responsive, L-arginine responsive” and “L-
NAME responsive, L-arginine responsive” were identified [20]. These responses 
were suggested to indicate two distinctive presentations of the NO-pathways [20]. In 
apomorphine-, and MK-801-induced effects, methamphetamine chronic-sensitivity, 
and haloperidol-induced catalepsy, L-arginine (counteraction) and L-NAME (no 
effect), when combined (L-NAME + L-arginine), exhibited opposite effect since 
antagonize each other effect (“L-NAME non-responsive, L-arginine responsive”). 
Contrarily, in amphetamine-effect, L-arginine (counteraction), L-NAME (counterac-
tion) exhibited a parallel effect, and when combined (L-NAME + L-arginine), exhib-
ited no antagonization of each other, rather a persisting effect (“L-NAME responsive, 
L-arginine responsive”). 

L-NAME and L-Arginine May Have Both Opposite 
and Parallel Effect; BPC 157 Effect 

Indeed, L-NAME and L-arginine may also have a parallel effect [20, 34, 38, 42, 
49, 50]. In addition to amphetamine-effect [20], this parallelism occurs with quite 
distinctive models (myosis, atropine-mydriasis [38], huge magnesium over-dose 
[34], ischemic/reperfusion colitis [49], duodenal congestion lesions [50], cecum 
perforation [42], and L-NAME and/or L-arginine interaction with other systems (i.e., 
acetylcholine) [38]). In all these experiments, the consistent beneficial outcome with 
BPC 157 co-administration shows that BPC 157 therapy effect is regularly present in 
BPC 157 + L-NAME + L-arginine-animals [20, 34, 38, 42, 49, 50]. This congruent 
point is also demonstrated in other studies [80, 81]. 

Unfortunately, the similar studies using described L-NAME, L-arginine, and L-
NAME + L-arginine triplet complex application, are generally lacking [7]. Thereby, 
using that triplet complex approach (L-NAME versus L-arginine versus L-NAME + 
L-arginine complex application), we going to summarize the evidence coming from 
all of our NO-studies, including more than 80 targets investigated (Tables 17.1 and 
17.2). The evidence for these conclusions is, in brief, that a series of most of twenty 
L-NAME, L-arginine, and L-NAME+ L-arginine complex administration has partic-
ular order of potency on the particular targets investigated (Table 17.1). In contrast, 
this same series of L-NAME, L-arginine, and L-NAME+ L-arginine complex effects 
has an entirely different order of potency on other targets (Table 17.2).
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Delineation of Both Opposite and Parallel of Effects 
of L-NAME and L-Arginine 

As in theory long-ago established (see i.e., [83]), we should consider that the vari-
ations in activity could be due to (a) quantitative differences in potency, (b) quali-
tatively different effects or (c) differences due entirely to the experimental methods 
used. However, if the last two factors are controlled as much as possible by the selec-
tion of the same dose for L-NAME, L-arginine, and L-NAME + L-arginine complex 
and by using suitable experimental techniques, then the variations in activity are 
presumably due to actual differences in the receptors involved. 

These would further delineate both opposite and parallel of effects of L-NAME 
and L-arginine (Tables 17.1 and 17.2). Few targets in the studies that revealed, 
however, no effect of either L-NAME or L-arginine, may be related to limitation 
of the 5 mg/kg of L-NAME and 100 kg mg of L-arginine, applied intraperitoneally, 
as used standards. 

Mostly, opposite effects of L-NAME and L-arginine, when both L-NAME and L-
arginine, given alone, exhibit innate activity, appear as specific effect, since combined 
L-NAME and L-arginine may antagonize each other effect to the level of the control 
values (Table 17.1). However, it may be that either of NO-agents, L-NAME or L-
arginine, may also have a hidden effect. That activity would be apparent as the effect 
only when given together, as the antagonization of the previous innate activity of the 
either L-NAME or L-arginine. Finally, it may be that the opposite effects of L-NAME 
and L-arginine, when given together (L-NAME + L-arginine) may not antagonize 
each other response, or at least no antagonization to the extent of the control values, 
thereby, they appear to be nonspecific (Table 17.1). Thus, for the opposite effect 
of L-NAME and L-arginine, we can envisage both simple effect (when inhibition 
(L-NAME) and stimulation (L-arginine) appear to be balanced, and thereby, mutual 
antagonization may occur), and composed effect (when either inhibition (L-NAME) 
or stimulation (L-arginine) prevails, while the other remains hidden, and may appear 
only on the background of the prevailed effect). Possibly, opposite effects of L-
NAME and L-arginine, that may not antagonize each other’s response, providing 
however the known specificity of both L-NAME and L-arginine, may suggest the 
presentation of the particular NO-targets, inhibitory and stimulatory, that can be 
likely separated. Commonly, the antagonization only to the control level, leaves the 
remained disturbances out of the functioning of the NO-agents, and thereby, this 
may suggest the NO-system function particularly in the more disturbed conditions 
[7]. Illustrative example is when L-arginine may antagonize only the worse lesions, 
those L-NAME-induced lesions [31, 45]. 

Likely, parallel effects of L-NAME and L-arginine should resolve the matching of 
NO agents commonly supposed that negatively or positively affected the NO system 
(Table 17.2). Of note, parallel effects of L-NAME and L-arginine, when both L-
NAME and L-arginine, given alone, exhibit innate activity, appear as specific effect, 
since combined L-NAME and L-arginine may antagonize each other effect to the level 
of the control values. Also, as may be seen with the opposite effects of L-NAME and 
L-arginine, the alternative possibility appeared that these parallel effects of L-NAME
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and L-arginine, when given together (L-NAME + L-arginine), may not antagonize 
each other response. Thus, if the variations in activity would be presumably due 
to actual differences in the receptors involved, we can suggest the presentation of 
the particular “pre-synaptic” inhibitory receptors. Providing the inhibitory role of L-
NAME, the inhibition of these inhibitory receptors by L-NAME, may be a particular 
point. Vice versa, “inhibition of inhibition”, may indirectly result with NO-release 
stimulation, thereby a comparable effect to that of L-arginine. Possibly, that NO-
release may antagonize the further effect of L-arginine administration. We could 
speculate that these “pre-synaptic” inhibitory receptors may have a complex role in 
the controlling of the NO-system function that should be further determined. 

Finally, we can theorize that BPC 157, behaving as an insurmountable antago-
nist of similar potency for the adverse effects of various L-NAME and L-arginine 
regimens, activating whatever of their specific receptors (including those suggested 
“pre-synaptic”), may act by modulating a mechanism common to those activated 
receptors. Two isozymes, neuronal NOS (nNOS) and endothelial NOS (eNOS) are 
Ca2+ dependent and constitutively expressed. The third NOS isoform, inducible NOS 
(iNOS) is Ca2+ independent and inducible by, for example, bacterial enterotoxins, 
cytokines and following intestinal injury [84]. 

Thus, it may be that in addition to the reported essential effect on eNOS [55], BPC 
157 may modulate the calcium effect as well. This may be likely, since BPC 157 may 
counteract the adverse effect of both hyperkalemia and hypokalemia both in vivo, as 
well as in vitro, their opposite effect on the membrane potential [32, 33]. Finally, as an 
additional clue, may be that BPC 157 acts as stabilizer of cellular junction [17]. Via 
increasing tight junction protein ZO-1 expression, and transepithelial resistance [17], 
it significantly mitigated indomethacin-induced leaky gut syndrome [17]. Likewise, 
there were inhibited the mRNA of inflammatory mediators (iNOS, IL-6, IFNγ and 
TNF-α), increased expression of HSP 70 and 90, and antioxidant proteins, such as 
HO-1, NQO-1, glutathione reductase, glutathione peroxidase 2 and GST-pi [17]. 

Conclusion 

Stable gastric pentadecapeptide BPC 157 pleiotropic beneficial effects, largely 
combined with its particular modulatory effect on NO-system functions were already 
reviewed [7]. Since beginning, this goes outside of the common NO-system concept 
[19] (opposite effects of NOS-blocker and NOS-substrate, which should antagonize 
each other’s response to be NO-specific) providing that BPC 157 may counteract 
adverse effect of NOS-blocker L-NAME and NOS-substrate, L-arginine. Resolving 
this modulatory role needs demonstration how NO-system is working, based on the 
activity of the NO-agents. Purposefully, we emphasized in vivo studies. Obviously, 
the more agents employed (NOS-blockers, NOS-substrate, combination of the NO 
synthase-blocker and NO-synthase-substrate), the more precise relationships to be 
defined [7]. Thereby, we suggest that triple relationships L-NAME versus L-arginine 
versus L-NAME + L-arginine, should be further standard. This triplet complex
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concept may oppose the common simple concept that beneficial or harmful effect of 
either NOS-blocker or NOS-substrate would exclude the possibility of the similar 
effect of other one. Introduction of the L-NAME versus L-arginine versus L-NAME 
+ L-arginine approach can identify also parallel effect of NOS-blocker and NOS-
substrate administration in addition to their prevalent opposite effects. Thereby, using 
that triplet complex approach (L-NAME versus L-arginine versus L-NAME + L-
arginine complex application), we summarized the evidence coming from all of our 
NO-studies, including more than 80 targets investigated (Tables 17.1 and 17.2). The 
evidence for these conclusions is, in brief, that a series of most of twenty L-NAME, 
L-arginine, and L-NAME + L-arginine complex administration has particular order 
of potency on the particular targets investigated (Table 17.1). In contrast, this same 
series of L-NAME, L-arginine, and L-NAME + L-arginine complex effects has an 
entirely different order of potency on other targets (Table 17.2). Likewise, we can 
envisage that in all these experiments, the consistent beneficial outcome with BPC 
157 co-administration shows that BPC 157 therapy effect acts as an insurmount-
able antagonist of similar potency for the adverse effects of various L-NAME and 
L-arginine regimens. 

At the end, with respect to the established significance of the NO-system, we can, 
also with suited addition, (re)-evaluate the real significance of the other system, BPC 
157, employed in the noted interactions. Starting from the initial specific NO-system 
related effect, NO-system blocking (L-NAME) and the NO-(over)-stimulation (L-
arginine), all of the studies used the L-NAME versus L-arginine versus L-NAME 
+ L-arginine complex application, all together, as an extended indicator how NO-
system really works, may be an essential key. This summary provides a series of 
more than 80 targets investigated. L-NAME and L-arginine exhibited mostly the 
opposite, but also the parallel effects. Most of the opposite effects can antagonize 
each other’s response (thereby, specific within the scope of the common NO-system 
concept [19]), but not all (thereby, these effects remain outside of the scope of the 
common concept [19], and need further explication). The same relations were noted 
for the parallel effects, which are entirely outside of the scope of the common concept 
[19]. Therefore, using the Ahliquist’s approach [83], we proposed the presentation 
of new orchestrated additional pathways and the presentation of the new additional 
receptor(s) to resolve the matching of NO agents commonly supposed that negatively 
or positively affected the NO system and BPC 157 central role. 
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Chapter 18 
Exploring the Gastroprotective, Ulcer 
Healing and Chemopreventive Properties 
of Nitric Oxide-Releasing Nonsteroidal 
Anti-inflammatory Drugs 

Jolanta Majka and Tomasz Brzozowski 

Abstract Nitric oxide (NO) is a pleiotropic endogenous mediator in the gastroin-
testinal (GI) tract that is produced by the three NO-synthase (NOS) enzymes; 
neuronal (nNOS, NOS1), inducible (iNOS, NOS2), mainly involved in the inflam-
mation response and endothelial (eNOS, NOS3), which regulates blood flow and 
mucosal defense against damage. NO contributes to the maintenance of mucosal 
integrity, gastrointestinal protection and ulcer healing, and therefore, the NO-based 
therapies have recently been proposed. The non-steroidal anti-inflammatory drugs 
(NSAIDs) exert anti-inflammatory, analgesic, anti-pyrogenic and chemopreventive 
properties, but their use is limited due to serious side effects such as GI-bleedings, 
mucosal erosions, and even gastric and duodenal ulceration. Thus, the strategy of 
incorporating a NO-releasing molecule into an NSAID has been shown to abolish the 
gastric side effects of native NSAIDs, presenting with lower gastric toxicity despite 
inhibiting both, prostaglandin cyclooxygenase (COX)-1 and COX-2 activity in the 
stomach. For example, new adducts of NO donor drugs that inhibit COX (CINODS, 
such as NO-aspirin, NO-ibuprofen and NO-sulindac) have shown better tolera-
bility, less gastrointestinal damage and reduced hepatic toxicity of the parent drugs, 
also providing better cardiovascular safety compared to selective COX-2 inhibitors 
(coxibs). Moreover, such adducts prompted research into the anti-carcinogenic poten-
tial of NO-NSAID, as these novels NO-NSAID adducts can inhibit cell prolifera-
tion either directly or through their effect on COX isoenzymes. Here we review 
some of the most promising recent advances in NO-NSAID physiology and pharma-
cology, focusing on the protective and chemopreventive mechanism of these novel 
NO-NSAID prodrugs. Hopefully, this new class of NO-releasing anti-inflammatory 
agents could offer a new therapeutic and chemopreventive approach to counteracting 
the gastrointestinal adverse effects associated with NSAIDs.
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Therapeutic potential of NSAIDs despite the gastrointestinal (GI) risk associated 
with acute and chronic use of NSAIDs such as aspirin (ASA) are known. These 
agents have been recognized for their antipyretic, analgesic, and anti-inflammatory 
properties, but the main limitations in their clinical use are serious side effects such 
as induction of acute hemorrhagic erosions and micro-bleeding, stress ulcers aggra-
vation and prolongation of the healing of existing gastric ulcers [1–4]. Currently, 
NSAIDs are considered a second risk of peptic ulcer upper gastrointestinal tract 
after Helicobacter pylori infection. The main representative of NSAIDs, ASA is 
increasingly used for prophylaxis against thrombosis, especially to prevent relapse 
in patients with a heart attack infarction and angina, but also in healthy adults to 
prevent myocardial infarction [5]. Following the breakthrough discovery by Vane 
et al., the beneficial effects of ASA are attributed on its ability to irreversibly inhibit 
the enzyme cyclooxygenase-1 (COX-1), thanks to which preventing the formation 
of the pro-aggregate vasoconstrictor thromboxane A2, and inducible prostaglandins 
(PGs) derived from COX-2 that are considered pro-inflammatory arachidonic acid 
metabolites [6]. 

NSAIDs account for 8% of prescriptions worldwide and are the most used 
in humans over 65.7 years of age. Interestingly, distal to the second part of the 
duodenum, damage to the mucosa of the small intestine (erosions, ulcerations, and 
mucosal effusions) are observed in the up 70% of people taking NSAIDs as detected 
by video capsule endoscopy. Such damage to the mucosa can lead to occult bleeding 
from the small intestine as well 10–15% of iron deficiency anemia patients are 
suspected of ingesting NSAIDs. In addition to the “cytoprotective” inhibition of 
COX-1 derived PG which is essential mechanism by which NSAIDs cause adverse 
gastrointestinal events, the direct local damage of these drugs has also been postu-
lated [5, 7]. Because stomach producing gastric acid is closely related to pathogenesis 
of these side effects, a commonly recommended strategy preventing gastrointestinal 
side effects of NSAIDs is the simultaneous administration of gastric acid secretion 
inhibitors such as proton pump inhibitors (PPIs) and H2 receptor antagonists (H2RA) 
[8, 9]. In particular, the effectiveness of PPIs in reducing the incidence gastrointestinal 
side effects of NSAIDs are nowadays widely accepted. However, recently concerns 
have been raised about an increased risk of fractures, infections, the higher prevalence 
of dementia and kidney disease with long-term use of PPIs [10]. 

The GI damage associated with the use of all NSAIDs is related to their ability 
to inhibit COX-1 activity, thereby inhibiting PG formation, and shifting the arachi-
donate cascade for the overproduction of vasoconstrictor leukotrienes (LT) such as 
LTC4 and LTD4 [8]. In addition, NSAIDs have been shown to impair the protective 
lines of mucosal defense by reducing the secretion of protective mucus and bicar-
bonate in the stomach and small intestine. However, apart from them inhibitory effect
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on the production of arachidonate cascade products, NSAIDs-induced an impair-
ment of the digestive tract resulting in mucosal damage through various mecha-
nisms unrelated to simple ones as the obvious inhibition of COX enzymes. This 
includes the non-ionic diffusion of low pKa NSAIDs such as ASA into the surface 
epithelial cells, which retain this factor in ionized form, thus inhibiting oxidative 
phosphorylation and resulting in a potent fall in the cell viability. Moreover, the 
endogenous PG deficiency caused by NSAIDs causes several important pathogenic 
events, for instance evoking gastric hypermotility associated with magnifying of 
NSAIDs-induced harmful effects in the stomach. 

Furthermore, the ingestion of NSAIDs is associated with increased expression 
and release of tumor necrosis factor alpha (TNF-α) which promotes cell apoptosis 
and triggers activation adhesion molecules and leukocyte recruitment leading to 
microvascular abnormalities and the formation of acute changes in the GI tract 
mucosa [11–13]. Moreover, it was proposed that inhibition of the extracellular regu-
lated kinase (ERK) pathway and the inhibition of nuclear transcription factor kappa 
B (NFκB) play a key role in NSAIDs gastropathy [14]. 

A New Class of Anti-inflammatory Drugs Containing 
the NO Moiety and Stomach Protection. Evidence 
from Preclinical Studies 

A new class of NSAIDs has emerged in recent years developed by NicOx (Sophia 
Antipolis, France) by adding an NO moiety to native NSAID [9, 11, 12, 15, 16]. 
NO has a number of effects in the GI tract that can counteract the loss of protective 
prostanoids caused by NSAIDs. NO increases: (1) secretion of protective gastric 
mucus, (2) increases blood flow to the gastric mucosa, (3) supports the repair and 
removal of toxins, and (4) reduces the interaction of neutrophils with microcirculation 
in the stomach, and (5) may also aid the healing of gastric ulcers [12–14, 17]. Earlier 
studies have shown that endogenous NO which is released from the vascular endothe-
lium, sensory afferent nerve or gastric epithelium works with PG in a maintenance 
mechanism integrity and microcirculation of the gastric mucosa [18–21]. There-
fore, a strategy has been introduced of the inclusion of a NO-releasing molecule 
in an NSAID that can alleviate gastric side effects their parent drugs, including 
their primary representative native ASA. For example, NO-releasing ASA (NO-
ASA) was found to exhibit less gastric toxicity despite inhibiting both the activity 
of COX-1 and COX-2 in the gastric mucosa [12–14, 17]. Rationale for this strategy 
is that the NO released from this derivative has a beneficial effect on the gastric 
mucosa by increasing the defensive capacity of the mucosa and preventing pathogenic 
events including decreased leukocyte adhesion to endothelium, decreased microcir-
culation of the mucosa and reduced secretion of protective mucus and bicarbonate 
secretions caused by this parent drug [13, 20, 21–23] (see Fig.  18.1). This concept 
has been proven on human volunteers as adding the group donating NO to aspirin
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resulted in the creation of a new chemical formulation, which maintained COX-1 and 
platelet inhibitory activity, almost avoiding damage to the GI tract [22]. A new series 
of compounds have been introduced which consist of NSAIDs (e.g., flurbiprofen, 
diclofenac, ketoprofen) combined with a NO that can be released from each of these 
agents. With the introduction of these new pro-drugs, GI side effects observed with 
the ingestion of the conventional NSAIDs have been significantly reduced. This was 
due to the beneficial topical protective effects of NO on the gastric mucosa. Although 
these NO-releasing NSAIDs keep their anti-inflammatory properties comparable to 
those of the parent NSAID, they exert significantly reduced gastropathy. The signif-
icantly reduced GI side effects caused by conventional NSAIDs, are limited because 
of the local protective action of NO on the gastric mucosa [24–26] (Fig. 18.1). 
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Fig. 18.1 The simplified scheme of beneficial action of nitric oxide (NO)-releasing (NSAID) in the 
stomach. Conventional NSAID can induce gastric mucosal damage by inhibition of cyclooxygenase 
(COX) enzymes and a profound inhibition of endogenous prostaglandins (PG). These arachidonate 
metabolites have been shown to influence many physiological processes including gastric mucosal 
integrity, mucosal defense, and gastric microcirculation. The PG deficiency caused by NSAID 
leads to the impairment of major lines and factors of mucosal defense resulting in formation macro-
and microscopic gastric damage. NO released from NSAID due to activity of esterase’s affords 
protection via improvement of gastric blood flow, mucus and bicarbonate secretion, enhancement 
of mucosal repair and attenuation of local mucosal and systemic inflammation
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NO-Releasing NSAIDs Versus Conventional NSAIDs 
in the Mechanism of Gastric Ulcer Healing 

The development of a NO-releasing NSAID constructed by adding a nitroxy-butyl 
moiety to ASA or naproxen, alleviated the side effects of native NSAIDs while 
preserving anticoagulant activity comparable to their parent NSAID [5, 6, 12–14, 
17]. These drugs were shown to not only prevent mucosal damage but may also 
contribute to the mechanism of acceleration of ulcer healing process. The endogenous 
NO released by capsaicin and NO derived from the L-arginine, the substrate for NO 
synthase (NOS) [18, 23] and finally the NO donor, glyceryl trinitrate [24], exhibited 
stomach protection and accelerated ulcer healing. This was of a foremost importance 
since longer administration of NSAIDs was reported to (1) enhance the ulcerative 
response to various stimuli, and (2) impair healing pre-existing ulcerations [3, 7, 12, 
18]. This is the detrimental effect of administered conventional NSAIDs per os or 
even parenterally [7] ascribed to direct damage to the surface epithelium, excessive 
activation of white blood elements leading to disorders in microcirculation of the GI 
tract, the enhancement of the gastric motility and reduction in mucosal generation of 
gastroprotective PGE2 [17, 22–24]. In studies of chronic ulcers [13, 27], treatment 
with ASA or naproxen daily administered per os for 15 days caused the expected 
delay in ulcer healing and decreased both GBF at the ulcer margin while inhibiting 
of PGE2 synthesis in the gastric mucosa. In contrary, the treatment with NO-ASA 
and NO-naproxen did not delay the healing rate of chronic gastric ulcers and failed 
to impair the GBF at the ulcer margin compared to the vehicle-administered control 
values. Treatment with NS-398, a highly selective COX-2 inhibitor that has prolonged 
itself ulcer healing and a reduction in gastric blood flow (GBF) at the edge of the 
ulcer reversed the beneficial effects NO NSAIDs and enhanced the harmful effects 
of native ASA and naproxen on ulcer healing and GBF at the margin of ulceration. 
The specific COX-2 inhibitors have been widely proposed as an attractive therapeutic 
development in treatment of rheumatoid arthritis and osteoarthritis, in part, because 
it has been shown to be spare the COX-1 isoform responsible for the protection 
of the GI tract. Moreover, Coxibs do not induce peptic ulcers or bleedings but, 
paradoxically, appear to have a far less beneficial effect on healing pre-existing 
ulceration than simple NO-releasing NSAID, blocking both COX-1 and COX-2, 
through the mechanism involving a local NO release to counteract PG deficiency [18, 
28]. In case of chronic stomach ulcers, the beneficial effects of the NO released from 
NSAIDs such as ASA, is attributed to an increase in GBF in the mucosa, especially 
on the edge of the ulcer, and enhancement of angiogenesis [27]. In addition, COX-1 
mRNA was detected in intact gastric mucosa on the edge of the ulcer and in the 
mucosa treated with NO-ASA, NO-naproxen, and their parent NSAID. In contrast, 
COX-2 mRNA was not detected in the mucosa of the vehicle (control)-treated animals 
but was elevated already at the edge of the ulcer in rats treated for 15 days with 
vehicle and both, native ASA, and naproxen or their NO derivatives. This suggests 
that increased mucosal COX-2 expression at the edge of the ulcer contributes to the 
healing of gastric ulcerations and that NO released from gastric sparing NO-NSAIDs
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can compensate for PG deficiency caused by NSAIDs with the NO component. 
The importance of COX-2 in ulcer healing has recently been highlighted by the 
observation that COX-2 mRNA expression is increased after induction of chronic 
gastric ulcer suggesting that COX-2 and PG expression derived from COX-2 may be 
key in mechanism of ulcer healing [27, 29–32]. It is therefore rational to assume that 
PGs that originate from COX-2 isoform upregulated at the edge of the ulcer may be 
of immense importance in mechanism of gastric ulcer healing [32, 33]. This view 
is supported by the fact that treatment with NS-398 delayed ulcer healing caused 
by classic NSAIDs while this was not a case when NO-releasing NSAIDs and NO 
donors such as SNAP or GTN have daily been administered in rats with chronic 
gastric ulcerations. This conclusion is consistent with the observation of Salvemini 
et al. [34] that NO-releasing NSAID may activate the COX-2 pathway, suggesting 
that the COX-2 products can mediate this beneficial effect of NO-NSAIDs on ulcer 
healing. 

