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Abstract. The success of social robots, even (or, especially) in use cases
as simple as “manning” a booth to promote a product in a shopping mall,
depends on their ability of interacting with humans in a timely, effective
and enjoyable way. In this paper we present an attention system and a
gesture system for use by an autonomous social robot in applications
related to product promotion. Our attention system employs a modular
approach and attention functions, to allow for rich run-time behaviours
to arise from simple rules, while the proposed gesture system allows for
tuning the gestures to convey different emotions and robot personalities.
The two systems were tested in an experiment involving 790 participants,
aiming to explore the attractive power of different robot behaviours.
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1 Introduction

Imagine to enter a shopping mall. On the side, a young woman is standing next
to a booth, to promote a new product among customers. Her job description
is simple: 1) identify potentially interested customers and attract them towards
the booth, 2) describe them the key features of the product, typically on the
basis of a script learned by heart, 3) conclude the (short) interaction by giving
them a sample, leaflet, or gadget, as a reminder of the product. Such a job is
repetitive, tiring (often requiring people to stand still for long shifts), usually
poorly paid, possibly demoralising (since most customers ignore the vendors, or
treat them as nuisances) and even enforcing gender biases and stereotypes, as it
typically employs young, good-looking women to attract more customers. These
characteristics, which make the job unappealing for people, also make it a perfect
task for social robots: repetitive, short, interactions are their forte, they have a
natural talent for standing still and do not possess feelings that rude customers
can hurt. Moreover, robots, still a rare sight in everyday life, arguably exert a
strong attraction on humans, with the added benefit of not enforcing stereotypes.
As an example, a recent study revealed that people who saw an advertisement
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of a robot hotel service had a significantly higher purchase intention than those
who watched a traditional hotel service advertisement [11].

Designing a social robot for product promotion poses a number of not-yet-
fully-solved challenges, among which: 1) the robot needs to be able to identify
potentially interested customers among the passers-by, 2) the robot needs to
know how to successfully attract them to the booth and show them the product.

The first challenge requires the robot to be equipped with an attention sys-
tem [4], allowing it to detect passers-by, identify the interested ones among them
and hold their attention throughout the interaction. Early attention systems
relied on psychophysical models of human attention, supported by neurobiolog-
ical evidence [7]. Attempts at achieving human-like processing efficiency include
VOCUS, which combines a bottom-up approach for the detection of elements of
(possible) interest with a top-down extension for the identification of regions of
(more) interest [3].

The second challenge requires the robot to be equipped with a gesture sys-
tem [8], allowing it to perform gestures prior to and during the interaction,
to attract a passer-by’s attention and guide it towards the product on display.
While it is established that the robots’ non-verbal behaviour is correlated with
their likeability [6], literature findings are not conclusive concerning what is the
best behaviour for attracting attention. As an example, [9] suggests that mul-
timodal behaviours draw more attention, but [10] reveals that they generate
slower response times than unimodal behaviours.

In this article, we tackle the two above-listed challenges, with the overar-
ching goal of contributing to the design and development of social robots for
product promotion. We propose a fast, easily customisable attention system for
social robots, allowing to display a natural, complex behaviour arising from the
combination of simple features and a gesture system which allows for conveying
different emotional and personality cues. Building on an experiment involving
790 passers-by, we investigate the success rate of different unimodal and multi-
modal behaviours in attracting the attention of passers-by.

2 System Architecture

2.1 Attention System

A key requirement for our attention system is to allow for the easy customisation
of what is interesting and how to react to the detection of an element of inter-
est. To this aim, our attention system relies on events and associated attention
functions, which the system manipulates at run-time.

At the lowest level, the system relies on a portfolio of detectors of elements of
interest (e.g., faces and objects), which work on the camera stream and provide
in output, frame by frame, a 2D bounding box within the image space for each
detected element. The goal of the attention system is to identify at all times,
within the image space, the most interesting element to look at.
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Fig. 1. The attention function, defined as i(t) with t, =3, I =4, a =6 and b = 0.

