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Abstract. Afingermanipulandumwas developed to assess humanmotor learning
in a virtual mirror game. The task is the leader-follower modality in the mirror
paradigm. The follower in the virtual dynamic system is controlled by the force
generated by the interaction between human and manipulandum due to pinching.
One participant played the game for five consecutive days. The player’s kinematic
tracking error was found to fit the free energy model leading to motor learning. In
addition, the acquired data were processed with a machine learning algorithm to
predict the retention data. Both the free energy model and predictors were found
to provide promising results for more detailed motor learning models of healthy
subjects and stroke patients.

Keywords: Finger manipulandum ·Mirror paradigm · Free energy ·Machine
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1 Introduction

Stroke is one of the leading causes of the loss of motor functions in patients [1]. Stroke
patients often require intensive sessions of rehabilitation to partially or completely regain
their lost motor abilities [2]. Robot-aided rehabilitation utilizes the advantage of using
robotics to provide rehabilitation for patients [3–6]. Moreover, it has been shown to be
beneficial in upper-limp rehabilitation [7]; however, more work needs to be done make
robot-aided rehabilitation more accessible. Virtual reality (VR) systems, on the other
hand, provide further possibilities, as demonstrated in [8], where Sveistrup assessed
several settings. According to the assessment, the combination of VR and haptic inter-
faces offered greater outcomes in terms of patient engagement by giving more diversity.
These haptic interfaces are frequently used as an assistive device to help motor learn-
ing/relearning of daily activities (ADLs) [9]. The recovery goal of rehabilitation for
stroke patients is to regain the motor function they were performing before the stroke.
Motor relearning is assumed to govern the motor recovery if the type of loss to be
addressed by rehabilitation is known, the type of motor learning to be targeted is known,
and the patient has an undamaged learning ability [10]. Motor relearning is thought to
take the same elements as motor learning in healthy people. Therefore, understanding
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and modeling motor learning in healthy individuals will help to understand the process
of motor relearning that aids the patient to reach motor recovery [11].

Various models for studying motor learning exist in the literature. A recently devel-
oped model of motor learning is based on the free energy principle. The Free Energy
Principle (FEP) is a mathematical theory that attempts to explain brain structure and
function by drawing on developments in statistics, physics, theoretical biology, and the
machine learning [12]. In general, the FEP states that all biological agents strive to main-
tain their equilibrium in the face of negative external influences and to actively control
internal equilibrium under changing environmental conditions [13]. The FEP, therefore,
proposes to conceptualize human learning as a process of entropy minimization through
“active inference,” while the brain encodes a Bayesian network whose neural dynamics
are governed by a generative model that predicts sensory data [14]. In addition, model-
based and model-free approaches to learning motor control schedules are also discussed
in [15]. Ueyama applied system identification techniques to model motor learning and
recovery revealing adaptation and generalization functions by linear state space models
[16]. Similarly, Casadio et al. proposed a linear model to predict the performance of
impaired subjects during robot-assisted exercise, and they claim that using computa-
tional models is promising to predict the outcomes of robotic rehabilitation [17]. In [18,
19], a feedforward type of artificial neural network is used to model the use-dependent
recovery of locomotor force and learning is simulated by a biologically plausible rein-
forcement learning algorithm. They show that the model makes predictions that are
consistent with clinical and brain imaging data. In [20], the effects of control systems on
motor relearning in a robotic hand exoskeleton are simulated. Reinforcement learning
is used to model voluntary torque generation by the subject during the rehabilitation
process. It is shown that the kinematic control system that does not interact with the
patient results in slacking. Finally, the mirror paradigm is used as the control task in
this work. ADLs can also include activities in conjunction with others [21]. Thus, a
commonly used approach in the literature to promote imitation and social coordination
is the mirror game, in which players attempt to imitate each other’s movements in one
of two modalities: Leader-Follower (LF) or Joint Improvisation [22]. Indeed, several
works have shown that through haptic interactions, better overall motor performance
can be achieved for both the leader and the follower [23, 24].

