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Abstract. Facial expressions are one of the most practical and straight-
forward ways to communicate emotions. Facial Expression Recognition
has been used in lots of fields such as human behaviour understand-
ing and health monitoring. Deep learning models can achieve excellent
performance in facial expression recognition tasks. As these deep neu-
ral networks have very complex nonlinear structures, when the model
makes a prediction, it is not easy for human users to understand what is
the basis for the model’s prediction. Specifically, we do not know which
facial units contribute to the classification more or less. Developing affec-
tive computing models with more explainable and transparent feedback
for human interactors is essential for a trustworthy human-robot inter-
action. Compared to “white-box” approaches, “black-box” approaches
using deep neural networks, which have advantages in terms of overall
accuracy but lack reliability and explainability. In this work, we introduce
a multimodal affective human-robot interaction framework, with visual-
based and verbal-based explanation, by Layer-Wise Relevance Propaga-
tion (LRP) and Local Interpretable Mode-Agnostic Explanation (LIME).
The proposed framework has been tested on the KDEF dataset, and in
human-robot interaction experiments with the Pepper robot. This exper-
imental evaluation shows the benefits of linking deep learning emotion
recognition systems with explainable strategies.

Keywords: Explainable robotics · Facial Expression Recognition
(FER) · eXplainable Artificial Intelligence (XAI) · Human-Robot
Interaction (HRI)

1 Introduction

Facial expression is a critical non-verbal communication strategy, and human
emotions can be expressed through facial expressions, which can be read and
interpreted by emotional AI technology [7,27]. Face expression detection is sig-
nificant for patients with specific diseases or congenital disabilities [13], especially
when they cannot express their thoughts through words and actions. In this case,
real-time facial emotion detection needs to be performed to take corresponding
medical measures for the patient.
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The advancement of AI poses challenges for humans to trace model results,
especially in the field of deep learning. It is difficult for data scientists and
even engineers who write AI algorithms to explain what is happening inside the
models and how these AI models come to specific results [1]. XAI is proposed
to address this dilemma, which is a set of methods and processes that enable
users to understand the output of AI models [2]. AI developers need to have
a comprehensive understanding and awareness of the working mechanism, to
monitor whether the working process of the model complies with regulations,
thereby reducing legal and security risks and gaining the user trust.

In this work, we explored how explainable methods (namely LRP and LIME)
could make facial emotion recognition more transparent and trustworthy with
visual and verbal explanations. In the visual interpretation extraction part, LRP
was utilized to provide a visual explanation on a CNN-based emotion classifier.
For the verbal interpretation extraction part, Openface [4] was used to recognise
face action units and calculate the related intensity. Then LIME was employed
to analyse the contribution of each Action Unit(AU) for model prediction.

The pipeline of our model is shown in Fig. 1. Firstly, the Pepper robot predicts
the facial emotion states of the interactor during HRI. Then, Pepper verbalises
the predicted emotion as linguistic feedback and shows the heatmap generated
from the LRP model as explainable visual feedback. In addition, the robot can
give more detailed emotion recognition feedback to increase interaction trans-
parency. This multimodel explanation feedback can help the human interactor
understand the robot’s internal emotion recognition process, facilitating human-
robot trust.

Fig. 1. The proposed multimodel explanation framework

All in all, our paper contributions are as follows:

– We retrained a deep learning model of VGG16 to perform emotion recognition
task on KDEF dataset, and LRP was utlized to highlight the crucial pixel-
features of the input image and generate heatmap-based explanation.
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– We made use of Openface to detact AU and calcualted the corresponding
intensity, then random forest was used perform emotion prediction. Finally
AU-based explanation was generated by LIME.

– The proposed multimodal explainable method was tested on Pepper robot,
the generated heatmap is shown on the screen of chest. Verbal explanation
based on AU from LIME is given at the same time. Finally, trust is con-
structed and the feedback from the interactor can be used to improve the
facial expression recognition (FER) model.

