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Abstract. The natural co-speech facial action as a kind of non-verbal
behavior plays an essential role in human communication, which also
leads to a natural and friendly human-robot interaction. However, a
lot of previous works for robot speech-based behaviour generation are
rule-based or handcrafted methods, which are time-consuming and with
limited synchronization levels between the speech and the facial action.
Based on the Generative Adversarial Networks (GAN) model, this paper
developed an effective speech-driven facial action synthesizer, i.e., given
an acoustic speech, a synchronous and realistic 3D facial action sequence
is generated. In addition, a mapping between the 3D human facial action
to the real robot facial action that regulates Zeno robot facial expressions
is also completed. The evaluation results show the model has potential
for natural human-robot interaction.
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1 Introduction

Multimodal behavior understanding and generation play an important role in suc-
cessful human-robot interaction [1–3]. Recently, verbal and non-verbal behavior
generation has drawn more and more attention of researchers from many research
areas [4], including computing animation and robotics [5–7]. Non-verbal behav-
iors, including gaze, gestures [8,9], and facial actions [10], can assist verbal expres-
sions in conveying clearer meanings in contrast to speech-only communication and
intention. It also can help build trust during real or virtual communication [11].
The co-speech facial action as a non-verbal behavior plays a significant role in
human-human communication as they can express rich meanings including the
emotional information in the whole facial expression and the verbal content infor-
mation in the lip or mouth action [12]. In order to make a natural and friendly
human-robot interaction, it is necessary to endow a social robot with synchronous
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and realistic facial actions. However, it is very challenging to generate aligned facial
actions mapping with speech in long-term human-robot interaction. Most of the
previous researches used the handcrafted or rule-based approaches [13] for offline
facial action generation based on speech. These methods are time-consuming and
have a limited continuity level of successive facial actions.

With the development of deep learning technology, more and more genera-
tive models for the time series generation are developed, such as, autoencoder
model, seq2seq model [4], the model with the normalizing flows, and GAN (Gen-
erative Adversarial Networks) model [14]. Researchers have explored many areas
with a generative model for time series generation, for example, human social
trajectories generation [15], and gesture generation [5]. These methods also can
be used for expressive co-speech facial action generation and simplify the robot
facial action generation process as a kind of cross-modal mapping task. The
trained generative model for facial action synthesis can be used in real-time and
long-term human-robot interaction for a social robot.

In this paper, we built up a temporal GAN framework for a cross-modal map-
ping task, which can be applied to generate realistic facial action aligned with the
speech audio in a real-time human-robot interaction. The basic GAN model is
tough to train for cross-modal mapping tasks. Speech-to-facial action generation
is not a strict mapping task where humans can conduct many possible natural
and simultaneous facial action modes for the same speech, for example, in differ-
ent emotional states, which makes the GAN more challenging to train towards
convergence. To tackle this problem, we built our temporal GAN architecture
based on WGAN −GP (Wasserstein Generative Adversarial Networks-Gradient
Penalty) [16] model and introduced the L1 loss in the generator loss function
inspired by the pix2pix model [17].

The human face has more than 40 muscles, controlled for facial actions while
speaking. However, it is challenging to equip the face of a robot with such a sig-
nificant number of actuators in order to express rich facial actions. Our research
used the Zeno robot, a small humanoid with an expressive face for human-robot
interaction. In this paper, we completed the facial action retargeting task from
3D human facial landmarks to the robot facial action with related motor control
signals. The pipeline of robot facial action generation is as shown in Fig. 1.

In summary, our contributions in this paper are as follows:

– A temporal GAN architecture with L1 reconstruction loss was proposed to
effectively generate a 3D co-speech facial action sequence, which can be used
in long-term human-robot interaction.

– The facial action retargeting task was performed from human 3D face action
to the robot face actuators.

– The generated robot facial actions with the related speech were applied to
the Zeno robot for human-robot interaction.

The rest of the paper is structured as follows: Sect. 2 describes the related
works. Section 3 shows the methodology. Section 4 describes the dataset and
related pre-processing operation. Section 5 presents our experiments and results.
The conclusions and future work are resumed in Sect. 6.