At the core of the attention system there are the events. Each category of
element of interest can be associated with one or more events, of three types:
detection events are triggered when an element of that category first appears in
the robot’s field of view; change events are triggered when an element, already
present in the robot’s field of view, changes in one or more of its perceived
properties; departure events are triggered when an element, previously present
in the robot’s field of view, disappears from the scene. As an example, in our
experimental evaluation we consider human faces as elements of interest and
define four events associated with face detection: 1) the detection event is raised
when a new face appears in the robot’s field of view; 2) the movement event
is a change event raised when a tracked face moves within the robot’s field of
view; 3) the head tilt event is another change event, raised when a tracked face
changes its orientation (e.g., to turn towards, or away from the robot); 4) the
departure event is raised when a tracked face disappears from the robot’s field
of view.

Each event is supposed to raise the attention of the robot quickly, and low-
ering it slowly over time if no new event is triggered. An event is therefore asso-
ciated with an attention function, which computes an interest score i(t) € Rx
for each time instant ¢ € R>( given as an input.

The function, shown in the graph of Fig. 1, is defined by four parameters:

— The reaction time t, defines how quickly i(¢) should increase after activation
and corresponds to the time for which i(t) reaches its peak.

— The interest value I is the value of i(t) at the peak. In our implementation,
this parameter is set at run-time for tilt events, proportional with the angle
between the person’s gaze and the robot’s orientation.

— The attention factor a defines how slowly i(t) should decay after the peak.

— The base value b allows for chaining events (i.e., their attention functions)
and shall be elaborated on in the following.
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Fig. 2. Evolution of the interest score, for a person in following events: event (a) enter-
ing the robot’s field of view, (b) turning to look at the robot, (¢) looking away and
(d) leaving. The score is computed by chaining the attention functions associated with
the triggered events.

The function is then computed as follows:

it = {”ﬁ’ffb’lti} e )
e max{b, I} ift>t,

At run time, whenever an element of interest is detected, the corresponding
detection event is triggered, and the associated attention function is activated
and linked with the element’s bounding box. The interest value i(t) of the atten-
tion function thus represents the interest that the element within the bounding
box has for the robot, at any given time. Later events related to the same element
(e.g., if a detected face changes orientation) cause the previous and new attention
functions to be merged as follows. Let us assume that at time ¢* an element of
interest generated by a previous detection event has an interest value i4(t*) = i*,
where i4(t) denotes the attention function associated with the detection event.
If, at time t*, the element experiences a change, the associated attention function
is re-set as:

i(t) = i.(t — t*) such that b, = iq(t*) =" (2)
where i.(t) denotes the new attention function associated with the change event
and b, is its base value. Note that i.(0) = b..

As an example, the graph of Fig.2 illustrates the evolution of the interest
score associated with a face that (a) enters the robot’s field of view, (b) turns
to look at the robot, (c) looks away and (d) leaves.

The tracking of the elements of interests is done via the Euclidean distance
metric, that first associates each bounding box detected at frame n with the
closest bounding box detected at frame n — 1 of the same type and then, by
evaluating the difference between the previous and current element within the
box, triggers the appropriate event, if any. To allow the aggregation of the inter-
est score of multiple, possibly overlapping, bounding boxes, the robot’s field of
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view is partitioned into a grid of equally sized cells. The interest score of each
cell corresponds to the sum of the interest scores of all the bounding boxes it
intersects with. Finally, at each frame, the output of the attention system is the
coordinates of the cell with the highest interest value. If no bounding box is
present, the interest score of all cells defaults to 0, and no cell is returned.

2.2 Gesture System

The gesture system endows the robot with the ability to perform deictic, or
pointing, gestures [1], aiming to attract others’ attention to a specific entity in
the environment. In our use case, deictic gestures can be used to attract the
passers-by’s attention on the robot, as a form of attractive behaviour, as well as
on the product on display, once a person has approached the booth.

The system is designed as a hierarchy of ROS2 services. At the lower level, a
goto service relies on the robot’s inverse kinematic model to allow the robot’s end
effectors reach any reachable pose within the workspace from their current pose.
The service provides two types of motion trajectories, the linear trajectory and
the minimum jerk trajectory, and allows for tuning the motion speed in terms
of a percentage of the actuators’” maximum velocity.