The Importance of NO-NSAIDs in Protecting the Stomach 
Against Experimental Ethanol Damage, Stress, 
and Ischemia–Reperfusion 

As mentioned above, the NO-releasing NSAIDs themselves show only minimal or 
no ulcerative properties in the gastrointestinal tract, despite they exert a strong anti-
inflammatory and analgesic effect like that of native NSAIDs [9, 15]. Brzozowski 
et al. [18] showed that ASA and naproxen are themselves ulcerative stomach, and 
their destructive effect was strongly intensified by adding an exogenous acid that was 
used in their research to mimic the natural fate of both NSAIDs under strongly acidic 
conditions in the stomach. Unlike conventional NSAIDs, NO-NSAIDs did not alter 
the stomach after acidification and had no adverse effect on GBF in the stomach. 
Moreover, both ASA and naproxen inhibited PGE2 production, confirming previous 
observations that suppression of COX and the subsequent deficiency of endoge-
nous PG in the gastric mucosa may at least partially explain their harmful effects in 
the stomach. Unlike parent drugs ASA or naproxen, their NO-releasing derivatives 
ASA- and NO-releasing naproxen which were themselves devoid of ulcerative prop-
erties, failed to induce the damage in the stomach after acidification, despite their 
continued ability to inhibit PGE2 production like that observed with their parent 
drugs. In addition, the pretreatment with NO-ASA and NO-naproxen mitigated the 
injury caused by ethanol and increased GBF. These effects were counteracted by 
ODQ, an inhibitor of NO-dependent guanylate cyclase, but not by the inhibition of 
NO synthase resulting from L-NNA administration [26, 35]. However, a significant 
amount NO metabolites were detected in the gastric contents of rats administered 
with these NO-releasing NSAIDs [26]. Moreover, SNAP which is a potent NO donor 
that by itself afforded gastroprotection against ethanol-induced gastric damage when 
added to native ASA or naproxen, has provided protection and improvement of GBF
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comparable to NO-releasing NSAIDs. This indicates that, indeed, the NO released 
from these compounds plays a key role in this protection and the accompanying 
increase in GBF. 

Interestingly, NO-ASA was relieved acute gastric changes caused not only by 
concentrated ethanol—classic, widely used substances that causes damage the 
stomach, but also those that appear in the gastric mucosa, that has been exposed 
to other experimental ulcerative agents such, for instance, water immersion and 
restraint stress or ischemia–reperfusion (I/R) [17, 27, 28]. This protective effect of 
NO-ASA against stress and I/R injury was accompanied, as in the case of ethanol, 
by an increase in GBF and a significant increase in the content of nitrite/nitrate in the 
stomach lumen. Concomitant treatment of SNAP or GTN, both known as NO donors, 
added to the native ASA to mimic the gastric fate of NO released from NO-NSAID 
in combination with I/R and exposure to stress also caused protection, followed by 
the rise in GBF and an increase in luminal release of NO similar to that observed 
with NO-NSAID-induced protection against ethanol lesions [18]. Specific suppres-
sion in the stress or I/R model of gastric lesions of the NO-sensitive guanylyl cyclase 
pathway by pretreatment with ODQ completely reversed NO-releasing ASA-induced 
protection and the rise in GBF. 

NO-releasing NSAIDs can counteract two events that occur after the inhibi-
tion of PG synthesis by NSAIDs, namely decreased blood flow in the stomach 
and increased adherence of neutrophils to the vessel’s gastric microcirculation 
endothelium [7, 27–29]. 

Other mechanisms have also been suggested as critical in the pathogenesis of 
experimental NSAIDs gastropathy [29, 30, 33]. For example, Fiorucci et al. [36] 
showed that administration of ASA caused an increase in the rate of apoptosis 
through upregulation caspase system mediated by TNF-α and the administration of 
NO-derivatives of NSAIDs counteracted these apoptotic effects. Moreover, a single 
administration of NSAIDs led to acute activation of cysteine proteases in the stomach, 
while prolonged NSAID exposure resulted in sustained upregulation gastric cysteine 
endoproteases involved in apoptosis [36]. Although apoptosis means a significant 
event in the regulation of gastric mucosa turnover, mediators involved the mecha-
nisms of initiation and performance of gastric apoptosis are unknown. One of the 
potent extracellular modulators of pro-apoptotic caspases that play a role in regula-
tion of gastric cell apoptosis in rats treated with NSAIDs may be TNF-α. It was  shown  
that the damage to the gastric mucosa caused by oral administration of NSAIDs is 
related to TNF-α-dependent activation of ICE-like cysteine proteases and that NO-
ASA can protect the gastric mucosa by inhibiting these key endopeptidases in the 
caspase cascade [36, 37]. Thus, a NO-NSAID such as NO-ASA can spare gastric 
mucosa and inhibit caspase activity, at least in part, through a cGMP-dependent 
pathway an effect mediated by NO release from NO-NSAID. These authors [36] 
proposed that the activation of the ICE/caspase-1 pathway by native ASA it is the 
rate-limiting the process of maturation and the pro-inflammatory secretion cytokines 
such as IL-1β. Thus, IL-1β and ICE-1 such as cysteine endopeptidase modulation 
by NO-ASA may explain the beneficial effects of NO derivatives NSAIDs in the 
stomach. Consistent with this hypothesis, other studies have documented that the
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native ASA intensified stress-induced gastric damage and decreased GBF linked 
with an increase in plasma formation IL-1β and TNF-α levels and these effects 
were eliminated in rats pretreated with NO-releasing ASA [36, 37]. This suggests 
that expression of IL-1β and TNF-α is suppressed and this effect plays a signifi-
cant role in the mechanism of protective action of this NO-ASA that releases NO 
on the gastric mucosa. Previous research has shown that development of bleeding 
erosions in the stomach caused by cold restraint stress in rodents were accompa-
nied by an increase in lipid peroxidation and neutrophil-dependent myeloperoxidase 
(MPO) activity, as well as a decrease in non-protein sulfhydryl levels in the gastric 
mucosa [38, 39]. Harmful effects of ASA and others NSAIDs in the stomach may 
involve the activation of reactive oxygen metabolites (ROM). It is well known that 
ROMs are engaged in the pathogenesis of experimental gastric ulcer formation in 
animal models evoked by I/R, stress and NSAID administration including ASA and 
indomethacin. ROM [40–44] has been reported to play a vital role in the patho-
physiology of I/R-induced and NSAID-induced acute changes in the stomach from 
treatment with strong oxygen scavengers such as superoxide dismutase (SOD), cata-
lase, or dimethyl sulfoxide (DMSO) capable of providing mucosal protection and 
significantly reduced the severity of these deleterious changes [39–42]. According to 
these reports, the exposure to ASA can induce focal ischemia that leads to increased 
formation of ROM [43, 44]. Stress ulcers are defined as acute micro bleedings in the 
stomach occurring as complications in seriously ill patients after burns, sepsis, major 
surgery, or CNS trauma [45]. Among the various stress models used in animals the 
most reproducible results can be obtained under cold stress and restraint technique 
which appear to act synergistically in the formation of gastric ulceration [46]. Recent 
study showed that the damaging effects of ASA are attributed to the amplification 
in ROS as determined by the chemiluminescence test [43, 44]. In addition, ASA 
increased the content of MDA in the mucosa and decreased gene expression and 
activity SOD and GPx in the gastric mucosa, suggesting suppression of key mucosa 
antioxidant enzymes along with increased levels of pro-inflammatory cytokines such 
as IL-1β and TNF-α play an important role in the damaging activity of this NSAID 
and furthermore, these cytokines may increase the stress-induced damage to the 
stomach. 

Interestingly, this increase in the production of ROM by the mucosa favoring 
the activation of neutrophils, an increase in lipid peroxidation and a decrease in the 
expression and activity of SOD and GPx were in part weakened by NO-releasing 
ASA, suggesting that this new generation of a “safer” NSAID adduct, namely a NO-
NSAID, can counteract the adverse effect classic NSAID on the gastric mucosa such 
as aggravation of acute and chronic gastric injury evoked by variety of ulcerogens 
[36]. This is confirmed by the fact that GBF was elevated, and luminal NO production 
was increased in NO-releasing ASA-treated animals compared to those treated with 
native ASA. Thus, it is now clear that native NSAIDs exacerbate ulcerative stress 
processes, but NO-releasing NSAIDs protect against stress-induced gastric damage 
not only due to excessive NO release, which can compensate for PG deficiency caused 
by native NSAIDs, but also due to inhibition of excessive ROM synthesized in the 
gastric mucosa in response to classic NSAIDs [36, 37]. Moreover, Brzozowski’s
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group [27] found it for the first time that NO-ASA accelerates mucosal repair and 
regeneration after cold stress and restraint-induced damage, and that this beneficial 
effect was accompanied by an increase in GBF. In contrast, native ASA prolonged 
the regeneration of the stress-induced gastric mucosal damage with a simultaneous 
reduction in GBF in the stressed-gastric mucosa, indicating that the NO-releasing 
ASA derivative is superior to native ASA in mucosal repair of stress-induced changes 
in the stomach [27]. Interestingly, an increase in the number of activated neutrophils 
and lipid peroxidation were inhibited by NO-releasing ASA, revealing mechanism by 
which a new generation of these NSAID adducts could be counteracted the harmful 
effect of classic NSAIDs on the gastric mucosa. It should be mentioned, however, that 
NO-ASA protection was observed in their studies only after topical but not parenteral 
administration [27] and further studies are needed to check if this compound will be 
effective also after systemic administration. 

The compared the mechanisms underlying the negligible gastrotoxicity of NO-
releasing NSAIDs versus conventional NSAIDs tend to be complicated and still not 
fully understood. 

Recently, an association has been demonstrated between NO and the heat shock 
protein (HSP) family [47]. HSPs as chaperones are essential for important cellular 
events such as protein folding, and translocation [48]. In general, HSP expression, 
particularly HSP 70, is induced in cell response to exposure to stressful events such 
as exposure to heat, heavy metals, chemicals, and other pathophysiological stres-
sors. HSPs are also involved in the defense mechanisms of the GI mucosa [49, 
50]. Byrne et al. [50] reported that NO induces HSP 70 in a concentration dependent 
manner in gastric mucosal cell culture. However, whether this effect might contribute 
to the gastroprotective properties of NO-releasing NSAIDs has been little investi-
gated, and there is no information available as to whether NO-releasing NSAIDs 
can affect the expression of HSP 70 in gastric mucosa under stress and regeneration 
of this mucosa after stressful stimuli. Recently, Konturek et al. [49] concluded that 
NO-ASA increased the expression of HSP 70 mRNA in the gastric mucosa of rats 
subjected to water immersion and restraining stress. The fact that NO-ASA, unlike 
ASA, increased the expression of HSP 70 in the gastric mucosa indicates that the 
NO released from NO-ASA has a stimulating effect on the expression of HSP 70. 
Byrne et al. [50] also reported that the NO donor, S-nitroso-N-acetyl-penicillamine 
induced HSP 70 in gastric mucosa cells, and this effect was abolished by the NO 
scavenger. Consistent with these results, Xu et al. [51] confirmed that NO released 
from various NO donors, including sodium nitroprusside or SNAP, can activate HSP 
70 in cultured vascular smooth muscle cells. Induction of HSP 70 by NO donors was 
associated with the activation of heat shock transcription factor 1 (HSF1), indicating 
that the response was regulated at the transcription level [51]. Since HSP 70 has 
been shown to play a vital role in gastric mucosa defense and ulcer healing, HSP 70 
induction by NO-ASA may be an important mechanism underlying the gastropro-
tective properties of this drug [48–50]. Increased HSP 70 expression is an early step 
in stomach response to acute, stress-induced damage to the gastric mucosa which 
is consistent with previous observations that stress overexpressed HSP 70 [52]. On 
the other hand, native ASA, which potentiated stress-induced damaging changes in
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gastric mucosa, significantly suppressed this HSP-70 response. This indicates that 
suppression of HSP 70 expression by ASA may be one of the mechanisms that may 
contribute to the development of NSAID gastropathy. HSP 70 activation may play a 
key role in preventing NO-ASA-induced stress damage to the stomach and this effect 
appears to be consistent with previous observations that induction of HSP 70 by mild 
total body warming or pretreatment with geranylgeranyl acetone (GGA) enhanced 
mucosal defenses and reduced the number of stress-induced gastric lesions [53, 
54]. In summary, NO-releasing ASA, as opposed to native ASA, is beneficial in 
suppressing stress-induced lesions compared to classical ASA and contributes to 
the healing of these lesions by reducing stress-induced oxidative damage in gastric 
mucosa cells. The antioxidant effect of NO-ASA may also result from the inhibition 
of leukocyte adhesion to the epithelium and the increased production of HSP 70, 
which acts as an endogenous gastroprotective against protein denaturation induced 
by lipid peroxidation. This evidence confirmed that one of the important pathways 
mediating the protective effects of NO-ASA is the upregulation of HSP 70 in the 
gastric mucosa and a strong inhibition of lipid peroxidation-induced ROM production 
and release. 

Anticarcinogenic and Chemopreventive Potential 
of NO-Releasing NSAIDs 

The prototypes of this class of anti-inflammatory agents exhibiting non-selective 
profile versus COX isoenzymes, for instance, COX-inhibiting NO-donating drugs 
(CINODS) and named “napro-CINODS” have been shown to reduce systemic 
blood pressure. These agents revealed better tolerability and enhanced cardiovas-
cular safety than selective COX-2 inhibitors (Coxibs), while causing less gastroin-
testinal damage than its parent drug, naproxen [55]. These and other properties of this 
adduct prompted the investigations on the anticarcinogenic potential of NO-NSAIDs. 
Among prodrugs evaluated for this purpose were i.e., NO-ASA, NO-ibuprofen and 
NO-sulindac which opens new avenues for the therapeutic approach against different 
cancers. These compounds inhibited the growth of cultured human colon cancer cells 
much more effectively than their parent compounds in vitro [56]. For example, NO-
releasing ASA (NCX 4016) attenuated aberrant crypt foci, a precancerous lesion, in 
a rat model of colorectal cancer and this effect was superior to that observed with 
parent ASA [56]. Similar greater efficacy of NCX 4016 was observed in a panel 
of colorectal cancer cell lines in vitro as documented by this prodrug evident cell 
perturbations and growth inhibition [57]. This higher antiproliferative activity of 
NCX 4016 compounds compared to the parent ASA was confirmed by Williams 
et al. [58], using another panel of human colon cancer lines. 

The mechanism of colon cancer chemoprevention by NO-NSAIDs should be 
further elucidated but it is postulated that these agents inhibit proliferation directly 
and through their effect on COX isoenzymes. Another mechanism this anticancer
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action of NO-NSAIDs may involve the stimulation of cell death by induction of 
apoptosis and through other forms of cell death. Moreover, NO-NSAID was shown 
inhibit the expression NF-κB, one of the members of transcription factor family, and 
this effect led to an increase in cell loss. It has been postulated that NO released 
from NO-NSAID can prevent the degradation of the cytoplasmic NF-κB inhibitor, 
IκBα [57, 58]. Due to this action of NO released from NO-NSAID, NF-κB is unable 
to translocate to the nucleus to activate the process of several gene transcription 
responsible for inflammation and carcinogenesis. Moreover, these prodrugs have 
been shown to suppress the expression of inducible NOS (NOS2), which is thought 
to contribute to enhancement of inflammation and colon carcinogenesis [56–58]. It 
is also not excluded that this action of NO-NSAIDs on NOS2 might augment the 
inhibitory effect of ASA on NF-κB. Besides local inhibition of cell proliferation, 
more systemic action of these compounds can account for their chemopreventive 
effects. 

It is of interest that low dose of ASA recommended prophylactically to prevent 
cardiovascular diseases failed to protect patients from colon cancer [59]. Thus, NO-
NSAIDs, recognized for their effectiveness against colon cancer, may provide double 
protection against coronary artery disease and colon cancer [56]. Besides inhibition of 
NOS2, and NF-κB, other pathways such as the suppression of ß-catenin/an activator 
of T-cell factor (TCF) signaling, and upregulation of COX-2 expression have been 
implicated in the chemopreventive action of NO-NSAIDs. 

Further studies are needed to explain the role of the induction of these pathways 
in the chemopreventive activity of NO-ASA against colon cancer. Interestingly, the 
administration of ATB-346, the new prodrug naproxen-releasing hydrogen sulfide 
(H2S), has been shown to inhibit colon prostaglandin synthesis and whole blood 
thromboxane synthesis as effectively as naproxen, but did not cause any damage to 
the GI tract [60]. Moreover, it was proven that ATB-346 exerted a better chemo-
preventive effect against colon cancer than naproxen while sparing the damage to 
GI tract usually associated with the use of the parent NSAID [60]. Thus, ATB-
346 may therefore be an attractive agent for the chemoprevention of colon cancer 
and possibly cancers of other tissues as well. Recently, Kashif’s group [61] studied 
the role of NOSH-aspirin (NBS-1120), a novel hybrid that releases NO and H2S, the 
gaseous molecules known to exert profound GI tract protective action against a variety 
of damaging agents [62]. This novel hybrid was designed as a safer alternative to 
conventional NSAIDs and even NO-NSAIDs to compare the gastrointestinal safety, 
anti-inflammatory, analgesic, antipyretic, antiplatelet and chemopreventive proper-
ties of ASA and NBS-1120 administered orally to rats at equimolar doses [61]. They 
revealed that ASA increased plasma levels of TNF-α to a much greater extent than 
NBS-1120, and that NBS-1120 was more effective than ASA as a chemopreventive 
agent in inhibiting tumor growth and tumor mass depending on the dose [61]. It 
was concluded that for gastrointestinal safety reasons, NOSH-ASA may represent 
an alternative pharmacological approach that may also prove an enhanced cardio-
vascular and renal safety profile [61]. Thus, this NOSH-aspirin hybrid is a good and 
promising candidate as a chemopreventive agent deserving of great attention for the 
further identification of its molecular targets in vitro and in vivo.
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Chapter 19 
The Role of Nitric Oxide 
in the Etiopathogenesis of Preeclampsia 

Huma Quasimi, Arunabha Ray, and Md. Iqbal Alam 

Abstract Preeclampsia (PE) is a severe pregnancy complication that presents mostly 
after twenty weeks of gestation. It can be diagnosed by increased systolic blood pres-
sure >140 mmHg (hypertension), edema, and proteinuria along with other compli-
cations. In recent years the new onset of preeclampsia is defined as thrombocy-
topenia, renal insufficiency, neurological complications, liver involvement, fetal 
growth restriction, etc. Preeclampsia/ eclampsia (PE/E) poses a significant public 
health problem in India and the developing world accounting for 11.71% of total 
pregnancies in India as per the Federation of Obstetrics and Gynaecological Society 
of India (FOGSI, 2010 survey). PE complicates around 2–10% of all pregnancies 
resulting in increased perinatal morbidity and mortality. Several mechanisms have 
been included in the pathophysiology of PE, including oxidative stress, inflamma-
tion, maternal endothelial dysfunction, liver dysfunction along with other systemic 
disturbances but the exact mechanism could not be deciphered owing to the hetero-
geneous nature of the disease. Nitric Oxide (NO) is the key regulator of PE. In PE, 
defective remodeling of spiral arteries occurs. The poorly perfused placenta is the site 
of origin of oxygen free radicals and lipid peroxides which also activate endothelial 
cells leading to the down-regulation of NO, the release of nitroso precursors of NO 
as well an increase in oxidative stress. In this chapter, we are focusing on the role of 
NO in the pathophysiology of PE and its interplay with oxidative stress. 
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Introduction 

Preeclampsia (PE) is a serious pregnancy condition that often manifests after 
20 weeks of pregnancy. It is diagnosed by elevated systolic blood pressure of more 
than 140 mm Hg (hypertension), edema, and proteinuria [1]. The recent criteria 
of PE suggest that new-onset proteinuria may be replaced by new-onset throm-
bocytopenia, renal insufficiency, neurological problems, liver involvement, or fetal 
growth limitation [2]. According to the Federation of Obstetrics and Gynecological 
Society of India, preeclampsia/eclampsia (PE/E) affects 11.71 percent of all preg-
nancies in India, making it a serious public health issue in the developing world 
(FOGSI, 2010 survey) [3]. PE causes complications in 2–10% of pregnancies, which 
increases perinatal morbidity and death [4]. It is classified into early onset (34 weeks 
gestation) and late-onset (>34 weeks gestation) according to gestational age, with 
early onset being less common and having a greater risk of maternal morbidity, peri-
natal death, and severe morbidity of the newborn than the later onset condition [5]. 
Oxidative stress, inflammation, maternal endothelial dysfunction, hepatic dysfunc-
tion, and other systemic disturbances have all been included in the pathophysiology 
of PE, although the precise mechanism has not been yet determined due to the hetero-
geneous nature of the disease [6]. PE development occurs in two stages: the stage 
one is asymptomatic which occurs at the time of placental invasion and differenti-
ation (placental phase) whereas; the stage two is symptomatic which occurs at the 
maternal interface (maternal phase). At the time of normal placentation, the embry-
onic cytotrophoblast properly invades the uterine wall, the myometrium, and spiral 
arterioles which transforms the maternal spiral arteries into a large capacitance and 
low resistance vessels. PE develops in two stages: the first stage is asymptomatic 
and happens during the placental phase (when the placenta invades and differenti-
ates), and the second stage is symptomatic and happens at the maternal interface 
(maternal phase). The uterine wall, the myometrium, and spiral arterioles are appro-
priately invaded during normal placentation by the embryonic cytotrophoblast, which 
changes the maternal spiral arteries into high-capacitance, low-resistance vessels. 
However, this process is dysregulated in preeclampsia [7–10]. The incomplete inva-
sion of the cytotrophoblast confines it to the surface decidua layers, depriving the 
placenta and developing fetus of adequate oxygen and nutrition. The result of this 
deficit is a drop in the uteroplacental perfusion pressure and local ischemia [11]. The 
second stage of the illness, maternal dysfunction, is carried by abnormal placental 
invasion [12]. Numerous bioactive substances are released abnormally and into the 
maternal circulation as a result of chronic placental hypoperfusion. These circu-
lating chemicals affect endothelial cells, causing endothelial dysfunction, gener-
alized multi-system vasospasm, decreased plasma volume, oxidative stress, and a 
hyper-inflammatory state. PE is an antiangiogenic state because it exhibits increased 
expression of anti-angiogenic proteins like soluble fms-like tyrosine kinase 1 (sFlt-1) 
and soluble Endoglin (sEng) and decreased expression of pro-angiogenic molecules 
like vascular endothelial growth factor (VEGF), placental growth factor (PlGF), and 
transforming growth factor (TGF-β) [13–15].
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Fig. 19.1 Two stages of preeclampsia. Placental ischemia caused by incomplete trophoblast inva-
sion causes the formation of humoral agents such as ROS, which are then released into the blood-
stream. These variables impair the function of the vascular endothelium, which eventually results 
in preeclampsia 

An early stage of preeclampsia development is characterized by defective 
trophoblast invasion [16]. However, it is still unknown why trophoblast invasion 
is blocked, leaving open the question of whether it is the cause of or a symptom 
of another underlying issue. Additionally, genetics, environmental variables, and a 
changed immune response during the maternal–fetal interphase are thought to be 
involved, albeit each patient may respond differently to each of these [17]. It is 
hypothesized that the start, severity, clinical symptoms, and course of the condition 
are all influenced by the mother’s sensitivity to placental abnormalities. In contrast 
to PE linked to maternal metabolic syndrome, the most current ideas link placental 
phenotype to shallow trophoblastic invasion and limited fetal development [18]. The 
alternative phenotype, which is mostly brought on by oxidative stress, placental villi 
congestion, and decidual lesions, is linked to normal fetal development and low-grade 
maternal inflammation [19] (Fig. 19.1). 

