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Data Science and Knowledge Discovery 
Using Machine Learning Methods 

Oded Maimon, Lior Rokach, and Erez Shmueli 

1 Introduction 

Since the dawn of the big data age, accumulating and storing data has become 
more accessible and inexpensive. Data science is an emerging interdisciplinary 
field that combines methods, processes, technologies, and know-how from various 
fields, particularly statistics, data mining, machine learning, big data, and busi-
ness intelligence, to address data-driven problems. Data science usually involves 
discovering knowledge and actionable insights from data and then applying them 
to solve problems in various domains. /textit[Knowledge Discovery in Databases] 
(KDD) is another closely related term referring to automatic, exploratory analysis 
and modeling of large data repositories. The goal of KDD is to identify novel, useful, 
valid, and understandable patterns in large and complex data sets. Data mining 
(DM) is an integral part of the KDD process, involving algorithms that explore 
data, develop models, and uncover previously unknown patterns in order to make 
predictions and understand phenomena that are found in the data sets. 

Today’s accessibility and abundance of data make knowledge discovery and data 
science matters of considerable importance and necessity. Given the field’s recent 
growth, it is not surprising that researchers and practitioners now have a wide range 
of methods and tools at their disposal. 

While statistics is fundamental for data science, methods originated from artifi-
cial intelligence, particularly machine learning, are also playing a significant role. 
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Artificial intelligence (AI) is a scientific discipline that aims to create intelligent 
machines. Machine learning is a popular AI subfield that seeks to improve the 
performance of computer programs at a given task through experience rather 
than being explicitly programmed. Most machine learning techniques are based 
on inductive learning , where a model is constructed explicitly or implicitly by 
generalizing from a sufficient amount of training data. Machine learning methods 
are becoming increasingly popular in data science and data mining. 

This handbook is intended to organize all significant methods developed in the 
field into a coherent and unified catalog. It presents approaches and techniques 
for performance evaluation and shows the different techniques with examples 
and software tools. The target audiences of the handbook include students, data 
scientists, ML engineers, researchers, and practitioners. 

This introductory chapter aims to explain the KDD process and position machine 
learning within this process. Research and development challenges for the next gen-
eration of data science are also defined. The rationale, reasoning, and organization 
of the handbook are presented in this chapter for helping the reader to navigate the 
extremely rich and detailed content provided in this handbook. 

In this chapter, there are six sections: 1. The KDD process; 2. Taxonomy of data 
mining methods; 3. Data mining within the complete decision support system; 4. 
Data science and KDD research opportunities and challenges; 5. Recent trends in 
data science; 6. The organization of the handbook 

The unique recent aspects of data availability that promote the rapid development 
of data science are the electronic readiness of data (though of different types and 
reliability). In particular, the Internet and Intranet’s fast growth promotes data 
accessibility (as formatted or unformatted, voice or video, etc.). Methods developed 
before the Internet revolution considered smaller amounts of data with less vari-
ability in data types and reliability. Since the information age, the accumulation 
of data has become more accessible and less costly. It has been estimated that 
stored information doubles every twenty months. Unfortunately, as the amount 
of electronically stored information increases, the ability to understand and make 
use of it does not keep pace with its growth. Data mining is a term coined to 
describe the process of sifting through large databases for interesting patterns and 
relationships. Today’s studies aim at evidence-based modeling and analysis, as is 
the leading practice in healthcare, finance, cyber-security, and many other fields. 
Data availability increases exponentially, while the human processing level is almost 
constant. Thus, the potential gap rises exponentially. This gap is the opportunity for 
the data science field, which has become increasingly important and necessary. 

2 The KDD Process 

The knowledge discovery process (Fig. 1) is iterative and interactive, consisting of 
nine steps. Note that the process is iterative at each stage, meaning that moving back 
to adjust previous steps may be required. The process has many “artistic” aspects 
in the sense that one cannot present one formula or make a complete taxonomy
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Fig. 1 The process of knowledge discovery in databases 

for the right choices for each step and application type. Thus, it is required to 
deeply understand the process and the different needs and possibilities in each step. 
Taxonomy for the data science methods is helping in this process. It is presented in 
the next section. 

The process starts with determining the KDD goals and “ends” with the 
implementation of the discovered knowledge. As a result, changes would have to 
be made in the application domain (such as offering different features to mobile 
phone users to reduce churning). Such modification closes the loop, the effects are 
then measured on the new data repositories, and the KDD process is relaunched. 
Following is a brief description of the nine-step KDD process, starting with a 
managerial step: 

1. Developing an understanding of the application domain The people in charge 
of a KDD project need to understand and define the end-user goals and the 
environment in which the knowledge discovery process will take place (including 
relevant prior knowledge). As the KDD process proceeds, there may be a revision 
and tuning of this step. Having understood the KDD goals, the preprocessing of 
the data starts, as defined in the next three steps (note that some of the methods 
here are similar to data mining algorithms but are used in the preprocessing 
context). 

2. Selecting and creating a data set on which we will work. Having defined the 
goals, the data used for the knowledge discovery should be determined. This 
includes finding out what data are available, obtaining additional necessary 
data, and then integrating all the data for the knowledge discovery into one 
data set, including the attributes considered for the process. This process is 
essential because data mining learns and discovers from the available data. This



4 O. Maimon et al.

is the evidence base for constructing the models. If some crucial attributes are 
missing, then the entire study may fail. From the success of the process, it is 
good to consider as many as possible attributes at this stage. On the other hand, 
collecting, organizing, and operating complex data repositories are expensive, 
and there is a tradeoff with the opportunity to understand the phenomena best. 
This tradeoff represents an aspect where the interactive and iterative part of the 
KDD is taking place. It starts with the best available data set and later expands 
and observes the effect in terms of knowledge discovery and modeling. 

3. Preprocessing and cleansing. In this stage, data reliability is enhanced. It in-
cludes data clearing, such as handling missing values and removing noise or 
outliers. Several methods are explained in the handbook, from doing nothing 
to becoming the major part (in terms of time consumed) of a KDD process in 
specific projects. It may involve complex statistical methods or specific data 
mining algorithms in this context. For example, suppose one suspects that a 
particular attribute is not reliable enough or has too much missing data. In that 
case, this attribute could become the goal of a data mining supervised algorithm. 
A prediction model for this attribute will be developed, and then missing data 
can be predicted. The extent to which one pays attention to this level depends 
on many factors. Studying these aspects is essential and often reveals insights by 
itself regarding enterprise information systems. 

4. Data transformation. In this stage, the generation of better data for the data 
mining is prepared and developed. Methods here include dimension reduction 
(such as feature selection and extraction, and record sampling) and attribute 
transformation (such as discretization of numerical attributes and functional 
transformation). This step is often crucial for the success of the entire KDD 
project, but it is usually very project-specific. For example, in medical ex-
aminations, the quotient of attributes may often be the most important factor 
and not each one by itself. In marketing, we may need to consider effects 
beyond our control as well as efforts and temporal issues (such as studying 
the impact of advertising accumulation). However, even if we do not use the 
right transformation initially, we may obtain a surprising effect that hints to us 
about the transformation needed (in the next iteration). Thus the KDD process 
reflects upon itself and leads to an understanding of the necessary transformation 
(like a concise knowledge of an expert in a particular field regarding key leading 
indicators). Having completed the above four steps, the following four steps are 
related to the data mining part, where the focus is on the algorithmic aspects 
employed for each project. 

5. Choosing the appropriate data science task. We are now ready to decide on 
which type of data science task to perform, for example, classification, re-
gression, or clustering. This mostly depends on the KDD goals and also on 
the previous steps. There are two major tasks in data science: prediction and 
description. Prediction is often referred to as supervised machine learning 
and statistical regression analysis, while descriptive includes exploratory data 
analysis, statistical hypothesis testing, unsupervised machine learning, and 
visualization aspects. Many data science techniques are based on inductive
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learning, where a model is constructed explicitly or implicitly by generalizing 
from a sufficient number of training examples. The underlying assumption of the 
inductive approach is that the trained model applies to future cases. The strategy 
also considers the level of meta-learning for the particular set of available data. 

6. Choosing the algorithm. Having the strategy, we now decide on the tactics. 
This stage includes selecting the specific method for searching patterns (includ-
ing multiple inducers). For example, considering precision versus understand-
ability, the former is better with neural networks, while the latter is better with 
decision trees. 

7. Running the algorithm. Finally, the implementation of the algorithm is 
reached. In this step, we might need to run the algorithm several times until 
a satisfying result is obtained, for instance, by turning the algorithm’s control 
parameters, such as the minimum number of instances, in a single leaf of a 
decision tree. 

8. Evaluation. In this stage, we evaluate the predictive performance of the trained 
model and interpret the mined patterns (rules, reliability, etc.) with respect to 
the goals defined in the first step. Here we consider the preprocessing steps 
concerning their effect on the results (for example, adding features in Step 4 and 
repeating from there). This step focuses on the comprehensibility and usefulness 
of the induced model. In this step, the discovered knowledge is also documented 
for further usage. The last step is the usage and overall feedback on the patterns 
and discovery results obtained by the models. 

9. Using the discovered knowledge. We are now ready to incorporate the knowl-
edge into another system for further action. The knowledge becomes active 
because we may make changes to the system and measure the effects. The 
success of this step determines the effectiveness of the entire KDD process. There 
are many challenges in this step, such as losing the “laboratory conditions” under 
which we have operated. For instance, the knowledge was discovered from a 
certain static snapshot (usually sample) of the data, but now the data become 
dynamic. Data structures may change (certain attributes become unavailable), 
and the data domain may be modified (such as an attribute may have a value that 
was not assumed before). 

3 Taxonomy of Data Science Methods 

Depending on the main purpose, many methods are used in practice for data 
science. Taxonomy is called for to help understand the variety of methods, their 
interrelation, and grouping. It is useful to distinguish between two main types of 
data science: verification-oriented (the system verifies the user’s hypothesis) and 
discovery-oriented (the system finds new rules and patterns autonomously). Figure 2 
presents this taxonomy. 

Discovery methods are those that automatically identify patterns in the data. 
The discovery method branch consists of prediction methods versus description
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Fig. 2 Data science taxonomy 

methods. Descriptive methods are oriented to data interpretation, which focuses on 
understanding (by visualization, for example) the way the underlying data relate 
to its parts. Prediction-oriented methods aim to build automatically a behavioral 
model that obtains new and unseen samples and can predict the values of one or 
more variables related to the sample. It also develops patterns, which form the 
discovered knowledge in a way that is understandable and easy to operate upon. 
Some prediction-oriented methods can also help provide an understanding of the 
data. 

Recall that most of the discovery-oriented techniques (quantitative in particular) 
are based on inductive learning, where a model is constructed, explicitly or 
implicitly, by generalizing from a sufficient number of training examples. The 
underlying assumption of the inductive approach is that the trained model applies to 
future unseen examples. 

Verification methods, on the other hand, deal with the evaluation of a hypothesis 
proposed by an external source (like an expert, etc.). These methods include the 
most common methods of traditional statistics, such as the goodness-of-fit test, 
tests of hypotheses (e.g., t-test of means), and analysis of variance (ANOVA). 
These methods are less associated with data mining than their discovery-oriented 
counterparts because most data mining problems are concerned with discovering 
a hypothesis (out of a very large set of hypotheses), rather than testing a known 
one. Much of the focus of traditional statistical methods are on model estimation 
as opposed to one of the main objectives of data science: model identification 
and construction, which is evidence -based (though overlap occurs). There can be 
a security flaw, for example, an unauthorized user accessing an application or a 
specific feature that s/he is not supposed to access, or a malicious user attempting 
to do something in order to break the system. These kinds of flaws can not be
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acceptable. Unsupervised learning refers to modeling the distribution of instances 
in typical, high-dimensional input space. 

Unsupervised learning refers mostly to techniques that group instances without 
a prespecified, dependent attribute. Thus the term “unsupervised learning” covers 
only a portion of the description methods presented in Fig. 2. For instance, it covers 
clustering methods but not visualization methods. Supervised methods are methods 
that attempt to discover the relationship between input attributes (sometimes called 
independent variables) and a target attribute (sometimes referred to as a dependent 
variable). The association discovered is represented in a structure referred to as a 
model. Usually, models describe and explain phenomena, which are hidden in the 
data set and can be used for predicting the value of the target attribute, knowing 
the values of the input attributes. The supervised methods can be implemented 
on a variety of domains„ such as marketing, finance, and manufacturing. It is 
useful to distinguish between two main supervised models: classification models 
and regression models. The latter map the input space into a real-valued domain. 
For instance, a regressor can predict the demand for a certain product given its 
characteristics. On the other hand, classifiers map the input space into predefined 
classes. For example, classifiers can be used to classify mortgage consumers as 
good (fully payback the mortgage on time) and bad (delayed payback), or as many 
target classes as needed. There are many alternatives to represent classifiers. Typical 
examples include support vector machines, decision trees, probabilistic summaries, 
or algebraic functions. 

4 Data Science Within the Complete Decision Support 
System 

Data science methods are becoming part of integrated information technology (IT) 
software packages. Figure 3 illustrates the three tiers of the decision support aspect 
of IT. Starting from the data sources (such as operational databases, semi- and non-
structured data and reports, Internet sites, etc.), the first tier is the data warehouse, 
followed by OLAP (On-Line Analytical Processing) servers and concluding with 
analysis tools, where data science tools are the most advanced. 

The main advantage of the integrated approach is that the preprocessing steps are 
much easier and more convenient. Since this part is often the major burden for the 
KDD process (and can consume most of the KDD project time), this industry trend 
is very important for expanding the use and utilization of data mining. However, the 
risk of the integrated IT approach comes from the fact that DM techniques are much 
more complex and intricate than OLAP, for example, so the users need to be trained 
appropriately. 

This handbook shows the variety of strategies, techniques, and evaluation 
measurements. We can naively distinguish among three levels of analysis. The 
simplest one is achieved by report generators (for example, presenting all claims that
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Fig. 3 The IT decision support tiers 

occurred because of a specific cause last year, such as car theft). We then proceed to 
OLAP multi-level analysis (for example, presenting the ten towns where there was 
the highest increase of vehicle theft in the last month compared to the month before). 
Finally, a complex analysis is carried out in discovering the patterns that predict car 
thefts in these cities and what might occur if anti -theft devices were installed. The 
latter is based on mathematical modeling of the phenomena, where the first two 
levels are ways of data aggregation and fast manipulation. This handbook mainly 
focuses on the third level of analysis. 

5 KDD and Data Science Research Opportunities and 
Challenges 

An empirical comparison of the performance of different approaches and their 
variants in a wide range of application domains has shown that each performs best in 
some, but not all, domains. This phenomenon is known as the selective superiority 
problem, which means, in our case, that no induction algorithm can be the best 
in all possible domains. The reason is that each algorithm contains an explicit or 
implicit bias that leads it to prefer certain generalizations over others, and it will 
be successful only as long as this bias matches the characteristics of the application 
domain. Results have demonstrated the existence and correctness of this “no free 
lunch theorem.” If one inducer is better than another in some domains, then there 
are necessarily other domains in which this relationship is reversed. This implies in 
KDD that a certain approach can yield more knowledge from the same data for a 
given problem than other approaches. 

In many application domains, the generalization error (on the overall domain, 
not just the one spanned in the given data set) of even the best methods is far above
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the training set, and the question of whether it can be improved, and if so how, is 
an open and important one. Part of the answer to this question is to determine the 
minimum error achievable by any classifier in the application domain (known as the 
optimal Bayes error). If existing classifiers do not reach this level, new approaches 
are needed. Although this problem has received considerable attention, no generally 
reliable method has so far been demonstrated. This is one of the challenges of data 
science research—not only to solve it, but even to quantify and understand it better. 
Heuristic methods can then be compared absolutely and not just against each other. 

A subset of this generalized study is the question of which inducer to use for 
a given problem. To be even more specific, the performance measure needs to be 
defined appropriately for each problem. Though there are some commonly accepted 
measures, it is not enough. For example, if the analyst is looking for accuracy 
only, one solution is to try each one in turn, and by estimating the generalization 
error, choose the one that appears to perform best. Another approach, known as 
multi-strategy learning, attempts to combine two or more different paradigms in a 
single algorithm. The dilemma of which method to choose becomes even greater if 
other factors, such as comprehensibility, are taken into consideration. For instance, 
neural networks may outperform decision trees in accuracy for a specific domain; 
however, from the comprehensibility aspect, decision trees are considered superior. 
In other words, even if the researcher knows that neural network is more accurate, 
the dilemma of what methods to use still exists (or maybe to combine techniques 
for their different strengths). 

Induction is one of the central problems in many disciplines, such as machine 
learning, pattern recognition, and statistics. However , the feature that distinguishes 
data science from statistics is its scalability to very large sets of varied types of input 
data. Scalability means working in an environment of a high number of records, high 
dimensionality, and an increased number of classes or heterogeneousness. Neverthe-
less, trying to discover knowledge in real life and large databases introduces time 
and memory problems. As large databases have become the norm in many fields 
(including astronomy, molecular biology, finance, marketing, health care, and many 
others), the use of data science to discover patterns in them has become potentially 
very beneficial for the enterprise. Many companies are staking a large part of their 
future on these “data science” applications and turn to the research community for 
solutions to the fundamental problems they encounter. While a very large amount 
of available data used to be the dream of any data analyst, nowadays the synonym 
for “very large” has become “terabyte” or “petabyte,” a barely imaginable volume 
of information. 

Information-intensive organizations (like telecom companies and financial in-
stitutions) are expected to accumulate several terabytes of raw data every one to 
two years. The high dimensionality of the input (that is, the number of attributes) 
increases the size of the search space in an exponential manner (known as the “Curse 
of Dimensionality”) and thus increases the chance that the inducer will find spurious 
classifiers that in general are not valid. There are several approaches for dealing 
with a high number of records including: sampling methods, aggregation, massively 
parallel processing, and efficient storage methods.
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6 KDD and DM Trends 

This handbook covers the current state-of-the-art status of data science. The field is 
still evolving in a sense that some new methods are still being developed. The art 
expands, but so does the understanding and the automation of the nine steps and 
their interrelation. For this to happen, we need better characterization of the KDD 
problem spectrum and definition. The terms KDD and data science are not well-
defined in terms of what methods they contain, what types of problems are best 
solved by these methods, and what results to expect. How are KDD. \data science 
compared to statistics, machine learning, etc.? If subset or superset of the above 
fields? Or an extension. \adaptation of them? In addition to the methods—which are 
the most promising fields of application and what is the vision KDD. \data science 
brings to these fields? Certainly, we already see the great results and achievements 
of data science, but we cannot estimate their results concerning the potential of this 
field. All these basic analyses have to be studied, and we see several trends for future 
research and implementation, including: 

• Active data science—closing the loop, as in control theory, where changes to 
the system are made according to the KDD results, and the whole cycle starts 
again. Stability and controllability, which will be significantly different in these 
systems, need to be well-defined. 

• Full taxonomy—for all the nine steps of the KDD process. We have shown a 
taxonomy for the primary step, but taxonomy is needed for each nine steps. 
Such a taxonomy will contain methods appropriate for each step (even the first 
one) and for the whole process as well. 

• Benefit analysis—to understand the effect of the potential data science models 
on the enterprise. 

• Problem characteristics—analysis of the problem itself for suitability to the 
KDD process. 

• Mining complex objects of arbitrary type—Expanding data science inference 
to include mixed data types such as pictures, text, voice, video, audio, etc. 
Multimodal deep learning algorithms that were developed in the last five years 
are a step forward in addressing this challenge. 

• Temporal aspects—many data mining methods assume that discovered patterns 
are static. However, in practice, patterns in the database evolve over time. This 
poses two important challenges. The first challenge is to detect when concept 
drift occurs. The second challenge is to keep the patterns up-to-date without 
inducing the patterns from scratch. 

• Distributed DataMining—The ability to seamlessly and effectively employ data 
science methods on databases located in various sites or the cloud. This problem 
is especially challenging when the data structures are heterogeneous rather than 
homogeneous. 

• Expanding data science reasoning to include models that address not just data 
that look similar to the training data, but also out-of-distribution data.
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7 The Organization of the Handbook 

This handbook is organized into eight parts described in the following sub-sections. 
Starting from Chap. “Handling Missing Attribute Values” through to the end of part 
six, the book presents a comprehensive but concise description of different methods 
used throughout the KDD process. Each part describes the classic techniques as well 
as the extensions and novel methods developed recently. Along with the algorithmic 
description of each technique, the reader is provided with an explanation of the 
circumstances in which this method is applicable and the consequences and the 
tradeoffs of using the method, including references for further readings. Part seven 
presents domain-specific applications. The last part discusses human factors and 
social issues that should be considered while doing data science. 

7.1 Data Preparation Methods 

The first part deals with data preparation. This covers the preprocessing methods 
(Steps 3, 4 of the KDD process). Chapter “Handling Missing Attribute Values” 
presents various methods for handling missing values. These methods are catego-
rized into two main types: sequential and parallel. In sequential methods, missing 
attribute values are replaced by known values first, as a preprocessing, and then 
the knowledge is acquired for a data set with all known attribute values. In parallel 
methods, there is no preprocessing, i.e., knowledge is acquired directly from the 
original data sets. 

Automated data integration, specifically, ETL (Extract-Transform-Load), is one 
of the most important step in building a data warehouse (DWH). In Chap. “Data 
Integration Process Automation using Machine Learning: Issues and Solution”, the 
solution approach of the automated ETL process is explained. It also describes 
how machine learning can be leveraged in the ETL process so that the quality and 
availability of data not ever have been compromised. 

7.2 Supervised Learning 

The classic supervised methods are presented in the second part (not including 
deep learning that will be discussed separately in part 4). Chapter “Rule Induction” 
discuses rule induction. It begins with a brief discussion of some problems 
associated with input data. Then, four representative rule induction algorithms are 
presented: LEM,1, LEM2, MLEM2, and AQ. Finally, some more advanced methods 
are listed. 

One of the first non-parametric supervised learning methods developed was 
nearest neighbors. Although these methods are considered simple, they remain
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competitive in some cases against state-of-the-art techniques. Chapter “Nearest-
Neighbor Methods: A Modern Perspective” aims at providing an overview of 
various modern approaches to learning with nearest neighbors in general metric 
spaces. Kontorovich and Kpotufe provide the necessary background and then 
proceed to cover classification and regression. The techniques are described with 
sufficient detail and literature references to provide practical insights into how 
various configuration and preprocessing choices, such as the metric, the number 
of neighbors, data subsampling, and compression, influence learning and computa-
tional performance. 

Support vector machines (SVMs) are methods for supervised learning, applicable 
to both classification and regression tasks. For example, an SVM classifier creates 
a maximum-margin hyperplane in transformed input space and splits the example 
classes while maximizing the distance to the nearest cleanly split samples. The 
parameters of the solution hyperplane are derived from a quadratic programming 
optimization problem. Chapter “Support Vector Machines” focuses on the formula-
tion of SVM models and discusses some key concepts. 

A common belief in the machine learning (ML) community is that while super-
vised learning methods such as decision trees, neural networks (NNs), and SVM 
methods are the ultimate tools for highly accurate classification, graphical mod-
els, and in particular Bayesian networks (BNs), are only appropriate in knowledge 
representation. Chapter “Empowering Interpretable, Explainable Machine Learning 
Using Bayesian Network Classifiers” challenges the belief that the unsupervised 
graphical model is inferior to the supervised classifier and provides evidence to the 
contrary. Moreover, it manifests how their capability in knowledge representation 
allows graphical models to promote interpretability and explainability that are not 
natural to conventional ML classifiers. 

Chapter “Soft Decision Trees” introduces the foundation of a new theory for 
decision- trees-based models. It utilizes the notion of soft numbers, which combines 
real processes and cognitive ones in the same framework. Moreover, soft numbers 
offer a new way to deal with uncertainty by incorporating soft numbers into proba-
bility theory. 

Chapter “Quality Assessment and Evaluation Criteria in Supervised Learning” 
reviews commonly used predictive performance measures of supervised learning 
algorithms and discusses their properties. The author presents conceptual tools and 
provides essential guidelines for quality assessment of fully trained models, particu-
larly classifiers and regression models. Finally, algorithm design considerations are 
discussed to optimize the desired evaluation criteria. 

7.3 Unsupervised Learning Methods 

The third part of the handbook is dedicated to unsupervised methods. Chapter “Tra-
jectory Clustering Analysis” discusses the notion of trajectory clustering analysis. 
Specifically, the authors present a general framework, termed atomic-representation
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based subspace clustering (ARSC) for the clustering of trajectory data. ARSC is a 
subspace clustering framework by first computing the atomic representations of data 
points and then clustering them using the representations. 

Chapter “Clustering High-Dimensional Data” focuses on clustering algorithms 
that have been adapted or designed explicitly for high-dimensional data. In such 
cases, many attributes might be just noise such that patterns can be identified only 
in appropriate combinations of attributes and would be obfuscated by noise other-
wise. An overview of the basic strategies and techniques used for these specialized 
algorithms is provided in this chapter, along with examples of how they can be 
implemented. 

Chapter “Fuzzy C-Means Clustering: Advances and Challenges (Part II)” presents 
the popular fuzzy C-means (FCM) algorithm followed by a profound discussion of 
its challenges and recent development, such as improving the optimality condition 
of cluster fuzziness or efficiently choosing the optimal cluster center. Toward the end 
of this chapter, a factual analysis has been presented on the applications of FCM in 
various research domains with their growth. 

Data streams are data that continuously arrive over long periods. This precludes 
the use of conventional methods based on storing the data for later use. Chap-
ter “Clustering in Streams” provides an overview of stream clustering algorithms 
and their applications to various types of domains. Stream clustering is very com-
mon in the online setting because it is often used as a subroutine for other data 
mining problems. For example, stream clustering is often used to enable methods 
for classification and anomaly detection. 

7.4 Deep Learning 

The fourth part discusses the deep learning methods. Deep learning is a type of 
machine learning that utilizes artificial neural networks with representation learning 
that consists of multiple layers between the input and output layers. Deep learning 
(DL) has made a significant impact on data science in the last decade. Chapter “In-
troduction to Deep Learning” introduces the basic concepts of this field. It includes 
the fundamental structures used to design deep neural networks and a brief survey 
of some of its widespread use cases. 

Graph embedding aims to represent graphs in a low-dimensional space by cap-
turing various properties of the graphs. Graph embedding is essential for various 
tasks, including graphs’ similarities, time-series trends analysis, and anomaly de-
tection, graph visualization, graph classification, and clustering. Chapter “Graph 
Embedding” presents three categories of embedding problems: (i) static graphs, (ii) 
dynamic graphs, and (iii) attributed graphs. The chapter discusses all the state-of-
the-art methods along with their applications. 

An autoencoder is a specific type of neural network, which is mainly designed to 
encode the input into a compressed and meaningful representation and then decode 
it back such that the reconstructed input is similar as possible to the original one.
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Chapter “Autoencoders” presents the different types of autoencoders that are mainly 
used today. It also describes various applications and use cases of autoencoders. 

Generative adversarial networks (GANs) aim at generating new high-quality data 
that have the same properties as the training set. Chapter “Generative Adversarial 
Networks” provides an introduction to GANs by discussing their principle mecha-
nism and presenting some of their inherent problems during training and evaluation. 
In this chapter, Gilad Cohen and Raja Giryes focus on these three issues: (1) mode 
collapse, (2) vanishing gradients, and (3) generation of low-quality images. They 
then list some architecture-variant and loss-variant GANs that remedy the above 
challenges. Lastly, they present two utilization examples of GANs for real-world 
applications: data augmentation and face images generation. 

7.5 Methods for Special Data Setting 

Having established the foundation, we now proceed with methods developed for 
specific data settings. Spatial data science is a multidisciplinary field that focuses 
on the unique characteristics of spatial data. Chapter “Spatial Data Science” dis-
cusses spatial data science and describes its life cycle: data acquisition, data storage, 
data mining, result validation, and domain interpretation. Spatial data science is 
important for societal applications in public health, public safety, agriculture, envi-
ronmental science, climate, etc. The challenges of spatial data science are brought 
about by its interdisciplinary nature and the unique properties of spatial data, such 
as spatial autocorrelation and spatial heterogeneity. 

Multimedia data learning is an emerging, multidisciplinary, and interdisciplinary 
research area with a broad spectrum of real-world applications. The research in 
this field focuses on the synergistic applications of knowledge discovery theories 
and techniques in a multimedia collection. Chapter “Multimedia Data Learning” 
introduces the fundamental concepts and theories of this area and provides further 
references. 

The World Wide Web (WWW) allows users and organizations to publish in-
formation and documents instantly available for all other users of the Web. The 
data published on the Web continuously increase, providing the users with a vast 
amount of information on any topic imaginable. However, navigating the Web and 
identifying the relevant pieces of information in the abundance of data are not 
trivial. Web mining approaches that analyze the Web data and the Web structure are 
designed to address these challenges. Chapter “Web Mining” aims at providing a 
summary of Web mining approaches, including Web content mining, Web structure 
mining, Web usage mining, and semantic Web mining. 

Temporal data refer to data where time and changes over time are crucial for 
its analysis. They are typically defined by data elements collected repeatedly over 
time about the object of interest (e.g., a car). Chapter “Mining Temporal Data” 
presents the various types of temporal data and the various relevant analysis meth-
ods: starting with fixed frequency variables, forecasting and time-series methods,
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and proceeding with sequential data, sequential patterns mining, and time intervals 
mining for events having various time duration. Moreover, various deep-learning-
based architectures for temporal data are discussed. 

7.6 Methods for Special Learning Tasks 

The sixth part covers advanced learning tasks. Cloud data mining introduces the 
concept of performing data mining and analytics of big data in the cloud. Chap-
ter “Cloud Big Data Mining and Analytics: Bringing Greenness and Acceleration in 
the Cloud” presents four technologies for the acceleration of computing and analysis 
of data mining tasks in the cloud: graphics processing units (GPU), approximate 
computing, quantum computing, and neural processing units. 

Chapter “Multi-label Ranking: Mining Multi-label and Label Ranking Data” 
focuses on multi-label ranking tasks, specifically multi-label classification and label 
ranking classification. The chapter presents the recent developments, focusing on 
state-of-the-art methods in deep learning multi-label mining, extreme multi-label 
classification, and label ranking. 

Reinforcement learning (RL) is a distinct field of machine learning, in which an 
agent can act, i.e., influence the environment it exists in, and receive rewards (scalar 
values). It is distinct from supervised learning in that the true output is unknown and 
from unsupervised learning in that feedback is received from the environment, i.e., 
the reward. Chapter “Reinforcement Learning for Data Science” aims to introduce 
the reader to the basic principles, formulations, and algorithms of reinforcement 
learning (Sect. 2) and give an example of its use in data science (Sect. 3) and explore 
the state-of-the-art approaches to deep reinforcement learning (Sect. 4). 

Adversarial machine learning studies the behavior of machine learning models in 
the presence of an adversary. Its focus is understanding the susceptibility of machine 
learning algorithms to specially crafted inputs, referred to as adversarial examples or 
adversarial perturbations. Chapter “Adversarial Machine Learning” follows the evo-
lution of adversarial machine learning research in recent years, through the lens of 
the literature. Ziv Katzir and Yuval Elovici begin by reviewing early work on attack 
and defense methods and move on to studies that show how adversarial attacks can 
be applied in the real world. Then they list the major outstanding research questions 
and conclude with research that addresses the domain’s key open question: What 
makes adversarial examples so difficult to defend against? 

As indicated in Chap. “Introduction to Deep Learning”, deep learning has be-
come a prevalent method for text classification in recent years, due to its ability 
to improve the accuracy of previous state-of-the-art methods. However, these im-
provements required hundreds of thousands to millions of labeled training exam-
ples, which in many cases can be very time-consuming and expensive to acquire. 
This problem is especially significant in domain-specific text classification tasks 
where pre-trained embeddings and models are not optimal. In Chap. “Ensembelled 
Transferred Embeddings”, the ensembled transferred embeddings (ETE) method is
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proposed. ETE relies on two ideas: (1) labeling a relatively small sample of the target 
data set, in a semi-automatic process, and (2) leveraging other data sets from related 
domains or related tasks that are large scale and labeled, to extract “transferable 
embeddings.” 

7.7 Domain-Specific Applications 

With all the methods described so far, the next section, the seventh, is concerned 
with data science applications in various domains such as Healthcare and e-commerce. 

Clinical databases collect large volumes of information. Relationships and pat-
terns within these data could provide new medical knowledge. Data mining has as 
significant objective the discovery of knowledge from large amounts of data and 
offers many possibilities for identifying different data features less visible or hidden 
to common analysis techniques. Chapter “Data Mining in Medicine” presents a 
selection of techniques and illustrates their applicability to medical diagnostic and 
prognostic problems. 

Recommender systems are software tools and techniques providing suggestions 
for items to be of use to a user. The suggestions provided by a recommender system 
aim to support their users in various decision-making processes, such as what items 
to buy, what music to listen to, or what news to read. A personalized recommenda-
tion can reduce customers’ effort in finding items they are interested in and serve 
as valuable means for online users to cope with information overload. This is why 
recommender systems have achieved widespread success in real-life applications. 
Chapter “Recommender Systems” introduces the fundamentals and advances of 
recommender systems, including presentation of the widely used techniques, ap-
plications, and evaluation methods of recommender systems. 

In ubiquitous computing, it is critical to infer human behaviors and activities, 
which can then be used as information by downstream tasks. Chapter “Activity 
Recognition” is dedicated to human activity recognition (HAR). First, the chapter 
briefly introduces the basics of HAR and its applications in ubiquitous computing. 
Then, it introduces the main procedures of HAR, followed by more detailed compo-
nents: data preprocessing and feature engineering, model building, and evaluations. 
Finally, the authors present some grand challenges in HAR that could be improved 
in the future. 

Fake news is a long-lasting problem that has drawn significant attention in recent 
years. There is a growing need for tools and methods to control the spread of 
misinformation through online social media. Machine learning methods have been 
utilized to pinpoint linguistic patterns, influential accounts, or spreading dynamics 
associated with misinformation. In Chap. “Social Network Analysis for Disinfor-
mation Detection”, Elyashar et al. present an automated process for training fake 
news classifiers based on multiple families of features extracted from social media. 
In addition to the high accuracy of the trained machine learning classifiers, their
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results show that online social media users are aware of deceptive content and can 
often provide reliable feedback to detect fake news. 

A closely related challenge to fake news is propaganda dissemination. The Inter-
net has provided new and effective ways of propaganda dissemination such as social 
network platforms and online forums. Accurate and timely detection of propaganda 
content remains a highly challenging task. Chapter “Online Propaganda Detection” 
focuses on automated methods and systems for online propaganda detection. In this 
chapter, the difficulties of developing such systems and the potential contributions 
of machine learning are explained. 

Chapter “Interpretable Machine Learning for Financial Applications” focuses on 
machine learning (ML) for financial applications including interpretable relational 
methods. It presents financial tasks, methodologies, and techniques in this area. 
In particular, it surveys main methods, including time dependence, data selection, 
forecast horizon, measures of success, quality of patterns, hypothesis evaluation, and 
attribute-based and interpretable relational methodologies. The second part of the 
chapter covers the use of ML in portfolio management, the design of interpretable 
trading rules, and discovering money-laundering schemes using the machine learn-
ing methodology. 

Predictive analytics (PA) models are assuming an increasing role in big data 
for making decisions in many industries such as marketing, banking, insurance, 
telecommunication, healthcare, and cyber. While regression models were initially 
developed to explain phenomena, find relationships between variables, and draw 
conclusions, in prediction models, the main objective is to build models that are 
general enough to apply for predicting unseen data, even at the expense of giving 
up some model accuracy. Therefore, models with good explanation power are not 
necessarily models with good prediction power and vice versa. In Chap. “Predictive 
Analytics for Targeting Decisions”, Zahavi discusses the differences between ex-
planation and prediction models, proposes several principles for building good pre-
dictive models, and presents several performance measures for assessing the quality 
of the prediction results in classification problems using logistic regression. Zahavi 
concludes by discussing the deployment process of the model results for decision-
making and by briefly reviewing the non-parametric decision tree approach for 
building PA model. 

Geoscience phenomena (e.g., earthquakes) are often studied using data-driven 
models, which are based on various types of data that are monitored and sensed 
using sophisticated equipment. Chapter “Machine Learning for the Geosciences” 
provides a review on data-driven problems in geoscience, with a particular focus 
on the subfield of seismology. Given the large amounts of gathered data, machine 
learning techniques can be used to advance research challenges and promote social 
benefits such as hazard predictions and the preservation of natural resources. In 
seismology, machine learning methods have been used since the nineties for seismic 
event detection, localization, and classification. More recently, deep learning archi-
tectures have been applied for modeling larger amounts of seismic data to provide 
fast and accurate event detection and classification solutions incorporated into real-
time analysis systems. Rabin and Bregman review the noticeable research trends and
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developments in the field and discuss advantages, drawbacks, and future possible 
research directions. 

Chapter “Sentiment Analysis for Social Text” focuses on sentiment analysis, 
the computational detection, and study of opinions and viewpoints underlying a 
text span. In social text settings: short, informal, and noisy text spans. The chapter 
presents an ontology of the field and explores the relevant tasks for social data: 
lexical-, aspect-, and sentence-level sentiment analysis along with their methods, 
applications, and resources. 

Organizational data mining (ODM) is defined as leveraging data mining (DM) 
tools and technologies to enhance the organizational decision-making process by 
transforming data into valuable and actionable knowledge to gain a strategic com-
petitive advantage. Chapter “Human Resources Based Organizational Data Mining 
(HRODM): Themes, Trends, Focus, Future” presents a literature review of human-
resources-based organizational data mining (HRODM). Moreover, this chapter dis-
cusses practical implementation tools to assist decision-makers concerning whether 
and in which format to implement HRODM. A framework is presented that ag-
gregates the findings and clarifies how various HRODM tools influence return on 
investment (ROI) and how these relationships can be explained. 

7.8 Human Factors and Social Issues 

The last and final part of this handbook deals with human factors and social issues 
that should be considered while doing data science. Machine learning models are 
controlling an increasing number of decisions regarding the daily lives of human 
beings. Since they now touch on many aspects of our lives, it is crucial to develop 
ML algorithms that are not only accurate but also objective and fair. Chapter “Algo-
rithmic Fairness” begins by discussing the causes of algorithmic bias and unfairness 
and the common definitions and measures for fairness. Fairness-enhancing mecha-
nisms are then reviewed and divided into preprocess, in-process, and post-process 
mechanisms. A comprehensive comparison of the mechanisms is then conducted 
toward a better understanding of which mechanisms should be used in different 
scenarios. Finally, Chap. “Algorithmic Fairness” describes the most commonly used 
fairness-related data sets in this field. 

Privacy has become one of the most significant concerns in the digital era, mainly 
due to the information disclosure enabled by data mining. Privacy- preserving data 
mining (PPDM) is a collection of methodologies aimed to minimize and control the 
amount of private information disclosure in data mining processes. Chapter “Privacy-
Preserving DataMining (PPDM)” presents the various approaches to achieve PPDM: 
anonymization, randomization, cryptography, and privatizing results as well as var-
ious common methodologies and techniques used to implement these approaches. 

The visual exploration of multidimensional data for knowledge discovery is a 
long-standing challenge due to the possible loss of information. Chapter “Explain-
able Machine Learning and Visual Knowledge Discovery” explains the differences
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between analytical and visual ML methods and approaches, showing the bene-
fits of visual methods for ML. Next, several methods to visualize ML models are 
presented, including input-based and structure-based methods accompanied by ex-
amples. A major part of the chapter is devoted to the approaches and the theory, to 
discover interpretable analytical ML models aided by visual methods. 

The rapidly developing AI systems and applications still require human involve-
ment in practically all parts of the analytics process. Human decisions are primarily 
based on visualizations, providing data scientists with details of data properties 
and the results of analytical procedures. Chapter “Visual Analytics and Human 
Involvement in Machine Learning” describes the seven steps in the ML process and 
reviews different visualization techniques that are relevant for the different steps for 
different types of data, models, and purposes. 

Explainable artificial intelligence (XAI) or interpretable machine learning (IML) 
methods aim to produce more explainable models while maintaining a high level 
of output accuracy. It lets users better understand, trust, and manage the emerg-
ing generation of artificially intelligent systems. Chapter “Explainable Artificial 
Intelligence (XAI): Motivation, Terminology and Taxonomy” presents various XAI-
related concepts of explainability, interpretability, and accuracy, followed by a tax-
onomy of XAI methods.



Handling Missing Attribute Values

Jerzy W. Grzymala-Busse and Witold J. Grzymala-Busse

1 Introduction

We assume that input data for data mining are presented in a form of a decision table
(or data set) in which cases (or records) are described by attributes (independent
variables) and a decision (dependent variable). A very simple example of such a
table is presented in Table 1, with the attributes Temperature, Headache, and Nausea
and with the decision Flu. However, many real-life data sets are incomplete, i.e.,
some attribute values are missing. In Table 1, missing attribute values are denoted
by “?”s.

The set of all cases with the same decision value is called a concept. For Table 1,
case set {1, 2, 4, 8} is a concept of all cases such that the value of Flu is yes.

There is a variety of reasons why data sets are affected by missing attribute
values. Some attribute values are not recorded because they are irrelevant. For
example, a doctor was able to diagnose a patient without some medical tests, or
a home owner was asked to evaluate the quality of air conditioning, while the home
was not equipped with an air conditioner. Such missing attribute values will be
called “do not care” conditions.

Another reason for missing attribute values is that the attribute value was not
placed into the table because it was forgotten or it was placed into the table but later
on was mistakenly erased. Sometimes a respondent refuses to answer a question.
Such a value, which matters but that is missing, will be called lost.
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Table 1 An example of a
data set with missing attribute
values

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes

2 very_high yes yes yes

3 ? no no no

4 high yes yes yes

5 high ? yes no

6 normal yes no no

7 normal no yes no

8 ? yes ? yes

The problem of missing attribute values is as important for data mining as it is
for statistical reasoning. In both disciplines, there are methods to deal with missing
attribute values. Some theoretical properties of data sets with missing attribute
values were studied in [28, 36, 37].

In general, methods to handle missing attribute values belong either to sequential
methods (called also preprocessing methods) or to parallel methods (methods in
which missing attribute values are taken into account during the main process of
acquiring knowledge).

Sequential methods include techniques based on deleting cases with missing
attribute values, replacing a missing attribute value by the most common value of
that attribute, assigning all possible values to the missing attribute value, replacing a
missing attribute value by the mean for numerical attributes, assigning to a missing
attribute value the corresponding value taken from the closest fit case, or replacing
a missing attribute value by a new value, computed from a new data set, considering
the original attribute as a decision.

The second group of methods to handle missing attribute values, in which
missing attribute values are taken into account during the main process of acquiring
knowledge, is represented, for example, by a modification of the LEM2 (Learning
from Examples Module, version 2) rule induction algorithm in which rules are
induced from the original data set, with missing attribute values considered to be
“do not care” conditions or lost values. C4.5 [43] approach to missing attribute
values is another example of a method from this group. C4.5 induces a decision tree
during tree generation, splitting cases with missing attribute values into fractions
and adding these fractions to new case subsets. A method of surrogate splits to
handle missing attribute values was introduced in CART [3], yet another system
to induce decision trees. Other methods of handling missing attribute values while
generating decision trees were presented in [2, 4].

In statistics, pairwise deletion [1, 38, 39] is used to evaluate statistical parameters
from available information.

In this chapter, we assume that the main process is rule induction. Additionally,
for the rest of the chapter, we will assume that all decision values are known, i.e.,
specified. Also, we will assume that for each case at least one attribute value is
known.
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2 Sequential Methods

In sequential methods to handle missing attribute values, original incomplete data
sets, with missing attribute values, are converted into complete data sets, and then
the main process, e.g., rule induction, is conducted.

2.1 Deleting Cases with Missing Attribute Values

This method is based on ignoring cases with missing attribute values. It is also called
listwise deletion (or casewise deletion, or complete case analysis) in statistics. All
cases with missing attribute values are deleted from the data set. For the example
presented in Table 1, a new table, presented in Table 2, is created as a result of this
method.

Obviously, a lot of information is missing in Table 2. However, there are some
reasons [1, 38] to consider it a feasible method.

2.2 The Most Common Value of an Attribute

In this method, one of the simplest methods to handle missing attribute values, such
values are replaced by the most common value of the attribute. In different words,
a missing attribute value is replaced by the most probable known attribute value,
where such probabilities are represented by relative frequencies of corresponding
attribute values. This method of handling missing attribute values is implemented,
e.g., in CN2 [6]. In our example from Table 1, a result of using this method is
presented in Table 3.

For case 1, the value of Headache in Table 3 is yes since in Table 1 the attribute
Headache has four values yes and two values no. Similarly, for case 3, the value
of Temperature in Table 3 is high since the attribute Temperature has the value
very_high once, normal twice, and high three times.

Table 2 Data set with
deleted cases with missing
attribute values

Attributes Decision

Case Temperature Headache Nausea Flu

1 very_high yes yes yes

2 high yes yes yes

3 normal yes no no

4 normal no yes no
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Table 3 Data set with
missing attribute values
replaced by the most common
values

Attributes Decision

Case Temperature Headache Nausea Flu

1 high yes no yes

2 very_high yes yes yes

3 high no no no

4 high yes yes yes

5 high yes yes no

6 normal yes no no

7 normal no yes no

8 high yes yes yes

Table 4 Data set with
missing attribute values
replaced by the most common
value of the attribute
restricted to a concept

Attributes Decision

Case Temperature Headache Nausea Flu

1 high yes no yes

2 very_high yes yes yes

3 normal no no no

4 high yes yes yes

5 high no yes no

6 normal yes no no

7 normal no yes no

8 high yes yes yes

2.3 The Most Common Value of an Attribute Restricted to a
Concept

A modification of the method of replacing missing attribute values by the most
common value is a method in which the most common value of the attribute
restricted to the concept is used instead of the most common value for all cases.
Such a concept is the same concept that contains the case with missing attribute
value.

Let us say that attribute a has missing attribute value for case x from concept C

and that the value of a for x is missing. This missing attribute value is exchanged
by the known attribute value for which the conditional probability of a for case x

given C is the largest. This method was implemented, e.g., in ASSISTANT [43]. In
our example from Table 1, a result of using this method is presented in Table 4.

For example, in Table 1, case 1 belongs to the concept {1, 2, 4, 8}, all known
values of Headache, restricted to {1, 2, 4, 8}, are yes, so the missing attribute value
is replaced by yes. On the other hand, in Table 1, case 3 belongs to the concept {3, 5,
6, 7}, and the value of Temperature is missing. The known values of Temperature,
restricted to {3, 5, 6, 7}, are: high (once) and normal (twice), so the missing attribute
value is exchanged by normal.
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2.4 Assigning All Possible Attribute Values to a Missing
Attribute Value

This approach to missing attribute values was presented for the first time in [15] and
implemented in LERS. Every case with missing attribute values is replaced by the
set of cases in which every missing attribute value is replaced by all possible known
values. In the example from Table 1, a result of using this method is presented in
Table 5.

In the example of Table 1, the first case from Table 1, with the missing attribute
value for attribute Headache, is replaced by two cases, .1i and .1ii , where case .1i has
value yes for attribute Headache, and case .1ii has values no for the same attribute,
since attribute Headache has two possible known values, yes and no. Case 3 from
Table 1, with the missing attribute value for the attribute Temperature, is replaced
by three cases, .3i , .3ii , and .3iii , with values high, very_high, and normal, since the
attribute Temperature has three possible known values, high, very_high, and normal,
respectively. Note that due to this method, the new table, such as Table 5, may be
inconsistent. In Table 5, case .1ii conflicts with case .3i , case 4 conflicts with case .5i ,
etc. However, rule sets may be induced from inconsistent data sets using standard
rough set techniques, see, e.g., [14, 15, 16, 17, 18].

Table 5 Data set in which all
possible values are assigned
to missing attribute values

Attributes Decision

Case Temperature Headache Nausea Flu

.1i high yes no yes

.1ii high no no yes

2 very_high yes yes yes

.3i high no no no

.3ii very_high no no no

.3iii normal no no no

4 high yes yes yes

.5i high yes yes no

.5ii high no yes no

6 normal yes no no

7 normal no yes no

.8i high yes yes yes

.8ii high yes no yes

.8iii very_high yes yes yes

.8iv very_high yes no yes

.8v normal yes yes yes

.8vi normal yes no yes
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Table 6 Data set in which all
possible values, restricted to
the concept, are assigned to
missing attribute values

Attributes Decision

Case Temperature Headache Nausea Flu

1 high yes no yes

2 very_high yes yes yes

.3i normal no no no

.3ii high no no no

4 high yes yes yes

.5i high yes yes no

.5ii high no yes no

6 normal yes no no

7 normal no yes no

.8i high yes yes yes

.8ii high yes no yes

.8iii very_high yes yes yes

.8iv very_high yes no yes

2.5 Assigning All Possible Attribute Values Restricted to a
Concept

This method was described, e.g., in [25]. Here, every case with missing attribute
values is replaced by the set of cases in which every attribute a with the missing
attribute value has its every possible known value restricted to the concept to which
the case belongs. In the example from Table 1, a result of using this method is
presented in Table 6.

In the example of Table 1, the first case from Table 1, with the missing attribute
value for attribute Headache, is replaced by one with value yes for attribute
Headache, since attribute Headache, restricted to the concept {1, 2, 4, 8}, has one
possible known value, yes. Case 3 from Table 1, with the missing attribute value
for the attribute Temperature, is replaced by two cases, .3i and .3ii , with values high
and very_high, since the attribute Temperature, restricted to the concept {3, 5, 6,
7}, has two possible known values, normal and high, respectively. Again, due to
this method, the new table, such as Table 6, may be inconsistent. In Table 6, case 4
conflicts with case .5i , etc.

2.6 Replacing Missing Attribute Values by the Attribute Mean

This method is used for data sets with numerical attributes. An example of such a
data set is presented in Table 7.

In this method, every missing attribute value for a numerical attribute is replaced
by the arithmetic mean of known attribute values. In Table 7, the mean of known
attribute values for Temperature is 99.2; hence, all missing attribute values for
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Table 7 An example of a
data set with a numerical
attribute

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 ? no yes

2 102.6 yes yes yes

3 ? no no no

4 99.6 yes yes yes

5 99.8 ? yes no

6 96.4 yes no no

7 96.6 no yes no

8 ? yes ? yes

Table 8 Data set in which
missing attribute values are
replaced by the attribute mean
and the most common value

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 yes no yes

2 102.6 yes yes yes

3 99.2 no no no

4 99.6 yes yes yes

5 99.8 yes yes no

6 96.4 yes no no

7 96.6 no yes no

8 99.2 yes yes yes

Temperature should be replaced by 99.2. The table with missing attribute values
replaced by the mean is presented in Table 8. For symbolic attributes Headache and
Nausea, missing attribute values were replaced using the most common value of the
attribute.

2.7 Replacing Missing Attribute Values by the Attribute Mean
Restricted to a Concept

Similarly as in the previous method, this method is restricted to numerical attributes.
A missing attribute value of a numerical attribute is replaced by the arithmetic mean
of all known values of the attribute restricted to the concept. For example from
Table 7, case 3 has missing attribute value for Temperature. Case 3 belongs to the
concept {3, 5, 6, 7}. The arithmetic mean of known values of Temperature restricted
to the concept, i.e., 99.8, 96.4, and 96.6, is 97.6, so the missing attribute value is
replaced by 97.6. On the other hand, case 8 belongs to the concept {1, 2, 4, 8}, the
arithmetic mean of 100.2, 102.6, and 99.6 is 100.8, so the missing attribute value
for case 8 should be replaced by 100.8. The table with missing attribute values
replaced by the mean restricted to the concept is presented in Table 9. For symbolic
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Table 9 Data set in which
missing attribute values are
replaced by the attribute mean
and the most common value,
both restricted to the concept

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 yes no yes

2 102.6 yes yes yes

3 97.6 no no no

4 99.6 yes yes yes

5 99.8 no yes no

6 96.4 yes no no

7 96.6 no yes no

8 100.8 yes yes yes

attributes Headache and Nausea, missing attribute values were replaced using the
most common value of the attribute restricted to the concept.

2.8 Global Closest Fit

The global closes fit method [24] is based on replacing a missing attribute value by
the known value in another case that resembles as much as possible the case with the
missing attribute value. In searching for the closest fit case, we compare two vectors
of attribute values, one vector corresponds to the case with a missing attribute value,
and the other vector is a candidate for the closest fit. The search is conducted for all
cases, hence the name global closest fit. For each case, a distance is computed, and
the case for which the distance is the smallest is the closest fitting case that is used
to determine the missing attribute value. Let x and y be two cases. The distance
between cases x and y is computed as follows:

.distance(x, y) =
n∑

i=1

distance(xi, yi),

where

.distance(xi, yi) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xi = yi ,
1 if x and y are symbolic and xi �= yi,

or xi =? or yi =?,
|xi−yi |

r
if xi and yi are numbers and xi �= yi,

where r is the difference between the maximum and minimum of the known values
of the numerical attribute with a missing value. If there is a tie for two cases with
the same distance, a kind of heuristics is necessary, for example, select the first case.
In general, using the global closest fit method may result in data sets in which some
missing attribute values are not replaced by known values. Additional iterations of
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Table 10 Distance (1, x)

d(1, 2) d(1, 3) d(1, 4) d(1, 5) d(1, 6) d(1, 7) d (1, 8)

2.39 2.0 2.10 2.06 1.61 2.58 3.00

Table 11 Data set processed
by the global closest fit
method

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 yes no yes

2 102.6 yes yes yes

3 100.2 no no no

4 99.6 yes yes yes

5 99.8 yes yes no

6 96.4 yes no no

7 96.6 no yes no

8 102.6 yes yes yes

using this method may reduce the number of missing attribute values but may not
end up with all missing attribute values being replaced by known attribute values.

For the data set in Table 7, distances between case 1 and all remaining cases are
presented in Table 10. For example, the distance .d(1, 2) = |100.2−102.6|

|102.6−96.4| + 1 + 1 =
2.39. For case 1, the missing attribute value (for attribute Headache) should be the
value of Headache for case 6, i.e., yes, since for this case the distance is the smallest.
The table with missing attribute values replaced by values computed on the basis of
the global closest fit is presented in Table 11. Table 11 is complete. However, in
general, some missing attribute values may still be present in such a table. If so, it is
recommended to use another method of handling missing attribute values to replace
all remaining missing attribute values by some specified attribute values.

2.9 Concept Closest Fit

This method is similar to the global closest fit method. The difference is that the
original data set, containing missing attribute values, is first split into smaller data
sets, and each smaller data set corresponds to a concept from the original data
set. More precisely, every smaller data set is constructed from one of the original
concepts, by restricting cases to the concept. For the data set from Table 7, two
smaller data sets are created, presented in Tables 12 and 13.

Following the data set split, the same global closest fit method is applied to both
tables separately. Eventually, both tables, processed by the global fit method, are
merged into the same table. In our example from Table 7, the final, merged table is
presented in Table 14.
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Table 12 Data set restricted
to the concept {1, 2, 4, 8}

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 ? no yes

2 102.6 yes yes yes

4 99.6 yes yes yes

8 ? yes ? yes

Table 13 Data set restricted
to the concept {3, 5, 6, 7}

Attributes Decision

Case Temperature Headache Nausea Flu

3 ? no no no

5 99.8 ? yes no

6 96.4 yes no no

7 96.6 no yes no

Table 14 Data set processed
by the concept closest fit
method

Attributes Decision

Case Temperature Headache Nausea Flu

1 100.2 yes no yes

2 102.6 yes yes yes

3 96.4 no no no

4 99.6 yes yes yes

5 99.8 no yes no

6 96.4 yes no no

7 96.6 no yes no

8 102.6 yes yes yes

2.10 Other Methods

There is a number of other methods to handle missing attribute values. One of them
is event-covering method [5, 49], based on an interdependency between known and
missing attribute values. The interdependency is computed from contingency tables.
The outcome of this method is not necessarily a complete data set (with all attribute
values known), just like in the case of closest fit methods.

Another method of handling missing attribute values, called .D3RJ , was dis-
cussed in [32, 33]. In this method, a data set is decomposed into complete data
subsets, rule sets are induced from such data subsets, and finally, these rule sets are
merged.

Yet another method of handling missing attribute values was referred to as
Shapiro’s method in [42], where for each attribute with missing attribute values
a new data set is created, such attributes take place of the decision and vice versa,
and the decision becomes one of the attributes. From such a table, missing attribute
values are learned using either a rule set or decision tree techniques. This method,
identified as a chase algorithm, was also discussed in [11, 12].
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Learning missing attribute values from summary constraints was reported in [50].
Yet another approach to handling missing attribute values was presented in [13].

There is a number of statistical methods of handling missing attribute values,
usually known under the name of imputation [1, 38, 44], such as maximum
likelihood and the EM algorithm. Recently, multiple imputation gained popularity.
It is a Monte Carlo method of handling missing attribute values in which missing
attribute values are replaced by many plausible values, then many complete data sets
are analyzed, and the results are combined.

3 Parallel Methods

In this section, we will concentrate on handling missing attribute values in parallel
with rule induction. We will distinguish two types of missing attribute values:
lost and do not care conditions (for respective interpretation, see Introduction).
First, we will introduce some useful ideas, such as blocks of attribute-value pairs,
characteristic sets, characteristic relations, and lower and upper approximations.
Later, we will explain how to induce rules using the same blocks of attribute-value
pairs that were used to compute lower and upper approximations. Input data sets are
not preprocessed the same way as in sequential methods; instead, the rule learning
algorithm is modified to learn rules directly from the original, incomplete data sets.

3.1 Blocks of Attribute-Value Pairs and Characteristic Sets

In this subsection, we will quote some basic ideas of the rough set theory. Any
decision table defines a function .ρ that maps the direct product of the set U of
all cases and the set A of all attributes into the set of all values. For example,
in Table 1, .ρ(1, T emperature) = high. In this section, we will assume that all
missing attribute values are denoted either by “?” or by “*,” lost values will be
denoted by “?,” and “do not care” conditions will be denoted by “*.” Thus, we
assume that all missing attribute values from Table 1 are lost. On the other hand, all
attribute values from Table 15 are “do not care” conditions.

Let .(a, v) be an attribute-value pair. For complete decision tables, a block of
.(a, v), denoted by .[(a, v)], is the set of all cases x for which .ρ(x, a) = v. For
incomplete decision tables, the definition of a block of an attribute-value pair is
modified. If for an attribute a there exists a case x such that .ρ(x, a) =?, i.e., the
corresponding value is lost, then the case x is not included in any block .[(a, v)]
for every value v of attribute a. If for an attribute a there exists a case x such that
the corresponding value is a “do not care” condition, i.e., .ρ(x, a) = ∗, then the
corresponding case x should be included in blocks .[(a, v)] for all known values v of
attribute a. This modification of the attribute-value pair block definition is consistent
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Table 15 An example of a
data set with “do not care”
conditions

Attributes Decision

Case Temperature Headache Nausea Flu

1 high * no yes

2 very_high yes yes yes

3 * no no no

4 high yes yes yes

5 high * yes no

6 normal yes no no

7 normal no yes no

8 * yes * yes

with the interpretation of missing attribute values, lost and “do not care” conditions.
Thus, for Table 1

[(Temperature, high)] = {1, 4, 5},
[(Temperature, very_high)] = {2},
[(Temperature, normal)] = {6, 7},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6},
[(Nausea, yes)] = {2, 4, 5, 7},

and for Table 15

[(Temperature, high)] = {1, 3, 4, 5, 8},
[(Temperature, very_high)] = {2, 3, 8},
[(Temperature, normal)] = {3, 6, 7, 8},
[(Headache, yes)] = {1, 2, 4, 5, 6, 8},
[(Headache, no)] = {1, 3, 5, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.

The characteristic set .KB(x) is the intersection of blocks of attribute-value pairs
.(a, v) for all attributes a from B for which .ρ(x, a) is known and .ρ(x, a) = v. For
Table 1 and .B = A,

.KA(1) = {1, 4, 5} ∩ {1, 3, 6} = {1},

.KA(2) = {2} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7} = {2},

.KA(3) = {3, 7} ∩ {1, 3, 6} = {3},

.KA(4) = {1, 4, 5} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7} = {4},

.KA(5) = {1, 4, 5} ∩ {2, 4, 5, 7} = {4, 5},

.KA(6) = {6, 7} ∩ {2, 4, 6, 8} ∩ {1, 3, 6} = {6},

.KA(7) = {6, 7} ∩ {3, 7} ∩ {2, 4, 5, 7} = {7}, and

.KA(8) = {2, 4, 6, 8}.
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and for Table 15 and .B = A,

.KA(1) = {1, 3, 4, 5, 8} ∩ {1, 3, 6, 8} = {1, 3, 8},

.KA(2) = {2, 3, 8} ∩ {1, 2, 4, 5, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},

.KA(3) = {1, 3, 5, 7} ∩ {1, 3, 6, 8} = {1, 3},

.KA(4) = {1, 3, 4, 5, 8} ∩ {1, 2, 4, 5, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 5, 8},

.KA(5) = {1, 3, 4, 5, 8} ∩ {2, 4, 5, 7, 8} = {4, 5, 8},

.KA(6) = {3, 6, 7, 8} ∩ {1, 2, 4, 5, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},

.KA(7) = {3, 6, 7, 8} ∩ {1, 3, 5, 7} ∩ {2, 4, 5, 7, 8} = {7}, and

.KA(8) = {1, 2, 4, 5, 6, 8}.
The characteristic set .KB(x) may be interpreted as the smallest set of cases that

are indistinguishable from x using all attributes from B, using a given interpretation
of missing attribute values. Thus, .KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. For further properties of characteristic sets,
see [19, 21, 20, 22]. Incomplete decision tables in which all attribute values are lost,
from the viewpoint of rough set theory, were studied for the first time in [27], where
two algorithms for rule induction, modified to handle lost attribute values, were
presented. This approach was studied later in [45, 46, 47].

Incomplete decision tables in which all missing attribute values are “do not
care” conditions, from the view point of rough set theory, were studied for the
first time in [15], where a method for rule induction was introduced in which each
missing attribute value was replaced by all values from the domain of the attribute.
Originally, such values were replaced by all values from the entire domain of the
attribute, later, by attribute values restricted to the same concept to which a case with
a missing attribute value belongs. Such incomplete decision tables, with all missing
attribute values being “do not care” conditions, were also studied in [29, 30]. Both
approaches to missing attribute values were generalized in [19, 21, 20, 22].

3.2 Lower and Upper Approximations

Any finite union of characteristic sets of B is called a B-definable set. The lower
approximation of the concept X is the largest definable set that is contained in X,
and the upper approximation of X is the smallest definable set that contains X. In
general, for incompletely specified decision tables, lower and upper approximations
may be defined in a few different ways [19, 21, 20, 22]. Here we will quote the most
useful definition of lower and upper approximations from the view point of data
mining. A concept B-lower approximation of the concept X is defined as follows:

.BX = ∪{KB(x)|x ∈ X,KB(x) ⊆ X}.

A concept B-upper approximation of the concept X is defined as follows:

.BX = ∪{KB(x)|x ∈ X,KB(x) ∩ X �= ∅} = ∪{KB(x)|x ∈ X}.
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For the decision table presented in Table 1, the concept A-lower and A-upper
approximations are

.A{1, 2, 4, 8} = {1, 2, 4},

.A{3, 5, 6, 7} = {3, 6, 7},

.A{1, 2, 4, 8} = {1, 2, 4, 6, 8},

.A{3, 5, 6, 7} = {3, 4, 5, 6, 7},

and for the decision table from Table 15, the concept A-lower and A-upper
approximations are

.A{1, 2, 4, 8} = {2, 8},

.A{3, 5, 6, 7} = {7},

.A{1, 2, 4, 8} = {1, 2, 3, 4, 5, 6, 8},

.A{3, 5, 6, 7} = {1, 3, 4, 5, 6, 7, 8}.

3.3 Rule Induction—MLEM2

The MLEM2 rule induction algorithm is a modified version of the algorithm LEM2,
see Chap. “Generative Adversarial Networks” in this volume. Rules induced from
the lower approximation of the concept certainly describe the concept, so they are
called certain. On the other hand, rules induced from the upper approximation of the
concept describe the concept only possibly (or plausibly), so they are called possible
[14]. MLEM2 may induce both certain and possible rules from a decision table with
some missing attribute values being lost and some missing attribute values being
“do not care” conditions, while some attributes may be numerical. For rule induction
from decision tables with numerical attributes, see [21]. MLEM2 handles missing
attribute values by computing (in a different way than in LEM2) blocks of attribute-
value pairs, and then characteristic sets and lower and upper approximations. All
these definitions are modified according to the two previous subsections, and the
algorithm itself remains the same.

Rule sets in the LERS format (every rule is equipped with three numbers, the total
number of attribute-value pairs on the left-hand side of the rule, the total number of
examples correctly classified by the rule during training, and the total number of
training cases matching the left-hand side of the rule), induced from the decision
table presented in Table 1 are:
certain rule set:


 3177 35629 a 3177 35629
a
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2, 1, 1
(Temperature, high) & (Nausea, no) -.> (Flu, yes)
2, 2, 2
(Headache, yes) & (Nausea, yes) -.> (Flu, yes)
1, 2, 2
(Temperature, normal) -.> (Flu, no)
1, 2, 2
(Headache, no) -.> (Flu, no)

and possible rule set:

1, 3, 4
(Headache, yes) -.> (Flu, yes)
2, 1, 1
(Temperature, high) & (Nausea, no) -.> (Flu, yes)
2, 1, 2
(Temperature, high) & (Nausea, yes) -.> (Flu, no)
1, 2, 2
(Temperature, normal) -.> (Flu, no)
1, 2, 2
(Headache, no) -.> (Flu, no)

Rule sets induced from the decision table presented in Table 15 are:
certain rule set:

2, 2, 2
(Temperature, very_high) & (Nausea, yes) -.> (Flu, yes)
3, 1, 1
(Temperature, normal) & (Headache, no) & (Nausea, yes) -.> (Flu, no)

and possible rule set:

1, 4, 6
(Headache, yes) -.> (Flu, yes)
1, 2, 3
(Temperature, very_high) -.> (Flu, yes)
1, 2, 5
(Temperature, high) -.> (Flu, no)
1, 3, 4
(Temperature, normal) -.> (Flu, no)

3.4 Other Approaches to Missing Attribute Values

Through this section, we assumed that the incomplete decision tables may only
consist of lost values or “do not care” conditions. Note that the MLEM2 algorithm
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is able to handle not only these two types of tables but also decision tables with
a mixture of these two cases, i.e., tables with some lost attribute values and with
other missing attribute values being “do not care” conditions. Furthermore, other
interpretations of missing attribute values are possible as well, see [19, 21].

Both lower and upper approximations for incomplete data sets were generalized
to probabilistic approximations in [23] and further studied, e.g., in [8, 9, 10].
Probabilistic approximations are associated with a parameter interpreted as a
probability; when this parameter is equal to one, the probabilistic approximation is
reduced to the lower approximation; when the parameter is a small, positive number,
the probabilistic approximation becomes the upper approximation.

An idea of maximal consistent blocks was introduced in [34, 35] for data sets
with “do not care” conditions. This idea was generalized for arbitrary incomplete
data sets in [7]. Yet other approaches to incomplete data sets were presented in
[40, 41].

4 Conclusions

In general, there is no best, universal method of handling missing attribute values.
On the basis of existing research on comparison of such methods [25, 26, 31], we
may conclude that for every specific data set the best method of handling missing
attribute values should be chosen individually, using as the criterion of optimality
the arithmetic mean of many multi-fold cross-validation experiments [48]. Similar
conclusions may be drawn for decision tree generation [42].
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Data Integration Process Automation 
Using Machine Learning: Issues and 
Solution 

Kartick Chandra Mondal and Swati Saha 

1 Introduction 

Data from relevant sources are integrated into data warehouse [17] and mainly used 
for analytic and reporting purposes. ETL (Extract, Transform, and Load) extracts 
the data from heterogeneous data sources, cleans and transforms the data, and finally 
loads it into the data warehouse. The ETL [32] process is complex and consumes 
a major amount of time, cost, and complexity overhead of any DWH. Operational 
systems and external systems are typical data sources of DWH. The organization’s 
operational systems include enterprise resource planning (ERP) system, on-line 
transaction processing (OLTP) system, customer relationship management systems 
(CRM), etc. External sources can be open to data services or other services. 
Moreover, some data sources are unstructured or semi-structured like various kinds 
of documents, spreadsheets, texts, images, or Web pages. In the traditional batch 
processing ETL system, the DWH is refreshed with the data coming from various 
data sources weekly or daily basis [34]. These activities are generally performed at 
night during the warehouse downtime to avoid any unwanted interference. 

The traditional data warehouse cannot support continuous integration of data; 
hence, it does not contain real-time data. In the current business environment, the 
way of accessing an organization’s data is rapidly changing. They want to access 
reports based on real-time data for taking an immediate decision. Many industries 
such as stock exchange, air traffic control, e-commerce, telecommunication, etc. 
need to access information rapidly and react immediately based on real-time 
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information. If the data warehouse is not updated with real-time data, bad decisions 
can be made. Besides, the volume of data for analysis is becoming very high. 
Hence, the demand is for continuous integration of data in DWH so that the window 
time for loading DWH can be shortened. Therefore, the main focus for business 
intelligence (BI) lies in the DWH and the ETL process for supporting continuous 
data flow [23, 30] and decreasing downtime. Detecting any changes in data sources 
and promptly propagating the changes into DWH are the major challenges. 

For near real-time ETL process, some well-known techniques of extraction 
can be considered [3, 10]. They are triggers, timestamping, enterprise application 
integration (EAI) middleware, log sniffing, snapshot differential [24, 33], etc. All 
the above-mentioned options have their own limitation. Here we will explore if there 
is any other option that can track changes and automatically initiate the process 
of loading data into DWH. Data need to be cleansed and processed [19] before 
loading in DWH to improve the quality of data. The fixing of data quality issues 
[5] is a continuous procedure. The main focus of this work is how to automate 
the ETL process that can manage the growing volume and a variety of data with 
better quality. Also, the proposed approach describes how various machine learning 
approaches can be leveraged in this automation. 

The paper is organized in the following way. Section 2 briefly discusses 
some notable related work in ETL automation and near real-time ETL domain. 
Some important real-life case studies in different business domains regarding data 
integration scenarios are investigated in Sect. 3, which showcases the necessity of 
modernizing data warehouse. An architecture is designed in Sect. 4 concerning 
overall ETL process automation. The solution approach to case study problems 
is discussed in Sect. 5. Finally, Sect. 6 concludes the work with brief summary 
followed by targeted future scope. 

2 Related Work 

Here, we are mainly focusing on the automated ETL process that supports contin-
uous data integration. It minimizes the latency between data changes in the source 
system and refreshes the changes in data warehouse. Some research work related to 
the ETL process is discussed in this section. Research related to ETL is mainly done 
on modeling and designing at conceptual [7], logical [35], and physical level [31]. 
[27] describe a semantic Web-based ETL designed with a high level of automation. 
SysML-based conceptual ETL process modeling has been designed in [7]. An ETL 
process can be designed using the model-driven approach [6, 21]. This can also 
automatically generate code from the conceptual model. Embley et al. [14] proposed 
an ontology-based conceptual model for automatic data extraction. 

A model-driven framework using BPMN language is practiced in [2]. The 
model-to-text transformation can automatically produce code suitable for any ETL 
commercial tool. An empirical analysis of such programmable ETL tools has been 
done in [8]. Automatic data loading [11] into the warehouse is done followed by
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any business events from any application. An automated architecture is designed 
to optimize ETL throughput in the article [29]. Vassiliadis et al. in [33] first 
discussed near real-time ETL process. The various possible technical solutions to 
fulfill the real-time ETL demands are discussed here. Log-based change data capture 
methodology is projected by Zhou in [36]. Log contents within two timestamps are 
compared to track the changes in the source side. Naeem et al. [22] proposed an 
event-based ETL architecture. A layered approach has been taken for transforming 
data. Different approaches are taken for master data and transactional data. Master 
data are not extracted in each transaction. Master data and transactional data are 
identified based on fields attached to the incoming messages. Transaction data are 
followed by the required enrichment process, and master data are directed to the 
master data repository. 

The concept of automated ETL process based on scripting technology is 
proposed by [25]. This chapter describes the usage of scripting technologies to 
automate the ETL process. This process generates three different types of maps 
namely source extraction map, transformation map, and finally loading map. These 
three jobs are processed by any ETL tool using scripting technology. An incremental 
loading for ETL processing on real-time data integration has been discussed in [9]. 
Although there are some research done on the real-time ETL processing, a very 
little work is done on automating the ETL process. ETL automation is still an open 
problem and gains popularity in recent times. 

3 Case Study 

In this section, a few case studies are discussed showcasing the necessity of 
modernizing the data warehouse and the ETL process by automating its processes. 

3.1 Manufacturing Industry 

In the manufacturing environment, various IT applications are used for different 
purposes that include planning and scheduling, workforce management, material 
management, product and process design, production generation and maintenance, 
sales and marketing, human resource, finance, and so on. The data from different 
applications need to be analyzed to increase efficiency, improve the process for 
getting a competitive advantage, and stay ahead of competitors. A major electronics 
manufacturing company has been set up for data warehouse to integrate data 
from several applications for a better understanding of the performance of the 
company [28]. To run a data warehouse successfully, multiple operations need to 
be performed under correct conditions and at the correct time and sequence. Also, 
significant effort is needed for coordination among several teams including different 
application teams, database teams, and operation teams as shown in Fig. 1. For
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Fig. 1 Challenges in manufacturing industry 

this company, all these operations are manual, which magnifies the risk of human-
induced errors. There is a high probability to miss one step in the process or execute 
a step at the wrong time that can produce wrong data or result in a significant 
amount of wasted processing time. Now, the challenge here is how to automate 
these processes to ensure that all processes executed successfully. 

Quality of data is also a concern as data are coming in multiple formats from 
different operative systems. ETL (Extract, Transform, and Load) processes do the 
basic pre-processing and transformation before loading into DWH. However, the 
quality of data is not up to the mark. Missing data or non-accurate data are also 
causing serious implications in many cases [4]. There are some scenarios where 
bad-quality data disturb the making of important decisions. Hence, the data quality 
is an area of concern that needs to be addressed. 

3.2 Insurance Industry 

Fortune 100 insurance provider that serves more than a million customers glob-
ally wants to build next-generation insurance platform [12]. Companies already 
launched several applications by leveraging their technical expertise that drastically 
changes the user experience. One such application in the car insurance industry 
allows the customer to pull all the repair shops in the selected radius, choose the one, 
get an estimate of their damage, and request a tow truck or even rental car service. 
The company needs the easiest way to bring its new services/features quickly 
to market so that they can meet the high customer expectations of continuous 
improvement.
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The insurance company has already started using advanced tools and technolo-
gies for code deployment. The overall goal of the company is to reduce the overall 
application release cycle. But, the manual database deployment process creates a 
bottleneck. This manual process takes a considerable amount of time and effort, 
and also deployment is risky as manual intervention is needed. In this manual 
process, team is facing a lot of challenges to keep track of database changes and 
synchronize the data across all environments as explained in Fig. 2. There is chance 
to miss some critical data due to the mismatch of database schema in different 
environments. Insurance company wants to address these issues for faster time to 
market with maximum accuracy. Also product team wants to receive early feedback 
from business. 

3.3 Banking Industry 

Security [13] plays an important role almost in all domains specially for banks as 
it handles money and personal information that are hacker’s favorite. There can be 
a security flaw, for example, an unauthorized user accessing an application or a 
specific feature that s/he is not supposed to access, or a malicious user attempting 
to do something in order to break the system. These kinds of flaws can not be 
acceptable. Also, an application can behave unexpectedly due to a flaw in the 
logic or it can be a security problem as showcased in Fig. 3. In both cases, an 
instant investigation needs to be started by the security team or operation team or
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development team in order to find out if there is a problem and how to solve it. 
Immediate reaction is required for security issues to prevent unauthorized access of 
data. If there is any code issue, patch needs to be deployed quickly in production to 
prevent the issue in future. The challenge is to how quickly detect the security flaws 
by analyzing data and how quickly take necessary action (if required, deploy code) 
to prevent security issue. 

3.4 Aviation Industry 

The mechanic crew generally checks functioning of aircraft engines [13] in flight 
from the ground. They examined and analyzed different data coming from different 
sensors on the engine to determine if aircraft engine is behaving abnormally. It is 
vital to take decisions on real-time data that are coming through different sensors as 
manifested in Fig. 4. If something abnormal happens, necessary actions need to be 
taken immediately to avoid any unwanted circumstances. The challenge is how to 
automatically update data warehouse with those data and derive information in real 
time from those data based on which critical operational decisions can be taken. 

Problems Considered 
Based on the case studies discussed above, the following problems are shown in 
Fig. 5, which is an important area for research, and are considered for further study 
and analysis.
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Fig. 5 Problems considered for further research and analysis 

4 Proposed Solution 

An architecture is designed to address the challenges faced in the practical appli-
cation of legacy ETL processing. Figure 6 shows the overall architectural design of 
the automated ETL system. Proposed data integration steps are discussed in the next 
subsection. The pipeline of the proposed system is presented in Fig. 7. This pipeline 
explains the overall working process and development progress of the proposed 
solution.
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Fig. 7 Pipeline of the proposed solution process 

4.1 Automated Data Integration 

The main objective of this chapter is the overall automation of the data integration 
process. To achieve this, continuous integration (CI) [16] platform is used. Data 
integration tool Informatica integrates with Jenkins (https://jenkins.io/) to allow for 
building, testing, and releasing database changes faster and more frequently. Jenkins 
is an open-source CI tool that orchestrates the ETL processes with automation. 
Jenkins pipeline is set up to execute automated scripts to sequentially perform the 
following steps of the ETL process: 

Trigger Build Jobs: Database scripts are considered as application code, and 
it should be properly version controlled. Database changes are captured and 
tracked in database version control. In the proposed solution, Liquibase by 
Datical is considered as source control for databases. Liquibase tracks the 
database changes including schema changes. A new changelog file is created 
in XML/YML/JSON/SQL format. Changeset is added in changelog file. The 
changelog file is committed to source control after running the Liquibase update. 
Jenkins hook detects this change and triggers the build process. 

Load Data into DWH Staging Table: Custom rule engine would be used to clas-
sify the data as structured or unstructured using machine learning classification 
algorithms. Based on the type, data would be loaded in the staging database using 
informatica extraction and load feature. 

Data Pre-Processing: Machine-learning-based custom pre-processor processes 
the data stored in the staging database to improve data quality.

https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
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Code Build: Instead of doing complete database build, incremental database 
build is done. Database code is build using Liquibase. 

Automated Code Review and Analysis: Newly build code is scanned to identify 
coding standard violations and other issues such as code duplication, etc., 
through code. Proactive monitoring add-ons of Informatica review the code in 
an automated manner. The complex event-processing engine responds to events 
and does static code analysis. 

Automated Test Case Generation and Unit Testing: Data validation test cases are 
generated using PowerCenter Data Validation Option (DVO) add-on of Informat-
ica. Unit testing is executed in an automated manner by running pre-build test 
cases. 

Save Package: After successful unit testing, the package is stored in a binary 
repository. JFrog Artifactory can be used as binary repository. Binary package 
can also be stored in in-build repository of Informatica. 

Automated Deployment to Pre-production: Testing environment is an immutable 
infrastructure hosted in the cloud that is going to be created on demand for 
test execution. After completion of testing, the pre-prod environment is going 
to be deleted. Data in the pre-prod environment are also generated on demand. 
The executable package is retrieved from Artifactory by the Python scripts and 
deploys to the testing environment. 

Automated Integration Testing: There are different tools available in the market 
to do ETL testing. Informatica Data validation (DVO) tool is used for integration 
testing. Test cases are generated automatically by DVO. Other tools such as 
QuerySurge can also be used for DWH testing. 

Automated Deployment to Production: After successful integration testing, data 
packages are deployed in production. The production deployment happens in the 
same way deployment to pre-production environment happens. 

Generating real-time report: Real-time reports are generated from Prod DWH 
using a custom machine-learning-based reporting module. 

4.2 Details of Major Components 

4.2.1 Database Version Control 

In today’s world, data are an integral part of any application since the data volume 
of structured and unstructured data is increasing exponentially day by day. It 
is going to be impossible by the traditional database systems to handle it [15]. 
Versioning of database is required, which maintains all the database changes. There 
are some tools such as Liquibase, Flyway available in the market for versioning 
of databases. In this chapter, we consider Liquibase as Database Source Control. It 
is a database-independent library that efficiently tracks and manages any database 
schema changes. Liquibase scripts support updating the schema of RDBMS. As
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database versions are maintained, any previous version can be restored at any point 
in time. 

4.2.2 Custom Rule Engine 

Data are coming from different sources in a different format. Custom rule engine 
builds on machine learning can be used to specify the class to which data belong 
(structured or unstructured). Based on the class [1, 18] of data, appropriate rules can 
be used to load or transform data. 

4.2.3 Data Pre-processor 

Pre-processing of data is a crucial step as far as data quality is concerned. The 
success of the machine learning model [26] largely depends on the quality of data. 
This stage selects target data, prepares it by simplifying through various filtering 
and transformation process, and makes it available for machine-learning-based 
applications. 

4.2.4 Database Release Automation 

Database release automation (DRA) component supports seamless integration of 
all database changes so that the database code can be promoted along with ap-
plication code changes. In today’s data-driven environment, quicker database code 
deployment is a practical demand. With database release automation, the overall 
application release cycle is shortened. Enterprises can release more applications 
in less time, which helps them responding to customer needs quickly and adds 
more value to customers. Whenever the changeLog file is checked into the database 
source control, the automatic build is triggered in the continuous integration server. 
Microsoft VSTS, Bamboo, and Jenkins are some popular continuous integration 
tools. The database automation tool performs validation, unit tests, and creating 
release binaries. Test automation also needs to be added to DRA. It should be 
able to create immutable infrastructure on demand for testing that mirrors the 
production environment with required masking of data. Database release automation 
[20] enhances data security. Database release automation assures better database 
code by eliminating errors that can cause application performance issues or 
downtime. Common mistakes (for example, misplaced GRANT statements) that 
make databases more vulnerable to breaches and data theft are eliminated.
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5 Solutions to Case Study Problems 

Figure 8 shows a proposed solution to address the problems discussed above in the 
case study section in 3. 

5.1 Case Study 1: Manufacturing 

Challenges The electronic manufacturing company has used different IT appli-
cations for various departments such as material management, product design, 
production, sales and marketing, management, finance, and so on. The company 
is facing a lot of challenges in the current ETL process. Lots of coordination among 
multiple teams and manual intervention are required, which increases the risk of 
human-induced errors. Data quality is also not up to the mark. Hence, the objective 
is to streamline the ETL process and improve data quality for getting better insights 
from data. 

Proposed Solution The automated ETL process ensures that all steps in the ETL 
process are executed in the correct sequence and in the correct manner. Machine-
learning-based data pre-processor is used to pre-process the data more rigorously. 
It is reducing the processing time significantly and produces a good quality of data 
from the data warehouse. 

5.2 Case Study 2: Insurance 

Challenges Application release automation is in place for this company. But, 
database changes are manual and are not tracked properly. Also, manual intervention 
is required to handle database schema changes. So it is taking a long time to deploy 
changes that involve database changes. The company needs a quicker way to deploy 
database changes for continuous improvement. 

Proposed Solution Database Version Control (Liquibase) tool is used to track 
database changes that can be able to identify database schema changes. This tool 
is integrated with the database release automation component that automates the 
release process of database changes. A company can support multiple weekly 
deployments by using the database release automation component easily.
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5.3 Case Study 3: Banking 

Challenges In case of hacking, immediate action needs to be taken to prevent 
attackers from accessing the bank database. Challenges are: 

• How quickly can security be detected by analyzing the data. 
• How quickly can necessary action be taken (if required code deployment). 

Proposed Solution 

• If the ETL process is automated, security flaws can be detected imme-
diately by analyzing real-time data. Therefore, the security team/operation 
team/development team can start an investigation immediately to find out the 
issue and stop the attacker for accessing unintended data. 

• If there is a code issue or database change is required, the patch needs to be 
applied quickly to prevent occurring this in the future. Deployment can be done 
quickly by application and database release automation. 

5.4 Case Study 4: Aviation 

Challenges Not able to analyze real-time data from different sensors of the aircraft 
engines. The aviation company is struggling to update data warehouses with real-
time data and integrate them into BI processes. Hence, even if the aircraft engine is 
malfunctioning, necessary actions cannot be taken immediately to avoid accidents. 

Proposed Solution Through automated ETL process, data from different sensors 
are loaded in the data warehouse in real time, and report has been generated based 
on that data. Hence, any malfunctioning of aircraft engines has been detected by the 
mechanic crew, and necessary actions can be taken to avoid the accident. 

6 Conclusion and Future Study 

We have discussed the approach to automating the ETL process so that DWH 
can be refreshed with updated data with minimum or no manual intervention and 
reports can be generated based on real-time data. The proposed approach supports 
automated data integration that also includes database release automation. Proof-of-
concept has been performed on a continuous integration process where Liquibase 
is used as database source control for managing database changes. Research has 
also been done on the machine-learning-based automation process. Some modules 
including data pre-processor, custom rule engine, and reporting module have been 
identified where machine learning can be leveraged. As a next step, work can be 
carried out to integrate an ETL tool in the automation process. The study can
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be continued on machine learning approaches and identification of other areas of 
the automated process where machine learning algorithms can be utilized to fully 
automate the ETL process. 
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Rule Induction 

Jerzy W. Grzymala-Busse 

1 Introduction 

Rule induction is one of the most important techniques of machine learning. Since 
regularities hidden in data are frequently expressed in terms of rules, rule induction 
is one of the fundamental tools of data mining at the same time. Usually, rules are 
expressions of the form 

. if (attribute − 1, value − 1) and (attribute − 2, value − 2) and · · ·
and (attribute − n, value − n) then (decision, value).

Some rule induction systems induce more complex rules, in which values of 
attributes may be expressed by negation of some values or by a value subset of the 
attribute domain. 

Data from which rules are induced are usually presented in a form similar to a 
table in which cases (or examples) are  labels (or names) for rows and variables are 
labeled as attributes and a decision. We will restrict our attention to rule induction 
that belongs to supervised learning: all cases are preclassified by an expert. In 
different words, the decision value is assigned by an expert to each case. Attributes 
are independent variables and the decision is a dependent variable. A very simple 
example of such a table is presented as Table 1, in which attributes are: Temperature, 
Headache, Weakness, Nausea, and the decision is Flu. The set of all cases labeled 
by the same decision value is called a concept. For Table 1, case set  {1, 2, 4, 5} is  
a concept of all cases affected by flu (for each case from this set the corresponding 
value of Flu is yes). 
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Table 1 An example of a data set 

Attributes Decision 

Case Temperature Headache Weakness Nausea Flu 

1 very_high yes yes no yes 

2 high yes no yes yes 

3 normal no no no no 

4 normal yes yes yes yes 

5 high no yes no yes 

6 high no no no no 

7 normal no yes no no 

Table 2 An example of an erroneous data set 

Attributes Decision 

Case Temperature Headache Weakness Nausea Flu 

1 very_high yes yes no yes 

2 high yes no yes yes 

3 normal no no no no 

4 normal yes yes yes yes 

5 high no yes no yes 

6 high no no no no 

7 normal no 42.5 no no 

Table 3 An example of a data set with a numerical attribute 

Attributes Decision 

Case Temperature Headache Weakness Nausea Flu 

1 40.2 yes yes no yes 

2 39.8 yes no yes yes 

3 36.8 no no no no 

4 36.6 yes yes yes yes 

5 39.6 no yes no yes 

6 39.8 no no no no 

7 36.8 no yes no no 

Note that input data may be affected by errors. An example of such a data set 
is presented in Table 2. The case 7 has value 42.5 for weakness, an obvious error, 
since the attribute weakness is symbolic, with possible values yes and no. Such 
errors must be corrected before rule induction. 

Another problem is caused by numerical attributes, for example, temperature 
may be represented by real numbers, as in Table 3. 

Usually, numerical attributes are converted into symbolic attributes before or 
during rule induction. The process of converting numerical attributes into symbolic 
attributes is called discretization (or quantization).
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Table 4 An example of a data set with missing attribute values 

Attributes Decision 

Case Temperature Headache Weakness Nausea Flu 

1 very_high yes yes no yes 

2 ? yes no yes yes 

3 normal no ? no no 

4 normal ? yes yes yes 

5 high no yes no yes 

6 high no no no no 

7 normal no yes no no 

Table 5 An example of an inconsistent data set 

Attributes Decision 

Case Temperature Headache Weakness Nausea Flu 

1 very_high yes yes no yes 

2 high yes no yes yes 

3 normal no no no no 

4 normal yes yes yes yes 

5 high no yes no yes 

6 high no no no no 

7 normal no yes no no 

8 normal no yes no yes 

Input data may be incomplete, i.e., some attributes may have missing attribute 
values, as in Table 4, where ? denotes lack of the attribute value (for example, the 
original value was not recorded or was erased). 

Additionally, input data may be inconsistent, i.e., some cases may conflict with 
each other. Conflicting cases have the same attribute values yet different decision 
values. An example of an inconsistent data set is presented in Table 5. Cases 7 and 
8 are conflicting. 

In Sect. 2, a brief discussion of different rule types is presented. In the next 
section, a few representative rule induction algorithms are discussed. Section 4 
presents the main application of rule sets, classification systems, which are used 
to classify new cases on the basis of induced rule sets. 

2 Types of Rules 

A case x is covered by a rule r if and only if every condition (attribute–value pair) 
of r is satisfied by the corresponding attribute value for x. The concept C defined by 
the right-hand side of rule r is indicated by r . We say that a concept C is completely 
covered by a rule set  R if and only if for every case x from C there exists a rule r
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from R such that r covers x. For a given data set, a rule set R is complete if and only 
if every concept from the data set is completely covered by R. 

A rule  r is consistent with the data set if and only if for every case x covered by 
r , x is a member of the concept C indicated by r . A rule  set  R is consistent with a 
data set if and only if every rule from R is consistent with the data set. 

For example, case 1 from Table 1 is covered by the following rule r: 

. (Headache, yes) → (F lu, yes).

The rule r indicates concept {1, 2, 4, 5}. Additionally, the concept {1, 2, 4, 5} is 
not completely covered by the rule set consisting of r , since r covers only cases 1, 
2, and 4, but the rule r is consistent with the data set from Table 1. 

On the other hand, the single rule 

. (Headache, no) → (F lu, no)

completely covers the concept {3, 6, 7} in Table 1, though this rule is not consistent 
with the same data set. The above rule covers cases 3, 5, 6, and 7. 

Any of the following two rules: 

. (Headache, yes) & (Weakness, yes) → (F lu, yes)

and 

. (T emperature, high) & (Headache, yes) → (F lu, yes)

is consistent with the data set from Table 1, but the concept {1, 2, 4, 5} is not 
completely covered by the rule set consisting of the above two rules since case 5 
is not covered by any rule. The first rule covers cases 1 and 4, and the second rule 
covers case 2. 

The most frequent task of rule induction is to induce a rule set R that is complete 
and consistent. Such a rule set R is called discriminant [11]. For Table 1, the  rule  
set consisting of the following four rules: 

. (Headache, yes) → (F lu, yes),

. (T emperature, high) & (Weakness, yes) → (F lu, yes),

. (T emperature, normal) & (Headache, no) → (F lu, no),

. (Headache, no) & (Weakness, no) → (F lu, no)

is discriminant. 
There are many other types of rules that are used. For example, some rule 

induction systems induce rule sets consisting of strong rules, i.e., rule sets in which
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every rule covers many cases. Another task is to induce associative rules, in which 
in both sides of a rule, left and right, involved variables are attributes. For Table 1, 
an example of such an associative rule is 

. (Nausea, yes) → (Headache, yes).

3 Rule Induction Algorithms 

In this section, we will assume that input data sets are free of errors, no missing 
attribute values are present in the input data sets, and that input data sets are 
consistent. 

In general, rule induction algorithms may be categorized as global and local. In  
global rule induction algorithms, the search space is the set of all attribute values, 
while in local rule induction algorithms the search space is the set of attribute–value 
pairs. 

There exist many rule induction algorithms, and we will discuss only three 
representative algorithms, all inducing discriminant rule sets. The first is an example 
of a global rule induction algorithm called LEM1 (Learning from Examples Module 
version 1). 

3.1 LEM1 Algorithm 

The algorithm LEM1, a component of the data mining system LERS (Learning from 
Examples using Rough Sets), is based on some rough set definitions [14, 15, 16]. 
Let B be a nonempty subset of the set A of all attributes. Let U denote the set of all 
cases. The indiscernibility relation .IND(B) is a relation on U defined for . x, y ∈ U

by .(x, y) ∈ IND(B) if and only if for both x and y the values for all attributes from 
B are identical. 

The indiscernibility relation .IND(B) is an equivalence relation. Equivalence 
classes of .IND(B) are called elementary sets of B. For example, for Table 1, and 
B = {Temperature, Headache}, elementary sets of .IND(B) are {1}, {2}, {3, 7}, 
{4}, {5, 6}. 

The family of all B-elementary sets will be denoted . B∗, for example, in Table 1, 

. {T emperature,Headache}∗ = {{1}, {2}, {3, 7}, {4}, {5, 6}}.

For a decision d, we say that .{d} depends on B if and only if .B∗ ≤ {d}∗. 
A global covering (or relative reduct) of  .{d} is a subset B of A such that . {d}
depends on B and B is minimal in A. Thus, global coverings of . {d} are computed 
by comparing partitions . B∗ with .{d}∗. The algorithm to compute a single global 
covering is presented below.
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Algorithm to compute a single global covering 
(input: the  set  Aof all attributes, partition {d}∗ on U ; 
output: a single global covering R); 
begin 
compute partition A∗; 
P : =  A; 
R := ∅; 

if A∗ ≤ {d}∗ 

then 
begin 
for each attribute a in A do 

begin 
Q := P − {a}; 
compute partition Q∗; 
if Q∗ ≤ {d}∗ then P := Q 

end {for} 
R := P 

end {then} 
end {algorithm}. 

On the basis of a global covering, rules are computed using the dropping condi-
tions technique [11]. For a rule of the form 

. C1 & C2 & . . . & Cn → D

dropping conditions means scanning the list of all conditions, from the left to the 
right, with an attempt to drop any condition, checking against the decision table 
where the simplified rule does not violate consistency of the discriminant descrip-
tion. 

For Table 1, 

. {T emperature, Headache, Weakness, Nausea}∗ =
{{1}, {2}, {3}, {4}, {5}, {6}, {7}},

. {F lu}∗ = {{1, 2, 4, 5}, {3, 6, 7}},

and 

. {T emperature, Headache, Weakness, Nausea}∗ ≤ {F lu}∗.

Next we need to check whether 

.{Headache, Weakness, Nausea}∗ ≤ {F lu}∗.
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This condition is false since 

. {Headache, Weakness, Nausea}∗ =
{{1}, {2}, {3, 6}, {4}, {5, 7}}.

Then we compute 

. {T emperature, Weakness, Nausea}∗ =
{{1}, {2}, {3}, {4}, {5}, {6}, {7}}.

We observe that 

. {T emperature, Weakness, Nausea}∗ ≤ {F lu}∗.

The next partition to compute is 

. {T emperature, Nausea}∗,

equal to 

. {{1}, {2}, {3, 7}, {4}, {5, 6}},

and 

. {T emperature, Nausea}∗ �≤ {F lu}∗.

The last step is to compute 

. {T emperature, Weakness}∗,

equal to 

. {{1}, {2, 6}, {3}, {4, 7}, {5}},

and since 

. {T emperature, Weakness}∗ �≤ {F lu}∗,

the total covering is 

.{T emperature, Weakness, Nausea}.
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The first case from Table 1 implies the following preliminary rule: 

. (T emperature, very_high) & (Weakness, yes) & (Nausea, no)

→ (F lu, yes).

The above rule covers only the first case. The first condition, 

. (T emperature, very_high),

cannot be dropped since the rule 

. (Weakness, yes) & (Nausea, no) → (F lu, yes)

covers cases 1 and 7 from different concepts. However, an attempt to drop the next 
condition, .(Weakness, yes), is successful since the rule 

. (T emperature, very_high) & (Nausea, no) → (F lu, yes)

covers only case 1. The next possibility, to drop the last condition 
.(Weakness, yes), is successful as well, since the resulting rule 

. (T emperature, very_high) → (F lu, yes)

covers only case 1. 
In a similar way, the remaining rules are induced. The final rule set, induced by 

LEM1, is 
. (T emperature, very_high) → (F lu, yes),

. (Nausea, yes) → (F lu, yes),

. (T emperature, high) & (Weakness, yes) → (F lu, yes),

. (Weakness, no) & (Nausea, no) → (F lu, no),

. (T emperature, normal) & (Nausea, no) → (F lu, no).

For Table 1, the second global covering is 

. {T emperature, Headache, Weakness}.

3.2 LEM2 Algorithm 

An idea of blocks of attribute–value pairs is used in the rule induction algorithm 
LEM2 (Learning from Examples Module, version 2), another component of LERS. 
The option LEM2 of LERS is most frequently used since—in most cases—it gives 
better results. LEM2 explores the search space of attribute–value pairs. Its input 
data file is a lower or upper approximation of a concept (for definitions of lower
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and upper approximations of a concept, see, e.g., [5]), so its input data file is always 
consistent. In general, LEM2 computes a local covering and then converts it into a 
rule set. We will quote a few definitions to describe the LEM2 algorithm [2, 4]. 

For an attribute–value pair .(a, v) = t , a  block of t , denoted by . [t], is a set of  
all cases from U such that attribute a has value v. Let  B be a nonempty lower or 
upper approximation of a concept represented by a decision–value pair .(d,w). Set 
B depends on a set T of attribute–value pairs .t = (a, v) if and only if 

. ∅ �= [T ] =
⋂

t∈T
[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T , and no proper 
subset . T ′ of T exists such that B depends on . T ′. Let . T be a nonempty collection of 
nonempty sets of attribute–value pairs. Then . T is a local covering of B if and only 
if the following conditions are satisfied: 

(1) Each member T of . T is a minimal complex of B. 
(2) .

⋃
t∈T[T ] = B, and 

. T is minimal, i.e., . T has the smallest possible number of members. 

The procedure LEM2 is presented below. 

Procedure LEM2 
(input: a set  B, 
output: a single local covering T of set B); 
begin 

G := B; 
T := ∅; 
while G �= ∅  

begin 
T := ∅; 
T (G)  := {t |[t] ∩  G �= ∅}  ; 
while T = ∅  or [T ] �⊆ B 

begin 
select a pair t ∈ T (G)  such that |[t] ∩  G| is 
maximum; if a tie occurs, select a pair t ∈ T (G)  

with the smallest cardinality of [t]; 
if another tie occurs, select first pair; 
T := T ∪ {t} ; 
G := [t] ∩ G ; 
T (G)  := {t |[t] ∩  G �= ∅}; 
T (G)  := T (G) − T ; 
end {while} 

for each t ∈ T do 
if [T − {t}] ⊆ B then T := T − {t}; 

T := T ∪ {T };
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G := B − ∪T ∈T[T ]; 
end {while}; 
for each T ∈ T do 

if
⋃

S∈T−{T }[S] =  B then T := T − {T }; 
end {procedure}. 

For a set X, . |X| denotes the cardinality of X. 
The first step of the algorithm LEM2 is to compute all 
attribute–value pair blocks. For Table 1, these blocks are 
. [(T emperature, very_high)] = {1},
. [(T emperature, high)] = {2, 5, 6},
. [(T emperature, normal)] = {3, 4, 7},
. [(Headache, yes)] = {1, 2, 4},
. [(Headache, no)] = {3, 5, 6, 7},
. [(Weakness, yes)] = {1, 4, 5, 7},
. [(Weakness, no)] = {2, 3, 6},
. [(Nausea, no)] = {1, 3, 5, 6, 7},
. [(Nausea, yes)] = {2, 4}.
Let us induce rules for the concept {1, 2, 4, 5}. Hence, .B = G = {1, 2, 4, 5}. 

The set .T (G) of all relevant attribute–value pairs is 

. {(T emperature, very_high), (T emperature, high),
(T emperature, normal), (Headache, yes),

(Headache, no), (Weakness, yes),

(Weakness, no), (Nausea, no), (Nausea, yes)}.

The next step is to identify attribute–value pairs .(a, v) with the largest 
.|[(a, v)] ∩ G|. For two attribute–value pairs from .T (G), .(Headache, yes) and 
(Weakness, yes), the cardinality of the set .|[(a, v)] ∩ G| is equal to three. The 
next criterion is the size of the attribute–value pair block, this size is smaller for 
.(Headache, yes) than for .(Weakness, yes), so we select .(Headache, yes). 
Besides, .[(Headache, yes)] ⊆ B, so  .(Headache, high) is the first minimal 
complex of G. 

The new set G is equal to .B[(Headache, yes)] = {1, 2, 4, 5} − {1, 2, 4} = {5}. 
A new  set .T (G) is equal to 

. {(T emperature, high), (Headache, no), (Weakness, yes), (Nausea, no)}.

This time the first criterion, the largest .|[(a, v)]∩G|, identifies all four attribute– 
value pairs. The second criterion, the size of the attribute–value block, selects 
.(T emperature, .high). However,
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. [(T emperature, high)] = {2, 5, 6} �⊆ B,

so we have to go through an additional iteration of the internal loop. The next 
candidates are .(Headache, no) and .(Weakness, yes), since for both of these 
attribute–value pairs the sizes of their blocks are equal to four. On the basis of 
heuristics, we will select .(Headache, no). But  

. [(T emperature, high)] ∩ [(Headache, no)] = {5, 6} �⊆ B = {1, 2, 4, 5},

so we have to add .(Weakness, yes)] as well. This time 

. [(T emperature, high)] ∩ [(Headache, no)] ∩ [(Weakness, yes)] =
{5} ⊆ B = {1, 2, 4, 5},

so our candidate for a minimal complex is the set 

. {(T emperature, high), (Headache, no), (Weakness, yes)}.

We have to run the following part of the LEM2 algorithm: 

for each t ∈ T do 
if [T − {t}] ⊆ B then T := T − {t}; 

As a result, the second minimal complex is identified: 

. {(T emperature, high), (Weakness, yes)}.

Eventually, the local covering of .B = {1, 2, 4, 5} is the set 

. {{(Headache, yes)}, {(T emperature, high), (Weakness, yes)}}.

The complete rule set, induced by LEM2, is 
. (Headache, yes) → (F lu, yes),

. (T emperature, high) & (Weakness, yes) → (F lu, yes),

. (T emperature, normal) & (Headache, no) → (F lu, no),

. (Headache, no) & (Weakness, no) → (F lu, no).

Obviously, in general, rule sets induced by LEM1 differ from rule sets induced by 
LEM2 from the same data sets. Additionally, we may trace rule induction by LEM2 
for the concept {1, 2, 4, 5} using Tables 6 and 7. The corresponding comments are: 

1. The set G = {1, 2, 4, 5}. The best attribute–value pairs t , i.e., with the largest 
cardinality of the intersection of [t] and G (presented in the third column of 
Table 6), are (Headache, yes) and (Weakness, yes). The size of the attribute–value 
block is smaller for (Headache, yes), so this pair is selected (bulleted). Also, 
[(Headache, yes)] = {1, 2, 4} . ⊆ {1, 2, 4, 5} =  B; hence, this rule is complete.
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Table 6 Computing a local 
covering for the concept 
[(Flu, yes)], part I 

.(a, v) = t .[(a, v)] {1, 2, 4, 5}  

(Temperature, very_high) {1} {1} 

(Temperature, high) {2, 5, 6} {2, 5} 

(Temperature, normal) {3, 4, 7} {4} 

(Headache, yes) {1, 2, 4} {1, 2, 4}• 

(Headache, no) {3, 5, 6, 7} {5} 

(Weakness, yes) {1, 4, 5, 7} {1, 4, 5} 

(Weakness, no) {2, 3, 6} {2} 

(Nausea, no) {1, 3, 5, 6, 7}  {1, 5} 

(Nausea, yes) {2, 4} {2, 4} 

Comments 1 

Table 7 Computing a local covering for the concept [(Flu, yes)], part II 

.(a, v) = t .[(a, v)] {5} {5} {5} 

(Temperature, very_high) {1} .− .− . −
(Temperature, high) {2, 5, 6} {5}• .− . −
(Temperature, normal) {3, 4, 7} .− .− . −
(Headache, yes) {1, 2, 4} .− .− . −
(Headache, no) {3, 5, 6, 7} {5} {5}• . −
(Weakness, yes) {1, 4, 5, 7} {5} {5} {5}• 

(Weakness, no) {2, 3, 6} .− .− . −
(Nausea, no) {1, 3, 5, 6, 7} {5} {5} {5} 

(Nausea, yes) {2, 4} .− .− . −
Comments 2 3 4 

2. The new set G = .B− [T ] = {1, 2, 4, 5} . − {1, 2, 4} = {5}. There are four relevant 
attribute–value pairs. For (Temperature, high), cardinality of [t] is the  smallest  
(and equal to 3), so we select this attribute–value pair. This time {2, 5, 6} . �⊆ {1, 
2, 4, 5}, so we need another iteration of the LEM2 algorithm. 

3. There is a tie between cardinalities of blocks of attribute–value pairs for (Headache, 
no) and (Weakness, yes). We select heuristically the top pair (Headache, no). 
However, [(Temperature, high)] . ∩ [(Headache, no)] = {5, 6} . �⊆ {1, 2, 4, 5};  
hence, we need to look for the next t . 

4. The pair (Weakness, yes) is the best choice, and [(Temperature, high)] . ∩ [(Headache, 
no)] . ∩ [(Weakness, yes)] = {5}, so we identified three candidates for the second 
rule: (Temperature, high), (Headache, no), and (Weakness, yes). It is obvious that 
(Temperature, high) is a redundant condition.
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3.3 MLEM2 Algorithm 

The MLEM2 algorithm (Modified LEM2) may be used for rule induction from data 
sets with numerical attributes and missing attribute values [6]. We will present the 
MLEM2 algorithm that may be applied to numerical attributes. Table 3 presents 
an example of such a data set. First, for every numerical attribute, its domain is 
sorted. The cutpoints are selected as means of any two consecutive values of the 
sorted attribute. For each cutpoint c, two blocks are created, the first block contains 
all cases where values of the numerical attribute are smaller than c, and the second 
block contains remaining cases. Once such blocks are computed, rule induction in 
MLEM2 is conducted the same way as in LEM2. Tables 8 and 9 present computation 
of the local covering for the concept [(Flu, yes)]. The corresponding rules are 

. (Headache, yes) → (F lu, yes),

. (T emperature, 38.2..40.2) & (T emperature, 36.6..39.7) → (F lu, yes).

The second rule may be presented as follows: 
. (T emperature, 38.2..39.7) → (F lu, yes).

Time complexity of the rule induction algorithms LEM1, LEM2, and MLEM2, 
in the worst case is O.(m2n2), where m is the number of cases and n is the number 
of attributes [7]. 

3.4 AQ Algorithm 

Another rule induction algorithm, developed by R. S. Michalski and his collabora-
tors in the early seventies, is an algorithm called AQ. Many versions of the algorithm 
have been developed, under different names [12, 13]. 

Table 8 Computing a local 
covering for the concept 
[(Flu, yes)], part I 

.(a, v) = t .[(a, v)] {1, 2, 4, 5}  

(Temperature, 36.6..36.7) {4} {4} 

(Temperature, 36.7..40.2) {1, 2, 3, 5, 6, 7}  {1, 2, 5} 

(Temperature, 36.6..38.2) {3, 4, 7} {4} 

(Temperature, 38.2..40.2) {1, 2, 5, 6} {1, 2, 5} 

(Temperature, 36.6..39.7) {3, 4, 5, 7} {4, 5} 

(Temperature, 39.7..40.2) {1, 2, 6} {1, 2} 

(Temperature, 36.6..40) {2, 3, 4, 5, 6, 7}  {2, 4, 5} 

(Temperature, 40..40.2) {1} {1} 

(Headache, yes) {1, 2, 4} {1, 2, 4}• 

(Headache, no) {3, 5, 6, 7} {5} 

(Weakness, yes) {1, 4, 5, 7} {1, 4, 5} 

(Weakness, no) {2, 3, 6} {2} 

(Nausea, no) {1, 3, 5, 6, 7} {1, 5} 

(Nausea, yes) {2, 4} {2, 4}
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Table 9 Computing a local 
covering for the concept 
[(Flu, yes)], part II 

.(a, v) = t .[(a, v)] {5} {5} 

(Temperature, 36.6..36.7) {4} .− . −
(Temperature, 36.7..40.2) {1, 2, 3, 5, 6, 7}  {5} . −
(Temperature, 36.6..38.2) {3, 4, 7} .− . −
(Temperature, 38.2..40.2) {1, 2, 5, 6} {5}• . −
(Temperature, 36.6..39.7) {3, 4, 5, 7} {5} {5}• 

(Temperature, 39.7..40.2) {1, 2, 6} .− . −
(Temperature, 36.6..40) {2, 3, 4, 5, 6, 7}  {5} {5} 

(Temperature, 40..40.2) {1} .− . −
(Headache, yes) {1, 2, 4} .− . −
(Headache, no) {3, 5, 6, 7} {5} {5} 

(Weakness, yes) {1, 4, 5, 7} {5} {5} 

(Weakness, no) {2, 3, 6} .− . −
(Nausea, no) {1, 3, 5, 6, 7} {5} {5} 

(Nausea, yes) {2, 4} .− . −

Let us start by quoting some definitions from [12, 13]. Let A be the set of all at-
tributes, 
.A = {A1, A2, . . . , Ak}. A  seed is a member of the concept, i.e., a positive case. 
A selector is an expression that associates a variable (attribute or decision) to a 
value of the variable, e.g., a negation of value, a disjunction of values, etc. A com-
plex is a conjunction of selectors. A partial star .G(e|e1) is a set of all complexes 
describing the seed .e = (x1, x2, . . . , xk) and not describing a negative case . e1 =
(y1, y2, . . . , yk). Thus, the complexes of .G(e|e1) are conjunctions of selectors of 
the form .(Ai,¬yi), for all i such that .xi �= yi . A  star .G(e|F) is constructed from 
all partial stars .G(e|ei), for all .ei ∈ F , and by conjuncting these partial stars by 
each other, using absorption law to eliminate redundancy. For a given concept C, 
a cover is a disjunction of complexes describing all positive cases from C and not 
describing any negative cases from .F = U − C. 

The main idea of the AQ algorithm is to generate a cover for each concept by 
computing stars and selecting from them single complexes to the cover. 

For the example from Table 1, and concept .C = {1, 2, 4, 5} described by (Flu, 
yes), set F of negative cases is equal to 3, 6, 7. A seed is any member of C, say that 
it is case 1. Then the partial star .G(1|3) is equal to 

. {(T emperature,¬normal), (Headache,¬no), (Weakness,¬no)}.

Obviously, partial star .G(1|3) describes negative cases 6 and 7. The partial star 
.G(1|6) equals 

. {(T emperature,¬high), (Headache,¬no), (Weakness,¬no)}

The conjunct of .G(1|3) and .G(1|6) is equal to
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. {(T emperature, very_high),
(T emperature,¬normal) & (Headache,¬no),

(T emperature,¬normal) & (Weakness,¬no),

(T emperature,¬high) & (Headache,¬no),

(Headache,¬no),

(Headache,¬no) & (Weakness,¬no),

(T emperature,¬high) & (Weakness,¬no),

(Headache,¬no) & Weakness,¬no),

(Weakness,¬no)},

and after using the absorption law, this set is reduced to the following set 
.G(1|{3, 6}): 

. {(T emperature, very_high), (Headache¬no), (Weakness,¬no)}.

The preceding set describes negative case 7. The partial star .G(1|7) is equal to 

. {(T emperature,¬normal),Headache,¬no)}.

The conjunct of .G(1|{3, 6}) and .G(1|7) is 

. {(T emperature, very_high),
(T emperature, very_high) & (Headache,¬no),

(T emperature,¬normal) & Headache,¬no),

(Headache,¬no),

(T emperature,¬normal) & (Weakness,¬no),

(Headache,¬no) & (Weakness,¬no)}.

The above set, after using the absorption law, is already a star . G(1|F)

. {(T emperature, very_high),
(Headache,¬no),

(T emperature,¬normal) & (Weakness,¬no)}.

The first complex describes only one positive case 1, while the second complex 
describes three positive cases: 1, 2, and 4. The third complex describes two positive 
cases: 1 and 5. Therefore, the complex
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. (Headache,¬no)

should be selected to be a member of the star of C. The corresponding rule is 

. (Headache,¬no) → (F lu, yes).

If rules without negation are preferred, the preceding rule may be replaced by the 
following rule: 

. (Headache, yes) → (F lu, yes).

The next seed is case 5, and the partial star .G(5|3) is the following set 

. {(T emperature,¬normal), (Weakness,¬no)}.

The partial star .G(5|3) covers cases 6 and 7. Therefore, we compute .G(5|6), 
equal to 

. {(Weakness,¬no)}.

A conjunct of .G(5|3) and .G(5|6) is the following set: 

. {(T emperature,¬normal) & (Weakness,¬no), (Weakness,¬no)}.

After simplification, the set .G(5|{3, 6}) equals 

. {Weakness,¬no)}.

The above set covers case 7. The set .G(5|7) is equal to 

. {(T emperature,¬normal)}.

Finally, the partial star .G(5|{3, 6, 7}) is equal to 

. {(T emperature,¬normal) & (Weakness,¬no)},

so the second rule describing concept {1, 2, 4, 5} is 

.(T emperature,¬normal) & (Weakness,¬no) → (F lu, yes).
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It is not difficult to see that the following rules describe the second concept from 
Table 1: 

. (T emperature,¬high) & (Headache,¬yes) → (F lu, no),

. (Headache,¬yes) & (Weakness,¬yes) → (F lu, no).

Note that the AQ algorithm demands computing conjuncts of partial stars. In the 
worst case, time complexity of this computation is .O(nm), where n is the number of 
attributes and m is the number of cases. The authors of AQ suggest using the param-
eter MAXSTAR as a method of reducing the computational complexity. According 
to this suggestion, any set, computed by conjunction of partial stars, is reduced in 
size if the number of its members is greater than MAXSTAR. Obviously, the quality 
of the output of the algorithm is reduced as well. 

4 Classification Systems 

Rule sets, induced from data sets, are used mostly to classify new, unseen cases. 
Such rule sets may be used in rule-based expert systems. 

There is a few existing classification systems, e.g., associated with rule induction 
systems LERS or AQ. A classification system used in LERS is a modification of the 
well-known bucket brigade algorithm [1, 8, 18]. In the rule induction system AQ, 
the classification system is based on a rule estimate of probability [13, 12]. Some 
classification systems use a decision list, in which rules are ordered, and the first 
rule that matches the case classifies it [17]. In this section, we will concentrate on a 
classification system associated with LERS. 

The decision to which concept a case belongs is made on the basis of three fac-
tors: strength, specificity, and support. These factors are defined as follows: strength 
is the total number of cases correctly classified by the rule during training. Specificity 
is the total number of attribute–value pairs on the left-hand side of the rule. The 
matching rules with a larger number of attribute–value pairs are considered more 
specific. The third factor, support, is defined as the sum of products of strength and 
specificity for all matching rules indicating the same concept. The concept C for 
which the support, i.e., the following expression 

. 

∑

matching rules r describing C

Strength(r) ∗ Specif icity(r)

is the largest is the winner and the case is classified as being a member of C. 
In the classification system of LERS, if complete matching is impossible, all par-

tially matching rules are identified. These are rules with at least one attribute–value 
pair matching the corresponding attribute–value pair of a case. For any partially 
matching rule r , the additional factor, called Matching_factor (r), is computed. 
Matching_factor (r) is defined as the ratio of the number of matched attribute–value
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pairs of r with a case to the total number of attribute–value pairs of r . In partial 
matching, the concept C for which the following expression is the largest 

. 

∑
partially matching

rules r describing C

Matching_f actor(r) ∗ Strength(r)

∗ Specif icity(r)

is the winner and the case is classified as being a member of C. 

5 Validation 

The most important performance criterion of rule induction methods 
is the error rate. A complete discussion on how to evaluate the error rate from 

a data set is contained in [19]. If the number of cases is less than 100, the leaving-
one-out method is used to estimate the error rate of the rule set. In leaving-one-out, 
the number of learn-and-test experiments is equal to the number of cases in the 
data set. During the i-th experiment, the i-th case is removed from the data set, a 
rule set is induced by the rule induction system from the remaining cases, and the 
classification of the omitted case by rules produced is recorded. The error rate is 
computed as 

. 
total number of misclassif ications

number of cases
.

On the other hand, if the number of cases in the data set is greater than or equal to 
100, the ten-fold cross-validation will be used. This technique is similar to leaving-
one-out in that it follows the learn-and-test paradigm. In this case, however, all cases 
are randomly re-ordered, and then a set of all cases is divided into ten mutually 
disjoint subsets of approximately equal size. For each subset, all remaining cases 

are used for training, i.e., for rule induction, while the subset is used for testing. 
This method is used primarily to save time at the negligible expense of accuracy. 

Ten-fold cross-validation is commonly accepted as a standard way of validating 
rule sets. However, using this method twice, with different preliminary random re-
ordering of all cases, yields—in general—two different estimates for the error rate 
[5]. 

For large data sets (at least 1000 cases), a single application of the train-and-test 
paradigm may be used. This technique is also known as holdout [19]. Two thirds of 
cases should be used for training and one third for testing.
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6 Advanced Methodology 

Some more advanced methods of machine learning in general and rule induction 
in particular were discussed in [3]. Such methods include combining a few rule 
sets with associated classification systems, created independently, using different 
algorithms, to classify a new case by taking into account all individual decisions and 
using some mechanisms to resolve conflicts, e.g., voting [10]. Another important 
problem is scaling up rule induction algorithms. Yet another important problem is 
learning from imbalanced data sets [9], where some concepts are extremely small. 
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Nearest-Neighbor Methods: A Modern 
Perspective 

Aryeh Kontorovich and Samory Kpotufe 

1 Introduction 

Given the ancient origins of nearest-neighbor-based prediction,1 it is perhaps 
surprising that this seemingly naive approach remains competitive in some cases 
against the state-of-the-art techniques [9, 12, 48, 62]. Even a cursory historical 
account of NN methods would be outside of the scope of this chapter, and we 
recommend that the reader consults the excellent recent monographs [8, 12] as well  
as more classic texts [22, 35] for an exhaustive survey. Rather, our scope narrowly 
will focus on providing the data science practitioner with an overview of the most 
recent NN-based algorithms, as well as brief synopses of their runtimes, underlying 
assumptions and convergence guarantees. 

Nearest-neighbor methods are nonparametric, in the sense that they rely on 
minimal assumptions on the data, namely, assuming only that “nearby points are 
likely to have similar labels.” 

The k-NN classifier and its variants are sufficiently flexible as to be able to 
learn any learnable dichotomy, in a well-defined sense. (The precise property 
is known as universal Bayes consistency, see below.) As the reader might well 
expect, learning the class of, say, all circles is much easier than learning arbitrary 
unstructured decision boundaries (see Fig. 1). An easy no-free-lunch theorem [58, 

1 Pelillo [49] traces the 1-NN method to Abū ‘Alı̄ al-H. asan ibn al-H. asan ibn al-Haytham 
(Alhazen)’s book Kitāb al-Manāz. ir (“Book of Optics”), circa 1030. 
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Fig. 1 Structured vs. 
unstructured decision 
boundaries (image on the 
right is based on [56]) 

Chapter 5] shows that this bias–complexity tradeoff is an inherent property of 
learnability: If one only needs to learn simple dichotomies, then a small number of 
examples will suffice, and conversely, arbitrarily complex dichotomies can require 
arbitrarily large sample sizes. Standard results based on VC theory (see, e.g., 
[58]) show that learning a sphere in d dimensions requires .O(d) examples. On 
the other hand, without additional smoothness assumptions, learning unstructured 
dichotomies such as in Fig. 1 requires roughly . 2d examples; this is the infamous 
curse of dimensionality. 

This chapter aims at giving a high-level overview of modern metric-space 
techniques for classification and regression. Our goal is to provide an accessible, 
practically oriented survey, with pointers to the most recent literature on the subject. 

1.1 Metric Spaces 

NN methods fall under the category of proximity-based, and as such, they require a 
basic notion of distance. The latter can be formalized in several ways, perhaps the 
most natural being in terms of a metric. 

Definition 1 A metric space .(X, ρ) is a set . X endowed with a metric . ρ : X2 →
[0,∞), satisfying the three axioms: (i) positivity, .ρ(x, x′) = 0 ⇐⇒ x = x′, 
(ii) symmetry, .ρ(x, x′) = ρ(x′, x), (iii) triangle inequality, . ρ(x, x′) ≤ ρ(x, x′′) +
ρ(x′, x′′) for all .x, x′, x′′ ∈ X. 

Relaxing positivity to allow .ρ(x, x′) = 0 for .x 	= x′ yields a pseudo-metric. 
Relaxing symmetry to allow .ρ(x, x′) 	= ρ(x′, x) yields a quasi-metric [65]. 
Allowing violations of the triangle inequality yields a semi-metric [66]. 

We warn the reader that these definitions are not entirely standard in the 
literature; our choice was based on the earliest sources we were able to locate. 

Pseudo-metrics behave very similarly to ordinary metrics, and indeed, by 
collapsing all the .x′ ∈ X for which .ρ(x, x′) = 0 into an equivalence class, we 
recover the usual metric space over the equivalence classes (which may now be 
considered as points). Quasi- and semi-metrics, however, behave in ways starkly 
distinct from metrics, and very few learning-theoretic results are known for these. 
Two recent works exploring these venues include [29, 31]; these also contain other
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references to the mathematical behavior of these metric spaces’ more exotic cousins. 
This chapter will focus exclusively on metric spaces. 

Definition 2 In any metric space .(X, ρ), the (closed) ball center at .x ∈ X with 
radius .r ≥ 0 is defined as .B(x, r) := {

x′ ∈ X : ρ(x, x′) ≤ r
}
. For .A ⊂ X, we write 

.B(A, r) to denote the r-envelope of A, namely .∪x∈AB(x, r). The diameter of . X is 
the largest distance between any pair of points: .diam(X) = supx,x′∈X ρ(x, x′). 

Definition 3 (. �p Norms) For .X = R
d and .p ∈ [1,∞), the . �p norm is defined by 

.‖x‖p
p = ∑

i∈[d] |xi |p. For .p = ∞, we define .‖x‖∞ = maxi∈[d] |xi |. Any norm . ‖·‖
induces a metric via .ρ(x, x′) = ∥∥x − x′∥∥. 

Assuming that our data reside in a metric space is less restrictive than 
requiring vectorial features. One can always impose a metric over a feature 
space (say, the Euclidean one), while some metrics are not induced by any 
norm. 

Consider images. Although these can be naively represented as coordinate vec-
tors in . Rd , the Euclidean (more generally, . �p) distance between the representative 
vectors does not correspond well to the one perceived by human vision. Instead, the 
earthmover distance (EMD) is commonly used in vision applications [53]; in [27], 
a nearest-neighbor classifier was reported to achieve a .13% error on images using 
EMD, but a much worse .39% error using the Euclidean distance. Yet representing 
earthmover distances using any fixed . �p norm unavoidably introduces very large 
inter-point distortion [47], potentially corrupting the data geometry before the 
learning process has even begun. Nor is this issue mitigated by kernelization, as 
kernels necessarily embed the data in a Hilbert space, again implying the above 
distortion—and so an approach of this type is ad hoc, precluding a principled 
treatment of non-Euclidean data. A similar issue arises for strings: these can be 
naively treated as vectors endowed with different . �p metrics, but a much more 
natural metric over strings is the edit distance, which is similarly known to be 
strongly non-Euclidean [2]. 

Thus, in some sense, the NN methods we shall discuss are most interesting 
and relevant in the case of non-Euclidean—and even non-vectorial—metrics. 
The supremely important question of how to choose an appropriate metric 
for a given problem is beyond our scope. At some point, in any learning 
problem, one must appeal to domain knowledge, based on which features, 
generative models, and yes, metrics are suggested. Nor can there be any single 
“best” metric to use in every case; this is entailed by the classic no-free-lunch 
theorem, which states that no learning algorithm can uniformly outperform 
every other one [58, Theorem 5.1].
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Since we are going to be discussing metric spaces more general than the 
familiar Euclidean space .(Rd , ‖·‖2), we will generalize the notion of dimension 
appropriately. While numerous definitions of dimension have been proposed for 
general metric spaces, for algorithmic purposes, the doubling dimension is by far 
the most common one (starting, apparently, with [14]). 

Definition 4 (Doubling Dimension) Suppose that .(X, ρ) is a metric space such 
that every ball of radius b can be covered by N balls of radius . b/2; moreover, let 
.N = N(X, ρ) be the smallest such number. The doubling dimension of .(X, ρ) is 
defined as .ddim(X, ρ) = log2 N . 

It is straightforward to show that .ddim(Rd , �p) = d + O(1) for all d and p. When 
the earthmover distance (EMD, mentioned above) is computed over multisets of size 
k, its doubling dimension is .O(k log k) [27, Lemma 5]. A metric commonly used 
in the context of time series is edit distance with real penalty (ERP) [13]. When 
restricted to k-sparse time-series vectors, ERP has doubling dimension . O(k log k)

[27, Lemma 7]. 

Definition 5 For . γ > 0, a .γ -cover of a metric space .(X, ρ) is a set .A ⊂ X such 
that .B(A, γ ) ⊇ X (in words: the .γ -envelope of A contains all of . X). A .γ -packing 
of . X is an .A ⊂ X that is .γ -separated: for distinct .x, x′ ∈ A, we have .ρ(x, x′) > γ . 
Finally, a .γ -net of . X is a set A that is simultaneously a covering and a packing; as 
such, it is readily verified to be a minimal cover and a maximal packing.2 

In a doubling space, the size of any .γ -net is bounded by . 
(

2diam(X)
γ

)ddim(X)

[27]. 

1.2 Learning Framework 

In learning-theoretic terminology [46], our instance space will always be some 
metric space .(X, ρ), often a Euclidean metric for illustration. Additionally, we have 
a label space . Y, which will be either a discrete set of categories (for classification) or 
a subset of . R, for regression. We assume a joint distribution . D over .X×Y, unknown 
to the learner; this is the standard and natural agnostic learning setting. The learner 
receives a sequence of n instance–label pairs, .(Xi, Yi), drawn i.i.d. from . D, based 
on which he constructs a predictor (i.e., classifier or regressor) .f̂ : X → Y. A  loss 
function .� : Y2 → [0,∞) quantifies the quality of a prediction. For classification, 
the zero-one loss .�(y, y′) = 1

[
y 	= y′] is typically chosen; for regression, the 

square loss .�(y, y′) = (y − y′)2 is common. The risk of any .g : X → Y is defined 
as

2 Minimal/maximal in the sense that no points can be added to (resp., removed from) A without 
violating the covering (resp., packing) property. 
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. R(g) = E
(X,Y )∼D

[�(g(X), Y )].

A minimizer . f ∗ of .R(·) over all g is called a Bayes-optimal predictor, and its risk 
.R∗ := R(f ∗) is called the Bayes-optimal risk. The learning algorithm mapping 
samples to predictors is said to be Bayes-consistent if .R(f̂ ) → R∗ as .n → ∞.3 We 
also define the empirical risk of a predictor, .Rn(g) = 1

n

∑n
i=1 �(g(Xi), Yi). Finally, 

the excess risk is .R(g) − R∗. 

1.2.1 Consistency and Typical Rates 

Although the 1-NN classifier is not in general Bayes-consistent [15], taking a 
majority vote among the k-nearest neighbors does guarantee Bayes consistency, 
provided that k increases appropriately in sample size [59, 20, 69]. 

Given training data .(Xi, Yi)i∈[n], one evaluates the k-NN classifier .gk−NN at a 
test point x by sorting4 the data in increasing order of distance from x, say as 
.(X(1), Y(1)), (X(2), Y(2)), . . . , (X(n), Y(n)). Only the first k pairs are considered, and 
among these, the majority label5 is predicted. See Eqs. 1 and 2 for more formal 
definitions. 

Let k be fixed for now. For metric spaces with finite diameter and doubling 
dimension d, under some “niceness” assumptions on the distribution, the expected 
excess risk of the k-NN classifier decays as .O(R∗/

√
k + (k/n)1/d) ([8, 22] 

for Euclidean spaces and [11] for doubling metrics). Analogous rates hold for 
regression under the . �2 metric. See Sect. 2 for a more in-depth discussion of the 
various aspects of a data distribution, metric choice, and the number of neighbors 
that affect performance in regression and classification. 

Since .R∗ and other distribution-dependent parameters are unknown to the 
learner, these bounds provide the practitioner neither with estimates of the empirical 
risk .Rn nor a method for choosing k; the latter is achieved in practice via cross-
validation. Any of the approximate-NN techniques mentioned in Sect. 1.3 can 
be used to speed up k-NN evaluation (with some pre-processing cost). Some 
of these approximate-NN methods maintain Bayes consistency and even the risk 
convergence rate (or nearly so), see, e.g., [23, 68].

3 Our definition was not rigorous since the mode of convergence was not specified; see [38] for a  
rigorous definition as well as a complete characterization of the metric spaces that admit such a 
learner. 
4 The question of how to break ties is handled by various theoretical analyses but almost never 
comes up when processing real-world data, so we shall ignore it here. 
5 or plurality, in the multiclass case. 
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1.3 Computational Efficiency 

Until recently, research on NN-based methods tended to focus somewhat dichoto-
mously on either the statistical or the computational aspects. On the statistical front, 
the most commonly investigated questions involve Bayes consistency and rates of 
convergence under various distributional assumptions [11, 19, 21, 24, 33, 37, 44]. 
In classical k-NN-based learning, the training phase involves choosing the k—the 
number of neighbors—via cross-validation, or might be trivial if we view k as 
fixed (just store the n labeled examples), and brute-force evaluation (searching for 
neighbors among n datapoints) takes time proportional to . nτ , where . τ is the time 
it takes to evaluate .ρ(x, x′). For the . �p metrics, . τ is .O(d), which for large n and d 
results in an expensive evaluation time of .O(nd). 

An orthogonal body of literature developed a host of techniques for fast 
prediction in time considerably better than linear in sample size n. These are the 
so-called fast proximity search procedures whose main aim is to quickly return 
any number of neighbors of a query x out of a database of n training points 
[1, 6, 28, 16, 40, 10, 54]. We especially recommend the comprehensive survey [57]. 

A major bottleneck remains, as the number k of desired neighbors can itself be 
large—e.g., as a function of desired accuracy, unless various data quantization and 
subsampling techniques are employed on top of fast search: here, the idea is to return 
neighbors out of a compressed version of the original dataset. 

These considerations are discussed further in Sects. 3 and 4, including recent 
insights on the types of tradeoffs on accuracy that might be induced by fast 
proximity search and data compression techniques. 

2 Vanilla Nearest-Neighbor Prediction 

Here we consider nearest-neighbor methods for classification and regression. As 
it turns out, classification is quite related to regression (see Sect. 2.1), and we can 
therefore give a combined treatment that yields insights into desirable properties of 
the distance function .ρ(x, x′) and proper choices of k (the number of neighbors). 
These insights then lead to more modern implementations that aim at: (1) improving 
or maintaining prediction accuracy, while (2) decreasing computation time. 

We need a bit of formalism for the discussion that follows. We have assumed 
so far that the input variable X belongs to a space . X endowed with a distance 
function .ρ(x, x′), perhaps a metric (see Sect. 1.1). The problem in either regression 
or classification is to predict the label Y of X, where in regression, Y is assumed to 
be a vector in .Y ⊂ R

L (most often Y is a scalar, i.e., .L = 1), while in classification, 
Y is assumed to take on one of the L possible classes, say .Y .= {1, . . . , L}. 

Given a sample .{(Xi, Yi)}ni=1, the aim is to construct (i.e., learn) a predictor that 
maps any value .x ∈ X to some label .Y ∈ Y, based on (the labels of k) nearest 
neighbors of x in .{Xi}n1. In all that follows, we let .kNN(x) denote the k closest
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datapoints in .{Xi}n1 to x under the distance . ρ. We assume for simplicity that ties 
are broken arbitrarily or that more than k datapoints are returned in .kNN(x) in case 
of ties. In practice, ties usually do not make a big difference as the most important 
choices will be that of . ρ and k. We will henceforth assume that exactly k points are 
returned for any query .x ∈ X. 

Definition 6 (k-NN Regression) Assume .Y ⊂ R
L and that .Y = f (X) + noise for 

some unknown regression function f and unknown noise variable (usually assumed 
independent of X and of 0 mean). A k-NN regressor . f̂k based on n samples is then 
defined as the average Y values of . kNN(x)

.f̂k(x)
.= 1

k

∑

Xi∈kNN(x)

Yi . (1) 

The hope is that .f̂ ≈ f for n sufficiently large; in other words, the regressor 
performs a denoising function. We will later discuss how choices of . ρ and k 
influence the quality of estimation. 

Classification is similar, where we replace the above average by a majority label. 

Definition 7 (k-NN Classification) Let .Y .= {1, . . . , L}. The  k-NN classifier . ĥk is 
then defined as 

.ĥk(x) = Majority Y value over kNN(x). (2) 

As majority are related to averages, we relate . ĥk to . f̂k in the next section, the 
importance being that regression error influences classification performance. 

2.1 A Link Between Regression and Classification 

The classifier . ĥk can be related to its regression counterpart as follows. Again, let the 
labels .Y ∈ Y .= {1, . . . , L}, and now for any label Y corresponding to X, define the 
encoding vector . Ỹ where .Ỹ l = 1{Y = l}. Define the regressor .f̂k(x) as averaging . Ỹ

labels of neighbors of x; in other words, .f̂k(x) is a vector in .RL whose coordinate 
.f̂ l

k (x), .l ∈ [L] is exactly the proportion of label l among the .kNN(x). Thus . ĥk is 

just identifying the maximum coordinate of . f̂k , i.e., 

. ĥk(x) = arg max
l∈[L] f̂

l
k (x).

Note that the regressor .f̂k(x) is estimating the regression function .f (x) ∈ R
L whose 

coordinate .f l(x)
.= P | (Y = l | X = x), where we assume that data are drawn 

from some unknown joint distribution on .X, Y , allowing nondeterministic label 
values Y at any query x. Nondeterminism accounts for mistakes or uncertainty in
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labels, e.g., mistakes or disagreements in labeling objects in images, or uncertain 
treatment effects in medical or financial applications. In the cases where Y is 
deterministic (or nearly so) at any query x, .f l(x) = 1 for the true label l of x 
and otherwise equals 0 for all other coordinates .l 	= l. 

Note that the best possible classification at x, the so-called Bayes classification, 
is given by .h∗(x) = arg maxl∈[L] f l(x), since this choice (the most expected label 
at x) minimizes the classification error (probability of misclassification at x). 

It follows that regression performance influences classification performance. 
However, classification can be much easier than regression in terms of sample 
size required for good performance. 

If .f̂k(x) is close to .f (x), i.e., sample proportions of labels are close to true 
population proportions in the vicinity of a query x, it is then likely that the majority 
label . ĥk generalizes to the best population choice .h∗(x) = arg maxl∈[L] f l(x). 
However, if there is a large margin  between population proportions of labels, e.g., 
.f l(x) = P(Y = 1|x) is large for some l, then this can be quickly discovered with 
few samples without estimating f that well. 

Such fact is used in early analysis and insights on k-NN classification, arguably 
the most common form of prediction task in machine learning applications. In 
fact, one can show that classification error is upper-bounded by regression error, 
suggesting that classification can be at times as hard as regression, but never harder 
(see, e.g., Theorem 6.5 in [18]). In particular, such relation largely drives early 
insights on choices of . ρ and k that lead to best prediction performance for either 
classification or regression. 

2.2 Choice of Distance ρ(x, x′) 

2.2.1 Choices of ρ in Practice 

First, we note that choice of a distance measure . ρ is often interchangeable with 
choices of data representation, e.g., dimension reduction, feature selection, embed-
dings, or more modern representations learned from neural nets. In other words, 
using Euclidean distance after a choice of data representation .x �→ �(x) boils down 
to a choice of distance .ρ(x, x′) = ‖�(x)−�(x′)‖. On the other hand, most common 
distances . ρ, e.g., weighted Euclidean distances .ρ2(x, x′) = (x − x′)�W(x − x′), 
can be reduced to a choice of data representation .�(x) = W 1/2(x − x′). 

Despite this connection between choices of data representation and choices of 
distances . ρ, the two problems tend to be studied separately. In the case of data 
representation, the field of representation learning is concerned with estimating
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data representations .�(x) under which simple classifiers (e.g., linear classifiers, 
nearest neighbors) perform well, ideally across multiple related tasks [5, 51, 60]. 
Quite remarkable in many applications (e.g., computer vision, speech) is the fact 
that generic representations given by layers of neural networks result in the best 
performance achievable by k-NN methods—among other simple classifiers—over 
most other reasonable choices of metrics. There is at the moment no definitive 
explanation for such successful representation, beyond general insights about 
favorable metrics (see rest of this section). 

The area of the so-called metric learning is most directly concerned with 
estimating distances . ρ under which vanilla nearest-neighbor methods perform well. 
For .x ∈ R

d , metric learning generally boils down to optimizing some objective 
.O(W) over all weighted-Euclidean metrics of the form . ρ2(x, x′) = (x−x′)�W(x−
x′), for a PSD matrix W . Generally, the objective .O(W) is a convex surrogate for 
the classification loss of nearest-neighbor methods . f̂k based on . ρ [67, 26, 17, 61]. 
These approaches are somewhat limited by the choice of optimizable metrics such 
as above, at least relative to general representation learning, although there are 
clear situations where weighted-Euclidean metrics are ideal (see below, including 
discussions of Fig. 2). 

2.2.2 Theoretical Insights on Choices of ρ 

To understand desirable properties of the distance .ρ(x, x′), we mainly draw insight 
from regression, since as argued above, good regression performance implies good 
classification performance. As such, we let .f̂k(x) denote the regressor of (1) defined 
over labels .Y ∈ R

L in case of regression, or defined over .Ỹ ∈ R
L in case of 

Fig. 2 Two different distances . ρ on .X ∈ R2 (shown are corresponding balls . B(x, r) .= {x′ : 
ρ(x, x′) ≤ r}). The first is just Euclidean distance .ρ(x, x′) .= ‖x − x′‖, with .B(x, r) given as the 
black circle. The second is the distance along coordinate direction . e1, i.e., .ρ(x, x′) .= |x(1) −x′(1)|. 
The corresponding ball .B(x, r) is given by the more massive gray rectangle. Intuitively, the first 
induces a space of dimension 2, while the second induces a space of lower dimension 1 
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classification (see previous Sect. 2.1). Similarly, we let the unknown regression 
function .f (x) correspond to .E | [Y | x] or .E [Ỹ | x], respectively, for regression or 
classification problems. 

Desirable properties of . ρ are two-fold, corresponding to mitigating the 
sources of error in estimating the regression function .f (x) by .f̂k(x), namely 
errors contributed by the variance and bias of the estimate .f̂k(x). 

Bias and Variance of .f̂k For simplicity, let us view the input variables .{Xi} as fixed 
and only consider the randomness in the output .{Yi}. Then, since .E | [Yi | Xi] (or 
resp., .E [Ỹi | Xi] in classification) equals .f (Xi), we might view .f̂k(x) as estimating 
.E f̂K(x) = 1

k

∑
Xi∈kNN(x) f (Xi), i.e., the average f value among .kNN(x). Let us 

denote this .f̃ (x; kNN(x)), using the notation6 
.f̃ (x, B)

.= E | [f (X) | X ∈ B]. 
Since we expect .f̂k(x) to be close to .f̃ (x; kNN(x)), we can view the error . |f̂k(x) −
f (x)| as the sum of two terms: a so-called variance term . |f̂k(x) − f̃ (x; kNN(x))|
(how well we estimate the average value of f in a neighborhood of x) and a bias 
term .|f̃ (x; kNN(x)) − f (x)| (how close the average value of f in a neighborhood 
of x is to .f (x)). 

This leads to the following desirable properties of . ρ, w.r.t. to the joint distribution 
.DX,Y of the data: 

Under the ideal choice of . ρ, (i) values of f (i.e., expected Y labels) should 
not change much over points . Xi’s that are close to a query x and (ii) many 
datapoints . Xi’s should fall close to typical queries x. 

(i) Closeby points are expected to have similar Y values (low bias). Intuitively, 
nearest-neighbor methods operate under the assumption that expected labels— 
determined by f —do not change much in small neighborhoods of a query x, 
where neighborhoods are determined by the choice of distance . ρ. This can be 
encoded in a variety of ways. 
One way is to require that .f (x) ≈ f (x′) whenever .ρ(x, x′) ≈ 0: these 
are various smoothness assumptions (e.g., Lipschitz or Hölder f ) present in 
traditional analyses of k-NN [34, 58]. 
A second way most directly integrates with nearest-neighbor estimates . f̂k(x)

(which average Y values over neighbors of x). Namely, one requires that the

6 This is an abuse of notation, since the expectation in the case of .f̃ (x; kNN(x)) is over the 
empirical distribution on .{Xi}, but for general .B ⊂ X is over the data distribution . PX . 
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average of f over any small neighborhood of x stays close to .f (x); that is, 
.f (x) is close to .f̃ (x;Br(x))

.= E | [f (X) | X ∈ Br(x)] for neighborhoods 
.Br(x)

.= {x′ : ρ(x, x′) ≤ r}, when r is small [33]. 
(ii) Typical queries x have many close neighbors (low variance . + low bias). The 

estimate .f̂k(x) is being an average over k values, and it is desirable that we can 
choose large k to decrease its variance. However, the larger k, the farther the 
neighbors in .kNN(x) might be from x in .ρ-distance; we therefore want it to be 
that . ρ and the data distribution .DX allow for many neighbors of x that are close 
to x under . ρ. In other words, .DX(B(x, r)) is relatively large for small r . Again  
there are many ways to encode such desired property of .(DX, ρ), all of which 
can be viewed as notions of intrinsic dimension of the pair .(DX, ρ). 
For intuition, consider the fact that the volume of a Euclidean ball . B(x, r)

behaves like .O(rd), where we consider small .r ≈ 0; such volume is largest 
for small values of d. We can hence view the desirables above as requiring that 
the pair .(DX, ρ) induces a low-dimensional data space. This is illustrated in 
Fig. 2. 
In the example of Fig. 2, the metric .ρ(x, x′) .= |x(1) − x′(1)| is the limit of 
weighted Euclidean distances giving small to zero weight to coordinate . e2; such 
distances would typically improve variance over a Euclidean choice (desirable 
(ii)) and would be preferred for instance if the unknown f has little to no 
dependence on . e2 since then . ρ also satisfies (i) whenever the Euclidean distance 
does. 
Finally, we note that recently [11] showed that the two desired properties 
above, (i) and (ii), can be captured at once by relating local changes . |f (x) −
f̃ (x;B(x, r))| to the mass .DX(B(x, r)) of small neighborhoods .B(x, r). 

2.3 Choice of k = k(n) 

Assuming a good distance choice ρ, the choice of number of neighbors k 
is crucial to performance. This is easy to understand by building on the above 
discussion of bias and variance of f̂k: smaller values of k (down to k = 1) ensure 
that nearest neighbors of a query x are as close as possible to x (as permitted by 
ρ) and hence induce small bias but large variance, while large values of k induce
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low variance but potentially high bias. This results in a situation where, while k 
increases, the error | f̂k(x) − f (x)| decreases at first and then increases again when 
bias dominates variance (such behavior is illustrated in the wrapped figure). 

A good choice of k should be made by cross-validation on k ∈ [n]. The best 
possible choice is generally an increasing function of sample size n. 

The right choice of k is affected by the interaction between data distribution 
and choice of ρ. In particular, the following two aspects of a D, ρ  have a strong 
influence. 

Effects of Intrinsic Dimension In higher-dimensional spaces, datapoints tend to 
be disperse, and we therefore expect smaller choices of k to perform better by 
mitigating bias. For instance, suppose D is uniform on a D-dimensional hypercube, 
and then the k-nearest neighbor of a query x is expected to be at distance 
O(k/n)1/D , which grows exponentially with dimension D (a curse of dimension). 

Fortunately, it is often the case that high-dimensional data in RD lie close to 
a smaller d-dimensional space, or could be highly sparse (i.e., most coordinates 
are 0), or as discussed above, the distance ρ might effectively induce a lower-
dimensional space (as in the example of Fig. 2). In these cases, while the data appear 
high-dimensional, nearest-neighbor distances are small, conforming to the intrinsic 
dimension of the problem, and resulting in choices of k with good performance 
tradeoffs. 

Nearest-neighbor methods are adaptive to unknown intrinsic dimension. 

Local Choices of k = k(x, n) It is understood that performance can be further 
improved by choosing k as a function of the query point x; here we cannot pick 
k(x) by cross-validation since we do not observe the error at x. However, many 
approaches have been proposed [4, 24, 37, 45], which aim to balance the variance of 
f̂k(x) using sample-based indicators such as distances to neighbors, the local mass 
of points, and the margin between estimated proportions of classes. Such approaches 
can, however, be relatively more expensive at prediction time (already affected by 
the search for neighbors), since they involve more decisions per query x.
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3 Distributed 1-NN vs. Weighted k-NN 

Prediction time can be expensive with k-NN methods, especially when large k 
is chosen (to improve prediction performance as discussed above). On the other 
hand, 1-NN, i.e., where .k = 1, yields much faster prediction, albeit at the cost 
of decreased accuracy. A simple way to obtain a good tradeoff is to aggregate 
multiple 1-NN predictors, each defined on a random subsample . Si of the original 
data .{(Xi, Yi)}ni=1. For classification, aggregation consists of taking the majority 
of the predicted classes, while for regression we simply take the average of the 
predicted values. The sub-sampled 1-NN predictors can be estimated in parallel 
resulting in fast prediction time with respect to k-NN. The approach, often called 
bagging of 1-NNs, achieves better prediction accuracy than 1-NN, almost as good 
of that of k-NN, as the number of subsamples increases (see Fig. 3). 

The improved accuracy over vanilla 1-NN, almost on par with k-NN, can be 
explained as follows: bagging of 1-NNs can be viewed as a form of weighted k-NN, 
i.e., as the number of subsamples increases, it accounts for all k neighbors of a query 
x but assigns decreasing weights to the farther neighbors. Consider the figure below, 
where a query x is shown along with datapoints in order of distance from x. 

Then, the main insight is that, if N subsamples are used (each of size say .m � n), 
the ith nearest neighbor .X(i) appears as the closest neighbor of x in a proportion . pi

of subsamples, . pi decreasing with i. This is because . pi is essentially the likelihood 
that none of the closer neighbors of x in the initial sample (.X(1), . . . , X(i−1)) appears 
in a random subsample; that is, .pi ≈ (1 − m

n
)i−1, where . m

n
is approximately the 

Fig. 3 Predicting viral tweets 
using aggregate 1-NNs over 
distributed subsamples. The 
vanilla approach is labeled 
above as bagNN, while 
subNN is a variant of [68] 
that denoises the data first 
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likelihood of picking any given datapoint to form a subsample of size m. This  
intuition holds as .N → ∞ as formalized, e.g., in [7, 55]. Further denoising of 
the original data, i.e., replacing labels . Yi by more stable labels . Y ′

i learned in a first 
prediction pass, further improves accuracy over future queries x [68, 50]. 

Rather than using random subsampling, the compression-based approach via .γ -
nets discussed above might yield improved performance. 

4 Compression-Based 1-NN 

An alternative to choosing the subsample randomly, as discussed in Sect. 3, is to  
select it with some explicit “coverage” criterion in mind. In benign cases, it will 
be possible to retain a significantly reduced fraction of the full training sample 
while preserving much of the relevant information in the original sample. A simple, 
intuitive (and, as it turns out, mathematically well-motivated!) way of formalizing 
the quality of a subsample is to examine the accuracy of the 1-NN classifier it 
induces. Indeed, any labeled set of points in a metric space induces a 1-NN classifier 
in the same manner as the full sample would. If this “compressed” classifier achieves 
a high agreement on the full sample (i.e., a low training error), then standard bounds 
in the spirit of Occam’s razor (discussed below) guarantee a good generalization 
performance. 