Accordingly, a new experimental setup is proposed in this paper, consisting of a
pinching manipulandum and a VR-based mirror game in LF mode as a motor control
task. The virtual leader makes a compound movement consisting of three sine waves.
The follower avatar is controlled by the unidirectional force generated by the interaction
between human and manipulandum due to pinching. To move the avatar in the opposite
direction, the user must learn to use the gravity prevailing in the virtual reality system.
The data collected during the compound learning task is expected to provide models for
motor learning. The manipulandum is used by a healthy individual for five consecutive
days in this proof-of-concept study, and the data collected is analyzed to model and
assess the motor learning of the participant.
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2 Materials and Methods

In this section, the physical setup containing a mirror game that is driven by a finger
manipulandum is presented. In this human-robot interaction setup, the user learns to
gauge the force that is applied using themanipulandum to achieve an acceptable tracking
performance.

2.1 Virtual Mirror Game and Pinching Manipulandum

Virtual Mirror Game. A leader-follower type mirror game is implemented in
Simulink® Desktop Real-Time 2021b where the player controls the vertical motion
of a box in free fall. The game environment is designed using V-Realm Editor and is
shown in Fig. 1. Given a predefined leader motion [23, 25], the user attempts to track
the leader by applying a unidirectional force that is used to move the box upwards; the
downwards motion is achieved by using simulated gravity (~0.5 g). The unidirectional
nature of the force created a demanding experience in which the participants had to
somewhat oppose the gravitational force during descending action in order to maintain
synchronizedmotionwith the leader. The tracking performance is calculated in real-time
using a position error-based score metric and displayed to the user on the screen [26].
The score is calculated as,

T−1
f

∫ Tf

0
emax − |yF (t)− yL(t)|dt (1)

In Eq. 1, t is the elapsed time, emax is the maximum tolerable error, yF and yL are
the follower’s and leader’s positions, respectively, Tf is the round duration.

Fig. 1. Hand pinching the manipulandum (Left). The tracking mirror game. (Right)

Pinching Manipulandum. End-effector-based rehabilitation tools are widely used in
robot-assisted rehabilitation applications. Planar manipulanda [27, 28] are used in vari-
ous studies to assess motor learning behavior in healthy individuals and patients. They
are commonly driven by interaction-type controllers and are used to provide haptic
interaction between the users and a virtual environment [24]. A pinching manipulandum
refers to an apparatus designed to facilitate pinching action applied with the index and
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thumb fingers [29, 30]. In this paper, a pinching manipulandum is developed to perform
haptic interaction between the users and the mirror game. To achieve pinching action,
two ergonomic finger pads were constrained by horizontal sliders. These sliders were
controlled using a centered, double slider-crank mechanism that is actuated by a sin-
gle motor (Maxon EC-max 60W). A force sensor (Honeywell FSG15N1A) was placed
against the finger pad such that the force is directed through lever action from the fin-
gertips. The measured force was used to drive an admittance controller which rendered
a virtual spring-damper system at the fingertips, creating a human-robot interaction
scheme, Fig. 2. The generated pinching force is transmitted through a data acquisition
board (National Instruments PCI-6229 M Series) at 2 kHz to a real-time control system
to control the manipulandum motor and run the aforementioned mirror game.

Fig. 2. Shows the system architecture for sensing, using, and logging data. Dashed lines indicate
systems implemented in software.

2.2 Models for Motor Learning

As stated in [31], the FEP involves the Bayesian brain hypothesis, which states that brain
function explores how well the nervous system can operate under uncertain conditions
in a way that approximates the ideal recommended by Bayesian statistics: the idea that
the brain is an inference machine [32]. In this work, an exponential model is used to
describe the complex nature of motor learning [14]. The model is given as,

y = aebx (2)

where, the coefficients a and b can be interpreted as the initial magnitude of variability
and the decay rate, respectively, where x is the round number and y is a performance
error metric.
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In addition, two machine learning approaches are utilized to predict the performance
of the participant. The first approach trains a Long Short-Term Memory (LSTM) [33,
34] network using the training dataset to predict the last day’s performance. The second
approach uses a tree-based machine learning models to evaluate which rounds were the
most prominent for the motor learning of the participant.