The point_to service relies on the goto service to endow the robot with the
ability to point towards an entity or direction of interest. Given a point of interest
P = (zp,yp,zp) in the Cartesian space whose origin O is located at the robot’s

torso, the direction of interest is defined by the vector OP and the final position
P* of the robot’s end effector can be located anywhere along the OP segment.
A parameter allows to specify the end effector’s position along the segment, as
a percentage of the farthest reachable point along the segment, defined as the
intersection point between O_>P and the robot’s workspace boundary.

The service provides several types of pointing gestures. The basic pointing
gesture aims to mimic human’s pointing gestures: the robot simply moves its end
effector from its current position to P*, oriented along the direction of interest.
The two-steps pointing gesture is a combination of two successive movements.
The robot first moves the end effector from its current position to a home position
near the shoulder, then moves it along O—P> from this home position to P*, keep-
ing its orientation always aligned with (75 Intuitively, this gesture type aims to
attract viewers’ attention on the direction of interest and make it easier for them
to follow it. Lastly, the self-pointing gesture aims to attract viewers’ attention
on the robot itself. This gesture can be seen as a reversal of the two-steps point-
ing gesture, where the robot first points towards the human whose attention it
intends to attract and then follows the direction of interest backwards, bringing
the end effector close to itself.

The gesture system also allows to simultaneously move the robot’s head
during a pointing gesture, to increase the impact of the attractive behaviour.
Finally, for the purposes of the experimental evaluation described in Sect. 3, a
simple waving gesture has also been developed, to allow for a comparison between
its attraction power and the one of other types of gestures and behaviours.
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Fig. 3. Experiment setup.

3 Experimental Evaluation

3.1 Experiment Design

The primary goal of the experimental evaluation is to assess the effectiveness of
various types of robot behaviours in attracting the attention of passing-by people.
The experiment also allows for an evaluation of the attention system’s perfor-
mance in identifying and responding to events of interest, in a highly dynamic
context and for events not necessarily defined a-priori.

We placed the robot at the entrance of the EPFL’s library (Fig. 3), sideways
with respect to the path followed by student to enter/exit the study area. This
choice ensures a large variability in the type of situations presented to the atten-
tion system (people moving alone or in groups, walking in a hurry or leisurely
strolling, etc.). Moreover, it guarantees that attracted passers-by visibly alter
their behaviour w.r.t. not-attracted passers-by (e.g., by turning their head to
the side, or by changing their path to come closer to the robot). We deem this
setting to be a reasonable example of a product promotion use case, typically
taking place in a crowded environment, in which people move with a purpose
and where the booth is placed sideways to not block the customers’ path.

The experiment is a natural experiment study [5], with random-like assign-
ment of participants to the five conditions determined by the behaviour used by
the robot to attract passers-by. The robot ran each condition for thirty consecu-
tive minutes, changed manually by the experimenters. In the control condition,
the robot only moves its head, as determined by the attention system. This
behaviour is identical across all conditions. In the waving condition, the robot
waves every time a new passer-by currently ignoring it (henceforth referred to as
“target person”) is detected by the attention system, while in the self-pointing
condition the robot, upon detecting a new “target person”, performs a self-
pointing gesture. In the speaking condition, the robot’s attractive behaviour is
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to utter the sentence “Hey, would you come over here?” while, lastly, in the mul-
timodal condition the robot’s reaction to a new “target person” envisions the
concurrent uttering of a sentence and execution of a self-pointing gesture. Our
hypothesis is that the order in which conditions are listed above corresponds
to the attraction effectiveness of the corresponding robot behaviours, i.e., it
increases from the control to the multimodal.