The problem of computing a minimal subsample of a larger labeled sample 
whose induced 1-NN classifier achieves zero training error was historically known 
as sample condensing. Hart [39] proposed a greedy sample condensing heuristic 
with runtime .O(n3) and no guarantees on optimality (i.e., the relation between the 
obtained compression set size to the optimal one). The runtime was later improved 
by [3] to .O(n2)—and in fact, an extensive research was devoted to studying the 
sample condensing problem [25, 52, 64]—again with no optimality guarantees. This 
problem was shown to be NP-hard [63, 70], and a hardness-of-approximation result 
was given by [30]. The latter paper also gave an algorithm with runtime achieving 
nearly the best possible (assuming .P 	= NP), more on which below.7 

Leveraging the results of [30], a compression-based alternative to k-NN has been 
developed in the series of works [27, 43, 41]. This methodology enjoys a number of 
statistical and computational advantages over the traditional k-NN classifier. Salient 
among these are explicit data-dependent generalization bounds, and considerable 
runtime and memory savings. Informally, a learning algorithm is a compression 
scheme of size . κ if the predictor it constructs is fully determined by some subset 
of . κ labeled examples from the labeled sample; the remaining examples may be 
discarded.8 For example, if running hard SVM on a dataset results in . κ support

7 In a follow-up work, [29] showed that the relaxed problem of finding a small nearly consistent 
compression set is still hard to approximate, under standard complexity assumptions. 
8 Some additional bits of side information are also allowed, see [41, Section 6.1]. 
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vectors, these uniquely define the separating hyperplane. Very roughly speaking, 
any classifier g induced by a compression scheme of fixed size . κ satisfies . R(f ) ≤
Rn(f ) +

√
κ log n

n
with high probability. An exact statement may be found in [32, 

Theorem 2] and a refined “fast rate” version in [29, Theorem 8]. 
Since any choice of . κ labeled examples uniquely determines a 1-NN classifier, 

the challenge is to choose this subset wisely. A fruitful idea for the choice of the 
compression set, pursued in [27, 43, 30, 41] and related works, is that of a .γ -net. 
The latter can always be constructed in time .O(n2) on an n-point sample, but in 
doubling spaces, a runtime of .2O(ddimX)n log 1

γ
can be achieved. The resulting 

compression set, a .γ -net, has size .
(

diam(X)
γ

)O(ddim(X))

. Perhaps surprisingly, it 

turns out that achieving significantly smaller compression sets is NP-hard—so 
.γ -net-based compression is, in some sense, nearly optimal. See [30] for details, 
including algorithms and proofs of the aforementioned claims. One can tune . γ
by cross-validation or by performing a structural risk minimization on a bound 
consisting of a sample error and a complexity term, as in [29]. The compression-
based approach turns out to be more robust than k-NN-based classification, in the 
sense that it is Bayes-consistent for every metric space and every distribution that 
admit any such learner [36, 38, 42]. 
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Support Vector Machines 

Armin Shmilovici 

1 Introduction 

Support vector machines (SVMs) are a set of related methods for supervised learn-
ing, applicable to both classification and regression problems. Since the introduction 
of the SVM classifier over two decades ago (Vapnik 1995), SVM gained popularity 
due to its solid theoretical foundation. The development of efficient implementations 
led to numerous applications (Nayak et al. 2015). 

The support vector learning machine was developed by Vapnik et al. (Scholkopf 
et al. 1995; Scholkopf 1997) to constructively implement principles from statistical 
learning theory (Vapnik 2013). In the statistical learning framework, learning means 
to estimate a function from a set of examples (the training sets). To do this, a learning 
machine must choose one function from a given set of functions, which minimizes 
a certain risk (the empirical risk) that the estimated function is different from the 
actual (yet unknown) function. However, the risk depends on the complexity of the 
set of functions chosen as well as on the training set. Thus, a learning machine 
must find the best set of functions – as determined by its complexity –and the best 
function in that set. Unfortunately, in practice, a bound on the risk is neither easily 
computable, nor very helpful for analyzing the quality of the solution (Vapnik and 
Chapelle 2000). 

Let us assume, for the moment, that the training set is separable by a hyperplane. 
It has been proved (Vapnik 1998) that for the class of hyperplanes, the complexity of 
the hyperplane can be bounded in terms of another quantity, the margin. The  margin  
is defined as the minimal distance of an example to a decision surface. Thus, if we 
bound the margin of a function class from below, we can control its complexity. 
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Support vector learning implements this insight that the risk is minimized when 
the margin is maximized. An SVM chooses a maximum-margin hyperplane that 
lies in a transformed input space and splits the example classes while maximizing 
the distance to the nearest cleanly split examples. The parameters of the solution 
hyperplane are derived from a quadratic programming optimization problem. 

For example, consider a simple separable classification method in multi-
dimensional space. Given two classes of examples clustered in feature space, 
any reasonable classifier hyperplane should pass between the means of the classes. 
One possible hyperplane is the decision surface that assigns a new point to the class 
whose mean is closer to it. This decision surface is geometrically equivalent to 
computing the class of a new point by checking the angle between two vectors – the 
vector connecting the two cluster means and the vector connecting the mid-point on 
that line with the new point. This angle can be formulated in terms of a dot product 
operation between vectors. The decision surface is implicitly defined in terms of 
the similarity between any new point and the cluster mean –- a kernel function. 
This simple classifier is linear in the feature space while in the input domain it is 
represented by a kernel expansion in terms of the training examples. In the more 
sophisticated techniques presented in the next section, the selection of the examples 
that the kernels are centered on will no longer consider all training examples, and 
the weights that are put on each data point for the decision surface will no longer 
be uniform. For instance, we might want to remove the influence of examples that 
are far away from the decision boundary, either since we expect that they will 
not improve the generalization error of the decision function, or since we would 
like to reduce the computational cost of evaluating the decision function. Thus, 
the hyperplane will only depend on a subset of training examples, called support 
vectors. 

There are numerous books and tutorial papers on the theory and practice of SVM 
(Scholkopf and Smola 2002; Cristianini and Shawe-Taylor 2000; Muller et al. 2001; 
Chen et al. 2003; Smola and Scholkopf 2004; Deng et al. 2012). The aim of this 
chapter is to introduce the main SVM models and discuss their main attributes 
in the framework of supervised learning. The rest of this chapter is organized as 
follows: Sect. 2 describes the separable classifier case and the concept of kernels; 
Sect. 3 presents the non-separable case and some related SVM formulations; Sect. 
4 discusses some practical computational aspects; Sect. 5 discusses some related 
concepts and applications; and Sect. 6 concludes with a discussion. 

2 Hyperplane Classifiers 

The task of classification is to find a rule, which based on external observations, 
assigns an object to one of several classes. In the simplest case, there are only 
two different classes. One possible formalization of this classification task is to 
estimate a function f : RN → {−1,+1} using input-output training data pairs 
generated identically and independently distributed (i.i.d.) according to an unknown
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probability distribution P(x, y) of the data (x1, y1), . . . , (xn, yn) ∈ RN × Y, 
Y = {−1,+1} such that f will correctly classify unseen examples (x, y). The test 
examples are assumed to be generated from the same probability distribution as 
the training data. An example is assigned to class +1 if  f (x) ≥ 0 and to class −1 
otherwise. 

The best function f that one can obtain is the one minimizing the expected error 
(risk) – the integral of a certain loss function l according to the unknown probability 
distribution P(x, y) of the data. For classification problems, l is the so-called 0/1 loss 
function: l(f (x), y) = θ (−yf (x)), where θ (z) = 0 for  z < 0 and θ (z) = 1 otherwise. 
The loss framework can also be applied to regression problems where y ∈ R, where 
the most common loss function is the squared loss: l(f (x), y) = (f (x) − y)2. 

Unfortunately, the risk cannot be minimized directly, since the underlying 
probability distribution P(x, y) is unknown. Therefore, we must try to estimate a 
function that is close to the optimal one based on the available information, i.e., 
the training sample and properties of the function class from which the solution f 
is chosen. To design a learning algorithm, one needs to come up with a class of 
functions whose capacity (to classify data) can be computed. The intuition, which 
is formalized in Vapnik (2013), is that a simple (e.g., linear) function that explains 
most of the data is preferable to a complex one (Occam’s razor). 

2.1 The Linear Classifier 

Let us assume for a moment that the training sample is separable by a hyperplane 
(see Fig. 1) and we choose functions of the form 

(w · x) + b = 0 w ∈ RN , b  ∈ R (1) 

corresponding to decision functions 

f (x) = sign ((w · x) + b) (2) 

It has been shown (Vapnik 1995) that, for the class of hyperplanes, the capacity 
of the function can be bounded in terms of another quantity, the margin (Fig. 1). 
The margin is defined as the minimal distance of a sample to the decision surface. 
The margin depends on the length of the weight vector w in Eq. (1): since we 
assumed that the training sample is separable, we can rescale w and b such that 
the points closest to the hyperplane satisfy |(w · xi) + b| =  1 (i.e., obtain the so-
called canonical representation of the hyperplane). Now consider two samples x1 
and x2 from different classes with |(w · x1) + b| =  1 and |(w · x2) + b| =  1, 
respectively. Then, the margin is given by the distance of these two points, measured 

perpendicular to the hyperplane, i.e., .
(

w
‖w‖ · (x1 − x2)

)
= 2

‖w‖ .
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Note: 

=> 

=> 

(w. x1) + b = +1 

w 

(w. x2) + b = −1 

(w.(x1−x2)) = 2 

=(x1−x2).(           )||w|| ||w|| 

x2 

x1 

wyi = −1 

yi = +1 

2 

{x | (w. x) + b = +1} 

{x | (w. x) + b = 0} 

{x | (w. x) + b = −1} 

Fig. 1 A toy binary classification problem: separate balls from diamonds. The optimal hyperplane 
is orthogonal to the shortest line connecting the convex hull of the two classes (dotted), and 
intersects it half way between the two classes. In this case, the margin is measured perpendicular 
to the hyperplane. (Figure taken from Muller et al. (2001)) 

Among all the hyperplanes separating the data, there exists a unique one yielding 
the maximum margin of separation between the classes: 

Max{w,b} min
{
‖x − xi‖ : x ∈ RN ,

(
w · x

))
+ b = 0, i  = 1, . . . n

}
(3) 

To construct this optimal hyperplane, one solves the following optimization 
problem: 

Min{w,b} 
1 

2
‖w‖2 (4) 

Subject toyi · ((w · xi ) + b) ≥ 1, i = 1, . . . , n (5) 

This constraint optimization problem can be solved by introducing Lagrange 
multipliers αi ≥ 0 and the Lagrangian function 

L (w, b,  α) = 
1 

2
‖w‖2 − 

n∑
i=1 

αi (yi · ((w · xi ) + b) − 1) (6) 

The Lagrangian L has to be minimized with respect to the primal variables {w, b} 
and maximized with respect to the dual variables αi. The optimal point is a saddle 
point and we have the following equations for the primal variables: 

∂L 
∂b 

= 0 , ∂L 
∂w = 0 (7)
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which translate into 

n∑
i=1 

αiyi = 0 , w = 
n∑

i=1 
αiyixi (8) 

The solution vector thus has an expansion in terms of a subset of the training 
patterns. The support vectors are those patterns corresponding with the non-zero 
αi, and the non-zero αi are called support values. By the Karush-Kuhn-Tucker 
complimentary conditions of optimization, the αi must be zero for all the constraints 
in (5) which are not met as equality, thus 

αi (yi · ((w · xi ) + b) − 1) = 0 , i  = 1, . . . , n (9) 

and all the support vectors lie on the margin (Figs. 1 and 3) while all the remaining 
training examples are irrelevant to the solution. The hyperplane is completely 
captured by the patterns closest to it. 

For a nonlinear problem like (4) and (5), called a primal problem, under certain 
conditions, the primal and dual problems have the same objective values. Therefore, 
we can solve the dual problem which may be easier than the primal problem. In 
particular, when working in feature space (Sect. 2.3) solving the dual may be the 
only way to train the SVM. By substituting (8) into (6), one eliminates the primal 
variables and arrives at the Wolfe dual (Wolfe 1961) of the optimization problem 
for the multipliers αi: 

Max 
α 

n∑
i=1 

αi − 
1 

2 

n∑
i,j=1 

αiαjyiyj

(
xi · xj

)
(10) 

Subject to αi ≥ 0, i = 1, . . . , n,  
n∑

i=1 
αiyi = 0 (11) 

The hyperplane decision function (2) can now be explicitly written as 

f (x) = sign

(
n∑

i=1 

αiyi (x · xi ) + b

)
(12) 

where b is computed from (9) and from the set of support vectors xi, 
i ∈ I ≡ {i : αi �= 0}. 

b = 
1 

|I |
∑
i∈I 

⎛ 

⎝yi − 
n∑

j=1 

αjyj

(
xi · xj

)
⎞ 

⎠ (13)



98 A. Shmilovici

2.2 The Kernel Trick 

The choice of linear classifier functions seems to be very limited (i.e., likely to 
underfit the data). Fortunately, it is possible to have both linear models and a very 
rich set of nonlinear decision functions by using the kernel trick (Cortes and Vapnik 
1995) with maximum-margin hyperplanes. Using the kernel trick for SVM makes 
the maximum-margin hyperplane be fit in a feature space F. The feature space F 
is a nonlinear map � : RN → F from the original input space, usually of much 
higher dimensionality than the original input space. With the kernel trick, the same 
linear algorithm is worked on the transformed data (�(x1), y1), . . . , ((�(xn), yn)). 
In this way, nonlinear SVMs can make the maximum-margin hyperplane fit in a 
feature space. Figure 2 demonstrates such a case. In the original (linear) training 
algorithm (10), (11), and (12) the data appears in the form of dot products xi · xj. 
Now, the training algorithm depends on the data through dot products in F, i.e., on 
functions of the form �(xi) · �(xj). If there exists a kernel function K such that 
K(xi, xj) = �(xi) · �(xj), we would only need to use K in the training algorithm and 
would never need to explicitly even know what � is. 

Mercer’s condition (Vapnik 2013) tells us the mathematical properties to check 
whether or not a prospective kernel is actually a dot product in some space, but it 
does not tell us how to construct �, or even what F is. Choosing the best kernel 
function is a subject of active research (Scholkopf and Smola 2002; Steinwart 
2003). It was found that to a certain degree different choices of kernels give 
similar classification accuracy and similar sets of support vectors (Scholkopf et al. 
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Fig. 2 The idea of SVM is to map the training data into a higher dimensional feature space via
�, and construct a separating hyperplane with maximum margin there. This yields a nonlinear 
decision boundary in input space. In the following two-dimensional classification example, the 

transformation is � : R2 → R3, .(x1, x2) → (z1, z2, z3) ≡
(
x2
1 ,

√
2x1x2, x2

2

)
. The separating 

hyperplane is visible and the decision surface can be analytically found. (Figure taken from Muller 
et al. (2001))
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Table 1 Commonly used 
kernel functions 

Kernel K(x, xi) 

Radial Basis Function .exp
(−γ ‖x − xi‖2

)
, γ >  0 

Inverse multiquadratic . 1√‖x−xi‖+η

Polynomial of degree d .
(
γ

(
xT · xi

) + η
)d

, γ >  0 

Sigmoidal . tanh
(
γ

(
xT · xi

) + η
)

, γ >  0 

Linear xT · xi 

1995), indicating that in some sense there exist “important” training points which 
characterize a given problem. 

Some commonly used kernels are presented in Table 1. Note, however, that the 
Sigmoidal kernel only satisfies the Mercer’s condition for certain values of the 
parameters and the data. Hsu et al. (2016) advocated the use of the Radial Basis 
Function as a reasonable first choice. 

2.3 The Optimal Margin Support Vector Machine 

Using the kernel trick, replace every dot product (xi · xj) in terms of the kernel K 
evaluated on input patterns xi, xj. Thus, we obtain the more general form of (12): 

f (x) = sign

(
n∑

i=1 

αiyiK (x, xi ) + b

)
(14) 

and the following quadratic optimization problem 

Max 
α 

n∑
i=1 

αi − 
1 

2 

n∑
i,j=1 

αiαjyiyjK
(
xi , xj

)
(15) 

Subject to αi ≥ 0, i = 1, . . . , n,  
n∑

i=1 
αiyi = 0 (16) 

Formulation (15) and (16) is the standard SVM formulation. This dual problem 
has the same number of variables as the number of training variables, while the 
primal problem has a number of variables which depends on the dimensionality of 
the feature space, which could be infinite. Figure 3 presents an example of a decision 
function found with an SVM. 

One of the most important properties of the SVM is that the solution is sparse 
in α, i.e., many patterns are outside the margin area and their optimal αi is zero. 
Without this sparsity property, SVM learning would hardly be practical for large 
data sets.
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Fig. 3 Example of a support 
vector classifier found by 
using a radial basis function 
kernel. Circles and disks are 
two classes of training 
examples. Extra circles mark 
the support vectors found by 
the algorithm. The middle 
line is the decision surface. 
The outer lines precisely meet 
the constraint (16). The 
shades indicate the absolute 
value of the argument of the 
sign function in (14). (Figure 
taken from Chen et al. (2003)) 

3 Non-separable SVM Models 

The previous section considered the separable case. However, in practice, a separat-
ing hyperplane may not exist, e.g., if a high noise level causes some overlap of the 
classes. Using the previous SVMmight not minimize the empirical risk. This section 
presents some SVM models that extend the capabilities of hyperplane classifiers to 
more practical problems. 

3.1 Soft Margin Support Vector Classifiers 

To allow for the possibility of examples violating constraint (5), Cortes and Vapnik 
(1995) introduced slack variables ξ i that relax the hard margin constraints 

yi · ((w · �(xi )) + b) ≥ 1 − ξi , ξi ≥ 0, i  = 1, . . . , n (17) 

A classifier that generalizes well is then found by controlling both the classifier 
capacity (via ‖w‖) and the sum of the slacks .

∑n
i=1ξi , i.e., the number of training 

errors. One possible realization, called C-SVM, of a soft margin classifier is 
minimizing the following objective function
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Minimize 
w,b,ξ 

1 

2
‖w‖2 + C 

n∑
i=1 

ξi (18) 

The regularization constant C > 0 determines the trade-off between the empirical 
error and the complexity term. Incorporating Lagrange multipliers and solving leads 
to the following dual problem: 

Max 
α 

n∑
i=1 

αi − 
1 

2 

n∑
i,j=1 

αiαjyiyjK
(
xi , xj

)
(19) 

Subject to 0 ≤ αi ≤ C, i = 1, . . . , n,  
n∑

i=1 
αiyi = 0 (20) 

The only difference from the separable case is the upper bound C on the Lagrange 
multipliers αi. The solution remains sparse and the decision function retains the 
same form as (14). 

Another possible realization of a soft margin, called ν-SVM (Chen et al. 2003), 
was originally proposed for regression. The rather non-intuitive regularization 
constant C is replaced with another constant ν ∈ [0, 1]. The dual formulation of 
the ν-SVM is the following: 

Max 
α − 

1 

2 

n∑
i,j=1 

αiαjyiyjK
(
xi , xj

)
(21) 

Subject to 0 ≤ αi ≤ 1 
n , i = 1, . . . , n,  

n∑
i=1 

αiyi = 0, 
n∑

i=1 
αi ≥ ν (22) 

For appropriate parameter choices, the ν-SVM yields exactly the same solutions 
as the C-SVM. The significance of ν is that under some mild assumptions about the 
data, ν is an upper bound on the fraction of margin errors (and hence also on the 
fraction of training errors); and ν is also a lower bound on the fraction of support 
vectors. Thus, controlling ν influences the trade-off between the model’s accuracy 
and the model’s complexity. 

3.2 Support Vector Regression 

One possible formalization of the regression task is to estimate a function 
f : RN → R using input-output training data pairs generated identically and 
independently distributed (i.i.d.) according to an unknown probability distribution 
P(x, y) of the data. The concept of margin is specific to classification. However, we
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Fig. 4 In SV regression, a tube with radius ε is fitted to the data. The optimization determines a 
trade-off between model complexity and points lying outside of the tube. (Figure taken from Smola 
and Scholkopf (2004)) 

would still like to avoid too complex regression functions. The idea of SVR (Smola 
and Scholkopf 2004) is that we find a function that has at most ε deviation from 
the actually obtained targets yi for all the training data, and at the same time is as 
flat as possible. In other words, errors are unimportant as long as they are less than 
ε, but we do not tolerate deviations larger than this. An analog of the margin is 
constructed in the space of the target values y ∈ R. By using Vapnik’s ε-sensitive 
loss function (Fig. 4). 

|y − f (x)|ε ≡ max {0, |y − f (x)| − ε} (23) 

A tube with radius ε is fitted to the data, and a regression function that generalizes 
well is then found by controlling both the regression capacity (via ‖w‖) and the loss 
function. One possible realization, called C-SVR, of a is minimizing the following 
objective function 

Minimize 
w,b,ξ 

1 

2
‖w‖2 + C 

n∑
i=1 

|yi − f (x)|ε (24) 

The regularization constant C > 0 determines the trade-off between the empirical 
error and the complexity term. 

Generalization to kernel-based regression estimation is carried out in complete 
analogy with the classification problem. Introducing Lagrange multipliers and 
choosing a priori the regularization constants C, ε one arrives at a dual quadratic 
optimization problem. The support vectors and the support values of the solution 
define the following regression function 

f (x) = 
n∑

i=1 

αiK (x, xi ) + b (25)
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There are degrees of freedom for constructing SVR, such as how to penalize 
or regularize different parts of the vector, how to use the kernel trick, and the loss 
function to use. For example, in the ν-SVR algorithm implemented in LIBSVM 
(Chang and Lin 2011) one specifies an upper bound 0 ≤ ν ≤ 1 on the fraction 
of points allowed to be outside the tube (asymptotically, the number of support 
vectors). For a priori chosen constants C, ν the dual quadratic optimization problem 
is as follows: 

Max 
α,α∗ 

n∑
i=1

(
α∗

i − αi

)
yi − 

1 

2 

n∑
i,j=1

(
α∗

i − αi

) (
α∗

j − αj

)
K

(
xi , xj

)
(26) 

Subject to 0 ≤ αi, α
∗
i ≤ C 

n , 

n∑
i=1

(
α∗

i + αi

) ≤ Cν 
n∑

i=1

(
α∗

i − αi

) ≤ Cν 
i = 1, . . . , n (27) 

and the regression solution is expressed as 

f (x) = 
n∑

i=1

(
α∗

i − αi

)
K (x, xi ) + b (28) 

3.3 SVM-Like Models 

The power of SVM comes from the kernel representation that allows a nonlinear 
mapping of input space to a higher dimensional feature space. However, the 
resulting quadratic programming equations may be computationally expensive for 
large problems. Smola et al. (1999) suggested an SVR-like linear programming 
formulation that retains the form of the solution (25) while replacing the quadratic 
function (26) with a linear function subject to constraints on the error of kernel 
expansion (25). 

Suykens et al. (2002) introduced the least squares SVM (LS-SVM) in which they 
modify the classifier of Eqs. (17) and (18) with the following equations: 

Minimize 
w,b,e 

1 

2
‖w‖2 + γ 

1 

2 

n∑
i=1 

e2 i (29) 

Subject to yi · ((w · �(xi )) + b) = 1 − ei, i = 1, . . . , n (30) 

Important differences with standard SVM are the equality constraint (30) and 
the sum squared error terms, which greatly simplify the problem. Incorporating 
Lagrange multipliers and solving leads to the following dual linear problem:
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[
0 YT 

Y � + γ −1I

]
·
[

b 
α

]
=

[
0 
I

]
(31) 

where the primal variables {w, b} define as before a decision surface like (14), 
Y = (y1, . . . , yn), (�)i, j = yiyjK(xi, xj), I,0 are appropriate size all ones (all zeros) 
matrices, and γ is a tuning parameter to be optimized. Equivalently, modifying 
the regression problem (26) and (27) also results in a linear system like (31) with 
additional tuning parameter. 

The LS-SVM can realize strongly nonlinear decision boundaries, and efficient 
matrix inversion methods can handle very large datasets. However, α is not sparse 
anymore (Suykens et al. 2002). 

4 Implementation Issues with SVM 

The purpose of this section is to overview some problems that face the application 
of SVM in machine learning. 

4.1 Optimization Techniques 

The solution of the SVM problem is the solution of a constraint (convex) quadratic 
programming (QP) problem such as (15) and (16). Equation (15) can be rewritten 
as maximizing .− 1

2α
T K̂α + 1T α, where 1 is a vector of all ones and . K̂i,j =

yiyj k
(
xi, xj

)
. When the Hessian matrix . K̂ is positive definite, the objective function 

is convex and there is a unique global solution. If matrix . K̂ is positive semi-definite, 
every maximum is also a global maximum, however, there can be several optimal 
solutions (different in their α) which might lead to different performance on the 
testing dataset. 

In general, the support vector optimization can be solved analytically only when 
the number of training data is very small. The worst case computational complexity 
for the general analytic case results from the inversion of the Hessian matrix, thus is 
of order . N3

S , where NS is the number of support vectors. There exists a vast literature 
on solving quadratic programs (Bertsekas 2016; Bazaraa et al. 2006) and several 
software packages are available. However, most quadratic programming algorithms 
are either only suitable for small problems or assume that the Hessian matrix . K̂ is 
sparse, i.e., most elements of this matrix are zero. Unfortunately, this is not true 
for the SVM problem. Thus, using standard quadratic programming codes with 
more than a few hundred variables results in enormous training times and more 
demanding memory needs. Nevertheless, the structure of the SVM optimization 
problem allows the derivation of specially tailored algorithms, which allow for fast 
convergence with small memory requirements, even on large problems.
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A key observation in solving large-scale SVM problems is the sparsity of the 
solution (Steinwart 2004). Depending on the problem, many of the optimal αi 

will either be zero or on the upper bound. If one could know beforehand which 
αi were zero, the corresponding rows and columns could be removed from the 
matrix . K̂ without changing the value of the quadratic form. Furthermore, a point 
can only be optimal if it fulfills the KKT conditions (such as Eq. (5)). SVM solvers 
decompose the quadratic optimization problem into a sequence of smaller quadratic 
optimization problems that are solved in sequence. Decomposition methods are 
based on the observations of Osuna et al. (1997) that each QP in a sequence of QPs 
always contains at least one sample violating the KKT conditions. The classifier 
built from solving the QP for part of the training data is used to test the rest of the 
training data. The next partial training set is generated from combining the support 
vectors already found (the “working set”) with the points that most violate the KKT 
conditions, such that the partial Hessian matrix will fit the memory. The algorithm 
will eventually converge to the optimal solution. Decomposition methods differ in 
the strategies for generating the smaller problems and use sophisticated heuristics 
to select several patterns to add and remove from the sub-problem plus efficient 
caching methods. They usually achieve fast convergence even on large data sets with 
up to several thousands of support vectors. A quadratic optimizer is still required 
as part of the solver. Elements of the SVM solver can take advantage of parallel 
processing: such as simultaneous computing of the Hessian matrix, dot products, 
and the objective function. More details and tricks can be found in the literature (Cai 
and Cherkassky 2012; Tavara  2019; Smola et al. 2000; Deng et al. 2012; Chang and 
Lin 2001; Chew et al.  2003; Chung et al. 2004). For real-time pattern recognition, 
on-line SVM algorithms (Zhou et al. 2015) avoid full SVM retraining when comes 
a new sample via off-line pre-selection of few important training data (Wang 2013). 

A fairly large selection of optimization codes for SVM classification and 
regression has been developed. They range from simple MATLAB implementation 
to sophisticated C, C++, or FORTRAN programs (e.g., LIBSVM: Chang and Lin 
2011, SVMlight: Joachims 2008). Some solvers include integrated model selection 
and data rescaling procedures for improved speed and numerical stability. Hsu et al. 
(2016) advise about working with an SVM software on practical problems. 

4.2 Model Selection 

To obtain a high level of performance, some parameters of the SVM algorithm have 
to be tuned. These include (1) the selection of the kernel function; (2) the kernel 
parameter(s); (3) the regularization parameters (C, ν, ε) for the trade-off between 
the model complexity and the model accuracy. Model selection techniques provide 
principled ways to select a proper kernel. Usually, a sequence of models is solved, 
and using some heuristic rules, next set of parameters is tested. The process is 
continued until a given criterion is obtained (e.g., 99% correct classification). For 
example, if we consider 3 alternative (single parameter) kernels, 5 partitions of the
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kernel parameters, and one regularization parameter with 5 partitions each, then we 
need to consider a total of 3 × 5 × 5 = 125 SVM evaluations. 

The cross-validation technique is widely used for the prediction of the gener-
alization error, and is included in some SVM packages (such as LIBSVM: Chang 
and Lin 2011). Here, the training samples are divided into k subsets of equal size. 
Then, the classifier is trained k times: in the i-th iteration (i = 1,...,k), the classifier is 
trained on all subsets except the i-th one. Then, the classification error is computed 
for the i-th subset. It is known that the average of these k errors is a rather good 
estimate of the generalization error. k is typically 5 or 10. Thus, for the example 
above we need to consider at least 625 SVM evaluations to identify the model of the 
best SVM classifier. 

In the Bayesian evidence framework the training of an SVM is interpreted as 
Bayesian inference, and the model selection is accomplished by maximizing the 
marginal likelihood (i.e., evidence). Law and Kwok (2000) and Wenzel et al. (2017) 
provide iterative parameter updating formulas, and report a significantly smaller 
number of SVM evaluations. 

4.3 Multi-Class SVM 

Though SVM was originally designed for two-class problems, several approaches 
have been developed to extend SVM for multi-class data sets. 

One approach to k-class pattern recognition is to consider the problem as a 
collection of binary classification problems. The technique of one-against-the-rest 
requires k binary classifiers to be constructed (when the label +1 is assigned to 
each class in its turn and the label −1 is assigned to the other k − 1 classes). 
In the prediction stage, a voting scheme is applied to classify a new point. In the 
winner-takes-all voting scheme, one assigns the class with the largest real value. 
The one-against-one approach trains a binary SVM for any two classes of data 
and obtains a decision function. Thus, for a k-class problem, there are k(k − 1)/2 
decision functions where the voting scheme is designated to choose the class with 
the maximum number of votes. More elaborate voting schemes, such as error-
correcting-codes, consider the combined outputs from the n-parallel classifiers as a 
binary n-bit code word and select the class with the closest (e.g., Hamming distance) 
code. 

In Hsu and Lin (2002), it was experimentally shown that for general problems, 
using the C-SVM classifier, various multi-class approaches give similar accuracy. 
Rifkin and Klautau (2004) have similar observation, however, this may not always 
be the case. Multi-class methods must be considered together with parameter-
selection strategies. That is, we search for appropriate regularization parameters and 
kernel parameters for constructing a better model (Didiot and Lauer 2015). Chen, 
Lin and Scholkopf (2003) experimentally demonstrate inconsistent and marginal 
improvement in the accuracy when the parameters are trained differently for each 
classifier inside a multi-class C-SVM and ν-SVM classifiers.
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5 Extensions and Application 

Kernel algorithms have solid foundations in statistical learning theory and functional 
analysis; thus, kernel methods combine statistics and geometry. Kernels provide 
an elegant framework for studying fundamental issues of machine learning, such 
as similarity measures that can incorporate prior knowledge about the problem, 
and data representations. SVM have been one of the major kernel methods for 
supervised learning. It is not surprising that recent methods integrate SVM with 
kernel methods (Scholkopf et al. 1999; Scholkopf and Smola 2002; Shawe-Taylor 
and Cristianini 2004) for unsupervised learning problems such as density estimation 
(Weston and Herbrich 2000). 

SVM has a strong analogy in regularization theory (Williamson et al. 2001). Reg-
ularization is a method of solving problems by making some a priori assumptions 
about the desired function. A penalty term that discourages over-fitting is added 
to the error function. A common choice of regularizer is given by the sum of the 
squares of the weight parameters and results in a functional similar to (6). Like 
SVM, optimizing a functional of the learning function, such as its smoothness, leads 
to sparse solutions. 

Boosting is a machine learning technique that attempts to improve a “weak” 
learning algorithm, by a convex combination of the original “weak” learning 
function, each one trained with a different distribution of the data in the training set. 
SVM can be translated to a corresponding boosting algorithm using the appropriate 
regularization norm (Ratsch et al. 2001). 

Successful applications of SVM algorithms have been reported for various fields, 
such as pattern recognition (Martin et al. 2002), text categorization (Dumais 1998; 
Joachims 2002), time series prediction (Mukherjee et al. 1997), and bio-informatics 
(Zien et al. 2000). Historically, classification experiments with the U.S. Postal 
Service benchmark problem – the first real-world experiment of SVM (Cortes and 
Vapnik 1995; Scholkopf 1997) – demonstrated that plain SVMs give a performance 
very similar to other state-of-the-art methods. SVMs have been achieving excellent 
results also on the Reuters-22173 text classification benchmark problem (Dumais 
1998). SVMs have been strongly improved by using prior knowledge about the 
problem to engineer the kernels and the support vectors with techniques such as 
virtual support vectors (Scholkopf 1997; Scholkopf et al. 1998). Nayak et al. (2015) 
present many more applications. 

6 Conclusion 

Since the introduction of the SVM classifier over two decades ago, SVM gained 
popularity due to its solid theoretical foundation in statistical learning theory. They 
differ radically from comparable approaches such as neural networks: they have 
a simple geometrical interpretation and SVM training always finds a global mini-
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mum. The development of efficient implementations led to numerous applications. 
Selected real-world applications served to exemplify that SVM learning algorithms 
are indeed highly competitive on a variety of problems. 

SVMs are a set of related methods for supervised learning, applicable to 
both classification and regression problems. This chapter provides an overview 
of the main SVM methods for the separable and non-separable case and for 
classification and regression problems. However, SVM methods are being extended 
to unsupervised learning problems. 

An SVM is largely characterized by the choice of its kernel. The kernel can 
be viewed as a nonlinear similarity measure, and should ideally incorporate prior 
knowledge about the problem at hand. The best choice of kernel for a given problem 
is still an open research issue. A second limitation is the speed of training. Training 
for very large datasets (millions of support vectors) is still an unsolved problem. 
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Empowering Interpretable, Explainable 
Machine Learning Using Bayesian 
Network Classifiers 

Boaz Lerner 

1 Introduction 

From the seminal works of Pearl [1], Spirtes [2], Lauritzen and Spiegelhalter [3], 
Cooper [4], and Microsoft Research’s researchers (mainly Heckerman [5, 6], 
Meek [7], and Chickering [8]) and their colleagues introducing Bayesian networks 
(BNs), to the works admitting and demonstrating BN classifiers (BNCs) [9, 10, 11, 
12, 13, 14, 15, 16, 17, 18], BNs were mostly considered an esoteric field, a neglected 
little brother of the more popular mainstream neural networks, support vector 
machines, and boosting and bagging machines and their machine learning (ML) 
variants. BNs and BNCs have attracted the attention of only relatively few faithful, 
non-mainstream scientists in the ML community who recognized, cherished, and 
advanced the networks’ huge potential. 

Whether due to the NP-hard complexity of BN structure learning [8], the BN 
traditional near-exclusive focus on discrete data [4, 5, 6], or the frequency of 
new trends in ML, few in the ML community found study of the powerful BN 
theory and tools attractive. Traditionally presented as a knowledge representation 
paradigm, until the late 90s BNs were not considered accurate classifiers and works 
demonstrating their superb classification capability are unjustifiably scarce even 
today. 

While in training a classifier, we have to minimize a loss function (usually the 
0/1 loss function), which is equivalent to maximizing the classification accuracy 
of a single target variable, when learning a BN, we usually maximize/minimize 
a general likelihood-driven [4, 6] or similar-fitting function (Akaike information 
criterion (AIC) [19], Bayesian information criterion (BIC) [20], or Kullback– 
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Leibler (KL) divergence [21]) over the set of all variables. However, as the domain 
size increases, maximization of a likelihood-driven function over many variables 
used in classification—of which only one is of real interest, i.e., the class variable— 
can hardly lead to an accurate classifier [9]. 

In contrast to the belief that BNCs are less accurate than traditional ML 
classifiers, several studies [11, 13, 17, 22] have shown that properly learned, BNCs 
are comparable to traditional ML classifiers.1 In this chapter, we will present some 
of these studies. Beyond accuracy however, the use of BNCs should be considered 
for the natural interpretability (understanding the results; the “how” question) and 
explainability (explaining the results; the “why” question) they provide.2 

Let us demonstrate the difficulty in achieving classifier interpretability using 
three examples. The linear regression model accompanies a predictor with a 
coefficient measuring “importance” and direction of impact, but with credibility that 
depends on the predictor value size. The ensemble classifier (whether by averaging 
methods such as bagging and the random forest (RF), or boosting methods such as 
the XGBoost) provides a ranked list of “important” variables but may show only 
slight differences between their levels of “importance”—say by a second or third 
digit after the decimal point—providing negligible information about their relative 
contribution to the classification. With hundreds and thousands of neurons residing 
in many internal modules and layers, connected by millions of parameters, the 
deep neural network (DNN) excels in classification but due to these complexities 
inherently lacks interpretability and explainability [30]. The BNC, in contrast to 
these examples, shows a hierarchy of interrelations among domain variables along 
with causal paths of influence and inference mechanisms, revealing causal relations 
that can readily be investigated while and for interpreting and explaining the domain. 

ML tools are frequently accused of being black boxes,3 sacrificing interpretabil-
ity in favor of usability and effectiveness [31, 32, 33, 34]. In times when ML is 
struggling to enhance its transparency, fairness (even when the bias is in the data 
and not in the analysis), and accountability [35], to be auditable, to increase trust 
and trustworthiness among ML developers and non-ML users alike [33, 34, 36],

1 Unfortunately, most comparisons of BNCs are among themselves [18, 23, 24, 25, 26, 27] and not 
to non-BNCs. 
2 Conventional categorization of interpretable ML methods [28] is through analysis of model 
components using, for example, linear regression and decision trees, sensitivity studies of input 
perturbations, or analysis of local or global surrogate approximations of the ML model [29]. 
Although these methods show readiness and stability, many challenges, such as dealing with depen-
dent features, causal interpretation, and uncertainty estimation remain. These challenges need to 
be resolved for successful application of interpretable ML methods to scientific problems [28, 30]. 
3 This is not necessarily true for all ML tools, but DNNs, following their recent meteoric rise, 
attract this criticism on behalf of the entire ML field, as DNNs can justifiably be considered black 
boxes even for ML specialists. 
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and even to be responsible [32],4 researchers do their utmost to develop dedicated 
schemes that can help explain the predictions and decisions made by ML mod-
els [30, 37]. One example of this is the SHapley Additive exPlanations (SHAP [38]) 
and local interpretable model-agnostic explanations (LIME [29]) for linear models 
and ensemble classifiers. Another example is the tremendous effort of researchers 
to enhance DNN transparency, visualizability, and explainability. This may be 
done by advancing visualization methods as a fundamental building block that, 
combined with additional tools, will empower humans to understand DNNs [39], by 
generating saliency maps that indicate the relevance of image pixels to the network 
output [40, 41], or building inference graphs to interpret hidden layer activity 
for understanding the general inference process of a class, as well as explaining 
decisions the network makes regarding specific images [42]. While these schemes 
enrich our explainability tools, they have only limited causal interpretations [43]. A 
causal explanation for the mechanism of a DNN gives insight about the meaning of 
the DNN’s output, its relation to the network input, and any change in it. In highly 
sensitive domains involving peoples’ lives, company finances, criminal justice, 
and autonomous driving, a causal explanation is critical to creating justification, 
transparency, trust, and eventually co-operation. The ultimate goal is that any such 
causal explanation will be accessible and comprehensible to a human, who may then 
challenge the explanation until it is fully understood. 

The BNC is a natural means for knowledge representation. Its graphical struc-
ture [1, 2] on the one hand and causal inference mechanisms [44, 45] on the other 
hand readily convey interpretability and explainability. First, the BNC provides a 
feature-selection mechanism through its Markov blanket (MB).5 Conditioned on its 
MB, a variable is independent of the rest of the nodes in the network, allowing us to 
focus our attention on exploring the importance of interrelations of this variable 
only with those in its MB. This gives a BNC an advantage over conventional 
feature (variable)-selection and importance ranking methods that can only analyze 
variables separately (or in simple interactions), and lack any ability to consider 
their interrelations. Moreover, the BNC demonstrates a hierarchical structure of 
interrelations among both MB and non-MB variables, allowing us to explore and 
understand the source of the feature importance (e.g., by being included in the MB) 
and to identify causal paths of influence6 originating, passing, or ending in/through

4 Interpretability, explainability, transparency, fairness, accountability, auditability, trustworthi-
ness, and responsibility—can we wholeheartedly confirm that we have demanded all of these from 
ourselves as human decision-makers in the era prior to machine learning? I will leave this question 
open until the discussion. 
5 The MB of a network node (representing a domain variable) includes the node, its parents, 
children, and children’s co-parents. 
6 Implicit paths that may become explicit in the absence of latent variables in the domain or 
following intervention [44]. Nevertheless, experimental studies exercising intervention are hard 
to make and follow, whereas observational approaches such as those exerted by the BN are easy to 
make, follow, and interpret either by assuming no latent mechanisms in the domain or by learning 
these mechanisms from data (see Sect. 4). 
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a variable [1, 2, 44]. Regarding classification, the MB of the target (class) variable 
fosters discriminability in a lower dimension by enabling a quick exploration of 
those causal relations within the blanket that contribute to accurate classification 
[46, 47, 48, 49, 50, 51, 52]. Simultaneously, MBs of selected non-target variables 
allow deeper exploration and understanding of mechanisms establishing the domain 
and thereby also promote interpretability and explainability. Like using the MB, a 
BNC may also allow investigation of why an instance (pattern) has been classified 
positively or negatively by identification of a minimal set of the currently active 
features responsible for the current classification, or a minimal set of features whose 
current state (active or not) is sufficient for the classification [53]. Moreover, the BN 
enables inference on the values of any combination of variables (related or not to 
the classification) conditioned on values of the remaining variables (or only those 
in a specific MB) [46]. Finally, studying intervention as a source of causality is 
natural only to using the inference tools of graphical models [44, 45]. That is, BNs, 
BNCs, and graphical models, in general, have tremendous potential to promote 
explainable AI, and the ML community is encouraged to divert some of its efforts 
in this direction. We will make the argument for this later in the chapter, specifically 
in Sects. 3.4 and 4. 

However, in order to also provide interpretability and explainability in domains 
having non-semantic huge (in space and/or time) inputs such as those found in 
images, speech, and text, much progress in BN learning algorithms is needed. Today, 
neither BNs nor BNCs can cope with high-dimensional raw data coming from 
images, speech, and text, and thus the contribution of these networks, specifically to 
advance interpretability of DNNs, can only come when applied to already processed, 
projected, or embedded raw data. We will address this in the conclusion. 

In Sect. 2, we describe the most popular, though restricted, BNC, the naïve 
Bayesian classifier, and some of its many variants. In Sect. 3, we survey general 
unrestricted BNCs, focusing on the risk minimization by cross-validation BNC, and 
in Sect. 4, we extend our study to causal–temporal BNs and their application to 
classification. Section 5 concludes the chapter. 

2 Restricted BNCs–The Naïve Bayesian Classifier and Its 
Variants 

Although they make assumptions about the domain that are sometimes found 
unjustified (variables are class-conditionally independent [54], a maximal number 
of node parents [2], existence of a variable topological order [4]), restricted BNCs 
are surprisingly accurate as well as efficient, as structure learning is avoided or 
dramatically shortened. In this chapter, we will focus on and review the naïve 
Bayesian classifier (NBC), which is the most fundamental restricted BNC, continue 
by demonstrating variants of the NBC, which try to relieve the class-conditional 
independence assumption of the NBC, and conclude by presenting a new variant of 
the NBC demonstrating empirical advantage.
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2.1 Naive Bayesian Classifier 

Although outdated, the NBC [54]—a learning-free structure, which is obtained 
with virtually no computational effort—is considered a simple, practical, and 
state-of-the-art classifier [9, 13, 18], very often selected as the default for pattern 
classification in industrial applications. 

The NBC is a special case of a BN consisting of a finite set of random variables, 
.U = {X1, X2, . . . , Xm,C} = {X, C}, where .X1, . . . , Xm are the observable 
variables that represent the problem features and C is the class variable having K 
states. The NBC is termed naïve since it makes use of a simplifying assumption 
that its observable variables are conditionally independent given the class variable. 
All edges of the NBC are directed from the class variable to the observable 
variables (Fig. 1); hence, the only parent of the observable variables, . Xi , is . Pai =
C, and .Pa(C) = ∅ for the class variable. 

Given a selected network structure, the NBC assigns a test pattern . x to the class 
. Ck (.k = 1, . . . , K) with the highest a posteriori probability 

.P(Ck|x) = p(x|Ck)P (Ck)

p(x)
, (1) 

where .p(x|Ck) is the class-conditional probability density, .P(Ck) is the a priori 
probability for class . Ck , and .p(x) is the unconditional density normalizing the 
product of the two probabilities such that .

∑
k P (Ck|x) = 1. The NBC independence 

assumption eliminates the “curse of dimensionality” since density estimation 
requires only linearly rather than exponentially increasing numbers of patterns. 
Omitting .p(x), which is common to all classes, the posterior probability can be 
written as 

.P(Ck|x) ∝ p(X = x|Ck)P (Ck) = P(Ck)

m∏

i=1

p(Xi = xi |Ck), (2) 

where .X = x represents the event that .X1 = x1 ∧ X2 = x2 ∧ . . . ∧ Xm = xm and 
.
∏m

i=1 p(Xi = xi |Ck) is a product of class-conditional densities for . x. 
Both .P(Ck) and .p(Xi |Ck) can be estimated from the training data. . P(Ck)

is the relative frequency of patterns belonging to .Ck out of all of the patterns 

Fig. 1 The NBC depicted as 
a BNC in which the 
observable variables 
(. X1,. X2, . . . . Xm) are  
conditionally independent 
given the class variable (C) 

X X  1 2  .  .  . 

C 

mX
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in the data (the class prior probabilities). To estimate .p(Xi |Ck) (or .p(xi |Ck)), 
the one-dimensional class-conditional probabilities (or densities) for discrete (or 
continuous) variables, for each class .Ck and variable . Xi , we employ a training 
set comprising of a finite number of patterns . xn, where n gets values for each of 
the .Nk training patterns of class . Ck . For a discrete variable, the class-conditional 
probability is estimated using the sample (unsmoothed or smoothed) frequency of 
each value of the variable [6, 9, 25]. For a continuous variable, the parameters of 
.p(xi |Ck) are usually estimated by maximum likelihood using any of the popular 
density estimation methods such as single Gaussian estimation, which assumes 
the data are generated from a single normal distribution, kernel density estimation 
models, representing the data using a linear combination of kernels around each of 
the training patterns, or the Gaussian mixture model, which estimates the data using 
a few Gaussians with adaptable parameters [55, 56]. 

The NBC is an interpretable model because of the (conditional) independence 
assumption; it is very clear how much each feature contributes toward a certain 
class prediction, since we can interpret the conditional probability. When the degree 
of independence between variables is high and the naïve assumption is justified 
and/or the database is small, appropriate for the small-scale learning problem of only 
classifier parameters, an NBC provides an accurate classifier as was demonstrated, 
for example, in diagnosing genetic abnormalities [56, 57, 58]. 

2.2 Variants of the NBC 

The NBC is based on the assumption that all attributes (variables) are mutually 
independent, conditioned on the class attribute. On the one hand, this assumption 
ignores attribute dependencies and is thus often violated. On the other hand, learning 
from data, a BNC that can represent arbitrary attribute dependencies is intractable 
(Sect. 3). Thus, researchers have focused their attention on improving the NBC, 
which has led to many effective and efficient leaning algorithms [9, 26, 49, 59, 
60, 61, 62, 63]. These may be divided into those of feature selection (learning 
an NBC based on a subset of the features that better satisfy the independence 
assumption), e.g., for cycle-time key factor identification and prediction in semi-
conductor manufacturing [64], local learning (learning an NBC based on a local 
training set rather than the whole set), structure extension (learning an NBC also 
representing dependencies among some features), data expansion (learning an NBC 
using a training set expanded from the original), and multinet classifiers (learning a 
classifier to each class separately). 

For example, lazy learning algorithms are popular local learning methods for 
extending the NBC. Lazy learning delays learning until classification time by storing 
training data and waiting until it is given a test instance; that is, generalization 
is delayed until test time, generating a hypothesis for each instance instead of 
generating one hypothesis for all instances. Among lazy learning algorithms, we 
find the lazy Bayesian rule (LBR) [60] and selective neighborhood naïve Bayes
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(SNNB) [61]. Another algorithm is the locally weighted naïve Bayes (LWNB) [62]. 
In LWNB, the k-nearest neighbors of a test instance are first found, and each of 
them is weighted in terms of its distance from the test instance. Then a local NBC 
is trained using the locally weighted training instances. Although it is a k-related 
algorithm, its classification performance is not particularly sensitive to the size of k 
as long as it is not too small. 

Among numerous proposals to improve the accuracy of NBC by structure 
extension, the one-dependence estimator (ODE) is similar to the NBC except 
each attribute is allowed to depend on at most one other attribute, in addition 
to the class attribute. The ODE provides a simple, yet powerful alternative to 
NBC. Its most popular variant is the tree-augmented network (TAN) [9] that 
uses the Chow-Liu algorithm [65] to learn a maximum weighted spanning tree 
over all non-class variables that are connected pairwise by edges weighted by the 
conditional (on the class variable) mutual information between these variables. 
The super-parent (SP) TAN algorithm (SP-TAN) [26] greedily learns a TAN from 
NBC by adding in each iteration the edge achieving the highest (cross-validation) 
accuracy improvement. It demonstrates remarkable classification performance but 
at a considerable computational cost. The averaged one-dependence estimator 
(AODE) [59] weakens the NBC attribute independence assumption by averaging 
all SuperParent-one-dependence estimators (SPODEs) [26] that satisfy a minimum 
support constraint, where a SPODE allows each attribute to depend on a common 
single attribute (i.e., SP) in addition to the class. This technique achieves comparable 
classification accuracy to SP-TAN with a substantially improved computational 
efficiency at training time. In ensemble selection of SPODEs, we select only some of 
the SPODEs that are averaged by AODE. This improves the classification accuracy 
while reducing the classification runtime, albeit at a cost of additional training 
time. K-dependence Bayesian (KDB) and selective KDB (SKDB) [22] classifiers 
allow every variable to be conditioned on the class and, at most, k other attributes. 
SKDB classifiers showed an advantage over the NBC and TAN. Other methods may 
initialize a structure search procedure, such as the K2 algorithm [4], using the NBC 
in order to extend the naïve classifier using more meaningful connections among 
graph nodes that may improve its performance [66]. 

The Bayesian multinet classifier (BMC) is another powerful extension of the 
NBC [9, 67]. A BMC comprises a set of local networks, each corresponding to a 
value that the class node can take. While a BNC forces the relations among the 
attributes to be the same for all values of the class node, a BMC allows these 
relations to be different for different values of the class node, forming a local 
network for each class and thereby providing a more expressive representation than, 
for example, the NBC and TAN. Conventionally, each local network is learned by 
minimizing the KL divergence (also maximizing the log likelihood [9]) to induce 
a Chow–Liu (CL) tree [65]. Using the estimated class prior probabilities, the BMC 
classifies to the class maximizing the product of the prior and the variable joint 
probability for this class estimated using only the class patterns. Although a local 
network must be searched for each class, the BMC is generally more accurate and 
has a smaller computational complexity than a BNC because each local network
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Fig. 2 Four local networks learned by the .tBCM2 algorithm for the four classes of the UCI 
Car database: . C1 (top-left), for which the order of edge learning is indicated, . C2 (top-right), . C3
(bottom-left), and . C4 (bottom-right). Node 7 is the class variable [69] 

has a simpler problem to model, using a lower number of nodes in both a static 
scenario [67] and a dynamic one [68]. The BMC has two flaws [69]. The first is that 
constructing a CL tree using joint-probability-based scores for evaluating a structure 
is less specific to classification, i.e., CL multinet classifiers based on structures 
providing high scores are not necessarily accurate. The second flaw is that training 
a local network is based only on patterns of the corresponding class. Although this 
approach may approximate the class data effectively, information discriminating 
between the class and other classes may be discarded, undermining selection of 
the structure that is most appropriate for distinguishing this class. The TAN-based 
Bayesian class-matched multinet (. tBCM2) [69] utilizes a discrimination score 
for each local network separately, which maximizes accuracy by simultaneously 
detecting and rejecting patterns of the corresponding class and other classes, 
respectively, using both the entire data set, and the SuperParent algorithm to learn 
the TAN that maximizes this discrimination score. The .tBCM2 demonstrated [69] 
superiority over the naïve Bayesian, TAN, CL multinet, and recursive Bayesian 
multinet (RBMN) [70] classifiers for 32 UCI [71] databases. Figure 2 shows an 
example of a BMC learned using .tBCM2 for the UCI Car database. 

2.3 Experimental Evaluation of NBC Variants 

While [72] select the same ensemble of SPODEs (SuperParent-one-dependence 
estimators [26]) for all the classes, the multi-class SPODE (MSPODE) we present
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C = C1 

C = C2 

C = C3 
C =C1 

C =C2 C =C2 C =C2 

C =C3 C =C3 

A1 A2 A3 A4 
A1 A2 A3 A4 

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

A1 A2 A3 A4 A1 A2 A3 A4 

C =C1 

Fig. 3 An example MSPODE for a four-dimensional three-class classification problem. Note the 
existence of a super parent in each local network of an SPODE 

here, inspired by the BMC, selects a different ensemble of SPODEs for each 
class (Fig. 3). An MSPODE may be learned for each class using the conditional 
mutual information [1] or detection–rejection measure [69]. This classifier has been 
analyzed theoretically and is empirically evaluated here in Table 1 in comparison 
to other BNCs using 32 UCI [71] data sets in terms of classification accuracy, and 
training and test times. Table 1 shows that although all conventional approaches are 
effective, accuracy of the MSPODE is superior with a similar time complexity. 

3 Beyond the NBC—the Unrestricted BNC 

NBC and its variants often lack not only accuracy, but also interpretability and 
explainability due to the naïve assumptions they make and the limited structure 
spaces they search. However, along with the traditional classifiers based on the 
neural network (NN), support vector machine (SVM), decision tree, and ensembles 
(e.g., the RF and XGBoost family), classifiers based on the BN (and not the NBC) 
have been introduced and studied for 25 years [9, 10, 11, 12, 13, 14, 15, 16, 17, 
25, 27, 47, 48, 66]. To promote the use of the BNC, we first present the general BN 
(Sect. 3.1) on which the BNC is based. We then outline the conventional (likelihood-
driven) unrestricted BNC (Sect. 3.2), before introducing the risk minimization by 
cross-validation (RMCV) BNC (Sect. 3.3). 

3.1 The General BN 

A BN model . B for a set of random variables .X = {X1, X2, . . . , Xn}, each 
having a finite set of mutually exclusive states, consists of two main components, 
.B = (G,�). The structure .G = (V,E) is a directed acyclic graph (DAG). . V is a 
finite set of nodes of . G corresponding to . X (usually, . Xi refers to both the variable
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Table 1 Accuracies (%) and time complexities of our suggested multi-class SPODE (MSPODE) 
vs. popular variants of the NBC classifying 32 UCI databases. Besides the NBC, the variants are: 
Averaged one-dependence estimator (AODE) [59], lazy AODE (LAODE) [73], one ensemble se-
lection of SuperParent-one-dependence estimators (ESPODE) [72], and tree-augmented network 
(TAN) [9]. k, t , n, and  v are the numbers of classes, training instances, features, and feature 
values (average), and s is the average similarity value between a test instance and each training 
instance [73] 

Database NBC AODE LAODE ESPODE TAN MSPODE 

Australian 85.2 85.6 85.0 86.4 84.0 86.4 
Balance 90.9 87.2 88.1 85.2 87.3 88.7 

Bupa 64.7 66.5 67.1 66.5 67.7 66.5 

Car 86.1 88.4 88.5 88.7 94.3 90.4 

Corral 86.7 93.3 95.0 98.3 97.9 98.3 
Crx 86.1 89.2 89.2 89.2 85.9 89.2 
Cytogenetics 78.1 82.3 82.1 80.2 81.3 83.4 
E.coli 86.4 83.3 85.9 84.9 86.9 85.4 

Flare 82.0 86.5 86.2 86.5 85.6 86.5 
Hayes 79.5 82.5 83.1 78.1 76.7 79.1 

Hepatitis 70.0 72.5 72.5 73.7 72.5 73.8 
Ionosphere 91.7 91.7 93.1 91.1 92.3 92.0 

Iris 94.7 94.7 94.0 93.3 94.3 96.7 
Krkp 88.4 91.9 N/A 93.5 94.3 93.5 

Led-7 74.6 74.8 N/A 74.5 74.0 75.5 
Lymphography 85.2 86.2 82.1 86.2 80.7 88.0 
Monks 96.4 98.9 98.7 98.4 97.3 98.7 

Nursery 90.2 92.7 N/A 92.4 93.4 93.7 
Pendigit 87.3 97.6 N/A 97.7 95.7 97.6 

Pima 76.0 75.9 75.1 75.4 75.5 76.5 
Post-operative 67.5 68.7 70.0 70.0 71.2 70.0 

Segment 92.1 95.4 97.0 95.7 94.4 96.4 

Shuttle 98.7 99.8 N/A 99.8 100 99.8 

Splice 94.8 95.5 N/A 95.5 88.8 96.8 
Tic Tac Toe 69.4 75.8 81.8 74.5 74.7 74.5 

Tokyo 91.3 94.2 93.9 93.3 91.9 93.5 

Vehicle 61.5 72.5 72.9 72.7 70.0 73.0 
Voting 91.3 96.1 96.1 94.8 94.4 95.7 

Vowel 66.7 87.2 90.8 89.3 83.5 91.1 
Waveform-21 81.7 84.5 N/A 82.8 82.0 85.4 
Wine 98.8 97.7 97.1 97.1 98.2 98.8 
Zoo 93.0 93.0 96.0 93.0 96.0 94.0 

Average accuracy 84.0 86.9 86.4 86.8 86.3 87.7 
Training complexity .O(tn) .O(tn2) .O(tn2) .O(ktn2) .O(n2(t + kv2)) . O(ktn2)

Test complexity .O(kn) .O(kn2) .O(stn2) .O(kn2) .O(kn) . O(kn2)

a Bold font is for most accurate classifier for a task
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and its corresponding node), and . E is a finite set of directed edges of . G connecting 
. V. Edges and missing edges encode dependencies and conditional independencies, 
respectively, in . G. . � is a set of parameters that quantify the structure. The 
parameters are local conditional probability distributions (or densities), . P(Xi =
xi |Pai ,G), for each .Xi ∈ X conditioned on its parents in the graph, .Pai ⊂ X. Most  
studies, including this one, focus mainly on discrete variable BNs and complete 
data. 

The joint probability distribution over . X given . G—assumed to encode this 
distribution—is the product of these local probability distributions [1, 2, 4, 5], 

.P(X = x|G) =
n∏

i=1

P(Xi = xi |Pai ,G), (3) 

where . x is the assignment of states to the variables in . X and . xi is . Xi’s state. 
During inference, the conditional probability distribution of a subset of nodes 

in the graph (the “hidden” nodes) given another subset of nodes (the “observed” 
nodes) and the BN model is calculated. A common method for exact inference 
is the junction tree algorithm [3], but when there is only one hidden node (e.g., 
the class node in classification), direct inference based on Eq. 3 and Bayes’ rule is 
more feasible. Note that the computation of conditional probability distributions for 
inference depends on the graph. Thus a structure, either based on expert knowledge 
or learned from the data, must first be obtained. 

The search-and-score (S&S) approach to learning a structure from data [4, 5, 6] 
comprises a search for the structure achieving the highest score, e.g., hill climbing 
(HC), and a score, generally the Bayesian score, 

.P(G|D) = P(D|G)P (G)

P (D)
= P(D,G)

P (D)
(4) 

for a structure . G given a data set .D = {v1, v2, . . . , vN }, which is a random sample 
of N independent patterns from the joint probability distribution of . X. 

3.2 The General BNC 

While the BN provides a powerful graphical model for encoding the probabilistic 
relationships among a set of variables and can therefore naturally be used for 
classification, BNCs learned in the common way using likelihood scores usually 
tend to achieve only mediocre classification accuracy because these scores are 
less specific to classification, but rather suit a general inference problem. Learning 
a BNC requires learning the structure (graph) of the graphical model and its 
parameters so that the learned BN will excel in inference of a specific variable— 
the class variable—and not necessarily of all variables. When focusing on structure
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learning, exhaustively searching the space of possible graphs is infeasible [4], 
and thus S&S structure learning algorithms sub-optimally search the space and 
select the structure achieving the highest value of a score [4, 5, 6]. However, until 
very recently, all S&S structure learning algorithms used a generative score and 
thereby led to learning a generative model that is not specific to classification, but 
to general inference. Researchers have demonstrated that BNC structures learned 
using generative scores do not usually contribute to high classification accuracy 
[9, 10, 11, 12, 16, 17] since there is lack of agreement between these scores used for 
learning and the score used for evaluation, which is the classification accuracy. That 
is, classifiers based on structures having high generative scores are not necessarily 
highly accurate.7 

It is clear from Eq. 4 that a score should reflect a correspondence between the 
structure and the data. The minimum description length (MDL) score [74] can 
approximate .P(D|G)—the marginal likelihood [5, 6]—but [9] argued that this score 
is not suitable for classification and instead recommended the class-conditional log 
likelihood (CLL) (as opposed to log likelihood (LL)), 

.CLL(G|D) =
N∑

i=1

log P(ci |v′
i ), (5) 

where the vector . vi for the ith instance in D consists of a feature vector . v′
i and a 

class label . ci , so that .vi = (ci, v
′
i ). Notice that . CLL(G|D) = ∑N

i=1 log P(vi) −
∑N

i=1 log P(v′
i ) = LL(G|D) − ∑N

i=1 log P(v′
i ). 

By maximizing CLL, the structure that best approximates the probability of 
predicting the class given feature values for every pattern is learned [10]: 

.P(cN |v′N,G) = P(cN, v′N |G)

P (v′N |G)
= P(D|G)

∑
c′N P (c′N, v′N |G)

, (6) 

where .v′N consists of all feature vectors and . cN consists of all possible combinations 
of the .rC states of the class variable C in a random sample D of size N . 
The computation of this score is infeasible, since the sum in the denominator is 
exponential in N (. rN

C terms), let alone score maximization. 
An approximation [10] considers the left-hand side of Eq. 6 and the marginal 

likelihood Eq. 4 as the supervised and unsupervised marginal likelihoods, respec-
tively. The marginalization over the parameters in Eq. 6 is 

.P(cN |v′N,G) =
∫

�

P (cN |v′N,�,G)P (�|v′N,G)d�, (7)

7 Note, however, that although constraint-based structure learning algorithms of BNs [2] are usually 
not considered in inducing a BNC, they may nevertheless lead to supreme BNCs [27]. 
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and its approximation [10] using a single term is 

.P(cN |v′N,G) ≈ P(cN |v′N, �̂,G). (8) 

. �̂ is the parameter configuration maximizing the parameter posterior probability, 

.P(�|v′N, cN ,G), which is a different solution than that derived when maximizing 

.P(cN |v′N,�,G). However, there is no general closed-form solution to the super-
vised form of the score, and the posterior is not decomposable in this case, hence 
the need for approximation [9]. 

Another predictive local criterion (LC) [5] for learning a BNC [10] is based on 
the prequential approach [75], 

.LC(D,G) =
N∑

i=1

log P(ci |{vj }i−1
j=1, v

′
i ,G). (9) 

Other cumulative logarithmic loss scores [10] use 10-fold cross-validation (CV) or 
leave-one-out, which are reputable methods for model selection [76]. They are both 
described here under the general term CV-K , where .K = 10 or .K = N for the two 
cases, respectively. A score using CV-K for predicting a class is defined: 

.CVK(D,G) =
K∑

k=1

N/K∑

i=1

log P(ci+Ak
|D \ DK

k , v′
i+Ak

,G), (10) 

where .Ak = (k − 1)N/K and .DK
k = {vj+Ak

}N/K

j=1 is a validation set derived from 
the training set D. 

Using either of the supervised (conditional) marginal likelihood scores (Eqs. 7, 
9, or Eq. 10) for learning a BNC is asymptotically optimal. However, for a finite 
sample, though a high score value may indicate correct classification, it cannot 
guarantee it. 

A score that measures the degree of compatibility between a possible state of the 
class variable and the correct class is the 0/1 loss function: 

.L(ci, ĉi ) =
{

0, ci = ĉi

1, ci 	= ĉi
, (11) 

where . ci is the true class label and . ̂ci is the estimated class label for the ith instance. 
To demonstrate the difference between a class-conditional score and the 0/1 

score, consider a two-class classification problem, two candidate classifiers A and 
B, and two instances . v′

1 and . v′
2 [17]. Classifier A predicts the correct class for 

instances . v′
1 and . v′

2 with probabilities of 0.3 and 0.51, respectively, while classifier 
B predicts the correct class for the same two instances with probabilities of 0.45 and 
0.49. Since the sum of log probabilities (i.e., “log-loss” score) is larger for classifier 
B than for classifier A, the former classifier will be selected. However, if evaluating
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the 0/1 loss values, classifier B is inaccurate for both . v′
1 and . v′

2, whereas classifier 
A is correct for . v′

2. Thus, choosing classifier A based on the 0/1 loss score is more 
sensible for classification than choosing classifier B based on the log-loss score. 
We therefore suggest using the classification-specific 0/1 loss function for learning 
BNCs of enhanced classification accuracies. 

3.3 Risk Minimization by Cross-Validation 

We propose risk minimization by cross-validation (RMCV) for a classification-
oriented score and an S&S algorithm for learning unrestricted BNCs. Note that 
other uses of classification-oriented scores in learning unrestricted BNCs [12, 13] 
are in a somewhat different context. While commonly used S&S algorithms use 
likelihood-based scores suitable for general inference, RMCV minimizes an em-
pirical estimation of the classification error rate and thereby learns highly accurate 
BNCs. This model does not need to estimate the true distribution, generate data from 
this distribution, or infer about any non-class variable. That is, RMCV performs 
discriminative learning of a generative (BN) model. It learns generative models 
that are complicated, only to discriminate accurately among classes. The RMCV 
uses the 0/1 loss function, which is a classification-oriented score for unrestricted 
BNCs and non-BN classifiers alike. Its superiority to marginal and class-conditional 
likelihood-based scores with respect to classification accuracy using small real 
and synthetic problems, allowing for learning all possible graphs, was empirically 
demonstrated [17]. 

Instead of selecting a structure based on summation of supervised marginal 
likelihoods over the data set (Eq. 9 or Eq. 10), we suggest selecting a structure 
based on summation of false decisions about the class state over the data set. Our 
score is based on risk minimization [77] using the 0/1 loss function measured on a 
validation set. The training set D is divided into a validation set .DK (having . N/K

of N instances) and an effective training set (having .N(K − 1)/K instances). The 
classification error rate (0/1 loss) is measured for each candidate structure and in 
any iteration of the search on .DK . During learning, no use of a (third) test set is 
made. As part of a CV experiment, the score of a candidate structure is computed by 
averaging the error rates over K non-overlapping validation sets. Since the structure 
that minimizes the empirical risk is being searched for, the score is called risk 
minimization by cross-validation (and we deliberately do not simplify . 1

K
K
N

) [17]: 

. RMCVK(D,G) = 1

K

K∑

k=1

K

N

N/K∑

i=1

L(cki , arg maxc∈{c1,...,crC
} P(C = c|D \ DK

k , v′
ki ,G)),

(12) 

where .vki = (cki , v
′
ki) is the ith instance of .DK

k and .L( , ) is the 0/1 loss function 
(Eq. 11). Being a CV-based score, RMCV is easy to implement and computationally
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feasible (see, for example, Eq. 8), and it depends on only one parameter (K). Further, 
it is argued [10] that a CV-based score can be regarded as an approximation of a 
factorization of the supervised marginal likelihood (Eq. 6). Note that the RMCV 
score is normalized by the data set size N , whereas Eqs. 9 and 10 are not. Although 
normalization has the same effect on all learned structures, it can clarify the 
meaning of the score (i.e., an error rate) and help when comparing scores over 
data sets. Moreover, sharing the same range of values (.[0, 1]), RMCV establishes 
its correspondence to classification accuracy. 

To compute RMCV, the candidate structure has to be turned into a classifier 
by learning its parameters. Local probabilities are modeled using the unrestricted 
multinomial distribution [5] (assuming discrete variables), where the distribution pa-
rameters are obtained using maximum likelihood [4], similar to [10, 25]. Moreover, 
[11] argued, based on experiments, that maximum likelihood parameter estimation 
does not deteriorate the results compared to maximum conditional likelihood 
estimation, which can only be obtained by computationally expensive numerical 
approximation. Learning a BN rather than a structure has an additional cost of 
parameter learning, though this cost is negligible when using maximum likelihood 
estimation and fully observed data. 

To prevent over-fitting the training set, RMCV is computed by K-fold CV. 
Thus, over-fitting is controlled through the score itself, and not through the search 
dynamics as in other algorithms discussed here. Also, note that the same measure 
is used for learning the BNC and for evaluating its accuracy, which makes learning 
oriented toward classification. Similar to CLL-based scores [10, 11], RMCV is not 
decomposable. 

A suggested S&S structure learning algorithm consists of the RMCV score and 
a simple HC search [17]: 

Algorithm RMCV Input: An initial DAG, . G; A training set that is partitioned to 
K mutually exclusive validation sets, .D = {DK

k }K

k=1. Output: BN model (. G,. �). 
compute . RMCVK(D,G)

converged:= false 
While converged = false 

For each .G′ ∈ Neighborhood(. G) 
compute . RMCVK(D,G′)

. G∗ := arg minG′ RMCVK(D,G′)
If . RMCVK(D,G∗) < RMCVK(D,G)

Then . G := G∗
Else converged:= true 

. �:=LearnParameters(.D,G) 
Return . (G,�)

The RMCV algorithm starts with any initial graph (e.g., the empty graph or the 
NBC) and a training set that is divided into K mutually exclusive validation sets. For 
each .k ∈ 1,K , the parameters are learned using the effective training set .D \ DK

k , 
and the error rate is evaluated using .DK

k . The average error rate over the K validation
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sets .DK
k ,∀k ∈ 1,K is the RMCV score (Eq. 12). The initial graph and its score are 

kept as the current graph and score, respectively. Next, the neighborhood of the 
current graph is generated by all single edge additions, deletions, and reversals. 
Since only DAGs are allowed, any cyclic directed graphs in the neighborhood are 
excluded [78]. The graph having the lowest RMCV score in the neighborhood is 
chosen. Its score is compared to the current score, and the search is halted if the 
current score is lower than or equal to the score of the chosen graph. If, however, 
the chosen graph has a lower score than the current score, it becomes the current 
graph and the procedure repeats itself. During structure evaluation, only the effective 
training sets .D\DK

k ,∀k ∈ 1,K are used for parameter learning. Yet, once the search 
for a structure completes, the role of the validation sets is finished and the entire 
training set D can be used for more reliable parameter learning for this structure, 
rendering the structure a BN. The algorithm then returns the learned BN defined by 
.(G,�). 

Note that when using maximum likelihood parameter estimation, fully observed 
data, and the suggested search, there is no need to reassess all of the parameters for 
the different structures during each HC step. Parameters are changed only for nodes 
whose set of parents has been modified. In case of an addition or deletion of an edge, 
only one node is affected, and in case of a reversal of an edge, only two nodes are 
affected. For the same reason, it is beneficial to keep the history of the probability 
calculations, using the factorization of Eq. 3, for the initial/current DAG. 

3.4 Experimental Evaluation of Unrestricted BNCs 

Our first evaluation (Sect. 3.4.1) follows previous research that conventionally uses 
synthetic and traditional data sets. The empirical investigation includes several 
unrestricted BNCs. The RMCV algorithm is generally initialized by either the NBC 
or an empty structure to induce the RMCV (NBC) or RMCV (Empty) BNCs, 
respectively [17]. Along with the NBC, these RMCV BNCs are compared here with 
three other types: BNCs learned using the K2 score and algorithm [4] initialized 
by either the NBC or empty structures [66], i.e., K2 (NBC) and K2 (Empty); 
BNCs learned using HC search initialized by either the NBC or empty structures to 
minimize the MDL score [74] (maximize the marginal likelihood), i.e., MDL (NBC) 
and MDL (Empty) [17]; and BNCs learned to maximize the class-conditional log 
likelihood, initialized by the empty graph, which use either HC search or a two-
parent limitation on a node, i.e., BNC-MDL and BNC-2P [11]. 

Our second evaluation (Sect. 3.4.2) presents original studies using the RMCV 
algorithm and own authentic data sets from five real-life domains in genetic ab-
normality inspection, semiconductor manufacturing, Parkinson’s disease diagnosis, 
amyotrophic lateral sclerosis (ALS) prediction and explanation, and young driver 
motorcycle accidents analysis.
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3.4.1 Evaluation of BNCs Using Traditional Data Sets 

BNCs were found comparable and even superior to non-BN classifiers in different 
reports. Grossman and Domingos [11] showed that when a BNC’s structure is 
learned to optimize the conditional likelihood of the class variable (Eq. 5), it 
is advantageous to the classification and regression tree (CART) classifier [79]. 
Pernkopf [13] compared variants of the NBC and BNCs to the selective k-nearest 
neighbor classifier (skNN), selecting by sequential feature selection a subset of 
features that maximizes the classification performance. He showed using several 
UCI [71] databases that the BNCs are usually more accurate than the skNN and are 
superior with respect to memory requirements and computational demands during 
classification. The selective k-dependence Bayesian (SKDB) classifier [22] showed  
an advantage over the NBC, TAN [9], and AODE [59] (see Sect. 2.2 for details 
about the two later classifiers), and comparable accuracy to the RF [80], with no 
significant difference between them based on the Friedman test followed by the 
Nemenyi post-hoc test [81]. 

Kelner and Lerner [17] reported classification performance using 22 UCI [71] 
databases with various characteristics, e.g., the numbers of classes, features, and 
patterns between 2 and 26, 4 and 36, and 80 and 20,000, respectively. Table 2, 
extracted from [17], shows dominance of the RMCV over all other BNCs, and also 
over non-BNCs, such as the CART, three-layer-perceptron NN [82], and SVM [83] 
with its three conventional kernels—all non-BNCs were optimized for each task 
separately. According to a Friedman test followed by a Bonferroni–Dunn post-hoc 
test with RMCV as the control classifier vs. all other BNCs, RMCV was superior 
to all of them with a significance level of .p < 0.05, with the exception of BNC-
MDL, for which .p < 0.1. According to a Friedman test for all of the classifiers, 
RMCV was ranked the highest, and the null hypothesis that all algorithms are the 
same had been rejected with high confidence. However, due to the large number of 
models compared (fourteen), a relatively large difference of average ranks due to 
the Friedman test was required by the Bonferroni–Dunn test to indicate a significant 
difference, and RMCV was found to be significantly superior (with .p < 0.1) to  

Table 2 Average and std of classifiers’ accuracy over 22 UCI [71] databases. Bayesian network 
initial structures and SVM kernel types appear in brackets. Bold/italic fonts are used, respectively, 
for the best/worst classifiers 

RMCV MDL MDL K2 K2 BNC- BNC-

(NBC) (NBC) (Empty) (NBC) (Empty) MDL 2P 

Average 84.8 81.5 80.9 81.0 80.9 81.4 76.7 

Std (3.8) (4.1) (4.1) (4.3) (4.4) (3.8) (4.7) 

TAN NBC CART NN SVM SVM SVM 

(Linear) (Polynomial) (Gaussian) 

Average 82.5 81.3 83.8 83.6 82.4 77.3 81.8 

Std (3.9) (3.7) (3.8) (4.0) (3.6) (3.9) (3.9)
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only four other classifiers [MDL (empty), K2 (NBC), K2 (empty), and BNC-2P]. 
The less conservative Wilcoxon signed-rank test finds RMCV to be superior (with 
.p < 0.05) to all of the evaluated BNCs and also to SVM (polynomial). For CART, 
NN, and SVM (Linear/Gaussian), RMCV was not significantly superior with . p ∈
[0.147, 0.610]. This means that RMCV, CART, NN, and SVM (Linear/Gaussian) 
were comparable in terms of classification accuracy. That study also showed that an 
optimized version of RMCV is faster than all unrestricted BNCs and comparable to 
the neural network with respect to runtime. 

These comparative studies, like most studies cited here and elsewhere, usually 
use ready-to-use databases of what are called “real-world” problems, taken mainly 
from the UCI [71] and similar repositories. However, the selection of the sample 
databases used in each comparative study is neither complete nor standardized nor, 
needless to say, is it representative of real problems8 [84]. To demonstrate BNC 
performance on a wider range of complexities presented in actual real-world data 
sets, we report in Sect. 3.4.2 on six studies with five such data sets. 

3.4.2 Evaluation of BNCs Using Authentic Data Sets 

The data set in the first study contains data extracted from fluorescence in situ hy-
bridization (FISH) microscope images used in genetic abnormality inspection [55, 
56, 85]. The various instances represent red and green signals, corresponding to 
Down and Patau syndromes, respectively. Each of the two signals can be either 
“real,” where the syndrome can be observed in the image, or an “artifact” due to 
refraction and scattering of the fluorescence signal in the microscope optics, where 
the syndrome is not actually present. Each of 3,144 instances of signal images is 
represented by twelve features of the signal that are characterized by five types: size 
(area), shape (eccentricity, measuring the signal’s similarity to an ellipse), intensity 
(different features measuring total, average, and standard deviation in the red-green-
blue (RGB) channels), hue (maximum, average, standard deviation, difference 
between the maximum and average normalized by the average), and eigenfeatures, 
corresponding to the red and green intensity components of the signal. The class 
label takes one of the following values: Real Red (RR) (551 signals), Artificial Red 
(AR) (1,224), Real Green (RG) (594), or Artificial Green (AG) (775), forming a 
four-class classification problem. 

Table 3 shows that the relatively high accuracy of the NBC in classifying FISH 
signals is attributed to its accuracy in classifying the Real Red signals, for which 
the variables are mostly independent given the class value, as assumed by the 
NBC. Therefore, we also attribute the high accuracies of the other NBC-based 
BNCs (K2, MDL) to the NBC initialization. While the K2-based classifiers are

8 Check [84] that shows that the nine most popular UCI databases have between 100,000 and 
400,000 hits, but the comparative studies using them provide no explanation to why these databases 
have been selected. 
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Table 3 Accuracies (%) of 
BNCs for four signal 
classification tasks for the 
FISH data set 

Algorithm RR AR RG AG Total 

NBC [54] 88.0 76.9 81.1 74.4 79.0 

K2 (NBC) [4] 85.8 77.6 80.1 75.7 79.2 

K2 (Empty) [4] 75.7 72.1 81.7 71.6 74.4 

MDL (NBC) [74] 85.3 80.7 85.0 65.8 78.7 

MDL (Empty) [74] 80.2 81.1 82.0 74.3 79.4 

BNC-MDL [11] 80.1 79.5 84.0 67.0 77.5 

BNC-2P [11] 82.9 78.9 74.2 72.4 77.1 

RMCV (NBC) [17] 88.2 81.5 83.7 75.1 81.5 

RMCV (Empty) [17] 83.7 84.2 82.8 76.9 82.1 
a Bold and italic fonts are for most and second-most accurate 

classifiers for a task, respectively 

highly dependent on the K2 algorithm initialization, the MDL BNCs and BNC-
MDL/2P are not. In all but one of the four classification tasks, at least one of the 
RMCV BNCs is the most or second-most accurate classifier, which makes these 
two BNCs the most accurate on average. Figure 4 shows (for one arbitrary fold 
of the CV5 experiment) that while RMCV (NBC) reveals a similar structure to 
that of the NBC, RMCV (Empty) shows a different structure, as six of the twelve 
attributes are disconnected. This aggressive but educated feature selection of RMCV 
(Empty) contributes not only to the best classification results (Table 3) but also to 
an interpretable model relying only on three types of signal features (intensity, hue, 
and eigenfeatures), compared to the other too dense or too sparse less informative 
models (Fig. 4). 

The second original data set, a flash memory semiconductor manufacturing 
data set, consists of 362 instances of wafer lots represented by 35 tool variables 
describing an ion-implementation process that is part of wafer manufacturing. The 
data are highly imbalanced, where 30 of the lots are faulty and 332 are normal. 
Table 4 shows that most BNC algorithms have been fooled by the imbalance in the 
data, wrongly classifying most or all of the faulty lots as normal. This is the case 
with K2 (but also with MDL and BNC), which are almost perfect in classifying 
normal lots but fail completely with faulty lots. The only two algorithms that have 
a relatively reasonable accuracy in classifying faulty lots in spite of the imbalance 
are the NBC and RMCV. The .36.7% accuracy of the NBC for faulty lots came 
at the expense of its accuracy in normal lots (.93.1%), which is the lowest of 
all algorithms, positioning this classifier as the poorest in total. The RMCV, and 
particularly the “weighted” version, which penalizes errors according to the classes’ 
prior probability ratio, balances its performance between the classes, positioning this 
classifier as the best in total and most even. Of particular note in Fig. 5 are the graphs 
of the NBC (best for faulty lots), K2 (NBC) (best for normal lots), and RMCV 
(Empty, weighted) (best in total). We attribute the high and balanced performance 
of the RMCV to the drastic dimensionality reduction it performed, identifying only 
a few significant variables in its Markov blanket—enough to accurately classify both 
classes but without over-fitting any of them at the expense of the other.
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Fig. 4 BNC structures learned for one CV5 fold for the FISH data set. 13 is the class node. (a) 
NBC. (b) K2 (NBC). (c) K2 (Empty). (d) MDL (Empty). (e) BNC-MDL. (f) BNC-2P. (g) RMCV  
(NBC). (h) RMCV (Empty)
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Table 4 Accuracies (%) of 
BNCs in detecting either 
normal or defective lots of 
wafers of an imbalanced 
semiconductor manufacturing 
data set 

Algorithm Normal Faulty Total 

NBC [54] 93.1 36.7 88.4 

K2 (NBC) [4] 99.7 0.0 91.4 
K2 (Empty) [4] 99.4 0.0 91.2 

MDL (NBC/Empty) [74] 98.2 10.0 90.9 

BNC-MDL [11] 99.1 0.0 90.9 

BNC-2P [11] 98.2 13.3 91.2 

RMCV (NBC) [17] 96.7 20.0 90.3 

RMCV (Empty) [17] 97.0 13.3 90.1 

RMCV (NBC, weighted) [17] 97.9 13.3 90.9 

RMCV (Empty, weighted) [17] 97.0 30.0 91.4 
a Bold and italic fonts are for most and second-most accurate 

classifiers for a task, respectively 

Fig. 5 Three BNCs learned for one CV5 fold for the semiconductor manufacturing data set. 36 is 
the class node. (a) NBC. (b) K2 (NBC). (c) RMCV  

The data set in the third study contains medical diagnosis data extracted from 
visuomotor measurements of people who have been diagnosed with Parkinson’s 
disease (PD) or essential tremor (ET) versus healthy controls. PD and ET have 
very similar symptoms, but ET, unlike PD, is related to long life expectancy. The 
data set used to predict PD has 164 instances, relatively balanced among the three 
classes (55 PD, 51 ET, 58 controls). Each is represented using the person’s age, their 
worst affected hand, and fourteen visuomotor features measured for the persons’ 
two hands. The MDL (NBC or Empty) BNC provided the highest accuracy on 
PD patients, and the K2 (NBC or Empty) BNC supplied the best accuracy on the 
healthy controls, but both classifiers failed to classify any ET patient. This failure 
was due to learned structures where either the class node was not connected to 
the graph (making classification based on the a priori probabilities) or the Markov 
blanket of the class node was relatively empty of nodes with which to make accurate 
predictions. The BNC-2P provided reasonable performances on all three classes 
(where the BNC-MDL was similar to the MDL and K2 classifiers). However, its 
scores were lower than those of the RMCV (NBC or Empty), which was equally 
accurate for all three classes and the most accurate classifier. The NBC, dispensing 
with structure learning, was the classifier least affected by the small data set; it was 
thus the second-most accurate classifier after the RMCV, although it manifested a
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non-informative graph. The RMCV’s structure was not as dense and uninformative 
as that of the NBC but was also not as empty as those of the MDL, K2, and 
BNC-MDL/2P. Such a structure conveys knowledge representation by interrelating 
visuomotor measurements with clinical characteristics of the patients, which also 
improves the accuracy in classifying PD patients, as distinct from ET patients and 
from healthy people. 

For the fourth data set, the RMCV was applied [46] to identify the most influen-
tial variables in predicting and explaining functional deterioration (e.g., walking, 
writing, climbing stairs, and speaking) of five levels from a large clinical-trial 
database of ALS patients [86]. For each variable representing patient functionality, 
the RMCV selected to include in the variable’s MB only those variables from 
the tens available for the algorithm that contribute to accurate prediction of 
this functionality. For example, the MB of the climbing stairs variable shows 
connections between the ability to climb stairs and lab test results that are related 
to the body muscle metabolism (e.g., glucose, creatinine, phosphorus, and alkaline 
phosphatase), forced vital capacity (FVC), the total amount of air a person can 
exhale during a forced breath, which is also related to the person’s physical 
capability, and the disease onset site, whether in the bulbar or limbs (and then the 
patients are limited in climbing stairs sooner in their progression). It could also be 
possible to distinguish mild from severe ALS patients by the different combinations 
of values these MB variables take for the two groups of patients. For example, severe 
swallowing functionality in patients who their onset was in the bulbar and their FVC 
capability is low is between 8 and 35 times more frequent than in patients who their 
onset was in the limbs and their FVC capability is between moderate and high, 
respectively [46]. 

In the fifth study [87], when predicting young driver (YD) fatalities in motorcycle 
accidents, the RMCV classifier identified key factors in the class variable’s MB that 
distinguish between minor, severe, and fatal accidents. Some of the main factors 
were the accident type (inexperienced YDs are more likely to lose control over their 
motorcycle and crash into inanimate objects, skid, or turn over with usually deadly 
results), road speed limit (accidents on roads where the speed limit is high tend to be 
fatal or severe), gender (in all fatal accidents in the data, men were the drivers, and 
in general, the victims of severe and fatal YD accidents are three times more likely 
to be men), age at time of accident (most accidents of older YDs (.≥22) are fatal, 
since they drive heavier motorcycles than younger drivers), and motorcycle type (a 
YD accident that involves a heavy, .≥400cc, motorcycle is eight times more likely 
to be deadly than for a lighter one). 

In the sixth and last study we report here [88], the RMCV was modified to deal 
with class-imbalance ordinal classification problems and to provide information 
about the distribution of misclassifications and about the sensitivity to error severity 
(distinguishing between misclassification of class X as class Y or as class Z). 
The modified RMCV achieved superior average accuracy over the CART, NN, and 
SVM using 23 synthetic and 17 UCI databases, and superior average accuracy over 
the RF using the synthetic databases but inferior average accuracy using the UCI
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databases.9 In addition, using data of three real problems (the above ALS [46] and 
YD motorcycle accidents [87], as well as missed due date—no delay, 3–5 days of 
delay, and more than 5 days of delay—of a product in Teleco orders), the modified 
RMCV classifier showed confusion matrices with errors that are the most balanced 
over the classes compared with the NN and SVM competitors, contributing to its 
superior accuracy. 

Still, a further step is needed to allow examples such as those in this section—in 
genetic abnormality inspection, semiconductor manufacturing, Parkinson’s disease 
diagnosis, ALS prediction and explanation, and young driver motorcycle accidents 
analysis—convincingly demonstrate domain experts interpretability and explain-
ability. This step involves human–machine interaction, and we will return to this 
issue in the conclusion section. 

4 Beyond the BNC–Causal–Temporal Classifiers 

Let us consider progression of a neurodegenerative disease such as ALS or 
Alzheimer’s or a chronic disease such as type 2 diabetes, for which we wish to 
predict a future state for patients. In other words, to predict a diagnosis using 
symptoms such as clinical markers and lab test results collected routinely over time. 
We may further consider a left-to-right model with a state index that either decreases 
or stays the same and thereby represents progression of such diseases. Figure 6a 
shows a two-slice graph that represents a medical domain in which there is a cause 
to a disease. We wish to predict the current disease state based on that cause and the 
previous disease state, where both the cause and disease state are unknown latent 

Fig. 6 (a) Artificial temporal graph with three OVs per each of two LVs also making a collider per 
slice. (b) Classification accuracy (solid line) and F1-measure (dashed line) for increasing sample 
sizes of the data sets sampled from the graph in (a)

9 The modified RMCV score balances the 0/1 loss (accuracy) function with the mutual information 
between predictions and true labels and with the severity of misclassifications [88, 89]. Synthetic 
databases had combinations of different numbers of classes and instances and degrees of 
imbalance. 
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variables (LVs) . L1 and . L2, respectively, each of which has three observed variables 
(OVs), which are proxies for disease symptoms, together .X1 − X6. 

Since a future patient disease state is unknown and thus cannot be modeled 
and predicted, we can instead predict the value of a symptom that hints at the 
disease state using the values of other symptoms. However, if there is no a priori 
information that a specific symptom is the most predictive of the disease and we 
want to eliminate uncertainty, we might repeat and predict each symptom in turn and 
average the prediction performance over all predicted symptoms. While this strategy 
may sound very practical, it can neither discover cause–disease relations nor their 
evolution over time in the domain and thereby cannot contribute to understanding 
the disease or its progression, assist in drug development, or enable a better cure for 
the disease. 

Therefore, for causal discovery and cause–disease relations monitoring, we may 
wish to use graphical models such as dynamic BNs and, especially, latent variable 
models (LVMs) [2, 44, 90, 91, 92]. To meet this challenge, we propose learning 
a causal latent model in each time slot locally. Then, we suggest local-to-global 
learning over time slices, based on probabilistic scoring and temporal reasoning to 
transfer the local graphs into a non-stationary latent dynamic BN (DBN) with intra-
and inter-slice edges showing causal interrelationships among latent variables and 
between latent variables and observed variables. This is performed based on the 
learning pairwise cluster comparison (LPCC) algorithm [91, 92] using the LPCC-
based local-to-global (LGL) algorithm [93] to learn a temporal LVM. 

The LPCC-based LGL algorithm was evaluated on data sets that were sampled 
from the artificial temporal BN in Fig. 6a for varying sequence sizes, . 4 ≤ T ≤
15, i.e., a record is (.|O| × T )-dimensional, and O is the set of observed variables. 
The sample size was .D = {2,000, 3,000, 4,000, 5,000, 10,000}. The cardinality of 
all variables was set to four, where the probability that an observed variable takes 
the same value as does its parent latent variable is . 0.8, and the probability that it 
takes any other value is equally distributed (i.e., a 0.2 “noise” level was evenly 
distributed among the other values). These probabilities are the same for all T values 
to guarantee stationarity. Reported results are averaged over ten data permutations 
for each value combination of T and D. 

We empirically compared the LPCC-based LGL algorithm with the state-of-
the-art structural expectation maximization (SEM) algorithm [94, 95] that learns 
a latent DBN, i.e., the SEM-DBN algorithm. This algorithm uses an S&S procedure 
to find the best fitted model from data, although not necessarily a causal one. It also 
requires the user to specify the number of LVs and their cardinalities beforehand. For 
fairness, we limited it to: (1) search over the (smaller) space of pure measurement 
models (PMMs),10 and even initialized it with a random PMM, and (2) not to direct 
an edge from t to .t − 1.

10 A DAG over sets of observed variables, latent variables, and edges is a measurement model if 
a latent variable is a parent of at least one observed variable, an observed variable is a child of at 
least one latent variable, and none of the observed variables is a parent of any latent variable. A 
measurement model is called a pure measurement model (PMM) if each observed variable has a 
single parent and that parent is a latent variable [90]. 



Interpretable Machine Learning Using Bayesian Network Classifiers 135

For comparison, assuming the absence of an LVM, we also compared the 
classification accuracy of the LPCC-based LGL algorithm and that of the SEM-
DBN with the average accuracy of six RF classifiers, each classifying each of the six 
OVs of the graph in Fig. 6a in the  T th (last) slice (acting as the classification node, 
where all the remaining OVs in all slices are predictors). By taking the average 
over the six classifiers, we avoid any preference in the classification (as above). 
That is, we compared this straightforward classification approach (denoted as a non-
LVM) to that based on identifying latent variables and their values using either the 
LPCC-based LGL or SEM-DBN algorithms, and using the values of the learned 
latent variables to perform the classification. Thereby, we plan to demonstrate the 
contribution of learning a temporal LVM in a classification task compared with 
ignoring the existence of latent variables. We repeated this comparison for each 
combination of sequence size, sample size, and data permutation. 

In total, we trained .5 × 8 × 10 × 6 × 3 = 7,200 classifiers for five sample sizes, 
eight sequence sizes, ten data permutations, six classifiers (classification nodes), and 
three models (LGL/SEM-DBN/no-LVM). We used 80% of the instances of each 
data set for training and 20% for testing. Figure 6b shows the accuracy and F1-
measure averaged over all data permutations, sequence sizes, and observed variables 
for different sample sizes of the three models. It shows that the LPCC-based LGL 
algorithm achieves the best classification performance (significantly superior to 
the others). It reaches the highest possible accuracy of 80% since the noise was 
originally set at 20%, i.e., even if the algorithm learns the true classification rule, 
in 20% of cases it will be wrong. This experiment not only allows us to appreciate 
the importance of learning an LVM in general but also specifically in classification 
tasks, since latent mechanisms always exist. 

Finally, the LPCC-based LGL algorithm was applied to the ALS open-source 
PROACT ALS data set [86] that consists of 3,171 patients with 22,089 clinic 
visits, from which we derived a subset of 2,590 patients who had at least four 
visits, each consecutive two are up to six months apart. A visit consists of lab 
test results and clinical variables describing patient physical functioning, e.g., in 
walking, writing, and speech. The LGL-based LPCC learned a graph using four 
latent variables (Fig. 7) demonstrating patient functioning: bulbar functionality (L1) 
indicated mainly by speech (Sp), salivation (Sv), and swallowing (Sw); gross-motor 
functionality (L2) indicated by walking (Wa) and climbing stairs (Cs); fine-motor 
functionality (L4) indicated by dressing (Dr), writing (Wr), and cutting food (Cu); 
and full body functionality (L3) indicated by turning (Tr) in bed, respiratory (Re) 
ability, FVC, and two lab tests: CK and chloride (Ch) (also found correlated 
in [46, 96]). The three intra-slice edges represent the natural connections between 
the bulbar and gross-motor, gross-motor and full body, and fine-motor and full body 
functionalities. The inter-slice edges between bulbar and full body to themselves 
complete the temporal–causal reasoning that resembles medical categorization and 
convention.
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Fig. 7 A temporal LVM learned by the LPCC-based LGL for the ALS data set 

5 Conclusion and Discussion 

Machine learning models are usually not used in an isolated way but are embedded 
in some process or product and interact with people. Thus, a more flexible yet 
holistic view of the entire process, from data collection to the final consumption of 
the explained prediction, is needed. This includes considering both how to explain 
predictions to individuals with diverse knowledge and backgrounds and the need for 
interpretability on the level of an institution or society in general [28, 32]. This is 
especially required when moving from sandbox studies of benchmark data sets to 
actual real-world problems [97, 98]. 

Researchers and practitioners seek to make their algorithms more understandable 
by focusing, for example, on explicit explanation of decisions and actions to a 
human observer. However, this focus should range beyond the ML researchers’ 
intuition of what constitutes a “good” explanation and build on existing research 
from philosophy, cognitive psychology/science, and social psychology, disciplines 
that grapple with these topics, and study how people define, generate, select, 
evaluate, and present explanations [37]. 

This chapter encourages more exploration and exploitation of human-
understandable causal models, such as the BNCs, of the operation of ML and 
especially DNN paradigms. BNC models will allow better introduction and use 
of causal discovery, interventions, and queries as effective tools to promote 
explainability and interpretability in developing and applying ML. They have 
natural interpretability (ability to understand the results) and explainability (ability 
to explain the results). Unlike ensemble classifiers, the BNC does not provide a 
list of “important” variables ranked by a statistical, discriminability, or information 
measure (where the variable “importance” value can differ even by a fraction of 
a percent and/or due to calibration issues), but also a feature-selection mechanism 
through variables’ Markov blankets and hierarchies of connections along with paths
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of influence and inference mechanisms that together expose causal relations in the 
domain. 

A main challenge is that the BN/BNC is not suitable for processing high-
dimensional and/or non-semantic data that exist in domains based, for example, 
on images, text, and speech. Current BN learning algorithms are limited to small 
to medium domains usually of discrete variables. While it is hard to believe that 
this will be changed in the near future, it is more reasonable to expect BNs to 
be applied to processed, projected, or embedded DNN representations of high-
dimensional domain input. DNN projections and embeddings of high-dimensional 
data already reflect semantic evidence that can more easily be extracted, analyzed, 
and exploited by the BN compared, for example, to the same data re-processed 
or re-embedded by more layers of the DNN. Effective BN-based tools to promote 
explainability and interpretability can, for example, allow the user to understand 
the chain of causal effects from DNN input, to low-level features of the domain, to 
high-level human-understandable concepts, to DNN outputs [99]. Such a capability 
is a powerful tool for debugging, understanding bias, and ensuring the safe operation 
of AI systems. Additionally, these tools may extract low-dimensional concepts from 
DNNs to generate a human-understandable “vocabulary” and learn a BN that relates 
the DNN’s inputs to the concepts, and the concepts to the DNN’s outputs [43]. Other 
probabilistic models, such as the hidden Markov model (for multilayer perceptron 
networks) and Gaussian mixture model (for convolutional neural networks), may 
extract activity patterns of the network hidden layers, where transition probabilities 
between clusters (mixture components) in consecutive modeled layers may be 
estimated from the data [42]. Then nodes and paths relevant for network prediction 
can be chosen, connected, and visualized as an inference graph. This graph is 
useful for understanding the general inference process for a class, as well as 
explaining decisions the network makes regarding specific images. Also, a scalable 
graphical-model framework [100] was shown to aid human understanding and 
reasoning by providing criticism to explain what is not captured by the examples 
and improving the interpretability of complex data distributions. In addition, it was 
demonstrated [101] that when casting the problem of learning the connectivity of 
a DNN as a BN structure learning problem according to the recursive autonomy 
identification notion [27], the resulting DNN structure encodes independencies in 
the input distribution hierarchically, where lower-order independencies are encoded 
in deeper layers. Tools and mechanisms such as these may also facilitate the struggle 
of DNN researchers to interpret hidden layer activity in order to understand the 
general inference process of a classifier, explain decisions the network makes, and 
indicate the relevance of specific inputs to the network output. 

To conclude, returning to Footnote 4, we believe that transparency and account-
ability are hard to achieve by BOTH human and machine decision-making, and 
thus we call for more human involvement and intervention for confirmation and 
validation in AI-driven systems. This could be accomplished by the development of 
graphical user interface tools soliciting, fostering, and supporting human–machine 
interaction and bi-directional communication by which, on the one hand, users’ 
inquiries will manipulate and extend the learned BNC model to better address these
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and further inquiries, and, on the other hand, the tools will inspire users’ curiosity 
to further interrogate and explore the model to enrich their understanding of the 
domain beyond what they expected to achieve when running the tool. Bayesian 
network classifiers can confer transparency on DNNs and other ML tools, enable 
interpretability and explainability, and empower humans—ML experts and non-ML 
users alike—to understand but also to affect the results of these tools, all of which 
will increase trust and trustworthiness in ML to deliver true “explainable AI.” To 
maximize the tremendous impact that ML is having on all aspects of our lives, and 
enhance trustworthiness in AI, let us embrace the opportunities BNCs are bringing 
us. 
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Soft Decision Trees 

Oren Fivel, Moshe Klein, and Oded Maimon 

1 Introduction 

In this chapter, we develop the foundation of a new theory for decision trees based 
on new modeling of phenomena with soft numbers. This calls for major concept 
change of probability, which is developed in this chapter, so that decision trees can 
be modeled. Soft numbers represent the theory of soft logic that addresses the need 
to combine real processes and cognitive ones in the same framework. At the same 
time, soft logic develops a new concept of modeling and dealing with uncertainty: 
the uncertainty of time and space. It is a language that can talk in two reference 
frames and also suggest a way to combine them. 

1.1 Research Motivation and Direction 

Probability theory is used in order to model processes and phenomena, involving 
randomness of the parameters and variables. A probability of a continuous random 
variable is defined by a probability density function (PDF). The PDF can be used to 
approximate the probability of the continuous random variable X to be adjacent to 
x in the following sense: 
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.Pr(x < X ≤ x + �x) ≈ fX(x)�x, (1) 

where .�x > 0 is a small value that defines how much this probability is accurate. 
However, continuous random variables have the following properties: 

• No distinguishing between strict inequality and non-strict in equality, e.g., 
.Pr(X ≤ x) = Pr(X < x). 

• Equality collapses to zero, i.e., .Pr(X = x) = 0. Although any value of . x ∈ SX

(. SX denotes the support of X) is possible for X, the probability of X to be equal 
to any value of .x ∈ SX is (almost surely) zero. 

Because of these properties, we lose some information regarding to a continuous 
random variable to have an exact value. On one hand, an event “.X = x” might be 
possible (if .x ∈ SX) but improbable (i.e., with zero probability), which seems to be 
a paradox. On the other hand, we can express the zero probability by of an event 
“.X = x” by letting . �x to approach to zero in Eq. (1) 

.Pr(X = x) = fX(x) · 0. (2) 

This equation presents the probability .Pr(X = x) as a multiple of zero with a factor 
of the PDF .fX(x) for all x. Instead of taking .Pr(X = x) to be completely zero, we 
can assign to it a zero multiple of .fX(x) and compare different probability values 
for different observation values x. This approach can be implemented by using soft 
numbers (see Appendix 2 and Klein and Maimon’s papers, e.g., [5, 6] and [7]). 

In addition, there is an approach to represent a discrete distribution as a 
continuous distribution by a linear combination of Dirac delta functions .δ(x − xi), 
or by any approximations of Dirac delta functions, e.g., Gaussian functions (also 
known as Gaussian mixture model or GMM) or rectangular functions (based on 
a “Uniformly” Mixture Model or UMM), etc. (see Eq. (14) for more details). Our 
approach is to establish the opposite in some sense, i.e., to represent a continuous 
random variable with a possibility to have discrete values with probability that will 
not collapse absolutely to zero. 

In this chapter, we introduce the soft numbers to give a probability interpretation 
of a continuous random variable to have an exact value that provides distinguishing 
between strict inequality and non-strict in equality in the probability function. This 
probability interpretation is implemented by “Soft Probability” [3]. 

1.2 Organization of the Work 

Section 2 incorporates soft numbers into probability theory to present the notion of 
“Soft Probability.” Section 3 presents an example for application on decision-trees-
based C4.5 algorithm. Conclusions and suggestion for future research are shown in 
Sects. 4 and 5, respectively, to summarize this chapter. For completion, Appendix 1
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provides an extension of soft probability for complements, union, intersection, and 
conditional probability. Appendix 2 provides a presentation of soft numbers. 

2 Soft Probability: Incorporation of Soft Number into 
Probability Theory 

In order to incorporate the notion of Eq. (72) in Appendix 2, we define a cumulative 
distribution function (CDF) of a continuous random variable 

.Ps(X ≤ x) = FX(1 · 0̄+̇x), (3) 

where .Ps(·) is a suggested type of a probability function, dented as a “Soft 
Probability” [3] instead of a regular probability notation “.Pr(·)” or .P(·), and .FX(·) is 
the regular CDF function of the random variable X, but it is applied on a soft number 
.1 · 0̄+̇x. Our motivation is to generate an alternative evaluation of the probability 
at the left-hand side (LHS), so that we can distinguish between .Ps(X < x) and 
.Ps(X ≤ x) for a continuous random variable X (i.e., .Ps(X < x) �= Ps(X ≤ x)). We 
will show that the evaluation of the soft number at the CDF in the right-hand side 
(RHS) will create this distinction. 

The RHS of Eq. (3) can be decomposed by Eq. (72) as follows: 

.FX(1 · 0̄+̇x)
def= fX(x)0̄+̇FX(x). (4) 

The LHS of Eq. (3) can be decomposed by separating the event .“X ≤ x′′ into a 
disjoint union .“X = x � X < x.′′ In a regular probability, we have the known 
identities 

. Pr(X ≤ x)
“X=x′′∩“X<x′′=∅= Pr(X = x)

︸ ︷︷ ︸

=0

+Pr(X < x)

= Pr(X < x).

So we do not have a distinction between .Pr(X ≤ x) and .Pr(X < x). We distinguish 
between .Ps(X ≤ x) and .Ps(X < x) by the following definition for . Ps(X ≤ x)

.Ps(X ≤ x)
def= Ps(X = x) + Ps(X < x), (5) 

so that we define the terms on the LHS as follows: 

.Ps(X = x)
def= fX(x)0̄, . (6) 

Ps(X < x) def= FX(x) ≡ Pr(X < x). (7)
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By this setup, we achieve a distinguishing between .Ps(X ≤ x) and .Ps(X < x), 
and also we provide an interpretation to .Ps(X = x) be infinitesimally small but not 
collapse completely to zero due to the factor . 0̄ of the PDF. 

In the next subsection, we provide two examples of implementation on mixture 
models PDFs, GMM, and UMM, in order to demonstrate the effect of soft numbers 
(and more precisely, soft zeros) on PDFs. 

2.1 Examples on Mixture Models 

In order to demonstrate the effect of soft numbers (and more precisely, soft zeros) 
on PDFs, we provide two examples of implementation on mixture models: 

• Gaussian mixture model (GMM) 
• Uniformly mixture model (UMM) 

A PDF of a continuous random variable X with mixture model is given by 

.fX

(

x; {(θi, wi)}ni=1

) =
n

∑

i=1

wifi(x; θi), (8) 

where .fi(·; θi) is a PDF with a set of parameters . θi , and .wi ∈ [0, 1] is a weight that 
multiplies the ith PDF . fi and sums to 1, i.e., .

∑n
i=1 wi = 1. In the GMM case, the 

ith PDF . fi is parameterized with mean . μi and variance . σ 2
i such that 

.fi(x;μi, σ
2
i ) = 1

√

2πσ 2
i

e
− 1

2σ2
i

(x−μi)
2

. (9) 

In the UMM case, the ith PDF . fi is parameterized with the open interval . (ai, bi)

such that 

.fi(x; ai, bi) = 1

bi − ai

1x∈(ai ,bi ), (10) 

where . 1A is the indication function that indicates “1” if “A” is true and “0” if “A” 
is false. The corresponding soft probability is obtained by 

.Ps
(

X = x; {(θi, wi)}ni=1

) =
n

∑

i=1

wifi(x; θi) · 0̄. (11) 

For illustration, we chose following parameters for the mixture model with 2 
components each and plot them in Fig. 1:



Soft Decision Trees 147

Fig. 1 Examples of Gaussian 
mixture model and uniformly 
mixture model’s PDFs 
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• GMM: .(μ1, σ1, w1) = (0, 0.2, 0.33), .(μ2, σ2, w2) = (4, 1, 0.67). 
• UMM: .((a1, b1), w1) = ((−0.3, 0.3), 0.33), .((a2, b2), w2) = ((2, 6), 0.67). 

In the GMM case, we have two local maximums at .x = μ1 (a global maximum) 
and .x = μ2. Hence, if we take three points .x1 ≈ μ1, .x2 ≈ μ2, and . x3 such that 
.|x1|, |x2| � |x3|, we have the following order of soft probabilities: 

. Ps(X = x1) > Ps(X = x2) > Ps(X = x3) > 0 · 0̄.

We have a strict inequality in the RHS because the support of the GMM is infinite. 
The soft probability of the GMM presents an absolute low probability of X to have 
an exact value x but relative high probability when X is closer to . μ1 (where the 
GMM is maximal in this case). In other words, in contrast to classic probability that 
would collapse absolutely to have exact value .X = x, with soft probability, we are 
able to distinguish (and order) among events .X = x that will have a positive soft 
probability (due to infinite support in GMM). 

In the UMM case, if we take three points .x1 ∈ (a1, b1) [global maximum], 
.x2 ∈ (a2, b2), and .x3 /∈ (a1, b1) ∪ (a2, b2), we have the following order of soft 
probabilities: 

. Ps(X = x1) > Ps(X = x2) > Ps(X = x3) = 0 · 0̄.

We have equality to absolute zero in the RHS because . x3 is outside of the support 
.(a1, b1) ∪ (ab, b2), while for .i = 1, 2 we assign some probability values by the soft 
zero .Ps(X = xi) = wi

bi−ai
· 0̄ > 0 · 0̄. Hence, with soft probability, we succeed to 

distinguish between “zero probabilities” of “impossible” events (.X = x with x is 
outside of the support) and “possible” events (.X = x with x is in the support) that 
would collapse to zero in the classical probability sense, so that the “impossible”
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events will be absolute zero and the “possible” events will be some soft zero and 
ordered accordingly. 

2.2 Observations 

When it comes to the development of soft numbers, we have two options how to 
define an absolute value of a soft number: Option 1 is by the definition in Eq. (72) 
with .|x|′ = sign(x), ignoring the fact that this derivative is not continuous, so that 

.|a0̄+̇x| = α0̄ · sign(x)+̇|x|. (12) 

Option 2 is to define a soft conjugate of .α0̄+̇x to be .(−α)0̄+̇x such that 

.

|α0̄+̇x| =
√

(α0̄+̇x)((−α)0̄+̇x)

=
√

−(α0̄)2 + x2

=
√

−0 + x2

=
√

x2

= |x|.

(13) 

If we use Option 2, then we can have the following properties for a soft probability 
on a continuous random variable: 

1. .Ps(X ≤ x) �= Ps(X < x), 
but .|Ps(X ≤ x)| = |Ps(X < x)| > |Ps(X = x)| = 0. 

2. .fX(x) > fX(y) ⇒ Ps(X = x) > Ps(X = y), 
but .|Ps(X = x)| = |Ps(X = y)| = 0. 

3. .fX(x) > fY (y) ⇒ Ps(X = x) > Ps(Y = y), 
but .|Ps(X = x)| = |Ps(Y = y)| = 0. 

4. .|Ps(X ≤ x)| = Ps(X < x) = Pr(X < x) = Pr(X ≤ x). 

By taking absolute values of the soft probability term, we return to the classic 
probability results for continuous random variable, e.g., not distinguishing between 
strict inequality and non-strict inequality, and equality collapses to zero. 

In the literature (e.g., [8, 4] and [13]), there is an approach to represent a discrete 
distribution as a continuous distribution by a linear combination of Dirac delta 
functions .δ(x − xi), or by any approximations of Dirac delta functions based on a 
mixture model, e.g., GMM or UMM. Suppose X is a discrete random variable with 
the probability .Pr(X = xi) = pi . Then X can be represented with a continuous 
distribution as follows:
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.

fX(x) =
∑

i

piδ(x − xi)

≈
∑

i

pi · 1√
2πσ 2

e
− 1

2σ2
(x−xi )

2
, σ 2 � 1

≈
∑

i

pi · 1

2a
1x−xi∈(−a,a), a � 1.

(14) 

Recall for Dirac delta function properties, 

.

δ(x) =
{

0 x �= 0

∞ x = 0
∫ ∞

−∞
δ(x)dx = 1,

(15) 

and also . 1√
2πσ 2

e
− 1

2σ2
x2 σ 2→0−−−→ δ(x), . 12a1x∈(−a,a)

a→0−−−→ δ(x), i.e., Gaussian dis-
tribution and uniformly distribution converge to Dirac delta function (degenerative 
distribution) when the variance of the Gaussian distribution and the length of the 
interval in the uniformly distribution approach to zero, respectively (cf. Fig. 1). Our 
approach is to establish the opposite in some sense, i.e., to represent a continuous 
random variable with a possibility to have discrete values with probability that 
will not collapse absolutely to zero. See Appendix 1 for the extension of the soft 
probability’s notion to complement, union intersection, and conditional probability 

In this chapter, we introduce the soft numbers (see Klein and Maimon’s papers, 
e.g., [5, 6] and [7]) to give a probability interpretation of a continuous random 
variable to have an exact value that provides distinguishing between strict inequality 
and non-strict in equality in the probability function. 

In the next section, we use the notion of “Soft Probability” into decision trees. 

3 Soft Decision Trees 

3.1 Overview 

Decision trees are simple yet successful techniques for predicting and explaining the 
relationship between some measurements about an item and its target value (see, 
e.g., [12, 11]). In most decision trees inducers, discrete splitting functions (also 
known as Splitting Criteria) are univariate, i.e., an internal node is split according 
to the value of a single attribute. There are various top-down decision tree inducers 
such as: ID3 (Ref. [10]), the basic algorithm, C4.5 (Ref. [9]), an extension of ID3
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that can handle continuous variables, CART (Ref. [1]), classification and regression 
tree, etc. 

In the next subsection, we introduce an implementation of decision trees with 
soft numbers, based on C4.5 algorithm, in order to generate Soft Decision Trees. 

3.2 Soft Decision Trees Based on C4.5 Algorithm 

In this subsection, we introduce an implementation of decision trees with soft 
numbers, based on C4.5 Algorithm, in order to generate soft decision trees, based 
on a discrete label S and continuous features .X0, X1, . . . , Xn. 

3.2.1 Preferring a Thesis in Equilibrium State 

On each stage in the C4.5 algorithm, we search the splitting that will minimize the 
classes entropy: 

.min{H(S|X0),H(S|X1),H(S|X2) . . . .H(S|Xn)}. (16) 

We will split our data according to the feature that has the most information gain 
(IG) see e.g., Fig. 2. In some cases when calculating the IG we may find that several 
features have the same IG, and in the case that the IG is the maximum of all feature’s 
IG we will not be able to tell by which feature we should split our data. 

For describing the problem we are trying to solve, we will define the following 
example: 

Let .{X0, X1 . . . Xn} be continuous features with known distributions .fXi
(x), and 

S be a binary class such that .S ∈ {s1, s2}. For finding the best splitting features, we 
will calculate the IG for each feature and for the optimum threshold of that feature. 

.min{IG(X0 = x0th), IG(X1 = x1th) . . . IG(Xn = xnth)}. (17) 

In some cases, we can have an equality between two or more IGs of different 
features, and in that case, there is no preferred thesis, so we can pick one of the 
suggested features randomly, for example: 

. IG(X1 = x1th) = IG(X4 = x4th) = IG(X8 = x8th).

Using the soft probability, we suggest a method to derive the information gain 
of those features and also the ability to choose the preferred one (Fig. 3). Recall the 
definition of information gain:
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Fig. 2 Classic decision tree splitting 

Fig. 3 Soft decision tree splitting 

.

IG(Xi) = Pr(Xi ≥ xi)H(S|Xi ≥ xi) + Pr(Xi < xi)H(S|Xi < xi)

= Pr(Xi > xi)H(S|Xi > xi) + Pr(X < xi)H(S|Xi < xi)

+ Pr(Xi = xi)H(S|Xi = xi).

(18) 

The part .Pr(Xi = xi)H(S|Xi = xi) is the . IG on the threshold point. It is 
infinitesimal and treated as 0, so it has no impact on the total IG of each feature. 
.P(Xi = x) = 0 in the classical probability sense, so in features equality we get the 
following in the case of .IG(Xi) = IG(Xj ):
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.

Pr(Xi > xi)H(S|Xi ≥ xi) + Pr(Xi < xi)H(S|Xi < x)

= Pr(Xj > xj )H(S|Xj > xj ) + H(Xj < xj )H(S|Xj < xj ).
(19) 

On the other hand, using soft probability, the part .Ps(Xi = x) does have defined 
value by Eq. (6), .Ps(Xi = x) = fXi

(x) · 0̄, so we can express soft information gain 
as follows: 

.

IGs(Xi) = Ps(Xi = xi) · H(S|Xi = xi)

+ Ps(Xi > xi)H(S|Xi > xi) + Ps(X < xi)H(S|Xi < xi)

= fXi
(xi)Hs(S|Xi = xi) · 0̄

+̇Pr(Xi > xi)H(S|Xi > xi) + Pr(X < xi)H(S|Xi < xi).

(20) 

When comparing the soft IGs, we realize that we can distinguish among them by 
comparing the middle branch—threshold branch: 

.fXi
(xi)H(S|Xi = xi) · 0̄>

?
<

fXj
(xj )H(S|Xj = xj ) · 0̄. (21) 

To further realize the subject, we will present a solution to the following problem 
in the next example. 

3.2.2 Example: Uniformly Distribution Features and Discrete Label 

Let .X ∼ U(0, 2) and .Y ∼ U(0, 4) be features of a data set and .S ∈ {0, 1} be an 
event that we are trying to predict its value according to the features .(X, Y ). Finding 
the soft information gain of splitting according to each feature has the following 
result: 

.

IG(X) = IG(Y )

= Pr(X ≤ xth)H(S|X ≤ xth) + Pr(X > xth)H(S|X > xth)

= Pr(Y ≤ yth)H(S|Y ≤ yth) + Pr(Y > yth)H(S|Y > yth).

(22) 

With the classic approach, we should choose one of the features X or Y randomly 
as they both got the same information gain. Using the soft decision approach, we 
can try to identify which hypothesis is superior even if it is by a small margin, but 
it may translate to better overall decision-making tool. First we will express the full 
equation explicitly separating the threshold branch as follows:
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.

Pr(X = xth)H(S|X = xth) + [Pr(X < xth)H(S|X < xth)

+ Pr(X > xth)H(S|X > xth)]
= Pr(Y = yth)H(S|Y = yth) + [Ps(Y < yth)H(S|Y < yth)

+ Pr(Y > yth)H(S|Y > yth)].

(23) 

We can say as we have shown before that the last two parts of the equation (in square 
brackets) are equal and all it is left is to compare the threshold branch: 

.Pr(X = xth)H(S|X = xth)
>

=?
<

Pr(Y = yth)H(S|Y = yth). (24) 

In the classical probability, we have equality because . Pr(X = xth) = Pr(Y =
yth) = 0. In order to compare the threshold branch, we convert Eq. (24) into soft 
probability (replacing . Pr by . Ps), 

.Ps(X = xth)H(S|X = xth)
>

?
<
Ps(Y = yth)H(S|Y = yth), (25) 

and using the soft probability definition for uniform distribution, we can express 
Eq. (25) as follows: 

.
1

2
H(S|X = xth) · 0̄>

?
<

1

4
H(S|Y = yth) · 0̄. (26) 

Now all we need is to calculate the entropy in the threshold (which is not 
infinitesimal), and we can conclude which has the better information gain. In the 
case where .H(S|X = xth) = H(S|Y = yth), we can say that X is the feature we 
should split our data according to as .

1
2 · 0̄ > 1

4 · 0̄, i.e., .IGs(X) > IGs(Y ). 
To further understand the applicability of our suggested solutions, we will 

analyze the next example of numeric of an electric product warranty. 

3.2.3 Example: Electric Product Warranty 

We would like to predict if an electric product will fail before the end of its 1 year 
warranty or not. Suppose that we have the following data to analyze: 

• Two features that are the “Average Power Consumption” A and the “Peak Power 
Consumption” B. Due to production process, both have uniform distributions: 
.A ∼ U(0.790, 0.800)[watt] and .B ∼ U(0.900, 1.000)[watt]. 

• Denote the random variable F as the failure of an electric product (“.F = 1” or  
simplify F . → failure, “.F = 0” or simplify . F̄ . → no failure), and assume that 
we have enough samples to calculate the conditional distributions . Pr(F |A = a)

and .Pr(F |B = b).
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Form the measurement, we have a Heaviside probability function as follows for the 
average power consumption: 

.Pr(F |A = a) =
{

0 if a > 0.975

1 if a ≤ 0.975
(27) 

Same goes for the peak power consumption, but the threshold is in different values 
as follows: 

.Pr(F |B = b) =
{

0 if b > 0.950

1 if b ≤ 0.950.
(28) 

So clearly when we want to split our data by each parameter we know which value 
will be our splitting threshold, for the average power consumption, we will choose 
.A = 0.795, and for the peak power consumption, we will choose .B = 0.950. In this  
example, for simplicity, we will assume that the initial entropy of F is . H0(F ) = 0.7.
Now we need to calculate which feature gives us the most information gain as the 
C4.5 algorithm defines. But if we look closely at the threshold numbers, we can see 
that they are exactly in the middle of the possible values range of each feature, and 
when we know they are uniformly distributed, we get the following equation: 

. Pr(A > 0.795) = Pr(A ≤ 0.795) = Pr(B > 0.950) = Pr(B ≤ 0.950) = 0.5.
(29) 

From that the conditional probability is a Heaviside function, we have the following 
IG of for each feature: 
for the average power consumption 

. 

IG(W)

= H0(F ) − [Pr(A ≤ 0.795)H(F |A ≤ 0.795) + Pr(A > 0.795)H(F |A < 0.795)]
= 0.7,

(30) 
and for the peak power consumption 

. 

IG(B)

= H0(F ) − [Pr(B ≤ 0.950)H(F |B ≤ 0.950) + Pr(B > 0.950)H(F |B < 0.950)]
= 0.7.

(31) 
As we can see, we get equilibrium between the two IGs, and in classic 

approaches, we can randomly choose the splitting by any feature. On the other hand, 
using the “Soft Decision Tree” approach, we suggested in this work we can get more 
information to get better defined decision. To calculate the soft IG, we first need to 
calculate the soft probability in the equal “=” branch (the soft branch of the tree) as
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follows: 

.

Ps(A = 0.795) = 1

(0.800) − (0.790)
· 0̄ = 100 · 0̄

Ps(B = 0.950) = 1

(1.000) − (0.900)
· 0̄ = 10 · 0̄.

(32) 

For simplicity, we will assume that .H(F |A = 0.795) = H(F |B = 0.950) = 0.5, 
as we have a theoretical data set. Now we can calculate the soft information gain of 
both features. 

For the average power consumption, 

. 

IGs(A) = H0(F ) − Ps(A = 0.795)H(F |A = 0.795)

− [Ps(A < 0.795)H(F |A < 0.795) + Ps(A > 0.795)H(F |A < 0.795)]
= −50 · 0̄+̇0.7,

(33) 
and for the peak power consumption, 

. 

IGs(B) = H0(F ) − Ps(B = 0.950)H(F |B = 0.950)

− [Ps(B < 0.950)H(F |B < 0.950) + Ps(B > 0.950)H(F |B < 0.950)]
= −5 · 0̄+̇0.7.

(34) 
Now when we compare the results, we can clearly see that .IGs(B) > IGs(A) so we 
will decide to split the data according to the feature, average power consumption A. 

4 Conclusions 

In the classical probability, in continuous random variables, there is no distinguish-
ing between the probability involving strict inequality and non-strict inequality. 
Moreover, a probability involves equality collapse to zero, without distinguishing 
among the values that we would like that the random variable will have for 
comparison. Soft numbers assist us to distinguish between the probability involving 
strict inequality and non-strict inequality, and among the values that we would like 
that the random variable, by generating soft zeros multiples of the PDF observations. 

We introduced an approach to implement C4.5 algorithm as an example for a soft 
decision tree, but with discrete labels and continuous features. We demonstrated 
with some numerical examples how the C4.5 algorithm would decide to split the 
data based on a “soft branch” created by a soft probability of event that would 
collapse absolutely to zero, and without that branch, we might decide to split the 
data just arbitrarily.
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5 Suggestions for Future Research 

We suggest extending the notion of soft probability covered in this work by 
generalizing to the followings: continuous random vectors, mixed random variable 
(that has continuous and discrete distribution, i.e., non-piecewise constant CDF but 
with discontinuity), random vector with discrete, continuous, and mixed random 
variables, etc. We also suggest exploring the implementation of decision trees with 
soft numbers into other decision trees algorithms and also to consider each case 
whenever the labels/features are either discrete variables or continuous variable 
given being within intervals and single points. 

We also suggest exploring the soft logic in general and soft probability in 
particular in additional topics in information theory, data mining, machine learning, 
computability, meta-verse technology, cyber-physical system (CPS), etc. We also 
suggest involving the views of the theory of consciousness in the mentioned above 
scientific and technological topics, with the concept of the zero axis presents the 
inner world or virtual world, and the one axis the real world (see paragraph below 
Eq. (78) for more details). We believe that with soft logic (and soft probability) we 
can incorporate the spiritual concept of consciousness, which presents inner/virtual 
world or the zero axis, into the scientific and technological topics in the real world 
or the one axis. 
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Appendix 1: Complement, Union, Intersection, and 
Conditional Soft Probabilities 

Complement, Unions, and Intersections 

Recall that a probability of . Ac, a complement of the event A, is given by 

.Pr(Ac) = 1 − Pr(A). (35) 

A soft probability of a complement is defined similarly as follows: 

.Ps(Ac) = 1 − Ps(A). (36) 

Therefore, we have the following probability complement for a continuous random 
variable X:
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.

Ps(X �= x) = 1 − Ps(X = x)

= [−fX(x)]0̄+̇1.
(37) 

This equation distinguishes among different values of x for the event .X �= x to 
be with almost surely with probability 1 due to the soft zero term .[−fX(x)]0̄. This  
equation is analogous to the event .X �= x to have zero probability almost surely, 
correct by the soft zero term .[−fX(x)]0̄. 

In order to analyze unions and intersections, we need to consider two cases: 
unions and intersections among singletons events .X = x,X = y, etc., unions and 
intersections between a singleton event .X = x and a range event, e.g., .a ≤ X ≤ b. 

For all .x �= y, we have that the events .X = x and .X = y are disjoint, and for a 
union, we have 

.

Ps(X = x ∪ X = y) = Ps(X = x) + Ps(X = y)

= [fX(x) + fX(y)]0̄.
(38) 

For an intersection, we have 

.Ps(X = x ∩ X = y) = 1x=yfX(x)0̄, (39) 

where the indicator .1x=y is zero in the case that .x �= y. More generally, we have 
the following soft probabilities for the following set .{xi}ni=1 with distinct values: 

.Ps

(

n
⋃

i=1

X = xi

)

=
n

∑

i=1

Ps(X = xi) =
[

n
∑

i=1

fX(xi)

]

0̄, (40) 

and 

.Ps

(

n
⋂

i=1

X = xi

)

= 1
∀i,j∈{1,2,...,n}
xi=xj

fX(xi)0̄. (41) 

In order to analyze unions and intersections, between a singleton event . X = x

and a range event, e.g., .a ≤ X ≤ b, we need to distinguish among x’s values that are 
either between a and b or not. Moreover, we need to distinguish between the strict 
inequality case .a < X < b and the non-strict inequality .a ≤ X ≤ b. For simplicity, 
assume .a < b, and without loss of generality (WLOG), assume .x �= a and .x �= b. 

For the strict inequality case .a < X < b, we have the union 

.Ps(X = x ∪ a < X < b) = 1x /∈(a,b)fX(x)0̄+̇[FX(b) − FX(a)], (42) 

and for the intersection, 

.Ps(X = x ∩ a < X < b) = 1x∈(a,b)fX(x)0̄. (43)
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This union is a soft number when x is not in the interval .(a, b) and a real number 
when it does. This intersection is a soft zero when x is in .(a, b) and an absolute zero 
when it does not. 

For the non-strict inequality case .a ≤ X ≤ b, we have the union 

.

Ps(X = x ∪ a ≤ X ≤ b) =
[1x /∈[a,b]fX(x) + fX(a) + fX(b)]0̄+̇[FX(b) − FX(a)],

(44) 

and for the intersection 

.Ps(X = x ∩ a ≤ X ≤ b) = [1x∈[a,b]fX(x)]0̄. (45) 

The two terms .fX(a) + fX(b) in Eq. (44) are added to the soft zero part, due to 
Eq. (40). 

Recall the relation between a union and an intersection of two events .A,B, 
according to De Morgan’s Law; we have 

.Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). (46) 

It can be shown that the soft probabilities in Eqs. (42)–(45) hold for De Morgan’s 
Law Eq. (46). For example, .A = {X = x}, .B = {a ≤ X ≤ b}, and .x /∈ [a, b], and 
we have 

.

Ps(X = x ∪ a ≤ X ≤ b) =
Ps(X = x) + Pr(a ≤ X ≤ b) − Pr(X = x ∩ a ≤ X ≤ b).

(47) 

The LHS is 

. [fX(x) + fX(a) + fX(b)]0̄+̇[FX(b) − FX(a)],

and the RHS is 

. fX(x)0̄ + [{fX(a) + fX(b)} 0̄+̇{FX(b) − FX(a)}] − 0,

so that we obtain the LHS to be equal to the RHS, and thus we have a “Soft De 
Morgan’s Law” 

.Ps(A ∪ B) = Ps(A) + Ps(B) − Ps(A ∩ B). (48) 

In the next subsection, we show the results for a conditional of soft probability, 
referring to Kolmogorov definition and Bayes theorem.
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Conditional Probability 

Recall Kolmogorov definition for conditional probability 

.Pr(A|B) = Pr(A ∩ B)

Pr(B)
, (49) 

and for Bayes theorem 

.Pr(A|B) = Pr(B|A)Pr(A)

Pr(B)
. (50) 

We define a “Soft Conditional Probability” similarly, e.g., for .x, y ∈ SX, let  
.A = {X = x}, .B = {X = y}, and at the LHS of Kolmogorov definition Eq. (49), 
we have 

.
Ps(X = x ∩ X = y)

Ps(X = y)
= 1x=yfX(x)0̄

fX(y)0̄
= 1x=y · 0̄

1 · 0̄ . (51) 

With a definition of . 1·0̄
1·0̄ = 1 and .

0·0̄
1·0̄ = 0, the conditional soft probability is given 

by 

.Ps(X = x|X = y) = 1x=y. (52) 

In this case, we have a trivial equality with optional real values 0 or 1. For 
comparison with Bayes theorem Eq. (50), 

.
Ps(X = y|X = x)Ps(X = x)

Ps(X = y)
= 1y=xfX(x)0̄

fX(y)0̄
= 1x=y. (53) 

Now we consider .x, y ∈ SX; let  .A = {X = x}, .B = {a ≤ X ≤ b}, with . x, a, b ∈
SX such that .a < b ,.x �= a and .x �= b. At the LHS of Kolmogorov definition 
Eq. (49), we have  

.

Ps(X = x ∩ a ≤ X ≤ b)

Ps(a ≤ X ≤ b)
=

1x∈[a,b]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b) − FX(a)] .
(54)
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When applying Bayes theorem Eq. (50), we have  

.

Ps(a ≤ X ≤ b|X = x)Ps(X = x)

Ps(a ≤ X ≤ b)
=

[Ps(a ≤ x ≤ b|X = x)]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b) − FX(a)] ,
(55) 

where .Ps(a ≤ x ≤ b|X = x) = Ps(a ≤ x ≤ b) = 1x∈[a,b]. Both Kolmogorov 
theorem form and Bayes theorem form are equal, and therefore, 

.Ps(X = x|a ≤ X ≤ b) = 1x∈[a,b]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b) − FX(a)] . (56) 

We can simplify the RHS by the property 

. 
A0̄

B+̇C0̄
= A0̄

B+̇C0̄
· B+̇(−C)0̄

B+̇(−C)0̄
= AB0̄

B2
= A0̄

B
,

and we have the following conditional soft probability with a given non-strict 
inequality condition: 

.Ps(X = x|a ≤ X ≤ b) = 1x∈[a,b]fX(x)0̄

FX(b) − FX(a)
, (57) 

and for a given strict inequality condition, we have 

.Ps(X = x|a < X < b) = 1x∈(a,b)fX(x)0̄

FX(b) − FX(a)
. (58) 

The meaning of these last two equations is that we have a soft zero when the 
observation x makes sense (i.e., between a and b), and it is an absolute zero if x 
makes no sense (i.e., not between a and b), due to the indicator in the numerator. 
In addition, division by the denominator .FX(b) − FX(a) ∈ (0, 1) makes higher 
probability than the unconditional probability, which make sense since we have an 
additional information regarding to the random variable X to be between a and b. 
In the next subsection, we extend the notion of soft probability for 2 continuous 
random variables, based on a Soft De Morgan’s Law equation (48). 

Extension of Soft Probability for 2 Dimensions 

Suppose that X and Y are two continuous random variables. By the regular De 
Morgan’s Law equation (46), we can decompose the regular probability object
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.Pr(X ≤ x, Y ≤ y) into a sum of the following probabilities: 

.

Pr(X ≤ x, Y ≤ y) =
0

︷ ︸︸ ︷

[Pr(X < x, Y = y) + Pr(X = x, Y < y) + Pr(X = x, Y = y)]
+ Pr(X < x, Y < y),

(59) 

such that each of the first three terms in the bracket collapses to zero in the classical 
probability. We define the soft probability object .Ps(X ≤ x, Y ≤ y) in 2 random 
variables based on a Soft De Morgan’s Law equation (48) as follows: 

.

Ps(X ≤ x, Y ≤ y) =
[Ps(X < x, Y = y) + Ps(X = x, Y < y) + Ps(X = x, Y = y)]
+ Ps(X < x, Y < y).

(60) 

In this case, we define the first three terms in the bracket as the following soft zero 
objects in terms of the CDF .FX,Y (x, y) and the PDF .fX,Y (x, y): 

.Ps(X < x, Y = y) = ∂FX,Y (x, y)

∂y
· 0̄, (61) 

.Ps(X = x, Y < y) = ∂FX,Y (x, y)

∂x
· 0̄, (62) 

.Ps(X = x, Y = y) = ∂FX,Y (x, y)

∂x∂y
· 0̄ = fX,Y (x, y) · 0̄. (63) 

The last term is a regular probability along the 1-axis, i.e., 

.Ps(X < x, Y < y) = Pr(X < x, Y < y) = FX,Y (x, y), (64) 

so that .Ps(X ≤ x, Y ≤ y) equals to the following soft number: 

.

Ps(X ≤ x, Y ≤ y) =
[

∂FX,Y (x, y)

∂x
+ ∂FX,Y (x, y)

∂y
+ fX,Y (x, y)

]

· 0̄

+̇FX,Y (x, y).

(65) 

Now, we want to construct the soft probability objects . Ps(X ≤ x, Y < y)

and .Ps(X ≤ x, Y = y) (by symmetry, we can construct .Ps(X < x, Y ≤ y) and 
.Ps(X = x, Y ≤ y) accordingly). Based on a Soft De Morgan’s Law equation (48), 
we construct the soft probability .Ps(X ≤ x, Y < y) similarly as follows:
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.Ps(X ≤ x, Y < y) = ∂FX,Y (x, y)

∂x
· 0̄+̇FX,Y (x, y). (66) 

Therefore, we can distinguish among the soft probabilities: .Ps(X ≤ x, Y ≤ y), 
.Ps(X < x, Y < y), .Ps(X ≤ x, Y < y) and .Ps(X < x, Y ≤ y). Similarly, we have 

.Ps(X ≤ x, Y = y) =
[

∂FX,Y (x, y)

∂y
+ fX,Y (x, y)

]

· 0̄, (67) 

that is a soft zero. In the next section, we define soft expectation, soft variance, and 
soft entropy. 

Appendix 2: Presentation of Soft Numbers 

According to traditional mathematics, the expression 0/0 is undefined, although in 
fact the whole set of real numbers could represent this expression, since .a ·0 = 0 for 
all real numbers a. This observation opens a new area for investigation, which is a 
part of what it is called in [5] a “Soft Logic” that refers to a new axis, “a continuum 
of multiples of zeros” with distinction between a positive zero “. +0” and a negative 
zero “. −0” (see also [6] and [7]). 

Soft Number: Definitions and Axioms 

A new object . 0̄ is symbolized in order to generate a continuum of multiples of zeros 
. a0̄ on a “. 0̄” axis, where a is a real number. An object . a0̄ denotes “soft zero,” while 
the object .0 = 0 · 0̄ denotes “absolute zero.” The object . 1̄ denotes the real axis (i.e., 
contains multiples of “ones,” . b1̄), and parallel to the “. 0̄” axis. For simplicity, the 
symbol . 1̄ is omitted during computations. The following axioms and definitions are 
developed for soft zeros for all real numbers a and b: 

Axiom 1 (Distinction) .a �= b ⇒ a0̄ �= b0̄. 

Definition 1 (Order) .a < b ⇒ a0̄ < b0̄. 

Axiom 2 (Addition) .a0̄ + b0̄ = (a + b)0̄. 

Axiom 3 (Nullity) .a0̄ · b0̄ = 0, i.e., soft numbers “collapse” to zero under 
multiplications. 

Axiom 4 (Bridging) There exists a bridge between a zero axis and a real axis and 
vice versa, denoted by a pair of a bridge number and its mirror image about the 
bridge sign. Bridge numbers of a right type
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. b1̄ ⊥ a0̄

and bridge numbers of a left type 

. a0̄ ⊥ b1̄.

Axiom 5 (Non-commutativity) Bridging operator . ⊥ does not commute [7], i.e., 

. b1̄ ⊥ a0̄ �= a0̄ ⊥ b1̄.

Definition 2 (Soft Number) A soft number is defined as a set of the bridge number 
pairs of opposite types but with the same components—the same zero axis number 
. a0̄ and the same real number b: 

. a0̄+̇b = {a0̄ ⊥ b; b ⊥ a0̄}.

In the next subsection, we outline some properties of mathematical operations 
and functions over the soft numbers. 

Mathematical Operations and Functions on Soft Numbers 

In this section, we outline some mathematical operations over the soft numbers. 
Suppose .a0̄+̇b, c0̄+̇d ∈ SN are given soft numbers; then the following mathemati-
cal operations hold based on axioms 2 and 3: 

• Addition/subtraction: 

.(a0̄+̇b) ± (c0̄+̇d) = (a ± c)0̄+̇(b ± d). (68) 

• Multiplication: 

.(a0̄+̇b) · (c0̄+̇d) = (ad + bc)0̄+̇bd. (69) 

• Natural power: 

.(a0̄+̇b)n = nabn−10̄+̇bn. (70) 

Based on the above equations, every polynomial .PN(x) that operates on every 
soft number .α0̄+̇x is given by 

.PN(α0̄+̇x) = αP ′
N(x)0̄+̇PN(x), (71) 

where .P ′
N(x) denotes the derivative of .PN(x). This notion is generalized for analytic 

functions .f (x) so that
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.f (α0̄+̇x) = αf ′(x)0̄+̇f (x). (72) 

For a continuous random variable X with a CDF . FX and a PDF .fX = F ′
X, we have  

the following soft number (cf. Eq. (6)): 

.FX(α0̄+̇x) = αfX(x)0̄+̇FX(x). (73) 

In the next subsection, we discuss about the soft axis coordinate system. 

Soft Axis Coordinate System 

We denote the set of all bridge numbers by .BN and all soft numbers by . SN. The  
coordinate system of soft logic is constructed, as presented in Fig. 4. It starts from 0  
to 1 horizontally, and then it turns 90. ◦ from 1 to infinity. 

Remark 1 There exists a one-to-one correspondence between the segment . (0, 1]
and the segment .[1,∞). 

Remark 2 All lines that connect x to .1/x (for all non-zero real x) intersect at a 
single point. 

The statements in Remarks 1 and 2 were demonstrated in [5]. This “single point” 
denotes the beginning of the soft logic coordinate system. We call this point “the 
absolute zero.” The distance from absolute zero to +0 is 1. An extension of this new 
coordinate system to the negative numbers is implemented in Fig. 5. 

In Fig. 5, we have, in addition to the absolute zero 0, two additional zeros. One 
zero is opposite to the number . −1 and is not identical with the zero opposite to the 
number . +1. Hence, we suggest denoting these two different “zeros” as . +0̄ and . −0̄. 

Figure 6 shows the extended coordinate system for positive and negative numbers 
with an additional line presenting the multiples of zero. The added line is called a 
zero line or a zero axis, and the multiples on it are called soft zeros or zero axis 
numbers. 

Fig. 4 The Soft coordinate 
axis 

0 
1 

2 

3 

4 

x 

1/2 

1/x



Soft Decision Trees 165

Fig. 5 Distinction between 
. −0 and .+0
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Fig. 6 The extended soft 
coordinate system
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The coordinate system in Fig. 6 allows us to present all the real numbers and 
all the soft zeros. We now wish to construct a coordinate system for representing 
various soft numbers, which may be described as an infinite strip as shown in Fig. 4. 
Because of the soft number duality, we double the strip (Fig. 7). This allows us to 
represent both elements of a soft number: 

.

c = x0̄ ⊥ y,

c′ = y ⊥ x0̄,
(74) 

where x and y are real numbers. Each of the elements c and . c′ is a mirror image of 
the other about the bridge sign. Note that we have expanded the coordinate system 
in Fig. 6 to the one shown in Fig. 7.
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Fig. 7 The complete soft 
coordinate system 

As the infinite strip, presented (partially) in Fig. 7, is intended for the presentation 
of soft numbers, we call it a “Soft Numbers Strip” or briefly, SNS. 

Definition 3 (Height and Width of a Point on an SNS) Let C be any point on the 
SNS: 

• The  height of the point C is the vertical distance from C to the horizontal 
segment with the absolute zero at its center. This distance is supplied with a 
plus sign if C is above this segment and with a minus sign if C is below it. The 
height with a sign is denoted by A. 

• The  width of the point C is the horizontal distance from C to the zero line and 
is denoted by B. 

The definitions above provide every point C on the SNS with two parameters, 
.A ∈ R and .B ∈ [0, 1]. The condition .A > 0 is satisfied in the positive part of 
the SNS, and .A < 0—in its negative part, or correspondingly, above and below 
the horizontal segment containing the absolute zero, while on this segment .A = 0.
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For the second parameter B, there is: .B = 0 on the zero axis, .B = 1 on the lines 
bounding the SNS, and otherwise .0 < B < 1. 

If two points c and . c′ on the SNS are symmetric about the zero axis, they have 
the same height A and the same width B, i.e., we can symmetrically represent them 
by the following . BNs: 

.

c = (1 − B)A0̄ ⊥ BA,

c′ = BA ⊥ (1 − B)A0̄.
(75) 

Therefore, to define a presentation of soft numbers .x0̄+̇y by symmetric pairs (. SPs) 
of points on the SNS, we have to define a correspondence between these numbers 
and the pairs of real numbers .(A,B) ∈ R × [0, 1] (denoted as . SP), so that 

.

x0̄+̇y = {c, c′}
= (1 − B)A0̄+̇BA.

(76) 

Hence, by a coefficients comparison of the real part and the soft part: 

.

x = (1 − B)A

y = BA,
(77) 

or equivalently, after solving for the . SP, . (A,B)

.

A = x + y

B = y

x + y
.

(78) 

It can be proven that there is an algebraic isomorphism between the bridge 
numbers .b0̄ ⊥ a and dual numbers developed by Clifford [2] with the form .a + bε, 
where .ε2 = 0 but .ε �= 0. The main difference between . ε in dual numbers and . 0̄
is the realization and geometrical interpretation of . 0̄ as an extension of the number 
0 on a continuous line. This line can be a model of the inner world, while . 1̄ is a 
model of the real world. The bridge between them enables us to treat the concept of 
consciousness with mathematical tools. Another difference is the possibility, in Soft 
logic, of developing a soft curve [7]. 

One of our major topics for investigation in further research is the connection 
of soft numbers to Möbius strip. In order to describe the geometry of Möbius strip 
with soft numbers, we suggest modifying the soft coordinate system in Fig. 7 by 
alternating the sign of left vertical line.
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Fig. 8 The alternative soft 
coordinate system -5 5 
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The horizontal line . I0 in Fig. 8 can represent the connection line where the edges 
of a straight strip are twisted and attached together to create a Möbius strip. One 
of the suggestions to define a point on the Möbius strip with soft numbers is that 
.c = (1 − B)A0̄ ⊥ BA is located in the front of this page, while . c′ = BA ⊥
(1− B)A0̄ is located behind this page. This setup demonstrates locally existence of 
two sides of Möbius strip. However, it is known that Möbius strip has globally one 
side. Moreover, if we start walking vertically from the point c (A units from . I0 and 
B units from the zero axis) on the front of this page, we will pass through the point 
behind this page but across the point . c′ and (.−A units from . I0 and B units from 
the zero axis). When we keep walking on that point, we will go back to the starting 
point . c′. Because of this phenomenon, we are motivated to explore the possibility to 
represent a soft number with more than two symbols. 

During exploration, it is suggested to change Definition 3 width of the point in 
the SNS will be between . −1 and . +1, i.e., .B ∈ [−1, 1]. Given SNS height . A ∈ R

and SNS width .B ∈ [−1, 1], the SNS point .c = c(A,B) is defined as follows: 

.

For B ∈[0, 1],
c = (1 − B)A0̄ ⊥ BA, located in front of page,

c′ = BA ⊥ (1 − B)A0̄, located behind this page,

x0̄+̇y = {c, c′},

(79) 

and 

.

For B ∈[−1, 0],
c = (1 + B)A0̄ ⊥ BA, located in front of page,

c′ = BA ⊥ (1 + B)A0̄, located behind this page,

x0̄+̇y = {c, c′},

(80)
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or shortly in terms of absolute value of B: 

.

c = (1 − |B|)A0̄ ⊥ BA, located in front of page,

c′ = BA ⊥ (1 − |B|)A0̄, located behind this page,

x0̄+̇y = {c, c′}.
(81) 

Hence, by a coefficients comparison of the real part and the soft part in Eq. (81): 

.

x = (1 − |B|)A
y = BA,

(82) 

or equivalently, after solving for the . SP, .(A,B), using some arithmetic of absolute 
value and sign functions: 

.

A = sign(x) · (|x| + |y|)
B = y

A
= sign(x) · y

|x| + |y| .
(83) 

The conjecture is with Eqs. (82)–(83) and Fig. 8, the geometry of Möbius strip with 
soft numbers can be defined more properly. 
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Quality Assessment and Evaluation 
Criteria in Supervised Learning 

Amichai Painsky 

1 Introduction 

During the past decades, there has been a tremendous growth in the theory 
and practice of supervised learning. A broad variety of views have led to the 
development of a rich algorithmic toolbox. However, it is not always clear which 
algorithm is most suitable for a given problem. Therefore, it is essential to assess 
the performance of an algorithm with respect to a given problem and choose the 
most appropriate approach. Typically, the first step toward this goal is the choice 
of a performance measure. This task raises several basic questions, as different 
criteria focus on different aspects of the algorithm. Over the years, performance 
measures have received a great amount of attention [14]. As a consequence of 
the multidisciplinary nature of machine learning tasks, different measures have 
been influenced by approaches from a variety of disciplines, including statistics, 
medicine, and signal processing. This chapter reviews prominent performance 
measures and discusses a variety of issues one encounters during an evaluation 
study. The focus of our discussion is quality assessment for a given supervised 
learning algorithm. However, we also discuss important aspects in the design of 
the algorithm toward the end of this chapter. 

When choosing an appropriate evaluation criterion, several questions come to 
play. The first issue is naturally concerned with the type of learning algorithm 
to be evaluated. We distinguish between classification and regression problems. 
In classification, the target variable takes values over a finite set of labels (for 
example, classification between dogs and cats). In regression, the target variable 
takes values over a continuous set. For example, students’ height. Notice that ordinal 
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variable problems (students’ grades from A to F) are mostly considered as variants 
of regression. 

The output of a regression algorithm is an estimate of the target, which typically 
takes values over the same support. On the other hand, classification algorithms 
are categorized into hard-decision and soft-decision methods. A hard-decision 
algorithm outputs a fixed class label from the domain of the target. A soft-
decision algorithm provides a score that corresponds to a “level of confidence” 
in the class label. For example, a classical decision tree would output either a 
dog or a cat (henceforth, a hard decision), while logistic regression (soft decision) 
assigns a numerical score (. 0.2 for dog and . 0.8 for cat). Although scores usually 
hold a probabilistic interpretation, it is not a requirement; scores may hold any 
numerical value that allows us to rank the classes accordingly. Notice that a hard 
decision may be obtained by applying a simple threshold to any soft-decision 
algorithm. For example, we declare a cat label if its score is greater than . 0.5. In  
this sense, soft-decision algorithms are considered more informative. It is important 
to emphasize that there exist additional types of classifiers that may utilize different 
performance criteria. For example, probably approximately correct (PAC) methods 
output probabilistic scores on a space of classifiers [35]. In this chapter, we limit our 
attention to most commonly used classifiers that correspond to either a soft decision 
or a hard decision. 

The following sections discuss different measures for assessing the perfor-
mance of supervised learning algorithms, their respective strengths and limitations, 
and their suitability to a particular train or test setting. In Sect. 2, we consider 
hard-decision classification algorithms, which only utilize information from the 
confusion matrix. In Sect. 3, we extend our discussion to scoring classifiers and 
present popular graphical evaluation criteria. In Sect. 4, we study probabilistic 
classifiers and introduce important connections to basic concepts in decision theory, 
such as loss functions, divergence measures, and regret. In Sect. 5, we review  
evaluation criteria for regression problems. We conclude this chapter with a brief 
discussion in Sect. 6. 