2.3 Experimental Design

In this proof-of-concept study, one participant (female, age 31) played themirror tracking
game using the manipulandum. Over five consecutive days, the participant played a total
of 104 rounds. A round is defined as the 30- or 60-s-long tracking task that is described
in Sect. 2.1. At the beginning, the baseline skill level is assessed by playing two 60-s
rounds (BL), afterwards and over 5 consecutive days, the participant played 20 30-s
rounds per day for a total 100 rounds (T). On the fifth day, the skill level was assessed
again by two 60-s rounds (R) identical to the baseline. The experimental protocol is
shown in Fig. 3. Importantly, BL and R rounds had identical leader motion patterns,
whereas the TR rounds had reversed leader motion pattern [14, 26].

Fig. 3. Presents the experimental protocol used to collect the data. The training data is collected
as batches of 20 rounds over 5 consecutive days.

The RMSE provides a measure of the error between the leader and follower’s posi-
tion. As a result, this metric can be thought of as a measure of synchrony between the
leader and the follower. It is defined as, [35]

RMSE = 1

L

√∑n

k=1

1

n

(
xL,k − xF,k

)2 (3)

where L is the position range, n is the number of time intervals, and the x’s refer to
the positions of the leader and follower at the kth sample step. It is expected to see this
metric decrease as the participants play more rounds of the game; this can be correlated
with the motor learning performance. Indeed, this metric is used to fit the free energy
function.

3 Results and Discussion

3.1 Free Energy Model

The free energy model is fitted to the data collected over 5 days. The position data of
the leader and the pursuer for 100 training rounds were used to determine the RMSE for



330 A. Okasha et al.

each round separately. The resulting scatter plot is shown in Fig. 4. Each data point refers
to the RMSE of a single round. Then the free energy model (Eq. 2) is fitted to the scatter
plot. The exponential fitting coefficients a = 0.234 and b = −0.00914 are determined
with 95% confidence and are consistent with the expectations of the model in [14].
According to the FEP, the data fit shows the specific rate and variance of the subject’s
motor learning during the training period. To evaluate the error densities, Bayesian
Regression modeling is used [36–38]. The entire distribution of Fig. 4 is defined as the
density of the error of the participant. While the black line (y) represents the density
of the original error, the other thin lines represent the posterior predictive distribution
(yrep), which represents the predicted error based on the Bayesian model. The density
distribution figure demonstrates that the posterior projected data is more comparable to
the true data. The validation of the Bayesian model also supports the free energy model
for motor learning.

Fig. 4. (Left) The free energy fitted model y = aebx for the obtained RMSE values. (Right) The
probability of the position error density of the Bayesian model for multiple predictors (day and
rounds).

3.2 Use of Long Short-Term Memories (LSTM) and Tree-Based Predictive
Models

Using the training data from the training session, an LSTM type of artificial neural
network [34] is trained to predict the subject’s position response (i.e., the location of
the follower avatar) on the fifth day. Each day’s 20th training session is utilized in the
network to narrow down the data, Fig. 5 (left). In this study, the past 4 lags were given to
the LSTM architecture as a time-delay embedding to capture the auto-correlation [39].
In the architecture of LSTM, 1 recurrent layer and 2 features in the hidden state are used.
The nonlinearity is supplied by the tanh function. The LSTM layer ends with one linear
layer which applies the linear transformation to incoming data. For training the network,
an Adam optimizer with a learning rate of 0.01 is used, and the loss function is set as the
mean square error. 2000 epochs are needed to train the LSTM. Figure 5 (right) shows
the performance of the predictor. In addition to the visual representation, the forecasting
performance of the LSTM is evaluated by calculating the RMSE score on the test data.
The RMSE of the model for the test data is 0.053 which indicates that the model has a
considerable prediction capability.
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Furthermore, a tree-based machine learning algorithm for predicting the user’s R1
and R2 responses is developed with the aim of understanding which training round is
effective in the prediction of R1 and R2; this is achieved through the variable importance
property of tree algorithms. All processes are conducted using Jupyter Notebook and
related Python libraries including Pandas, Sklearn, Xgboost, and Shap.