The interaction unfolded as follows. The robot’s attention system contin-
uously scans the environment at three frames per second. Once a person is
detected, the attention system orients the robot’s head toward the point of max-
imum interest (if needed), checks if the person has already been detected or not
and whether they are already moving and/or looking towards it (on the basis of
their head orientation). A not-currently-tracked participant whose head is not
oriented towards the robot is a “target person”. Upon identifying a new “target
person”, the robot computes and stores a metric related to the distance between
the human and itself and performs the attractive behaviour associated with the
currently active condition. After executing the behaviour, the robot recomputes
the distance to the person: if it is significantly smaller than the one computed
before the attractive behaviour (concretely, if the ratio of the area of the current
bounding box over the initial area of the bounding box at the detection event has
increased beyond 125%), the robot invites the person to take a chocolate from
a nearby box, by pointing to it, and utters a goodbye sentence. If the distance
has not reduced, the robot murmurs “I blame myself”, lowers the arm used to
attract the “target person” (in the conditions which imply arm movement) and
resumes scanning its surroundings.

3.2 Evaluation Metrics

The simplest metric to measure the effectiveness of the different robot behaviours
in attracting passers-by is to consider how many among them came close enough
to the robot and picked up a chocolate from the chocolate box. Let us denote
with P the number of all passers-by, and with Popee the number of people who
came close enough and picked a chocolate. The strong attraction rate Asirong is
thus computed as:
PChoc (3)
P

Conversely, the weak attraction rate measures the number of times the robot
elicited any type of response from a participant, even if they did not move closer.
Let us denote with Pj,; the number of passers-by who displayed at any time an
interest in the robot, e.g., by coming closer, or verbally, or by hand-waving to
it. The weak attraction rate Ayeqr is thus computed as:

Astrong =

Pr,
Aweak = IPt (4)

Finally, we introduce the notion of persuasiveness of the robot to solely
focus on those people that, while initially uninterested in the robot, changed
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their behaviour as a response to the robot’s action. Let us denote with Pay
the number of passers-by not interested in the robot upon entering its field of
view (i.e., not walking toward the robot and not looking at the robot) that the
robot identified as “target people” and thus tried to attract, and with Pgreqet
those among them who responded in any way to the robot’s action. The robot’s
persuasiveness Per is thus computed as:

(5)

3.3 Participants

The participants of the study are EPFL students and personnel, passing by the
EPFL library on the day the experiment took place. No personal information was
collected before, during nor after the experiment. The age of participants can be
estimated to lie in the [16, 65] range, with most participants likely below 30. Con-
cerning gender, our participants’ pool is likely skewed towards men, since women
represent approx. 30% of all EPFL students [2]. The experiment took place on a
Tuesday morning and lasted approximately 2.5h (30 min per condition). A total
of 790 people passed by the robot during the study. The average interaction time
of the users which showed interest in the robot (Pr,¢) was 22.93 s (with a standard
deviation of 15.12 s). A Kruskal-Wallis H test indicated no statistically significant
differences between attractive behaviours for the duration of interaction of the
users that showed interest (H = 2.81, p = .59).

4 Results

4.1 Attractive Behaviours Evaluation

Table 1 shows the attraction rates obtained for the various attractive behaviours.

Table 1. Attraction rates and robot liveliness.

Condition P Pchoc | Astrong Prnt | Aweak Payt | Preact | Per
Control 104 (66) | 9 | 8.65% (13.64%) 8 | 7.69% (12.12%) 0 0 0.00%
Waving 172 (86) | 18 10.47% (20.93%) |26 | 15.11% (30.23%) |14 |5 35.71%
Self-pointing | 177 (84) | 28 15.82% (33.33%) |25 | 14.12% (29.76%) |19 |3 15.78%
Speaking 145 (63) | 37 25.52% (58.73%) |22 | 15.17% (34.92%) |17 |3 17.64%
Multimodal |192 (99) |45 | 23.44% (45.45%) |35 |18.23% (35.35%) 7 |4 57.14%

As expected, the table shows that the addition of attractive behaviours has a

non-negligible impact on the number of passers-by being attracted towards the
robot. In terms of the strong attraction rate Agirong, the best performance is
achieved by the speaking condition (25.52%), closely followed by the multimodal
condition (23.44%). Conversely, in terms of the weak attraction rate Ayear,
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the best performance is achieved by the multimodal condition (18.23%), while
all other attractive behaviours display similar rates. Lastly, although the small
number of people involved and the imbalance between the conditions do not
allow to draw significant conclusions, the persuasiveness analysis suggests that
the multimodal attractive behaviour (57.14%) is remarkably more persuasive
than all others, with a 60% improvement over the performance of the second-
best behaviour (waving with 35.71%).