1.1 Notations and Definitions 

We consider the following standard supervised learning framework. Let . {xi, yi}ni=1
be a given set of samples (train set), where . xi is a vector of features (explanatory 
variables) and . yi is the corresponding target (independent variable). In supervised 
learning, we seek a mapping .ŷ = f (x) such that . ŷ is “close” to y (denoted 
as .ŷ ≈ y), for a future pair .{x, y}. A classification problem refers to the case 
where y takes values over a finite set .y ∈ Y (for example, .y ∈ {0, 1} in binary 
classification). In regression problems, we consider .y ∈ R. For simplicity, we 
assume that .x ∈ R

d , where d is the dimension of x (the number of explanatory 
variables). We study different evaluation criteria for the accuracy of the mapping 
.ŷ ≈ y. Notice that in most typical setups, we follow the standard assumption that
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both the train set .{xi, yi}ni=1 and the future observations .{x, y} are independent and 
identically distributed (i.i.d.) drawn from an unknown distribution .pXY . However, 
this assumption is not required in most parts of this chapter. It is important to 
emphasize that the discussed performance measures are usually evaluated on a 
holdout set that is independent of the train set (for example, a test set or a validation 
set, .{xi, yi}mi=1), to avoid over-fitting. 

2 Hard-Decision Classifiers 

Let .ŷ = f (x) be a supervised learning algorithm for a classification problem where 
.y ∈ Y. A hard-decision classifier refers to a mapping function that outputs a single 
element in the domain of y. Formally, .f : Rd → Y. The most popular performance 
measure for hard-decision classifiers is the zero-one loss, .l(y, ŷ) = 1(ŷ �= y). That 
is, the loss of misclassifying an example (assigning a wrong class label) is one, and 
zero otherwise. The zero-one loss implicitly assumes that the cost of misclassifying 
an example is symmetric. For example, the cost of misclassifying a dog as a cat is 
identical to misclassifying a cat as a dog. However, this is not the case in many real-
world problems. For example, consider the problem of tumor classification. Here, 
the cost of misclassifying a benign tumor is typically greater than misclassifying 
a malignant tumor. Therefore, we usually distinguish between different types of 
errors and evaluate learning algorithms accordingly [3, 12]. The confusion matrix 
(formally defined in Sect. 2.1) summarizes all possible classification events. It 
provides an overview of the performance of a given algorithm, from which different 
evaluation criteria may be derived. In this sense, the confusion matrix captures all 
possible events in hard-decision classification. 

2.1 The Confusion Matrix 

Let .y ∈ Y = {1, . . . , B} be a multi-class label. Let f be a hard-decision classifier 
that takes values over the same domain, .f (x) ∈ Y. Denote the confusion matrix 
(which depends on f ) as  .C � C(f ). The confusion matrix C is a square . B ×
B matrix for a data set with B classes. Each element . ckl of the confusion matrix 
denotes the number of examples with a label k that the classifier f assigns to the 
class l. Formally, for a set of m samples .{xi, yi}mi=1, 

.ckl =
m∑

i=1

1(yi = k ∧ f (xi) = l). (1)
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As mentioned above, the confusion matrix captures all the information induced by a 
hard-decision classifier, typically evaluated on a holdout data set that is independent 
of the train set. Specifically, we have that: 

• .
∑

l ckl is the total number of samples of class k in the data set. 
• .

∑
k ckl is the total number of samples assigned to the class l by the classifier. 

• The diagonal entries . ckk correspond to the correctly classified samples. There-
fore, .

∑
k ckk is the total number of correctly classified samples. 

• The non-diagonal entries are the misclassification events. Hence, .
∑

k �=l ckl is 
the total number of misclassified samples. 

2.2 The Binary Confusion Matrix 

Let us now focus on the important binary classification case, where .B = 2. 
The binary (two class) classification problem is perhaps the most common setting 
in which the performance of a learning algorithm is being measured. For this 
reason, different notations are borrowed from different scientific fields. In this 
chapter, we follow the standard computer science literature and denote the two-
class labels as negative (.yi = 0) and positive (.yi = 1). This notation implies some 
symmetry between the labels. On the other hand, the statistics literature denotes 
a negative label as Null, while a positive label is the Alternative. This notation 
implies that the two classes are not symmetric, in the sense that positive labels 
correspond to discoveries, while the negative labels are no-discoveries. The binary 
confusion matrix is a .2×2 matrix. The entries on the diagonal correspond to correct 
classification events, where . c11 is called the true negative (TN), while . c22 is the true 
positive (TP). Similarly, . c12 is the false positive (FP), and . c21 is the false negative 
(FN). In words, false positive refers to the event of a positive decision that is wrong 
(the true class is negative). Therefore, the total number of negatives is .N = TN+FP, 
while the total number of positives is .P = TP+ FN. Let us illustrate these notations 
by a simple example. Consider a population of 100 individuals, of which 10 are 
cancer patients. A classifier f is trained to identify the patients from the entire 
population. Its performance is summarized in a confusion matrix, as appears in 
Table 1. 

The classifier correctly identified all cancer patients (.FN = 0) while mistakenly 
classified 5 healthy individuals as cancer patients (.FP = 5). This example 
emphasizes the asymmetric nature of many classification problems. The classifier 
is designed to find all suspected cancer patients, typically for further examination. 
In this sense, misclassifying a cancer patient as healthy is a “worse” mistake than the 

Table 1 Binary classification 
confusion matrix 

Label Negative Positive Total 

No cancer .TN = 85 .FP = 5 . N = 90

Cancer .FN = 0 .TP = 10 .P = 10
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opposite. Therefore, the classifier strives to maximize the number of TPs, even in 
the expense of some FPs. In the statistics literature, TP is denoted as true discovery, 
to emphasize its role in the problem. The FP is denoted false discovery or type I 
error. Similarly, TN is true null and FN is false null or type II error. 

2.3 Performance Measures 

The confusion matrix captures all classification events for a given learning al-
gorithm. However, we are typically interested in a single scalar measure that 
summarizes the performance of the algorithm. In this section, we review common 
performance measures that are drawn from the confusion matrix. 

2.3.1 Accuracy and Error Rate 

Accuracy is probably the most common performance measure in classification 
problems. It captures the portion of correctly classified samples, from the total 
number of samples. Formally, the accuracy is defined as 

.Acc = 1

m

m∑

i=1

1(yi = f (xi)) = 1

m

B∑

k=1

ckk. (2) 

Notice that the accuracy is proportional to the trace of the confusion matrix. 
Similarly, the complementary error rate corresponds to the portion of misclassified 
samples, 

.R = 1 − Acc = 1

m

m∑

i=1

1(yi �= f (xi)) = 1

m

∑

k �=l

ckl . (3) 

For example, in the cancer patient classification problem (Table 1), we have 
.Acc = 0.95 and .R = 0.05. Notice that these measures are not restricted to binary 
classification, as they hold the same interpretation in the multi-class case. 

The accuracy and error rate gain their popularity from their simplicity and 
intuitive nature. Here, all classification events are considered equally important 
and are summarized into a single scalar term. In the example above, the accuracy 
is the sum of TNs and TPs, even though identifying the cancer patients is the 
major concern of this problem. This emphasizes the major disadvantage of these 
measures, as they fail to convey varying degrees of importance in different classes. 
Furthermore, accuracy and error rate are effective measures when the proportion of 
instances belonging to different classes in the set is relatively balanced (i.e., similar 
for different classes). As soon as the distribution begins to skew in the direction
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of a particular class, this class becomes more dominate and henceforth results in a 
biased measure. For example, an accuracy of .0.95 can be attained with .10/10 TP 
and .85/90 TN (as in the example above), or alternatively with .5/10 TP and . 90/90
TN. Obviously, the difference in TP is quite dramatic, but the reported accuracy 
remains. We study skew and cost consideration in a greater depth in Sect. 2.4. 

2.3.2 True-Positive Rate, False-Positive Rate, and Likelihood Ratios 

The most natural measure for asymmetric problems (where the classes are not 
considered equally important) is arguably the true-positive rate. Although this 
notion may be a bit misleading in the multi-class setup (indeed, which class is 
considered “positive” among the many classes?), it is relatively more intuitive in 
the binary classification setup. The true-positive rate (TPR) refers to the proportion 
of true positives from all the positive samples. It is formally defined as 

.TPR =
∑m

i=1 1(yi = 1 ∧ f (xi) = 1)∑m
i=1 1(yi = 1)

= TP

TP + FN
. (4) 

Similarly, we define the false-positive rate (FPR) as the proportion of false positives 
from all the negative samples, 

.FPR =
∑m

i=1 1(yi = 1 ∧ f (xi) = 0)∑m
i=1 1(yi = 0)

= FP

FP + TN
. (5) 

True- and false-positive rates generally form a complement pair of reported perfor-
mance measures. Moreover, we can obtain the same measures on the negative class, 
in the form of true-negative rate (TNR) and false-negative rate (FNR), respectively. 

.TNR = TN

FP + TN
= 1 − FPR, FNR = FN

FN + TP
= 1 − TPR. (6) 

In signal detection theory, the true-positive rate is also known as the hit rate, 
whereas the false-positive rate is referred to as the false-alarm rate or the fall-
out. The true-positive rate of a classifier is also referred to as the sensitivity of 
the classifier. The term has its origin in the medical domain, in which the metric 
is typically used to study the effectiveness of a clinical test in detecting a disease. 
The process of evaluating the test in the context of detecting a disease is equivalent 
to investigating how sensitive the test is to the presence of the disease. That is, how 
many of the positive instances (actual disease cases) can the test successfully detect? 
The complement metric to this focuses on the proportion of negative instances 
(e.g., control cases or healthy subjects) that are detected. This metric is called the 
specificity of the learning algorithm. Hence, sensitivity is generally considered in 
terms of the positive class, while specificity corresponds to the negative class.
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So what is the meaning of these measures? Consider the example in Table 1. The  
objective of a classifier is to correctly identify all cancer patients, for a follow-up 
physician examination. The presented classifier attains a sensitivity of 1. This means 
that all cancer patients were identified as expected. In addition, the specificity of 
the classifier is .85/90 = 0.94. It means that only . 6% of the healthy patients were 
mistakenly referred to a physician. 

The pair TPR and FPR provides a complete picture of the two classes correctly 
classified. Unlike accuracy, they do so separately, for each individual class. As 
a result of the class-wise consideration, the measures reduce the dependency on 
uneven class distribution. However, while accuracy is reported by a single scalar 
value, the pair TPR and FPR require two scalars, which makes a biased comparison. 
Therefore, we introduce a measure that combines TPR and FPR to a single value. 
The positive likelihood ratio and negative likelihood ratio are defined as follows: 

.LR+ = TPR

FPR
, LR− = FNR

TNR
. (7) 

In words, following our example in Table 1, .LR+ summarizes how many 
times more likely cancer patients are to have a positive prediction than healthy 
individuals. Equivalently, .LR− summarizes how many times less likely cancer 
patients are to have a negative prediction than healthy individuals. A higher positive 
likelihood and a lower negative likelihood mean better performance on positive and 
negative classes, respectively, so we want to maximize .LR+ and minimize . LR−
simultaneously. In practice, likelihood ratios reaching values greater than 10 and 
lower than . 0.1 provide acceptably strong evidence [8]. An additional approach to 
combine the TNR with FPR (or alternatively .TNR = 1 − FPR) is by taking their 
geometric mean, 

.Gmean = √
TPR × TNR. (8) 

This measure takes into account the relative balance of the classifier’s performance 
on both the positive and negative classes. .Gmean equals 1 if and only if . TPR =
TNR = 1. For all other values, the geometric mean provides a relative balance 
between the two. 

2.3.3 Positive- and Negative-Predictive Values 

The true-positive and false-positive rates focus on the proportion of correct clas-
sification events from the population of each class. A different perspective on the 
performance of a learning algorithm is its predictive value, the proportion of correct 
classification events from all classification events of each class. Formally, in the 
binary classification problem, the positive- and negative-predictive values (PPV and 
NPV, respectively) are defined as follows:
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.PPV = TP

TP + FP
, NPV = TN

FN + FN
. (9) 

PPV measures how many samples are truly positive from all the samples that are 
assigned to this class. Hence, it measures how “precise” the algorithm is with respect 
to the class. Therefore, PPV is also referred to as precision. The complement of PPV 
is the negative-predictive value (NPV), which measures the proportion of correctly 
assigned negative examples. In the cancer patients example (Table 1), we have that 
.PPV = 10/15 and .NPV = 85/85 = 1. It means that all the individuals who are 
classified as healthy are indeed healthy, while only 10 of the 15 individuals who 
are classified as cancer patients are indeed cancer patients. The interpretation of 
these results suggests that the classifier is “bad” for identifying cancer patients and 
“good” for identifying healthy individuals. In fact, this is an alternative view of 
our objective—we would like to dismiss all the healthy individuals and assign the 
suspected cancer patients for further examination. Notice that as with previously 
discussed measures, PPV and NPV are more intuitive in binary classification. These 
notations may also be extended to multi-class classification, but in this case the 
notation of “positive” and “negative” need to be clear from the context. 

2.3.4 Precision, Recall, and F-measure 

Finally, we consider an approach that combines measures from the two previous 
sections. Here, we focus on the PPV together with the sensitivity (TPR) of the 
classifier. These are typical statistics of interest in domains such as information re-
trieval, in which we are interested not only in the proportion of relevant information 
identified, but also in investigating the actually relevant information from samples 
tagged as relevant [9]. In the information-retrieval domain, the PPV and TPR are 
generally referred to as precision and recall, respectively. In the cancer patients 
example (Table 1), the precision value is .10/15 and the recall value 1. It means 
that all the cancer patients are identified correctly, which are 10 of the 15 positive 
classifications that are made. This result reflects the strength of the classifier over the 
positive class. However, it does not provide sufficient information on the negative 
class. This is quite disturbing since the same values of precision and recall may 
be obtained no matter what proportion of patients labeled as healthy are actually 
healthy. Nevertheless, in application where the focus is mostly on the positive class 
(as in the information-retrieval case), these measures capture the desired merits. In 
order to combine the two measures into a single value, we consider their weighted 
harmonic mean, denoted as the F -measure, 

.Fα = (1 − α)(Prec × Rec)

α · Prec + Rec
, (10) 

where Prec and Rec are the precision and recall, respectively, while .α ∈ R+ is 
a positive constant. For example, for .α = 1, we obtain the balanced F-measure,
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while . F2 and .F0.5 define different trade-offs between the recall and precision. In our 
example (Table 1), we have .F0.5 = 0.75, .F1 = 0.8, and .F2 = 0.85. This means 
that as . α increases, we put more emphasize on the recall value (which equals 1) and 
attain a greater F-measure. This shows that the choice of the relative weight is quite 
significant in the evaluation of the F-measure. Unfortunately, in most practical cases, 
appropriate weights are generally unknown, resulting in a significant limitation. 

2.3.5 Choosing a Hard-Decision Measure 

As mentioned throughout the previous sections, different measures focus on dif-
ferent aspects of the problem. It is important to emphasize that no single metric 
is capable of encapsulating all the aspects of interest, even with respect to an 
individual class. Therefore, choosing a performance measure highly depends on 
the understanding of the problem. In our example, we saw that measures such as 
accuracy fail to well represent the performance of the classifier, as the problem 
is much more sensitive to the positive class. In addition, while some measures 
provide a single scalar value, the others are typically reported in pairs or require 
some parametric combination. This makes a biased comparison. A single scalar is 
obviously less informative. On the other hand, increasing the number of metrics 
being reported makes it increasingly difficult to interpret the results. Moreover, 
if we are to report multiple measures, then why not simply return the confusion 
matrix altogether? We discuss this issue in greater depth in Sect. 3.1. Despite these 
limitations, the performance measures above are highly popular for assessing the 
quality of hard-decision classifiers as they perform reasonably well when used in 
the right context. 

2.4 Skew and Cost Considerations 

The performance measures discussed in the previous section consider the entries of 
the confusion matrix and provide corresponding measures, which focus on different 
aspects of the problem. Yet, several issues that are not directly addressed by the 
confusion matrix may still raise. The first is class imbalance. This corresponds to 
the case where the classes significantly differ in size. We briefly mentioned this 
issue earlier in the chapter, in the context of several performance measures. Here, 
we suggest a general approach that weights the classes according to their relative 
sizes. Define the class ratio as the proportion of one population size over the other. 
Specifically, .ratio+ = P/N and .ratio− = N/P. Then, we may weigh the entries 
according to their respective class ratios. For instance, in the binary case, the TPR 
is weighted by .ratio+, while TNR is weighed by .ratio−. This type of evaluation, 
which takes into account the differing class distributions, is referred to as a skew-
sensitive assessment. In the multi-class problem, we may similarly define the ratio
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of the class k as .ratiok = ∑
l ckl/(

∑
l,l �=k clk + ∑

l,l �=k cll). This corresponds to the 
number of instances in a class k, over the population of the other classes in the set. 

A second issue that is not directly addressed by the confusion matrix is 
asymmetric misclassification costs. In our example above (Table 1), the cost of 
misclassifying a cancer patient as healthy is considered significantly greater than the 
opposite. Notice that this asymmetry is not quantified, and so we simply focus on 
measures that put more emphasis on the positive class. As with the class imbalance 
problem, we now suggest a more general approach and consider a weight matrix W 
that defines the misclassification cost. These costs can be either known a priori or 
come from domain experts. By doing so we attain weighted variants of the different 
performance measures described in the previous sections. For instance, the error 
rate, defined as .

∑
k �=l ckl , has now a weighed variant, .

∑
k �=l wklckl [21]. Note that 

cost considerations need not be the same as skew considerations; misclassification 
cost may or may not overlap with the presence of class imbalance. Although 
attempts have been made to integrate the two into cost ratios, we do not discuss 
these here. Interested readers are referred to [13, 4] for a detailed discussion. 

3 Scoring Classifiers 

Hard-decision classifiers are quite intuitive, as they output a single-class label that 
may, or may not, equal the true label of the sample. In this section, we extend the 
discussion to scoring classifiers. These classifiers output a real-valued score to each 
possible label. The scores do not necessarily hold any probabilistic interpretation, 
although such probabilistic classifiers may be considered as a special case of scoring 
classifiers. However, we do assume that the scores are monotone, in the sense 
that a higher score corresponds to a greater confidence in the predicted label. In 
many applications, the classification scores are compared to a threshold, to obtain 
class memberships (hard decision) for the samples. For example, all samples with 
scores above a given threshold are labeled positive, whereas those with scores 
below it are labeled as negative. In this sense, hard-decision classifiers are also 
considered as a special case of scoring classifiers. The process of thresholding 
classification scores is very common in post-processing of many learning algorithm. 
As we show throughout this section, the threshold value has a significant effect 
on the performance of the algorithm and its tuning may be considered part of the 
algorithm’s calibration. 

Due to their non-discrete nature, soft-decision classifiers are evaluated by 
different means than hard-decision classifiers. Here, graphical analysis methods that 
capture the continuous nature of the classifiers are shown to be very effective tools. 
Among these, the receiver operating characteristic (ROC) analysis is perhaps the 
most popular approach [13, 10]. In the next section, we discuss ROC analysis and 
its associated performance measures. Then, we extend the discussion to alternative 
graphical methods that can be applied, depending on the domain of the application.
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3.1 ROC and AUC 

Graphical performance measures provide visualization of the classifier’s perfor-
mance over its full operational range. This allows us to study a classifier under 
different skew ratios and class distribution priors. In this sense, graphical methods 
are significantly more informative than the confusion matrix and its related mea-
sures. However, even in this case, it is typically not easy to decide which classifier 
is more appropriate than the others. Alternatively, if we have information over 
the full operating range, it is usually easier to discover areas of optimality. That 
is, it is easier to identify the skew ratios under which one classifier is superior, 
compared to its alternatives. ROC has its origin in signal detection theory [27]. 
It was originally introduced as a tool of setting a threshold (operating point) for 
the receiver to detect the presence of signal. The selection of the best operating 
point is typically a trade-off between the hit rate (TPR) and the false-alarm rate 
(FPR). In the context of learning algorithms, ROC graphs have been used in a 
variety of ways, mostly in binary classification problems. Here, ROCs are utilized 
to identify optimal behavior regions, perform model selection and most importantly, 
and evaluate learning algorithms. 

The ROC curve is a plot in which the horizontal axis (the x-axis) denotes the 
false-positive rate (FPR) and the vertical axis (the y-axis) denotes the true-positive 
rate (TPR) of a given classifier. Notice that TPR is nothing but the sensitivity of 
the classifier, whereas FPR is simply 1-TNR. Hence, ROC analysis studies the 
relationship between the sensitivity and the specificity of the binary classifier. Both 
TPR and FPR take values on the unit interval. Therefore, the ROC space is defined 
on the unit square, as shown in Fig. 1. As discussed in Sect. 2.3.2, a hard-decision 
classifier may be characterized by a pair (FPR,TPR). This means that a hard-
decision classifier is represented by a single point in the ROC space. The point 
.(0, 0) denotes a trivial classifier that classifies all the samples as negative and, hence, 
results in both the TPR and the FPR equal zero. On the other end of the square, 
the point .(1, 1) corresponds to the trivial classifier that labels all the instances as 
positive and henceforth results in .TPR = FPR = 1. The diagonal connecting these 
two points satisfies .TPR = FPR. Hence, the classifiers falling along this diagonal 
are considered random. Specifically, they assign a positive label to the samples with 
probability .p = TPR = FPR. It follows naturally that the classifiers lying above this 
diagonal perform better than random. The points .(1, 0) and .(0, 1) give the other two 
extremes of the ROC space. The point .(1, 0) has .FPR = 1 and .TPR = 0, meaning 
that this classifier gets all its estimates wrong. On the other hand, the point . (0, 1)
denotes the ideal classifier, which gets all the positives right and makes no errors 
on the negatives. As a rule of thumb, for two hard-decision classifiers .hda and . hdb

on ROC space, hd. a represents a better classifier than .hdb if .hda is “closer” to the 
point .(0, 1) than . hdb. This corresponds to a greater TPR at a lower cost of FPR. The 
operating point on the ROC space corresponds to a specific decision threshold of the 
classifier that is used to assign discrete labels to the samples. As mentioned above, 
samples with scores above the threshold are labeled positive, while the ones below
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Fig. 1 ROC analysis examples. Left: two soft-decision classifiers . f1 and . f2 and four hard-decision 
classifiers. Right: example of the ROC convex hull 

are labeled negative. The separation between the two classes defines the classifier’s 
hard-decision performance for a particular decision threshold. Hence, each point on 
the ROC space denotes a specific TPR and FPR of a classifier. 

By tuning the decision threshold, one obtains a different pair of TPR and FPR, for 
each value of the scoring threshold. This results in a continuous curve over the ROC 
space (for example, see the . f1 and . f2 in Fig. 1). However, this is not necessarily 
the case in most practical scenarios. Given a finite set of samples m, the number of 
values on the ROC curves is not greater than m. That is, when the samples are sorted 
according to their scores, then all the decision thresholds in the interval between two 
consecutive scores attain the same TPR and FPR. Further, notice that a continuous 
tuning of the decision threshold is not always possible. For example, decision trees 
only allow a finite number of thresholds (upper bounded by the number of possible 
labels over the leaves of the decision tree). Hence, in this setup, the obtained ROC 
curve consists of step functions. 

Let us illustrate the properties of the ROC, for several hard- and soft-decision 
classifiers. The panel on the left of Fig. 1 summarizes the performance of four hard-
decision classifiers (.hd1 to . hd4) and two soft-decision classifiers (. f1 and . f2) on  
the ROC space. At a first glance, .hd1 seems superior to all other hard-decision 
classifiers, as it is closer to the optimal point .(0, 1). However, notice that if our 
problem specifies that FPR is the measure of interest, then in some cases .hd2 may 
be considered more appropriate for the task in hand. Yet, there are several definite 
conclusions that could be made by observing the ROC. First, .hd3 is inferior to .hd2 as 
it attains the same TPR at a greater cost (greater FPR). Second, .hd3 is also inferior 
to .hd1 as .hd1 surpasses it in both merits of interest. Finally, .hd4 seems to be the 
worst classifier of all, as it is below the random classifier line. However, notice that 
by flipping its predicted labels (positive becomes negative and negative becomes 
positive), its performance on the ROC is “mirrored” with respect to the diagonal 
random classifier line and becomes the best classifier (closest to .(0, 1)). 

As we compare . f1 to . f2, we see that . f1 is uniformly above . f2, which means 
that it is superior to it on the entire operational regime. Unfortunately, this is not
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always the case. For example, consider the two scoring rules . f1 and . f3 in the right 
panel of Fig. 1. Here, . f3 dominates . f1 in low FPR values, while . f1 is superior in 
large FPR. The right panel of Fig. 1 further illustrates an additional ROC concept, 
the ROC convex hull (ROCCH). The ROCCH is a convex hull over the ROC curve. 
In the case of multiple classifiers, the ROCCH identifies the best classifier(s) for 
different operating points. The ROC curve of the classifier that lies exactly on the 
convex hull for a given region of interest denotes the optimal classifier for that 
operating region. Importantly, the ROCCH can also infer a hybrid classifier that can 
give optimal performance for different operating points by stochastically weighing 
different classifiers in the hybrid. Such hybrid classifiers are not in the scope of this 
chapter. The interested reader is referred to [18] for pointers on the subject. 

Although the ROC affords the advantage of visualizing the performance of a 
classifier over its entire operating range, it does not allow us to quantify this into 
a single comparable measure. In other words, while a classifier may dominant its 
competitors over the entire ROC, these cases are somewhat rare. Typically, there is 
no uniform dominance, and it is difficult to conclude which classifier is superior. 
Various summary statistics have been proposed to address this shortcoming. The 
most popular approach is the area under the curve (AUC). This measure represents 
the performance of a classifier averaged over all the possible operational setups. 
Noting that the ROC space is a unit square, it is clear that .AUC ∈ [0, 1] with 
the upper bound attained for a perfect classifier. Moreover, notice that a random 
classifier, represented by the diagonal line across the ROC space, results in . AUC =
0.5. Therefore, a classifier with a reasonably better performance than random is 
expected to attain an AUC value greater than half. It is important to emphasize that 
different classifiers may attain the same AUC value despite significant differences in 
their design. For example, a classifier that performs very well on half of the samples 
of one class, and very poorly on the other half, would also result in .AUC = 0.5. 

AUC was shown to be related to the accuracy (and error rate) of the classifier 
[22, 5]. Another interpretation of AUC shows its equivalence to the probability that 
a classifier would rank a randomly chosen positive sample higher than a randomly 
chosen negative one. In this sense, it is shown to be equivalent to Wilcoxon’s 
Rank Sum test [23] (also known as the Mann–Whitney U-test [17]). Further, the 
AUC is known to be closely related to the Gini coefficient (a measure of statistical 
dispersion), satisfying .AUC = (Gini + 1)/2 [16]. 

Different methods have been suggested to evaluate the AUC [16, 10, 17, 2]. 
Using Wilcoxon’s Rank Sum statistic, we may obtain a simple estimate to the AUC 
as follows. First, we associate a rank in the order of decreasing scores to each of 
the scores assigned by the classifier. That is, the sample with the highest score is 
assigned the rank 1. Then, the AUC estimate follows: 

.AUC =
∑

i∈Tp
(Ri − i)

N · P , (11) 

where . Tp is the set of all positive samples, P and N are the number of positive and 
negative samples, respectively, and . Ri is the rank of the i. th sample in . Tp.
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Similarly to other scalar measures, the AUC loses significant information about 
the behavior of the learning algorithm over the entire operating range. However, it 
is argued that the AUC is a preferred measure in setups of imbalanced classes. It is 
important to mention that AUC has drawn some criticisms over the years [16]. One 
of the most obvious concerns states that if two ROC curves (of the two different 
classifiers) intersect, the AUC-based comparison between the classifiers can be 
relatively uninformative and even misleading [16]. Nonetheless, in the event where 
the ranking property of the classifier is important (for instance, in information-
retrieval systems), AUC is a more reliable measure of classifier performance, as 
it assesses the ranking capability of the classifier in a direct manner. 

Several attempts have been made to extend ROC analysis to multi-class problems 
[11, 20, 13]. However, this generalization is not quite straightforward. The main 
reason is that multi-class ROC requires visualization over B-dimensional plots 
(where B is the number of classes). This is obviously difficult to attain and, 
more importantly, to interpret. Naturally, the AUC may also be extended to multi-
class problems. Here, there exist several generalizations that suffer from varying 
limitation due to statistical and computation difficulties. The interested reader may 
refer to [16] and the references therein for further details. 

3.2 Additional Graphical Measures 

Despite its great popularity, there exist several visualization alternatives to ROC 
analysis that are mostly application-oriented. One popular example is lift charts. 
Lift charts describe the true positives against the size of the data set required to 
achieve this number of true positives. That is, the vertical axis of the lift chart 
is the TP (as opposed to TPR in the ROC), whereas the horizontal axis denotes 
the number of samples in the data set considered for the specific TP value on the 
vertical axis. In highly imbalanced data sets, where the number of positive examples 
is much smaller than the negative samples, the horizontal axes of the lift chart and 
ROC curves look very similar as do the curves. Lift charts are more common in 
the business domains. A typical example is direct-mail advertising. Here, very few 
people respond to this kind of advertising, compared to the number of emails being 
sent. Therefore, one is interested in the number of emails necessary to attain a given 
positive effect. Precision–recall (PR) curves define another visualization alternative 
that focuses on the trade-off between the correctly classified positive samples and 
the number of misclassified negative samples. As their name suggests, PR curves 
plot the precision of the classifier as a function of its recall. Thus, the curves look 
different from ROC and lift curves as they have a negative slope. PR curves are 
mostly common in the information-retrieval field, as discussed in Sect. 2.3.4 in the 
context of precision, recall, and the F-measure. It is also important to mention that 
PR curves may sometimes be more appropriate than ROC curves for imbalanced 
data [7].
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Generally speaking, any combination of performance measures that explores the 
classification trade-off (such as TPR and FPR in ROC analysis) may be represented 
in graphical manner. Here, we only review the more popular (and insightful) 
methods. Clearly, there exist additional trade-off curves that may be more suitable 
for different applications. 

4 Probabilistic Classifiers 

A scoring classifier assigns a real-valued score to each possible label. As mentioned 
in Sect. 3, the scores are assumed to be monotone and correspond to the classifier’s 
confidence in the predicted label. In this section, we study a special case of scoring 
classifiers, in which the scores are probabilistic measures. In words, a probabilistic 
classifier .fk(xi) outputs a probability value for each label .yi = k, which corresponds 
to .fk(xi) = P(yi = k). This allows us to study the problem from a probabilistic 
perspective and introduce important properties for the desired measures. 

For the simplicity of the presentation, we focus on single-class classification. Let 
us first introduce some additional basic notations. We denote a binary probabilistic 
classifier as .f (x) � q ∈ [0, 1]. In words, q is the probability of the event .y = 1. 
The corresponding performance measure is defined as 

.l(y, q) = 1{y = 0}l0(q) + 1{y = 1}l1(q), (12) 

where .lk(q) is a performance measure associated with the event .y = k, and .1{·} is 
an indicator function. Several examples of commonly used probabilistic measures 
are presented in Table 2. 

The quadratic performance measure (also known as quadratic loss or Brier 
score) is perhaps the most intuitive and well-known criterion. It is equivalent to 
the squared error between the probability estimate q and the sample (which equals 
zero or one). The spherical performance measure is a popular alternative to the 
quadratic loss. It was first introduced by Roby [29] in the context of psychological 

Table 2 Probabilistic performance measures for two-class classification 

Performance 

measure l(y, q) r(p, q) 

Quadratic y(1 − q)2 + (1 − y)q2 (p − q)2 7 

Spherical −y(1−q)√
q2+(1−q)2 

+ −(1−y)q√
q2+(1−q)2

√
p2 + (1 − p)2 − pq+(1−p)(1−q)√

q2+(1−q)2 

Log-loss y log 1 
q + (1 − y) log 1 

1−q p log p 
q + (1 − p) log 1−p 

1−q 

0-1 loss y1{q <  th} +  (1 − y)1{q ≥ th} (2p − 1)1{p ≥ th, q  <  th} 
(2p − 1)1{p ≥ th, q  <  th} 



186 A. Painsky

testing. It has several interesting geometric properties and a strong connection to 
the statistical notion of surprise [19]. The logarithmic loss (log-loss, logistic loss, 
Bernoulli log-likelihood loss) is another very popular probabilistic performance 
measure. The log-loss is a statistical measure that corresponds to the log-likelihood 
of the estimated parameter q. It is also a staple of information theory [6], as the 
self-information loss function, .− logp(y), defines the ideal code-word length for 
describing the realization .Y = y. In this sense, the log-loss corresponds to the 
amount of information that is necessary to convey the observed samples. The 0-
1 loss, which is discussed throughout this chapter, may also be considered as a 
probabilistic performance measure. Here, the probability value q is compared to a 
threshold value th, as studied in Sect. 3. 

Notice that probabilistic performance measures quantify the discrepancy be-
tween the true label y and the corresponding estimate q. This means that a smaller 
performance measure .l(y, q) corresponds to better prediction. This notion is highly 
related to scoring rules that are also used to evaluate probabilistic classifier. How-
ever, in scoring rules, a greater score corresponds to better prediction. Therefore, for 
every performance measure, there exists a corresponding “negative” scoring rule. 
For example, the logarithmic scoring rule is defined as .y log q + (1− y) log(1− q), 
which is exactly the negative log-loss as appears in Table 2. 

Probabilistic performance measures have been extensively studied over the years. 
The statistical framework of this approach allows us to introduce several basic 
properties. We review and discuss these properties in the following sections. 

4.1 Proper Performance Measures 

Let us first revisit our model assumptions, as introduced in Sect. 1.1. Assume that the 
pair .x, y is drawn from an unknown distribution .PXY . In the binary classification 
setup, we have that .y ∈ {0, 1}. Therefore, for a fixed (observed) sample x, the  
variable Y may be modeled as a Bernoulli distributed variable with an unknown 
parameter p (where p depends on x). Hence, we may define the corresponding 
expected performance measure as 

.L(p, q) = EY |X (l(Y, q)|X = x) = (1 − p)l0(q) + pl1(q) (13) 

for a given q. Notice that .L(p, q) only depends on the Bernoulli parameter p 
and the estimate q. A  proper performance measure is a performance measure for 
which the minimizer of .L(p, q) is the true underlying model we are to estimate, 
.p = argminq L(p, q). This property is also known as Fisher consistency or 
unbiasedness. A  strictly proper performance measure means that .q = p is a unique 
minimizer. It is easy to verify that all the performance measures in Table 2 are 
proper. Further, we may design and characterize additional proper performance 
measures as shown in [33]. The notion of Fisher consistency is of high interest in



Quality Assessment and Evaluation Criteria in Supervised Learning 187

many practical setups. It means that the probabilistic classifier that attains the best 
performance, on the average, is the true model. 

In addition, we define several basic regularity conditions for probabilistic perfor-
mance measure. We say that a performance measure is fair if .l0(0) = l1(1) = 0. 
This means that there is no loss incurred for perfect prediction. Further, we say that a 
proper performance measure is regular if . limq↘0 ql1(q) = limq↗1(1−q)l0(q) = 0.
Intuitively, this condition ensures that making mistakes on events that never happen 
should not incur a penalty. 

4.2 Regret and Divergence 

We now draw our attention to a fundamental connection between probabilistic 
performance measures and divergence analysis. As mentioned above, a proper 
performance measure attains its minimal expected value for .q = p. Denote this 
minimum as .G(p) � L(p, p). This term is also known as the generalized entropy 
function [15], Bayes risk [28] or  Bayesian envelope [24]. For example, assuming 
that .l(y, q) is the log-loss, then the generalized entropy function is the Shannon 
entropy, .H(p) = −p log(p) − (1 − p) log(1 − p). The  regret is defined as 
the difference between the expected performance and its minimum. For proper 
performance measures, we have that 

. r(p, q) = L(p, q) − G(p).

Savage [31] showed that a performance measure .l(y, q) is proper and regular if and 
only if .G(p) is concave, and for every .p, q ∈ [0, 1], we have that 

. L(p, q) = G(q) + (p − q)G′(q).

This property allows us to draw an immediate connection between two-class regret 
and Bregman divergence. Let .f : S → R be a continuously differentiable strictly 
convex function over some convex set .S ⊂ R

n. Then, its associated Bregman 
divergence is defined as .Df (s||s0) = f (s) − f (s0) − 〈s − s0,∇f (s0)〉 for any 
.s, s0 ∈ S, where .∇f (s0) is the gradient of f at . s0. By setting .S = [0, 1], we have  
that .∇f = f ′ and .r(p, q) = D−G(p, q). This means that the regret of a proper loss 
function is uniquely associated with a Bregman divergence. An important example 
is the Kullback–Leibler (KL) divergence, .DKL(p||q), associated with the log-loss. 

The correspondence between the regret of proper performance measures and 
Bregman divergences is arguably one of the more important consequences of the 
probabilistic evaluation approach. It allows us to adopt well-known results from one 
field to the other and provide useful insights when choosing an evaluation criterion 
for the problem in hand. We discuss this in greater detail in Sect. 4.5. Unfortunately, 
this result only applies to binary classification. There exist several generalizations to
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multi-class problems, which mostly focus on separable Bregman divergences. See 
[26] for further details. 

4.3 Loss Functions and Performance Measures 

Before we proceed, it is important to emphasize that probabilistic performance 
measures are highly related to loss functions. Similarly to probabilistic performance 
measures, loss functions also measure the discrepancy between the true labels and 
their corresponding estimates. However, loss functions are typically considered 
during (or prior to) the design of a classifier. In this sense, choosing a loss function is 
a prerequisite to the characterization of a learning algorithm, as it explicitly defines 
its objective. On the other hand, our discussion focuses on the evaluation of a given 
classifier, after it is fully trained. Technically, there is no major difference between 
the two. However, there exist several differences in their additional requirements. 
For example, it is typically desirable for a loss function to have some favorable 
computational or analytical properties. The reason behind this requirement is quite 
practical; during the training of the algorithm, the objective needs to be efficiently 
minimized (that is, within a low computational cost). On the other hand, such 
computational aspects are not a major concern for performance measures, which 
are only required to evaluate metrics for a given classifier. Thus, in many practical 
setups, we may prefer convex and smooth enough (at least twice differentiable) loss 
functions, for which we can derive simple descent algorithms. This requirement is 
not of high interest when comparing performance measures. Moreover, notice that 
while a learning algorithm is designed with respect to a single objective, we may 
evaluate its performance by multiple measures. This makes the choice of a loss 
function a major concern. We discuss these issues in Sects. 4.5 and 6. 

4.4 Comparing Probabilistic Performance Measures 

Proper probabilistic performance measures attain their minimum at .q = p. 
Therefore, their corresponding regret equals zero for the optimal classifier. However, 
how do we compare the results attained by different probabilistic measures, for a 
non-perfect classifier? First, it is important to note that each of the measures has 
a different magnitude and location. Further, notice that a proper measure remains 
proper for any affine transformation. For example, we may scale the quadratic 
measure in a positive factor and still remain with a proper probabilistic performance 
measure. Therefore, to compare different measures, it is typically required to 
normalize them. Several studies have focused on this approach, evaluating the 
differences and similarities between common measures in different setups and 
applications. In the following section, we take a broader approach and introduce 
a universal framework for probabilistic performance measures.
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4.5 Universal Performance Measures 

To illustrate the notation of universality, let us first introduce a simple example. 
Consider a weather forecaster that estimates the probability of rain on the following 
day. Its performance may be evaluated by different performance measures, as 
discussed throughout this chapter. Choosing a “suitable” measure for this problem 
is a complicated task that requires domain knowledge or expert’s advice. Assuming 
that the desired measure is known in advance, the weather forecaster may be 
designed accordingly, to minimize this measure. Unfortunately, we typically do 
not have this information in advance. Moreover, in many cases, the algorithm is 
evaluated by multiple criteria. It means that while the forecaster is designed with 
respect to a single objective, it is expected to perform well with respect to several 
measures. 

A universal performance measure is defined as a measure that dominates a 
set of alternatives (where the set is as board as possible). In other words, by 
controlling (minimizing) the universal measure, we implicitly control any measure 
in its dominated set. Although this notation of universality seems quite restrictive, 
it can be shown that the log-loss is a universal performance measure with respect to 
a broad set of probabilistic measures [25]. Specifically, let .l(y, q) be a fair, regular, 
and proper performance measure that is smooth and convex in q (see Sect. 4.4 and 
[26] for discussions on the smoothness and convexity requirements). Then, for every 
.p, q ∈ [0, 1], the regret .r(p, q) = D−G(p||q) associated with .l(y, q) satisfies 

.DKL(p||q) ≥ 1

C(G)
D−G(p||q), (14) 

where .DKL(p||q) is the KL divergence and .C(G) > − 1
2G

′′(p)|
p= 1

2
is a con-

stant (that does not depend on p or q). Notice that this constant addresses the 
normalization issue discussed in Sect. 4.4. For example, the bound for the quadratic 
performance measure shows that .DKL(p||q) ≥ (p−q)2. The practical implications 
of this universality guarantee are quite immediate. Assume that the performance 
measure according to which a learning algorithm is to be measured with is unknown 
in advance to the experiment. Then, by minimizing the log-loss, we provide an 
upper bound on any possible choice of measure, associated with an “analytically 
convenient” (regular, fair, proper, smooth, and convex) performance measure. This 
property makes the log-loss a universal choice for classification problems as it 
governs a large and significant class of measures. It also establishes the underlying 
connection between the choice of loss function, prior to the design of the learning 
algorithm, and the applied evaluation criteria, after the algorithm is fully trained. 
The interested reader is referred to [26] for additional results on the rate of 
convergence and other properties of the log-loss, compared to alternative measures.
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4.6 A Real-World Example 

To conclude this section, we illustrate different probabilistic performance measures 
in a simple real-world example. As discussed in Sect. 4.5, weather forecasters typ-
ically assign probabilistic estimates to future meteorological events. The estimates 
are designed to minimize a performance measure, according to which the weather 
forecaster is evaluated. However, weather estimates serve a large audience, where 
different recipients may be interested in different measures. This may cause severe 
difficulties. For example, by minimizing the quadratic loss, a forecaster may assign 
zero probability of occurrence to very rare events. This makes sense in the mean 
square error case but may result in an unbounded logarithmic loss. 

In this experiment, we evaluate the performance of a given weather forecaster 
using the probabilistic performance measures described in Table 2. For the purpose 
of this experiment, we analyze climatic data that were collected by the Bureau 
of Meteorology of the Australia’s National Meteorological Service.1 This publicly 
available data set contains the observed weather and its corresponding forecasts in 
multiple weather stations in Australia. In our experiment, we focus on the predicted 
chances of rain (where a rainfall is defined as over 2mm of rain) compared with 
the true event of rain. Our data set contains 33,134 weather observations and their 
corresponding forecasts that were collected between the .28th and .30th of April, 
2016. Only 9% of the samples correspond to an event of rain. The first row of Table 3 
summarizes our results. 

The most obvious result of our experiment is that the provided weather forecaster 
results in an unbounded logarithmic loss. In fact, we observe several instances for 
which the forecaster predicted zero chance of rain where in fact it eventually rained. 
Let us revise the suggested forecaster to address this concern. More generally, we 
would like to design a modified forecaster that is universal with respect to as many 
as possible evaluation criteria. Notice that the given forecasts are attained by an 
unknown prediction algorithm that is designed according to a variety of features that 
are unavailable to us. Therefore, we cannot introduce a novel alternative forecaster 
but only modify the given forecasts. Thus, we suggest a simple logistic regression, 
where the target is the observed data and the single feature is the given forecasts. 
This means that our suggested estimator is .q(x) = 1

1+e−β0−β1(x) , where x is the 

Table 3 Weather Forecast 
Experiment 

Weather 

Forecaster 
Quadratic Spherical Log-loss 0-1 loss 

Australian 

Forecaster 
0.0676 0.0739 ∞ 0.0898 

Modified 

Forecaster 
0.0675 0.0722 0.234 0.0901 

1 http://www.bom.gov.au/climate/data/. 

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
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given weather forecast and the . β’s are the regression parameters. Logistic regression 
is designed to minimize the log-loss between the observations y and the modified 
estimates .q(x). To avoid over-fitting, we train the regression on a different data 
set from January 2016. Our results are presented in the second row of Table 3. 
Notice that our suggested forecaster results in a bounded log-loss, where the other 
measures remain almost unchanged. This shows that even by applying a simple 
post-processing routine, we significantly improve the log-loss while controlling a 
large set of measures (as discussed in Sect. 4.5 and in [36] for the 0-1 loss). 

5 Regression Problems 

In the previous sections, we discuss a variety of evaluation criteria for classification 
problems, where the target takes values over a finite set. We now turn to the 
complementary regression problem. Here, the target takes values over a continuous 
set, typically the real line .y ∈ R, while the regressor is a mapping from the support 
of x (for simplicity, we assume .x ∈ Rd ) to the support of the target, .f : Rd → R. 
As in the classification problems, we denote the estimate of y as .ŷ = f (x). 

The standard approach for evaluating regression models is through additive, 
residual-based performance measures, such as squared error loss or absolute loss. 
These measures are attractive from a statistical perspective as they have likelihood 
interpretations. Further, they often represent the “true” (operational) cost of the 
prediction error. This property makes them also popular from an engineering (and 
scientific) view point. In this section, we review some commonly used residual-
based performance measures and discuss their properties. The interested reader is 
referred to [18, 30, 1] for additional residual-based methods and alternative (ranked-
based) methods. 

5.1 Mean Square Error 

The mean square error (MSE) is perhaps the most popular evaluation criterion for 
regression problems. It is formally defined as the squared Euclidean norm between 
the estimates and the true values, . 1 

m

∑m 
i=1(yi − ŷi )

2. The MSE gains its popularity 
from its favorable analytical and statistical properties; it is a continuous and 
differentiable metric that only depends on second-order statistics of the variables. 
However, despite its great popularity, it suffers from several drawbacks. One of the 
more evident weaknesses of the MSE is its high sensitivity to outliers. Specifically, 
assume a single bad estimate for an extreme observed value. Here, the squared error 
will magnify the difference between the two and may skew the metric toward a 
poor assessment of its performance. That is particularly problematic in the presence 
of noisy data. It means that even a “good” model may have a high MSE in this 
situation, so it becomes hard to judge how well it performs. On the other hand, 
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if all the errors are “small” (for example, smaller than 1), then the opposite effect 
takes place, and we may underestimate the model’s performance. Yet, despite these 
concerns, the MSEs (and the RMSE, which is simply the squared root of the MSE) 
are very popular evaluation criteria in many applications. 

5.1.1 R-Squared 

The R-squared (denoted as . R2) is proportional to the ratio between the MSE of a 
given model and the MSE of a reference model. Typically, the reference model is 
chosen as the simplest model in hand. For example, the average value of the target 
.ŷi = ȳ = ∑m 

i=1 yi . Formally, .R2 = 1 − MSE(model)/MSE(base-model), where 
.MSE(base-model) = 1 

m

∑m 
i=1(yi−ȳ)2. . R2 provides a natural referenced framework 

to compare different models. The greater . R2 is, the better is the model. Obviously, 
. R2 is closely related to MSE. Its major advantage is its scale-free support, . R2 ∈ 
(−∞, 1], which does not depend on the scale of the problem. It is important to 
emphasize that our discussion is restricted to performance measures evaluated on an 
independent holdout set. Therefore, we do explicitly consider issues as the models’ 
degrees of freedom in our measures. Specifically, we do not penalize the model’s 
complexity. Such considerations are addressed, for example, by the adjusted . R2 

[34, 32]. 

5.2 Mean Absolute Value 

The mean absolute error (MAE) is an average of absolute differences between the 
target values and the estimates, . 1 

m

∑m 
i=1 |yi − ŷi |. It is a linear measure in the sense 

that all the individual differences are equally weighted. For example, the difference 
between 10 and 0 is twice the difference between 5 and 0 (as opposed to the 
MSE). In other words, it penalizes residual errors linearly (and not quadratically). 
The MAE measures the . L1 distance between the target and the estimate. It is not 
continuous and henceforth more difficult to minimize during the training of the 
algorithm. Yet, it plays a major role in many applications as it is less sensitive to 
outliers. 

5.3 Percentage Error 

Consider two different setups in which we observe only a single sample. In the 
first setup, we observe .y = 10 and estimate .ŷ = 9. In the second, we observe 
.y = 100 and estimate .ŷ = 99. In both cases, both the MSE and the MAE equal 
one. However, it is quite natural to regard a unit error as more significant in the 
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case where .y = 10, as opposed to .y = 100. This leads to the mean-squared 
percentage error (MSPE) and mean absolute percentage error (MAPE), defined as 

. 
1 
m

∑m 
i=1 

(yi−ŷi )
2 

yi 
and . 1 

m

∑m 
i=1 

|yi−ŷi | 
yi 

, respectively. Here, the error of each estimate 
is factored by the true value of the target. This results in a performance measure 
proportional to the values of the target, and not just the residuals. In this sense, the 
MSPE and MAPE are considered weighted versions of MSE and MAE, where the 
weight of each sample is inversely proportional to target. 

6 Discussion 

In this chapter, we review a variety of performance measures for supervised learning 
algorithms. For classification problems, we distinguish between hard-decision and 
soft-decision classifiers. Hard-decision classifiers output a fixed class label from the 
domain of the target. They are considered less informative than soft classifiers, as 
they do not provide any notion of confidence to their decision. These classifiers are 
typically evaluated by statistics derived from the confusion matrix. Soft-decision 
classifiers provide a score that corresponds to a “level of confidence” in the class 
label. They are typically evaluated by graphical means (such as ROC curves) 
that summarize their performance in operational regimes and their corresponding 
statistics (AUC). In cases where the scores hold a probabilistic interpretation (for 
example, the “level of confidence” is the estimated probability of the label), then 
we may evaluate the classifier in a statistical framework. This allows us to introduce 
fundamental notions such are consistency, rate of convergence, and others. Finally, 
we discuss popular residual-based performance measures for regression problems 
and review their properties in terms of computational complexity and robustness. 

The main take-home message from this review states that an evaluation measure 
(or multiple measures) should be selected according to the specific problem in hand. 
In other words, when assessing the quality of a learning algorithm, one should first 
take into consideration the objective and the domain knowledge of the problem. For 
example, a classifier that is designed to identity rare positives (as with the cancer 
patients example in Sect. 2) shall not be evaluated by the overall error rate. In other 
cases, where no domain knowledge is available, then one shall consider performance 
measures that are more robust (or universal) with respect to others. For example, we 
show that the regret associated with the log-loss controls (bounds from above) a 
large set of practical probabilistic performance measures. 

Finally, it is important to emphasize that the study of performance measures 
is highly related to loss function analysis. In this sense, the choice of a loss 
function (a priori to the design of the algorithm) is highly influenced by the 
evaluation criterion according to which the algorithm is to be measured. This makes 
the evaluation considerations of high relevance, already during the design of the 
learning algorithm. 
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21. Nada Lavrač, Peter Flach, and Blaz Zupan, Rule evaluation measures: A unifying view, 
International Conference on Inductive Logic Programming, Springer, 1999, pp. 174–185. 

22. Charles X Ling, Jin Huang, Harry Zhang, et al., AUC: a statistically consistent and more 
discriminating measure than accuracy, IJCAI, vol. 3, 2003, pp. 519–524. 

23. Simon J Mason and Nicholas E Graham, Areas beneath the relative operating characteristics 
(ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation, 



Quality Assessment and Evaluation Criteria in Supervised Learning 195 

Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, 
Applied Meteorology and Physical Oceanography 128 (2002), no. 584, 2145–2166. 

24. Neri Merhav and Meir Feder, Universal schemes for sequential decision from individual data 
sequences, IEEE Transactions on Information Theory 39 (1993), no. 4, 1280–1292. 

25. Amichai Painsky and Gregory Wornell, On the universality of the logistic loss function, 2018 
IEEE International Symposium on Information Theory (ISIT), IEEE, 2018, pp. 936–940. 

26. Amichai Painsky and Gregory W Wornell, Bregman divergence bounds and universality 
properties of the logarithmic loss, IEEE Transactions on Information Theory 66 (2019), no. 3, 
1658–1673. 

27. H Vincent Poor, An introduction to signal detection and estimation, Springer Science & 
Business Media, 2013. 

28. Mark D Reid and Robert C Williamson, Composite binary losses, Journal of Machine Learning 
Research 11 (2010), no. Sep, 2387–2422. 

29. Thornton B Roby, Belief states and the uses of evidence, Behavioral Science 10 (1965), no. 3, 
255–270. 

30. Saharon Rosset, Claudia Perlich, and Bianca Zadrozny, Ranking-based evaluation of regression 
models, Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, 2005, pp. 8– 
pp. 

31. Leonard J Savage, Elicitation of personal probabilities and expectations, Journal of American 
Statistical Association 66 (1971), no. 336, 783–801. 

32. George AF Seber and Alan J Lee, Linear regression analysis, vol. 329, John Wiley & Sons, 
2012. 

33. Emir H Shuford, Arthur Albert, and H Edward Massengill, Admissible probability measure-
ment procedures, Psychometrika 31 (1966), no. 2, 125–145. 

34. Henri Theil, Economic forecasts and policy, North-Holland Pub. Co., 1961. 
35. Leslie G Valiant, A theory of the learnable, Communications of the ACM 27 (1984), no. 11, 

1134–1142. 
36. Tong Zhang, Statistical behavior and consistency of classification methods based on convex 

risk minimization, The Annals of Statistics (2004), 56–85. 



Trajectory Clustering Analysis 

Yulong Wang and Yuan Yan Tang 

1 Introduction 

The past years have seen the explosion of trajectory data with the rapid devel-
opment of surveillance and tracking devices. Trajectory data clustering [1] as  
an unsupervised learning task has attracted much attention in machine learning, 
computer vision, and pattern recognition. It also has numerous applications in 
motion segmentation [2, 3, 4, 5, 6], abnormal detection [7, 8, 9], and traffic 
monitoring [10, 11, 12]. 

In recent years, a number of subspace-based trajectory data clustering (STDC) 
methods have been proposed, including iterative [13, 14, 15], algebraic [16, 17, 18], 
statistical [19, 20], and spectral-clustering-based methods [21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31]. These methods first learn an affinity matrix indicating the 
membership among the data samples and then apply a spectral clustering algorithm 
[32] to the affinity matrix, obtaining the clustering results. They are mainly different 
in the process of solving the affinity matrix. For example, the sparse subspace 
clustering (SSC) method [3] introduces the sparse representation (SR) technique 
and computes the affinity matrix by solving a sparse program problem. The low-rank 
representation (LRR) [4] and low-rank subspace clustering (LRSC) [23] methods 
seek the lowest-rank representation in a given or learned dictionary. Starting with 
the pioneer work of SSC [3] and LRR [4], many variants of SSC and LRR have also 
been developed. For example, Patel et al. [33] devised a latent space SSC method to 
simultaneously perform dimensionality reduction and subspace clustering. Feng et 
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al. [29] enhanced SSC and LRR by enforcing the block-diagonal structure constraint 
on the affinity matrix. Lu et al. [34] proposed the correlation adaptive subspace 
clustering method by using trace lasso to achieve both the sparsity and the grouping 
effect. Here lasso [35] is the  . �1 norm regularized least squares method. Recently, 
a variety of robust subspace clustering methods are also developed in the presence 
of random noise or outliers [36, 37]. In addition, local information around each 
data sample is also used to build the affinity matrix by some recent methods, such 
as local subspace affinity (LSA) [38], spectral local best-fit flats (SLBF) [39], and 
locally linear manifold clustering (LLMC) [40]. Most of the codes of the methods 
above can be found in the homepages of the corresponding authors. 

In fact, many popular STDC methods have much in common. First, most of them 
consist of two main steps, i.e., learning an affinity matrix and then performing 
spectral clustering. Second, most of them involve solving a category of linear 
inverse problems. The optimal solutions of these problems are assumed to have low-
dimensional structures of the high-dimensional ambient space [41], such as sparsity, 
low rankness, etc. The commonalities of these methods motivate us to propose a 
general framework, called ARSC, to provide a unified view of them. Many state-
of-the-art STDC (e.g., SSC and LRR) can be regarded as specializations of ARSC 
with specific choices of the atomic set, loss function, and constraint. The potential 
benefits of the unification are as follows. First, with the proposed ARSC framework, 
we can recover many popular state-of-the-art subspace clustering methods, such 
as SSC and LRR. Second, ARSC can also potentially induce other possible low-
dimensional structures and convex norms unexploited so far [41]. 

Due to the analytical tractability and the low complexity of the resulting 
algorithms, most SC approaches utilize MSE as the loss function. Nevertheless, 
since MSE relies on the Gaussianity assumption [42], MSE-based SC methods are 
sensitive to non-Gaussian noise. To alleviate such limitation, the work [31] proposed 
to learn the affinity matrix for trajectory clustering by specifying the minimum 
error entropy (MEE) as the loss function and the sparsity-inducing atomic set. One 
appealing advantage of MEE over MSE is that MEE does not rely on the Gaussianity 
assumption as MSE and can well deal with both Gaussian and non-Gaussian noise. 
The experimental results show that MEESSC, termed MEESSC, outperforms state-
of-the-art-related SC methods in motion segmentation and face clustering. 

2 Preliminaries 

2.1 Summary of Main Notations 

In this chapter, we use boldface capital letters, boldface lowercase letters, and 
normal font to represent matrices, vectors, and scalars, respectively. The calligraphic 
letters are utilized to denote sets. In particular, . I represents the identity matrix, 
while .I = {1, 2, · · · , N} denotes the set of N integers. The entries of matrices are
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represented by utilizing . [·] with subscripts. Concretely, for any matrix . M, we use  
.[M]ij , .[M]i,:, and .[M]:,j to denote as its .(i, j)-th entry, i-th row, and j -th column, 
respectively. With an abuse of notation, for a matrix . M, diag.(M) represents a vector 
composed of the diagonal entries of . M, while for a vector . v, diag. (v) means a square 
diagonal matrix with the elements of . v on the main diagonal. .span(M) stands for 
the linear subspace spanned by the columns of . M. We use .X ∈ span(M) to indicate 
that each column of . X belongs to .span(M). .tr(M) is the trace of . M. The Euclidean 
inner product between two matrices is written as .〈M1,M2〉 = tr

(
MT

1 M2
)
, where 

.MT
1 is the transpose of . M1. 
Several matrix norms will be utilized. Specifically, the . �1, .�2,1 norms, Frobenius 

norm, and nuclear norm of a matrix . M are, respectively, defined as . ‖M‖1 =
∑

i,j |[M]ij |, .‖M‖2,1 = ∑
j ‖[M]:,j‖2, .‖M‖F =

√∑
i,j [M]2ij , and . ‖M‖∗ =

∑
i σi , where . σis are the singular values of the matrix . M. 

2.2 Problem Statement 

Let .{Sk}Kk=1 be K linear subspaces of . Rd . Denote . dk as the dimension of the 
subspace . Sk . Assume that . X0 is a matrix composed of N data samples drawn from 
a union of the K subspaces. Let . Ik and . Nk , respectively, denote the index set and 
the number of samples belonging to . Sk and .Ic

k = I − Ik . Then .{Ik}Kk=1 make up 

a partition of the set .I = {1, 2, · · · , N}, i.e., .I = ⋃K
k=1 Ik and .

⋂K
k=1 Ik = ∅. The  

observation data matrix . X can be expressed as 

.X = X0 + E0, (1) 

where . E0 stands for the noise term. It is worth pointing out that we do not make any 
predefined assumption of the distribution of the noise . E0. Given only the possibly 
noisy data matrix . X, the goal of subspace clustering is to accurately segment the data 
from . X into their underlying subspaces, or equivalently, find the accurate partition 
.{Ik}Kk=1 of .I = {1, 2, · · · , N}. 

3 Trajectory Clustering via Atomic Representation 

In this section, we present the unifying ARSC framework along with the algorithm 
and its popular special cases for subspace clustering.
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3.1 Atomic Representation 

First we introduce the definition of the atomic norm and some assumptions about 
the atomic representation. Let . A be an origin-symmetric (i.e., .a ∈ A if and only if 
(iff) .−a ∈ A) and possibly infinite set. The definition of atomic norm is introduced 
as follows. 

Definition 1 ([43]) Given the atomic set . A, the atomic norm of . x with respect to 
. A is defined as 

. ‖x‖A := inf
t>0

{t : x ∈ t · conv(A)} ,

where .conv(A) is the convex hull of the set . A. 

The dual norm of .‖·‖A is defined by .‖z‖∗
A = supa∈A〈z, a〉, which satisfies . 〈z, x〉 ≤

‖z‖∗
A‖x‖A according to the definitions of inner product and dual norm [44]. 
Now we introduce some common examples of the atomic norm, which have 

attracted massive attention recently in machine learning and signal processing 
[45, 46, 47]: 

• Sparsity-inducing norm: The sparsity-inducing atomic set can be written as 

. AS = {±Eij ∈ Rm×n, i = 1, 2, · · · ,m, j = 1, 2, · · · , n
}
,

where . Eij represents the matrix, of which the .(i, j)-th entry is 1 and the others 
are 0s. For any matrix .Z ∈ Rm×n, we have .‖Z‖AS

= ‖Z‖1. 
• Low-rankness-inducing norm: The low-rankness-inducing atomic set can be 
expressed as 

. AL = {
A ∈ Rm×n| rank(A) = 1, ‖A‖F = 1

}
.

For any matrix .Z ∈ Rm×n, there holds .‖Z‖AL
= ‖Z‖∗. 

• Group-sparsity-inducing norm: Consider a partition .{Gk}Kk=1 of . G =
{1, 2, · · · ,m}, i.e., .⋃K

k=1 Gk = G and .
⋂K

k=1 Gk = ∅. Denote . AGk
={

A ∈ Rm×n| ‖[A]Gk,:‖F = 1, [A]Gc
k,: = 0

}
. Here .[A]Gk,: represents the matrix 

composed of the rows of . A corresponding to the indexes in . Gk . Then the group-
sparsity-inducing atomic set [49] can be expressed as .AG = ⋃K

k=1AGk
. For 

any matrix .Z ∈ Rm×n, we have .‖Z‖AG
= ∑K

k=1 ‖[Z]Gk,:‖F , which encourages 
group sparsity as a penalty function. Note that when the partition of . G has only 
one element . G, the atomic norm .‖Z‖AG

equals to the Frobenius norm, which is 

defined as .‖Z‖F =
√∑m

i=1
∑n

i=1 Z2
ij , where . Zij denotes the entry of . Z in the 

i-th row and the j -th column. Thus Frobenius norm is an extreme case of the 
atomic norm .‖ · ‖AG

.
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With the atomic set defined, the atomic representation (AR) model can be 
formulated as follows: 

.min
Z

‖Z‖A, s.t. X0 = DZ, (2) 

where . D and . Z represent the dictionary and the coefficient matrix, respectively. 
Since the atomic norm is a general form of . �1 norm and the nuclear norm, the model 
in Eq. (2) generalizes sparse representation and LRR. 

3.2 Algorithm of ARSC 

In this section, we utilize the atomic representation to build the general ARSC 
framework along with the algorithm for subspace clustering. Many state-of-the-art 
spectral-clustering-based SC algorithms (e.g., SSC and LRR) can be regarded as 
specializations of ARSC with specific choices of the atomic set, loss function, and 
constraint. 

Algorithm 1 Algorithm of ARSC 
Input: The atomic setA, data matrix X, number K of subspaces and parameter λ. 
Output: Segmentation of the data. 

1: Obtain the representation matrix Z∗ by solving the AR optimization problem in Eq. (4) for  
clean data or (5) for noisy data. 

2: Construct the similarity matrix W = |Z∗| + |(Z∗)T | 
3: Apply a spectral clustering algorithm to the similarity matrix W and segment the data into K 

clusters. 

The first step is to learn an affinity matrix from the observation data using the 
atomic representation. When the given data are clean, i.e., .X = X0, the data samples 
are perfectly lying in the union of the K subspaces. In light of self-expressiveness 
property of the data [21], each data sample can be linearly represented by other 
samples in . X, namely, 

. [X]:,i = X[Z]:,i , [Z]ii = 0, i = 1, 2, · · · , N,

or equivalently, 

.X = XZ, diag(Z) = 0. (3) 

However, Eq. (3) may have infinitely many solutions when the number of points in a 
subspace exceeds the dimension of the subspace. Ideally, we expect that the solution 
. Z of Eq. (3) satisfies the following property: .[Z]ij 	= 0 only if the points .[X]:,i and
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.[X]:,j are in the same subspace. Such a solution is referred as a subspace sparse 
representation in [21]. To this end, SSC and LRR assume that the ideal solution 
is the sparsest and has the lowest rank, respectively. In this chapter, we adopt a 
more general assumption that the ideal solution has the minimal atomic norm with 
respect to (w.r.t.) a certain atomic set . A among all solutions of Eq. (3). Then the 
optimization program can be written as 

.min
Z

‖Z‖A, s.t. X = XZ, diag(Z) = 0. (4) 

In practice, the observation data may be corrupted by noise during data collection. 
Combining Eq. (1) and the assumption that . X0 satisfies the self-expressiveness 
property, we have 

. X = XZ + E,

where .E = E0−E0Z. For noisy data, we consider the following stable ARSC model 
to approximately solve the subspace sparse representation: 

.min
Z

‖Z‖A s.t. L(X − XZ) ≤ ε, diag(Z) = 0, (5) 

where .L(·) represents the loss function and . ε is the error tolerance parameter. Using 
the method of Lagrangian multiplier, we can rewrite Eq. (5) in a regularization form 

.min
Z

‖Z‖A + λL(X − XZ) s.t. diag(Z) = 0, (6) 

where . λ denotes the regularization parameter. Thus the problems in Eqs. (5) and (6) 
are equivalent. After solving the affinity matrix . Z with Eqs. (4) or (5), we utilize 
the similarity matrix .W = |Z∗| + |(Z∗)T | to perform spectral clustering [32, 53] 
and segment the observation data. The entire algorithm of ARSC is summarized in 
Algorithm 1, which has been implemented in [48]. 

3.3 Related Works 

We now present a discussion about the relationship between the ARSC framework 
and related spectral-clustering-based methods. We show why these methods can be 
viewed as special cases of the proposed framework. 

SSC [3, 21] This method seeks the affinity matrix by solving the following sparse 
optimization problem: 

.min
Z

‖Z‖1 + λ‖X − XZ‖2F , s.t. diag(Z) = 0. (7)
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Table 1 Some examples of the ARSC framework 

Methods LSR [50] SSC0 [3] SSC1 [21] LRR [4] MSR [51] LRSSC [52] 

Loss function MSE MSE MSE.+�1 .�2,1 .�2,1 MSE 

Atomic sets .AG .AS .AS .AL . AS , .AL . AS , . AL

We denote the model (7) as SSC0. It can be seen that SSC0 belongs to the ARSC 
framework by choosing .L(E) = ‖E‖2F and .A = AS . By explicitly considering the 
sparse outlying entries and random noise, the model (7) can be modified as 

.
min
Z

‖Z‖1 + λ1‖E1‖1 + λ2‖E2‖2F ,

s.t. X = XZ + E1 + E2, diag(Z) = 0.
(8) 

The model (8) is denoted by SSC1 for simplicity. In essence, SSC1 divides the noise 
term .E = X − XZ into two terms . E1 and . E2 and enforces different loss functions, 
respectively. 

LRR [4, 22] As another example of ARSC, LRR utilizes the .�2,1 norm as loss 
function and the atomic set . AL

.min
Z

‖Z‖∗ + λ‖X − XZ‖2,1. (9) 

For LRR, the constraint .diag(Z) = 0 is optional, because the minimization of the 
nuclear norm tends to avoid the trivial solution . I [4]. To remove the possible outlier 
samples in the given data, LRR also applies a heuristic post-processing step [22]. 
To distinguish one from another, we denote the LRR method without and with the 
post-processing step by LRR0 and LRR1, respectively. 

LSR [50] and MSR [51] The LSR method adopts the loss function . L(E) = ‖E‖2F
and the atomic set .AG with . I itself as the partition. The MSR method uses the 
.�2,1 norm as loss function and a combination of . AS and . AL. Table 1 shows some 
previous works, including SSC, LRR, and LSR, as special cases of the proposed 
framework. 

4 Minimum Error Entropy-Based Trajectory Clustering 
Analysis 

This section is structured as follows. We first introduce the concept and background 
of minimum error entropy. Then we introduce a MEE-based sparse subspace 
clustering (MEESSC) method along with the optimization algorithm [31].
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4.1 Minimum Error Entropy 

Suppose that E is a scalar random variable with probability density function (pdf) 
.pE(e). Shannon’s entropy [54] of  E is defined by 

.HS(E) = E[− logpE(e)] = −
∫

pE(e) logpE(e)de, (10) 

while Renyi’s entropy [55] of order-. α (.α > 0 but .α 	= 1) is defined as 

.Hα(E) = 1

1 − α
logE[pα−1

E (e)] = 1

1 − α
log

(∫
(pE(e))α de

)
, (11) 

where . E denotes the mathematical expectation. Since in reality the pdf of E is 
often unknown, the entropy of E cannot be directly computed. Nonetheless, if some 
samples .{ei}di=1 of E are available, we can utilize the Parzen window method [56] 
to estimate the pdf of E as follows: 

.p̂E(e) = 1

d

d∑

i=1

gσ (e − ei), (12) 

where .gσ (x) := exp
(
− x2

2σ 2

)
represents the Gaussian kernel function and . σ is the 

kernel size. Denote the vector .e = [e1, e2, · · · , ed ] ∈ Rd . Substituting .p̂E(e) into 
Eq. (11) and setting .α = 2 give the following nonparametric estimator of Renyi’s 
entropy of order 2 

.Ĥ2(E) = − log
∫ (

1

d

d∑

i=1

gσ (e − ei)

)2

de = − logV (e). (13) 

Here .V (e) is called the information potential (IP) [57], which can be explicitly 
formulated as 

.V (e) = 1

d2

d∑

i=1

d∑

j=1

g√
2σ (ei − ej ). (14) 

The last equation in (13) uses the fact that the integral of a product of two 
same Gaussian kernels is another Gaussian kernel with twice the variance (i.e., 
. σ 2) [57]. For ease of presentation, we use . σ to replace .

√
2σ hereinafter. Denote 

.φ(e) := ∑
i,j

(
1 − gσ (ei − ej )

)
. Then the minimization of .Ĥ2(E) is equivalent to 

the minimization of .φ(e). 
The MEE criterion aims at finding a decent estimation of the unknown original 

signal by minimizing the entropy of the error random variable .E = X − Y , where
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X and Y are the observation signal and the estimation, respectively. An appealing 
advantage of MEE over MSE is that the optimality criterion is agnostic to the error 
distribution. Thus, MEE can well deal with both Gaussian and non-Gaussian noise, 
while MSE relies on the Gaussianity assumption of the error distribution and is 
sensitive to non-Gaussian noise. In addition, sinceMSE simply constrains the square 
difference between X and Y , it only considers the second moment of the error pdf. 
In contrast, when the error entropy is minimized, all moments of the error pdf are 
constrained [57]. Therefore, MEE extends MSE as an optimality criterion. This 
gives rise to the success of MEE in signal processing [57] and feature selection 
[58]. 

4.2 MEESSC 

By following the ARSC framework, we specify the loss function . L(X) = Φ(X) =:∑N
i=1 φ

([X]:,i
)
and the atomic set .A = AS . Then we have the following 

optimization program: 

.min
Z

‖Z‖1 + λΦ(X − XZ), s.t. diag(Z) = 0. (15) 

The problem can be solved by optimizing over each column .[Z]:,i of the matrix . Z
individually 

. min
[Z]:,i

‖[Z]:,i‖1 + λφ
([X]:,i − X[Z]:,i

)
, s.t. [Z]ii = 0. (16) 

This can be tackled by first solving the following problem: 

. min
z∈RN−1

‖z‖1 + λφ
(
[X]:,i − X\:,iz

)
, (17) 

where .X\:,i represents the submatrix of . X without the i-th column. Then we set 
.[Z]:,i = [z1, · · · , zi−1, 0, zi+1, · · · , zN−1]T , where .z = [z1, z2, · · · , zN−1]. Thus 
the problem in Eq. (15) can be transformed into N subproblems in the same form 

. min
z∈RN−1

φ(x − Dz) + γ ‖z‖1, (18) 

where .γ = 1/λ and .x = [x1, x2, · · · , xd ]T . Denote .x̃ = [x̃1, x̃2, · · · , x̃d2 ] and . D̃
such that .x̃h = xi −xj and .[D̃]h,: = [D]i,:−[D]j,:, where .h = (i−1)d+j for . i, j =
1, 2, · · · , d. Then we can rewrite .φ(x − Dz) = ∑d2

h=1

(
1 − gσ

(
x̃h − [D̃]h,:z

))
. In  

light of the half-quadratic method [60], there exists some function . ψ such that the 
problem in Eq. (18) is equivalent to the following problem:
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.min
z,p

J (z,p) =
∑

h

(
ph

(
x̃h − [D̃]h,:z

)2 + ψ(ph)

)
+ γ ‖z‖1, (19) 

where .p = [p1, p2, · · · , pd2 ] is a vector of auxiliary variables. A local minimizer of 
the problem (19) can be obtained by alternatively updating . p, . z, and . σ . Specifically, 
at the t-th iteration for fixed . p, the problem (19) reduces to 

. z(t+1) = arg min
z∈RN−1

∥∥
∥∥

√
diag(p(t))x̃ −

√
diag(p(t))D̃z

∥∥
∥∥

2

2
+ γ ‖z‖1,

which can be effectively tackled using the feature-sign search (FSS) algorithm [59]. 
Denote the error vector .e = x̃ − D̃z(t+1) with . ei as the i-th entry of . e. Then we 
calculate the kernel size 

. σ =
(∥∥∥x̃ − D̃z(t+1)

∥∥∥
2

2
/2d2

) 1
2

and update the auxiliary vector . p by 

. p
(t+1)
h = 1

σ 2 gσ (ei), h = 1, 2, · · · , d2,

where .p(t+1)
h stands for the h-th entry of .p(t+1). Algorithm 2 summarizes the com-

plete procedure to solve the problem (19), which has been implemented in [48]. Ac-
cording to the half-quadratic theory [60], the sequence . 

{
J

(
z(t),p(t)

)
, t = 1, 2, · · · }

generated by Algorithm 2 converges. 
Note that the MEESSC method and the SSC method mainly differ in the loss 

functions and the subsequent sparse optimization models to solve the affinity matrix. 
The sparse optimization problems of SSC and MEESSC can be written in a unified 
form as follows: 

.min
z
L(x − Dz) + γ ‖z‖1, (20) 

where .L(·) is a general differentiable loss function. Then we have the following 
proposition to give the optimality conditions of the problem (20). . z∗ is the 
solution of the problem (20) if and only if (i) .sup1≤i≤n

∣∣〈θ(z∗), [D]:,i
〉∣∣ ≤ γ , (ii) 

.〈θ(z∗),Dz∗〉 = γ ‖z∗‖1, where .θ(z∗) = − ∂L(x−y)

∂y |y=Dz∗ . Since the loss function 
.L(·) is general, Proposition 4.2 generalizes the existing results about the optimality 
conditions of the MSE-based . �1 minimization problem (also known as lasso ) in the 
literature [61].
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Algorithm 2 Solving (19) via half-quadratic method 

Input: x̃, D̃, and parameter γ . 
Output: z ∈ RN−1. 
Initialization: p(0) = [1, 1, · · ·  , 1]T ∈ Rd2 and t = 0. 
Repeat until convergence: 

1: y(t) = √
diag(p(t))x̃ and A(t) = √

diag(p(t))D̃. 
2: Solving the following �1 minimization problem using the feature-sign search (FSS) algorithm 

[59] 

z(t+1) = arg min 
z∈RN−1

∥
∥∥y(t) − A(t)z

∥
∥∥
2 

2 
+ γ ‖z‖1. 

3: Compute e = x̃ − D̃z(t+1). 

4: Calculate the kernel size σ = (‖e‖2 2/2d2
) 1 
2 . 

5: Update the auxiliary vector p 

p (t+1) 
h = 

1 

σ 2 gσ (ei), h = 1, 2, · · ·  , d2. 

5 Experiments 

This section aims at evaluating the performance of the MEESSC method for 
two real-world subspace clustering problems, i.e., motion segmentation and face 
clustering. 

5.1 Experimental Settings 

To begin with, we introduce the implementation details of the experiments, includ-
ing the used datasets, and competing methods and their parameter settings. 

For the motion segmentation problem, we utilize the popular Hopkins 155 
database [63]. For the face clustering problem, we consider the Extended Yale B 
dataset [64] and the CMU PIE dataset [65]. The description of these datasets is as 
follows: 

1. Hopkins 155 Database [63]: This database consists of 156 video sequences along 
with the features extracted and tracked in all the frames. Each video sequence has 
almost 30 frames and 2 or 3 motions (corresponding to 2 or 3 low-dimensional 
subspaces). This dataset is publicly available on the website: http://www.vision. 
jhu.edu/data/hopkins155/. 

2. Extended Yale B Database [64]: It contains 38 subjects and 64 frontal-face 
images per subject under varying illumination. Each cropped facial image has

http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
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.192 × 168 pixels. This dataset is publicly available on the website: http://vision. 
ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html. 

3. CMU PIE Database [65]: This database contains 68 subjects. For each subject, 
facial images are taken with varying poses, illumination, and expressions. We 
utilize a subset containing the near frontal facial images of pose C05. In this 
subset, there are 49 images for each subject. The images are resized to have 
.32 × 32 pixels. This dataset is publicly available on the website: 
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html. 

For comparison purposes, we consider several state-of-the-art subspace clus-
tering algorithms, including SIM (shape interaction matrix) [2], LSA [38], SSC0 
[3], SSC1 [21], LRR0 [4], LRR1 [22], and LSR [50]. For each algorithm, we use 
the codes provided by the corresponding authors. The parameter settings of these 
algorithms are specified as below. For SIM, we use .r = 4K as the estimate of 
the rank of . X0 for motion segmentation, while .r = 9K for face clustering. Here 
K is the number of subspaces. For LSA, we use .n = 8 nearest neighbors and 
.d = 4 dimension for motion segmentation, while .n = 7 and .d = 5 for face 
clustering. For SSC0 and SSC1, we use the code implemented in an alternating 
direction method of multipliers (ADMM) framework for efficiency. Specifically, for 
SSC0, we set the regularization parameter .λ = 800/μz for motion segmentation and 
.λ = 20/μz for face clustering, where .μz := mini maxj 	=i |xT

i xi | [21]. Analogously, 
for SSC1, we choose .λ1 = 0 and .λ2 = 800/μz with the affine constraint . 1T Z = 1
(.1 ∈ RN denotes the vector whose entries are 1s.) for motion segmentation, while 
.λ1 = 20/μe and .λ2 = 0 for face clustering as [21]. Here .μe := mini maxj 	=i ‖xj‖1. 
Thus, for the motion segmentation problem, the difference between SSC0 and SSC1 
is that SSC1 uses the affine constraint, while SSC0 does not. For the face clustering 
problem, SSC0 uses .‖ · ‖2F as the loss function and SSC1 uses .‖ · ‖1. For LRR0 
and LRR1, we set .λ = 4 for motion segmentation and .λ = 0.18 for face clustering 
according to [22]. For LSR, we choose .λ = 4.6 × 10−3 for motion segmentation 
and .λ = 0.4 for face clustering [50]. For MEESSC, we use the fixed parameter 
.γ = 0.001 for all experiments. 

5.2 Motion Segmentation 

In this section, we evaluate the performance of MEESSC and competing methods 
on the motion segmentation problem. Given the feature points on multiple rigidly 
moving objects tracked in multiple frames of a video, the motion segmentation 
aims to separate the feature points according to their underlying objects. We use the 
Hopkins 155 dataset for this test. Figure 1 shows several sample images from some 
sequences with tracked feature points superimposed in this database. The feature 
points from one subject are marked with the same color. Each video sequence in 
this dataset is a sole data matrix, and thus there are 156 subspace clustering tasks
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Fig. 1 Sample images from some sequences in the Hopkins 155 dataset with tracked feature points 
superimposed 

Table 2 Clustering error (%) of different algorithms on the 156 sequences of the Hopkins 155 
database with the 2F -dimensional data samples and 4K-dimensional samples obtained by PCA 
(principal components analysis). Best results are marked bold 

Data dimension Methods SIM LSA SSC0 SSC1 LRR0 LRR1 LSR MEESSC 

2F Mean 7.10 4.58 7.09 2.23 5.53 2.78 4.01 1.73 
Median 1.37 0.57 0.21 0.00 0.78 0.00 0.53 0.00 
Std 11.83 9.99 12.76 7.26 9.86 6.87 8.30 6.48 

4K Mean 7.10 4.58 7.17 2.47 5.98 3.65 4.35 1.90 
Median 1.37 0.57 0.21 0.00 0.78 0.21 0.36 0.00 
Std 11.85 9.99 12.88 7.50 10.78 9.16 8.56 6.71 

in total. The dimension of each data sample is 2F , where F denotes the number of 
frames in the current sequence. 

We first apply different subspace clustering methods to the original 2F -
dimensional data. To make the results more convincing, we also project the 
data points of each video sequence into 4K dimension using PCA and perform 
subspace clustering with various methods. Here, K is the number of motions in 
each sequence. We use 4K dimension because the rank of each subspace is at 
most 4 [22]. The clustering results are shown in Table 2. From the results, we give 
the following conclusions. First, as a whole, the clustering error of each method 
increases when the data dimension decreases due to the loss of energy. Second, 
in both cases, MEESSC outperforms competing methods, having small mean 
clustering error and standard deviation. 

5.3 Face Clustering 

In this section, we validate the performance of MEESSC and competing methods for 
the face clustering problem. Given multiple facial images of multiple subjects, the
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goal of face clustering is to separate the facial images according to their underlying 
subjects. The Extended Yale B database and the CMU PIE database are used to 
conduct the experiments. First, we apply distinct subspace clustering algorithms on 
the original face database. Then, to test the robustness of the algorithms, we increase 
the clustering difficulty by adding random noise to the facial images. Specifically, 
we consider random contiguous occlusion and random missing entries. 

5.3.1 Face Clustering Using Extended Yale B Database 

In this subsection, we aim to verify the performance of the clustering algorithms 
above on the original Extended Yale B database without corruption and pre-
processing. For efficiency, we downsample the images to .32 × 32 pixels. We treat 
each column-stacked vectorized facial image as a data point with 1024 dimensions. 
In order to study the effect of number of subjects in the final clustering performance, 
we apply the clustering algorithms on the first 2, 4, 6, 8, and 10 subjects of the 
dataset. 

Table 3 reports the clustering error of distinct clustering methods. Denote by . Ẑ
and . ̂zi the representation matrix computed by MEESSC and the i-th column of . Ẑ. 
We treat .Xẑi as the recovered result of the i-th data sample. Figure 2 shows two 
representative recovered images by MEESSC in the Extended Yale B database. For 
the recovery experiment, we use the facial images with .96 × 84 pixels for decent 
visual quality. From the results, we have the following conclusions: 

• First, in general, when the number of subjects increases, each included cluster-
ing method has larger clustering error. This comes from the fact that it is more 
difficult to learn more subspaces simultaneously from noisy data. 

• Second, the clustering error of MEESSC is low under a varying number of 
subjects. This suggests that MEESSC can well treat the corrupted data in face 
clustering. The reason may be attributed to that MEESSC can adaptively select 
the facial images lying in the same subspace of the original corrupted image to 
well reconstruct it, as shown in Fig. 2. 

• Third, SSC1 can greatly enhance SSC0 when the number of subjects exceeds 
2. This implies that . �1 norm is a better choice than .‖ · ‖2F as a loss function for 
SSC to cluster noisy facial images in the Extended Yale B database. 

Table 3 Clustering error (%) of different algorithms on the Extended Yale B dataset. Best results 
are marked bold 

Methods SIM LSA SSC0 SSC1 LRR0 LRR1 LSR MEESSC 

2 Subjects 7.03 17.19 0.78 0.78 2.34 2.34 3.91 0.00 
4 Subjects 10.55 56.64 17.19 1.17 16.41 7.81 4.69 0.39 
6 Subjects 9.90 54.17 16.41 4.95 32.29 5.47 8.07 1.56 
8 Subjects 28.32 59.18 47.66 7.62 30.86 12.11 12.89 4.49 
10 Subjects 35.94 69.22 47.19 9.22 37.03 24.84 27.34 8.44
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Fig. 2 Recovered results of two facial images by MEESSC in the Extended Yale B database. In 
each subfigure, images from left to right are the original image, the recovered image by MEESSC, 
and the difference between the original and recovered images 

Fig. 3 Top row: some sample facial images with 25% occlusion by an unrelated monkey image 
from the Extended Yale B database; bottom row: some sample facial images with 20% missing 
entries in each image from the CMU PIE data set 

5.3.2 Face Clustering with Contiguous Occlusion 

In this subsection, we evaluate the clustering performance of MEESSC on the 
Extended Yale B database in the presence of contiguous occlusion. Concretely, for 
each test image, we simulate the contiguous occlusion by replacing a randomly 
selected region of it with an unrelated monkey image. Figure 3 shows some facial 
images of a subject with 25% occlusions from the Extended Yale B database. We 
apply various clustering algorithms on the facial images of the first 2, 4, 6, 8, and 
10 subjects in this database. In each test, 80% of the images of each subject are 
corrupted with the contiguous occlusion above. 

Figure 4 shows the clustering accuracy of each method as a function of the 
number of subjects on the Extended Yale B database, averaged over 10 random 
runs. To make it more convincing, we also compute the mean, median, minimum 
and maximum clustering accuracy of each method over 10 random runs with a 
distinct number of subjects. Table 4 reports the detailed clustering results. As shown 
in Table 4, MEESSC achieves the highest clustering accuracy in most cases. We 
conduct another experiment to analyze the impact of the percent of images with 
occlusion on the clustering performance of each method. Let . p1 be the percent of 
images with occlusion in the experiment. Specifically, we fix the number of subjects 
.K = 2 and vary . p1 from 0 to 80%. Figure 5 shows the clustering results. As it
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Fig. 4 Average clustering 
accuracy of different methods 
as a function of the number of 
subjects using ten-run test on 
the Extended Yale B database 
with 80% of images corrupted 
by contiguous occlusion 
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Table 4 Clustering accuracy of different algorithms on the Extended Yale B database with 25% 
random contiguous occlusion. Best results are marked bold 

Methods SIM LSA SSC0 SSC1 LRR0 LRR1 LSR MEESSC 

2 Subjects Mean 0.52 0.59 0.64 0.81 0.76 0.70 0.77 0.86 
Median 0.51 0.59 0.63 0.81 0.77 0.71 0.78 0.87 
Min 0.50 0.52 0.58 0.76 0.74 0.55 0.71 0.84 
Max 0.57 0.67 0.69 0.87 0.79 0.78 0.83 0.90 

4 Subjects Mean 0.29 0.33 0.33 0.47 0.43 0.40 0.46 0.65 
Median 0.29 0.33 0.33 0.46 0.42 0.39 0.46 0.64 
Min 0.28 0.30 0.30 0.42 0.39 0.36 0.37 0.55 
Max 0.30 0.37 0.35 0.61 0.53 0.47 0.60 0.78 

6 Subjects Mean 0.22 0.24 0.23 0.40 0.38 0.31 0.44 0.47 
Median 0.22 0.24 0.23 0.39 0.37 0.32 0.45 0.47 
Min 0.20 0.22 0.22 0.35 0.32 0.26 0.36 0.36 
Max 0.24 0.25 0.25 0.48 0.45 0.36 0.49 0.58 

8 Subjects Mean 0.18 0.19 0.19 0.30 0.31 0.24 0.36 0.40 
Median 0.17 0.20 0.19 0.29 0.31 0.23 0.36 0.41 
Min 0.17 0.18 0.18 0.25 0.29 0.22 0.33 0.33 
Max 0.19 0.21 0.20 0.36 0.33 0.29 0.39 0.44 

10 Subjects Mean 0.15 0.16 0.16 0.26 0.26 0.21 0.31 0.31 
Median 0.15 0.16 0.16 0.26 0.25 0.21 0.32 0.30 

Min 0.14 0.15 0.15 0.23 0.23 0.19 0.27 0.27 
Max 0.17 0.18 0.17 0.34 0.30 0.24 0.36 0.35 

is evident, the results demonstrate the effectiveness and robustness of MEESSC in 
coping with the face clustering problem with contiguous occlusion. Note that LRR1 
performs worse than LRR0 with lower clustering accuracy in most cases. Recall 
that the difference between LRR0 and LRR1 is that LRR1 uses the heuristic post-
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Fig. 5 Average clustering 
accuracy of different methods 
as a function of the percent of 
images with contiguous 
occlusion using ten-run test 
on the Extended Yale B 
database when . K = 2
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processing step, while LRR0 does not. This suggests that the post-processing ste
is not robust against the contiguous occlusion. 

p 

5.3.3 Face Clustering with Missing Entries 

This subsection aims at testing the clustering performance of MEESSC on the CMU 
PIE database with random missing entries. Specifically, we randomly select some 
pixels of a facial image and replace them with zeros. Figure 3 shows some facial 
images with 20% missing entries from the CMU PIE database. Analogously, we 
apply different clustering algorithms on the facial images of the first 2, 4, 6, 8, and 
10 subjects of this database. In each test, 20% pixels of each considered image are 
randomly selected and replaced with zeros. 

Table 5 shows the clustering results of distinct methods under a varying number 
of subjects using ten-run test on the CMU PIE database with randommissing entries. 
As shown in Table 5, MEESSC outperforms other competing methods in most cases. 
Specifically, with 20% random missing entries and .K = 2, MEESSC achieves 98% 
average clustering accuracy, while the average accuracy of all other methods is less 
than 85%. 

6 Conclusions 

In this chapter, we have introduced the recent development of trajectory clustering 
analysis. A number of subspace-based trajectory data clustering methods have 
been briefly reviewed. First, we introduced a general framework called ARSC 
for trajectory data clustering based on atomic representation. Many state-of-the-
art trajectory data clustering methods can be regarded as the specializations of 
ARSC with specific choices of the atomic set, loss function, and constraint. Second, 
by using ARSC as a general platform, we have also introduced a minimum
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Table 5 Clustering accuracy of different algorithms on the CMU PIE dataset with 20% random 
missing entries of each image. Best results are marked bold 

Methods SIM LSA SSC0 SSC1 LRR0 LRR1 LSR MEESSC 

2 Subjects Mean 0.54 0.52 0.60 0.76 0.82 0.83 0.53 0.98 
Median 0.54 0.52 0.58 0.79 0.82 0.83 0.53 0.99 
Min 0.50 0.50 0.53 0.50 0.81 0.81 0.50 0.96 
Max 0.59 0.55 0.73 0.81 0.83 0.85 0.57 1.00 

4 Subjects Mean 0.30 0.34 0.35 0.56 0.59 0.58 0.34 0.68 
Median 0.29 0.33 0.36 0.57 0.59 0.58 0.34 0.65 
Min 0.28 0.31 0.33 0.53 0.58 0.56 0.31 0.58 
Max 0.35 0.37 0.37 0.58 0.63 0.60 0.38 0.89 

6 Subjects Mean 0.24 0.25 0.31 0.54 0.48 0.49 0.32 0.60 
Median 0.24 0.25 0.30 0.54 0.48 0.48 0.32 0.59 
Min 0.23 0.22 0.26 0.50 0.41 0.47 0.29 0.50 
Max 0.25 0.29 0.36 0.58 0.52 0.53 0.34 0.77 

8 Subjects Mean 0.19 0.22 0.30 0.44 0.42 0.43 0.27 0.57 
Median 0.19 0.22 0.30 0.44 0.42 0.42 0.27 0.57 
Min 0.18 0.20 0.28 0.38 0.36 0.41 0.25 0.48 
Max 0.20 0.25 0.34 0.54 0.45 0.49 0.30 0.75 

10 Subjects Mean 0.16 0.24 0.33 0.42 0.45 0.43 0.26 0.53 
Median 0.16 0.24 0.33 0.43 0.46 0.43 0.26 0.53 
Min 0.14 0.21 0.29 0.36 0.39 0.40 0.23 0.45 
Max 0.18 0.29 0.36 0.48 0.48 0.45 0.29 0.62 

error entropy-based trajectory data clustering method referred as MEESSC. This 
is motivated by the sensitivity of MSE-based subspace clustering methods to 
non-Gaussian noise. Then we conducted comparison experiments for the real-
world trajectory data clustering problems such as motion segmentation. The results 
validate the efficacy and robustness of MEESSC for trajectory data clustering. 
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Clustering High-Dimensional Data 

Michael E. Houle, Marie Kiermeier, and Arthur Zimek 

1 Introduction 

“Cluster analysis is the formal study of algorithms and methods for grouping, or 
classifying, objects.” This definition of cluster analysis was formulated more than 
30 years ago by Jain and Dubes in their classic textbook [47]. Since then, cluster 
analysis has become more and more challenging and specialized. In particular, the 
trend to collect more and more data without knowing beforehand what exactly to 
look for in the mass of information leads often not only to larger data sets, but 
also to increase in the size of the underlying attribute set. Growth in the number 
of attributes, or data dimensionality, is generally associated with an increase in 
noise—attributes that are meaningless for or even detrimental to the data analysis 
task at hand. As the number of attributes rises, complex and previously unknown 
relationships among data (such as correlations) also tend to emerge. 

The analysis of high-dimensional data requires special algorithms and methods 
for clustering. Such algorithms do not seek clusters in the full-dimensional space, 
but within subspaces. In general, this cannot be equivalently solved through dimen-
sionality reduction or feature selection followed by standard clustering algorithms, 
since the initial feature selection may eliminate certain subspaces that are relevant 
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Fig. 1 Axis-parallel subspace clustering vs. arbitrarily oriented subspace clustering 

to important clusters. At a high level, the task could therefore be described as 
that of identifying subsets of data points and a corresponding subspace for each, 
such that the data subset forms a cluster within its subspace. Figure 1 illustrates 
how data points forming a hyperplane in the data space could cluster densely 
if projected orthogonally onto a hyperplane. We also see here that we have two 
fundamental categories of cluster subspaces, namely axis-parallel or arbitrarily 
oriented, depending on the relationship of the subspace with the underlying 
coordinate system. These two categories come with different challenges: 

1. Axis-Parallel Subspace Clustering: 
Since the number of potential subspaces determined by a set of attributes 
increases exponentially with the number of attributes (the dimension of the data 
set), it is not efficient to examine every possible subspace for clusters. For this 
reason, clustering algorithms within this category use heuristic search strategies 
to identify suitable axis-parallel subspaces. Essentially, the task reduces to that 
of distinguishing irrelevant attributes from those relevant to the formation of 
the cluster subspace. For example, if the projection of data points on a given axis 
has low variance (that is, the points are dense after projection), the attribute is 
considered to be relevant for clustering. Attributes are irrelevant if the projection 
of the data points on these axes exhibits high variance. 
It should be noted, however, that relevance or irrelevance of an attribute is 
not necessarily a global property, but often a local property in that it could be 
relevant for some cluster and irrelevant for others. 

2. Arbitrarily oriented Subspace Clustering: 
When generalizing the idea of subspace clustering to include the identification 
of arbitrarily oriented cluster subspaces, the number of potential subspaces 
becomes infinite. Instead of determining the relevance of the uncountably 
many subspaces, clustering algorithms explicitly seek data subsets forming 
clusters after projection to some arbitrarily oriented hyperplane. Since such data 
subsets must be linearly correlated in the direction of the normal vector to the
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hyperplane, the problem of arbitrarily oriented subspace clustering is equivalent 
to that of finding linearly correlated data subsets. Accordingly, this category of 
clustering is also called correlation clustering, and the resulting clusters are 
referred to as correlation clusters1 and can be described by quantitative models 
capturing the potentially complex linear correlations [2]. 

In the remainder of this chapter, we survey the basic algorithmic strategies, 
principles, and techniques used by algorithms of these two categories, axis-parallel 
subspace clustering (Sect. 2) and arbitrarily oriented subspace clustering (Sect. 3). 
We conclude with a summary, recommendations for further reading, and a short 
discussion of future research directions (Sect. 4). 

2 Axis-Parallel Subspace Clustering 

For axis-parallel subspace clustering, we distinguish high-level subspace search 
strategies and cluster criteria. 

2.1 Subspace Search Strategy 

When restricting the clustering problem to axis-parallel subspaces, there are two 
fundamental search strategies for identifying relevant attribute subsets: bottom-up 
vs. top-down. 

In top-down search, data clusters are precomputed with respect to the full 
attribute sets, from which irrelevant attributes are iteratively removed. A common 
alternative to data cluster precomputation is to use data subsets determined by local 
regions (such as neighborhoods) within the full-dimensional data domain. Examples 
of top-down axis-parallel subspace clustering methods are PROCLUS [11], FINDIT 
[74], SSPC [75], and PreDeCon [26], each of which adopts different clustering 
criteria for the search for appropriate subspaces. Many soft projected clustering 
methods [31, 36, 46, 48, 25, 32, 61] are variants of k-means or EM-type clustering. 

In bottom-up search, individual attributes are tested for their potential relevance, 
yielding candidates for relevant subsets consisting of a single attribute. Thereafter, 
larger relevant candidate subsets are generated by combining smaller candidate 
subsets and testing them for relevance. To manage combinatorial explosion, the 
bottom-up search strategy typically relies on a heuristic from the Apriori algorithm 
[14] to exclude irrelevant attribute combinations. The Apriori heuristic relies on 
a frequency criterion that satisfies an inclusion property whereby combinations 
that fail to satisfy the criterion are guaranteed not to be subsets of any larger

1 This should not be confused with the different meaning of “correlation clustering” as introduced 
by Bansal et al. [21]. 
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combinations that do satisfy the criterion. We can conclude that, if there are no 
dense accumulations of points in some attribute combination (or within some region 
with respect to that combination), this combination of attributes cannot be part 
of a subspace within which a dense cluster can reside. With bottom-up search, 
management of the interaction of cluster criterion and subspace search is generally 
more challenging than that with top-down search. 

2.2 Cluster Criteria 

Examples for top-down search have been mentioned above. The interaction between 
subspace search and cluster criterion is typically less complicated in top-down 
variants, but they typically assume that the full-dimensional neighborhood of a point 
or the full-dimensional proto-cluster is relevant enough to identify a subspace for the 
corresponding cluster. 

Different cluster criteria have been developed that allow the application of the 
Apriori principle in bottom-up clustering. 

In a grid-based strategy, the idea is to discretize the data space into equal-sized 
grid cells and to characterize them by the number of points they contain, which is 
effectively a local density estimate. Clusters and corresponding subspaces are then 
found by merging dense grid cells. A visualization is presented in Fig. 2. 

The figure also illustrates how Apriori-style search is adapted for axis-aligned 
subspace cluster determination: .(n+ 1)-dimensional intersections of n-dimensional 
dense grid cells are considered as dense cluster candidates but are pruned if they do 

dense grid cells candidates for 
dense grid cells dense 2-dim grid cells 

Fig. 2 Using subspace grids for finding subspace clusters: (left) 1-D dense grid cells are identified, 
and neighboring dense cells are merged to form 1-D clusters; (right) the intersections of 1-D dense 
grid cells are tested against density criteria after intersection in the combined 2-D subspace—those 
that satisfy the criterion (e.g., minimum density of 3 points per unit) can be merged to form 2-D 
clusters, and possibly joined with dense grid cells in adjacent subspaces
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not meet the density criterion. Intersections involving an n-dimensional grid cell that 
does not satisfy the density criterion cannot in turn satisfy the .(n + 1)-dimensional 
density criterion and are not checked and typically not even instantiated. Candidates 
(i.e., .(n + 1)-dimensional grid cells) that qualify as dense are possibly merged with 
neighboring grid cells to form a cluster in that subspace. Also they are joined with 
intersecting dense grid cells from other .(n + 1)-dimensional subspaces that have n 
attributes in common to form candidates for the corresponding .(n + 2)-dimensional 
superspace of both .(n + 1)-dimensional subspaces. 

Various algorithms implement this Apriori-style search heuristic or variants 
thereof. The seminal method was CLIQUE [15], with well-known variants including 
ENCLUS [29], MAFIA [66], XProj [13], EDSC [18], and INSCY [19]. 

One main difficulty in applying Apriori-style methods in subspace clustering is 
the selection of an effective grid resolution. Given an interval of data values . [a, b]
within which n data points reside, scale heuristics such as Sturges’ rule can be used 
to determine the number of equal-width grid cells into which to divide the interval 
. ̂k, as well as the bandwidth of these cells h [70]: 

. ̂k = 1 + log2(n)

h = b − a

k
.

However, such partition heuristics do not guarantee that the resulting clusters are 
approximated accurately by the (merged) cells. In addition, a density threshold is 
required to identify dense cells. Even if the inadequacy of a global density threshold 
can be resolved using adaptive density thresholds, such approaches would entail an 
increase in the computational cost. Another weak point of the use of grid cells is 
their computational inefficiency, particularly for very sparse data sets or data sets 
of high dimensionality, where they tend to produce very large numbers of regions 
containing very few points (or more commonly, no points at all). 

Density-based clustering methods [28] avoid the problems of discretization by 
assessing the density around each point with respect to subspaces of interest, 
provided that the criterion satisfies an Apriori-style inclusion property. Consider 
the simple illustration in Fig. 3. In this example, the density at a given point is 
assessed according to the number of neighboring points within a fixed radius, 
indicated by circles in the combined space of attributes A1 and A2. Clusters are 
determined by successively aggregating points that contain each other in their 
respective neighborhoods. In the left-hand figure, the cluster in the combined space 
in each attribute remains intact even after projection to A1 or A2, assuming that 
the same radius bound is used for the density criterion in the projection space 
(A1 or A2). In the right-hand figure, the points form a cluster with respect to A1; 
however, with respect to A2, the point with greatest value of A2 does not belong 
to the density-based cluster in this attribute. This point therefore cannot belong to 
a density-based cluster (using the same thresholds or criteria) in any superspace 
of A2 regardless of its participation in clusters in other spaces (such as A1 or its
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Fig. 3 Using density-based concepts for finding subspace clusters: (left) points forming a density-
based cluster in the combination of attributes A1 and A2 would also form density-based clusters 
in each attribute individually when using the same density threshold; (right) even though the right-
most point belongs to the density-based cluster in A1, it does not belong to the density-based 
cluster in the space formed by A1 and A2 due to the gap in its A2 value relative to the other points 

superspaces). As a consequence, if there is no density-based cluster at all with 
respect to some subspace (a combination of attributes), all of its superspaces can 
be ruled out for further search. 

Examples of subspace clustering methods using density-based criteria include 
SUBCLU [50] and DUSC [17]. 

Finally, the Apriori principle (or related search strategies) can also be used in 
connection with variance in local neighborhoods. Examples for such approaches 
include CFPC [76], HiCS [1], and DiSH [4]. 

3 Arbitrarily Oriented Subspace Clustering 

The techniques used for axis-parallel subspace clustering are generally straightfor-
ward, with only minor differences among them in their various implementations. 
In contrast, the techniques used for the more challenging problem of arbitrarily 
oriented subspace search are considerably more diverse, although some have seen 
only limited use. 

3.1 Principal Component Analysis (PCA) 

The idea of principal component analysis (PCA) is to describe the structure of a set 
of data points with respect to a transformation to a new coordinate system, where
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the basis vectors, the principal components (PCs), are ordered according to the 
amount of variance in the data with respect to their directions [49]. Given a vector 
.x = (x1, x2, . . . , xp)ᵀ of p random variables, the first PC . z1 is a vector . α1 =
(α11, α12, . . . , α1p)ᵀ of p constants such that the following linear combinations 
have maximum variance when taken over the data set: 

. z1 = (α1)
ᵀx = α11x1 + α12x2 + · · · + α1pxp =

p
∑

j=1

α1j xj .

The second PC . z2 is the linear function .(α2)
ᵀx with maximum variance over all 

possibilities that are orthogonal to . α1—that is, such that .α2 · α1 = 0. Similarly, 
successive PCs of the form .zk = (αk)

ᵀx capture the maximum variance over all 
possibilities that are orthogonal to . αi , for all .1 ≤ i < k. 

The computation of the PCs is typically based on the covariance matrix . Σ of x. 
The k-th PC is thus given by .zk = α

ᵀ
k x, where . αk is the eigenvector of the k-th 

largest eigenvalue . λk of the covariance matrix . Σ . If .α1, α2, . . . , αp are normalized 
(.αk ∈ [0, 1] for .i = 1, 2, . . . , p), the eigenvalue . λk is precisely the variance of the 
data points from the mean along its corresponding eigenvector . zk . The eigenvectors 
form an orthogonal system (called an eigensystem), which span the original data 
space, but in directions for which most of the spread is associated with the first few 
coordinates. 

Removing the PCs with smallest eigenvalues (those with the least variance and 
carrying the least information) can result in an arbitrarily oriented subspace that de-
scribes the data with only minimal loss of information. Such subspaces correspond 
to the hyperplanes constructed through data point correlation. Accordingly, to define 
the orthogonal (complementary) subspace in which the data points cluster densely, 
the PCs with the greatest eigenvalues are omitted, and only those associated with 
the smallest eigenvalues are taken into account (see Fig. 4). 

The majority of existing algorithms use PCA to identify arbitrarily oriented 
subspaces. The earliest example, ORCLUS [10], employs a variant of the k-means 
partitioning algorithm, in which every partition is represented by its centroid and 
eigensystem. An initial data partition is constructed using an initial set of randomly 

Fig. 4 Using PCA for the 
identification of subspace 
clusters. Eigenvectors with 
low variance define a 
subspace capturing a dense 
clustering of points 

firs
t PC 

second PC 

cluster subspace
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Fig. 5 .ε-neighborhood (left) using Euclidean distance and (right) using an eigensystem-based 
distance 

chosen data points as centroids. In each iteration, the dimensions of the eigensys-
tems are successively reduced by removing the PCs with greatest eigenvalues. The 
data points are then (re)assigned to the partitions so as to minimize the average 
distance of the points to the centroid after projection to the subspace spanned by the 
current set of PCs. The algorithm terminates when the subspace dimension reaches a 
predefined value. Variants of this strategy include DPCLUS [59] and ROSECC [20]. 

4C [27] extends the density-based approach of the classic DBSCAN clustering 
algorithm [35] by using a locally adaptive distance measure based on the eigen-
systems of each point (see Fig. 5). Variants of 4C include COPAC [6] as well  
as hierarchical methods such as HiCO [3] and ERiC [5], which summarize the 
hierarchical inclusion relationships among subspaces. Some algorithms, such as 
CARE [78] and SSCC [40], do not apply PCA in the full-dimension data space, 
but in heuristically selected attribute subspaces. Variants of PCA more resilient to 
noise have been proposed for use with correlation clustering algorithms [54, 53]. 

Generalized variants of PCA [73] and regression [72] led to numerous related 
approaches to subspace clustering. Some of the more prominent examples are sparse 
subspace clustering [34, 82] and low-rank subspace clustering [60]. 

3.2 Grid-Based Cluster Identification 

To find arbitrarily oriented subspace clusters, algorithms of this group first discretize 
the attribute spaces into grid cells and then iteratively combine attributes to form 
candidate subspaces. Arbitrarily oriented subspace clusters are then detected using 
suitable merging strategies (see Fig. 6). If only subspaces of dimension one are 
used—that is, projections on original attributes—this approach corresponds to the 
grid-based approach to axis-parallel subspace clustering. 

Examples following this strategy are EPCH [67] and P3C [62, 63]. In EPCH, 
to identify d-dimensional dense grid cells, every .1, 2, . . . , d-dimensional subspace
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lower dimensional dense grid cells candidates for higher-dimensional 
dense grid cells 

Fig. 6 Subspace grids for finding arbitrarily oriented subspace clusters 

that can be formed from d attributes is discretized into uniformly spaced cells. 
Each data point is then represented by a signature that lists all subspaces and 
corresponding dense grid cells that contain the point. To find subspace clusters, 
suitable cells are merged by comparing their signatures. 

Since EPCH employs an adaptive density threshold for identifying dense cells, it 
does not suffer from the inaccuracy of a user-defined global density threshold. Only 
one density parameter needs to be set by the user. However, the time complexity 
can be seen to increase as .O(dD), where D denotes the dimension of the data set. 
Although EPCH has been shown to be experimentally effective in certain settings 
for the choices of .d = 1 (known as the EPC1 variant) and .d = 2 (the EPC2 variant), 
in general a satisfactory tradeoff between accuracy (obtained by increasing d) and 
runtime (lowered by decreasing d) may not be possible to obtain. 

In contrast with EPCH, for P3C [62, 63], the initial dimension of the subspaces 
is fixed at one. Accordingly, for each attribute (1-dimensional subspace), intervals 
that are not uniformly distributed are identified using the chi-square goodness-of-fit 
test. By combining such significant intervals, hyperrectangles composed of higher-
dimensional grid cells are tested for density, according to whether they contain more 
data points than would be expected according to a Poisson probability function. 
Finally, all data points are assigned to dense cells by applying the EM algorithm 
to determine subspace cluster membership. As with EPCH, P3C uses an adaptive 
density threshold that requires the user to set a single parameter, for the Poisson 
probability function. 

There are grid-based algorithms that do not use a bottom-up approach to derive 
subspace clusters, but instead rely solely on full-dimensional grids. Algorithms of 
this category inherently assume that subspace clusters cause density abnormalities 
even in the full-dimensional space. An example of this kind of approach is 
Halite [30].
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3.3 Hough Transform 

The basic goal of the original Hough transform [43] is to discover collinearities 
in data—that is, subsets of the data that can be approximated by a straight line. 
The Hough transform maps data points into a dual space, often referred to as the 
parameter space. The dual mapping proposed by Duda and Hart [33] uses an  angle– 
radius parameterization instead of the original slope–intercept form. Under the 
angle–radius mapping, a 2-dimensional data point .p = (x, y) is described by all 
possible lines passing through this point (parameterization function): 

. x · cos(θ) + y · sin(θ) = ρ,

where . θ denotes the angle of the normal vector of the line, which is restricted to the 
range .θ ∈ [0, π ] for uniqueness, and . ρ is the distance from the origin. For each data 
point, the set of all lines containing it in the original space generates a dual curve 
in the parameter space whose points consist of pairs of the form .(θ, ρ). Data points 
in the original space whose dual curves intersect in a common location .(θ, ρ) in 
parameter space would be collinear with respect to the line whose angle and radius 
are . θ and . ρ, respectively. This duality principle is illustrated in Fig. 7. 

For subspace clustering in higher dimensional spaces, an extended version of 
the Hough duality has been applied to find co-planarities of points, in CASH [8, 7]. 
Here, a d-dimensional data point .p = (p1, p2, . . . , pd)ᵀ is described by all possible 
hyperplanes containing p. The corresponding parametrization function is given by 

. 

d
∑

i=1

pi ·
j−1
∏

j =1

sin(αj ) · cos(αi) = ρ,
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Fig. 7 Hough transform: data space (left) and parameter space (right)
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where .α1, α2, . . . αd−1 are .d − 1 angles of the normal vectors defining the 
hyperplanes in Hessian normal form. Again, each data point is represented in 
the parameter space by its parameterization function, and an intersection of the 
parameterization functions implies that the corresponding data points lie on a 
common hyperplane in the original data space. The algorithm searches recursively 
for lower-dimensional co-planarities within higher-dimensional hyperplanes. 

Recent work following up on this technique focused on faster search strategies 
in the parameter space [52] or the identification of non-linear dependencies [51]. 

3.4 Random Sampling 

The Hough transform method is limited to the detection of co-planarities of dimen-
sion one less than that of the current space. To find subspaces of smaller dimensions 
requires an iterative application, descending through the dimensionalities one by 
one. A non-exhaustive yet more direct alternative is to use random sampling 
methods to generate candidate subspaces for further testing, using the more general 
concept of a linear manifold. 

Linear manifolds can be regarded as translated subspaces without an origin such 
that non-homogeneous linear combinations of attributes are allowed. Their general 
form can be described as 

. p = μ + B ∗ λ,

where . μ is a fixed translation vector (determining an origin relative to the manifold), 
B is a matrix of a subset of orthonormal vectors spanning the subspace, and . λ is a 
vector determining the position of p within the manifold. 

In order to fit a linear manifold to a set of data points .p1, p2, . . . , pn, we can 
extend the usual representation to account for points that may be nearby but not 
contained in it [41, 42]: 

. pi = μ + B ∗ λi + B ∗ ψi,

where . B is a matrix of orthonormal basis vectors that extends B so as to cover the 
full-dimensional space, and . ψi is a vector determining the offset of . pi from the 
manifold described by B and . μ. For the manifold to be a good fit, in any given 
coordinate of the vectors . ψi , the entries should have low variance across the n 
points, as compared to the variance within the coordinates of the vectors . λi . 

With this in mind, the random sampling strategy identifies correlated data points 
located on or near linear manifolds of a target dimension, by randomly sampling 
data points to form an orthonormal basis B, as follows [41, 42]:

• For  a  d-dimensional manifold, .d + 1 linearly independent data points 
.x0, x1, . . . , xd are randomly sampled from the data set.
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Fig. 8 Using randomly 
sampled linear manifolds for 
finding subspace clusters 

randomly sampled 
data points 

linear manifold

• . x0 is chosen to be the center.
• The vectors .yj = xj − x0 (for .j = 1, 2, . . . , d) are used to construct B by 

applying the Gram–Schmidt method. 

If a randomly generated manifold can be used to capture part of the data (with low 
variance across the offset vectors . ψi), the corresponding data points are deemed to 
form a subspace cluster (see Fig. 8). 

In contrast to the previously presented strategies, this approach avoids an 
explicit analysis of the data distribution. The random sampling process precludes 
a deterministic result, nor does it guarantee good coverage. In addition, the time 
complexity increases exponentially with the maximum dimension of the sampled 
manifolds. This strategy is therefore viable only for subspace clusters of low 
dimensionality. 

3.5 Intrinsic Dimensionality 

Finally, the estimation of the intrinsic dimensionality of cluster candidates according 
to some model has been used for clustering high-dimensional data. Collectively, 
models of intrinsic dimensionality seek to identify the numbers of latent features 
(dimensions) that best characterize subsets of interest, irrespective of the actual 
data representation being used, and without necessarily constructing a subspace 
embedding. Dimensionality-aware subspace clustering algorithms typically rely 
on the model to determine groups of points for which the intrinsic dimension is 
relatively low, and are thus attracted to groups with simpler explanations in terms of 
latent features. For a discussion and experimental comparison of various models of 
intrinsic dimensionality, see, for example, the work of Amsaleg et al. [16]. 

Fractal clustering (FC) [22] constructs an initial set of cluster prototypes from 
an initial random subset of the data, by using a nearest-neighbor-based chaining 
process. Thereafter, the remaining data points are added to clusters one by one, 
choosing the cluster for which the addition of the new point would result in the 
smallest change in the cluster’s intrinsic dimensionality. If the change would exceed
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a certain threshold, the addition of the point is not performed, and the point is 
declared to be noise. 

FC is capable of finding even non-linearly correlated subspace clusters. However, 
one major drawback of FC is its dependence on the clustering of the initial random 
sample. If the initialization fails to capture the basic subspace structure of the data, 
the subsequent clustering process cannot recover. 

In the original implementation, the Hausdorff dimension is used for the estima-
tion of intrinsic dimensionality over a coarsened representation of the cluster by 
multiresolutional grid storing counts of points. 

In contrast to FC, dimension-induced clustering (DIC) [38] computes intrinsic 
dimensional information for every point of the data. Given a point v, two quantities 
are estimated over the set of points contained in a neighborhood of v: the correlation 
dimension and the density. These values effectively transform the data into a 2-
dimensional setting within which expectation maximization (EM) is used to find 
clusters. The members of these clusters determine the final subspace clusters. 

Like FC, DIC is capable of finding subspace clusters that are not linearly 
correlated. Unlike FC, hierarchies of subclusters can also be detected. In addition, 
by mapping the data into a 2-dimensional setting, the computational problems 
associated with high-dimensional clustering are avoided. However, DIC must be 
supplied with two parameters that have a critical impact on the composition of the 
final clustering: the number of clusters sought (required by the EM algorithm) and 
the neighborhood radius (for the calculation of the correlation dimension and local 
density). 

4 Conclusion 

This chapter presented an overview of the basic strategies and techniques used for 
subspace clustering in high-dimensional settings, with a high-level distinction made 
between those that restrict clusters to axis-parallel subspaces and those that allow 
the subspaces to be arbitrarily oriented. For each category, several strategies have 
been explored, and examples of methods provided. 

4.1 Further Reading 

There are several surveys available on clustering high-dimensional data, some 
broader, and others focusing on specific aspects. A broad and extensive survey 
has been provided by Kriegel et al. [55], categorizing according to algorithmic 
strategies and variants of the problem definition. They also present the relationship 
between subspace clustering and pattern-based or bi-clustering approaches. More 
concise surveys have also been published by the same authors [58, 79]. Vidal et 
al. [73] give an overview of variants of PCA and PCA-based subspace clustering
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methods targeting applications in image processing and computer vision. Sim et 
al. [71] discuss more challenging variations of the subspace clustering problem. The 
relation of certain algorithmic approaches to the ideas developed in frequent pattern 
mining has been discussed by Zimek et al. [81]. Zimek and Vreeken [80] explored 
the relationships between subspace clustering and ensemble clustering, alternative 
clustering, and multiview clustering. Evaluation studies have been provided by 
Müller et al. [65] and Moise et al. [64]. 

4.2 Future Research Directions 

The current state of the art of clustering high-dimensional data suggests future 
research in three aspects: 

1. Primitives to capture subspaces. While PCA has seen substantial use in 
determining local subspaces in data, it is computationally heavy in that it 
necessitates the computation of the local subspace itself. This is in contrast 
with dimension-induced clustering (DIC), which requires only an estimate 
of the local intrinsic dimensionality. To date, the use of local measures of 
intrinsic dimensionality to aggregate points without explicitly computing an 
embedding is relatively unexplored. Such methods would also depend greatly 
on the characteristics of the models of intrinsic dimensionality used, as well 
as their associated estimators. Recent work has focused on the use of local 
intrinsic dimensionality (LID) [44, 45] to identify subspace dimension [23]. 
The exploration of further primitives based on intrinsic dimensionality can be 
expected to yield interesting new possibilities for subspace detection. 

2. Dynamic and streaming data. Extending the clustering of high-dimensional 
data to scenarios with dynamic or streaming data comes with additional 
challenges. Work in this area is still in its early stages—examples include [12, 
77, 9, 56, 68, 24]. 

3. Evaluation. The evaluation of unsupervised learning is notoriously challeng-
ing. Additional consideration of the quality of exact or approximate subspace 
determination would bring an added layer of complexity to the clustering 
evaluation problem. For correlation clusters, a quantitative model can be derived 
[2] that could also be used in a predictive evaluation scenario. In the literature, 
only a handful of evaluation studies [69, 65, 64, 39] have addressed the issue of 
subspace clustering. In scenarios in which cluster overlap is allowed—that is, 
when a given point can belong to different clusters in different subspaces— 
subspace clustering would have many aspects in common with multiview 
clustering or alternative clustering [80], adding to the challenges surrounding 
evaluation [37, 57].
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Fuzzy C-Means Clustering: Advances 
and Challenges (Part II) 

Janmenjoy Nayak, H. Swapna Rekha, and Bighnaraj Naik 

1 Introduction 

After the revolutionary development of the concept “fuzzy set” by Prof Lotfi Zadeh 
in 1965, in 1969 Ruspini gave the initial basis for the developmental progress 
in fuzzy clustering [1]. Later in 1973, Dunn [2] as well as Bezdek proposed the 
approach for the fuzzy C-Means model. So, the ultimate basis for the development 
of FCM is the fuzzy set, and it provided the real framework for distinguishing 
among points and clusters. However, the variation of FCM called FKM (fuzzy 
k-means) [3, 4] is a soft clustering method based on the degree of membership. 
Many of the approaches of FCM have been developed [5] and investigated [6]. 
Normally, FCM works as a distance-based clustering approach with computation 
of membership degrees, and the degree of membership decides the membership 
of data to the cluster group. In fact, for that distance measure also, researchers 
have used different distance-based methods [7] for solving a variety of applications. 
With many advantages such as solution for nonlinear, overlapped data, assignment 
of data point to each of the cluster class, etc., FCM supersedes over other hard 
clustering methods like k-means clustering and has always been a first and foremost 
practical-based method for complex ambiguous data. Moreover, it is praiseworthy 
to mention that till date more than 30 variants have been developed for FCM 
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algorithm. And, so far it has been one of the most successfully used clustering 
algorithms in many diversified applications across all disciplines of engineering 
domain. Most of the significant contributions of FCM in between the years 2000 
and 2014 are highlighted by Nayak et al. [8]. However, some of the limitations 
such as initial cluster selection, computing the optimal clusters, receptive to noisy 
data, etc. of traditional FCM algorithm have always been an open research issue to 
develop a new method or its variant by fine tuning of the controllable parameters. 
Moreover, FCM suffers from major limitations like the inability in dealing with a 
high-dimensional dataset. FCM is based on membership functions, and the factors 
like the number of prototypes and the number of dimensions of high-dimensional 
data have a high impact on the membership function. Also, the impact of the number 
of dimensions highly affects the objective function of FCM. Some of the methods 
like FCM integrated with polynomial fuzzifier function (PFF-FCM) and PFCM 
integrated with a noise cluster (PNFCM) [9] and FCM with simulated annealing 
[10] are proposed to deal with such issues of FCM. 

Being a soft clustering algorithm, FCM has remained on the hot seat for 
clustering different complex data. Over 6,37,000 articles (searched with keyword: 
fuzzy C-Means clustering algorithm) have been published till 2020. This clearly 
signifies the popularity of FCM in solving many real-life applications, and it is 
noteworthy to mention that FCM is one of the most successful clustering algorithms 
than others. Taking into this account, this chapter illustrates about some of the recent 
developments using FCM in last five years. 

The major objective of this chapter is to provide a review of FCM, its devel-
opment, and challenges in the recent years. First, we describe the structure of the 
conventional FCM along with its implementation. Then, the analysis is expanded 
by describing about the advancement and variants of conventional FCM along 
with its application areas. Furthermore, a systematic analysis of the utilization of 
FCM in addressing the challenges of various application areas has been presented. 
Moreover, a critical analysis on the number of articles published in the FCM, its 
variants of FCM, and application areas has been depicted to show the growth 
of FCM. Finally, this chapter serves as basis of information for the technocrats 
and researchers to apply FCM and its variants to provide novel solution over the 
conventional methods in various application areas. 

The remaining sections are segmented as follows: Sect. 2 depicts about the work-
ing of original FCM along with its variations/advancements. Section 3 elaborates the 
application areas such as Image Analysis, Intrusion Detection System, Clustering 
and Classification, and Image Analysis. Section 4 discusses the critical analysis of 
the FCM and its variants. Finally, Sect. 5 describes the conclusion with some future 
challenges. 

2 Structure of Classical FCM 

Initially, FCM algorithm has been suggested by Dunn in 1973, and then it has been 
modified in 1981 by Bezdek. FCM is a leading momentous clustering technique that
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Fig. 1 Flowchart of the FCM algorithm 

makes use of fuzzy membership for assigning the degree of membership to each 
class [11]. The process of forming new clusters from the data points having close 
membership values is considered as the major advantage of FCM algorithm [12, 13]. 
The fuzzy membership function, partition matrix, and the objective function are 
considered as the essential operators in FCM. The detailed steps for FCM algorithm 
have been depicted in [8]. The following flowchart in Fig. 1 demonstrates the 
functioning of the basic conventional FCM algorithm.
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.Ci =

n∑

j=1
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ij xj

∑n
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ij

(1) 

.dij =‖ C − X ‖ (2) 

.Uij = 1/

c∑

k=1

[dij /dkj ]2/(m−1) (3) 

. Ci is the p-dimension center of the cluster i, . dij is the distance between object . xj

and cluster center . Ci , and . uij is the degree of membership of . xj in ith cluster. 

2.1 Variants and Advancements of FCM 

Researchers have also proposed different distinct interpretations of FCM with good 
performance and are utilized in a varied number of application domains to resolve 
different problems in clustering. All these distinct types of variants have been 
successfully utilized for solving a few differences and to obtain proper outcomes 
accordingly. This section discusses in detail about some of the variants of FCM on 
which major research work has been carried along with its pros over the traditional 
FCM. Figure 2 depicts the different variants of FCM. 
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Fig. 2 Variants of FCM
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2.1.1 Intuitionistic FCM (IFCM) 

Based on the intuitionistic fuzzy set theory, IFCM is considered as the variant 
of traditional FCM. The conventional FCM has failed to handle the hesitation 
in medical images because of the existence of vagueness in gray levels, object 
boundary, and so on. To trounce this drawback, a direct method based on IFCM 
is proposed by Wang et al. [14] to handle the uncertainty and ambiguity associated 
with real data. This approach uses an intuitionistic fuzzy triangular product and 
square product to cluster the input data. The seeds are altered and approximation 
of membership degree for each intuitionistic fuzzy set (IFS) is performed at each 
stage of the IFCM. Finally, the IFSs are clustered according to the approximated 
membership degree. In IFCM [15], membership matrix is defined as 

.uij (k) = 1/

c∑

r=1

(
d1

(
zj vj (k)

)

d1
(
zj vr (k)

)

) 2
(m−1)

(4) 

where .d1
[
Zj , vr(k)

]
is the distance between the sample . Zj and the cluster centroid 

. vi and . uij is the membership degree of the . j th sample . Zj to the ith clustering seed 

. vi . 
For medical image segmentation, a modified intuitionistic fuzzy C-Means clus-

tering (IFCM) algorithm is proposed by Kumar et al. [16]. To compute non-
membership value, the proposed approach makes use of Sugeno’s and Yager’s 
IFS generators. To avoid the dependency on the fuzzy membership function, a 
novel clustering algorithm called generalized rough intuitionistic fuzzy C-Means 
(GRIFCM) has been introduced by Namburu et al. [17] for brain magnetic resonance 
(MR) image segmentation. Furthermore, the algorithm has been assessed using sim-
ulation, and the experimental results show the superiority of GRIFCM over existing 
k-means (KM), FCM, rough fuzzy C-Means (RFCM), generalized rough fuzzy C-
Means (GRFCM), soft–rough fuzzy C-Means (SRFCM), and rough intuitionistic 
fuzzy C-Means (RIFCM) algorithms. Balasubramaniam et al. [18] have proposed an 
intuitionistic fuzzy C-Means color clustering algorithm for segmenting the nutrient 
deficiencies in crop images. Moreover, from the simulation results, it is evident 
that the proposed algorithm provides better results when compared with existing 
k-means, fuzzy k-means, PCA, regularized expectation maximization, and FCM 
algorithms. 

2.1.2 Fuzzy Possibilistic C-Means 

In the clustering problem as memberships and typicalities play a vital role to obtain 
the correct feature of data substructure, Pal [19] has proposed a fuzzy possibilistic C-
Means (FPCM) algorithm that integrates the features of both fuzzy and possibilistic 
C-Means algorithm to extract the correct features of the data structure. The FPCM 
approach is used to resolve the coincident clusters problem of PCM as well as noise
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sensitivity shortcoming problem of FCM. The objective function of FPCM [21] is  
given as 

.JFPCM (U, T , V ) =
c∑

i=1

n∑

j=1

(
um

ij + tn
)

d2 (
xj , vi

)
(5) 

where V is the prototype of clusters, U is the fuzzy partition matrix, . uij is the degree 
of membership, and .d2(xj , vi) is the distance between object . xj and cluster center 
. vi . 

As medical segmentation has a vital role in image analysis task, Gomathi et al. 
[20] have proposed a modified Fuzzy Possibilistic C-Means (MFPCM) algorithm to 
overcome the limitations of conventional FCM and FPCM. The proposed method is 
developed by changing the distance measurement of the classical FCM algorithm 
and exhibits resistance to noise effect during image segmentation. To obtain 
enhanced quality clustering results, Saad et al. [21] have proposed a modified Fuzzy 
Possibilistic C-Means (MFPCM) algorithm. Furthermore, numerical simulation of 
the proposed method displays accurate clustering results when compared to tradi-
tional FCM and FPCM. A novel modified Fuzzy Possibilistic C-Means (MFPCM) 
clustering algorithm has been developed by Ganesan et al. [22] to obtain color 
image segmentation of noisy color images. Furthermore, the experimental results 
demonstrate that the projected method exhibits robustness to noise and executes at a 
faster rate compared to conventional approaches. Praneesh et al. [23] have proposed 
a modified Fuzzy Possibilistic C-Means (MFPCM) clustering algorithm to extract 
the text by segmenting color-based comic images. Providing reliable results and 
obtaining non-overlapping images are considered as the major objectives of the 
proposed method. Furthermore, analytical results reveal that the proposed method 
enhances image precision and reduces computation time. 

2.1.3 Kernel-Based FCM 

In recent years, for analyzing the high-dimensional medical databases, mathematical 
algorithm-based diagnosing system has been proposed by the researchers. Fuzzy 
clustering techniques are not potential for high-dimensional databases having 
more similar objects. As kernel functions have the potential of accessing the 
available information from high-dimensional databases [24, 25], kernel-based FCM 
algorithms have been developed as a variant of FCM. As conventional FCM uses 
squared-norm to determine the affinity among prototypes and data points, it can be 
adequately used in clustering spherical clusters only. Therefore, it becomes difficult 
for the original FCM to perform nonlinear mapping to high-dimensional space. 
This can be achieved through KFCM by using kernel-induced metric in place of 
Euclidean norm metric in FCM without expanding the number of parameters. The 
objective function of KFCM [74] is depicted as
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.JKFCM =
c∑

i=1

n∑

j=1

um
ij ‖ ∅(xj ) − ∅(vi) ‖2 (6) 

where . ‖ ∅(xj ) − ∅(vi) ‖2= K
(
xj , xj

) + K (vi, vi) − 2K
(
xj , vi

)

For the analysis of high-dimensional medical databases, Kannan et al. [26] 
have proposed a fuzzy clustering algorithm by integrating Laplacian kernel-induced 
distance, Canberra distance, possibilistic memberships, and fuzzy memberships. 
The proposed method has been evaluated on a high-dimensional breast cancer 
database, and the experimental results reveal the performance of proposed methods 
through clustering accuracy. For image clustering, a novel approach namely kernel 
fuzzy C-Means clustering (GKFCM) algorithm has been developed by Kalam et al. 
[27]. The purpose of the anticipated method is to deliver enhanced segmentation 
results for images impaired by noise. To optimize the initial clustering center and 
to classify the data, a novel kernel-based fuzzy C-Means clustering based on fruit 
fly (FOAKFCM) algorithm has been proposed by Wang et al. [28]. The proposed 
method reduces the drawbacks of FCM and enhances clustering efficiency. 

2.1.4 Type-2 FCM (T2FCM) 

With the original FCM, undesirable clustering results may be produced while 
considering noisy input data. In current years, type-2 fuzzy logic has been widely 
applied in many engineering domains due to its robustness. Due to the rapid 
progression in pattern recognition techniques, clustering has been extensively 
utilized on various disciplines including general type-2 fuzzy sets which are capable 
of handling the noise and uncertainty. As clusters obtained by T2FCM tend to 
converge to more desirable locations than type-1, it is considered as an improved 
extension of FCM. Torshizi et al. [29] have proposed a powerful and specific 
similarity measure among a general type-2 fuzzy set. In general type-2 FCM, an 
optimal number of clusters can be obtained using the general type-2 fuzzy cluster 
validity index. Furthermore, numerical comparisons show the aspect and robustness 
of the proposed approach. The objective function of T2FCM [30] is represented as 

.JT 2FCM =
c∑

i=1

n∑

j=1

am
ij ‖ xj − vi ‖2 (7) 

where .am
ij ‖ xj − vi ‖2 represents the type-2 membership function between object 

. xj and cluster center . vi . 
To overcome the uncertainties of medical images, Begum et al. [30] have  

developed a rough fuzzy C-Means (RFCM) clustering algorithm that incorporates 
the features of both fuzzy set and rough set. Rough type-2 fuzzy C-Means 
(RT2FCM) method is an extension of the generalized RFCM algorithm with the 
type-2 membership function. In contrast to FCM, T2FCM, and RFCM, RT2FCM
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performs superior detection of abnormal tissues. Linda et al. [31] has developed a 
novel approach namely the general type-2 fuzzy C-Means (GT2FCM) algorithm for 
finding uncertainty in fuzzy clustering. The GT2FCM algorithm has proven to be a 
robust algorithm in situations where noisy and inadequate data training is available. 

2.1.5 Interval Type-2 FCM (IT2-FCM) 

Since FCM clustering techniques cannot be used for estimating the number of 
clusters automatically, Interval type-2 FCM (IT2-FCM) has been developed by 
Hwang et al. [32]. IT2-FCM utilizes two fuzzifier coefficients and computes 
two membership values for each pattern for handling the uncertainty in various 
applications such as image segmentation and land cover classification problems. To 
create FOU, IT2-FCM [33] makes use of two fuzziness parameters m1 and m2. The 
utilization of two fuzziness parameters generates two distinct objective functions, 
as represented in Eqs. 8 and 9. 

.Jm1 (U, v) =
n∑

k=1

c∑

i=1

(uik)
m1 d2

ik (8) 

.Jm2 (U, v) =
n∑

k=1

c∑

i=1

(uik)
m2 d2

ik (9) 

where . dik is the distance between the pattern . xk and the centroid .vi, C is the number 
of clusters, and n is the number of patterns. 

To handle problems of land cover classification from multi-spectral satellite im-
ages, interval type-2 fuzzy C-Means clustering (IT2-FCM) that makes use of spatial 
information has been refined. To cope up with ambiguity of real data, the idea of 
collaborative clustering using interval type-2 fuzzy C-Means clustering (IT2-FCM) 
algorithm has been recommended by Dang et al. [33]. In medical classification, to 
handle high-dimensional data challenge and ambiguity, an automated classification 
method using wavelet transformation (WT) and interval type-2 fuzzy logic system 
(IT2FLS) has been proposed by Nguyen et al. [34]. The proposed method makes 
use of hybrid learning process that combines both the features of unsupervised 
structure learning by the FCM algorithm and supervised parameter adapted by 
genetic algorithm. 

2.1.6 Hierarchical FCM (HFCM) 

The low-contrast images and noise cannot be segmented properly by FCM, as it 
uses nonrobust Euclidean distance as dissimilarity function. For the improvement 
in accuracy and robustness of distance, a generalized hierarchical fuzzy C-Means
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(GHFCM) algorithm that makes use of sub-FCM distance function has been 
recommended by Zheng et al. [35]. In HFCM, the effect of low contrast can be 
reduced by hierarchical strategy, and noise effect can be reduced by means of 
neighborhood pixel’s information. 

Generally, the HFCM is implemented in two levels. In the first level, data are 
produced by J clusters. While in the second level, data are produced by class-
labelled sources within each cluster j which in turn form the sub-clusters of the 
large cluster. The HFCM [35] objective function is given as 

.Jmn =
N∑

i=1

J∑

j=1

K∑

k=1

um
ij v

n
ijkd̄ijk (10) 

where .d̄ijk represents the sub-distance function, and .vn
ijk represents sub-

membership. 
To obtain the accurate segmentation of magnetic resonance (MR) images, an 

improved anisotropic multivariate student t-distribution-based hierarchical fuzzy 
C-Means (IAMTHFCM) method has been suggested by Chen et al. [36]. The 
limitations of conventional FCM such as less robustness to outliers, weak edges, 
noise, and less accuracy can be overcome using the IAMTHFCM algorithm. A 
novel Hierarchical Hyperspherical Divisive Fuzzy C-Means (H2D-FCM) has been 
developed by Bordogna et al. [37]. The automatic finding of the number of clusters, 
fuzzy partition, and conditional splitting at each node is considered as the main 
features of the proposed algorithm. To overcome the drawbacks of over-smoothness 
in image segmentation, a novel non-local-based spatially constrained hierarchical 
fuzzy C-Means NLSCHFCM algorithm has been suggested by Chen et al. [38]. 
The limitations of existing methods such as the effect of noise, data preserving, 
and inaccuracy can be overcome using the NLSCHFCM algorithm. The robustness 
and accuracy can be enhanced by using a hierarchical strategy that makes use of 
improved distance function itself as a sub-FCM. 

2.1.7 Robust FCM 

From the past few decades, several robust fuzzy clustering algorithms are developed 
by the researchers to partition data distressed by noise as well as outliers. Among 
them, the widely used robust clustering algorithm namely a robust version of FCM 
(robust FCM) has been proposed by Dave [39]. The objective function of robust 
FCM [41] is given as 

.J (V,U,X) =
C∑

i=1

M∑

j=1

um
ij • d2 (

vi, xj

) +
M∑

j=1

u∗m
j • δ2 (11)
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where M represents the number of objects, C represents the number of classes, m 
represents fuzzification parameter, . uij represents membership degree, and . d(vi, xj )

represents the distance between cluster . vi and object . xj . 
To enable the effective segmentation of SAR images, Wan et al. [40] have pro-

posed a novel robust FCM algorithm based on Bayesian nonlocal spatial information 
(RFCMBNL). Furthermore, experimental results reveal that the projected algorithm 
simultaneously performs effective segmentation of SAR images by assuring noise 
resistance and edge detail preservation of the image. Robust fuzzy C-Means (robust 
FCM) algorithm has been recommended by Cimino et al. [41] for the automatic 
determination of the most feasible . δ for the specific application. The method has 
been evaluated on three datasets, and the results reveal that it can obtain optimal 
performance in minimum computational time. For enhancing the quality of image 
segmentation and to minimize the effect of noise, a vital fast and robust FRFCM 
algorithm has been introduced by Lei et al. [42]. Furthermore, the developed method 
exploits local spatial constraints by applying membership filtering. 

2.1.8 Semi-supervised FCM 

In a heterogeneous environment, the existing clustering techniques have proven 
to be difficult in determining the scattered regions of an image. Because of the 
selection of different features, the conventional FCM is not considered as the 
better option for the identification of accurate clustering. Therefore, by combining 
the semi-supervised learning with FCM, the detection accuracy of clustering can 
be enhanced. The semi-supervised learning algorithm was developed by Pedrycz 
& Waletzky [43] by including supervised learning as the second term in the 
unsupervised learning objective function. Therefore, the semi-supervised FCM [43] 
objective function is defined as 

.J =
c∑

i=1

N∑

k=1

um
ikd

2
ik +

c∑

i=1

N∑

k=1

(uik − fikbk)
m d2

ik (12) 

where .fik = membership value of labelled data pattern k in cluster . ci , . bk =
Boolean vector, .c = the number of clusters, .N = the number of data patterns . uik =
membership value of a data pattern k, and .m = fuzzifier parameter 

For the automatic classification of the Nottingham Tenovus Breast Cancer 
dataset, a semi-supervised Fuzzy C-Means (ssFCM) algorithm is explored by Lai 
et al. [44]. In the field of social signal processing, human emotion recognition 
is considered as an important area of research. Therefore, Liliana et al. [45] 
have proposed methods namely Active Appearance Model (AAM) and ssFCM 
for identifying the facial expression in detecting human emotions. Furthermore, 
experimental results reveal that the proposed methods obtain 80.71% accuracy rate 
compared to the existing fuzzy inference system. To solve the problem of local 
optima, semi-supervised learning that combines the features of FCM has been
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developed by Guorui et al. [46]. Furthermore, the method has been evaluated on 
the KDD CUP 99 dataset, and the results reveal that the projected method greatly 
enhances the operation of intrusion detection 

2.1.9 Hybrid FCM 

From the past few years, hybrid FCM approaches have been determined as dynamic 
approaches for the diagnosis of related data in various clusters. Accordingly, several 
hybrid applications have been suggested by the researchers in FCM by considering 
benefits and by avoiding the difficulties of different methods. To optimize the energy 
in wireless sensor networks, Bouyer et al. [47] have proposed the FCM algorithm 
along with hybrid leach protocol. To balance energy usage of the CHs and for 
enhancing the lifetime of the network, the FCM algorithm has been used. They 
also explained that the usage of FCM in wireless sensor networks supports changing 
the LEACH protocol parameters while execution. Furthermore, experimental results 
show that the lifetime of a network has been enhanced by the usage of the hybrid 
algorithm. For clustering heterogeneous data on cloud computing, Li et al. [48] 
have proposed a privacy-preserving high-order neuro-fuzzy C-Means (PPHOFCM) 
algorithm. The approach has been used to cluster the heterogeneous dataset. For 
catching the correlations in the high-order tensor space, they have used the tensor 
distance. To enhance the clustering capability for enormous heterogeneous data 
from IoT, cloud computing has been employed. To safeguard the private data 
while operating the high-order neuro-fuzzy C-Means algorithm on cloud computing, 
the BGV encryption scheme has been employed. Furthermore, the efficiency of 
PPHOFCM has been verified by conducting experiments on two real IoT datasets. 
To enhance the accuracy of the detection system, Pandeeswari and Ganesh Kumar 
[49] have proposed a hybrid algorithm that makes uses of the FCM and Artificial 
Neural Network (FCM-ANN). They have also compared the proposed method with 
the Naïve Bayes classifier and Classic ANN algorithm. Moreover, experiments have 
been conducted using DARPA’s KDD cup dataset 1999. Furthermore, the results 
reveal that the proposed method is having high detection accuracy and low false 
alarm rate when compared with the Naïve Bayes classifier and Classic ANN. Lotfan 
et al. [50] have proposed enhanced fuzzy C-Means based on the heuristic subtractive 
approach (FCM-S) for diagnosing bearing faults. They have also explained that 
the performance and convergence of clustering can be highly enhanced by the 
application of hybrid C-Means-Subtractive (FCM-S). The method provides better 
diagnosing of bearing faults when compared with conventional FCM. A novel 
approach of fuzzy rough feature selection has been proposed by Zhao et al. [51]. 
To enhance the classification accuracy and to decrease the data dimension, this 
approach associates the membership function decision approach of fuzzy C-Means 
clustering and fuzzy equivalence to the original selection. Moreover, the proposed 
approach is able to provide smaller subsets and high classification accuracies (more 
than 1% average can be achieved). Table 1 displays the analysis of other literature 
reviews on variants of FCM.
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(where RMSE: Root Mean Square Error, MAE: Mean Absolute Error, PC: 
Partition Coefficient) 

3 Applications of FCM and Its Variants 

This section gives an overview on the literature survey of various papers published 
on FCM from 2015 to 2020. To solve the real-world problems, FCM has been 
lucratively applied in various fields of application such as computer science, 
mathematics, and other areas of engineering, etc. FCM and its variants have been 
extensively applied in the application domain such as neural networks, clustering 
and classification, Image analysis, fault diagnosis, intrusion detection system, etc. 

3.1 FCM and Neural Networks 

In power quality (PQ) classification to identify the important training data, a novel 
data selection approach has been developed by Manimala et al. [89]. This approach 
makes use of FCM along with two probabilistic neural networks and support 
vector machines. Minimizing the computation complexity and execution time and 
increasing the existing PQ classification system accuracy are considered as the main 
objectives of the proposed method. To solve the problem of incomplete data, Zhang 
et al. [90] have developed a robust method that makes use of FCM along with 
probabilistic information granules based on the nearest neighbors of incomplete 
data. Furthermore, the method uses Lagrange multipliers to optimize the clustering 
model. An automated approach for retinal blood vessel segmentation has been 
proposed by Hassanien et al. [91]. In order to find the coarse vessels, the proposed 
method integrated artificial bee colony optimization with FCM in the first level. 
To enhance the segmentation results, pattern search has been applied in the second 
level. Table 2 displays the other literature survey on FCM and neural networks. 

3.2 Image Analysis Using FCM 

To resolve the problem of delineating various tissues from brain image, a novel 
method incorporating the features of bias-field corrected fuzzy C-Means and level 
set segmentation has been recommended by Agarwal et al. [96]. This approach pro-
duces better results when compared to individual FCM and level set segmentation. 
To effectively segment the brain magnetic resonance images in clinical diagnosis, 
Vermal et al. [97] have proposed an improved intuitionistic fuzzy C-Means (IIFCM) 
clustering algorithm. The objective of the proposed method is to provide noise 
resistance and certainty on the boundary between distinct tissues of brain images.
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Table 2 Some other literature reviews of FCM and neural networks 

Author and Year Algorithm used Application area Results Ref 

Mansouri et al. 
2018 

ANFIS-FCM Evaluation of peak and 
residual conditions 

Validation phase: 
RMSE. =0.0053, 
AAE. =26.2 

[92] 

Mahela et al. 2017 S-Transform-Based 
Ruled Decision Tree 
and FCM 

Recognition of Power 
Quality Disturbances 

Efficiency without 
noise. =99.60 %, 
With 
noise. =99.30% 

[93] 

Rajaby et al. 2016 FCM with weighted 
hue and intensity 

Image Segmentation Reduces number of 
iterations and 
avoids wrong 
centroids 

[94] 

John et al. 2015 AFCM-CNN Pedestrian Detection in 
Thermal Images 

Average 
log-average miss 
rate . =34% 

[95] 

(where AAE: Absolute Average Error)

Hien et al. [98] have proposed an approach that consists of three stages for resolving 
edge detection issues in brain images. Initially, the quality of the image has been 
enhanced using Semi-Translation Invariant Contourlet Transform (STICT). Then, 
FCM has been applied for segmenting the image. Finally, edges are detected using 
edge detection method. In Table 3, a list of modified FCM algorithms that have been 
used in the Image analysis has been depicted. 