2 Related Works and Background

The Deep learning-based model and Facial Action Coding Systems (FACS)
based model are two mainstream methods for facial emotion recognition [28].
Compared with traditional ML methods, deep learning-based black-box meth-
ods have higher accuracy but usually lack reliability and interpretability due
to the complex network structure. Explainable AI is proposed to solve this
challenge. Common explainable methods are backpropagation-based Layer-Wise
Relevance Propagation (LRP) [3] and perturbation-based Local Interpretable
Model-agnostic Explanations (LIME) [17]. The main goal of these methods is
to find activation regions in the DL model and highlight the parts of the input
image that have a decisive influence on the classifier’s decision. While these
methods account for the contribution of the input image at the pixel level, they
do not give an explanation at the facial action unit level. Facial Action Cod-
ing System (FACS) [6] is a standard of most FER models for estimating and
recognising AUs. It is based on the activation of facial muscles during facial
expressions. These activations are represented by AUs. Action units (AUs) [22]
were mostly used as features, feeding classifiers to recognize emotions. AUs are
defined as subtle facial muscle movements. According to the physiological distri-
bution of facial muscles and related characteristics, the movements of different
facial muscles can be classified into different AUs [23].

Numerous interpretable techniques have been deployed to explain the dynam-
ics process of AI models. We explored backpropagation-based and perturbation-
based explainable methods and use them to develop our multimodel explanation
architecture for FER in Human-Robot interaction.

2.1 Backpropagation-Based Explanation

Backpropagation is an internal algorithm common across neural network archi-
tectures. It is used to calculate the gradient of the loss function with regard to
the weights of the connection between the layers of the network, and under-
stand the correlation between the input and output to a network [15]. As
for backpropagation-based explainable methods, attributions are calculated by
backpropagating once or more times through the network.

Layer-Wise Relevance Propagation is a backpropagation-based interpretable
method [14]. It calculates importance scores in a layer-by-layer approximation of
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backpropagation, which does not interact with the training process of the net-
work and can be easily applied to an already trained DNN model. LRP provides
an intuitive human-readable heatmap of input images at the pixel level. It uses
the network weights and the neural activation created by the forward-pass to
propagate the output back through the network from the predicted output to the
input layer [16]. The heatmap is used to visualize the contribution of each pixel
to the prediction. The contribution of the intermediate neuron or each pixel is
quantified to relevance value R, representing how important the given pixel is
to a particular prediction.

2.2 Perturbation-Based Explanation

The perturbation-based XAI method modifies the input of the model to inves-
tigate which parts of the input elements are more critical for the model’s pre-
dictions [8]. Specifically, the disturbance is generated by occluding some pixels
or replacing some words in the sentence, then observing the changes in the
output. If the input after the disturbance significantly changes the output, it
is considered that “the cause behind the disturbance” is very significant. The
perturbation-based interpretable methods are generally applicable to the vast
majority of deep learning models [18].

Local Interpretable Model-agnostic Explanations is a commonly used post-
hoc perturbation-based explainable model [12]. It can generate instance-based
explanations for the model predictions. For a given input sample Y , LIME gen-
erates perturbed data near Y . The weights of the perturbed data are calculated
according to how close they are to the sample Y . LIME then trains an inter-
pretable sparse linear model on the perturbed dataset as a local approximate
classifier. In contrast to most backpropagation-based algorithms that need to
use the internal information of the classification model to generate explanations,
LIME generates explanations without accessing the model’s internals. [8].

2.3 Emotion Recognition for HRI

Unlike FER in human-computer interaction, the position of the face relative to
the camera is relatively fixed. Robotic emotion recognition is related to envi-
ronmental factors, making it an extremely challenging task to enable the robot
to understand emotions [25]. Emotional robots have many real-life applications,
and studies have shown that in treating children with autism, they are more
inclined to interact with robots than humans [21]. Therefore, building a robotic
system with emotional intelligence will help detect the emotional state of autistic
children in real-time, thereby providing more efficient treatment. By dynamically
interacting with the external environment, emotional robots can also learn better
adaptability and flexibility [26].
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3 Methodology

In this paper, explainable emotion recognition was explored in HRI through
backpropagation-based model for visual explanation and perturbation-based
model for verbal explanation, which will be introduced below.