Speech-Driven Robot Face Action Generation 63

Fig. 1. The pipeline of RS3 architecture. RS3 architecture contains a facial action
synthesizer from speech and a human-to-robot face action mapping. The facial action
synthesizer based on the temporal GAN model takes the acoustic speech as input and
outputs the aligned human 3D facial actions. The robot facial actions with control
signals of robot facial motors are obtained from the human 3D face action during the
facial action retargeting part. These motor control signals can be applied to the Zeno
robot face during human-robot interaction.

2 Related Work

2.1 Generative Model

Generative models, including the model based on Naive Bayes [14], Variational
Autoencoder (VAE) [14], Generative Adversarial Networks (GAN) [14], and the
model based on the normalizing flows technology [18], have been of high interest
to researchers on the image generation tasks and time-series data generation
tasks. Habibie et al. [7] proposed a recurrent variational autoencoder model to
produce human motions given some control signals, which can be applied for the
sequence prediction task. In the paper [17], Isola et al. built an image-to-image
translation network based on the conditional GAN model for image generation
where the generation loss function also took the L1 distance into consideration
in order to obtain better generation results and to simplify the training process
of GAN model. Heter et al. [19] came up with a probabilistic and controllable
model for motion synthesis using normalising flows technology. The generative
architecture as a probabilistic model can achieve a one-to-many mapping given
multiple control signals, namely style-controllable generation.

2.2 Facial Image or Animation Generation

Co-speech video or animation generation with facial action is not a new research
topic, which has been explored for decades [20,21]. Vougioukas et al. [6] built
a temporal GAN model for speech-driven face animation generation. The GAN
model used one static image and one speech audio as input and outputted realis-
tic aligned image sequences with the face. In order to improve the randomness of
the generated face image sequence, the generative architecture contained a noise
generator to produce the noise time series, which was added, respectively to the
representation information of each overlapped audio clip in the face generator
model of GAN. The generator loss function also considered the L1 reconstruction
loss except for the basic GAN loss, which can improve the generation results.
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In the paper [22], Zhou et al. built up an LSTM-based expressive face anima-
tion generation model with a self-attention encoder. The model took one unseen
speech audio and one static speaker image as inputs. With the help of the disen-
tangled learning skills in the model, the model can achieve the disentanglement
of content and style in audio. The model can generate different talking anima-
tions with the same speaker style as the one in the input of the static image.
Namely, it is speaker-aware speaking head animation generation.

Both methods above produce the co-speech face or head image sequence.
There are some other researchers who focus on the face key point (landmark)
position generation used to control the virtual face avatar in a simulation envi-
ronment. Sadoughi et al. [23] proposed a conditional sequential GAN (CSG)
model to generate the talking lip actions. The model used the spectral and emo-
tional speech features as conditional input of the generator of GAN to synthesize
emotion-aware lips action with key point coordinates, which then were utilized
to regulate the virtual face. Abdelazi et al. [24] described a new co-speech facial
movement generation structure that can be exploited for the animated face on
smart mobile phones. The model jointly used audiovisual information, including
the speech audio and one static face image as input to synthesize the aligned 3D
facial action. However, these facial action generation models were only applied in
animation situations and still do not explore whether it is effective and whether
it can make a difference in the real humanoid robot with face-actuated skin.

2.3 Robot Facial Action Generation from Speech

Multimodal robot behaviors with speech, co-speech gestures, and facial actions
are essential in a natural and friendly human-robot interaction. Particularly, the
co-speech facial action generation is an active research area as facial actions
convey more emotional information and speech content information than ges-
tures. Aly et al. [12] built up a multimodal robot behavior synthesis system
used on an expressive robot ALICE, in order to imitate natural multimodal
human-human interaction. The system can generate speech-related gestures and
co-speech facial expressions, which led to an effective narrative human-robot
interaction. However, the robot facial action generation method is rule-based
and cannot generate natural co-speech facial action. The generated facial action
sequences have a limited continuity level in the temporal domain. In the paper
[25], the laughter-driven facial motions were generated for a female android robot
with facial skin. However, the robot facial action generation was rule-based with
limited facial action patterns. It is challenging to generate facial actions in real-
time and long-term human-robot interaction.