PE can develop as a result of immunological mismatches between the mother and 
the fetus, which results in inadequate placentation (first stage), which in turn triggers 
a cascade of immunological agents into the mother’s blood, including cytokines, 
chemokines, anti-angiogenic factors, ROS, etc. [20]. These factors are released, 
which causes generalized endothelial dysfunction (second stage), followed by clin-
ical issues such as hypertension, proteinuria, eclampsia, HELLP syndrome (hemol-
ysis, increased liver enzymes, and a low platelet count), fetal growth limitation, 
etc. These factors are released, which causes generalized endothelial dysfunction 
(second stage), which causes several clinical issues such as hypertension, protein-
uria, eclampsia, HELLP syndrome (hemolysis, increased liver enzymes, and a low 
platelet count), fetal growth limitation, etc. (Fig. 19.2) [21, 22].
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Fig. 19.2 Placentation defect in PE. At 15–16 weeks of pregnancy, normal placentation (a) and  
defective placentation (b) are shown. The placenta and the maternal decidua are connected by the 
anchoring villi. When the placenta develops in a healthy pregnancy, cytotrophoblasts (blue) cross 
the placental-maternal bridges to infiltrate the maternal decidua and nearby spiral arteries. The 
remodeling of the arterial wall results from the penetration of the arterial wall and the replacement 
of maternal endothelium (yellow). They come into contact with NK cells (red) and macrophages 
(purple) in the deciduas, which promote cytotrophoblasts’ complete invasion of the myometrial 
segments (a). Significant spiral artery remodeling is encouraged by this mechanism. This invasion 
is interrupted (b) with poor arterial remodeling in the early stages of preeclampsia 

Role of Nitric Oxide in Preeclampsia 

Nitric oxide (NO) is a modulator of vascular endothelial hemostatic activities. 
According to several experts, the primary malfunction in preeclampsia is caused 
by a relative lack of NO and an excess of peroxynitrate. The combination of a NO 
and peroxynitrate deficiency can cause a cascade of physiological and serological 
mechanisms in preeclampsia, including hypertension, increased glomerular filtration 
rate, proteinuria, platelet dysfunction, increased thromboxane and endothelin levels, 
and a decrease in prostacyclin levels [23]. Nitric oxide (NO) is an important regulator 
of placental blood flow. Through its specific angiogenic and vasculogenic capabil-
ities, it actively participates in cytotrophoblast endovascular invasion and placental 
development [22]. In preeclampsia, abnormal NO generation in the fetoplacental unit 
may lead to vasoconstriction of the placental bed, improper placental perfusion, and 
associated maternal effects, such as hypertension and systemic vascular resistance 
(SVR), etc. [6, 12, 22, 24]. 

NO works as a transmitter for the humoral, metabolic, and mechanical factors-
controlled endothelium-dependent regulation of vascular tone. In addition, NO 
blocks the activation of platelet aggregation, diminishes the toxicity of superoxide 
ions, and functions as an anticoagulant and anti-atherogenic agent [24]. It also 
promotes embryo survival, tissue remodeling, immunosuppression, and vasoregula-
tion, all of which are significant regulators of placental nutrition delivery [25]. Since 
the human feto-placental vasculature lacks autonomic innervation, it has effects that
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are either autocrine or paracrine and affect several physiological aspects of preg-
nancy. Particularly, NO is the primary vasodilator that controls platelet adherence 
and aggregation in the intervillous space, trophoblast invasion and death, placental 
bed vascular resistance, and fetoplacental vascular reactivity. The role of NO in angio-
genesis, where it helps create functional capillaries from pre-existing vasculature, 
and in vasculogenesis, where it plays a role in the de novo development of arteries 
from pluripotent precursor cells, is well documented. VEGF, or vascular endothelial 
growth factor, is a crucial component in these processes. Its expression, which is 
dependent on the beginning of vasculogenesis, is mediated by NO release. 

A vascular endothelial condition called preeclampsia is characterized by an inade-
quately perfused placenta and widespread endothelial dysfunction [26]. Endothelial 
dysfunction gets worse as gestation progresses because the mother cannot adjust 
to the physiological stress of pregnancy. Oxygen free radicals and lipid peroxides 
are produced in the poorly perfused feto-placental unit, where they also activate 
endothelial cells and inhibit the production of nitroso precursors of NO, and increase 
oxidative stress. Endothelial dysfunction gets worse as gestation progresses because 
the mother cannot adjust to the physiological stress of pregnancy. Oxygen free radi-
cals and lipid peroxides are produced in the poorly perfused feto-placental unit, where 
they also activate endothelial cells and inhibit the production of nitroso precursors 
of NO, and increase oxidative stress [22, 24]. 

Placental preeclampsia is classified as either mild or severe, whereas maternal 
preeclampsia is frequently classified as late or mild. These interactions between 
maternal and placental pathophysiological variables result in a variety of clin-
ical manifestations, including maternal inflammation, vascular dysfunction, and 
pro-coagulation pathway activation. 

Nitric Oxide Basics 

Joseph Priestly discovered nitric oxide in 1772 and named it nitrous air. The iden-
tification of cell signaling and other significant physiological, neurological, and 
immunological processes resulted from the discovery of the NO pathway. Nearly 
all biological and therapeutic systems interact with NO, a straightforward biological 
molecule. The primary regulator of maternal and fetal hemostasis throughout preg-
nancy is NO, which also controls changes in the mother’s cardiovascular system, the 
growth and development of the fetus, and the fetus’ adaptation to extrauterine life 
[24, 27]. 

The bioavailability of nitric oxide is low, and it leaks from its source cells into 
nearby target cells. Nitric oxide binds to the heme group of cytosolic guanylate 
cyclase, which activates the enzyme and speeds up the conversion of guanosine 
triphosphate (GTP) to cyclic guanosine monophosphate by 50–200 fold (cGMP). 
Increased cGMP levels cause vascular smooth muscle to relax since they promote the 
binding of free calcium intracellularly and prevent platelet aggregation and adherence 
to vascular endothelial surfaces [22, 24, 28].
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A family of enzymes called nitric oxide synthases produce it from L-arginine 
(NOS). NOS are enzymes that catalyse the conversion of L-arginine into L-citrulline 
through a system that depends on calcium, calmodulin, and other elements (Fig. 19.3). 
There are three NOS isoforms: NOS 1, NOS 2, and NOS 3. Each has unique prop-
erties and expression patterns. Because it was initially isolated and cloned from 
neuronal tissue, NOS1 is also known as nNOS, while NOS3 is known as eNOS 
because it was first discovered in endothelial cells. NOS 1 and 3 are known as consti-
tutive isoforms (cNOS), which primarily function in cell signaling and produce 
low levels of NO. They are activated by an increase in tissue calcium concentra-
tion. However, macrophages produce an inducible (iNOS) and calcium-independent 
version of NOS2 that is dormant until stimulated by lipopolysaccharide [29]. Greater 
NO production from NOS2 can be cytotoxic. However, the endothelial isoform of 
NOS (ecNOS) is detectable in the healthy placenta, restricted to the endothelium 
of the umbilical cord, chorionic plate, and stem villous arteries. NOS1 and 2 are 
not generated by the human placenta [30]. Due to their angiogenic and vasculo-
genic capabilities, villous cytotrophoblasts play a significant role in cytotrophoblast 
endovascular invasion, which is a crucial characteristic of effective placentation [31– 
33]. S-nitrosylation is a mechanism by which NO can control protein activities. When 
compared to normotensive women, preeclampsia patients exhibit significant changes 
to the placental S-nitroso-proteome [34]. Asymmetrical dimethyl arginine (ADMA), 
an amino acid that is normally present in tissues and cells and circulates in plasma, 
inhibits the action of NOS [35]. Protein arginine methyltransferases (PRMT) catalyze 
the synthesis of ADMA by methylating the guanidine nitrogens of arginine with one 
or two methyl groups. Type 1 PRMT is responsible for the synthesis of (asymmet-
rical dimethylarginine) ADMA by adding two methyl groups to one of the guanidine 
nitrogens of arginine, whereas Type 2 PRMT is responsible for the synthesis of 
symmetrical dimethylarginine (SDMA) by methylating both of the guanidine nitro-
gens to form a symmetrical molecule. ADMA and L-NMMA, but not SDMA, can 
reduce NOS activity. ADMA and L-NMMA are detected in human plasma and urine, 
however, ADMA is expressed 10 times more than L-NMMA [36].

Oxidative/Nitrosative Stress 

ROS and RNS are extremely reactive substances that are created by biological redox 
reactions during normal cell metabolism. ROS and RNS mediate the oxidation and 
reduction of virtually all biomolecules [37–40]. Oxidative and nitrosative stress are 
generated, respectively, by an increase in ROS and RNS production or a lack of 
antioxidant mechanisms. When cellular ROS/RNS production exceeds antioxidant 
capability, these highly reactive chemicals become lethal [41–43]. ROS, RNS, and 
lipid peroxides are responsible for a wide range of disorders, including preeclampsia, 
diabetes, cataracts, cancer, Bechet’s disease, and rheumatoid arthritis [44, 45].
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Fig. 19.3 Mechanism of NO synthesis. NO is synthesized from L-arginine by the action NOS 
which converts it into citrulline and NO

Oxidative Stress in Preeclampsia 

Oxidative stress is caused by a poorly perfused placenta, which causes leukocytes 
and platelets to adhere to endothelial cells, triggering the production of cytokines 
and anti-angiogenic proteins [46]. This adhesion is essential for triggering inflam-
mation, which is then followed by widespread vasoconstriction and increased resis-
tance in the placental circulation. Reactive Oxygen Species (ROS) is one of the 
primary mechanisms orchestrating PE-associated endothelial dysfunction. Inflam-
mation, generalized vasoconstriction, and increased resistance in the placental circu-
lation are all brought on by decreased uteroplacental blood flow. PE, which is 
characterized by vasoconstriction and limited anticoagulant activity, has impaired 
circulatory homeostasis due to vascular endothelial dysfunction. The endothelial 
dysfunction linked to PE is greatly influenced by ROS [47]. The etio-pathogenesis 
of preeclampsia is still unknown, but a few theories, such as anomalous trophoblast 
invasion of uterine vascular system, aberrant NO levels caused by oxidative stress, 
immunologic insufficiency between maternal and fetal tissues, pregnancy-related 
cardiovascular and inflammatory response maladaptations, genetic predisposition, 
and so on, are thought to be possible triggers. Many recent studies suggest that 
oxidative stress is one of the primary causes of preeclampsia among the possible 
causes of PE. In preeclampsia, the balance between the oxidant and antioxidant 
systems is disrupted. As a result of oxidative stress, there is an increase in capillary 
permeability, proteinuria and edema, microvascular coagulation, thrombocytopenia,



398 H. Quasimi et al.

lipid-laden macrophage foam cells, and atherosclerosis in PE. Trophoblast apop-
tosis is increased in preeclamptic women’s placentas because free radicals promote 
trophoblast apoptosis. It is proposed that free radicals enter the systemic circulation 
and travel through the circulatory system components via vascular endothelial cells, 
producing broad oxidative damage. According to research, thrombolytic dysfunc-
tion caused by endothelial cell injury may be responsible for the pathophysiology 
of preeclampsia. Based on these data, it is possible to conclude that endothelial cell 
activation orchestrates the inflammatory response in preeclampsia. 

When compared to normotensive pregnant women, preeclamptic women have 
reduced NO levels in their endothelial cells. Several studies have shown a corre-
lation between nitric oxide and blood pressure management during pregnancy. 
Preeclamptic women excrete less cGMP, a secondary messenger of NO, in their 
urine than normotensive pregnant women [48]. NO is a powerful vasodilator that 
helps to maintain vascular tone, regulate blood pressure, recruit thrombocytes, and 
adhere to endothelial cells [49]. Along with the placenta, maternal leukocytes and 
endothelium are important contributors to free radical formation. By virtue of its 
vasculogenic properties, NO is generated locally and is crucial for promoting cytotro-
phoblast invasion. It is speculated that the reduced formation of NO account for 
abnormal perfusion of the placenta in PE. However, some researchers demonstrate 
that preeclamptic placenta can normally synthesize ecNOS and the level of formation 
of NO is also comparable in preeclamptic as well as the normal placenta. Henceforth, 
it can be deduced that PE is a condition of normal placental expression of ecNOS 
and normal production of NO, whose activity is reduced abnormally. This paradox 
can be explained by considering that the relative activity of NO in a given tissue/ 
organ depends on its rate of synthesis and degradation. 

It is well established that low-resistance vascular remodeling does not exist in 
PE. As a result of the hypoxia in the intervillous gap, the blood supply to the 
placenta is reduced, resulting in aberrant placentation. The hypoxic preeclamptic 
placenta stimulates the release of syncytiotrophoblast microparticles (STBM) [50]. 
Placental hypoxia and STBM collaborate to form damage-associated molecular 
patterns (DAMPs), which aid in the activation of immune cells such as neutrophils and 
dendritic cells. This activation causes the release of pro-inflammatory cytokines such 
as tumor necrosis factor- (TNF-), which, in conjunction with neutrophil nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase activation, promotes oxidative 
stress. Recent research indicates that in PE, elevated advanced glycation end products 
(AGEs) interact with receptors (RAGE), activating NADPH oxidase [51]. 

Role of Nitric Oxide in Normal Pregnancy 

NOS catalyzes the guanidino nitrogen atom of L-arginine, resulting in the synthesis 
of NO as well as the activation of guanylate cyclase, resulting in an increase in cyclic 
guanosine monophosphate (cGMP) within the cell. cGMP relaxes smooth muscle 
cells, dilates endothelial cells, deaggregates platelets, and has anti-inflammatory
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properties [52, 53]. Under physiological conditions, Ca2+ dependent eNOS leads 
to the constitutive production of NO in the endothelium. This NO prevents tissue 
damage, hence, is very beneficial in the peripheral circulation. eNOS is inhibited 
by inflammatory cytokines which in turn causes vasoconstriction in the peripheral 
circulation [54]. 

iNOS, which is Ca2+ independent, plays a key role in inflammation but is not 
expressed in the endothelium under normal conditions. Increased levels of inflamma-
tory cytokines such as IL-1, IL-6, TNF-, and interferon (INF-) promote the develop-
ment of iNOS in the vascular endothelium, resulting in excessive NO generation [55]. 
The iNOS isoform is instrumental in leukostasis as it upregulates ICAM-1 expres-
sion resulting in vascular dysfunction [56]. Increased NO expression may result 
in increased inflammation and other immunological reactions, leading to multiple 
organ failure in PE. NO is an essential physiological mediator of the renin-angiotensin 
system via AT subtype 2 (AT2), which acts in a counter-regulatory manner to the 
effects mediated by AT1. AT2 activation starts a vasodilator cascade that includes 
the NO/cGMP pathway by boosting NOS mRNA and protein, which leads to NO 
generation. On the contrary, the AT1 signaling pathway inhibits NO generation in the 
endothelium, resulting in vasoconstriction. L-arginine antagonists, such as ADMA, 
also limit NO production, resulting in hypertension [57, 58]. 

Role of NO in the Pathogenesis of Preeclampsia 

eNOS and iNOS are predominantly expressed on syncytiotrophoblasts and endothe-
lial cells in the placenta during pregnancy [59]. In normal pregnancy, increased 
estrogen levels drive endothelium-dependent vasodilation mediated by NO, which 
is generated and secreted by activated eNOS [60]. eNOS-derived NO maintains 
vascular smooth muscle relaxation, which leads to enhanced uterine blood flow and 
uterine myometrial quiescence [61]. Blood pressure is somewhat lowered in the 
middle of a normal pregnancy due to enhanced flow-mediated dilatation (FMD). 
FMD caused by shear stress induces vascular eNOS activation and temporally raised 
NO levels, resulting in easy vessel dilatation during normal pregnancy [62]. Vascular 
eNOS-derived NO can prevent inflammation by suppressing the expression of adhe-
sion molecules such as ICAM-1, vascular cell adhesion molecule-1, E-selectin, and 
P-selectin [63]. In PE, the expression of adhesion molecules that promote inflam-
mation is increased, causing inflammation in the systemic vasculature and placenta, 
resulting in uteroplacental perfusion failure. When compared to their normal coun-
terparts, patients with PE have reduced NO concentrations in their serum during 
the first trimester [64]. Low levels of NO are thought to disrupt vascular dilatation 
and development in early pregnancy, resulting in poor placentation [64]. However, 
eNOS-derived vascular dilatation was reduced in PE patients due to FMD disrup-
tion. The lower bioavailability of NO explains this disparity. For example, when 
there is an overabundance of both NO and ROS, ROS quickly scavenge NO and
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Fig. 19.4 NO pathway and its effects on different stages of Preeclampsia 

generate ONOO anions, reducing vascular NO availability [65]. Although the inter-
play of NO and ROS has the potential to modulate endogenous vascular tone during 
healthy pregnancy [66]. The imbalance of NO and ROS may have a role in the 
pathophysiology of PE. The production of ONOO is caused by the rapid absorption 
of NO by ROS. High quantities of ONOO oxidize and degrade DNA, proteins, and 
lipids, but low levels of ONOO interfere with NO, prostaglandins, calcium ions, MAP 
kinase, and NF-B signaling pathways [67]. Furthermore, ONOO causes eNOS uncou-
pling by oxidizing tetrahydrobiopterin (BH4) to trihydrobiopterin (BH3), impairing 
eNOS activity [68]. BH4 balances NO and ROS in the vascular endothelium, and an 
imbalance in its amount causes hypertension. Furthermore, ONOO can cause perma-
nent nitration of tyrosine residues on other proteins, impairing phosphorylation and 
causing enzymatic malfunction (Fig. 19.4). 

ADMA and Preeclampsia 

Asymmetrical dimethyl arginine (ADMA) is an endogenously generated NOS 
inhibitor whose exact origin is uncertain. ADMA levels are generally kept reasonably 
low by a demethylating enzyme called dimethylarginine dimethylaminohydrolase 
(DDAH), which is also found in NOS-containing cells [69]. Increased ADMA levels 
have been linked to hypercholesterolemia, congestive heart failure, atherosclerosis, 
end-stage renal disease, thrombotic microangiopathy, and preeclampsia. The oxida-
tion of low-density lipoprotein (LDL) and TNF-reduces DDAH activity within cells. 
It has also been discovered that oxidized LDL and TNF-levels remain increased 
in preeclampsia [70]. The binding of synthetic or endogenously generated arginine
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Fig. 19.5 The feedback loop of NO. NO is generated in response to the changes in the redox 
environment which further switches off NO synthesis [35] 

analogs to the NOS enzyme’s arginine binding site neither prevents nor stimulates 
the synthesis of O2−. ADMA competes with L-arginine for cellular uptake, which 
may result in lower L-arginine concentrations or a lower L-arginine/ADMA ratio 
inside the cells, resulting in O2− the production via NOS. If ADMA were simply 
an inhibitor of NOS, increasing it should result in a decrease in NO and ONOO− 
production. However, other research shows that when ADMA is present in larger 
concentrations, the production of NO and ONOO− increases. Preeclampsia is an 
excellent illustration of such a condition. Even when ADMA is increased, NOS and 
NOS activity are known to rise (Fig. 19.5). 

Antioxidant Defense System in Preeclampsia 

Oxidative stress in the placenta of preeclamptic women increases as early as 8– 
10 weeks of gestation. To compensate for the oxidative stress caused by ROS 
and RNS, aerobic cells have developed a defense mechanism comprising enzy-
matic and non-enzymatic components that quench the flux of ROS and RNS. 
Glutathione (GSH), vitamin C, vitamin E, carotenoids, coenzyme Q, and various 
antioxidant enzymes such as superoxide dismutase (SOD), catalase, and glutathione-
S-transferases (GSTs) all play important roles in regulating ROS systems. It has 
been well documented that the activity of antioxidants such as vitamins E and 
C, GSH, and SOD is altered in PE. Important antioxidant enzymes in PE include 
glucose-6-phosphate dehydrogenase, glutathione peroxidase (GPx), and glutathione 
S-transferase [71].
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Vitamins (Vitamin C, E) 

Vitamin C, commonly known as ascorbic acid, is a necessary nutrient that also 
functions as an antioxidant, protecting the organs from oxidative damage. The level of 
plasma ascorbate is generally reduced during pregnancy, which is further reduced in 
the plasma and placenta of PE patients [72]. Ascorbate is oxidized to ascorbyl radical, 
which then oxidizes to dehydroascorbate, resulting in tissue harm caused by oxidative 
stress. In PE patients, plasma levels of oxidized ascorbate are elevated, which is 
regarded to be a key factor in vascular dysfunction. By giving an electron, vitamin E 
decreases peroxynitrite (ONOO). Vitamin E levels in serum and placental tissue are 
significantly lower in severe PE, indicating an increase in oxidative stress. Vitamin 
C, also known as ascorbic acid, is a vital nutrient that also acts as an antioxidant, 
preventing oxidative damage to the organs. During pregnancy, the level of plasma 
ascorbate decreases, which is further lowered in the plasma and placenta of PE 
patients. In this situation, there is a lot of stress [73]. 