3.3 Clustering and Classification Using FCM 

Li et al. [110] have recommended a new method for resolving the problem of 
magnetization inversion using the FCM clustering method. Even in the existence 
of remnant magnetization, the magnetic irregularity can be completely utilized 
through 3D magnetization. A dynamic method that performs classification through 
the application of the FCM algorithm to MFCC and LPC features using EmoDB 
has been recommended by Demircan et al. [111]. Furthermore, experimental results 
show that the proposed method can achieve a maximum classification success rate 
through kNN and SVM classifiers. In order to perform the accurate sentiment 
classification in a parallel network environment, Phu et al. [112] have proposed an 
FCM method along with Hadoop MAP (M)/REDUCE (R). To find the best number 
of clusters, an automatic robust learning FCM (RL-FCM) algorithm has been 
suggested by Yang et al. [113]. Robustness to parameter selection, initialization, 
and automatic finding of the number of clusters are considered as the main 
characteristics of the RL-FCM algorithm. Other applications that have been using 
FCM in clustering and classification have been listed in Table 4.
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Table 3 Some other literature reviews of FCM and neural networks 

Author and year Algorithm used Compared method Results Ref 

Syed et al. 2019 Spatial Kernel 
Fuzzy C-Means 

– Speed of divergence 
and run time is less 

[99] 

Hu et al. 2019 AKFCM (Adaptive 
kernel-based FCM) 

FCM, KFCM, 
GKFCM (Gaussian 
KFCM), EKFCM 
(Entropy KFCM) 

Robust to image 
segmentation 

[100] 

Bilenia et al. 2019 Modified FCM FCM Better Segmentation 
results 

[101] 

Nida et al. 2019 Deep region-based 
CNN (Convolutional 
Neural Network) 
and FCM 

ExB, CUMED, 
Mahmudur, 
SFU-mial, TMUteam, 
UiT-Seg, IHPC-CS, 
UNIST, Jose Luis, 
Marco Romelli 

Accuracy. =0.942 [102] 

Alsmadi et al. 
2018 

NFCM (Novel 
FCM) 

FCM, ABCFCM, 
FAFCM (Firefly 
FCM) 

Similarity 
index. =0.9471, 
Specificity. =0.9412, 
Sensitivity. =0.9592 

[103] 

Noh et al. 2017 FCM Sobel detector 
segmentation 

Recall. =0.8, 
Precision. =0.9 

[104] 

Shedthi et al. 2017 FCM k-means algorithm Higher clustering 
performance 

[105] 

Shang et al. 2016 CKS_FCM (Clone 
Kernel Spatial 
FCM) 

CS_FCM (Clone 
Spatial_FCM), 
CK_FCM (Clone 
Kernel_FCM), 
KS_FCM (Kernel 
Spatial_FCM) 

Segmentation 
accuracy at speckle 
look1. =92.70. ±1.51, 
Speckle look 
2. =97.26. ±1.76, 
Speckle look 
4. =98.85. ±1.14, 
Speckle look 6 
. =99.04. ±0.46 

[106] 

Marrone et al. 
2016 

2DFCM 
(2-Dimensional 
FCM) 

Pixel-based, 
Atlas-based, and 
Geometric-based 
approach 

Accuracy. =97.86% 
Specificity. =95.83%, 
Sensitivity. =98.44% 

[107] 

Feng et al. 2016 NLMD+BCEFCM 
(Non-local means 
Denoising + Bias 
Correction 
Embedded FCM) 

FCM, BCFCM 
(Bias-Corrected 
FCM), MICO 
(Multiplicative 
Intrinsic Component 
Optimization), 
BCEFCM 

Run time of Rice like 
object. =0.2003, 
Geometrical 
shape. =0.0484, X-ray 
image of 
vessels. =0.0364, MRI 
image of 
brain. =0.9110 

[108] 

Adhikari et al. 
2015 

csFCM (Conditional 
Spatial FCM) 

k-means, FCM, 
FGFCM (Fast 
Generalized FCM), 
sFCM (Spatial FCM), 
ASIFCM (Adaptive 
Spatial Information 
FCM), 

Area Under Curve for 
Cerebro Spinal 
Fluid. =0.9832, Gray 
Matter. =0.9620, 
White Matter. =0.9776 

[109]
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Table 4 Some other literature reviews of Clustering and classification using FCM 

Author and year Algorithm used Results Ref 

Jiekang et al. 
2020 

FCM For the period of 21:00–22:00, Load loss 
rate. =0.0873, Power loss rate. =0.0303 

[114] 

Ranjbarzadeh et 
al. 2020 

FCM For Liver Segmentation: Average surface 
Distance (ASD). =1.1. ±0.39 mm and 
Volume overlap error (VOE). =1.8. ±0.34% 
For tumor segmentation ASD. =1.5. ±0.55 
mm and VOE. =9.8. ±3.9% 

[115] 

Silva et al. 2019 bdrFCM (Boundary Data 
Reduction FCM) 

bdrFCM on Poker, PAMAP2, MNIST, 
CoverType and SKIN dataset at 20% 
interval is 6.62, 19.28, 2.95,4 and 2.15 
times greater than original FCM 

[116] 

Zeng et al. 2019 Multi-kernel IFCM Dice coefficient of white matter. =0.9925 
and Segmentation accuracy. =0.9857 

[117] 

Palani et al. 
2019 

FCM-ARM-DT-CNN 
(FCM-Association Rule 
Mining-Decision 
Tree-CNN) 

MSE. =0.159, PSNR. =57.02 and 
accuracy. =99.54% 

[118] 

Sharma et al. 
2019 

FCM Performance improvement of NBIS 
matcher is 1.54% to 50.62% and 
VeriFinger is 1.66% to 8.95% 

[119] 

Zhao et al. 2018 FCM-Fuzzy membership Diagnostic accuracy. =96% [120] 

Khan et al. 2018 FCM Overall accuracy. =76% [121] 

Haldar et al. 
2017 

FCM-M 
(FCM-Mahalanobis 
Distance) 

Number of iterations reduced to an average 
of 53% 

[122] 

Benmouiza et al. 
2016 

FCM Better results obtained when sizing in 
hourly solar radiation scale CA. =0.91 and 
CS. =3.2 

[123] 

Lin et al. 2015 nsiibFCM (noise 
size-insensitive 
integrity-based FCM) 

Segment Accuracy Gaussian with 15% 
noise. =99.68, Salt and Pepper 
(15%). =99.40 

[124] 

Yang et al. 2015 Bias-correcting FCM and 
Gustafson and Kessel (GK) 

Error rate of Banana-shaped dataset. = 0%, 
Iris Dataset. =10%, Crab dataset. =0.09, Flea 
beetle data set. =0.0135 

[125] 

Rai et al. 2015 FCM Accuracy. =94.58% [126] 

Kisi et al. 2015 LSSVR (Least Square  
Support Vector 
Regression) and 
ANFIS-FCM 

Average RMSE: RMA model reduced by 
15.6% Besiri and Baykan stations reduced 
by 12.4% 

[127] 

Jagannath et al. 
2015 

FCM Identifying retinal images 
accuracy. =94.5%,Classifying normal 
retinal images accuracy. =86% 

[128] 

Khan et al. 2015 FCM For YIQ component with number of 
clusters. =3 specificity. =93.19%, 
sensitivity. =89.67% and accuracy. =92.63% 

[129]
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3.4 Intrusion Detection Using FCM 

The development of the Intrusion Detection System is emerging as a prominent re-
search area in the globalization era to protect the data from network attacks. Rustam 
et al. [130] have made a comparison analysis of IDS using SVM and FCM to obtain 
better performance and to enhance the accuracy of network attacks. Furthermore, 
experimental results show that FCM achieves better accuracy compared to SVM. 
For implementing the Intrusion Detection System, a novel PSO-FCM algorithm has 
been developed by Zhang et al. [131]. In the proposed method, clustering has been 
utilized to find intrusion irregularity and classification has been used to find the 
intruders. The proposed method depicts better performance compared with the k-
means and FCM algorithms. Table 5 lists the other analysis performed in intrusion 
detection using FCM. 

Table 5 Some other literature reviews of FCM and neural networks 

Author and year Proposed method Compared method Results of proposed 
method 

Ref 

Rustam et al. 
2020 

Intrusion 
Detection System 
model with Fuzzy 
Kernel C-Means 

Intrusion Detection 
System model with 
Fuzzy Kernel C-Means 
and Laplacian Score 
feature selection 

Accuracy of all classes 
(Normal, DoS, Probe, U2R 
and R2L). =67.06% 

[132] 

Zhang et al. 
2019 

FCM-SVM online sequential 
extreme learning 
machine (OS-ELM) and 
multi-level hybrid 
(MLH) 

Accuracy. =99.19% [133] 

Duan et al. 
2018 

FCM+KNN FCM, TANN, CANN, 
FCM. +ANN 

Accuracy. =98.73%, Detect 
rate. =96.23%, False 
alarm. =0.28 

[134] 

Kumar et al. 
2016 

FCM and SVM NB (Naive 
Bayes). +FCM, 
SVM. +k-means, 
NB. +k-means 

Accuracy. =99.98% [135] 

Rustam et al. 
2015 

Fuzzy Kernel 
C-Means 

C4.5 Decision Tree 
+NB 

Detection rate of Normal 
DoS. =100%, 
Normal-Probe. =100%, 
Normal-U2R. =87.64%, 
Normal-R2L=98.66 

[136] 

Sampat et al. 
2015 

Improved 
Dynamic FCM 

Simple k-means, Fuzzy 
C-Means 

True Positive rate of 
correctly classifying an 
intrusion. =90.45% 

[137]
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4 Critical Analysis 

From the above data, it can be observed that the variants of the FCM can be used to 
resolve several problems associated with the conventional FCM. Furthermore, the 
critical analysis provides researchers with the knowledge of the pros and cons of 
application of FCM and its variants in various application domains. The limitations 
associated with traditional FCM such as (1) existence of vagueness in gray levels 
and object boundary, (2) coincident cluster problem, (3) efficient clustering of 
high-dimensional data, (4) handling of noisy and low-contrast corrupted images, 
(5) automatic estimation of number of clusters, (6) detection accuracy, (7) highly 
sensitive to initialization have been successfully resolved using the variants of 
FCM like Intuitionistic FCM, FPCM, KFCM, T2FCM, IT2-FCM, semi-supervised 
FCM, etc. Furthermore, hybrid approaches help in enhancing the clustering and 
optimization capabilities of FCM and its variants by integrating the capabilities of 
two or more than two approaches. 

Moreover, it has been also noticed that enhancing image segmentation by incor-
porating deep learning modules, performing automatic clustering without having 
previous information on the number of clusters, enhanced classifier for extracting 
appropriate features from segmented images, improving strategies for achieving 
robustness in clustering heterogeneous noisy data in IoT, usage of optimization 
techniques for improving the performance and automation of clustering algorithms 
in variants of FCM, usage of 3D evaluation schemes for enhancing the efficiency of 
MRI brain tumor segmentation, using efficient clustering schemes for increasing the 
accuracy of feature selection method, application of various data mining techniques 
to enhance the performance of classifiers, conduction of more studies on adjustment 
of weight parameters in clustering process for better reflection of similarity patterns 
can be considered as further scope of research in the implementation of FCM and 
its variants. 

From the above systematic review, it is clear that the applicability of FCM in 
various applications has been of great perspective. The detailed analytical view of 
FCM and its variants in various application areas have been interpreted in the further 
part of the section by considering the papers published in standard journals and 
conferences such as Springer, Elsevier, ScienceDirect, IEEE Xplore, and so on. The 
percentage of articles published on variants of FCM in different domains has been 
depicted in Fig. 3. From the figure, it can be analyzed that a greater number of 
articles, i.e., 32% of articles, has been published in robust fuzzy C-Means algorithm. 
Next, the majority of the work has been done using hybrid FCM, i.e., 25%. After 
hybrid FCM, 22% of the articles have been published using hierarchical FCM. Less 
than 10% of the articles have been published in other variants of FCM such as 
IT2FCM, T2FCM, KFCM, FPCM, Intuitionistic FCM, and semi-supervised FCM. 

The number of articles published in different application domains of FCM such 
as Image segmentation, clustering, classification, Intrusion detection system, and 
neural networks has been represented in Fig. 4. From the figure, it is evident
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% of articles published 

IT2FCM 

T2FCM 

KFCM 

FPCM 

Robust FCM 
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Intuitionistic FCM 

Semi supervised FCM 

Hybrid 

Fig. 3 Usage levels of mostly used variants of FCM 

% of Publications 

NeuraL Network 

Image Segmention 

Clustering 

Classification 

Intrusion detecion system 

Fig. 4 Articles published in different application areas of FCM 

that major research articles, i.e., 46% of the work, have been published in the 
classification area. After classification, 24% of the work has been published in the 
neural network domain. Next, the major research articles have been published in the 
clustering domain, i.e., 21%. Less research articles using FCM have been published 
in the area of Image segmentation and intrusion detection system. 

Finally, Fig. 5 represents the number of articles published using FCM from 2015 
to 2020. It is evident from the figure that the growth of FCM has been increasing 
from 2015 to 2019.
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Fig. 5 Statistics of distribution of articles using FCM during 2015 to September 2020 

5 Conclusions 

From its inception, FCM has been a top prioritized clustering algorithm among all 
research communities. From the literature study, we are having a clear depiction of 
the increasing rate of publications related to fuzzy clustering (directly or indirectly). 
Apart from some of the general problem domains such as classification, clustering, 
image analysis, fault prediction, mathematical optimizations, forecasting, anomaly 
detection, medical diagnosis, etc., FCM has been a good choice for big data, swarm 
intelligence, fuzzy graphs, kernel-based optimization problems, cyber-physical 
system, robotics, data streaming, etc. in twenty-first century. Table 1 presents the 
number of variants of FCM been developed for the last five years. Being an objective 
function-based algorithm, it behaves more naturally as compared to hard clustering. 
However, some of the limitations like finding the best solution with spherical 
clusters, deficient to noise sensitivity, more computational time, local minima 
limit, irregular distribution of membership values to noise data points, etc. have 
always been a challenging area for focus. Up to some extent, few algorithms like 
possibilistic C-Means, fuzzy possibilistic C-Means, possibilistic fuzzy C-Means, 
etc. have remained to solve certain limitations of original FCM. Furthermore, some 
researchers have fused both the FCM and possibilistic C-Means to develop a hybrid 
model for better functionality. However, still some of the major issues such as 
selecting the optimal level of cluster fuzziness, solution for condense data, choosing 
the membership degree at high noise level, handling more prototypes in large data, 
etc. needs urgent focus. As future work, it may be applied in some novel application 
areas such as biology, criminology, cyber-physical system, military applications, 
instrumental theory, mechanical designs, etc., which may lead as a novel solution 
over traditional methods.
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Clustering in Streams 

Charu C. Aggarwal 

1 Introduction 

Streaming data has become particularly popular in the big data age; it is generated 
by a wide variety of real-world applications [1], such as using the credit card or 
the phone. The amount of data is so large that it is sometimes hard to retain all 
of it within the required storage constraints. In other cases, when sufficient storage 
is available, it is hard to utilize this large volume of data for mining applications. 
Clustering is a natural approach to summarize the data in a way so that it can be 
leveraged in an efficient way in various data-centric applications. The basic principle 
is that one does not need the raw data for most applications. In most cases, a 
mathematical model is constructed that summarizes the data stream, and this model 
can be used in many applications. Clustering is one of the many models that is used 
in the streaming setting. 

The problem of clustering has been widely studied in the data mining and 
machine learning communities for more than six decades. Classical methods include 
the use of the k-means algorithm, k-medians algorithm, density-based methods, 
probabilistic clustering methods, and spectral methods. A detailed discussion of 
different kinds of clustering methods may be found in [44, 46]. However, many 
of the classical methods do not work very well in the streaming setting. The specific 
reasons for the additional challenges associated with data streams are as follows: 

• Data streams have massive volume that continuously arrives over long periods 
in term. This precludes the use of conventional methods based on storing the 
data for later use. This means that the data needs to be processed in a single 
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pass, in which all the summary information required for the clustering process 
needs to be stored and maintained. 

• Data stream continuously evolve over time, and this phenomenon is referred to 
as concept drift [13]. Therefore, the clustering models need to be sensitive to 
this type of concept drift. 

• Different domains of data may pose different challenges to data stream clus-
tering. For example, in a massive domain of discrete attributes, it may not be 
possible to store summary representations of the clusters effectively without in-
creasing the computational complexity of the problem significantly. Therefore, 
space-efficient methods need to be designed for massive-domain clustering of 
data streams. 

• In some specialized domains, such as graphs, it is hard to create summarized 
representations of the clusters. This process requires specialized randomized 
techniques such as sketches for summarization. 

While scalability is critical for stream processing, it is the evolving nature of the 
data that causes greater challenges. This type of evolving nature is also referred 
to as temporal locality. Scalability issues have been studied in the context of very 
large data sets [32, 38, 53, 65], and many of these ideas have been generalized to 
data streams. However, the stream setting is more challenging because large data 
sets do allow multiple passes (within reason). Furthermore, one does not have to 
worry about the evolving nature of the data when the data set is large. 

This chapter is organized as follows. The next section discusses representative-
based methods. Density-based methods are discussed in Sect. 3. Section 4 discusses 
probabilistic algorithms for clustering data streams. High-dimensional streaming 
algorithms are introduced in Sect. 5. Discrete and categorical stream clustering is 
discussed in Sect. 6. As discussed in Sect. 7, these methods can also be generalized 
to text streams. Challenging settings like graphs and distributed scenarios are 
discussed in Sect. 8. A summary is given in Sect. 9. 

2 Representative-Based Methods 

In representative-based methods, a set of cluster representatives is designated up 
front, and these are then utilized in order to build clusters around these representative 
points. Examples of such methods include the k-means and k-medians-based 
methods. The cluster membership of the points is defined by assigning them to 
their closest representative. An algorithm like k-means requires multiple passes over 
the data. This is not a feasible approach in the streaming setting, where using a 
single pass is a hard requirement. Therefore, further changes are needed to such 
methods. This section will discuss these methods. Another common challenge in 
representative-based algorithms is that the number of clusters may evolve over 
time. Some algorithms like [37] keep the number of clusters fixed, whereas others 
like [14, 28] allow the number of clusters to evolve over time.
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2.1 The STREAM Algorithm 

The STREAM framework [37, 55] breaks the stream into chunks of smaller size, 
which are denoted by .D1 . . .Dr . . .. Each chunk is constrained to contain at most 
m data points based on a predefined memory budget, and an arbitrary algorithm 
can be used for processing a chunk. The methods in [37, 55] use  k-medians style 
algorithms on the individual chunks. 

In this approach, a set . S of k representatives is selected from each chunk 
. Di , so that each point in . Di is assigned to its closest representatives. The goal 
is to pick the representatives in such a way, so as to minimize the distance of 
the assigned data points from these representatives. For a set of m data points 
.X1 . . . Xm in . S, a set of  k representatives .Y = Y1 . . . Yk is selected. Each point 
is assigned to its closest representative. After the first chunk has been processed, 
we now have a set of k representatives, which are stored away. The number of 
points assigned to each representative is stored as a “weight” for that representative. 
Such representatives are considered level-1 representatives. The next chunk is 
independently processed in order to find its k optimal median representatives. Thus, 
at the end of processing the second chunk, we will have .2 · k such representatives. 
Thus, the memory requirement for storing the representatives also increases with 
time, and after processing r chunks, we will have a total of . r ·k representatives. When 
the number of representatives exceeds m, a second level of clustering is applied to 
this set of .r · k points, except that the stored weights on the representatives are also 
used in the clustering process. The resulting representatives are stored as level-2 
representatives. In general, when the number of representatives of level-p reaches 
m, they are converted to k level-.(p + 1) representatives. Thus, the process will 
result in increasing the number of representatives of all levels, though the number 
of representatives in higher levels will increase exponentially slower than those in 
the lower levels. At the end of processing the entire data stream (or when a specific 
need for the clustering result arises), all remaining representatives of different levels 
are clustered together in one final application of the same clustering subroutine. 

Clearly, the choice of the particular algorithm which is used for the clustering 
subroutine will have an effect on the quality of the solution. It has been shown in 
[55] that the k-medians approach works well because the quality of the solution 
obeys a similar approximation factor. 

Lemma 1 Let the subroutine used for k-medians clustering in the STREAM 
algorithm have an approximation factor of c. Then, the STREAM algorithm will 
have an approximation factor of no worse than .5 · c. 

The STREAM algorithm is not very sensitive to data stream evolution. In such cases, 
the CluStream algorithm is able to provide significantly better insights at different 
levels of temporal granularity.
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2.2 Micro-clustering: The Big Picture 

The micro-clustering framework is designed to be able to simultaneously maintain 
the results of clusters over multiple time horizons. In many cases, an analyst may 
wish to determine the clusters at a previous moment in time and compare them to the 
current clusters. Therefore, a natural design to stream clustering would be separate 
out the process into an online micro-clustering component and an offline macro-
clustering component. The online micro-clustering component requires a very 
efficient process for storage of appropriate summary statistics in a fast data stream. 
The offline component uses these summary statistics for user-centric exploration. 

We start by introducing the notations and definitions. The data stream consists of 
a set of multidimensional records .X1 . . . Xk . . . arriving at time stamps .T1 . . . Tk . . .. 
Each . Xi is a multidimensional record containing d dimensions which are denoted by 
.Xi = (x1

i . . . xd
i ). The micro-clustering framework is designed to capture summary 

information about the data stream in order to facilitate clustering and analysis over 
different time horizons. This summary information is defined by the following 
structures: 

• Micro-clusters: These structures contain statistical information about the data 
locality in terms of micro-clusters. These micro-clusters are defined as temporal 
extensions of the cluster feature vector [65]. The additivity property of the 
micro-clusters makes them a natural choice for the data stream problem. 

• Pyramidal Time Frame: The micro-clusters are stored at snapshots in time 
which follow a pyramidal pattern. This pattern provides an effective trade-off 
between the storage requirements and the ability to recall summary statistics 
from different time horizons. 

We start by providing a definition of micro-clusters. 

2.2.1 Defining Micro-clusters 

The concept of micro-clustering is similar to that in the BIRCH algorithm [65], 
except that it contains some additional information to handle the temporal aspects 
of the data: 

Definition 1 A micro-cluster for a set of d-dimensional points .Xi1 . . . Xin with time 
stamps .Ti1 . . . Tin is the .(2 · d + 3) tuple .(CF2x, CF1x, CF2t , CF1t , n), wherein 
.CF2x and .CF1x each correspond to a vector of d entries. The different components 
of the micro-cluster are as follows: 

• For each dimension, the sum of the squares of the data values is maintained 
in .CF2x . Thus, .CF2x contains d values. The pth entry of .CF2x is equal to 
.
∑n

j=1(x
p
ij
)2. 

• For each dimension, the sum of the data values is maintained in .CF1x . Thus, 
.CF1x contains d values. The pth entry of .CF1x is equal to .

∑n
j=1 x

p
ij
.
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• The sum of the squares of the time stamps .Ti1 . . . Tin is maintained in .CF2t . 
• The sum of the time stamps .Ti1 . . . Tin is maintained in .CF1t . 
• The number of data points is maintained in n. 

The data stream clustering algorithm proposed in [14] can generate approximate 
clusters in any user-specified length of history from the current instant. This is 
achieved by storing the micro-clusters at particular moments in the stream which are 
referred to as snapshots. At the same time, the current snapshot of micro-clusters 
is always maintained by the algorithm. Consider, for example, the case when the 
current clock time is . tc and the user wishes to find clusters in the stream based on 
a history of length h. Then, the macro-clustering algorithm will use some of the 
additive properties of the micro-clusters stored at snapshots . tc and .(tc − h) in order 
to find the higher level clusters in a history or time horizon of length h. Of course, 
since it is not possible to store the snapshots at each and every moment in time, it is 
important to choose particular instants of time at which it is possible to store the state 
of the micro-clusters so that clusters in any user-specified time horizon . (tc − h, tc)

can be approximated. This was achieved in [14] with the use of the concept of a 
pyramidal time frame. 

2.2.2 Pyramidal Time Frame 

The pyramidal time frame arranges the snapshots of the stream based on their level 
of recency. Snapshots are classified into different orders which can vary from 1 
to .log(T ), where T is the clock time elapsed since the beginning of the stream. 
The order of a particular class of snapshots defines the level of granularity in time at 
which the snapshots are maintained. The snapshots of different order are maintained 
as follows: 

• Snapshots of the ith order occur at time intervals of . αi , where . α is an integer 
and .α ≥ 1. Specifically, each snapshot of the ith order is taken at a moment in 
time when the clock value is exactly divisible by . αi . 

• At any given moment in time, only the last .αl+1 snapshots of order i are stored. 

The above definition allows for considerable redundancy in storage of snapshots. 
For example, the clock time of 8 is divisible by . 20, . 21, . 22, and . 23 (where .α = 2). 
Therefore, the state of the micro-clusters at a clock time of 8 simultaneously 
corresponds to order 0, order 1, order 2, and order 3 snapshots. From an implemen-
tation point of view, a snapshot needs to be maintained only once. The following 
observations are true: 

• For a data stream, the maximum order of any snapshot stored at T time units 
since the beginning of the stream mining process is .logα(T ). 

• For a data stream, the maximum number of snapshots maintained at T time 
units since the beginning of the stream mining process is .(αl + 1) · logα(T ). 

• For any user-specified time window of h, at least one stored snapshot can be 
found within .(1 + 1/αl−1) units of the current time.
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The second of the two results has been formally proven in [14]: 

Lemma 2 Let h be a user-specified time horizon, . tc be the current time, and . ts be 
the time of the last stored snapshot of any order just before the time .tc − h. Then, 
.tc − ts ≤ (1 + 1/αl−1) · h. 

For larger values of l, the time horizon can be approximated as closely as desired. 
For example, by choosing .l = 10, it is possible to approximate any time horizon 
within 0.2%, while a total of only . (210 + 1) · log2(100 ∗ 365 ∗ 24 ∗ 60 ∗ 60) ≈
32343 snapshots are required for 100 years. Since historical snapshots can be 
stored on disk and only the current snapshot needs to be maintained in main 
memory, this requirement is quite feasible from a practical point of view. It is also 
possible to specify the pyramidal time window in accordance with user preferences 
corresponding to particular moments in time such as beginning of calendar years, 
months, and days. 

2.2.3 How Micro-clusters Are Created in Real Time 

The goal of the online micro-clustering phase is to maintain statistics at a sufficiently 
high level of (temporal and spatial) granularity so that it can be effectively used by 
the offline components such as horizon-specific macro-clustering as well as evolu-
tion analysis. The algorithm works in an iterative fashion, by always maintaining 
a current set of micro-clusters. It is assumed that a total of q micro-clusters are 
stored at any moment by the algorithm. We will denote these micro-clusters by 
.M1 . . .Mq . Associated with each micro-cluster i, we create a unique id whenever 
it is first created. If two micro-clusters are merged (as will become evident from the 
details of our maintenance algorithm), a list of ids is created in order to identify 
the constituent micro-clusters. The value of q is determined by the amount of main 
memory available in order to store the micro-clusters. Therefore, typical values of 
q are significantly larger than the natural number of clusters in the data but are also 
significantly smaller than the number of data points arriving in a long period of 
time for a massive data stream. These micro-clusters represent the current snapshot 
of clusters which change over the course of the stream as new points arrive. Their 
status is stored away on disk whenever the clock time is divisible by . αi for any 
integer i. At the same time, any micro-clusters of order r which were stored at a 
time in the past more remote than .αl+r units are deleted by the algorithm. 

Whenever a new data point . Xik arrives, the micro-clusters are updated in order to 
reflect the changes. Each data point either needs to be absorbed by a micro-cluster or 
needs to be put in a cluster of its own. The first preference is to absorb the data point 
into a currently existing micro-cluster. The distance of each data point to the micro-
cluster centroids .M1 . . .Mq is determined. The distance value of the data point . Xik

to the centroid of the micro-cluster .Mj is denoted by .dist (Mj , Xik ). Since the 
centroid of the micro-cluster is available in the cluster feature vector, this value can 
be computed relatively easily. This distance is used to compute the distance of the 
cluster .Mp to the data point . Xik . In many cases, the point .Xik does not naturally
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belong to the cluster . Mp. In such cases, either the point is treated as an outlier, or a 
new cluster is created containing the data point. In some cases, related clusters may 
need to be merged. More details on how such points are identified and handled are 
provided in [14]. 

While the above process of updating is executed at the arrival of each data point, 
an additional process is executed at each clock time which is divisible by . αi for any 
integer i. At each such time, the current set of micro-clusters are stored on disk, 
together with their id list, and indexed by their time of storage. The least recent 
snapshot of order i is deleted, if .αl + 1 snapshots of such order had already been 
stored on disk, and if the clock time for this snapshot is not divisible by .αi+1. In the  
latter case, the snapshot continues to be a viable snapshot of order .(i + 1). These 
micro-clusters can then be used to form higher level clusters or an evolution analysis 
of the data stream. 

It should be pointed out that the micro-clustering model can be used in 
conjunction with fast indexing structures in order to allow anytime stream mining. 
This is particularly important in the context of data streams, since the stream speed 
is not known on an a priori basis. A particular approach along this direction is the 
ClusTree method [48], which allows the adaptation of the granularity of the cluster 
model to the stream speed. The broader principle is that it is possible to follow the 
anytime paradigm to spend as much (or as little) time as dynamically available to 
digest new events. 

While the use of snapshots is a natural way for examining the evolving stream 
at a variety of different granularities, other methods are possible for capturing the 
evolution of the data stream by incorporating decay into the micro-clusters [15] 
or by using sliding windows in conjunction with an exponential histogram of the 
temporal cluster feature vector [68]. These methods are generally preferable if the 
level of evolution in the data stream is known in advance. These different methods 
have differing trade-offs between memory requirements and flexibility, but their 
goals are similar in terms of capturing the evolution of the data stream. 

3 Density-Based Stream Clustering 

Density-based methods [18, 31] construct a density profile of the data for clustering 
purposes. Typically, kernel density estimation methods [60] are used in order to 
construct a smooth density profile of the underlying data. Subsequently, the data 
is separated out into density-connected regions. These density-connected regions 
may be of different shapes and sizes. One of the advantages of density-based 
algorithms is that an implicit shape is not assumed for the clusters. For example, 
when Euclidean distance functions are used, it is always assumed that the clusters 
have spherical shapes. Similarly, the Manhattan metric assumes that the clusters are 
of a diamond shape. In density-based clustering, connected regions of high density 
may often have arbitrary shapes. Another aspect of density-based clustering is that 
it does not pre-decide the number of clusters. Rather, a threshold on the density is
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used in order to determine the connected regions. Of course, this changes the nature 
of the parameter which needs to be presented to the algorithm (density threshold 
instead of the number of clusters), but it does not necessarily make the approach 
parameter-free. 

The main challenge in the streaming scenario is to construct density-based 
algorithms, which can be efficiently executed in a single pass of the data, since 
the process of density estimation may be computationally intensive. There are two 
broad classes of techniques in this respect: 

• The first class of techniques extends the micro-clustering technique to this case, 
by relaxing the constraint on the number of micro-clusters and imposing a 
constraint on the radius and “weight” of each micro-cluster. The dense regions 
are generated by connecting together the dense micro-clusters which satisfy a 
condition on connectivity similar to that in [31]. 

• The second class of techniques divides the data space into grids and then 
determines the dense grids. The dense regions in the data are reconstructed by 
piecing together the connected dense grids. 

We will discuss both these classes of techniques in this section. 

3.1 DenStream: Density-Based Micro-clustering 

The DenStream algorithm [24] approach combines micro-clustering with a density 
estimation process for effective clustering. The first step is to define a core object, 
which is defined as an object, in the .ε-neighborhood of which the weight of the data 
points is at least . μ. A  density area is defined as the union of the .ε-neighborhoods of 
the core objects. 

In the context of streaming data, it is difficult to determine these dense regions 
naturally. Therefore, dense regions of smaller granularity are defined in the form 
of core micro-clusters. A core micro-cluster is defined as a set of data points with 
weight at least . μ and for which the radius of the micro-cluster about its center is 
less than . ε. We note that the weight of a data point is based on a decay weighted 
function of the time that it last arrived. Therefore, if . δt be the time since a data point 
arrived, its weight is given by 

.f (δt) = 2−δt (1) 

Since the radius of the micro-cluster is constrained to be less than . ε, it implies 
that the number of micro-clusters is much larger than the number of natural clusters 
in the data for small values of . ε. At the same time, the number of core micro-
clusters is much smaller than the number of points in the data stream since each 
cluster contains a weight of at least . μ. We note that the key difference from the 
standard micro-clustering definition is that the number of micro-clusters is not 
constrained, though the radius of each micro-cluster is constrained. Thus, this
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approach approaches a different parameter set to the underlying application. The 
core micro-cluster is also referred to as a c-micro-cluster. 

One immediate observation is that when a micro-cluster is first formed by such 
an algorithm, it is unlikely to contain the requisite weight of data points required to 
be defined as a micro-cluster. Therefore, the concepts of potential core micro-cluster 
and outlier micro-cluster are defined in [24]. In the former case, the micro-cluster 
contains a weight of at least .β · μ (for some .β ∈ (0, 1)), and in the latter case, it 
contains a weight less than .β ·μ. Furthermore, since the weights of points decay over 
time, a cluster may also change from being a p-micro-cluster to an o-micro-cluster, 
if sufficient data points are not added to it in order to compensate for the decay. 
Thus, during its lifecycle, a micro-cluster may move from being an outlier micro-
cluster to being a potential core micro-cluster and finally to the stage of being a core 
micro-cluster. These two kinds of micro-clusters are referred to as p-micro-clusters 
and o-micro-clusters, respectively. 

When a new data point arrives, the following can be the possibilities in terms of 
what is done with it: 

• The first step is to try to insert it into a p-micro-cluster, as long as it is possible 
to do so, without violating the radius constraint. 

• If the first step is not possible, the next step is to try to insert it into an o-micro-
cluster, as long as this can be done without violating the radius constraint. 

• If the first and second steps are not possible, then a new o-micro-cluster is 
created containing this data point. 

One challenge of this approach is that the number of o-micro-clusters will increase 
with time, as new o-micro-clusters are created, and some of the p-micro-clusters 
decay back to o-micro-clusters. Therefore, from time to time, we purge some of the 
o-micro-clusters, which will low potential for becoming p-micro-clusters. The larger 
the time . δt that has elapsed since the creation of an o-micro-cluster, the greater is 
the weight expected to be. Therefore, every . Tp time periods, we prune all those 
micro-clusters, whose weight is less than the threshold .ψ(δt), where 

.ψ(δt) = 2−λ·(δt+Tp) − 1

2−λ·(Tp) − 1
(2) 

This process continues in order to maintain the micro-clusters dynamically. We 
note that the individual micro-clusters can be reconstructed into density-connected 
regions in order to create the final set of clusters of arbitrary shape. The overall 
approach for creating the clusters of arbitrary shape is discussed in detail in [24]. 

3.2 Grid-Based Streaming Algorithms 

Grid-based methods are a class of density-based streaming algorithms, in which a 
grid structure is used in order to quantify the density at each point in the data. The
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core idea is that the data is discretized into ranges along each dimension, and this 
also results in dividing the data into cells along different dimensions. The number of 
points in each cell defines the density of that cell. Then, the dense cells in the data 
can be aggregated in order to determine the dense regions for the clustering. 

3.2.1 D-Stream Algorithm 

A method called D-Stream for real-time density-based clustering of streaming data 
was proposed in [25]. The algorithm has many similarities with [31] in terms of 
trying to determine fine-grained regions of high density. The main difference at the 
conceptual level is that this is done with the use of grids rather than micro-clusters. 
As in the previous case, a decay function .f (δt (X)) is used to denote the weight of 
a point . X since the time of its arrival .δt (X, tc) units ago from the current time . tc: 

.f (δt (X, tc)) = μ−δt (X,tc) (3) 

Here, we assume that .μ > 1, which is slightly different from the notations in [25]. 
We note that this decay function is identical to that proposed in [15, 31], by defining 
the relationship with respect to the parameter . λ and assuming that .μ = 2λ. Under 
the assumption of [25] that exactly one record arrives at each time stamp, it can be 
shown that the sum of the weights of all data points is no larger than .μ/(μ − 1). 

The grids are defined by discretizing these ranges along each dimension. For the 
ith dimension, the discretization is performed into . pi different ranges along the ith 
dimension. This discretization naturally defines a total of .η = ∏

i pi d-dimensional 
cells. For each cell S, its weight .W(S, tc) is defined as the current time . tc as follows: 

.W(S, tc) =
∑

X∈S

f (δt (X), tc) (4) 

We note that the grid is essentially analogous to the radius-constrained micro-cluster 
defined in the DenStream algorithm. Thus, as in the case of DenStream, the density 
of a grid is constantly changing over time. However, it is never necessary to update 
any decay-based statistics either in grids or in micro-clusters at each time instant 
[15, 25]. This is because all grids decay at the same proportional rate, and the update 
can be lazily performed only when the density value in the grid is updated with the 
addition of a new data point. 

The next step is to define what it means for a grid to be dense. Since the total 
density over all grids is no larger than .μ/(μ−1), it follows that the average density 
of each grid is no larger than .μ/(η · (μ − 1)). Therefore, a grid is defined as 
dense when its density is a constant times larger than this factor. This is essentially 
analogous to the concept of a c-micro-cluster defined in [31]. Analogous to the 
concept of an o-micro-cluster and a p-micro-cluster, the work in [25] divides the 
non-dense grid cells into sparse grid cells and transitional grid cells, with the use
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of a smaller threshold on the density. Grid cells can change between the different 
states of being sparse, transitional, or dense, both because of the addition of new 
data points and because of decay. 

One observation is that the number of grid cells .η = ∏d
i=1 pi is exponentially 

dependent upon the dimensionality d. However, in practice, most of these grid 
cells are empty, and the information for empty grids need not be stored. This 
may not be sufficient in many real applications, where many outlier points may 
sporadically appear in the data. The work in [25] designs methods for identifying 
and removing such sporadic grids from the data. The maintained dense grids can 
then be consolidated into larger dense regions in the data. As in the case of [31], 
this is defined in the form of density-connected grids, where the adjacency of two 
dense grids is treated as a density connection. For the precise details of the dense 
region construction, we refer the reader to [25]. Thus, it is evident that grid-based 
and micro-cluster-based density clusters share a number of conceptual similarities 
at various stages of the algorithm. 

One weakness of the approach is that a significant number of non-empty grid 
cells need to be discarded in order to keep the memory requirements in check. In 
many cases, such grid cells occur at the borders of the clusters. The discarding 
of such cells may lead to degradation in cluster quality. Therefore, a method has 
been proposed in [45] to design a variation of the D-Stream method (known as DD-
Stream), which includes the data points at the borders into adjacent denser grids, 
which are retained by the algorithm. It has been shown that such an approach leads 
to some improvements in cluster quality. Methods based on shared density between 
micro-clusters are discussed in [39]. 

3.2.2 Other Grid-Based Algorithms 

The method in [36] updates a full-dimensional grid of the incoming data stream. 
The clusters are discovered from the updated density values in this grid. At any 
given time, the density values in the grid can be used in order to determine the 
updated and most effective clusters. 

An important point to be kept in mind is that grid-based algorithms require the 
discretization of the data along the different dimensions in order to create the grid 
cells. The granularity of the discretization is a critical design choice at the very 
beginning of the algorithm. Unfortunately, at the beginning of the stream arrival, 
very little may be known about how the underlying data points are distributed, and 
therefore it is difficult to choose the level of discretization along each dimension 
in an optimal way. Furthermore, the appropriate level of discretization for each 
data locality may be different, and a single global level of discretization may be 
suboptimal over different data localities. 

Therefore, the work in [57] uses a dynamic approach called Statsgrid for the 
discretization process, wherein the data cells are recursively partitioned based on 
their local density. The algorithm starts off with cells of equal size. As data points 
are added to the cells and the number of points in a cell becomes sufficiently large,
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the algorithm partitions the cell into two along one of the dimensions. This process 
can of course be repeated recursively each time any of the children cells become 
dense. At some point, the maximum level of allowed granularity is reached, and 
such a cell is called a unit cell, which cannot be further divided. We note that this 
approach naturally leads to a hierarchical clustering of the data, which can be very 
useful in many applications. Nevertheless, the work does not use temporal decay 
and therefore does not adjust very well to an evolving data stream. 

This method has therefore been extended to the CellTree method [58], which 
allows decay in the statistics. It explicitly uses a CellTree data structure in order to 
maintain the hierarchical relationships among the grid cells. Furthermore, when the 
data cells decay with time, it may be possible to merge adjacent cells. Therefore, the 
method in [58] provides greater flexibility than discussed in the original algorithm. 

4 Probabilistic Streaming Algorithms 

One of the common methods for probabilistic clustering is that of mixture modeling, 
in which the data is assumed to be generated by a mixture of known distributions 
such as the Gaussian distribution. The parameters of this distribution are then 
typically learned with an EM algorithm from the actual data records [61]. The 
main argument in [61] is that probability density-based clustering algorithms are 
much more efficient than applying EM on the entire data set. On the other hand, 
it has been shown that it is possible to use the EM algorithm in order to provide 
an efficient update process for newly arriving data. Nevertheless, since the EM 
algorithm requires one to learn a large number of parameters, such an approach 
is unlikely to be effective when the underlying data is evolving rapidly. 

Another area where probabilistic models are commonly used is for text clus-
tering. A common technique that is used to create a soft clustering of the data 
for the case of text is that of topic modeling [43]. In this technique, soft clusters 
are associated with the data in which words and documents are probabilistically 
assigned to the different partitions. Since the topic modeling approach uses an EM 
algorithm, it can sometimes be slow in practice. Therefore, a method has been 
proposed in [20] for topic modeling over text streams. The work in [20] proposes 
online variants of three common batch algorithms for topic modeling. These 
correspond to the Latent Dirichlet Allocation (LDA) [22], Dirichlet Compound 
Multinomial (DCM) mixtures [30], and von-Mises Fisher (vMF) mixture models 
[21]. It was shown in [20] that the online variant of the vMF approach provides the 
best results. A detailed study of these topic modeling algorithms is beyond the scope 
of this survey. Interested readers are referred to [20].
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5 Clustering High-Dimensional Streams 

In many circumstances, data stream is very high-dimensional because a large 
number of features are available for the mining process. The high-dimensional 
case presents a special challenge to clustering algorithms even in the traditional 
domain of static data sets. This is because of the sparsity of the data in the high-
dimensional case. In high-dimensional space, all pairs of points tend to be almost 
equidistant from one another. As a result, it is often unrealistic to define distance-
based clusters in a meaningful way. Some recent work on high-dimensional data 
uses techniques for projected clustering which can determine clusters for a specific 
subset of dimensions [3, 17]. In these methods, the definitions of the clusters are 
such that each cluster is specific to a particular group of dimensions. This alleviates 
the sparsity problem in high-dimensional space to some extent. Even though a 
cluster may not be meaningfully defined on all the dimensions because of the 
sparsity of the data, some subset of the dimensions can always be found on which 
particular subsets of points form high-quality and meaningful clusters. Of course, 
these subsets of dimensions may vary over the different clusters. Such clusters are 
referred to as projected clusters [3]. 

5.1 The HPSTREAM Method 

The micro-clustering method can also be extended to the case of high-dimensional 
projected stream clustering. The algorithm is referred to as HPSTREAM. In [15, 16], 
methods have been proposed for high-dimensional projected clustering of data 
streams. The basic idea is to use an (incremental) algorithm in which we associate 
a set of dimensions with each cluster. This corresponds to the standard micro-
clustering method as discussed in [15], with the main difference that the distances 
from data points to clusters are computed on the basis of dimension-specific clusters. 
Therefore, additional information needs to be associated with a cluster in order 
to capture the set of dimensions associated with them. The set of dimensions is 
represented as a d-dimensional bit vector .B(Ci) for each cluster structure in .FCS. 
This bit vector contains a 1 bit for each dimension which is included in cluster . Ci . In  
addition, the maximum number of clusters k and the average cluster dimensionality 
l are used as an input parameter. The average cluster dimensionality l represents the 
average number of dimensions used in the cluster projection. An iterative approach 
is used in which the dimensions are used to update the clusters and vice versa. The 
structure in .FCS uses a decay-based mechanism in order to adjust for evolution in 
the underlying data stream. For a data point, which arrived . δt units ago, its weight 
is assumed to be .2−λ·δt , where . λ is the decay rate. 

Therefore, the micro-clusters for the HPSTREAM algorithm contain decay-
based statistics, wherein the micro-clusters are similar to the CluStream algorithm. 
Furthermore, the overall framework of the HPSTREAM algorithm is quite similar
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because data points are assigned to micro-clusters on the basis of their projected 
distances. The main difference is that each component of the additive micro-cluster 
statistics is a decay-based weight. In addition, the bit vector corresponding to the 
choice of dimensions is stored with the micro-cluster statistics. Clearly, a number 
of changes need to be incorporated into the CluStream approach in order to account 
for these changes: 

• We note that the decay-based statistics ensure that the weights of the micro-
clusters change in each time stamp. However, it is not necessary to update the 
statistics at each time stamp, since all the micro-clusters decay at the same rate. 
Rather, we perform the update only when a new point is inserted into the data. 
When a new point is inserted and . δx is the time interval since the last time, then 
all micro-cluster statistics are multiplied by .2−λ·δx before adding a data point to 
the micro-cluster statistics. 

• The average distance to each cluster is now computed on the basis of the 
projected dimensions specific to that cluster. The bit vector in the micro-cluster 
statistics is used in order to decide on the exact set of dimensions to use. 

• The projected dimensions in the different clusters are updated periodically, 
so that the most compact dimensions are retained for each cluster. The 
corresponding bit vector in the micro-cluster statistics is updated. 

It has been shown in [15] that the incorporation of projections can significantly 
improve the effectiveness of the approach. The details are discussed in [15]. 

5.2 Other High-Dimensional Streaming Algorithms 

A variety of other high-dimensional streaming clustering algorithms have been pro-
posed after the first HPSTREAM framework. In particular, a grid-based algorithm 
was proposed in [51] for high-dimensional projected clustering of data streams. 
High-dimensional projected clustering has also been applied to other domains such 
as uncertain data. For example, methods for high-dimensional projected clustering 
of uncertain data streams have been proposed in [8, 62]. 

Most of the methods discussed in the literature use a k-means type approach, 
which fixes the number of clusters in the data. Furthermore, a k-means type 
approach also makes implicit assumptions about the shapes of the underlying 
clusters. The work in [54] proposes a density-based method for high-dimensional 
stream clustering. Such an approach has the virtue of recognizing the fact that the 
number and shape of the clusters in the stream may vary over time. The work 
in [54] proposes HDDSTREAM, which is a method for high-dimensional stream 
clustering. It generalizes the density-based approach proposed in [31] in order 
to incorporate subspace analysis in the clustering process. Since the method in 
[31] was originally designed to handle variations in the number of clusters in the 
stream, as well as different shapes of clusters, these virtues are inherited by the 
HDDSTREAM method of [54] as well.
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A number of methods have also been proposed for high-dimensional projected 
clustering of dynamic data [49, 64]. While these methods can be effectively used 
for dynamic data, they do require access to the raw data for clustering purposes. 
Therefore, these methods are not streaming techniques in the strict sense. 

6 Clustering Categorical Streams 

Many data streams are defined on a domain of discrete values in which the attributes 
are unordered and take on one of a very large number of possible discrete values. 
In such cases, the cluster feature vector of the micro-clustering approach does not 
represent the values in the underlying data well. Therefore, methods are required in 
order to perform stream clustering algorithms in such scenarios. The simplest case 
of categorical stream clustering is that of binary data in which the data takes on 
values from .{0, 1}. Binary data can be considered both quantitative and symbolic, 
and therefore almost all stream algorithms can be used directly for this case. 

6.1 Clustering Binary Data Streams with k-Means 

The simplest case of categorical data is binary data, in which the discrete attributes 
may take on only one of the two possible values. Binary data is also a special case 
of quantitative data because an ordering can always be assigned to discrete values 
as long as there are only two of them. Therefore, virtually all of the streaming 
algorithms can be used for binary data. Nevertheless, it can sometimes be useful 
to leverage a method which is specifically designed for the case of binary data. 

An algorithm for utilizing optimizations of k-means algorithms for data streams 
is proposed in [56]. The main observation in [56] is that the binary transactions 
are often sparse. This can be used in order to greatly speed up the distance 
computations. Since distance computations form the bottleneck operation for such 
algorithms, a speedup of the distance computations also greatly speeds up the 
underlying algorithm. From a practical point of view, this means that only a small 
fraction of the features in the transaction take on the 1-value. Therefore, the general 
approach used in [56] is that first the distance of the null transaction to each of 
the centroids is computed. Subsequently, for each position in the transaction, the 
effect of that position on the distances is computed. Since many distance functions 
are separable functions across different dimensions, this can be achieved quite 
effectively. It has been shown in [56] that these speedups can be implemented very 
effectively at no reduction in quality of the underlying results.
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6.2 The StreamCluCD Algorithm 

The Squeezer algorithm was a one-pass algorithm for clustering categorical data 
[41]. The StreamCluCD approach [42] is the streaming extension of this framework. 
The essential idea behind the algorithm is that when a data point comes in, it is 
placed into a cluster of its own. For subsequent incoming points, we compute their 
similarity to the existing clusters in the data. If the incoming points are sufficiently 
similar to one of the existing clusters, then they are placed in that cluster. Otherwise, 
the incoming data point is placed in a cluster of its own. A key operation in the 
StreamCluCD algorithm is to maintain the frequency counts of the attribute values in 
each cluster. The lossy counting approach introduced in [52] is used for this purpose. 
The motivation for this is to reduce the memory footprint for maintaining the 
frequency counts. The issue of memory requirements becomes especially important 
when the number of possible discrete values of each attribute increases. This is 
referred to as the massive domain scenario and will be discussed in the next section. 

6.3 Massive-Domain Clustering 

Massive-domains are those data domains in which the number of possible values for 
one or more attributes is very large. Examples of such domains are as follows: 

• In network applications, many attributes such as IP addresses are drawn over 
millions of possibilities. In a multidimensional application, this problem is 
further magnified because of the multiplication of possibilities over different 
attributes. 

• Typical credit card transactions can be drawn from a universe of millions of 
different possibilities depending upon the nature of the transactions. 

• Supermarket transactions are often drawn from a universe of millions of 
possibilities. In such cases, the determination of patterns that indicate different 
kinds of classification behavior may become infeasible from a space and 
computational efficiency perspective. 

The massive-domain size of the underlying data restricts the computational ap-
proach which may be used for discriminatory analysis. Thus, this problem is 
significantly more difficult than the standard clustering problem in data streams. 
Space efficiency is a special concern in the case of data streams because it is 
desirable to hold most of the data structures in main memory in order to maximize 
the processing rate of the underlying data. Smaller space requirements ensure 
that it may be possible to hold most of the intermediate data in fast caches, 
which can further improve the efficiency of the approach. Furthermore, it may 
often be desirable to implement stream clustering algorithms in a wide variety of 
space-constrained architectures such as mobile devices, sensor hardware, or cell



Clustering in Streams 287

processors. Such architectures present special challenges to the massive-domain 
case if the underlying algorithms are not space-efficient. 

The problem of clustering can be extremely challenging from a space and 
time perspective in the massive-domain case. This is because one needs to retain 
the discriminatory characteristics of the most relevant clusters in the data. In the 
massive-domain case, this may entail storing the frequency statistics of a large 
number of possible attribute values. While this may be difficult to do explicitly, 
the problem is further intensified by the large volume of the data stream which 
prevents easy determination of the importance of different attribute values. The work 
in [4] proposes a sketch-based approach in order to keep track of the intermediate 
statistics of the underlying clusters. These statistics are used in order to make 
approximate determinations of the assignment of data points to clusters. A number 
of probabilistic results are provided in [4], which indicate that these approximations 
are sufficiently accurate to provide similar results to an infinite-space clustering 
algorithm with high probability. 

The data stream . D contains d-dimensional records denoted by .X1 . . . XN . . .. 
The attributes of record . Xi are denoted by .(x1

i . . . xd
i ). It is assumed that the attribute 

value . xk
i is drawn from the unordered domain set .Jk = {vk

1 . . . vk
Mk }. The  value of  

.Mk denotes the domain size for the kth attribute. The value of .Mk can be very 
large and may range in the order of millions or billions. From the point of view of 
a clustering application, this creates a number of challenges, since it is no longer 
possible to hold the cluster statistics in a space-limited scenario. 

The work in [4] uses the count-min sketch [26] for the problem of clustering 
massive-domain data streams. In the count-min sketch, a hashing approach is 
utilized in order to keep track of the attribute value statistics in the underlying data. 
We use .w = �ln(1/δ)� pairwise independent hash functions, each of which maps 
onto uniformly random integers in the range .h = [0, e/ε], where e is the base of the 
natural logarithm. The data structure itself consists of a two-dimensional array with 
.w · h cells with a length of h and a width of w. Each hash function corresponds to 
one of w one-dimensional arrays with h cells each. In standard applications of the 
count-min sketch, the hash functions are used in order to update the counts of the 
different cells in this two-dimensional data structure. For example, consider a one-
dimensional data stream with elements drawn from a massive set of domain values. 
When a new element of the data stream is received, we apply each of the w hash 
functions to map onto a number in .[0 . . . h − 1]. The count of each of the set of w 
cells is incremented by 1. In order to estimate the count of an item, we determine the 
set of w cells to which each of the w hash functions maps and compute the minimum 
value among all these cells. Let . ct be the true value of the count being estimated. 
We note that the estimated count is at least equal to . ct , since we are dealing with 
nonnegative counts only, and there may be an over-estimation because of collisions 
among hash cells. As it turns out, a probabilistic upper bound to the estimate may 
also be determined. It has been shown in [26] that for a data stream with T arrivals, 
the estimate is at most .ct + ε · T with probability at least .1 − δ.
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Fig. 1 The sketch-based clustering algorithm (CSketch algorithm) 

The CSketch algorithm uses the number of clusters k and the data stream . D
as input to the algorithm (Fig. 1). The clustering algorithm is partition-based and 
assigns incoming data points to the most similar cluster centroid. The frequency 
counts for the different attribute values in the cluster centroids are incremented 
with the use of the sketch table. These frequency counts can be maintained only 
approximately because of the massive-domain size of the underlying attributes in 
the data stream. Similarity is measured with the computation of the dot product 
function between the incoming point and the centroid of the different clusters. 
This computation can be performed only approximately in the massive-domain 
case, since the frequency counts for the values in the different dimensions cannot 
be maintained explicitly. For each cluster, we maintain the frequency sketches of 
the records which are assigned to it. Specifically, for each cluster, the algorithm 
maintains a separate sketch table containing the counts of the values in the incoming 
records. The same hash function is used for each table. The algorithm starts off by 
initializing the counts in each sketch table to 0. Subsequently, for each incoming 
record, we will update the counts of each of the cluster-specific hash tables. In 
order to determine the assignments of data points to clusters, the dot products of 
the d-dimensional incoming records to the frequency statistics of the values in the 
different clusters are computed. This is sometimes not possible to do explicitly, 
since the precise frequency statistics are not maintained. Let .qj

r (xr
i ) represent 

the frequency of the value . xr
i in the j th cluster. Let . mi be the number of data 

points assigned to the j th cluster. Then, the d-dimensional statistics of the record 
.(x1

i . . . xd
i ) for the j th cluster is given by .(qj

1 (x1
i ) . . . q

j
d (xd

i )). Then, the frequency-
based dot product .Dj(Xi) of the incoming record with statistics of cluster j is given 
by the dot product of the fractional frequencies .(qj

1 (x1
i )/mj . . . q

j
d (xd

i )/mj ) of the 
attribute values .(x1

i . . . xd
i )with the frequencies of these same attribute values within 

record . Xi . We note that the frequencies of the attribute values with the record . Xi are
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unit values corresponding to .(1, . . . 1). Therefore, the corresponding dot product is 
the following: 

.Dj(Xi) =
d∑

r=1

q
j
r (xr

i )/mj (5) 

The incoming record is assigned to the cluster for which the estimated dot product 
is the largest. We note that the value of .qj

r (xr
i ) cannot be known exactly but can 

only be estimated approximately because of the massive-domain constraint. There 
are two key steps which use the sketch table during the clustering process: 

• Updating the sketch table and other required statistics for the corresponding 
cluster for each incoming record. 

• Comparing the similarity of the incoming record to the different clusters with 
the use of the corresponding sketch tables. 

First, we discuss the process of updating the sketch table, once a particular 
cluster has been identified for assignment. For each record, the sketch table entries 
corresponding to the attribute values on the different dimensions are incremented. 
For each incoming record . Xi , the  w hash functions are applied to the strings 
corresponding to the attribute values in it. Let m be the index of the cluster to which 
the data point is assigned. Then, exactly .d · w entries in the sketch table for cluster 
m are updated by applying the w hash functions to each of the d strings which are 
denoted by .x1

i ⊕ 1 . . . xd
i ⊕ d. The corresponding entries are incremented by one 

unit each. 
In order to pick a cluster for assignment, the approximate dot products across 

different clusters need to be computed. The record is converted to its sketch 
representation by applying the w hash functions to each of these d different attribute 
values. We retrieve the corresponding d sketch table entries for each of the w hash 
functions and each cluster. For each of the w hash functions for the sketch table 
for cluster j , the  d counts are simply estimates of the value of .qj

1 (x1
i ) . . . q

j
d (xd

i ). 
Specifically, let the count for the entry picked by the lth hash function corresponding 
to the rth dimension of record . Xi in the sketch table for cluster j be denoted by .cij lr . 
Then, we estimate the dot product .Dij between the record . Xi and the frequency 
statistics for cluster j as follows: 

.Dij = minl

d∑

r=1

cij lr/mj (6) 

The value of .Dij is computed over all clusters j , and the cluster with the largest dot 
product to the record . Xi is picked for assignment. 

It has been shown in [4] that this assignment process approximates an infinite-
space clustering algorithm quite well. In addition, the experimental results in [4] 
show that the clustering process can be replicated almost exactly in practice with 
the use of this approximation process. Thus, the work in [4] proposes a fast and 
space-efficient method for clustering massive-domain data streams.
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7 Text Stream Clustering 

The problem of streaming text clustering is particularly challenging in the context 
of text data because of the fact that the clusters need to be continuously main-
tained in real time. One of the earliest methods for streaming text clustering was 
proposed in [67]. This technique is referred to as the Online Spherical k-Means 
Algorithm (OSKM), which reflects the broad approach used by the methodology. 
This technique divides up the incoming stream into small segments, each of which 
can be processed effectively in main memory. A set of k-means iterations are applied 
to each such data segment in order to cluster them. The advantage of using a 
segment-wise approach for clustering is that since each segment can be held in main 
memory, we can process each data point multiple times as long as it is held in main 
memory. In addition, the centroids from the previous segment are used in the next 
iteration for clustering purposes. A decay factor is introduced in order to age out 
the old documents, so that the new documents are considered more important from 
a clustering perspective. This approach has been shown to be extremely effective in 
clustering massive text streams in [67]. 

A different method for clustering massive text and categorical data streams is 
discussed in [6]. The method discussed in [6] uses an approach which examines 
the relationship between outliers, emerging trends, and clusters in the underlying 
data. Old clusters may become inactive and eventually get replaced by new clusters. 
Similarly, when newly arriving data points do not naturally fit in any particular 
cluster, these need to be initially classified as outliers. However, as time progresses, 
these new points may create a distinctive pattern of activity which can be recognized 
as a new cluster. The temporal locality of the data stream is manifested by these 
new clusters. For example, the first web page belonging to a particular category in 
a crawl may be recognized as an outlier but may later form a cluster of documents 
of its own. On the other hand, the new outliers may not necessarily result in the 
formation of new clusters. Such outliers are true short-term abnormalities in the 
data since they do not result in the emergence of sustainable patterns. The approach 
discussed in [6] recognizes new clusters by first recognizing them as outliers. This 
approach works with the use of a summarization methodology, in which we use the 
concept of condensed droplets [6] in order to create concise representations of the 
underlying clusters. 

As in the case of the OSKM algorithm, we ensure that recent data points are 
given greater importance than older data points. This is achieved by creating a time-
sensitive weight for each data point. It is assumed that each data point has a time-
dependent weight defined by the function .f (t). The function .f (t) is also referred 
to as the fading function. The fading function .f (t) is a non-monotonic decreasing 
function which decays uniformly with time t . The aim of defining a half-life is 
to quantify the rate of decay of the importance of each data point in the stream 
clustering process. The decay rate is defined as the inverse of the half-life of the data 
stream. We denote the decay rate by .λ = 1/t0. We denote the weight function of 
each point in the data stream by .f (t) = 2−λ·t . From the perspective of the clustering



Clustering in Streams 291

process, the weight of each data point is .f (t). It is easy to see that this decay function 
creates a half-life of . 1/λ. It is also evident that by changing the value of . λ, it is  
possible to change the rate at which the importance of the historical information in 
the data stream decays. 

When a cluster is created during the streaming process by a newly arriving data 
point, it is allowed to remain as a trend-setting outlier for at least one half-life. 
During that period, if at least one more data point arrives, then the cluster becomes 
an active and mature cluster. On the other hand, if no new points arrive during a 
half-life, then the trend-setting outlier is recognized as a true anomaly in the data 
stream. At this point, this anomaly is removed from the list of current clusters. We 
refer to the process of removal as cluster death. Thus, a new cluster containing one 
data point dies when the (weighted) number of points in the cluster is . 0.5. The  same  
criterion is used to define the death of mature clusters. A necessary condition for 
this criterion to be met is that the inactivity period in the cluster has exceeded the 
half-life . 1/λ. The greater the number of points in the cluster, the greater the level by 
which the inactivity period would need to exceed its half-life in order to meet the 
criterion. This is a natural solution since it is intuitively desirable to have stronger 
requirements (a longer inactivity period) for the death of a cluster containing a larger 
number of points. 

The statistics of the data points are captured in summary statistics, which are 
referred to as condensed droplets. These represent the word distributions within 
a cluster and can be used in order to compute the similarity of an incoming data 
point to the cluster. The overall algorithm proceeds as follows. At the beginning of 
algorithmic execution, we start with an empty set of clusters. As new data points 
arrive, unit clusters containing individual data points are created. Once a maximum 
number k of such clusters have been created, we can begin the process of online 
cluster maintenance. Thus, we initially start off with a trivial set of k clusters. These 
clusters are updated over time with the arrival of new data points. 

When a new data point . X arrives, its similarity to each cluster droplet is 
computed. In the case of text data sets, the cosine similarity measure between 
.DF1 and . X is used. The similarity value .S(X,Cj ) is computed from the incoming 
document . X to every cluster . Cj . The cluster with the maximum value of . S(X,Cj )

is chosen as the relevant cluster for data insertion. Let us assume that this cluster is 
.Cmindex . We use a threshold denoted by thresh  in order to determine whether the 
incoming data point is an outlier. If the value of .S(X,Cmindex) is larger than the 
threshold thresh, then the point . X is assigned to the cluster .Cmindex . Otherwise, 
we check if some inactive cluster exists in the current set of cluster droplets. If no 
such inactive cluster exists, then the data point . X is added to .Cmindex . On the other 
hand, when an inactive cluster does exist, a new cluster is created containing the 
solitary data point . X. This newly created cluster replaces the inactive cluster. We 
note that this new cluster is a potential true outlier or the beginning of a new trend 
of data points. Further understanding of this new cluster may only be obtained with 
the progress of the data stream. 

In the event that . X is inserted into the cluster .Cmindex , we update the statistics 
of the cluster in order to reflect the insertion of the data point and temporal
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decay statistics. Otherwise, we replace the most inactive cluster by a new cluster 
containing the solitary data point . X. In particular, the replaced cluster is the least 
recently updated cluster among all inactive clusters. This process is continuously 
performed over the life of the data stream, as new documents arrive over time. The 
work in [6] also presents a variety of other applications of the stream clustering 
technique such as evolution and correlation analysis. 

A different way of utilizing the temporal evolution of text documents in the 
clustering process is described in [40]. Specifically, the work in [40] uses  bursty 
features as markers of new topic occurrences in the data stream. This is because the 
semantics of an up-and-coming topic are often reflected in the frequent presence of 
a few distinctive words in the text stream. At a given period in time, the nature of 
relevant topics could lead to bursts in specific features of the data stream. Clearly, 
such features are extremely important from a clustering perspective. Therefore, the 
method discussed in [40] uses a new representation, which is referred to as the 
bursty feature representation for mining text streams. In this representation, a time-
varying weight is associated with the features depending upon its burstiness. This 
also reflects the varying importance of the feature to the clustering process. Thus, 
it is important to remember that a particular document representation is dependent 
upon the particular instant in time at which it is constructed. 

Another issue that is handled effectively in this approach is an implicit reduction 
in dimensionality of the underlying collection. Text is inherently a high-dimensional 
data domain, and the pre-selection of some of the features on the basis of their bursti-
ness can be a natural way to reduce the dimensionality of document representation. 
This can help in both the effectiveness and efficiency of the underlying algorithm. 

The first step in the process is to identify the bursty features in the data stream. In 
order to achieve this goal, the approach uses Kleinberg’s 2-state finite automaton 
model [47]. Once these features have been identified, the bursty features are 
associated with weights which depend upon their level of burstiness. Subsequently, 
a bursty feature representation is defined in order to reflect the underlying weight of 
the feature. Both the identification and the weight of the bursty feature are dependent 
upon its underlying frequency. A standard k-means approach is applied to the new 
representation in order to construct the clustering. It was shown in [40] that the 
approach of using burstiness improves the cluster quality. One criticism of the work 
in [40] is that it is mostly focused on the issue of improving effectiveness with the 
use of temporal characteristics of the data stream and does not address the issue of 
efficient clustering of the underlying data stream. 

In general, it is evident that feature extraction is important for all clustering 
algorithms. While the work in [40] focuses on using temporal characteristics of the 
stream for feature extraction, the work in [50] focuses on using phrase extraction for 
effective feature selection. This work is also related to the concept of topic modeling, 
which will be discussed in detail in the next section. This is because the different 
topics in a collection can be related to the clusters in a collection. The work in [50] 
uses topic modeling techniques for clustering. The core idea in the work of [50] is  
that individual words are not very effective for a clustering algorithm because they 
miss the context in which the word is used. For example, the word “star” may either
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refer to a celestial body or to an entertainer. On the other hand, when the phrase 
“fixed star” is used, it becomes evident that the word “star” refers to a celestial 
body. The phrases that are extracted from the collection are also referred to as topic 
signatures. 

The use of such phrasal clarification for improving the quality of the clustering is 
referred to as semantic smoothing because it reduces the noise that is associated with 
semantic ambiguity. Therefore, a key part of the approach is to extract phrases from 
the underlying data stream. After phrase extraction, the training process determines 
a translation probability of the phrase to terms in the vocabulary. For example, 
the word “planet” may have high probability of association with the phrase “fixed 
star” because both refer to celestial bodies. Therefore, for a given document, a 
rational probability count may also be assigned to all terms. For each document, 
it is assumed that all terms in it are generated either by a topic signature model or 
by a background collection model. 

The approach in [50] works by modeling the soft probability .p(w|Cj ) for word 
w and cluster . Cj . The probability .p(w|Cj ) is modeled as a linear combination 
of two factors: (a) a maximum likelihood model that computes the probabilities 
of generating specific words for each cluster and (b) an indirect (translated) word 
membership probability that first determines the maximum likelihood probability 
for each topic signature, then multiplying with the conditional probability of each 
word, given the topic signature. We note that we can use .p(w|Cj ) in order to 
estimate .p(d|Cj ) by using the product of the constituent words in the document. 
For this purpose, we use the frequency .f (w, d) of word w in document d. 

.p(d|Cj ) =
∏

w∈d

p(w|Cj)
f (w,d) (7) 

We note that in the static case, it is also possible to add a background model 
in order to improve the robustness of the estimation process. This is however not 
possible in a data stream because of the fact that the background collection model 
may require multiple passes in order to build effectively. The work in [50] maintains 
these probabilities in online fashion with the use of a cluster profile, which weights 
the probabilities with the use of a fading function. We note that the concept of cluster 
profile is analogous to the concept of condensed droplet introduced in [6]. The key 
algorithm (denoted by OCTS) is to maintain a dynamic set of clusters into which 
documents are progressively assigned with the use of similarity computations. It has 
been shown in [50] how the cluster profile can be used in order to efficiently compute 
.p(d|Cj ) for each incoming document. This value is then used in order to determine 
the similarity of the documents to the different clusters. This is used in order to 
assign the documents to their closest cluster. We note that the methods in [6, 50] 
share a number of similarities in terms of (a) maintenance of cluster profiles, (b) 
use of cluster profiles (or condensed droplets) to compute similarity and assignment 
of documents to most similar clusters, and (c) the rules used to decide when a new 
singleton cluster should be created or one of the older clusters should be replaced.
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The main difference between the two algorithms is the technique which is used 
in order to compute cluster similarity. The OCTS algorithm uses the probabilistic 
computation .p(d|Cj ) to compute cluster similarity, which takes the phrasal infor-
mation into account during the computation process. One observation about OCTS 
is that it may allow for very similar clusters to co-exist in the current set. This 
reduces the space available for distinct cluster profiles. A second algorithm called 
OCTSM is also proposed in [50], which allows for merging of very similar clusters. 
Before each assignment, it checks whether pairs of similar clusters can be merged 
on the basis of similarity. If this is the case, then we allow the merging of the similar 
clusters and their corresponding cluster profiles. Detailed experimental results on 
the different clustering algorithms and their effectiveness are presented in [50]. A 
comprehensive review of text stream clustering algorithms may be found in the 
chapters on data clustering and streaming algorithms in [2]. 

8 Other Scenarios for Stream Clustering 

Data stream clustering is a fundamental problem, and numerous other domains 
arise, in which the data occurs naturally in the streaming context. In this section, 
we provide a brief introduction to these different data domains, along with pointers 
to the relevant literature. 

8.1 Clustering Uncertain Data Streams 

Uncertain data streams arise quite often in the context of sensor data or other 
hardware collection technology such as RFID in which there are significant errors 
in the data collection process. In many of these cases, the errors in the data can be 
approximated either in terms of statistical parameters such as the standard deviation 
or in terms of probability density functions (pdfs). Such statistical information 
increases the richness of the noisy data because it provides information about the 
parts of data which are less reliable and should therefore be emphasized less in the 
mining process. 

In this context, a method called UMicro for clustering uncertain data streams 
was proposed in [7]. This method enhances the micro-clusters with additional 
information about the uncertainty of the data points in the clusters. This information 
is used in order to improve the quality of the distance functions for the assignments. 
This approach was further improved for the case of projected clustering of uncertain 
data streams [8, 62]. We are not providing a detailed discussion of these methods, 
since they are discussed in detail in the chapter on uncertain data clustering.
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8.2 Clustering Graph Streams 

Graph streams are created by edge-centered activity in numerous social and 
information networks. Many different kinds of streaming and clustering models are 
possible, depending upon the application scenario. These different models are as 
follows: 

• The stream is a sequence of objects, each of which is a small graph containing 
a subset of nodes and edges. We wish to determine similar objects in the stream 
based on the similarities between the nodes and edges. For example, the DBLP 
bibliographic network has an incoming stream of graph objects corresponding 
to the co-authored papers. It may be desirable to determine clusters of objects 
with similar structure. An algorithm for this problem, known as Gmicro, was  
proposed in [9]. The micro-clustering representation is extended to handle 
edges, and a sketch-based compression is used on the edges in order to reduce 
the impact of the massive-domain of the edges. 

• The stream is a sequence of objects, each of which is a small graph containing 
a subset of nodes and edges. We wish to determine node sets which co-
occur frequently in these objects and are also densely connected together. A 
method was proposed in [11] with the use of min-hash-based graph stream 
summarization. 

• The stream is a sequence of either objects or edges. It is desirable to determine 
dense node clusters in the graph. 

The last problem is particularly general and is also related to general problem 
of dynamic community detection. In this context, a method was proposed for 
creating dynamic partitions of graphs with the use of structural reservoir sampling 
of edge streams [10]. While the work in [10] is targeted to outlier detection, a key 
intermediate step in the process is the dynamic generation of node clusters from the 
edge stream. The work in [29] has further refined the structural reservoir sampling 
techniques of [10] in order to provide more effective methods for node clustering in 
graph streams. 

In many cases, such as social networks, content information is associated with 
the structure in the network. For example, the tweets in a Twitter stream have both 
structure and content. Such streams are referred to as social streams. The clustering 
of such streams requires the use of both structural information and content in the 
process. The work in [12] has designed methods for clustering social streams. 
Sketch-based methods are used in order to summarize the content in the social 
stream and use it for the clustering process. In addition, it has been shown in [12] 
how this approach may be used for event detection. 

In the conventional streaming model, it is assumed that only one pass is allowed 
over the data, and the amount of memory available to the application is constant, 
irrespective of stream length. A technique for determining the densest subgraph 
has been proposed in [19] in a  weakly streaming model, where a limited number 
of passes (more than one) are allowed over the data, and the amount of available
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memory is sub-linear in the size of the input. This approach is able to determine the 
densest subgraph in passes which grow logarithmically with the graph size. 

8.3 Distributed Clustering of Data Streams 

In the context of sensor networks, the stream data is often available only in a 
distributed setting, in which large volumes of data are collected separately at the 
different sensors. A natural approach for clustering such data is to transmit all of the 
data to a centralized server. The clustering can then be performed at the centralized 
server in order to determine the final results. Unfortunately, such an approach 
is extremely expensive in terms of its communication costs because of the large 
volume of the data which must be transmitted to the centralized server. Therefore, 
it is important to design a method that can reduce the communication costs among 
the different processors. A method proposed in [27] performs local clustering at 
each node and merges these different clusters into a single global clustering at 
low communication cost. Two different methods are proposed in this work. The 
first method determines the cluster centers by using a furthest point algorithm, on  
the current set of data points at the local site. In the furthest point algorithm, the 
center of a cluster is picked as the furthest point to the current set of centers. For 
any incoming data point, it is assigned to its closest center, as long the distance is 
within a certain factor of an optimally computed radius. Otherwise, a re-clustering 
is forced by applying the furthest point algorithm on current set of points. After the 
application of the furthest point algorithm, the centers are transmitted to the central 
server, which then computes a global clustering from these local centers over the 
different nodes. These global centers can then be transmitted to the local nodes 
if desired. One attractive feature of the method is that an approximation bound is 
proposed on the quality of the clustering. A second method for distributed clustering 
proposed in [27] is the  parallel guessing algorithm. 

A variety of other methods have also been proposed for distributed clustering 
of data streams. For example, techniques for distributed data stream clustering 
with the use of the k-medians approach were proposed in [63]. Another method 
for distributed sensor stream clustering which reduces the dimensionality and 
communication cost by maintaining an online discretization may be found in [59]. 
Finally, a method for distributed clustering of data streams with the use of the EM 
approach is proposed in [69]. 

9 Discussion and Conclusions 

The problem of clustering is fundamental to a wide variety of streaming applications 
because of its natural applicability to summarizing and representing the data in very 
small space. A wide variety of techniques have been proposed in the literature for



Clustering in Streams 297

stream clustering, such as partitioning methods, density-based methods, probabilis-
tic methods, etc. The stream clustering method has also been extended to other data 
domains such as categorical, text, and uncertain data. Finally, methods have also 
been proposed for clustering graph streams. 

Many further directions of research are likely for this problem. These are as 
follows: 

• Heterogeneous data streams are becoming extremely common because of 
applications such as social networks, in which large amounts of heterogeneous 
content are posted over time. It is desirable to determine clusters among these 
groups of heterogeneous objects. 

• It is desirable to use a combination of links and content in order to determine 
clusters from heterogeneous activity streams. This direction of research has also 
found increasing interest in the community. This is a further layer of complexity 
over the graph streaming scenario. 

Furthermore, it would also be interesting to perform clustering streams from multi-
ple sources, while simultaneously learning the nature of the dynamic relationships 
between the different streams. 
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Introduction to Deep Learning 

Lihi Shiloh-Perl and Raja Giryes 

1 General Overview 

Neural networks (NNs) have revolutionized the modern day-to-day life. Their 
significant impact is present even in our most basic actions, such as ordering 
products online via Amazon’s Alexa or passing the time with online video games 
against computer agents. The NN effect is evident in many more occasions, for 
example, in medical imaging, NNs are utilized for lesion detection and segmenta-
tion [55, 5], and tasks such as text-to-speech [53, 171] and text-to-image [145] have  
remarkable improvements thanks to this technology. In addition, the advancements 
they have caused in fields such as natural language processing (NLP) [35, 206, 114], 
optics [158, 57], image processing [154, 204], and computer vision (CV) [13, 
48] are astonishing, creating a leap forward in technology such as autonomous 
driving [20, 117], face recognition [153, 192, 33], anomaly detection [97], text 
understanding [80], and art [50, 79], to name a few. Its influence is powerful and 
is continuing to grow. 

The NN journey began in the mid-1960s with the publication of the perceptron 
[149]. Its development was motivated by the formulation of the human neuron 
activity [118] and research regarding the human visual perception [73]. However, 
quite quickly, a deceleration in the field was experienced, which lasted for almost 
three decades. This was mainly the result of lack of theory with respect to the 
possibility of training the (single-layer) perceptron and a series of theoretical results 
that emphasized its limitations, where the most remarkable one is its inability to 
learn the XOR function [120]. 
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This NN ice age came to a halt in the mid-1980s, mainly with the introduction 
of the multi-layer perceptron (MLP) and the backpropagation algorithm [151]. 
Furthermore, the revolutionary convolutional layer was presented [101], where one 
of its notable achievements was successfully recognizing hand-written digits [100]. 

While some other significant developments have happened in the following 
decade, such as the development of the long-short-term memory (LSTM) machine 
[68], the field experienced another deceleration. Questions were arising with no 
adequate answers especially with respect to the non-convex nature of the used 
optimization objectives, overfitting the training data, and the challenge of vanishing 
gradients. These difficulties led to a second NN winter, which lasted two decades. In 
the meantime, classical machine learning techniques were developed and attracted 
much academic and industry attention. One of the prominent algorithms was the 
newly proposed Support Vector Machine (SVM) [25], which defined a convex op-
timization problem with a clear mathematical interpretation [24]. These properties 
increased its popularity and usage in various applications. 

The twenty-first century began with some advancements in neural networks in 
the areas of speech processing and Natural Language Processing (NLP). Hinton et 
al. [66] proposed a method for layer-wise initial training of neural networks, which 
leveraged some of the challenges in training networks with several layers. However, 
the great NN tsunami truly hit the field with the publication of AlexNet in 2012 [93]. 
In this paper, Krizhevsky et al. presented a neural network that achieved state-of-the-
art performance on the ImageNet [32] challenge, where the goal is to classify images 
into 1000 categories using 1.2 Million images for training and 150,000 images for 
testing. The improvement over the runner-up, which relied on hand-crafted features 
and one of the best classification techniques of that time, was notable—more than 
10%. This caused the whole research community to understand that neural networks 
are way more powerful than what was thought and they bear a great potential for 
many applications. This led to a myriad of research works that applied NNs for 
various fields showing their great advantage. In Table 2 (provided at the end of the 
chapter), we present a (very partial) list of different tasks and some selected neural 
networks that address them. 

Nowadays, it is safe to say that almost every research field has been affected 
by this NN tsunami wave, experiencing significant improvements in abilities and 
performance. Many of the tools used today are very similar to the ones used in the 
previous phase of NN. Indeed, some new regularization techniques such as batch 
normalization [75] and dropout [172] have been proposed. Yet, the key enablers for 
the current success are the large amounts of data available today that are essential 
for large NN training and the developments in GPU computations that accelerate the 
training time significantly (sometimes even leading to .×100 speed-up compared to 
training on a conventional CPU). The advantages of NN are remarkable especially 
at large scales. Thus, having large amounts of data and the appropriate hardware to 
process them is vital for their success. 

A major example of a tool that did not exist before is the Generative Ad-
versarial Network (GAN) [54]. In 2014, Goodfellow et al. published this novel 
framework for learning data distribution. The framework is composed of two
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Fig. 1 Class-conditional samples generated by a GAN [8] 

models, a generator and a discriminator, trained as adversaries. The generator 
is trained to capture the data distribution, while the discriminator is trained to 
differentiate between generated (“fake”) data and real data. The goal is to let the 
generator synthesize data, which the discriminator fails to discriminate from the 
real one. The GAN architecture has been used in more and more applications 
since its introduction in 2014. One such application is the rendering of real scene 
images where GANs have been very successful [51, 215]. For example, Brock 
et al. introduced the BigGAN [8] architecture that exhibited impressive results 
in creating high-resolution images, shown in Fig. 1. While most GAN techniques 
learn from a set of images, recently it has been successfully demonstrated that 
one may even train a GAN just using one image [156]. Other GAN applications 
include inpainting [109, 208], retargeting [159], 3D modeling [1], semi-supervised 
learning [43], domain adaptation [69], and more. 

While neural networks are very successful, the theoretical understanding behind 
them is still missing. In this respect, there are research efforts that try to provide a 
mathematical formulation that explains various aspects of NN [189]. For example, 
they study NN properties such as their optimization [175], generalization [78], and 
expressive power [152, 128]. 

The rest of the chapter is organized as follows. In Sect. 2, the basic structure 
of a NN is described, followed by details regarding popular loss functions and 
metric learning techniques used today (Sect. 3). We continue with an introduction 
to the NN training process in Sect. 4, including a mathematical derivation of 
backpropagation and training considerations. Section 5 elaborates on the different 
optimizers used during training, after which Sect. 6 presents a review of common 
regularization schemes. Section 7 details advanced NN architecture with state-
of-the-art performances, and Sect. 8 concludes the chapter by highlighting some 
current important NN challenges. 

2 Basic NN Structure 

The basic building block of an NN consists of a linear operation followed by a 
nonlinear function. Each building block consists of a set of parameters, termed 
weights, and biases (sometimes the term weights includes also the biases), which
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Fig. 2 NN building block 
consists of a linear and a 
nonlinear elements. The 
weights . W and biases . b are 
the parameters of the layer 

Fig. 3 NN layered structure: concatenation of N building blocks, e.g., model layers 

are updated in the training process with the goal of minimizing a predefined loss 
function. 

Assume an input data .x ∈ Rd0 , and the output of the building block is of the form 
.ψ(Wx+b), where .ψ(·) is a nonlinear function, .W ∈ Rd1×d0 is the linear operation, 
and .b ∈ Rd1 is the bias. See Fig. 2 for an illustration of a single building block. 

To form an NN model, such building blocks are concatenated one to another in a 
layered structure that allows the input data to be gradually processed as it propagates 
through the network. Such a process is termed the (feed-)forward pass. Following 
it, during training, a backpropagation process is used to update the NN parameters, 
as elaborated in Sect. 4.1. In inference time, only the forward pass is used. 

Figure 3 illustrates the concatenation of K building blocks, e.g., layers. The 
intermediate output at the end of the model (before the “task-driven block”) is 
termed the network embedding, and it is formulated as follows: 

. 
�(x,W(1), ...,W(K),b(1), ...,b(K)) = ψ(W(K)...ψ(W(2)ψ(W(1)x + b(1))

+b(2))... + b(K)).

(1) 

The final output (prediction) of the network is estimated from the network embed-
ding of the input data using an additional task-driven layer. A popular example is 
the case of classifications, where this block is usually a linear operation followed by 
the cross-entropy loss function (detailed in Sect. 3). 

When approaching the analysis of data with varying length, such as sequential 
data, a variant of the aforementioned approach is used. A very popular example for 
such a neural network structure is the recurrent neural network (RNN) [77]. In a 
vanilla RNN model, the network receives at each time-step just a single input but 
with a feedback loop calculated using the result of the same network in the previous 
time-step (see an illustration in Fig. 4). This enables the network to “remember” 
information and support multiple inputs and produce one or more outputs. 

More complex RNN structures include performing bidirectional calculations or 
adding gating to the feedback and the input received by the network. The most 
known complex RNN architecture is the long-short-term memory (LSTM) [68, 52],
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Fig. 4 Recurrent NN (RNN) 
illustration for time series 
data. The feedback loop 
introduces time-dependent 
characteristics to the NN 
model using an element-wise 
function. The weights are the 
same along all time-steps 

which adds gates to the RNN. These gates decide what information from the current 
input and the past will be used to calculate the output and the next feedback, as well 
as what information to mask (i.e., causing the network to forget). This enables an 
easier combination of past and present information. It is commonly used for time 
series data in domains such as NLP and speech processing. 

Another common network structure is the encoder–decoder architecture. The 
first part of the model, the encoder, reduces the dimensions of the input to a 
compact feature vector. This vector functions as the input to the second part of 
the model, the decoder. The decoder increases its dimension, usually, back to the 
original input size. This architecture essentially learns to compress (encode) the 
input to an efficiently small vector and then decode the information from its compact 
representation. In the context of regular feed-forward NN, this model is known as 
autoencoder [170] and is used for several tasks such as image denoising [146], image 
captioning [191], feature extraction [190], and segmentation [2]. In the context of 
sequential data, it is used for tasks such as translation, where the decoder generates 
a translated sentence from a vector representing the input sentence [177, 21]. 

2.1 Common Linear Layers 

A common basic NN building block is the fully connected (FC) layer. A network 
composed of a concatenation of such layers is termed Multi-Layer Perceptron 
(MLP) [150]. The FC layer connects every neuron in one layer to every neuron in 
the following layer, i.e., the matrix . W is dense. It enables information propagation 
from all neurons to all the ones following them. However, it may not maintain spatial 
information. Figure 5 illustrates a network with FC layers. 

The convolutional layer [99, 101] is another very common layer. We discuss here 
the 2D case, where the extension to other dimension is straightforward. This layer 
applies one or multiple convolution filters to its input with kernels of size .W × H . 
The output of the convolution layer is commonly termed a feature map.
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Fig. 5 Fully connected 
layers 

Each neuron in a feature map receives inputs from a set of neurons from the 
previous layer, located in a small neighborhood defined by the kernel size. If we 
apply this relationship recursively, we can find the part of the input that affects each 
neuron at a given layer, i.e., the area of visible context that each neuron sees from 
the input. The size of this part is called the receptive field. It impacts the type and 
size of visual features each convolution layer may extract, such as edges, corners, 
and even patterns. Since convolution operations maintain spatial information and 
are translation equivariant, they are very useful, namely, in image processing and 
CV. 

If the input to a convolution layer has some arbitrary third dimension, for 
example, 3 channels in an RGB image (.C = 3) or some  .C > 1 channels from an 
output of a hidden layer in the model, the kernel of the matching convolution layer 
should be of size .W × H × C. This corresponds to applying a different convolution 
for each input channel separately and then summing the outputs to create one feature 
map. The convolution layer may create a multi-channel feature map by applying 
multiple filters to the input, i.e., using a kernel of size .W ×H ×Cin×Cout, where . Cin
and .Cout are the number of channels at the input and output of the layer, respectively. 

2.2 Common Nonlinear Functions 

The nonlinear functions defined for each layer are of great interest since they 
introduce the nonlinear property to the model and can limit the propagating gradient 
from vanishing or exploding (see Sect. 4). 

Nonlinear functions that are applied element-wise are known as activation 
functions. Common activation functions are the Rectified Linear Unit (ReLU) [28], 
leaky ReLU [202], Exponential Linear Unit (ELU) [22], hyperbolic tangent (tanh), 
and sigmoid. There is no universal rule for choosing a specific activation function, 
and however, ReLUs and ELUs are currently more popular for image processing and 
CV, while sigmoid and tanh are more common in speech and NLP. Figure 6 presents
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Fig. 6 Different activation functions. Leaky ReLU with .α = 0.1 and ELU with . α = 1

Table 1 Mathematical expressions for nonlinear activation functions 

Function Formulation .s(x) Derivative .
ds(x)
dx

Function output range 

ReLU . 

{
0, for x <  0 
x, for x ≥ 0 

. 

{
0, for x <  0 
1, for x ≥ 0 . [0,∞)

Leaky ReLU . 

{
αx, for x <  0 
x, for x ≥ 0 

. 

{
α, for x <  0 
1, for x ≥ 0 

. (−∞, ∞)

ELU . 

{
α(ex − 1), for x <  0 
x, for x ≥ 0 

. 

{
αex , for x <  0 
1, for x ≥ 0 

. [−α, ∞)

Sigmoid . 1
1+e−x . e−x

(1+e−x )2
. (0, 1)

tanh .tanh(x) = e2x−1
e2x+1

.1 − tanh2(x) . (−1, 1)

the response of the different activation functions and Table 1 their mathematical 
formulation. 

Other common nonlinear operations in an NN model are the pooling functions. 
They are aggregation operations that reduce dimensionality while keeping dominant 
features. Assume a pooling size of q and an input vector to a hidden layer of size 
d, .z = [z1, z1, ..., zd ]. For every .m ∈ [1, d], the subset of the input vector . ̃z =
[zm, zm+1, ..., zq+m] may undergo one of the following popular pooling operations: 

1. Max pooling: . g(z̃) = maxi z̃
2. Mean pooling: . g(z̃) = 1

q

∑q+m
i=m zi

3. . �p pooling: . g(z̃) = p

√∑q+m
i=m z

p
i

All pooling operations are characterized by a stride, s, that effectively defines the 
output dimensions. Applying pooling with a stride s is equivalent to applying the 
pooling with no stride (i.e., .s = 1) and then sub-sampling by a factor of s. It is  
common to add zero padding to . z such that its length is divisible by s.
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Another very common nonlinear function is the softmax, which normalizes 
vectors into probabilities. The output of the model, the embedding, may undergo 
an additional linear layer to transform it to a vector of size of .1 × N , termed  logits, 
where N is the number of classes. The logits, here denoted as . v, are the input to the 
softmax operation defined as follows: 

.softmax(vi) = evi∑N
j=1 e

vj
, i ∈ [1, ..., N ]. (2) 

3 Loss Functions 

Defining the loss function of the model, denoted as . L, is critical and usually chosen 
based on the characteristics of the dataset and the task at hand. Though datasets 
can vary, tasks performed by NN models can be divided into two coarse groups: (1) 
regression tasks and (2) classification tasks. 

A regression problem aims at approximating a mapping function from input 
variables to a continuous output variable(s). For NN tasks, the output of the 
network should predict a continuous value of interest. Common NN regression 
problems include image denoising [212], deblurring [124], inpainting [203], and 
more. In these tasks, it is common to use the Mean Squared Error (MSE), Structural 
SIMilarity (SSIM), or . �1 loss as the loss function. The MSE (. �2 error) imposes a 
larger penalty for larger errors, compared to the . �1 error which is more robust to 
outliers in the data. The SSIM and its multiscale version [214] help improving the 
perceptual quality. 

In the classification task, the goal is to identify the correct class of a given 
sample from predefined N classes. A common loss function for such tasks is the 
cross-entropy loss. It is implemented based on a normalized vector of probabilities 
corresponding to a list of potential outcomes. This normalized vector is calculated 
by the softmax nonlinear function (Eq. 2). The cross-entropy loss is defined as 

.LCE = −
N∑

i=1

yi log(pi), (3) 

where . yi is the ground-truth probability (the label) of the input to belong to class 
i and . pi is the model prediction score for this class. The label is usually binary, 
i.e., it contains 1 in a single index (corresponding to the true class). This type 
of representation is known as one-hot encoding. The class is predicted in the 
network by selecting the largest probability and the log-loss is used to increase this 
probability. 

Notice that a network may provide multiple outputs per input data point. For 
example, in the problem of image semantic segmentation, the network predicts 
a class for each pixel in the image. In the task of object detection, the network
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outputs a list of objects, where each one is defined by a bounding box (found using 
a regression loss) and a class (found using a classification loss). Section 7.1 details 
these different tasks. Since in some problems, the labelled data are imbalanced, one 
may use weighted softmax (that weigh less frequent classes) or the focal loss [108]. 

3.1 Metric Learning 

An interesting property of the log-loss function used for classification is that it im-
plicitly clusters classes in the network embedding space during training. However, 
for a clustering task, these vanilla distance criteria often produce unsatisfactory 
performance as different class clusters can be positioned closely in the embedding 
space and may cause miss-classification for samples that do not reside in the specific 
training set distribution. 

Therefore, different metric learning techniques have been developed to produce 
an embedding space that brings closer intra-class samples and increases inter-class 
distances. This results in better accuracy and robustness of the network. It allows 
the network to be able to distinguish between two data samples if they are from the 
same class or not, just by comparing their embeddings, even if their classes have not 
been present at training time. 

Metric learning is very useful for tasks such as face recognition and identifica-
tion, where the number of subjects to be tested is not known at training time and new 
identities that were not present during training should also be identified/recognized 
(e.g., given two images, the network should decide whether these correspond to the 
same or different persons). 

An example for a popular metric loss is the triplet loss [153]. It enforces a 
margin between instances of the same class and other classes in the embedding 
feature space. This approach increases performance accuracy and robustness due to 
the large separation between class clusters in the embedding space. The triplet loss 
can be used in various tasks, namely detection, classification, recognition, and other 
tasks of an unknown number of classes. 

In this approach, three instances are used in each training step i: an anchor . xa
i , 

another instance . xp
i from the same class of the anchor (positive sample), and a 

sample . xn
i from a different class (negative class). They are required to obey the 

following inequality: 

.
∥∥�(xa

i ) − �(xp
i )

∥∥2
2 + α <

∥∥�(xa
i ) − �(xn

i )
∥∥2
2 , (4) 

where .α < 0 enforces the wanted margin from other classes. Thus, the triplet loss 
is defined by 

.L =
∑

i

∥∥�(xa
i ) − �(xp

i )
∥∥2
2 − ∥∥�(xa

i ) − �(xn
i )

∥∥2
2 + α. (5)
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Fig. 7 Triplet loss: minimizes the distance between two similar class examples (anchor and 
positive) and maximizes the distance between two different class examples (anchor and negative) 

Figure 7 presents a schematic illustration of the triplet loss influence on samples 
in the embedding space. This illustration also exhibits a specific triplet example, 
where the positive examples are relatively far from the anchor while negative 
examples are relatively near the anchor. Finding such examples that violate the 
triplet condition is desirable during training. They may be found by online or offline 
searches known as hard negative mining. A preprocessing of the instances in the 
embedding space is performed to find violating examples for training the network. 

Finding the “best” instances for training can, evidently, aid in achieving improved 
convergence. However, searching for them is often time consuming, and therefore 
alternative techniques are being explored. 

An intriguing metric learning approach relies on “classification”-type loss 
functions, where the network is trained given a fixed number of classes. Yet, these 
losses are designed to create good embedding space that creates margin between 
classes, which in turn provides good prediction of similarity between two inputs. 
Popular examples include the Cos-loss [192], Arc-loss [33], and SphereFace [113]. 

4 Neural Network Training 

Given a loss function, the weights of the neural network are updated to minimize 
it for a given training set. The training process of a neural network requires a large 
database due to the nature of the network (structure and amount of parameters) and 
GPUs for efficient training implementation. 

In general, training methods can be divided into supervised and unsupervised 
training. The former, which has received a greater attention in the research commu-
nity, consists of labeled data that are usually very expensive and time consuming to 
obtain, whereas the latter does not assume known ground-truth labels and applies 
to the more common case in real-world scenarios where the majority of the data 
available for training are not annotated. Note though that supervised training usually 
achieves significantly better network performance compared to the unsupervised 
case. Therefore, a lot of resources are invested in labeling datasets for training. Thus, 
we focus in this chapter mainly on the supervised setting. 

In neural networks, regardless of the model task, all training phases have the same 
goal: to minimize a predefined error function, also denoted as the loss/cost function.
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This is done in two stages: (a) a feed-forward pass of the input data through all the 
network layers, calculating the error using the predicted outputs and their ground-
truth labels (if available), followed by (b) backpropagation of the errors through 
the network to update their weights, from the last layer to the first. This process is 
performed continuously to find the optimized values for the weights of the network. 

The backpropagation algorithm provides the gradients of the error with respect to 
the network weights. These gradients are used to update the weights of the network. 
Calculating them based on the whole input data is computationally demanding, and 
therefore, the common practice is to use subsets of the training set, termed mini-
batches, and cycle over the entire training set multiple times. Each cycle of training 
over the whole dataset is termed an epoch, and in every cycle the data samples are 
used in a random order to avoid biases. The training process ends when convergence 
in the loss function is obtained. Since most NN problems are not convex, an optimal 
solution is not assured. We turn now to describe in more detail the training process 
using backpropagation. 

4.1 Backpropagation 

The backpropagation process is performed to update all the parameters of the model, 
with the goal of decreasing the loss function value. The process starts with a feed-
forward pass of input data, . x, through all the network layers. After which the 
loss function value is calculated and denoted as .L(x,W), where . W are the model 
parameters (including the model weights and biases, for formulation convenience). 
Then, the backpropagation is initiated by computing the value of . ∂L

∂W , followed 
by the update of the network weights. All the weights are updated recursively by 
calculating the gradients of every layer, from the final one to the input layer, using 
the chain rule. 

Denote the output of layer l as . z(l). Following the chain rule, the gradients of a 
given layer l with parameters . W(l) with respect to its input . z(l) are 

.
∂L

∂z(l−1)
= ∂L

∂z(l)
· ∂z(l)(W(l), z(l−1))

∂z(l−1)
, (6) 

and the gradients with respect to the parameters are 

.
∂L

∂W(l)
= ∂L

∂z(l)
· ∂z(l)(W(l), z(l−1))

∂W(l)
. (7) 

These two formulas of the backpropagation algorithm dictate the gradients calcu-
lation with respect to the parameters for each layer in the network, and, therefore, 
the optimization can be performed using gradient-based optimizers (see Sect. 5 for 
more details).
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Fig. 8 Simple classification 
model example, consisting of 
a two-layered fully connected 
model 

To demonstrate the use of the backpropagation technique for the calculation of 
the network gradients, we turn to consider an example of a simple classification 
model with two layers: a fully connected layer with a ReLU activation function 
followed by another fully connected layer with softmax function and log-loss. See 
Fig. 8 for the model illustration. 

Denote by .z(3) the output of the softmax layer, and assume that the input . x
belongs to class k (using one-hot encoding .yk = 1). The log-loss in this case is 

. L = −
∑

i

log
(
z
(3)
i

)
yi = − log

(
exp

(
z
(2)
k

)
∑

i exp
(
z
(2)
i

)
)

= −z
(2)
k + log

( ∑
j

exp z
(2)
j

)
.

(8) 
For all .i �= k, the gradient of the error with respect to the softmax input .z(2)

i is 

.
∂L

∂z
(2)
i

= exp
(
z
(2)
i

)
∑

j exp
(
z
(2)
j

) ≡ gi. (9) 

Notice that this implies that we need to decrease the value of .z(2)
i (the ith logit) 

proportionally to the probability the network provides to it, while for the correct 
label, .i = k, the derivative is 

.
∂L

∂z
(2)
k

= −1 + exp
(
z
(2)
k

)
∑

j exp
(
z
(2)
j

) = gk − 1, (10)
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which implies that the value of the logit element associated with the true label should 
be increased proportionally to the mistake the network is currently doing in the 
prediction. 

The output .z(2) is a product of a fully connected layer. Therefore, it can be 
formulated as follows: 

.z(2) = W(2)z̃(1), (11) 

where .z̃(1) is the output of the ReLu function. Following the backpropagation rules, 
we get that for this layer, the derivative with respect to its input is 

.
∂L

∂ z̃(1)
= ∂L

∂z(2)
· ∂z(2)(W(2), z̃(1))

∂ z̃(1)
= W(2) · ∂L

∂z(2)
, (12) 

whereas the derivative with respect to its parameters is 

.
∂L

∂W(2)
= ∂L

∂z(2)
· ∂z(2)(W(2), z̃(1))

∂W(1)
= ∂L

∂z(2)
· (
z̃(1))T

. (13) 

The ReLU operation has no weight to update but affects the gradients. The derivative 
of this stage follows 

.
∂L

∂z(1)
= ∂L

∂ z̃(1)
· ∂ z̃(1)(W(1), I )

∂z(1)
=

⎧⎨
⎩0, if z(1) < 0

∂L
∂z̃(1) , otherwise.

(14) 

The final derivative with respect to the input .∂L/∂x is calculated similar to Eq. (12). 

4.2 Training Considerations 

There are several considerations that should be addressed when training an NN. The 
most infamous is the overfitting, i.e., when the model too closely fits to the training 
dataset but does not generalize well to the test set. When this occurs, high training 
data precision is achieved, while the precision on the test data (not used during 
training) is low [183]. For this purpose, various regularization techniques have been 
proposed. We discuss some of them in Sect. 6. 

A second consideration is the vanishing/exploding gradients occurring during 
training. Vanishing gradients are a result of multiplications with values smaller than 
one during their calculation in the backpropagation recursion. This can be resolved 
using activation functions and batch normalization detailed in Sect. 6. On the other 
hand, the gradients might also explode due to derivatives that are significantly larger 
than one in the backpropagation calculation. This makes the training unstable and
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may imply the need for redesigning the model (e.g., replace a vanilla RNN with a 
gated architecture such as LSTMs) or the use of gradient clipping [132]. 

Another important issue is the requirement that the training dataset must 
represent the true distribution of the task at hand. This usually enforces very large, 
annotated datasets, which necessitate significant funding and manpower to obtain. 
In this case, considerable efforts must be invested to train the network using these 
large datasets, commonly with multiple GPUs for several days [93, 85]. One may 
use techniques such as domain adaptation [198] or transfer learning [180] to use  
already existing networks or large datasets for new tasks. 

4.3 Hyper-Parameter Tuning 

While ongoing research studies the effect of hyper-parameter values during neural 
network training, there are several “rules of thumb” that can aid practitioners in 
achieving optimal model convergence. 

The first relates to the learning rate initialization and training schedule. Com-
monly, an adaptive learning rate is used in which its values are decreased when 
no improvement in the loss is evident for a pre-determined number of epochs. In 
addition to this strategy, there are some more evolved methods for the learning 
rate policy. For example, cycle learning rate (CLR) [167] and one-cycle learning 
rate (OCL) [168] have shown to help models to converge faster and improve their 
performance. In the CLR case, a learning rate range is defined, and during training 
the learning rate value varies cyclically within this range. While increasing the 
learning rate might harm the convergence in the short term, it is shown to be 
beneficial to the final model state. The OCL suggests performing only one cycle of 
increasing–decreasing of the learning rate through the entire training phase, while 
the last epochs are performed with an extremely low learning rate. This policy has 
shown to be effective since the learning rate is the highest in the middle of the 
training and acts as a regularization to prevent overfitting. 

The parameters of weight decay and dropouts are also important to tune in terms 
of improving convergence and accuracy, as detailed in Sect. 6. Note that their hyper-
parameter values can be dependent also on the policy determined for the learning 
rate [167]. 

Regarding the architecture of a network, an interesting research question is about 
the effectiveness of the model depth or the trade-off between network depth and 
width (each layer’s size). This has been studied from various perspectives, e.g., from 
an Information Bottleneck point of view [163], or via studying the generalization 
property of the model [23], where in both cases it has been shown that deeper 
models exhibit better generalization and faster convergence. A recent work [182] 
empirically studied the optimal ratio between the sizes of the input data, the width 
of the network, and its depth.
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5 Training Optimizers 

Training neural networks is done by applying an optimizer to reach an optimal 
solution for the defined loss function. Its goal is to find the parameters of the model, 
e.g., weights and biases, which achieve minimum error for the training set samples: 
.(xi , yi), where . yi is the label for the instance . xi . For a loss function .L(·), the  
objective reads as 

.

∑
i

L(�(xi ,W), yi), (15) 

for ease of notation, all model parameters are denoted as . W. A variety of optimizers 
have been proposed and implemented for minimizing Eq. (15). Yet, due to the size 
of the network and training dataset, mainly first-order methods are being considered, 
i.e., strategies that rely only on the gradients (and not on second-order derivatives 
such as the Hessian). 

Several gradient-based optimizers are commonly used for updating the parame-
ters of the model. These NN parameters are updated in the opposite direction of the 
objective function’s gradient, .g{GD,T(t)}, where .T(t) is a randomly chosen subgroup 
of size .n′ < n training samples used in iteration t (n is the size of the training 
dataset). Namely, at iteration t , the weights are calculated as 

.W(t) = W(t − 1) − η · g{GD,T(t)}, (16) 

where . η is the learning rate that determines the size of the steps taken to reach the 
(local) minimum and the gradient step, and .g{GD,T(t)} is computed using the samples 
in .T(t) as 

.g{GD,T(t)} = 1

n′
∑

i∈T(t)

∇WL(W(t); xi; yi), (17) 

where the pair .(xi , yi) is a training example and its corresponding label in the 
training set, and . L is the loss function. However, needless to say that calculating the 
gradient on the whole dataset is computationally demanding. To this end, Stochastic 
Gradient Descent (SGD) is more popular, since it calculates the gradient in Eq. (17) 
for only one randomly chosen example from the data, i.e., .n′ = 1. 

Since the update by SGD depends on a different sample at each iteration, it has 
a high variance that causes the loss value to fluctuate. While this behavior may 
enable it to jump to a new and potentially better local minima, it might ultimately 
complicate convergence, as SGD may keep overshooting. To improve convergence 
and exploit parallel computing power, mini-batch SGD is proposed in which the 
gradient in Eq. (17) is calculated with .n′ > 1 (but not all the data). 

An acceleration in convergence may be obtained by using the history of the 
last gradient steps, in order to stabilize the optimization. One such approach uses
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adaptive momentum instead of a fixed step size. This is calculated based on 
exponential smoothing on the gradients, i.e., 

.

M(t) = β · M(t − 1) + (1 − β) · g{SGD,T(t)},

W(t) = W(t − 1) − ηM(t),
(18) 

where .M(t) approximates the first moment of .g{SGD,T(t)}. A typical value for the 
constant is .β ∼ 0.9, which implies taking into account the last 10 gradient steps in 
the momentum variable .M(t) [137]. A well-known variant of momentum proposed 
by Nestrov et al. [125] is the Nestrov Accelerated Gradient (NAG). It is similar 
to momentum but calculates the gradient step as if the network weights have been 
already updated with the current momentum direction. 

Another popular technique is the Adaptive Moment Estimation (ADAM) [89], 
which also computes adaptive learning rates. In addition to storing an exponentially 
decaying average of past squared gradients, .V (t), ADAM also keeps an exponen-
tially decaying average of past gradients, .M(t), in the following way: 

.

M(t) = β1M(t − 1) + (1 − β1)gt ,

V (t) = β2V (t − 1) + (1 − β2)g
2
t ,

(19) 

where . gt is the gradient of the current batch, . β1 and . β2 are ADAM’s hyperparam-
eters, usually set to 0.9 and 0.999, respectively, and .M(t) and .V (t) are estimates 
of the first moment (the mean) and the second moment (the uncentered variance) 
of the gradients, respectively, hence the name of the method—Adaptive Moment 
Estimation. As .M(t) and .V (t) are initialized as vectors of 0s, the authors of 
ADAM observe that they are biased toward zero, especially during the initial time-
steps. To counteract these biases, bias-corrected first and second moments are used: 
.M̂(t) = M(t)/(1 − β1(t)) and .V̂ (t) = V (t)/(1 − β2(t)). Therefore, the ADAM 
update rule is as follows: 

.W(t + 1) = W(t) − η√
V̂ (t) + ε

M̂(t). (20) 

ADAM has two popular extensions: AdamW by Loshchilov et al. [116] and 
AMSGrad by Redddi et al. [141]. There are several additional common optimizers 
that have adaptive momentum, such as AdaGrad [41], AdaDelta [210], or RMSprop 
[29]. It must be noted that since the NN optimization is non-convex, the minimal 
error point reached by each optimizer is rarely the same. Thus, speedy convergence 
is not always favored. In particular, it has been observed that momentum leads to 
better generalization than ADAM, which usually converges faster [88]. Thus, the 
common practice is to make the development with ADAM and then make the final 
training with momentum.
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6 Training Regularizations 

One of the great advantageous of NN is their ability to generalize, i.e., correctly 
predict unseen data [78]. This must be ensured during the training process and is 
accomplished by several regularization methods, detailed here. The most common 
are weight decay [94], dropout [172], batch normalization [75], and the use of data 
augmentation [160]. 

Weight decay is a basic tool to limit the growth of the weights by adding a 
regularization term to the cost function for large weights, which is the sum of 
squares of all the weights, i.e., .

∑
i |Wi |2. 

The key idea in dropout is to randomly drop units (along with their connections) 
from the neural network during training and thus prevent units from co-adapting too 
much. The percentage of dropped units is critical since a large amount will result in 
poor learning. The common values are 20%–50% dropped units. 

Batch normalization is a mean to deal with changes in the distribution of the 
model’s parameters during training. The layers need to adapt to these (often noisy) 
changes between instances during training. Batch normalization causes the features 
of each training batch to have a mean of 0 and a variance of 1 in the layer it is being 
applied. To normalize a value across a batch, i.e., to batch normalize the value, 
the batch mean, . μB , is subtracted and the result is divided by the batch standard 

deviation, .
√

σ 2
B + ε. Note that a small constant . ε is added to the variance in order to 

avoid dividing by zero. The batch normalizing transform of a given input, . x, is  

.BN(x) = γ

(
x − μB√
σ 2

B + ε

)
+ β. (21) 

Notice the (learnable) scale and bias parameters . γ and . β, which provides the NN 
with freedom to deviate from the zero mean and unit variance. BN is less effective 
when used with small batch sizes since in this case the statistics calculated per 
each is less accurate. Thus, techniques such as group normalization [200] or Filter 
Response Normalization (FRN) [166] have been proposed. 

Data augmentation is a very common strategy used during training to artificially 
“increase” the size of the training data and make the network robust to transforma-
tions that do not change the input label. For example, in the task of classification, 
a shifted cat is still a cat; see Fig. 9 for more similar augmentation. In the task 
of denoising, flipped noisy input should result in a flipped clean output. Thus, 
during training, the network is also trained with the transformed data to improve 
its performance. 

Common augmentations are randomly flipping, rotating, scaling, cropping, 
translating, or adding noise to the data. Other more sophisticated techniques that 
lead to a significant improvement in network performance include mixup [211], 
cutout [37], and augmentations that are learned automatically [26, 107, 27].
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Fig. 9 Different image augmentations. (a) Original image. (b) Flip augmentation. (c) Crop and  
scale augmentation. (d) Noise augmentation 

7 Advanced NN Architectures 

The basic building blocks, which compose the NN model architecture, are used in 
frequently innovative structures. In this section, such known architectures with state-
of-the-art performance are presented, divided by tasks and data types: detection and 
segmentation tasks are described in Sect. 7.1, sequential data handling is elaborated 
in Sect. 7.2, and processing data on irregular grids is presented in Sect. 7.3. Clearly, 
there are many other use-cases and architectures, which are not mentioned here. 

7.1 Deep Learning for Detection and Segmentation 

Many research works focus on detecting multiple objects in a scene, due to its 
numerous applications. This problem can be divided into four sub-tasks as follows, 
where we refer here to image datasets although the same concept can be applied to 
different domains as well: 

1. Classification and localization: The main object in the image is detected and 
then localized by a surrounding bounding box and classified from a pre-known 
set. 

2. Object detection: Detection of all objects in a scene that belong to a pre-known 
set and then classifying and providing a bounding box for each of them.
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3. Semantic segmentation: Partitioning the image into coherent parts by assigning 
each pixel in the image with its own classification label (associated with the 
object the pixel belongs to), for example, having a pixel-wise differentiation 
between animals, sky, and background (generic class for all object that no class 
is assigned to) in an image. 

4. Instance segmentation: Multiple objects segmentation and classification from a 
pre-known set (similar to object detection but for each object all its pixels are 
identified instead of providing a bounding box for it). 

Today, state-of-the-art object detection performance is achieved with architec-
tures such as Faster-RCNN [147, 195], You Only Look Once (YOLO) [142, 143, 
144], Single Shot Detector (SSD) [112], and Fully Convolutional One-Stage Object 
Detection (FCOS) [184]. The object detection models provide a list of detected 
bounding boxes with the class of each of them. 

Segmentation tasks are mostly implemented using fully convolutional net-
work. Known segmentation models include UNet [148], Mask-RCNN [62], and 
Deeplab [14]. These architectures have the same input/output spatial size since the 
output represents the segmentation map of the input image. 

Both object detection and segmentation tasks are analyzed via the Intersection 
over Union (IoU) metric. The IoU is defined as the ratio between the intersection 
area of the object’s ground-truth pixels, . Bg , with the corresponding predicted pixels, 
. Bp, and the union of these groups of pixels. The IoU is formulated as 

.IoU = Area{Bg ∩ Bp}
Area{Bg ∪ Bp} . (22) 

As this measure evaluates only the quality of the bounding box, a mean Average 
Precision (mAP) is commonly used to evaluate the models’ performance. The mAP 
is defined as the ratio of the correctly detected (or segmented) objects, where an 
object is considered to be detected correctly if there is a bounding box for it with 
the correct class and an IoU greater than 0.5 (or another specified constant). 

Another common evaluation metric is the F1 score, which is the harmonic 
average of the precision and the recall values. See Eq. (24) below. They are 
calculated using the following definitions that are presented for the case of semantic 
segmentation: 

• True Positive (TP): the predicted class of a pixel matches it ground-truth label 
• False Positive (FP): the predicted pixel of an object was falsely determined 
• False Negative (FN): a ground-truth pixel of an object was not predicted 

Now that they are defined, the precision, recall, and F1 are given by 

.precision = TP

TP + FP
, recall = TP

TP + FN
(23) 

.F1 = 2 · precision · recall
precision + recall

. (24)
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7.2 Deep Learning on Sequential Data 

Sequential data are composed of time-sensitive signals such as the output of 
different sensors, audio recordings, NLP sentences, or any signal that its order is 
of importance. Therefore, these data must be processed accordingly. 

Initially, sequential data were processed with Recurrent NN (RNN) [77] that has 
recurrent (feedback) connections, where outputs of the network at a given time-step 
serve as input to the model (in addition to the input data) at the next time-step. This 
introduces the time-dependent feature of the NN. An RNN is illustrated in Fig. 4. 

However, it was quickly realized that during training, vanilla RNNs suffer from 
vanishing/exploding gradients. This phenomenon, originated from the use of finite-
precision backpropagation process, limits the size of the sequence. 

To this end, a corner stone block is used: the Long-Short-Term Memory 
(LSTM [68]). Mostly used for NLP tasks, the LSTM is an RNN block with 
gates. During training, these gates learn which part of the sentence to forget or to 
memorize. The gating allows some of the gradients to backpropagate unchanged, 
which aids the vanishing gradient symptom. Notice that RNNs (and LSTMs) can 
process a sentence in a bidirectional mode, i.e., process a sentence in two directions, 
from the beginning to the end and vice versa. This mechanism allows a better grasp 
of the input context by the network. Examples for popular research tasks in NLP 
data include question answering [139], translation [98], and text generation [56]. 

Sentences Processing An important issue in NLP is representing words in prepa-
ration to serve as network input. The use of straightforward indices is not effective 
since there are thousands of words in a language. Therefore, it is common to process 
text data via word embedding, which is a vector representation of each word in some 
fixed dimension. This method enables to encapsulate relationships between words. 

Word2Vec is a classic methodology to calculate word embeddings [119]. In this 
approach, these vector representations are calculated using an NN model that learns 
their context. More advanced options for creating efficient word representations 
include BERT [36], ELMO [133], RoBERTa [114], XLNet [206], and GPT [140]. 

Audio Processing Audio recordings are used for multiple interesting tasks, such as 
speech to text, text to speech, and speech processing. In the audio case, the common 
input to speech systems is the Mel Frequency Cepstral Coefficient (MFCC) or a 
Short-Time Fourier Transform (STFT) image, as opposed to the audio raw data. 
A milestone example for speech processing NN architecture is the WaveNet [129]. 
This architecture is an autoregressive model that synthesizes speech or audio signals. 
It is based on dilated convolutional layers that have large receptive fields that allow 
efficient processing. Another prominent synthesis model for sequential data is the 
Tacotron [157]. 

The Attention Model As mentioned in Sect. 2, one may use RNN for translation 
using the encoder decoder model, which encodes a source sentence into a vector, 
which is then decoded to a target language. Instead of relying on a compressed 
vector, which may lose information, the attention models learn where or what to
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focus on from the whole input sequence. Introduced in 2015 [3], attention models 
have shown superior performance over encoder–decoder architectures in tasks such 
as translation, text to speech, and image captioning. Recently, it has been suggested 
to replace the recurrent network structure totally by the attention mechanism, which 
results with the transformers network models [187]. 

7.3 Deep Learning on Irregular Grids 

A wide variety of data acquisition mechanisms do not represent the data on a grid 
as is common with images data. A prominent example is 3D imaging (e.g., using 
LIDAR), where the input data are represented as points in a 3D space with or 
without color information. Processing such data is not trivial as standard network 
components, such as convolutions, assume a grid of the data. Therefore, they cannot 
be applied as is and custom operations are required. We focus our discussion here 
on the case of NN for 3D data. 

Today, real-time processing of 3D scenes can be achieved with advanced NN 
models that are customized to these irregular grids. The different processing 
techniques for these irregular grid data can be divided by the type of representation 
used for the data: 

1. Points processing. 3D data points are processed as points in space, i.e., a list 
of the point coordinates is given as the input to the NN. A popular network 
for this representation is PointNet [135]. It is the first to efficiently achieve 
satisfactory results directly on the point cloud. Yet, it is limited by the number 
of points that can be analyzed, computational time and performance. Some 
more recent models that improve its performance include PointNet++ [136], 
PointCNN [103], and DGCNN [196]. Strategies to improve its efficiency 
have been proposed in learning to sample [39] and RandLA-Net [71]. A 
hierarchical Gaussian mixture-based point cloud network has been proposed 
in PointGMM [65]. Another recent useful representation for point clouds is the 
signed distance function [131]. 

2. Multi-view 2D projections. 3D data points are projected (from various angles) 
to the 2D domain so that known 2D processing techniques can be used [104, 83]. 

3. Volumetric (voxels). 3D data points are represented in a grid-based voxel 
representation. This is analogous to a 2D representation and is therefore 
advantageous. However, it is computationally exhaustive [201] and losses 
resolution. 

4. Meshes. Mesh represents the 3D domain via a graph that defines the connec-
tivity between the different points. Yet, this graph has a special structure such 
that it creates the surface of the 3D shape (in the common case of triangular 
mesh, the shape surface is presented by a set of triangles connected to each 
other). In 2015, Masci et al. [7] have shown it is possible to learn features using
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DL on meshes. Since then, a significant advancement has been made in mesh 
processing [58, 123, 111, 64, 19]. 

5. Graphs. Graph representations are common for representing nonlinear struc-
tured data. Some works have proposed efficient NN models for 3D data points 
on a grid-based graph structure [30, 91, 126, 173]. 

8 Summary 

This chapter provided a general survey of the basic concepts in neural networks. 
As this field is expanding very fast, the space is too short to describe all the 
developments in it, even though most of them are from the past eight years. Yet, 
we briefly mention here few important problems that are currently being studied. 

1. Domain adaptation and transfer learning. As many applications necessitate 
data that are very difficult to obtain, some methods aim at training models 
based on scarce datasets. A popular methodology for dealing with insufficient 
annotated data is domain adaptation, in which a robust and high performance 
NN model, trained on a source distribution, is used to aid the training of a 
similar model (usually with the same goal, e.g., in classification the same classes 
are searched for) on data from a target distribution that are either unlabeled 
or small in number [47, 130, 162]. An example is adapting an NN trained on 
simulation data to real-life data with the same labels [186, 69]. On a similar 
note, transfer learning [180, 38] can also be used in similar cases, where in 
addition to the difference in the data the input and output tasks are not the 
same but only similar (in domain adaptation the task is the same and only the 
distributions are different). One such example is using a network trained on 
natural images to classify medical data [4]. 

2. Few-shot learning. A special case of learning with small datasets is few-shot 
learning [197], where one is provided either with just semantic information 
of the target classes (zero-shot learning), only one labelled example per class 
(one-shot learning), or with just few samples (general few-shot learning). 
Approaches developed for these problems have shown great success in many 
applications, such as image classification [176, 155, 174], object detection [84], 
and segmentation [10]. 

3. Online learning. Various deep learning challenges occur due to new distribu-
tions or class types introduced to the model during a continuous operation of 
the system (post-training) and now must be learnt by the model. The model 
can update its weights to incorporate these new data using online learning 
techniques. There is a need for special training in this case, as systems that 
just learn based on the new examples may suffer from a reduced performance 
on the original data. This phenomenon is known as catastrophic forgetting [87]. 
Often, the model tends to forget the representation of part of the distribution 
it already learned, and thus it develops a bias toward the new data. A specific
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example of online learning is incremental learning [11], where the new data is 
of different classes than the original ones. 

4. AutoML. When approaching real-life problems, there is an inherent pipeline 
of tasks to be performed before using DL tools, such as problem definition, 
preparing the data, and processing it. Commonly, these tasks are performed 
by specialists and require deep system understating. To this end, the autoML 
paradigm attempts to generalize this process by automatically learning and 
tuning the model used [44]. 
A particular popular task in autoML is Neural Architecture Search (NAS) [42]. 
This is of interest since the NN architecture restricts its performance. However, 
searching for the optimal architecture for a specific task, and from a set of 
predefined operations, is computationally exhaustive when performed in a 
straight forward manner. Therefore, ongoing research attempts to overcome this 
limitation. An example is the DARTS [110] strategy and its extensions [127, 18] 
where the key contribution is finding, in a differentiable manner, the connections 
between network operations that form an NN architecture. This framework 
decreases the search time and improves the final accuracy. 

5. Reinforcement Learning. To date, the most effective training method for 
decision-based actions, such as robot movement and video games, is Reinforce-
ment Learning (RL) [81, 122, 178]. In RL, the model tries to maximize some 
predefined award score by learning which action to take, from a set of defined 
actions in specific scenarios. 

6. Diffusion Models. Diffusion probabilistic models are a non-adversarial alter-
native to GANs, inspired by nonequilibrium thermodynamics. These models 
generate an image output from noise [67, 31] in the following manner similar 
to the autoencoders regime: in the forward diffusion pass, noise is added T 
times, while in the reverse diffusion pass, a neural network denoises these 
images sequentially. Diffusion models are commonly used in tasks such as 
image denoising, inpainting, super-resolution, and image generation. One of 
the leading examples of a diffusion model application is image generation, 
where it has been shown to produce state-of-the-art results in recent years [67]. 
Prominent examples where diffusion models are used for generation are DALL-
E-2, Midjourney and Stable-Diffusion. 

7. Large Language Models (LLMs) LLMs such as GPT-3 [9, 46] are deep 
learning models that can process and generate natural language text at an 
unprecedented scale. These models have been shown to perform tasks such 
as language translation, text summarization, and even creative writing with 
impressive results [9]. One example of an LLM is ChatGPT, a large language 
model that can converse with users and provide relevant responses to their 
inputs. The potential impact of LLMs is significant, as they have the ability 
to assist humans in tasks such as writing, research, and even customer service, 
potentially leading to increased efficiency and productivity in various industries. 
However, concerns have also been raised about the ethical and societal implica-
tions of these models, including issues related to bias, privacy, and ownership 
[6].
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To summarize, being able to efficiently train deep neural networks has rev-
olutionized almost every aspect of the modern day-to-day life. Examples span 
from bio-medical applications through computer graphics in movies and videos 
to international scale applications of big companies, such as Google, Amazon, 
Microsoft, Apple, and Facebook. Evidently, this theory is drawing much attention, 
and we believe there is still much to unravel, including exploring and understanding 
the NN’s potential abilities and limitations. 

The next chapters detail Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), generative models, and autoencoders. All are very 
important paradigms that are used in numerous applications (Table 2). 
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Graph Embedding 

Palash Goyal 

1 Introduction 

Graphs are ubiquitous. Most things in the real world interact with each other forming 
a large variety of graphs. For example, people interact on social media by be-
friending and commenting and liking posts forming a large social graph. Similarly, 
atoms and molecules interact to form biological interaction graph. In language, 
words interact to form sentences which in turn interact to form paragraphs. These 
interactions can also be modeled as word co-occurrence graphs or sentence graphs. 
Thus, analyzing and understanding graphs is crucial to getting insights into the 
physical world around us. Their application to a vast variety of domains has led to 
tremendous efforts in research for the field. Originally, the idea was introduced by 
Leonhard Euler in eighteenth century to define walks in a city connected by bridges. 
Today, graph algorithms are used to navigate around the world, recommend friends 
and movies, and even to predict formation of new compounds. 

Another branch of science which has grown over the past few decades is 
artificial intelligence and machine learning. As we have studied in the previous 
chapters, methods such as support vector machines and neural networks have let 
us model dependencies between features available to predict the outcome. They 
have been used to predict weather trends, estimate risk of cardiovascular death, 
and automatically translate text in different languages. The impact on business 
applications of these machine learning methods is massive, since they affect so many 
different areas like machine translation, healthcare diagnostics, chat-bot behavior, 
warehouse inventory management, automated email responses, facial recognition, 
and customer review analysis, just to name a few. Driven by these applications, the 

P. Goyal (�) 
University of Southern California, Los Angeles, CA, USA 
e-mail: palashgo@usc.edu 

© Springer Nature Switzerland AG 2023 
L. Rokach et al. (eds.), Machine Learning for Data Science Handbook, 
https://doi.org/10.1007/978-3-031-24628-9_15

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24628-9protect T1	extunderscore 15&domain=pdf

 885 56845 a 885 56845 a
 
mailto:palashgo@usc.edu
mailto:palashgo@usc.edu
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15
https://doi.org/10.1007/978-3-031-24628-9_15


340 P. Goyal

machine learning models have advanced to capture complex patterns of information 
from data to learn dependencies with the output variable. 

Graph embedding a.k.a. network representation learning lies at the intersection 
of graph analysis and machine learning. Graphs are typically represented as a set 
of nodes/vertices and edges. Each node is defined by the presence of edges with 
its neighbors and absence with the rest of the nodes. Thus, they are very high 
dimensional. However, most of the machine learning methods require an absolute 
definition of a data point instead of the relative definition as provided by the graphs. 
This gave rise to graph embedding which aims to learn a low-dimensional absolute 
representation of each node from the graph. 

Learning such low-dimensional representation can be used for many graph 
tasks including link prediction, node classification and regression, and graph 
visualization. Link prediction refers to the task of predicting missing links or links 
that are likely to occur in the future. Node classification aims at determining the 
label of nodes (a.k.a. vertices) based on other labeled nodes and the topology of the 
network. Clustering is used to find subsets of similar nodes and group them together; 
finally, visualization helps in providing insights into the structure of the network. 

We can categorize the graph embedding problems into three categories: (i) static 
or snapshot graph embedding, (ii) dynamic or temporal graph embedding, and (iii) 
attributed graph embedding. Static methods look at a single snapshot of a graph and 
learn the representation of each node for that snapshot. Dynamic methods extend 
this to temporal graphs and learn embeddings across time. Attributed methods 
extend traditional graph embedding methods to work for graphs with node and edge 
attributes. 

The rest of the chapter is organized as follows: Sect. 2 defines the problem 
statement and the notations, Sect. 3 introduces methods for static graph embedding, 
Sect. 4 draws insights into the problem of dynamic graph embedding, and Sect. 5 
explains approaches recently introduced for attributed graph embedding. 

2 Definitions 

We now define some of the most common terms typically used in the literature 
of graph embedding [1, 2]. 

Definition 1 (Graph) A graph .G(V,E) is a collection of . V = {v1, · · · , vn}
vertices (a.k.a. nodes) and .E = {eij }ni,j=1 edges. The adjacency matrix S of graph 
G contains non-negative weights associated with each edge: .sij ≥ 0. If  . vi and . vj

are not connected to each other, then .sij = 0. For undirected weighted graphs, 
.sij = sji ∀i, j ∈ [n]. 

The edge weight . sij is generally treated as a measure of similarity between the 
nodes . vi and . vj . The higher the edge weight, the more similar the two nodes are 
expected to be.
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Fig. 1 Example illustrating graph embedding. Nodes 1 and 3 are first-order neighbors and should 
be close in the embedding space. Nodes 1 and 5 are second-order neighbors and should be relatively 
farther 

Definition 2 (First-Order Proximity) Edge weights . sij are also called first-order 
proximities between nodes . vi and . vj , since they are the first and foremost measures 
of similarity between two nodes. In Fig. 1, nodes 1, 2, 3, 4, and 5 form the set of 
nodes and all edges have equal weights. Nodes 1 and 2 are connected and are thus 
first-order neighbors. 

We can similarly define higher order proximities between nodes. For instance, 
see the following definition: 

Definition 3 (Second-Order Proximity) The second-order proximity between a 
pair of nodes describes the proximity of the pair’s neighborhood structure. Let . si =
[si1, · · · , sin] denote the first-order proximity between . vi and other nodes. Then, 
second-order proximity between . vi and . vj is determined by the similarity of . si
and . sj . 

The second-order proximity compares the neighborhood of two nodes and treats 
them as similar if they have a similar neighborhood. In Fig. 2, nodes 1 and 5 are 
second-order neighbors. It is possible to define higher order proximities using other 
metrics, e.g., Katz Index [30], Rooted PageRank [33], Common Neighbors [32], 
Adamic-Adar [31], etc. Next, we define a graph embedding: 

Definition 4 (Graph Embedding) Given a graph .G = (V ,E), a graph embedding 
is a mapping .f : vi → yi ∈ R

d ∀i ∈ [n] such that .d � |V | and the function f 
preserves some proximity measure defined on graph G. 

An embedding therefore maps each node to a low-dimensional feature vector 
and tries to preserve the connection strengths between vertices. For instance, 
an embedding preserving first-order proximity might be obtained by minimizing 
.
∑

i,j sij‖yi − yj‖22. Let two node pairs .(vi, vj ) and .(vi, vk) be associated with 
connection strengths such that .sij > sik . In this case, . vi and . vj will be mapped 
to points in the embedding space that will be closer to each other than the mapping 
of . vi and . vk . In Fig. 2, nodes 1 and 3 should be closer in embedding space than 4 
and 2 as 1 and 3 have a direct relation between them.
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Definition 5 (Dynamic Graph Embedding) Given an evolution of graph G, . G, 
a dynamic graph embedding aims to represent each node v in a series of low-
dimensional vector space .yv1 , . . . yvt , where . yvt is the embedding of node v at 
time t , by learning mappings .ft : {V1, . . . , Vt , E1, . . . Et } → R

d and . yvi
=

fi(v1, . . . , vi, E1, . . . Ei) such that . yvi
can capture temporal patterns required to 

predict .yvi+1 . 

A dynamic graph embedding thus works for a series of graphs. It can be used 
to update embeddings of graphs over time or capture temporal patterns of graph 
evolution to generate a temporally aware embedding. As most data from real world 
often contain attributes on nodes and edges, there are several works on attributed 
graph embedding as defined below: 

Definition 6 (Attributed Graph Embedding) Given a graph .G = (V ,E) and 
associated node and edge attributes .V a and . Ea , respectively, attributed graph 
embedding aims to represent each node u in a low-dimensional vector space . yu by 
learning a mapping .f : {V, V a,Ea} → R

d , namely .yv = f (v, V a,Ea) ∀v ∈ V . 

An attributed graph embedding method aims to preserve both the structural 
properties of the graph and the additional attribute information available. 

Several methods have been proposed preserving various properties and attributes 
of the graph. This increase in the methods has led researchers to extend the concept 
of ensemble learning to graph embedding domain: 

Definition 7 (Ensemble Graph Embedding) Given a set of embedding methods 
.{m1, . . . , mk} with corresponding embeddings for a graph G as . {Xm1 , . . . , Xmk }
and errors .{ε1, . . . , εk} on a graph task . T, a graph ensemble learning approach aims 
to learn an embedding .Xm with error . ε such that .ε < min(ε1, . . . , εk). 

An ensemble approach leverages the accuracy and diversity of the individual 
models to make more accurate predictions. 

3 Static Graph Embedding Methods 

Static graph embedding methods aim to learn representations of nodes for a 
snapshot of a graph. The snapshot may be cumulative over time or may represent a 
single timestamp. Research in this field is driven by the following questions: 

•? Questions 

1. Which properties of the input graph are useful for downstream tasks such as 
node classification and link prediction? 

2. How can we capture the underlying manifold of the graph? 
3. How can we develop methods which can scale for large graphs? 
4. How much space is really required to store a graph?
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Graph embedding methods quantify the above questions and define ways to 
answer them. They give us a deeper understanding of the information contained 
in the graph and how it can be utilized for downstream tasks. We will now explain 
how different methods attempt to answer the questions. 

3.1 Graph Properties Preserved 

Graph analysis over the decades has led to a discovery of several properties real-
world graphs may have. Social networks often have people connected in densely 
connected communities with sparse connections between the communities. Web 
graphs have been shown to have structural properties with websites acting as hubs 
and authorities of information content. Biology networks have a mixture of the 
above properties. 

Consider a social network graph in Fig. 2. It is composed of several properties. 
Persons a to i form a community closely connected to one another. Tom and Nancy 
also have a special role of connecting the two communities. In contrast, Peter is not 
a part of either of the communities but serves as a link between them. 

To predict missing links or possible future links for this graph, it is important to 
capture both the community structure and the structural roles of the people in the 
graph. Based on the properties preserved in the approach, there are two categories of 
graph embedding methods: (i) community preserving and (ii) structure preserving. 

a 

d 

b Tom 

e 

f 

h 

Nancy g 

iPeter 

Fig. 2 Example illustrating a social graph with multiple properties. Persons a to i form two 
communities. Tom and Nancy have a special role of being in individual community but connecting 
them. Peter is not a part of either of the communities but is a link between them
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3.1.1 Community Preserving Graph Embedding Methods 

Community preserving methods aim to capture the distances in the input graph in 
the embedding space. Within this category, the methods vary on the level of distance 
captures. For example, Graph Factorization [3] and Laplacian Eigenmaps [4] 
preserve shorter distances (i.e., low-order proximity) in the graph, whereas more 
recent methods such as Higher Order Proximity Embedding (HOPE) [5] and 
GraRep [6] capture longer distances (i.e., high order proximity). 

Here are some examples of such methods: 

1. Laplacian Eigenmaps: Laplacian Eigenmaps [4] keeps the embedding of two 
nodes close when the weight .Wij is high. Specifically, they minimize the 
objective function .φ(Y ) = 1

2

∑
i,j (Yi − Yj )

2Wij = YT LY , where L is the 
Laplacian of graph G. The solution to this can be obtained by taking the 
eigenvectors corresponding to the d smallest eigenvalues of the normalized 
Laplacian, .Lnorm = D−1/2LD−1/2. 

2. Graph Factorization: Graph Factorization [3] was the first method to obtain a 
graph embedding in .O(|E|) time. To obtain the embedding, GF factorizes the 
adjacency matrix of the graph, minimizing the following loss function: 

. φ(Y, λ) = 1

2

∑

(i,j)∈E

(Wij− < Yi, Yj >)2 + λ

2

∑

i

‖Yi‖2,

where . λ is a regularization coefficient. 
3. HOPE: HOPE [5] preserves higher order proximity by minimizing . ‖S −

YsY
T
t ‖2F , where S is the similarity matrix. The authors experimented with dif-

ferent similarity measures, including Katz Index, Rooted Page Rank, Common 
Neighbors, and Adamic-Adar score. They represented each similarity measure 
as .S = M−1

g Ml , where both .Mg and . Ml are sparse. This enables HOPE to 
use generalized Singular Value Decomposition (SVD) to obtain the embedding 
efficiently. 

3.1.2 Structure Preserving Graph Embedding Methods 

Structure preserving methods aim to understand the structural similarity between 
nodes and capture role of each node. node2vec [7] uses a mixture of breadth-first and 
depth-first search for this. Deep learning methods such as Structural Deep Network 
Embedding (SDNE) [8] and Deep Network Graph Representation (DNGR) [6] use  
deep autoencoders to preserve distance and structure. Here are some examples of 
such methods: 

1. Structural Deep Network Embedding (SDNE): Wang et al. [8] proposed 
to use deep autoencoders to preserve the first- and second-order network 
proximities. They achieve this by jointly optimizing the two proximities. The
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approach uses highly nonlinear functions to obtain the embedding. The model 
consists of two parts: unsupervised and supervised. The former consists of an 
autoencoder aiming at finding an embedding for a node which can reconstruct 
its neighborhood. The latter is based on Laplacian Eigenmaps [4] which apply a 
penalty when similar vertices are mapped far from each other in the embedding 
space. 

2. node2vec: node2vec [7] preserves higher order proximity between nodes 
by maximizing the probability of observing the last k nodes and the 
next k nodes in the random walk centered at . vi , i.e., maximizing 
.logPr(vi−k, . . . , vi−1, vi+1, . . . , vi+k|Yi), where .2k + 1 is the length of the 
random walk. It employs biased random walks that provide a trade-off between 
breadth-first (BFS) and depth-first (DFS) graph searches. 

3.2 Manifold Learning 

An alternate way of looking at graph embedding is that the low-dimensional 
representation is learning the underlying manifold the graph lies in. The manifold 
can be simple and linear or complex depending on the connections between nodes. 
Methods vary in their definition of the function approximating the underlying 
manifold. Below, we mention three broad classes of methods based on this: 

1. Matrix Factorization: They represent graph as a similarity matrix and decom-
pose it to get the embedding. Graph Factorization and HOPE use adjacency 
matrix and higher order proximity matrix for this. 

2. Deep Learning: They use multiple nonlinear layers to capture the underlying 
manifold of the interactions between nodes. SDNE, DNGR, and VGAE [9] are  
examples of these methods. Success in this has given rise to the field of graph 
neural networks [34], which uses message passing between nodes to capture the 
relations in graphs. 

3. Hyperbolic Embedding: Instead of representing the nodes in a Euclidean 
space, they use a hyperbolic space such as Poincare disk. These methods [10, 
11] claim that hyperbolic space is optimal and showcase it by illustrating 
performance in downstream task. 

3.3 Model Scalability 

Real-world networks lie on a broad spectrum of graph size. Biological networks are 
typically small, whereas web networks span the entire Internet and are in the order 
of billions of nodes. Thus, understanding the time complexity of methods is crucial 
for any application. Faster methods typically use simpler function approximations, 
whereas highly nonlinear models are usually very computationally expensive. Based
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on the time taken to learn the embedding in terms of the number of edges in the 
graph, methods can be put into the following categories: 

1. Sub-linear Methods: These methods use .O(|V |) time. Random walk-based 
methods (e.g., DeepWalk, node2vec) that take a random walk of constant length 
from each node fall in this category. 

2. Linear Methods: Methods that traverse each edge a constant number of times 
and take .O(|E|) time fall in this category. Sparse matrix factorization-based 
approaches typically fall in this category. 

3. Quadratic Methods: These methods take quadratic time even for sparse 
graphs. Matrix factorization-based methods that compute a dense similarity 
matrix from the adjacency matrix and deep learning methods fall in this 
category. 

Furthermore, there are some methods which aim to reduce the memory footprint 
of the representation by embedding the nodes in a discrete space. Shen et al. [12] 
use hamming distance to approximate the ground truth distance and learn the binary 
code for each node. 

4 Dynamic Graph Embedding Methods 

Static graph embedding methods are useful for understanding the properties of 
any graph and get an estimate of the node characteristics. However, most real-world 
graphs evolve over time. Friendship graphs evolve by people changing communities, 
severing old connections, and forming new ones. Similarly, router networks evolve 
by addition of new routers and removal of faulty ones. This leads to the following 
questions: 

•? Questions 

1. How can we efficiently update graph embedding as the connections evolve over 
time? 

2. How can we capture temporal patterns in dynamic graphs? 

Over the past 5 years, understanding dynamics of graphs and incorporating them 
in the study of graph embedding has been studied more extensively.
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4.1 Updating Graph Embedding 

Rate of evolution of node and edges in a graph varies with the domain. Router 
networks and biology networks are relatively more stable whereas social networks 
and information networks grow rapidly. Furthermore, the evolution is local in some 
cases, e.g., a person changing a job in a job network, and global in other cases, 
e.g., spread of epidemic. Recalculating the embedding of a graph after short periods 
of local changes is not efficient. On the other hand, keeping the same embedding 
although the network has changed makes the embedding less informative. 

Figure 3 illustrates a job network before and after Tom changes his job. We 
observe that although the local network around Tom has changed, the rest of 
the graph remains fairly constant. Recommending friends from his previous job 
is less significant given the job change. Thus, it is important to modify Tom’s 
representation to denote that. 

Several methods have been proposed in the recent years to efficiently update 
graph embeddings for dynamic graphs. A pioneer work in this field is by Zhu et 
al. [13]. The method extends Graph Factorization for static graphs by introducing a 
temporal regularizer .1 − yvt y

T
vt−1

for a node v at time steps t and .t − 1 penalizing 
a drastic change in the dot product distance between the embedding of a node 
at consecutive time steps. TIMERS [14] use a similar temporal regularization for 
Singular Value Decomposition of a graph. 

DynGEM [15] proposed a deep neural network-based approach without the 
regularization by initialization the neural network weights of the model for time 
step t with .t −1 and incrementally updating the weights. They showed superior per-
formance to the previous methods. In addition, they provided a way to dynamically 
adapt the size of neural network to increasing information contained in the graph. 

DynamicTriad [16] relaxes the temporal smoothness assumption and captures 
patterns spanning two time steps. DyLink2vec [17] transforms the problem of 
learning temporal changes to learning embeddings of links and using time series 
to capture the patterns. Other methods using similar approaches [18, 19] extending 
static methods such as LINE and graph neural networks have been proposed. 
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Nancy g 
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Nancy g 

i 

Tom 

Fig. 3 Example illustrating a job network before and after Tom changes his job. The local network 
around Tom has changed, but the rest of the graph remains mostly unchanged
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4.2 Capturing Temporal Patterns 

Certain laws and patterns govern the evolution of graphs. For example, an empirical 
study of social networks showed that they largely follow the law of triadic closure 
which suggests connections of nodes with mutual connections [20]. Similarly, 
the phenomenon of “rich get richer” signifying increasing connections to already 
popular nodes has been shown to hold true in social and information networks [21]. 

Understanding such underlying patterns is crucial as they become building 
blocks for developing algorithms for link prediction. Triadic closure property led 
to the development of “Common Neighbors” and “rich get richer” led to the 
development of “Preferential Attachment.” Several other link prediction methods 
such as “Adamic-Adar” and “Jaccard Coefficient” are variants of the above methods 
aiming to capture the properties. 

Using static graph embedding for prediction tasks can capture spatial patterns in 
the graphs as well as some of the above properties. Nodes with common neighbors 
can be embedded closer than ones without. This can help use triadic closure 
property. Similarly, high-degree nodes can be embedded separately from low-degree 
nodes supporting “rich get richer” phenomenon. However, graph embeddings can 
provide a much better platform to capture more complex patterns. As nodes are now 
embedded in a common space, we can use time series of embeddings from previous 
k time steps to understand the network more deeply. 

For example, consider Fig. 4. On the left, we have a user who is browsing the 
web. On the right, we have a list of web pages he is browsing. He navigates from 
one web page to another by following the hyperlink on the web page he is on. If we 
use the above properties, we cannot predict the deletion of the first link and addition 
of second link. However, looking at multiple time steps, we can infer the pattern. 

Capturing temporal patterns in graphs using graph embedding was pioneered by 
Goyal et al. [22]. The method uses nonlinear recurrent layers to capture temporal 
pattern. Furthermore, it uses an autoencoder to reduce the graph dimensionality 
before feeding into the recurrent layers. They propose three variants of the model 
by varying the input to recurrent layers and show the differences. Recently, 
several methods have extended this work. Some of them use Graph Convolutional 

User User User 

Fig. 4 Example illustrating a user browsing the web. The user follows the hyperlink on the web 
page to go to the next link
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Network [23], while others use self-attention networks [25, 24] and other novelties 
in time series methods [26]. 

5 Attributed Graph Embedding Methods 

Graphs are used as abstractions of real-world data. The richer the abstraction, 
the more properties of the underlying data it can capture. Representing a friendship 
graph as nodes and edges helps ease the analysis but loses important information 
such as user gender, location, and preferences which can govern formation of 
friendships. Similarly, in web network, capturing web page statistics and user 
demography is key in recommending new web pages. 

Such information can be incorporated in the graph by storing it as node and 
edge attributes of the graph. For example, in social network, gender and location 
can be stored as user attribute and the type of relationship between the users can 
be incorporated as edge attributes. Extending graph embedding methods for such 
attributed graphs can ensure that the representation carries the attribute information. 

Recently, many works have begun to use node attributes along with the net-
work structure in the embedding process. Heterogeneous Network Embedding 
(HNE) [27] embeds the heterogeneous graph into a common space by learning 
separate embeddings of each category of node and then learning a matrix trans-
formation to embed them into a common space. Another pioneer work in attributed 
graph embedding is Label Informed Attributed Network Embedding [28], which 
is a supervised method for learning the node representation given node labels and 
attributes. ELAINE [29] extended these methods to capture both node and edge 
attributes. It uses a coupled autoencoder to reconstruct both network features and 
node and edge attributes. 

6 Conclusion 

Graph embedding is a young and exciting field. This chapter presented some aspects 
of the timeline of this field. We started with graph embeddings of static graphs, 
understanding which properties are important to be captured and how to make 
the process scalable. We then extended this to dynamic graphs covering methods 
which update embeddings with new nodes and edge as well as methods which are 
capable of capturing dynamism in the graph. We then talked about attributed graph 
embedding methods which can embed more information in addition to nodes and 
edges. 

Overall, the field is evolving continuously as the applications are enormous. The 
growth of this field is directly inspired by the use cases. Notwithstanding the recent 
innovations, there are several directions the field can grow. The first and foremost
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is the interpretability of graph embeddings. Most methods produce embeddings 
which can be evaluated on the downstream tasks but are not interpretable. However, 
creating an interpretable embedding can yield tremendous insights into the dataset 
properties. Second, the methods have several hyperparameters that are difficult to 
tune. Coming up with automatic hyperparameter tuning methods can be another 
useful direction. Third, the field of dynamic graph embedding is still nascent. 
Temporal methods with good accuracy are often not scalable, and existing scalable 
methods do not capture long term graph dependencies. Bridging this gap is crucial 
to building a practical model. 
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Autoencoders 

Dor Bank, Noam Koenigstein, and Raja Giryes 

1 Autoencoders 

Autoencoders have been first introduced in [43] as a neural network that is trained 
to reconstruct its input. Their main purpose is learning in an unsupervised manner 
an “informative” representation of the data that can be used for various implications 
such as clustering. The problem, as formally defined in [2], is to learn the functions 
.A : Rn → R

p (encoder) and .B : Rp → R
n (decoder) that satisfy 

. argminA,B E[�(x, B ◦ A(x)], (1) 

where E is the expectation over the distribution of x, and . � is the reconstruction 
loss function, which measures the distance between the output of the decoder and 
the input. The latter is usually set to be the .�2-norm. Figure 1 provides an illustration 
of the autoencoder model. 

In the most popular form of autoencoders, A and B are neural networks [40]. In 
the special case that A and B are linear operations, we get a linear autoencoder [3]. 
In the case of linear autoencoder where we also drop the nonlinear operations, the 
autoencoder would achieve the same latent representation as Principal Component 
Analysis (PCA) [38]. Therefore, an autoencoder is in fact a generalization of PCA, 
where instead of finding a low-dimensional hyperplane in which the data lie, it is 
able to learn a nonlinear manifold. 
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Fig. 1 An autoencoder example. The input image is encoded to a compressed representation and 
then decoded 

Autoencoders may be trained end to end or gradually layer by layer. In the latter 
case, they are “stacked” together, which leads to a deeper encoder. In [35], this 
is done with convolutional autoencoders and in [54] with denoising autoencoder 
(described below). 

This chapter is organized as follows. In Sect. 2, different regularization tech-
niques for autoencoders are considered, whose goal is to ensure that the learned 
compressed representation is meaningful. In Sect. 3, the variational autoencoders are 
presented, which are considered to be the most popular form of autoencoders. Sec-
tion 4 covers very common applications for autoencoders, Sect. 5.1 briefly discusses 
the comparison between autoencoders and generative adversarial networks, and 
Sect. 5 describes some recent advanced techniques in this field. Section 6 concludes 
this chapter. 

2 Regularized Autoencoders 

Since in training, one may just get the identity operator for A and B, which keeps 
the achieved representation the same as the input, some additional regularization is 
required. The most common option is to make the dimension of the representation 
smaller than the input. This way, a bottleneck is imposed. This option also directly 
serves the goal of getting a low-dimensional representation of the data. This 
representation can be used for purposes such as data compression, feature extraction, 
etc. It is important to note that even if the bottleneck is comprised of only one node, 
then overfitting is still possible if the capacity of the encoder and the decoder is large 
enough to encode each sample to an index. 

In cases where the size of the hidden layer is equal to or greater than the size of 
the input, there is a risk that the encoder will simply learn the identity function. 
To prevent it without creating a bottleneck (i.e., smaller hidden layer), several 
options exist for regularization, which we describe hereafter, that would enforce 
the autoencoder to learn a different representation of the input.
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An important trade-off in autoencoders is the bias-variance trade-off. On the one 
hand, we want the architecture of the autoencoder to be able to reconstruct the input 
well (i.e., reduce the reconstruction error). On the other hand, we want the low 
representation to generalize to a meaningful one. We now turn to describe different 
methods to tackle such trade-offs. 

2.1 Sparse Autoencoders 

One way to deal with this trade-off is to enforce sparsity on the hidden activations. 
This can be added on top of the bottleneck enforcement or instead of it. There are 
two strategies to enforce the sparsity regularization. They are similar to ordinary 
regularization, where they are applied on the activations instead of the weights. The 
first way to do so is to apply . L1 regularization, which is known to induce sparsity. 
Thus, the autoencoder optimization objective becomes 

. argminA,B E[�(x, B ◦ A(x)] + λ
∑

i

|ai |, (2) 

where . ai is the activation at the ith hidden layer and i iterates over all the hidden 
activations. Another way to do so is to use the KL-divergence, which is a measure of 
the distance between two probability distributions. Instead of tweaking the lambda 
parameter as in the . L1 regularization, we can assume the activation of each neuron 
acts as a Bernoulli variable with probability p and tweak that probability. At each 
batch, the actual probability is then measured, and the difference is calculated 
and applied as a regularization factor. For each neuron j , the calculated empirical 
probability is .p̂j = 1

m

∑
i ai(x), where i iterates over the samples in the batch. 

Thus, the overall loss function would be 

. argminA,B E[�(x, B ◦ A(x)] +
∑

j

KL(p||p̂j ), (3) 

where the regularization term in it aims at matching p to . p̂. 

2.2 Denoising Autoencoders 

Denoising autoencoders [53] can be viewed either as a regularization option or as 
robust autoencoders which can be used for error correction. In these architectures, 
the input is disrupted by some noise (e.g., additive white Gaussian noise or erasures 
using dropout), and the autoencoder is expected to reconstruct the clean version of 
the input, as illustrated in Fig. 2.
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Fig. 2 A denoising autoencoder example. The disrupted input image is encoded to a representation 
and then decoded 

Note that . x̃ is a random variable, whose distribution is given by .C(x̃|x). Two  
common options for C are 

.Cσ (x̃|x) = N(x, σ 2I), (4) 

and 

.Cp(x̃|x) = β � x, β ∼ Ber(p), (5) 

where . � denotes an element-wise (Hadamard) product. In the first option, the 
variance parameter . σ sets the impact of the noise. In the second, the parameter p sets 
the probability of a value in . x not being nullified. A relationship between denoising 
autoencoders with dropout to analog coding with erasures has been shown in [4]. 