3.1 Visual-Based Explanation

As for visual-based explanation, we explored explainable facial emotion recogni-
tion with LRP. This can explain inputs’ relevance for a certain prediction, typi-
cally for image processing. Using LRP, the robot can extract the facial heatmap
that highlights sufficient parts of the facial pixels most responsible for the emo-
tion prediction task. Face recognition with VGG16 is used in this paper. VGG16
[5] is a simple and widely used convolutional neural network model for image
classification tasks. In this work, we reused the pre-trained image classification
VGG16 model to fine-tune it for our face emotional recognition task.

The input images of this model are with a fixed size of 224 ∗ 224. The
image is passed through a series of convolutional layers, following three fully-
connected layers with different depths. As our task has seven emotions, the final
fully-connected layer was changed to seven dimensions, as shown in Fig. 2. The
whole pre-trained model is further trained on the facial emotional dataset for
facial emotion recognition. During this new training, the previous layers of the
pre-trained VGG16 are kept fixed.

Fig. 2. The architecture of modified VGG16.

Layer-Wise Relevance Propagation (LRP) can explain the relevance of inputs
for a certain prediction, typically for image processing. So we can see which
part of the input images, or more precisely which pixels, most contribute to
a specific prediction. As a model-specific method, LRP generally assumes that
the classifier can be decomposed into several layers of computation [24]. In the
forward pass process, the image goes through a convolutional neural network
for feature extraction from the image. Then, these extracted features are input
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to a classifier with a fully connected neural network and a softmax layer which
gives the final prediction. At this point, we are interested in why the model gets
that prediction. LRP goes in reverse order over the layers, we have visited in the
forward pass and calculates the relevant scores for each of the neurons in the
layer until we arrive at the input again. We can then calculate the relevance for
each pixel of the input image. The positive relevant scores indicate how much
contributions the pixels make to the model prediction, and the negative values
mean these pixels would speak against it, which leads to the heatmap result.

When the LRP model is applied to the trained neural network, it propagates
the classification function f(x) backward in the network through pre-defined
propagation rules from the output layer to the input layer. Let j and k be
neurons at two continuous layers. The propagating relevance scores R

(l+1)
k at a

given layer l + 1 onto neurons of the lower layer l is achieved by applying the
following rule [20]:

R
(l)
j =

∑

k

Zjk∑
j′ Zj′k

R
(l+1)
k (1)

The quantity Zjk models how much importance the neuron j has contributed
to making the neuron k relevant.

Zjk = x(l)
j w(l,l+1)

jk (2)

The relevance of a neuron is calculated according to Formula 1, which can
calculate the relevance R for a neuron j in layer l. So our current layer is l,
and the output layer becomes l + 1. The calculation for neuron j now works
as follows. For each neuron j in the layer l, we calculate the activation based
on the neuron j. And the activation is calculated according to Zjk. It simply
multiplies the input for the neuron j in our current layer, with the weight that
goes into the neuron k in the next layer. This input x comes from passing the
pixel values through the previous layers, showing how strong the activation is
between these neurons. Intuitively, if there is a high value, it means that the
neuron was very important for the output. So we interpret this fraction as a
relative activation of a specific neuron, compared to all activations in that layer.
Finally, we multiply the relevant score of the neuron in the next layer with
this relative value to propagate the relevance of the next layer backwards. The
propagation procedure will not stop until it reaches the input layer.

3.2 Verbal-Based Explaination

According to the facial action units (AUs) that make up an expression, FACS1

divides the face into upper and lower parts and subdivides the facial action units
into different AUs to encode facial emotions, shown in Fig. 3. Openface [4] can
detect action units and identify the corresponding intensity of each activated AU
as an open source software. To explain the relationship between action units and

1 https://imotions.com/blog/facial-action-coding-system/.

https://imotions.com/blog/facial-action-coding-system/
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emotion, LIME was used to calculate and visualize the contribution of each AU
to the predicted emotion in our work. Each AU represents a facial behaviour gen-
erated with an anatomically distinct facial muscle group [10]. The combination
of AUs can produce most facial expressions, and the goal of facial AU recognition
is to detect AU and calculate AU intensity for each input face expression. Here
Openface was used in our work to detect and estimate the intensity of AUs from
input images, which is shown in Fig. 4.