4.2 Attention System Evaluation in the Wild

The face detection rates in the various experimental conditions are reported in
Table 2: in total, 277 out of 398 (69.60%) people walking towards the robot were
detected and therefore considered by the attention system.

Table 2. Number of passers-by per condition and face detection rates.

Condition Total | Facing | Facing Detected | Detection
away towards rate
Control 104 38 66 37 56.06 %
Waving 172 86 86 61 70.93 %
Self-pointing | 177 93 84 55 65.48 %
Speaking 145 82 63 40 63.49 %
Multimodal | 192 93 99 84 84.85 %
TOTAL 790 | 392 398 277 69.60 %

We think that these detection rates are reasonably high, considering that (1)
the experiment was performed over multiple hours, with different natural light-
ing conditions (2) the experiment took place in December 2021, when COVID-
19 countermeasures still enforced the use of masks indoor. Indeed, most mis-
detection were caused by the concurrent use of surgical masks, glasses, scarfs
and/or hats, which left only a very small portion of the face actually visible.
Lastly, on average, half of the people entering the robot’s field of view were not
facing the robot and thus impossible to detect. We hypothesise that, exactly as
the robot had difficulties seeing people facing away from it, those people might
have had difficulties in seeing the robot. To account for this possibility, in Table 1
we report, in parenthesis, the total number of participants whose moving direc-
tion was to walk towards the robot and the corresponding Agirong and Ayeqk
rates. The considerations reported in Sect. 4.1 still apply.

The experiment generated a large amount of events (both foreseen and not
foreseen at design time), where 4 scenarios are worth reporting.

In the first situation, the two people moved their gaze from the robot to each
other throughout the interaction, which caused the robot to similarly shift its
attention from the first person to the second, in a natural manner. Conversely, in
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the second situation the two people in the robot’s field of view never looked away
from it. This caused the robot to continuously move its gaze from one to the
other, in a rather unnatural fashion. In the third situation four people entered
the scene and moved towards the box of chocolate, completely oblivious to the
robot. Upon noticing it, they thanked it for the chocolate and left. Throughout
this interaction, the robot’s gaze stayed stably on one single person, only moving
towards a different person as the first one moved to take a piece of chocolate
and looked away from the robot. This behaviour is deemed correct and natural.
Lastly, in the fourth situation, two people entered the robot’s field of view, with
one way more interested in the robot than the other. In an attempt at catching
the robot’s attention, the first person caused the face of the second person to
be repeatedly obstructed, and thus, by repeatedly appearing as a new face, be
counted as more interesting for the attention system. This behaviour is deemed
not correct, as the robot behaved differently from the person’s expectation.

The good performance of the system even in unforeseen and “stressful” condi-
tions (e.g., with four people surrounding the robot, or with a number of passers-
by in the background) give us hope that the proposed approach could strike a
good balance between speed, simplicity of setup and complexity and richness of
the run-time behaviour.

5 Conclusions

In this paper we investigate the requirements posed on an autonomous social
robot by the use case of manning a booth for product promotion in a shopping
mall, a job which, while pervasive in our societies, has a number of drawbacks
making it unattractive for humans. Such a robot requires a fast and simple-to-
tune attention system, allowing it to identify potentially interested customers
among the passers-by. To this end, we propose an attention system which allows
for obtaining rich run-time behaviours as a combination of simple events, with
associated attention functions. At the same time, this application requires the
robot to be capable of gestures-based non-verbal interaction. To this end, we
propose a gesture system allowing for the parameterisation of the robot’s move-
ments. In an experiment involving 790 participants, we compared the perfor-
mance of five different uni-modal and multimodal behaviours in attracting the
attention of passing-by people, showing that a multimodal behaviour combining
an utterance with a self-pointing gesture not only elicits more responses from
passers-by, but seems more persuasive (i.e., better able of attracting the interest
of previously uninterested people) than all other behaviours.
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