Superoxide Dismutase (Mn-SOD, CuZn-SOD, EC-SOD) 

SOD catalyzes the superoxide radical’s dismutation into oxygen (O2) or hydrogen 
peroxide (H2O2) 2O2 + 2H + O2 + H2O2. Mn-SOD, CuZn-SOD, and EC-SOD are 
three kinds of SOD. Mn-SOD is constitutively expressed in the mitochondria and 
scavenges superoxide radicals, whereas CuZn-SOD is produced in the cytoplasm and 
released into the extracellular space. EC-SOD, on the other hand, is only generated 
by a few cells, such as vascular smooth muscle cells, and is found in the extracellular 
matrix of the vascular wall and placenta. As an antioxidant, SOD can react with NO 
as well as ROS, generating powerful ONOO since NO has three times the affinity 
for superoxide as SOD [74]. SOD expression is raised during normal pregnancy, 
while SOD activity and CuZn-SOD mRNA expression are lowered in PE, resulting 
in higher oxidative stress in the placenta of PE patients. The role of EC-SOD in 
modifying vascular function in resistance vessels is crucial. According to research, 
the Ala40Thr SNP, a mutant carrier of the EC-SOD, may enhance the risk of severe 
prenatal growth restriction-complicated PE. SOD is also observed to be reduced in 
erythrocytes from PE patients [75]. 

Catalase 

Catalase is an enzyme that degrades hydrogen peroxide into water and oxygen 
(2H2O2 2H2O + O2) and is critical for lowering ROS levels. Hydrogen peroxide 
works as a cellular messenger in insulin signaling pathways at low concentrations 
but produces toxicity in pancreatic cells at high concentrations. Furthermore, catalase
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is a key enzyme in the breakdown of hydrogen peroxide in erythrocytes, and its lack 
causes increased hydrogen peroxide synthesis in many organs, such as type 2 diabetes 
mellitus. During pregnancy, catalase levels rise with gestational age, reaching a peak 
at 12 weeks. In contrast, catalase activity in PE patients’ erythrocytes is signifi-
cantly reduced, which is necessary for metabolizing hydrogen peroxide in systemic 
circulation [76]. 

Glutathione Peroxidase (GPx) 

GPx is an enzyme that lowers lipid hydroperoxide and hydrogen peroxide and 
protects organs from oxidative stress (2Glutathione + H2O2 Glutathione disulfide 
+ 2H2O). So far, eight GPx isoforms have been discovered, with GPx1 being the 
most abundant in several organs. Normal pregnant women’s placentas have increased 
GPx activity, whereas PE patients’ placentas have decreased GPx activity and mRNA 
(GPx1, GPx3, GPx4). The erythrocyte GPx is lower in people with PE but higher in 
patients with HELLP (hemolysis, elevated liver enzymes, and low platelet count). 
GPx insufficiency may have a role in the pathogenesis of PE since its decreased 
activity leads to the formation of lipid peroxides and thromboxanes, both of which 
are elevated in the PE placenta [77]. 

Oxidative Stress Biomarkers for Preeclampsia 

Biomarkers are molecules that can be reliably examined and analyzed as indicators of 
normal biological, pathogenic, or pharmacologic reactions to treatment intervention. 
There are various in vitro markers of oxidative/nitrosative stress, but most of them 
have drawbacks such as being insensitive/specific or requiring intrusive procedures. 
Because ROS/RNS are highly reactive and have a very short half-life, measuring them 
in cells/tissues or body fluids is extremely difficult. Because ROS/RNS byproducts 
(e.g., nitrate/nitrite) are more stable molecules, they can be detected directly and/or 
indirectly, including lipid peroxidation end products and oxidized proteins. To be 
employed as diagnostic tools, these molecules must meet certain criteria such as 
oxidation stability, detectable concentration, specific oxidation pathway, and corre-
lation with disease severity. Upregulation of iNOS occurs in the placenta as a result 
of increased O2− production, resulting in elevated amounts of OONO−. OONO− 
causes peroxidation of membrane lipids and MDA, as well as the production of conju-
gated dienes. MDA levels in maternal plasma, placental tissue, and erythrocytes are 
higher, and the severity of the disease correlates with MDA levels in both serum and 
erythrocytes of PE pregnancies [78]. The plasminogen activator inhibitor-1 (PAI-1) 
level rises in all groups during pregnancy. Plasma concentrations in the preeclampsia 
group were substantially greater than in the low-risk group. They discovered that the 
PAI-1/PAI-2 ratio is considerably higher in women who acquire PE later in life [79].
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Blood GSH concentrations are an indicator of glutathione status in tissues, and blood 
measurements of both reduced GSH and glutathione disulfide (GSSG) are thought to 
be helpful indicators of oxidative stress status in humans. High GSH concentrations 
and GSSG: GSH ratios have been found in the blood of patients suffering from a 
variety of illnesses, including preeclampsia, breast cancer, lung cancer, and coronary 
heart disease [80]. Oxidative stress biomarkers in maternal serum, such as pregnancy-
associated plasma protein A and placental growth factor (PlGF), change during the 
first trimester of pregnancies, especially in those with preeclampsia [81]. Some oxida-
tive stress markers have various impacts on the placenta. Biomarkers such as sFlt-1 
demonstrate placental dysfunction by inhibiting the effects of vascular endothelial 
growth factor and PlGF and modifying endothelial tissue maintenance. PlGF is an 
angiogenic factor that is considerably reduced in preeclamptic pregnancies. Soluble 
endoglin is an anti-angiogenic protein that inhibits capillary tube development 
and induces vascular permeability and hypertension. Activin-A and inhibin-A are 
placental-derived endocrine hormones that provide early warning of pre-eclampsia. 
Endothelial activity is indicated by cell adhesion molecules such as vascular cell 
adhesion molecule-1 and E-selectin. In preeclampsia, plasma nitrotyrosine, an indi-
cation of peroxynitrite exposure, is found in placental vascular endothelium. C-
reactive protein (CRP) and Pentraxin-3 are inflammatory markers that are elevated 
in early pregnancy, indicating preeclampsia. When syncytiotrophoblasts undergo 
oxidative stress, anti-angiogenic factors -sFlt-1 and soluble endoglin are released 
into the maternal circulation, resulting in endothelial dysfunction, hypertension, and 
proteinuria in PE patients. 

Conclusion 

Preeclampsia is an illness with an unknown cause. However, advances in the under-
standing of the pathogenesis of PE have not been converted into treatment options. 
Oxidative stress is caused by an imbalance between ROS and anti-oxidants and may 
contribute to the development of PE via vascular dysfunction (Fig. 19.6). Current 
therapies include hypertension medications, magnesium sulfate, accelerated deliv-
eries, and aspirin, among others. As a result of poor penetration of cytotrophoblast 
into the uterine myometrium and altered spiral artery remodeling, placental hypoxia, 
enormous generation of ROS, and decreased bioavailability of NO occur, leading to 
the development of clinical symptoms in women with PE. The formation of cytotoxic 
ONOO may be a characteristic of vascular injury in PE, confirming the theory that 
an imbalance of ROS and NO causes vasodilatory dysfunction in PE. A variety of 
circumstances might result in a reduced L-arginine/ADMA ratio, which can set off 
a never-ending cycle of NOS dysfunction. Early L-arginine supplementation may 
be an effective way to balance this ratio, thereby preventing the dysfunctional loop. 
Its overall efficiency may be improved by combining it with antioxidants. Although 
therapy with vitamins C and E alone reduced maternal symptoms, no significant 
perinatal benefits were found. However, antioxidant supplementation is likely to
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Fig. 19.6 NO and oxidative stress as the precursors of Preeclampsia 

prevent the occurrence of PE or repair the future manifestation of PE. To determine 
the involvement of ROS and NO in the etiology of PE and to assess the efficacy of 
antioxidants on PE, extensive research is required. Understanding the essential role 
of NO and its interaction with oxidative stress induction could be used to develop 
better treatment and prevention techniques. 
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Chapter 20 
Therapeutic Prospects of Nitric Oxide 
as an Anti-teratogen 

Palanivel Gajalakshmi, Pavitra Kumar, Suvendu Giri, and Suvro Chatterjee 

Abstract A physical, chemical or biological agent that causes malformation of the 
embryo of foetus is referred to as teratogen. Foetal abnormalities have become a 
serious concern considering the fact that out of 131.4 million babies born every year 
worldwide, approximately 5% of live births are reported to have birth defect/s. Nitric 
oxide participates in various biological processes associated with early embryonic 
development and interference in its pathway causes foetal abnormalities. In our 
previous studies, we found that exogenously supplemented nitric oxide protected 
embryos against thalidomide- and cadmium-mediated teratogenicity in experimental 
models. In this chapter, our aim was to summarize the recent knowledge about 
teratogens, their mechanisms and possible potential anti-teratogenic compounds with 
thalidomide, cadmium and nitric oxide in focus. We envisage that nitric oxide delivery 
to embryo will protect the embryo from teratogenic effects. 

Keywords Teratogen · Nitric oxide · Thalidomide · Cadmium · Chick embryonic 
model · Developmental defects 

Introduction 

Teratology (from Greek, teratos, monster) is the science that involves the study 
of abnormalities of physiological development, congenital malformations and their 
causes. An agent, a physical, either chemical or biological is called as a teratogen 
when it is capable of disturbing the development of the embryo or foetus. Reports
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showed that adverse effect of teratogens on prenatal development caused 2.7 million 
neonatal deaths, worldwide and these deaths constitute for 45% of the deaths of 
children under 5 years [51]. The etiology behind birth defects could be multifactorial, 
although considerable evidence exists for both genetic and environmental factors. 

Most structural defects caused by teratogenic exposures occur during the embry-
onic period, when critical developmental events are taking place and the foundations 
of organ systems are being established [10]. Different organ systems have different 
periods of susceptibility to teratogens. Teratogens induced most common structural 
anomalies such as growth retardation, microcephaly, microphthalmia, tachycardia, 
cardiac failure, hepatosplenomegaly, thin upper lip, brachydactyly of the fifth finger, 
auditory, vestibular, retinal, and other neurologic dysfunction in children. 

Teratogens were classified under five major categories in general [28]. The present 
chapter is focussed on cadmium (Cd), as an environmental teratogen and thalidomide 
as a drug teratogen. 

Cadmium as an Environmental Teratogen 

Cadmium is a major environmental pollutant and listed as a potential teratogen 
in humans by the United Nations Organization. The reported sources of cadmium 
are seafood and tobacco smoke and has a long half-life, ranging from 75 days to 
26 years [33]. Animal-based studies are widely known compared to human studies 
with respect tofetal growth restriction upon maternal cadmium exposure. A murine-
based study indicates the time window as late gestational period at which maternal 
cadmium exposure caused reduction in fetal weight and length through inhibition of 
placental progesterone synthesis [48]. An increased DNA methylation pattern was 
observed in inflammatory signalling genes (TNFAIP2, ACOT7, and RORA), which 
perturbed inflammatory processes, and impaired placental function and development 
from human placentae upon higher cadmium exposure [9]. 

Our laboratory has demonstrated that cadmium exposure to cultured endothe-
lial cells induced significant reduction in nitric oxide (NO) production by impairing 
phosphorylation of endothelial nitric oxide synthase enzyme and is capable of atten-
uating angiogenesis in an egg yolk angiogenesis model [25]. In addition, cadmium 
exposure to endothelial cells interfered in functions of endothelial cells such as 
tube formation, cell migration and disturbed the subcellular actin polymerization, 
which could be the reason for cadmium-mediated inhibition of cellular migration 
and angiogenesis [21]. We have also observed that cadmium exposure to developing 
chick embryo caused multiple birth defects. Interestingly, we observed the ill effects 
of cadmium can be negated by addition of exogenous NO through a NO donor and 
restore normal vascular and embryonic development, thus serving as a protective 
molecule [45]. Further, we have shown that instead of using synthetic NO donor, 
beetroot juice (natural source of NO) can be a best alternative for attenuating the 
effects of cadmium and can serve as a dietary supplement for pregnant women [2].
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Thalidomide as a Drug Teratogen 

Thalidomide was developed by ChemieGrünenthal (West Germany) in 1957 and was 
used as a sedative over 60 years ago. However, its use was banned in 1964 due to its 
teratogenic effect. A broad range of birth defects was reported, including malforma-
tions of the limb, ear, eye, internal organs, face, genitalia, and central nervous system 
upon exposure to thalidomide during early pregnant period [44]. Stunted limb growth 
in humans is a well-known teratogenic effect of thalidomide. Later in 1998 and 2006, 
thalidomide was accepted by the Food and Drug Administration (FDA) for the treat-
ment of leprosy and multiple myeloma, respectively [29] after realising its potential 
to treat multiple diseases, though its prohibited to be used by pregnant women. 

Thalidomide is an immunomodulatory agent, which arrests angiogenesis [5]. In 
our several independent studies, we found that thalidomide reduced tip cell formation 
in an ex vivo model [19], caused structural anomalies during cardiac development 
[23], targeted fibroblast growth factor receptor 2 [38] and altered transcriptome profile 
of developing chick embryo [45]. We have previously shown that mechanism of anti-
angiogenic activity of thalidomide involves inhibition of nitric oxide-sGC-cGMP 
pathway in endothelial cells [26] and exogenous supplement of NO offered partial 
protection against thalidomide-induced limb [37] and eye deformities [22] in chick 
and zebrafish embryo models. 

Prevention of Birth Defects 

Currently, the following are the measures taken to prevent congenital malformations. 
1. Increase the folic acid intake during pregnancy [3]. 2. Reduce the intake of sugar 
during gestation [4] 3. Regular visit to gynaecologist 4. Avoid alcohol, smoking 
cigarettes, other drugs, infections, and fever during pregnancy 5. Healthy lifestyle 
and the right prenatal nutrient balance is an important environmental factor in the 
growth of a healthy child. However, it is not always possible to strictly follow the 
above procedure due to the fact that pregnant mothers have increased appetite and 
tend to take carbohydrate rich foods and also due to day today activities. Therefore, 
one should think of a new approach to negate the teratogenic effects of both genetic 
and environmental factors. Since NO is a critical signalling molecule for embryo 
development [43], it could be repositioned to test its anti-teratogen potentials. 

Nitric Oxide and Teratogenicity 

Several studies have demonstrated that NO participates in various biological 
processes associated with early embryonic development. Preimplantation murine 
embryos were found to be regulated by NO and these embryos when cultured with
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NOS inhibitor at very early stage were developmentally delayed or nonviable and 
this was the first evidence which demonstrated that NO participates in implan-
tation and it is necessary in early embryonic development in mice [12]. Further 
studies, demonstrated that appropriate NO concentration is important for embryonic 
development either too little or too much amount of NO had adverse effect [35]. 
Earlier studies demonstrated that maternal exposure of nonspecific NOS inhibitor 
during pregnancy caused growth retardation and hind limb defects in rat embryo 
model [32]. NOS inhibition impaired vascular integrity, and caused vasoconstriction, 
dysmorphogenesis in the developing embryo and over production of reactive oxygen 
species is associated with L-NAME mediated limb defects [1]. Knockout (KO) mouse 
models were used to study the role of specific NOS isoforms during embryonic 
development. eNOS knock-out caused focal acute hemorrhages in the distal limbs 
and limb deformities, growth retardation, placental abnormalities, cardiovascular 
malformation, and neonatal death [42]. Whereas iNOS and eNOS deficiency mice 
reported to affect reproduction, fertilization, early embryo development and neuronal 
development [49]. 

Nath and co-workers provided the first evidence that exogenous NO is being 
capable of protecting embryos against teratogenic assaults. They showed that inhibi-
tion of NO production during blood island stage using murine embryo culture affected 
the yolk sac vasculogenesis and exogenous NO supplementation via NO donor at this 
stage reduced the high glucose induced oxidative stress and protect murine embryos 
from glucose mediated vasculopathy [30]. Exogenous NO supplementation via a NO 
donor, Dean NONOate restored the endogenous NO level, eNOS phosphorylation 
and cGMP production and ameliorated copper deficiency mediated abnormal embryo 
and yolk sac vascular development [50]. Consistent with this strong background, we 
hypothesized to study the protective role of nitric oxide against thalidomide and 
cadmium mediated teratogenicity. 

Scope of Nitric Oxide as an Anti-teratogen 

It is clear from the literature that cadmium and thalidomide are potential teratogens 
and the teratogenic effect could be recovered by addition of NO. It is an established 
fact that NO is a second messenger and has a half-life of few seconds. It is good 
to add NO as a supplement in susceptible population. However, one has to design 
strategies to add NO in limited quantity and slow release form. One can think of 
NO based drugs. Isosorbide, nitroglycerin, nitroprusside, amyl nitrite are some of 
the medicines containing nitrates to treat cardiovascular diseases. Natural dietary 
source of nitrate are beetroot juice, fennel seeds, etc. To treat teratogenicity, NO 
based drugs can be designed by synthetic chemists and biologists. Such an attempt 
is worthwhile because our laboratory has demonstrated that NO has the potential to 
reduce teratogenic effects of thalidomide and cadmium.
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Methodology 

Drug Administration to the Chicken Embryos 

Fertilized brown leghorn chicken eggs were purchased from the Poultry Research 
Station, Potheri, Chennai and were incubated at 37 °C in a sterile humidified incu-
bator. The chick embryos were staged based on the previously described Hamilton 
and Hamburger (HH) stages of chick embryo development [14]. All the experiments 
were performed on chick embryos between the HH stages of 1–38. All treatments 
were administered as a single dose to the embryos via a hole made with a sterile 
needle in the air sac of each egg. 

Different concentrations (0, l, 10, 20, 40, 80, 160 μg) of thalidomide (99% purity) 
were dissolved in 200μL DMSO and the volume made up to 1 ml using 1X PBS. 50μL 
of final volume for each concentration was applied to chick embryos through a hole 
in the air sac made using a sterile needle. Most of the treatment was administered as a 
single dose at HH stage 8 for all the experiments except those mentioned otherwise. 
Different indicated concentrations of thalidomide analogs; pthalimide, lenalidomide 
and teratogens; mercuric chloride, lithium chloride and ethanol were also applied to 
chick embryos at HH stage 8 through the air sac. Similarly, different concentrations 
(0.01, 0.1, 1, 10 and 100 μM) of SpNO were added at HH stage 8 after 30 min of 
thalidomide treatment. 10 μM of SpNO was added at HH stage 8 after 30 min of 
thalidomide or thalidomide analogs or teratogens treatments. For the morphometric 
analysis, all treated embryos were dissected at HH stage 37 and the images were taken 
by using canon 10X optical zoom camera to examine the drugs effect on embryonic 
development. 

Morphological Analysis 

Vehicle control, Cd, spNO and Cd + spNO treated HH-26 (5th day) and HH-37 
(11th day) staged embryos were dissected out to examine the morphological effect 
of the respective treatments on embryo development. Images were taken using an 
Olympus camera (Olympus India Pvt Ltd, New Delhi, India) attached with a stereo 
microscope. Additionally a digital chick heartbeat monitor was used to measure the 
heart beats per minute (bpm) of these embryos according to manufacturer instructions 
(Avian Biotech International UK). The HH-37 staged embryos, were weighed (wet 
weights) and measured (crown-rump length) to observe the differences between the 
growth rates of the embryos i.e. normal versus retarded growth. The embryos at this 
stage can be visibly checked to see if their external organs (beak, eyes and limbs) 
have developed normally while embryos having reduced height and weight were 
identified as retarded growth.
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Histopathology Study of Eye 

Brown leghorn eggs were treated with vehicle control, thalidomide, SpNO and 
thalidomide plus SpNO as described above. Eyeballs from each group of the embryos 
were dissected out at HH 8 stage and were fixed in 10% formalin. Histology sections 
were stained with hematoxylin and eosin. 

Transcriptome Sequencing and Analysis 

Brown leghorn eggs were treated with vehicle control orthalidomide as described 
previously and the total RNA was isolated from whole embryo of stage HH29 
(pre-treated with vehicle orthalidomide) using TRIzol® method. The transcriptome 
sequencing was carried out using Illumina HiSeq 2500 platform and the data has 
been submitted to GEO (GSE69159). To align the sequence reads to the refer-
ence genome of chicken (Galgal4) downloaded from Ensembl Release 75 databases, 
TopHat (v2.0.8) was used with default parameters. Then, to identify the differentially 
expressed genes, Cuffdiff (v2.2.0) program was used. To study the GO Biological 
process (BP), GO Molecular Function (MF) and GO KEGGPathways enriched, we 
used DAVID and GeneCodis, online modular enrichment tools [16]. Using STRING 
v10 tool, we constructed the protein-protein interaction (PPI) network. 

Results 

To Study the Anti-teratogenic Effect of NO Against Teratogens 

To investigate whether NO recovery is global to the other known teratogens, HH 
stage 8 chick embryos were treated with different teratogens such as, thalidomide 
(40 μg/mL), mercuric chloride (50 μM), ethanol (5%), lithium chloride (10 μM) and 
cadmium (10 μM)  followed by 10  μM of spNO treatment after 30 min. Best concen-
tration of each teratogen was standardized separately (Data not shown). Embryos 
were dissected at HH stage 37 and subjected to the morphological analysis to 
check the effect of treatments on the embryonic development and percentage of 
abnormal embryos was scored, embryos with any deformities are considered as 
abnormal embryos. 44, 62, 76, 46 and 72% of embryos were abnormal in thalido-
mide, mercuric chloride, ethanol, lithium chloride and cadmium treatment respec-
tively. SpNO rescued 98 and 92% embryos from thalidomide and cadmium mediated 
teratogenicity respectively but SpNO did not rescue embryos from other teratogens 
as shown in Fig. 20.1.
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Fig. 20.1 Recovery effect of SpNO against other teratogens treated embryos. SpNO rescued 
embryos from thalidomide and Cd mediated teratogenicity but did not rescue other teratogens 
induced deformities. Chick embryos (n = 50 eggs) were treated with teratogens such as thalido-
mide (Thal); 40 μg, Mercuric chloride (MC); 50 μM, ethanol (ET); 5%, Lithium chloride (LC); 
10 μM and cadmium (Cd); 10 μM followed by addition of spNO (NO) 10 μM after 30 min. 
Embryos were dissected at HH stage 37 to check abnormal embryos. *p < 0.05 versus Thal. #p < 
0.05 versus Cd. Results are expressed as mean ± S.E of three experiments 

Nitric Oxide Recovers the Eye Structural Integrity Affected 
by Thalidomide 

Thalidomide caused structural and functional eye deformities in chick embryo as 
shown in our previous work [22]. Histological assessment showed loss of tissue 
integrity in eyes under thalidomide treatment together with loss of pigmented epithe-
lium while SpNO and thalidomide + SpNO group were similar to that of vehicle 
control group (Fig. 20.2). 