3 Methodology

3.1 Problem Formulation

Speech-Driven Facial Action Generation: It is a crossmodal translation
task with time series both as input and output. Given one speech audio Sm =
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[smt ]t=1:T as input, the model attempts to produce one 3D facial action sequence
Am = [Am

t ]t=1:T ′ . Namely, the generative model tries to learn a relation function
Fmapping to maximize the conditional probability P (Am|Sm) to generate the
natural and aligned facial action sequence. Here, T and T

′
are the time steps of

the speech audio as input and the facial action sequence as output, respectively,
and they are different from each other because the digital speech audio and the
facial action sequence have different sampling rates. m in the model means mth

mapping task.

Am = Fmap (Sm) (1)

Facial Action Retargeting: The problem is to map the human facial actions
Am with the 3D positions of the face key points to the robot facial action
sequence Cm = [cmt ]t=1:T ′ with the face motors’ control signals. The mapping
task for face action retargeting consists of getting a function that finds the rela-
tion between human facial action and robot facial action. The final function can
make the appearance of the human facial and the appearance of robot face as
similar as possible at each time step.

Cm = Fretarget (Am) (2)

3.2 Facial Action Synthesizer from Speech

This section describes our novel proposed facial action synthesizer from speech
with temporal GAN. The speech-to-face-action GAN (S2FGAN) architecture
is shown in Fig. 2. S2FGAN model is made of a generator and a discriminator.
The generator with a sequence model takes the temporal representation of speech
audio as input and outputs the mapping gesture. The discriminator is employed
to differentiate whether the speech and the facial action match each other.

The generator comprises two layers of GRU (Gated Recurrent Unit) and
MLP (Multilayer Perceptron) layer. Firstly, Mel-frequency Cepstral Coefficients
(MFCCs) as audio representation are extracted from the overlapped audio clips.
The MFCC feature sequence is input into the batch normalization layer following
two layers GRU of the generator. The following MLP layer takes the latent rep-
resentation of the former GRU layer to generate the synchronous 3D facial action
sequence mapping with the speech audio. And each frame of the facial action
sequence contains 3D positions of 68 face landmarks. The discriminator works
to distinguish whether the facial action sequence and the speech audio match
with each other. The audio clip representations and the facial action sequence
are input into two MLP layers and decoded to 100-dimensional features and 50-
dimensional features each time step, respectively. The following concatenation
layer fusions the two modal features in each time step, whose output is input to
a GRU layer. In the final GRU cell, an MLP layer is followed to classify whether
the speech audio matches the 3D facial action sequence.

The loss function of our S2FGAN model comprises two parts, namely L1

loss part and the standard conditional GAN loss part, actually the Wasserstein
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Fig. 2. The S2FGAN architecture. The model has a generator and a discrimi-
nator. The generator takes the spectral features of speech as input and outputs the
synchronous 3D facial action data. The discriminator with the speech audio and gen-
erated/real facial action sequence as inputs try to classify whether the speech and the
facial action sequence align in the temporal domain.

loss and the gradient penalty used in the WGAN-GP model. The basic GAN
model often experiences the training instability problem. The Wasserstein GAN
(WGAN) model makes a more stable training than basic GANs [26]. WGAN
can also produce samples with low quality and suffer from convergence problems
during the training process. WGAN introduces a weight clipping skill to enforce
a Lipschitz constraint on the discriminator (namely, the critic named in WGAN)
to address these problems, which also can result in gradient explosion/vanishing
without careful tuning of the weight clipping parameter. In WGAN-GP [16],
the authors proposed an alternative skill to the weight clipping, namely, adding
the gradient penalty to the discriminator loss, which leads to a more stable
training process. The WGAN-GP loss contains the generator loss LG and the
discriminator loss LD , as shown in Eq. 3 and Eq. 4, respectively. Where, the
sample Sn from the sampling uniformly along straight lines between pairs of
points sampled from the data distribution of real facial action sequences and the
generator distribution.