Fig. 5. (Left) Shows serially-combined position error data for each T20 in the five consecutive
days. (Right) Shows the prediction of the LSTM.

Before starting the modeling, the dataset is divided randomly into two parts; train
(80%) and test (20%). After that, the train data is again randomly divided into the train
(80%) and validation sets (20%). The parameters of applied models are tuned using
the random search approach. Two tree-based algorithms, which are Random Forest and
Xgboost, are applied and compared concerning R2 and RMSE. The prediction perfor-
mance of both models for validation and test sets is given in Table 1. It is seen that the
Xgboost model outperforms Random Forest in the prediction of the position of the user
in the R1 and R2. Next, which round of the game is the most effective in the prediction
of the position of the user can be explored using a beeswarm plot of the model created by
SHAP. SHAP is a game-theoretical Shapley value-based method to explain the machine
learning model. It is seen in Fig. 6 that the most effective training round on R1 is the
6th round, followed by the 14th and 7th rounds. Therefore, it can be said that when the
performance of the user in the 6th round increases, then the performance of the user in
the R1 round also increases. On the other hand, it can be said that when the score of
the user in the 14th round increases, the score of the user in R1 decreases. It is seen in
Fig. 6 that the most effective training round on R2 is the 14th round, followed by the 9th
and 7th rounds. It can be said that when the position score of the user in the 14th round
increases, then the position score of the user in R2 decreases. A similar interpretation
can be also made for round 9. However, the R2 score decreases when the 7th round score
decreases.
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Table 1. The performance of Random Forest and Xgboost in the prediction of R1 and R2

R2 RMSE R2 RMSE

Random
Forest

Validation (R1) 0.276 2.316 Validation (R2) 0.313 2.229

Test (R1) 0.278 2.311 Test (R2) 0.314 2.233

XgBoost Validation (R1) 0.998 0.120 Validation (R2) 0.998 0.120

Test(R1) 0.998 0.126 Test (R2) 0.998 0.116

Fig. 6. Shows the SHAP plots for R1 (left) and R2 (right).

4 Conclusion

In this paper, we briefly described the pinchingmanipulandum system, which was devel-
oped to measure motor learning in healthy people at first. Continuous implicit learning
in the leader-follower modality is combined with learning to generate unidirectional
force and use the gravitational field to locomote the follower. Such a challenge must be
tailored to the skill level of the participants. The primary goal of our study is to develop
subject-specific motor learning models. The initial phase of model construction is led by
basic exponential functions derived from the free energy principle and predictors derived
from machine learning methods. These models will then be combined with more struc-
tured learning models to replicate more complex motor control policies. They will also
serve as previous knowledge for subject-specific reinforcement learning models. It is
critical to evaluate the most efficient rounds or sessions for motor learning to develop
optimal rehabilitation programs. It is important to increase the number of participants
in order to demonstrate that data from the proposed experimental platform is used to
construct subject-specific and distinguishable models. Manipulandum will be used as
an end effector kind of rehabilitation robot for stroke patients, as well as in conjunction
with an exoskeleton type of robotic system to serve as an interaction environment for
the VR mirror therapy protocol. Finally, it is proposed to construct patient-specific opti-
mal robotic hand rehabilitation systems with control systems that impose personalized
entropic sources in order to maximize motor relearning.
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