Control NO Thal+NOThal 

Fig. 20.2 Histopathological assessment of eye isolated from 6th day old chick embryo pre-treated 
with the corresponding treatments as single dose at HH8 stage. Arrows indicate the pigmented 
epithelium, which was deformed under thalidomide treatment alone. Morphology is shown in Kumar 
et al. [22]
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Enrichment of Pathways Based on Transcriptome 
Sequencing Modulated by Thalidomide 
and Thalidomide-Nitric Oxide Combination 

The transcriptome sequencing was carried out using Illumina HiSeq 2500 plat-
form and the data was submitted to GEO (GSE69159) Ingenuity pathway analyzer 
QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGENRedwoodCity www. 
qiagen.com/ingenuity) was used to analyse differentially expressed genes while 
comparing thalidomide group with thalidomide+SpNO group. Upregulated genes 
under thalidomide+SpNO were clustered as ‘size of body’, ‘oxidation of lipid’, 
‘transport of lipid’, ‘synthesis of lipid’ whereas downregulated genes were clustered 
as ‘inflammation of organ’ and ‘apoptosis of epithelial cells organ’ (Fig. 20.3). 

Fig. 20.3 Functional enrichment of differentially enriched genes in thalidomide versus 
thalidomide-NO comparison obtained from a transcriptome analysis of 6-day-old embryo pre-
treated with thalidomide orthalidomide+SpNO. The cluster connected with blue strings indicates 
the inhibitory function while the cluster connected with orange strings indicates the activated func-
tion. Inflammation of organ and apoptosis of epithelial cells were inhibited whereas size of body, 
transport of lipid, synthesis of lipid and oxidation of lipid were activated under thalidomide+SpNO 
treatment

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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Discussion 

There are very few successful supplements/drugs to prevent the birth defects. One 
of those is FDA approved 400 μg of folic acid intake daily for childbearing women 
[3]. However, folic acid levels are associated with neural tube defects in developing 
embryos. Co-administration of beta cyclodextrin reduced abnormalities and showed 
protective effects against tolbutamide-induced abnormalities in fetuses [18]. 

NO mediated signaling pathway plays significant role during embryogenesis. In 
rat model, maternal exposure of NOS inhibitor during pregnancy leads to retarded 
growth and deformed embryos [32]. Earlier, disturbed nitrite/nitrate content had 
been reported in the maternal blood, which later caused retarded fetal growth [6]. 
NOS inhibition causes the overproduction of ROS, which mediates organ defects in 
embryo [1, 8]. NOS inhibition in the presence of teratogenic agent (valproic acid) 
aggravated the teratogenic outcome of the embryo [40]. Knock out mice of eNOS 
showed placental anomalies, abnormal reproductive features, limb defects, retarded 
growth and fetal death [31, 42]. 

Given the fact that NO signaling is important for developmental process, inhibition 
of NO synthesis leads to amplification of the teratogenic effects of several teratogens 
including thalidomide and cadmium. In addition, NO supplementation proved to 
reduce the teratogenic effects of thalidomide [20, 37], valproic acid [40, 41], cadmium 
[25, 46], and copper deficiency [7, 50]. 

The chemical nature of nitric oxide (·N=O or ·NO) is very unstable as it possesses 
an unpaired electron in its’ antibonding π*2px/π*2py molecular orbital. It has a 
very short half-life and disappears rapidly in physiological solutions particularly in 
the presence of hemoglobin [13, 39]. NO can be produced by various nitric oxide 
synthase (NOS) enzymes and it can be stored as comparatively stable nitrite or nitrate 
salt in our physiology. There is a transient moment for it to be produced by NOS or 
nitrite reductase and to react on its target binding. Therefore, NO release dynamics 
are very relevant in this context. In order to attenuate teratogenicity by applying NO 
donor, it is very important to understand the NO release kinetics of individual NO 
donor along with the treatment time and doses. The release pattern should be in an 
extremely controlled approach for optimal effectiveness of NO-derived therapeutic 
strategy. 

The selection of doses and chemistry of NO donors are key factors in a NO-
dependent therapeutic strategy [27]. We have tested NO donors with half-life ranging 
from seconds to several hours for their efficacy in modulating angiogenesis. The 
study identified the best as spermine NONOate (spNO) with a half-life 39 s. We 
have used spNO as an effective anti-teratogen molecule for all our follow up studies, 
and observed a strong anti-tertogenic property of the spNO [37]. Further, the chem-
istry of NO is regulated by its ability to react with other radical species such as 
superoxide anion resulting in the production of cytotoxic peroxynitrite (ONOO−) 
and its affinity to coordinate with transition metals [15, 17]. On one hand, physio-
logical level of nitric oxide is essential for cellular homeostasis and even low levels 
of exogenous nitric oxide modulated cardiogenesis [24] whereas, on the other hand,
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excess NO may undergo various nitration, nitrosylation, and nitrosation reaction 
and thus can hamper the regular biological process and molecular functions of a 
cell [47]. Overdose of NO can induce nitrosative stress, which is associated with an 
abnormality in cardiac function starting from hypertension to congestive heart failure 
[34]. Even excess production of NO due to other pathological factors in physiology 
can lead to cardiovascular dysfunctions [11]. Our laboratory [36] has shown that 
the level of NO in yolk has a modulatory effect in embryonic heart development. 
Gene expression of heart developmental marker including Pitx2, BMP4, Noggin, Shh 
had altered under high dose of NO. We have also demonstrated that excess levels 
of NO can cause situs inversus by impairing the migration of cardiac progenitor 
cells involving BMP4-SMAD1 associated pathway. Therefore, we have performed a 
series of standardization experiments to obtain optimal concentration of NO (through 
SpNO-NO donor) to protect the chick embryo from teratogenic effects of thalido-
mide and cadmium. Our results have shown that 10 μm is the best concentration of 
exogenous NO [46]. 

Yet another point to be considered is about the stage of pregnancy at which NO 
supplementation will help prevent teratogenic effects. Our earlier works have shown 
that ultra-low levels of Cd interfere with endothelial functions and specifically angio-
genesis [25]. Depending on the above hint, we hypothesized that Cd interferes with 
early angiogenesis. Veeriah et al. [46] demonstrated that the severity of Cd-mediated 
effects observed at the HH-8 stage coincides with the formation of blood islands and 
cardiogenesis in the developing embryo. These results in turn parallel our previously 
published work, which showed that the exposure of classical teratogenic drug thalido-
mide to HH-8-staged embryos was detrimental inhibiting early vasculogenesis and 
subsequent embryo development. 

Blood islands are the precursors of early blood vessels in the embryo; the time of 
their formation is an extremely delicate and dynamic phase, which ultimately defines 
the vasculature of area vasculosa and embryo development. Results demonstrate that 
Cd exposure at HH-8 stage caused significant deformations of area vasculosa vascular 
network of embryos. In the present work, we noticed the loss of tissue integrity in 
the form of deformed eyes under the treatment of thalidomide while SpNO and 
thalidomide + SpNO group recovered the effects (Fig. 20.2). 

In these experimental models, we observed that embryos had a phase “window 
of susceptibility” during which they are more susceptible to teratogens. Embryos 
were less susceptible to teratogens once the heart start beating and the circulation is 
established. This could be due to the increase in the number of total and differen-
tiated cells and dispersion of teratogenic metabolites due to the newly established 
circulatory system. This phase in an embryo could be termed as “window of suscep-
tibility” Although, these studies were from experimental models, there could be an 
analogous phase in human embryonic development during which embryos are the 
most susceptible for teratogenic assaults. Thus, we observed that the most sensitive 
window (Fig. 20.1) at which the teratogens, thalidomide and cadmium exert their 
maximum effects is HH-8-staged embryos and supplementation of low dose of NO at 
HH-8 staged embryos could prevent teratogenic effects of thalidomide and cadmium 
significantly [37].
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Thalidomide treatment reduced body size in developing chick embryos as shown 
by Veeriah et al. [45]. It also induced apoptosis in various cell types such as cardiomy-
ocytes [23] and endothelial cells [37]. In our transcriptome data obtained from 6th-
day old chick embryo pre-treated with thalidomide or thalidomide + spNO, we 
observed that upregulated genes under thalidomide + spNO were clustered as ‘size 
of body’ indicating that spNO could help to recover the thalidomide-induced reduc-
tion in the size of the embryo. The downregulated genes in the similar comparison 
were clustered as ‘apoptosis of epithelial cells’ showing that spNO could prevent 
thalidomide-induced apoptosis and hence provide protection against thalidomide-
mediated teratogenicity. Other pathways that SpNO altered were lipid metabolism, 
transport, and ‘inflammation of organ’ (Fig. 20.3). 

Summary 

Teratogens are toxic substance which causes the adverse effect to the developing 
embryos resulting in structural and functional abnormalities or embryonic death. We 
proposed NO as an anti-teratogen. Present study offers the evidences that NO exerts 
anti-teratogenic role against thalidomide and Cd. Exogenous NO supplementation 
via a NO donor to thalidomide exposed embryos protected embryonic eyes from 
damages. Based on these observations we propose that NO supplementation during 
early stage of pregnancy may shield developing embryos from teratogenic assaults 
and boost embryonic growth. 
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Chapter 21 
Ruthenium Nitrosyl Complexes: 
Photoinduced Delivery of NO to Different 
Biological Targets 

Sushil Kumar, Sain Singh, and Kaushik Ghosh 

Abstract Nitric oxide (NO) molecule participates in various biological events 
such as vasodilation, neurotransmission, antioxidant, and immune responses. In 
living organisms, it is generated as a side product by nitric oxide synthase (NOS) 
enzyme via conversion of L-arginine to L-citrulline. The physiological role of NO is 
concentration-dependent, which is crucially important to obtain the desired effects in 
biosystem. Coordination complexes of NO with transition metals, especially ruthe-
nium (Ru), have gained increasing interest for the past few decades. So far, several 
ruthenium nitrosyl complexes have been developed as NO carriers, and their photo-
chemical properties are well documented in the literature. Most of the ruthenium 
nitrosyl (Ru–NO) complexes are found photolabile in nature and release NO molecule 
in the presence of the light of suitable wavelength. The photoreleased NO can stimu-
late various biological targets in different in-vitro and in-vivo models. The main motif 
of this book chapter is to cover majority of the light sensitive Ru–NO complexes, 
and the photochemical properties of these complexes, quantification, delivery and 
application of NO molecule for various biological targets are discussed at a length. 
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Introduction 

Nitric oxide (NO), a small gaseous molecule, has been considered as a highly toxic 
gas for an unlimited period (during pre-1980s) because of insufficient awareness of 
its biological significance. It is a diatomic free radical and acts as a strong field ligand 
for different transition metals. Louis J. Ignarro was the first to reveal the importance 
of this molecule in biosystems under physiological conditions during the 1980s [1]. 
Later, NO was selected as a Molecule of the Year in 1992 [2]. In the year 1998, three 
American scientists Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad, were 
awarded Nobel Prize in Physiology or Medicine for demonstrating the signalling 
properties of NO molecule. 

In living systems, nitric oxide is synthesized by a heme-containing metalloenzyme 
named nitric oxide synthase (NOS) [3, 4]. Three types of NOS enzymes have been 
characterized and purified: (i) endothelial NOS or e-NOS [5]; (ii) neuronal NOS or 
n-NOS [6] and (iii) inducible NOS or i-NOS [7]. These enzymes could easily be 
differentiated on the basis of their sensitivity towards Ca2+ stimulation, the separate 
genes that are cloned or sequenced on an organ localization. 

Endothelial and neuronal NOSs are considered as constitutive NOSs (c-NOSs) 
enzymes due to their presence as normal constituents in healthy living cells. They 
produce NO on-demand in short periods of time. These enzymes generate NO at nM 
to μm level, which induces changes in targeted cells with the activation of soluble 
guanylyl cyclase [8]. Neuronal NOS is dispersed in the brain as well as in the spinal 
cord within the central nervous system (CNS) [9]. Nitric oxide molecule has been 
reported as a neuronal messenger in the central nervous system by Snyder et al. in 
1991 (Scheme 21.1) [10]. 

Endothelial NOS isoenzyme exists in the endothelium of human arterioles, 
arteries, and veins and regulates the blood vasodilatation in case of high BP. Many 
reports have shown that the NO molecule plays essential functions in memory-related 
events [11]. 

Inducible NOS holds a tightly bound calmodulin, and so it is Ca2+-independent 
isoenzyme [12]. This isoenzyme is activated from the products of any infection, 
which may include bacterial exotoxins and endotoxins [13]. It generates NO at very 
high concentrations (upto mM level), which exhibits cytostatic property in infected 
or tumor cells (Scheme 21.1) [14]. The large amount of NO produced by i-NOS is 
toxic and may show different side effects towards normal cells. Interaction of NO 
with the enzymes containing Fe or S centers may agitate the respiration cycle in 
mitochondria [15]. 

Nguyen et al. [16] demonstrated that the high concentration of NO can also cause 
DNA damage. Furthermore, NO with superoxide ion interaction leads to the genera-
tion of highly stable toxic reactive intermediates such as hydroxyl and peroxynitrite 
anions [17].
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Scheme 21.1 Nitric oxide production from different NOSs and its biological functions 

Scheme 21.2 Biosynthesis of NO by NOS enzyme 

Synthesis of NO in the Biosystem 

The NOS enzyme produces NO molecule with L-arginine conversion into L-citrulline 
(Scheme 21.2) [18] in which the substrate oxidation occurs via two succeeding 
oxidative steps [19]. During this reaction, an intermediate N-hydroxy-L-arginine is 
formed which has been characterized well. L-citrulline can also be converted back 
to L-arginine for maintaining a continuous NO generation, as reported by Hecker 
et al. [20]. 

Biological Significance of NO 

Rather than being merely a toxic molecule, the biosynthesized NO is found to be an 
essential component in several biological events such as vasodilator in blood vessels
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[21, 22], immune response [23, 24], a neurotransmitter in CNS [25] and apoptosis 
(a programmed cell death) in tumor cells [26, 27] and the physiological functions of 
nitric oxide are found dependent on its concentration produced by NOS in the living 
organisms. 

Cardiovascular Function of NO 

Bioactivity of NO was first observed in cardiovascular systems where NO acted as 
a vasodilator. It helped in blood vessels relaxation, in the case of patients suffering 
from high blood pressure [1–3, 21, 22]. In the cardiovascular region, endothelial nitric 
oxide synthase enzyme produces NO with the conversion of amino acid arginine to 
citrulline. The blood vessels are dilated with the help of a physiological amount of 
NO via an activation of guanylyl cyclase enzyme. 

Function of NO in CNS 

Although NO production occurs in different tissues all over the human body, the brain 
is considered to be the major source of NO. It is because of the wide distribution of 
both soluble guanylyl cyclase (sGC) enzymes and NOS in the central nervous system. 
The role of NO in CNS’s is tremendous, which may include the stimulation and 
maintenance of synaptic plasticity to the sleep control, appetite, body temperature, 
and neuro-secretion. In the nervous system, n-NOS is found in astrocytes and cerebral 
blood vessels. It becomes important to note that the physiological concentration of 
NO is neuro-protective. However, a large amount of it is toxic to neurons [28, 29]. 

NO Function in Programmed Cell Death (Apoptosis) 

A large amount of NO in the human body is produced by i-NOS enzymes. The 
interaction of biosynthesized NO with superoxide ions results in oxidative injury 
and cell death. Therefore, a large concentration of this small molecule is utilized 
to induce cell death in tumor cells. NO also participates in several redox events 
to synthesize highly toxic compounds (mostly reactive nitrogen species), causing 
cellular death. 

Owing to the essential functions and high demand for NO in biosystems, a 
number of exogenous organic and inorganic NO carriers have been designed and 
developed during the past two decades [30–33]. Such molecules may deliver NO on 
demand to different biological targets such as heme based proteins such as myoglobin, 
haemoglobin and cysteine-S.



21 Ruthenium Nitrosyl Complexes: Photoinduced Delivery of NO … 429

Table 21.1 Some well known NO donating agents and their biological significance [34] 

NO donating agents Physiological function Clinical name 

1 GTN (Glyceryl trinitrate) Vasodilation for treatment of angina 
pectoris 

Nitroglycerin 

2 ISMN (Isosorbide mononitrate) Dilation of blood vessels Ismo, Imdur 

3 ISDN (Isosorbide dinitrate) Dilation of blood vessels Isordil, BiDil 

4 NONOates (Diazeniumdiolates) Cardiovascular treatments – 

5 SNP (Sodium nitroprusside) Blood flow regulation Nitropress 

6 RBS (Roussin’s black salt) Inhibitor for bacterial growth – 

7 RRS (Roussin’s red salt) Bactericidal agent – 

Exogenous Organic NO Carriers 

Many organic compounds, including nitrates and nitrites, nitrosothiols, and diazeni-
umdiolates, have been investigated as potential NO donors [30, 34]. Some diseases 
such as hypertension and angina pectoris are treated using well known NO donor 
drugs glyceryl trinitrate (also known as nitroglycerin, GTN) and isosorbide monon-
itrate (ISMN). A literature survey revealed that GTN having three nitrate groups 
releases one molar equiv. of NO via enzyme activation [35, 36] (Table 21.1). 

Diazeniumdiolates (NONOates) are often used to improve the neuro-transmission 
process in CNS. NONOates usually provide 2.0 molar equiv. of NO on impulsive 
decomposition under the physiological environment. Several NONOates have been 
investigated to treat cardiovascular diseases but still not in use at the clinical level 
[37]. 

The majority of organic-based NO donor drugs have a flaw in that they release 
NO spontaneously at physiological pH and temperature. Moreover, many of them 
were found insoluble in an aqueous medium. Hence, their low solubility in water, 
NO leakage under moderate conditions, and sensitivity towards UV light make them 
non-specific for PDT. Therefore, the syntheses of an extensive range of molecular 
NO donating drugs are in demand due to the versatile roles of NO in biological 
processes. 

Exogenous Inorganic NO Carriers 

Due to the tremendous biological significance of NO, the coordination chemistry of 
this molecule with different transition metals has been extensively investigated during 
the past [37–39]. Several light-sensitive metal-NO complexes have been constructed 
for a rapid release of NO in the presence of UV and/or visible light of suitable 
wavelength (see Scheme 21.3).
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NO Donation 

Scheme 21.3 Schematic representation of photoactive metal nitrosyl complexes 

Such complexes have shown potential applications as NO donating drugs in 
PDT of cancerous cells. Nitric oxide complexes of iron such as sodium nitroprus-
side Na2[Fe(CN)5NO] and Roussin’s salts are well-known NO-releasing agents that 
donate NO under UV light illumination (Fig. 21.1) [30, 40]. However, the sensitivity 
of these iron nitrosyl complexes towards high intensity UV light makes them non-
specific for PDT of cancer cells. Moreover, the use of complex Na2[Fe(CN)5NO] as 
NO drug was limited to an extent due to its toxic effects linked with the products 
after photorelease of NO. 

In this endeavour, several other light-activated metal nitrosyl complexes that may 
deliver NO on demand have been developed by different research groups [30, 39, 41]. 
Majority of Fe based nitric oxide compounds are found less stable under physiological 
conditions. 

Mascharak and his group constructed [42, 43] a pentadentate carboxamido based 
complex [Fe(PaPy3)(NO)]2+, which could release NO in the presence of visible light 
of low intensity. However, this complex was found unstable in aqueous media and 
was not utilized for biological applications. Nitric oxide complexes with other metals 
such as Mn [44, 45], Cr [41, 46] and Mo [41] have also been reported, but only a few 
of them were found suitable for PDT of cancer cells.

Fig. 21.1 Iron-based inorganic NO carriers utilized at the clinical level 
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Ruthenium Nitrosyl (Ru–NO) Complexes 

Over the past few decades, ruthenium complexes have been extensively studied 
due to their immense photochemical and photophysical properties [47–49] and 
tunable redox properties [50, 51]. Such properties demand their applications in the 
research area of material chemistry, catalyses, medicines, and biology. A majority of 
ruthenium complexes have been investigated in DSSC [52, 53], artificial molecular 
synthesis [54, 55], and catalytic organic transformation reactions [56, 57]. There-
fore, ruthenium-based coordination complexes are gaining increasing attention of 
researchers in different research areas. Several ruthenium complexes have been 
utilized as NO donors and scavengers [30–34], anti-cancer [58–60], anti-microbial, 
and antimalarial agents [61, 62], and their medical applications are well documented. 
Gray and group pioneered the use of ruthenium-based photosensitizers to probe the 
electronic properties in modified proteins (CytP-450s) [63]. 

Nitric oxide complexes of ruthenium (Ru-NO complexes) are found extraordi-
nary stable under the physiological environment. In the last two decades, many 
photosensitive Ru–NO complexes have been developed for their potential applica-
tions as NO donating molecules under visible light and NIR light suitable for PDT 
[30–33]. Mascharak and group pioneered the work on metal nitrosyl complexes 
and their biological applications [64–72]. They have extensively investigated the 
photochemistry of Ru–NO, Mn–NO, and Fe–NO complexes. They developed a 
variety of Ru–NO complexes which exhibit strong absorption in the visible region 
(400–600 nm). 

Tfouni et al. [73] demonstrated the biological applications of auxiliary 
ammine based light-activated ruthenium nitrosyl complexes formulated as 
[Ru(NH3)4(NO)(X)]3+ (where X was NH3, pyridine, imidazole, or P(OEt)3). The 
effect on NO photolabilty with the variation of X group present at the position trans 
to NO, was investigated in UV light (λmax 300–370 nm). The photolysis experi-
ments were carried out in acidic aqueous solutions. Under acidic conditions, all the 
complexes were found to be soluble in water. 

Porphyrin Based Ruthenium Nitrosyl Complexes 

Nitric oxide molecule participates in many biological processes by targeting heme 
proteins, for instance, myoglobin, Cyt-c oxidase, and guanylyl cyclase enzyme 
[74, 75]. 

Ford and group [76, 77] demonstrated the photochemical properties of Ru– 
NO complexes based on porphyrin scaffold (Fig. 21.2). These complexes served 
as potential photolabile NO-releasing agents under visible light irradiation. Ford’s 
group has developed a number of such complexes, and their kinetic studies were 
performed during the light-induced release of NO. Most of the porphyrin-based Ru– 
NO complexes have been found non-specific for biological applications due to the
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Fig. 21.2 Chemical drawings of Ru–NO complexes 1 and 2 

recombination of NO molecule released during photolysis experiments. Many non-
heme-based Ru–NO complexes have been developed to overcome this ambiguity of 
NO recombination in this endeavour. 