LG = − ESm [D(Sm, G(Sm))] (3)

LD =ESm [D(Sm, G(Sm))] − ESm,Am [D(Sm, Am)]+

λEAn [(‖∇AnD(An)‖2 − 1)2]
(4)

Inspired by the pix2pix model [17], we introduced a L1 reconstruction loss to
improve the realistic co-speech facial action generation. The L1 loss is pixel-wise
in the image translation task with pix2pix model, while we used the frame-
wise L1 loss for the facial action sequence, as shown in the Eq. 5. The final
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discriminator loss keeps same, and the L1 loss is added to the generator loss to
get the final generator loss LG−all as shown in Eq. 6. Where λ is an empirical
hyperparameter during S2FGAN model training, which is to balance how much
contribution LL1 or LG make for all the loss.

LL1(G) = ESm,Am [‖Am − G(Sm)‖1] (5)

LG−all = LG + λLL1(G) (6)

3.3 Facial Action Retargeting

Our facial action retargeting task is a mapping from human facial action to
robot facial action. The mapping objective is to approximate the human face
appearance with a limited number of robot face actuators. In this paper, we
use a Zeno robot to present the synchronous generated facial action sequence
with the speech audio. There are four motors for skin-based face appearance
regulation. The four motors can control the eyebrows/forehead up or down (one
motor), the eyelids open (one motor), the mouth open, and the left and right
corner for the smile (one motor). Each motor’s control signal of the Zeno robot
is a continuous value ranging from 0 to 1. The retargeting process from human
facial action to robot facial action is as shown in Fig. 3. The human facial action
includes 3D positions of 68 landmarks, and four motors of Zeno with skin regulate
the robot’s facial expression.

Fig. 3. Facial action retargeting overview. The human face contains 68 human
landmarks in each frame. The robot face has four motors controlling the eye, the
forehead, the mouth, and the mouth corners for a smile.

We name the distance between the 38th landmark and the 42nd landmark
as h1r, the 39th landmark and the 41st landmark as h2r. The right eye wide ykr

is the distance between the 37th landmark and the 40th landmark, which is used
to normalize the open degree of the eye as different persons have the different
eye sizes. Apply the same rule for the left eye to get the h1l, h2l and ykl. Because
Zeno has only one motor to control two eyelids, we calculate the average for the
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two eyes. Then, we can get the scale for the eyelid motor as shown in Eq. 7.

Seye =
h1l+h2l
2ykl

+ h1r+h2r
2ykr

2
(7)

To obtain the eyebrows motor scale, we need to calculate the distance between
the midpoint of the 22nd landmark and the 23rd landmark and the 28th land-
mark, hbrow . So, the scale for eyebrows is shown in Eq. 8. Here, we divide
(ykl + ykr) /2 is to reduce the influence of different face sizes of people on the
results of the mapping task from 3D facial action to robot motor action.

Sbrow =
hbrow(
ykl+ykr

2

) (8)

The scale for mouth motor can be obtained as shown in Eq. 9. Here, hmouth is
the distance between the midpoint of the 52nd landmark and the 63rd landmark
and the midpoint of the 67th landmark and the 58th landmark.

Smouth =
hmouth(
ykl+ykr

2

) (9)

The scales of the smile motor controlling the left and right corners of the mouth
can be obtain from Eq. 10, Eq. 11, and Eq. 12. The d1 is the distance between
the 55th landmark and the foot of the perpendicular through the 31st landmark.
Similarly, the dr is the distance between the 49th landmark and the foot of
the perpendicular through the 31st landmark. Furthermore, dl and dr can be
calculated based on the law of cosines. Because there is only one smile motor to
control mouth corners, the mean value of Ssmilel and Ssmiler is used to get the
scale of the smile motor, namely Ssmile.

Ssmilel =
dl(

ykl+ykr

2

) (10)

Ssmiler =
dr(

ykl+ykr

2

) (11)

Ssmile =
Ssmilel + Ssmiler

2
(12)

Since robot motor control signals in the Zeno system range from 0
to 1, normalization operation for the scales should be done as shown in
Eq. 13. That is to say, find the maximum and minimum of every scale
which are applied to get the final control signal of face motors. Where, s ∈
{Seye, Sbrow, Smouth, Ssmiler , Ssmilel}.

norm(s) =
s − smin

smax − smin
(13)
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4 Dataset and Preprocessing