2.3 Contractive Autoencoders 

In denoising autoencoders, the emphasis is on letting the encoder be resistant 
to some perturbations of the input. In contractive autoencoders, the emphasis is 
on making the feature extraction less sensitive to small perturbations, by forcing 
the encoder to disregard changes in the input that are not important for the 
reconstruction by the decoder. Thus, a penalty is imposed on the Jacobian of the 
network. The Jacobian matrix of the hidden layer h consists of the derivative of 
each node . hj with respect to each value . xi in the input x. Formally, .Jji = ∇xi

hj (xi). 
In contractive autoencoders, we try to minimize its L2 norm, such that the overall
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optimization loss would be 

. argminA,B E[�(x,B ◦ A(x)] + λ||JA(x)||22. (6) 

The reconstruction loss function and the regularization loss actually pull the 
result toward opposite directions. By minimizing the squared Jacobian norm, all 
the latent representations of the input tend to be more similar to each other and 
by thus make the reconstruction more difficult, since the differences between 
the representations are smaller. The main idea is that variations in the latent 
representation that are not important for the reconstructions would be diminished 
by the regularization factor, while important variations would remain because of 
their impact on the reconstruction error. 

3 Variational Autoencoders 

A major improvement in the representation capabilities of autoencoders has been 
achieved by the Variational Autoencoders (VAEs) model [27]. Following Variational 
Bayes (VB) Inference [6], VAEs are generative models that attempt to describe 
data generation through a probabilistic distribution. Specifically, given an observed 
dataset .X = {xi}Ni=1 of V i.i.d. samples, we assume a generative model for each 
datum . xi conditioned on an unobserved random latent variable . zi , where . θ are 
the parameters governing the generative distribution. This generative model is also 
equivalent to a probabilistic decoder. Symmetrically, we assume an approximate 
posterior distribution over the latent variable . zi given a datum . xi denoted by 
recognition, which is equivalent to a probabilistic encoder and governed by the 
parameters . φ. Finally, we assume a prior distribution for the latent variables 
. zi denoted by .pθ (zi ). Figure 3 depicts the relationship described above. The 
parameters . θ and . φ are unknown and need to learn from the data. The observed 
latent variables . zi can be interpreted as a code given by the recognition model 
.qφ (z|x). 

The marginal log-likelihood is expressed as a sum over the individual data points 
.logpθ (x1, x2, ..., xN) = ∑N

i=1 logpθ (xi ), and each point can be rewritten as 

. logpθ (xi ) = DKL

(
qφ (z|xi ) ||pθ (z|xi )

) + L(θ ,φ; xi ), (7) 

where the first term is the Kullback–Leibler divergence of the approximate recog-
nition model from the true posterior and the second term is called the variational 
lower bound on the marginal likelihood defined as 

.L(θ ,φ; xi ) � Eqφ(z|xi )

[
− log qφ(z|x) + logpθ (x, z)

]
. (8)
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Fig. 3 A Graphical 
Representation of VAE 

Since the Kullback–Leibler divergence is non-negative, .L(θ ,φ; xi ) is a lower bound 
on the marginal log-likelihood and the marginal log-likelihood is independent of the 
parameters . θ and . φ, maximizing the lower bound improves our approximation of the 
posterior with respect to the Kullback–Leibler divergence. 

The variational lower bound can be further expanded as follows: 

.L(θ ,φ; xi ) = −DKL

(
qφ(z|xi )||pθ (z)

) + Eqφ(z|xi )

[
logpθ (xi |z)

]
. (9) 

Variational inference follows by maximizing .L(θ ,φ; xi ) for all data points with 
respect to . θ and . φ. 

Given a dataset .X = {xi}Ni=1 with N data points, we can estimate the marginal 
likelihood lower bound of the full dataset .L(θ ,φ;X) using a mini-batch . XM =
{xi}Mi=1 of size M as follows: 

.L(θ ,φ;X) ≈ L̃M
(θ,φ;XM) = N

M

M∑

i=1

L(θ ,φ; xi ). (10) 

Classical mean-field VB assumes a factorized approximate posterior followed by 
a closed form optimization updates (which usually required conjugate priors). 

However, VAE follows a different path in which the gradients of . L̃M
(θ,φ;XM)

are approximated using the reparameterization trick and stochastic gradient opti-
mization. 

3.1 The Reparameterization Trick 

The reparameterization trick is a simple approach to estimate .L(θ ,φ; xi ) based 
on a small sample of size L. Consider Eq. 8, and we can reparameterize the
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random variable .z̃ ∼ qφ(z|x) using a differentiable transformation .gφ(ε, x) using 
an auxiliary noise variable . ε drawn from some distribution .ε ∼ p(ε) [27]. Using 
this technique, .L(θ ,φ; xi ) is approximated as follows: 

.L(θ ,φ; xi ) ≈ L̃(θ,φ; xi ) = 1

L

L∑

l=1

logpθ (xi , z(i,l)) − log qφ(z(i,l)|xi
), (11) 

where .z(i,l) = gφ(ε(i,l), xi ) and .ε(i,l) is a random noise drawn from .εl ∼ p(ε). 
Remember we wish to optimize the mini-batch estimates from Eq. 10. By  

plugging Eq. 11, we get the following differentiable expression: 

.L̂M
(θ,φ;X) = N

M

M∑

i=1

L̃(θ,φ; xi ), (12) 

which can be derived according to . θ and . φ and plugged into an optimizer 
framework. 

Algorithm 1 Pseudo-code for VAE 
.(θ ,φ) ← Initialize Parameter 
repeat 

.XM ← Random mini-batch of M datapoints 

.ε ← L random samples of . p(ε)

.g ← ∇(θ ,φ)L̂
M

(θ ,φ;X) Gradients of Equation 12 
.(θ ,φ) ← Update parameters based on . g e.g., update with SGD or Adagrad 

until Convergence of . (θ ,φ)

return . (θ ,φ)

Algorithm 1 summarizes the full optimization procedure for VAE. Often L can 
be set to 1 so long as M is large enough. Typical numbers are .M = 100 and .L = 1. 

Equation 11 presents a lower bound on the log-likelihood .logpθ (xi ). In [8], the 
equation is changed to 

.L(θ ,φ; xi ) = 1

L

L∑

l=1

log
1

k

k∑

j=1

pθ (xi , z(j,l))

qφ(z(j,l)|xi
)

. (13) 

Intuitively, instead of taking the gradient of a single randomized latent represen-
tation, the gradients of the generative network are learned by a weighted average 
of the sample over different samples from its (approximated) posterior distribution. 
The weights simply the likelihood functions .qφ(z(j,l)|xi

).
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3.2 Example: The Case of Normal Distribution 

Usually, we approximate .p(z|x) with a Gaussian distribution . qφ(z|x) =
N(g(x), h(x)), where .g(x) and .h(x) are the mean and the covariance of the 
distribution defined by the encoder network. Namely, the encoder takes an input . xi

and maps it into a mean and covariance that determine the approximate posterior 
distribution .qφ(z|x). 

To enable backpropagation through the network, sampling from .qφ(z|x) can be 
simplified using the reparameterization trick as follows: 

.z = h(x)ξ + g(x), (14) 

where .ξ ∼ N(0, I) is a normal distribution. 
Finally, we denote the decoder with an additional function f and require that 

.x ≈ f (z). The loss function of the entire network then becomes 

.loss = c ‖x − f (z)‖2 + DKL (N(g(x), h(x)),N(0, I)) , (15) 

which can be automatically derived with respect to the network parameters in . g, h, 
and f and optimized with backpropagation. 

3.3 Disentangled Autoencoders 

The variational lower bound, as presented in Eq. 9, can be viewed as the summation 
of two terms: the right term that includes the reconstruction capability of samples, 
and the left term that acts as a regularization that biases .qφ(z|x(i) toward the assumed 
prior .pθ(z). Disentangled autoencoders are based on variational autoencoders with 
a small addition. They add a parameter . β as a multiplicative factor for the KL-
divergence [23] in Eq. 9. Its maximization factor is thus 

.L(θ, φ, x(i)) = −βDKL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))[logpθ(x(i)|z)]. (16) 

In practice, the prior .pθ(z) is commonly set as the standard multivariate normal 
distribution .N(0,I). In those cases, all the features are uncorrelated, and the KL-
divergence regularizes the latent features distribution .qφ(z|x(i) to a less correlated 
one. Note that the larger the . β, the less correlated (more disentangled) the features 
will be.
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4 Applications of Autoencoders 

Learning a representation via the autoencoder can be used for various applications. 
The different types of autoencoders may be modified or combined to form new mod-
els for various applications. For example, in [39], they are used for classification, 
captioning, and unsupervised learning. We describe below some of the applications 
of autoencoders. 

4.1 Autoencoders as a Generative Model 

As explained in Sect. 3, variational autoencoders are generative models that attempt 
to describe data generation through a probabilistic distribution. Furthermore, as 
can be seen in Eq. 9, the posterior distribution .qφ(z|x(i) which is derived by the 
encoder is regularized toward a continuous and complete distribution in the shape 
of the predefined prior of the latent variables .pθ (z). Once trained, one can simply 
sample random variables from the same prior and feed it to the decoder. Since the 
decoder was trained generate . x from .pθ (xi |z), it would generate a meaningful newly 
generated sample. In Fig. 4, original and generated images are displayed over the 
MNIST dataset. When discussing the generation of new samples, the immediate 
debate involves the comparison between VAE and GANs. An overview on this can 
be found in Sect. 5.1, and two methods that combine both models can be found in 
Sects. 5.2 and 5.3. 

Fig. 4 Generated images of a variational autoencoder, trained on the MNIST dataset with a prior 
.pθ (z) = N(0,I). Left: original images from the dataset. Right: generated images. (a) Sample  
from the original MNIST dataset. (b) VAE generated MNIST images
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4.2 Use of Autoencoders for Classification 

While autoencoders are being trained in an unsupervised manner (i.e., in the absence 
of labels), they can be used also in the semi-supervised setting (where part of the 
data does have labels) for improving classification results. In this case, the encoder 
is used as a feature extractor and is “plugged” into a classification network. This is 
mainly done in the semi-supervised learning setup, where a large dataset is given 
for a supervised learning task, but only a small portion of it is labeled. 

The key assumption is that samples with the same label should correspond 
to some latent presentation, which can be approximated by the latent layer of 
autoencoders. First, the autoencoders are trained in an unsupervised way, as 
described in previous sections. Then (or in parallel), the decoder is put aside, and 
the encoder is used as the first part of a classification model. Its weights may be 
fine-tuned [13] or stay fixed during training. A simpler strategy can be found in 
[17], where a support vector machine (SVM) is trained on the output features of 
the encoder. In cases where the domain is high dimensional, and the layer-by-layer 
training is unfeasible, one solution is to train each layer as a linear layer before 
adding the nonlinearity. In this case, even with denoising the inputs, there exists a 
closed form solution for each layer, and no iterative process is needed [9]. 

Another approach uses autoencoders as a regularization technique for a clas-
sification network. For example, in [29, 60], two networks are connected to the 
encoder, a classification network (trained with the labeled data) and the decoder 
network (trained to reconstruct the data, whether labeled or unlabeled). Having the 
reconstruction head in addition to the classification head serves a regularizer for the 
latter. An illustration is given in Fig. 5. 

4.3 Use of Autoencoders for Clustering 

Clustering is an unsupervised problem, where the target is to split the data to groups 
such that samples in each group are similar to one another and different from the 
samples in the other groups. Most of the clustering algorithms are sensitive to the 
dimensions of the data and suffer from the curse of dimensionality. 

Assuming that the data have some low-dimensional latent representation, one 
may use autoencoders to calculate such representations for the data, which are 
composed of much less features. First, the autoencoder is trained as described 
in the sections before. Then, the decoder is put aside, similarly to the usage in 
classification. The latent representation (the encoders’ output) of each data point is 
then kept and serves as the input for any given clustering algorithm (e.g., K-means). 

The main disadvantage of using vanilla autoencoders for clustering is that 
the embeddings are trained solely for reconstruction and not for the clustering 
application. To overcome this, several modifications can be made. In [45], the 
clustering is done similarly to the K-means algorithm [55], but the embeddings
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Fig. 5 An illustration for using autoencoders as regularization for supervised models. Given the 
reconstruction loss .R(x, x̂) and the classification lost function .L(y, ŷ), the new loss function would 
be .L̃ = L(y, ŷ) + λR(x, x̂), where . λ is the regularization parameter 

are also retrained at each iteration. In this training, an argument is added to the 
autoencoder loss function, which penalizes the distance between the embedding and 
the cluster center. 

In [20], a prior distribution is made on the embeddings. Then, the optimization 
is done both by the reconstruction error and by the KL-divergence between 
the resulting embeddings distribution and the assumed prior. This can be done 
implicitly, by training a VAE with the assumed prior. In [10], this is done while 
assuming a multivariate Gaussian mixture. 

4.4 Use of Autoencoders for Anomaly Detection 

Anomaly detection is another unsupervised task, where the objective is to learn 
a normal profile given only the normal data examples and then identify the 
samples not conforming to the normal profile as anomalies. This can be applied 
in different applications such as fraud detection, system monitoring, etc. The use of 
autoencoders for this tasks follows the assumption that a trained autoencoder would
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learn the latent subspace of normal samples. Once trained, it would result with a low 
reconstruction error for normal samples and high reconstruction error for anomalies 
[21, 18, 62, 61]. 

4.5 Use of Autoencoders for Recommendation Systems 

A recommender system is a model or system that seeks to predict user preferences 
or affinities to items [41]. Recommender systems are prominent in e-commerce 
websites, application stores, and online content providers and have many other 
commercial applications. A classical approach in recommender system models is 
Collaborative Filtering (CF) [22]. In CF, user preferences are inferred based on 
information from other user preferences. The hidden assumption is that the human 
preferences are highly correlated, i.e., people who exhibit similar preferences in the 
past will exhibit similar preferences in the future. 

A basic example of the use of autoencoders for recommender systems is the 
AutoRec model [44]. The AutoRec model has two variants: user-based AutoRec 
(U-AutoRec) and item-based AutoRec (I-AutoRec). In U-AutoRec, the autoencoder 
learns a lower dimensional representation of item preferences for specific users, 
while in I-AutoRec the autoencoder learns a lower dimensional representation of 
user preferences for specific items. 

For example, assume a dataset consisting of M user and N items. Let . rm ∈ RN

be a preference vector for the user m consisting of its preference score to each of the 
N items. U-AutoReco’s decoder is .z = g(rm) mapping . rm into representation the 
representation vector .z ∈ Rd , where .d � N . The reconstruction given the encoder 
.f (z) is .h(rm; θ) = f (g(rm)), where . θ are the model’s parameters. The U-AutoRec 
objective is defined as 

. argminθ

M∑

m=1

‖rm − h(rm; θ)‖2O + λ · reg. (17) 

Here, .‖ · ‖2O means that the loss is defined only on the observed preferences of the 
user. At prediction time, we can investigate the reconstruction vector and find items 
that the user is likely to prefer. 

The I-AutoRec is defined symmetrically as follows: Let . rn be item n’s preference 
vector for each user. The I-AutoRec objective is defined as 

. argminθ

N∑

n=1

‖rn − h(rn; θ)‖2O + λ · reg. (18) 

At prediction time, we reconstruct the preference vector for each item and look for 
potential users with high predicted preference.
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In [47, 46], the basic AutoRec model was extended by including denoising 
techniques and incorporating users and items side information such as user de-
mographics or item description. The denoising techniques serve as another type 
of regularization that prevents the autoencoder overfitting rare patterns that do not 
concur with general user preferences. The side information was shown to improve 
accuracy and speed up the training process. 

Similar to the original AutoRec, two symmetrical models have been proposed: 
one that works with user preference . rm vectors and the other with item preference 
vectors . rn. In the general case, these vectors may consist of explicit ratings. The 
Collaborative Denoising Autoencoder (CDAE) model [59] is essentially applying 
the same approach on vectors of implicit ratings rather than explicit ratings. Finally, 
a variational approach has been attempted by applying VAE in a similar fashion 
[31]. 

4.6 Use of Autoencoders for Dimensionality Reduction 

Real-world data such as text or images are often represented using a sparse high-
dimensional representation. While many models and applications work directly in 
the high-dimensional space, this often leads to the curse of dimensionality [15]. The 
goal of dimensionality reduction is to learn a lower dimensional manifold, so-called 
intrinsic dimensionality space. 

A classical approach for dimensionality reduction is Principal Component Anal-
ysis (PCA) [58]. PCA is a linear projection of data points into a lower dimensional 
space such that the squared reconstruction loss is minimized. As a linear projection, 
PCA is optimal. However, nonlinear methods such as autoencoders may and often 
do achieve superior results. 

Other methods for dimensionality reduction employ different objectives. For 
example, Linear Discriminant Analysis (LDA) is a supervised method to find a 
linear subspace, which is optimal for discriminating data from different classes [11]. 
ISOMAP [48] learns a low-dimensional manifold by retaining the geodesic distance 
between pairwise data in the original space. For a survey of different dimensionality 
methods, see [51]. 

The use of autoencoders for dimensionality reduction is straightforward. In fact, 
the dimensionality reduction is performed by every autoencoder in the bottleneck 
layer. The projection of the original input into the lower dimensional bottleneck 
representation is a dimension reduction operation through the encoder and under 
the objective given to the decoder. For example, an autoencoder comprised of a 
simple fully connected encoder and decoder with a squared loss objective performs 
dimension reduction with a similar objective to PCA. However, the nonlinearity 
activation functions often allow for a superior reconstruction when compared to 
simple PCA. More complex architectures and different objectives allow different 
complex dimension reduction models. To review the different applications of 
autoencoders for dimension reduction, we refer the interested reader to [24, 56, 57].
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5 Advanced Autoencoder Techniques 

Autoencoders are usually trained by a loss function corresponding to the difference 
between the input and the output. As shown above, one of the strengths of 
autoencoders is the ability to use their latent representation for different usages. 
On the other hand, by looking at the reconstruction quality of autoencoders for 
images, one of its major weaknesses becomes clear, as the resulting images are 
usually blurry. The reason for that is the used loss function, which does not take into 
account how realistic its results are and does not use the prior knowledge that the 
input images are not blurred. In recent years, there were some developments related 
to autoencoders, which deal with this weakness. 

5.1 Autoencoders and Generative Adversarial Networks 

Variational autoencoders are trained (usually) on MSE which yields slightly blurred 
images but allows inference over the latent variables in order to control the output. 
An alternative generative model to autoencoders that synthesize data (such as 
images) is the Generative Adversarial Networks (GANs). In a nutshell, a GAN 
architecture consists of two parts: the generator that generates new samples, and a 
discriminator that is trained to distinguish between real samples and generated ones. 
The generator and the discriminator are trained together using a loss function that 
enforces them to compete with each other and by thus improves the quality of the 
generated data. This leads to generated results that are quite compelling visually, but 
in the cost of the control on the resulting images. Different works have been done for 
having the advantages of both models, by different combinations of the architectures 
and the loss functions. In Adversarial Autoencoders [34], the KL-divergence in the 
VAE loss function is replaced by a discriminator network that distinguishes between 
the prior and the approximated posterior. In [28], the reconstruction loss in the 
VAE loss is replaced by a discriminator, which makes the decoder to essentially 
merge with the generator. In [14], the discriminator of the GAN is combined with 
an encoder via shared weights, which enables the latent space to be conveniently 
modeled by GMM for inference. This approach was then used in [25] for  self-
supervised learning. We detail next two other directions for combining GANs with 
autoencoders. 

5.2 Adversarially Learned Inference 

One of the disadvantages of GANs is mode collapse, which unlike autoencoders 
may cause them to represent via the latent space just part of the data (miss some 
modes in its distribution) and not all of it.
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Fig. 6 An Image drawn from [12]. A model is first trained on the CelebA dataset [33]. It includes 
40 different attributes on each image, which in ALI are linearly embedded in the encoder, decoder, 
and discriminator. Following the training phase, a single fixed latent code z is sampled. Each row 
has a subset of attributes that are held constant across columns. The attributes are male, attractive, 
young for row I ; male attractive, older for row II ; female, attractive, young for row III ; and  
female, attractive, older for Row IV  . Attributes are then varied uniformly over rows across all 
columns in the following sequence: (b) black hair; (c) brown  hair; (d) blond hair; (e) black hair, 
wavy hair; (f) blond hair, bangs; (g) blond hair, receding hairline; (h) blond hair, balding; (i) black 
hair, smiling; (j) black hair, smiling, mouth slightly open; (k) black hair, smiling, mouth slightly 
open, eyeglasses; and (l) black hair, smiling, mouth slightly open, eyeglasses, wearing hat 

In Adversarially Learned Inference (ALI), there is an attempt to merge the ideas 
of both VAEs and GANS and get a compromise of their strengths and weaknesses 
[12]. Instead of training a VAE with some loss function between the input and the 
output, a discriminator is used to distinguish between .(x, ẑ) pairs, where . x is an 
input sample and .z ∼ q(z|x) is sampled from the encoders output, and .(x̃, z) pairs, 
where .z ∼ p(z) is sampled from the used prior in the VAE, and .x̃ ∼ p(x|z) is 
the decoder output. This way the decoder is enforced to output realistic results in 
order to “fool” the discriminator. Yet, the autoencoder structure is maintained. An 
example of how ALI enables altering specific features in order to get meaningful 
alterations in images is presented in Fig. 6. 

ALI is an important milestone in the goal of merging both concepts and it had 
many extensions. For example, HALI [5] learns the autoencoder in hierarchical 
structure in order to improve the reconstruction ability. ALICE [30] added a 
conditional entropy loss between the real and the reconstructed images. 

5.3 Wasserstein Autoencoders 

In continuation to Sect. 5.2, GANs generate compelling images but do not provide 
inference and have a lot of inherent problems regarding its learning stability. 
Wasserstein GAN (WGAN) [1] solves a lot of those problems by using the 
Wasserstein distance for the optimizations loss function. The Wasserstein distance 
is a specific case of the Optimal Transport distance [52], which is a distance between
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two probabilities, . PX and . PG, and is defined as 

.Wc(PX, PG) = inf
�∈P(X∼PX,Y∼PG)

E(X,Y )∼�[c(X, Y )], (19) 

where .c(x, y) is some cost function. When .c(x, y) = dp(x, y) is a metric 
measurement, then the p-th root of . Wc is called the p-Wasserstein distance. When 
.c(x, y) = d(x, y), then we get to the 1-Wasserstein distance, which is also known 
as the “Earth Moving Distance” [42] and can be defined as 

.W1(PX, PG) = sup
f ∈F

EX∼PX
[f (X)] − EY∼PG

[f (Y )]. (20) 

Informally, we try to match the two probabilities by “moving” the first to the latter 
in the shortest distance, and that distance is defined as the 1-Wasserstein distance. 

As seen in Eq. 9, the loss function of a specific sample is comprised of the recon-
struction error and a regularization factor which enforces the latent representation to 
resemble the prior (usually multivariate standard normal). The problem addressed 
in [49] is that this regularization essentially pushes all the samples to look the same 
and does not use the entire latent space as a whole. In GANs, the OT distance is 
used to discriminate between the distribution of real images and the distribution of 
fake ones. In Wasserstein autoencoders (WAEs) [49], the authors modified the loss 
function for autoencoders, which leads to the following objective: 

.DWAE(PX, PG) = inf
Q(Z|X)∈QEPX

EQ(Z|X)[c(X,G(Z))]+λ·DZ(QZ, PZ), (21) 

where Q is the encoder and G is the decoder. The left part is the new reconstruction 
loss, which now penalizes on the output distribution and the sample distribution. 
This is penalization since the “transportation plan” factors through the G mapping 
[7]. The right part penalizes the distance between the latent space distribution 
and the prior distribution. The authors keep the prior as the multivariate normal 
distribution and use to examples for divergences: the Jensen–Shannon divergence 
.Djs [32] and the maximum mean discrepancy (MMD) [19]. Figure 7 illustrates the 
regularizations difference between V AE  and WAE. 

5.4 Deep Feature Consistent Variational Autoencoder 

In this section, a different loss function is presented to optimize the autoencoder. 
Given an original image and a reconstructed one, instead of measuring some norm 
on the pixel difference (such as the . �2), a different measure is used that takes into 
account the correlation between the pixels. 

Pretrained classification networks are commonly used for transfer learning. They 
allow transcending between different input domains, where the weights of the
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Fig. 7 An Image drawn from [49]. Both VAE and WAE minimize two terms: the reconstruction 
cost and the regularizer penalizing discrepancy between . PZ and distribution induced by the encoder 
Q. VAE forces .Q(Z|X = x) to match . PZ for all the different input examples x drawn from . PX . 
This is illustrated on picture (a), where every single red ball is forced to match . PZ depicted as the 
white shape. Red balls start intersecting, which leads to problems with reconstruction. In contrast, 
WAE forces the continuous mixture .QZ := ∫

Q(Z|X)dPX to match . PZ , as depicted with the 
green ball in picture (b). As a result, latent codes of different examples get a chance to stay far 
away from each other, promoting a better reconstruction. (a) VAE. (b) WAE  

model, which have been trained for one domain, are fine tuned for the new domain in 
order to adapt to the changes between the domains. This can be done by training all 
the models’ (pretrained) weights for several epochs or just the final layers. Another 
use of pretrained networks is style transfer, where a style of one image is transferred 
to another image [16], e.g., causing a regular photo looks like a painting of a given 
painter (e.g., Van Gogh) while maintaining its content (e.g., keeping the trees, cars, 
houses, etc. at the same place). In this case, the pretrained networks serve as a loss 
function. 

The same can be done for autoencoders. A pretrained network can be used 
for creating a loss function for autoencoders [26]. After encoding and decoding 
an image, both the original and reconstructed images are inserted as input to a 
pretrained network. Assuming the pretrained network results with high accuracy 
and the domain that it was trained on is not too different than the one of the 
autoencoder, then each layer can be seen as a successful feature extractor of the 
input image. Therefore, instead of measuring the difference between the two images 
directly, it can be measured between their representation in the network layers. The 
difference between the images at different layers in the network imposes a more 
realistic difference measure for the autoencoder. 

5.5 Conditional Image Generation with PixelCNN Decoders 

Another alternative proposes a composition between autoencoders and PixelCNN 
[37]. In PixelCNN [36], the pixels in the image are ordered by some arbitrary 
order (e.g., top to bottom, left to right, or RGB values). Then, the output is formed
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Fig. 8 The pixelCNN 
generation framework. The 
pixels are generated 
sequentially. In this case, they 
are generated from top to 
bottom and from left to right. 
The next pixel to be 
generated is the yellow one. 
The green pixels are the 
already generated ones. For 
generating the yellow pixel, 
the pixelRNN takes into 
account the hidden state and 
the information of the green 
pixels in the red square 

sequentially where each pixel is a result of both the output of previous pixels and 
the input. This strategy takes into account the local spatial statistics of the image, as 
illustrated in Fig. 8. For example, below a background pixel, there is a higher chance 
to have another background pixel than the chance of having a foreground pixel. 
With the use of the spatial ordering (in addition to the input pixel information), 
the probability of getting a blurred pixel diminishes. In a later development [50], 
the local statistics was replaced by the usage of an RNN, but the same concept of 
pixel generation was remained. This concept can be combined with autoencoders 
by setting the decoder to be structured as a pixelCNN network generating the output 
image in a sequential order. 

6 Conclusion 

This chapter presented autoencoders showing how the naive architectures that 
were first defined for them evolved to powerful models with the core abilities to 
learn a meaningful representation of the input and to model generative processes. 
These two abilities can be easily transformed to various use-cases, where part of 
them was covered. As explained in Sect. 5.2, one of the autoencoders fallbacks is 
that its reconstruction errors do not include how realistic the outputs are. As for 
modeling generative processes, despite the success of variational and disentangled 
autoencoders, the way to choose the size and distribution of the hidden state is still 
based on experimentation, by considering the reconstruction error and by varying
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the hidden state at post training. A future research that better sets these parameters 
is required. 

To conclude, the goal of autoencoders is to get a compressed and meaningful 
representation. We would like to have a representation that is meaningful to us and 
at the same time good for reconstruction. In that trade-off, it is important to find the 
architecture which serves all needs. 

References 

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: 
D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine 
Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, Interna-
tional Convention Centre, Sydney, Australia (2017) 

2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: I. Guyon, G. Dror, 
V. Lemaire, G. Taylor, D. Silver (eds.) Proceedings of ICML Workshop on Unsupervised and 
Transfer Learning, Proceedings of Machine Learning Research, vol. 27, pp. 37–49. PMLR, 
Bellevue, Washington, USA (2012) 

3. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from 
examples without local minima. Neural Netw. 2(1), 53–58 (1989). https://doi.org/10.1016/ 
0893-6080(89)90014-2 

4. Bank, D., Giryes, R.: An ETF view of dropout regularization. In: 31st British Machine Vision 
Conference 2020, BMVC 2020, Virtual Event, UK, September 7–10, 2020. BMVA Press 
(2020). https://www.bmvc2020-conference.com/assets/papers/0044.pdf 

5. Belghazi, M.I., Rajeswar, S., Mastropietro, O., Rostamzadeh, N., Mitrovic, J., Courville, A.: 
Hierarchical adversarially learned inference (2018) 

6. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg (2006) 

7. Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.J., Schoelkopf, B.: From optimal 
transport to generative modeling: the vegan cookbook. arXiv (2017) 

8. Burda, Y., Grosse, R.B., Salakhutdinov, R.: Importance weighted autoencoders. CoRR 
abs/1509.00519 (2015) 

9. Chen, M., Xu, Z., Weinberger, K., Sha, F.: Marginalized denoising autoencoders for domain 
adaptation. Proceedings of the 29th International Conference on Machine Learning, ICML 
2012 1 (2012) 

10. Dilokthanakul, N., Mediano, P.A.M., Garnelo, M., Lee, M.C.H., Salimbeni, H., Arulkumaran, 
K., Shanahan, M.: Deep unsupervised clustering with gaussian mixture variational autoen-
coders. ArXiv abs/1611.02648 (2017) 

11. Duda, R.O., Hart, P.E., Stork, D.G., et al.: Pattern classification. International Journal of 
Computational Intelligence and Applications 1, 335–339 (2001) 

12. Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., Courville, 
A.C.: Adversarially learned inference. ArXiv abs/1606.00704 (2016) 

13. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does 
unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010) 

14. Feigin, Y., Spitzer, H., Giryes, R.: GMM-based generative adversarial encoder learning (2020) 
15. Friedman, J.H.: On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data mining 

and knowledge discovery 1(1), 55–77 (1997) 
16. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural 

networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 
2414–2423 (2016)

https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/0893-6080(89)90014-2
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf
https://www.bmvc2020-conference.com/assets/papers/0044.pdf


372 D. Bank et al.

17. Gogoi, M., Begum, S.A.: Image classification using deep autoencoders. In: 2017 IEEE 
International Conference on Computational Intelligence and Computing Research (ICCIC), 
pp. 1–5 (2017). https://doi.org/10.1109/ICCIC.2017.8524276 

18. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., van den Hengel, 
A.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for 
unsupervised anomaly detection (2019) 

19. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample 
test. J. Mach. Learn. Res. 13(null), 723–773 (2012) 

20. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. pp. 373– 
382 (2017) 

21. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal 
regularity in video sequences. In: 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 733–742 (2016) 

22. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining Collaborative Filtering Recommenda-
tions. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative 
Work, CSCW ’00, pp. 241–250. ACM (2000) 

23. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.M., Mohamed, 
S., Lerchner, A.: beta-VAE: Learning basic visual concepts with a constrained variational 
framework. In: ICLR (2017) 

24. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. 
science 313(5786), 504–507 (2006) 

25. Hochberg, D.C., Giryes, R., Greenspan, H.: A self supervised Stylegan for Classification with 
extremely limited annotations (2021) 

26. Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. CoRR 
abs/1610.00291 (2016). http://arxiv.org/abs/1610.00291 

27. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114 (2013) 
28. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels 

using a learned similarity metric. In: Proceedings of the 33rd International Conference 
on International Conference on Machine Learning—Volume 48, ICML’16, p. 1558–1566. 
JMLR.org (2016) 

29. Le, L., Patterson, A., White, M.: Supervised autoencoders: Improving generalization perfor-
mance with unsupervised regularizers. In: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, 
N. Cesa-Bianchi, R. Garnett (eds.) Advances in Neural Information Processing Systems 31, 
pp. 107–117. Curran Associates, Inc. (2018) 

30. Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., Carin, L.: Alice: Towards understanding 
adversarial learning for joint distribution matching. In: I. Guyon, U.V. Luxburg, S. Bengio, 
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information 
Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/ 
paper/2017/file/ade55409d1224074754035a5a937d2e0-Paper.pdf 

31. Liang, D., Krishnana, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collabo-
rative filtering. CoRR abs/1802.05814 (2018). https://arxiv.org/abs/1802.05814 

32. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Transactions on Informa-
tion Theory 37(1), 145–151 (1991). https://doi.org/10.1109/18.61115. http://ieeexplore.ieee. 
org/xpl/articleDetails.jsp?arnumber=61115 

33. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings 
of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, p. 3730– 
3738. IEEE Computer Society, USA (2015). https://doi.org/10.1109/ICCV.2015.425 

34. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders. CoRR 
abs/1511.05644 (2015) 
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Generative Adversarial Networks 

Gilad Cohen and Raja Giryes 

1 Introduction to GANs 

Generative adversarial networks (GANs) are currently the leading method to learn 
a distribution of a given dataset and generate new examples from it. To begin to 
understand the concept of GANs, let us consider an interplay between the police 
and money counterfeiters. A state just launched its new currency and millions of 
bills and coins are widespread all over the country. Recently, the police detected a 
flood of counterfeit money in circulation. Further inspection reveals that the forged 
bills are lighter than the genuine bills and can be easily filtered out. The criminals 
then find out about the police’s discovery and use new printers which control better 
the cash weight. In turn, the police investigate and discover that the new counterfeit 
bills have a different texture near the corners and remove them from the system. 
After many iterations of generating and discriminating forged money, the counterfeit 
money becomes almost indistinguishable from the real money. Note that the system 
has two agents: (1) the counterfeiters who create “close to real” money and (2) the 
police who detect counterfeit bills adequately. 

Back to deep learning, the above two agents are called “generator” and “dis-
criminator,” respectively. These two entities are trained jointly, where the generator 
learns how to fool the discriminator with new adversarial examples out of the dataset 
distribution, and the discriminator learns to distinguish between real and fake data 
samples. The GAN architecture is used in more and more applications since its 
introduction in 2014. It was proved successful in many domains such as computer 
vision [14, 29, 25, 38], semantic segmentation [39, 27, 70, 24], time-series synthesis 
[9, 23], image editing [61, 36, 19, 3, 75], natural language processing [15, 28, 22], 
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text-to-image generation [59, 58, 54], and many more. In the next section, we depict 
the basic GAN architecture and loss. Later, we will present more sophisticated 
architectures, losses, and common usages. 

2 The Basic GAN Concept 

The first GAN that was introduced by Goodfellow et al. [20] is depicted in Fig. 1. 
The architecture of GANs is comprised of two individual components: a 

discriminator (D) and a generator (G). D is trained to distinguish between real 
images from the natural distribution and generated images, while G is trained to 
craft fake images that fool the discriminator. A random distribution, .z ∼ pz, is given  
as input to G. The purpose of GANs is to learn the generated samples’ distribution, 
.G(z) ∼ pg that estimates the real world distribution . pr . GANs are optimized by 
solving the following min–max optimization problem: 

. min
G

max
D
Ex∼pr log[D(x)] + Ez∼pz log[1 − D(G(z))]. (1) 

On the one hand, D aims at predicting .D(x) = 1 for real data samples and 
.D(G(z)) = 0 for fake samples. On the other hand, the GAN learns how to fool D 
by finding G which is optimized on hampering the second term in Eq. (1). 

On the first iteration, only the discriminator weights . θD are updated. We sample a 
minibatch of m noise samples {.z(1), ..., z(m)} from . pz and a minibatch of m real data 
examples {.x(1), ..., x(m)} from . pr . We then calculate the discriminator’s gradients 

Fig. 1 Basic GAN structure. The discriminator and the generator are two deep neural networks 
trained jointly. The discriminator is trained for the task of classifying whether an input image is 
natural (real) or generated (fake), while the generator is optimized to fool the discriminator
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and update the discriminator weights, . θD , by ascending this term. On the second 
iteration, only the generator’s weights . θG are updated. We sample a minibatch of m 
noise samples {.z(1), ..., z(m)} from . pz, calculate the generator’s gradients 
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and update the generator weights, . θG, by descending this term. Goodfellow et al. 
[20] showed that under certain conditions on D, G, and the training procedure, the 
distribution . pz converges to . pr . 

3 GAN Advantages and Problems 

Since their first introduction in 2014, GANs have attracted a growing interest all 
over the academia and industry, thanks to many advantages over other generative 
models (mainly Variational Auto-encoders (VAEs) [34]): 

• Sharp images: GANs produce sharper images than other generative models. 
The images at the output of the generator look more natural and with better 
quality than images generated using VAEs, which tend to be blurrier. 

• Configurable size: The latent random variable size is not restricted, enriching 
the generator search space. 

• Versatile generator: The GAN framework can support many different gen-
erator networks, unlike other generative models that may have architectural 
constraints. VAEs, for example, enforce using a Gaussian at the generator’s first 
layer. 

The above advantages make GANs very attractive in the deep learning commu-
nity, achieving state-of-the-art results in a variety of domains and generating very 
natural images. Yet, the original GAN suffers from three major problems that are 
described in detail below. We first present a short summary of them: 

• Mode collapse: During the synchronized training of the generator and discrim-
inator, the generator tends to learn to produce a specific pattern (mode) which 
fools the discriminator. Although this pattern minimizes Eq. (1), the generator 
does not cover the full distribution of the dataset. 

• Vanishing gradients: Very frequently, the discriminator is trained “too well” 
to distinguish real images from adversarial images; in this scenario, the training 
step of the generator back propagates very low gradients, which does not help 
the generator to learn.
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• Instability: The model (. θD or . θG) parameters fluctuate and are generally not 
stable during the training. The generator seldom achieves a point where it 
outputs very high-quality images. 

3.1 Mode Collapse 

Data distributions are multi-modal, meaning that every sample is classified (usually) 
to only one label. For example, in MNIST, there are ten classes of digits (or modes) 
labeled from “0” to “9.” Mode collapse is the phenomenon where the generator only 
yields a small subset of the possible modes. In Fig. 2, you can observe generated 
MNIST images by two different GANs. The top row shows the training of a “good” 
GAN, not suffering from mode collapse. It generates every kind of mode (digit 
type) throughout the training. The bottom row exhibits a GAN training with mode 
collapse, generating just the digit “6.” 

3.2 Vanishing Gradients 

GANs often suffer from training instability, where D performs very well and G does 
not get a chance to train a good distribution. We turn to provide some mathematical 

Fig. 2 Example of the mode collapse problem in GANs. The top row shows a training without 
mode collapse, where all MNIST modes (digits) are generated. The bottom row shows a bad 
training with mode collapse, where the generator outputs only the digit “6.” The figure was taken 
from [44]
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observations and understanding of why training a generator G is extremely hard 
when the discriminator D is close to optimal. 

The global optimality, stated in [20], is defined when D is optimized for any 
given G. The optimal D is achieved when its derivative for Eq. (1) equals 0: 

.

pr(x)
D(x)

− pg(x)
1 − D(x)

= 0,

D∗(x) = pr(x)
pr(x) + pg(x)

,

(3) 

where . x is the real input data, .D∗(x) is the optimal discriminator, and .pr(x)/. pg(x)
is the distribution of the real/generated data, respectively, over the real data . x. If we  
substitute the optimal discriminator .D∗(x) into Eq. (1), we can visualize the loss for 
the generator G: 

. LG = Ex∼pr log
pr(x)

1
2 [pr(x) + pg(x)]

+ Ex∼pg log
pg(x)

1
2 [pr(x) + pg(x)]

− 2 · log 2.

(4) 

Before we continue any further, we mention two important metrics for probabil-
ity measurement. The first one is the Kullback–Libeler (KL) divergence: 

.KL(p1||p2) = Ex∼p1 log
p1

p2
, (5) 

which measures how much the distribution . p2 differs from the distribution . p1. Note  
that this metric is not symmetrical, i.e., .KL(p1||p2) �= KL(p2||p1). A symmetrical 
metric is the Jensen–Shannon (JS) divergence, defined as 

.JS(p1||p2) = 1

2
KL

(
p1||p1 + p2

2

)
+ 1

2
KL

(
p2||p1 + p2

2

)
. (6) 

Back to our GAN with the optimal D, Eq.  (4) shows that the GAN loss function 
can be reformulated as 

.LG = 2 · JS(pr ||pg) − 2 · log 2, (7) 

which shows that for . D∗, the generator loss turns to be a minimization of the 
JS divergence between . pr and . pg . The relation between GAN training and the 
JS divergence may explain its instability. To understand this, view Fig. 3, which 
shows an example for JS divergences of different distributions. In Fig. 3a, we see 
the real image distribution . pr , as a Gaussian with zero mean, and we consider three 
examples for generated image distributions: . pg1, . pg2, and . pg3. Figure 3(b) plots 
the .JS(pr(x), pq(x)) measure between . pr and some .pq distribution, where the 
mean of . pq ranges from 0 to 80. As shown in the red box, the gradient of the JS
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Fig. 3 Vanishing gradients in GANs. (a) An example of a real image distribution . pr(x), a  
Gaussian with zero mean, with three more different Gaussian distributions: . pg1, . pg2, and . pg3. (b) 
Calculating the JS divergence measure between .pr(x) and a Gaussian distribution with mean from 
0 to 80. When training with optimal discriminator (.D∗(x)), the generator G minimizes the loss in 
Eq. (6), pushing .pg(x) left toward .pr(x), alas, it could take a very long time due to diminished 
gradients when being far from .pr(x)
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divergence vanishes after a mean of 30. In other words, when the discriminator is 
close to optimal (.D∗(x)) and we try to train a “poor” generator with . pg far from 
the real distribution . pr , training will not be feasible due to extremely low gradients. 
This is prominent especially in the beginning of the training where G weights are 
randomized. 

Due to the vanishing gradient problem, Goodfellow et al. [20] proposed a change 
to the original adversarial loss. Instead of minimizing .log(1−D(G(z))) (as in Eq. 2), 
they suggest to maximize .log(D(G(z))). The latter cost function yields the same 
fixed point of D and G dynamics but maintains higher gradients early in the training 
when the distributions . pr and . pg are far from each other. On the other hand, this 
training strategy promotes mode collapse, as we show next. 

With an optimal discriminator . D∗, .KL(pg||pr) can be reformulated as 

.

KL(pg||pr) = Ex∼pg log
pg(x)/(pr(x) + pg(x))

pr(x)/(pr(x) + pg(x)))
,

= Ex∼pg log
1 − D∗(x)

D∗(x)
,

= Ex∼pg log[1 − D∗(x)] − Ex∼pg log[D∗(x)].

(8) 

If we switch the order of the two sides in Eq. (8), we get 

. 
−Ex∼pg log[D∗(x)] = KL(pg ||pr) − Ex∼pg log[1 − D∗(x)],

= KL(pg ||pr) − 2 · JS(pr ||pg) + 2 · log 2 + Ex∼pr log[D∗(x)].
(9) 

The alternative loss for G is thus only affected by the first two terms (the last 
two terms are constant). Since .JS(pr ||pg) is bounded by .[0, log 2] (see Fig. 3b), 
the loss function is dominated by .KL(pg||pr), which is also called the reverse KL 
divergence. Since .KL(pg||pr) usually does not equal .KL(pr ||pg), the optimized 
. pg by the reversed KL is totally different from . pg optimized by the KL divergence. 
Figure 4 shows the difference of the two optimizations where the distribution p 
is a mixture of two Gaussians, and q is a single Gaussian. When we optimize for 
.KL(pr ||pg), q averages all of p modes to hit the mass center (Fig. 4a). However, 
for the reverse KL divergence optimization, q distribution chooses a single mode 
(Fig. 4b), which will cause a mode collapse during training. 

In summary, using the original G loss from Eq. (1) will result in vanishing 
gradients for G, and using the other loss in Eq. (9) will result in a mode collapse. 
These problems are inherent within the GAN loss and thus cannot be solved using 
sophisticated architectures. In Sect. 5, we discuss other loss functions for GANs, 
which solve these problems.
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Fig. 4 Optimized distribution q for (a) minimizing KL divergence .KL(p||q) and (b) minimizing 
reverse KL divergence .KL(q||p). Figure is taken from [71] 

3.3 Instability and Image Quality 

Early GAN models that use the G losses described above
(
. log

(
1 − D(G(z))

)

and .− log
(
D(G(z))

))
exhibit great instability in their cost values during training. 

Arjovsky et al. [4] experimented with these two G losses and claimed that in both 
cases the gradients cause instability to the GAN training. The loss in Eq. (1) stays 
constant after the first training steps (Fig. 5a), and the loss in Eq. (8) fluctuates 
during the entire training (Fig. 5b). In both cases, they did not find a significant 
correlation between the calculated loss and the generated image quality. In other 
words, it is very difficult to predict when during the training the generator actually 
produces good quality images, and the only way to get a good generator is to stop 
the training and manually visualize many generated images. 

Using the above two G losses in Eq. (1) and Eq. (8) yields poor quality images 
compared to modern GAN models. In the following sections, we will cover more 
sophisticated losses that enhance the generator’s resolution and image size. 

3.4 Problems: Summary 

The original GAN model and loss proposed by Goodfellow et al. [20] suffer from 
three inherent challenges: (1) mode collapse, (2) vanishing gradients, and (3) image 
quality. Follow-up works improve the performance of GANs on one or more of these 
problems by using different architectures for D or G, modifying the cost function, 
and more. A subset of architecture-variant and loss-variant GANs are portrayed 
in Fig. 6a,b, respectively. A sample of some recent prominent GAN models is 
presented in the following sections.
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Fig. 5 Training instability in GANs. (a) JS  distance metric in GAN training using the loss in 
Eq. (1). This quantity correlates poorly to the generated image quality, saturating to .log 2 ≈ 0.69, 
the highest value taken by the JS  distance. (b) Generator loss during training using a different 
generator cost (maximizing .log(D(G(z))) instead of minimizing .log(1 − D(G(z)))) showing 
increasing error without a significant improvement in image quality. Plots are taken from [4] 

Fig. 6 Recent GAN models that solve the original GAN’s problems: mode diversity (collapse), 
vanishing gradients, and image quality. (a) A subset of architecture-variant GANs (b) a subset of 
loss-variant GANs. Larger axis values indicate better performance. Red points indicate the model 
improves all three challenges, blue points improve two, and black points improve only one. Figures 
are taken from [72] 

4 Improved GAN Architectures 

Many types of new GAN architectures have been proposed since 2014 [6, 8, 13, 
29, 57, 77, 30, 16]. Different GAN architectures were proposed for different tasks, 
such as image super-resolution [38] and image-to-image transfer [79, 53]. In this 
section, we present some of these models, which improved the performance on 
image quality, vanishing gradients, and mode collapse, compared to the original 
GAN.
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Fig. 7 SGAN architecture 

4.1 Semi-Supervised GAN (SGAN) 

Semi-supervised learning is a promising research field between supervised learning 
and unsupervised learning. In supervised learning, each data is labeled, and in 
unsupervised learning, no labels are provided; semi-supervised learning has labels 
only for a small subset of the training data and no annotations for the rest of the 
data, like many real-world problems. 

SGAN [49] extended the original GAN learning to the semi-supervised context 
by adding to the discriminator network an additional task of classifying the image 
labels (Fig. 7). The generator’s architecture is the same as before. In SGAN, the 
discriminator utilizes two heads: a softmax and a sigmoid. The sigmoid is used 
to distinguish between real and fake images, and the softmax predicts the images’ 
labels (only for images predicted as real). The results on MNIST showed that both 
D and G in SGAN are improved compared to the original GAN. 

4.2 Conditional GAN (CGAN) 

CGAN was originally proposed as an extension of the original GAN, where both 
the discriminator and the generator were fed by an additional class of the image 
[45, 50]. An illustration of CGAN architecture is shown in Fig. 8. In this setup, the 
loss function in Eq. (1) is slightly modified to condition both the real images x and 
the latent variable z on y (the label): 

. min
G

max
D
Ex∼pr log[D(x|y)] + Ez∼pz log[1 − D(G(z|y))]. (10) 

All values (x, y, z) are first encoded by some neural layers prior to their fusion 
in the discriminator and generator. This improves the ability of the discriminator 
to classify real/fake images and enhances the generator’s ability to control the 
modalities of the generated images. Reference [45] showed that their CGAN 
architecture used with a language model can handle also multimodal datasets, such
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Fig. 8 CGAN architecture. Both the generator and the discriminator are fed with a class label y 
to condition both the images x and the latent variable z (see Eq. 10) 

as Flicker that contains labeled image data with their particular user tags. They 
demonstrated that their generator is capable of producing an automatic tagging. 

4.3 Deep Convolutional GAN (DCGAN) 

Before describing DCGAN, we provide a brief reminder of what is a convolutional 
neural network. 

CNNs: Convolutional neural networks (CNNs) were proposed by LeCun et 
al. [37]; These networks consist of trained spatial filters applied on hidden 
activations throughout their architecture. these networks perform correlations 
using their trained kernels with a sliding window over images (or hidden 
activations). This was shown to improve the accuracy on many recognition 
tasks, especially in computer vision. A very basic and popular CNN network 
called LeNet is shown in Fig. 9. 

DCGAN proposed to create images using solely deconvolutional networks in 
their generator [57]. The generator architecture is depicted in Fig. 10. Deconvo-
lutional networks can be conceived as CNNs that use the same components but 
in reverse, projecting features into the image pixel space. Reference [76] showed  
that deconvolutional layers achieve good visualization for CNNs; this allowed the 
DCGAN generator to create high-resolution images for the first time. 

In addition to improved resolution, DCGAN showed better stability during the 
training thanks to multiple modifications in the original GAN network:
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Fig. 9 LeNet architecture. A popular Convolutional Neural Network (CNN) used for image 
recognition. Image was taken from [37] 

• All pooling layers were replaced. In the discriminator, they used convolution 
kernels with stride > 1, and the generator utilized fractionally strided convolu-
tion to increase the spatial size. 

• Both the discriminator and the generator were trained with batch normalization 
which promotes similar statistics for real images and fake generated images. 

• The discriminator architecture replaces all normal ReLU activations with 
Leaky-ReLU [40]; this activation multiplies also the negative kernel output by a 
small value (. 0.2), to prevent from “dead” gradients to propagate to the generator. 
The generator architecture used ReLU after every deconvolution layer except 
the output, which uses Tanh activation. 

The authors demonstrated empirically that the mere CNN architecture used in 
DCGAN is not the key contributing factor for the GAN’s performance, and the 
above modifications are crucial. To show that they measured GAN quality by 
considering them as feature extractors on supervised datasets and evaluating the 
performance of linear models trained on these features (for more information, see 
[57]). DCGAN yields a classification error of 22.48% on the StreetView House 
Numbers (SVHN) dataset [47], whereas a purely supervised CNN with the same 
architecture achieved a significantly higher 28.87% test error. 

4.4 Progressive GAN (PROGAN) 

PROGAN described a novel training methodology for GANs, involving progressive 
steps toward the development of the entire network architecture [29]. This progres-
sive architecture uses the idea of progressive neural networks first proposed by Rusu 
et al. [62]. These architectures are immune to forgetting and can leverage prior 
knowledge via lateral connections to previously learned features. The progressive 
training scheme is shown in Fig. 11. First, they trained low resolution 4x4 pixel  
images. Next, both D and G grow to include a layer of 8x8 spatial resolution. This 
progressive training gradually adds more and more intermediate layers to enhance
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Fig. 10 DCGAN generator architecture. This generator creates a complex .64 × 64 pixel image 
from a 100-dimensional uniform distribution z. No fully connected or pooling layers are used. 
Figure is taken from [57] 

Fig. 11 Training process for the PROGAN progressive methodology. Training starts with both G 
and D having a low spatial resolution of .4 × 4 pixels. Every training step adds a new incremented 
intermediate layer to D and G, enhancing the generated images’ resolution. All existing layers are 
trainable throughout the process. The images on the right are examples of generated images using 
PROGAN at .1024 × 1024. Figure was taken from [29] 

the resolution, until reaching a high resolution of .1024×1024 pixel images with the 
CelebA dataset. All previous layers remain trainable in later steps. 

Many state-of-the-art GAN architectures utilize this type of progressive training 
scheme, and it has resulted in very credible images [29, 30, 8, 32, 60] and more 
stable learning for both D and G.
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Fig. 12 Using truncated sampling from the latent space. (a) Trade-off between image quality and 
image variety. From left to right, the truncation threshold is set to 2, 1, . 0.5, and . 0.04. (b) Saturation 
artifacts from applying truncated normal distribution to a model training with .z ∼ N(0, 1). Images 
were taken from [8] 

4.5 BigGAN 

Attention in computer vision is a method that focuses the task on an “interesting” 
region in the image. The self-attention is used to train the network (usually CNN) in 
an unsupervised manner, teaching it to segment or localize the most relevant pixels 
(or activations) for the vision task. 

BigGAN [8] has achieved state-of-the-art generation on the ImageNet datasets. 
Its architecture is based on the Self-attention GAN (SAGAN) [77], which employs 
a self-attention mechanism in both D and G, to capture a large receptive field 
without sacrificing computational efficiency for CNNs [69]. The original SAGAN 
architecture can learn global semantics and long-range dependencies for images, 
thus generating excellent multi-label images based on the ImageNet datasets (. 128×
128 pixels). BigGAN achieved improved performance by scaling up the GAN 
training: increasing the number of network parameters (. ×4) and increasing the batch 
size (. ×8). They achieved better performance on ImageNet with size .128 × 128 and 
were also able to train BigGAN also on the resolutions .256 × 256 and .512 × 512. 

Unlike many previous GAN models, which randomized the latent variable from 
either .z ∼ N(0, 1) or .z ∼ U(−1, 1), BigGAN uses a simple truncation trick. 
During training, z is sampled from .N(0, 1), but for generating images in inference 
z is selected from a truncated normal, where values that lie outside the range are 
resampled until falling in the range. This truncation trick shows improvement in 
individual sample quality at the cost of a reduction in overall sample variety, as 
shown in Fig. 12a. Notice though that using this different inference sampling trick as 
is may not generate good images with some large models, producing some saturation 
artifacts (Fig. 12b). To solve this issue, the authors proposed to use Orthogonal 
Regularization to force G to be more amenable to truncation, making it smoother so 
that the full lateral space will map to good, generated images.
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4.6 StyleGAN 

StyleGAN [30] proposed an alternative generator architecture for GANs. Unlike 
the traditional G architecture that samples a random latent variable at its input, their 
architecture starts from a learned constant input and adjusts the characteristics of the 
images in every convolutional layer along G using different, learned latent variables. 
Additionally, they inject learned noise directly throughout G (see Fig. 13). 

This architectural change leads to automatic, unsupervised separation of high-
level attributes (e.g., pose and identity) from low-level variations (e.g., freckles, 
hair) in the generated images. StyleGAN did not modify the discriminator or the loss 
function. They used the same D architecture as in [29]. In addition to state-of-the-art 
quality for face image generation, StyleGAN demonstrates a higher degree of latent 
space disentanglement, presenting more linear representations of different factors of 
variation, turning the GAN synthesis to be much more controllable. Recently, a more 
advanced styleGAN architecture has been proposed [32, 18, 33]. Some generated 
examples are presented in Fig. 14. One may also use StyleGAN for image editing by 

Fig. 13 Comparison between a traditional generator (a) and the StyleGAN generator (b). Unlike 
the standard generator that selects a random latent variable only in its input, in StyleGAN generator 
the latent input is mapped to an intermediate latent space . W, which then controls the generator 
through adaptive instance normalization (AdaIN). Also, Gaussian noise is injected after every 
convolution layer. “A” corresponds to a learned affine transform, and “B” applies learned scaling 
factors to the input noise. Figure is taken from [30]
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Fig. 14 Selected face images generated using the StyleGAN2 architecture (an improved version 
of the original StyleGAN), trained on the FFHQ dataset. Figure is taken from [32] 

calculating the latent vector of a given input image in the styleGAN (this operation 
is known as styleGAN inversion) and then manipulating this vector for editing the 
image [75, 60, 1, 68, 2, 65, 64, 54]. 

5 Improved GAN Objectives 

As described in Sect. 3.2, the original GAN’s min–max loss (Eq. 1) promotes mode  
collapse and vanishing gradient phenomena. This section presents selected loss 
functions and regularizations that remedy these problems and also improves the 
image quality. This is just a partial list, and other loss functions and regularization 
methods exist such as the least square GANs [41] or optimal transport models [55].
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5.1 Wasserstein GAN (WGAN) 

WGAN [4] has solved the vanishing gradient and mode collapse problems of the 
original GAN by replacing the cost in Eq. (1) with the Earth Mover (EM) distance, 
which is known also as the Wasserstein distance and is defined as 

.W(pr, pg) = inf
γ∈∏

(pr ,pg)
E(x,y)∼γ [||x − y||], (11) 

where .
∏

(pr , pg) denotes the set of all joint distributions .γ (x, y) whose marginals 
are . pr and . pg , respectively. The EM distance is therefore the minimum cost of 
transporting “mass” in converting distribution . pr into the distribution . pg . 

Unlike KL and JS distances, EM is capable of indicating distance even when the 
. pr and . pg distributions are far from each other; EM is also continuous and thus 
provides useful gradients for training G. However, the infimum in Eq. (11) is highly 
intractable, so the authors estimate the EM cost with 

. max
w∼W

Ex∼pr [fw(x)] − Ez∼pz [fw(G(z))], (12) 

where .{fw}w∈W is a parameterized family of all functions that are K-Lipschitz for 
some K (.||f ||L ≤ K). The readers are referred to [4] for more details. 

The authors proposed to find the best function .fw that maximizes Eq. (12) by 
back-propagating .Ez∼pz

[∇θf
(
gθ (z)

)]
, where . gθ are the generator’s weights. . fw

can be realized by D but constrained to be K-Lipschitz and z is the lateral input 
noise for G. w in . fw are the discriminator’s parameters, and the objective of D is 
to maximize Eq. (12), which approximates the EM distance. When D is optimized, 
Eq. (12) becomes the EM distance, and G is optimized to minimize it: 

. − min
G
Ez∼pz [fw(G(z))]. (13) 

Figure 15 compares the gradient of WGAN to the original GAN from two non-
overlapping Gaussian distributions. It can be observed that WGAN has a smooth 
and measurable gradient everywhere (blue line) and learns better even when G is 
not producing good images. 

5.2 Self-Supervised GAN (SSGAN) 

We showed in Sect. 4.2 that CGANs can generate natural images. However, 
they require labeled images to do so, which is a major drawback. SSGANs [10] 
exploit two popular unsupervised learning techniques, adversarial training, and self-
supervision, bridging the gap between conditional and unconditional GANs.
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Fig. 15 Differentiating two Gaussian distributions using optimal discriminator . D∗. The original 
GAN cost saturates (red line), resulting in vanishing gradients, whereas WGAN cost objective 
(blue line) yields measurable gradients. Plot was taken from [4] 

Neural networks have been shown to forget previous learned tasks [17, 35], 
and catastrophic forgetting was previously considered as a major cause for GAN 
training instability. Motivated by the desire to counter the discriminator forgetting, 
SSGAN adds to the discriminator an additional loss, which enables it to learn 
useful representations, independently of the quality of the generator. In a self-
supervised manner, the authors train a model on a task of predicting a rotation angle 
(.[0◦, 90◦, 180◦, 270◦]), as shown in Fig. 16. The objectives of D and G are updated 
to 

.

LG = −V (G,D) − αEx∼PG
Er∼R[log QD(R = r|xr )]

LD = V (G,D) − βEx∼Pdata
Er∼R[log QD(R = r|xr )], (14) 

where .V (G,D) is the original GAN objective in Eq. (1), .Pdata and .PG are the real 
data and generated data distributions, respectively, and .r ∈ R is a rotation selected 
from a set of all allowed angles (.R = {0◦, 90◦, 180◦, 270◦}). An image . x rotated by 
r degrees is denoted as . xr , and .Q(R|xr ) is the discriminator’s predictive distribution 
over the angles of rotation of the sample. These new losses enforce D to learn good 
representation via learning the rotation information in a self-supervised approach. 

Using the above scheme, SSGAN achieves good high-quality images, matching 
the performance of conditional GANs without having access to labeled data.
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Fig. 16 Self-Supervised GAN (SSGAN) discriminator. The discriminator, D, performs two tasks: 
identifying real/fake images (as the original GAN) and rotation classification. Both the real and 
fake images are rotated by (.[0◦, 90◦, 180◦, 270◦]) and sent to the rotation degree classifier (in 
blue). Only the original . 0◦ images are sent to the real/fake classifier (in red). Plot is taken from 
[10] 

5.3 Spectral Normalization GAN (SNGAN) 

SNGAN [46] proposes to add weight normalization to stabilize the training of the 
discriminator. Their technique is computationally inexpensive and can be applied 
easily to existing GANs architectures. In previous works that stabilized GAN 
training [21, 4, 56], it was emphasized that D should be a K-Lipschitz continuous 
function, forcing it not to change rapidly. This characteristic of D stabilizes the 
training of GANs. SNGAN controls the Lipschitz constant of D by literally 
constraining the spectral norm of each layer, normalizing each weight matrix W , 
so it satisfies the spectral constraint .σ(W) = 1 (i.e., the largest singular value of 
the weight matrix of each layer is 1). This is performed by simply normalizing each 
layer: 

.W̄SN(W) = W
σ(W)

, (15) 

where . W are the weight parameters of each layer in D. This work proves that this 
will make the Lipschitz constant of the discriminator function to be bound by 1, 
which is important for the WGAN optimization. 

SNGAN achieves an extraordinary advance on ImageNet, and better or equal 
quality on CIFAR-10 and STL-10, compared to the previous training stabilization 
techniques that include weight clipping [4], gradient penalty [74, 43], batch normal-
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Fig. 17 Pipeline of Sphere GAN. The generator creates fake data from noise inputs. Real and fake 
data are fed to the discriminator, which maps the output to an n-dimensional Euclidean feature 
space (yellow plane). Green and purple points on the feature plane correspond to fake and real 
samples, respectively. The key idea of SphereGAN is remapping the feature points into the n-
dimensional hypersphere by using geometric transformations. These mapped points are then used 
to calculate the geometric moments centered at the north pole of the hypersphere (N ). While the 
discriminator tries to maximize the moment differences of real and fake samples, the generator 
tries to interfere with the discriminator by minimizing those moment differences. Figure was taken 
from [52] 

ization [26], weight normalization [63], layer normalization [5], and orthonormal 
regularization [7]. 

5.4 SphereGAN 

SphereGAN [52] is a novel integral probability metric (IPM)-based GAN, which 
uses the hypersphere to bound IPMs in the objective function, thus enhancing the 
stability of the training. By exploiting the information of higher order statistics of 
data using geometric moment matching, they achieved more accurate results. The 
objective function of SphereGAN is defined as 

. min
G

max
D

∑

r

Ex[dr
s (N,D(x))] −

∑

r

Ez[dr
s (N,D(G(z)))], (16) 

for .r = 1, . . . , R where the function . dr
s measures the rth moment distance between 

each sample and the north pole of the hypersphere, . N. Note that the subscript s 
indicates that . dr

s is defined on . Sn. Figure 17 shows the pipeline of SphereGAN. 
By defining IPMs on the hypersphere, SphereGAN can alleviate several constraints 
that should be imposed on D for stable training, such as the Lipschitz constraints 
required from conventional discriminators based on the Wasserstein distance.
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Unlike conventional approaches that use the Wasserstein distance and add 
additional constraint terms (see Table 1 in [52]), SphereGAN does not need any 
additional constraints to force D in a desired function space, due to the usage of 
geometric transformation in D. 

6 Data Augmentation with GAN 

We turn now to describe how to use GAN for data augmentation. Data augmentation 
is a crucial process for tasks lacking large training sets. There are three circum-
stances which require data augmentation: 

• Limited annotations: Training a large DNN with a very few labeled data in the 
training set. 

• Limited diversity: When the training data lacks variations; for example, it may 
not cover diverse illuminations or a variety of appearances. 

• Restricted data: The database might contain sensitive information, and thus 
accessing it directly is strictly restricted. 

The first two scenarios can be solved via supervised learning, but they will 
cost a lot of human effort to enrich the labeled data or to use active learning 
approaches [11]. An alternative approach is to utilize GANs to augment the data. 
Semi-supervised GAN (SGAN) (see Sect. 4.1) is a simple example of such a GAN 
architecture that is able to generate new annotated images and can automatically 
enrich training data with few labels. 

The second case is more common in the real world. Data variability is important 
for many psychology or neuroscience experiments. For example, a human’s EEG is 
sensitive to different types of face images such as happy, angry, and sad faces [42]. 
Preparing those stimuli in traditional experiments is time-consuming and costly 
for researchers. Architectures like StyleGAN [30] (see Sect. 4.6) are specialized to 
generate broad types of face images as a stimulus. More important, these images can 
be controlled to exhibit specific attributes (e.g., level of happiness or facial textures) 
and thus enhancing the stimuli variation in the experiment [73]. Data augmentation 
can also be helpful in the training of the GANs themselves [31, 78], which allows 
to train them with only few examples and still get high-quality generated data (e.g., 
images). 

The last case is related to unsupervised learning approaches. When a database is 
restricted to preserve users’ privacy, the researchers can use GANs to synthesize this 
sensitive data themselves. For example, Delaney et al. employed GANs to generate 
synthetic ECG signals that resemble real ECG data [12].
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7 Conclusion 

This chapter has provided just a glimpse of GANs and their various usages. This 
fast-growing technique has many variants and applications that have not been 
presented here for the sake of brevity. Yet, we believe that the description of GANs 
given here provides the reader with the tools to better understand this tool and be 
able to navigate between the vast amount of recent literature on this topic. It is 
worth mentioning also normalizing flows [51] and score-based generative models 
[67, 66, 48] which become very popular recently and show competitive performance 
with GANs. 

Acknowledgements We would like to thank Yuval Alaluf, Yotam Nitzan, and Ron Mokady for 
their helpful comments. 

References 

1. Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2StyleGAN: How to embed images into 
the StyleGAN latent space? In 2019 IEEE/CVF International Conference on Computer Vision 
(ICCV), pages 4431–4440, 2019. 

2. Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2StyleGAN++: How to edit the 
embedded images? In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), June 2020. 

3. Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter Wonka. StyleFlow: Attribute-
conditioned exploration of StyleGAN-generated images using conditional continuous nor-
malizing flows. ACM Trans. Graph., 40(3), May 2021. 

4. Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial 
Networks. In ICML, volume 70, pages 214–223, 2017. 

5. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 7 2016. 
6. David Berthelot, Tom Schumm, and Luke Metz. {BEGAN:} Boundary Equilibrium 

Generative Adversarial Networks. CoRR, abs/1703.1, 2017. 
7. Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural Photo Editing 

with Introspective Adversarial Networks. ArXiv, abs/1609.0, 2017. 
8. Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high 

fidelity natural image synthesis. In International Conference on Learning Representations, 
2019. 

9. Eoin Brophy, Zhengwei Wang, and Tomas E. Ward. Quick and easy time series generation 
with established image-based GANs. ArXiv, abs/1902.05624, 2019. 

10. Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. Self-Supervised 
GANs via Auxiliary Rotation Loss. CVPR, pages 12146–12155, 2019. 

11. David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active Learning with Statistical 
Models. J. Artif. Int. Res., 4(1):129–145, 3 1996. ISSN 1076-9757. 

12. Anne Marie Delaney, Eoin Brophy, and Tomas E Ward. Synthesis of Realistic ECG using 
Generative Adversarial Networks. ArXiv, abs/1909.0, 2019. 

13. Emily L Denton, Soumith Chintala, Arthur Szlam, and Robert Fergus. Deep Generative Image 
Models using a Laplacian Pyramid of Adversarial Networks. CoRR, abs/1506.0, 2015. 

14. Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative 
neural networks via maximum mean discrepancy optimization. In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence, page 258–267, 2015.



Generative Adversarial Networks 397

15. William Fedus, Ian Goodfellow, and Andrew M. Dai. MaskGAN: Better text generation via 
filling in the _. In International Conference on Learning Representations, 2018. 

16. Yuri Feigin, Hedva Spitzer, and Raja Giryes. Generative adversarial encoder learning, 2020. 
17. Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive 

Sciences, 3(4):128–135, 1999. 
18. Rinon Gal, Dana Cohen Hochberg, Amit Bermano, and Daniel Cohen-Or. SWAGAN: A 

style-based wavelet-driven generative model. ACM Trans. Graph., 40(4), July 2021a. 
19. Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. StyleGAN-

NADA: Clip-guided domain adaptation of image generators, 2021b. 
20. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil 

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in 
Neural Information Processing Systems 27, pages 2672–2680, 2014. 

21. Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. 
Improved Training of Wasserstein GANs. In Advances in Neural Information Processing 
Systems 30, pages 5767–5777, 2017. 

22. Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation 
via adversarial training with leaked information. In Proceedings of the Thirty-Second AAAI 
Conference on Artificial Intelligence, pages 5141–5148, 2018. 

23. Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. EEG-GAN: Generative 
adversarial networks for electroencephalograhic (EEG) brain signals. ArXiv, abs/1806.01875, 
2018. 

24. Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei 
Efros, and Trevor Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In 
International Conference on Machine Learning, volume 80, pages 1989–1998, 2018. 

25. Shady Abu Hussein, Tom Tirer, and Raja Giryes. Image-adaptive GAN based reconstruction. 
In AAAI, 2020. 

26. Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift. In ICML, 2015. 

27. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation 
with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 5967–5976, 2016. 

28. Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture synthesis with spatial 
generative adversarial networks. CoRR, abs/1611.08207, 2016. 

29. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs 
for improved quality, stability, and variation. In International Conference on Learning 
Representations, 2018. 

30. Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for 
Generative Adversarial Networks. 2019 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 4396–4405, 2019. 

31. Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. 
Training generative adversarial networks with limited data. In Proc. NeurIPS, 2020a. 

32. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 
Analyzing and improving the image quality of StyleGAN. In CVPR, 2020b. 

33. Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, 
and Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS, 2021. 

34. Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. 
35. James N Kirkpatrick, Razvan Pascanu, Neil C Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. 
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy 
of Sciences, 114:3521–3526, 2017. 

36. Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic DENOYER, 
et al. Fader networks: Manipulating images by sliding attributes. In Advances in Neural 
Information Processing Systems, pages 5963–5972, 2017.



398 G. Cohen and R. Giryes

37. Y LeCun, P Haffner, L Bottou, and Yoshua Bengio. Object Recognition with Gradient-Based 
Learning. In Shape, Contour and Grouping in Computer Vision, 1999. 

38. Christian Ledig, Lucas Theis, Ferenc Huszár, José Antonio Caballero, Andrew Aitken, 
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-Realistic Single 
Image Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), pages 105–114, 2017. 

39. Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob Verbeek. Semantic segmentation 
using adversarial networks. ArXiv, abs/1611.08408, 2016. 

40. Andrew L Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In 
ICML, 2013. 

41. Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and Stephen Paul Smol-
ley. Least squares generative adversarial networks. In Proceedings of the IEEE International 
Conference on Computer Vision (ICCV), Oct 2017. 

42. Aimee Mavratzakis, Cornelia Herbert, and Peter Walla. Emotional facial expressions evoke 
faster orienting responses, but weaker emotional responses at neural and behavioural levels 
compared to scenes: A simultaneous EEG and facial EMG study. NeuroImage, 124:931–946, 
2016. 

43. Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Which training methods for GANs 
do actually converge? In International Conference on Machine Learning (ICML), 2018. 

44. Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative 
adversarial networks. In ICLR, 2017. 

45. Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. ArXiv, 
abs/1411.1, 2014. 

46. Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Nor-
malization for Generative Adversarial Networks. In International Conference on Learning 
Representations, 2018. 

47. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. 
Reading Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop 
on Deep Learning and Unsupervised Feature Learning 2011, 2011. 

48. Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic 
models. In International Conference on Machine Learning, volume 139, pages 8162–8171, 
2021. 

49. Augustus Odena. Semi-Supervised Learning with Generative Adversarial Networks. ArXiv, 
abs/1606.0, 2016. 

50. Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image Synthesis 
with Auxiliary Classifier {GAN}s. In Proceedings of the 34th International Conference on 
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2642– 
2651, 2017. 

51. George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji 
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of 
Machine Learning Research, 22(57):1–64, 2021. 

52. Sung Woo Park and Junseok Kwon. Sphere Generative Adversarial Network Based on 
Geometric Moment Matching. 2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 4287–4296, 2019. 

53. Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis 
with spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2019. 

54. Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. StyleCLIP: 
Text-driven manipulation of StyleGAN imagery. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 2085–2094, October 2021. 

55. Gabriel Peyre and Marco Cuturi. Computational optimal transport: With applications to data 
science. Foundations and Trends� in Machine Learning, 11(5-6):355–607, 2019. 

56. Guo-Jun Qi. Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities. 
International Journal of Computer Vision, 128:1118–1140, 2019.



Generative Adversarial Networks 399

57. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with 
Deep Convolutional Generative Adversarial Networks. CoRR, abs/1511.0, 2015. 

58. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini 
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and 
Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021. 

59. Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark 
Chen, and Ilya Sutskever. Zero-shot text-to-image generation, 2021. 

60. Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and 
Daniel Cohen-Or. Encoding in style: a StyleGAN encoder for image-to-image translation. In 
CVPR, 2021. 

61. Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. SinGAN: Learning a generative model 
from a single natural image. In IEEE International Conference on Computer Vision (ICCV), 
2019. 

62. Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, 
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive Neural Networks. ArXiv, 
abs/1606.0, 2016. 

63. Tim Salimans and Durk P Kingma. Weight Normalization: A Simple Reparameterization to 
Accelerate Training of Deep Neural Networks. In Advances in Neural Information Processing 
Systems 29, pages 901–909. Curran Associates, Inc., 2016. 

64. Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in GANs. In 
CVPR, 2021. 

65. Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. InterfaceGAN: Interpreting the 
disentangled face representation learned by GANs. TPAMI, 2020. 

66. Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In 
International Conference on Learning Representations, 2021a. URL https://openreview.net/ 
forum?id=St1giarCHLP. 

67. Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, 
and Ben Poole. Score-based generative modeling through stochastic differential equations. In 
International Conference on Learning Representations, 2021b. 

68. Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an 
encoder for StyleGAN image manipulation. ACM Trans. Graph., 40(4), 2021. 

69. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural 
Information Processing Systems, pages 5998–6008, 2017. 

70. T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution im-
age synthesis and semantic manipulation with conditional GANs. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 8798–8807, June 2018. 
doi:10.1109/CVPR.2018.00917. 

71. Zhengwei Wang, Qi She, and Tomas E Ward. Generative Adversarial Networks: {A} Survey 
and Taxonomy. CoRR, abs/1906.0, 2019a. 

72. Zhengwei Wang, Qi She, and Tomas E Ward. Generative Adversarial Networks: {A} Survey 
and Taxonomy. CoRR, abs/1906.0, 2019b. 

73. Zhengwei Wang, Qi She, Alan F Smeaton, Tomás E Ward, and Graham Healy. Synthetic-
Neuroscore: Using a neuro-AI interface for evaluating generative adversarial networks. 
Neurocomputing, 405:26–36, 2020. 

74. Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. GP-GAN: Towards Realistic 
High-Resolution Image Blending. Proceedings of the 27th ACM International Conference 
on Multimedia, 2019. 

75. Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. 
Gan inversion: A survey, 2021. 

76. Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. 
In ECCV, 2014.

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP

 -171 40651 a -171 40651 a
 


400 G. Cohen and R. Giryes

77. Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention gener-
ative adversarial networks. In International Conference on Machine Learning, volume 97, 
pages 7354–7363, 2019. 

78. Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation 
for data-efficient GAN training. In Conference on Neural Information Processing Systems 
(NeurIPS), 2020. 

79. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired Image-to-
Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International 
Conference on Computer Vision (ICCV), pages 2242–2251, 2017.



Spatial Data Science 

Yan Li, Yiqun Xie, and Shashi Shekhar 

1 Introduction 

Space and time are the context of observations in a large number of domains, such 
as climate science, social science, epidemiology, transportation, and criminology 
[8], so in these domains the spatial and temporal information of every measurement 
is often recorded in the observation data, hereby referred to as spatial data. For 
example, GPS tracks of smart phones keep track of the status of smart phone users 
as well as their geographic locations and timestamps. Remote sensing imagery is 
another example of spatial data. Each pixel of a remote sensing image reflects 
an attribute of the features at a location at the moment when the image is taken. 
In recent years, the explosive growth in spatial data has facilitated the emergence 
and development of spatial data science, which is a multi-disciplinary field that 
applies scientific methods from computer science, statistics, mathematics, and other 
domains acquire, store, and manage spatial data, as well as to retrieve previously 
unknown, but potentially useful and non-trivial knowledge and insights from the 
data. The life cycle of spatial data science has five phases, namely spatial data 
acquisition, spatial data storage and preprocessing, spatial data mining, result 
validation, and domain interpretation. 

Spatial data science is crucial to applications that decide actions and policies 
on large spatial datasets in many domains, including national security [57], pub-
lic health [56], transportation [1], and public safety [82]. The examples of the 
applications and domains are shown in Table 1. For instance, spatial data science 
applies spatial scan statistics to identify areas with significantly high concentration 
of disease from data of disease incidents to manage epidemic outbreak. 
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Table 1 Application examples of spatial data science 

Domain Application examples 

Public safety Detecting crime hotspots with concentrations of crime 

Epidemiology Identifying epidemic outbreak 

Business Allocating retail store locations to maximize profit 

Neuroscience Detecting brain regions activated by language from neuro-images 

Climate science Finding distant places where the temperature is positively or negatively 
correlated 

(a) (b) 

A 

B 

C 

nearby 
relationship 

(c) 

Fig. 1 Example of the modifiable area unit problem 

One of the main challenges of spatial data science is its interdisciplinary nature. 
Spatial data science deals with the objects or phenomena that physically exist in the 
real world, so its techniques must be developed with an awareness of the underlying 
physics or theory in the application domain, and its results must be interpretable and 
reliable [53]. For example, climate science studies find that observable predictors for 
phenomena discovered by data science techniques can be misleading if they ignore 
climate models, locations, and seasons [13]. When simulating lake temperature 
profiles, by considering energy conservation, pre-training with physical simulation, 
and applying density-depth constraint, a physics-guided spatial data science model 
reduces physically inconsistent results and improves generalizability compared with 
the state-of-the-art non-spatial models [40]. Another good example is the Google 
Flu Trends, a project which attempted to predict flu activity only by tracking 
people’s Google search about the illness. Despite its early success over the first 
several years, it overestimated the prevalence of flu in 2011 and 2012 by more 
than 50% [80]. False positive results from spatial data science may have profound 
negative impacts on the economy, society, and the environment. For example, 
labeling a neighborhood as a crime hotspot may reduce property values in the 
neighborhood [46]. It is critical to have robust statistical significance testing that 
can further validate or discard the knowledge obtained from spatial data. 

The complexity of spatial data types and relationships also makes extracting 
knowledge from spatial data more difficult than from non-spatial numeric and 
categorical data. Commonly used spatial data types include object data types, such 
as points, lines, and polygons, and field data types such as remote sensing images 
and digital elevation models, which is more complex than those in non-spatial data
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science. In addition, some important relationships in non-spatial data types do not 
exist in spatial data. For example, the lack of ordering in spatial data poses great 
challenges on spatial databases [66]. Furthermore, the relationships in spatial data 
types are often implicit, which makes it hard to detect, represent, and use them. For 
example, the relationships between two points, such as the distance and direction, 
are implicitly in their coordinates. 

Another challenge comes from the properties of spatial data, such as spatial au-
tocorrelation and spatial heterogeneity. Tobler’s first law of geography, “everything 
is related to everything else, but near things are more related than distant things” 
[78], describes the spatial dependence that ubiquitously exists in the phenomena on 
earth. For example, people living in the same neighborhood tend to share similar 
characteristics, income, and education level. In spatial statistics, spatial dependence 
is called the spatial autocorrelation effect. Ignoring autocorrelation and assuming 
an identical and independent distribution (i.i.d.) of data when analyzing spatial 
data may produce hypotheses or models that are inaccurate [68]. For example, 
applying non-spatial machine learning methods (e.g., random forest) on land cover 
segmentation using remote sensing imagery may result in salt and pepper noise 
[42]. Spatial dependence exists not only at close locations but also distant locations. 
One example of long-range spatial dependence is El Nino and La Nina effects in the 
climate system. Spatial heterogeneity refers to the fact that spatial data do not follow 
an identical distribution throughout the entire earth. For example, the appearance 
information of European and Spiny Toads are visually similar, but they are located in 
different geographical regions and belong to different categories [52], which makes 
“one-size-fits-all” models using appearance information only hardly applicable. 

Furthermore, while non-spatial data mining and machine learning techniques 
need discrete input data, for example, transactions in association rule mining, 
spatial datasets are embedded in continuous space, which makes the non-spatial 
techniques not applicable. The discretization of space may introduce problems 
such as the modifiable area unit problem (MAUP) or the multi-scale effect, since 
the results of spatial analysis depend on the choice of discretization methods and 
spatial scale [85]. Figure 1a shows three input spatial feature types A, B, and C 
and the nearby relationship in between. Depending on the choice of discretization 
methods as shown in Fig. 1b and c, the correlation coefficients of the pairs (A,B) 
and (B,C) are . −1 and 1, respectively. Gerrymandering, which is a practice intended 
to establish a political advantage for a particular party or group by manipulating 
district boundaries, is a form of the MAUP and is attracting growing attention in 
recent years [19, 74]. 

There exists little literature on spatial data science. Xie et al. take a trans-
disciplinary perspective to present the foundations of spatial data science in 
mathematics, statistics, and computer science [84]. Most other related work focuses 
on spatial/spatiotemporal data mining, which is a phase of spatial data science. 
Atluri et al. [8] give the most recent review of spatiotemporal data mining, which 
is closely related to spatial data science, by surveying typical spatiotemporal 
data types and their properties, and by reviewing the approaches for commonly 
studied spatiotemporal data mining problems. In [68], Shekhar et al. review the
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common spatiotemporal pattern families and their statistics background from a 
database-centric perspective. On approaches for mining purely spatial data there 
is a considerable literature. For example, Shekhar et al. survey the computational 
approaches to detect spatial outliers, co-location patterns, spatial classification and 
regression, spatial clustering, and spatial hotspots in [67]. There is also extensive 
literature on spatial or spatiotemporal statistics [18, 31], and data mining on specific 
types of spatial or spatiotemporal data (e.g., trajectory [95] and remote sensing 
imagery [47]). In this section, we discuss the life cycle of spatial data science 
comprehensively. 

This chapter focuses on the spatial aspect of spatial data science but leaves the 
temporal aspect out of the scope, since it means to provide an introduction on spatial 
data science to the broad audiences, but there is no commonly accepted taxonomy 
for the temporal aspect of spatial data science currently. Much of the temporal aspect 
of spatial data science still needs to be explored further. 

The rest of this chapter is organized as follows: Sect. 2 lists the spatial data types 
and the major sources of spatial data. Section 3 introduces spatial database for the 
storage and management of spatial data. Section 4 discusses the common pattern 
families of spatial data mining. Section 5 presents the methods of results validation, 
which is followed by the conclusion in Sect. 6. 

2 Spatial Data 

2.1 Types of Spatial Data 

The major difference between spatial data and non-spatial data is that in addition to 
non-spatial information, spatial data contain spatial attributes, such as the location 
and the shape of a spatial object on earth. There are three common representations 
for spatial attributes, namely object models, field models, and spatial network 
models [66, 61]. 

An object model represents discrete objects as three basic data types, point(s), 
line(s), and polygon(s). These types were originally introduced by cartographers to 
represent real-world object in maps, so their use is decided by the level of detail to 
be represented. A point represents the geographic coordinates of a location, which 
could be a latitude and longitude in a geographic coordinate system or a x and y in a 
projected coordinate system. A point is often used to mark the location of an object, 
such as a city center (Fig. 2a). If the length of an object is of concern, for example, 
when showing a river in a small-scale map (Fig. 2b), the object will be represented 
by lines, which connect a sequence of points. A polygon is used when both the 
location and shape of an object need to be represented, such as a state on a map of 
the United States (Fig. 2c). A polygon is represented by lines connecting a sequence 
of points and close it. Now that the data types are more complex, the relationships 
between spatial data are also more complex and are frequently implicit in the spatial 
attributes. These relationships fall in four groups (as shown in Table 2).
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Fig. 2 Examples of the representations of spatial data. (a) St. Paul (Point). (b) Mississippi River 
(Line). (c) Minnesota State (Polygon). (d) Minnesota State (Field). (e) Interstate in Minnesota 
(Network) 

Table 2 Relationships 
between spatial data 

Relationship 

Set/Topological union, intersection, meet, within, . . . 

Metric distance, area, perimeter,. . . 

Directional above, left, eastern,. . . 

Other visibility,. . . 

A field model is a mapping between continuous coordinates and a certain 
attribute. The value of the attribute may be categorical (e.g., land cover / land use) or 
numerical (e.g., rainfall amount). To be represented in computers, continuous space 
is often discretized using space partitioning. The partitioning is usually a regular 
grid with cells of the same size (e.g., a partitioning based on the coordinate system 
in Fig. 2d), but it does not have to be. Remote sensing imagery is a typical type of 
spatial data in the field model. 

A spatial network model is composed of a set of points and the lines connecting 
them, which are called nodes and edges, respectively (Fig. 2e). Its major difference 
from the object model is its capability of representing the connectivity of the points 
and lines. Unlike a graph in discrete mathematics, the nodes and edges convey rich 
information. For example, a spatial network can represent a road system in an area, 
whose nodes may have information about turn restrictions, traffic control rules, etc., 
and edges may record the number of lanes, the lane width, and so forth. 

2.2 Major Sources of Spatial Data 

The most traditional way of acquiring spatial data is surveying, whose origin dates 
back to the beginning of recorded history [90]. The function of surveying includes 
determining and measuring spatial objects, assembling information related to the 
objects, and using the information for planning [39]. Because of its importance, 
surveying is mostly conducted by the government, and government agencies are
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major suppliers of spatial data. The digitization of old paper maps provides historical 
spatial information. 

A second important source of spatial data is remote sensing, both active and 
passive [14, 79]. Active remote sensing instruments, such as LIDAR and RADAR, 
have their own source of radiation, while passive instruments generally rely on 
sunlight. The imagery obtained from active and passive instruments is generated 
in fundamentally different ways, so they two are complementary and offer different 
perspectives of the Earth [43]. The advantages of passive remote sensing include 
that it is relatively easy to be interpreted and that it is of high spectral resolution. 
By contrast, LIDAR data, often in the form of point clouds, is widely used in 
reconstructing the surface of spatial objects or the earth [83]. One of the major 
advantages of RADAR is its penetration capacity, which enables it to work in 
various weather conditions and to detect targets under the Earth’s surface [72]. 

The popularity of devices equipped with GPS chips (e.g., cellphones, watches) 
has boosted spatial data generation through crowdsourcing. For example, Open-
StreetMap is a crowdsourced map built by volunteers around the world, which 
provides base maps to a large number of spatial data science research (e.g., [91]). 
Applications that users can use to check in with their locations such as Yelp and 
Twitter provide spatial data with rich non-spatial attributes and attract considerable 
research interest [16]. 

3 Spatial Database 

Spatial database management systems (SDBMSs) are software modules that work 
with an underlying database management system (DBMS) to define, create, query, 
update, and manage a spatial database. These systems provide persistence across 
failures, concurrency control, and scalability to search queries on datasets that do not 
fit inside main memories of computers [66]. The SDBMS is an essential component 
of spatial data storage and management. 

Compared with non-spatial DBMSs, SDBMSs can conduct operations that are 
specific for spatial data. Examples of the operations in the OGC (Open Geospatial 
Consortium) Standard for SQL [60] are listed in Table 3 in three families. The 
basic functions include operations on a single object. For example, the envelop 
operation yields the minimum bounding rectangle of an object. The topological/set 
operators examine the topological/set relationships between objects. The spatial 
analysis operations, on the other hand, contain commonly used spatial analysis such 
as generating a convex hull of a set of objects. Such operations allow SDBMSs to 
handle spatial queries that are beyond the capability of the non-spatial DBMS, for 
example, listing the fast food restaurants within one kilometer of a movie theater. 

In order to facilitate spatial queries and the operations supporting them, the 
physical model of the SDBMS needs to be adjusted for spatial data, since non-
spatial DBMSs cannot handle multi-dimensional data efficiently. In the non-spatial 
DBMS, sorting and hashing are used in the file structure and index to improve the



Spatial Data Science 407

Table 3 Sample operations in OGC Standard for SQL 

Family Operation 

Basic functions SpatialReference, Envelop, Export, IsEmpty, IsSimple, Boundary 

Topological/Set operators Equal, Disjoint, Intersect, Touch, Cross, Within, Contains, Overlap, 

Union, Difference, SymmDiff 

Spatial analysis Distance, Buffer, ConvexHull 

Fig. 3 Examples of space 
filling curves. (a) Z-order 
curve. (b) Hilbert’s curve 

computational performance of its basic building blocks such as point query, range 
query, join, insert, etc. [27]. However, the order of multi-dimensional data is not 
well defined, for example, there is no consensus on whether a location is greater 
or less than another to the southwest of it, and the hashing results may lose the 
spatial relationship between objects, which is important for spatial operations such 
as Intersect, Within, etc. Therefore, the file structure and index of the SDBMS need 
to be handled specifically. 

The commonly used techniques in the file structure and index of the SDBMS 
include geo-hashing, quadtrees, and hierarchical collection of rectangles. The idea 
of geo-hashing is to use a space filling curve to connect all the cells of a space 
partition, usually a grid with cells of the same size, so that the cells can be sorted in 
the order in which the curve visits them [66]. The Z-order curve [55] and Hilbert’s 
curve [34] are popular strategies for space filling curve. Both strategies map multi-
dimensional data to one dimension while partially preserving locality of the data. 
Figure 3 shows the Z-order curve and Hilbert’s curve for a .4 × 4 space partition 
of a given study area. Let the cell .(i, j) be the cell in row i and column j . The  Z-
order curve preserves the proximity relationship between the cells .(1, 0) and . (1, 1)
but breaks the relationship between .(1, 0) and .(2, 0). And there is a jump between 
.(1, 3) and .(2, 1), which are neighbors along the curve, but away from each other 
in reality. By contrast, there is no jump in Hilbert’s curve, that is, the cells that are 
adjacent along the curve are also adjacent in reality. However, there is still a loss of 
proximity relationships, for example, that between the cells .(0, 1) and .(0, 2). 

A quadtree is a tree data structure where each internal node has exactly four 
children [30]. A quadtree decomposes space into adaptable cells, each of which has 
a maximum capacity. When the maximum capacity of a cell is reached, the cell
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Fig. 4 Examples of the file structure and index in Spatial Database. (a) Quadtree. (b) R-tree  

splits. Figure 4a shows a quadtree in which the maximum capacity of the leaf nodes 
is 2 data points. The ability of the quadtree to determine whether a cell should be 
split based on the density of the data inside it saves storage space, compared to 
having grid cells all the same size. 

The R-tree structure is an example of a technique that uses a hierarchical 
collection of rectangles, which is a generalization of the B-tree to spatial data [33]. 
The R-tree is a balanced tree, and each node represents a rectangle. The rectangle 
of a child node is located within that of its parent, and the rectangles may overlap. 
If each node in an R-tree may have at most two children, a possible R-tree structure 
for the same point dataset in Fig. 4a is shown in Fig. 4b. There are a large number of 
R-tree variants. R+ trees only allow overlap between rectangles at the leaf level and 
duplicate the data so that a spatial object may exist in multiple leaf nodes [65]. R* 
trees allow data to be reinserted so that the overlap between rectangles is minimized 
[10]. Both of these variants have higher construction cost but lower query cost than 
the original R-tree. 

In recent years, research on spatial database has mainly focused on improving 
computational performance using high-performance-computing platforms. Because 
of its capability of handling big data in commodity computer clusters, Apache 
Hadoop has been used by researchers and savvy tool users in various ways [71]. 
Some use Hadoop as a black box for operations on data, such as GIS tools for 
Hadoop, a package composed of both programming libraries and an add-on toolbox 
of ArcGIS desktop [28]; and Hadoop-GIS, a scalable spatial data warehousing 
system [5]. Spatial Hadoop, by contrast, adds native support for spatial data by 
supporting a set of spatial index structures and developing spatial functions that 
interact directly with Hadoop base code [92]. Impala, a distributed SQL query 
engine for Hadoop, has also been extended for spatial data [26]. Since the Hadoop-
based tools are inefficient when handling interactive operations, GeoSpark [94] 
is developed to take full advantage of Apache Spark’s core in-memory data 
abstraction, resilient distributed datasets.
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4 Spatial Data Mining 

Spatial data mining is the process of quantifying and discovering previously 
unknown, but potentially useful patterns from spatial data [68]. It mainly focuses on 
five pattern families, namely spatial hotspots, co-locations, spatial outliers, spatial 
prediction, and spatial change. 

4.1 Spatial Hotspots 

Given a set of spatial points, each of which is a spatial object or an event in a 
domain, a spatial hotspot is an area that has a higher probability density of the points 
compared to other parts in the study area [86]. Hotspot detection has important 
applications in many domains including public health [45], transportation [75], 
crime analysis [22], etc. John Snow’s finding of the 1854 London cholera hotspot 
on a map was a major milestone in the development of the germ theory and saved 
numerous lives [86]. The main challenge of spatial hotspot detection arises from the 
uncertainty of the number, location, size, and shape of hotspots. 

The research on spatial hotspots focuses on two perspectives of the problem, 
namely the interest measure that describes the probability density of the spatial 
points in an area, and the methods to enumerate the continuous space. Neill and 
Moore [59] named three properties of the interest measures for spatial hotspots: 
(1) For a fixed number of event in total, the interest measure for an area increases 
monotonically with the number of events in the area; (2) For a fixed number of 
events, the interest measure for an area decreases monotonically with the size of the 
population in the area; and (3) For a fixed proportion of events in a population, 
the interest measure for an area increases monotonically with the population in 
the area. Ever since the log likelihood radio (LLR) was introduced in [45], it 
has become one of the most popular interest measures for spatial hotspots. The 
LLR of an area describes the difference between the maximum likelihood estimate 
(MLE) of the probability density of the spatial points inside the area being higher 
than that outside the area, and the MLE of the probability density being the same 
throughout the study area. The greater the difference, the area is more likely to be 
a hotspot. Another popular interest measure that is simpler to compute than LLR 
is the density ratio [75, 70]. The density of an area is defined as the number of 
events normalized with the population in the area, so the density ratio of an area 
depicts the difference between the density inside and outside the area. Given the 
importance of the interest measure, which has direct impact on the solution quality 
of hotspot detection, research about interest measures is still active and multiple 
efforts have been made to identify the theoretical limitations of the current measures 
(e.g., likelihood ratio) and address them. Examples of more recent interest measures 
include nondeterministic normalization index [86] and expectation-based likelihood 
ratio [58]. In all the previous examples of interest measure, the geometric area (or
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size of the population) of a hotspot is required in the calculation. However, in non-
spatial clustering techniques such as DBSCAN the area or the size of the population 
is often unknown or hard to calculate, since the outputs are often clustered point-sets 
rather than a well-defined spatial region. Thus, new interest measure is introduced 
for clustering methods (e.g., cluster size [87]). In spatial statistics, local indicators 
of spatial association, including local Moran’s I, Ripley’s K, Geary’s C, Ord Gi, and 
Gi* functions [6], are also used to indicate hotspots. 

Research is also conducted on the methods of identifying hotspots in continuous 
space. Most of the spatial hotspot detection studies use spatial scan statistic methods. 
The spatial scan statistic extends the original scan statistic for a one-dimensional 
point process to allow for multi-dimensional space [45]. In order to enumerate 
through continuous space, researchers have come up with different definitions of the 
shape and the location of the potential hotspots. In Euclidean space, the definitions 
include circles with one spatial point at the center and another one on the perimeter 
[45], rectangles in a grid [59], ellipses [76], and ring-shape area [24]. In spatial 
networks, the examples are linear intersecting paths [70], constrained minimum 
spanning trees [17], isodistance spanning trees [77], isodistance spanning trees with 
a hole [23], and shortest paths [75]. Given a certain definition of the potential 
hotspots, the focus of these papers is on improving the computational performance 
of the proposed algorithms. Since the common interest measures, e.g., LLR and 
density ratio, do not obey the monotonicity property, meaning that there is no 
ordering between the interest measures in an area and its sub-area, or vice versa, 
some researchers have proposed upper and lower bounds of the interest measures, 
which do obey the monotonicity property [59, 75, 24]. Based on the proposed lower 
and upper bounds, their algorithms apply strategies such as divide and conquer 
[59], and filter and refine [75, 24]. Clustering based methods are also used to find 
candidate areas for further evaluation, including global partitioning based methods 
(e.g., the K-Means and the K-Medoids [44]), hierarchical clustering methods (e.g., 
robust clustering using links (ROCK) [32]), and density-based methods (e.g., 
DBSCAN [29, 87]). 

4.2 Co-locations 

A co-location pattern is a set of spatial object types whose instances are frequently 
located in geographic proximity [36]. Real-world examples include symbiotic 
species, such as the Nile crocodile and Egyptian plover, and other biological 
dependencies (e.g., the dependence between different types of blackberry canes [9]). 
The challenges of mining co-location patterns are two-fold: first, there is no explicit 
partitioning in continuous space; and second, the number of candidate patterns is 
exponential. 

In spatial statistics, the cross-K function is a generalization of Ripley’s K function 
for a multivariate spatial point process, which depicts the spatial correlation of 
different types of spatial objects [21]. The cross-K function of two spatial object 
types i and j is defined as
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.Kij (h) = E(# type j instances within distance h of a type i instance)

λj

, (1) 

where . λj is the number of type j instances per unit area, and .E(·) is a function 
to calculate the expectation. When there are n spatial object types, there would 
be . n2 cross-K functions for them. A higher cross-K function value indicates more 
instances of type i in the proximity of each type j instance on average, that is, i and 
j are more likely to be co-location pattern. 

It is hard to generalize the cross-K function to a set of more than two spatial 
object types, and the computational cost of the cross-K function is high. An 
alternative interest measure for co-location pattern detection is the participation 
index (PI) [36]. The PI is defined based on the definition of the participation ratio 
(PR). If every pair of objects in a set of spatial objects are neighbors of each other, 
we say the set of objects form a clique. Given a subset S of the spatial object types, 
the PR of type .t ∈ S is defined as the proportion of instances of t that form cliques 
with the instances of all other types in S. The PI of a subset S is the minimum 
PR of every type .t ∈ S. The greater the value of the PI of a co-location pattern, 
the more likely that instances of the types in the pattern are located in geographic 
proximity. The participation index of two spatial object types .A,B is an upper 
bound of .KAB(h)

W
, where .KAB(h) is the estimation of the cross-K function of the 

set .A,B for a proximity neighborhood defined by distance . ≤ h, and W is the total 
area of the study area [36]. In addition, since the participation index of a set is 
always less than or equal to that of its subset. The Apriori algorithm for association 
rule detection [4] can be applied to avoid the redundant computation for finding 
potential patterns. 

Researchers have defined aspects of the co-location detection problem in dif-
ferent ways. First, the definition of co-location pattern is extended. Research in 
this direction include generalizing the data type of the spatial object from points 
to points, lines, and polygons [89]; loosening the requirements of co-location 
patterns by removing the support threshold [37]; mining the patterns with rare 
events [35]; making the neighborhood constraint dynamic [64]; and defining a 
neighborhood using a k-nearest neighbor graph [63]. Second, the computational 
performance of the algorithms for mining the pattern is improved [93]. Third, the 
spatial heterogeneity is taken into consideration, and mining co-location pattern in 
local regions is studied. Depending on how the local regions are generated, these 
include studies using data-unaware heuristics such as quadtree [15] and regular 
grid [25, 81], and others using data-aware heuristics such as neighbor graph [54], 
Delaunay triangulation [20, 12], and minimum orthogonal bounding rectangles [49]. 

4.3 Spatial Outliers 

Spatial outliers are spatial data records (i.e., points, lines, polygons) that have dif-
ferent non-spatial attribute values from their spatial neighborhood [3]. For example,
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according to the age of houses, a new house in an old community can be considered 
as a spatial outlier. Spatial outlier detection is vital for applications that need to find 
unusual or suspicious activity or objects compared to their neighborhoods. Such 
applications include anomalous traffic monitoring in transportation engineering, 
fraud detection and prediction in credit card transactions and suspicious object and 
behavior detection in criminology. 

There are two categories of methods for detecting spatial outliers, graphical and 
quantitative. Graphical tests detect outliers by considering visualized patterns from 
data. Examples include the variogram cloud plot and the Moran scatter plot. In the 
variogram cloud plot, the x axis is the pairwise geographic distance, and the y axis 
is the square root of the absolute difference of attribute values. Records that may 
contain spatial outliers can be found by identifying the points that represent pairs 
with short geographic distance and great difference of attribute values [62]. In a 
Moran scatter plot, the x axis is the Z-score of the attribute value, which is the 
deviation of the value from the mean, and the y axis is the weighted average Z-
score of the neighbors’ attribute values [7]. The spatial outliers locate away from 
the line .y = x in the plot. The second type of methods to detect outliers are the 
quantitative methods, which calculate the difference between the attribute values of 
inspected points and their spatial neighbors. When the difference is larger than a 
predefined threshold, an outlier is detected. For example, a spatial Z-score, which is 
a variant of Z-score, is the deviation of the attribute values of inspected points from 
the mean of their spatial neighbors. 

4.4 Spatial Prediction 

Spatial prediction is the process of learning a model and predicting the target 
variable at a specific location using the explanatory variables at the location, 
training samples at other locations, and the relationships between locations [69]. 
Its applications are found in various domains such as environmental studies, land 
management, etc. The main challenges of spatial prediction are caused by the 
autocorrelation and heterogeneity of spatial data [68]. Table 4 lists examples of non-
spatial prediction models and their variants for spatial prediction problems, which 
consider spatial autocorrelation. 

Table 4 Spatial autocorrelation in prediction models 

Non-spatial Spatial 

.y = Xβ + ε . y = ρWy + Xβ + ε

.Pr(ci |X) = Pr(X|ci )P r(ci )
P r(X)

. Pr(ci |X,CN) = Pr(X,CN |ci )P r(ci )
P r(X,CN )

Neural networks Convolutional neural networks 

Decision trees Spatial decision trees



Spatial Data Science 413

Non-spatial prediction approaches assume that samples are from an identical and 
independent distribution (i.i.d.), which does not hold for spatial data. Using non-
spatial tools for spatial prediction task may result in a large number of prediction 
errors, such as salt and pepper noise [42], and errors caused by spatial heterogeneity 
[41]. 

Spatial properties are explicitly modeled in spatial regression models to handle 
spatial autocorrelation and heterogeneity. The spatial auto-regressive (SAR) model 
belongs to this model family, in which a neighborhood relationship between the 
target variables is added as an input [73]. The SAR model is defined as follows: 

.y = ρWy + Xβ + ε, (2) 

where W is an adjacency matrix, and Wy  models the effect of the neighborhood in 
addition to the effect of the explanatory variables X on the target variable y, and 
. ρ and . β are the parameters that should be learned. Notice that linear regression, 
which does follow the i.i.d assumption, is a special case of the SAR model when 
. ρ is zero. So, the SAR model is a more general model than the linear regression 
model. Geographically weighted regression (GWR) is another regression model 
that considers spatial autocorrelation [11]. GWR does not do a regression on all 
data samples. It uses a focal window centered at the current location and fits a 
regression model only to the training samples in the window. Samples that are 
closer to the current location in the window will get more weight. Similarly, there 
are approaches that incorporate spatial context into classification problems, such as 
Markov random fields (MRF) [69]. In recent years, spatial prediction using deep 
neural network attracts growing attention. For example, Lin et al. introduce a deep 
neural network model for location dependent time series prediction, which explicitly 
incorporates spatial autocorrelation into neural networks to deal with sparse and 
unevenly distributed observations [51]. 

4.5 Spatial Change 

Given a definition of change, spatial change discovery is the process of identifying 
the location of such changes from the dataset [96]. While the definition of spatial 
change patterns varies with the applications, most change patterns fall into four 
groups: changes in the statistic parameters modeling the phenomena, changes in the 
actual observation values, changes in the models that fit the data, and changes in 
derived attributes. 

Detecting patterns of spatial changes between snapshots is an important problem 
in spatial changes detection. In remote sensing, detecting changes between satellite 
images can help identify land cover change due to human activity, natural disasters, 
or climate change, so the change footprint detection using two images of the same 
area taken at different time is extensively studied. The change footprints include 
local footprints (e.g., pixels in images), focal footprints (e.g., groups of pixels,
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called blocks, in images [2]), and object-based areas [38]. In addition, given a 
spatiotemporal path, identifying its sub-paths where intensive changes occur is also 
studied [97]. The path can be in both temporal dimension, for example, the amount 
of monthly rainfall at a location in 10 years, and spatial dimension, for example, the 
amount of vegetation cover along a meridian on earth. 

5 Result Validation 

In the last few years, the fairness, accountability, transparency, and ethics in data 
science, AI, and machine learning are attracting growing more attention. In many 
important societal applications, false positives (i.e., spurious patterns) are often 
associated with high economic and social cost. A false alarm about a disease 
outbreak may cause huge wastes of resources to “control” it and raise anxiety 
in the population. Therefore, results of spatial data mining have to be validated 
further. Common methods for result validation include integrating prior domain 
knowledge, acquiring additional data, and statistical significance testing. In the rest 
of this section, we introduce the use of significance testing in spatial pattern mining, 
covering the key concepts, formulations, and computational techniques. 

5.1 Key Concepts 

Generation process of data The statistical process that governs how the data is 
generated. In the case of hotspot detection, the data is a spatial distribution 
of points, so the generation process (a.k.a. point process) specifies the 
probability density of each point being located at each spatial location. 
The distribution of probability densities determines whether a true hotspot 
exists or not. 

Null and alternative hypotheses The null hypothesis states that there is no sig-
nificant difference between two populations, where, for spatial pattern 
mining, one population represents the subset of data associated with 
the detected patterns and the other represents the rest of the data. The 
alternative hypothesis states that the two populations are significantly 
different (e.g., generated by different processes). 

Test statistic A random variable is used in hypothesis testing. Its value is com-
puted from the data samples representing a population. The test statistic 
values of two populations (i.e., data belonging or not belonging to 
a detected pattern) are used to determine whether to reject the null 
hypothesis.
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5.2 Formulations and Computational Techniques 

We use spatial hotspot detection to illustrate a concrete formulation of statistical 
significance and related computational techniques. We also briefly discuss recent 
developments in significance testing for other patterns (i.e., co-location, segregation, 
and change footprints). 

5.2.1 Spatial Hotspots 

Spatial hotspot detection aims to find sub-regions of a study area that have a 
higher probability density of generating points (e.g., crime or disease cases) than 
the rest of the area. Based on this definition, the null hypothesis states that there 
is no significant difference between the probability densities of point-generation in 
different sub-regions. In other words, the point-generation process is a homogeneous 
process across the entire study area. If a point distribution follows the null 
hypothesis, then any high-density regions are just chance patterns formed randomly 
in the generation process. 

Denote .ft () as the choice of a test statistic, and h as a detected hotspot in 
observed (input) data with a test statistic value of .ft (h). Further denote . ft (h

′)
as the test statistic value of a sub-region in a point distribution generated by the 
null hypothesis (e.g., a homogeneous point process). The p-value of h is then the 
probability that there exists a .ft (h

′) that is higher than .ft (h). 
Since the p-value often cannot be calculated in closed-form using existing 

statistical models [45, 59, 86, 58, 87], we compute it using Monte Carlo simulation. 
The Monte Carlo simulation has M trials. In each trial, a random point distribution 
is generated using the null hypothesis and the same hotspot detection algorithm used 
for the observed data is applied to find the chance pattern that has the highest test 
statistic value. Upon completion of all M trials, we have M such highest values. 
Denote the desired significance level as . α. If .ft (h) is among the highest .αM values, 
then we reject the null hypothesis and conclude that the pattern is significant; 
otherwise, a chance pattern. Monte Carlo simulation is computationally challenging 
because it requires a large number of repetitive runs of the detection algorithm (e.g., 
.M = 1000, 10,000). Various techniques have been developed to accelerate Monte 
Carlo simulation. Many of these methods propose efficiently calculable upper and 
lower bounds of test statistic values [59, 86, 58, 87], which can be used to prune 
subsets during candidate enumeration or reduce the number of runs of the exact 
detection algorithm (e.g., exact DBSCAN). An early termination technique is also 
used to halt the simulation if a conclusion can already be drawn from existing trials 
(e.g., already more than .αM trials with a larger test statistic value).
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5.2.2 Other Patterns 

The importance of statistical robustness has also been recognized for other patterns, 
such as co-location, segregation, and change detection. For patterns of co-location 
and segregation (i.e., points belonging to different features repel each other rather 
than co-locate together), the common test statistic adopted is the participation index 
[36]. The only difference is that significant patterns of segregation should have a 
very low participation index rather than a high index. Multiple formulations of the 
null hypothesis were explored in [9], including homogeneous point processes and 
clustered point processes. The same Monte Carlo framework is used to compute 
the p-values of detected co-location and segregation patterns. In change detection, a 
major issue is that many detected change footprints are very short in length and thus 
are more likely to be caused by random local fluctuations or measurement errors 
rather than persistent trend of changes. A recent study [88] proposed a significance 
formulation using pattern size as the test statistic (e.g., the length of a sub-path of 
change in the one-dimensional case). The null hypothesis is that the changes along 
an input path are caused by a random distribution of values, and there is no sub-
path that has a higher probability of having changes. This formulation can filter out 
local fluctuations and keep meaningful persistent trends. This work also proposed a 
dynamic search-and-prune algorithm to build connections between different subsets 
of paths for pruning, which speeds up the Monte Carlo simulation. Case studies 
showed that the incorporation of significance can separate meaningful ecotones 
from random noise using African NDVI data. 

6 Research Trend 

In the last decade, the utilization of both spatial and temporal information in 
observation data is growing popular. Extensive research has been conducted on 
an emerging field of spatiotemporal data mining. The methods are introduced to 
detect spatiotemporal patterns, such as spatiotemporal outliers, association and tele-
coupling, prediction, forecasting, partitioning and summarization, etc. 

Some cutting edge research is also conducted on spatial data mining in spatial 
networks. For example, several spatial network statistical methods have been 
developed, e.g., network K function and network spatial autocorrelation. Another 
example is the linear hotspot discovery problem that aims to find paths in a spatial 
network as hotspots. Another growing research area is spatial prediction in the 
spatial network using GPS trajectories and on-board diagnostics (OBD) data from 
vehicles is also widely studied. For example, Li et al. [50, 48] propose an energy-
efficient path selection algorithm that uses a path-centric energy consumption model 
that predicts the expected energy consumption of traveling based on the historical 
OBD datasets.
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7 Conclusion 

The growing availability of spatial data is spurring the emergence and development 
of spatial data science, a multi-disciplinary field that applies scientific methods to 
retrieve previously unknown, but potentially useful and non-trivial knowledge and 
insights from spatial data. It is important for societal applications in various domains 
such as public health, public safety, agriculture, environmental science, climate 
studies, etc. Computerized methods are needed to store and manage spatial data, 
to retrieve knowledge from the data, and to validate the results. The challenges of 
spatial data science arise from its interdisciplinary nature and the unique properties 
of spatial data. In this section, we provided an introduction to the spatial aspect of 
spatial data science along its life cycle: data acquisition, data storage, data mining, 
and result validation and then listed two research trends including the integration 
of temporal information as well as generalizing spatial data science methods into 
spatial network space. 
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Multimedia Data Learning 

Zhongfei (Mark) Zhang and Ruofei (Bruce) Zhang 

1 Introduction 

Multimedia data learning (a.k.a. multimedia data mining), as the name suggests, 
presumably is a combination of the two existing areas: multimedia and data mining. 
However, multimedia data mining is not a research area that just simply combines 
the research of multimedia and data mining together. Instead, the multimedia data 
mining research focuses on the theme of merging multimedia and data mining 
research together to exploit the synergy between the two areas to promote the 
understanding and to advance the development of the knowledge discovery in 
multimedia data. Consequently, multimedia data mining exhibits itself as a unique 
and distinct research area that synergistically relies on the state-of-the-art research 
in multimedia and data mining as well as beyond (specifically and noticeably 
including machine learning and artificial intelligence in general) but at the same 
time fundamentally differs from either multimedia or data mining or a simple 
combination of the two areas. 

Historically, multimedia and data mining are two very interdisciplinary and 
multidisciplinary areas. Both areas began in early 1990s with only a relatively 
short history. Therefore, both areas are relatively young areas (in comparison, for 
example, with many well established areas in computer science such as operating 
systems, programming languages, and artificial intelligence). On the other hand, 
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with substantial application demands, both areas have undergone independently and 
simultaneously rapid developments in recent years. 

Multimedia is a very diverse, interdisciplinary, and multidisciplinary research 
area.1 The word multimedia refers to a combination of multiple media types 
together. Due to the advanced development of the computer and digital technologies 
in early 1990s, multimedia began to emerge as a research area [33, 78]. As a research 
area, multimedia refers to the study and development of an effective and efficient 
multimedia system targeting a specific application. In this regard, the research 
in multimedia covers a very wide spectrum of topics, ranging from multimedia 
indexing and retrieval, multimedia databases, multimedia networks, multimedia 
presentation, multimedia quality of services, multimedia usage and user study, to 
multimedia standards, just to name a few. 

While the area of multimedia is so diverse with many different topics, only 
part of them is related to multimedia data mining, such as cross-media analysis, 
multimedia indexing and retrieval, multimedia databases, and multimedia presen-
tation [29, 46, 79, 93, 94, 56]. Today, it is well-known that multimedia data are 
ubiquitous and are often required, if not necessarily essential, in many applications. 
This phenomenon has made multimedia repositories widespread and extremely 
large. There are tools for managing and searching within these collections, but 
the need for tools to extract hidden, unknown, potentially useful knowledge buried 
within multimedia collections is becoming pressing and central for many decision-
making applications. For example, it is highly desirable for developing the tools 
needed today for discovering relationships between objects or segments within 
images, classifying images based on their content, extracting patterns in sound, 
categorizing speech and music, recognizing and tracking objects in video streams, 
and discovering and tracking events in social media. 

At the same time, researchers in multimedia information systems, in the search 
for techniques for improving the indexing and retrieval of multimedia information, 
are looking for new methods for discovering effective indexing information. 
A variety of techniques, from machine learning, statistics, database, knowledge 
acquisition, data visualization, image analysis, high performance computing, and 
knowledge-based systems, have been used mainly as research handcraft activities. 
The development of multimedia databases and their query interfaces recalls again 
the idea of incorporating multimedia data mining methods for effective dynamic 
indexing. 

On the other hand, data mining is also a very diverse, interdisciplinary, and 
multidisciplinary research area. The terminology data mining refers to knowledge 
discovery from data, presumably and, in particular, today massive, diverse, and 
noisy data collections. Originally, this area began with knowledge discovery in

1 Here we are only concerned with a research area; multimedia may also be referred to industries 
and even social or societal activities. 
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databases. However, data mining research today has been advanced far beyond 
the area of databases [28, 39]. This is due to the following two reasons. First, 
today’s knowledge discovery research requires more than ever the advanced tools 
and theories beyond the traditional database area, noticeably including mathematics, 
statistics, machine learning, and pattern recognition. Second, with the fast explosion 
of the data in scale and variety, and also the typical presence of multimedia data 
almost everywhere, it is not enough for today’s knowledge discovery research to just 
focus on the structured data in the traditional databases; instead, it is common to see 
that the traditional databases have evolved into data warehouses, and the traditional 
structured data have evolved into more non-structured data such as imagery data, 
time-series data, spatial data, video data, audio data, and more general multimedia 
data as well as relational data. Adding into this complexity is the fact that in 
many applications these non-structured data do not even exist in a more traditional 
“database” anymore; they are just simply a collection of the data, even though many 
times people still call them databases (e.g., image database, video database). 

Examples are the data collected in fields such as art, design, hypermedia and 
digital media production, case-based reasoning, and computational modeling of 
creativity, including evolutionary computation, and medical multimedia data. These 
exotic fields use a variety of data sources and structures, interrelated by the nature 
of the phenomenon that these structures describe. As a result there is an increasing 
interest in new techniques and tools that can detect and discover patterns that lead 
to new knowledge in the problem domain where the data have been collected. 
There is also an increasing interest in the analysis of multimedia data generated 
by different distributed applications, such as collaborative virtual environments, 
virtual communities, and multi-agent systems. The data collected from such en-
vironments include a record of the actions in them, a variety of documents that 
are part of the business process, asynchronous threaded discussions, transcripts 
from synchronous communications, and other data records. These heterogeneous 
multimedia data records require sophisticated preprocessing, synchronization, and 
other transformation procedures before even moving to the analysis stage. 

Consequently, with the independent and advanced developments of the two areas 
of multimedia and data mining, with today’s explosion of the data scale and the 
existence of the pluralism of the data media types and varieties, it is natural to 
evolve into this new area called multimedia data mining. While it is presumably true 
that multimedia data mining is a combination of the research between multimedia 
and data mining, the research in multimedia data mining refers to the synergistic 
applications of knowledge discovery theories and techniques in a multimedia 
collection. As a result, “inherited” from its two parent areas of multimedia and 
data mining, multimedia data mining by nature is also an interdisciplinary and 
multidisciplinary area; in addition to the two parent areas, multimedia data mining 
also relies on the research from many other areas, noticeably including mathematics, 
statistics, machine learning, computer vision, and pattern recognition. Figure 1 
illustrates the relationships among these interconnected areas.



426 Z. (Mark) Zhang and R. (Bruce) Zhang

Fig. 1 Relationships among 
the interconnected areas to 
multimedia data mining. 
Redrawn from [94] 

While we have clearly given the working definition of multimedia data mining 
as an emerging, active research area, due to historic reasons, it is helpful to clarify 
several misconceptions and to point out several pitfalls at the beginning. 

• Multimedia Indexing and Retrieval vs. Multimedia Data Mining: It is well-
known that in the classic data mining research, the pure text retrieval or the 
classic information retrieval is not considered as part of data mining, as there is 
no knowledge discovery involved. However, in multimedia data mining, when 
it comes to the scenarios of multimedia indexing and retrieval, this boundary 
becomes vague. The reason is that a typical multimedia indexing and/or 
retrieval system reported in the recent literature often contains a certain level 
of knowledge discovery such as feature selection, dimensionality reduction, 
concept discovery, as well as mapping discovery between different modalities 
(e.g., imagery annotation where a mapping from an image to textual words is 
discovered and word-to-image retrieval where a mapping from a textual word 
to images is discovered). In this case, multimedia information indexing and/or 
retrieval is considered as part of multimedia data mining. On the other hand, 
if a multimedia indexing or retrieval system uses a “pure” indexing system 
such as the text-based indexing technology employed in many commercial 
imagery/video/audio retrieval systems on the Web, this system is not considered 
as a multimedia data mining system as there is no knowledge discovery as stated 
above. 

• Database vs. Data Collection: In a classic database system, there is always a 
database management system to “govern” all the data in the database. This is 
true for the classic, structured data in the traditional databases. However, when 
the data become non-structured data, in particular, multimedia data, often we do 
not have such a management system to “govern” all the data in the collection. 
Typically, we simply just have a whole collection of multimedia data, and we 
expect to develop an indexing/retrieval system or other data mining system on 
top of this data collection. For historic reasons, in many literature references,
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people still use the terminology of “database” to refer to such a multimedia data 
collection, even though this is different from the traditional, structured database 
in concept. 

• Multimedia Data vs. Single Modality Data: Although “multimedia” refers to 
the multiple modalities and/or multiple media types of data, conventionally 
in the area of multimedia, multimedia indexing and retrieval also includes the 
indexing and retrieval of a single, non-textual modality of data, such as image 
indexing and retrieval, video indexing and retrieval, and audio indexing and 
retrieval. Consequently, in multimedia data mining, we follow this convention to 
include the study of any knowledge discovery dedicated to any single modality 
of data as part of the multimedia data mining research. Therefore, studies in 
image data mining, video data mining, and audio data mining as well as text 
data mining alone are considered as part of the multimedia data mining area. 

Multimedia data mining, although still in its early booming stage as an area that 
is expected to have further development, has already found enormous application 
potential in a wide spectrum covering almost all the sectors of society, ranging 
from people’s daily life to economic development to government services. This is 
due to the fact that in today’s society almost all the real-world applications often 
have data with multiple modalities, from multiple sources, and in multiple formats. 
For example, in homeland security applications, we may need to mine data from 
an air traveler’s credit history, traveling patterns, photo pictures, and video data 
from surveillance cameras in the airport. In the manufacturing domains, business 
processes can be improved if, for example, part drawings, part descriptions, and 
part flow can be mined in an integrated way instead of separately. In medicine, 
a disease might be predicted more accurately if the MRI (magnetic resonance 
imaging) imagery is mined together with other information about the patient’s 
condition. Similarly, in bioinformatics, data are available in multiple formats. 

The rest of the chapter is organized as follows. In the next section, we give the 
architecture for a typical multimedia data mining system or methodology in the 
literature. We then describe in detail the key components of such a system. Finally, 
we conclude this chapter with a note for further readings. 

2 A Typical Architecture of a Multimedia Data Mining 
System 

A typical multimedia data mining system, or framework, or method always consists 
of the following three key components. Given the raw multimedia data, the very 
first component for mining the multimedia data is to convert a specific raw data 
collection into a representation in an abstract space which is called the feature 
space. This process is called feature extraction or feature learning. Consequently,
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we need a feature representation method to convert the raw multimedia data to the 
features in the feature space, before any mining activities are able to be conducted. 
This component is extremely important as the success of a multimedia data mining 
system to a large degree depends upon how good the feature representation method 
is. The typical feature representation methods or techniques are taken from the 
classic machine learning research, computer vision research, pattern recognition 
research, as well as multimedia information indexing and retrieval research in 
multimedia area. 

Since knowledge discovery is an intelligent activity, like other types of intelligent 
activities, multimedia data mining requires the support of a certain level of 
knowledge. Therefore, the second key component is the knowledge representation, 
i.e., how to effectively represent the required knowledge to support the expected 
knowledge discovery activities in a multimedia data mining system. The typical 
knowledge representation methods used in the multimedia data mining literature 
are directly taken from the general knowledge representation research in artificial 
intelligence area with the possible special consideration in the multimedia data 
mining problems. 

Finally, we come to the last key component—the actual mining or learning 
theory and/or technique to be used for the knowledge discovery in a multimedia 
data mining system. In the current literature of multimedia data mining, there 
are mainly two paradigms of the learning or mining theories/techniques that can 
be used separately or jointly in a specific multimedia data mining application. 
They are statistical learning theories and soft computing theories, respectively. 
The former is based on the recent literature on machine learning and, in particular, 
statistical machine learning, whereas the latter is based on the recent literature on 
soft computing and, in particular, deep learning. This component typically is the 
core of the multimedia data mining system. 

In addition to the three key components, in many multimedia data mining 
systems, there are user interfaces to facilitate the communications between the 
users and the mining systems. Like the general data mining systems, for a typical 
multimedia data mining system, the quality of the final mining results can only be 
judged by the users. Hence, it is necessary in many cases to have a user interface 
to allow the communications between the users and the mining systems and the 
evaluations of the final mining quality; if the quality is not acceptable, the users may 
need to use the interface to tune different parameter values of a specific component 
used in the system, or even to change different instantiations of the component, in 
order to achieve better mining results, which may go into an iterative process until 
the users are happy with the mining results. 

Figure 2 illustrates this typical architecture of a multimedia data mining system. 
We elaborate each of the three key components in the next three sections.
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Fig. 2 The typical 
architecture of a multimedia 
data mining system. Redrawn 
from [94] 

3 Feature Extraction 

In general, features are the abstraction of the data in a specific modality defined in 
measurable quantities in a specific Euclidean space [32]. The Euclidean space is 
thus called feature space. Features, also called attributes, are an abstract description 
of the original multimedia data in the feature space. Since typically there are more 
than one feature used to describe the data, these multiple features form a feature 
vector in the feature space. The process of identifying the feature vector from 
the original multimedia data is called feature extraction. Depending upon different 
features defined in a multimedia system, different feature extraction methods are 
used to obtain these features. 

Typically, features are defined with respect to a specific modality of the multi-
media data. Consequently, given multiple modalities of multimedia data, we may 
use a feature vector to describe the data in each modality. As a result, we may 
use a combined feature vector for all the different modalities of the data (e.g., a 
concatenation of all the feature vectors for different modalities) if the mining is 
to be performed in the whole data collection aggregatively, or we may leave the 
individual feature vectors for the individual modalities of the data if the mining is to 
be performed for different modalities of the data separately. 

In the classic literature, feature extraction refers to applying one of the existing 
feature extraction methods to the raw multimedia data to obtain the resulting 
features of the raw data, where the existing feature extraction methods are all 
well-defined in advance through manual feature engineering. Recently, methods are 
developed to obtain the features automatically, as opposed to through a manual
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feature engineering, which is called feature learning or representation learning [9]. 
Below we first review the classic feature extraction methods. Then we give a brief 
review on feature learning. 

We note that there are several commonly encountered media types or modalities 
in multimedia data mining. They can be represented in terms of the dimensions of 
the space the data are in. Specifically, we list those commonly encountered media 
types or modalities as follows. 

• 0-dimensional data: This type of the data is the regular, alphanumeric data. A 
typical example is the text data. 

• 1-dimensional data: This type of the data has one dimension of a space imposed 
into them. A typical example is the audio data. 

• 2-dimensional data: This type of the data has two dimensions of a space 
imposed into them. Imagery data and graphics data are the two common 
examples. 

• 3-dimensional data: This type of the data has three dimensions of a space 
imposed into them. Video data and animation data are the two common 
examples. 

Correspondingly, there are several media-specific, classic feature extraction 
methods that we briefly introduce below. 

• TF-IDF: The TF-IDF measure is specifically defined as a feature for text 
data. Given a text collection of N documents and a total M word vocabulary, 
the standard text processing model is based on the bag-of-words (BOW) 
assumption, which says that for all the documents, we do not consider any 
linguistic or spatial relationships among the words in a document; instead, we 
consider each document just as a collection of isolated words, resulting in a bag-
of-words representation. Given this assumption, we represent the collection as 
an .N ×M matrix which is called the Term Frequency Matrix, where each entry 
.T F(i, j) is the occurrence frequency of the word j occurring in the document 
i. Therefore, the total term frequency for the word j is 

.T F(j) =
N∑

i=1

T F(i, j) (1) 

In order to penalize those words that appear too frequently, which does not help 
in indexing the documents, an inverse document frequency (IDF) is defined as 

.IDF(j) = log
N

DF(j)
(2) 

where .DF(j)means the number of the documents in which the word j appears 
and is called the document frequency for the word j . Finally, TF-IDF for a word 
j is defined as
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.TF-IDF(j) = T F(j) × IDF(j) (3) 

The details of the TF-IDF feature may be found in [70]. 
• Cepstrum: Cepstrum features are often used for one-dimensional media type 
data such as audio data. Given such data represented as a one-dimensional 
signal, cepstrum is defined as the Fourier transform of the signal’s decibel 
spectrum. Since the decibel spectrum of a signal is obtained by taking the 
logarithm of the Fourier transform of the original signal, cepstrum is sometimes 
in the literature also called the spectrum of a spectrum. The technical details of 
the cepstral features may be found in [18]. 

• Fundamental Frequency: This refers to the lowest frequency in a series of 
harmonics a typical audio sound has. If we represent the audio sound in terms 
of a series of sinusoidal functions, the fundamental frequency refers to the 
frequency that the sinusoidal function with the lowest frequency in the spectrum 
has. Fundamental frequency is often used as a feature for audio data mining. 

• Audio Sound Attributes: Typical audio sound attributes include pitch, loudness, 
and timbre. Pitch refers to the sensation of the “altitude” or the “height,” 
often related to the frequency of the sounds, and, in particular, related to the 
fundamental frequency of the sounds. Loudness refers to the sensation of the 
“strength” or the “intensity” of the sound tone, often related to the sound energy 
intensity (i.e., the energy flow or the oscillation amplitude of the sound wave 
reaching the human ear). Timbre refers to the sensation of the “quality” of the 
audio sounds, often related to the spectrum of the audio sounds. The details of 
these attributes may be found in [78]. These attributes are often used as part of 
the features for audio data mining. 

• Optical Flow: Optical flows are the features often used for three-dimensional 
media type data such as video and animation. Optical flows are defined as the 
changes of an image’s brightness of a specific location of an image over the 
time in the motion picture streams. A related but different concept is called 
motion field, which is defined as the motion of a physical object in a three-
dimensional space measured at a specific point on the surface of this object 
mapped to a corresponding point in a two-dimensional image over the time. 
Motion field represented by 2D vectors is useful information in recovering the 
three-dimensional motion from an image sequence in computer vision research 
[47]. Since there is no direct way to measure the motion vectors in an image 
plane, often it is assumed that the motion vectors are the same as the optical 
flows and thus the optical flows are used as the motion vectors. However, 
conceptually they are different. For the details of the optical flows as well as 
their relationship to the motion vectors, see [44]. 

Essentially, in the classic feature extraction literature, there are three categories of 
features that are often used in the literature. They are statistical features, geometric 
features, and meta features. Except for some of the meta features, most of the 
feature representation methods are applied to a unit of multimedia data instead of 
to the whole multimedia data, or even to a part of a multimedia data unit. A unit
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of multimedia data is typically defined with respect to a specific modality of the 
data. For example, for an audio stream, a unit is an audio frame; for an imagery 
collection, a unit is an image; for a video stream, a unit is a video frame. A part of 
a multimedia data unit is called an object. An object is obtained by a segmentation 
of the multimedia data unit. In this sense, the feature extraction is a mapping from a 
multimedia data unit or an object to a feature vector in a feature space. We say that 
a feature is unique if and only if different multimedia data units or different objects 
map to different values of the feature; in other words, the mapping is one-to-one. 
However, when this uniqueness definition of features is carried out to the object 
level instead of the multimedia data unit level, different objects are interpreted in 
terms of different semantic objects as opposed to different variations of the same 
object. For example, an apple and an orange are two different semantic objects, 
while different views of the same apple are different variations of the same object 
but not different semantic objects. 

Below we review several well-known classic feature representation methods in 
each of the categories. 

Statistical features focus on a statistical description of the original multimedia 
data in terms of a specific aspect such as the frequency counts for each of the values 
of a specific quantity of the data. Consequently, all the statistical features only give 
an aggregate, statistical description of the original data in an aspect, and therefore, 
it is in general not possible to expect to recover the original information from this 
aggregate, statistical description. In other words, statistical features are typically 
not unique; if we conceptualize obtaining the statistical features from the original 
data as a transformation, this transformation is, in general, lossy. Unlike geometric 
features, statistical features are typically applied to the whole multimedia data unit 
without segmentation of the unit into identified parts (such as an object) instead of 
to the parts. Due to this reason, in general all the variation-invariant properties (e.g., 
translation-invariant, rotation-invariant, scale-invariant, or the more general affine-
invariant) for any segmented part of a multimedia data unit do not hold true for 
statistical features. 

Well-known classic statistical features include histograms [27], transformation 
coefficients (e.g., Wavelet features [37]), coherent vectors [63], and correlograms 
[45]. 

Unlike statistical features, geometric features are typically applied to segmented 
or identified objects within a multimedia data unit of a specific modality of the data. 
Consequently, a segmentation method must be first applied to a multimedia data 
unit to obtain such objects. Once such objects are obtained, geometric features are 
used to describe these objects. Due to this purpose, many geometric features are 
variation-invariant, offering the capability to preserve the same description while 
the objects are subject to different variations such as rotation changes, translation 
changes, and scale changes from one unit to another. 

Depending upon how “completely” a specific geometric feature method is 
capable of describing an object in a multimedia data unit, some of the geometric 
features are unique, while others are not. Well-known geometric features include
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moments [27], inertia coefficients [34], Fourier descriptors [27] (including Fourier 
Area Descriptors [92]), and SIFT (Scale-Invariant Feature Transform) [57]. 

Finally, meta features include the typical meta data to describe a multimedia data 
unit such as the scale of the unit, the number of objects in the unit, and the value 
range of the points in the unit. 

Recently, representation learning or feature learning [9] has become one of the 
hot research topics in machine learning, where the focus is on developing automatic 
methods to extract features from the raw data. In comparison with the classic feature 
extraction methods based on manual feature engineering, there are at least three 
advantages for feature learning. First, with feature learning we can completely get 
rid of the hassle of manual feature engineering that is typically tedious, ad hoc 
and would require substantial insight and/or a priori experience to either define a 
new feature extraction method or to select a specific one from the wide pool of the 
existing methods for a given problem; even if we have a feature extraction method 
ready for a given problem, we are still uncertain whether this method would lead to 
an optimal solution from feature extraction perspective, and thus would still need to 
try different existing ones in order to achieve a better performance. Second, feature 
learning is data-adaptive for the raw data in a specific problem, that is not available 
and also not possible for manual feature engineering in the classic feature extraction. 
Third, feature learning allows hierarchical feature extractions, which is consistent 
to a certain degree with human cognition and has been proven to be powerful and 
effective in delivering solutions to many real-world problems. Bengio et al. [9] give  
an extensive review on the recent representation learning literature. Specifically, 
Langkvist et al. [52] provide an extensive review on feature learning for time-series 
data and Li et al. [56] give an extensive review on feature learning for multi-view 
data. Below we briefly review several popular methods for feature learning. 

Autoencoder An autoencoder is a multi-layer artificial neural network with an odd 
total number of layers that is symmetric with respect to the middle layer in terms of 
the network topology between the two sides of this middle layer such that from the 
input layer the number of nodes at each layer decreases towards the middle layer 
and increases from the middle layer in order to satisfy the constraint that the output 
reconstructs the input. Figure 3 shows a shallow autoencoder and usually the number 

Fig. 3 A shallow  
autoencoder where there is 
only one hidden layer; a 
deeper autoencoder can be 
developed with more hidden 
layers to keep the symmetric 
structure with respect to the 
middle layer; here solid 
circles denote hidden nodes 
and open circles denote 
observable nodes such as 
input and output nodes
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of hidden layers can be more than one with a deep network. Mathematically, given 
an input vector . x and the output . y, an autoencoder .A(x, θ)) must satisfy 

.y = A(x, θ) s.t. y ≈ x (4) 

Hinton and Salakhutdinov [42] reported that with such an autoencoder we can 
achieve the purpose of dimensionality reduction for any input data . x such that the 
output of the middle layer becomes the extracted feature vector for the input data . x. 
Further, they have shown that the obtained reduced dimensional features are much 
better than what is obtained by principal component analysis [73]. Consequently, 
autoencoders can be used to automatically extract features frommultimedia data and 
further with a deep autoencoder a hierarchical feature representation can be obtained 
by taking the outputs from different hidden layers of this deep autoencoder. 

Convolutional Neural Networks (CNNs) Convolutional neural networks (CNNs) 
are artificial feedforward neural networks with the convolution operator [67] as  
the fundamental receptive field operator in the networks. Thus, a CNN uses 
convolutional layers with the convolution operators to extract features of the input 
data. Further, we can generate a hierarchy of features of the input data by applying 
multiple convolutional layers in the network, resulting in a deep network. Since 
convolution operators expand the dimensions of the original data (e.g., an image 
of .p × p dimensions becomes an image of .(p + 1) × (p + 1) dimensions after 
applying one layer of convolution with a convolution kernel of 3 by 3), to prevent 
the data dimensions from keeping expanding, typically we apply a pooling layer 
after each convolutional layer. A pooling operator is a subsampling operator (e.g., 
for every 2 by 2 window of the data after applying a convolutional layer we take 
only one sample to replace the whole 2 by 2 window), and thus in the early 
literature it was also called subsampling (and correspondingly the layer was called 
subsampling layer). The reason for subsampling or pooling is that the specific 
location information after convolution does not need to be that “accurate” and also 
that we expect to keep in the convolution “invariant” at a higher, coarser level. 
There are different principles for selecting a specific data sample within a given 
subsampling window, such as taking the maximum (called max pooling), taking 
the average (called average pooling), and taking a data sample randomly (called 
stochastic pooling). 

CNN is part of the foundation of today’s deep learning architectures as it is 
extensively used as one of the key building blocks of the deep neural networks 
now [74, 80, 41]. The idea of CNN is not new, as it was studied and used for 
object recognition in the early literature of machine learning [53, 54, 11, 55]. 
However, the first deep neural network using CNN for large-scale object recognition 
is the well-known AlexNet [50] that consists of hierarchical five convolution-
pooling layer pairs followed by two fully connected layers with 12 layers and 60 
million parameters and 500,000 neurons in total to win the 1000-class ImageNet 
competition in 2012. After that, a number of even larger and deeper network 
architectures are developed in the literature based on CNN (such as VGG [74],
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GoogleNet [80], and ResNet [41]) to continue pushing the horizon to advance the 
performances of the deep learning networks. 

On the other hand, studies have been carried out in the literature on improving the 
performance and complexity of the existing CNN. For example, it was observed that 
there are repetitions of the filters subject to translations and rotations generated by 
a CNN layer (and, in particular, by the lower CNN layers in a deep network). These 
repetitions not only attribute to a substantial amount of unnecessary computational 
complexity but also hurt the overall performance. Consequently, more effective and 
efficient convolutional structures are developed in the literature to aim to remove 
these repetitions such as the Doubly Convolutional Neural Networks (DCNNs) 
[90] that can be used as an independent convolutional layer to replace any existing 
convolutional layer in the current deep networks. 

Embedding While originally as a mathematical terminology, in machine learning 
and data mining communities, embedding refers to a vectorized representation of 
typically non-structured data such that the dimensionality of the resulting vectors 
is much lower than that of the data in the original space or in the space of 
a straightforward representation of the data. For example, an image embedding 
method maps an image of .m × n into a feature vector in a p dimensional space 
with .p � m × n; a graph embedding method maps a graph .G(V,E) with 
.| V |= n, | E |= m into a p dimensional vector space such that .p � m × n; a  
text embedding method maps a word, or a phrase, or a sentence, or even a document 
into a vector in a space with a dimensionality much less than the vocabulary size. 

In the context of multimedia data, for all the non-textual data, all the feature 
extraction or feature learning methods we have discussed above are actually the 
embedding methods, as they all map the given multimedia data into feature vectors 
represented in a feature space. Below we discuss text embedding. 

As discussed above, in the classic text processing literature, with the well-known 
vector model using Tf-IDF features [70], since this is a BOW approach, each sen-
tence or each document is represented as a vector in a space with the dimensionality 
as the vocabulary size, which is typically large (e.g., English vocabulary size is in 
the order of million). Even if we apply the standard preprocessing techniques to the 
original text data [70] such as stop word, word stemming, and entity identification to 
remove those non-discriminative words (i.e., the stop words) or to combine different 
words together as the same word (i.e., those words sharing the same stem or the 
same entity), the resulting vocabulary size is still very large. 

In the classic natural language processing (NLP) literature, N-gram [36] is a well-
known modeling technique to estimate the probability of a sentence by multiplying 
the conditional probabilities of each word in the sentence given the previous N-1 
words of that word. Along this line of thought, recently the skip-gram model [60] 
is proposed to predict the occurrence probability of any word in a sentence given 
a specific word in this sentence, regardless of whether the word to be predicted 
occurs before or after the given word in the sentence. Mathematically, each word 
in a vocabulary is represented in the original vector space model (e.g., in BOW 
approach each word can be represented as a one-hot vector where only the entry of
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this word in the vocabulary is 1 and all the other entries in the vector are 0). Assume 
that the whole vocabulary size is K . We can then train a classifier through a neural 
network to predict a specific context word c in a sentence given a specific word w in 
this sentence. The network architecture can be an encoder-decoder pair somewhat 
similar to the autoencoder shown in Fig. 3 with the middle layer as the encoder 
output as an embedding vector for the given word w, but unlike an autoencoder 
the encoder-decoder pair does not need to be symmetric with respect to the middle 
layer. Thus, the simplest form can be a simple one hidden layer network with that 
hidden layer as the middle layer, and of course a deeper architecture can also do. 
Consequently, for any word w in the vocabulary, there is always a corresponding 
embedding vector .xw ∈ Rd where the embedding space dimensionality .d � K . 
Note that given this similarity to an autoencoder, the output of this architecture also 
regresses to a K-dimensional vector predicting the probabilities of the words in the 
vocabulary to be the context in a sentence given w. Hence, let .E(.) and .D(.) be the 
encoder and decoder, respectively. Let .xw = E(w), i.e., the embedding of word w. 
For any word c, the probability that c appears as a context word in a sentence given 
w is 

.P(c | w) = exw
T D(xc)

∑K
k=1 e

xw
T D(xk)

(5) 

where . xk is the embedding representation for any word k in the vocabulary. Equation 
5 represents a multinomial regression with softmax activation. 

Skip-gram is one of the whole suite of techniques called Word2Vec that map 
individual words into their corresponding vectors represented in a much lower 
dimensional space than that in the original word vector model space. The other 
well-known Word2Vec embedding method is the GloVe method [65]. Note that 
the similar embedding ideas can be applied not only to words but also to phrases, 
sentences, or documents, or even characters (e.g., Zhang et al. [91] shows that 
character level CNN works better than the word level in text classification in their 
empirical studies). 

4 Knowledge Representation 

In order to effectively learn the multimedia data, it is important that not only an 
appropriate feature representation is used for the multimedia data but also that 
appropriate knowledge support is available in a multimedia data mining system 
to facilitate the learning and reasoning tasks. Like all other intelligent systems, 
a typical multimedia data mining system is often equipped with a knowledge 
support component to “guide” the mining tasks. Typical types of knowledge in the 
knowledge support component include the domain knowledge, the common sense 
knowledge, as well as the meta knowledge. Consequently, how to appropriately and
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effectively represent these types of knowledge in a multimedia data mining system 
has become a non-trivial research topic. On the other hand, like the general data 
mining activities, a typical multimedia data mining task is to automatically discover 
the knowledge in a specific context. Thus, there is also a knowledge representation 
problem after the knowledge is discovered in the mining activities. 

Knowledge representation has been one of the active core areas in artificial 
intelligence research, and many specific representation methods are proposed in 
the literature [15]. In the rest of this section, we briefly review several well-
known, classic knowledge representation methods with a conclusion for the recent 
developments. For a more detailed and specific review and description, refer to [94]. 

Logic Representation For human beings, a natural way to represent knowledge 
is through natural language. For example, in an imagery data mining system, if 
we intend to restrict the domain to the natural scenery, we may want to have the 
following specific piece of knowledge: All the blue areas indicate either sky or 
water. This piece of knowledge would help index images with either sky or water 
and is helpful to knowledge discovery such as an answer to the question What is 
considered the typical scene in the images of the database with a blue sky?. Given  
the fact that NLP is still an open area, an effective way to make the natural language 
understandable to a computer system is to use logic representation. A commonly 
used logic is called predicate logic, and the most popular predicate logic used in the 
literature is called propositional first order logic, typically abbreviated as FOL. 

In FOL, all the variables are set variables in the sense that they can take any one 
of the values of the set defined for this variable. For example, a variable x may be 
defined as a real set .[0, 1], which means that x may be any value in the domain of 
.[0, 1]; or the variable x may be defined as a color set variable, in which we may 
explicitly define .x = {red, blue,white} and x may take any of the three possible 
colors. All the functions in FOL are called predicates. All the predicates in FOL 
are Boolean predicates in the sense that they can only return one of the two values: 
0 for  false and 1 for true. In addition, there are three operators defined for all the 
variables as well as the predicates. . ¬ is a unitary operator applied to either a variable 
or a predicate resulting in a negation of the value of the operand. . ∧ is a binary 
operator applied to either variables or predicates for a multiplication between the 
values of the two operands. . ∨ is another binary operator applied to either variables 
or predicates taking an addition between the two values of the two operands. Finally, 
there are two quantifiers defined for variables only, but not for predicates. They are 
the universal quantifier . ∀ meaning for all the values of the variable to which this 
quantifier applies and the existential quantifier . ∃ meaning that there exists at least 
one value of the variable to which this quantifier applies. 

Semantic Networks Semantic networks (also called semantic graphs or knowl-
edge graphs in the literature) are one very powerful knowledge representation tool 
used in today’s artificial intelligence research and applications [81, 69, 16]. They 
are proposed in the literature to use graphs to represent the concepts and their 
relationships, in which the nodes in the graphs are the concepts and the edges in the 
graphs are the relationships. Historically, they were used to represent the English
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words as well as their relationships in natural language understanding research in 
artificial intelligence [69]. Semantic networks represent loose associations between 
concepts. However, when they are used with added logical descriptions, semantic 
networks may have even more expressive power than FOL. Examples of these 
extensions of the semantic networks include the existential graphs [49] and the 
conceptual graphs [75]. 

Ontology Ontology is historically a subject in philosophy study, where the original 
focus is to study the concepts that have a direct relationship to being such as 
becoming, existence, and reality. In multimedia data mining research as well as 
the related areas including artificial intelligence and machine learning, ontology 
refers to a representation of the organization or categorization of the entities or 
objects or events of a domain or the world as well as their relationships among 
these entities/objects/events. Consequently, ontology is a special but popular case 
of semantic graphs. 

In the classic research of knowledge representation and artificial intelligence, 
a specific ontology system is typically developed manually, which is typically 
small in scale and rather limited to a specific application problem. Today, taking 
the advantage of the Internet and big data, many large-scale ontology systems 
are developed by data-driven approaches. Examples of the well-known ontology 
systems include WordNet [4], ImageNet [5], Probase [1], Freebase [3], and Google 
Knowledge Graph [2]. 

Frames Frames are another knowledge representation method used in a multime-
dia learning system for describing a specific type of object or a specific abstract 
concept. This knowledge representation method was initially due to Minsky [61]. A 
frame may have a name as well as other attributes which have values; these attributes 
are also called slots. Concepts related to each other may be described for one frame 
as a slot value of another frame. For example, we may have the house frame to 
define and describe the related concepts, where the frame house has slots of style, 
color, door, etc., and some slots are described by next levels of the frame. 

There is literature [40] arguing that frames have an equivalent expressive power 
in knowledge representation to that of logic. This is later demonstrated to be true to 
a certain extent [76]. 

Scripts Historically script is originally a classic psychological theory to study 
human behavior as typically human behavior can be modeled as a series of actions 
that may further be recursively modeled as another series of action. The modeling 
process can be described as a script of telling a story. In this classic theory, the 
fundamental unit of the behavior action is called a scene. 

Schank and his colleagues applied this theory to develop this classic methodol-
ogy for representing procedural or dynamic knowledge where a process or action or 
event is represented by a sequence of sub-processes or sub-actions recursively [71]. 
Consequently, scripts can be considered as a special case of frame representation 
where all the slots are defined in an order. An example of a script representation is 
the scenario of going to see a movie where the whole event is described by a series
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of actions in order including purchasing tickets at the box office, going through 
admission, finding seats, sitting down in the seats, watching movies, and leaving 
movie theater. 

Constraints A constraint is a condition or a set of conditions that constrains 
the description of an object or an event. In the classic artificial intelligence 
research, many problems are described through constraints, and therefore constraint 
satisfaction is considered as an effective approach to solving for those problems 
[69]. In multimedia data mining, typically there are three types of constraints: (1) 
Attribute Constraints define the characteristic description of a multimedia object 
or a multimedia data item or an event. (2) Spatial Constraints specify the spatial 
conditions that must hold true between multimedia data items or objects. (3) 
Temporal Constraints specify the temporal conditions that must hold true between 
multimedia data items or objects in an event. 

At the methodological level, constraints may be easily represented in terms of 
FOL sentences. If we are restricted only to the constraints of unitary or binary 
variables, which is the most typical scenario in multimedia data mining, we may also 
use a constraint graph to represent a set of constraints where each node represents 
a variable and each edge represents a binary constraint between the two variables; 
the unitary constraints are represented as attributes for the related variable nodes in 
the graph. 

Given a set of constraints, finding a feasible solution with the presence of 
such a set of constraints is called constraint satisfaction in artificial intelligence 
research. Solutions to constraint satisfaction are part of the artificial intelligence 
search methods. Typical methods for constraint satisfaction include generate and 
test, backtracking, forward checking, and constraint propagation [69]. Details of 
constraint satisfaction and the solutions may be found in [84]. 

Uncertainty Representation While all the knowledge representation methods 
introduced above are for “certain” knowledge, in many real-world multimedia data 
mining problems, there are many occasions in which there is uncertainty in the 
knowledge. Consequently, we need to study how to represent the uncertainty in 
the knowledge. In multimedia data mining, two commonly used approaches to 
representing uncertainties in knowledge are probability theory and fuzzy logic. 
Zhang and Zhang [94] gives detailed descriptions on these two approaches with 
examples. 