Polypyridyl Ligands Based Ruthenium Nitrosyl Complexes 

In 2005, Chanda et al. [78] reported several polypyridyl based ruthenium-NO 
complexes of the type [Ru(trpy)(L1−4)(NO)]3+ (3) (trpy  = terpyridine, L1 = 
2-(2-pyridyl)-benzoxazole, L2 = 2-(2-pyridyl)-benzothiazole, L3=2-(2-pyridyl)-
benzimidazole, L4 = 1-methyl-2-(2-pyridyl)-1H-benzimidazole) (Fig. 21.3). With 
the variation 2-(2-pyridyl)-azole based auxiliary ligands (L1 to L4), the electrophilic 
effect of nitric oxide has been scrutinized in this report. However, these nitrosyl 
complexes were not examined to check the photochemical reactivity of NO molecule.

Lahiri, Kaim [79, 80] and the group developed a series of light-activated Ru– 
NO complexes derived from polypyridyl based ligands. The structural elucidation 
of these complexes was performed using NMR spectroscopy and X-ray diffraction 
studies. The electrochemical measurements of reported nitrosyl complexes exhibited 
one e- reduction of Ru–NO moiety. Meyer and co-workers [81, 82] constructed two 
bipyridyl based cis- and trans- derivatives of complex [Ru(bpy)2(NO)Cl]2+ (5–6) 
(where bpy = bipyridine) (Fig. 21.4). The photochemical behavior of NO has been 
investigated under UV light irradiation in organic solvents. Upon UV light irradiation, 
NO was immediately released and the solvent coordinated photochemical products, 
namely [RuIII(bpy)2(MeCN)Cl]2+ and [RuII(bpy)2(MeCN)Cl]+ have been isolated.
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Fig. 21.3 Chemical drawings of ruthenium nitrosyl complexes 3 and 4

Fig. 21.4 Chemical drawings of ruthenium nitrosyl complexes 5 and 6 

It has been perceived that the majority of photochemical products of Ru–NO 
complexes result in Ru(III) species. However, some nitrosyl complexes, espe-
cially derived from polypyridyl ligands, may also contain Ru(II) after photolysis 
experiments. The presence of substantial σ donation and π accepting behavior of 
neutral pyridine ligands may cause considerable stability to Ru(II) species in the 
photoproducts after photorelease of NO molecule. 

Sauaia et al. [83, 84] synthesized binuclear ruthenium nitric oxide complexes 
formulated as [Ru(NH3)4(L)(pz)Ru(NO)(bpy)2]5+ (7) in which a pentaammine 
Ru(II) complex is linked with bipyridine based Ru–NO complex via a pyrazine linker 
(Fig. 21.5). These complexes were investigated for their application as NO-releasing 
agents under visible light irradiation. The intense absorption peak near 530 nm 
has been observed in UV-visible spectra of these complexes. Laser-flash photol-
ysis measurements have been performed to investigate the photochemical behaviour 
of nitrosyl complexes in acidic buffer solution of pH 4.5.

In the year 2012, Kumar et al. [85] reported a series of polypyridyl based photo-
labile Ru–NO complexes. The photocleavage of NO molecule was carried out under
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Fig. 21.5 Chemical drawing 
of pyrazine linked ruthenium 
nitrosyl complex 7

UV light of low intensity (λmax ~ 302 nm), and the photo released NO has been 
trapped by reduced myoglobin. Recently, Malfant and coworkers [86, 87] synthe-
sized ruthenium nitrosyl complexes (8–10) based on [Ru(tpy)(bpy)(NO)]3+ type core 
(Fig. 21.6). The photochemical, optical, and electronic properties of these nitrosyls 
were investigated with a variety of different substituents on pyridine fragments of 
ligands. TD-DFT calculations were also performed to understand the intramolecular 
based charge transfer transitions in reported nitrosyl complexes. Ru–NO complexes 
were found sensitive to visible light, and photoreleased NO when irradiated at 
λmax = 436 nm.

In a recent report, Fraix et al. [88] attached a Ru(II)-polypyridyl based photo-
sensitizer (PSs) with bipyridine based NO photodonor (NOPD) to obtain trinuclear 
molecular assembly (11) (Fig. 21.7). They utilized it as one of the most suitable 
strategies to make therapeutic action more effective towards tumor and bacterial 
diseases. This strategy also led to the reduction of unnecessary side products. The 
main focus was to develop the synergic influence stemming from the manifold ther-
apeutic moieties serving with different mechanisms. This strategy may pave the way 
for interesting avenues to novel therapies which are directly controlled under the 
light. Such types of PS-NOPDs may display potential applications in therapeutic 
research areas such as antibacterial and antitumor research fields.
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Fig. 21.6 Chemical drawings of ruthenium nitrosyl complexes 8–10

Fig. 21.7 Chemical drawing of PS-NOPD ensemble 11
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Imine and Carboxamido Ligand-Based Ruthenium Nitrosyl 
Complexes 

Works et al. constructed [88] many non-heme based model Ru–NO complexes of type 
12 (where X stands for chloride ion, nitrite ion, or water) (Fig. 21.8). These complexes 
were derived using tetradentate salen (bis-(salicylidene)-ethylenediamine) ligand. 
The photolytic behaviour of these nitric oxide complexes has been investigated in 
both aqueous and organic-based solvents. However, some nitrosyl complexes exhib-
ited a reversible binding of NO during the photolytic experiments under UV light 
irradiation. Authors have established that the rate of recombination of NO was fast 
in organic solvents such as THF and toluene; however, the reversibility of NO was 
slow in acetonitrile solution. 

To prevail over this setback of NO recombination, Koch et al. [89] reported a 
polymer matrix incorporated with salen based Ru–NO complex for a controlled 
lightinduced delivery of NO (Fig. 21.8). Ruthenium nitrosyl complex 13 containing 
O-phenylvinyl moiety has been synthesized, which was covalently linked into the 
polymer matrix (methacrylate polymer). The photolytic behavior of the hybrid mate-
rial was quite similar to the parent salen based nitrosyl complex 13. Upon exposure 
to UV light of low intensity (λmax = 370 nm), NO was photo released from the 
polymer-based material and was trapped by reduced myoglobin under physiological 
conditions. 

Mascharak’s group [90, 91] developed polypyridyl based light-sensitive Ru–NO 
complexes [(SBPy3)Ru(NO)]3+ (14) and [(PaPy3)Ru(NO)]2+ (15) (Fig. 21.9). These 
complexes were found sensitive to high-intensity UV light and were quite suitable for 
their applications in biological media. The influence of strong σ-donating –CO–NH-
group onto the photochemical nature of NO molecule has also been demonstrated 
in the report. Due to the presence of σ-donor carboxamido nitrogen, the product of 
[(PaPy3)Ru(NO)]2+ was stabilized in Ru(III) oxidation state. On the other hand, the 
photoproduct of nitrosyl complex [(SBPy3)Ru(NO)]3+ contained Ru(II) center under 
the same reaction conditions. The photoliberated NO has successfully been delivered 
to heme-enzymes, i.e., myoglobin and cytochrome c oxidase enzyme. The amount 
of photoinduced NO was monitored with the help of a nitric oxide sensing device.
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Fig. 21.8 Chemical drawings of salen based ruthenium nitrosyl complexes 12 and 13 
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Fig. 21.9 Chemical drawings of imine based ruthenium nitrosyl complexes 14 and 15 

During photolysis experiments of different ruthenium nitrosyl complexes, it has 
been observed that the photolytic cleavage of NO is directly influenced by the 
substituents present on the ligand framework. This group has established this fact by 
measuring the amount of photoreleased NO in the presence of different substituent(s) 
on the ligands [66, 67]. The sensitivity of many nitrosyl complexes towards the low-
intensity light in visible and/or NIR region has been investigated with the alteration 
of the substituent(s), donor sites, or the extent of conjugation in the ligands. Because 
of their sensitivity in visible and near-infrared red light, Ru–NO complexes were 
reported as potential candidates for PDT in cancerous cells. 

The same group described a report on carboxamido based Ru–NO complex 
[Ru(Me2bpb)(NO)Cl] (16) (Fig. 21.10). Complex 16 was investigated for its appli-
cations in photodelivery of NO under UV light illumination [33, 66]. In particular, 
the focus was aimed at the sensitization of this Ru–NO complexes towards the visible 
region. To do this, an extended conjugation was employed in the ligand framework 
of complex 16 to obtain a new Ru–NO complex 17, which was found to be more 
sensitive to low-intensity visible light. 

Mascharak’s group [92] has successfully coordinated an intense red resorufin dye 
with the Ru center of nitrosyl complex 17 (Fig. 21.11). Substitution of Cl atom 
with resorufin dye resulted in complex 18, which displayed an absorption band near

Fig. 21.10 Employment of extended conjugation in carboxamido based Ru–NO complex 16 
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500 nm in its UV-visible spectrum. The resultant nitrosyl complex was highly sensi-
tive towards low-intensity light in the visible region and released NO when illu-
minated with λmax ≥ 455 nm. A high quantum yield value in the visible area has 
been (φ ~ 0.05 at  λmax 500 nm) observed due to the conjugation of Resf dye in 
nitrosyl complex. The amount of NO released during the photolysis experiment has 
been measured using a NO sensitive electrode device. The Resf dye-based nitrosyl 
complex 18 has also been investigated for its application in the cellular matrix as 
it displayed strong luminescence due to the conjugation of Resf dye. To induce 
programmed cell death, NO molecule was photodelivered towards cellular targets 
under physiological conditions. 

In the year 2014, Ghosh et al. [93] developed two imine functionality based light 
activated ruthenium nitrosyl complexes (19–20) (Fig. 21.12). These complexes were 
found sensitive towards visible light and photoreleased NO upon UV and visible 
light exposure. The photolysis experiments have been investigated using absorption 
spectral studies, myoglobin trap and Griess reagent assay experiments. 
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Fig. 21.11 Incorporation of luminescent bright red resorufin dye into ruthenium complex 18 to 
enhance its sensitivity towards visible light 

Fig. 21.12 Chemical drawing of synthesized ruthenium nitrosyl complexes 19 and 20
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Organometallic Ru–NO Complexes 

Hadadzadeh et al. [94] reported a terpyridine based organometallic Ru–NO complex 
[Ru(phpy)(trpy)(NO)]2+ (21) in the year 2002 (Fig. 21.13). Complex 21 was char-
acterized using standard spectroscopic techniques such NMR, FT-IR, and electronic 
absorption studies. However, this complex has not been employed for photochem-
ical studies of NO in this report. In 2008, Holanda et al. [95] demonstrated several 
photolabile organometallic Ru–NO complexes formulated as [Ru(L)(NH3)4(NO)]3+ 

(22–23) (L  = imidazole or caffeine) (Fig. 21.14). The differential-pulse voltam-
metric, as well as electronic absorption studies, were performed to investigate the 
photolytic cleavage of NO from reported nitrosyls. The photoproducts having metal 
in +3 oxidation state were established using the electron paramagnetic resonance 
(EPR) technique. 

Fig. 21.13 Chemical drawing of organometallic ruthenium nitrosyl complex 21 

Fig. 21.14 Chemical drawings of imidazole based ruthenium nitrosyl complexes 22 and 23
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Ghosh and group [96–98] have synthesized a series of photoactive ruthenium 
nitric oxide complexes to perform the photolysis experiments for NO dissociation 
under light illumination (24–27 in Fig. 21.15). The photochemical behavior of NO 
was observed with different substituent(s) in the ligand frames of these Ru–NO 
complexes. Nitric oxide reactivity and scavenging studies with different ruthenium 
complexes were investigated and the photoreleased NO was transferred to reduced 
myoglobin. The amount of liberated NO from nitrosyl complexes has been detected 
by using Griess reagent assay. Amount of the free NO as well as other reactive oxygen 
and/or reactive nitrogen species was also estimated by DPPH radical quenching 
assay using UV-visible spectrophotometer. Majority of these Ru–NO complexes 
were found sensitive for the liberation of NO in the presence of visible light of elec-
tromagnetic radiations. The liberation of nitric oxide was also investigated through 
myoglobin trapping experiment under physiological conditions. 

Fig. 21.15 Chemical drawing of ruthenium nitrosyl complexes 24–27
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Conclusions 

The present book chapter covers photolabile ruthenium nitrosyl complexes used 
for light-induced delivery of NO molecule under UV and visible light illumina-
tion. We have considered several types of NO donors, such as carboxamido, imine, 
polypyridyl, and organometallic scaffold-based Ru–NO complexes. The biological 
significance of photoreleased NO has been discussed at length, and its applications 
encompass various research domains such as medicines, biology, and analytical 
chemistry. 

References 

1. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium derived relaxing 
factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 
84:9265 

2. Koshland DE (1992) The molecule of the year. Science 258:1861 
3. Nathan C, Hibbs JB (1991) Role of nitric oxide synthase in macrophage antimicrobial activity. 

Curr Opin Immunol 3:65 
4. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthase a calmodulin-requiring enzyme. 

Proc Natl Acad Sci USA 87:682 
5. Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox IN et al (1992) Molecular 

cloning and characterization of human endothelial cell nitric oxide synthase. FEBS Lett 307:287 
6. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a 

neuronal role for nitric oxide. Nature 347:768 
7. Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor: identifi-

cation as NO and role in the control of vascular tone and platelet function. Biochem Pharmacol 
37:2495 

8. Presta A, Liu J, Sessa WC, Stuehr DJ (1997) Substrate binding and calmodulin binding to 
endothelial nos coregulate its enzymatic activity. Nitric Oxide 1:74 

9. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and 
neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci 
USA 88:7797 

10. Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 
12:125 

11. Snyder SH (1994) More jobs for that molecule. Nature 372:504 
12. Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD et al (1992) Calmodulin 

is a subunit of nitric oxide synthase from macrophages. J Exp Med 176:599 
13. Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated 

macrophage effector molecule. Biochem Bioph Res Co 157:87 
14. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. 

Cell Res 12:311 
15. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL (1991) Effect of exogenous 

and endogenous NO on mitochondrial respiration of rat hepatocytes. Am J Physiol 260:C910 
16. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (1992) DNA 

damage and mutation in human cells exposed to NO in vitro. Proc Natl Acad Sci USA 89:3030 
17. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl 

radical production by peroxynitrate: implications for endothelial injury from nitric oxide and 
superoxide. Proc Natl Acad Sci USA 87:1620



442 S. Kumar et al.

18. Mayer B, Schmidt K, Humbert P, Bohme E (1989) Biosynthesis of endothelium-derived 
relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently 
converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Bioph Res Co 
164:678 

19. Woodward JJ, Chang MM, Martin NI, Marletta MA (2009) The second step of the nitric oxide 
synthase reaction: evidence for ferric-peroxo as the active oxidant. J Am Chem Soc 131:297 

20. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR (1990) The Metabolism of L-arginine 
and its significance for the biosynthesis of endothelium derived relaxing factors: cultured 
endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA 87:8612 

21. Richter-Addo GB, Legzdins P, Burstyn J (2002) Introduction: nitric oxide chemistry. Chem 
Rev 102:857 

22. Bian K, Doursout MF, Murad F (2008) Vascular system: role of nitric oxide in cardiovascular 
diseases. J Clin Hypertens 10:304 

23. Fang FC (1997) Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818 
24. Kanwar JR, Kanwar RK, Burrow H, Baratchi S (2009) Recent advances on the role of NO in 

cancer and chronic inflammatory disorders. Curr Med Chem 16:2373 
25. Kalsner S (ed) (2000) Nitric oxide and free radicals in peripheral neurotransmission. Birkhäuser, 

Cambridge, MA 
26. Hirst D, Robson T (2007) Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 59:3 
27. Wang PG, Cai TB, Taniguchi N (eds) (2005) Nitric oxide donors: for pharmaceutical and 

biological applications. Wiley-VCH, Weinheim Germany 
28. Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of 

nitric oxide in the brain. Prog Neurobiol 76:126 
29. Rivier C (2001) Role of gaseous neurotransmitters in the hypothalamic-pituitary-adrenal axis. 

Ann NY Acad Sci 933:254 
30. Rose MJ, Mascharak PK (2008) Photoactive ruthenium nitrosyls: effects of light and potential 

application as NO donors. Coord Chem Rev 252:2093 
31. Ostrowski AD, Ford PC (2009) Metal complexes as photochemical nitric oxide precursors: 

potential applications in the treatment of tumors. Dalton Trans 2009:10660 
32. Eroy-Reveles AA, Mascharak PK (2009) Nitric oxide-donating materials and their potential in 

pharmacological applications for site-specific nitric oxide delivery. Future Med Chem 8:1497 
33. Fry NL, Mascharak PK (2011) Photoactive ruthenium nitrosyls as NO donors: how to sensitize 

them toward visible light. Acc Chem Res 44:289 
34. Miller MR, Megson IL (2007) Recent developments in nitric oxide donor drugs. Brit J 

Pharmacol. 151:305 
35. Thatcher GR, Nicolescu AC, Bennett BM, Toader V (2004) Nitrates, and NO release: 

contemporary aspects in biological and medicinal chemistry. Free Radic Bio Med 37:1122 
36. Kollau A, Hofer A, Russwurm M, Koesling D, Keung WM, Schmidt K et al (2005) Contribu-

tion of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for 
the activation of purified soluble guanylate cyclase through direct formation of nitric oxide. 
Biochem J 385:769 

37. McCleverty JA (2004) Chemistry of nitric oxide relevant to biology. Chem Rev 104:403 
38. Lahiri GK, Kaim W (2010) Electronic structure alternatives in nitrosyl ruthenium complexes. 

Dalton Trans 39:4471 
39. Ford PC, Lorkovic IM (2002) Mechanistic aspects of the reactions of nitric oxide with transition 

metal complexes. Chem Rev 102:993 
40. Janczyk A, Wolnicka-Glubisz A, Chmura A, Elas M, Matuszak Z, Stochel G et al (2004) 

NO-dependent phototoxicity of Roussin’s black salt against cancer cells. Nitric Oxide-Biol Ch 
10:42 

41. Hayton TW, Legzdins P, Sharp WB (2002) Coordination and organometallic chemistry of 
metal-NO complexes. Chem Rev 102:935 

42. Patra AK, Afshar RK, Olmstead MM, Mascharak PK (2002) The first non-heme iron(III) 
complex with a carboxamido group that exhibits photolability of a bound NO ligand. Angew 
Chem Int Ed 41:2512



21 Ruthenium Nitrosyl Complexes: Photoinduced Delivery of NO … 443

43. Patra AK, Rowland JM, Marlin DS, Bill E, Olmstead MM, Mascharak PK (2003) Iron nitro-
syls of a pentadentate ligand containing a single carboxamide group: syntheses, structures, 
electronic properties and photolability of NO. Inorg Chem 42:6812 

44. Ghosh K, Eroy-Reveles AA, Olmstead MM, Mascharak PK (2005) Reductive nitrosylation 
and proton-assisted bridge splitting of a (μ-oxo)dimanganese(III) complex derived from a 
polypyridine ligand with one carboxamide group. Inorg Chem 44:8469 

45. Franz KJ, Lippard SJ (2000) Nitrosyl transfer from manganese to iron in tropocoron and 
complexes. Inorg Chem 39:3722 

46. DeLeo MA, Ford PC (2000) Photoreactions of coordinated nitrite ion. Reversible nitric oxide 
labilization from the chromium(III) complex [trans-Cr(cyclam)(ONO)2]+. Coord Chem Rev 
208:47 

47. Juris A, Balzani V (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, 
electrochemistry, and chemiluminescence. Coord Chem Rev 84:85 

48. Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V et al (1994) Ruthe-
nium(II) and osmium(II) Bis(terpyridine) complexes in covalently-linked multicomponent 
systems: synthesis, electrochemical behavior, absorption spectra. Photochem Photophys Prop 
Chem Rev 94:993 

49. Endicott JF, Schlegel HB, Uddin MdJ, Seneviratne DS (2002) MLCT excited states and charge 
delocalization in some ruthenium ammine-polypyridyl complexes. Coord Chem Rev 229:95 

50. Kundu T, Sarkar B, Mondal TK, Mobin SM, Urbanos FA, Fiedler J et al (2011) Redox-rich 
spin-spin-coupled semiquinone ruthenium dimers with intense near-IR absorption. Inorg Chem 
50:4753 

51. Das A, Scherer TM, Chowdhury AD, Mobin SM, Kaim W, Lahiri GK (2012) Asymmetrical 
diruthenium complex bridged by a redox-active ligand. Inorg Chem 51:1675 

52. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338 
53. Kamper S, Paretzki A, Fiedler J, Zalis S, Kaim W (2012) Solar cell sensitizer models [Ru(bpy-

R)2(NCS)2] probed by spectro electrochemistry. Inorg Chem 51:2097 
54. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Bioinorganic 

photochemistry: frontiers and mechanisms. Chem Rev 105:2647 
55. Sun Y, Chen Z, Puodziukynaite E, Jenkins DM, Reynolds JR, Schanze KS (2012) Light-

harvesting arrays of polypyridine ruthenium(II) chromophores prepared by reversible addition-
fragmentation chain transfer polymerization. Macromolecules 45:2632 

56. Arockiam PB, Bruneau C, Dixneuf PH (2012) Ruthenium(II)-catalyzed C-H bond activation 
and functionalization. Chem Rev 112:5879 

57. Bruneau C, Achard M (2012) Allylic ruthenium(IV) complexes in catalysis. Coord Chem Rev 
256:525 

58. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology, 
and medicine: ruthenium arene anticancer complexes. Chem Commum. 38:4764 

59. Novakova O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V (1995) Correlation 
between cytotoxicity and DNA binding of polypyridyl ruthenium complexes. Biochemistry 
34:12369 

60. Chiorescu I, Deubel DV, Arion VB, Keppler BK (2008) Computational electrochemistry of 
ruthenium anticancer agents: unprecedented benchmarking of implicit solvation methods. J 
Chem Theory Comput 4:499 

61. Allardyce CS, Dyson PJ, Ellis DJ, Salter PA, Scopelliti R (2003) Synthesis and characterization 
of some water-soluble ruthenium(II)-arene complexes and an investigation of their antibiotic 
and antiviral properties. J Organomet Chem 668:35 

62. Sanchez-Delgado RA, Navarro M, Perez H, Urbina JA (1996) Toward a novel metal-based 
chemotherapy against tropical diseases. synthesis and antimalarial activity in vitro and in-vivo 
of new ruthenium- and rhodium-chloroquine complexes. J Med Chem 39:1095 

63. Winkler JR, Gray HB (1992) Electron transfer in ruthenium-modified proteins. Chem Rev 
92:369 

64. Fry NL, Rose MJ, Rogow DL, Nyitray C, Kaur M, Mascharak PK (2010) Ruthenium nitro-
syls derived from tetradentate ligands containing carboxamido-N and phenolato-O donors:



444 S. Kumar et al.

syntheses, structures, photolability, and time-dependent density functional theory studies. Inorg 
Chem 49:1487 

65. Patra AK, Rose MJ, Murphy KA, Olmstead MM, Mascharak PK (2004) Photolabile ruthenium 
nitrosyls with planar dicarboxamide tetradentate N4 ligands: effects of in-plane and axial ligand 
strength on NO release. Inorg Chem 43:4487 