Fig. 3. The illusration of AUs. Fig. 4. The input and output of
Openface.

Local Interpretable Model-agnostic Interpretation (LIME) aims to explain
any black-box model by creating a local approximation, which can approximate
the original model in the vicinity of an individual instance. It works on almost
any input format, such as text, tabular data, images or even graphs.

ξ(x) = argmin
g∈G

L (f, g, πx) + Ω(g) (3)

The idea behind LIME is quite intuitive. For instance, we know the properties
of input data point x in a tabular format. In this optimization formula above,
the complex model is denoted with f and the simple model or the local model is
denoted with g. In this simple model, small g comes from a set of interpretable
models which are denoted with a capital G, here capital G is a family of sparse
linear models, such as linear regression.

The first loss term L try to find an approximation of the complex model f
by the simple model g in the neighbourhood of our data point x. In other terms,
we want to get a good approximation in the local neighbourhoods. The third
argument π here defines the local neighbourhoods of that data point and is some
sort of proximity measure.

The second loss term Ω is used to regularize the complexity of our simple
surrogate model for linear regression. For instance, a desirable condition could
be to have many zero-weighted input features, so ignoring most of the features
and just including a few makes our explanations simpler for the decision tree.
It makes sense to have a relatively small depth that stays comprehensible for
humans. So overall, this Ω is a complexity measure, and as this optimization
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problem is a minimization problem, we are trying to minimize Ω. In summary,
this loss function says that we look for a simple model g.

To minimize those two-loss terms, it should approximate the complex model
in that local area and stay as simple as possible. In the first step, we simply
generate some new data points in the neighbourhood of our input data point.
More specifically, we randomly generate data points everywhere, but they will
be weighted according to the distance to our input data point. As we are just
interested in the local area around our input. These data points are generated by
perturbations. This can be achieved by sampling from a normal distribution with
the mean and standard deviation for each feature. Then we get the prediction
for these data points using our complex model f .

L (f, g, πx) =
∑

z,z′∈Z
πx(z) (f(z) − g (z′))2 (4)

We minimize the first loss term by getting the highest accuracy on that
new data set using a simple linear model for linear regression. For instance, we
minimize the sum of square distances between the predictions and the ground
truth. Then a loss function is used to optimize the linear model. It’s basically the
sum of squared distances between the label, which comes from the complex model
f and the prediction of the simple model g [9]. Additionally, the proximity π is
added to weight the loss, according to how close a data point is. Here exponential
kernel is used as a distance metric, so we can think of this like a heatmap. The
points that are close to our input data points are weighed the most. That is
how we ensure that the model is locally faithful. The second loss term Ω is used
to make sure that our model stays simple. In LIME, a sparse linear model is
used. In practice, this can be achieved by using a regularization technique. This
way we ensure to get a simple explanation with only a few relevant variables. In
summary, LIME fits a linear interpretable model in that local area, which is a
local approximation of a complex model.

4 Model Evaluation and Results

4.1 KDEF Datasets and Pre-processing

The Karolinska Directed Emotional Faces (KDEF) [11] dataset consists of 4900
facial expression photos with 70 individuals (half males and half females, ages
from 20 to 30). Each person imitates seven different facial emotions and, each
facial expression is recorded from five camera views. In this paper, we only use
the front face photos in our experiment as our robot mainly interacts with a
human user in a front view. Some examples are as shown in Fig. 5. That means
we used one-fifth of the dataset, 980 pictures in total, so each emotion subset
contains 140 front view images for each expression. The face images were rescaled
to a standard 224 * 224 pixels and three colour channels, to fit the input format
of the classification model. And we randomly split the front-face dataset into
the trainning part, validation part and testing part with a ratio of 700:140:140.
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Fig. 5. Sample of the KDEF dataset Fig. 6. Visual based explanation

4.2 Multimodal Explanation

In the affective HRI, the robot will not only recognize the human interactor
emotion but also provide the multimodal explainable feedbacks, including visual
feedback with explainable heatmap that illustrates emotion recognition contribu-
tion extracted from LRP model and verbal feedback with understandable robot
speech to explain the face AU activation for emotion recognition.