Recent Developments As a key component in a typical multimedia data mining 
system as well as also in the general AI system, knowledge representation has 
been receiving extensive attention in the literature [77, 16] and a suite of practical 
knowledge base systems are developed [4, 5, 1, 3, 2]. For example, one of the 
important and also practical issue is with the extensive applications of deep learning 
techniques, which are typically end-to-end, how to incorporate a knowledge base 
into a deep learning system. Techniques such as memory networks [87, 51] are  
developed for addressing issues like this.
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5 Learning Methodology 

In the classic machine learning literature, from the beginning there have been always 
two schools existing: the symbolic computation school and the numerical computa-
tion school [62]. Historically, the symbolic computation school was considered as 
the dominant school in the classic literature of machine learning till after we had the 
Internet leading to the explosive generation of the data resulting in the Big Data era 
that was responsible for the rapid development of the statistical machine learning 
and, in particular, with the development of deep learning when the numerical 
computation school became dominant in the machine learning community. This is 
particularly true in the literature of multimedia data mining, partially due to the fact 
that almost all the multimedia sensors generate numerical data. Consequently, in 
the literature of multimedia learning methodology, almost all the methods are in the 
numerical computation school. 

In the numerical computation school in the context of multimedia data learning, 
there are two families of the literature: Statistical Learning Based and Soft Comput-
ing Based. 

5.1 Statistical Learning 

There are many different statistical learning methods used to accommodate different 
multimedia data mining tasks. These methods not only require specific types 
of data structures but also imply certain types of algorithmic approaches. In 
the multimedia data mining context, the classification and regression tasks are 
especially pervasive, and the data-driven statistical machine learning theories and 
techniques are particularly important. Two major paradigms of statistical learning 
models that are extensively used in the recent multimedia data mining literature are 
the generative learning models and the discriminative learning models. Generative 
learning means that during the learning process a learner must actively construct 
or generate learning results through a learning hypothesis while discriminative 
learning means that the learning results are determined purely by the observations. 
Mathematically, in the context of supervised learning all the learning problems can 
be written down as learning a function .y = f (x) with the observation . x and the 
prediction or class label . y. In this context, discriminative learning is to learn this 
function through directly learning the posterior probability distribution . P(y | x)

given the observation . x while generative learning is to learn this function through 
learning the joint probability distribution .P(x, y). 

Consequently, in the literature of statistical learning, examples of generative 
models include the Bayesian learning, ranging from the classic Naive Bayes 
Learning [94], to the Bayesian Belief Networks [19, 66, 22, 94], to the later 
developed graphical models including Latent Dirichlet Allocation (LDA) [12, 94], 
Probabilistic Latent Semantic Analysis (pLSA) [24, 43, 94], and Hierarchical
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Dirichlet Process (HDP) [83, 94]. On the other hand, examples of discriminative 
models include the Support Vector Machines (SVMs) [20, 21, 14, 59, 94] and 
Support Vector Regression (SVR) [26, 94], as well as its development in the context 
of multimedia data learning on maximum margin learning with structured output 
space [23, 85, 82, 6, 38, 94], and the boosting theory for combining a series of 
weak classifiers into a stronger one [72, 30, 31, 94]. Considering the typical special 
application requirements in multimedia data mining where it is common that we 
encounter ambiguities and/or scarce training samples, two learning paradigms are 
also developed: multiple instance learning [25, 7, 58, 94] and semi-supervised 
learning [13, 95, 94] with their applications in multimedia data mining. The former 
addresses the training scenario when ambiguities are present, while the latter 
addresses the training scenario when there are only a few training samples available. 
Both scenarios are very common in multimedia data mining and, therefore, it is 
important to study these two learning paradigms in the context of multimedia data 
mining. 

Zhang and Zhang [94] gives an extensive and detailed introduction to different 
methods of statistical learning as well as their relationships and applications to 
multimedia data mining. 

5.2 Soft Computing Based Learning 

In many multimedia data mining applications, it is often required to make a decision 
in an imprecise and uncertain environment. For example, in the application of 
mining an image collection with a query image of green trees, given an image 
in the data collection that is about a pond with a bank of earth and a few green 
bushes, is this image considered as a match to the query? Certainly this image 
is not a perfect match to the query; but, on the other hand, it is also not an 
absolute mismatch to the query. Problems like this example, as well as many 
others, have intrinsic imprecision and uncertainty that cannot be ignored in decision-
making. Traditional learning systems fail to solve such problems, as they attempt 
to use Hard Computing techniques. In contrast, a Soft Computing methodology 
implies cooperative activities rather than autonomous ones, resulting in the different 
computing paradigms such as fuzzy logic [88, 94], neural networks including the 
recently developed deep learning theories [50, 80, 74, 41, 94], genetic algorithms 
[35, 94], rough theory [64], and evolutionary computation [8]. Consequently, soft 
computing opens up a different research direction for problem solving that is 
difficult to achieve using traditional hard computing approaches. 

Historically, Zadeh was considered responsible for the initial development of 
the soft computing family after his seminal work leading to the development of 
fuzzy logic and fuzzy set [88]. Indeed, all the other paradigms of soft computing are 
developed after Zadeh’s fuzzy logic and fuzzy set theory [89], except for the theories 
of artificial neural networks, which rooted back to the early work on perceptron in 
1950s [68].
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It is also noted that part of the literature considers probabilistic reasoning as 
part of soft computing (e.g., [86]). However, we strongly believe that there are 
fundamental differences between the theories of probabilistic reasoning as well 
as the general statistical learning and those of soft computing. First, the theoretic 
foundations between the two families are different. While probabilistic reasoning 
as well as the whole statistical learning is based on the complete and sound classic 
theory, it is well-known that the theories behind soft computing are still relatively 
incomplete with several foundational open issues identified in the literature (e.g., 
[48]). Second, the application philosophies are different. While probabilities are 
often used to represent uncertainties in the literature, the end result of a probabilistic 
reasoning or inference is often hard, as opposed to soft. Take the simplest example 
of naive Bayes classifier. While probabilities are used to represent different classes, 
which appears to be “soft,” the end classification result is hard, i.e., each data sample 
is only given one class label. In comparison, soft computing methods may generate 
a result in a soft nature (e.g., a data sample may be classified into several classes 
simultaneously with a membership value associated with each class). Similarly, soft-
SVM [17] appears to be “soft,” but the end result is hard and thus is still considered 
in the family of statistical learning. 

Nevertheless, the boundary between the two families is not always clear. For 
example, graphical models are traditionally considered as part of statistical learning 
family. But with the recent development in deep learning, deep graphical models are 
developed in the literature [10] that bridge the two families well. 

6 Conclusion and Further Readings 

In this chapter we have given a high-level overview on multimedia data mining. 
Clearly, as a multidisciplinary and interdisciplinary area, it is not possible at all to 
be exhaustive. Consequently, the literature from all the related areas is considered 
relevant. For example, in machine learning area, the premier conferences include 
International Conference on Machine Learning (ICML), International Conference 
on Advances of Neural Information Processing Systems (NeurIPS), and Interna-
tional Conference on Learning Representation (ICLR); in multimedia area, the 
premier conferences include ACM Multimedia (ACM MM), IEEE International 
Conference on Multimedia and Expo (IEEE ICME), and ACM International 
Conference on Multimedia Information Retrieval (ACM ICMR); in computer vision 
area, the premier conferences include IEEE International Conference on Computer 
Vision (IEEE ICCV), IEEE International Conference on Computer Vision and 
Pattern Recognition (IEEE CVPR), and European Conference on Computer Vision 
(ECCV); in NLP, the premier conferences include the annual conference of the 
Association for Computational Linguistics (ACL) and the annual conference on 
Empirical Methods in Natural Language Processing (EMNLP); in AI area, the 
premier conferences include AAAI annual conference on Artificial Intelligence 
(AAAI) and International Joint Conference on Artificial Intelligence (IJCAI); and
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in data mining area, the premier conferences include ACM International Conference 
on Knowledge Discovery and Data Mining (ACM KDD), IEEE International 
Conference on Data Mining (IEEE ICDM), and SIAM International Conference 
on Data Mining (SDM). Similarly, the premier journals of these areas are also 
considered as important sources of the related literature. In addition, a very good 
and important source of the literature is the arXiv collection. 
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Web Mining 

Petar Ristoski 

1 Introduction 

The World Wide Web (WWW) [1] emerged in the early 1990s, providing means 
to publish and access documents online. The WWW is based on the Hypertext 
Transfer Protocol (HTTP), used to transfer hypermedia documents between servers 
and clients, and the Hypertext Markup Language (HTML), which is the standard 
markup language for creating documents to be viewed in a Web browser. This allows 
users and organizations to easily and instantly publish information and documents 
on the Web. Since the beginning, a vast amount of information has been published 
on the Web, covering any imaginable topic and domain. Currently, the Web contains 
several billions of Web pages and several hundreds of billions of links between those 
pages, and it continuously expands. To be able to cope with such a large amount 
of data, especially being able to identify relevant information in it, Web mining 
approaches are being used. Web mining is the process of performing data mining on 
the Web, including Web documents, Web graph, and Web usage data. The main goal 
of Web mining is to identify and extract relevant information and knowledge hidden 
in Web data. Web mining approaches follow the standard knowledge discovery 
process, which consists of five steps: data collection, preprocessing, transformation, 
pattern discovery, and pattern analysis [2]. Web mining is a multidisciplinary 
research area involving approaches and techniques from many other research areas, 
e.g., databases, data mining, machine learning, information retrieval, information 
extraction, natural language processing, statistics, etc. 

Web mining is commonly divided into three sub-areas: 
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1. Web Content Mining: The process of mining the content of the Web documents 
in order to identify useful information, using data mining and machine learning. 
This commonly includes mining unstructured or semi-structured text documents, 
images, audio and video files extracted from Web documents. 

2. Web Structure Mining: The process of mining the graph structure of the Web to 
identify structural and connection information about the nodes in the graph. This 
is usually done using graph theory and graph mining techniques. 

3. Web Usage Mining: The process of mining the Web server logs, in order to 
extract patterns and information about the user interactions with the Web servers 
of one or more Web sites. 

There are several textbooks [3, 4, 5] that cover Web mining in details, as well 
as several surveys [6, 7, 8, 9]. For surveys on Web content mining, we refer to 
[10, 11, 12, 13], surveys for Web structure mining can be found in [14, 15, 16], and 
surveys for Web usage mining can be found in [17, 18, 19, 20, 21]. 

An additional sub-area of Web mining is Semantic Web mining, which is 
concerned with the application of Web mining approaches for the Semantic Web. 
The Semantic Web is an extension of the standard Web in which data is structured 
using well established formats and technologies, making it machine-readable and 
machine-understandable [22]. For surveys on Semantic Web mining, we refer to 
[23, 24, 25, 26, 27, 28, 29]. 

The remaining of the chapter is organized as follows. Section 2 gives an 
introduction to the graph structure and properties of the Web. Section 3 gives an 
overview of approaches used for text mining and information extraction on the Web. 
Section 4 surveys approaches for Web structure mining for information retrieval and 
social network analysis. Section 5 gives an overview of Web usage mining and query 
log mining approaches. Finally, Sect. 6 gives an introduction to Semantic Web and 
Semantic Web Mining. 

2 The Graph Structure of the Web 

The Web is a network, or a directed graph, where the documents are the nodes 
and the hyperlinks between the documents are the edges of the graph. The 
graph structure carries important information about the Web documents and the 
information contained in them, thus the Web structure becomes crucial for Web 
mining. As shown by Hall et al. [30], the Web and the underlying Web graph are 
evolving throughout time. The Web started as a collection of documents, also known 
as “the Web of documents,” when in the 2000s the users started to be more involved 
and chaining the Web to “the Web of people,” evolving to the present state called 
“the Web of data and social networks.” 

Throughout the years, many studies have tried to analyze the structure and the 
properties of the continuously evolving Web graph. One of the biggest challenges 
for analyzing the whole Web graph and Web mining, in general, is downloading the
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whole Web. To do so, there are special systems called Web crawlers, also known as 
robots or spiders, which are able to download Web pages in bulk. The architecture 
of a Web crawler is quite simple, i.e., given a set of seed Uniform Resource Locators 
(URLs), the crawler downloads and indexes the corresponding Web pages, then 
extracts the outgoing hyperlinks from those pages and iteratively downloads the new 
Web pages. The process continues until no new hyperlinks are discovered. While 
the algorithm looks trivial, there are many challenges to build an efficient crawler 
that can capture a significant portion of the Web and keep it up to date [31]. Many 
different approaches and strategies have been proposed for broad crawling of the 
Web [31, 32, 33], as well as focused crawls [34, 35], which focus on downloading 
Web pages that cover a certain topic. 

Several broad crawls have been used to perform in-depth analysis of the whole 
Web graph. The first analysis on the whole Web was performed by Broder et al. 
[36]. They used two AltaVista crawls from 1999, each with more than 200 million 
URLs and 1.5 billion links. The main finding of this work was that the Web is 
structured as a giant bow tie, with a Strongly Connected Core component (SCC) 
of 56 million pages in the middle, and two side components with 44 million pages 
each. The side components are called IN and OUT, where IN consists of pages that 
can reach the SCC but cannot be reached from it; while OUT consists of pages that 
are accessible from the SCC but do not link back to it. Furthermore, an additional 
component called TENDRILS contains pages that cannot reach the SCC and cannot 
be reached from the SCC. The analysis on the whole graph showed that the diameter 
of the central core (SCC) is at least 28, and that the diameter of the graph as a whole 
is over 500. The bow tie structure describes a macroscopic structure of the Web. 
Donato et al. [37] study the inner part of the bow tie structure, revealing that each 
component actually has a significantly different structure and propose replacing the 
bow tie structure with a daisy structure, where the IN and OUT components are 
attached like petals to the core SCC. A similar study by Jonathan et al. [38] suggest 
that the structure of the Web is more like a teapot than a bow tie, indicating that the 
IN component is much bigger than the OUT component. However, later research 
show that most of these findings heavily depend on the crawl and the crawling 
process [39, 40, 41]. Given these new findings Meusel et al. [41, 42] and Lehmberg 
et al. [43] perform analysis on a 2012 crawl from the Common Crawl Foundation,1 

which contained 3.5 billion Web pages and 128 billion links. The analysis confirmed 
the existence of a giant connected core component; however, there are different 
proportions of nodes that can reach or that can be reached from the giant component, 
suggesting that the bow tie structure is dependent on the crawling process and is not 
a structural property of the Web. Furthermore, the analysis shows that the graph has 
a diameter of at least 5282. Such studies confirm that the Web continuously evolves, 
and it is not trivial to analyze the whole structure of the Web graph but remains 
crucial for successful Web mining.

1 http://commoncrawl.org/. 

http://commoncrawl.org/
http://commoncrawl.org/
http://commoncrawl.org/
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3 Web Content Mining 

Web content mining approaches extract or mine useful information and knowledge 
from Web documents. Although there are means to publish structured data (see 
Sect. 6), most of the data published on the Web remains in unstructured format, 
i.e., text. To be able to extract useful knowledge from the vast amount of text 
data published on the Web, text mining approaches are used [44, 45, 46]. This 
includes: information retrieval, document classification, information extraction, 
text generation, text summarization, opinion mining and sentiment analysis. Web 
content mining includes image, video, and multimedia processing as well; however, 
the main focus of Web content mining is text mining, therefore in this chapter we 
focus only on text mining. 

Information Retrieval Information retrieval is the study concerned with represent-
ing, searching, and manipulating large collections of text [49]. As mentioned in the 
introduction, one of the biggest challenges for consuming the Web is identifying 
the small pieces of relevant information in the vast amount of data published on the 
Web. To do so, Web search engines are being used. Search engines allow the users 
to enter a set of keywords or a query, for which the engine will return a ranked list 
of Web pages relevant for the query. Some of the most popular search engines are 
Google, Bing, Yahoo Search, Yandex, and Baidu. Web search engines can be seen 
as traditional information retrieval system working on Web data [47, 48]. 

Search engines consist of 3 main components: crawl, index, and search. Crawling 
is the process of downloading Web documents in bulk, as explained in Sect. 2. 
Indexing is the process of efficiently and effectively storing the crawled Web pages 
in a structure that would allow efficient retrieval of the Web pages. Searching is the 
process of matching the user query with the indexed Web pages and retrieving the 
matched results ordered by relevance. 

Once all the Web documents are collected, before the documents are passed 
to the indexer, the documents go through a document pre-processor. This usually 
includes: lexical analysis (including tokenization and token normalization), token 
weighing, stopword removal, stemming, phrase processing, and hyperlinks pro-
cessing [50, 51]. After this step, each Web document is represented as a set of 
search terms (tokens or a set of tokens) with meta data for each token. There 
are several information retrieval models or document representation techniques 
used, starting from the more trivial Boolean and the vector space models [52], to 
more sophisticated probabilistic and language models [53, 54]. Web documents are 
indexed in an index structure, such as inverted index structure. For every search 
term the inverted index contains a list of Web documents that contain that search 
term. This allows the search engine to quickly identify all documents that contain 
a term from a user query. For a survey of more sophisticated indexing techniques 
we refer to the survey by Gani et al. [55]. During the indexing, usually terms are 
assigned relevance weight, which indicates the importance of the term in the current 
document. One of the most used term weighing techniques is term frequency— 
inverse document frequency (tf-idf).
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Once the index is built, the search engine can process user queries. Usually 
the user queries consist of one or several search terms. When the user query is 
received, the search engine first pre-processes the query using the same pipeline 
used to pre-process the documents for indexing. Then, for each of the search terms 
the relevant documents with their weights are retrieved from the inverted index. 
Finally, for each retrieved document a rank score is calculated using a relevance 
ranking function. Relevance ranking functions usually consist of 2 parts: (i) content 
document relevance score based on the matched terms, which depends on the used 
retrieval model; (ii) document relevance score based on the graph structure (see 
Sect. 4). There are many content relevance ranking functions, e.g., cosine similarity, 
BF25 [56], relevance based on language models [53, 57], or using machine learning 
for information retrieval, called learning to rank [58]. Learning to rank is the task 
to automatically construct a ranking machine learning model using training data, 
such that the model can sort new objects according to their degrees of relevance, 
preference, or importance [59]. Commercial search engines use combinations of 
many relevance functions in order to get the best results. In many cases the user 
query might be very narrow and the search will not return any relevant results. To 
alleviate this problem, a query expansion approaches are used. Query expansion 
approaches modify the input query by adding additional search terms with similar 
semantic meaning [60, 61, 62]. 

While standard Web search engines deal only with keyword-based queries, with 
the advances of machine learning and knowledge representation, many systems now 
offer natural language question answering. In such systems, the users can ask a 
question in a natural language form, which the system then processes and matches 
to the internal knowledge, and produces an answer in natural language format. Many 
Web sites adapt such systems to develop chatbots and conversational assistants to 
ease the interaction with the users [63, 64]. With the rapid advancements of deep 
machine learning and knowledge graphs (see Sect. 6), such systems are becoming 
more popular [65, 66]. 

Document Classification Document classification is the task of sorting documents 
into a given set of categories. Categorizing Web documents into a predefined 
taxonomy made searching and browsing the Web easier [67]. The Open Directory 
Project (DMOZ) was the first Web topic directory that organized Web pages 
in a hierarchical ontology. Such categorization was used by search engines to 
improve the search results. While today such topic directories do not play big 
role in the search engine ranking, Web document classification is crucial for 
organizing and maintaining content on the Web. There are many supervised machine 
learning approaches for document classification, e.g., Naive Bayes, Support Vector 
Machines, Logistic Regression, Decision Trees, etc. With the advance of word 
embeddings (e.g., word2vec [68], GloVe [69]) and deep learning approaches (e.g., 
CNN [70], RNN [71], LSTM [72], BERT [73]) document classification achieves 
even better results. 

When the set of categories is not known upfront, unsupervised methods can be 
used, such as clustering [74] and topic modeling [75].
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Information Extraction Information extraction approaches automatically extract 
structured information from unstructured or semi-structured text. Some of the 
typical tasks in web information retrieval include named entity recognition (e.g., 
identifying mentions of people, places, organization, products, etc.) and relationship 
extraction between such named entities [76]. Named entity recognition is one of 
the most important tasks of natural language processing, and therefore there is 
a plethora of work in the literature [77, 78, 79]. Approaches range from simple 
techniques using external vocabularies and knowledge bases [80], unsupervised 
methods [81, 82], sophisticated supervised solutions with advanced feature engi-
neering based on Hidden Markov Models [83], Conditional Random Fields [84] 
and Support Vector Machines [85], and lately advanced deep neural networks 
[86, 87, 88, 89, 79]. 

Once the named entities are identified in text, usually the next task is to identify 
the relation between them. Popular systems for relation extraction range from early 
solutions based on SVMs and tree kernels [90, 91, 92, 93, 94] to most recent 
ones exploiting neural architectures [95, 96, 97]. Many approaches exploit large 
knowledge bases for distant supervision [98, 99, 100, 101, 102], as well as human-
in-the-loop approaches [103]. Furthermore, several works have tackled the problem 
of open information extraction [104, 105, 106] where the focus is on general 
understanding of text rather than a focused extraction of named entities and specific 
relations. Furthermore, recent deep neural network approaches solve both tasks of 
named entity recognition and relation extraction as a single task [107]. 

In most Web sites, the Web pages are dynamically generated using similar 
templates, using data from the same database. Wrapper induction approaches use 
supervised machine learning approaches to learn patterns and rules for generating 
dynamic Web pages in order to automatically extract structured information from 
them [108, 109]. 

Besides mining unstructured text from the Web, a lot of work goes into mining 
semi-structured data, such as lists and tables. WebTables was the first project to 
extract content tables from the whole Web [110, 111]. The project shows how 
to extract useful information from Web tables, such as entities, attributes, and 
relations between entities, which can be used in different applications. Several 
approaches have been introduced for parsing and semantically annotating Web 
tables [112, 113, 114], which then can be used for improved search [115], query 
table extension [116, 117, 118] and knowledge base completion [119, 120]. One 
survey of recent approaches for Web table mining can be found in [121]. 

Text Generation and Summarization While text generation was introduced in 
the early 1990s [122], it became more popular in the recent years with the advance 
of neural networks [123]. Currently, generative adversarial neural networks with 
reinforcement learning [122, 123, 124, 125] and transformer-based neural networks 
[126] show state-of-the-art results. Such systems have been successfully used 
in many applications: generating product descriptions [127], generating product 
reviews [128, 129], weather forecast [130], and many others. Such systems change 
the way new content is being created and published to the Web.
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On the other hand, text summarization approaches try to shorten existing text 
documents. Such approaches generate a concise summary of large texts, focusing 
on the pieces of text that provide the most useful information without losing the 
overall meaning [131]. While in the past most of the approaches were based on 
topic words, frequencies, and latent semantic analysis, in the recent years seq2seq 
neural networks [132] have become state-of-the-art solution [133]. Such systems 
allow users to faster identify and consume relevant information on the Web. 

Opinion Mining and Sentiment Analysis Web users use the available content 
from social media platforms, forums, and blogs for their decision making, e.g., the 
decision to buy a product offered on an e-shop heavily depends on the product 
reviews written by other users. Thus, it is crucial to be able to automatically 
identify the opinion and sentiments in user generated text on the Web. Since 2000, 
sentiment analysis has grown to be one of the most important research areas in 
natural language processing. Thus, plethora of approaches for opinion mining and 
sentiment analysis have been proposed [134, 135, 136]. 

Similar to opinion mining and sentiment analysis approaches, social media 
mining approaches [137] identify patterns and trends from textual data published on 
social media, which later can be used in different applications. The most common 
use of social media mining is for advertising, i.e., identifying the user’s interests 
based on the content they generate to identify the best advertisements for them. 
Besides advertisement, social media mining has been used for identifying incidents 
and crisis in real time [138, 139, 140, 141], sports analysis, political analysis, trends, 
and more [142]. An interesting problem in social media mining is identifying fake 
news [143], which with the advance of generative neural networks becomes a real 
problem. 

4 Web Structure Mining 

As described in Sect. 2, the Web is a directed graph, which structure intrinsically 
carries important information about Web pages and the type and the quality of data 
in them. Using graph theory and graph mining approaches such information can 
be extracted and used in different applications, such as information retrieval and 
different social network analysis on the whole Web graph or separate Web sites. 

Information Retrieval Early Web information retrieval systems used only the 
content Web data to retrieve the most relevant Web pages for a given user search 
query, as shown in Sect. 3. However, with the fast growth of the Web, the size of 
returned search results for any search query became rather large. Analyzing a large 
number of search results is not convenient for the users and it is costly. To cope 
with the large amount of Web pages, Web information retrieval systems started 
using the Web graph structure to identify the popularity of the Web pages. Such 
a popularity score is then used in the relevance ranking function in information 
retrieval systems. The popularity score of a Web page is calculated directly from
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the Web graph structure, i.e., by examining how many hyperlinks point to the Web 
page and the popularity of the Web pages pointing to it. One naive solution is to use 
the number of incoming links to the Web page, also known as in-degree of the Web 
page, as a popularity score. However, this score can easily be manipulated by setting 
hyperlinks to Web pages that are not relevant, known as spamming, which would 
significantly decrease the performance of the search engines. In 1998 and 1999, 
the two most important Web page ranking algorithms were introduced, PageRank 
[144, 145] and HITS [146]. Both of these algorithms originate from social network 
analysis [147, 148]. 

The HITS (hyperlink-induced topic search) algorithm [146], also known as hubs 
and authorities, was introduced by Kleinberg in 1999. For a given search query, the 
algorithm identifies two types of Web pages: (i) authorities are pages that contain 
relevant information for the query; (ii) hubs are pages that contain hyperlinks to 
good sources. The main idea of HITS is that there is a mutual reinforcement 
relationship between authorities and hubs, i.e., good hubs link to many good 
authorities, and a good authority is linked to by many good hubs. Given a search 
query, the algorithm first extends the set of search result pages by adding all the 
pages that point to any of the pages in the result list, or pages that are pointed to 
by any of the pages in the result list. In the next step, each page in the expanded 
list is assigned authority score and a hub score. The authority score of a Web page 
is calculated as the sum of the hub scores of all Web pages pointing to it. The hub 
score of a Web page is calculated as the sum of the authority scores of all Web 
pages that the current page is pointing to. The scores are computed iteratively, and 
after each iteration the values are normalized between 0 and 1. Kleinberg proved 
that the algorithm will always converge within couple of iteration, which has been 
shown many times in practical experiments. While the algorithm has shown great 
performance to identify relevant pages for a given query, the algorithm has two 
main drawbacks that make it unusable in modern search engines: (i) it is sensitive to 
spamming, i.e., the hub score can be manipulated by adding a lot of outgoing links 
to good authorities; (ii) the scores are query specific and must be calculated during 
the search, which significantly increases the search time. 

On the other hand, PageRank [144, 145] is a static Web page ranking algorithm, 
i.e., the PageRank value for each Web page in the Web graph is calculated offline 
and it is not query dependent. The PageRank algorithm was introduced by Brian and 
Page in 1988 and it is used in the popular Google Search. The underlying assumption 
of PageRank is similar to the one of HITS, i.e., more important Web pages are more 
likely to be linked to buy more important Web pages. The PageRank of a Web page 
is calculated as the sum of the PageRank values of all the Web pages pointing to 
it, where the PageRank value of each Web page is divided by the total number of 
links going out of that page. Furthermore the algorithm introduces a damping factor, 
which simulates the probability of a random surfer continuing to click on links as 
they browse the Web. Then the PageRank value of a Web page A is calculated as:
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.PR(A) = 1 − d
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where d is the damping factor, which is set between 0 and 1, N is the total number 
of pages in the Web graph, and .OB is the number of outgoing links for any Web 
page B that links to A. The PageRank value is calculated iteratively. 

The main strengths of the PageRank algorithm are being query independent and 
unaffected by spam. Although Google Search currently uses many other signals 
and features for ranking Web pages, it is noteworthy that even after many years 
of existence, PageRank is still being used in Google Search. There are several 
extensions of the PageRank algorithm. Xing and Ghorbani proposed the weighted 
PageRank algorithm [149], which takes into account the importance of both the 
incoming and the outgoing links of the pages and distributes rank scores based on 
the popularity of the pages. Li and Liu introduce the TS-Rank algorithm [150] to  
address the issue of assigning low PageRank scores to new Web pages, which might 
contain high quality content. 

Social Network Analysis Social network analysis is the study of social entities, 
such as people, organizations, groups, Web pages, or any knowledge entities, and 
the relationships between them [147, 148]. Such analysis can infer interesting 
properties, roles, and relationships between nodes or group of nodes in the network. 
For example, HITS and PageRank are being used for identifying the popularity of 
different Web pages in the whole Web graph. An important social network study is 
community detection in networks [151]. A community represents a group of entities 
that cover a same topic, share a same interest, or are involved in an event. Identifying 
such communities can give interesting insights on the structure of the network and 
the function of different communities, which could be used in various applications, 
e.g., topic-based content clustering, recommender systems, advertising, etc. Several 
approaches have been proposed for community identification on the whole Web 
[152, 153], to identify different clusters of Web pages. However, most of the recent 
approaches focus on community detection in social media platforms on the Web, 
which connect millions of users and groups [154, 155]. 

With the advance of deep learning and representation learning in the recent 
years, network representation learning approaches are introduced [156]. Network 
representation learning approaches learn latent, low-dimensional representation 
of network nodes, while preserving the network structure and node content and 
attributes. Such representation of nodes in a network can be used in many social 
network analysis on the Web, such as classification [157, 158], link prediction [159], 
clustering [160], recommender systems [161], visualization [162], and search [163]. 
Several recent surveys give an overview of such approaches and their applications 
on different networks on the Web [156, 164, 165].
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5 Web Usage Mining 

Web usage mining is the process of identifying and analyzing patterns in Web 
server logs, including clickthrough, clickstream, user transactions, and other data 
about user interactions with the Web server, which are then used to improve the 
performance of different services on the Web [17, 166]. The main data source for 
Web usage mining are server logs, which include web server logs and application 
server logs. From such data, information about each visit and interaction with 
the Web server is recorded. The first step of web usage mining is processing the 
raw log files and extract structured information [167], which typically includes: 
(i) user identification—identifying all actions that belong to the same user; (ii) 
Pageview identification—identifying which Web pages are being visited including 
the attributes of the Web pages; (iii) Sessionization—identifying a set of pages 
visited by the same user over one visit to a Web site; (iv) Episode identification— 
identifying a set of Web pages visited by the user that are semantically or 
functionally related. In the next step, these data are transformed into a data model, 
which can be used in different data mining algorithms to identify useful patterns 
from the log files. There are several common mining approaches used for improving 
the content, structure, and design of Web sites, including session and user analysis, 
which gives basic visit and popularity statistics of different Web pages within a Web 
site; classification and clustering of users to identify user communities (see Sect. 4); 
identifying associated Web pages, or products and services that are commonly 
bought together, using association rule mining. More advanced applications of Web 
usage mining involve recommender systems on the Web, and applications of query 
log mining. 

Recommender Systems Recommender systems are machine learning models that 
predict a rating score or a binary preference a user would give to an item [168]. 
Recommender systems are the core component of every e-commerce Web site, 
used for recommending products and services to users based on their preferences, 
interests and previous interactions with the Web site. Since the performance of 
the recommender systems directly affects the success and the profit of e-shops, 
plethora of approaches have been proposed in the literature [169, 170]. There are 
three general types of recommender systems: (i) Collaborative filtering methods 
recommend items that are liked/bought by users with similar interests and similar 
past behavior as the current user; (ii) Content-based filtering methods use content 
attributes of the liked/bought items to recommend similar items to the users; (iii) 
Hybrid recommender systems combine collaborative and content-based filtering 
methods to achieve better performance and circumvent the drawbacks of the two 
when used separately. 

Query Log Mining Query Log Mining (QLM) is a special type of Web usage 
mining [17], focused on mining log files from Web search engines. QLM techniques 
are used in variety of applications [171, 172], predominantly being used to improve 
the ranking and the runtime efficiency of search engines. For example, QLM
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approaches can be used to discover patterns and knowledge that can be used for 
future query refinement and expansion [173], personalized query recommendation 
and suggestion [174, 175], resolving ambiguity and intent [176], and removing 
spam. Another important application of QLM is in search advertising, also known as 
sponsored search, where QLM methods are being used to deliver the best matching 
advertisements to the users based on their search queries and preferences, thus 
maximizing the revenue of the search engines [177, 178]. Contextual advertising 
is another type of advertising, which tries to match ads with the context displayed 
in the current Web page [177], for which methods from Web content mining and 
Web usage mining are used. Furthermore, search queries can be seen as signals in a 
domain over time and can be represented as time-series. Thus, time-series analysis 
approaches can be applied on query logs to identify new trends, events, interests, 
and preferences [179], e.g., political events [180] or virus epidemics [181]. 

6 The Semantic Web and Semantic Web Mining 

While the current Web is intended to be human readable, the Semantic Web provides 
a common framework that allows data to be shared and reused across application, 
enterprise, and community boundaries. Semantic Web technologies facilitate build-
ing a large-scale Web of machine-readable and machine-understandable knowledge 
and thus facilitate data reuse and integration. The basics of the Semantic Web were 
set by Tim Berners-Lee in 2001 [22], which later lead to the creation of the Linked 
Open Data [182].2 Linked Open Data (LOD) is an open, interlinked collection of 
datasets on the Web in machine-interpretable form, covering many domains [183]. 
Currently, more than 1000 datasets are interlinked in the Linked Open Data cloud.3 

Since the beginning, the Semantic Web has promoted a graph-based representation 
of knowledge, e.g., using the Resource Description Framework (RDF).4 In general, 
RDF is a framework which provides capabilities to describe information about 
resources. The core structure of RDF is a set of triples, each consisting of a subject, 
a predicate, and an object, e.g., db:Berlin dbo:capitalOf db:Germany represents a 
triple. A set of such triples is called an RDF graph. The term used to describe such 
RDF graphs has been evolving through the years, i.e., in the beginning they were 
called Ontologies [184], while currently are known as Semantic Web Knowledge 
Graphs or simply Knowledge Graphs [185]. 

In the last decade, a vast amount of approaches have been proposed which 
combine methods from data mining and knowledge discovery with Semantic Web 
knowledge graphs. The goal of those approaches is to support different data mining 
tasks, or to improve the Semantic Web itself. All those approaches can be divided

2 https://www.w3.org/DesignIssues/LinkedData.html. 
3 https://lod-cloud.net/. 
4 https://www.w3.org/RDF/. 
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into three broader categories [28, 29]: (i) Using machine learning techniques to 
create and improve Semantic Web data; (ii) Using data mining techniques to mine 
the Semantic Web, also called Semantic Web Mining; (iii) Using Semantic Web 
based approaches, Semantic Web Technologies, and Linked Open Data to support 
the process of knowledge discovery and data mining. 

In the very beginning, a lot of effort was put into building the Semantic Web and 
Semantic Web datasets, which required use of data mining and machine learning, 
e.g., extracting structured data from text or Web pages, which is also known as 
ontology learning [23, 24]. Semantic Web mining became very popular, allowing 
for formal querying and reasoning over ontological knowledge bases [25, 26, 27]. 
Because of its structured nature, Semantic Web data has been heavily used as a 
background knowledge in various machine learning tasks and applications [28, 29]. 
With the rapid development of deep learning the most popular consumption of 
Semantic Web Knowledge graphs in data mining is by using Knowledge Graph 
Embeddings [186, 187]. Such algorithms embed the entities and relations, in 
some cases even bigger components, into a continuous vectors space, where 
each component is represented with an n-dimensional vector while preserving the 
information and structure from the graph. Such representation allows easy use of 
the knowledge graph in various tasks and applications [188, 189]. 

Besides Linked Open Data and Semantic Web Knowledge Graphs, semantic 
annotations in HTML pages are another realization of the Semantic Web. Se-
mantic annotations are integrated into the code of HTML pages using one of 
the four markup languages Microformats,5 RDFa,6 Microdata7 and JSON-LD.8 

Such markup languages extend the standard HTML markup with additional set of 
attributes and can be automatically recognized, e.g., by a machine. Such semantic 
annotations are used by search engine companies, such as Bing, Google, Yahoo!, 
and Yandex. They use semantic annotations from crawled Web pages to enrich the 
presentation of search results and to complement their knowledge bases [190]. There 
are several initiatives to extract such data from the whole Web and make it publicly 
available, such as the Web Data Commons.9 Such data has been used in many 
e-commerce applications, such as product matching and product categorization 
[191, 192, 193].

5 http://microformats.org/. 
6 https://www.w3.org/TR/rdfa-core/. 
7 https://www.w3.org/TR/microdata/. 
8 https://www.w3.org/TR/json-ld11/. 
9 http://webdatacommons.org/. 
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11. C. E. Dinucă, D. Ciobanu, Web content mining, Annals of the University of Petrosani. 
Economics 12 (2012) 85–92. 

12. A. Herrouz, C. Khentout, M. Djoudi, Overview of web content mining tools, arXiv preprint 
arXiv:1307.1024. 

13. M. O. Samuel, A. I. Tolulope, O. O. Oyejoke, A systematic review of current trends in web 
content mining, in: Journal of Physics: Conference Series, Vol. 1299, IOP Publishing, 2019, 
p. 012040. 

14. J. Fürnkranz, Web structure mining, Exploiting the Graph Structure of the World-Wide Web, 
Österreichische Gesellschaft für Artificial Intelligence (ÖGAI) (2002) 17–26. 

15. P. R. Kumar, A. K. Singh, Web structure mining: exploring hyperlinks and algorithms for 
information retrieval, American Journal of applied sciences 7 (6) (2010) 840. 

16. R. Jain, D. G. Purohit, Page ranking algorithms for web mining, International journal of 
computer applications 13 (5) (2011) 22–25. 

17. J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining: Discovery and 
applications of usage patterns from web data, ACM SIGKDD Explorations Newsletter 1 (2) 
(2000) 12–23. 

18. J. Vellingiri, S. C. Pandian, A survey on web usage mining, Global Journal of Computer 
Science and Technology. 

19. T. Hussain, S. Asghar, N. Masood, Web usage mining: A survey on preprocessing of web log 
file, in: 2010 International Conference on Information and Emerging Technologies, IEEE, 
2010, pp. 1–6. 

20. L. Grace, V. Maheswari, D. Nagamalai, Analysis of web logs and web user in web mining, 
arXiv preprint arXiv:1101.5668. 

21. V. Chitraa, D. Davamani, A. Selvdoss, A survey on preprocessing methods for web usage 
data, arXiv preprint arXiv:1004.1257. 

22. T. Berners-Lee, J. Hendler, O. Lassila, et al., The semantic web, Scientific American 284 (5) 
(2001) 28–37. 

23. V. Tresp, M. Bundschus, A. Rettinger, Y. Huang, Towards machine learning on the semantic 
web, in: Uncertainty reasoning for the Semantic Web I, Springer, 

24. A. Rettinger, U. Lösch, V. Tresp, C. d’Amato, N. Fanizzi, Mining the semantic web, Data 
Mining and Knowledge Discovery 24 (3) (2012) 613–662 2006, pp. 282–314.



460 P. Ristoski

25. Q. K. Quboa, M. Saraee, A state-of-the-art survey on semantic web mining, Intelligent 
Information Management 5 (01) (2013) 10. 

26. D. Dou, H. Wang, H. Liu, Semantic data mining: A survey of ontology-based approaches, in: 
Proceedings of the 2015 IEEE 9th international conference on semantic computing (IEEE 
ICSC 2015), IEEE, 2015, pp. 244–251. 

27. K. Sridevi, D. R. UmaRani, A survey of semantic based solutions to web mining, Interna-
tional Journal of Emerging Trends and Technology in Computer Science (IJETTS) 1. 

28. P. Ristoski, H. Paulheim, Semantic web in data mining and knowledge discovery: A 
comprehensive survey, Web semantics: science, services and agents on the World Wide Web 
36 (2016) 1–22. 

29. P. Ristoski, Exploiting semantic web knowledge graphs in data mining, Vol. 38, IOS Press, 
2019. 

30. Wendy Hall and Thanassis Tiropanis. Web evolution and web science. Computer Networks, 
56(18):3859–3865, 2012. 

31. Christopher Olston, Marc Najork, et al. Web crawling. Foundations and Trends® in 
Information Retrieval, 4(3):175–246, 2010. 

32. SM Pavalam, SV Kashmir Raja, Felix K Akorli, and M Jawahar. A survey of web crawler 
algorithms. International Journal of Computer Science Issues (IJCSI), 8(6):309, 2011. 

33. Manish Kumar, Rajesh Bhatia, and Dhavleesh Rattan. A survey of web crawlers for 
information retrieval. Wiley Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery, 7(6):e1218, 2017. 

34. Blaž Novak. A survey of focused web crawling algorithms. Proceedings of SIKDD, 
5558:55–58, 2004. 

35. Yong-Bin Yu, Shi-Lei Huang, Nyima Tashi, Huan Zhang, Fei Lei, and Lin-Yang Wu. A 
survey about algorithms utilized by focused web crawler. Journal of Electronic Science and 
Technology, 16(2):129–138, 2018. 

36. Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, 
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer 
networks, 33(1-6):309–320, 2000. 

37. Debora Donato, Stefano Leonardi, Stefano Millozzi, and Panayiotis Tsaparas. Mining the 
inner structure of the web graph. In WebDB, pages 145–150. Citeseer, 2005. 

38. Jonathan JH Zhu, Tao Meng, Zhengmao Xie, Geng Li, and Xiaoming Li. A teapot graph 
and its hierarchical structure of the Chinese web. In Proceedings of the 17th international 
conference on World Wide Web, pages 1133–1134, 2008. 

39. M Ángeles Serrano, Ana Maguitman, Marián Boguñá, Santo Fortunato, and Alessandro 
Vespignani. Decoding the structure of the www: A comparative analysis of web crawls. 
ACM Transactions on the Web (TWEB), 1(2):10–es, 2007. 

40. Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the bias of 
traceroute sampling: or, power-law degree distributions in regular graphs. Journal of the 
ACM (JACM), 56(4):1–28, 2009. 

41. Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure 
in the web—revisited: a trick of the heavy tail. In Proceedings of the 23rd international 
conference on World Wide Web, pages 427–432, 2014. 

42. Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure 
in the web–analyzed on different aggregation levels. The Journal of Web Science, 1, 2015. 

43. Oliver Lehmberg, Robert Meusel, and Christian Bizer. Graph structure in the web: 
aggregated by pay-level domain. In Proceedings of the 2014 ACM conference on Web 
science, pages 119–128, 2014. 

44. R. Feldman, I. Dagan, Knowledge discovery in textual databases (KDT)., in: KDD, Vol. 95, 
1995, pp. 112–117. 

45. C. C. Aggarwal, C. Zhai, Mining text data, Springer Science & Business Media, 2012. 
46. M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, K. Kochut, 

A brief survey of text mining: Classification, clustering and extraction techniques, arXiv 
preprint arXiv:1707.02919.



Web Mining 461

47. S. Büttcher, C. L. Clarke, G. V. Cormack, Information retrieval: Implementing and evaluating 
search engines, MIT Press, 2016. 

48. W. B. Croft, D. Metzler, T. Strohman, Search engines: Information retrieval in practice, Vol. 
520, Addison-Wesley Reading, 2010. 

49. C. D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval, Cambridge 
university press, 2008. 

50. G. Miner, J. Elder IV, A. Fast, T. Hill, R. Nisbet, D. Delen, Practical text mining and 
statistical analysis for non-structured text data applications, Academic Press, 2012. 

51. A. K. Uysal, S. Gunal, The impact of preprocessing on text classification, Information 
Processing & Management 50 (1) (2014) 104–112. 

52. R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, Vol. 463, ACM press 
New York, 1999. 

53. J. M. Ponte, W. B. Croft, A language modeling approach to information retrieval, in: 
Proceedings of the 21st annual international ACM SIGIR conference on Research and 
development in information retrieval, 1998, pp. 275–281. 

54. G. Amati, Information Retrieval Models, Springer New York, New York, NY, 2018, pp. 
1976–1981. 

55. A. Gani, A. Siddiqa, S. Shamshirband, F. Hanum, A survey on indexing techniques for big 
data: taxonomy and performance evaluation, Knowledge and information systems 46 (2) 
(2016) 241–284. 

56. S. E. Robertson, Overview of the okapi projects, Journal of documentation. 
57. C. Zhai, Statistical language models for information retrieval, Synthesis Lectures on Human 

Language Technologies 1 (1) (2008) 1–141. 
58. T.-Y. Liu, et al., Learning to rank for information retrieval, Foundations and Trends® in 

Information Retrieval 3 (3) (2009) 225–331. 
59. T.-Y. Liu, Learning to Rank for Information Retrieval., Springer, 2011. 
60. C. Carpineto, G. Romano, A survey of automatic query expansion in information retrieval, 

ACM Computing Surveys (CSUR) 44 (1) (2012) 1–50. 
61. J. Ooi, X. Ma, H. Qin, S. C. Liew, A survey of query expansion, query suggestion and query 

refinement techniques, in: 2015 4th International Conference on Software Engineering and 
Computer Systems (ICSECS), IEEE, 2015, pp. 112–117. 

62. H. K. Azad, A. Deepak, Query expansion techniques for information retrieval: A survey, 
Information Processing & Management 56 (5) (2019) 1698–1735. 

63. R. Dale, The return of the chatbots, Natural Language Engineering 22 (5) (2016) 811–817. 
64. A. Følstad, P. B. Brandtzæg, Chatbots and the new world of HCI, interactions 24 (4) (2017) 

38–42. 
65. D. Diefenbach, V. Lopez, K. Singh, P. Maret, Core techniques of question answering systems 

over knowledge bases: a survey, Knowledge and Information systems 55 (3) (2018) 529–569. 
66. S. Vakulenko, Knowledge-based conversational search, arXiv preprint arXiv:1912.06859. 
67. I. Russell, Z. Markov, T. Neller, Web document classification, Jun 3 (2005) 1–19. 
68. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed representations of 

words and phrases and their compositionality, in: Advances in neural information processing 
systems, 2013, pp. 3111–3119. 

69. J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: 
Proceedings of the 2014 conference on empirical methods in natural language processing 
(EMNLP), 2014, pp. 1532–1543. 

70. Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint 
arXiv:1408.5882. 

71. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is 
difficult, IEEE transactions on neural networks 5 (2) (1994) 157–166. 

72. S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow in recurrent nets: 
the difficulty of learning long-term dependencies (2001). 

73. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional 
transformers for language understanding, arXiv preprint arXiv:1810.04805.



462 P. Ristoski

74. P. Berkhin, A survey of clustering data mining techniques, in: Grouping multidimensional 
data, Springer, 2006, pp. 25–71. 

75. M. Steyvers, T. Griffiths, Probabilistic topic models, Handbook of latent semantic analysis 
427 (7) (2007) 424–440. 

76. L. Chiticariu, M. Danilevsky, H. Ho, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, 
S. Vaithyanathan, H. Zhu, Web information extraction. (2018). 

77. D. Nadeau, S. Sekine, A survey of named entity recognition and classification, Lingvisticae 
Investigationes 30 (1) (2007) 3–26. 

78. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural architectures for 
named entity recognition, arXiv preprint arXiv:1603.01360. 

79. V. Yadav, S. Bethard, A survey on recent advances in named entity recognition from deep 
learning models, arXiv preprint arXiv:1910.11470. 

80. I. Segura Bedmar, P. Martínez, M. Herrero Zazo, Semeval-2013 task 9: Extraction of 
drug-drug interactions from biomedical texts (DDIExtraction 2013), Association for Com-
putational Linguistics, 2013. 

81. M. Collins, Y. Singer, Unsupervised models for named entity classification, in: 1999 Joint 
SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large 
Corpora, 1999. 

82. S. Zhang, N. Elhadad, Unsupervised biomedical named entity recognition: Experiments with 
clinical and biological texts, Journal of biomedical informatics 46 (6) (2013) 1088–1098. 

83. G. Zhou, J. Su, Named entity recognition using an hmm-based chunk tagger, in: proceedings 
of the 40th Annual Meeting on Association for Computational Linguistics, Association for 
Computational Linguistics, 2002, pp. 473–480. 

84. S. Liu, B. Tang, Q. Chen, X. Wang, Effects of semantic features on machine learning-based 
drug name recognition systems: word embeddings vs. manually constructed dictionaries, 
Information 6 (4) (2015) 848–865. 

85. Y. Li, K. Bontcheva, H. Cunningham, SVM based learning system for information ex-
traction, in: International Workshop on Deterministic and Statistical Methods in Machine 
Learning, Springer, 2004, pp. 319–339. 

86. R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural 
networks with multitask learning, in: Proceedings of the 25th international conference on 
Machine learning, 2008, pp. 160–167. 

87. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language 
processing (almost) from scratch, Journal of machine learning research 12 (Aug) (2011) 
2493–2537. 

88. Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence tagging, arXiv 
preprint arXiv:1508.01991. 

89. Y. Kim, Y. Jernite, D. Sontag, A. M. Rush, Character-aware neural language models, in: 
Thirtieth AAAI Conference on Artificial Intelligence, 2016. 

90. R. C. Bunescu, R. J. Mooney, A shortest path dependency kernel for relation extraction, in: 
HLT/EMNLP, ACL, 2005, pp. 724–731. 

91. A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in: ACL, ACL, 
2004, p. 423. 

92. R. J. Mooney, R. C. Bunescu, Subsequence kernels for relation extraction, in: NIPS, 2006, 
pp. 171–178. 

93. D. Zelenko, C. Aone, A. Richardella, Kernel methods for relation extraction, Journal of 
machine learning research 3 (2003) 1083–1106. 

94. S. Zhao, R. Grishman, Extracting relations with integrated information using kernel methods, 
in: ACL, ACL, 2005, pp. 419–426. 

95. T. H. Nguyen, R. Grishman, Relation extraction: Perspective from convolutional neural 
networks., in: VS@ HLT-NAACL, 2015, pp. 39–48. 

96. D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, et al., Relation classification via convolutional 
deep neural network, in: COLING, 2014, pp. 2335–2344.



Web Mining 463

97. N. T. Vu, H. Adel, P. Gupta, et al., Combining recurrent and convolutional neural networks 
for relation classification, in: NAACL-HLT, 2016, pp. 534–539. 

98. I. Augenstein, D. Maynard, F. Ciravegna, Distantly supervised web relation extraction for 
knowledge base population, Semantic Web 7 (4) (2016) 335–349. 

99. A. L. Gentile, Z. Zhang, I. Augenstein, F. Ciravegna, Unsupervised wrapper induction using 
linked data, in: K-CAP, ACM, 2013, pp. 41–48. 

100. G. Ji, K. Liu, S. He, J. Zhao, Distant supervision for relation extraction with sentence-level 
attention and entity descriptions, in: AAAI, 2017, pp. 3060–3066. 

101. A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, C. Ré, Data programming: Creating large training 
sets, quickly, in: NIPS, 2016, pp. 3567–3575. 

102. B. Roth, T. Barth, M. Wiegand, D. Klakow, A survey of noise reduction methods for distant 
supervision, in: AKBC, ACM, 2013, pp. 73–78. 

103. P. Ristoski, A. L. Gentile, A. Alba, D. Gruhl, S. Welch, Large-scale relation extraction from 
web documents and knowledge graphs with human-in-the-loop, Journal of Web Semantics 
(2019) 100546. 

104. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open information 
extraction from the web, in: Proceedings of the 20th International Joint Conference on 
Artificial Intelligence, IJCAI’07, Morgan Kaufmann Publishers Inc., San Francisco, CA, 
USA, 2007, pp. 2670–2676. 

105. O. Etzioni, A. Fader, J. Christensen, S. Soderland, M. Mausam, Open information extraction: 
The second generation, in: Proceedings of the Twenty-Second International Joint Conference 
on Artificial Intelligence—Volume One, IJCAI’11, AAAI Press, 2011, pp. 3–10. 

106. V. Presutti, A. G. Nuzzolese, S. Consoli, A. Gangemi, D. Reforgiato Recupero, From 
hyperlinks to semantic web properties using open knowledge extraction, Semantic Web 7 (4) 
(2016) 351–378. 

107. Q. Li, H. Ji, Incremental joint extraction of entity mentions and relations, in: Proceedings 
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: 
Long Papers), 2014, pp. 402–412. 

108. N. Kushmerick, D. S. Weld, R. Doorenbos, Wrapper induction for information extraction, 
University of Washington Washington, 1997. 

109. N. Dalvi, R. Kumar, M. Soliman, Automatic wrappers for large scale web extraction, 
Proceedings of the VLDB Endowment 4 (4) (2011) 219–230. 

110. M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, Y. Zhang, Webtables: exploring the power of 
tables on the web, Proceedings of the VLDB Endowment 1 (1) (2008) 538–549. 

111. M. Cafarella, A. Halevy, H. Lee, J. Madhavan, C. Yu, D. Z. Wang, E. Wu, Ten years of 
WebTables, Proceedings of the VLDB Endowment 11 (12) (2018) 2140–2149. 

112. G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and searching web tables using entities, 
types and relationships, Proceedings of the VLDB Endowment 3 (1-2) (2010) 1338–1347. 

113. P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao, Recovering 
semantics of tables on the web. 

114. Z. Zhang, Effective and efficient semantic table interpretation using TableMiner+, Semantic 
Web 8 (6) (2017) 921–957. 

115. M. J. Cafarella, A. Halevy, N. Khoussainova, Data integration for the relational web, 
Proceedings of the VLDB Endowment 2 (1) (2009) 1090–1101. 

116. X. Zhang, Y. Chen, J. Chen, X. Du, L. Zou, Mapping entity-attribute web tables to web-
scale knowledge bases, in: International Conference on Database Systems for Advanced 
Applications, Springer, 2013, pp. 108–122. 

117. C. S. Bhagavatula, T. Noraset, D. Downey, Methods for exploring and mining tables on 
wikipedia, in: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration 
and Analytics, 2013, pp. 18–26. 

118. O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, C. Bizer, The mannheim search 
join engine, Journal of Web Semantics 35 (2015) 159–166. 

119. B. Kruit, P. Boncz, J. Urbani, Extracting novel facts from tables for knowledge graph 
completion, in: International Semantic Web Conference, Springer, 2019, pp. 364–381.



464 P. Ristoski

120. O. Lehmberg, Web table integration and profiling for knowledge base augmentation, Ph.D. 
thesis (2019). 

121. S. Zhang, K. Balog, Web table extraction, retrieval, and augmentation: A survey, ACM 
Transactions on Intelligent Systems and Technology (TIST) 11 (2) (2020) 1–35. 

122. K. McKeown, Text generation, Cambridge University Press, 1992. 
123. S. Lu, Y. Zhu, W. Zhang, J. Wang, Y. Yu, Neural text generation: Past, present and beyond, 

arXiv preprint arXiv:1803.07133. 
124. K. Lin, D. Li, X. He, Z. Zhang, M.-t. Sun, Adversarial ranking for language generation, in: 

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett 
(Eds.), Advances in Neural Information Processing Systems 30, Curran Associates, Inc., 
2017, pp. 3155–3165. 

125. Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, L. Carin, Adversarial feature 
matching for text generation, in: Proceedings of the 34th International Conference on 
Machine Learning-Volume 70, JMLR. org, 2017, pp. 4006–4015. 

126. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models are 
unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9. 

127. T. Zhang, J. Zhang, C. Huo, W. Ren, Automatic generation of pattern-controlled product 
description in e-commerce, in: The World Wide Web Conference, 2019, pp. 2355–2365. 

128. L. Dong, S. Huang, F. Wei, M. Lapata, M. Zhou, K. Xu, Learning to generate product 
reviews from attributes, in: Proceedings of the 15th Conference of the European Chapter 
of the Association for Computational Linguistics: Volume 1, Long Papers, 2017, pp. 623– 
632. 

129. J. Ni, J. McAuley, Personalized review generation by expanding phrases and attending on 
aspect-aware representations, in: Proceedings of the 56th Annual Meeting of the Association 
for Computational Linguistics (Volume 2: Short Papers), 2018, pp. 706–711. 

130. H. Mei, M. Bansal, M. R. Walter, What to talk about and how? selective generation using 
LSTMs with coarse-to-fine alignment, arXiv preprint arXiv:1509.00838 

131. A. Nenkova, K. McKeown, A survey of text summarization techniques, in: Mining text data, 
Springer, 2012, pp. 43–76. 

132. I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural networks, in: 
Advances in neural information processing systems, 2014, pp. 3104–3112. 

133. R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al., Abstractive text summarization using 
sequence-to-sequence RNNs and beyond, arXiv preprint arXiv:1602.06023. 

134. B. Liu, L. Zhang, A survey of opinion mining and sentiment analysis, in: Mining text data, 
Springer, 2012, pp. 415–463. 

135. K. Ravi, V. Ravi, A survey on opinion mining and sentiment analysis: tasks, approaches and 
applications, Knowledge-Based Systems 89 (2015) 14–46. 

136. L. Zhang, S. Wang, B. Liu, Deep learning for sentiment analysis: A survey, Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8 (4) (2018) e1253. 

137. R. Zafarani, M. A. Abbasi, H. Liu, Social media mining: an introduction, Cambridge 
University Press, 2014. 

138. S. Vieweg, A. L. Hughes, K. Starbird, L. Palen, Microblogging during two natural hazards 
events: what twitter may contribute to situational awareness, in: Proceedings of the SIGCHI 
conference on human factors in computing systems, 2010, pp. 1079–1088. 

139. O. Okolloh, Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis information, 
Participatory learning and action 59 (1) (2009) 65–70. 

140. R. Goolsby, Lifting elephants: Twitter and blogging in global perspective, in: Social 
computing and behavioral modeling, Springer, 2009, pp. 1–6. 

141. A. Schulz, P. Ristoski, H. Paulheim, I see a car crash: Real-time detection of small scale 
incidents in microblogs, in: Extended semantic web conference, Springer, 2013, pp. 22–33. 

142. D. E. O’Leary, Twitter mining for discovery, prediction and causality: Applications and 
methodologies, Intelligent Systems in Accounting, Finance and Management 22 (3) (2015) 
227–247.



Web Mining 465

143. K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, Fake news detection on social media: A data 
mining perspective, ACM SIGKDD Explorations Newsletter 19 (1) (2017) 22–36. 

144. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine. 
145. L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: Bringing order 

to the web., Tech. rep., Stanford InfoLab (1999). 
146. J. M. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of the ACM 

(JACM) 46 (5) (1999) 604–632. 
147. S. Wasserman, K. Faust, et al., Social network analysis: Methods and applications, Vol. 8, 

Cambridge university press, 1994. 
148. D. Knoke, S. Yang, Social network analysis, Vol. 154, SAGE Publications, Incorporated, 

2019. 
149. W. Xing, A. Ghorbani, Weighted PageRank algorithm, in: Proceedings. Second Annual 

Conference on Communication Networks and Services Research, 2004., IEEE, 2004, pp. 
305–314. 

150. X. Li, B. Liu, S. Y. Philip, Time sensitive ranking with application to publication search, in: 
Link Mining: Models, Algorithms, and Applications, Springer, 2010, pp. 187–209. 

151. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling the web for emerging cyber-
communities, Computer networks 31 (11-16) (1999) 1481–1493. 

152. G. W. Flake, S. Lawrence, C. L. Giles, Efficient identification of web communities, in: 
Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery 
and data mining, 2000, pp. 150–160. 

153. G. W. Flake, S. Lawrence, C. L. Giles, F. M. Coetzee, Self-organization and identification of 
web communities, Computer 35 (3) (2002) 66–70. 

154. A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative analysis, 
Physical review E 80 (5) (2009) 056117. 

155. P. Bedi, C. Sharma, Community detection in social networks, Wiley Interdisciplinary 
Reviews: Data Mining and Knowledge Discovery 6 (3) (2016) 115–135. 

156. D. Zhang, J. Yin, X. Zhu, C. Zhang, Network representation learning: A survey, IEEE 
transactions on Big Data. 

157. S. Bhagat, G. Cormode, S. Muthukrishnan, Node classification in social networks, in: Social 
network data analytics, Springer, 2011, pp. 115–148. 

158. A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of 
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 
2016, pp. 855–864. 

159. B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: 
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery 
and data mining, 2014, pp. 701–710. 

160. F. D. Malliaros, M. Vazirgiannis, Clustering and community detection in directed networks: 
A survey, Physics Reports 533 (4) (2013) 95–142. 

161. M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, S. Wang, Learning graph-based poi embedding 
for location-based recommendation, in: Proceedings of the 25th ACM International on 
Conference on Information and Knowledge Management, 2016, pp. 15–24. 

162. J. Tang, J. Liu, M. Zhang, Q. Mei, Visualizing large-scale and high-dimensional data, in: 
Proceedings of the 25th international conference on world wide web, 2016, pp. 287–297. 

163. Z. Liu, V. W. Zheng, Z. Zhao, F. Zhu, K. C.-C. Chang, M. Wu, J. Ying, Distance-aware 
DAG embedding for proximity search on heterogeneous graphs, in: Thirty-Second AAAI 
Conference on Artificial Intelligence, 2018. 

164. J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural networks: 
A review of methods and applications, arXiv preprint arXiv:1812.08434. 

165. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P. S. Yu, A comprehensive survey on graph 
neural networks, arXiv preprint arXiv:1901.00596. 

166. J. Wang, Encyclopedia of Data Warehousing and Mining, (4 Volumes), iGi Global, 2009. 
167. D. Tanasa, B. Trousse, Advanced data preprocessing for intersites web usage mining, IEEE 

Intelligent Systems 19 (2) (2004) 59–65.



466 P. Ristoski

168. F. Ricci, L. Rokach, B. Shapira, Introduction to recommender systems handbook, in: 
Recommender systems handbook, Springer, 2011, pp. 1–35. 

169. J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Recommender systems survey, 
Knowledge-based systems 46 (2013) 109–132. 

170. S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: A survey and 
new perspectives, ACM Computing Surveys (CSUR) 52 (1) (2019) 1–38. 

171. F. Silvestri, et al., Mining query logs: Turning search usage data into knowledge, Foundations 
and Trends® in Information Retrieval 4 (1–2) (2009) 1–174. 

172. A. Al-Hegami, H. Al-Omaisi, Data mining techniques for mining query logs in web search 
engines. 

173. H. Cui, J.-R. Wen, J.-Y. Nie, W.-Y. Ma, Probabilistic query expansion using query logs, in: 
Proceedings of the 11th international conference on World Wide Web, 2002, pp. 325–332. 

174. R. Baeza-Yates, C. Hurtado, M. Mendoza, Query recommendation using query logs in search 
engines, in: International conference on extending database technology, Springer, 2004, pp. 
588–596. 

175. M. Speretta, S. Gauch, Personalized search based on user search histories, in: The 2005 
IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), IEEE, 2005, pp. 
622–628. 

176. B. J. Jansen, D. L. Booth, A. Spink, Determining the user intent of web search engine queries, 
in: Proceedings of the 16th international conference on World Wide Web, 2007, pp. 1149– 
1150. 

177. K. Dave, V. Varma, et al., Computational advertising: Techniques for targeting relevant ads, 
Foundations and Trends® in Information Retrieval 8 (4–5) (2014) 263–418. 

178. D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan, C. Leggetter, Improving ad relevance in 
sponsored search, in: Proceedings of the third ACM international conference on Web search 
and data mining, 2010, pp. 361–370. 

179. M. Vlachos, C. Meek, Z. Vagena, D. Gunopulos, Identifying similarities, periodicities and 
bursts for online search queries, in: Proceedings of the 2004 ACM SIGMOD international 
conference on Management of data, 2004, pp. 131–142. 

180. I. Weber, V. R. K. Garimella, E. Borra, Mining web query logs to analyze political issues, 
in: Proceedings of the 4th annual ACM web science conference, 2012, pp. 330–334. 

181. P. M. Polgreen, Y. Chen, D. M. Pennock, F. D. Nelson, R. A. Weinstein, Using internet 
searches for influenza surveillance, Clinical infectious diseases 47 (11) (2008) 1443–1448. 

182. C. Bizer, T. Heath, T. Berners-Lee, Linked Data—The Story So Far., Int. J. Semantic Web 
Inf. Syst. 5 (3) (2009) 1–22. 

183. M. Schmachtenberg, C. Bizer, H. Paulheim, Adoption of the linked data best practices in 
different topical domains, in: International Semantic Web Conference, Springer, 2014, pp. 
245–260. 

184. S. Staab, R. Studer, Handbook on ontologies, Springer Science & Business Media, 2010. 
185. H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation methods, 

Semantic web 8 (3) (2017) 489–508. 
186. Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches 

and applications, IEEE Transactions on Knowledge and Data Engineering 29 (12) (2017) 
2724–2743. 

187. H. Cai, V. W. Zheng, K. C.-C. Chang, A comprehensive survey of graph embedding: Prob-
lems, techniques, and applications, IEEE Transactions on Knowledge and Data Engineering 
30 (9) (2018) 1616–1637. 

188. P. Goyal, E. Ferrara, Graph embedding techniques, applications, and performance: A survey, 
Knowledge-Based Systems 151 (2018) 78–94. 

189. P. Ristoski, J. Rosati, T. Di Noia, R. De Leone, H. Paulheim, RDF2Vec: RDF graph 
embeddings and their applications, Semantic Web 10 (4) (2019) 721–752. 

190. R. Meusel, Web-scale profiling of semantic annotations in html pages, Ph.D. thesis (2017).



Web Mining 467

191. P. Petrovski, A. Primpeli, R. Meusel, C. Bizer, The WDC gold standards for product feature 
extraction and product matching, in: International Conference on Electronic Commerce and 
Web Technologies, Springer, 2016, pp. 73–86. 

192. P. Ristoski, P. Petrovski, P. Mika, H. Paulheim, A machine learning approach for product 
matching and categorization, Semantic web (Preprint) (2018) 1–22. 

193. Z. Zhang, M. Paramita, Product classification using microdata annotations, in: International 
Semantic Web Conference, Springer, 2019, pp. 716–732.



Mining Temporal Data 

Robert Moskovitch 

1 Introduction 

With the introduction of the internet, an exponential growth in text based data, 
which required new methods to analyze text, retrieve, understand, classify, and 
more. However, with the recent growing adoption of the Internet of Things, in 
which devices in various domains become connected to the internet network and 
produce multitude of logged longitudinal data, we are facing a similar increase in 
multivariate temporal data that is generated by various devices and sensors. Such 
data can be logged from smart watches, cars, smart refrigerators, smart phones, 
televisions, sensors in the space of rooms for various purposes, and many more, 
which can be useful in various domains, and for different tasks. This trend is 
expected to increase significantly and requires new methods and more scalability. 
An extension of temporal data analytics, which are out of the scope of this paper, is 
spatio-temporal data analysis (Gong et al., 2020a,b; Wang et al., 2019; Zhang et al., 
2018; Gong et al., 2018), which introduces more challenges. 

New temporal data may come from specific mobile apps, such as care home 
careers that are documenting activities related to the residents, and more. For various 
tasks, such as monitoring residents in care homes, for example, it is possible to 
combine data coming from various sources, such as the space sensors in the room, 
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or sensors on their bed, smart watches, the care home activities log, and more. For 
example, in order to build a prediction model for residents’ falls in care homes 
(Dvir et al., 2020), one would like to have data from various sources, the resident’s 
personal phone, or perhaps smart watch, or some monitoring bracelet, data from 
an app that collects data from the caregivers, as well as data from their clinical 
database, and more devices in their room if available. Having such a variety of data 
stores many challenges but also opportunities for contributions in many domains. 

However, various sources of temporal data result often with heterogeneous 
sampling forms along time, as shown in Fig. 1. Incorporating various temporal 
variables, having different forms of temporal measurements is one of the most 
challenging topics in temporal data analysis. Figure 1 presents five forms of 
temporal variables (a) is a variable that is measured in a fixed frequency, often comes 
from electronic sensors’ measurements, or a routine measurement. For example, 
a patient blood pressure monitored in an Intensive Care Unit; (b) is also a fixed 
frequency variable but is measured in a different frequency—a common situation, 
especially when gathering data from various sources, and the variables may be 
sampled in a different frequency; 

(c) is a time point values series irregularly sampled, having varying durations 
between the measurements, often coming from manual measurements, or based 
on an event driven. For example, each time a patient visits the clinic; (d) is a 
sequence of symbolic events that have no duration, or having a single time unit 
duration, which may have various symbols and varying durations among the events, 
and multiple symbolic events can happen in the same timestamp. The symbols can 
be, for example, multiple products that were purchased in a single purchase at the 
supermarket; (e) is a sequence of symbolic time intervals series, which represents a 
series of symbolic events that have varying durations. 

Symbolic time intervals can be raw, or the result of abstracting time series 
(Shahar, 1997; Höppner, 2002). An intuitive example for raw symbolic time 
intervals is the duration of traffic lights in a roads conjunction, whether when it 
is red, or green, or yellow. Other examples from the medical domain may be drug 
exposers—a period of time a patient is prescribed for a drug, or patients’ condition 
and cet. There are methods to analyze part of the variables’ types that were shown in 
Fig. 1, but no methods that incorporate all the types together naturally without any 
type of transformation. For example, most of the methods for time series analysis, 
whether for forecasting, or when using Hidden Markov Models, or when using 
deep learning methods, such as recurrent neural networks, or convolutional neural 
networks, expect all the variables to be sampled in the same frequency, such as 
series a or b in Fig. 1. In the description of Fig. 1, we will refer to examples from 
the medical domain and will follow up with these examples along the paper. Thus, 
the series a and b in Fig. 1 can refer to sensory data that comes from ICU, or from a 
smart watch or a person. 

Irregularly sampled variables, such as blood tests that are measured every 
once and a while, bring even more challenges, and one way to overcome these 
challenges is the use of imputation (Pratama et al., 2016), which for irregularly 
sampled variables can be limited, especially when the data is severely sparse. For
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Fig. 1 Temporal data datasets often include variables sampled and represented in various forms. 
Incorporating all the variables within the same analysis method is one of the challenges in temporal 
data analytics 

sequential data, such as series c, which may describe conditions or procedures, 
there are methods that are known as sequential mining that discover frequent 
sequences of symbolic events, which are discussed in more details in the subsection 
about sequential mining. These frequent patterns can be used later for knowledge 
discovery, for sequence prediction (Gueniche et al., 2013) to predict the next item, 
or as features for classification (Moskovitch et al., 2015). Lastly for symbolic time 
intervals, such as series d in Fig. 1, which may represent drug exposers for example, 
similar to sequential patterns discovery, there are time intervals mining methods that 
can discover frequent symbolic time intervals related patterns (Papapetrou et al., 
2009; Moskovitch et al., 2015; Harel and Moskovitch, 2021). However, in order to 
incorporate all the variables into the same analysis method transformations have to 
be made, as will be discussed later in the section about temporal abstraction.
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In this chapter the intention is to cover in high level the field of mining temporal 
data, which becomes increasingly more important in various domains, due to the 
access to data, and potential implications, given the space limitations. We start with 
going through the various methods available for each type of temporal data and 
discuss challenges and needs. 

Then, we focus more on methods that are related more to “mining” patterns in 
temporal data, which are from the family of patterns’ discovery, whether sequential 
or time intervals patterns mining. Then, we discuss their potential use in various 
tasks, such as classification. Finally, we discuss the domain, its challenges and open 
problems, which may lead to potential opportunities. 

2 Time Point Series Mining 

When referring to series a, b, or c in Fig. 1, they are called often time point 
series, representing variables whose values were measured in specific time points. 
Such data can be univariate, which refers to a single time series, as happens with 
stocks data, for example, or multivariate, which refers to a collection of time series 
variables (for example, when measuring a human, it will be a collection of the heart 
rate, blood pressure, glucose levels time series, which are multivariate, unlike only 
heartrate, which is univariate in case it is alone). In stocks data, for example, adding 
to a specific stock that we would like to forecast, other stocks data that are expected 
to be predictive (stocks from the same sector, or stocks that correlate), or other 
relevant longitudinal data, such as coin values, economical measures and more, 
which will result in a multivariate forecasting problem. 

Often when referring to such data, it is referred to as time series analysis, which 
by that people often refer to forecasting, or other methods that often expect the 
time series to be regularly measured, or classification, in which the focus is on 
the features that can be extracted for the classification model, or clustering of time 
series, which is a somewhat limited research area (Schulam et al., 2015) which has 
room for contributions, as will be discussed. Thus, there is a value for each time 
point, whether it is univariate or multivariate. Here is a summary of such relevant 
methods, which were developed in various fields, such as statistics, data mining, and 
generally mathematics. 

One of the popular, or useful, methods in time series analysis is forecasting, in 
which there is an intention to forecast future values of a variable, typically based 
on its earlier values, or in addition based on more variables. Such need has many 
implications in real life problems, from forecasting stocks, inventory management, 
various business events and decisions, through weather forecast, medical conditions, 
and more. However, in order to be able to forecast values of a time series, based on 
its past values, the time series has to fulfil the stationary requirements. 

That means that the time series is generated by a process that does not change 
along time. For that there are tests, such as dual Kalman filter that enables after 
several differencing to stationarize the data. It is crucial to stationarize the data,
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otherwise it is impossible to learn a forecasting model, since the variable changes 
their “behavior” along time, which means it is not predictable. For forecasting there 
are two main basic techniques: Autoregression and Moving Average, as well as deep 
learning based. Autoregression is based on regression models, in which the variable 
forecasting is modelled based on its values in previous time stamps. We would 
like to learn a regression model that describes the relations between the variable’s 
recent values, given the time axis, which is an autoregression. Moving Average is a 
simple forecasting method that is based on the average of the last k values. A more 
advanced way is weighted moving average that includes weights for each of the k 
time points values, but it is a challenge to determine the weights, which is often done 
through minimizing the models’ mean error. Combining these two approaches was 
made by (Moran and Whittle, 1951) who brought the Autoregression and Moving 
Average (ARMA) model, which enables better forecasting. However, ARMA may 
be vulnerable to non-stationary time series. For that an advanced version called 
Autoregressive Integrated Moving Average (ARIMA) was developed (Box and 
Jenkins, 1970; Hamilton, 1994) which includes differencing to stationarize the time 
series. ARMA includes two parameters, p—that determines the number of earlier 
time point values relatively to the predicted value at time t, and q—that determines 
the number of earlier errors, based on which the predicted value is forecasted. The 
i parameter determines the number of differencing that is performed to stationarize 
the time series. The challenge in ARIMA is determining the p, i, q parameters’ 
values, and for that there are algorithms and packages. Recently, some packages 
were developed in the industry that make the use of these ideas simpler and more 
automated (Taylor and Letham, 2017). Although when referring to forecasting it is 
often univariate, there are extensions that enable to employ additional variables to 
perform forecasting based on multivariate time series. 

3 Classification with Time Series 

However, except forecasting there are other tasks often used that consist of fixed 
frequency sampled temporal variables (Fig. 1a,b), such as classification which is 
probably the most important tasks with the growth in temporal data availability. 

Classification of multivariate time series is useful to classify but also to can be 
used to predict based on a sliding window (Schvetz et al., 2021; Itzhak et al., 2020; 
Novitski et al., 2020). However, in classification the main focus and challenge is in 
the extraction of features from the multivariate temporal data, which becomes even 
more complex with heterogeneous temporal variables, as will be discussed in later 
sections. 

In a recent comprehensive study on time series classification (Bagnall et al., 
2016) the authors list the following options for the task of multivariate time series 
classification: using the whole series, in which the values are used as a features 
vector which is fed to a classifier, or similarity measures (Höppner, 2016) that are 
used to compare the time series’ values vector to another vector of time series,
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or a centroid of a class, in which most research had focused on having elastic 
similarity measures (Ratanamahatana and Keogh, 2005; Rakthanmanon et al., 2013; 
Lines and Bagnall, 2014). Intervals, which refers to subsets of the time series, in 
which the best (given some criteria) “interval” may be selected, can be useful as 
features for classification, although using multiple “intervals” is favorable (Lines 
and Bagnall, 2014; Diez et al., 2005). Shapelets are a good example of such 
intervals, which are short subsets of time series that enables to classify the time 
series in a database, based on the similarity of the time series to a Shapelet (Ye 
and Keogh, 2010; Rakthanmanon et al., 2013). Dictionary based, in which the 
frequency of subseries is used to represent the time series; Combinations, which 
refer to combining several approaches for the representation of the time series; and 
Model based, which include, Hidden Markov Models (Kotsifakos and Papapetrou, 
2014), extracting various features for classification, such as Fourier transform, using 
various similarity measures beyond the Euclidean, such as the Dynamic Time 
Warping (DTW), or Shapelets and other. As well as of course with the recent 
increasing use and employment of neural networks methods (LeCun et al., 2015), 
such as Recurrent Neural Networks (RNN) (Hochreiter and Schmidhuber, 1997) 
or as they are often mostly used as Long Short Term Memory (LSTM) networks 
and Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012), on which we 
elaborate later. 

However, before going over neural networks based methods, or in their new 
branding deep learning, we will go over the various methods that were developed 
in the past decades mainly for the purpose of classification. A popular approach 
uses a nearest neighbor classifier, which requires a similarity function to represent 
the proximity between the various time series, as was compared in (Lines and 
Bagnall, 2014) using various similarity measures, in which it was found that DTW 
is the most accurate. Additionally, they had shown that ensembelling NN classifiers, 
having different similarity measures, outperformed each of the ensemble members. 
Further improvements to this approach were made by using other types of classifiers 
(Baydogan et al., 2013; Deng et al., 2013; Bagnall et al., 2016; Bostrom and Bagnall, 
2015) which were found to be more effective than NN-DTW (Bagnall et al., 2016). 

Nevertheless, Fawaz et al. (2019) criticized the community for not using deep 
neural networks in comparison studies of ensemble methods (Neamtu et al., 2018; 
Bagnall et al., 2016; Lines and Bagnall, 2014). The renaissance of neural networks 
in recent years through the employment of GPUs resulting in Deep Neural Networks 
(DNN), or deep learning (LeCun et al., 2015), had made significant improvements in 
classification in some applications, such as image processing. Deep Convolutional 
Networks had revolutionized the field of computer vision (Krizhevsky et al., 2012). 
Following the success of DNNs in computer vision, large amount of efforts in 
proposing various DNN architectures to solve problems in different domains such 
as Natural Language Processing (NLP) tasks, machine translation, learning word 
embeddings (Mikolov et al., 2013) document classification (Le and Mikolov, 2014; 
Goldberg, 2016), and speech recognition (Hinton et al., 2012; Sainath et al., 2013) 
were made.
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The last tasks while not temporal have a sequential nature, which is something 
DNNs can be effective as well, as will see soon. The main advantage of advanced 
DNN architectures, such as RNNs and CNNs, is that they “extract” the features 
through the learning, and there is no need to provide it the features, but this 
also makes the model hard to be explained and interpreted. The most traditional 
architecture for deep learning is a multi-layer perceptron, or a fully connected 
network, in which there are several layers of neurons connected through the layers 
which are modelled by the weights of the neural network. Typically each value in 
the data will be entered as a “feature” input to the network. While such architectures 
can be very effective for classification, in which features that were extracted from 
the data are given as input, for time series, even univariate, they do not capture the 
time, since when giving the values of each time stamp as an input the assumption is 
that they are independent. 

Moreover, such network cannot handle time series having varying lengths. For 
that more advanced architectures were developed or adopted from other tasks to use 
in time series data. Recurrent Neural Networks were designed mainly to predict are 
traditionally applied for forecasting, but their use for classification of time series is 
applied too. Motivated by the successful application of deep Convolutional Neural 
Networks in computer vision and image processing (LeCun et al., 2015), researchers 
have been using them recently for classification of time series (Gamboa, 2017). The 
idea is that multivariate time series, especially fixed frequency sampled, look like a 
two dimensional image. However, unlike in images, the convolution is applied only 
in one dimension (of the time) rather than two dimensions. Convolution can be seen 
as applying a sled filter over the time series. In fact, applying a convolution is like 
applying a moving average with a sliding window of some length. 

Recently, several studies were published showing the successful use of CNN 
in various domains, for example, in Medicine (Yang et al., 2020; Novitski et al., 
2020). Echo State Networks Jaeger and Haas (2004); Gallicchio and Micheli (2017) 
are DNN based architectures that were designed to overcome the limitation of the 
use of RNNs (were designed to predict the value of each time stamp in the time 
series, suffer from the vanishing gradient problem especially on long time series, 
and hard to parallelize) by avoiding the need to compute the gradient of the hidden 
layers. Generative models, in which unsupervised methods, are applied to extract 
features that are later used as features to train a classifier, which are called also 
model based classifiers. These model based classifiers (Bagnall et al., 2016) include 
often auto-regressive models (Bagnall and Janacek, 2014), hidden Markov models 
(Kotsifakos and Papapetrou, 2014), kernel methods (Chen et al., 2013), sequential 
patterns (Fradkin and Mörchen, 2014), time intervals patterns based Moskovitch 
et al. (2015); Moskovitch and Shahar (2015); Batal et al. (2012), and more Längkvist 
et al. (2014). 

The contribution of the deep learning space for the generative model includes 
applying unsupervised learning, such as denoising auto-encoders (Bengio et al., 
2013; Hu et al., 2016). A generative CNN-based model was proposed by Wang 
et al. (2017), Mittelman Mittelman (2015) introducing a deconvolutional operation 
to reconstruct a multivariate time series. Deep Belief Networks (DBNs) were also
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used to model the latent features in an unsupervised manner which were later used 
to classify univariate and multivariate time series Wang et al. (2017); Banerjee 
et al. (2017). Self-predict modelling for time series classification using ESNs to 
reconstruct the time series first, and then the learned representation was utilized 
for classification (Aswolinskiy et al., 2017; Bianchi et al., 2021; Chouikhi et al., 
2018; Ma et al., 2016; Chen et al., 2015, 2013; Che, 2017). A recent comprehensive 
survey on the use of deep learning for applications in human motion detection based 
on mobile or sensor networks Nweke et al. (2018) and generally more on the use of 
deep learning for time series classification can be found in Fawaz et al. (2019). 

4 From Time Point Series to Symbolic Temporal Data 

However, real life observational datasets typically contain heterogeneous multivari-
ate temporal data, as shown in Fig. 1. Most methods cannot incorporate all these 
types of data, and one way to do that is by transforming the time point values series 
is by abstraction. Increasingly it can be seen that more studies transform time point 
series into a symbolic representation, through a process known as discretization, or 
temporal abstraction. 

Discretization is often used in machine learning, such as in classifiers as decision 
trees [Quinlan, 1986] and more, to enable generalization. Using discretization 
transforms continuous variables into a finite symbolic representation, which reduces 
the values spectrum, and increases generalization. Generalization is good for model 
learning and for frequent patterns discovery. However, often before abstracting 
the temporal data, there is a need to decrease the granularity (sometimes called 
dimensionality (Lin et al., 2003)) of the temporal data, for which Piecewise 
Aggregate Approximation (PAA) Keogh et al. (2001) can be used. When using 
PAA it is required to determine a time window, for which a value will be extracted, 
such as the mean value, and accordingly the resulted granularity. For each time 
window a representative single value will be calculated, based on its mean value. 
Note that in many cases the number of values within the time window may vary. 
For example, with spikes data in multielectrode, or due to missing measurements. 
Thus, in addition, to the mean value, which is part of the PAA method, other metrics 
can be extracted, such as the min value, or max, or the number of values measured, 
median and more. The process of transforming the time point value series data into 
a symbolic representation is becoming increasingly popular with the development 
of various discretization methods (Lin et al., 2003; Moskovitch and Shahar, 2015; 
Ramírez-Gallego et al., 2016) which results in symbolic time series (Fig. 2). 

The next step, in which adjacent symbols, having the same symbol, are con-
catenated into symbolic time intervals (shown at the top of Fig. 1), is called 
typically Temporal Abstraction Shahar (1997); Höppner (2002). Although Temporal 
Abstraction often refers to transformation into symbolic time intervals, we will 
refer to it also when transforming into symbolic time series. Figure 2 shows an 
illustration of the temporal abstraction process on a raw time point value series
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Fig. 2 Symbolic Temporal Data. The time point series at the bottom is transformed into a symbolic 
time series, based on the cutoffs. Above its transformation into symbolic time intervals series is 
shown, and at the top its representation after Gradient abstraction 

shown in the bottom. The dashed lines represent cutoffs, based on which the values 
will be discretized into a symbolic representation. These cutoffs can come from the 
domain, when available, such as cutoffs for blood test that determine whether the 
value is in normal, or it is high, or low. When the cutoffs come from the domain, 
it is called Knowledge Based Shahar (1997), alternatively there are various data 
driven discretization methods that can be used, as mentioned in more details in the 
next paragraph. In the example in Fig. 2 there are three cutoffs which result in four 
symbols, or states. At the above illustration the sequence of symbolic time series, 
in which each value was classified into the appropriate symbol and above each time 
point value there is a symbol. As mentioned earlier, the cutoffs can be acquired from 
data driven methods. 

There are quite few types of data driven discretization methods (Ramírez-
Gallego et al., 2016), but only few were designed specifically for temporal data. 
Simple and popular discretization methods are Equal Width Discretization, in which 
the range of values are divided into equal width bin ranges, which results in 
uneven distribution of the values within the bins. Another simple method is Equal 
Frequency Discretization, which results in evenly distributed values in the bins, 
but the ranges width of each bin is different. Among the temporal methods, the 
Symbolic Aggregate approXimation (SAX) is probably the most popular in recent 
years (Lin et al., 2003). SAX includes in its first step the application of PAA, 
and based on the mean and standard deviation of the time series values, states, or 
symbols, are created, which are derived from the gaussian distribution of the values.



478 R. Moskovitch

SAX has later been enhanced to include improvements and was used successfully 
in several tasks (Ueno et al., 2006; Camerra et al., 2010) and applications (Lin et al., 
2003). 

Other discretization methods that were designed for time series are Persist 
(Mörchen and Ultsch, 2005) and TD4C (Moskovitch and Shahar, 2015). Persist 
was developed to enable abstraction that results with the longest time intervals (in 
order to later discover patterns of coinciding time intervals using the TSKM method 
Mörchen (2006), on which we will elaborate in the section about time intervals 
mining). Persist divides the values range into percentiles and having a Kulback– 
Leibler (Kullback and Leibler, 1951) based measure selects the best cutoffs in 
a greedy fashion, when the self-transition probabilities of the symbols are larger 
than the marginal transition probabilities, which guarantees the longest resulted 
time intervals. However, while all the previous methods are unsupervised, the 
Temporal Discretization for Classification (TD4C) (Moskovitch and Shahar, 2015) 
is a supervised method that intends to find cutoffs that result in different distribution 
of the states in the different classes. Thus, ideally most of the values for each class 
will be frequent in different states. For that three measures were used Entropy, 
Cosine Similarity, and Kulback–Leibler (Kullback and Leibler, 1951), in which the 
Cosine performed best. 

Other relevant discretization methods use K-means, and more, which are reported 
in Ramírez-Gallego et al. (2016). Whatever source of cutoffs were chosen, the time 
point values are classified into the appropriate state and a symbolic time series are 
created, as shown in Fig. 2 above the raw time series. As can be seen for each time 
point value there is a symbol among the four states S1, S2, S3, and S4. Another 
way to use the discretized values is by abstracting them temporally, which results in 
symbolic time series, as shown above. At the top, there are two types of Temporal 
Abstraction. The first is State Abstraction, and the second which is above is Gradient 
Abstraction. 

State Abstraction uses the cutoffs, as explained earlier, but here when the 
same states appear adjacently they are concatenated into symbolic time intervals. 
Moreover, when the same symbols have a gap between them (no measurements) 
then it is possible to define an interpolation function Shahar (1997), which means 
defines what is the largest duration between two states having the same value 
(symbol) that we can assume that had the same state during the entire period— 
as can be seen in the last S3 time interval on the right, which is a sort of knowledge 
based imputation. Gradient abstraction classifies the time point values according to 
the first derivative of the last k values series, or of the values in some recent period 
of time. For that several thresholds can be defined, for example, larger than 0, or 0 
or smaller than zero. Obviously, it is better to have instead of 0, some values above 
or below, so, for example, 0 -/+. Additionally, it can be more than three levels of 
gradient abstraction. 

Similar to discretization and state abstraction, also here we can have for each time 
point value its corresponding gradient, which will result in symbolic time series. 
Alternatively, if adjacent symbolic time series having the same gradient value are 
concatenated, we will get symbolic time intervals series, as shown at the top of
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Fig. 2. After explaining how symbolic temporal time series or time intervals data 
can be created, such data can be then analyzed and used for various purposes, such 
as discovery of frequent temporal patterns, which can be further used for several 
purposes, such as temporal knowledge discovery, classification and prediction, or 
clustering, and more. 

5 Mining Sequential Data 

Pattern mining is a popular field within data mining, and to some extent perhaps 
identifies it and is more unique to data mining, rather than other methods that 
can be identified also with machine learning, or generally artificial intelligence. 
Popular methods, such as itemset mining and association rules mining, are useful in 
various domains and put the foundations of this field, although they are not temporal. 
Typically, the task is to discover items that co-occur, or appear together, in basket 
bags, or other collections (Zaki, 2000; Pei et al., 2001; Uno et al., 2004). Agrawal 
and R. Srikant (1994) introduced the AprioriAll algorithm and principle, which still 
holds and useful in sequential or time intervals mining, defining that a pattern can be 
frequent only when its components are initially frequent. Thus, in order to find, for 
example, that the pattern “ab” is frequent, first we have to verify that “a” is frequent 
and “b” is frequent, otherwise there is no chance that “ab” can be frequent. 

Sequential pattern mining to some extent extends itemset mining, in which a 
sequence may represent a multiple itemsets along time (i.e., instead of a single 
basket of items in a record, there are multiple baskets of items ordered sequentially 
in a record along time). Sequential mining (Fournier-Viger et al., 2014) is a private 
case of time intervals mining (which will be discussed in detail in the next section), 
in which the events have no duration, or a single time unit duration, which results 
in a simpler need for temporal relations, including only before (and equal to some 
extent, as will be explained later). Nevertheless, sequential mining will be discussed 
before time intervals mining, since it was developed earlier and it is simpler. 
Sequential data mining is a practical method that is relevant in many potential 
applications, such as click stream analysis, network data, basket analysis, and more. 

It assumes there is a database of sequences of multiple items, such as 
“abg(ab)k(lm)d.” In that example, the items that appear in brackets occur in the 
same time stamp, thus, (ab) occur together after g and before k, and also (lm) occur 
together, but abg at the beginning do not occur in the same time, but a happens and 
then b, followed by g. Thus, the order of the items is meaningful, and each letter, or 
item, is happening in a separate timestamp, while those in the brackets are multiple 
items happening in the same time. Areal life example can be a person who goes 
and buys at the supermarket: first time buys a, then b, then g, and then buys a and b 
together, later buys k, then l and m together, and then buys d. 

Given a database of such sequences, a pattern often will be defined by its 
frequency in the database—based on the number of sequences that contain it, a 
metric called support. When referring to the percentage of the records containing
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the sequential pattern in the entire sequences database, it is called relative support. 
The goal of Sequential Pattern Mining is to discover frequent subsequences, ideally 
interesting, in a database. A subsequence s is frequent, if and only if, support(s) 
. � min_support, for a given minimal support threshold which is determined by the 
user. Having even a small number of types of items results with a large number 
of potential combinations of sequences. For that most of the algorithms focus on 
making the enumeration process and checking whether the patterns are frequent 
as efficient as possible. Quite few algorithms were proposed for sequential pattern 
discovery in the past two decades. Some of the most popular are GSP (Srikant 
and Agrawal, 1996), Spade (Zaki, 2004), PrefixSpan Pei et al. (2004), Spam Ayres 
et al. (2002), Lapin (Yang and Kitsuregawa, 2005), CM-Spam Fournier-Viger et al. 
(2014), CM-Spade Fournier-Viger et al. (2014), and more Fournier-Viger et al. 
(2017); Gan et al. (2019). 

It is important to highlight that all the algorithms have the same output of 
frequent sequential patterns, given a minimal support threshold, but they differ in 
the way they perform the discovery and the corresponding memory and computation 
consumption. In general, there are two approaches for mining sequential patterns, 
the first scans the data ideally once, or more, and then using a candidate generation 
strategy the patterns are extended and discovered when above the minimal support 
threshold. Another approach is called often project-based, in which initially the 
single symbol patterns are discovered, and for each pattern a projected database is 
created, which is further mined for extended patterns. Additionally, some perform 
the patterns discovery in a breadth-first search approach and other in a depth-first 
search approach. 

For example, GSP (Srikant and Agrawal, 1996) first scans the entire database 
for one-sized sequences, then 2-sized sequences are generated, followed by 3-sized 
sequences and so on until no candidates can be generated due to lack of support. 
Thus, for example, having a database with 3 symbols A, B, C that are frequent, we 
will have to generate all the potential candidates containing two symbols (2-sized 
sequences), including: . < aa >,< ab >,< ac >,< ba >,< bb >,< bc >

,< (aa) >,< (ab) >,< (ac) >,< (ba) >,< (bb) >,< (bc) >,< (ca) >,<

(cb) >,< (cc) >. Note that .< ab > and .< ba > are different, since they represent 
a different order of these items, but .< (ab) > and .< (ba) > are the same, since 
within the brackets the items happen in the same location in the sequence. For that 
.< (ba) > is cancelled. Meanwhile, typically . < (aa) >,< (bb) >, and < (cc) >

are cancelled, since it is like .< a >, unless the problem is defined in that way that 
such sequences can appear. Later those that are frequent are extended for additional 
symbol and so on, until there is not sufficient support. 

Other algorithms, such as Spade (Zaki, 2000), or other (Pei et al., 2004; 
Ayres et al., 2002; Yang and Kitsuregawa, 2005; Fournier-Viger et al., 2014), 
perform depth-first search, starting with the one-sized sequences, and proceed 
with their extended larger sequence, when they are frequent. Often the number 
of sequences combination is very large, and for that the use of the AprioriAll 
principle is very effective to prune candidates, whose components are not frequent. 
A detailed discussion on the sequential patterns discovery algorithms can be found
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elsewhere (Fournier-Viger et al., 2017). Additional types and related definitions 
for sequential patterns mining include Closed Sequential Patterns and Maximal 
Sequential Patterns. Closed sequential patterns are patterns, who do not have super 
patterns (extended patterns of them) that have the same support. 

Some algorithms discover closed patterns, since they include the information 
also for the sub-patterns of a closed patterns and that way the output is smaller, 
since there is no need to print the sub-pattern’s information. Maximal sequential 
patterns are those that are not included in longer patterns. Since often a sequential 
patterns discovery process can be long and have many discovered patterns, it can 
be performed with constraints to limit the output only for patterns that correspond 
to the user constraints’ criteria. Several constrains were proposed, such as having a 
minimum and maximum time between events (Yun and Leggett, 2006; Fournier-
Viger et al., 2008). Pei et al. (2006) investigated the incorporation of items 
constraints, which means defining which items should or should not be included 
in the pattern, as well as minimum/maximum number of items per pattern which 
defines the length of the pattern. 

They also proposed aggregated constraints on process of items in sequences, 
based on their average, minimum, maximum, sum, and standard deviation of prices. 
Except long runtime, and many discovered patterns, another typical challenge with 
sequential patterns is that they discover only “positive” sequences—the sequences 
of items that exist, but we do not know about those that do not exist, or at least not 
for sure. Thus, a negative sequential pattern is a pattern containing the negation of 
at least one item (Zheng et al., 2009; Dong et al., 2018; Cao et al., 2016; Hsueh 
et al., 2008; Wang, 2019). Mining negative sequential pattern is more challenging, 
since it includes more potential candidates and the search space becomes larger. 
However, one of the most challenging topics of sequential mining, and generally in 
patterns mining, is the ability to choose the most important patterns. For that various 
strategies were proposed to favor specific frequent sequences, such as weighting 
the items (Chang, 2011; Ren et al., 2008; Yun and Leggett, 2006), or including 
the quantities of the items in their utility (Ahmed et al., 2010; Lan et al., 2014; 
Alkan and Karagoz, 2015). Other measures were proposed in order to favor frequent 
sequences, when are used as features for classification (Fradkin and Mörchen, 
2014) on which we will elaborate in the section about temporal patterns based 
classification. 

6 Mining Time Intervals Data 

Mining symbolic time intervals are a relatively young research field. It was mostly 
sprung during the past two decades, starting with databases of raw symbolic time 
intervals, and later with the use of abstracted time series. Earlier methods looked 
for simple relations, such as containment (VillafaneRoy et al., 2000),  but most of  
the methods use some subset of Allen’s temporal relations Allen (1983). Allen 
has proposed seven temporal relations: before, meet, overlap, starts, finished by,
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and equal, and their inverse (for example, B after A, instead of A before B). 
As was criticized by Mörchen (2006) these suffer from “crispiness” and being 
sometimes over-detailed for knowledge discovery purposes, however, so far, most 
of the methods use Allen’s relations. For that a more flexible version was proposed 
(Papapetrou et al., 2009; Moskovitch and Shahar, 2015). One of the earliest studies 
in the area is that of Villafane et al. (2000), which searches for containments of 
time intervals in multi-symbolic time interval series. Kam and Fu (2000) were  
the first to use all of Allen’s temporal relations to compose frequent time interval 
sequences, which they called A1. A1 represented the temporal relation from the 
current sequence, or pattern, to the next symbolic time interval. However, such 
representation was ambiguous, since the temporal relations were defined only 
among the pairs of successive intervals. 

That had left the temporal relations among the time intervals ambiguous which 
could fit a disjunction of temporal relations (shan Kam and Fu, 2000; Moskovitch 
and Shahar, 2015). Höppner (2001) was the first to define a non-ambiguous 
representation of time intervals patterns that are based on Allen’s relations, by a k. 2

matrix, to represent  all of the  pair-wise  relations  within a k sized  Time  Intervals  
Related Pattern (TIRP). While Hoppner had used a full matrix to represent the 
temporal relations, which was redundant, since it used both Allen’s relations and 
their inverse, the following methods used only a half matrix. Thus, a TIRP was 
defined by the sequence of the symbolic time intervals and the conjunction of the 
temporal relations among each pair of time intervals. 

Papapetrou et al. (2009) proposed a hybrid approach H-DFS, which combines 
first indexing the pairs of the symbolic time intervals and then mining the extended 
TIRPs in a candidate generation fashion. Papapetrou et al. used only five temporal 
relations: meets, matches (equal, in terms of Allen’s relations), overlaps, contains, 
and follows, similar to Allen’s temporal relations, and introduced an epsilon 
threshold, to make the temporal relations more flexible. 

ARMADA, by Winarko and Roddick (2007), is a projection-based time intervals 
mining algorithm that uses a candidate generation and a mining iterative approach. 
In each time a pointer projected database is created, but the algorithm runs through 
the entire records each time till the end, which can make it slow with long records 
databases. Wu et al. (2007) proposed TPrefixSpan, which is a modification of 
the PrefixSpan sequential mining algorithm (Pei et al., 2001), for mining non-
ambiguous temporal patterns from time interval based events. They refer to the 
time intervals as a sequence of state-time and end-time time points and implement 
a sequential mining approach. Patel et al. (2008) introduced IEMiner—a method 
inspired by Papapetrou’s method, which extends the patterns directly. Patel et al. 
(2008) had compared their method runtime to TPrefixSpan yi Wu and Chen (2007) 
and H-DFS (Papapetrou et al., 2009) and found their method to be faster. 

Moskovitch et al. introduced the KarmaLego algorithm (Moskovitch et al., 
2015; Moskovitch and Shahar, 2015), which extends TIRPs directly, having a data 
structure that generates candidates each time with a symbolic time interval and 
a temporal relation, and exploits the transitivity property to generate candidates 
efficiently. Using the transitivity of the temporal relations enables an efficient
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candidate’s generation, to avoid naïve candidate generation of candidates that cannot 
exist in reality and contradict the relations of the extended TIRP. KarmaLego was 
found faster than H-DFS, IEMiner, and ARMADA (Moskovitch and Shahar, 2015). 

However, until KarmaLego (Moskovitch and Shahar 2015, 2015) time intervals 
mining algorithms were incomplete. In order to discover the complete set of frequent 
patterns, it is essential to discover the entire set of occurrences of the patterns (within 
the same entity) (Moskovitch and Shahar, 2015). Previous algorithms referred only 
to the discovery of the first instance of a symbolic time interval, or TIRP’s instance, 
which means that many instances of potentially frequent TIRPs were not accessed, 
and as a result extended TIRP’s instances were missed and their frequency was 
lower than it is in practice. Recently Harel and Moskovitch (2021) had introduced 
TIRPClo, an efficient algorithm for the complete discovery of only the frequent 
closed TIRPs, a compact subset of all the frequent TIRPs based on which their 
complete information can be revealed. The algorithm utilizes a memory-efficient 
index, and a novel method for data projection, which makes it the first algorithm 
to guarantee a complete discovery of frequent closed TIRPs. This completeness 
problem exists also with many of the sequential patterns mining algorithms, but, 
for example, SPADE does it properly. A detailed explanation on the topic of 
completeness in TIRPs discovery algorithms is in (Moskovitch and Shahar, 2015). 
Other methods for time intervals mining were proposed, which either do not use 
Allen’s temporal relations (Mörchen, 2006) or use only a subset of these relations 
(Sacchi et al., 2007). 

7 Temporal Patterns Based Classification 

Using patterns as features for classification started already with the use of “static” 
patterns such as itemsets, or association rules, and then experimented also with 
sequential or time intervals patterns. Frequent pattern mining discovery has been a 
subject of focus in data mining research with many approaches. For mining various 
kinds of patterns including itemsets (Liu et al., 1998; Han et al., 2000), sequences 
(Tseng and Lee, 2009; Fradkin and Mörchen, 2014; Zhou et al., 2016), and TIRPs 
(Patel et al., 2008; Batal et al., 2012; Moskovitch et al., 2015; Dvir et al., 2020; 
Schvetz et al., 2021; Novitski et al., 2020; Itzhak et al., 2020). Many association 
rules based classifiers were proposed by using efficient association rules mining 
algorithms, such as Apriori (Agrawal and Srikant, 1994), FP-growth (Han et al., 
2000), and more. Studies employing frequent sequences for classification were 
proposed in the last decade (Cheng et al., 2007). Then, typically a feature selection 
method was applied on the frequent patterns and a model was induced. For that some 
studies propose suitable features, or in that case sequence, selection methods, such 
as MMRFS (Cheng et al., 2007) that is based on relevant and redundant measures 
of the patterns, FeatureMine (Lesh et al., 2000) which is a scalable feature-mining 
algorithm that uses sequences mining techniques to choose patterns that are useful 
for classification.
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Tseng and Lee (2009) proposed the Classify-By-Sequence (CBS) algorithm to 
classify large sequence datasets, which classifies by assigning a classification score 
that consists of combining metrics such as support, confidence, and pattern’s length. 
BIDE-Discriminative (Fradkin and Mörchen, 2014) uses class information and the 
Information Gain measure for direct mining of predictive sequential patterns in 
runtime. 

Quite simultaneously several studies had proposed the use of time intervals 
related patterns as features for classification (Patel et al., 2008; Moskovitch and 
Shahar, 2009). Patel et al. (2008) were the first to use the discovered TIRPs for 
the classification of multivariate temporal data. They introduced two versions of the 
IEClassifier, Best_Confidence, in which the class having the highest confidence is 
selected, while in the Majority_Class, the class to which the majority of the patterns 
discovered belong is assigned, which outperformed the other classification methods. 

Batal et al. (2012) presented the Recent Temporal Pattern (RTP) mining frame-
work, which mines frequent temporal patterns backwards in time, starting from 
patterns related to the most recent observations. The results shown that the recent 
TIRPs were more predictive than the other TIRPs. The KarmaLegoSification 
(KLS) framework (Moskovitch and Shahar, 2015) proposed using TIRPs, after 
experimenting with several state abstraction methods and number of states. Based 
on the KarmaLego’s complete process of TIRPs discovery, more than binary 
representation of the TIRPs is enabled. It introduces novel metrics, such as the 
Horizontal Support which refers to the number of instances discovered for a specific 
entity (i.e., patient), or Mean Duration, which represents the average duration of the 
discovered instances in a specific entity (i.e., patient’s records). Their results shown 
that using 3 more general relations, than Allen’s relations performed better, and the 
mean duration was better than the horizontal support. Later the supervised Temporal 
Discretization for Classification (TD4C) was introduced that shown to outperform 
SAX and EWD (Moskovitch and Shahar, 2015). 

A recent study introduced Maitreya (Moskovitch et al., 2017) a framework that 
discovers TIRPs only from the cohort of patients having the outcome event. The 
results shown that representing the TIRPs using the horizontal support outperformed 
the binary and mean duration representations. 

8 Discussion 

Heterogeneous multivariate temporal data is becoming increasingly available and 
accessible in many domains, spanning from internet and cellular usage, through 
medical data whether from wearable devices, or outpatient and inpatient data, 
satellites, autonomous cars, and more. This provides significant opportunities for 
more understanding of various processes in various domains. When using temporal 
data, several tasks are often of interest: forecasting, in which based on recent 
series of measurements a future value is predicted; or clustering of time series 
to find groups of similar time series, for which similarity formulas are required;
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classification based on a period of time; or prediction of a future outcome within 
a given observation time period, based on a time window, using a classifier, 
continuously. The main focus in most of these tasks is which type of features to 
extract, for which various types of features were proposed, from explicit features, 
such as shapelets, or other types of temporal patterns, like Markov chains, sequential 
patterns, time intervals patterns and more, to deep learning based architectures that 
learn the “features” by themselves. 

Temporal knowledge discovery is another task, in which using various models, 
and frequent temporal patterns the way processes develop along time can be 
revealed. A main challenge in such tasks is given a specific event, such as an 
outcome of interest, to model the data that evolves towards the event, for which 
visualization is required to facilitate an expert that explores the findings. 

A meaningful challenge with multivariate temporal data is their heterogeneity, 
especially with observational data, which is used for secondary analysis, as shown 
in Fig. 1. For that a transformation has to be applied, to enable to merge the use of 
time point values and other types of variables whether represented by events that 
may or not varying have duration. One of the options is decreasing the granularity 
of the data along time using methods such as piecewise aggregate approximation, 
and extracting more than the mean value as commonly done, which will result in 
multiple series. Another option is to impute data, which is a challenge for itself, 
especially when there are a lot of missing data, and there is also an option of 
abstracting the data, as was presented here above using state or gradient abstraction. 
There is much open room for contributions in the way to analyze multivariate 
heterogeneous temporal data. 

Another important topic in temporal data analytics is temporal knowledge 
discovery through the discovery of frequent temporal patterns. Most of the methods 
discover frequent models from univariate temporal data, but other can discover 
patterns from multivariate temporal data. Sequential patterns mining enables to 
discover patterns from symbolic events, which is a research field that was intensely 
researched. A more complicated version that was discussed in this paper is time 
intervals related patterns discovery, which sequential mining is a private case of. 
TIRPs discovery was relatively under researched and stores a great potential in 
representing heterogeneous multivariate temporal data (Fig. 1), after performing 
temporal abstraction to transform the data into a uniform representation of symbolic 
time intervals. TIRPs describe the temporal relations among the various variables 
whether they are represented by raw events that may have varying durations, or 
symbolic time intervals that are the result of state or gradient abstraction, which 
may reveal their temporal relations along time. Often there will be interest in TIRPs 
that end with some event of interest, and there may be several TIRPs like that. This 
field has still room for contributions. As mentioned earlier, most of these algorithms 
are incomplete, and the use of TIRPs can be further exploited, beyond the use as 
features for classification and prediction, which was done mainly so far.
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Cloud Big Data Mining and Analytics: 
Bringing Greenness and Acceleration 
in the Cloud 

Hrishav Bakul Barua and Kartick Chandra Mondal 

1 Introduction 

Classical data mining algorithms have been very successful in almost all the fields of 
science and technology ranging from medical analytic or space sciences. The clas-
sical concepts of data mining are centered around four main paradigms: Descriptive 
(Clustering), Associative (Associative Rule Mining), Discriminant (Classification), 
and Predictive analysis (Regression). However, with the growing amount of data, it 
is becoming extremely difficult to manage and process it. Retrieving information is 
also becoming a headache. So, people are moving towards distributed and parallel 
computing paradigms [8]. But, using such paradigms in a standalone system can 
be another challenge in terms of scalability and cost-effectiveness, so the concept 
of data mining in the cloud has come up in the last decade [8]. The paper [8] has 
summarized the recent applications, trends, techniques, algorithms, and frameworks 
in cloud data mining and big data mining in the cloud. 

Now, is this enough? Certainly not! The way in which data is exponentially 
increasing, simply harnessing the sea of resources (compute, storage, etc.) available 
in the cloud even may not be just enough. So, researchers are keen in finding 
alternatives and effective solutions to this data outburst or we can say “data 
apocalypse.” Graphics Processing Units (GPUs) are the most important hardware 
assets in this respect. GPUs are a special kind of CPUs which are designed for 
parallel computing and specifically used to alter memory in a very rapid manner. 
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Fig. 1 The general architecture using GPUs, QC, AC, and NPUs for achieving acceleration and 
greenness in big data mining, analytics, and machine learning 

They are designed for processing graphics related calculations in an efficient 
fashion. GPUs are being used for various data mining and machine learning tasks 
for accelerating the entire process of analytics and mining [9]. 

Approximate Computing (AC) or In-exact Computing is a computing paradigm 
that trades off energy in return of accuracy of results. Some applications which 
involve visual data processing, audio signal processing, big data mining and such 
other applications do not need exact computational results most of the time. A bit 
of deviation in results may always be accepted and awarded in terms of time and 
energy savings. Some works are well in place which gives the idea of AC and its 
use in big data analytics and mining related tasks [32, 7]. 

Quantum Computing (QC) is a buzz word in the today’s computing community. 
The concept of QC is based on the superposition of states of a computer (other 
than 0 or 1). The quantum computers can solve many computing-intensive problems 
in a much lesser time than their classical counterparts. Data mining and machine 
learning techniques are well set to utilize this paradigm as and when it grows and 
keeps on maturing with time [52]. Its popularity has grown to such an extent that a 
journal named “Quantum machine intelligence” (on quantum artificial intelligence) 
[2] has been started by Springer Nature recently. 

Figure 1 is a depiction of the cloud-based holistic architecture for big data mining 
and machine learning using the above discussed technologies. The innermost layer 
is the cloud computing paradigm in blue color. The middle layer is the combination 
of cloud-based service and hardware systems consisting of GPUs, NPUs, AC 
facilities (in the form of hardware and software) and QC facilities (in white eclipse). 
The outermost layer is the combination of big data and machine learning-related 
algorithms and tasks for the user to invoke (in green eclipse). Then finally comes 
the cloud service users which have the big data to be mined or analyzed or use the 
data for learning purpose. 

The main motivation of this chapter lies in the fact that big data is growing even 
bigger and bigger. Its not convenient to rely entirely on cloud computing resources.
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So, we have to rethink the wheel and reinvent the way big data can be managed and 
processed for the various applications. The current literature do not bring the three 
above mentioned technologies (GPU, AC, and QC) into one paper for discussion and 
understanding their capabilities in terms of big data mining and machine learning. 
We want to put these three mentioned technologies under one umbrella for the 
researchers to have an easy access and guide of the scenario. This will help the 
researchers to delve deeper into these areas and come up with efficient data mining 
for big data and machine learning tasks in future generation cloud systems. We have 
also commented on the future prospects of these technologies and some other new 
technologies in the Sect. 6. 

This chapter is managed into the following sections. Section 2 gives us a short 
overview about the concept of data mining in big data paradigm and analytics in 
cloud environments. The various elements involved in data mining in the big data 
paradigm has been discussed. We also discuss, why cloud alone is not sufficient 
to handle the data outburst of today. Section 3 summarizes the recent works 
related to the use of GPUs in big data mining and machine learning. Section 4 
puts forward the concept of AC and its uses in various machine learning and 
big data analytics related applications. Section 5 gives some recent works on QC 
and its applications and implementations in big data and machine learning-related 
algorithms and techniques. Finally, we comment on the three said technologies (AC, 
QC, and GPUs) and their impact on big data as a whole in Sect. 6. We also talk about 
future research directions in each of the technologies with some new additions of 
concepts and methods in cloud related environments. We have also commented on 
a new technology called Neural acceleration or Neural Processing Units (NPUs). 
This can be explored to get benefits as per the current literature. The chapter has 
been concluded with a short summary in Sect. 7. 

2 Big Data Mining and Analytics in the Cloud 

Data mining has been an important task in many areas of computing for many 
years. Many multi-disciplinary fields are also highly impacted by data mining and 
analytics. Data mining simply is the mining of data or discovery of knowledge from 
structured, semi-structures unstructured data. Now, data analytics is a broader term. 
It is the process of extraction, cleaning, transforming, modeling, and visualizing the 
data to find meaningful information and further draw inferences and conclusions out 
of it. It also involves active machine learning in this process. We define it as follows: 

. 

Data Analytic = Data Extraction + Data Cleaning + Data T ransf orma

tion + Data Modeling + Data V isualization + Inf erence + Conclusion

(1) 

But as the need for more computing power arises, we cannot be sufficient with 
general computing techniques and methods in our conventional server/workstation
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setups. So, the solution to this problem is the paradigm shift towards cloud 
computing. Data mining in the cloud is the concept of performing data mining tasks 
in a cloud or cloud-like setup. By cloud-like setup, we mean that we have access to 
a considerably huge amount of resources in the form of storages, compute nodes, 
network infrastructure, and other related services. And, this is what we call big data 
mining in the cloud. The knowledge mined from data is bigger and more complete 
if the data to be mined is bigger. 

.Big Data − > Big Knowledge + Big Intelligence + Big Cognition (2) 

The need for big data mining and analytics is evident in many applications. 
Mostly, for the applications related to cognition, intelligence, and prediction, data 
plays a very big role and big data is icing on the cake itself. The benefits of big data 
can be realized in the form of big knowledge and big Intelligence. But the issues of 
big data are volume, velocity, variety, and veracity. 

But is cloud sufficient to handle these features of big data [8]? We have to use 
some other technologies other than general cloud resources. We have identified 
three relevant technologies (GPU, AC, and QC) to achieve efficiency and efficacy 
in cloud data mining and analytics though we do not claim this is the exhaustive 
list of the technologies available for this purpose. The different advantages of 
using these technologies can be represented in Eqs. 3, 4, and 5. Also,  some  
feasible combinations of technologies for future explorations and implementation 
are shown in Eqs. 6, 7, and 8. Even we can harness the combination of all these 
three technologies for big data mining, analytics, and machine learning to achieve 
greenness, acceleration, and efficiency in a cloud-based setup as shown in Eq. 9. 

. Acceleration in big data mining − > Big data in (GPU+cloud computing)

(3) 
. Greenness in big data mining − > Big data in (AC + cloud computing)

(4) 
. Eff iciency in big data mining − > Big data in (QC + cloud computing)

(5) 

. 

(Acceleration+Greenness) in big data mining − > Big data in (GPU

+AC + cloud computing)

(6) 

. 

(Acceleration+ Eff iciency) in big data mining − > Big data in (GPU

+QC + cloud computing)

(7)
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. 

(Eff iciency +Greenness) in big data mining − > Big data in (QC + AC

+cloud computing)

(8) 

. 

(Acceleration+ Eff iciency +Greenness) in big data mining − > Big

data in (GPU +QC + AC + cloud computing)

(9) 

3 Graphical Processing Units (GPUs) and Cloud Big Data 
Analytics 

GPUs are specifically designed for graphics related operations. These specialized 
units have many smaller processing units/threads. They are best suited for doing 
parallel processing of complex mathematical operations such as matrix operations. 
Until the recent past, these GPUs have been used for video rendering and multi-
media or graphics processing specifically. But, people argued that such powerful 
processing units may be used for other computations in general rather than just 
using them in graphical utilities such as video rendering, games, and others. Hence, 
comes the concept of General-Purpose GPU (GPGPU). Figure 2 shows a typical 
cloud-based GPU setup to accelerate big data mining and analytics related tasks. 
We can see, the compute and Data intensive code parts are delegated to the Multi-
core GPUs and the other parts are processed in CPUs in the cloud. The GPUs help 
in accelerating the relevant code segments and process data in a much faster manner. 

The paper [54] studies the uses of GPUs in data intensive applications using 
map-reduce and other graph processing technologies. The authors report their 
experiences with developing various platforms for data intensive applications and 
prototypes for the same purpose. Another article [47] is a survey of usage of 
GPGPUs for cloud frameworks for data intensive computations like big data 
processing, mining, and analytics. This paper also suggests CPU-GPU based hybrid 
techniques for future exploration by the interested researchers. The authors think 
that it has a huge prospect in cloud-based big data processing and analytics 
activities. Another paper [11] has surveyed the use of GPU based systems and 
computing paradigms on large-scale general data mining or big data analytics tasks. 
It discusses the GPU architectures necessary for handling high volume, velocity, 
and variety of data. Finally, it discusses the limiting causes for proper scalability of 
such systems in the cloud and some notes on future directions and open research 
challenges. The forthcoming paragraphs give some of the major contributions on 
the usage of GPU, Multi-GPU systems and GPGPU systems in big data mining, 
analytics, and machine learning. Other GPU-CPU hybrid techniques used for big 
data mining in the cloud or related environments have also been mentioned.
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Fig. 2 The general architecture for using GPUs in Cloud Big Data Analytics 

In [55], Zhong et al. put forward a GPU based method, G2 for graph processing 
in the cloud. They have implemented three GPU related optimizations: 

• The first one being some APIs to facilitate the gigantic amount of threads in 
GPU parallelization. 

• The second is the introduction of a load balancing method for CPU/GPU 
architectures using graph partition. 

• Thirdly, a memory management system is being incorporated transparently in 
GPU. 

A task scheduling strategy for high throughput in the form of graph tasks using 
concurrent kernel executions is also implemented. Amazon EC2 virtual cluster of 
eight nodes is being used to perform experimentation. It shows the efficacy of using 
GPU acceleration in graph processing tasks in the cloud. 

Hai Jiang et al. in [22] puts forward a multi-GPU solution to Map-Reduce 
(MGMR) which can be used for heavy data processing. This is advantageous over 
single GPU options too as it eliminates the memory limitations of a single GPU 
based system. It also avoids atomic operations for acceleration of the entire process. 
The experimental results have shown the efficacy of these techniques using GPUs 
in handling huge data in the cloud. Again, [12] gives us an advanced version of 
MGMR, aMulti-GPU pipelined system (PMGMR) to attend the memory limitations 
of a simple multi-GPU system and high computational demands for big data. The 
system has the capacity to use features such as streams and Hyper-Q. PMGMR 
is 2.5 times more improved and efficient in terms of performance. Due to this, its 
scalability factor increases a lot and user can use it in a simple manner to write map-
reduce related codes effectively. Yet another improvement over the above two GPU 
basedMap-reduce systems is researched in [23]. MGMR++ is optimized for big data 
processing and analytic. This system even uses hard disks memory when the CPU
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and GPU memory gets exhausted. This system also has a 2.5 times improvement in 
performance compared to MGMR [23]. 

Authors in [1] propose a very interesting service for the cloud from the 
perspective of big data and related services. DaaS (Data as a Service) for analytics 
of real-time data using GPUs is the main contribution of this paper. This system is 
optimized for network data, customer data, and user data which are obtained from 
data centers and cloud-based systems. The pre-processing module of the DaaS is 
GPU enabled for fast and efficient processing and accelerating the entire process. 
The model is being experimented on huge spatiotemporal data using clustering, 
self-organizing maps, and neural networks. The promising results suggest that DaaS 
using GPU can help in achieving SLA (Service Level Agreement) and QoS (Quality 
of Service) with great efficiency. 

The paper [28] is focused on GPUs for machine learning (ML) applications 
in the cloud. Virtualized GPU techniques have been used as High-Performance 
Computing (HPC) method. The two main methods referred to are using Hypervisors 
and vendor-provided virtual GPU technologies. The paper compares results using 
virtualized GPUs and also by allowing other applications such as 3D-graphics 
related tasks so as to utilize the computing power in an efficient manner. Some 
bench-marking ML applications using TensorFlow have been selected for showing 
scaling between one and multiple GPUs setup. The paper also compares the 
performance of the two selected virtualization methods. In the end, the paper 
suggests that it is better (in terms of execution time mitigation) to run ML tasks 
and other typical GPU tasks together in a mixed fashion rather than running them 
individually. 

A very beautiful comparison of non-GPU and GPU enabled big data clustering 
process is put forward in [3]. The paper uses a multi-CPU spark system and a 
multi-GPU TensorFlow enabled system for unsupervised big data learning. The 
later shows a 5–12 times improvement in time over the former. Jun Wang et al. 
in [48] states the issues with the big data pre-processing tasks. These tasks typically 
take huge time and computing power in identifying the multi-level hierarchy in big 
data. Also, current data have very high dimensionality and it is difficult to scale 
learning algorithms in such a situation. So, there is an ardent requirement to device a 
scalable solution to create a tree structure for big data. Incremental K-means is used 
to serve this purpose. Dimensionality reduction is also incorporated as a part of pre-
processing. The underlying architecture used is CUDA (Compute Unified Device 
Architecture), so as to facilitate big data requirements. It has proved efficient with 
real-world data after visualization using a dendrogram. 

The research in [25] captures the problem of scalability in Evolutionary Decision 
Trees (DT). It is a hybrid approach of CPU+GPU computing, where the tree 
structure is searched in a sequential manner in CPU and the fitness is calculated 
in GPU. As a result, the process is accelerated by thousand times using 4 GPUs 
while using a data-set of about 1 billion objects. Youcef Djenouri et al. [15] exploit 
the prospects of GPU cluster computing. Frequent item-set mining in a single scan 
has been chosen for the experiment to reduce time complexity. The authors have 
proposed a total of three HPC based techniques for the purpose. The first one uses
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a GPU based method to efficiently map thread blocks to input blocks. In the second 
method, a cluster architecture is used to schedule jobs independently to workers 
belonging to that cluster. The third one is a multi-cluster architecture consisting 
of GPUs to accelerate the frequent item-set mining task. Apart from these, several 
strategies have been incorporated for GPU thread to reduce divergence and load 
imbalance in clusters. The third technique has been seen to outperform the first 
and the second one in speedup parameters, specifically 350 times faster for low 
minimum support from big data perspective. 

The paper [5] puts up an interesting method of road traffic incident prediction 
using a huge amount of data with deep learning methods on GPU platforms. 
The deep learning method uses three different types of data: road traffic-related 
data, vehicle detector station, and incident data. These data are taken from Cali-
fornia Department of Transportation (Caltrans) Performance Measurement System 
(PeMS). The research published in [13] focuses on the utility of big data mining on 
the Internet of Things (IoT) related applications. The authors have used a GPU-
aware architecture using Histogram-based segmentation of moving objects. The 
method takes into account the pixel oriented approach pertaining to GPUs (called 
pixHMOS_gpu). The experimentation has proved the efficacy of this technique 
bridging the gaps of computational bottleneck often associated with IoT based 
systems for big data processing and mining. 

Patryk Orzechowski et al. [34] give an efficient bi-clustering method for high 
volume big data using GPUs. Evolutionary search-based bi-clustering (EBIC) has 
been implemented successfully using multi-GPUs for achieving high scalability. 
The applicability of this method can be found in RNA-sequencing related experi-
ments. The paper [18] uses CUDA enabled GPUs for performing complex binary 
bi-clustering in data mining applications. The authors present CUBiBit to accelerate 
the binary bi-clustering tasks by using CPUs and GPUs and CUDA architectures. 
The experimental results depict its amazing speedup of 116 compared to the current 
method BiBit having 16 CPU cores and three NVIDIA K20 GPUs. GPU based 
CUDA processing architectures for spatial data mining is discussed in [33]. The 
spatial data here consists of spatial and non-spatial attributes. So, it is difficult to 
process and mine such data with general processors or even parallel processing 
units. The author has proposed a CUDA based architecture for the same where the 
experiments have been conducted on TIGER/Line data from US census. The results 
have displayed the superiority of this technique for spatial data mining applications. 

4 Approximate Computing (AC) and Cloud Big Data 
Analytics 

Approximate computing or In-exact computing is a technique for trading off result 
accuracy with speed and energy. It has been successfully used in many domains 
ranging from machine learning to financial data analysis. Big data is a very strong
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Fig. 3 The general architecture for using AC in Cloud Big Data Analytics 

and important target for AC as big data does not always require exact analytics 
output but needs a summary of the output. Losing a few data items of big data 
while performing analytics will not impact the final result of mining and analytics. 
A very small change in the data often does not have the caliber to change the 
meaning of the predicted value or shift its importance [32]. Some recent articles 
[32, 7] state the techniques and applications of AC used in big data and machine 
learning perspective in the cloud and related distributed platforms. The remainder 
of this section discusses the usage and applications of AC in big data mining and 
machine learning in cloud environments. Figure 3 gives an idea of the architecture 
for using AC techniques atop cloud data mining or analytics frameworks. The 
major techniques are task/job skipping, memoization, and memory skipping. Data 
sampling can also be applied to cut down unnecessary data and use only a small 
subset of it for further processing without much change in the mining output. 

Shuai Ma et al. [31] put forward the case of big data analytics and its applications 
in today’s world. Big data analytics need huge computational and storage power. To 
harness the optimal solutions from big data it is necessary that a huge amount of 
computing is devoted. But in that case, the efficiency of the systems may degrade as 
the data increases. So, if the optimal solution is replaced with some “good enough” 
solution which is acceptable than it is a desirable situation for all. Techniques such 
as approximate query processing and data approximations are being employed in 
big data analytics. Basically, the query approximation technique has been used in 
pattern matching in graphs, compression of trajectory and computations of dense 
sub-graph. Moreover, the data compression technique has been used successfully in 
shortest path computation, network anomaly detection, and link prediction in graphs 
for social media analytics. 

Barua et al. [6] have proposed a method using loop perforation technique of 
AC in association rule mining. The new approach cuts down the execution time 
of the mining task with a loss of accuracy in finding the rules which is acceptable 
in case of big data volumes. This method can be implemented in parallel systems 
such as a cloud to attain more efficiency and performance improvement. In [4], 
authors address the issue of dependency on big data mining results on data variety 
and its impact on using AC. Using AC when the data is big but variety is low is a
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trivial task as per the techniques available nowadays such as sampling, memoization, 
task skipping, etc. But the same thing, if used in high variety big data-sets, can be 
disastrous as skipping data from a certain part of such big data may skip a whole 
lot of a variety from it causing unacceptable results. So, the paper [4] has proposed 
Gapprox, which is a data variety aware system for approximate computing. The 
method used is a sampling technique after clustering the data into relevant buckets 
using intra/inter-cluster distance. The size of the blocks and samples are optimized 
for Quality of Result and acceptable confidence and error bound. The experimental 
results show that it outperforms ApproxHadoop [17] by 17x speedup and Sappox 
[53] by 8x with 5% error tolerance by a user with 95% confidence. 

The authors of [17] have put forward an approximate version of the map-reduce 
paradigm (ApproxHadoop) using task skipping or dropping and data sampling 
methods. The error bounds for various map-reduce programs have been theoretically 
determined using statistical formulas. The major applications targeted are data 
analytics, scientific computation, and machine learning. The speedup achieved is 
about 32x if the user is ready to tolerate an error of 1% having 95% confidence. 

Xuhong Zhang et al. [53] have put forward an approximation method for 
arbitrarily chosen sub-data-sets from large data-sets. Generally, if the sub-data-sets 
are uniformly distributed, sampling works pretty well. But for unevenly distributed 
sub-data-sets the sampling efficiency is very low resulting in poor accuracy in the 
estimation. For this reason, a distribution-aware method is required. The logical 
partition of a data-set having sub-data-sets is examined for occurrences. This 
information is used for online sampling. Hadoop is used to implement this method 
called Sapprox. The results show that it is 20x times faster than its precise version. 

A novel approach to approximate computing using a neural network (NN) 
architecture is presented in [35]. The said NN architecture is a combination of two 
NNs, one being the approximator and another is the predictor. The approximator 
gives us the approximate version of the results. The predictor does the quality check 
by determining whether the input data is eligible for approximation for a given 
output accuracy requirement for any application. It is not easy to create such a 
combined NN having two different NNs as there will be coordination issues and 
different optimization objectives. So, AXNet is a combination of approximator 
NN and predictor NN to create a new holistic NN having end-to-end trainable 
capabilities. Multi-task learning is being used in AXNet to find a better and 
higher number of approximable candidate samples. The error due to approximation 
is minimized and training cost is mitigated too. The experimentation with this 
novel NN architecture shows its efficacy in reducing training time and determining 
approximable samples. 

The usage of Spiking Neural Networks (SNNs) for data intensive applications 
such as analytics and vision is discussed in [44]. It is difficult to find adequate 
compute and storage power for large-scale SNNs. Hence, the paper proposes 
AxSNN atop the already proposed parallel version of the same. It is being used to 
improve the computational efficiency of SNNs in general. SNNs work with inputs 
and outputs of neurons which are generally represented as time series of spikes. 
The internal states of a neuron are updated by spikes at the output of a neuron
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which is connected to it. AxSNN leverages the notion of approximate computing 
by skipping neuron updates triggered by spikes considering that it has minimum 
impact on the quality of output. This is done to improve the computing energy and 
memory efficiency. Parameters that are considered for approximating neurons are 
average spiking rates, current internal states of neurons and the weights of synaptic 
connections. Approximate computing on a neuron is attained by making it sensitive 
to a subset of its inputs and sending spikes to a subset of its outputs. The overall 
system is monitored and approximation modes are updated such as the energy 
savings are optimized and quality loss is minimum. It has been tested in the form 
of hardware and software implementations both. These have been tested in many 
image recognition applications and it achieves 1.4–5.5x reduction in operations. 
It is equivalent to a 1.2–3.7x reduction in energy approximately in hardware and 
software implementations without any loss of output. 

The paper [19] puts forward a method for approximating Convolution Neural 
Networks (CNNs) for image processing, big data analytics, computer vision, 
mining, AI and ML related applications. The paper proposes a systematic method 
for checking the error tolerance characteristics of a deep CNN and determines the 
parameters from the set of parameters which can be targeted to improve speed of 
the network in the inference stage. The idea is to cut down the filters as per their 
significance in a convolution layer. This enables a trade-off between output quality 
and speedup. 

Authors in [43] give us a methodology for introducing efficient approximate 
computing in Recurrent Neural Networks (RNNs)—Long Short Term Memory 
(LSTM). LSTMs are generally used for text generation, speech recognition, and 
related application areas. Generally, such applications in a big data perspective 
can be computation-intensive in nature. It is difficult to address such issues with 
distributed, parallel cloud computing setups. To overcome these constraints, the 
authors have proposed AxLSTM (Approximate LSTM). AxLSTM is being used 
in sequence-to-sequence learning using TensorFlow deep learning framework. It 
achieves a speedup of about 1.31x maximum with no loss of accuracy of output and 
1.37x speedup when acceptable reductions in output quality are permitted. 

Do Le Quoc et al. [36] put forward a data analytics system for stream processing 
with privacy preservation. PRIVAPPROX is a system which gives us a low latency 
stream analytics with proper privacy preservation for users. There are many features 
of this framework, but the most important one being the ability to determine the 
optimum trade-offs between output quality with minimizing error and the execution 
cost. It is also reported to have the ability to do real-time stream analytic using 
distributed system setups. The main idea of this framework is the combination of 
sampling and randomized response. Due to this combination of two unique features, 
it is a system with high privacy for users and high performance in terms of execution 
time and energy savings. 

The article [37] aims at presenting a stream processing system with less 
computation and response time achieved by AC. The authors have also taken care 
of error bounds so that the system does not fail with excessive approximation. 
The algorithm is designed in such a way that it can be used with Apache Spark
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batched Streaming and pipeline based Apache Flink as well. StreamApprox is the 
full prototype of the described system atop Apache Spark Streaming and Apache 
Flink. The experimentation on real-world case studies shows that it has a speedup 
of at least 1.2x and a maximum of 3x compared to the classical counterparts. 

The paper [50] targets approximate computing for stream analytics in real-
time for IoT devices. The paper proposes APPROXIOT which employs an online 
hierarchical classified reservoir sampling technique that produces approximate 
output with defined error bounds. Edge computing resources are being used to 
realize this technique. Apache Kafka is being used as the underlying framework 
to implement this method. A set of real-world case studies have been used for 
evaluation, which shows that it attains a speedup of 1.3x–9.9x when the sampling 
fraction is being changed from 80% to 10%. 

The work in [27] gives a data analytics method for incremental approximate 
computing. Incremental computing is based on memoization of intermediate results 
in a multi-step process where the intermediate output is memorized for sub-
computations. AC means skipping jobs or tasks or sampling huge data-sets into 
sub-data-sets for efficient use. The paper explores these two methods by designing 
a sampling algorithm that selects samples on the basis of memoized data from 
previous runs. It is based on a self-adjusting computation that produces output with 
error bounds. It is termed as IncApprox and is based on the Apache Spark Streaming 
framework. The experimentation on real-world case studies confirms the system 
to have used incremental and approximate computing delivering high-efficiency 
benefits. 

5 Quantum Computing (QC) and Cloud Big Data Analytics 

The concept of Quantum computing [39, 14, 30] emerged in 1980. The first quantum 
mechanical model was described by Paul Benioff, showing that theoretically there 
is the full possibility of such a computer. The Quantum computing paradigm is 
not restricted to the two conventional states of a classical computer, i.e., “0” and 
“1.” A quantum computing setup can have a superposition of such states which are 
called qubits. Quantum computing has the ability to solve some computing-intensive 
problems in a much faster manner than their classical counterparts. The paper 
[45] reviews the utility of quantum computing in big data processing and machine 
learning-related applications and its current scenario in the research community. The 
paper discusses Quantum Artificial Neural Networks which we may call as QANN. 
It can speed up the learning process of any conventional neural network by many 
folds. The use of quantum computing in supervised and unsupervised learning is 
being discussed. Big data analytics can be highly improved in terms of speed-up 
with the help of quantum computing. The paper also discusses the challenges and 
future prospects of quantum computing in machine learning and related fields. 

The paper [42] surveys the idea of implementing classical machine learning 
algorithms or their specific computation hungry sub-parts in quantum setups. Most
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Fig. 4 The general architecture of using QC in Cloud Big Data Analytics 

of the stochastic methods can be designed in a way that it can be implemented in 
quantum systems. The paper gives a very clear picture of quantum machine learning 
and puts forward the high-level descriptions of the existing methods and techniques 
along with the low-level technicalities. The paper also comments on the future and 
research prospects of quantum learning theory. Figure 4 conceptualizes the idea 
of QC accelerated mining and analytics in the cloud. The basic idea is the use of 
quantum algorithms on quantum machines in cloud setup which can concurrently 
access the data in hand for processing, analysis, integration, and pattern detection. 

The paper [10] is a review article that speaks about the promises of quantum 
techniques to solve machine learning problems and data pattern mining applications 
more efficiently than classical systems. This is due to the fact that the quantum 
computing paradigm is ought to work in such a way that it can outperform classical 
systems in certain tasks specifically. The new field that has been talked about in this 
article speaks about Quantum Machine Learning (QML) that is dedicated towards 
implementing quantum algorithms and techniques and software which can model 
machine learning systems and programs. But the real challenge in such a scenario 
is the hardware that can support quantum systems and software. 

An idea about how quantum computing can be utilized for big data-related 
technologies is shown in [49]. Big data has seen a tremendous explosion in recent 
years and it is becoming bigger and bigger with each passing day. With such a 
situation it is not possible to rely simply on cloud resources such as parallelism, 
distribution, huge compute power, and storage alone for the sake of better and 
efficient analytics. The main concept of quantum computing allows it to perform 
quantum parallelism and can be very fast as compared to classical systems even with 
cloud support. The paper discusses the Grover search algorithm. Quantum machine 
learning can be used to implement big data analytics through the eye of quantum 
computation. The paper discusses the main applications of quantum computation in 
data mining and related tasks.
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Patrick Rebentrost et al. [38] discuss the implementation of a supervised 
learning technique in quantum computing architecture. Support Vector Machine 
(SVM) has been chosen for this experiment and good results have been achieved. 
Generally, the SVM takes polynomial time complexity in a classical computer. It 
has been implemented in logarithmic time complexity in quantum setup displaying 
an exponential speedup in the process. This big data related SVM technique is 
based on the non-sparse matrix exponentiation technique. Another research work 
[20] discusses the limitations of a machine learning problem considering SVM 
specifically. The feature space determination and its size are the real problems in 
machine learning and these need adequate attention. The quantum algorithms have 
quantum state spaces using entanglement and interference which are really large if 
compared to classical counterparts. The paper proposes algorithms on the basis of 
quantum state spaces which can be used as feature space for ML problems. The 
quantum variational classifier has a variational quantum circuit and the quantum 
kernel estimator can optimize a classical SVM by estimating the kernel function on 
the quantum setup. 

In [41] the prospects of quantum computing in pattern classification of big 
data have been discussed. The conventional machine learning algorithms can 
be enhanced in terms of performance using quantum information theories. The 
paper introduces the quantum pattern classification algorithm and its application 
in handwritten digit recognition from the MNIST data-sets. Article [40] gives us 
a quantum version of K-nearest neighbors (QKNN) using a metric of Hamming 
distance. A quantum circuit is being created and implemented to calculate Hamming 
distances in testing samples and the feature vectors in the training set. The QKNN 
method achieves good performance in terms of complexity and also shows good 
classification accuracy. This method has proven itself to be better than many existing 
methods. 

The paper [46] discusses the idea of offloading a quantum machine learning task 
from a classical computer to a remote quantum computer with proper data privacy 
preservation methods implemented atop it. Distributed secure quantum machine 
learning (DSQML) is a method which is proposed to do the said job. It not only 
offloads ML tasks but also accesses remote data in the database server. A robust 
protocol is designed to prevent any eavesdropping or any hindrance in the learning 
process. The protocol is made for the classification of high dimensional vectors and 
can be a good candidate to be used in big data applications in the future. 

Ashish Kapoor et al. [26] state that the use of quantum computation methods can 
bring about a drastic improvement in the computational complexity of perceptron 
learning. The paper gives two algorithms, one uses quantum information processing 
and another shows that the mistake bound of classical computing can be improved 
by quantum computing. Zhaokai Li et al. [29] show a quantum parallelism based 
machine learning algorithm to implement handwriting recognition. The quantum 
machine which is used for this experiment has a 4-qubit NMR test bench. In today’s 
age of artificial intelligence and big data, such a quantum-based method could be 
very lucrative in the long run.
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The paper [21] gives us a quantum computing approach for image processing 
and computer vision-based applications like object detection. Object detection is 
one of the most important applications in many areas such as surveillance, robotics, 
and many more. The research in this paper presents an automated object detection 
method using quantum techniques. The experimentation results have proved the 
supremacy of such a quantum-based algorithm in object detection accuracy which 
minimizes measurement errors in general. 

Matthew C. Johnson et al. [24] have proposed the marriage of quantum com-
puting devices and distributed computing paradigms, which can be thought of as 
a service in the cloud as well. The system has APIs and data models for quantum 
computing. Some software are also in place for creating these quantum data models 
and compute them to get the relevant results from the quantum devices. This way the 
distributed computing paradigms can be made more effective for high performance 
by integrating quantum device into their setups. 

6 Discussions, Prospects, and Future Trends 

The chapter has categorized literature into three primary buckets for the three 
primary game-changing technologies. However, we want to have a better insight 
into the technologies and trends from the lens of big data, cloud data mining, and 
machine learning. We also commented on the future of the three technologies along 
with NPUs which have not been discussed extensively in the chapter like the other 
three. 

Table 1 gives us a first-hand list of all the literatures cited in this chapter on the 
basis of the discussed technologies for acceleration (GPU and QC) and greenness 
(AC) and application areas in cloud and related environments. It shows that GPU 
and AC have dominated the big data mining and analytic area in recent times as 
compared to machine learning. But, QC has more impact on machine learning than 
big data mining. So, a combination of these technologies can be thought of as new 

Table 1 A classification based on different technologies used for big data mining and machine 
learning in cloud 

Technology used Application area References 

GPU Big data mining [54, 47, 11, 9, 55, 22, 12, 23, 1, 3, 48, 25, 15, 
13, 34, 33, 18] 

Machine learning [9, 28, 3, 5] 

AC Big data mining [32, 7, 37, 6, 17, 53, 4, 27, 36, 50, 31] 

Machine learning [44, 19, 43, 35] 

QC Big data mining [52, 45, 49, 40, 24] 

Machine learning [52, 42, 10, 49, 38, 41, 46, 20, 26, 29, 40, 21, 
24]
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avenues for researchers to explore and architect frameworks and platforms for big 
data and machine learning. 

Approximate Computing: AC has been instrumental in reducing time complexity 
for many cloud and non-cloud operations specifically for big data and machine 
learning applications. The different neural network architectures are the prime 
targets of AC in machine learning as seen in the literature. The targeted 
algorithms and tasks are stream processing, association rule mining, map-reduce 
paradigm, Hadoop ecosystem, spark framework, streaming data analytic, spiking 
neural networks, convolution neural networks, Kafka framework, real-time 
analytic, recurrent neural networks, and long short term memory. The common 
thing seen in this technology is that it can considerably accelerate the analytics, 
mining, or learning process with energy savings to a great extent. The error bound 
is also taken care of by various statistical models and allowable to a safe extent. 
In the future, researches can be focused on implementing approximate computing 
services in cloud setups, AxCaaS- Approximate Computing as a Service [7]. One 
more area to give focus can be from big data and machine learning perspective, 
by creating approximate computing facilitated big data analytic platforms or 
services in cloud. 

Accelerated GPU: GPUs have been a powerful hardware tool for acceleration in 
any cloud-based cluster systems or even in a standalone system. Generally they 
are used for multimedia computing and video/image processing applications. 
But, researchers argued that they can be of great help in general-purpose 
computing too. Hence, we have a different class of GPUs called GPGPUs or 
General-Purpose GPUs. The different services and algorithms targeted by GPUs 
are graph processing and mining, large-scale data mining, map-reduce paradigm, 
GPU based Data as a service (DaaS) in the cloud, real-time data analytics, neural 
networks, self-organizing maps, clustering, machine learning in 3D graphics, 
spark framework, TensorFlow system, unsupervised learning, k-means, decision 
trees, deep learning, data fusion, bi-clustering, and bio-informatics. The surveyed 
literature in this chapter tells that graph processing and mining is the most 
suitable candidate for implementing GPU based acceleration. The main three 
concerns of big data analytics and related technologies are big volume, big 
velocity, and big variety and GPUs are capable of taking care of all these three 
elements of big data efficiently. The main advantage of GPUs can be stated as the 
achievement of service level agreements and quality of service in cloud-based 
systems. Here big data is being harnessed as workflows by various users. So, 
we want to suggest GPU as a service specifically for big data scenarios (BD-
GPUaaS) and machine learning in GPU as a service (ML-GPUaaS) in the cloud 
for advanced machine learning techniques such as deep learning. 

Quantum Computing: QC is in the focus light for the last few years in many 
domains of computing and the major reason is its speed of computing some 
of the conventional things in an un-imaginable manner compared to classical 
counterparts. Quantum computing has been proposed by many researchers for 
big data and machine learning-related computations. Quantum computing has
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been widely used to implement machine learning techniques in general. The 
theory of quantum learning and information processing has been well crafted 
to suit the requirements of these applications. The various targeted areas are 
artificial neural networks, support vector machine, pattern classification, k-
nearest neighbors, object detection and recognition. Some literatures also talk 
about quantum computing in a distributed environment such as cloud. There they 
can offload quantum computing-related tasks to quantum computers and other 
tasks can be done in the in-house system itself. We want to suggest quantum 
computing as a service for big data and machine learning for the future. QCaaS 
has been mentioned in the paper [8] and we hope that it can be a good platform for 
the researches to conduct fruitful researches on big data and machine learning. 
We can also think about BD-QCaaS and ML-QCaaS for big data and machine 
learning in the future to achieve acceleration and performance improvement in 
the future. 

Neural Processing Unit: We would also like to give a possible future thought 
on a new technology that can be used in this respect specifically in machine 
learning. The rise of neural and AI accelerators or Neural processing units 
(NPUs) are in the process. The neural accelerators [32, 16, 51] are best suited 
for neural network computations for machine vision, big data processing and 
learning from a huge amount of data. The application areas can be robotics, 
IoT, and data intensive computations at the edge/fog devices. So, we strongly 
recommend this technology to be actively researched and implemented in cloud-
based systems for big data mining and machine learning. The neural accelerators 
for AI applications are inherently built to approximate the regions of code by 
changing them to neural models. So, indirectly these accelerators are using the 
AC paradigm and researchers who are working with AC currently can also look 
into this new area of research and development from big data and machine 
learning perspective. 

7 Conclusions 

This chapter provides a very concise and lucid depiction of some of the recent 
technologies which can enhance the cloud or related high-performance computing 
models. This will support the efficiency issue of big data mining and analytics 
or machine learning-related tasks. The chapter gives a generic overview of data 
mining from a big data perspective. We have defined big data as an entity consisting 
of 4Vs (volume, velocity, variety, and veracity) but on a larger scale. The cloud 
computing paradigm is being used successfully for the last decade to facilitate 
big data analytic and mining, to bring efficiency and performance in the entire 
analytic process. Existing surveys and researches have conveyed that having cloud 
resources at our disposal does not help in achieving the maximum speedup and 
complexity benefits in terms of big data. We have identified three future technologies 
to solve this situation in a cloud platform. Two major kinds of performance aware
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technologies are identified such as Greenness and Acceleration in computation. 
Under the umbrella of green computing, we chose approximate computing (AC) 
and within acceleration, we have chosen GPU based acceleration and Quantum 
computing (QC) based performance acceleration. We have also shown that Neural 
Processing Units (NPUs) can also prove beneficial for big data and machine learning 
process acceleration for future generation cloud systems. 
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Multi-Label Ranking: Mining 
Multi-Label and Label Ranking Data 

Lihi Dery 

1 Introduction 

Multi-label ranking (MLR) is the problem of predicting and ranking multiple labels 
for a single instance. MLR can be typically reduced to two sub-problems: the first is 
to rank labels for each instance, and the second is to place a threshold on the ranked 
list in order to bipartite the data into relevant and irrelevant labels. The ranking 
may contain ties, in the extreme case relevant labels have a tie on first place, and 
irrelevant labels have a tie on second place. The labels predicted for each instance 
are known as the instance’s labelset. 

The first studies of MLR originated from the investigation of text categorization 
problems, where each document may belong to several predefined topics simulta-
neously [69, 87, 113]. The topic labels may be ranked in order of importance [68]. 
While multi-label for text categorization continues to be an active field [90, 92], 
multi-label ranking has spread to many more domains. In bioinformatics, a gene 
can belong to multiple functional families [33]. In music, a tune can spark many 
emotions [124]. In medical diagnosis, an x-ray image can have multiple labels [8]. 
In social networks, people may belong to several interest groups [135] and in visual 
object recognition, objects can be ordered according to their relevance to the picture 
[18, 151]. 

There are six common challenges in MLR that either do not exist in single-label 
classification or are intensified in MLR settings. 

• High dimensionality in the output space. High dimensionality in the input 
space (i.e., data with millions of instances) or in the feature space (i.e., data with 
thousands or millions of features) is also common in single-label classification, 
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although in MLR it might be harder to solve. However, high dimensionality in 
the output space is unique to MLR. The number of possible labelsets (i.e., label 
combinations) grows exponentially with the number of labels. This often leads 
to sparseness of available data and to class imbalance, as some labelsets may 
appear often, while others may be rare or may not appear in the training set at 
all. See an example in Fig. 1. 

• Label correlation. This aspect is fundamental in MLR. If there are no relations 
between the labels, the problem can be split into multiple binary classification 
problems without loss of information. The relation between the labels is 
complex. For example, if two labels have a high concurrence, the model is 
supposed to somehow boost the prediction of one label, if the other is predicted. 
If two labels have a parallel relation, i.e., they do not concur, the model is 
expected to handle that as well. See an example of label concurrence in Fig. 2.

Fig. 1 High dimensionality in the output space. The number of instances (y-axis) with a given 
labelset (x-axis) in the Genebase dataset
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Fig. 2 Label correlation: a chord diagram [54] showing the concurrence of 13 labels in the 
Genebase dataset. The arcs represent label concurrence For example, the protein to the right of 
12 o’clock (PDO-0196) co-occurs with only one other protein (PDO-0199) and that happens only 
once

• Label imbalance. The label distribution is highly skewed, most labels have 
only a handful of positive training instances and a few labels dominate with 
many training instances. See an example in Fig. 3. 