66. Fry NL, Heilman BJ, Mascharak PK (2011) Dye-tethered ruthenium nitrosyls containing planar 
dicarboxamide tetradentate N4 ligands: effects of in-plane ligand twist on NO photolability. 
Inorg Chem 50:317 

67. Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK (2008) Sensitization of ruthenium 
nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for 
light-triggered NO delivery to cellular targets. J Am Chem Soc 130:8834 

68. Rose MJ, Olmstead MM, Mascharak PK (2007) Photosensitization via dye coordination: a 
new strategy to synthesize metal nitrosyls that release NO under visible light. J Am Chem Soc 
129:5342 

69. Szundi I, Rose MJ, Sen I, Eroy-Reveles AA, Mascharak PK, Einarsdottir O (2006) A new 
approach for studying fast biological reactions involving NO: generation of nitric oxide using 
photolabile ruthenium and manganese NO donors. Photochem Photobiol 82:1377 

70. Hoffman-Luca CG, Eroy-Reveles AA, Alvarenga J, Mascharak PK (2009) Syntheses, struc-
tures, and photochemistry of manganese nitrosyls derived from designed schiff base ligands: 
potential NO donors that can be activated by near-infrared light. Inorg Chem 48:9104 

71. Madhani M, Patra AK, Miller TW, Eroy-Reveles AA, Hobbs AJ, Fukuto JM et al (2006) Biolog-
ical activity of designed photolabile metal nitrosyls: light- dependent activation of soluble 
guanylate cyclase and vasorelaxant properties in rat aorta. J Med Chem 49:7325 

72. Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Structure, chemical, and photochem-
ical reactivity and biological activity of some ruthenium amine nitrosyl complexes. Coord 
Chem Rev 236:57 

73. Hoshino M, Laverman L, Ford PC (1999) Nitric oxide complexes of metalloporphyrins: an 
overview of some mechanistic studies. Coord Chem Rev 187:75 

74. Vos MH, Lipowski G, Lambry JC, Martin JL, Liebl U (2001) Dynamics of nitric oxide in the 
active site of reduced cytochrome-C oxidase aa3. Biochemistry 40:7806 

75. Ford PC, Laverman LE (2005) Reaction mechanisms relevant to the formation of iron and 
ruthenium nitric oxide complexes. Coord Chem Rev 249:391 

76. Lim MD, Lorkovic IM, Ford PC (2005) NO, and NOx interactions with group 8 metallopor-
phyrins. J Inorg Biochem 99:151 

77. Chanda N, Paul D, Kar S, Mobin SM, Datta A, Puranik VG et al (2005) Effect of 2-
(2-pyridyl)azole-based ancillary ligands (L1-4) on the electrophilicity of the nitrosyl func-
tion in [RuII(trpy)(L1-4)(NO)]3+ [trpy = 2,2’:6’,2”-terpyridine]. Synthesis, structures, and 
spectroscopic, electrochemical, and kinetic aspects. Inorg Chem 44:3499 

78. Sarkar S, Sarkar B, Chanda N, Kar S, Mobin SM, Fiedler J et al (2005) Complex series 
[Ru(tpy)(dpk)(X)]n+ (tpy = 2,2’:6’,2”-terpyridine; dpk = 2,2’-dipyridyl ketone; X = Cl-
, CH3CN, NO2−, NO+, NO●, NO−): substitution and electron transfer, structure, and 
spectroscopy. Inorg Chem 44:6092 

79. De P, Sarkar B, Maji S, Das AK, Bulak E, Mobin SM et al (2009) Stabilization of {RuNO}6 and 
{RuNO}7 states in [RuII(trpy)(bik)(NO)]n+{trpy =2,2’:6’,2”-terpyridine, bik = 2,2’-bis(1-
methylimidazolyl)ketone}-formation, reactivity, and photorelease of metal-bound nitrosyl. Eur 
J Inorg Chem 2009:2702 

80. Pipes DW, Meyer TJ (1984) Comparisons between polypyridyl nitrosyl complexes of 
osmium(II) and ruthenium(II). Inorg Chem 23:2466 

81. Callahan RW, Meyer TJ (1977) Reversible electron transfer in ruthenium nitrosyl complexes. 
Inorg Chem 16:574 

82. Sauaia MG, de Lima RG, Tedesco AC, da Silva RS (2003) Photoinduced NO release by 
visible light irradiation from pyrazine-bridged nitrosyl ruthenium complexes. J Am Chem Soc 
125:14718



21 Ruthenium Nitrosyl Complexes: Photoinduced Delivery of NO … 445

83. Sauaia MG, de Lima RG, Tedesco AC, da Silva RS (2005) Nitric oxide production by visible-
light irradiation of aqueous solution of nitrosyl ruthenium complexes. Inorg Chem 44:9946 

84. Kumar A, Pandey R, Gupta RK, Ghosh K, Pandey DS (2013) Synthesis, characterization and 
photochemical properties of some ruthenium nitrosyl complexes. Polyhedron 52:817 

85. Roose M, Tasse M, Lacroix PG, Malfant I (2019) Nitric oxide (NO) photorelease in a series 
of ruthenium nitrosyl complexes: new experimental insights in the search for a comprehensive 
mechanism. New J Chem 43:755 

86. Marchenko M, Lacroix PG, Bukhanko V, Tasse M, Duhayon C, Boggio-Pasqua M, Malfant I 
(2020) Multistep photochemical reactions of polypyridine-based ruthenium nitrosyl complexes 
in dimethylsulfoxide. Molecules 25:2205 

87. Fraix A, Sortino S (2018) Combination of PDT photosensitizers with NO photo dononors. 
Photochem Photobiol Sci 17:1709 

88. Works CF, Jocher CJ, Bart GD, Bu X, Ford PC (2002) Photochemical nitric oxide precursors: 
synthesis, photochemistry and ligand substitution kinetics of ruthenium salen nitrosyl and 
ruthenium salophen nitrosyl complexes. Inorg Chem 41:3728 

89. Mitchell-Koch JT, Reed TM, Borovik AS (2004) Light-activated transfer of NO from a porous 
material. Angew Chem Int Ed 43:2806 

90. Rose MJ, Patra AK, Alcid EA, Olmstead MM, Mascharak PK (2007) Ruthenium nitrosyls 
derived from polypyridine ligands with carboxamide or imine nitrogen donor(s): isoelectronic 
complexes with different NO photolability. Inorg Chem 46:2328 

91. Patra AK, Mascharak PK (2003) A ruthenium nitrosyl that rapidly delivers NO to proteins in 
aqueous solution upon short exposure to UV light. Inorg Chem 42:7363 

92. Rose MJ, Mascharak PK (2008) A photosensitive {Ru-NO}6 nitrosyl bearing dansyl chro-
mophore: novel NO donor with a fluorometric on/off switch. Chem Commun 33:3933 

93. Ghosh K, Kumar R, Kumar K, Ratnam A, Singh UP (2014) Reactivity of nitric oxide with 
ruthenium complexes derived from bidentate ligands: structure of a ruthenium nitrosyl complex, 
photoinduced generation and estimation of nitric oxide. RSC Adv 4:43599 

94. Hadadzadeh H, DeRosa MC, Yap GPA, Rezvani AR, Crutchley RJ (2002) Cyclometalated 
ruthenium chloro and nitrosyl complexes. Inorg Chem 4:6521 

95. Holanda AKM, da Silva FON, Sousa JR, Diogenes ICN, Carvalho IMM, Moreira IS et al (2008) 
Photochemical NO release from nitrosyl ruii complexes with C-bound imidazoles. Inorg Chim 
Acta 361:2929 

96. Ghosh K, Kumar S, Kumar R, Singh UP, Goel N (2011) Photocleavage of coordinated NO 
under visible light from two different classes of organometallic ruthenium nitrosyl complexes: 
reversible binding of phenolato function. Organometallics 30:2498 

97. Ghosh K, Kumar S, Kumar R, Singh UP (2012) Ruthenium(III) Cyclometalates obtained by 
site-specific orthometallation and their reactivity with nitric oxide: photoinduced release and 
estimation of NO liberated from the ruthenium nitrosyl complexes. Eur J Inorg Chem 2012:929 

98. Ghosh K, Kumar S, Kumar R, Singh UP, Goel N (2010) Oxidative Cyclization of a phenolic 
schiff base and synthesis of a cyclometalated ruthenium nitrosyl complex: photoinduced NO 
release by visible light. Inorg Chem 49:7235–7237



Chapter 22 
Nitric Oxide Regulation in Microparticles 

Abhinav Singh, Himalaya Singh, and Jagavelu Kumaravelu 

Abstract Nitric oxide (NO) has been widely shown to have a varied roles physio-
logically. Nitric oxide presence in microparticle has been gaining importance due its 
circulatory in nature and representing the parental cell characteristics. Microparticles 
possess several organelles, functional signaling mediators, mitochondria, mRNA and 
cytokines which contributes in the normal physiology as well in the disease progres-
sion. Endothelial microparticles respond to variety of stimulants and acts as vector 
for communicating with distant cells leading to efficient signaling. Here we describe 
the various roles of microparticles in different physiological settings and its method 
to evaluate it both in vitro and in vivo using pertinent techniques. Current trends in 
research lead to the understanding of NO signaling in EMP generation and its role in 
liver and cardiovascular health and disease has opened up new avenues. Furthermore, 
the application of microparticles as drug delivery, and targeted therapeutics is the 
way forward. 

Keywords Endothelial cells ·Microparticles ·Mitochondria · Angiogenesis ·
Myocardial ischemia · Cardiovascular diseases · Inflammation · Vascular biology 

Introduction 

Before 1980 Nitric oxide [1] is described as an air pollutant and its role in human 
physiology is been widely explored after the acetylcholine treatment in endothelial 
cells resulted in the release of a highly diffusible species which is described as 
endothelial-derived relaxing factor (EDRF) by Furchgott and Zawadzki in 1980 [2]. 
Ignarro, Palmer, and colleagues in 1987 [3, 4] called it nitric oxide (NO), which 
is a diatomic, cell-permeable molecule and stimulates its receptor guanylatecyclase
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(sGC) in vascular smooth muscle [4]. In 1992, NO was crowned as the “Molecule 
of the Year” for various roles as a signaling molecule in the cardiovascular system. 

NO role is widely explored in vitro models where only limited role is explored, 
unlike test tube chemistry where a single NO molecule is studied in a regulated 
condition, whereas in vivo NO chemistry is much more complex. Identification of 
NO as a player in human physiology lead to ascertain several other novel roles like 
NO and its targets and NO diffusion in the cellular membrane. In the body, NO 
is generated by an enzyme called Nitric Oxide Synthase (NOS), which has three 
isoforms; neuronal NOS (nNOS or NOS1), inducible NOS (iNOS or NOS2), and 
third Endothelial NOS (eNOS or NOS3) [5]. Primarily oxidation of L-arginine by 
NOS enzyme gives NO and citrulline, iNOS, and nNOS are mostly found in the 
cytosol, whereas eNOS by palmitoylation and myristoylation binds to the membrane. 
With the advance in research the understanding of NO signaling in EMP generation 
and its role in liver and cardiovascular health and disease has opened up new avenues. 

Endothelial Microparticles 

Most cells release some small microparticles during overt cell activation due to 
inflammation or apoptosis. Injury to vascular endothelial lining releases a variety of 
inflammatory markers and microvesicles. Endothelial microparticle (EMPs) gener-
ated from monolayer vascular endothelial cells range from 100 nm to 1 μm diameter 
and express CD31, CD34, CD51, CD62E, and CD146 markers. Vesicles released 
or shed from plasma membrane having a size less than 1 μm diameter are char-
acterized as microparticles [6]. Early reports regarding microparticle were during 
the 1940s by Chargaff and West [7] they reported it as a subcellular particle-like 
structure resembles a pro-coagulant factor in human serum. The advent of elec-
tron microscopic techniques revealed the functional behavior of subcellular struc-
ture by facilitating thrombin generation in the same manner as platelets [8]. The 
role of platelet microparticle in disease progression was initially reported in 1975 in 
21 idiopathic/autoimmune thrombocytopenic purpura patients [9]. Further evidence 
was provided through in vitro studies that activated platelets released MP bind to the 
vascular wall [10] (Fig. 22.1).

The microparticles are mainly composed of membranes, cytoplasmic contents 
(RNA, lipids, fragments of organelles, transcription factors, etc.) which character-
ized the source of the microparticle. MPs are mainly released from endothelial cells 
or from blood cells, which makes them a heterogeneous population [11]. MPs freely 
circulate in the blood and can be a reason for many pathological disorders. The basic 
mechanism of MPs generation to date is through apoptosis, necrosis, inflammation 
[12]. MPs are considered as the markers of endothelial cell damage and are considered 
to initiate platelet activation [13]. EMPs are without a nucleus and small size vesi-
cles which are released from cells in the response of stimuli, for example, ischemia, 
hypoxia, inflammation, and prothrombotic or pro-apoptotic factors. Once micropar-
ticles enter into circulation these modulate several biological and pathophysiological
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Fig. 22.1 Classification of extracellular vesicles from parental cell. These vesicles contain varied 
cytosol proteins, mRNA, microRNA, degraded proteins, genetic material, phospholipids and cellular 
organelles of the parental cells. Apoptotic vesicles harbor DNA, microRNA, phospholipids and 
degraded proteins

mechanisms of various diseases. In the 1940s microparticles was considered as cell 
dust particle shows procoagulant activity because of its negatively charged phos-
phatidylserine membrane, it attracts clotting protein such as prothrombin, Factor 
VII, IX, and X (Table 22.1 and Fig. 22.2).

Nitric Oxide and Endothelial Microparticles 

NOS in EMP Mediated Inflammation 

EMPs generation could be induced by several stimulants like IL-1, LPS, TNFα, 
calcium ionophore, plasminogen activator inhibitor-1, and C-reactive protein (CRP). 
Interestingly, eNOS decoupling mechanisms might participate, under certain condi-
tions, in the production of EMPs emphasizing the common complementary relation-
ships between endothelial microparticle and NO-dependent endothelial dysfunction 
[16, 17]. Several studies have reported that altered function of eNOS can cause 
endothelial dysfunction and release microparticles in the blood circulation. Patients 
with cardiovascular disorders have a high level of EMPs [18]. Microparticle causes 
transcellular delivery of arachidonic acid and activates platelets and EC resulting 
in increased binding of monocytes to endothelial cells [19]. Similarly, neutrophil-
derived MPs exposure on endothelial cells causes the release of pro-inflammatory 
cytokines like IL-6, monocyte chemotactic protein, IL-1β, TNFα, and IL-8 from 
the endothelial cells [14]. Microparticles also contains partial cell membrane from 
parental cells, which act as ligands and promotes the adhesion of inflammatory
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Table 22.1 Classification of cells producing Microparticles and its target 

Type of cell producing MPs Target cells Molecules 
involved in the 
pathogenesis of 
inflammation 
mediated by 
MPs 

References 

Cytokines 

Endothelial Various 
inflammatory cells 

IL-1β and 
TNF-α 

[14] 

Leukocyte Endothelial IL-6 and MCP-1 

T Cells IL-8, TNF-α 
and IL-1β 

Adhesion molecules 

Monocyte Endothelial Intercellular 
adhesion 
molecule-1, 
vascular cell 
adhesion 
molecule-1, 
E-selectin 

[15] 

Lipids 

Platelets Endothelial Thromboxane 
A2 and 
cyclooxygenase 

Fig. 22.2 Schematic representation of healthy and diseased cell, showing released microparticles 
and its surface biomarkers
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cells to the endothelial layer through increased expression of E-selectin, intercel-
lular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM) [15, 
20]. Bacterial infections cause high circulatory levels of MPs which activates the 
endothelial cells resulting in ERK1/2 phosphorylation and activation of ICAM1, 
VCAM1, E-Selectin, and NFkB (Nulcear Factor) pathway through IL-1β and NLRP3 
inflammasomes [15]. 

NO in EMP Mediated Vascular Function 

Damaged endothelial cells or apoptotic endothelial cells results in the microparticle 
formation comprising a dynamic storage pool of bioactive molecules. MPs have 
been shown to signal dynamically and transfer proteins, mitochondria, nucleic acids, 
and mRNA [21, 22]. EMPs were reported to play a dual role in many diseases 
like myocardial infarction, cardiac hypertrophy, liver cirrhosis, atherosclerosis, and 
diabetes. Patients with portal hypertension have reduced NO levels and eNOS activity 
resulting in skewed hepatic vascular tone due to inconsistency in the intrahepatic 
vasodilators and vasoconstrictors [23] (Table 22.2).

EMP in Cardiovascular Diseases 

In the heart, the role of MPs are widely explored in comparison to other diseases. 
Endothelial dysfunction is known to induce EMP generation and vice-versa. Patients 
with valvular heart disease (VHD) undergoing cardiac surgery have increased pro-
inflammatory protein resulting in impaired endothelial function and vasodilation 
[35, 36]. A proteomics study showed EMP generated through different stimulus has 
distinct protein compositions [37, 38]. In bicuspid aortic valve [13] disease patients, 
the circulating EMPs positive for CD31 and CD62E were increased resulting in aortic 
stenosis [39]. Similarly, reactive oxygen species are known to induce endothelial 
dysfunction. A subunit NADPH, p22phox is detected in EMPs which plays an active 
role in superoxide formation and ROS generation [19]. In hypertension, excessive 
generation of oxidative stress and ROS formation are linked with MPs. Patients 
with heart valvular disease have impaired endothelium-dependent vasodilation by 
uncoupling and inhibiting endothelial nitric oxide synthase (eNOS) exacerbated by 
the released EMP. A study done in rats and mice showed that microparticles generated 
from endothelial cells, when injected in animals induce acute lung injury, inhibit 
angiogenesis, and impaired vasodilation [40]. Cardiovascular diseases have reduced 
neovascularization, EMPs were shown to possess neovascularization factors like 
PMP, plasmin formation from endothelial cells might activate tubulogenesis [41].
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Table 22.2 Techniques used for EMPs characterization in research settings 

S. no References 

1 General characterization Microscopy 
Bead-based flow cytometry 
Western blot (mainly for cell culture 
media) 
Multiplex bead-based platforms 
Surface Plasmon resonance 
Fluorescence scanning 

[24] 
[25] 
[26] 
[27] 
[28] 
[29] 

2 Quantative Particle number 
High-resolution bead-based flow 
cytometry 
Cryo-electron microscopy 
RNA quantification 
Bioanalyzerpico chip 
Quant-iTRiboGreen RNA Assay 
Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) 
Total protein count 
Colorimetric assays 
Fluoremectric assays 
Protein stain on SDS-PAGE 
Specific protein count 
ELISA 
Bead-based flow cytometry 
Aptamer- carbon nanotubes 
colorimetric assays 

[24] 
[30] 
[31] 

3 Single vesicle characterization High-resolution imaging technique 
Confocal microscopy 
Transmission electron microscopy 
Scanning electron microscopy 
Cryo-electron microscopy 
Atomic force microscopy 
Super-resolution microscopy 
Estimation of biophysical features 
Resistive pulse sensing 
Nanoparticle tracking analysis 
High resolution flow cytometry 
Asymmetric flow field fractionation 
Raman spectroscopy 

[15] 
[24] 
[32] 
[33] 
[34]

EMP in Hepatic Diseases 

Stressed hepatic cells and other cells shed MPs into the extracellular-biological fluid 
and circulation, their presence in large quantity makes them compelling entities for 
liquid biopsy or ‘fluidome’. Extracellular vesicles from the circulation system are 
attractive biomarkers for estimating disease pathology including alcoholic and non-
alcoholic steatohepatitis, viral hepatitis B and C, liver steatosis and cirrhosis, primary
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hepatocarcinoma, and acute liver failure by analyzing contents of extracellular vesi-
cles, the severity of the disease can be predicted, which helps in the diagnosis and 
prognosis of liver diseases [42]. Biologically active hedgehog ligands present in 
microparticles induces hepatic sinusoid endothelial cell remodeling during chronic 
cholestatic liver injury [43]. Similarly, liver cirrhosis patients shows an elevated circu-
lating levels of pan-leukocyte-derived CD11a(+) MPs, leuko-endothelial-derived 
CD31(+)/41(-) MPs, erythrocyte-derived CD235a(+) MPs and lymphocyte-derived 
CD4(+) MPs. Inflammatory cell markers such as CD4(+) or CD8(+) T cells, CD14(+) 
monocytes, and iNK cells were highly expressed on plasma MPs of NAFLD and 
other liver disease patients [44, 45]. A similar phenomenon is observed when the 
neutrophils are treated with MPs from alcoholic hepatitis patients triggers more 
TNFα production, ROS generation, and cytokines regulation in vitro condition [45]. 
Steatotic hepatocytes in NAFLD and NASH shows an increasing number of hepa-
tocyte derived MPs in blood circulation which are internalized by the endothelial 
cells and activates angiogenesis in mice [46]. Concurrently, portal myofibroblasts 
(PMFs) releases MPs containing VEGF-A, which promotes vascular remodeling 
by activating VEGFR2 in endothelial cells leading to angiogenesis by the release 
of proangiogenic MPs [47]. The noninvasive biomarkers of hepatic cirrhosis like 
cytokeratin-18 (CK-18) and soluble CK-18 fragments are carried by microparticles 
in blood circulation and could be used in liquid biopsy [48, 49]. 

EMP as Double Edge Sword 

Beneficial Detrimental 

Microparticles acts as vectors to exchange 
biological information between cells 
(intercellular communication) [50, 51] 

“Microparticles from polymorphonuclear 
leukocytes contain the functionally active 
anti-inflammatory protein annexin 1, and 
annexin 1–containing microparticles inhibit the 
interaction between leukocytes and endothelial 
cells and in an animal model” [52] 

Microparticles release protects against the 
external stimuli or stimuli faced by cells [53] 

Problems persists in optimizing the isolation 
protocols for ExMVs and their characterization 

The microparticles play a role in “cellular 
waste management” because they contain 
increased concentrations of chemotherapeutics, 
oxidized phospholipids, or caspase 3 
[50, 51, 54] 

Centrifugation is absolute for MP recovery 
from blood sample. Rigorous centrifugation 
may cause artificial shedding of cell particles 

MPs rapidly gets cleared from pheripheral 
blood, and thus there is a need to develop 
strategies to extend their life span so that they 
can fulfill their therapeutic goals [55]



454 A. Singh et al.

Potential Action of NO During Diseases 

The oxidation of L-arginine by calcium-dependent NOS results in NO produc-
tion and eNOS is a major isoform which facilitates the physiological NO produc-
tion. Imbalance in NOS production cause dysregulated NO synthesis resulting in 
reduced NO bioavailability and may lead to superoxide generation causing oxida-
tive stress and endothelial dysfunction [56, 57]. Circulating endothelial micropar-
ticles (EMPs) generated from various cells in varied diseases play an important 
role in causing inflammation, vascular injury or acts as trans-cell messengers. MPs 
comprises cytosolic and nuclear proteins, RNA, miRNA, and the surface recep-
tors of their parental cell. The specific cell signature of MPs is characterized by its 
origin and these signatures are delivered to another cell via circulation and can cause 
inflammation. [58, 59]. Numerous studies, shows that MPs in various body fluids 
including circulation, urine [60], saliva [61], bile [62], synovial fluids [63], semen 
[64], atherosclerotic plaques [65], liver tissues [66], and lungs are playing role in 
disease pathology and regulation, MPs were detected in the circulatory system in 
abundance from above all mentioned biological fluids. MPs generation by phospho-
lipid asymmetry is one of the known mechanism, when stimulated there is loss of 
active phospholipid transmembrane enzymatic imbalance of floppase, flippase and 
scramblase. The cellular activation by any stimulus or apoptosis results in sudden 
release of intracellular calcium by the endoplasmic reticulum resulting in changes in 
transmembrane steady state. This eventually activates the cytosolic enzyme calpain, 
which leads to cytoskeleton filaments cleavage resulting in blebbing and shedding 
of membrane-derived EMPs into the circulation [67, 68] (Table 22.3). 