4.1 Dataset

In this paper, we used the open database-Biwi 3D Audiovisual Corpus of Affec-
tive Communication dataset [27], which was developed at ETH Zurich. The
corpus contains 1109 sentences uttered by 14 native English speakers, including
six males and eight females, aged between 21 and 53 (average age of 33.5). A
real-time 3D scanner and a professional microphone were utilized to obtain the
speakers’ facial action and synchronous speech audio during the data record-
ing process. The dense dynamic face scans were obtained with a sampling rate
of 25 frames per second. Moreover, the RMS error in the 3D reconstruction is
about 0.5 mm, which is good enough for our facial action generation task. For the
dataset development, the participants imitate the forty short English sentences
extracted from film clips. For each sentence, the subject should speak two times,
one with a neutral state and one with an emotional state, which is the same
as the film clip’s emotion. In this paper, the speech audio contains intrinsically
emotional information, so we did not take the emotion label into consideration
for the co-speech facial action generation task.

4.2 Pre-processing

The pre-processing step includes speech audio spectral feature extraction with
MFCC [28], face landmarks extraction from 3D face images in the database with
Dlib [29] library, and how to align the speech and facial action in the temporal
domain and so on.

Alignment Between Speech and Facial Action Sequence. In this paper,
we used the same time size for each speech audio to simplify the training process.
From the distribution of audio length, we know that most audios are longer than
2.5 s. There are 1096 files in our database, of which 1095 are longer than 1 s, 1072
are longer than 2 s, 926 are longer than 3 s, and 645 are longer than 4 s. We chose
3 s as the time size for S2FGAN training to use as many samples as possible.
The audios longer than 3 s were cut into 3 s, and the samples with audio size
shorter than 3 s were deleted from the database. Meanwhile, the sampling rate of
the face image is 25 fps. In addition, we also deleted some samples whose audio
size was more than 3 s but the face images less than 3 s. Finally, we got 788
samples from the original dataset for S2FGAN training.

Because the speech audio and facial action series have different sampling
rates, 44100 Hz for audio and 25 fps for facial action, the whole speech audio
was divided into audio clips to align the facial action and audio in the temporal
domain. Namely, one frame corresponds to 1764 audio frames. Considering the
facial action time series’s temporal dependence, we used the overlapped audio
clips with 3528 audio frames centered on the related facial action frame, and the
stride of the overlapped audio clips was 1764.
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Speech Audio Feature Extraction. MFCC (Mel-Frequency Cepstral Coeffi-
cients) is often used for acoustic speech representation in speech recognition and
other related speech audio tasks. MFCC feature of speech audio is the one in the
frequency domain using the Mel scale based on the human ear scale. MFCCs, as
frequency domain features, are much more accurate than time-domain features
in the recognition task [30]. So, we used the MFCC as the overlapped audio clips
from the whole speech audio in this paper. Each audio clip corresponding to one
face frame extracted an MFCC feature with size of 7 ∗ 13.

3D Face Landmarks Detection. To get the 3D face landmarks, we first
got the 2D face landmarks from the 2D face image frame by frame using the
Dlib library. The pre-trained face landmark detector inside the Dlib library can
extract the location of the 68 face landmarks (x, y)-coordinates that map to face
structures on the face. The indexes of the 68 coordinates can be seen in Fig. 3. In
our case, the triangle mesh texture recorded in the database is the corresponding
RGB file. Firstly, we have detected 2D face landmarks located in the RGB face
image. The detected landmark location is the same as the landmark location
in the texture image. The relation between texture image and 3D mesh can
be learned from the depth image. Then from the 2D position, we can directly
extract the 3D positions of the 68 landmarks.

5 Experiments and Results

5.1 S2FGAN Training

The conditional GAN pix2pix model with L1 loss explored multiple cross-modal
translation tasks with the small dataset with 400 images or less, and it got the
receivable testing results finally [17]. Like the pix2pix model, our speech-face
database for S2FGAN training contains 788 samples (600 samples for training,
90 samples for validation, and 98 for testing) with the speech audios and the
3D facial action sequences. During the training, the batch size was 30, and the
time steps of 3D facial action were 75 as the audio time size was fixed to 3 s
during the S2FGAN training. The Standardization operation was employed on
the 3D facial action data before inputting the S2FGAN model, and the batch
normalization procedure was applied in the generator of S2FGAN , which both
can effectively reduce the overfitting problem during model training based on
the tuning experiments. We did not use the batch normalization layer in the
discriminator because the layer can lead to a convergence failure during WGAN
training [16]. Both generator and discriminator of S2FGAN model used the
Adam algorithm [31] for optimization during training with the learning rate =
0.0002, the parameter β1 = 0.5, β2 = 0.999, and ε = 10−7. Moreover, the dropout
setting of GRU is 0.1. The number of discriminator iterations per generator
iteration is five during training. The model is developed with Tensorflow 2.3,
and the training with 10000 epochs was done on an NVIDIA Quadro P1000
GPU for about four days.
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5.2 Results and Evaluation