Based on the pre-trained VGG16 model in the visual explanation part, our
face emotion recognition model is further trained on an Nvidia RTX 2080Ti
graphic card. We set the batch size to 32 and used Adam as the optimization
algorithm, with the learning rate of 0.00001. After 250 epochs of training, the
model achieves a classification testing accuracy of 91.4% on the KDEF dataset.
The predicted result and model parameters were fed to LRP, and then the pixel
wize contribution was calculated and shown on the heatmap for an explanation.
For example, the comparison of the two heatmap images in Fig. 6 shows that the
robot uses similar feature pixels in two different faces. This means that when
VGG16 classifies the face as a ‘surprise’ emotion, the robot relies more on feature
pixes near the eyes, nostrils and lips to make its prediction, which is in line with
theories of human emotion perception and cognition [19].

In the verbal explanation part, we use Openface to extract the activation of
16 AUs used for emotion recognition with random forest. Finally, the AUs-based
explanation chart was generated by LIME, as shown in Fig. 7. The blue bar
indicates positive contribution while the orange bar indicates the negative con-
tribution of surprise prediction. According to the histogram, AU26 (Jaw Drop)
and AU05 (Upper Lid Raiser) make the biggest positive contribution to the pre-
diction. Then the blanks of the predefined text template were filled with the AU
names that make most significant contribution. Finally, Text-to-Speech (TTS)
generates voice explanations for robot speech.
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4.3 Test on Pepper Robot

In this work, we have tested our multimodel explanation methods on the Pepper
robot. During the experiments, a person interacts with the Pepper robot, who
can simultaneously recognise their facial expressions and verbalise the human
face emotion prediction as verbal feedback in HRI. The related speech is gen-
erated based on the emotion recognition results. For example, if the emotion
recognition result is happy, the explainable speech sentence will be As I noticed
your Cheek Raiser and Lip Corner Puller, I think you are happy. The speech
voice is synthesized through the Text-To-Speech (TTS) tool of the Naoqi SDK
of the Pepper robot. And based on the LRP model, the robot can extract the
heatmap images as the pixel-level explanation for the interactor. The original
face and the heatmap face are be shown in the Pepper chest screen as inter-
pretable visual feedback. Through verbal and visual feedback, this explainable
system has the benefit of supporting trustworthy human-robot interaction.

Fig. 7. An example of AUs-based explanation for surprise emotion

5 Conclusion and Future Work

Robotic systems may become more commonplace, but at the same time, more
complex. When robots fail to express their intentions, people will feel not only
discomfortable but also untrustworthy. It is necessary for people to know how
the robot recognize human emotion to assess when such systems can be trusted,
even if robots follow a reasonable decision-making process.

In conclusion, this paper integrates two explainable methods in emotion
recognition for trustworthy HRI. Using the explainable method LRP, the robot
can extract the facial heatmap that highlights significant parts of the facial
pixels most responsible for the emotion prediction task. The visualized atten-
tion heatmap and verbal feedback, can help the user understand the perceptual
mechanism the robot uses to recognise emotions. Thus the explainable method
provides essential insights into the natural features of the prediction model.

In this work, we just completed the essential human facial emotion recog-
nition with related explanation, but have not conducted much work on trust
validation with our explainable model in human-robot interaction scenes. As
for future work, more human-joined tests will be taken for trust evaluation to
explore the effectiveness of our multimodel explanation. And we will explore
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how we can use the feedback for human-in-the-loop robot learning to improve
the robot’s emotional perception ability in dynamic HRI scenes.
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