Table 22.3 Effects of NO 
concentration on 
physiological activities [16] 

NO concentration (nm) Physiological results 

<1–30 Promotes cell survival and 
proliferation 

30–60 Protects cells from apoptosis 

100 Protects tissue from injury 

400 Mediates cell cycle arrest 

>1000 Apoptosis and full cycle arrest, kills 
bacterial biofilms
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Role of NO Mediated Cellular EMP Generation 
and Functions 

Cell Migration 

Microparticles have been shown to play an important role in the cell migration, an 
integral part of many cellular mechanisms like angiogenesis. And endothelial cells 
harbor metalloproteinase that deliberately carry out proteolytic activity essential for 
cell migration which is a crucial step for the angiogenesis. 

A recent study demonstrates accumulation of gelatinase B in human micro-
vascular endothelial cells. These gelatinases are matrix metalloproteinase’s that 
degrades the collagen of the basement membrane produced by endothelial cells. 
Since, microparticles contain matrix metalloproteinases (MMP’s) which focal-
izes proteolytic activity necessary for migration and neovascularization [69, 70]. 
Microparticles also harbor their natural inhibitors in their latent forms, tissue 
inhibitors of MMP’s (TIMP’s). These findings suggest that gelatinase B secreted 
from endothelial cells during angiogenesis locally degrades the basement membrane 
and the ability of endothelial cells to accumulate gelatinase B enables cells to carry 
out proteolytic activity which is essential in cell migration processes [71]. 

In contrast, microparticles in atherosclerotic plaque containing inflammatory 
factors induce the monocyte adhesion to the endothelial cells and enhances the 
transendothelial migration which is responsible for promoting the development of 
plaque [72]. During the tube-formation phenomenon as well, the cell migration of 
endothelial cells is also promoted by the platelet derived microparticles which is 
inhibited in response to the inhibitors VEGF and heparanase [73]. However, the 
process of cell migration was disrupted in an in-vitro setting, while in the presence 
of growth factors such as VEGF and bFGF-2, endothelial derived microparticles 
were found to be involved in disruption of tube formation in endothelial cells [74]. 

Angiogenesis 

Various recent studies have established a link between endothelial microparticles and 
angiogenesis where endothelial microparticles at known pathophysiological condi-
tions impair angiogenesis. Very megre information is available regarding the role 
of endothelial derived microparticles in the vascular functions and the impact of 
microparticles in angiogenesis has not been meticulously investigated. 

Angiogenesis regulation by MPs was first shown in platelets, which are known 
carriers of angiogenesis factors and platelet mediated particles (PMPs) were 
possessing similar bioactive lipids to initiate tubulogenesis in human endothelial 
cells. This ability of microparticlesis linked to the activation of PI3K and ERK1/2 
pathways [73]. Reports also suggests that with the involvement of factors such as 
vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF),
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platelet-derived growth factor (PDGF), heparanase platelet based microparticles 
enhance endothelial cell migration and tubule formation [75]. This has been well 
validated when platelet microparticles were been injected locally after the induction 
of myocardial ischemia in rats happen to increase the angiogenesis in the ischemic 
region and this effect was eliminated with the VEGFR inhibitors and by inhibiting 
heparanase [76]. 

Conversely, Lymphocyte-based microparticles possess the ability to induce the 
release of Nitric Oxide (NO) from the endothelial cells which may contribute to 
its pro-angiogenic properties. This may however may lead to the oxidative stress 
related with the decreased release of NO which is associated with the development 
of the anti-angiogenic effects [77]. On the other hand leukocyte based microparticles 
derived from apoptotic human T-cells are reported to develop anti-angiogenic effects 
by repressing the formation of sprouts in microvessels of aortic ring in-vitro and 
corneal neovascularization, whereas under in-vitro condition the effect observed 
due to the downregulation of phosphorylation of ERK1/2, VEGFR-2 expression and 
production of Reactive Oxygen Species (ROS) [76]. Similarly, microparticles derived 
from T-lymphocytes reduced the migration of endothelial cells [78]. 

Angiogenic effect observed in microparticles derived from endothelium involves 
the activation of matrix metalloproteinase and remodelling of extracellular matrix. 
Since, endothelial cells express the microparticles that contain matrix metallopro-
teinases which focalizes proteolytic activity necessary for neovascularisation. But 
high levels of endothelial microparticles can induce the production of ROS leading 
to endothelial dysfunction [71, 79]. This is also involved in regulation of differ-
entiation of progenitor cells despite of production of ROS and over expression 
of NADPH oxidase [80]. Endothelial progenitor cell based microparticles express 
various adhesion molecules that are involved in internalization, once internalized it 
activates the eNOS and PI3K/Akt signalling pathway. This also favours the regener-
ation during ischemic insult [22]. Macrophage based microparticles also happens to 
promote angiogensis inside human atherosclerotic lesions regions via CD40 ligand 
that induces endothelial cell proliferation [65]. 

Inflammation 

Inflammation triggers the activation of coagulation pathways and happens to increase 
various procoagulant factors, diminishes fibrinolytic responses and inhibits endoge-
nous anticoagulants. The microparticles are mixed population of small fragments 
of membrane shed from different kind of cells. And one of the primary sources 
of circulating microparticles is the endothelium and microparticles acquired from 
blood are regarded as the biomarkers of the vascular inflammation and injury. Many 
documented studies have reported that microparticles are involved in the endothelial 
dysfunction which is believed to be caused by the disturbed release of nitric oxide 
(NO) from vascular endothelial cells and cause the remodelling of the vascular tone 
[81]. Nitric oxide (NO) is the chief endothelium-derived relaxing factor which plays
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a significant role in maintaining vascular tone and also in the inhibition of inflamma-
tion, coagulation and oxidative stress [82]. Microparticles can have an effect on both 
the pro-inflammation and anti-inflammation processes in endothelial cells. Phos-
pholipase A2 binds with microparticles as their preferred site of binding and subse-
quently triggers the inflammatory processes and platelet aggregation by releasing 
lysophosphatidic acid [83, 84]. 

It has been reported that platelet-derived microparticles increases 
cylcooxygenase-2 enzyme by transporting arachidonic acid and elevates the 
expression of ICAM-1 which induces membrane-linked signaling cascade [85, 
86]. Microparticles aids the interaction between leukocytes and endothelium, 
whereas leukocyte based microparticles contributes in releasing various endothelial 
and monocytic cytokines including IL-6, IL-8, TNF-α. Altogether, these events 
contribute to the processes of inflammation and dysfunction of the endothelium and 
may also facilitate the development and progression of the atherosclerosis. 

Upon evaluation of plasma concentration of patients suffering from arterioscle-
rosis, elevated levels of IL-6 was observed that can be associated with increased 
expression of platelet derived microparticles and P-selectin [87]. In addition to 
that platelet derived microparticles assists the recruitment of a number of immune 
cells like NK cells, T-lymphocytes, B-lymphocytes, monocytes [88]. The pro-
inflammatory effect on the other hand is possibly associated with the activation 
of the receivers of platelet-activating factor (PAF) by the oxidized phospholipids 
recruited on the lymphocytes and endothelial cells [89]. A study shows leukocyte 
based microparticles when incubated with HUVEC’s resulted in a de novo synthesis 
of cytokines like IL-8, IL-6 and adhesion molecules suggesting that microparticles 
can be the agonists of the inflammation [90]. 

A latest study shows that contraction induced by arachidonic acid and metha-
choline in aorta and rabbit pulmonary arteries was exasperated by platelet-derived 
microparticles which was blocked by inhibitors of thromboxane receptor and throm-
boxane synthase suggesting that platelet-derived microparticles may be involved 
in regulation of the vascular tone and possibly in the development of the inflam-
matory diseases [91]. In another recent finding carried out in murine aorta, the 
apoptotic microparticles derived from T-cells induced expression of inflammatory 
genes in smooth muscle cells via activation of NF-κB pathway and this leads to 
excessive over-production of the Nitric Oxide (NO) and prostacyclin due to the 
vascular hyporeactivity that is further linked with the induction of expression of 
pro-inflammatory enzymes such as iNOS and COX-2 and due to this microparti-
cles during the inflammatory diseases upholds the vascular dysfunction [92]. Simi-
larly, platelet-derived microparticles expresses considerable amount of an inflam-
matory cytokine, RANTES (Regulated on Activation, Normal T-cell Expressed and 
Secreted) and elicits monocyte adhesion by depositing it on endothelial cells.
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Oxygen Radical (O2
−) 

Amongst the various responses elucidated by endothelial derived microparticles in 
endothelial cells is the production of reactive oxygen species (ROS) which commonly 
is observed to be produced via mitochondrial and nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases. And redox-sensitive processes of endothelial 
microparticles have an effect on endothelial cells for which underlying mechanisms 
is still not very clear. There are several studies that have demonstrated the associ-
ation of endothelial NO and oxidative stress. Microparticles have an effect on the 
vascular tone by impairing the release of NO from the endothelial cells. This can 
be related to the limited activity of eNOS that depends on the ERK1/2, PI3K and 
NF-κB signalling pathways. This has been validated experimentally in aorta of mice 
which was induced with T-lymphocyte derived microparticles, which demonstrates 
that acetylcholine-induced endothelial relaxation occurs as a result of diminished 
nitric oxide (NO) and enhanced ROSproduction [93]. 

Likewise, a study demonstrated that microparticles derived from activated mono-
cytes had a detrimental effect on endothelial function as when the microparticles are 
incubated with endothelial cells resulted in the generation of NO which does not have 
any effect on production of superoxides. Hence, the conclusive remarks include that 
microparticles via activation of calveolin-1, ERK1/2 and PI3K can induce nitrosative 
stress by elevating the nitration of numerous proteins in endothelial cells [94]. 

Similarly, Endothelial Microparticles (EMP’s) impairs endothelium-dependent 
relaxation in aorta of rat due to over-production of superoxide in aortic rings 
that might contribute in diminishing the NO bioavailability [19]. EMP’s also 
possesses traceable amounts of nicotinamide adenine dinucleotide (phosphate) 
oxidase NADPH oxidase and superoxide as well. EMP’s also elevates the expression 
cell adhesion specific proteins [95]. Upon, in-vivo injection of mice from the patients 
suffering from metabolic syndromes, it was observed that expression of eNOS was 
reduced and impairment in the endothelium-dependent relaxation in aorta. It happens 
to induce vascular dysfunction as a result of increase in NO and ROS production 
and by modified cyclooxygenase metabolites and MCP-1 (monocyte chemotactic 
protein-1) via Fas/Fas-ligand pathway. 

Recently, a study investigated the formation of endothelial based microparticles is 
stimulated by Ang-II that is activated via Rho kinase and NADPH oxidase. Endothe-
lial cell includes numerous lipid rafts that contribute to the production of the micropar-
ticles and is a redox-sensitive effect. Other signalling molecules that contribute in 
the production of these microparticles include p38 mitogen-activated protein kinase, 
IL-1, MAPKAPK2 [20, 96]. Ang-II triggers the generation of microparticles via 
angiotensin-I receptor through redox-sensitive signalling pathway and stimulates the 
oxygen radical production and translocation of Rho kinase which is extremely detri-
mental to the endothelial cells [97, 98]. Microparticles in turn exhibit pro-oxidative 
response in endothelial cells via an EGFR- dependent pathway.
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One hypothetical basis for superoxide formation by microparticles is uncoupling 
of eNOS which results in a switch leading to formation of superoxide from NO-
producing enzyme [99]. Additionally, inhibition of eNOS partially hinders the release 
of superoxide induced by microparticles suggesting regulatory role of the enzyme in 
generation of superoxide of by endothelial cells. Altogether, these revelations gives 
an idea of endothelial based microparticles being a significant pathogenic factor. 

Cytotoxicity 

Microparticles imitate the profile of the cells from which they are derived and 
according to their activation potential, they are considered as biomarkers. Like-
wise, in cardiovascular abnormalities including dysfunctions such as atherosclerosis, 
coronary artery disease, hypertension, the circulating levels of endothelial derived 
microparticles represents the activation or dysfunction of the endothelial cells [100– 
102]. There are studies demonstrating where microparticles represents as essential 
biomarkers of endothelial injury induced by inhibitors of VEGF and significant medi-
ators of Endothelin-1 mediated pro-inflammatory and redox-signalling relevant in 
endothelial cells and these may contribute to cardiovascular complications produced 
as a result of administration of inhibitors of VEGF. 

The release of endothelial microparticles occurs in activation of various path-
ways. Few of these also contribute in the progression of atherogenesis especially the 
inducers of apoptosis are responsible for the functional alterations in the vascular 
system ultimately leading to pathogenesis of atherosclerosis. Hence therapies having 
direct effect on the microparticles may be an important step towards the develop-
ment of therapeutics for treating cardiovascular based diseases [103]. There are 
studies that demonstrate that endothelial based microparticles levels are positively 
associated with the extent of functional and morphological abnormalities [104]. 

NO Formation in EMP 

A recent investigation puts forward microparticle induced dysfunction in healthy 
blood vessels by having an effect on the endothelial NO transduction pathway. Nitric 
oxide derived from endothelium is majorly involved in relaxations in response to 
acetylcholine. Microparticles though have an inhibitory effect on these relaxations 
which alters the NO transduction pathway in patients suffering from myocardial 
infarction without having any effect on expression of eNOS. Hence circulating 
microparticles may be involved in exaggerating myocardial ischemia [105]. 

Another study suggested that elevated generation of superoxide induced by 
endothelial based microparticles plays a crucial role in impaired endothelial relax-
ation. And not only vascular responses are restored but production of NO as well
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regardless of the source of superoxide (Endothelium-derived microparticles impair 
endothelial function). 

Nitric oxide production from the endothelium depends on the regulation of 
calcium and its binding to the eNOS. An investigation on monocyte derived 
microparticles found that it does not have any effect on the eNOS expression 
and phosphorylation. However, Akt phosphorylation was found to be increased. 
Conversely, monocytic microparticles decreases the caveolin-1 expression and ampli-
fies the phosphorylation on Tyr14 while the production of NO increases. Generalising 
the whole concept, it suggests decreasing the expression of caveolin-1 reduces the 
capacity of eNOS to sequester and hence resulting in more release of NO [106]. 

Targets and Physiological Function of NO in EMP 

Microparticles are derived from various kinds of cells and depending on the parental 
cell microparticles expresses different cellular proteins on the surface and intracel-
lularly. Tumor necrosis factor-α, interleukin-1 (IL-1), lipopolysaccharides triggers 
the release of endothelial cell derived microparticles [107, 108]. However, quite 
meagre knowledge is available regarding the circulating endothelial microparticles 
apparently due to restricted number of endothelial markers for instance CD62E for 
E-selectin and CD31 [109, 110]. 

In the pathological states such as acute coronary syndrome, disruption of 
atherosclerotic plaques, significant numbers of microparticles are released suggesting 
its role in the thrombus formation [111]. Furthermore, the role of endothelial 
microparticles in interaction with the monocytes elicits procoagulant activity and 
this effect to some extent depends on the interaction between ICAM-1 present on 
endothelial microparticles and α2 integrins present on monocytic cells and thus repre-
senting that endothelial microparticles are capable of developing interactions with 
leukocytes [112]. It is evident from another study that platelet derived microparticles 
have the ability to enhance the interaction of leukocytes and endothelial cells and 
hence platelet derived microparticles also play role in the formation of atherosclerotic 
plaque and is associated with the vascular damage [113]. 

Previous studies have also shown the role of interaction between leukocytes, 
platelets and endothelial cells in vascular inflammation, as demonstrated by incu-
bation of endothelial cells with leukocytes derived microparticles, leads to de-novo 
synthesis of cytokines and adhesion molecules. That implies microparticles as an 
inflammatory agonist and stimulator of release of chemotactic mediators [14]. 

Further, it was found that circulating microparticles in the patients suffering 
from myocardial death caused endothelial dysfunction by which can be linked to 
the impairment in transduction of nitric oxide (NO) pathway without inducing any 
changes in the expression of endothelial nitric oxide synthase (eNOS). This may 
have a role in exaggerating vasodilator responses contributing in amplification of 
myocardial ischemia [105].
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More recently a study was carried out focussing on treatment of T-lymphocyte 
derived microparticles and endothelial cells can modify gene expression implicated in 
vessel relaxation. This can be associated with reduced levels of NO (Nitric Oxide) and 
prostacyclin demonstrating ability of microparticles to reduce eNOS and to induce 
overexpression of caveolin-1. Interestingly, patients of diabetes and HIV infection 
can reduce eNOS since they contain a population of T-cell derived microparticles 
[106]. 

NOS Inhibitors in EMP and Therapeutic Implications 

Studies demonstrate expression of adhesion molecules involved in the progression 
of inflammation due to amplified circulating endothelial microparticles [114] and 
is also engaged in vascular calcification [115]. Another implication of endothelial 
microparticles is associated with the hypertension due to endothelial dysfunction that 
develops due to the deficiency of nitric oxide [116]. Furthermore, angiotensin-II is 
related with the endothelial dysfunction through endothelial microparticles induced 
inflammation and oxidative stress, this given an idea about the correlated effect of 
endothelial microparticle generation with vascular pathology [95]. Another signifi-
cant factor associated with cardiovascular pathology and vascular function is angio-
genesis. Endothelial microparticles play a significant role in regulating angiogenesis 
under variable antigenic expression [117]. 

Hence, microparticles are pertinent targets to achieve therapeutic outcomes. Like-
wise, PPAR agonists such as rosiglitazone are an excellent approach to target 
microparticles to treat inflammatory disorders, also it induces NFκB associated with 
vascular dysfunction and evokes an elevation in proinflammatory proteins [118]. 
Inhibition of TNF-α also is involved in dysregulated microparticle production by 
activating NFκB which also happens to offset vascular dysfunction [119]. Similarly, 
calcium channel blockers are suggested for patients with type 2 diabetes since they 
are involved in attenuating microparticle responses [120]. 

There are investigations demonstrating the association of dysregulation of 
morphogen sonic hedgehog pathways leads to tumor and erectile dysfunction due to 
down streaming of targets such as vascular endothelial growth factor (VEGF) and 
NO-synthase suggesting morphogen sonic hedgehog modulates regulation of these 
targets [121, 122]. 

Even in determining the extent of pulmonary hypertension microparticles has 
proven to be an integral tool since microparticles bearing endoglin, chemoattractant 
protein-1 and vascular cell adhesion molecule-1 are amplified in cases of pulmonary 
arterial hypertension. Similarly, patients suffering from coronary artery disease also 
display elevated levels of CD144 EMP levels and analogous is the case with metabolic 
syndromes [123]. 

Altogether, these results give an idea that microparticles could be shows potential 
targets for the treatment of cardiovascular disorders.
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Drug Mediated Effect 

Microparticles are now emerging as a promising novel class of cell-derived therapeu-
tics because of its protein, lipids, and nucleic acid carrying capacity. As microparti-
cles emerging from almost all types of cells they can carry their parent cell content 
and can deliver active molecules, peptides, hormones, growth factors, inflammatory 
factors, and microRNA in endocrine or paracrine fashion by circulation [117, 124]. 
Endothelial derived MPs plays an important role in wound healing, tissue repair, and 
regeneration by angiogenesis. 

Reduced eNOS-derived NO bioactivity can cause endothelial dysfunction and 
leads to atherosclerosis, for impairment of endothelium-dependent vascular dysfunc-
tion, a natural compound salidroside (SAL) attenuates endothelial cell senescence by 
decreasing the expression of inflammatory cytokines and increasing the expression 
of SIRT3. In a study, apolipoprotein E-deficient (ApoE−/−) mice show alleviated 
atherosclerosis by eNOS activation and NO production through AMPK-dependent 
activation of PI3K/Akt pathway. SAL is in clinical trial phase and its role in MPs 
production still not clear [125]. Atorvastatin treatment significantly protected MI-
RP injury and IRS by increasing NOS expression through Akt dependent pathway in 
insulin resistance syndrome (IRS) rats fed with 60% high fructose diet. Atorvastatin 
treatment reversed endothelial dysfunction, insulin resistance, and oxidative stress, 
it also showed improvement in systemic inflammatory load and infarct size in the 
heart [126] (Table 22.4).

Conclusion 

It is apparent from the foregoing discussion that microparticles induces both the posi-
tive and negative impact on the interacting cells. These are shown to have an impor-
tant role in wound healing, tissue repair, and regeneration. Similarly microparticles 
can also induce inflammation depending on the parental cell characteristics and the 
content it carries. It has been implicated in several diseases both as a causative agent 
and protective agent. During sepsis and inflammation profound changes in phys-
iological functions are attributed to variety of mediators, including microparticles 
containing NO and high circulatory levels of microparticles. These microparticles are 
emerging as novel drug delivery vehicles as they can deliver most molecules including 
hormones, miRNA and others. Further investigations into the NO processing and its 
generation in microparticles, and how microparticles induces NO mediated signaling 
in both acute and chronic condition of disease are required to completely understand 
the microparticle and molecule.
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Table 22.4 Drug mediated effect & therapeutic implications 

Drug Approved by 
FDA 

Mediator(s) Action 
mechanism 

Possible side 
effect 

References 

Salidroside Phase II 
clinical trial 

SIRT3 and 
eNOS 

Activation of 
antioxidants and 
reduces 
inflammatory 
cytokine 
production 

Increases 
cytokine 
production by 
Th1 and Th2 and 
therefore 
activates 
immune 
response 

[125] 

Pitavastatin Yes miR-155 and 
eNOS 

Increases NO 
production and 
reduces 
inflammatory 
response 

Causes 
endothelial cell 
death through 
activation of 
apoptosis ROSs 
production by 
JNK and 
p38-MAPK 
signal activation 

[127] 

Atorvastatin Yes Akt and 
eNOS 

Reduces 
inflammatory 
Response 
Reverse MI-RP 
injury and 
IRS increasing 
NOS expression 

[126] 

Pravastatin Yes Angiotensin 
II 

Reduces ROS 
production by 
targeting 
angiotensin II 

May increase 
endothelin-1 
expression that 
inhibits NO 
production 

[55]
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