• Labelset size imbalance. The labelset size of each instance is highly skewed 
[110]. Few instances have much more labels than average, while most instances 
have very few labels. See an example in Fig. 4. 

• Label importance. Not all labels are equally important to the characterization 
of the instance. The label importance is explicitly known if the target class input 
labelset is ranked (i.e., if a ranked labels are provided as input in the training 
data). Otherwise, the label importance remains to be inferred. 

• Zero-shot labels and labelsets. Some labels and labelsets never appear in the 
training set.

Figures 1, 2, 3, and 4 were created using the mldrGUI [22] with the Genebase 
dataset [39] as an example. The dataset contains the classification of proteins into
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Fig. 3 Label imbalance. The number of instances (y-axis) with a given label (x-axis) in the 
Genebase dataset

families with similar function. Each instance is a protein; the attributes are the 
protein’s motifs. The labels are the families the protein belongs to. This is a multi-
label setting since each protein can belong to more than one family. In its current 
online version [128], the dataset contains 662 instances (the proteins) with 1213 
attributes each. There are 27 possible labels (families) and 32 possible labelsets. 

Previous literature reviews on multi-label methods [47, 48, 61, 161] and label 
ranking methods [131, 166], while excellent, are slightly outdated. Our contribu-
tions in this survey are three-fold. First, we refresh the definition of MLR [17] and 
define its two sub-tasks: multi-label and label ranking. Second, we suggest to re-
categorize MLR methods, as they no longer fit into the traditional categories of 
transformation or adaptation. We thus suggest new categories such as deep learning 
multi-label methods, extreme multi-label methods and label ranking methods. Third, 
we focus on the last demi-decade which has not yet been surveyed. 

The rest of this survey is organized as follows: we first define MLR and place it 
in context with other tasks (Sect. 2). Next, we survey recent developments in multi-
label methods, with a special focus on deep learning methods and the emerging 
field of extreme multi-label classification (Sect. 3). We then move on to discuss label 
ranking (Sect. 4). We present up to date information about evaluation (Sect. 5) and 
conclude by offering a few research directions on open problems (Sect. 6).
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Fig. 4 Labelset size imbalance. The number of instances (y-axis) with a given number of labels 
(x-axis) in the Genebase dataset

2 Definition and Context 

We begin with a definition of MLR. Next we place MLR in context by detailing 
which problems can be seen as sub-cases of MLR, and what MLR is a sub-
problem of. 

Definition 1 Multi-label ranking (MLR) An MLR task is characterized by . x ∈ X
instances and .l ∈ L labels with the following properties: 

1. . X is finite and contains n instances. 
2. L is finite and contains m labels. 
3. An ordered labelset .Y = [ l1, . . . , lq ] with .q ≤ |L| labels contains a subset of 

the L possible labels. . l1 is the label with the highest rank and . lq is the label with 
the lowest rank. 

4. The labelset size is exponential to the amount of labels: .Y ⊆ P(L).
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5. Ties in the labelset ranking are allowed, and in some cases all of the labels are 
tied in first place. A threshold .t ∈ 1, 2, .., q indicates the partitioning of Y into 
relevant and irrelevant labels. When .t = 1 only the first label in Y is relevant. 
When .t = q, or when the threshold is not mentioned, all labels in Y are relevant. 
When .1 ≤ t ≤ q the labelset is bipartite according to t . 

6. The training dataset . D consists of triplets . {xi, Yi, ti}
7. The goal is to find a mapping function: .h : X → Y for a given t . 

In multi-label ranking problems the labelset is bipartite, i.e., the instance 
belongs to a ranked subset of the labels and does not belong to the rest of the 
set. For example, this image contains mainly oranges, apples, and bananas in this 
order, but no pears. Several problems are special cases of multi-label ranking: binary 
classification, multi-class classification, multi-label classification, and label ranking. 
In binary classification, an instance can belong to one of two possible classes, 
e.g., this image contains either an apple or an orange. In multi-class problems, an 
instance can belong to one out of multiple possible classes, e.g., this image contains 
either an apple, an orange or a banana. In multi-label problems, an instance can 
belong to many classes (labels), e.g., this image contains an apple and an orange 
but not a banana. In label ranking problems, an instance belongs to a ranked set of 
classes (labels), e.g., this image contains oranges, apples, and bananas, in this order. 

Multi-label ranking tasks, as defined in Definition 1, refer to any problem whose 
target class output is a ranked list of labels and a threshold. Algorithms for solving 
these tasks are often divided into two sub-groups according to their target class 
input. When the input is a ranked set of labels, it is a label ranking task. When the 
input is just a set of labels, it is a multi-label task. Formally: 

Definition 2 A multi-label (ML) task is an MLR with .1 ≤ t ≤ q. The labelset 
is bipartite according to t , with labels .1 ≤ t tied in first place and considered as 
relevant. 

Definition 3 A label ranking (LR) task is an MLR with .t = q and no ties in Y. 

Table 1 summarizes the differences between MLR and its sub-tasks according to 
a few parameters: 

• Is .m > 2?—There may be many labels available for each instance, or just two. 
• Is .q > 1?—It may be possible to assign many labels for each instance, or just 

one.

Table 1 Table of sub-cases 
of multi-label ranking 

m >  2 q >  1 ties in Y t = q 
Multi-label Ranking (MLR) yes yes yes yes 

Label ranking (LR) yes yes yes no 

Multi-label (ML) yes yes no yes 

Multi-class (MC) yes no no yes 

Binary classification no no no no 
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• Are there ties in Y ?—Is the labelset completely ordered, or can ties between 
labels exist? 

• Does .t = q?—Are all labels in Y relevant, or does the threshold t partitions the 
labels into relevant and irrelevant labels? 

A recent survey categorizes multi-label mining as a sub-problem in multi-target 
learning [133]. Related problems in the multi-target domain, which are not covered 
in this survey, include: 

• Multi variate regression [12] and dyadic prediction where the goal is to 
predict a score for the fit between the instance and the label. 

• Hierarchical multi-label [20] where there is explicit side information about 
the dependencies between the labels. 

• Multi-instance [62] and multi-instance multi-label [168, 65] where the 
training data is composed of a bag of instances that are all assigned the same 
label or labels. 

• Multi-view [165] is similar to multi-instance but the instances may have 
different feature spaces. 

3 Multi-Label Algorithms 

To date, surveys classify multi-label algorithms as either problem transformation 
techniques or algorithm adaptation techniques [21, 48, 161]. In the first, the problem 
is transformed into a simpler single-label classification task. In the second, an 
algorithm used for single-label classification is adapted to perform multi-label tasks. 
Sometimes ensembles techniques are added as a third class of problems and other 
times they are listed by their underlying base classifier’s category (transformation 
or adaptation). 

However, in the last decade algorithms that are specially designed for multi-label 
tasks have emerged. These algorithms either: try to maximize a specific evaluation 
measure (e.g., [98, 99, 143]), focus on a certain sub-task (e.g., feature selection 
[97, 118, 162]), or attempt to address specific multi-label challenges such as high 
dimensionality output space, label correlation (e.g., [53, 66]), imbalance, or zero-
shot (e.g., [108]). 

Moreover, deep learning algorithms designed specifically for multi-label tasks 
have been rapidly developing, exhibiting promising results. Indeed, a minority of 
these algorithms can be classified as algorithm transformation techniques (see, e.g., 
the method suggested in [151]), but more often, the algorithm is not adapted but 
rather specially tailored for the problem at hand. 

As transformation and adaptation techniques have been exquisitely covered 
[9, 21, 48, 61, 158, 161] and as there is only a minor increase in research on 
them in comparison with other aspects of MLR, we lightly scan these foundations 
(Sects. 3.1 and 3.2), and then direct our focus on methods from the last demi-decade, 
specifically on deep learning (Sect. 3.3) and extreme multi-label methods (Sect. 3.4).
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3.1 Problem Adaptation and Problem Transformation 

Problem adaptation techniques were originally suggested for text categorization. 
However, the adaptations soon expanded beyond the text domain and into other 
scenarios as well. Some of the most noticed adaptations include: Expectation 
maximization (EM) [87], SVM [42, 69, 147, 145], k-NN [19, 31, 64, 117, 160], 
decision trees [4, 33], association rules [122], and genetic algorithms [50]. 

Problem transformation techniques [9] focus on transforming the problem into 
simpler sub-tasks. One classifier is created for each label or pair of labels. The 
classifiers are then trained separately, and their output is combined. The possible 
transformations are: 

• Binary Relevance. The transformation into a binary classification task is 
known as binary relevance (BR) [158]. The first BR solutions [13, 49] did not 
consider label correlation. However, many correlation-enabling extensions to 
binary relevance have been proposed in the past decade. These correlations are 
classified into three sub-classes: first order correlation, pairwise correlation, or 
full correlation [161]. 

• Multi-class. The most known multi-class transformations are the Label Pow-
erset methods that reduce the problem to a multi-class one by treating each 
individual labelset as an independent class label [13]. In both BR and multi-
class transformations, there is a computational complexity problem, as the 
solutions do not scale well as the number of labels increase. Thus solutions 
that reduce the number of classifiers were suggested [86, 88]. 

• Pairwise label comparisons. Calibrated Label Ranking [46] transform the 
dataset into pairs of labels and thus train .k(k 1)/2 binary classifiers. The output 
of the classifiers is combined into a ranking of the output labels, with the 
highest ranked labels considered as relevant. A fictional label can be used to 
automatically create a bi-partition of the labels into relevant and irrelevant ones 
[17]. 

3.2 Multi-Label Ensembles 

The 2BR method [125] uses BR twice and employs stacking. It first learns a 
BR model, and then builds a second, meta-model that takes the output of the 
first model and includes an explicit coefficient for correlated labels. The PruDent 
method focuses on unnecessary label dependencies and error-propagation showing 
improved results over 2BR [5]. 

In Classifier chains (CC) [104], the first classifier is trained on the input attributes. 
The classifier’s output is then added as a new input attribute, and a second classifier 
is trained, and so on. In this way the classifiers are chained, taking into account the 
possible label dependencies. In ensembles of classifier chains (ECC) [104], a set of 
CCs with different orders are trained and the outputs are aggregated.



Multi-Label Ranking: Mining Multi-Label and Label Ranking Data 519

Hierarchy Of Multi-label classifiERs (HOMER) [126] creates a tree of BR 
methods, where each leaf contains one label. To classify a new instance, HOMER 
begin at the root classifier and passes the instance to each child only if the parent 
predicted any of its labels. The union of the predicted labels by the leaves generates 
output for the given instance. 

AdaBoost.MH [113] is the multi-label variation of the well-known AdaBoost 
algorithm [45]. AdaBoost.MH weighs the labels as well as the instances. Training 
instances and their corresponding labels that are hard to predict, get incrementally 
higher weights in following classifiers while instances and labels that are easy to 
classify get lower weights. This algorithm is designed to minimize the hamming 
loss. ADTBoost.MH [35] which uses ADTTrees is an extension of AdaBoost.MH. 

Random k-Labelsets (RAkEL) [129] select a number of random k-labelsets and 
learn a Label Powerset classifier for each of them. These are then aggregated. 
Enhancements over RakEL include RakEL++ [109] and RAkELLd [127]. 

An experimental study on most of the above multi-label ensembles suggests 
that ECC, followed by RakEL, exhibit the best overall performance for all of the 
examined metrics [91]. 

A few notable ensemble methods were published in the last 3 years. ML-
FOREST [141] builds on Random Forest and ML-TSVM [27] on SVM. PRAkEL, 
a cost-sensitive extension of RakEL that considers the evaluation criteria and is 
sensitive to the cost of misclassifying an instance [143]. fRAkEL speeds up RakEL 
by shrinking the samples with irrelevant labels [146]. The TSEN ensemble [164] 
is based on three-way-decisions [154]. The MULE ensemble [95] relies on a 
heterogeneous ensemble that is composed of different base models. The assumption 
is that different labels can be approximated better by different types of models. 
MULE incorporates a statistical test to combine the base models. Most of these 
methods compare their performance to earlier methods, mainly to variations of 
2BR, ECC, AdaBoost.MH, and RakEL. However, an evaluation of these methods in 
comparison to one another is still missing. 

3.3 Deep Learning Methods 

Deep learning uses multiple layers to represent the abstractions of data and to 
automatically discover useful features [79, 114]. Deep learning can cope with large 
amounts of input features, eliminating the need for feature selection methods. The 
learnt feature representations are often accurate for other unseen data as well. While 
this quality, known as transfer learning [94], is not unique to deep learning, in the 
case of multiple labels it can provide a solution to the label and labelset imbalance 
problems. This also means that parameters for a new model (such as number of 
layers and number of nodes) can be learnt from previous successful models instead 
of by trial and error. Deep learning models are devised using different architectures 
[100]. Convolutional Neural Network (CNN) models [34, 80] are often used for 
image processing. Recurrent neural network (RNN) models [78] and their variant
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Long Short-Term Memory (LSTM) [43, 119] are often used with text and speech. 
Generative adversarial networks (GANs) [52] and Restricted Boltzmann Machine 
(RBM) [1, 121] have been used for unsupervised multi-label learning tasks but we 
herein focus on a supervised MLR setting as defined in Definition 1. 

Deep learning for multi-label tasks is a growing field, with new papers appearing 
frequently. We survey some of the recent developments in two main multi-label 
tasks, which belong to the media domain: image annotation and text annotation. 

3.3.1 Image Annotation 

The growing interest in deep learning for multi-label image annotation is partly 
driven by new publicly accessible large-scale datasets with quality labels. A few of 
the most notable ones include: 

• The Visual Genome dataset [74]. Contains over 108K images with an average 
of 35 labeled objects, 26 attributes, and 21 pairwise relationships between 
objects. 

• The ChestX-ray14 dataset [136]. Contains over 112k chest X-rays from over 
30k patients, labeled with up to 14 pathologies or “No Finding”. 

• The MS COCO dataset [83]. Contains 328k images with 2.5 million labeled 
objects, out of a set of 91 labels. 

• The NUS-WIDE dataset [32]. Contains almost 270k Flickr images and their 
associated labels, with a total of 5018 unique labels. 

Recent reviews of deep learning for medical images highlight the vast amount of 
emerging research in this field [44, 70, 112]. On the chest X-rays dataset, various 
CNN based methods have been suggested. One approach is to transform the problem 
into multiple single-label classification problems, to which a CNN architecture 
is applied [51]. Another suggestion is Hypotheses-CNNPooling (HCP), where a 
number of object (i.e., image) segment hypotheses are taken as the inputs, then a 
shared CNN is connected with each hypothesis, and finally the CNN output results 
from different hypotheses are aggregated with max pooling to produce the multi-
label predictions [138]. The CNN-RNN model uses an underlying RNN model [89] 
to capture the high order label dependencies. Then, CNN and RNN are combined 
into one framework to exploit the label dependencies at the global level [134]. Other 
models exist (e.g., [40, 55, 56, 57, 103, 116]), as well as a cascade ensemble [76]. 
Though multi-instance methods are out of our scope, we note that a multi-instance 
method that integrates the images with other information about the patients has 
recently been reported to enhance performance [8]. 

Various studies have been conducted on non-medical images as well. For a recent 
review see Voulodimos et al. [132]. Some of these models focus on learning the label 
correlations. A model that learns image-dependent conditional structures [82] has 
been proposed. A Spatial Regularization Network (SRN) that captures the spatial 
correlation between labels as well as the semantic correlation has been suggested 
[169]. A feature attention network (FAN) focuses on more important features and
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learn the correlations among convolutional features [150]. The Regional Latent 
Semantic Dependencies (RLSD) model [157] specializes in predicting small objects 
(alongside prediction of large objects) by first extracting convolutional features, 
which are further sent to an RPN-like (Regional Proposal Network) localization 
layer. The layer is designed to localize the regions in an image that may contain 
multiple semantically dependent labels. These regions are encoded with a fully 
connected neural network and further sent to an RNN, which captures the latent 
semantic dependencies at the regional level. The RNN unit sequentially outputs a 
multi-class prediction, based on the outputs of the localization layer and the outputs 
of previous recurrent neurons. Finally, a max-pooling operation is carried out to fuse 
all the regional outputs as the final prediction. Once again, multi-instance methods 
can enhance performance [85]. 

Comparisons of cutting-edge image annotation methods are still lacking. A 
precedent study compared the performance of ten foreground deep learning multi-
label APIs on the Visual Genome dataset [75]. The APIs were evaluated using 
various metrics. In addition, a semantic similarity metric was used allowing for 
words with similar meaning to be classified as correct predictions. For example, 
“bicycle” and “bike” were both classified as correct for an image of a pedal driven 
two-wheeler. The study shows that different APIs excel under different evaluation 
metrics. Regretfully, the underlying algorithm of each API is not always publicly 
available. 

3.3.2 Text Annotation 

One of the earliest models to employ deep learning for text classification was BP-
MLL [159]. It formulated multi-label classification problems as a neural network 
with multiple output nodes, one for each label. It was later suggested [93] to replace 
the pairwise ranking loss in the model with a cross-entropy loss instead. However, 
these models do not consider label dependencies. A CNN model that has a final 
hidden layer which considers label co-occurrence weights was suggested next [77]. 
The model was analyzed on a small dataset with 103 labels. In the CNN-RNN 
model [26], the RNN is set to deal with label co-occurrence. The C2AE algorithm 
employs a DNN-based label embedding framework and performs joint feature and 
label embedding [155]. 

The Seq2seq model [152] uses a LSTM to generate labels sequentially and 
predicts the next label-based on its previously predicted labels. The .LSTM2 model 
[149] utilizes LSTM twice. The algorithm first builds a representation of the 
documents in the training set. This is done with a LSTM network that considers 
word sequences. For each document in the test set, the algorithm search for the 
most similar documents in the training set and retrieves their labels. The labels are 
represented as a semantic tree that is trained with dependency parsing. This tree 
can capture the correlations between labels. Based on the document representation, 
another LSTM is utilized to rank the document labels.
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Recently, text categorization has also been employed in the context of X-ray 
images. For example, it has been pointed out that China’s chest X-ray reports focus 
more on characterization than on labeling the possible diseases. A recent study uses 
LSTM to read the X-ray reports and output labels of pathologies [148]. Another 
study combines the reports and the instances (a multi-instance model) for the same 
purpose [137]. 

3.4 Extreme Multi-Label Classification 

Extreme multi-label (XML) problems, also known as large-scale multi-label prob-
lems, refer to problems with an extremely large set of labels, usually in the millions. 
Due to the huge amount of labels, the zero-shot problem, as well as the label and 
labelset imbalance problems (see Sect. 1), are intensified. Deep learning models 
work well here since they consider both the relatedness of the representations and 
the context information. 

Currently, all of these problems focus on text classification or on traditional 
recommender system problems that have been reformulated as XML problems 
[120, 130]. The instances are of one of the following kinds: 

• Text. Assigning categories (the labels) to a Wikipedia page out of the million 
categories (labels) available, recommending bid phrases (the labels) to an 
advertiser with a given ad landing page [2], assigning tags (the labels) to an 
image. In these cases, the instance, be it a web page or an image, is represented 
by a bag of words. 

• Item. Assigning a number of categories (the labels) to an Amazon product item. 
The instance is represented by item features. 

• User. Recommending YouTube videos (the labels) to a user [140]. The instance 
is represented by user features. 

We note that these tasks often require a ranked output, and that a ranked input might 
be available. However, to the best of our knowledge, extreme label ranking which 
explicitly considers ranked inputs (as opposed to extreme multi-label) has not yet 
been explored. 

PDSparse [156] and DiSMEC [7] tackle the sparseness (high dimensionality) 
by training one XML model per label. We thus consider them as XML problem 
transformation methods. 

MLRF [2] designs a multi-label random forest. To cope with the high dimension-
ality problem, they assume label independence during the ensemble construction, 
but they do consider correlations during prediction. The FastXML model [102] pro-
vides a node partitioning formulation that improves MLRF results in settings with 
millions of labels. XML-CNN [84] uses a CNN model for the actual classification. 

The SwiftXML model [101] learns label correlation using a word2vec embed-
ding. This allows the discovery of similar labels as these labels are classified closely 
in the embedded vector. An example given by the authors is that although the labels
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of the Wikipedia pages of Einstein and Newton are very different, the SwiftXML 
label embedding will learn that the two are similar, and thus will be able to consider 
labels given to Einstein’s page, also for Newton’s page. Authors report to have 
outperformed SLEEC [10] which also employs label embedding and is considered 
state-of-the-art. A recent model [163] tackles both feature and label spaces using a 
non-linear embedding based on a graph structure. 

4 Label Ranking Algorithms 

Numerous label ranking algorithms were suggested in the literature. One approach 
is based on turning the problem into several binary classification problems and 
then combining them into output rankings [29, 38, 58, 60, 67]. Another common 
approach is based on modifying existing probabilistic algorithms to directly support 
label ranking. Some main examples are: naive Bayes models [3], k-nearest neighbor 
models [14], and decision tree models such as Label Ranking Trees (LRT) [30] and 
Entropy Based Ranking Trees (ERT) [36]. 

A few other stand-alone ideas are available as well. RPC (Ranking by Pairwise 
Comparison) [67] learns pairwise preferences from which a ranking is derived. 
Instance-Based Logistic Regression (IBLR) combines instance-based learning and 
logistic regression [30]. Under this approach, the label statistics of neighboring 
instances are regarded as features by the logistic regression classifier. A rule based 
approach learns a reduction technique and provides a mapping in the form of logical 
rules [59]. A recent work [72] adapts ideas from structured output prediction. They 
cast the label ranking problem into the structured prediction framework and propose 
embeddings dedicated to ranking representation. For each embedding they propose 
a solution to the pre-image problem. This latter suggestion is a harbinger for a bridge 
between label ranking and structured image prediction. 

Surveys on label ranking algorithms [131, 166] capture some of the earlier 
methods. 

4.1 Label Ranking Ensembles 

To the best of our knowledge, only a few papers thus far have investigated the use 
of ensembles for label ranking [6, 111, 139, 167]. The ensembles proposed in these 
papers differ in: (1) the base label ranking algorithm used, (2) the method used to 
sample the data to train each of the simple models (if all models are trained with the 
exact same data they will output the exact same results, and then there is no need 
for an ensemble), and (3) the aggregation method used to combine the results of the 
simple models. 

As the base label ranking algorithm [6] used Label Ranking Trees (LRT) [30], 
[111] used Ranking Trees (RT) and Entropy Ranking Trees (ERT) [36], [167]
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Table 2 Label ranking ensemble frameworks 

Aledo et al. [6] Sa et al. [111] Zhou and Qiu [167] Werbin et al. [139] 

Base algorithm LRT ERT, RT TLAC LRT, RPC 

Data sampling Bagging Random Forest Random Forest Bagging 

Aggregation Modal ranking Borda Borda Voting Rule Selector 

developed their own method named Top Label As Class (TLAC) and [139] used  
both LRT and Ranking by Pairwise Comparison (RPC) [67]. 

To select the training data for each simple classifier, [6] and [139] used a  
technique known as Bootstrap aggregation or Bagging [15]: they created b different 
bags by selecting a subset of the dataset’s instances with replacement. The other 
two papers [111, 167] suggested modifications to the well-known Random Forest 
ensemble model [16]. As for the aggregation method used, three studies used a 
voting rule (either Borda or Modal Ranking). The last study [139] presents VRS 
(Voting Rule Selector), a meta-model that automatically learns the best voting rule 
to be used. There four works are summarized in Table 2. 

AdaBoost.MR is the label ranking variation of the well-known AdaBoost 
algorithm [45]. The algorithm performs pairwise comparisons between labels. 
Training instances and their corresponding label pairs that are hard to predict, get 
incrementally higher weights in following classifiers while instances and label pairs 
that are easy to classify get lower weights. The algorithm is designed to minimize 
the ranking loss. Another boosting-based approach suggests learning a linear utility 
function for each label, from which the ranking is deduced [37]. This approach is 
more general, as it allows the input to be any sort of preference graph over the labels. 
A ranking function assigns a utility score to each label. Then, relevant pairwise 
comparisons, as deduced from the graph, are performed. Again, the label weights 
are updated and additional weight is given to each wrongly ranked pair. As these 
approaches rely on pairwise comparisons, they do not scale well in the case of many 
labels. 

5 Evaluation 

Evaluating the performance of multi-label algorithms is difficult. For example, it 
may be impossible to decide which mistake of the following two cases is more 
serious: one instance with three incorrect labels vs. three instances each with one 
incorrect label. Therefore, a number of performance measures focusing on different 
aspects have been proposed. Schapire and Singer [113] initially suggested five 
metrics: Hamming loss, ranking loss, one-error, average precision. The popular 
micro-F1 and macro-F1 were suggested by Tsoumakas et al. [127]. Instance-F1 
and AUC measures were discussed by Koyejo et al. [73]. A summary of the 11 most 
common measures is provided Wu et al. [142]. For label ranking, the most popular
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measure is Kendall-tau. The hamming distance is also often used when permutations 
represent matching of bipartite graphs. 

5.1 Dataset Repositories 

The Mulan repository [128] contains 27 multi-label datasets on various subjects. 
MEKA [105] contains datasets in ARFF format, suitable for Weka. An R package 
automates the use of these datasets [23]. The KDIS research group offers a 
repository of various datasets obtained from different sources.1 

The Extreme Classification Repository stores 15 extreme multi-label text 
datasets, as well as code for various algorithms.2 LSHTC series challenge also 
stores extreme multi-label text datasets [96]. The SNAP library [81] contains social 
and information networks, some of which can (and were) utilized for extreme multi-
label tasks (e.g., Amazon products). Lastly, it is possible to generate simulated data 
via a multi-label data generator [123]. 

As for datasets with a ranked target class as input, five real-world label ranking 
datasets can be found in [106]. The 16 semi-synthetic label ranking datasets used in 
[28, 30] are stored on the webpage of one of the authors.3 

5.2 Stratification of Multi-Label Data 

Estimating the accuracy of a model is traditionally done by splitting the data 
to training, test, and sometimes also validation subsets. Different techniques are 
available, such as cross-validation, holdout, and bootstrap [41, 107]. Random 
sampling works well when the labels have enough representation in the data. 
When this is not the case, a stratification approach assures that all subsets contain 
approximately the same proportions of labels as the original dataset. For single-label 
classification tasks, stratification has been shown to outperform cross-validation 
with random sampling [71]. 

For multi-label data, stratification is even more important, as some datasets may 
have very few patterns representing them and random sampling might place them 
all in either the training or the test data partitions. 

Stratification for multi-label data can either consider the distinct labelsets 
available in the data or consider each label separately. Since the number of labelsets 
grows exponentially to the number of labels, when the number of labels is large there 
might be only one instance for each example in the labelset, or even no examples

1 http://www.uco.es/kdis/mllresources/. 
2 http://manikvarma.org/downloads/XC/XMLRepository.html#Prabhu14. 
3 https://cs.uni-paderborn.de/?id=63912. 
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at all. For this reason, a method that considers each label separately was suggested 
by Sechidis et al. [115]. Stratifying the data in this method is a slow procedure, but 
nonetheless, it improves the classifier performance. 

6 Research Directions and Open Problems 

There are still many paths to explore for multi-label ranking. We outline a few of 
them here. 

First, in many real-world scenarios, new labels emerge over time. For example, 
the label “valentine2030” will only emerge on year 2030. Multi-Label learning with 
emerging new labels has just begun to be considered, and we are aware of only 
one pioneering work on the subject [170]. We have seen herein that recommender 
system problems can be reformulated as multi-label ones. Perhaps it is time to 
reconsider the other direction as well [153]. The “cold-start” problem is fundamental 
in recommender systems. Perhaps their solutions can be adapted to multi-label 
ranking tasks. Moreover, evaluation measures need to be fine-tuned to this setting 
of emerging labels [108, 144]. 

Second, a recent study [11] compared recommender system and multi-label 
classification techniques concluding that AdaBoost with CC chains and BR with 
multi-label random forest outperform the best recommender system methods in 
a given cross-selling setting. However, state-of-the-art multi-label deep learning 
methods and extreme multi-label methods should be able to do even better but have 
not been considered in the above study. Moreover, it is interesting to reconsider 
other recommender and ranking scenarios and reformulate them as MLR tasks as 
well. 

Third, for single-label problems, a set of complexity measures that calculate 
the overlap and separability of classes has been defined [63]. To the best of 
our knowledge, one characterization metric, called TCS (Theoretical Complexity 
Score), exists for multi-label tasks [24] but no complexity measures exist for label 
ranking, where the emphasis is on the correct order of labels. In a related context, 
SCUMBLE (Score of ConcUrrence among iMBalanced LabEls) is a new metrics 
that address label co-occurrence in multi-label datasets [25]. It can and should be 
used to gain better understanding of the available data. 

Fourth, we have reviewed state-of-the-art deep learning algorithms for image 
annotation and separate algorithms for text classification. One cannot but wonder if 
these fields can inspire one another and furthermore, if a meta-method for both tasks 
can be developed. 

Lastly, as explained in Sect. 3.4, extreme label ranking problems where the target 
input space is ordered have yet to be explored.
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Reinforcement Learning for Data Science 

Jonatan Barkan, Michal Moran, and Goren Gordon 

1 Introduction 

In the realm of data science, where big data abound, most machine learning methods 
fall into one of the two categories: supervised learning in which labeled data exist, 
i.e., for each input in the dataset there is a known output; unsupervised learning in 
which no label exists and patterns in the data are sought after. 

Reinforcement learning (RL) is a distinct category in the machine learning zoo, 
in which an agent can act, i.e., influence the environment it exists in, and receive 
rewards (scalar values). This field of machine learning is distinct from supervised 
learning, in that the true output is unknown, and from unsupervised learning, in that 
feedback is received from the environment, i.e., the reward. 

Moreover, and more crucial, is that the learning process in RL involves actions 
and not just passive data streams. Thus, there are two major domains in which RL 
flourishes. The first domain is games: in a game, which can be a computer game [18] 
or not [22, 29], an agent has to make decisions regarding the actions that the game 
allows. Based on the state of the game and the action performed, the agent either 
receives rewards, e.g., points, stars, etc., or advances towards winning the game 
against an opponent [28]. The problem to be solved can thus be formulated as: given 
the current status of the game and the available actions, which actions should the 
agent perform that will maximize its rewards/chances of winning? Reinforcement 
learning algorithms have emerged as the dominant approach to solve these types of 
challenges, by playing millions of games in the computer and learning the optimal 
policy, i.e., which actions to choose to win the game. 

J. Barkan · M. Moran · G. Gordon (�) 
Curiosity Lab, Department of Industrial Engineering, Tel-Aviv University, Tel Aviv, Israel 
e-mail: goren@gorengordon.com 

© Springer Nature Switzerland AG 2023 
L. Rokach et al. (eds.), Machine Learning for Data Science Handbook, 
https://doi.org/10.1007/978-3-031-24628-9_24

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24628-9protect T1	extunderscore 24&domain=pdf

 885
56845 a 885 56845 a
 
mailto:goren@gorengordon.com
mailto:goren@gorengordon.com
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24
https://doi.org/10.1007/978-3-031-24628-9_24


538 J. Barkan et al.

The second domain in which RL has flourished is robotics. In this field, the robot 
is the agent that, based on the input from its sensors, acts in the world and receives 
rewards based on the goals set out for it. In this way robots have learned to walk 
[4, 33], play ping-pong [21] and single-handedly solve a Rubik’s cube [1]. Similar 
to the games domain, these amazing feats have been achieved by having the robot 
repeatedly try the task and actively exploring different policies, until convergence 
to the policy that achieves a satisfactory performance of the task. 

Since conventional data science tasks involve a given dataset, with little to no 
option of actively and repeatedly making decisions, RL has not yet been a standard 
tool for data scientists. However, several interesting approaches have started to 
utilize the power of RL as part of the data science pipeline [19]. Moreover, with 
the emergence and proliferation of deep learning, deep reinforcement learning 
approaches to data science are bound to surface in the near future. 

Hence, this chapter is aimed to introduce the reader to the basic principles, 
formulations, and algorithms of reinforcement learning (Sect. 2), give an example of 
its use in data science (Sect. 3), and explore the state-of-the-art approaches to deep 
reinforcement learning (Sect. 4). The chapter is not meant to give an exhaustive list 
of RL algorithms but rather gently present the principles and guidelines of how to 
approach a data science challenge, using RL tools. 

2 Reinforcement Learning Formulation 

In this section we first introduce the basic formulation of RL that will be used 
throughout the chapter. We then derive the famous Bellman equation, which is at 
the center of all RL algorithms. This is followed by an important dilemma of RL, 
namely the exploration-exploitation trade-off. The chapter ends with a brief account 
of the prominent classical RL algorithms, namely Q-learning, SARSA, and actor-
critic approach. 

We encourage the reader to first think of a concrete problem, in which you, the 
data scientist, or your algorithm, has the possibility to act, or change something in 
the world, and get a response. In the following section, we sprinkle the text with 
[guiding questions] to help you formulate your problem in RL terms. 

2.1 Problem Formulation 

Reinforcement learning is formulated as a Markov Decision Process (MDP), which 
is described by the following elements: 

States: States describe the Markovian element of the formulation, i.e., the state 
of the system is a full account of all the required information about the system at 
a given time. All decisions and rewards will be based on the current state of the
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system. States can be multi-dimensional, discrete, or continuous. States are denoted 
by .st ∈ S, where t denotes time and S is the entire state space. 

[What are the states of your problem? How can you define the status of your 
system in concrete and quantitative terms? Are your states continuous or discrete? 
What is the dimensionality of your state space?] 

Actions: Actions describe the possible decisions that the agent can make at any 
given time. They are at the core of RL that separates it from other machine learning 
algorithms. In RL, an agent can act upon the world and possibly change its state. 
Actions can be multi-dimensional, discrete, or continuous. Actions are denoted by 
.at ∈ A, where A is the entire action space. 

[What are the actions? What can you or your algorithm do? Do the actions 
change depending on the state, or is the set of actions constant? Are your actions 
continuous or discrete? What is the dimensionality of your action space?] 

Rewards: Rewards are scalar values that the agent receives from the environment. 
They are at the core of the problem the agent attempts to solve and represent utility 
or value for a given state and action. Higher reward values are better than lower 
rewards. The RL problem will be formulated as a maximization problem over the 
rewards (see below). Rewards are scalar and are denoted by .rt ∈ R. 

[What is the goal? How do you quantify when your problem has been solved? 
Can you quantify when the system progresses towards the goal, or only at the end?] 

The world, or environment, the agent is embedded in is represented by two 
functions. The first is the state-transition function which represents how the state 
of the system changes over time and due to actions performed by the agent. This is 
given by: 

.P a
ss′ = Pr{st+1 = s′|st = s, at = a} (1) 

As can be seen, the state-transition function can be probabilistic, i.e., the state 
at the next time step is conditional on the current state and the action the agent 
performed. The state-transition function thus represents two possible contributions 
to a changing state, namely one is passive change, i.e., states that change regardless 
of any actions performed by the agent (for example, an apple falling from a tree) 
and the other is active, i.e., state’s change induced by the actions of the agent (for 
example, a robot shaking the tree). 

[Is there inherent dynamics in your system, even without you/your algorithm 
within it? Do you know how the system changes once you/your algorithm acts? 
Are the changes in the system’s states deterministic or stochastic? Can you quantify 
the stochasticity in your system? If these transitions are unknown, there are specific 
algorithms that deal with it (see below).] 

The second function that describes the world is the reward function. This function 
dictates the actual problem to be solved or the goal formulation for the agent. For 
each state and performed action, there is an expected reward: 

.Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)
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[Is there a specific function to represent your goal? Does it depend on the states 
only, or does a specific action result in rewards? Is your reward deterministic or 
stochastic?] 

Another integral part of the reward formulation is an important concept known 
as discount, denoted by .γ ≤ 1. The discount represents the notion that later rewards 
worth less than reward now. Thus, .γ = 1 means that there is no discount, and all 
rewards, present and future, are the same, whereas .γ < 1 means that reward in the 
next time step is worth .γ -percent from the same reward now. An extreme example 
is .γ = 0, which represents a myopic reward, i.e., only the current reward matters, 
as all future rewards are completely discounted and are not important for decision 
making. 

[Is it important to solve the problem quickly, or just that it is solved, no matter 
how fast? Are there time-constraints to the solution?] 

The agent itself is represented by the policy, which is a probabilistic function 
that maps states to actions. In other words, the agent’s decision making process is 
governed by the policy, which, given the current state, assigns probabilities to each 
possible action. The policy is denoted by: 

.π(s, a) = Pr{at = a|st = s} (3) 

[Can you define a mapping from states to actions?] 
Once all of the aforementioned definitions are done, we move to the formulations 

of the problem and then to ways of solving it. Implementing them is more 
straightforward, if the definitions of the problem have been done correctly. 

We now can formulate the MDP problem. We define the value function as the 
expected accumulated discounted reward: 

.V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γ krt+k+1|st = s

}
(4) 

The value function represents all the future accumulated discounted rewards, given 
we started at state s and followed policy . π . In other words, it represents what are the 
rewards the agent is expected to receive if it started from a certain state and followed 
a specific policy. 

The optimal value function is achieved by maximizing over all possible policies 
and is denoted by: 

.V ∗(s) = max
π

V π(s) (5) 

The policy that maximizes the value function represents the optimal solution to the 
MDP problem. 

Another very important formulation is given by the Q-function. The Q-function 
is the expected future accumulated discounted rewards given the current state and 
the current action performed for a given policy:
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.Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γ krt+k+1|st = s, at = a

}
(6) 

Similarly to the value function, one can define the optimal Q-function over all 
policies to be: 

.Q∗(s, a) = max
π

Qπ(s, a) (7) 

Given these formulations, the question is how to find the optimal policy. 

2.2 Bellman Equation 

Let us try to understand the “dynamics” of the MDP. We do this by reformulating 
the optimal value function: 

.V ∗(s) = max
a

Qπ(s, a). (8) 

= max 
a 

Eπ

{ ∞∑
k=0 

γ k rt+k+1|st = s, at = a

}
. (9) 

= max 
a 

Eπ

{
rt+1 + γ 

∞∑
k=0 

γ k rt+k+2|st = s, at = a

}
. (10) 

= max 
a 

Eπ

{
rt+1 + γV  ∗(st+1)|st = s, at = a

}
. (11) 

= max 
a

∑
s′

P a 
ss′

(
Ra 

ss′ + γV  ∗(s′)
)

(12) 

This amazing recursive equation, also known as the Bellman equation, shows that 
the optimal value function can be computed recursively. A similar equation exists 
for the Q-function: 

.Q∗(s, a) =
∑
s′

P a
ss′

(
Ra

ss′ + γmax
a′ Q∗(s′, a′)

)
. (13) 

Q∗(st , at ) = rt+1 + γmax 
a′ Q∗(st+1, a

′) (14) 

From these equations, one can now calculate an important measure known as the 
temporal difference error or TD-error, denoted by . δ. It is a measure of how far a 
given policy is from the optimal one:
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.δt = rt+1 + γmax
a′ Q(st+1, a

′) − Q(st , at ) (15) 

For the optimal policy, given the Bellman equations, the TD-error will be equal to 
zero. The TD-error has a unique interpretation, namely it is the reward-prediction 
error. It measures how much the reward the agent received differed from the reward 
the agent expected to receive. If the agent has the optimal policy, it means that, due 
to the Bellman equation, it can predict the next reward. Thus, if the TD-error is not 
zero, the agent was surprised by the received reward, which in turn means that its 
Q-function is not optimal and does not represent that real Q-function. The TD-error 
can now be used to change and adapt the Q-function. 

2.3 Q-Learning and SARSA 

There are two algorithms that utilize the insights gained from the aforementioned 
formulations. The first is known as Q-learning and is a straightforward application 
of the TD-error. Given a Q-function, the algorithm slowly changes it given the TD-
error: 

.Qt+1(st , at ) = Qt(st , at ) + αδt (16) 

where . α is the learning rate. In other words, the agent’s algorithm operates as 
follows: 

1. Choose an action, . at based on .Q(st , a) (see below) 
2. Receive reward . rt+1
3. Calculate TD-error, . δt , Eq. 15 
4. Update the appropriate Q-function, Eq. 16 

A very similar algorithm is called SARSA, the acronym of State-Action-Reward-
State-Action. It was developed to overcome the problem of maximizing over all 
possible actions in Q-learning. In SARSA, the agent performs another action prior to 
updating the Q-function. Thus, the update is given by the actual new .Q(st+1, at+1), 
i.e., given the selected action, and not optimizing over all possible actions: 

.Qt+1(st , at ) = Qt(st , at ) + α (rt+1 + γQ(st+1, at+1) − Q(st , at )) (17) 

Thus, the SARSA algorithm for the agent operates as follows: 

1. Choose an action, . at based on .Q(st , a) (see below) 
2. Receive reward . rt+1
3. Choose another action, .at+1 based on .Q(st+1, a) (see below) 
4. Update the appropriate Q-function, Eq. 17 

The two algorithms still have an undescribed component, namely how to choose 
an action based on the Q-function. This is addressed next.
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2.4 Exploration-Exploitation 

The agent is tasked to find the optimal policy that will grant it the most future 
accumulated discounted rewards. However, in order to find out what it is, it has 
to explore the environment, i.e., visit many states and select many actions. On the 
other hand, if the agent has already learned a proper Q-function, it should exploit 
the knowledge already gained to achieve maximal value. 

This is the verbal formulation of the exploration-exploitation trade-off [30]. 
When should the agent explore, to find out new possible better policies, and when 
should it exploit the knowledge already gained and try to maximize the rewards 
accumulated? 

There are two common policies that address this issue, namely .ε-greedy and 
softmax. In the .ε-greedy algorithm, the agent explores randomly (with uniform 
distribution) . ε percent of the time and the rest exploits its knowledge, i.e., chooses 
the action that gives the maximal .Q(s, a), with . ε having a typical value of 0.1. In 
other words, 10% of the time steps, the agent chooses randomly which action to 
perform, thus exploring new options in search of a better policy than it already 
has, and 90% of the time it exploits the policy it has already learned from the 
interaction with the environment, to try and accumulate as much reward as possible. 
Best practices dictate that . ε should start with a large value and decrease with time, 
as confidence in the learned Q-function increases. 

The second common policy is called softmax and it is formulated as: 

.π(s, a) = eβQ(s,a)∑
a′ eβQ(s,a′) (18) 

where .β = 1/T is called the inverse temperature (T ) and controls the exploration-
exploitation trade-off. This policy assigns probabilities based on the actual Q-
function values: actions that are predicted to give higher values have higher 
probabilities. . β, the inverse temperature, dictates how much exploration is per-
formed: when .β = 0, the temperature is infinite and the agent explores, with 
all actions having the same probability, regardless to their Q-value, i.e., uniform 
distribution over the actions; when .β → ∞, the temperature is zero and the agent 
exploits, with only the action with the maximal .Q(s, a) having probability one and 
the others probability zero. As with the .ε-greedy algorithm, best practices indicate 
that . β should start low and increase, to transform from high exploration to high 
exploitation. 

2.5 On- and Off-Policy 

Another important distinction between different RL algorithm is whether they 
are on- or off-policy. An on-policy algorithm means the algorithm requires the
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application of the policy learned, i.e., it requires that the action be selected by the 
agent. An example of an on-policy algorithm is SARSA, as the update algorithm 
requires another action by the agent for the update of the Q-function. 

An off-policy algorithm does not require to perform the action by the agent itself, 
but rather it can be supplied a sequence of state-action-rewards and update the policy 
by these. An example of an off-policy algorithm is Q-learning, as in the algorithm 
itself, only the current state, action, and reward are used, and the agent, for the 
update itself, does not need to perform another action. 

2.6 Actor-Critic 

Actor-critic (AC) algorithms are based on the simultaneous online estimation of 
both the policy, .π(s, a) (actor) and the value function (critic). Thus, the critic 
addresses a problem of prediction, whereas the actor is concerned with control. 
These problems are separable but are solved simultaneously to find an optimal 
policy, as in the aforementioned policy iteration. 

However, in actor-critic algorithms, the policy and value function are ap-
proximated using function approximation, i.e., they are parameterized. Thus, for 
example, the value function and policy can be described by: 

.V̂t (s) = vT
t f(s). (19) 

π̂t (s, a) = θT 
t ψ(s, a) (20) 

where . v is a vector of the adaptable parameters of the critic and .f(s) is a vector of 
its basis functions; . θ is a vector of the adaptable parameters of the actor and . ψ(s, a)

is a vector of its basis functions. 
The updates to both are preformed simultaneously, based on the TD-error: 

.δt = rt+1 + γ vT
t f(st+1) − vT

t f(st ). (21) 

vt+1 = vt + αtδt f(st ). (22) 

θ t+1 = θ t + βtδtψ(st , at ) (23) 

where .αt , βt are time-dependent learning rates of the critic and actor, respectively. 
In these types of algorithms, the learning rate is also usually decreasing, where the 
learning rate of the actor should be lower than that of the critic, since the prediction 
problem should converge first, then dictating the convergence of the policy. 

While there are numerous extensions to these algorithms, we next turn to a 
practical implementation for data science problems and then elaborate on the most 
prominent algorithms of deep reinforcement learning.
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3 Curious Feature Selection 

In the current section, we present an implementation of reinforcement learning to 
the subfield of Feature Selection. We first introduce it and then elaborate on the 
RL-related formulations that follow [19]. 

3.1 Feature Selection 

In the machine learning subfield, feature selection is the process of selecting a 
subset of relevant variables to be used in model construction. Feature selection 
techniques are primarily intended to improve model prediction performances and 
runtimes, to reduce model overfitting, and to increase generalization [12]. Several 
feature selection algorithms exist, most of which use search techniques along with 
an evaluation index to find an appropriate feature subset. The most basic technique 
searches all possible subsets and selects the subset that minimizes the model error. 
However, this exhaustive search is not computationally effective, particularly in 
situations where a large number of features exist [6]. 

In the following example [19], we applied the concepts of intrinsically motivated 
autonomous agents to data structures. We implement the curiosity loop architecture 
for the task of learning the data structure and performing curious feature selection 
(CFS). First, the training data is divided into small episodes. In each episode, a 
new feature (action) is selected in an inner-loop based on the already selected 
previous feature (state), and the internal reward consists of a reduction in the 
learning model error [25]. The model runs in a loop on multiple episodes until 
it reaches convergence. The loop attempts to find a feature selection policy that 
optimizes the model accuracy. The entire process is completely autonomous in the 
sense that all actions and rewards are determined autonomously. The resulting policy 
is used to construct a new learning model on the entire training set and on an unseen 
testing set. We show that this architecture improves model accuracy compared to 
running the learning model on the entire dataset or using common feature selection 
algorithms. 

3.2 Intrinsically Motivated Learning and the Curiosity Loop 

The basic intrinsically motivated learning [25], also known as artificial curiosity [27] 
or the curiosity loop [9, 10, 11], is based on the reinforcement learning paradigm, 
which is composed of a learner (predictor) and an intrinsic reward. In each loop, the 
agent selects an action and obtains an internal reward, which is based on prediction 
errors. The agent’s goal is to select an optimal action that maximizes its learning 
and to learn an action selection policy that maps states to actions. Each loop’s



546 J. Barkan et al.

convergent dynamics leads to a specific behavior tightly related to the objective 
learnable correlation [9, 10, 11]. 

Because the goal of the basic curiosity loop is to autonomously and actively learn 
a correlation in the best way possible, the core of each loop is the learner, which 
attempts to map presented input–output pairs via an internally supervised learning 
algorithm. For each presented example, the learner acquires a prediction error (i.e., 
the difference between the expected output and the correct output) and the reward 
value is set to this error [25, 9, 10, 11]. Thus, the agent in the curiosity loop actively 
learns via the reinforcement of the prediction errors. The agent determines which 
new example is presented to the learner by selecting an appropriate action. Then, 
the learner produces the prediction error, which determines the intrinsic reward. 
The reward is translated into a value function used to update the agent policy, which 
is then used in the next loop to determine the next appropriate action to select [9, 
10, 11]. 

3.3 States and Actions 

As described in the previous section, the first important issue to resolve is the 
definition of the state- and action spaces. To recap, the basic reinforcement learning 
model consists of a set of environment and agent states .s ∈ S and a set of actions 
.a ∈ A that the agent can select. 

In the CFS algorithm, both the state space and the action space are equal to the 
data feature space, that is, each state represents the previously selected feature and 
each action is the next feature to select. The state space contains one additional 
initial state . s0 that represents the state before any feature is selected. 

.s ∈ S : {s0, f eature1, f eature2, · · · f eaturen} (24) 

.a ∈ A : {f eature1, f eature2, · · · f eaturen} (25) 

Each state has a set of available actions .Aavailable ∈ A that represents the features 
not yet selected in the current loop. 

3.4 Learner and Internal Reward 

Once the states and actions are defined, the next important definition is the reward. 
In CFS, we use intrinsic reward, in other words, reward that depends on another 
element within the algorithm and not supplied by the user. The intrinsic reward will 
be determined by improvement of the learned model, i.e., the learner. 

The learner can be any supervised machine learning model. The model attempts 
to learn an input (i)-output (o) transformation: .L (O | I : χ) where . χ represents the
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parameters of the machine learning model. The learner finds the parameters . χ that 
best minimize the generalization error: 

.L = argmax
χ

(∑
i

(Omodel (i) − Oreal (i))
2

)
(26) 

At each time t , the learner is executed on the episode data, using the selected 
feature (action) and all the other features that were selected in the current episode. 
After each execution, the model output .Omodel is compared to the real output .Oreal , 
resulting in a prediction error . et . The prediction error . et is compared to the previous 
error .et−1, and the reward . rt is defined as the change in the error: larger changes in 
the error result in larger rewards. 

.rt = et−1 − et (27) 

To calculate the reward for the first selected feature, we define an initial error, which 
is a prior error assumption. The change in the error represents the importance of the 
last selected feature and the information it adds to the model. Thus, when the agent 
selects a feature that adds valuable information to the model and, thus, reduces the 
total error, the reward is high. 

In the CFS algorithm, we do not know the transition function. However, this is 
not an issue as we use algorithms that do not assume this knowledge. Once all the 
definitions are done, we move to the description of the value function and policy. 

3.5 State-Action Value Function and Policy 

The received internal reward is used to update a state-action value function that 
yields the expected utility of adding a specific feature (action) to a given feature 
(state). 

The policy is the rule to follow when adding a specific feature (action) to a given 
feature (state). Starting with the initial state, the optimal policy can be constructed 
by simply selecting the feature (action) with the highest value above some threshold, 
setting this feature as the next state and repeating this operation until no more actions 
are available. 

.st+1 = argmax
a

(Q(st , at )) (28)
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3.6 Exploration vs. Exploitation 

To balance between leveraging the model’s knowledge in each state by selecting the 
action with the highest estimate action-value function (exploitation) and exploring 
the uncharted features space, the epsilon-greedy algorithm is used, and an epsilon 
parameter . ε is defined [16]. The action with the highest estimate action-value 
function is selected with a probability of .1 − ε, while a random action is selected 
with a probability of . ε. 

To improve exploration during the first few episodes, the parameters . ε and . α
(learning rate) are set to high values and then automatically reduced based on how 
many iterations have been completed [7]. In addition, an optimistic Q-learning [8] 
approach is used, where the Q-values are initialized to 1. This creates a greedy policy 
with respect to the Q-values for the first few episodes. The Q-value is updated with 
the actual value of the reward the first time each state-action is selected. 

3.7 Experimental Setting 

We executed the CFS algorithm on the diabetes datasets. 

3.7.1 Diabetes Dataset 

The Diabetes data was extracted from the Health Facts database (Cerner Corpo-
ration, Kansas City, MO), a national data warehouse that collects comprehensive 
clinical records from hospitals throughout the United States. It was submitted 
to the UCI Machine Learning Repository on behalf of the Center for Clinical 
and Translational Research, Virginia Commonwealth University [31]. After data 
preprocessing, the dataset contained 100,000 instances with 44 features describing 
encounters with diabetic patients, including their demographics, diagnoses, diabetic 
medications and number of visits in the year preceding the encounter. 

3.7.2 Data Preparation 

As a preliminary step, it is split into a training dataset (.90%) and testing dataset 
(.10%). The training dataset is used to train the CFS algorithm and select the policy 
for the feature subset. The testing dataset is used to rebuild the model based on 
the subset of selected features and to evaluate the model on new data. On each 
dataset, the CFS algorithm was tested with 2 learners (Decision Tree and Naive 
Bayes). Specifically, these learners were selected since they are applicable for both 
categorical and numerical features types. The discount factor was set to 0. Each 
experiment was repeated 30 times and the average result was taken.



Reinforcement Learning for Data Science 549

3.7.3 Comparison Algorithms 

We compared the CFS algorithm results on the testing dataset with 4 traditional, 
popular and commonly used feature selection algorithms. The algorithms represent 
each one of the feature selection categories: including the Sequential Forward 
Selection (SFS) wrapper method [17], 2 filter methods: the Variance Threshold 
method, which removes all features whose variance does not meet some threshold 
and the Chi-Square test [15], and one embedded method based on the GINI 
importance score for decision tree [5] that measures the average gain of purity by 
splitting a given variable. 

3.7.4 Results 

On the Diabetic dataset, the traditional feature selection methods reduce the number 
of features from 44 to 13–14 features (Sequential Forward Selection),20 features 
(Variance), 23 features (DT GINI importance), 26 features (Chi-square test—60%), 
and 35 features (Chi-square test—80%), and in some cases improved the model 
accuracy compared to the baseline. However, in other cases it did not change 
the accuracy or reduce the accuracy. For the decision tree model, the baseline 
accuracy was 46.08%. The best traditional method (Sequential Forward Selection) 
achieved an accuracy of 57.17% and improved the baseline accuracy by 11.09%. 
The CSF algorithm’s best and most frequent policy (22 out of 30) included only one 
feature and achieved an accuracy 11.27% higher than the baseline. For the Naive 
Bayes model, Sequential Forward Selection methods achieved accuracy of 58.12% 
however, the other traditional feature selection methods did not change the model 
accuracy (45.06%). The CSF algorithm’s best and most frequent policy (5 out of 30) 
which included only 3 features, achieved an accuracy of 58.17%, and improved on 
the baseline method by 13.11%. 

3.8 Summary 

The CFS algorithm with the RL approach is more efficient, run-time-wise, when 
adding more features or increasing the data size [19]. Moreover, it suffers less from 
over fitting and provides insights on the data, due to multiple policies, in the form 
of importance of features and their combinations. 

These impressive results were obtained using classical RL algorithms. We next 
dive into deep reinforcement learning, an extremely successful extension of function 
approximation of the different components of RL, e.g., policy, value function, and 
Q-function.
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4 Deep Reinforcement Learning 

In this section we introduce the concept of deep reinforcement learning (DeepRL) 
in a formal way and then present important issues that arise specifically with data 
science related topics. This section is not meant to be an exhaustive review of 
DeepRL algorithms, but rather a list of guidelines on important decision criteria 
on how to choose the appropriate algorithm. 

We first give a brief introduction to deep neural networks and their direct 
application to RL and then focus on challenges of DeepRL and some of their 
solutions. 

4.1 Introduction to DeepRL 

Deep Reinforcement Learning is a variant of RL which utilizes Artificial Neural 
Network (ANN) as the function approximator. ANNs, recently re-popularized 
under the paradigm of machine learning through the use of the backpropagation 
(backprop) algorithm, is the name given to the class of computational models that 
are represented as weighted directed graphs, where each node is equipped with a 
real-valued function. 

One can group the nodes into the following groups: (1) Input Nodes—nodes that 
have no edges going into them. (2) Hidden nodes—nodes that have edges going 
into them and out of them. (3) Output Nodes—nodes that have no edges going out 
of them. The graph itself, without the weights or edges connecting the nodes, is 
called the Architecture of the network. 

Each ANN is a model of a function, where the input is inserted to the Input 
Nodes and the output retrieved from the Output Nodes. Each node performs the 
computation in 2 steps: 

1. Summing all the outputs of the nodes going into it, weighted by their respective 
weights 

2. Applying its associated function, called activation function, on the result of the 
last step 

The computation of the network means performing this process on all the nodes in 
the graph. 

If the Architecture is not acyclic, a problem with this formulation may occur as 
there will be multiple possible sequences for performing the computation, and they 
might result in different outputs. For this reason, most of the current Architectures 
are acyclic. As a result, we can think of the architecture in an hierarchical way, with 
each layer being comprised of nodes receiving inputs from the previous layer, with 
the first layer the input layer, the last layer the output layer, and all the layers in 
between called Hidden layers.
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The ANNs weights are learned using back-propagation to perform Gradient 
descent. Backprop is an algorithm for traversing the error of the network and 
assigning “blame” (the gradient value) to every edge in the network so it can “learn” 
(by adjusting its corresponding weight). When an ANN has several hidden layers 
(initially more than 3, but today at least 5) it is called a Deep Neural Network 
(DNN). 

Even though there is currently no accepted mathematical or computational 
explanation for their success, empirical results show that DNNs are very good 
at solving several tasks that, currently, other method fail to solve. The most 
successful applications are in the fields of computer vision (e.g., face detection, 
face recognition, face generation, (multi) object detection, image segmentation), and 
natural language processing (e.g., speech recognition, translation). 

More formally, the goal of a neural network is to approximate function f . For  
a neural network F with set of weights W we annotate the corresponding function 
as . Fw. We can introduce networks into the learning paradigm by thinking of the 
weights as parameters, .w → θ . Now our network is . Fθ and the problem of function 
approximation becomes the problem of finding a set of parameters . 
 such that . Fθ

best approximates our desired function f . 
We use the DNN to approximate and learn the Q-function (or actor-critic 

functions), by using the TD-error as the error signal for the network. 

4.2 Difficulties Relevant to DeepRL 

4.2.1 Sample Efficiency 

While successful, deep learning has its limitations, first and foremost is the amount 
of data it needs. For a deep network to be able to generalize well it must have 
enormous data resources. Deep learning leverages the statistics of the data it 
consumes, thus it must encounter numerous variations in its training data to be 
able to work and generalize to the real world. For a few tasks, e.g., face/object 
detection, there are huge datasets available online. However, for most other tasks, 
data, especially free and available data, is hard to come by. 

This is doubly true for RL tasks. At the extreme, robots are real-world entities 
and as such perform actions in the real world, thus making the creation of a large 
set of examples (e.g., for SARSA) a tedious and very time consuming task. This can 
be partly solved by simulation, but simulations are not the real world and models 
trained on them might not transfer properly to a real environment. 

Even if the RL agent is within a computerized environment, it can only perform 
a single action at a time. As a result, a single agent can only “see” one possible 
trajectory. One option is to use multiple agents within the same environment, but 
that only partially solves the problem: the size of the trajectory space, i.e., all 
possible sequences of state-action pairs. This space size is exponential with respect 
to the action and space sizes. Moreover, the time horizon plays a role too, as some
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algorithms use time horizon greater than 1. To summarize, designers of algorithms 
in DeepRL must put sample efficiency at their front and center. 

4.2.2 Sparse Rewards 

DeepRL, as any RL, requires rewards in order to adapt and learn the policy. 
However, in many scenarios the reward is extremely sparse temporally, i.e., rewards 
are received very infrequently. For example, in some computer games, the agent 
does not get points during each level of the game, but only a “win/lose” for each 
level. This is very sparse, since the agent has to perform several actions in order to 
complete the level, for which it does not get any reward. 

Similarly, in robotic implementations, the scenario is usually defined as a 
“success/failure” for each attempt and not a continuous reward for each decision 
made by the robot. This issue continues to plague the DeepRL field, with some 
attempts to overcome it, using curiosity, or intrinsic rewards [3]. 

4.2.3 Correlation between Data Points 

Other, non-trivial problems exist too, but the field has been making inroads in 
addressing them. One such problem is that of correlated samples (also contributing 
to the sample efficiency problem). As of today, all of DNNs success leverages the 
Stochastic Gradient Descent (SGD) optimization algorithm and its variants. This 
approach to GD approximates the gradient by sampling a random sample of the 
training data at each iteration. For the stochastic sample to be a close (unbiased) 
estimation of the real gradient of the network at that time step the samples need to 
be as uncorrelated as possible. However, in RL the agent gathers samples directly 
from the environment and in small time intervals, resulting in highly correlated 
observations. For example, two consecutive states will most surely be very “close” 
to each other (under any reasonable metric of the state space). Thus, if we want it to 
learn on the fly (online), the samples will almost certainly be highly correlated. 

4.2.4 Ground Truth Unavailability 

Another difficulty is with respect to ground truth. DNNs success has come in the 
paradigm of Supervised Learning, where gradients are calculated with respect to an 
error value. That error is calculated by applying some metric on the output space. 
Specifically, it needs the ground truth, i.e., the correct output the model should have 
predicted. The ground truth is also referred to as target. Alas, in RL that ground 
truth is usually unavailable or intractable to calculate. For value functions it is the 
expected sum of discounted reward (intractable) and for policy methods that is an 
optimal policy (unavailable).
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These obstacles should be added to all the previous difficulties that effect regular 
RL, e.g., exploration-exploitation. 

4.2.5 Benchmarks 

Benchmarks are a touchy subject for every task and especially so for DeepRL. How 
can we define an environment that when testing against it will tell us how general-
izable our model is? Usually in Machine Learning (ML) the method is to split the 
available data to 2 parts, train and test. On the training chunk we train new models 
and compare/validate them and then judge the model’s generalization capabilities 
against the test chunk. However, because of sample inefficiency and the mastering 
effect (due to the exploitation process), what should DeepRL agents generalize? 
As a result, DeepRL is the only field that tests itself against environments that are 
highly similar to the training environments. 

For example, the most prevalent framework in which DeepRL research is done is 
a set of ATARI games. This is a collection that has very specific resolution, very 
limited set of actions (due to them being designed to be played with the same 
controller) and the objective is to move up in the levels. As a result, the main way 
of splitting the environments is by levels. But different levels are highly correlated 
with respect to color distribution, world dynamics, direction of game development 
(in some games the character always needs to move to the right to finish), and much 
more. 

4.3 DeepRL Algorithms 

DeepRL is a nascent field that is advancing rapidly. Several basic algorithms now 
follow, in order to give the reader an entry point to the field and the way some of the 
aforementioned challenges are resolved. 

4.3.1 Deep Q-Networks (DQN) 

The first to emerge as a good framework was [18]’s Deep Q-Network, which we 
will dive into in order to get an example of how these difficulties can be resolved. 

Deep Q-Networks (DQN), as the name suggests, are based on the Q-learning 
paradigm/algorithm, found earlier in the chapter. Basically, it replaces the state-
action table that is used in Q-learning with a Deep Neural Network. 

First, we must set the scene of the problem, i.e., describe the environment, the 
state and action spaces and the reward. 

DQN was initially built to play ATARI games, e.g., Breakout, were it plays as 
the paddle. As a result, the action space is small and is limited by the joystick used. 
For example, the paddle can move left, right, or stay put at each time step.
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While the goal of the game is to pass each level, it makes for a bad reward 
function. If we choose the reward to be passing a level then we will get a very 
sparse reward, as it will come only at the end of each level, either win or loss, 
and as you may recall, a sparse reward function is very hard to “solve” with RL. 
Thankfully, there is a score attached to each block removed/hit. That score can be 
very helpful because: (1) A higher score correlates well with passing the level, and 
(2) It is much less sparse, as there are many blocks in each level. This overcomes 
the reward function conundrum because we get a non-sparse reward that can help 
us win levels. 

As for the state space, we want to take advantage of the DNN paradigm. The 
most successful algorithm uses images where, specifically for the first layers, we 
use convolutional layers, allowing us to define the state space as raw pixels. But due 
to the actions being the size of 3, they are massively “smaller” than a state. That is 
circumvented by a smart architecture, where the input is the current state (actually 
4 successive frames, not just 1) and the output is a probability distribution on the 
actions (using softmax to get the distribution). At any state, the agent “chooses” an 
action by drawing from the output’s distribution on the actions. 

That explains how the network behaves like an agent in the game, but we need 
to address one last thing, which is to explain how the network learns a good policy, 
that is, what is the network’s optimization/minimization objective. 

4.3.2 Q-Networks and Target Networks 

For this we recall the Q-learning algorithm. In it, we used the Bellman equation 
to extract the Temporal Difference error. Stochastic Gradient Descent uses batches 
instead of the entire data, so the “natural” objective would be to minimize that, i.e., 
the target value is defined as .rt+1 + γ · maxa∈A Q(st+1, a). 

Notice that the target uses Q, hence we need to be careful not to use the gradient 
with respect to it. But using the same network to compute both values creates an 
issue. Due to the max operator in the TD-error (Eq. 15), and the overestimation of 
the value function that learning from a moving target can create, the network might 
get “stuck” with a bad policy. 

Because of this, in DQN they used two Q-networks, one as the true network and 
the other for computing the target value (which is called, unsurprisingly, a Target 
network). 

Several target network versions are used in DeepRL, and they go under the 
name Double DQN. In the original paper [13], the method was to have two Q-
networks and to use them in the role of learning and target interchangeably, i.e., 
every “couple” of iterations they switched between the roles. Another approach is 
to have only one network, but to keep an old copy of it to be used as the target [32]. 
In this method, they updated the “old” copy every “couple” of episodes in order for 
it to not go “stale.” Another approach is, resembling the first, to use two networks, 
but unlike the original, both networks perform learning at the same time, and the 
target value estimation takes the minimum value between the two networks.
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4.3.3 Experience Replay 

To help solve the problem of high correlation between samples, [18] introduced 
the Experience Replay (ER) Buffer. Inspired by the brain, the buffer contains a 
large collection of past experiences. This makes the algorithm off-policy, as during 
the game itself the agent does not learn but rather plays according to its current 
policy. In DQN, each sample in the buffer is comprised from, at least, the tuple 
.(st , at , rt+1, st+1, e), where e is a Boolean value that tells us if the sample was taken 
right before the episode terminated (because then the estimation of the Q-value is 
just the reward). Usually a memory buffer holds 50k samples, and some may be as 
big as several millions. 

Experience replay has several versions. In [18] the researchers used a uniform 
distribution to sample the memory. In priority experience replay [26], they sampled 
the memory with a distribution extracted according to the last TD-error (it is updated 
every time it is sampled) that corresponds to the sample. 

An important note: One should not be tempted to draw samples in a non-random 
way. Remember that the learning algorithm is a stochastic variant of Gradient 
Descent and therefore our sampling technique must be stochastic, i.e., random 
sampling. Otherwise the algorithm might “forget” the low error data points it 
learned—the ones it was correct on—as they would not be sampled almost at all. 

Ref. [2] leveraged the fact that the learning happens offline to use hindsight in 
setting the goal. Essentially, the goal, and the associated reward . rg (see [2] for their 
goal-to-reward formulation), can be chosen retroactively, and one can assume that 
the state arrived at is exactly the state the agent wanted. In practice, because the 
goal affects the policy, sample a goal for the agent to pursue in the next episode and 
proceed to “playing” the episode and storing .((st ||g), at , rg, (st+1||g)) in the buffer 
(. || is concatenation of the state and the goal, possible because both are elements 
of the state space). When the episode is over, start populating the replay buffer by 
sampling other goals and adding the corresponding tuple as if that was the true goal, 
i.e., change the reward and the concatenated states (.rg → rg′ , s||g → s||g′). 

Lastly, it would be nice to be able to learn from good agents. Those can be either 
human agents or, if unavailable, big lumbering agents (the teacher-student construct 
in DNN, where we first get a very deep architecture to learn to play and then, in order 
to downsize the amount of memory used to store the network, we deploy a smaller 
network that learns from the bigger network). This is called demonstration/imitation 
replay buffer [14]. In it, in addition to the agent’s experience, we populate the buffer 
with examples collected from the good agent. 

We have presented several state-of-the-art solutions to the challenges of DeepRL. 
There are numerous extensions to the algorithms we have presented, which are 
beyond the scope of this chapter. Furthermore, the field is developing rapidly, 
with dozens of new algorithms every month. We refer the interested reader to the 
following websites [23, 24] and reviews on deep reinforcement learning algorithms 
[20].
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5 Summary 

In this chapter we have introduced the basic formulation of reinforcement learning. 
While there are only a few direct uses of RL in the field of data science, we have 
detailed one such use in the case of Curious Feature Selection. The proliferation of 
deep learning and its direct extension, DeepRL, promises to supply novel algorithms 
which are directly applicable to data science. 

One way to think of how to implement DeepRL in data science pipelines is 
to consider the data scientist as the agent and model her decision making. Thus, 
for example, in Feature Selection, previously the data scientist had to select which 
features were important or not. In CFS we have used RL, with rewards proportional 
to better models, to efficiently learn which features to select. One may attempt to 
apply this approach to other decisions in the data scientist profession. 
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Adversarial Machine Learning 

Ziv Katzir and Yuval Elovici 

1 Introduction 

Machine learning techniques are used to induce models for various tasks. Until 
recently, the prevailing assumption was that the users of these models would not 
attempt to deliberately mislead them. However, a relatively new and extremely 
active research domain known as Adversarial Machine Learning studies machine 
learning algorithms in the presence of an adversary. Its main focus is understanding 
the susceptibility of machine learning algorithms to specially crafted inputs, referred 
to as adversarial examples or adversarial perturbations. These inputs are designed 
to mislead the learning algorithms so they will come to a wrong conclusion, while 
being indistinguishable from valid input. Initially, the term “indistinguishable” 
has referred to the human perception; however, in later works it was extended to 
include computerized detection methods as well (such as in the case of identifying 
adversarial perturbations against a cyber malware detection software). 

Adversaries can either try to influence the learning process itself by poisoning 
the training dataset or alternatively aim to mislead an already trained model. 
This chapter is mainly focused on attacks against fully trained models, which are 
sometimes referred to as evasion attacks. Adversarial machine learning research 
includes methods for creating adversarial perturbations, methods for defending 
against adversarial perturbations, and research aimed at explaining the susceptibility 
of machine learning models to these perturbation patterns. 

Early research on adversarial machine learning was mainly theoretical and 
inapplicable to real world systems, hence the entire domain was considered esoteric 
or even anecdotal. However, a series of discoveries in 2013–2016 quickly changed 
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that perception and paved the way for the implementation of practical attacks against 
real world systems. Today, model susceptibility to adversarial examples is one of the 
main issues concerning the AI community. 

Szegedy et al. (2013) showed, for the first time, that deep neural networks are 
susceptible to adversarial perturbations, much like traditional machine learning 
algorithms. Not long after, Goodfellow et al. (2014) discovered a simple, compu-
tationally efficient method for creating adversarial examples. As part of that work, 
the researchers also proposed adversarial retraining, the first defense mechanism 
against adversarial examples, and in doing so, marked the beginning of an arms 
race of attacks and defenses. Two years later Kurakin et al. (2016b) demonstrated 
how adversarial examples could be used in the physical world. Together, these three 
studies created a sense of urgency within the research community, and as a result, 
the amount of research attention dedicated to this field has dramatically increased. 

In this chapter, we follow the evolution of the adversarial machine learning do-
main through the lens of the literature. We start with the early methods of attack and 
defense and conclude with recent discoveries and outstanding research questions. 
We review notable studies and discuss their contribution to the understanding of this 
phenomenon. Most of the works surveyed in this chapter deal with neural networks 
and, more specifically, neural network-based classifiers, but we do not want to imply 
that adversarial machine learning is limited to these types of learning models. On 
the contrary, adversarial machine learning has been shown to affect a wide variety 
of model types and learning tasks. Our choice of surveyed papers simply reflects 
the fact that, the vast majority of research performed in this domain has used neural 
network-based classifiers to demonstrate attack and defense methods. Still, most of 
the principles and methods discussed in this chapter are also applicable, with minor 
adaptations, to other machine learning tasks. The attacks and defense mechanisms 
mentioned here can easily be applied to other types of neural networks, or even to 
different machine learning algorithms. 

2 The Very Early Works 

The term adversarial machine learning was first coined in (Huang et al., 2011) to  
denote “the study of effective machine learning techniques against an adversarial 
opponent.” The same work also introduced a taxonomy of attack methods, fostering 
an in depth discussion of the associated risks and mitigation methods. When a 
machine learning algorithm faces an adversary, one can no longer rely on the data 
stationarity assumption. This assumption, which serves as the basis of all machine 
learning algorithms, assumes that the statistical properties of the data used to train 
a model are identical to those of the data observed during inference. The existence 
of an opponent is therefore what distinguishes adversarial machine learning as an 
independent research domain. 

Initial interest in the domain of adversarial machine learning was sparked when 
machine learning algorithms were put to use in commercial fraud prevention and
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cyber defense applications. In those cases, the existence of an adversarial opponent 
is a fact of life, as opposed to a theoretical concept. As a result, many early research 
studies used spam filtering, which was among the first cyber defense applications 
addressed by machine learning, as their test case (Kołcz and Teo, 2009; Dekel et al., 
2010). 

Early research (2011–2014) mainly focused on traditional machine learning 
algorithms, such as the support vector machine (SVM) classifier, and specific 
clustering algorithms (Biggio, Nelson et al., 2012; Biggio, Corona et al., 2013; 
Biggio, Pillai et al., 2013). Game theory related research also had a major influence 
on the adversarial machine learning domain in that period (Brückner et al., 2012; 
Wang et al., 2014). Although both SVMs and game theory did not play a major 
role in later adversarial machine learning research, two main concepts that emerged 
from those early works continue to influence adversarial machine learning research 
to this day: 

1. The use of loss functions for defining the utility of either the attacker or the 
defender 

2. The use of standard “solvers” or optimizers for crafting adversarial attack 
patterns 

By 2014, machine learning research in general began to focus more heavily on 
deep neural network-based algorithms, and such algorithms continue to dominate 
machine learning research today. This triggered a similar pattern in the domain of 
adversarial machine learning, and as a result, the vast majority of studies surveyed 
in this chapter use deep neural network-based classifiers as their use case. Still, most 
of the principles and methods we survey are applicable in a wide range of use cases 
and machine learning algorithms. 

3 The Evolution of White-Box Attack & Defense Methods 
against Deep Neural Networks 

White-box adversarial attack methods against neural networks were the first adver-
sarial attack methods to be discovered, and they account for the majority of all attack 
methods published to date. These methods assume that the attacker has complete 
knowledge of the attacked network’s architecture and parameters. This all-powerful 
attacker model greatly simplifies the process of crafting adversarial examples. In 
fact, the basic white-box attack concept strongly resembles the process of training a 
neural network. 

We start our journey into the evolution of adversarial attacks by studying early 
white-box methods. As will be seen later in this chapter, the principles associated 
with these methods serve as the foundation for many of the more advanced 
attack methods, including those that assume a more restricted attacker model. We 
then move on to describe the arms race triggered by those methods. We discuss 
some of the notable defense mechanisms suggested so far, present the Carlini &
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Wagner attack (Carlini and Wagner, 2017b) which was designed to counter them, 
and conclude this section by describing some more recent, although ultimately 
unsuccessful, attempts at defending against white-box attacks. 

3.1 Preliminaries and Notations 

3.1.1 Notations 

Throughout this chapter, we use a set of notations to describe the implementation 
details of adversarial attack and defense methods. We denote the attacked neural 
network with . f (·), use  x to signify some valid input to this network, and use 
Y as the true class label associated with that input. We use N to indicate the 
number of classes identified by .f (·), and .z (x) to denote output of the logits layer 
(the layer that immediately precedes the softmax). We denote the network loss 
associated with a given pair of input and true class by .J (x, Y ). And finally, use 
. δ to represent a perturbation pattern that is added to some valid input in order to 
cause misclassification. We use .x′ = x + δ to denote the adversarial example that 
results from combining the input with the perturbation. 

When discussing adversarial attacks, we talk about “crafting” an adversarial 
example or “finding” it. Although these terms can be used interchangeably, the 
former term emphasizes the action taken by the attacker in order to create an 
adversarial example. The latter term, on the other hand, reflects the fact that 
adversarial examples simply exist within the learning model’s input space. As such, 
the attacker is searching for the relevant adversarial example given some valid input, 
rather than creating it. 

3.1.2 Targeted and Non-targeted Attack Methods 

In the context of classification tasks, adversarial attack methods can be broadly 
divided into two main classes based on the attacker’s goal: targeted and non-targeted 
attacks. In the case of non-targeted attacks, the adversary aims to cause a given 
input to be misclassified but does not care what class label is assigned to that input. 
Targeted attacks, on the other hand, aim to manipulate the classifier so that a specific 
class label C is assigned to that input. 

3.1.3 Measuring the Magnitude of Perturbations 

In addition to misleading the learning algorithm, adversaries aim to prevent the 
adversarial examples from being detected. Much of the prior research on adversarial 
examples dealt with image classification tasks, and hence researchers aimed to
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prevent humans from detecting the adversarial perturbation. In this context, three 
distance metrics have commonly been used as a proxy for human perception: 

1. . L0 measures the number of perturbed features (e.g., when the input is an image, 
the features are pixels). 

2. . L2 measures the perturbation’s Euclidean norm. 
3. .L∞ measures the maximal change to any of the input features. 

Perturbation patterns that were designed to minimize the . L0 distance are sometimes 
referred to as sparse vector attacks, while perturbations that minimize the . L2 or . L∞
distance are referred to as dense vector attacks. 

Applying adversarial attack methods to new content domains requires the identi-
fication of a suitable distance metric that correctly represents the defender’s abilities. 
For instance, when designing an attack against a malware detection system, human 
perception is of lesser importance. Instead, the attacker’s goal is to manipulate the 
malware so that it will not be detected by a classifier, while preserving its malicious 
nature. When designing an attack against an image recognition system in which 
humans can also see the input, the perturbations should not be visible to the human 
eye. Thus, a different distance metric is required in each case. 

3.2 The Basic Recipe for a White-Box Attack against a Neural 
Network 

Crafting adversarial examples in white-box conditions generally implies solving two 
constraints. The attacker aims to find a perturbation . δ, which, when added to a valid 
input vector x, will cause the classifier .f (·) to misclassify the perturbed input. This 
perturbation must be sufficiently small so as to go undetected. In the case of a non-
targeted attack, the attacker’s goal can be expressed as: 

.

f
(
x′) �= Y

s.t. ‖δ‖p ≤ ε
(1) 

The first constraint in (1) ensures incorrect classification, while the second controls 
the perturbation magnitude. Here, . ε stands for the maximal perturbation radius given 
some context specific distance metric .‖·‖p. Limiting the value of . ε aims to prevent 
the perturbation from being detected. In the case of a targeted attack, a slightly 
modified version of the first constraint is used: 

.

f
(
x′) = C

s.t. ‖δ‖p ≤ ε
(2) 

Under white-box conditions, solving the constraints included in (1) or (2) usually 
involves:
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1. Computing .f (x) for some valid input 
2. Calculating the loss gradient with respect to the input 
3. Performing one or more steps in which the input is perturbed based on the loss 

gradient calculated in the previous step. In the non-targeted case, perturbation 
is designed to maximize the loss with respect to the true class, while in the case 
of targeted attacks, it is designed to minimize the loss with respect to the target 
class 

This process strongly resembles the process of training a neural network. The main 
difference is that when crafting adversarial examples, the network’s weights remain 
unchanged, and instead the gradient is used for updating the perturbation added to 
the valid input. 

3.3 Early Attack Methods 

3.3.1 Fast Gradient Sign Method—FGSM 

The first computationally effective approach for crafting adversarial examples 
against neural networks is commonly known as the Fast Gradient Sign Method 
(Goodfellow et al., 2014). FGSM was initially designed as a non-targeted method, 
but it was later extended with a targeted variant. This attack method performs 
a single iteration of loss and gradient calculation and perturbs each of the input 
features with a step of a fixed size in the direction of the gradient. More formally, 
FGSM is expressed as follows: 

.x′ = x + ε · sign (�xJ (x, Y )) (3) 

Perturbing the input in the direction of the gradient increases the network’s loss and 
hence causes the input to be misclassified. The single gradient calculation phase 
involved in this attack makes it simple to implement and highly efficient in terms 
of computational needs. Despite its simplicity, this method is quite successful at 
causing misclassification. 

3.3.2 Jacobian Saliency Map Attack—JSMA 

Papernot, McDaniel, Jha et al. (2016) proposed the Jacobian Saliency Map Attack 
method, a greedy iterative algorithm for crafting targeted adversarial examples 
with a small L0 perturbation distance. In each iteration, the algorithm computes a 
saliency map based on the network’s Jacobian and then uses this map to choose the 
two most salient features to perturb. One feature is chosen in order to maximize the 
loss with respect to the true class, while the other is chosen in order to minimize the 
loss with respect to the target class. The algorithm stops as soon as the desired target 
classification is assigned to the perturbed input or after performing a predefined



Adversarial Machine Learning 565

maximal number of steps. The greedy nature of this algorithm limits the overall 
number of attack iterations. However, the computation of the complete Jacobian is 
highly demanding in terms of computational resources, making this attack method 
impractical for networks with high input dimensionality. 

3.3.3 Targeted Gradient Sign Method—TGSM 

Based on the FGSM approach, Kurakin et al. (2016a) presented a targeted attack 
variant referred to as the targeted gradient sign method (TGSM). Instead of 
maximizing the loss with respect to the true class, the authors aimed to minimize 
the loss with respect to the target class C: 

.x′ = x − ε · sign (�xJ (x, C)) (4) 

Much like its non-targeted sibling, this attack method is computationally efficient, 
easy to implement, and remarkably successful at causing targeted misclassification. 

3.3.4 Basic Iterative Method—BIM 

Another straightforward extension to the FGSM and TGSM is to use a smaller 
perturbation step and repeat the attack process multiple times. This idea was first 
suggested by Kurakin et al. (2016b) and is commonly referred to as the basic 
iterative method (BIM) or the projected gradient method (PGD). Using (3) as a 
basis, we can formally express the non-targeted BIM variant as follows (note that 
the targeted variant is expressed by starting from the TGSM equation instead the 
FGSM one): 

.xt+1 = clip (xt + γ · sign (�xJ (xt , Y ))) (5) 

In each iteration, the sign of the loss gradient is computed with respect to the output 
of the previous iteration and the true class. Then, the perturbation step per iteration 
. γ is added to all input features. Finally, the clip operator is used in order to keep 
each of the input features within its valid range. 

The iterative nature of this attack increases the overall attack success rate, 
while clipping reduces the average perturbation distance. The resulting perturbation 
is, in most cases, quite refined compared to the single iteration attack methods. 
By adjusting the maximal number of iterations, one can control the trade-off 
between computational efficiency and perturbation refinement. Using a few hundred 
iterations usually provides a good balance point.
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3.4 Early Defense Mechanisms 

3.4.1 Adversarial Retraining 

Adversarial retraining (Goodfellow et al., 2014) is perhaps the most intuitive 
defense approach against adversarial manipulations. As such, it was included in 
the publication in which FGSM was proposed. This method is based on the 
assumption that adversarial examples may exist in areas of the input space that 
are underrepresented in the training set. With that in mind, the authors suggested 
augmenting the original training set with adversarial examples that were crafted by 
the defender and labeled with the true labels of the inputs from which they were 
derived. Augmentation is performed iteratively, and in each iteration, the defender 
(1) trains a network so that it is sufficiently accurate with respect to the existing 
training set, (2) generates adversarial examples against the trained model, and (3) 
augments the training set with the adversarial examples, along with their true class 
labels. 

In effect, the defender needs to think and act like an attacker in order to defend 
the network against future attacks. As it turns out, attempting to anticipate all future 
attack methods is practically impossible; hence, adversarial retraining provides 
a very limited defense. Networks trained using this simple defense approach 
demonstrated greater resilience to adversarial manipulations than undefended clas-
sifiers. However, this approach suffers from three main shortcomings: (1) the 
repeated training process is computationally demanding, and hence greatly limits 
its applicability in the case of large modern networks, (2) adversarial retraining 
based on weak attack methods does not provide an adequate defense against stronger 
attacks, and (3) the average perturbation distance does not increase significantly 
from one training iteration to the next; thus, it is fairly easy to continue to craft 
adversarial examples against a network that has already undergone several iterations 
of adversarial retraining. 

3.4.2 Defensive Distillation 

Defensive distillation (Papernot, McDaniel, Wu et al., 2016) is one of the most 
notable defense mechanisms against adversarial perturbations suggested so far. It 
is easy to implement, computationally efficient, applicable for any softmax-based 
neural network classifier and relies on a solid mathematical foundation. At the time 
of its discovery, defensive distillation was able to defeat all known attacks, although 
it was soon defeated by stronger attack methods. 

The main goal of the defensive distillation method is to eliminate the loss 
gradient used in constructing adversarial examples. Its underlying assumption was 
that without a gradient to follow, attackers would be unable to craft adversarial 
examples. While this line of thought seems quite logical, later in this chapter we 
will present attack methods that are not reliant on gradient calculations.
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The term distillation refers to the process of training one classifier network 
using the softmax outputs of another. Hinton et al. (2015) has originally suggested 
distillation as a mean for reducing the number of neurons needed to perform a given 
classification task. The aim was to allow the resulting neural network to be used 
on devices with limited computation resources. Distillation works by first training 
a “teacher” model to solve the required task and then training a simpler “student” 
model to predict the teacher’s softmax outputs. The distillation process is based 
on the intuition that by training with the complete set of probability estimates, as 
opposed to just an indication of the true class, the student model can extract much 
more knowledge from each training example and therefore be implemented using a 
smaller number of neurons. 

Defensive distillation adapts the original process of distillation described above 
in order to increase the resilience of the resulting student model to adversarial 
manipulations. The amount of computational resources used by the student model 
during inference is of lesser importance in this case, hence there is no need to 
reduce the model’s number of neurons. In order to increase the resilience of the 
student model, defensive distillation aims to eliminate the model’s loss gradient with 
respect to the input. This is achieved by manipulating the output of the logits layer 
(the layer that immediately precedes the softmax) by introducing the distillation 
temperature, as explained below. As a result the logit component associated with 
the most probable class is increased compared to all others logit components. This 
makes the network appear to be “more certain” of its classification decisions and 
reduces the value of the loss gradient of the selected class. The input loss gradient 
is typically decreased by several orders of magnitude until it can no longer be 
represented by a 32-bit floating point variable. This phenomenon, which was later 
referred to as gradient masking (Papernot, McDaniel, Goodfellow et al., 2017), 
practically nullifies the gradient observed by the attacker and hence prevents the 
attacker from crafting adversarial examples. 

In the case of defensive distillation the required masking effect is achieved by 
modifying the softmax formula used by both the teacher and student models slightly 
and introducing the distillation temperature T as follows: 

.Sof tmax (z (x) , T )i = ezi/T

∑N−1
j=0 ezj /T

(6) 

Here, N denotes the number of classes identified by the network, . i ∈ [0, N − 1]
is a specific class label index, and .z (x) = (z0, z1, .., zN−1) is the output of the 
network’s logits layer. When T is equal to one, Eq. (6) reverts back to the original 
softmax formula, however, as the distillation temperature increases, T eventually 
becomes larger than any of the logit components . zi , making each of the softmax 
outputs approach .1/N . When this happens, softmax assigns equal probabilities to 
all of the classes, pushing the network into making random classification decisions. 
During training, the network is therefore required to compensate for the distillation 
temperature by proportionally increasing the logit values.
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When applying defensive distillation, a high distillation temperature (e.g., 30) is 
used when training the teacher and student models. Then, when the student model is 
used for inference, the temperature is set back to one. The student’s logit values are 
increased as a result of the training process; however, during inference they are not 
balanced by the distillation temperature. Eventually, the student’s softmax assigns a 
higher probability to the most likely class. The inherent nonlinearity of the softmax 
function causes this process to quickly eliminate the loss gradient. 

3.5 The Carlini & Wagner Attack—Heralding a Second 
Generation of Attack Methods 

Not long after the publication of defensive distillation, Nicholas Carlini and David 
Wagner presented a targeted attack method that was specifically designed to 
overcome it (Carlini and Wagner, 2017b). Their method is commonly referred to 
as the C&W attack, and in the absence of an official benchmark, it is considered the 
de facto benchmark for attack success and perturbation refinement. Despite a large 
number of attempts to defend against it, the C&W attack has so far defeated most, 
if not all, of the suggested defense mechanisms. 

As part of their work, the authors introduced several algorithmic principles 
which have subsequently been used in many other attack algorithms. Therefore, 
understanding this attack method is an important step in our journey through the 
evolution of adversarial attacks and defenses. The C&W attack is based on three 
main principles: 

1. Ignoring the Softmax Layer—As discussed in Sect. 3.4.2, the loss gradient 
propagated from the softmax layer can easily be eliminated. However, such 
gradient elimination is dependent on the highly nonlinear nature of the softmax 
function. Therefore, the authors ignored the softmax output and used the output 
of the logits layer as part of their attack instead. 

2. Reformulation of the Attacker’s Goals—The constraints listed in (2) form a 
highly non-convex problem, making them difficult to solve. As part of the C&W 
attack, the authors redefined the optimization problem so that it can be solved 
using stochastic gradient descent. They introduced a new function .q(·), such 
that .f (x + δ) = C ⇔ q(x + δ) < 0. This new function was also designed to 
be monotonic and differentiable. 

3. Tailor-Made Loss Function—While the early attack methods we surveyed 
leveraged the neural network’s original loss function, Carlini and Wagner were 
the first to use a dedicated, attack oriented loss function. Detaching the loss used 
for training a network from the one used for attacking it allows the attacker a 
great deal of freedom in designing the attack. Carlini and Wagner used this 
approach in order to allow the attacker a trade-off between attack success and 
the average perturbation size.
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Combining the principles listed above, the authors expressed the task of finding 
an adversarial example as follows: 

. min
(‖δ‖p + α · q (x + δ)

)

s.t. x + δ ∈ [0, 1]n (7) 

The authors used a standard gradient descent optimizer in order to solve the 
minimization problem presented in (7). The constant . α is used for balancing the 
effect of the perturbation norm against the value of the function q. Its goal is to 
ensure that both terms influence the optimization process equally. The result is a 
powerful set of attacks (one for each commonly used distance metric) for which 
there are no known defense or detection mechanisms (Fig. 1). 

Fig. 1 An illustration of the C&W attack on a defensively distilled network. The four columns on 
the left illustrate an attack against a MNIST classifier, while the four columns on the right refer 
to an attack against a CIFAR-10 classifier. In each case, the leftmost column contains the initial 
image, and the next three columns contain adversarial examples generated by the . L2, . Linf, and . L0
attack variants, respectively
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3.6 Additional (Unsuccessful) Defense and Detection Methods 

3.6.1 GAN-Based Defenses 

Based on the assumption that adversarial examples are somehow anomalous or 
different from “normal” examples, several studies (Ilyas et al., 2017; Lee et al., 
2017; Song et al., 2017; Samangouei et al., 2018) suggested using GANs to 
model the manifold of the true examples and subsequently filtering out adversarial 
examples. These studies all follow the process presented below: 

1. Train a GAN to model the distribution of normal input. 
2. Given some input x to be classified, search for a point l in the GAN’s 

latent space such that the generator’s output .G(l) adequately resembles x: 

.‖x − G(l)‖p < ε. 

3. Assuming such a point is found, use the generator’s output .G(l) as input to the 
classifier, and assume .c = f (G(l)) is the class label assigned to x as well. 

4. Alternatively, if such a point l cannot be found, assume that x is an adversarial 
example. 

This algorithm essentially projects x to the generator’s latent space, which was not 
thought to contain adversarial examples. However, Athalye, Carlini et al. (2018) 
later showed that this assumption is incorrect, and in fact, adversarial examples do 
exist in the GAN’s manifold. 

3.6.2 Detecting Adversarial Examples 

At some point in the development of attacks and defenses, it became clear that 
adversarial examples are not easily blocked. That is, making the classifier resilient 
to such attacks is difficult. This realization led many researchers to focus their 
efforts on the creation of adversarial example detectors, which operate alongside 
the classifier network. Various detection methods were suggested, all of which were 
based on a similar design concept: 

1. Some statistical measure is identified for the differentiation of normal inputs 
from adversarially manipulated inputs. 

2. A detector model, which is independent of the main classifier, is trained based 
on that measure. 

3. Inputs to the classifier are first validated using the detector, and only legitimate 
inputs are actually forwarded to the classifier 

The main assumption underlying all of the detection methods proposed is that 
adversarial examples are anomalous in some way. Given this assumption, it 
should be possible to identify some statistical measurement that can differentiate 
adversarial examples from normal examples. 

Perhaps the most intuitive detection approach is one in which adversarial 
examples are identified by analyzing the first several PCA components of the
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input. This approach was used in a number of studies (Gong et al., 2017; Grosse 
et al., 2017; Metzen et al., 2017) in which the authors assumed that the nature of 
adversarial examples would be reflected in a PCA analysis of the classifier input. 

The detection of adversarial examples is in fact a binary classification task. As 
such, Bayesian uncertainty tests also make a lot of sense. For instance, Feinman 
et al. (2017), have used a Bayesian uncertainty measure derived from the classifier’s 
dropout layers to construct an adversarial example detector. 

Another popular technique involves training a second neural network, indepen-
dent of the classifier network, for differentiating adversarial examples from normal 
ones (Bhagoji et al., 2017; X. Li and F. Li, 2017; Hendrycks and Gimpel, 2016). In 
this case, there is no need to explicitly define a differentiating statistical measure; 
all that is required is a training set large enough to ensure that the network can be 
sufficiently trained. 

The detection rates reported for some of the methods mentioned earlier in this 
chapter were very promising; combined with the large variety of detection methods, 
this led to optimism among the adversarial machine learning research community. 
Briefly in the attack and defense arms race, it seemed as if detectors provided an 
effective solution to the problem of adversarial examples. Regrettably, however, 
Carlini & Wagner were able to prove differently. 

In (Carlini and Wagner, 2017a), ten different detection methods were bypassed 
in white-box conditions. In most cases, this was done by constructing a composite 
loss function and simultaneously optimizing the perturbation pattern so that it 
misleads both the detector and the classifier models. Being aware of the ability 
to simultaneously mislead both the classifier and detector, more recent methods 
for detecting adversarial perturbations, therefore included some non-differential 
gradient obfuscation element. Their goal was to make it difficult to evaluate the 
detector’s loss gradient, and thereby thwart the ability to use this gradient for 
creating adversarial inputs. 

Katzir and Elovici (2019) suggested constructing Euclidean spaces based on 
the activation values of the classifier network’s inner layers, then training k-NN 
classifiers on top of the Euclidean spaces and tracking the classification changes 
between consecutive layers, in order to differentiate normal input from adversarial 
examples. The key principle upon which this work is based is that adversarial 
examples are extremely similar to normal input but end up being classified differ-
ently. The similarity of input implies that within the Euclidean spaces associated 
with the first layers, adversarial examples will be close to the valid input from 
which they were derived. Similarly, the difference in classification (comparing 
valid and adversarial input) indicates that within the Euclidean spaces of the last 
network layers, adversarial examples will be located in proximity to instances of 
the attack’s target class. Together, those two observations lead to some mandatory 
spatial movement between one Euclidean space and another which serves as the 
basis for the proposed detection method. 

Gradient obfuscation indeed makes it harder to overcome a detection mechanism. 
However, Athalye et al. (2018) showed it is insufficient. It is not necessary for the 
attacker to know the exact gradient in order to bypass the defense mechanism. In
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fact, all that is required for doing so is the ability to approximate the gradient. Such 
approximation can be done, for instance, by querying the model for multiple inputs 
and using the model’s outputs for computing the gradient’s expectancy .E(J (x, C)). 
As shown in the abovementioned research, this approach allows the creation of 
adversarial examples that can bypass the relevant defense mechanism. 

As of this writing, no adversarial example detector has been discovered that can 
be used in white-box conditions, meaning that if an attacker has knowledge of the 
detector and its implementation details he/she can craft adversarial examples that 
can bypass it. While implementing an ensemble of such detectors will increase the 
resilience of the classifier network, each of those detectors only provide “security 
through obscurity,” and all of them can be breached assuming the adversary is aware 
of their existence and implementation method. 

4 Black-Box Attack Methods 

White-box adversarial attacks are extremely interesting from a scientific point of 
view. They help us understand the limitations of deep learning and shed light on 
the neural network training process. However, in real life scenarios, where neural 
networks are used to provide a commercial service, the details of the trained models 
are considered the service provider’s intellectual property. As such, those details 
are kept secret, making it impossible to launch white-box attacks. The discovery of 
black-box approaches for generating adversarial examples (Biggio, Corona et al., 
2013) allowed attackers, for the first time, to attack a model without knowledge 
of its implementation details. This discovery almost single-handedly transformed 
adversarial machine learning from a theoretical problem into a major challenge that 
concerns academia and industry alike. 

4.1 Adversarial Transferability 

Adversarial transferability, which was the first black-box approach to be discovered, 
is one of the most fascinating properties of adversarial examples. As it turns 
out, adversarial examples are transferable from one model to another, despite 
differences in the implementation details, model parameters, or even the dataset 
used for training the two models. This property allows an attacker to manipulate 
the predictions of a classifier model without any prior knowledge of its structure, 
parameters, or training set. 

Transferability was first discovered in the context of traditional machine learning 
algorithms (Biggio, Corona et al., 2013) and was quickly adapted to the case of 
neural networks as well (Szegedy et al., 2013). Finally Papernot et al. (2016) coined 
the term transferability. The attack process utilized in those studies is surprisingly 
straightforward:
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1. Collect a surrogate dataset that is drawn from the same distribution as the one 
used to train the original model 

2. Train a surrogate model based on some best practices or state-of-the-art 
publications 

3. Use one of the known white-box attack methods to craft adversarial examples 
against the surrogate model 

4. Use the adversarial examples created against the surrogate model in order to 
attack the original model 

Despite its simplicity, this attack approach has been shown to be highly effective. 
Various studies reported attack success rates of 30–70% using this approach. 
Given that state-of-the art open-source pretrained models and sample datasets are 
readily available, transferability transformed adversarial machine learning from 
a theoretical problem into a true concern for machine learning researchers and 
practitioners. 

4.2 Zeroth Order Optimization-Based Attack 

Transferability-based black-box attacks operate under the most restrictive attacker 
model, in which the attacker is assumed to have no prior knowledge of the attacked 
network, the data used for training it or even query based access to the trained 
network. A slightly more permissive attacker model is referred to as the oracle 
model. In this case, the attacker can query the attacked network, without knowledge 
of its internals or training data, in order to classify a limited number of input 
samples. 

The zeroth order optimization (ZOO) attack (P.-Y. Chen et al., 2017) is a recent 
example of an oracle-based attack method. It assumes that the adversary can query 
the attacked model in order to obtain the softmax output for a given input sample. 
To a great extent, this attack can be considered the black-box variant of the C&W 
attack (Carlini and Wagner, 2017b). Their implementation details are quite similar, 
with one main difference: in ZOO, the explicit gradient calculation used in the C&W 
attack is replaced with a zeroth order approximation. 

Zeroth order is a derivative-free optimization method that uses oracle queries in 
order to approximate an objective function .f (·). Approximating the gradient of . f (·)
at a point x is performed using two oracle queries for each of the elements of the 
input vector: 

.
∂f (x)

∂xi

≈ f (x + h · ei) − f (x − h · ei)

2h
(8) 

Here, h is a small constant, and . ei is a vector. The ith element of . ei is set at one, 
while all other elements are set at zero. Assuming h is small enough, the gradient 
can be linearly approximated, as done in (8).
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Note that this gradient approximation approach can be used even when the 
attacked model does not have a well defined gradient at x. As a result the ZOO 
attack is not restricted to attacking neural network-based classifiers, or even to 
attacking differentiable models. Given that it does not perform any explicit gradient 
calculations, this attack can be used against any classification model, differentiable 
or not. 

4.3 The HopSkipJump Attack 

The HopSkipJump attack (J. Chen et al., 2019) is another example of an oracle-
based attack. The oracle model used in this case is even more restrictive than the one 
used in the ZOO attack (P.-Y. Chen et al., 2017). Here, the oracle provides a single 
class label, as opposed to the full softmax output. This attack works by “traversing” 
the classification boundary of the attacked classifier. The algorithm uses two input 
samples of different classes: the source input to be perturbed . x∗ and a sample of the 
target class . x̃0. Through the iterative process described below, the algorithm follows 
the boundary line to find a point that is close enough to . x∗ but is still classified as 
the target class. 

1. At iteration t find the intersection of the classification boundary with the line 
that connects . x∗ with . x̃t , using a binary search algorithm. Mark that intersection 
as . xt . 

2. Use queries to the oracle and the Monte Carlo search algorithm in order to 
calculate an approximated gradient of the boundary line at . xt . 

3. Calculate .x̃t+1, the target point for the next iteration, by taking a small step from 
. xt perpendicular to the boundary line: .x̃t+1 = xt + ε· ⊥ ĝ. 

4. Repeat steps 1–3 until .‖x̃t+1 − x∗‖p is small enough. 

The process is graphically illustrated in Fig. 2. 

Fig. 2 Graphical illustration of the HopSkipJump attack algorithm (J. Chen et al., 2019): (a) 
finding the boundary point xt , (b) approximating the gradient at xt , (c) taking a small step 
perpendicular to the boundary, and (d) repeating the process to refine the perturbation
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Much like the ZOO attack, this attack method can be used with any classification 
model (not necessarily a neural network). It produces highly refined perturbation 
patterns and has a very high attack success rate. 

5 Real World Adversarial Attacks 

Much like the discovery of black-box attack methods, the first demonstrations 
of adversarial manipulations in the real world dramatically increased interest in 
adversarial machine learning research. The vast number of machine learning models 
used in day-to-day applications, combined with the ability to apply adversarial 
attack methods in the real world created considerable concern. It became clear that 
malicious actors could leverage those abilities to perpetrate fraud, bypass biometric 
authentication measures, interfere with the operation of autonomous vehicles, or 
cause harm in various additional ways. 

Kurakin et al. (2016b) were first to demonstrate adversarial manipulations in the 
real world. In this early work, the authors simply tested the applicability of various 
methods (FGSM, TGSM, and BIM) in real world scenarios. The experimental 
setup used was rather straightforward; the authors started with a set of test images, 
perturbed them using the aforementioned attack methods, printed the resulting 
images, and finally, used a dedicated smartphone app in order to scan and classify 
the printed images. Surprisingly, the classifier was subsequently misled in the vast 
majority of the cases. 

Later that year, another research group presented an attack method that was 
specifically designed to cope with real life constraints (Sharif et al., 2016). 
The authors demonstrated that a subject could mislead a state-of-the-art facial 
recognition system by wearing special eyeglasses (glasses with a specially designed 
frame that contains a perturbation pattern). The frames were printed using a home 
printer, emphasizing the simplicity and accessibility of the attack. By wearing the 
eyeglasses, a subject could become invisible to the algorithm, or even impersonate 
someone else. This effect is illustrated in Fig. 3, which is taken from the original 
paper. 

In addition to breaching a real life facial recognition system, this work had two 
other notable scientific contributions: 

1. The perturbation was confined to a specific part of the input image—the frame 
of the subject’s eyeglasses. 

2. The effect of the perturbation pattern remained, even when the frame was 
shifted slightly with respect to the subject’s face. 

In order to accommodate the movement of the eyeglasses with respect to the face, 
the attack algorithm artificially shifted the perturbed region over the input image 
multiple times, searching for a single perturbation pattern that could mislead the 
classifier in all cases. Moosavi-Dezfooli et al. (2017) have later extended this con-
cept of optimizing a single perturbation pattern against a variety of inputs in order
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Fig. 3 Accessorize for a Crime (Sharif et al., 2016): Subjects in the top row impersonate the 
people in the bottom row by wearing eyeglasses with a frame with a specially designed perturbation 
pattern. Permission to reproduce the figure was granted by the original authors. Bottom right image 
(by Anthony Quintano; source: https://goo.gl/VfnDct) and bottom left image (by Georges Biard; 
source: https://goo.gl/GlsWlC.) are under Creative Commons copyrights 

to create a “universal” perturbation pattern. A single perturbation that can cause 
misclassification of a large variety of inputs. This ability dramatically improves 
upon the attack methods suggested in previous works where the perturbation pattern 
had to be tailor-made for each and every input sample. 

Crafting universal adversarial examples is done iteratively, starting with a single 
input image and refining the perturbation pattern until it can cause misclassification 
of multiple inputs at the same time as described below: 

1. Initialize the universal perturbation pattern . δ to null. 
2. Randomly choose an input sample . xi . 
3. Augment . xi with the current universal pattern . δ and determine whether the 

classifier can correctly classify .xi + δ. 
4. If .xi + δ is correctly classified, look for . δi , such that .xi + δ + δi is misclassified. 
5. Assign .δ = δ + δi and reevaluate all previous input samples. 
6. Repeat the process until a predefined number of input samples are misclassified. 

Increasing the number of different input samples used to create the universal pattern 
increases its efficiency but also increases the computation time required for crafting 
the perturbation. However, empirical tests conducted by the authors showed that 
using a few hundred examples is sufficient to considerably harm the performance of

https://goo.gl/VfnDct
https://goo.gl/VfnDct
https://goo.gl/VfnDct
https://goo.gl/VfnDct
https://goo.gl/GlsWlC
https://goo.gl/GlsWlC
https://goo.gl/GlsWlC
https://goo.gl/GlsWlC
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a state-of-the-art ImageNet classifier. Furthermore, they showed that such universal 
adversarial examples are transferable between different models. 

Athalye, Engstrom et al. (2017) have further refined the concept of universal 
perturbations. Here, the authors introduced the Expectation Over Transformation 
(EOT) framework in order to form adversarial patterns that are resilient to affine 
transformations of the input. An iterative process, very similar to the one used in 
(Moosavi-Dezfooli et al., 2017), was used. However, instead of using random inputs 
from a large training set, the algorithm perturbed multiple views of a single 3D 
object using a computerized model. Once an incorrect classification was produced 
for a large enough number of views, the researchers used a 3D printer to create a 
physical object that is painted with the perturbation pattern. The efficiency of the 
attack was then evaluated in a real life setting using a video camera and a state-
of-the-art object detection network. The final results were impressive—the physical 
objects created using this approach were incorrectly classified when viewed from a 
wide range of different angles. 

The development of effective universal perturbations also created the tools 
needed to attack time series or sequence-based classifiers such as Recurrent Neural 
Networks (RNNs). Such classifiers preserve some internal state vector and use it 
as part of the classification of new input; universal perturbations allow an attacker 
to create adversarial inputs that are not dependent on the value of this hidden 
state variable. Leveraging this concept, Carlini and Wagner (2018) were able to 
demonstrate an attack against a neural network trained to transcribe an audio 
recording. By adding a small, barely perceptible noise sample, the authors were 
able to manipulate the resulting text to their liking. 

Collectively, the studies surveyed in this section show that real life systems can 
easily be manipulated using adversarial examples. Furthermore, addressing real 
world scenarios with black-box approaches allows such attacks to take place without 
knowledge of the attacked model’s parameters or architecture. In addition to the 
obvious practical implications, these studies collectively indicate that adversarial 
examples are much more widespread than initially thought. 

6 Theoretical Reasoning and Outstanding Research 
Questions 

A pretty grim picture is revealed when summarizing what we have covered so far 
in this chapter. Adversarial examples are widespread and are easily and efficiently 
created using a wide variety of algorithms; targeted adversarial examples give an 
adversary full control of the output of the attacked model; black-box attack methods 
allow adversarial examples to be created without prior knowledge of the attacked 
model or its internals; once created, adversarial examples are transferable between 
models and can be applied to real world systems, and finally all attempts at blocking, 
or even identifying adversarial examples have failed.
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Taken together, these observations might make one ask: What makes adversarial 
examples so difficult to defend against? This question is perhaps the most interesting 
and important open question in the adversarial learning domain. Addressing it could 
assist in defending against adversarial perturbations and could also extend our 
knowledge about the fundamental nature of neural networks leading to new avenues 
of research. While a comprehensive answer to this question has yet to be provided, 
in this section, we explore relevant issues and provide meaningful insights that will 
contribute to the ability to answer this question. 

6.1 Adversarial Examples as a Model Generalization Problem 

All machine learning algorithms are based on the assumption that by using a 
finite training dataset, it is possible to create models that generalize well to new, 
previously unseen data. Achieving optimal global generalization for the entire 
input space is the main goal of any training process; however, as it is practically 
impossible to measure the global generalization error directly, the error measured on 
the training data is typically used as a proxy for the global error. Using this proxy, 
one can also consider generalization within a confined subspace of the input domain, 
and by that gain a more fine-grained understanding of the model’s performance. 

Ideally, the local accuracy (generalization) of a model should be correlated 
with the density of the training samples in the relevant input subspace. We expect 
small generalization errors when the spatial density of training samples is high and 
similarly expect larger errors when the training data is sparse. Adversarial examples, 
however, challenge our understanding of generalization. On the one hand, they are 
incorrectly classified despite being located in proximity to a correctly classified 
input, and it is therefore tempting to think of adversarial examples as evidence of 
poor model generalization. But on the other hand, adversarial examples do not tend 
to occur naturally. In fact, despite being susceptible to adversarial perturbations 
neural networks often generalize extremely well, surpassing human abilities over 
“normal” input. Treating adversarial examples as evidence of poor generalization 
hence seems to oversimplify the problem. 

Understanding the origins of adversarial examples, therefore, requires that we 
study the fundamental aspects of generalization in neural networks. Such research 
might eventually lead to updated definitions of model generalization, as well as 
adversarial resilience. 

In a remarkable work (Zhang et al., 2016), the authors attempted to identify the 
key to generalization in neural networks. In order to do so, they conducted a simple 
experiment that led to surprising results. They replaced the labels of the training set 
with random values and used those random labels in order to train a deep neural 
network-based classifier. Naturally, the resulting model was useless for predicting 
the labels of the testing set, but surprisingly, with enough training, it was able to 
predict the labels of the training set perfectly. Based on their results, the authors 
concluded that deep neural networks are capable of memorizing their training set
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and linked this ability to the large number of model parameters used in deep neural 
networks. 

Follow-up studies (Neyshabur et al., 2017; Kawaguchi et al., 2017) attempted 
to approximate a neural network’s ability to memorize its input using a variety of 
measures of model complexity. Those studies also attempted to establish guidelines 
for balancing complexity against the amount of available training data. Relating this 
back to adversarial examples, this line of research might suggest that adversarial 
examples are the result of an inability to balance excessive model complexity 
compared against the limited amount of available training data. 

6.2 Adversarial Examples are Inevitable 

Recently, an increasing number of studies have been published that deal with the in-
evitability of adversarial examples. Many of those works established measurements 
for adversarial resilience and analyzed limitations of those measurements. Referring 
collectively to many of these works, we can establish the following related, but 
independent claims: 

1. The inevitability of existence—Given common definitions of resilience, it 
is impossible to train a classifier, such that its input domain will be free of 
adversarial examples. 

2. The inevitability of finding—Given that adversarial examples exist within the 
classifier’s input space, it is impossible to prevent an adversary from finding 
them. 

Note that the ability to refute either of the claims listed above would suffice for 
making a classifier resilient to adversarial examples. 

6.2.1 Inevitability of Existence 

Simon-Gabriel et al. (2019) proved that regardless of their architecture, neural 
networks become more vulnerable to adversarial examples as the dimensionality 
of their input increases. More specifically, the vulnerability of neural networks 
to adversarial examples increases proportionally to the square root of their input 
dimensionality. Similar to the claims in (Zhang et al., 2016), this work also indicates 
that adversarial examples are the result of a shortage of training data. However, in 
this case, vulnerability is associated with the input dimensionality and not the com-
plexity of the underlying neural network. Therefore, as long as the dimensionality 
of the input remains unchanged, reducing the number of network parameters will 
not increase its resilience. However, processing high dimensional input is a major 
strength of neural networks. Reducing input dimensionality therefore makes very 
little sense from an application point of view.



580 Z. Katzir and Y. Elovici

An alternative explanation for the existence of adversarial examples was pro-
vided in (Shafahi et al., 2018). Here, the authors examined the existence of 
adversarial examples using geometrical tools. They analyzed classifiers of the form 
f : [0..1]n → N and placed a formal bound on the minimal perturbation distance 
ε from any input point required to cause misclassification. This study makes two 
notable contributions: 

1. The minimal perturbation distance decreases as the number of input features 
increases. This conclusion goes hand in hand with the results reported in 
(Simon-Gabriel et al., 2019). 

2. Their bound is tight enough to allow adversarial examples to go undetected. 
Using ImageNet classification as an example, they empirically showed that per-
turbations that adhere to this formal bound are subtle enough to be undetected 
by humans. This result holds for all three commonly used distance metrics (i.e., 
L0, L2, L∞) 

The same class of classifiers (f : [0..1]n → N) is studied in (Shamir et al., 2019); 
however, here the authors focused on the L0 distance metric. By treating the neural 
network as a piecewise linear transformation from input to output, they too were 
able to place a formal bound on the perturbation distance. The main contributions 
of their approach are as follows: 

1. The authors do not just prove the existence of adversarial examples in this 
setting; they also propose an algorithm that can be used to find them. 

2. The bound described in this study is tighter (note that only L0 distances are 
considered). A numerical by-product of their bound is that perturbing two 
input features is enough to cause targeted misclassification given any neural 
network with an input dimensionality of 250 or higher. Modern neural network 
architectures used for image processing tasks often include many thousands of 
input features, making such perturbations practically impossible to detect. 

3. Finally, this work ties adversarial examples to the piecewise linear nature of 
neural networks. As a result, the authors conclude that model resilience cannot 
be improved by modifying the network’s architecture or by applying adversarial 
retraining. Instead, resilience can only be increased if the piecewise linear 
nature of neural networks is modified. 

Approaching adversarial resilience from a different theoretical angle, Gourdeau 
et al. (2019) suggest that this phenomenon should be studied from a computational 
complexity point of view. They analyzed binary classifiers that have a Boolean input 
vector: f : {0, 1}n → {0, 1}. In this context, L0 is the only applicable distance 
metric. Their work places formal bounds on the number of bits (input features) that 
should be changed by an adversary in order to cause misclassification. In order to 
form those bounds, they used two different definitions for classier resilience based 
on common notions of adversariality. Both definitions are provided formally within 
the paper, but we have presented them here informally for the sake of clarity:
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1. A classifier should be able to predict the “right” class within a radius of ε from 
each training sample. 

2. When the distance between two input points is smaller than ε, they should be 
classified similarly by the classifier. 

While both definitions seem to intuitively represent our notion of adversarial 
resilience, both fall short in practice. The former definition builds on the previously 
discussed concept of classification robustness; however, its evaluation requires the 
use of an oracle for learning the correct class labels of select inputs. Furthermore, it 
cannot be extended to cases where input is in the form of Rn. The latter definition 
eliminates the need for an oracle; however, it cannot be used when the classification 
problem itself contains input samples with different true class labels that are located 
in close proximity to one another. 

This research makes two key contributions to our understanding of the inevitabil-
ity of existence of adversarial examples: 

1. It proves that, when using any of the previously mentioned definitions, a 
polynomially large training set is insufficient for ensuring robust classification. 

2. It indicates a need to perhaps reconsider, or relax, our definitions for classifier 
resilience. Indeed, based on the two most commonly used definitions, adversar-
ial examples are inevitable; however, as we have seen, both of those definitions 
fall short in practice. 

6.2.2 Inevitability of Finding 

While the abovementioned studies address the issue of inevitability of existence, 
a recent work (Katzir and Elovici, 2020) explicitly addressed the inevitability of 
finding. The authors studied the case of softmax-based neural network classifiers, 
comparing targeted and non-targeted attacks and performing a thorough analysis of 
the loss gradients. This work formally proves two key findings: 

1. The gradients used for crafting targeted and non-targeted attacks are in fact 
different. Eliminating the gradients used by non-targeted attack methods will 
not increase the model’s resilience against targeted attacks. 

2. Targeted attacks use the same gradient that allows neural networks to be trained. 
This implies that blocking such attacks (preventing the adversary from finding 
a relevant adversarial example) will come at the cost of losing the network’s 
ability to learn. 

Together, these two findings explain why none of the defense mechanisms suggested 
so far has been able to block targeted attack methods. Furthermore, they suggest the 
need to rethink the way we train and defend neural network classifiers.
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6.3 Additional Open Research Subjects 

Apart from the roots for the existence of adversarial examples, which we have 
addressed above, several additional subjects still require further research: 

1. Providing a solid mathematical definition of a robust classifier—As we 
have seen, definitions that stem from our common notion of resilience pose 
significant practical limitations. There is still a need for a definition of resilience 
that is broad yet easy to evaluate. 

2. Creating robust real life examples—Earlier in this chapter, we surveyed 
various methods for creating adversarial examples in the real world. On average, 
those methods succeed in the majority of cases. However, in some cases, 
absolute certainty of the attack’s success is required to ensure its applicability 
in the real world. For instance, consider the case in which a person aims to fool 
a facial identification system in order to enter a foreign country. In this case, the 
attacker might not be willing to accept any chance of failure. From a research 
point of view, we are still investigating ways to predict the success of an attack 
in real life and to understand the factors that limit this success. 

3. Creating adversarial example detectors valid under white-box condi-
tions—Many adversarial example detectors have been proposed in recent 
years, all of which are invalid when the attacker is aware of the detector’s 
existence and implementation details. A detection method that is applicable for 
the white-box assumption has yet to be discovered. 

4. Providing a universal metric for perturbation distance—Various distance 
metrics have been used in order to approximate the defender’s ability to detect 
adversarial examples. When the aim is to fool human perception, as opposed 
to fooling a computerized detection algorithm, different metrics are used. Each 
metric fails to represent the defender’s abilities in some cases, and choosing the 
most suitable metric is highly dependent on the specific use case. There is still 
a need for a better, perhaps universal, metric for adversarial detectability. 

5. Understanding the roots of transferability—The transferability of adversarial 
examples from one model to another is known for some time now. However, 
very little research has examined its origins. More work is required in order to 
better understand this phenomenon. 

7 Summary 

Adversarial machine learning has been the focus of a significant amount of research 
in recent years. Many of the studies performed were aimed at developing effective 
defense mechanisms against adversarial examples. Despite the large variety of 
methods proposed, these research efforts have largely failed, making it increasingly 
clear that adversarial examples are inevitable. This understanding has given rise to 
legitimate concerns regarding the security of machine learning models and revealed
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one of the most important outstanding questions in this domain: What makes 
adversarial examples so difficult to defend against? 

In this chapter, we provided an overview of the rapid evolution of the adversarial 
machine learning domain. We started by examining white-box attack methods and 
the role played by the input loss gradient in creating adversarial examples. We then 
reviewed the more realistic, black-box attack scenario where adversarial examples 
are constructed without knowledge of the attacked model’s parameters. Some of the 
black-box attacks mentioned are applicable when the attacked model has no defined 
input gradient. We also discussed how adversarial examples can be used in the real 
world, and we tried to understand the fundamental factors that allow adversarial 
examples to exist. Finally we have listed additional questions and subjects that still 
require research focus. In doing so, we aimed to provide readers with the knowledge 
base needed to begin to explore this fascinating research domain. 
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Ensembled Transferred Embeddings 

Yonatan Hadar and Erez Shmueli 

1 Introduction 

Deep learning has become a very popular method for text classification in recent 
years, due to its ability to improve the accuracy of previous state-of-the-art 
methods on several benchmarks. However, these improvements required hundreds 
of thousands to millions labeled training examples, which in many cases can be very 
time consuming and/or expensive to acquire. This challenge has contributed to the 
emergence and development of multiple active research fields addressing settings 
with limited labeled data. 

Transfer learning is one of the most popular and successfully field of this 
type, aiming to reduce the need for labeled target data by transferring learned 
representations from a related model trained on a large labeled dataset (Hedderich, 
Lange, Adel, Strötgen, & Klakow, 2020). For example, in computer vision, it 
is common to start the training of a new deep neural network with the weights 
of a neural network that was pretrained on the large ImageNet dataset (Ruder, 
2019). Mikolov, Sutskever, Chen, Corrado, and Dean (2013) suggested Word2Vec, 
a method for creating unsupervised word embeddings by predicting the surrounding 
words in a sentence or a document. Word2Vec vectors are commonly used to 
initialize the first layer of a neural network in many NLP models and showed great 
benefit in improving model accuracy. Devlin, Chang, Lee, and Toutanova (2018) 
introduced the BERT model, a Transformer network trained on very large corpus 
of unlabeled data on the task of masked language modeling and next sentence 
prediction. BERT has shown state-of-the-art results when finetuned in several tasks 
such as natural language inference and question answering. However, since most 
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aforementioned models were trained with general purpose datasets (e.g., books, 
news articles and Wikipedia pages), they are expected to be less appropriate in 
the case of domain specific datasets, especially if the text distribution of the target 
dataset may differ greatly from that of the corpus they were trained with. 

To cope with this limitation, we propose a novel learning framework, Ensembled 
Transferred Embedding (ETE), which has four main steps: (1) Manually label 
a small sample dataset (2) Extract embeddings from related large-scale labeled 
datasets (3) Train transferred models using the extracted transferred embeddings 
and the labels of the sample dataset (4) Build an ensemble to combine the outputs 
of the different transferred models into a single prediction 

To demonstrate the capabilities of the proposed framework, we evaluate it in the 
context of item categorization. Item categorization is a machine learning task which 
aims at classifying e-commerce items, typically represented by textual attributes, 
to their most suitable category from a predefined set of categories. Many studies 
have investigated the problem of item categorization as a machine learning text 
classification task. Here, we focus specifically on item categorization settings in 
which: (1) Item descriptions are relatively short and noisy. (2) Labeled data for 
the target dataset is unavailable. Such settings entail that deep learning techniques 
cannot be applied directly on the target dataset, and that using transfer learning from 
general purpose models may not be optimal. 

Extensive evaluation that we conducted, using a large-scale real-world invoice 
dataset provided to us by PayPal, shows that the proposed ETE framework 
significantly outperforms all other considered traditional (e.g., TF-IDF) as well as 
state-of-the-art (e.g., methods based on general purpose pretrained models such as 
BERT) item categorization methods. 

The majority of the content appearing in this chapter is based on our previous 
journal publication (Hadar & Shmueli, 2021a). 

The rest of this chapter is structured as follows. In Sect. 2, we describe the 
proposed ETE learning framework. In Sect. 3, we detail how the ETE framework 
can be applied to the item categorization task. Section 4 discusses the experimental 
setting and the results. Section 5 summarizes this chapter and suggests directions 
for future work. 

2 The ETE Framework 

In this section, we propose the Ensembled Transferred Embedding (ETE) learning 
framework. The ETE framework first manually labels a small sample of instances 
from the target dataset and generates embeddings from related large-scale datasets. 
Then, each set of generated embeddings and the labeled instances of the target 
dataset are used to train a model that is tailored to the target task. Finally the 
set of trained models are combined into a single ensemble to provide enhanced 
performance. This motivation behind this approach is twofold: (1) Using related 
(or “transferred”) embeddings as opposed to general purpose embeddings makes
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the resulting model more tailored to the target task. (2) Generating the embeddings 
from related datasets bypasses the need to label a large portion of the target dataset. 

Our Ensembled Transferred Embeddings framework is composed of four main 
steps (see Fig. 1): 

• Step 1: Sample Dataset. In this step, we generate a relatively small-scale 
manually labeled dataset. This may be achieved by randomly sampling a 
relatively small number of instances from the large-scale unlabeled target 
dataset, and manually label these instances. Labeling can be done by using 
domain experts, crowdsourcing, heuristics, or a combination of the above. 

• Step 2: Transferred Embeddings. In this step, we extract embeddings from 
related large-scale labeled datasets. To achieve this goal, we first need to 
identify related datasets. Such datasets are large-scale labeled datasets from 
a domain or task, similar in nature to that of the target dataset. Such datasets 
may include, for example, a publicly available dataset with a similar task from 
a different domain, a dataset that was gathered for a different task on the same 
domain, or even a self-supervised task on the target dataset. After the related 
datasets were obtained, a deep neural network is trained on them to obtain an 
“embedding network.” Finally, the sample dataset is provided as input to the 
embedding network to generate “transferred embeddings,” in a manner similar 
to (Sharif Razavian, Azizpour, Sullivan, & Carlsson, 2014) and (Kiros et al., 
2015). 

• Step 3: Transferred Models. In this step, we train models using the extracted 
transferred embeddings and the labels of the sample dataset. More specifically, 
for each set of transferred embeddings and their corresponding labels (from the 
sample dataset), we apply a supervised machine learning algorithm to obtain a 
“transferred model.” 

• Step 4: Ensemble. In this step, a meta model for combining the outputs of the 
various transferred models is built. This can be obtained in several ways, for 
example, by using domain knowledge, applying a voting rule such as plurality 
(see the work by Werbin-Ofir, Dery, & Shmueli (2019) for more details), or by 
training a meta model to learn the right combination method. 

Given a new data instance we first use the trained embedding networks to extract 
transferred embeddings. We then apply the transferred models on the extracted 
transferred embeddings. Finally, we combine the outputs of the various transferred 
models using the ensemble to decide on the predicted category. 

3 Applying ETE to the Item Categorization Task 

In this section, we describe the required details for applying the ETE framework 
to our item categorization setting. Specifically, we elaborate on the datasets that 
were used; how the sample dataset was extracted and labeled; how the transferred
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Fig. 1 High-level architecture of the ETE framework 

embeddings were obtained; how the transferred models were trained; and how the 
ensemble was built. 

3.1 Datasets 

3.1.1 Invoice Dataset 

Our main dataset contains 3,461,897 invoices from PayPal’s P2P transaction service, 
sampled and provided to us by PayPal’s team. The invoices were sampled randomly 
from all invoices, having a seller from the USA, and a creation date between 
September 15–October 13, 2018. Each transaction in our dataset contains the 
following fields: item name, item description, price, quantity of items, Buyer ID, 
seller ID, and seller’s industry. Table 1 presents a few representative examples of 
such invoices. 

The item name and description fields are free text fields that are filled by the seller 
without any constraint nor validation. Thus they are typically very short and noisy1 

(see, for example, invoices 1 and 3 in Table 1), and sometimes not informative at 
all with regard to the sold item nor its category (see, for example, invoices 5 and 
6 in Table 1). It should also be noted that item description is an optional field and 
therefore is not necessarily filled by the seller. In fact, it contains a value only in 
24% of the invoices in our dataset. Figure 2 presents a histogram of the number of 
words per item (after concatenating the item name and description fields).

1 We use the term noisy to describe user generated text that typically contain grammatical errors, 
nonstandard spellings, abbreviations, etc., as previously done with tweets on Twitter, (Baldwin 
et al., 2015). 
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Table 1 Example of six PayPal’s invoices and their attributes 

Invoice 
ID 

Item name Item 
description 

Creation date Price Seller’s 
industry 

Seller ID Buyer ID 

1 Orange and 
red bralette 
large 

2018-09-18 23.15 fashion 222 42 

2 Voice over 
recording 

Recorded the 
part of 
Michael the 
CEO for the 
entirety of 
the project. 

2018-10-12 1000 Media 15 765 

3 OS leggings 2018-09-07 38 Fashion 12 899 

4 Transport to 
north Ireland 
for eBay 
pellet hose 

2018-10-01 32.62 Auto-parts 65 78 

5 Product 2018-09-18 81 Photography 132 65 

6 Bunnies 1/2 yard 2017-11-12 27.75 Arts-n-craft 2 555 

Fig. 2 Histogram of the number of words per item description in the invoice dataset. The vertical 
dashed line represents the mean number of words per item description 

The seller’s industry field represents a classification of the seller itself (i.e., not 
a specific invoice/item) into a single category out of 40 predefined categories (such 
as fashion, jewelry, accounting, etc.). (The goal of this chapter is to classify the 
item sold in an invoice into one of these 40 categories.) This field is filled in the 
vast majority of cases automatically using PayPal’s proprietary algorithm. This field 
is highly imbalanced, where the most popular category (fashion) contains 24% of 
the invoices, and the 10 most popular categories contain 78% of the invoices. A 
histogram of the various categories is presented in Fig. 3
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Fig. 3 The distribution of items by seller’s industry in the invoice dataset 

It should be noted that before providing us the invoices, PayPal performed an 
initial filtering procedure which originally involved roughly 8 million invoices, and 
filtered-out invoices with the following properties: 

• Item description is shorter than 3 symbols. 
• Item description contains a single token which is one of the following: 
“invoice,” “order,” and “unknown.” 

• Invoice items with duplicate values in the text attributes were kept once. 

The 3,461,897 invoices analyzed in this study are those remaining after the initial 
filtering procedure. 

3.1.2 eBay Dataset 

This dataset contains 2,997,571 items that were extracted using eBay’s public 
API. The items were sampled randomly from all items on the eBay US website 
(eBay.com), having a creation date between September 1–October 26, 2018. We 
only used items that were sold at least once. Each extracted item contains the 
following fields: item description, country, price, creation date, and category. Table 2 
presents a few representative examples of such items. 

The item description field in this dataset is significantly longer and less noisy 
than that of the invoices dataset (see, for example, record 1 in Table 2). This is 
in part since it is used to retrieve items in eBay’s item search. Moreover, eBay 
encourages sellers to augment their item descriptions with relevant keywords, which
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Table 2 Example of five eBay items and their attributes 

Record ID Item description Country Price Creation date Category 

1 “VINTAGE STERLING SILVER 
20"" long FINE ROPE LINK 
NECKLACE CHAIN - 3g!” 

GB 24.38 2018/10/15 jewelry 

2 Off White Red iPhone X SE 5 6 7 8  
S Plus Off White iPhone Case [For 
Apple iPhone 8 Plus] 

ID 22.98 2018/09/20 Cellphones 

3 Superhero Smash Hands Gloves 
Ironman spiderman Hulk The 
Avengers 1 Pair new [hulk] 

C2 11.16 2018/09/04 Toy 

4 SWIFTLET Tempered Glass 
Screen Protector for iPad 2 3 4 5 6 
Air Mini Pro 9.7 [iPad Air 1/2] 

US 13.24 2018/09/14 Arts-n-craft 

5 Real Premium Tempered Glass 
Film Screen Protector for Apple 
iPad 1/ 2 / 3 / 4 

SG 25.07 2018/10/14 Furniture 

Fig. 4 Histogram of the number of words per item description in the eBay dataset. The vertical 
dashed line represents the mean number of words per item description 

makes the description of two related items quite similar. For example, records 4 and 
5 in Table 2 both share the keywords Tempered Glass, Screen Protector, and iPad. 
Figure 4 presents a histogram of the number of words per item description. 

The category field here classifies an item into one of eBay’s predefined set of 
categories. It is important to note that the set of eBay categories is different from 
the set of PayPal categories. First, the set of eBay categories contains thousands 
of categories while the set of PayPal categories contains only 40 categories. 
Second, eBay categories are limited to goods (i.e., physical items), whereas PayPal 
categories include also services. To overcome this difference, eBay categories were 
mapped to their corresponding PayPal categories (33 out of the 40 PayPal categories
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Fig. 5 The distribution of items by category in the eBay dataset 

that represent goods) using a set of rules determined manually by PayPal’s domain 
experts. A histogram of the resulting set of categories is presented in Fig. 5 

3.2 Sample Dataset—Labeling Using MTurk 

Our sample dataset was obtained by a uniform sampling of 1970 instances2 from the 
invoices dataset and manual labeling of these instances using Amazon Mechanical 
Turk (MTurk) as we proceed to explain. 

Amazon Mechanical Turk is a marketplace for crowdsourcing of Human Intel-
ligence Tasks (HITs) that is often used to generate labels for supervised machine 
learning tasks. 

Each of our 197 MTurk tasks was composed of labeling a set of 10 instances 
(1970 instances in total) and was sent to 5 different workers (Turkers). Each task 
started by providing a general description of the study, followed by a detailed 
explanation of how the questions should be approached, and a detailed description 
for each of the 40 categories (including examples of items that fit that category). 

Then, the Turker was asked to answer the task. For each of the 10 instances 
appearing in the task, we provided the Turkers with the item name and description 
and asked them to answer the following three questions:

2 The specific number of 1970 instances was chosen to fit our budget constraint of 200 USD. 
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1. Can you understand what the sold item is? [yes/no] 
2. Can you choose the most suitable category for the sold item? [from a list of 

provided categories] 
3. Were you able to adequately categorize this item? [yes/no with explanation] 

An example of such a task is presented in Fig. 6. 
It is important to note again that the set of PayPal categories includes 40 

categories and requesting the Turker to go through a list of 40 categories to choose 
the one that best fits the item description is a tedious task. Indeed, in preliminary 
experiments that we conducted, we found that providing all 40 categories as options 
led to a high level of disagreement between Turkers and to a high level of bias 
towards the categories shown at the beginning of the list. 

To overcome this issue, we decided to split the list of categories into 3 
parts: (1) Most popular—the 10 most popular categories, according to the seller’s 
industry attribute, presented in alphabetical order (2) Computer guessed—the 5 
most probable categories (that are not among the 10 most popular categories) 
according to some baseline model (Logistic regression on TF-IDF representation 
with industry as the label) (3) Other categories—the rest of the 40 categories Clearly, 
while addressing the bias mentioned above, this design could lead to a different 
type of bias, by which items from the most popular or computer guessed categories 
would have higher likelihood to be chosen. Nevertheless, we believe that such a 
bias is minor since Turkers still chose categories from the “other categories” list in a 
non-negligible number of cases, and the overall level of agreement between Turkers 
increased considerably. 

In order to further help Turkers categorize the items in a fast and accurate 
way, we provided them a hyperlink to a Google search of the item name, and 
for each category in the list of categories, we provided a tooltip that included the 
category’s description (the short description of the category that also appeared in 
the instructions page). 

After completing the data collection stage, we reviewed the data to remove “lazy 
Turkers” (i.e., Turkers that have not spent enough time and effort to answer the 
tasks). We did so by first calculating the level of agreement for each instance (i.e., the 
maximum number of Turkers that have assigned the same category to that instance). 
We then identified instances with a level of agreement between 3 to 5. Finally, we 
removed Turkers (and their answers) that agreed with the most-agreed category in 
less than 20% of these instances (and all of their answers). Since we used Turkers 
with a master title (required additional payment to MTurk), we found only two such 
“lazy Turkers.” After their removal, we sent all of their tasks to MTurk to obtain 
new and valid answers. 

Finally, we used the resulting data to label the instances. If 3–5 Turkers 
answered “no” to the first question of a given instance, that instance was labeled 
as uninformative (15% of the instances). If 3–5 Turkers agreed on the category, this 
category was assigned as the label for that instance (75% of the instances). Finally, 
the rest of the instances were reviewed manually by a domain expert in order to 
choose the best fitting category (10% of the instances).
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Fig. 6 An example of a single instance to be categorized as appeared in the Mechanical Turk task 

3.3 Transferred Embeddings—Using Seller’s Industry 
Attribute and eBay Dataset 

We use three types of transferred embeddings (as illustrated in Fig. 7): 

• Industry embedding. 
Recall that we have access to a large number of invoices, but none of these 
invoices is labeled (i.e., the right item category for each invoice is unknown). 
Fortunately, recall that each invoice is associated with the seller’s industry 
category. While the seller’s industry category is clearly related to the item 
category (fashion website will mostly sell fashion items), the two categories 
are not identical for two main reasons: (1) Sellers usually sell more than one
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Fig. 7 The process for generating transferred embeddings in our setting 

category of items (e.g., a fashion website can also sell jewelry or baby clothes). 
(2) The seller’s industry category itself may be wrong (since it was generated by 
an automated algorithm). To further support this claim, an analysis of theMTurk 
dataset shows that the seller’s industry category matches the item category 
in 48% of the cases only. To conclude, since the seller’s industry category 
can be seen as a noisy label for the item category, we train an LSTM neural 
network to predict the seller’s industry category from the item description and 
use the last layer before SoftMax as the industry embedding (see more details 
below). It is important to note that due to the differences between goods and 
services categories we decided to split the industry embedding into two types 
of embeddings: a goods embedding and a services embedding. Each of the 
two embeddings was generated by training the LSTM neural network only 
on part of the invoices data (either those that have a seller’s industry category 
associated with goods or those that have a seller’s industry category associated 
with services). 

• eBay embedding. 
In contrast to the invoice dataset, the eBay dataset has reliable item category 
labels, but it differs from the invoice dataset in two ways. First, the eBay 
dataset contains only a subset of the potential invoice categories since eBay sells 
goods while our invoices, which are the result of P2P transactions, contain also 
services. Second, the item description in eBay is longer, more standardized, and
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less noisy than the item description in the invoice dataset, since it is aimed to be 
found in the eBay search. To conclude, since in both cases we aim at predicting 
the item category from the item description, we train an LSTM neural network 
to predict the eBay’s item category from the eBay’s item description and use 
the last layer before SoftMax as the eBay embedding (see more details below). 

• Autoencoder embedding. 
The last type of embedding is an embedding trained using a self-supervised 
Autoencoder. An Autoencoder is a model that is trained to reconstruct its 
own input. We use a similar LSTM architecture to the two neural networks 
mentioned above for the encoder (without softmax) and a mirror architecture 
with a fully connected layer in the end for the decoder. 

The three LSTM deep neural networks mentioned above share the same architecture 
and hyper-parameters. We chose to use LSTM deep neural networks due to their 
successful implementation in previous works on item categorization tasks (Krishnan 
& Amarthaluri, 2019; Li, Kok, & Tan, 2018). The chosen architecture and hyper-
parameters are detailed in Sect. 4. The rationale for using the exact same architecture 
and hyper-parameters in the three networks was merely a matter of simplicity.3 

3.4 Transferred Models—Using a Fully Connected Neural 
Network 

After generating the transferred embeddings described above, we turn to train 
“transferred models,” each trained using a different transferred embedding and the 
Mturk dataset. More specifically, given a train set of instances extracted from the 
MTurk dataset, for each transferred embedding (separately), we generate a new 
training set. The features of the new training set are generated by applying the 
transferred embedding on the features of the original MTurk instance, and the target 
value is simply copied as is from the original MTurk instance. The resulting set 
of instances is then used to train a transferred model. For this purpose we use a 
relatively small fully connected neural network with 1 layer of 100 hidden units and 
a softmax layer. 

3.5 Ensemble—Stacking Models 

To combine the results of the four transferred models, we use a common ensemble 
technique called model stacking (Wolpert, 1992). More specifically, given a train 
set of instances extracted from the MTurk dataset, we apply each of the transferred

3 Our goal here was to demonstrate the advantages of the ETE framework on a large-scale real-
world problem, rather than pursuing the best possible accuracy. 
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models to obtain a prediction (a features vector containing a single probability value 
for each of the 40 possible categories). Next, a new instance is produced by unifying 
the predictions into a single features vector and copying the target value as is from 
the original MTurk instance. Finally, the resulting instances are used to train a 
Logistic Regression meta model. This process allows our stacking meta model to 
learn the strengths and weaknesses of each transferred model and consequently lead 
to improved predictions. 

4 Evaluation 

In this section we report the extensive evaluation that we conducted. We begin by 
describing the experimental setting in Sect. 4.1, followed by the results in Sect. 4.2. 
The source code used for the proposed framework and its evaluation can be found 
in (Hadar & Shmueli, 2021b). 

4.1 Experimental Setting 

The ETE method was evaluated by comparing its classification performance to that 
of seven other benchmark methods (see Sect. 4.1.1) over the labeled MTurk dataset 
(see Sect. 4.1.2). We applied a stratified 10-fold cross validation evaluation scheme 
and used accuracy and weighted F1 score4 as measures for classification quality. 

4.1.1 Compared Methods 

We compare our method to four common item categorization methods and three 
methods based on transferred embeddings. 

• Majority: Our first method is taking the most frequent category in our dataset 
(fashion) as the predicted class. 

• TF-IDF: Our first baseline model is a regularized logistic regression model 
trained on TF-IDF with unigrams and bi-grams, similar to (Kozareva, 2015). 
The TF-IDF was built using the 3500 most popular terms in the invoice dataset. 

• Average GloVe: A fully connected neural network trained on average pre-
trained GloVe word embedding as input vectors, similar to (Kozareva, 2015). 

• BERT: A fully connected neural network trained on embeddings extracted from 
BERT base uncased (Devlin et al., 2018).

4 The harmonic mean of precision and recall of each class weighted by the class proportion in the 
data. 
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• Autoencoder: A fully connected neural network trained on transferred embed-
ding extracted from a self-supervised autoencoder (Erhan et al., 2010) trained 
on the invoice dataset as described in Sect. 3.3. 

• eBay embedding: A fully connected neural network trained on the eBay 
transferred embedding as described in Sect. 3.3. 

• Industry embedding: A fully connected neural network trained on the Industry 
transferred embedding as described in Sect. 3.3. 

4.1.2 Dataset and Pre-processing 

All of our experiments were conducted using the MTurk dataset. The two text 
attributes, item name and item description, were then concatenated to a single text 
attribute. The text attribute was then pre-processed by applying very basic text 
operations, such as tokenization, lower-casing, and removing non alpha-numeric 
symbols. 

4.1.3 Hyper-parameter Tuning 

Recall that all three LSTM deep neural networks used for extracting embeddings 
shared the same architecture. The chosen architecture and hyper-parameters were 
tuned using a grid search on the following hyper parameters: Number of LSTM 
layers (1–3), size of hidden dimension for the LSTM layers (100,200,400), size 
of hidden dimension for the fully connected layer (10,30,50,100) and dropout 
rates (0.1,0.2,0.3,0.5). The chosen architecture and hyper-parameters are shown in 
Table 3. We used Adam optimizer in all runs with a learning rate of 0.001. 

4.2 Results 

First, we computed the average classification accuracy and Weighted F1 score 
(over the 10 folds) for each one of the eight compared methods (see Fig. 8). As 

Table 3 Chosen architecture and hyper-parameters for the LSTM deep neural networks 

Layer number Layer Size Parameters 

1 Embedding 300 Frozen pretrained GloVe, max length. = 15 

2 Spatial dropout Dropout rate. =0.3 

3 LSTM 200 Return sequence. =True 

4 LSTM 100 

5 Dropout Dropout rate. =0.2 

6 Fully connected 30 Activation. =relu 

7 Fully connected Number of classes Activation. =Softmax
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Fig. 8 A comparison of the different item categorization methods in terms of: Accuracy (top) 
and Weighted F1 score (bottom). The horizontal dashed line in the top subfigure represents the 
accuracy of the Majority method 

expected, all six embedding-based methods performed better than the basic TF-IDF 
methods. Moreover, we see that the Industry embedding method (which is based on 
transferred embedding) was able to outperform BERT which is the state-of-the-art 
general purpose embedding method. We believe that this happens due to the unique 
characteristics of the text used in our setting—item descriptions are short, noisy and 
are domain specific. These characteristics make the text distribution in our setting



602 Y. Hadar and E. Shmueli

Fig. 9 The classification confusion matrix 

different than that of the text used to train BERT, making BERT less suitable for our 
setting. Finally, we see that ETE, which ensembles several transferred embeddings, 
performs the best in terms of classification accuracy and Weighted F1 score and has 
a low variance across folds compared to other methods. 

To further support our findings above, we performed statistical significance tests. 
First, we performed an ANOVA analysis in order to reject the null-hypothesis that 
all compared methods performed the same. Second, we performed the Tukey post 
hoc test to perform a pairwise comparison between the various methods. With a 
confidence level of 95%, we rejected the null-hypothesis that all methods performed 
the same. Further applying the Tukey post hoc test supported our finding that ETE 
performed significantly better than all other methods. 

To better understand the cases in which our model had mistaken, we computed 
the classification confusion matrix (see Fig. 9). Note that categories on the two axes 
are sorted according to their overall popularity. As expected, most of the model’s 
classifications were successful, resulting in a relatively dark diagonal line. Some 
worth noting confusions are between the fashion category and the baby-products 
category, and between the jewelry category and arts-n-craft category. Although our 
evaluation considered such confusions exactly the same as a confusion between 
the electronics category and the food-n-drink category, it is clear that the former 
confusions are considerably more tolerable.



Ensembled Transferred Embeddings 603

Fig. 10 Accuracy as a function of the number of categories considered 

Since the number of PayPal categories is relatively large, the likelihood of our 
model (and in fact any model) to confuse between them is high. This is especially 
true for rare categories for which the model had a small number of instances to train 
with. In Fig. 10, we demonstrate the impact of restricting the number of categories 
to the top X most common categories (for X ranging between 5 and 40) and ignoring 
all instances that belong to the other categories, on the accuracy of the various 
compared methods. As expected, we see that all methods performed considerably 
better when restricted to a lower number of categories. Moreover, we see that the 
proposed ETE method outperforms the other method in all considered cases. 

Finally, we also tested the effect of using different machine learning classification 
algorithms for training the transferred models as well as for training the ensemble 
model (see Fig. 11). The box plot on the top of the figure shows the effect of using 
different classifiers for training the transferred models (while keeping the ensemble 
classifier fixed—using Logistic Regression). As can be seen from the figure, using 
a Neural Network classifier slightly outperformed the others, but this difference 
was not found to be statistically significant. More specifically, when applying an 
ANOVA test with a confidence level of 95%, we rejected the null-hypothesis that all 
models performed the same. Further applying the Tukey post hoc test, we found that 
Logistic Regression, Random Forest, and Neural Network performed significantly 
better than Gradient Boosting, but the difference between the three models was not 
found to be significant. 

The box plot on the bottom shows the effect of using different classifiers 
for training the ensemble model (while keeping the classifier of the transferred 
models fixed—using Neural Network). As can be seen from figure, using a Logistic 
Regression classifier slightly outperformed the others, but this difference was not 
found to be statistically significant. More specifically, when applying an ANOVA 
test with a confidence level of 95%, we could not reject the null-hypothesis that all 
models performed the same.
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Fig. 11 A comparison of accuracy for different machine learning models: transferred models 
comparison (top) and ensemble model comparison (bottom) 

5 Summary and Future Work 

In this chapter, we suggested the Ensembled Transferred Embeddings learning 
framework. The proposed framework is composed of four main steps: (1) Manually 
label a small sample dataset (2) Extract embeddings from related large-scale labeled 
datasets (3) Train transferred models using the extracted transferred embeddings
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and the labels of the sample dataset (4) Build an ensemble to combine the outputs 
of the different transferred models into a single prediction We then showed the 
applicability of the proposed framework for the item categorization task in settings 
for which the textual attributes representing items are noisy and short, and labels are 
not available. 

We evaluated our method using a large-scale real-world invoice dataset provided 
to us by PayPal. The results of this evaluation showed that our method significantly 
outperforms other traditional (e.g., TF-IDF) as well as state-of-the-art (e.g., methods 
based on general purpose pretrained models such as BERT) item categorization 
methods. We believe that the reason for the superiority of our method is due to the 
unique characteristics of the text used in our setting—item descriptions are short, 
noisy and are domain specific. These characteristics make the text distribution in 
our setting different than that of the text used to train general purpose embeddings. 
Consequently, this makes our embeddings more relevant for the task at hand, despite 
being trained with a much smaller dataset. 

One limitation of our method is the need to manually label a high quality sample 
dataset. As we explained in the chapter, generating a high quality dataset, even when 
using a crowdsourcing service, is not a trivial task. A non-negligible effort should 
be invested in properly designing the crowdsourced labeling task, in order to obtain 
an accurate result, in a relatively fast and cheap process. 

Another limitation of our method is the use of domain knowledge. In our 
framework domain knowledge is essential for the selection of the related large-scale 
labeled datasets. As demonstrated throughout the chapter, choosing datasets that are 
related to the domain and the task at hand is essential to building more accurate 
models. 

In future work it would be interesting to investigate the following directions: 

• Additional domains and tasks. We believe that the proposed ETE framework 
is generic enough and can be very useful in additional text classification 
domains such as health, law, social media, etc. We also believe that the ETE 
framework, with some adjustments, can be beneficial to tasks other than text 
classification, such as computer vision, audio processing, time series analysis, 
and more. 

• Combining more methods for text classification with small data. In recent 
years methods such as active learning and semi supervised learning showed 
great success in reducing the number of labeled samples needed for an accurate 
text classification. These methods can be integrated into the ETE framework in 
order to achieve better accuracy. 

• Uninformative items detection. 15% of the items that were annotated using 
Mechanical Turk were labeled as uninformative. A production item categoriza-
tion system would need to filter out such items as a first step. An interesting 
research direction would be to build a machine learning model to identify such 
uninformative items, perhaps using the same ETE framework.
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• Using additional item attributes. In this work we used only the textual 
attributes: item name and item description, as input for our model. Using other 
attributes such as price, seller ID, and user ID was shown in (Krishnan & 
Amarthaluri, 2019) to improve the accuracy of the item categorization model. 
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Data Mining in Medicine 

Beatrice Amico, Carlo Combi, and Yuval Shahar 

1 Introduction 

Extensive amounts of knowledge and data stored in medical databases require 
the development of specialized tools for data access, data analysis, knowledge 
discovery, and effective use of the discovered knowledge. The need to understand 
large and complex data sets has now increased in different fields. The traditional 
manual data analysis has become insufficient, and methods for efficient computer-
based analysis indispensable. With these large amounts of data, the ability to extract 
useful knowledge hidden in these large amounts of data and perform actions on the 
basis of the discovered knowledge, is becoming increasingly important. 