During the testing part, the speech-driven 3D facial action sequences were gen-
erated using the trained S2FGAN model. Then, the generated facial actions
were transferred to the control signals of the robot face motors, which finally
were presented on the Zeno robot facial actions with the aligned speech audios.

Applying the generated co-speech robot facial action to the Zeno robot, we
recorded some videos with the speech audio and the synchronous facial action,
and some frames in a generated co-speech robot facial action sequence are as
shown in Fig. 4.

Fig. 4. The generated facial action on the robot Zeno in one example. Twelve
frames were sampled with the same interval sampling from one sample of generated
face action series from speech. The number in the figure is to show the order of the
sampled frames.

From Fig. 4, we can see that the Zeno face driven by the generated robot facial
action has noticeable movement in the mouth area and the eye area. The forehead
area has limited change as the human forehead’s noticeable movement often
happens in intensely emotional expression instead of the common human co-
speech facial actions. Besides, the subjects’ forehead mostly remains still during
the speech as present in the database.

Quantitative Evaluation. The quantitative evaluation of speech-driven facial
action is challenging [32] as the mapping between speech and facial action (or
gesture) sequence is a weaker correlation than the image-to-image translation
in pix2pix, which is a rigid one-to-one mapping. In this paper, we explored the
quantitative evaluation for the generated speech-driven facial action sequence
with an Average Position Error (APE) [32] as shown in Eq. 14, where T is the
time steps of the robot facial action, equal to 75; S is the number of testing sam-
ples, equal to 98; freal(s, t) and fgenerated(s, t) are the real robot facial motor
control signal action and the generated one of sample s at time step t, respec-
tively.

APE =
1

S × T

S∑

s=1

T∑

t=1

|freal (s, t) − fgenerated (s, t)| (14)
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The APE validation result is 0.409 for the eye-opening motor, 0.190 for the
eyebrow motor, 0.187 for the mouth-opening motor, and 0.189 for the smile
motor. The eye-opening motor has the biggest APE 0.409 because the degree
of the eye blink has a weak correlation with speech, and the action is primarily
random to human speech. Hence, the generated eye blink action has a slight fluc-
tuation. For example, in some generated samples, the robot face keeps squinting
because this one-to-many mapping from the speech to the eye blink makes the
alignment model fit to the average value of eye blink (around zero) when the
model cannot find the suitable mode. Other motor APEs perform better when
the related face actions strongly relate to the speech. The result looks like it
still has some space to improve. However, it is still receivable for this kind of
one-to-many mapping task with weak correlation. In the future, the generated
robot facial action should be applied to the real human-robot interaction where
the participants are asked to validate whether the generated robot facial action
is synchronous with the speech, whether the facial action is natural, and whether
the speech-face interaction is better than the speech-only interaction.

6 Conclusions and Future Work

In this paper, we built an effective temporal GAN architecture, namely
S2FGAN , with losses of WGAN-GP and L1 loss for co-speech facial action
generation, which is promising to be used for other cross-modal mapping tasks
with time series as input and output. The trained S2FGAN model can generate
realistic and synchronous facial action sequence with speech audio. The facial
action retargeting from human face landmarks to robot facial action was com-
pleted. The robot facial action series were presented on the real Zeno robot in
human-robot interaction. Finally, the generated facial action series was assessed
with the qualitative evaluation and the quantitative evaluation. In the future,
we will do user experiments to explore the long-term human-robot interaction
environment with the generated face action presented on the Zeno robot. In
addition, we will take the emotion label into consideration to explore emotional
facial action generation for the robot’s face.
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