Knowledge discovery in databases is frequently defined as a process [1] con-
sisting of the following steps: understanding the domain, forming the data set 
and cleaning the data, extracting regularities hidden in the data, thus formulating 
knowledge seen as patterns or models (this step is referred to as Data Mining), 
postprocessing of discovered knowledge, and exploiting the results. 

Data mining in medicine has been receiving considerable attention since it 
provides a way of revealing useful information hidden in the clinical data. Nowadays 
technology gives the possibility to clinicians to collect automatically huge amounts 
of data. The analysis of such healthcare/medical data collections could greatly help 
to gain a deeper insight into the health conditions of the population and extract 
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useful information that can be exploited in the assessment of healthcare/medical 
processes. 

Within the context of the healthcare industry, the massive amount of data derived 
from electronic medical records, which are being under-utilized. Patient records 
collected data for diagnosis and prognosis and typically include values of demo-
graphic, clinical and laboratory parameters. Such data sets can be characterized 
by their incompleteness because of missing parameter values, incorrectness as a 
consequence of systematic or random noise in the data, sparseness as a result of few 
and/or non-representable patient records available, and inexactness in the selection 
of parameters for the given task [2]. An important aspect that has to be consider is 
the intrinsic necessity to take into account the temporal component. This aspect 
needs to be considered when representing information within computer-based 
systems, when querying information about temporal features of the represented 
real world, when reasoning about time-oriented data, during the design process of 
analysis tools for prediction, personalized medicine, and therapy support. 

In general, data mining can be used for solving descriptive and predictive 
data mining tasks. Descriptive Data Mining tasks concern about finding human-
interpretable patterns and associations, after considering the data as a whole 
and constructing, where typical methods include association rule learning, and 
(hierarchical or k-means) clustering. In contrast, Predictive Data Mining investigate 
to prefigure some response of interest. Starting from the entire data set, it aims at 
inducing a predictive model that holds on the data and can be used for prediction or 
classification of yet unseen instances [3, 4]. 

In summary, complex domains like the medical one may be prone to show hidden 
relationships inside the data. Data Mining techniques help to unravel and discover 
such hidden patterns and regularities for giving insights to users. 

In this chapter, we consider different Data Mining techniques used for extracting 
knowledge from medical data. In Sect. 2 we will introduce the concept of Machine 
Learning, focusing on the application of Deep learning methods in different medical 
fields in order to improve quality of care, safety, diagnosis, and prognosis of patients. 
In Sect. 3 we will enhance the concept of temporal data mining with particular 
attention to discover temporal patterns, unexpected trends, or other hidden relations 
in a huge and overwhelming quantities of data. We decided to analyze a slice of the 
possible approaches for mining biomedical data. Instead, we overlooked the social 
data mining related, for example, to drug information extracted from social media 
and pharmaceutical databases. We also left out the visual data mining on temporal 
data for the exploration of data. 

2 Machine Learning and Some Emerging Medical 
Applications 

As we mentioned before, we are in the era of big data. This massive quantity of data 
calls for automated methods of data analysis, which machine learning provides [5].
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Artificial intelligence can potentially provide improvements in many sectors, 
becoming a major element even in the healthcare and medical landscapes. Recent 
examples such as skin lesions, diabetic retinopathy, and radiology detection have 
highlighted the potential use of AI in medicine to improve quality, safety, and 
diagnosis. 

Data Mining in medicine is most often used for building classification models, 
these being used for the typical medical decision-making tasks as diagnosis, prog-
nosis, or treatment planning. Data mining techniques are able to perform predictive 
modeling, exploit the knowledge available in the clinical domain and propose 
innovations to support clinical decisions. Indeed, one of the goals of predictive data 
mining in clinical medicine is to derive decision models that can use patient-specific 
information which—once evaluated and verified—may be embedded within clinical 
information systems, to predict the outcome of interest and to there by supporting 
clinical decision-making [4]. 

The data mining baseline is grounded by research areas such as machine learning 
and deep learning. 

Machine Learning (ML) consists of a set of methods that can automatically 
detect patterns in data, and then use the uncovered patterns to predict future data, or 
to perform other kinds of decision-making under uncertainty [6]. 

Deep learning (DL) is a specialized branch of ML, corresponding to a group of 
different techniques for training in neural networks that deploy multiple hidden lay-
ers to solve the pattern recognition problems [7]. It is a branch of machine learning 
that attempts to model higher-level abstractions in data by using model architectures 
with non-linear transformations. Deep learning methods are representation-learning 
methods with multiple levels of representation, obtained by composing simple mod-
ules into a representation at a higher, slightly more abstract level. The key aspect of 
deep learning is that these layers of features are not designed by humans but learned 
from data using a general-purpose learning procedure [8]. It is in the intersections 
among the research areas of neural network, graphical modeling, optimization, 
pattern recognition, and signal processing [9]. Deep learning allows computational 
models that are composed of multiple processing layers based on neural networks 
to learn representations of data with multiple levels of abstraction. Some of the most 
successful deep learning methods involve artificial neural networks, such as Deep 
Neural Networks (DNN), Convolutional Neural Networks (CNN), Deep Belief 
Networks (DBN), and Stacked Autoencoder (SAE). The major differences between 
deep learning and traditional artificial neural networks (ANNs) are the number of 
hidden layers, their connections, and the capability to learn meaningful abstractions 
of the inputs. In fact, traditional ANNs are usually limited to three layers and are 
trained to obtain supervised representations that are optimized only for the specific 
task and are usually not generalizable. Differently, every layer of a deep learning 
system produces a representation of the observed patterns based on the data it 
receives as inputs from the layer below, by optimizing a local unsupervised criterion. 
The key aspect of deep learning is that these layers of features are not designed by 
human engineers, but they are learned from data using a general-purpose learning 
procedure [10].
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Deep learning offers the possibility to exploit different techniques that uncover 
the hidden opportunities and patterns in clinical data. There are many aspects of 
deep learning that could be helpful in healthcare/medicine, such as its superior 
performance, end-to-end learning scheme with integrated feature learning, capa-
bility of handling complex and multi-modality data, and so on. The deep learning 
research field must address several challenges relating to the characteristics of 
health care data; for this reason we have the necessity to implement methods and 
tools able to enhance the cooperation between health care information workflows 
and deep learning techniques. In this section, considering the scientific landscape 
in medical and healthcare applications, among different applications of deep 
learning in medicine, we focus on the medical imaging and the Electronic Medical 
Records (EHRs). We will discuss recent applications of deep learning in medicine, 
highlighting the key aspects to significantly impact in the healthcare domain. 

2.1 Clinical Imaging 

Deep learning has contributed a lot to the image analysis in the medical field. 
Deep learning techniques are used in the Medical Imaging field in four ways: 
classification, segmentation, regeneration, and detection [7]. 

In medical imaging, the accurate diagnosis and/or assessment of a disease de-
pends on both image acquisition, which has improved significatively over the recent 
years devices acquiring data at faster rates and increased resolution, and image 
interpretation that has only recently begun to benefit from computer technology. 

In particular, Convolutional Neural Networks (CNNs) have proven to be pow-
erful tools for a broad range of computer vision tasks. Deep CNNs automatically 
learn mid-level and high-level abstractions obtained from raw data, in this case 
images. Medical image analysis is quickly entering the field of the CNNs and other 
deep learning methodologies through a wide variety of applications. Indeed, recent 
studies [11, 12, 13, 14] indicate that the generic descriptors extracted from CNNs 
are extremely effective in recognition and localization in clinical images. The main 
power of a CNN lies in its deep architecture, which allows for extracting a set of 
discriminating features at multiple levels of abstraction. Training a deep CNN from 
scratch is challenging. Firstly, CNNs require a large amount of labeled training data, 
a requirement that may be difficult to meet in the medical domain where experts’ 
annotation is often approximated and the diseases are various. Secondly, training a 
deep CNN requires large computational and memory resources, without which the 
training process would be extremely time-consuming. Finally, training a deep CNN 
is often complicated by overfitting and convergence issues, which often require 
repetitive adjustments in the architecture or learning parameters of the network to 
ensure that all layers are learning with comparable speed. 

Most of the medical images interpretations are performed by physicians. How-
ever, this kind of knowledge depends on levels of human subjectivity, as a 
consequence of variation across different interpretations. Many diagnostic tasks



Data Mining in Medicine 611

require an initial search process to detect abnormalities, quantify measurements and 
changes over time. The benefits of automated tools are the potential to improve 
diagnosis, by facilitating identification of the findings that require treatment and to 
support the medical decision [15]. 

Observing the panorama of the medical applications of deep learning techniques 
in medical images, we spotlight on three main diseases: diabetes retinopathy, breast 
cancer and lymph node metastasis, and skin cancer. On the other hand, considering 
data from EHR, we focus our attention on readmissions, hospitalizations, and 
prognosis. 

Considering this scenario, a spontaneous question could arise: can deep networks 
be used effectively for medical tasks? Can we rely on learned features alone or may 
we have to combine them with additional knowledge to reach the goal? 

2.1.1 Diabetic Retinopathy (DR) 

Diabetes mellitus is a group of metabolic diseases characterized by chronic hy-
perglycemia resulting from defects in insulin secretion, insulin action, or both 
[16]. Diabetes leads to a range of complications grouped into macrovascular 
(large blood vessel) complications, such as cardiovascular disease and stroke, and 
microvascular (small blood vessel) complications, such as kidney disease. People 
with diabetes fear visual loss and blindness more than any other complication. 
Diabetic retinopathy (DR) is a specific microvascular common complication of 
diabetes, is the major cause of vision loss among middle-aged men and women, 
and elderly people in many countries [17]. 

Gulshan et al. [18] established a clear path toward the use of AI, not to replace 
physicians, but rather to perform simple, cost-effective, and widely available exam-
inations and analyses that could help identify at-risk patients who require referral 
for specialty care, and reassuring other patients that potential retinal manifestations 
of their diabetes are not present or are stable. The authors implemented a deep CNN 
trained using more than 128,000 retinal fundus images from adult patients with 
diabetes to identify referable diabetic retinopathy. The network used a function that 
first combines nearby pixels into local features, then aggregates those into global 
features. All images in the development and clinical validation sets were graded 3 
to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability 
by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents. 
The algorithm was validated using two data sets, EyePACS-1, a data set consisted of 
9963 images from 4997 patients obtained in the United States (prevalence of RDR: 
7.8%) and Messidor-2, a data set had 1748 images from 874 patients obtained at 
3 hospitals in France (prevalence of RDR:14.6%), both graded by at least 7 US 
board-certified ophthalmologists with high intra-grader consistency. It computed 
diabetic retinopathy severity from the intensities of the pixels in a fundus image. 
They defined sensitivity and specificity of the algorithm for detecting referable 
diabetic retinopathy (RDR), generating them based on the reference standard of the 
majority decision of the ophthalmologist panel. The algorithm was evaluated at two
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operating points selected from the development set, one selected for high specificity 
and another for high sensitivity. Creating or “training” this function required a 
large set of images for which the diabetic retinopathy severity was already known 
(training set). During the training process, the parameters of the neural network were 
initially set to random values. Then, for each image, the severity grade given by the 
function was compared with the known grade from the training set, and parameters 
of the function were then modified slightly to decrease the error on that image. This 
process was repeated for every image in the training set many times over, and the 
function “learned” how to accurately compute the diabetic retinopathy severity from 
the pixel intensities of the image for all images in the training set. 

Abramoff et al. [19] reported a pivotal trial leaded the central focus on the 
detection in a general practitioner’s office of more than moderate diabetic retinopa-
thy (mtmDR). They enrolled 900 subjects from 10 primary care practice sites 
throughout the USA. They were asymptomatic diabetes patients, with an age range 
of 22 to 84 years, not previously diagnosed with DR. The autonomous AI system, 
IDx-DR, had two core algorithms, an Image Quality AI-based algorithm, and the 
Diagnostic Algorithm. The image quality algorithm was implemented as multiple 
independent detectors, a multilayer convolutional neural networks, for retinal area 
validation as well as focus, color balance and exposure, and used interactively 
by the operator to detect, in seconds, sufficient image quality for the Diagnostic 
algorithm to rule out (or in) more than mild diabetic retinopathy (mtmDR), and 
thus maximized the number of subjects that can be imaged successfully. The 
diagnostic algorithm was a clinically inspired algorithm, incorporating independent, 
validated detectors for the lesions characteristic for DR, including microaneurysms, 
hemorrhages, and lipoprotein exudates. The images were classified according to 
the Early Treatment Diabetic Retinopathy Study (ETDRS) Severity Scale. They 
obtained an observed Sensitivity to fundus mtmDR of 87.4% and a Specificity 
of 89.5%. Based on the achieved results, for the first time FDA authorized an AI 
diagnostic system in any field of medicine, with the potential to help prevent vision 
loss in thousands of people with diabetes annually. 

2.1.2 Breast Cancer and Lymph node Metastasis 

Breast cancer is the most frequent malignancy in women worldwide. A positive 
screening mammography, or the development of breast symptoms or breast changes, 
requires appropriate diagnostic evaluation [20]. 

In the context of the researcher challenge competition CAMELYON16 [21], 
the authors described a set of algorithms for the diagnostic assessment to detect 
the lymph node metastasis in women breast cancer. The CAMELYON16 chal-
lenge highlighted a significant opportunity for AI in pathology, namely assisting 
pathologists with screening for lesions in histopathologic sections. They applied 
two approaches to compare the performances of the algorithms generated by 
automated deep learning systems for the detection of nodal metastases in the whole-
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side images. The first method involved a panel of 11 pathologists with varying 
degrees of expertise in breast pathology, who were given 2 h to review all 129 test 
slides, less than 1min per slide. The second method was to ask one pathologist 
to review all cases without a limit of time. Confidence in the algorithms came 
from their ability to detect metastases. The top algorithms performed better than 
the 11 pathologists with time constraints at identifying micro metastases but were 
not statistically different when compared with the performance of the pathologist 
with unlimited time. A training data set of whole-slide images from 2 centers in 
the Netherlands with (.n = 110) and without (.n = 160) nodal metastases verified 
by immunohistochemical staining were provided to challenge participants to build 
algorithms. The algorithms performance was evaluated through an independent 
test set of 129 whole-slide images (49 with and 80 without metastases). The 
CAMELYON16 challenge demonstrated that some deep learning algorithms were 
able to achieve a better AUC then the panel of 11 pathologists who had time 
constraints, demonstrating that interpretation of pathology images can be performed 
by deep learning algorithms at an accuracy level that rivals human performances. 

Another application of deep learning techniques in breast cancer is described 
in [22]. One of the main early signs on mammograms is the appearance of 
microcalcifications, whose diameter ranges from 0.1 to 1mm. Early detection 
and accurate identification of malignant microcalcifications can facilitate early 
detection, diagnosis, and timely treatment of breast cancer. Due to the small size and 
low contrast compared to the background of images, it is difficult for radiologists to 
make objective and accurate evaluation of microcalcifications. Consequently, there 
is a need to develop helpful automated tools to overcome these problems and im-
prove diagnostic performances. Microcalcifications are highly correlated with breast 
cancer, therefore, the aim of this investigation was to evaluate the performance of an 
innovative deep learning model for classifying breast lesions. This study concerned 
reviewed mammograms from 1204 female patients histopathologically diagnosed 
with benign or malignant breast lesions at the SunYat-sen University Cancer Center 
(Guangzhou, China) and Nanhai Affiliated Hospital of Southern Medical University 
(Foshan, China). In this work, we see the application of another deep learning 
algorithm, named SAE, i.e., a stacked autoencoder (SAE) creates a deep network by 
stacking multiple autoencoders hierarchically. Each autoencoder is a specific type 
of feedforward neural networks. They compress the input into a lower-dimensional 
code and then reconstruct the output from this representation; the output of each 
autoencoder is used as the training set for the next autoencoder. More specifically, 
in an SAE within layers, the first layer is trained as an autoencoder to obtain the 
first hidden layer, and the output of the k hidden layer is used as the input of 
the .(k + 1) hidden layer. The training group consisted of 1000 images, including 
677 benign and 323 malignant lesions. The test group consisted of 204 images, 
including 97 benign and 107 malignant lesions. Data about microcalcifications and 
suspicious breast masses were extracted through a segmentation pipeline. Proposed 
method demonstrated to be effective, and it could accurately detect and extract
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suspicious microcalcifications from the background of a low-density image. The 
results demonstrated that deep learning not only enabled accurate segmentation of 
microcalcifications but also provided an efficient analysis of their characteristics, 
leading to a marked improvement in discriminating between benign and malignant 
breast lesions. 

2.1.3 Skin Cancer 

Skin cancer, the most common human malignancy, is primarily diagnosed visually, 
beginning with an initial clinical screening and followed potentially by dermoscopic 
analysis, a biopsy, and a histopathological examination. 

Esteva et al. [23] compared the ability of a deep convolutional neural network 
(CNN) to discriminate the most common skin cancers. They illustrated the equiv-
alence in the performance of their algorithm against at least 21 dermatologists in 
evaluating biopsy-proven clinical images. Automated classification of skin lesions 
using images is a challenging task owing to the variability in the appearance of skin 
lesions. The authors proposed that mobile devices, such as smartphones, could be 
deployed with similar algorithms, permitting potentially low-cost universal access to 
vital diagnostic care anywhere in the world. They performed a classification of skin 
lesions using a single CNN based on a GoogleNet Inception v3 CNN architecture, 
trained end-to-end by images directly, using only pixels and disease labels as inputs. 
They trained the CNN using a data set of 129,450 clinical images, which were 
organized in a tree-structured taxonomy of 2032 diseases. Data were split into 
127,463 training and validation images, and 1942 biopsy-labeled test images. They 
observed that most dermatologist performances were below the system ROC curves. 
So this algorithm can be seen as an example of fast, reliable, scalable diagnostic 
modality, which can be implemented on mobile devices. 

The study reported in [24] represents a second example of the investigation 
of skin cancer with deep learning techniques. Melanoma, caused by abnormal 
reproduction of melanocyte cells, is the lethal form of skin cancer. Melanocytes 
cells are responsible for producing melanin pigments that give color to skin. Jafari 
et al. [24] proposed a deep CNN architecture for the extraction of lesion regions 
from skin images. The input images were generated by standard cameras; hence, 
they should be pre-processed in order to handle noise. They defined a local patch 
as a window around each pixel of the image, showing the nearby texture around 
the center pixel. In addition, they considered a zoomed-out window, with the same 
center as the local patch, for revealing the global structure of the region. The two 
patches of local and global texture fed the proposed CNN. The output of the CNN 
was a label for the central pixel of the patch. About 140,000 patches were obtained 
and used for training of the CNN. The used data set consisted of 126 digital images 
(66 melanoma, 60 non-melanoma).The number of patches that were selected from 
each training image is 1500, where half of them were randomly chosen from lesion 
region and the other half are randomly selected from non-lesion parts. Thus all these 
patches were extracted and used for training of the CNN in each run.
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2.2 Electronic Medical Records 

Deep learning techniques have been also applied to Electronic Health Records 
(EHR) data. Data-driven healthcare, defined as usage of those available big medical 
data to provide the best and most personalized care, is becoming to be one of the 
major trends to the success of revolutionize healthcare industry. One key aspect to 
the success of those medical applications is extracting effective features from patient 
EHRs, which is usually referred to as electronic phenotyping in medical informatics. 
At the beginning of this section we consider some examples on application of deep 
learning to EHRs. The global health care systems are rapidly adopting Electronic 
Health Records, which are systematic collections of longitudinal patient health 
information generated by one or more encounters in any care delivery setting. They 
represent a highly rich sources of patient data, which consists of both structured data 
such us information about medical history facts, medications, diagnosis, diagnostic 
exams, treatment plans, allergies, laboratory and test results, and unstructured data 
such as free-text clinical notes. Some proposals deal with applying deep learning to 
predict diseases from the patient clinical status as stored in the EHR. Most of the 
literature deals with processed EHRs of a health care system by a deep architecture 
for a specific, usually supervised, predictive clinical task. 

Cheng et al. [25] proposed a deep learning algorithm for extracting meaningful 
features, or phenotypes, from patient EHRs. They first represented the EHRs for 
every patient as a temporal matrix with the time on one dimension and a kind of 
event on the other dimension. They used a four-layer CNN to extract phenotypes 
and perform prediction, exploited a framework composed by input layer, one-side 
convolution layer, max-pooling layer and softmax prediction layer. The first layer 
was composed of EHR matrices. The second layer was a one-side convolutional 
layer that can extract phenotypes from the first layer. The third layer was a max-
pooling layer introducing sparsity on the detected phenotypes, so that only those 
significant phenotypes remain. The fourth layer was a fully connected softmax 
prediction layer. They validated the model using two specific clinical scenarios: 
Congestive Heart Failure (CHF) and Chronic Obstructive Pulmonary Disease 
(COPD). 

Avati et al. [26] faced the problem of improving the quality of end-of-life care for 
hospitalized patients. They used a Deep Neural Network trained on the EHR data 
from previous years, to predict the mortality of patients within 3 to 12 months from 
that date, using EHR data of patients from the prior year as a proxy for patients that 
could benefit from palliative care. The criteria for deciding which patients benefit 
from palliative care can be hard to state explicitly. This approach used deep learning 
to screen patients admitted to the hospital, to identify those who were most likely to 
have palliative care needs. The algorithm addressed a proxy problem and used that 
prediction for making recommendations for palliative care referral. 

From EHR data of 2 Million adult and pediatric patients from the Stanford 
Translational Research Integrated Database Environment (STRIDE) during 1995– 
2014, 221,284 patients correspond to the inclusion criteria. Specifically they used
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a Deep Neural Network with an input layer of 13,654 dimensions, 18 hidden 
layers (each consisting of 512 dimensions) and a scalar output layer, a logistic 
loss function at the output layer and the Scaled Exponential Linear Unit (SeLU) 
activation function at each layer. They demonstrated that routinely collected EHR 
data could be used to create a system that prioritizes patients for follow up with 
palliative care. They created a model for all-cause mortality prediction and use that 
outcome as a proxy for the need of a palliative care consultation. 

Rajkomar et al. [27] constructed a predictive statistical model using data from 
an electronic health record to drive personalized medicine and improve healthcare 
quality. Using a specific representation, the Fast Healthcare Interoperability Re-
sources (FHIR), the authors demonstrated that Deep Learning methods are capable 
of accurately predicting multiple medical events from multiple centers without site-
specific data harmonization. They used data from two US academic medical centers 
with 216,221 adult patients hospitalized for at least 24 h. The data included patient 
demographics, provider orders, diagnoses, procedures, medications, laboratory 
values, vital signs, and flowsheet data, which represent all the structured data 
elements (e.g., nursing flowsheets), from all inpatient and outpatient encounters. 
One data set additionally contained de-identified, free-text medical notes. A deep 
learning algorithm produced predictions for a wide range of clinical problems and 
outcomes and outperformed traditional, clinically used predictive models. Because 
the authors were interested in understanding whether deep learning could scale to 
produce valid predictions across divergent healthcare domains, they used three deep 
learning neural network model architectures, plus an ensemble method. Each model 
was trained on all four tasks, namely the prediction of a clinical outcome (death), a 
standard measure of quality of care (readmissions), a measure of resource utilization 
(length of stay), and a measure of understanding of a patient’s problems (diagnoses), 
respectively. 

The deep learning models achieved high accuracy for tasks such as predicting 
In-hospital mortality across the two sites (AUCs: 0.93, 0.95); 30-day unplanned 
readmission (AUCs: 0.75, 0.76); Prolonged length of stay (AUCs at 24 h: 0.85, 
0.86); all of the patient’s final discharge diagnoses (frequency-weighted AUC: 0.90). 
These results were better than the results of current traditional predictive models 
considered to be the state of the art for each task. 

2.3 Challenges in Healthcare 

Despite the promising results obtained using deep learning approaches, there remain 
several challenges related to the application of these algorithms to the healthcare 
domain. In particular, we highlight the following key issues [7, 10] :  

• Data Volume: Deep learning is so successful in domains where huge amount 
of data can be easily collected. To produce satisfactory results, we need to have 
a considerable amount of data that feeds a comprehensive deep learning model.
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Understanding diseases and their variability is much more complicated than 
other tasks, such as image or speech recognition. 

• Data Quality: Unlike other domains where the data are clean and well-
structured, health care data are highly heterogeneous, ambiguous, noisy, and 
incomplete. Training a good Deep Learning model with such massive and 
variegate data sets is challenging and needs to consider several issues, such 
as data sparsity, redundancy, and missing values. Specially when we work with 
EHR we have to consider [25] :  

– High-Dimensionality. There is a large amount of distinct medical events 
in patient EHRs. Those events also interact with each other. 

– Temporality. The patient EHRs evolve over time. The diseases are always 
progressing and changing over time in a nondeterministic way. The sequen-
tiality of the medical events reveal important information on patient disease 
conditions. Designing Deep Learning approaches that can handle temporal 
healthcare data is an important aspect that will require the development of 
novel solutions. 

– Varying sampling rate and granularity. Time-oriented clinical data are 
often sampled at varying granularities—some might be measured each 
minute, such as heart rate or blood pressure in an Intensive Care Unit (ICU), 
while others might be measured once or twice a day, such as Temperature or 
White-Blood-Cell (WBC) Count; or even once in several weeks or months, 
as Hemoglobin A1C is measured in Diabetes, or even years, as height and 
Weight are measured in children. 

– Synchronization. Furthermore, different parallel, multivariate channels 
of information, such as different types of laboratory tests, imaging data, 
reported symptoms, and diagnostic codes, that accumulate in the patient’s 
longitudinal record over time, need to be integrated and analyzed, while 
keeping the correct absolute time stamp or at least relative temporal 
distance among them. Handling such multivariate, varying-granularity 
longitudinal data is essential for effective analysis of clinical records. 

– Sparsity. The EHR data are extremely sparse. The data are largely missing 
in several ways, such as recording mistake, patient relocation, lack of visits, 
and so on. 

– Irregularity. Due to the complexity of patient diseases, there exists high 
variabilities among the EHRs of different patients, even with the same 
disease. 

– Bias. The above challenges, including systematic errors, can result in 
significant bias when health record data are used naively for clinical 
research. Moreover, it is important to note that an implicit population 
selection affects the data from which the output machine learning models 
are learned. 

• Domain Complexity: Unlike other application domains (e.g., image and speech 
analysis), the problems in biomedicine and health care are more complicated.
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The diseases are highly heterogeneous and for most of the diseases there is still 
no complete knowledge on their causes and how they progress. 

• Context-sensitive models: the model might be specific to a particular medical 
problem or environment. 

• Interpretability: Although Deep Learning models have been successful in 
quite a few application domains, they are often treated as black boxes, while 
in medicine is fundamental to explain why and how the algorithm works. It 
is a crucial step to convince clinicians about the actions recommended from 
the predictive system. In medicine the model performance and interpretability 
are equally important for health. Clinicians are unlikely to adopt a system they 
cannot understand. 

Finally, moving to another challenge, the major issue about the introduction of AI 
in clinical practice could be identified in education. To facilitate this process, AI 
and other computational methods must be integrated into training programs, during 
which clinicians have the possibility to become comfortable with the combination 
of digital images and other data in with computer algorithms in their daily practice 
[28]. 

3 Temporal Data Mining in Medicine: Some Relevant 
Techniques 

Modern technologies enable us to store huge and overwhelming quantities of data 
in the medical/healthcare domain. One of the main challenge in the analysis of 
Electronic Health Records is related to the sparsity and irregular sampling nature 
of medical data, since clinical data are commonly recorded only when patients enter 
the healthcare system, providing a rather sparse and biased view of the patient’s 
clinical history. Extracting useful knowledge from these data is still a challenging 
task. 

Disease and patient care processes often create characteristic states, trends, and 
temporal patterns in clinical events and observations. Identifying patient populations 
who share similar abstractions may be useful for clinical research, outcomes studies, 
and quality assurance [29]. 

To this end, Data Mining considers the temporal evolution of clinical data, 
biomedical time series, the change of medical information over time, and tries to 
extract useful temporal knowledge [30]. Analyzing data for supporting diagnostic 
tasks in medicine requires an explicit representation and consideration of the 
temporal semantics of data. The increasing use and availability of longitudinal 
electronic data presents a significant opportunity to discover new knowledge from 
multivariate, time-oriented data, by using various data mining methods. 

In medicine, the analysis of time-oriented data enables researchers to discover 
new temporal knowledge and gain insight into the temporal behavior and temporal 
associations of such data, with the further objectives of clustering, classification,
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and prediction [31]. An example from the medical domain would be supporting a 
clinical researcher who analyzes the results of a clinical trial of a new drug within a 
population of chronic patients. 

As we mentioned in the previous section, there are two kinds of data mining 
models: predictive models and descriptive models. In this section we will focus 
on the descriptive modeling paradigm in healthcare. We will focus on Temporal 
Data Mining (TDM) approaches that were applied to the medical field, due to the 
intrinsic longitudinal nature of clinical data. In the following, we will introduce the 
basic concepts of temporal abstraction in medicine, which are the base for temporal 
association rules and of temporal pattern mining, we will then discuss. Finally, we 
will introduce the discovery of approximate temporal functional dependencies on 
clinical data. 

Temporal data mining is a sub-field of data mining, in which various techniques 
are applied to time-oriented data to discover temporal knowledge about relationships 
among different raw data and abstract concepts, in which the temporal dimension 
is treated explicitly. Temporal data mining offers the possibility of obtaining a 
considerable understanding of various scientific phenomena and the potential for 
creation of accurate classification models [32]. 

The biomedical domain naturally has to deal with temporal issues due to the 
intrinsic longitudinal nature of clinical data. Further and innovative contributions are 
still being suggested to mine electronic health records for revealing novel patient-
stratification principles or unknown disease correlations, to find dependencies in 
clinical databases, to retrieve suitable time parameterization for association and 
clustering experiments and to classify multivariate time series. Medical knowledge-
based systems involve the application of medical knowledge to patient-specific 
data with the goal of reaching diagnoses or prognoses, deciding the best therapy 
regime for a patient, or monitoring the effectiveness of some ongoing therapy and 
if necessary, applying rectification actions. On the one hand, medical knowledge, 
like any kind of knowledge, is expressed in as general as possible, for example, in 
terms of associations, causal models of pathophysiological states, evolution models 
of disease processes, patient management protocols and guidelines. On the other 
hand, data on a patient include numeric measurements of various parameters (such 
as blood pressure, body temperature, etc.) at different time points. The difficulty is 
that often the abstraction gap between the specific, raw patient data, and the abstract 
medical knowledge does no longer allow any direct unification between information 
and knowledge. The process of data abstraction (see Fig. 1) aims to close this gap, 
bringing the raw patient data to the level of medical knowledge in order to permit 
diagnosis, prognosis, or therapeutic conclusions. So the data abstraction, in the 
context of medical problem solving, can be seen as an intelligent interpretation of 
the raw data that converges to new discovered knowledge [33]. 
The integration of the available data sources, properly pre-processed, leads to a 
uniform representation of the data as temporal sequences of healthcare events. 
There are different types of abstractions. In this chapter we give particular attention 
to a framework for temporal abstractions and to the related mining of patterns, 
association rules and functional dependencies.
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Fig. 1 Data abstraction process: from raw data to abstract knowledge 

In clinical domains, what is often needed is a coherent intermediate level 
interpretation of the relationships between data and events. Often temporal data 
include a mixture of time-stamped raw data, time points, time intervals that could 
be either a part of the original raw input data or abstractions derived from them. 

The goal is to abstract the data into higher-level concepts useful for one or more 
tasks, for example, the planning of a therapy or the summarization of a patient 
record. Most stored data include a time stamp in which the particular item is valid; 
an emerging pattern over a stretch of time has much more significance than an 
isolated finding or even a set of findings. A meaningful comprehension cannot 
use only time points, such as dates when data were collected; it must be able to 
characterize significant features over periods of time. Temporal abstraction enables 
us to overcome much of the problems of varying-frequency measurements and 
recordings, and of minor measurement errors and deviations in the raw data, through 
the creation of concepts (symbols) that are no longer time-stamped, raw data, but 
rather interval-based abstractions, or interpretations, of these data, and through the 
smoothing effect of these abstractions. Figure 2 helps understand the classification 
problem for various time-point series and time-interval series, representing various 
temporal variables within the same input data set. Different cases are listed below: 

• Samples acquired at fixed frequency, often used for automated sampling (case 
a, b) 

• Samples acquired at random frequency, often occurring for manual measure-
ments (case c) 

• Time intervals where the duration of the events is constant (ex: medication-
administration periods) (case d) 

• Time intervals where the temporal duration is varying (case e) 

In many instances, the temporal abstraction process also alleviates the problem 
of missing values, through a process of interpolation across temporal gaps that is 
inherent in several of the temporal abstraction methods [35]. 

3.1 Temporal Abstractions and the Knowledge-Based Temporal 
Abstraction (KBTA) Method 

Temporal abstractions (TAs) represent a crucial aspect in the context of time-
oriented clinical monitoring, therapy planning, and exploration of clinical databases.
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Fig. 2 The multiple formats of input data for time series analysis: time-point (a, b, c) and time-
interval data (d, e) (adapted from [34]) 

They are able to give common representation of heterogeneous data, transform-
ing raw clinical time series into meaningful representation of clinical events. In 
general, TAs represent a way to perform a shift from a quantitative time-stamped 
representation of raw data to a qualitative interval-based description of time series, 
with the main goal of abstracting higher-level concepts from time-stamped data. 
A TA provides a description of a set of timeseries through sequences of temporal 
intervals that correspond to relevant patterns that are detected in their time courses. 
Going in details, we can define a Temporal abstraction (TA) as a segmentation 
and/or aggregation of a series of raw, time-stamped, multivariate data into a 
symbolic time-interval series representation, often at a higher level of abstraction, 
suitable for human inspection or for data mining.
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The temporal abstraction process can use knowledge-based approaches, which 
exploit domain-specific knowledge, or data-driven, domain-independent discretiza-
tion methods. The patterns that can be formed by noting the temporal relationships 
among the symbolic time intervals are at least as interesting as the temporal abstrac-
tions that the symbolic intervals represent. These patterns essentially characterize 
frequent temporal pathways, trajectories, or journeys, within a given population of 
entities described by longitudinal multivariate data. Thus, in the case of the medical 
domain, they might be viewed as creating a temporal clustering of chronic patients 
who have a particular condition, according to the course of their disorder. The use of 
symbolic time intervals to abstract the raw, time-stamped data can reduce inherent 
random noise in the data (due to the discretization), avoid problems resulting from 
sampling the data at different frequencies and at various temporal granularities, and 
overcome missing data [32]. 

The first conceptual model based on TAs was proposed by Shahar in [36], 
with a method called the Knowledge-Based Temporal Abstraction (KBTA). This 
method exploits domain-specific knowledge, to generate state abstractions, as well 
as more complex abstractions, such as gradients. It has been applied in multiple 
domains, such as medicine, transportation, and cyber-security, for purposes such 
as interpretation, monitoring, visual exploration, classification, and prediction. 
The KBTA framework emphasizes the explicit representation of the knowledge 
required for abstractions of time-oriented clinical data and facilitates its acquisition, 
maintenance, reuse, and sharing. 

Shahar and Musen [37] defined a general problem-solving method for inter-
preting data in time-oriented, knowledge-intensive domains, such as clinical ones: 
the knowledge-based temporal abstraction (KBTA) method. This method is able to 
acquire the relevant knowledge and to define the domain ontology (e.g., security 
ontology) based on five KBTA entities and the relations between them (primitive 
parameters, abstract parameters, contexts, events, and patterns). Five inference 
mechanisms are then applied in parallel for deriving the high-level abstractions from 
the raw data. The inputs to these five mechanisms are the primitive parameters and 
the events, which are related to raw data, and the outputs are contexts, abstractions, 
and patterns. 

Shahar [36] defined the temporal abstraction (TA) task as follows: the input 
includes a set of time-stamped clinical parameters, relevant events and abstraction 
goals; the output includes a set of interval-based abstractions which should be 
relevant for clinical decision-making purposes in the given or implied clinical 
context, context-specific parameters at the same or at a higher level of abstraction 
and their respective values. The structure . {< parameter, value, context >

, interval} denotes that the logical proposition “the parameter has a particular value 
given a specific interpretation context” is interpreted over a specific time interval. 
Such a structure is called an abstraction. The goal of the TA task is to evaluate and 
summarize the state of the patient over a period, to identify problems, to assist in 
a revision of an existing therapy plan, or to support the generation of a new plan. 
In addition, clinical guidelines (skeletal plans for therapy) can be represented as
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TA patterns to be achieved, maintained, or avoided. Finally, generating meaningful 
abstractions supports explanation of a decision-support system’s plans to its users. 

TAs can be further mined to discover frequent (i.e., above some pre-defined 
level of support) temporal patterns, such as “(A before B) and (B overlaps C),” 
and in general, patterns using all of Allen’s 13 interval-based temporal relations. A 
highly efficient method for fast mining of interval-based patterns, by exploiting the 
transitivity of temporal relations and a highly efficient indexing scheme, referred 
to as the KarmaLego algorithm, was proposed by Moskovitch and Shahar and 
demonstrated in multiple medical and non-medical domains as significantly faster 
than other, common alternatives [32]. 

Furthermore, the interval-based temporal patterns discovered by the KarmaLego 
algorithm, or by other methods for discovery of frequent interval-based temporal 
patterns, can be used as features for multiple machine learning algorithms. Indeed, 
Moskovitch and Shahar had demonstrated the effectiveness of this approach for a 
variety of classification and prediction tasks in several different clinical domains, 
using as features patterns discovered through the use of the KarmaLego algorithm, 
and detected within each instance to be classified, using a version of that algorithm, 
for single records, SingleKarmaLego [35]. Importantly, Shknevsky, Shahar, and 
Moskovitch had also demonstrated [31] that the same interval-based temporal 
patterns tend to be discovered in longitudinal patient records, within the same 
medical domain, across several different medical domains. Thus, using the patterns 
as classification and prediction features in various classifiers, is quite justified. 

Moskovitch and Shahar had further extended the use of temporal abstractions 
and discovered interval-based temporal patterns, into the Temporal Discretization 
for Classification (TD4C) methodology [34]. The authors first present a method that 
learns in a supervised manner how to optimally discretize each temporal variable, 
in order to transform the time-point series into a time-interval series, mine these 
time-interval series, and perform classification. 

The TD4C methodology essentially performs a grid-based search of possible 
discretization ranges on each time-oriented variable and uses them to perform a 
Temporal Abstraction of the State type, similar to that of Shahar’s KBTA method 
[36], that has from two to five discrete values. The cut-off values whose distribution 
best differentiates between the target classes are chosen. The TD4C method is thus 
a supervised learning method, in which the discretization cutoffs are chosen so 
as to abstract the temporal data in a manner that creates the most differentiating 
distribution of the resulting states, amongst the entities that are classified by the 
various possible class values, for each of the time-oriented variables (concepts). 

They then proceed to evaluate the method within several different clinical 
domains. They developed a framework for classification of multivariate time series 
analysis, which implements three phases: (1) application of a temporal abstraction 
process that transforms a series of raw time-stamped data points into a series 
of symbolic time intervals (based on either unsupervised or supervised temporal 
abstraction); (2) mining these time intervals to discover frequent temporal-interval 
relation patterns (TIRPs), examining the use of Allen’s original seven temporal
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relations, versus the use of an abstract version, including only three temporal 
relations; (3) using the patterns as features to induce a classifier. 

The TD4C framework was evaluated on data sets in the domains of diabetes, 
intensive care, and infectious hepatitis. Using only three abstract temporal relations 
resulted in a better classification performance than using Allen’s seven relations, 
especially when using three symbolic states per variable. Similarly when using 
the horizontal support (number of TIRP instances detected within the record to 
be classified) and mean temporal duration, as the TIRPs feature representation, 
rather than a binary (simple Yes/No existence) representation. The classification 
performance when using several different versions of TD4C was superior to the 
performance when using several standard unsupervised discretization methods [34]. 

Finally, building on the KBTA and KarmaLego studies, Sheetrit et al. [38] 
defined the Temporal Probabilistic proFiles [TPF] method for classification or 
prediction. The TPF method abstracts raw data concepts in each longitudinal record, 
discovers frequent interval-based temporal patterns, based on these abstractions, 
and creates, for each longitudinal record, a probabilistic distribution of the frequent 
patterns found in it. When a new longitudinal record needs to be classified, it is 
compared to either (i) the TPFs of all of the previously labeled single instances 
or (ii) to the aggregate TPF distribution of each of the target classes (e.g., the 
various clinical outcomes). The distance between the TPF distribution of the new 
instance to be classified and the TPFs of previously known instances (or, in the 
second case, to the aggregate TPFs of the various possible classes of instances) 
is then assessed by a version of the Kullback–Leibler divergence measure. In the 
first case, the top K instances that are most similar to the new instances are found 
and are used to determine the class predicted for it (e.g., using their majority), 
as is common on K-Nearest-Neighbor (KNN) methods. In the second case, the 
target class whose TPF distribution is most similar to that of the new instances is 
directly determined. Sheetrit et al. had demonstrated the effectiveness of the TPFs-
based method for predicting sepsis in the intensive care unit (ICU), a key task in 
the ICU domain. The performance of the Top-K version of the TPF method was 
higher than the performance of both a known method exploiting frequent temporal 
patterns as features, and a deep learning method specialized for the ICU sepsis-
prediction task, while the performance of the much more economic (in terms of 
computational resources) Class-based TPF version proved to be almost as good as 
the Top-K method, which uses all available labeled instances [38]. 

3.2 Association Rules 

Healthcare organizations are increasingly collecting large amounts of data related to 
their day-by-day activities. The analysis of such healthcare databases could greatly 
help to gain a deeper insight into the health condition of the population and to extract 
useful information that can be exploited in the assessment of healthcare processes.
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In clinical databases, the temporal features play the primary role [39]. Sometimes 
clinical data are represented by a set of time series of numeric values. In order 
to get a uniform representation of these data as temporal sequences of events, the 
clinical data needed first to undergo to a pre-processing procedure. Association rule 
mining is a method for identifying strong relations in a data set based on some 
measure of interestingness (e.g., confidence/precision, support or lift). Typically, 
such relations are expressed in terms of if-then rules consisting of different rule 
antecedents (conditions) and consequents (targets). It represents a technique with 
a lot of popularity in data mining research, including medical data mining. The 
strength of this technique is the possibility to explore completely all patterns that 
occur in the data. The disadvantage is that the number of association rules could be 
very large and the outputs could be difficult to deal with. Hence, it is desirable to 
reduce the mined rule set as much as possible while preserving the most important 
relations found in the data. 

Temporal Association Rules (TARs) are association rules of the kind .A → C , 
where the antecedent (A) is related to the consequent (C) by some kind of temporal 
operator. TARs mining algorithms are aimed at extracting frequent associations, 
where frequency is evaluated on the basis of suitable indicators, the most utilized 
being support and confidence. The support gives an indication of the proportion of 
cases verifying a specific rule in the population; confidence instead represents the 
probability that a subject verifies the rule given that he verifies its antecedent. 

Sacchi et al. [40] presented an approach to pre-process and interpret clinical time 
series. Their idea was to filter the original time series using temporal abstractions 
an then to interpret the new and derived time series by both statistical and 
artificial intelligent methods. Patterns of interest can be specified on the basis of 
domain knowledge into a set called Abstractions of Interest, and rules containing 
such pattern in the antecedent and in the consequent are extracted. After the 
development of a TARs mining framework mainly oriented to the analysis of 
clinical data, the framework had been extended to incorporate also administrative 
healthcare information into the data set. The authors, starting from the framework 
of knowledge-based Temporal Abstraction [36], proposed a new kind of temporal 
association rule working on the extraction of the frequent temporal precedence 
occurrences between patterns. Discovering occurrences of temporal relationships 
between patterns characterizing a time series needs the accomplishment of three 
conceptual and procedural steps. First of all, it is necessary to define the patterns 
and retrieve them in the time series; then a formal definition of the relationships of 
interest must be given and, finally, an algorithm to search for frequent occurrences 
of such relationships in the data set must be designed, implemented and run. 
Intuitively, a pattern is a behavior or property that we may want to distinguish in 
the data. In temporal data, a pattern is usually associated with a time interval in 
which such behavior occurs. Moreover, a pattern is often related to a qualitative 
representation of the property that we are looking for, which may be interesting 
in the problem domain. Here, according to the data model proposed in [41], 
temporal data are represented as time-stamped entities, called events, while their 
abstract representation is given by TAs as a sequence of intervals, called episodes.
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Each episode corresponds to a specific behavior of interest detected in the time 
course of the data. TA tasks could be divided into two subtasks, each one solved 
by specific mechanisms: Basic TA, solved by mechanisms that abstract time-
stamped data into intervals, and Complex TAs, solved by mechanisms that abstract 
intervals into other intervals. Complex TAs are used to detect patterns characterized 
by behaviors which cannot be represented by basic TAs. The episode set was 
evaluated according to a pattern specified between episodes of the two composing 
episode sets. The complex TA patterns were based on temporal relationships: more 
specifically, the temporal relationships investigated correspond to the 13 temporal 
operators defined in Allen’s algebra [42]. They included: BEFORE, FINISHES, 
OVERLAPS, MEETS, STARTS, DURING, their corresponding inverse relations, 
and the EQUALS operator. In addition, as the two series of intervals used as input 
to a complex abstraction can originate both from the same and from different time 
series. We can thus exploit this kind of TA to detect a great variety of patterns. 
Figure 3 shows patterns of complex shape which have been detected both on a single 
time series, and on multiple time series. 

Combi et al. [43] exploited knowledge-based Temporal Abstractions (TAs) to 
shift from a time-point quantitative representation of time series to a qualitative 
interval-based description of the available data. 

A temporal fact f represents a class of episodes of the same type. Each episode 
e is associated with the interval when the episode holds. .e.start, e.end denote the 
starting and ending point of the interval associated with e, respectively. . Ef denotes 
the set of episodes of a temporal fact f . 

Informally we can enunciate: A temporal association rule (TAR) is a temporal 
pattern that exists between episodes of temporal facts belonging to a reference set 
.FoI (Facts of Interest). To specify a TAR it is necessary to introduce the concept of 
temporal precedence: relation precedes between two intervals a and b: . a � b ⇐⇒
a.start ≤ b.start ∧ a.end ≤ b.end. 

Definition 1 (Temporal Association Rule TAR) A TAR is an implication of the 

form .{a1, . . . , an} p−→ c where .{a1, . . . , an} ⊂ FoI, c ∈ FoI with .c /∈ {a1, . . . , an}, 
and .p = 〈LS,GAP,RS〉 is the parameter set determining the relation between the 
antecedent and the consequent. 

To determine an occurrence of the antecedent, there must exist a non-empty 
intersection between all the episodes . ei corresponding to facts . ai , respectively. More 
specifically, a (composite) antecedent occurrence has interval [maxStart, minEnd] 
where [40]: 

. max.Start
def== max(ei .start | 1 ≤ i ≤ n), minEnd

def== min(ei .end| 1 ≤ i ≤ n).

Set p is composed by the following parameters: .(i) Left Shift (LS): maximum 
distance allowed between maxStart and .c.start ; .(ii) Gap (GAP): maximum 
distance allowed between minEnd and .c.start; .(iii) Right Shift (RS): maximum 
distance allowed between minEnd and .c.end.
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Fig. 3 Complex TAs used to detect patterns of complex shape both (a) on a single time series 
MEETS-ID, and (b) on multidimensional time series BEFORE-ID: in this case an I (increase) 
episode in V1 occurs before a D (decrease) episode in V2 (from [40]) 

Definition 2 (Occurrence of a TAR) An episode set .{e1, . . . , en, ec} is an occur-
rence of a TAR .{a1, . . . , an} p−→ c with .p = 〈LS,GAP,RS〉, if  .(i) . {e1, . . . , en}
is an antecedent occurrence and . ec is a consequent episode; .(ii) the antecedent 
occurrence precedes the consequent episode, i.e., [maxStart, minEnd] .� c; . (iii)
all the quantitative constraints imposed by p are satisfied. 

We found another application of the temporal association rules in medicine, 
where the authors used data from the Regional Healthcare Agency (ASL) repository 
of Pavia, which maintains a central data repository storing healthcare data about the 
population of Pavia area [39]. They specifically focus the analysis on a sample of 
patients suffering from Diabetes Mellitus. They performed the mining of Temporal 
Association Rules (TARs) over a set of temporal sequences of hybrid events, i.e., 
events characterized by heterogeneous temporal nature. Starting from the idea 
considering a pattern as the occurrence of one or more contemporary events, here a 
TAR is defined as a relationship specified through a temporal operator which holds 
between an antecedent, consisting in a pattern of single or multiple cardinality, and 
a consequent, consisting in a pattern with single cardinality.
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3.3 Temporal Pattern Mining 

Temporal pattern mining is another way to derive new knowledge from huge amount 
of data; temporal patterns are time intervals in which one or more time series assume 
a behavior of interest. A pattern can be seen as a behavior or a property in the data 
that we want to consider for a possible novelty knowledge in the domain of interest. 

Mantovani et al. [44] proposed a new kind of temporal patterns called Trend-
Event Patterns, namely TE-Ps, a family of temporal patterns focused on the 
interaction of trends and events. There are many different temporal abstractions, 
one of them is represented by trends. Trend abstraction aims at detecting relevant 
changes and change rates in the temporal evolution of a parameter. Trend abstraction 
entails merge and persistence abstraction, in order to derive the extents where no 
change is observed in the value of the considered parameter. 

A trend is formed by consecutive values of a given measurement attribute that 
are stationary, increasing, or decreasing under the constraint that all the values of 
such trend stay within a defined range. A pattern is usually associated with a time 
interval where such behavior occurs. Discovering temporal relationships between 
patterns is also another problem in the temporal domain. 

A TE-P is a pattern formed by an event E and two different trends for the 
same parameter: one before E and one after E, called .trendpre and .trendpost , 
respectively; for example: “The increasing trend of the body temperature of a patient 
before the administration of Paracetamol and the drug administered determine 
the decreasing trend of the body temperature of the same patient after such 
administration occurs” becomes .[Increasing;Paracetamol;Decreasing]. 

To derive a TE-P from this scenario, we need to start from the event, and more 
specifically from the time when such event happened. The parameter values are 
thus partitioned according to their timestamp. Every value before the event could 
potentially be part of .trendpre, while every values after the event could be in 
.trendpost . In both trends the first parameter value is denoted as .tstart , while the last 
one is . tend . The tuple in .trendpre that is closer to the event is called . t

pre
end , because it 

is the last tuple of it; while the tuple in .trendpost that is closer to the event is called 
.tstar t

post , as it represents the beginning of such trend. Given the definition of TE-P: 
a TE-P is a pattern with an expression of the form: [.trendpre;E; .trendpost ]. 

In a more formal way: 
Given a trend  tr, we denote with .tstart the first tuple of tr and with .tend the 

last one. A trend tr is a non-empty set of parameter values tr . = {tstart , . . . , tend}
satisfying . tstart → . . . → tend . Implicitly, it means that . ∀ti ∈ tr, tstart [V T ] <

ti[V T ] < tend [V T ]. 
Let .tevent be the parameter value that denotes the event. Parameter values in 

.trendpre are defined as follows: .∀ti ∈ trpre ti[V T ] < tevent [V T ]; while parameter 
values in .trendpost are defined as .∀ti ∈ trpost ti[V T ] > tevent [V T ]. 

Another example of temporal pattern mining is [45], where the focus was on 
the definition of methods and tools for the assessment of the clinical performance 
of hemodialysis (HD) service. In this paper the authors were interested in the
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development of data mining tools for assessing the efficacy of the treatment 
delivered by a hospital hemodialysis department (HDD) on the basis of the process 
data routinely collected during hemodialysis sessions. Data were collected in order 
to assess the performance of the overall HDD, check the performance achieved 
for each patient and highlight problems and understand their reasons. This study 
aimed to discover the reason of the dialysis failures, deriving associations between 
monitoring variables and failures that may be interpreted as causal relationships. 
They defined a temporal data mining strategy consists of two steps: the extraction 
of basic temporal patterns, e.g., trends, from the median time series, and search 
for patient-specific associations between the temporal patterns and the failures. The 
obtained results demonstrated that the use of this kind of method in the context 
of an auditing system for dialysis management helped clinicians to improve their 
understanding of the patient behaviors. 

3.4 Approximate Temporal Functional Dependencies 

Knowledge in clinical databases may be derived by discovering patterns or regu-
larities in data. By considering data stored in a plain relational database, we have 
another option to consider patterns or regularities: the functional dependencies 
(FDs). 

Definition 3 (Functional Dependency FD) Let r be a relationship over the rela-
tional schema R: let .X, Y ⊆ R be sets of attributes of R. We assert that r fulfills the 
functional dependency .X → Y (written as .r |� X → Y ) if the following condition 
holds: .∀t, t ′ ∈ r(t[X] = t ′[X] ⇒ t[Y ] = t ′[Y ]). 
Informally, for all the couples of tuples t and . t ′ showing the same value(s) on X, 
the corresponding value(s) on Y for those tuples are (or must, if we are specifying a 
constraint) identical. 

With FDs, we can express concepts such as “for each patient with a given 
symptom the received treatment does not change”: 

. Patient, Symptom ⇒ T reatment.

Considering the temporal features of the data, we pay our attention on some 
temporal extensions of FD. 

3.4.1 Temporal Functional Dependencies (TFD) 

Combi et al. [46] proposed a framework for TFD s that subsumes and extends 
the considered previous proposals. The proposed framework is based on a simple 
temporal relational data model based on the notion of temporal relation, i.e., a
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relation extended with a timestamping temporal attribute VT , representing the valid 
time temporal dimension, i.e., the time when the fact is true in the real world [47]. 

Two temporal views have been introduced: they allow one to join tuples that 
represent relevant cases of (temporal) evolution. TFDs may be expressed by the 
syntax .[E − Exp(R), t − Group]X → Y where .E − Exp(R) is a relational 
expression on R, called evolution expression, .t − Group is a mapping .N → 2N, 
called .temporalgrouping, and .X → Y is a functional dependency. 
With TFDs, we can express concepts such as “for each patient with a given symptom 
the received treatment does not change, considering a time windows of 10 days”: 

. [10days] Patient, Symptom ⇒ T reatment.

A TFD is a statement about admissible temporal relations on a temporal relation 
schema R with attributes .U ∪ {V T }. A temporal relation r on the temporal relation 
schema R satisfies a TFD .[E − Exp(R), t − Group]X → Y if it is not possible 
that the relation obtained from . r by applying the expression .E − Exp(R) features 
two tuples t , . t ′ such that .(i) .t[X] = t ′[X], .(ii) .t[V T ] nd .t ′[V T ] (and the valid 
times of their evolutions, if present) belong to the same temporal group, according 
to the mapping .t −Group, and .(iii) .t[Y ] �= t ′[Y ]. In other words, FD .X → Y must 
be satisfied by each relation obtained from the evolution relation by selecting those 
tuples whose valid times belong to the same temporal group. 

Temporal grouping enable us to group tuples together over a set of temporal 
granules, based on one temporal dimension. 

Four different classes of TFD have been identified [46]: 

• Pure temporally grouping TFD: .E − Exp(R) returns the original temporal 
relation r . Dependencies of this class force the FD .X → Y , where .X, Y ⊆ U , 
to hold over all the maximal sets which include all the tuples whose V T  belongs 
to the same temporal grouping. 

• Pure temporally evolving TFD: .E − Exp(R) collects all the tuples modeling 
the evolution of an object. No temporal grouping exists: that is, the temporal 
grouping collects all the tuples of r in one unique set. 

• Temporally mixed TFD: the expression .E − Exp(R) collects all the tuples 
modeling the evolution of the object. The temporal grouping is applied to the 
set of tuples generated by .E − Exp(R). 

• Temporally hybrid TFDs: First, the evolution expression .[E − Exp(R) selects 
those tuples of the given temporal relation that contribute to the modeling of 
the evolution of a real-world object (that is, it removes isolated tuples); then, 
temporal grouping is applied to the resulting set of tuples. 

3.4.2 Approximate Functional Dependencies (AFD) 

Considering FDs as a way of discovery properties on a specific set of data, we can 
extend the FDs to AFDs. Given a relation r where a FD holds for most of the tuples
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in r , we may identify some tuples, for which that FD does not hold. Consequently, 
we define some measurements over the error we make in considering the FD to hold 
on r . 

Kivinen et al. [48] defined three measurements: 

• . G1: considers the number of violating couples of tuples. Formally: 

. G1(X → Y, r) = |{(t, t ′) : t, t ′ ∈ r ∧ t[X] = t ′[X] ∧ t[Y ] �= t ′[Y ]}|.

The related scaled measurement . g1 is defined as follows: 

. g1(X → Y, r) = G1(X → Y, r)/|r|2,

where . |r| is the cardinality of the relation r , i.e., the number of tuples belonging 
to the relation r . 

• . G2: considers the number of tuples which violate the functional dependency. 
Formally: 

. G2(X → Y, r) = |{t : t ∈ r ∧ ∃t ′(t ′ ∈ r ∧ t[X] = t ′[X] ∧ t[Y ] �= t ′[Y ])}|.

The related scaled measurement . g2 is defined as follows: 

. g2(X → Y, r) = G2(X → Y, r)/|r|.

• . G3: considers the minimum number of tuples in r to be deleted for the FD to 
hold. Formally: .G3(X → Y, r) = |r| − max{|s||s ⊆ r ∧ s |� X → Y }. The  
related scaled measurement is defined as . g3 as . g3(X → Y, r)p = G3(X →
Y, r)/|r|. 

We can introduce here the definition of approximate functional dependency AFD 
as: 

Definition 4 (Approximate Functional Dependency) Let r be a relationship over 
the relational schema R: let  .X, Y ⊆ R be sets of attributes of R. Relation r fulfills 
the functional dependency .X

ε−→ Y (written as .r |� X
ε−→ Y ) if .G3(X → Y, r) � ε, 

where . ε is the maximum acceptable error defined by the user. 
With AFDs, we can express concepts such as “for each patient with a given 

symptom the received treatment does not usually change”: 

. Patient, Symptom
ε−→ T reatment.

Among the several AFDs that can be identified over a relation r, the minimal AFD 
is of particular interest, as many other AFDs can then be derived from the minimal 
one. We thus define the minimal AFD as follows: 

Definition 5 (Minimal AFD) Given an AFD over r , we define .X
ε−→ Y to be 

minimal for r if .r |� X
ε−→ Y and .∀X′ ⊂ X we have that .r � X′ : ε−→ Y .
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3.4.3 Approximate Temporal Functional Dependencies (ATFD) 

We now introduce the concept of ATFD, relying on two different kind of temporal 
grouping, both belonging to the class Pure Temporally Grouping. 

According to the taxonomy previously defined, we consider here pure temporally 
grouping TFDs of the form .[r, t − Group]X → Y , where .t − Group consists of 
granularity (Gran) or sliding window (SW) grouping. 

We recall that a temporal granularity is a partition of a temporal domain in 
indivisible non-overlapping groups, i.e., granules, of time points: minutes, hours, 
days, months, years as well as working days are granularities [49]. 

Definition 6 (Grouping by Gran. (i)) Two tuples .t1, t2 ∈ r belong to the same 
temporal group Gran. (i) iff .t1[V T ], t2[V T ] ∈ Gran. (i) where Gran. (i) is the . ith

granule of granularity Gran. 

A sliding window .SW(i, k) includes all the time points in interval .[i . . . .i + k

-. 1]. Thus, once we fix the length of the SW over relation r (i.e., k in the example), 
every SW over r will feature that length, and will—at most—include k elements (if 
relation r has tuples for all the time points of interval .[i . . . i + k -. 1]). 
Definition 7 (Grouping by .SW(i, k)) Two tuples .t1, t2 ∈ r belong to the same 
sliding window .SW(i, k) iff .t1[V T ], t2[V T ] ∈ .[i . . . i + k -. 1]. 

Before introducing the concept of ATFD, let us consider a new error measure, 
namely . G4, we shall use for approximate temporal functional dependencies. . G4
considers the minimum number of tuples in r which must be modified for the plain 
TFD to hold on all the tuples of r . In the following, in the presence of a FD such as 
.X → Y , we assume to modify values only for the Y attributes. 

. G4([r, t − Group]X → Y, r) = min{|s| |s ⊆ r, ((r − s) ∪ w) |� [r, t −
Group]X → Y |} where the set w is the minimal one for which the following 
formula holds: 

.∀t ∈ s(∃t ′ ∈ w(t[U − Y ] = t ′[U − Y ] ∧ t[V T ] = t ′[V T ])). 
The related scaled measurement . g4 is defined as . g4(X → Y, r) = g4(X →

Y, r)/|r|
We define the ATFD with granularity grouping as: 

Definition 8 (ATFD with Gran Grouping) Let r be a relationship over the 
relational schema R with attributes .U ∪ {V T }: let  .X, Y ⊆ R be attributes of R. 
Let Gran be the reference granularity .[r,Gran]X ε−→ Y holds on relation r iff the 
introduced error .g3([r,Gran]X −→ Y, r) ≤ ε is less than the given threshold . ε. 

Definition 9 (Minimal ATFD with Gran Grouping) An ATFD in the form of 
.[r,Gran]X ε−→ Y is said to be minimal for r iff .r |� [r,Gran]X ε−→ Y and 
.∀X′ ⊂ X we have that .r � [r,Gran]X′ : ε−→ Y . 

We define the ATFD with sliding window grouping as:
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Definition 10 (ATFD with SW Grouping) Let r be a relationship over the rela-
tional schema R with attributes .U ∪ {V T }: let  .X, Y ⊆ U be attributes of R. Let  
.{i . . . i + k − 1} be a sliding window (SW) of length k. The approximate temporal 
functional dependency .[r, {i . . . i + k − 1}]X ε−→ Y holds on relation r iff the 
introduced error .g4([r, {i . . . i + k − 1}]X −→ Y, r) ≤ ε is lower than the given 
threshold . ε. 

Definition 11 (Minimal ATFD with SW Grouping) Given an ATFD over 
.[r, {i . . . i + k − 1}], we define .X ε−→ Y to be minimal for r iff . r |� [r, {i . . . i +
k − 1}]X ε−→ Y and .∀X′ ⊂ X we have that .r � [r, {i . . . i + k − 1}]X′ ε−→ Y . 

The study reported in [50] represents the use of previous definitions. The authors 
applied these in two different clinical domains: the first one referred to psychiatry, 
collecting data about contacts between patients and psychiatrists, psychologists, 
and social workers; the second was pharmacovigilance, collecting data about drug 
administrations and adverse reactions. 

The first domain concerned about the Verona Psychiatric Case Register (PCR). 
The National Health Service in trust with the University of Verona offers a public 
Community-based Psychiatric Service (CPS), providing psychiatric care to mentally 
ill as well as psychological care and responses to social needs. Data about patients 
are collected in the information system PCR, which has recorded information about 
patients’ accesses to this service since 1979. PCR contained patients’ personal 
data, patients’ medical record, contact information, records education, employment, 
professional status, type of accommodation, and marital status. PCR is used as 
a basis to evaluate the direct management costs for groups of patients, and to 
monitor the effects coming from changes in resources, organization, and needs. The 
clinical purposes include monitoring of patients to plan future contacts at regular 
time intervals, and providing clinicians with reports about admissions and contacts 
for every patient in a given time period. These temporal data can then be used 
by psychiatrists, e.g., to identify the number of contacts in different time periods 
with respect to different factors such as age, diagnosis. A meaningful example 
discussed in this context was: .[133days]HealthStructure −→ ContactT ype. As  
second medical domain, Pharmacovigilance (PhV) collects, analyzes, and prevents 
adverse reactions induced by drugs (ADR). The spontaneous reporting of ADRs 
identifies unexpected reactions and informs the regulating authority about them. 
This practice is valuable, provides early warnings, and requires limited economic 
and organizational resources. It also has the advantage of covering every drug on 
the market and every category of patient. PhV considers possible relationships 
between one or more adverse reactions and one or more drugs, mainly focusing 
on unknown or completely undocumented relationships. Reports suggest a cause-
effect link among ADRs and drugs. Each report includes patient’s information and 
the description of the occurred adverse reaction. These temporal data are used to 
investigate any cause-effect relationship among drugs and reaction(s) in different 
time periods, or according to the time frame of the exposure. A meaningful example 
discussed in this context was: .[30days]Drug, AdverseReaction −→ Outcome.
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4 Conclusions 

In this chapter we analyzed some of the aspects of Data Mining in medicine. In 
particular, at the beginning we focused on Deep learning and its applications in 
different clinical fields. Assuming that there are many Data Mining methods from 
which one can chose to mine the emerging medical databases and there is no an 
absolute data mining method to solve the issues in the healthcare data sets, in this 
chapter we have reviewed most popular ones, and gave some pointers where they 
have been applied. Then we analyzed in a more technical way the Temporal Data 
Mining aspects, introducing the main concepts of temporal abstractions, interval-
based temporal patterns, association rules, and functional dependencies. 
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Recommender Systems 

Shuai Zhang, Aston Zhang, and Lina Yao 

1 Introduction to Recommender Systems 

Recommender system (RS) seeks to estimate and predict users’ preferences for 
products/services by filtering from a huge pool of information base with pat-
terns/rules discovered from data usage history [23]. It is at the core of many 
online services such as social networking sites, video streaming services, and 
online shopping sites we interact with. For example, Amazon uses recommendation 
engines to suggest products or goods that users might buy [30]. YouTube tailors 
the recommendation video list based on users’ tastes [22]. Facebook recommends 
friends and posts that might interest end users. Recommendation is also at the 
core of the Netflix products. To improve the recommendation quality, it hosted 
the famous Netflix Prize competition [31], which popularized the research on 
recommender systems. Microsoft also uses recommender systems to enhance the 
user experience while using XBox [32]. It is seen that recommender systems are 
now pervasive in our daily life, and its importance cannot be overemphasized. 

The prevalence of recommender systems is mainly owning to the enormous 
collection of options provided by online platforms. However, with the abundant 
resources available comes the information overload problem. This is when recom-
mender systems come into play. By drawing and learning from huge datasets, the 
system can capture users’ interests so as to pinpoint their preferred items accurately. 
The benefits of employing recommender systems are manifold: on the one hand, it 
can enhance customer satisfaction/delight and improve engagement by providing 
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personalized recommendations based on their preferences and interests. On the 
other hand, it has been proven to be an effective tool to drive high conversion rate 
and customer retention rate, as a result, leading to revenue increase. 

1.1 Concepts and Notations 

Some important terms that are widely used throughout this chapter are listed and 
explained below. 

Items/Users Items refer to the objects that are recommended. It can be movies, 
songs, games, news, books, blogs, etc. Users are the people to whom the items are 
recommended. 

Explicit/Implicit Feedback Users give feedback on items to express their prefer-
ences and interests. Explicit feedback directly show how a user rates an item, such 
as rating scores from 1 to 5. Implicit feedback such as clicks, watches, and purchase 
only serve as a proxy that provides us heuristics about how a user likes an item. 

Collaborative Filtering The system Tapestry first coined the term collaborative 
filtering [39]. Since then, it has been widely used to represent recommender 
systems. The basic idea of CF is that users will act on items similarly if they have 
similar behaviors in the past. Most recommendation methods such as neighborhood 
methods and factorization-based methods that utilize the collaborative filtering idea 
can be called as collaborative filtering techniques. 

The goal of recommender systems is to recommend items to users, from which 
many tasks are derived. We can formulate the recommendation problem as a re-
gression, classification, ranking, or even sequence modeling problem. For example, 
estimating the exact rating a user might give to an item is a regression problem; 
predicting whether an item will be clicked or not belongs to the classification 
category; generating a ranked list of items for a user can be solved as a learning 
to rank problem; sequence modeling models come into play if we need to take the 
sequential patterns of user behaviors into account. 

In formal, suppose we have a corpus of M users and N items, which forms an 
interaction matrix or utility matrix .X ∈ R

M×N . Let . U denote the user set and . I
denote the item set. In this matrix, rows correspond to users and columns to items. 
Generally, this matrix is very sparse, and each entry of this matrix displays users’ 
feedback such as ratings or like/dislikes to the items. Let .Xu∗ denote the preferences 
of user u toward all items. Let .X∗i denote the feedback (ratings) from all users for 
item i. These notations will be used throughout the chapter.
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2 Recommendation Techniques 

In this section, we will introduce some widely used recommendation techniques, 
including classic solutions and recent advances, and discuss their advantages and 
weakness. 

2.1 Non-personalized and Lightly Personalized 
Recommendations 

A non-personalized recommendation approach that makes the same recommen-
dations for all users is the most basic form of recommender system. Despite its 
non-personalization, it can be remarkably effective for cases such as common 
displays in online communities (e.g., reddit) or recommendations for new users for 
whom we know nothing about. Lightly personalized recommender systems refer to 
methods that utilize limited information such as user profiles to infer their interests 
roughly so as to make weakly personalized recommendations. 

Recommending based on item popularity is one of the most widely used 
non-personalized recommendation approaches. We can identify the most popular 
items by counting the number of likes/views/purchases, etc. If explicit ratings are 
available, we can also rank the items based on the mean of the ratings (e.g., top rated 
movies in IMDB). This method is simple yet computationally efficient. It is worth 
noting that several settings can influence the recommendation performance largely, 
such as the period for which the popularity is calculated and the interaction types 
taken into consideration. 

Lightly personalized recommendation is a small step toward personalization 
that could loosely personalize the recommendation list based on certain types of 
side information such as demographics. The motivation behind it is that users’ 
preferences can be vaguely identifiable with their profiles such as age, gender, 
race/ethnicity, financial status, location, etc. It is straightforward to break down 
summary statistics by demographic. For example, tastes on movies can be quite 
different for people in different ages and stages. Obviously, getting the data about 
users is critical in this method. As such, it is common to see that some online 
platforms require new users to take a survey before accessing the services. 

Notwithstanding the usefulness of non-personalized or lightly personalized 
recommendations, their demerits are conspicuous, that is, the recommended items 
may not satisfy user’s interest. That is also why personalized recommender systems 
start to arise. The following text will be centered on personalized recommendation.
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2.2 Neighborhood Methods 

There are two standard nearest neighborhood recommendation algorithms: user-
based collaborative filtering and item-based collaborative filtering [1]. 

2.2.1 User-Based Collaborative Filtering 

User-based CF aims to find the users who have similar taste (neighbors) as the target 
user and then recommends items based on the neighbor’s interaction behavior. The 
similarity calculation is based on interaction behaviors. Various similarity measures 
such as cosine similarity, Pearson’s correlation, and Jaccard similarity are viable. 
Formally, let .sim(Xu∗, Xv∗) denote the similarity between user u and user v. The  
cosine similarity is defined as below: 

.sim(Xu∗, Xv∗) = Xu∗ · Xv∗
‖ Xu∗ ‖‖ Xv∗ ‖ . (1) 

Pearson correlation is used to find the linear correlation between two vectors, 
ranging from .−1 to . +1, with .−1 indicating negative relation, 0 representing no 
relation, and +1 representing high positive correlation. It is defined as 

.sim(Xu∗, Xv∗) =
∑N

i=1(Xui − ¯Xu∗)(Xvi − X̄v∗)
√∑N

i=1(Xui − ¯Xu∗)2
∑N

i=1(Xvi − X̄v∗)2
, (2) 

where . ¯Xu∗ represents the average rating of user u. 
Afterward, it selects the top K similar users and takes the weighted average of 

recommendation scores from these K users. To avoid user bias that some users tend 
to give high scores and some tend to give low scores, users’ average ratings are 
considered. As such, the predicted score is calculated as follows: 

.Xuj = X̄u∗ +
∑K

k=1 sim(Xu∗, Xk∗)(Xkj − X̄k∗)
∑K

k=1 sim(Xu∗, Xk∗)
. (3) 

2.2.2 Item-Based Collaborative Filtering 

Item-based collaborative filtering applies the same idea. Instead of computing 
the users similarity, it considers items similarity. Let .sim(X∗i , X∗j ) denote the 
similarity between item i and item j . Intuitively, the similarity is measured by 
observing all the users who have rated both the items. The prediction function of 
item j for target user u is as follows:



Recommender Systems 641

.Xuj =
∑K

k=1 sim(X∗j , X∗k)Xuk
∑K

k=1 sim(X∗j , X∗k)
. (4) 

Item-based CF is more stable and faster in system where there are more users 
than items. Item similarity matrix can usually be calculated offline as the ratings 
received by an item do not change quickly (e.g., a recognized good movie usually 
gets higher rating scores). So it does not need to be recomputed frequently. 

2.3 Factorization-Based Methods 

Factorization-based approaches (or latent factor models) aim to factorize the inter-
action matrix with either explicit ratings or implicit feedback into low-dimensional 
rectangular matrices. These methods enjoy higher flexibility and efficiency than 
neighborhood-based algorithms. 

2.3.1 Matrix Factorization 

Matrix factorization [2] method decomposes the user–item interaction matrix into 
two lower-dimensional matrices for users and items, respectively. 

Let .P ∈ R
M×k represent the user matrix and .Q ∈ R

N×k represent the item 
matrix. Each row of . P represents the latent factors for describing user’s interests 
and preferences. Each row of the item matrix Q describes items’ characteristics. 
The core idea of matrix factorization is to approximate the interaction matrix with 
the inner product of P and Q: 

.X ≈ PQT . (5) 

To learn the user and item matrices, we can minimize the following mean squared 
error (MSE) if the goal is to recover the explicit ratings: 

.min
∑

(u,i)∈K
(Xui − PuQ

T
i )2 + ‖P ‖2

F + ‖Q‖2
F , (6) 

where . K is the observed ratings. The last two terms are used to regularize the model 
parameters. This optimization problem can be efficiently solved with methods such 
as stochastic gradient descent. 

For implicit feedback, a pairwise loss Bayesian personalized ranking (BPR) 
loss [6] can be used. The BPR loss is defined as follows:
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Fig. 1 Graphical model for 
probabilistic matrix 
factorization 

u = 1,...,M 

i = 1,...,N 

.min

⎛

⎝−
∑

(u,i,j)∈K
ln

(
σ

(
PuQ

T
i − PuQ

T
j

))
+ ‖P ‖2

F + ‖Q‖2
F

⎞

⎠ . (7) 

In this loss function, . K is composed of both observed and unobserved feedback. 
Here, i denotes the item that u likes and j is the item that u has never interacted 
with. 

We have discussed the biases of user preferences in neighborhood methods. 
These biases should also be captured in matrix factorization. To this end, we can 
rewrite the scoring function as 

.Xui ≈ PuQ
T
i + bi + bu + μ, (8) 

where . μ is the overall average rating; . bu and . bi indicate the observed deviations of 
user u and item i. The objective function should be reformulated accordingly. 

Owing to the flexibility of matrix factorization method, additional input sources 
such as implicit feedback, temporal dynamics (SVD.++ [3]), and social networks 
(SoRec [4]) can also be integrated. 

The matrix factorization techniques can also be interpreted probabilistically [5]. 
For example, we can model the rating as a distribution parametrized by item and 
user latent features (Fig. 1). Assuming ratings are normally distributed: 

.p(X|P,Q, σ 2) =
M∏

i=1

N∏

j=1

[
N

(
Xij |PiQ

T
j , σ 2

)]Iij

, (9)
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where the mean is determined by user and item latent factors, and the variance . σ 2

is used to model the noise of ratings. We define the indicator . Iij to be 1 if .Xij is 
known (i.e., user i has rated movie j ) and 0 otherwise. We assume that users and 
items follow the zero-mean normal distribution with spherical Gaussian priors. 

.p(P |σ 2
P ) =

M∏

i=1

N(Pi |0, σ 2
P I), p(Q|σ 2

Q) =
N∏

i=1

N(Qi |0, σ 2
QI). (10) 

This probabilistic model can be solved with expectation maximization (EM) or 
gradient descent algorithms. It is worth noting that eventually the optimization 
process of EM is identical to MSE minimization. 

2.3.2 Factorization Machines 

Factorization machine, as a generic method, can be used for regression, classifi-
cation, and ranking tasks. It is essentially an extension of the matrix factorization 
algorithm and is powerful in dealing with large-scale sparse datasets and automat-
ically modeling the feature interactions. As such, it has been widely used in fields 
such as products/advertisements recommendations and click-through predictions. 

Let .x(i) ∈ R
D represent the feature vector and .y(i) indicate the corresponding 

target. .x(i) can be comprised of the one-hot representations of user/item identities 
and many other features such as user profiles, latest rated movies by the user, and 
so on. Generally, the input feature size can be very large and sparse. Label .y(i) can 
represent the exact rating that the user gave to the item or a binary label indicating 
whether the item is clicked/liked/bought by the user or not. 

Theoretically, an FM can model high degree of feature interactions, but 2-way 
FM is usually employed for efficiency and stability concerns. The scoring function 
of a 2-way factorization machines is as follows: 

.ŷ = w0 +
D∑

j=1

wixi +
D∑

i=1

D∑

j=i+1

< Vi, Vj > xixj , (11) 

where .w0 ∈ R, .w ∈ R
D , and .V ∈ R

D×k are the model parameters to be learned. 
Same as matrix factorization, k is the dimension of latent factors. .< ·, · > denotes 
the dot product of vectors. This model will degrade to matrix factorization when . xi

only contains the user and item one-hot identifiers. 
The computation complexity of last term of Eq. 11 in a straightforward way is 

.O(kD2), which is very expensive. Fortunately, the computation time can be reduced 
to linear time .O(kD) by expanding and reorganizing as follows:
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.
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D∑
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= 1
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D∑
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⎛
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⎞
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⎛
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V 2
i,f x2

i

⎞

⎠ .

(12) 

By doing so, the complexity is linear to the number of nonzero elements for sparse 
inputs. For model training, a variety of loss functions such as MSE, cross-entropy 
loss, and BPR loss [6] are viable. 

2.3.3 Collaborative Metric Learning 

Both MF and FM model the interactions between users and items with inner 
product. However, inner product does not satisfy the triangle inequality, which 
might limit the expressiveness of the recommendation models. To alleviate the 
issue, researchers explore using distance functions (e.g., Euclidean distance [7], 
hyperbolic distance [40]) to replace the inner product. In the inference stage, items 
that are close to the user are recommended. 

Collaborative metric learning [7] is such a representative model. It assumes that 
the positions of users and items are represented by .P ∈ R

M×k and .Q ∈ R
N×k , and 

the distance between user u and item i is measured by 

.d(u, i) = ‖Pu − Qi‖2
2. (13) 

A max-margin triplet loss is usually used for model optimization. The goal of 
the loss is to ensure the distance between a user and the item she likes to be smaller 
than that between the user and the item that she dislikes. 

.L =
∑

(u,i)∈S

∑

(u,j)∈S′
max(0, d(u, i) + λ − d(u, j)), (14) 

where set . S is made of users and their liked items and set . S′ contains users and their 
disliked items. Regularization (e.g., norm clipping) is usually used on P and Q to 
prevent the data points spread too widely.
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2.4 Modeling Sequences in Recommendation 

Intuitively, there usually exist sequential patterns in user behaviors and interaction 
trajectories. Users usually have long-term and short-term interests. So far, we only 
consider users’ long-term taste and all short-term preferences are ignored. However, 
users’ short-term intents play a critical role in users’ decisions [8]. For example, if a 
user bought a digital single lens reflex (DSLR), she will probably buy a camera Lens 
shortly. Knowing this pattern is important for making satisfying recommendations. 
The capability to simultaneously model both long-term and short preferences is the 
key to sequence-aware recommendation models. 

Suppose each user u is associated with a sequence of items .Su = (Su
1 , . . . Su

|Su|), 
where . Su

t represents the item user u interacted with at time step t that does not need 
to be absolute time but just an indicator of sequence order. The goal of sequence-
aware recommendation is to predict the next item that a user will interact with. 

The model we will introduce is a variant of collaborative metric learning, called 
personalized ranking metric embedding (PRME) [9], which considers both user 
general and transient intents. Let .Q ∈ R

N×k denote item embeddings. To model 
the transient interest, the model aims to make adjacent items in the sequence close 
to one another. Therefore, the following distance shall be minimized: 

.d(Su
t−1, S

u
t ) = ‖QSu

t−1
− QSu

t
‖2

2, (15) 

where .Su
t−1 and . Su

t are adjacent items and . Su
t is the target item. The motivation 

behind this is that if two items are interacted subsequent, they are more likely to be 
similar. 

The general taste module has the same form as collaborative metric learning. The 
goal is to minimize the distance between user u and the target item. 

.d(u, Su
t ) = ‖Pu − VSu

t
‖2

2, (16) 

where .P ∈ R
M×k is the user embeddings and .V ∈ R

N×k is the item embeddings. 
The final recommendation score is determined by the weighted summation of 

these two distances: 

.ω · d(Su
t−1, S

u
t ) + (1 − ω) · d(u, Su

t ), (17) 

where . ω determines the proportion of contributions of short-term and long-term 
interests.
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2.5 Neural Architectures for Recommender Systems 

In recent years, deep neural networks have achieved tremendous success in a number 
of fields such as computer vision, natural language processing, speech recognition, 
and so on [10]. A number of deep learning techniques such as convolutional 
neural networks, recurrent neural networks, generative adversary networks, graph 
neural networks, attention networks, and deep reinforcement learning are gaining 
popularity in both industry and academia. 

In the meantime, deep neural networks have been revolutionizing the recom-
mendation structures as well [11]. A large amount of deep-learning-based recom-
mendation architectures are proposed these years. It has also been demonstrated 
to be especially useful in real-world recommendation scenarios, and a number of 
companies are building their recommender systems with deep neural networks. The 
major advantages are: First, deep learning is capable of modeling complex data and 
learning expressive and high-level representations. Second, deep neural networks 
are advantageous in modeling sequence data and capturing the hidden sequential 
patterns. Third, deep neural networks can be trained end-to-end, and they have good 
composability and flexibility, making the design of more powerful joint models 
possible. In this section, we will introduce some recent advancements on deep 
neural-networks-based recommender systems. It is worth noting that this section is 
highly relevant to the content-based recommender systems that will be introduced 
later. 

2.5.1 From Linear to Nonlinear Recommendation Models 

Methods such as MF and FM use linear transformation to model the feature 
interactions (e.g., interaction between user latent vector and item latent vector). 
However, the patterns hidden in the interaction data might be extreme complex and 
intricate. Using nonlinear neural networks can capture the interaction patterns more 
easily. Here we introduce several popular models that implement this idea. 

Neural Collaborative Filtering [12]. To enrich the model expressiveness, this 
model consists of a multilayered perceptron (MLP) and a generalized matrix 
factorization. Like matrix factorization, it uses latent vectors to represent each 
user/item. Formally, let .P ∈ R

M×k and .U ∈ R
M×k denote user latent embeddings, 

and use .Q ∈ R
N×k and .V ∈ R

N×k to represent each item. 
The input of MLP is the concatenation of . Pu and . Qi : 

.

h1 = α1(W1 · [Pu,Qi] + b1)

. . .

h�−1 = α�−1(W�−1 · h�−2 + b�−1)

h�(u, i) = α�(W� · h�−1 + b�),

(18)
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where .[·, ·] denotes the concatenation operation. . � is the depth of the MLP. . W∗, . b∗, 
and . α∗ are weight, bias, and activation function. .h�(u, i) is the output of the MLP. 
This component is mainly used to model the complex and nonlinear interactions 
between users and items. 

The input for the generalized MF component is the entry-wise (Hadamard) 
product of user and item latent factors, and it is defined as 

.o(u, i) = α(W · (Uu � Vi)). (19) 

Afterward, the outputs of two components are concatenated and transformed with 
a nonlinear layer to get the final prediction score. 

.X̂ui = α(W [h�(u, i), o(u, i)]). (20) 

The model can be trained with commonly used MSE, BPR loss, or the cross-
entropy loss. 

Autoencoder for recommendation. An autoencoder is a feed-forward neural 
network that codes its input to output while learning a hidden representation in the 
bottleneck layer. It is a useful dimensionality reduction model. It can also be used 
to reconstruct the interaction matrix. Here, we introduce two models (AutoRec [13] 
for rating prediction and CDAE [14] for ranking with implicit feedback). 

Similar to neighborhood methods, AutoRec can be either user-based or item-
based. The input of the item-based AutoRec is the column of the rating matrix. The 
model consists of the following encoder and decoder: 

.

Encoder : h = α1(W1X∗i + b1)

Decoder : o = α2(W2h + b2),
(21) 

where . W∗, . b∗, and . α∗ are weight, bias, and activation function. o has the same 
dimensionality as . X∗i . 

The loss function of AutoRec aims to minimize the following reconstruction 
error: 

.argmin
W∗,b∗

M∑

i=1

‖X∗i − o‖2
O + λ(‖W*‖2

F ), (22) 

where .‖ · ‖O means that only observed ratings are contributed to the gradient 
backpropagation. With partial observed columns as input, it targets at reconstructing 
the entire columns. The user-based AutoRec is similar to the item-based AutoRec, 
but it uses rows instead of columns of the rating matrix as input. 

CDAE also employs an autoencoder framework, but it is designed for recom-
mendation with implicit feedback. Simply put, the model architecture is defined as 

.o = α2(W2 · α1(W1Xu∗ + Uu + b1) + b2), (23)
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where . W∗, . b∗, and . α∗ are weight, bias, and activation function. .Uu ∈ R
M×k is a 

user-specific bias. The loss function of CDAE is 

. min
W∗,U∗,b∗

N∑

i=1

�(Xu∗, o) + λ(‖W*‖2
F + ‖U*‖2

F ), (24) 

where . � can be MSE or logistic loss. It is worth noting that instead of masking all 
unobserved input such as AutoRec, CDAE allows sampled unobserved feedback as 
input. 

2.5.2 Representation Learning with Neural Architectures 

Deep neural networks are powerful feature representation tools. They map raw 
features with a number of neural layers and get an abstraction of the input features 
in either supervised or unsupervised manner. 

Multilayer perceptron is an effective tool for feature representation learning 
in recommender systems. The model Wide & Deep learning [15] proposed by 
Google is a good example. This model has shown good performance in Google 
play app store. This model consists of a wide component and a deep component. 
The wide component is a linear regression model that is helpful for memorization 
of feature interactions (e.g., co-occurrence of items), while the deep component a 
multilayer perceptron that could generalize to unseen feature combinations through 
low-dimensional dense embeddings. 

In formal, the input is split into two parts: one for the wide network and the other 
for the deep network. We denote them with .xwide and .xdeep, respectively. Same as 
FMs, the features are sparse. For the deep component, we let .V ∈ R

D×k denote 
the dense embeddings for the sparse feature inputs .xdeep. For simplicity, we assume 
that the input features are made of m fields. After looking up from V with .xdeep and 
concatenation, we get 

.h(V, x) = [e1, e2, . . . , em]. (25) 

It is used as the input of the deep component. The final scoring function is defined 
as 

.ŷ = σ(W ∗ xwide + fMLP (h(V, xdeep)) + b), (26) 

where .fMLP is the MLP network. 
DeepFM [16] replaces the linear part of wide and deep model with factorization 

machines. Even though linear model is effective for memorization, it is not capable 
of model direct feature interactions. As introduced in earlier section, FM can model 
2-way interactions efficiently. Using FM as a replacement of the wide part enables
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it to explicitly model feature interactions but will not incur additional computation 
cost. 

Using DeepFM, the explicit split of features into two parts is no longer necessary, 
which could extensively reduce the efforts in feature engineering. The scoring 
function of DeepFM is 

.ŷ = σ(ŷFM(x) + fMLP (h(V, x))). (27) 

Item2Vec [33]. Neural networks can also be used for item representations 
learning. Barkan et al. [33] proposed item2vec to learn item representations in a 
similar way to the word2vec approach [34]. In item2vec, items can be viewed as 
words, and the sequences of items a user liked can be seen as sentences. In doing 
so, the same skip-gram with negative sampling algorithm as that of word2vec can 
be utilized for item embedding learning. 

2.5.3 Sequence-Aware Recommendation with Neural Networks 

We introduced the concept of sequence-aware recommendation with a representa-
tive model PRME. However, the sequence length in PRME is merely one. With 
neural networks, we can model longer sequences. Let L denote the length of the 
sequence. The L embedding vectors form a matrix: 

.E(u,t) =
⎡

⎢
⎣

QSu
t−L

. . .

QSu
t−1

⎤

⎥
⎦ . (28) 

To learn patterns from this matrix, a number of neural architectures are viable, 
such as RNN, CNN, and attention networks. In this section, we will introduce a 
self-attention-based sequential recommendation method [18]. 

There are three important concepts in an attention network: query, key, and value. 
For self-attention, all of them are equal to .E(u,t). At first, nonlinear transformations 
are applied on query and key: 

.Q′ = σ(E(u,t)WQ). (29) 

K ′ = σ(E(u,t) WK), (30) 

where .WQ ∈ R
k×k = WK ∈ R

k×k are weight matrices. . σ is activation function 
(usually ReLU). Then, the affinity matrix is calculated as follows: 

.z(u,t) = softmax

(
Q′K ′T

√
k

)

, (31)



650 S. Zhang et al.

where the output is an .L × L affinity matrix (or attention map). .
√

d is used to scale 
the dot product attention. Afterward, it weights the value matrix with this attention 
map. Then it uses mean pooling to aggregate all the L vectors into a single vector. 

.m(u,t) = 1

L

L∑

l=1

z(u,t)E(u,t). (32) 

Lastly, we replace the .QSu
t−1

in Eq. (15) and train the model in the same way. This 
attention module could greatly improve the expressiveness of PRME in short-term 
interest modeling. 

2.5.4 Advanced Topics and New Frontiers 

In recent years, two topics including graph neural networks [20] and deep rein-
forcement learning [10] are getting increasing popularity in both academia and 
industry. Graph neural networks work on graphs and utilize the message passing 
mechanism for node/graph representation learning. It is natural to apply this 
technique to recommendation tasks [19] as entities in recommender systems can 
be organized as graphs. For example, the interaction matrix can be viewed as a 
bipartite graph between users and items; relations between users can also form 
a social graph. Deep reinforcement learning is another promising technique for 
recommender systems. The idea behind reinforcement learning is that an agent 
will learn from the environment by interacting with it and receiving rewards for 
performing actions. There are five key concepts, including environment, agent, 
reward, state, and action. For recommendation task, we can consider the users and 
items pool as the environment, the recommendation model as agents, clicks/no 
clicks as rewards, features of users as states, and features of candidature items as 
actions [21]. However, there are still a number of challenges (e.g., scalability) in 
these fields that remain to be solved. 

In addition, increasing the explainability of recommendations using neural 
networks is also useful. In many cases, both customers and developers want to know 
the reason why a specific item is recommended. However, most current models lack 
this capability. To enhance the explainability, a lot of effort has been made [35]. 
Readers are referred to [36] for a comprehensive survey. 

2.6 Content-Based Recommender Systems 

Content-based recommender systems recommend items based on the content (e.g., 
descriptions, article, videos, etc.) of items and a profile of the user’s interests [25]. 
Content is the essential element in a digital world. Content can be created in many
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Fig. 2 The framework of 
content-based recommender 
systems 
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different formats. It can be structured tables/graphs or unstructured text, images, 
audios, videos, etc. To make effective recommendations, it is important for the 
recommender system to understand the content. Unlike the recommendation meth-
ods purely based on the user–item interaction matrix, content-based recommender 
systems are methods that combine both content and the interactions. In general, 
content-based recommender systems need a component to learn representations 
from content and a recommendation module such as MF. Naturally, many collabo-
rative filtering approaches can be integrated as a part of content-based recommender 
systems. It is also called hybrid recommender systems used frequently in the 
literature [26, 28]. Figure 2 is a typical framework of content-based recommender 
systems. 

The choice of the methods used for content representation learning is highly 
dependent on the content format. Early works used tf*idf, decision trees, and 
linear classifiers to model the content [25]. Nowadays, with the development of 
neural networks, it is a more common choice to handle the content with deep 
neural networks. If we have a table of categorical features, using aforementioned 
methods such as DeepFM and Wide&Deep learning model would be a good 
fit. Other neural architectures such as convolution neural networks, autoencoder, 
and transformer [27] can be used for more complex features. Specifically, these 
methods are especially effective for multimedia data sources such as text [29], 
image, audio, and even video. For example, convolutional neural etworks with 
flexible convolution and pooling operations are effective in capturing the spatial 
and temporal dependencies in images and texts. A number of well-defined CNN 
architectures such as GoogleNet and ResNet [17, 10] are ready for use. Readers are 
referred to the survey [11] for more detailed descriptions of deep learning solutions 
for these tasks.
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3 Recommendation Tasks and Applications 

Recommender systems are growing more popular mainly due to its usefulness 
in real-world applications. In this section, we will present some widely studied 
applications, concerns in industrial-scale recommendation, and a few of open-source 
toolkits that enable practitioners to get hands-on experience. 

3.1 Applications of Recommender Systems 

Point-of-Interest Recommendation Point-of-interest (POI) becomes popular with 
the emergence of location-based social network (LBSN) such as Foursquare,1 

Gowalla, and Facebook Place.2 On these online platforms, users can check in and 
share their experiences about the places. The task of POI recommendation is to 
recommend places for users to visit. It can increase the users’ viscosity to the LBSN 
service provider and help advertising agency to locate potential customers. POI 
recommendation is a representative application of sequence-aware recommendation 
systems as users’ check-in data usually show strong sequence patterns in terms of 
time and geography. 

Social Recommendation Social media platforms such as Facebook, Twitter, and 
Instagram connect users with people they are familiar with or business they are 
interested in. Recommender algorithms in these platforms aim to recommend people 
to follow, pages to like, and posts to read based on users’ previous engagement and 
usage. A key consideration in social recommendation is the social relations such as 
friendship, following relationship, and membership. Social relations explicitly show 
the neighborhood of a user and the trust relations between users that could act as a 
strong regularization for recommendations. For example, we can force the users’ 
representations to be close if they are friends. 

Multimedia Recommendation Multimedia data are ubiquitous in our daily life 
nowadays. For example, news and blogs usually consist of text, images, and video; 
YouTube videos have text descriptions and subtitles; music pieces have text lyrics 
and album cover apart from the music audio resources. Recommending multimedia 
content requires the recommendation model to properly process these multimedia 
signals. Extracting content descriptors in these data is a well-established research 
task. A number of recent advanced techniques in fields such as NLP, CV, and 
Multimedia might be useful. For example, we can learn text representations with 
BERT [41], extract visual features with ResNet or Vision Transformers, and so on.

1 https://foursquare.com/. 
2 https://www.facebook.com/places/. 

https://foursquare.com/
https://foursquare.com/
https://foursquare.com/
https://www.facebook.com/places/
https://www.facebook.com/places/
https://www.facebook.com/places/
https://www.facebook.com/places/
https://www.facebook.com/places/
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Other Domains The usage of recommender systems is not limited to the aforemen-
tioned domains. Here, we will list a few more cases. For example, recommending 
games, news, mobile applications, cars, etc., is of great practical use for ven-
dors. Another interesting direction is fashion-aware recommendation that involves 
recommending fashion-related products (e.g., clothes) by inspecting the fashion 
elements [37]. In addition, choosing suitable food recipe based on users’ health 
condition [38] and recommending beverage (e.g., wine) based on customers’ taste 
are also possible with some dedicate designs. 

3.2 Practice for Industrial-Scale Recommendation 

For real-world industrial-level recommender systems, the scale of dataset is usually 
way larger than the dataset used in academia research and beyond the ability of 
commonly used model. To address this issue, a two-step process that includes 
candidate generation and ranking is usually deployed [22]. First, it generates a set of 
recommendation candidates from the massive corpus with techniques such as matrix 
factorization. Then, it fine-tunes the candidate set with more detailed inputs with 
more advanced models. This is a compromise between accuracy and complexity, 
but it now becomes a common practice in industry. Another important aspect of 
industrial-level recommendation is feature engineering. Deciding which features are 
predictive heavily relies on expert’s experiences. For some certain recommendation 
tasks, some specific features or combinations of features are critical for model 
performances. Additionally, online test is a very important step in evaluating the 
actual effectiveness of a recommendation model in industry. A/B testing (bucket 
testing) is one of the most popular online test approaches where two models are 
deployed to randomly serving visitors for comparison to determine which one 
performs better. 

3.3 Tool Kits for Building Recommender Systems 

To become familiar with the concepts and techniques in recommender systems, 
it is a good idea to get some hands-on experiences. However, implementing a 
recommender system from scratch is usually troublesome and time-consuming. As 
such, we collected some open-source recommendation libraries that aim to help us 
demonstrate or build a simple recommender model easily.

• MyMediaLite.3 It is an open-source recommendation library published in 
2011. It supports three programming languages: C#, Clojure, and F#. It provides 
algorithms on both rating prediction and item ranking tasks.

3 http://mymedialite.net/index.html. 

http://mymedialite.net/index.html
http://mymedialite.net/index.html
http://mymedialite.net/index.html
http://mymedialite.net/index.html
http://mymedialite.net/index.html
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• DeepRec.4 It is an open-source library for recommendation with deep neural 
networks. It is a Python library that uses TensorFlow as its backend and 
addresses tasks such as rating prediction, item ranking, and sequence-aware 
recommendation.

• LibRec.5 It is a Java library for recommendation. It aims to solve the rating 
prediction and item ranking tasks. A number of traditional recommendation 
algorithms are provided.

• Suprise.6 It is a Python toolkit that provides a limited amount of rating 
prediction models.

• OpenRec.7 OpenRec is also a Python recommendation library. In this library, 
each recommender is a structured ensemble of reusable modules. However, 
there are only a few algorithms implemented. 

4 Evaluate Recommender Systems 

Proper evaluation measures are critical to building a satisfying recommender sys-
tem. Evaluation is an important step in deciding which recommendation algorithm 
is the best. For different recommendation tasks, we may need different evaluation 
measures. Here, we introduce some commonly used ones. 

4.1 Evaluation on Recommendation Accuracy 

In general, accuracy is the top priority and the major concern of most recommender 
systems. Here, we summarize several commonly used accuracy measures. We omit 
the measures used in classification tasks as they are commonplace in other areas. 

Root Mean Square Error (RMSE) RMSE is a widely used evaluation measure 
for measuring the accuracy of ratings prediction. The definition is as follows: 

.RMSE =
√
√
√
√

1

|T |
∑

(u,i)∈T

(X̂ui − Xui)2, (33) 

where T is the dataset we want to evaluate on, .X̂ui denotes the predicted ratings, 
and .Xui is the ground truth. RMSE will give relatively high weight to large errors

4 https://github.com/cheungdaven/DeepRec. 
5 https://www.librec.net/. 
6 http://surpriselib.com/. 
7 https://openrec.ai/. 

https://github.com/cheungdaven/DeepRec
https://github.com/cheungdaven/DeepRec
https://github.com/cheungdaven/DeepRec
https://github.com/cheungdaven/DeepRec
https://github.com/cheungdaven/DeepRec
https://www.librec.net/
https://www.librec.net/
https://www.librec.net/
https://www.librec.net/
http://surpriselib.com/
http://surpriselib.com/
http://surpriselib.com/
https://openrec.ai/
https://openrec.ai/
https://openrec.ai/
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as the errors are squared before averaged. It is most useful when large errors are 
particularly undesirable. 

Mean Average Error (MAE) It is also commonplace in measuring the accuracy 
of rating prediction task. It measures the average magnitude of errors and is defined 
as follows: 

.MAE = 1

|T |
∑

(u,i)∈T

|X̂ui − Xui |. (34) 

Individual differences are weighted equally in MAE. 

Recall Recall at n is the proportion of items the user liked found in the top-n 
recommendation list (recommended items are ranked as a list where higher ranked 
items are the ones that the user will like the most): 

.Recall@n = Number of items that u likes among the top-n list

liked(u)
. (35) 

The final result is the average recall over all users. .liked(u) is the total number of 
items that user u liked. 

Precision Precision at n is the proportion of recommended items in the top-n list 
that are liked by the user: 

.Precision@n = Number of items that u likes among the top-n list

n
. (36) 

The overall precision is the average precision over all users. 

Mean Average Precision (MAP) It is different from precision in that correctly 
recommended items in top ranks are prioritized. 

.MAP@n = 1

M

M∑

u=1

∑n
j=1 Precision@j × 1rel(j)

min{n, liked(u)} , (37) 

where .1rel(j) is an indicator function equaling 1 if the item at rank k is liked by the 
user. Obviously, MAP is a rank-aware evaluation metric as it rewards the system for 
having the “correct” items higher ranked in the list. 

Normalized Discounted Cumulative Gain (NDCG) It is also a rank-aware 
measure, where positions are discounted logarithmically. The definition of NDCG 
is as 

.DCG@n =
n∑

j=1

1rel(j)

log2j + 1
. (38)
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And .NDCG@n = DCG@n
IDCG@n

with .IDCG@n denoting the DCG for perfect ranked 
list. 

Mean Reciprocal Rank (MRR) It cares about the single highest ranked relevant 
item, and it calculates the reciprocal of the rank at which the first item is put. 

.MRR = 1

M

M∑

u=1

1

ranku

, (39) 

where .ranku is the rank of the first correctly ranked item for user u. 

4.2 Beyond Accuracy 

Beyond accuracy, there are many other aspects such as coverage, privacy, diversity, 
novelty, robustness, scalability, explainability, and freshness that are important for 
recommender systems [24, 23]. For example, coverage describes the proportion of 
items that the recommender system can recommend or the proportion of users for 
which the recommender system can recommend items; privacy means the systems 
should not disclose user’s preferences to third parties without permission; diversity 
might be very important in some recommendation scenarios where similar items 
may not be as useful for different users (e.g., recommendation for a household 
with people having different tastes). A robust recommender system should keep 
stable in the presence of attacks or misinformation. Explainable recommender 
system could provide users with intuitive explanations of why certain items are 
recommended to them. Scalability is also a key factor when making decisions as 
different recommendation scenarios may have different levels of tolerance on the 
computational overhead. 

5 Conclusion 

This chapter was structured around the techniques, applications, and evaluations 
of recommender systems. We introduced non-personalized methods, neighborhood 
method, factorization-based approaches, as well as recent deep-learning-based 
methods. These methods are applicable for a wide spectrum of recommendation 
tasks. We also discussed several specific recommendation applications and concerns 
of designing industrial-scale recommender systems. Moreover, we introduced a set 
of evaluation metrics that can be used for evaluating recommender systems. 

The values and contributions of recommender systems cannot be overestimated. 
The development and advancement in the field are inspiring and enlightening. We 
hope that the panorama of recommender systems provided in this chapter can help
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researchers and practitioners to get a deep understanding toward recommender 
systems. 
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Activity Recognition 

Jindong Wang, Yiqiang Chen, and Chunyu Hu 

1 Introduction 

The goal of ubiquitous computing is to provide easy-to-access computing and 
more natural human-computer interaction in anywhere and anytime. In ubiquitous 
computing, the key component is to sense the human activities before making 
further suggestions or recommendations. Human activity recognition (HAR) is of 
great importance in people’s daily life, since it is able to learn profound high-
level knowledge about human activity from raw sensor inputs. Through the years, 
there have been tremendous HAR applications in people’s daily life, such as indoor 
localization (Xu et al., 2016), sleep state detection (Zhao et al., 2017), smart home 
sensing (Wen et al., 2016; Vepakomma et al., 2015), video surveillance (Qin et al., 
2015), gait analysis (Hammerla et al., 2016), and gesture recognition (Kim and 
Toomajian, 2016). 

HAR is a rather hot research topic in ubiquitous computing. It has close 
relationship to human computing interaction (HCI), user interface design, and 
crowd-sourcing. From this perspective, HAR can be treated as the bridge between 
low-level human activities and more high-level computations. In this chapter, our 
focus will be on sensor-based activity recognition (Wang et al., 2019), which 
recognizes activities using embedded sensors rather than those based on camera 
or videos. 

From the machine learning perspective, HAR is a specific classification or 
regression problem. Figure 1 shows an overview of the HAR process. There are 
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Fig. 1 The process of human activity recognition. Source: (Wang et al., 2019) 

four main components: Activity signal sensing, feature extraction, model training, 
and activity inference. These four components are also the standard procedures 
of a machine learning or pattern recognition problem (Bishop, 2006). Therefore, 
HAR can be implemented by taking advantages of the machine learning algorithms. 
For example, a very early work on HAR was presented by (Bao and Intille, 
2004), where authors used five small biaxial accelerometers worn by 20 subjects to 
recognize human activities. They extracted several features including mean, energy, 
frequency-mean and energy, and correlations of activities. After that, they tested 
several machine learning classifiers among which the decision tree classifier showed 
the best performance. 

Conventional approaches have made tremendous progress on HAR by adopting 
machine learning algorithms such as decision tree, support vector machine, naive 
Bayes, and hidden Markov models (Lara and Labrador, 2012). In recent years, with 
the development of deep learning (LeCun et al., 2015) in learning representative 
features and unprecedented performance, there are a lot of work that adopt deep 
learning models for more accurate HAR tasks (Plötz et al., 2011; Lane et al., 2015; 
Alsheikh et al., 2016b). Compared to traditional machine learning that relies heavily 
on human-crafted feature design, deep learning is able to automatically learn high-
level and meaningful features and thus can achieve better performance. Moreover, 
deep learning is more suitable for big data and online/incremental learning (Wang 
et al., 2019). 

In this chapter, we will introduce the basics of HAR. In next sections, we first give 
a formal definition of HAR. Then, more detailed descriptions of the components 
in Fig. 1 will be presented. After that, we introduce the deep learning based HAR 
in recent years. Section 3 will introduce some hot research topics in HAR and 
representative works, and Sect. 5 provides some grand challenges in the future. 
Finally, Sect. 6 concludes this chapter.
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2 The Procedure of Activity Recognition 

2.1 Problem Formulation 

HAR aims to understand human behaviors which enable the computing systems to 
proactively assist users based on their requirement (Bulling et al., 2014). Formally 
speaking, suppose a user is performing some kinds of activities belonging to a 
predefined activity set A: 

.A = {Ai}mi=1 (1) 

where m denotes the number of activity types. There is a sequence of sensor reading 
that captures the activity information 

.s = {d1,d2, · · · ,dt , · · · dn} (2) 

where . dt denotes the sensor reading at time t . 
We need to build a model . F to predict the activity sequence based on sensor 

reading . s

.Â = {Âj }nj=1 = F(s), Âj ∈ A (3) 

while the true activity sequence (ground truth) is denoted as 

.A∗ = {A∗
j }nj=1, A∗

j ∈ A (4) 

where n denotes the length of sequence and .n ≥ m. 
The goal of HAR is to learn the model . F by minimizing the discrepancy between 

predicted activity . Â and the ground truth activity . A∗. Typically, a positive loss 
function .L(F(s), A∗) is constructed to reflect their discrepancy. . F usually does 
not directly take . s as input, and it usually assumes that there is a projection 
function . � that projects the sensor reading data .di ∈ s to a d-dimensional feature 
vector .�(di ) ∈ R

d . To that end, the goal turns into minimizing the loss function 
.L(F(�(di )), A

∗). 

2.2 Sensor Inputs 

In sensor-based HAR, there are multiple kinds of sensors that can be adopted 
to collect user data. Although some HAR approaches can be generalized to all 
sensor modalities, most of them are only specific to certain types. According 
to (Chavarriaga et al., 2013), we mainly classify those modalities into three aspects: 
body-worn sensors, object sensors, and ambient sensors.
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Body-worn sensors are sensors worn by the user to describe the body movements. 
This kind of sensors is the most popular and affordable ones in HAR. In today’s 
era filled with smart devices, a lot of devices such as smartphone, smart watch, 
wristband, smart glasses can all be used as sensors. The key components in these 
devices are accelerometers and gyroscopes, which are important to describe users’ 
movements. Object sensors are those attached to objects to capture object move-
ments. A popular technology in this category is Radio Frequency IDentification 
(RFID), which is pretty popular in measuring the interactions with the objects. On 
the other hand, sensors attached to a certain object can also be regarded as an object 
sensor. The last category is the ambient sensor, which are applied in environments 
to reflect user interaction with the environment. This category lays more focus on 
the environment, such as sound sensors, Wi-Fi, Bluetooth, temperature sensors, etc. 

Human activities are happening with a range of time period. This is its nature. 
Therefore, all of these sensors are recording signals in a form of time series data. 
For instance, the data collected by an accelerometer is a multi-dimensional time 
series data. Assuming the accelerometer has 3 axis, then, the activity data will have 
a .L × (1 + 3 + 1) shape, where the column Timestamp denotes the timestamps, 
columns X-Y-Z denote the axis, and Label denotes the activity categories (often 
encoded in numbers). An example can be found in Fig. 2, where the sensors are 
placed at different positions of the subject. 

For most situations, the sensor readings are with noise and have to go through 
a filtering process. A common practice is to use the high-pass or low-pass filter, 
where a threshold is set such that any value higher or lower than that threshold has 
to be omitted. In order to get more smooth movement curve, some researchers used 
Karman filter to further filter the signals. In this way, the preprocess of the sensor 
data can be regarded as a signal processing problem, where the noise and outliers 
have to be removed for better performance later (Bao and Intille, 2004). 

Fig. 2 Sensor inputs and readings of a subject. (a) Sensor inputs. (b) Sensor readings
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2.3 Feature Engineering 

After sensor inputs preprocessing, another important step is feature engineering. 
Before we get into feature engineering, it is necessary to know that this the raw 
inputs can also be directly used as features for HAR, only with worse performance 
since the raw inputs fail to fully represent the signal features. In a machine learning 
point of view, the features are necessary and important for the classification problem 
since they are critical and representative of the characteristics of the inputs. 

Before the emerge of deep learning, traditional machine learning algorithms 
have to rely on hand-crafted feature engineering. That is, the features are designed 
and extracted according to human knowledge (Lara and Labrador, 2012; Wang 
et al., 2019). According to existing work, the features are mainly extracted in two 
categories: time domain and frequency domain. Several common features in these 
two domains are listed in Table 1. 

After feature extraction, there are often a feature selection and dimensionality 
reduction process. The nature of this step is to use fewer features to represent the 
most information so as to reduce the computation burden and even eliminate the 
curse of dimensionality (Bishop, 2006). Generally speaking, features can be selected 
according to their relative importance judged by human experience. A popular way 
of feature selection is to use decision trees or forest models to rand all the features. 
Dimensionality reduction can also reduce the feature numbers, in an implicit way. 
The dimensionality reduction techniques such as Principle Component Analysis 
(PCA), Kernel PCA, Linear Discriminant Analysis (LDA) (Bishop, 2006) can all 
be used. 

These days, with the development of deep learning, features can be automatically 
extracted in a neural network without human knowledge. In a deep neural network, 
features can be extracted in different layers and controlled by the user, leading to 

Table 1 Several common features extracted in time and frequency domain 

ID Feature Description 

1 Mean Average value of samples in window 

2 STD Standard deviation 

3 Minimum Minimum 

4 Maximum Maximum 

5 Mode The value with the largest frequency 

6 Range Maximum minus minimum 

7 Mean crossing rate Rate of times signal crossing mean value 

8 DC Direct component 

9–13 Spectrum peak position First 5 peaks after FFT 

14–18 Frequency Frequencies corresponding to 5 peaks 

19 Energy Square of norm 

20–23 Four shape features Mean, STD, skewness, kurtosis 

24–27 Four amplitude features Mean, STD, skewness, kurtosis
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different kinds of features that are learned through the network (LeCun et al., 2015). 
In this way, we can think of deep representation learning as a more generalized case 
of traditional hand-crafted feature extraction. Feature selection and dimensionality 
reduction can also be done within the network. And experiments have shown that 
deep features are more representative than traditional features and lead to better 
performance (Plötz et al., 2011). 

After data cleaning and normalization, features can be extracted. It is noteworthy 
that when performing feature engineering, the sliding window strategy is often used. 
The inputs should be cut into individual inputs according to the sampling rate. For 
instance, when the sensor has a sampling frequency of 50 Hz, we often adopt a 
sliding window size of 2 s, with an overlap of .50%. This should ensure that the 
repetitive features can be extracted. 

2.4 Model 

Before deep learning, researchers used traditional machine learning algorithms for 
accurate HAR. There are a lot of algorithms available, including support vector 
machines (SVM), hidden Markov models (HMM), decision trees (DT), logistic 
regression (LR), and random forest (RF). Existing works used these algorithms to 
build accurate as well as personalized models (Bao and Intille, 2004; Kwapisz et al., 
2011; Lara and Labrador, 2012). 

Most of the HAR problem can be treated as a classification problem except for 
Wi-Fi-based or Bluetooth-based indoor localization, which is a regression problem. 
In these algorithms, extracted features are the inputs. Then, the algorithm will train 
a model accordingly. 

Deep learning makes it possible to perform end-to-end HAR. Table 2 lists several 
popular models used in deep learning based HAR (Wang et al., 2019). In fact, any 
deep networks can be used for HAR. 

A natural question arises: which model is the best for HAR? (Hammerla et al., 
2016) did an early work by investigating the performance of DNN, CNN, and RNN 
through 4000 experiments on some public HAR datasets. We combine their work 
and our explorations to draw some conclusions: RNN and LSTM are recommended 

Table 2 Deep learning models for HAR tasks 

Model Description 

MLP Deep fully connected network, artificial neural network with deep layers 

CNN Convolutional neural network, multiple convolution operations for feature extraction 

RNN Recurrent neural network, network with time correlations and LSTM 

DBN/RBM Deep belief network and restricted Boltzmann machine 

SAE Stacked autoencoder, feature learning by decoding-encoding autoencoder 

Hybrid Combination of some deep models
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to recognize short activities that have natural order while CNN is better at inferring 
long-term repetitive activities (Hammerla et al., 2016). The reason is that RNN 
could make use of the time-order relationship between sensor readings, and CNN is 
more capable of learning deep features contained in recursive patterns. For multi-
modal signals, it is better to use CNN since the features can be integrated through 
multi-channel convolutions (Zeng et al., 2014; Ha et al., 2015). While adapting 
CNN, data-driven approaches are better than model-driven approaches as the inner 
properties of the activity signal can be exploited better when the input data are 
transformed into the virtual image. Multiple convolutions and poolings also help 
CNN perform better. RBM and autoencoders are usually pre-trained before being 
fine-tuned. Multi-layer RBM or SAE is preferred for more accurate recognition. 

Technically there is no model which outperforms all the others in all situations, 
so it is recommended to choose models based on the scenarios. Moreover, the 
hybrid models tend to perform better than single models (DeepConvLSTM in 
OPPORTUNITY 1 and Skoda). For a single model, CNN with shifted inputs 
(Fourier transform) generates better results compared to shifted kernels. 

2.5 Evaluation 

The evaluation of HAR is based on statistical results comparing the ground truth and 
the results given by models. The accuracy is the most popular metric for evaluating 
HAR models. It can be defined as follows: 

.Accuracy = T P + T N

T P + T N + FP + FN
, (5) 

where TP is the true positive, indicating the number of positive instances that are 
classified as positive; TN is true negative, which represents the number of negative 
samples that are classified as negative; FP is false positive, meaning the number of 
negative instances that are classified as positive; FN is false negative, which stands 
for the number of positive instances that are classified as negative. 

However, in a multi-class classification problem, accuracy alone may not be 
enough since there are often imbalanced classification situations. Therefore, the 
precision, recall, and F measures are used. 

The precision (P) and recall (R) can be calculated as follows: 

.P = T P

T P + FP
(6) 

.R = T P

T P + FN
(7)
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The F-measure denotes the combination of precision and recall: 

.F -measure = 2 · P · R

P + R
(8) 

As for a regression problem, there are two types of evaluations that can be used: 
Mean Average Error (MAE) and Mean Squared Error (MSE). Denote n the number 
of test samples, . yi and . fi are the true and predicted values, respectively, then, the 
evaluations can be calculated as follows: 

.MAE = 1

n

n∑

i=1

|fi − yi | (9) 

.MSE = 1

n

n∑

i=1

(fi − yi)
2 (10) 

When evaluating models, it is important to follow the standard protocols in 
machine learning to perform model selection (Bishop, 2006). 

3 Hot Research Areas 

In this section, we introduce several hot research areas for HAR. Despite the success 
of HAR, there are still existing challenges that are hot research areas these days. 
When the data distributions from different persons are different, we need transfer 
learning and domain adaptation to help build cross-domain models. Under the 
regulations of privacy preservation, we need federated learning to build models 
without leaking any user privacy. Finally, with the traditional models being static 
and fail to update fast online, we introduce incremental learning for fast update of 
the models. Note that these three areas are not currently well-explored and need 
more investigation in the future. 

3.1 Transfer Learning Based HAR 

HAR is a machine learning application, which requires a large amount of labeled 
data to train a powerful model. However, when there is not enough labeled data, 
the model is likely to perform poor. Assume a person is suffering from Small 
Vessel Disease (SVD) (Wardlaw et al., 2013), which is a severe brain disease 
heavily related to activities. However, we cannot equip his all body with sensors 
to acquire the labels since this will make his activities unnatural. We can only label 
the activities on certain body parts in reality. If the doctor wants to see his activity
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information on the arm (we call it the target domain), which only contains sensor 
readings instead of labels, how to utilize the information on other parts (such as 
torso or leg, we call them the source domains) to help obtain the labels on the target 
domain? This is referred to as the cross-domain activity recognition (CDAR). 

The problem of CDAR is extremely challenging. Firstly, we do not know which 
body part is the most similar to the target position since the sensor signals are 
not independent, but highly correlated because of the shared body structures and 
functions. If we use all the body parts as the source domain, there is likely to be 
negative transfer (Pan and Yang, 2010) because some body parts may be dissimilar. 
Secondly, we only have the raw activity data on the target domain without the actual 
activity labels, making it infeasible to measure the similarities between different 
body positions. Thirdly, even when we know the similar body parts to the target 
domain, it is still difficult to build a good machine learning model using both the 
source and the target domains. The reason is that signals from different domains are 
following different distributions, which means there are distribution discrepancies 
between them. However, traditional machine learning models are built by assuming 
that all signals follow the same distribution. Fourthly, when it comes to multiple 
persons, the sensor readings are more different compared to different body parts on 
one person. This makes the problem more challenging. 

The problem of CDAR consists of two parts: determining the most similar source 
domain to the target domain, and perform transfer learning accordingly. Several 
transfer learning methods have been proposed (Cook et al., 2013). The key is to 
learn and reduce the distribution divergence (distance) between two domains. With 
the distance, we can perform source domain selection as well as knowledge transfer. 
Based on this principle, existing methods can be summarized into two categories: 
exploiting the correlations between features (Blitzer et al., 2006; Kouw et al., 2016), 
or transforming both the source and the target domains into a new shared feature 
space (Pan et al., 2011; Gong et al., 2012; Wang et al., 2017). Among existing 
work on transfer learning based HAR (Cook et al., 2013), Zhao et al. proposed a 
transfer learning method TransEMDT (Zhao et al., 2011) using decision trees, but 
it ignored the intra-class similarity within classes. (Khan and Roy, 2017) proposed 
the TransAct framework, which is a boosting-based method and ignores the feature 
transformation procedure. Thus it is not feasible in most activity cases. Feuz et 
al. (Feuz and Cook, 2017) proposed a heterogeneous transfer learning method for 
HAR, but it only learns a global domain shift. A more recent work of Wang et 
al. (Wang et al., 2018b) performs activity recognition using deep transfer learning. 
Recently, the work of (Wang et al., 2018a; Chen et al., 2019a) proposed the notion of 
Stratified Transfer Learning, which focuses on the local distance between domains 
and can perform accurate source domain selection and activity transfer (Fig. 3). 

Transfer learning based HAR has many potential applications: 

1. Activity recognition. The results of activity recognition can be different according 
to different devices, users, and wearing positions. Transfer learning makes it 
possible to perform cross-device/user/position activity recognition with high
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Fig. 3 The stratified transfer learning framework proposed by (Wang et al., 2018a) 

accuracy. In case cross-domain learning is needed, finding and measuring the 
similarity between the device/user/position is critical. 

2. Localization. In Wi-Fi localization, the Wi-Fi signal changes with the time, 
sensor, and environment, causing the distributions different. So it is neces-
sary to perform cross-domain localization. When applying STL to this sit-
uation, it is also important to capture the similarity of signals according to 
time/sensor/environment. 

3. Gesture recognition. For gesture recognition, due to differences in hand structure 
and moving patterns, the model cannot generalize well. In this case, transfer 
learning can also be a good option. Meanwhile, special attention needs to be 
paid to the divergence between the different characteristic of the subjects. 

4. Other context-related applications. Other applications include smart home sens-
ing, intelligent city planning, healthcare, and human-computer interaction. They 
are also context-related applications. Most of the models built for pervasive 
computing are only specific to certain contexts. Transfer learning makes it 
possible to transfer the knowledge between related contexts, of which transfer 
learning can achieve the best performance. But when recognizing high-level 
contexts such as Coffee Time, it is rather important to consider the relationship 
between different contexts in order to utilize their similarities. The research on 
this area is still on the go. 

3.2 Federated Learning Based HAR 

In healthcare applications, machine learning models are often trained on sufficient 
user data to track health status. Traditional machine learning approaches such 
as Support Vector Machines (SVM), Decision Tree (DT), and Hidden Markov 
Models (HMM) are adopted in many healthcare applications (Wang et al., 2019). 
The recent success of deep learning achieves satisfactory performances by training 
on larger sizes of user data. Representative networks include Convolutional Neural
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Networks (CNN), Recurrent Neural Networks (RNN), and Autoencoders (Wang 
et al., 2019). 

Unfortunately, there is one critical challenge in today’s wearable healthcare. First 
of all, in real life, data often exists in the form of isolated islands. Although there are 
plenty of data in different organizations, institutes, and subjects, it is not possible to 
share them due to privacy and security concerns. When the same user uses different 
products from two companies, his data stored in two clouds cannot be exchanged. 
This makes it hard to train powerful models using these valuable data. Additionally, 
recently, China, the United States, and the European Union enforced the protection 
of user data via different regularizations. Hence, the acquisition of massive user data 
is not possible in real applications. 

A comprehensive survey on federated learning is in (Yang et al., 2019). Federated 
machine learning was firstly proposed by Google (Konečnỳ et al., 2016), where 
they trained machine learning models based on distributed mobile phones all over 
the world. The key idea is to protect user data during the process. Since then, other 
researchers started to focus on privacy-preserving machine learning (Bonawitz et al., 
2017; Geyer et al., 2017), federated multi-task learning (Smith et al., 2017), as well 
as personalized federated learning (Chen et al., 2018). Federated learning has the 
ability to resolve the data islanding problems by privacy-preserving model training 
in the network. 

According to (Yang et al., 2019), federated learning can mainly be classified 
into three types: (1) horizontal federated learning, where organizations share partial 
features; (2) vertical federated learning, where organizations share partial samples; 
and (3) federated transfer learning, where neither samples nor features have much 
in common. FedHealth belongs to federated transfer learning category. It is the first 
of its kind tailored for wearable healthcare applications. 

Recently, Chen et al. proposed a new wearable healthcare framework called 
FedHealth based on federated learning. FedHealth aims to achieve accurate per-
sonal healthcare through federated transfer learning without compromising privacy 
security. Figure 4 gives an overview of the framework. Without loss of generality, we 
assume there are 3 users (organizations) and 1 server, which can be extended to the 
more general case. The framework mainly consists of four procedures. First of all, 
the cloud model on the server end is train based on public datasets. Then, the cloud 
model is distributed to all users where each of them can train their own model on 
their data. Subsequently, the user model can be uploaded to the cloud to help train a 
new cloud model. Note that this step does not share any user data or information but 
the encrypted model parameters. Finally, each user can train personalized models by 
integrating the cloud model and its previous model and data for personalization. In 
this step, since there is large distribution divergence between cloud and user model, 
transfer learning is performed to make the model more tailored to the user (right 
part in Fig. 4). It is noteworthy that all the parameter sharing processes does not 
involve any leakage of user data. Instead, they are finished through homomorphic 
encryption (Rivest et al., 1978). 

The federated learning paradigm is the main computing model for the whole 
FedHealth framework. It deals with model building and parameter sharing during
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Model 
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Data 
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…… 
Fig. 4 The FedHealth framework proposed by (Chen et al., 2019b) 

the entire process. After the server model is learned, it can be directly applied to 
the user. This is just what traditional healthcare applications do for model learning. 
It is obvious that the samples in the server are having highly different probability 
distribution with the data generated by each user. Therefore, the common model fails 
in personalization. Additionally, user models cannot easily be updated continuously 
due to the privacy security issue. 

FedHealth is a general framework for wearable healthcare. This paper provides 
a specific implementation and evaluation of this idea. It is adaptable to several 
healthcare applications. In this section, we discuss its potential to be extended and 
deployed to other situations with possible solutions. 

1. FedHealth with incremental learning. Incremental learning (Rebuffi et al., 
2017) has the ability to update the model with the gradually changing time, 
environment, and users. In contrast to transfer learning that focuses on model 
adaptation, incremental learning makes it possible to update the model in real-
time without much computation. 

2. FedHealth as the standard for wearable healthcare in the future. FedHealth 
provides such a platform where all the companies can safely share data and 
train models. In the future, we expect that FedHealth be implemented with 
blockchain technology (Zheng et al., 2018) where user data can be more 
securely stored and protected. We hope that FedHealth can become the standard 
for wearable healthcare. 

3. FedHealth to be applied in more applications. This work mainly focuses on the 
possibility of federated transfer learning in healthcare via activity recognition. 
In real situations, FedHealth can be deployed at large-scale to more healthcare 
applications such as elderly care, fall detection, cognitive disease detection, 
etc. We hope that through FedHealth, federated learning can become federated 
computing which can become a new computing model in the future.
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3.3 Incremental Learning Based HAR 

Commonly, activity recognition models are designed for a static environment, which 
is not applicable to a real scenario. These models are trained with data collected 
offline. Once the training phase is completed, the model is fixed throughout the 
activity recognition process. However, fixed recognition models are difficult to meet 
the need in practical usage. Many factors, including changes in user, activity class, 
and sensor, will lead to the failure of a fixed model. Incremental learning is an 
effective way to handle these challenges. 

In most cases, HAR model is built with data collected from predefined users. 
However, it is not able to fit for a specified subject, which is not included in the 
initial training set. This can be attributed to that data collected from different users 
conform to different distributions. To handle changes in the distribution of input 
data, (Saffari et al., 2009; Elgawi, 2008; Denil et al., 2013; Lakshminarayanan et al., 
2014) proposed four variants of online random forest algorithms. In (Sztyler and 
Stuckenschmidt, 2017), ORF-Saffari is combined with active learning to construct 
a cross-subject activity recognition model. Experimental results show that it is 
efficient in building personalized activity recognition classifiers. These methods 
focus on the dynamic changes of data distribution. They aim to refine the function 
.f : RK → Y with new data from previously known features. 

On the other hand, people is able to learn new activities with time pass by. 
When a new kind of activity is performed, devices with preinstalled activity 
recognition models may fail to recognize new activities. To recognize new activities 
without retraining from scratch, (Zhao et al., 2014) proposed the CIELM class 
incremental learning method. With CIELM, new activities can be recognized 
dynamically. In (Hu et al., 2018), Hu et al. designed a separating axis theorem based 
splitting strategy to insert internal nodes. Combined with splitting leaf nodes, their 
incremental learning method can match the performance of random forest. Ristin et 
al. proposed two variants of the random forest model to avoid retraining from scratch 
(Ristin et al., 2016) when handling the class incremental learning problem. It can 
extend random forest initially trained with just 10 classes to 1000 classes with an 
acceptable loss of accuracy. These work attempts to learn the function . f : RK → Y ′
by focusing on handling changes in the output space. 

Traditional sensor-based activity recognition methods train fixed classification 
models with labeled data collected offline. Such models are unable to adapt to 
dynamic changes in real applications. With the emerging of new wearable devices, 
more diverse sensors can be used to improve the performance of activity recognition. 
However, it is difficult to integrate a new sensor into a pre-trained activity 
recognition model. The emergence of new sensors will lead to a corresponding 
increase in the feature dimensionality of the input data, which may result in the 
failure of a pre-trained activity recognition model. In (Hu et al., 2019), Hu et al. 
propose a novel feature incremental learning method, namely Feature Incremental 
Random Forest (Fig. 5). It is able to adapt an existing activity recognition model
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Fig. 5 The feature incremental random forest proposed by (Hu et al., 2019) 

to the new emerging sensors. Both (Rey and Lukowicz, 2017) and (Bannach et al., 
2011) proposed methods that can incorporate new sensors into an existing activity 
recognition system in an unsupervised manner. In (Bannach et al., 2011), the 
clustering membership of the higher dimensional data and heuristics were utilized to 
label newly arriving data. In (Rey and Lukowicz, 2017), similarity and transduction 
were used to label such new data. Similarly, Gregory et al. (Amis and Carpenter, 
2010) proposed a self-supervised learning method—ARTMAP. It is able to learn 
features from unlabeled patterns without losing knowledge previously acquired 
from labeled patterns. 

Incremental learning provide an alternative way to handle with changes in an 
opening environment, which is of great significance in real applications. It is able 
to provide more intelligent, personalized, and convenient services to users. There 
are still some challenges to be solved in the future. How to design a more smart 
incremental activity recognition model? No matter what the change is, it is able to 
capture the difference as soon as possible. 

4 Datasets 

Table 3 listed some popular HAR datasets that are actively used in previous works.
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5 Challenges 

Despite the progress in previous work, there are still challenges for deep learning 
based HAR. In this section, we present those challenges and propose some feasible 
solutions. 

5.1 Online and Mobile Deep Activity Recognition 

Two critical issues are related to deep HAR: online deployment and mobile 
application. Although some existing work adopted deep HAR on smartphone (Lane 
et al., 2015) and watch (Bhattacharya and Lane, 2016), they are still far from online 
and mobile deployment. Because the model is often trained offline on some remote 
server and the mobile device only utilizes a trained model. This approach is neither 
real-time nor friendly to incremental learning. There are two approaches to tackle 
this problem: reducing the communication cost between mobile and server, and 
enhancing computing ability of the mobile devices. 

5.2 More Accurate Unsupervised Activity Recognition 

The performance of deep learning still relies heavily on labeled samples. Acquiring 
sufficient activity labels is expensive and time-consuming. Thus, unsupervised 
activity recognition is urgent.

• Take advantage of the crowd. The latest research indicates that exploiting the 
knowledge from the crowd will facilitate the task (Prelec et al., 2017). Crowd-
sourcing takes advantage of the crowd to annotate the unlabeled activities. Other 
than acquiring labels passively, researchers could also develop more elaborate, 
privacy-concerned way to collect useful labels.

• Deep transfer learning. Transfer learning performs data annotation by leverag-
ing labeled data from other auxiliary domains (Pan and Yang, 2010; Cook et al., 
2013; Wang et al., 2017). There are many factors related to human activity, 
which can be exploited as auxiliary information using deep transfer learning. 
Problems such as sharing weights between networks, exploiting knowledge 
between activity related domains, and how to find more relevant domains are 
to be resolved.
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5.3 Flexible Models to Recognize High-Level Activities 

More complex high-level activities need to be recognized other than only simple 
daily activities. It is difficult to determine the hierarchical structure of high-level 
activities because they contain more semantic and context information. Existing 
methods often ignore the correlation between signals, thus they cannot obtain good 
results.

• Hybrid sensor. Elaborate information provided by the hybrid sensor is useful for 
recognizing fine-grained activities (Vepakomma et al., 2015). Special attention 
should be paid to the recognition of fine-grained activities by exploiting the 
collaboration of hybrid sensors.

• Exploit context information. Context is any information that can be used to 
characterize the situation of an entity (Abowd et al., 1999). Context information 
such as Wi-Fi, Bluetooth, and GPS can be used to infer more environmental 
knowledge about the activity. The exploitation of resourceful context informa-
tion will greatly help to recognize user state as well as more specific activities. 

5.4 Light-Weight Deep Models 

Deep models often require lots of computing resources, which is not available for 
wearable devices. In addition, the models are often trained offline which cannot 
be executed in real-time. However, less complex models such as shallow NN and 
conventional PR methods could not achieve good performance. Therefore, it is 
necessary to develop light-weight deep models to perform HAR.

• Combination of human-crafted and deep features. Recent work indicated 
that human-crafted and deep features together could achieve better perfor-
mance (Plötz et al., 2011). Some pre-knowledge about the activity will greatly 
contribute to more robust feature learning in deep models (Stewart and Ermon, 
2017). Researchers should consider the possibility of applying two kinds of 
features to HAR with human experience and machine intelligence.

• Collaboration of deep and shallow models. Deep models have powerful 
learning abilities, while shallow models are more efficient. The collaboration 
of those two models has the potential to perform both accurate and light-weight 
HAR. Several issues such as how to share the parameters between deep and 
shallow models are to be addressed.
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5.5 Non-invasive Activity Sensing 

Traditional activity collection strategies need to be updated with more non-invasive 
approaches. Non-invasive approaches tend to collect information and infer activity 
without disturbing the subjects and requires more flexible computing resources.

• Opportunistic activity sensing with deep learning. Opportunistic sensing could 
dynamically harness the non-continuous activity signal to accomplish activity 
inference. In this scenario, back propagation of deep models should be well-
designed. 

5.6 Beyond Activity Recognition: Assessment and Assistant 

Recognizing activities is often the initial step in many applications. For instance, 
some professional skill assessment is required in fitness exercises and smart home 
assistant plays an important role in healthcare services. There is some early work on 
climbing assessment (Khan et al., 2015). With the advancement of deep learning, 
more applications should be developed to be beyond just recognition. 

6 Conclusions 

In this chapter, we extensively introduce the activity recognition problem in 
ubiquitous computing area. We first formulate HAR into a machine learning 
problem. Then, we introduce the standard procedure to perform accurate HAR. 
Subsequently, we present two hot research areas of HAR: transfer learning aims 
at improving the model adaptability, while federated learning can help build models 
without compromising the security and privacy issues. Then, we introduce some 
grand challenges of HAR and propose some feasible solutions. HAR is extremely 
important to people’s daily life. We hope that there can be more HAR research and 
applications in the future. 
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Social Network Analysis for 
Disinformation Detection 

Aviad Elyashar, Maor Reuben, Asaf Shabtai, and Rami Puzis 

1 Introduction 

Since the seventeenth century, journalists have informed people about issues and 
events they need to know about. In many cases, this information influences the 
decisions people make every day [1]. However, in the last decade, journalism 
has struggled with a cultural change as news distribution has increasingly moved 
online [2]; this move is the result of technological changes and the increased use 
of mobile devices and instant messaging. Another reason for this shift is associated 
with the interactive capabilities of online news, such as the ability to easily click on 
an online story, share it, and post a comment about a given story [3]. 

Along with the growth of online news, many non-traditional news sources 
(e.g., blogs) have evolved in order to respond to users’ “appetite for information.” 
However, in many cases, these sources are operated by amateurs whose reporting 
is often subjective, misleading, or unreliable [4]. This everyone is a journalist 
phenomenon [5], together with the flood of unverified news and the absence of 
quality control procedures to prevent potential deception, has contributed to the 
increasing problem of fake news dissemination [6]. 

The spread of misinformation, propaganda, and fabricated news has potentially 
harmful effects and a significant impact on real-world events [7]. In recent years, 
it has weakened public trust in democratic governments and their activities, such 
as the “Brexit” referendum and the 2016 U.S. election [8]. World economies are 
also not immune to the impact of fake news; this was demonstrated when a false 
claim regarding an injury to President Obama caused the stock markets to plunge 
(dropping 130 billion dollars) [9]. In recent years, due to the threats to democracy, 
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Fig. 1 The proposed method 

journalistic integrity, and economies, researchers have been motivated to develop 
solutions for this serious problem [8]. Researchers have addressed this issue by 
proposing approaches for the detection of fake news based on natural language 
processing [10], investigating the diffusion of news [11], etc. A few papers have 
attempted to detect fake news solely using social context features [12]. 

In this paper, we present an automated system for news classification based 
on online social media (OSM) features. In Sect. 3, we describe our process for 
collecting the training set, gathering the supporting information from OSM, and 
constructing a classifier that differentiates between true and false claims using OSM 
features. This process is depicted in Fig. 1. In contrast to the related work presented 
in Sect. 2, the proposed approach is both automated and relies on the content-based 
retrieval of relevant social discussions. 

Cross-validation using the Fake News dataset which consists of claims from fact-
checking websites (Sect. 4) shows that individuals are highly aware of fake news 
and provide honest feedback on claims disseminated online in their posts (Sect. 5.2). 
Strengthened by other features, such feedback on claims can be used to effectively 
classify the claims as true or false, as shown by the classifier’s performance: 
accuracy of 0.76 and an area under the receiver operating characteristic curve (AUC) 
of 0.89.
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In order to facilitate the validity of the results, we have published the fake news 
dataset and a ready to use analytic process implemented in Python.1 

2 Related Work 

The proliferation of fake news worldwide has motivated researchers to explore 
solutions to address the problem of fake news dissemination [12]. Many of the 
previously proposed methods attempted to detect fake news by using natural 
language processing [8] or investigating the diffusion of news [11]. 

2.1 News Detection Based on Diffusion Analysis 

In 2014, Friggeri et al. [13] examined rumor propagation on Facebook through 
rumor cascades. They collected 4761 claims from snopes.com and constructed 
rumor cascades based on the tree of Facebook reshares and the original post which 
contained a link to Snopes website. The authors found that while some rumors 
proceeded to flourish on Facebook, the true rumors were found to be the most viral 
and had the largest cascades. 

In 2018, Vosoughi et al. [11] investigated the differences between the diffusion of 
verified true and fake claims using a dataset of rumors disseminated on Twitter from 
2006 to 2017. They collected about 126,000 labeled claims from six fact-checking 
websites. For each claim, they collected original tweets that contained links to these 
claims published on the fact-checking websites. Then, they built rumor cascades 
based on the original tweets and their retweets and analyzed those cascades based 
on their depth, size, breadth, etc. The authors found that fake claims on Twitter 
diffused significantly farther, faster, deeper and more broadly than true claims. 
Unlike Friggeri et al. and Vosoughi et al., we collected tweets relevant to the given 
claim based on keywords. The collection of posts based on links solely may cause 
to lose a great number of posts that are associated with the given claim but do not 
include a link. 

2.2 Fake News Detection Based on Sources 

In 2017, Elyashar et al. [14] measured the authenticity of online discussions within 
OSM based on the similarity of users participating in the online discussion to known 
abusers and legitimate accounts.

1 Will be published after acceptance. 
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In 2017, Volkova et al. [15] presented linguistically infused neural network 
models in order to classify tweets containing news as suspicious or verified. Their 
model combined tweet text, social graphs and linguistic cues for classification. For 
evaluation, the authors labeled specific sources as suspicious and verified. 

Recently, Grinberg et al. [16] analyzed the exposure of fake news among a group 
of U.S. voters on Twitter during the 2016 election. The authors linked the two 
entities by pairing users and voters based on an exact match of names and locations 
from the text of Twitter profiles and voter registration records. Surprisingly, they 
found that the majority of political news across all political groups is still extracted 
from popular and authentic news sources. Therefore, fake news may not be more 
viral than real news. 

The problem with these approaches is that they are too inclusive. Stating that all 
of the posts distributed by a specific source are fake or true is too binary and in most 
cases does not mesh with reality where a user might distribute fake news in one 
domain and the truth in another. 

2.3 Detecting Fake News Based on Online Social Media 
Features 

Online social media platforms offer unique features that can be used for news 
classification. In 2011, Castillo et al. [17] estimated the credibility of a given set 
of tweets related to 2500 news events using a deprecated service called Twitter 
Monitor. Then, they used evaluators from Mechanical Turk2 in order to differentiate 
between news about a specific event and comments or conversation. Later, they 
proposed a machine learning classifier that estimated the credibility of each labeled 
topic based on the following type of features: message-based features (e.g., message 
length, whether the message contains a hashtag), user-based features (e.g., number 
of followers, followee), topic-based features (e.g., the fraction of tweets that contain 
URLs), and propagation-based features (e.g., depth of the retweet tree). Their best 
performing classifier achieved precision and recall in the range of 70–80%. As 
opposed to our fully automated approach, their method of differentiating events and 
unrelated comments is dependent on human annotators. We extracted the keywords 
automatically. 

In 2015, Zhou et al. [18] demonstrated a real-time news certification system on 
Sina Weibo3 using the keywords of an event in order to gather related microblogs. 
Then, they built an ensemble model that combined user-based, propagation-based, 
and content-based features and evaluated the proposed model on a small dataset 
of 146 claims. Their model obtained accuracy of approximately 0.8. As opposed 
to our work, Zhou et al. mainly focused on the proposed framework for real-time

2 https://www.mturk.com/. 
3 https://www.weibo.com/. 

https://www.mturk.com/
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news certification rather than on feature analysis. Furthermore, our analysis was 
demonstrated on approximately three times more claims. 

In 2018, Wang et al. [19] presented an event adversarial neural network (EANN) 
system for fake news detection. EANN uses textual and visual features extracted 
from the posts’ content for real-time fake news detection. Their approach focused 
on content-based features only, in contrast to our method which analyzes a large 
range of features. 

Recently, Monti et al. [20] proposed studying fake news propagation patterns by 
exploiting geometric deep learning, a novel class of deep learning methods designed 
to work on graph-structured data. They demonstrated their approach on a dataset 
collected from Twitter and obtained an AUC of 0.93. Their limitation lies in their 
data collection. In contrast to our study in which tweets were collected based on 
keywords, Monti et al. collected tweets based on the sources distributed within fact-
checking websites. Given this, they will be unable to predict whether a given story 
is false or true without these sources. 

Also, Ma et al.  [21] collected 778 claims from Snopes. Afterwards, they collected 
microblog posts from Twitter and Sina Weibo by extracting keywords from the 
suffix of the Snopes URL. In total, they collected more than million posts from 
Twitter and more than 3.8 million posts from Sina Weibo. They used RNN-based 
methods with three widely used recurrent units, tanh, LSTM and GRU for detecting 
rumors. Their methods performed significantly better than the state of the arts. 

3 Methods 

In this paper, we propose an automated approach for detecting fake news based 
on features extracted from posts and the authors participating in online discussions 
related to given news. In this section, we provide a comprehensive description of the 
proposed method, from data collection and feature extraction to news classification 
(see Fig. 1). 

3.1 Data Collection 

This stage includes three main sub-stages: claim collection, keyword assignment, 
and post and author collection according to the assigned keywords. 

3.1.1 Claim Collection 

First, in order to train an ML classifier, we collect claims for estimation. These 
claims can come from a variety of sources, including crawlers which collect claims 
from fact-checking websites, public news services, etc.
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3.1.2 Keyword Assignment 

After the collection of claims has been completed, the next step is to collect relevant 
posts and authors that are associated with them. 

To the best of our knowledge, there are two ways to collect relevant posts for a 
given claim. One of the methods focuses on the sources that distributed the claims. 
Monti et al.  [20] used the sources’ headlines that exist in fact-checking websites in 
order to collect tweets. Vosoughi et al. [11] collected tweets that contained links to 
the given claims. We believe that both approaches have major drawbacks: Collecting 
tweets based on sources can be problematic in cases for which there are no sources. 
Moreover, the tweets with a link to the claims are a subset of all of the tweets that 
are relevant to the claims. Due to these drawbacks, we made the decision to tie a 
given claim to its corresponding tweets based on keyword assignment. We believe 
that this is the most effective method for collecting the maximal number of relevant 
posts for a given claim. 

Keyword assignment can be an automated or manual process. Automated 
keyword assignment can utilize part of speech (POS) tagging to generate sets of 
keywords for each claim. Based on the heuristics suggested by [22], we narrow 
down the text to the following candidates: nouns, adjectives, adverbs, and numbers. 
The POS tagging words are prioritized as follows: 

. number ≤ adverb ≤ adjective ≤ noun

Then, the K first words from the candidates are selected as input keywords. In the 
case of manual keyword assignment, human annotators are employed. An annotator 
is a person who assigns sets of keywords manually, based on his/ her expertise, in 
order to find the most appropriate sets of keywords for retrieving relevant posts. 

Manual keyword assignment guidelines for relevant post retrieval using OSM 
search engines are provided below. 

First, the annotator must read the given claim in order to understand the claim’s 
subject. In many cases, reviewing the title and description is sufficient, but in other 
cases, the annotator must read the full article. 

Second, some preprocessing is required, in which the annotator performs stem-
ming and removes stop words from the claim’s title and description. 

Third, the annotator manually assigns sets of keywords that express the main idea 
of the claim. Similar to [23], we recommend including at least three to five different 
sets of keywords for each claim. For example, for the false claim “Pamela Anderson 
passed away in March 2018,” the sets of keywords may be “Pamela Anderson March 
2018” or “Pamela Anderson passed away.” 

Fourth, in many cases, in order to expand the context of the retrieved posts, 
annotators also use synonyms as keywords [24]. This facilitates the retrieval of a 
large number of posts relevant to a given claim. In the example mentioned above, 
we can change the claim slightly, referring to Pamela Anderson by her first name 
(Pamela) instead of her full name and using the term “died” instead of “passed
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away.” Thus, additional sets of keywords may be: “Pamela died,” and “Pamela 
Anderson death.” 

Fifth, after assigning the sets of keywords, the keywords must be evaluated to 
determine whether they reflect the claim can be used to retrieve a sufficient number 
of relevant posts. In order to test this, the annotator queries the set of keywords 
manually using the OSM search engine. He/ she should review the retrieved posts 
and assess their relevance. In cases in which there are less than twenty posts, it might 
be wise to use additional synonyms as keywords (see Algorithm 1). 

Algorithm 1 Manual keyword assignment 
1: Read claim’s title and description. 
2: If necessary, read the full claim 
3: Remove stop words and perform stemming. 
4: Assign keywords that express the main idea of the claim. 
5: Provide 3–5 alternative sets of keywords. 
6: Use synonyms based on common knowledge. 
7: Query the OSM search engine using the different sets of keywords. 
8: Read a few of the retrieved posts. 
9: Check relevance. 
10: Record the number of posts retrieved. 

3.1.3 Post and Author Collection 

After establishing the set of keywords assigned to each claim, we use those 
keywords in order to collect posts and authors from available public OSM services. 

3.2 Feature Extraction 

Similarly to Shu et al. who suggested that social context features may provide useful 
information that can help infer the veracity of claims [12], we extract the following 
features: 

3.2.1 Author-Based Features 

Group-level author features are an extension of individual-level features [12]. 
Individual-level features are extracted to infer the credibility of an author using 
various aspects of author demographics, such as registration age, number of 
followers, number of followees, number of distributed tweets published by the user, 
etc. [17]
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As opposed to individual-level features, group-level author features encom-
pass overall characteristics of groups or communities of authors related to the 
claims. [25] The main idea behind these features is that false and true news 
promoters may have unique characteristics as a community [12]. 

The group-level author features are calculated as a Cartesian product between the 
individual-level features (e.g., number of followers, number of followees, number 
of distributed posts, etc.) and aggregation functions (e.g., min, max, average, and 
standard deviation). For example, the “average number of followers” feature depicts 
the average number of followers who follow the authors who participated in the 
online discussion related to a given claim. 

3.2.2 Post-Based Features 

OSM platforms encourage users (authors) to express their opinions and emotions 
using posts distributed by these users [18]. Therefore, extracting these kinds of 
features can help identify potential deceptive claims according to the reactions 
expressed by the general public [12]. Post-based features are calculated as a 
Cartesian product between the individual post features (e.g., number of retweets 
and number of favorites) and aggregation functions (e.g., min, max, average, etc.) 
For example, the “max number of retweets” feature depicts the maximal number of 
retweets a post, related to a given claim can have. 

3.2.3 Fake News Oriented Word-Based Features 

In many cases, the revenue of OSM websites is not based on subscriber charges but 
instead is based on the advertisements that appear on the websites [26]. This results 
in a significant amount of competition among OSM outlets that vie for readers’ 
attention and clicks, which increase the income of OSM websites. Therefore, in 
order to attract users and encourage them to visit a specific website and click on a 
given claim, website administrators may use a variety of techniques, including the 
use of eye-catching headlines along with links to the article [26]. 

In our approach, we use a fixed set of common clickbait phrases that include 
exaggeration, contradictions, etc. provided by Chakraborty et al. [26] for the given 
posts. For each post, we count the number of occurrences of each word contained in 
the fixed set of clickbait words. Afterwards, for each claim, we calculate the average 
number of occurrences of these words in the posts associated with the given claim. 

Moreover, we create a fixed set of fake news oriented words; the words were 
collected by inspecting tweets associated with fake claims (words such as “fake,” 
“liar,” etc.)
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3.2.4 Word Embedding-Based Features 

Word representation is a well-known natural language processing paradigm, and 
a typical word representation approach represents words as vectors. These vectors 
are derived from several training methods extracted from neural network language 
modeling [27], and they are used to capture the semantic properties of words. 

Our approach uses two pre-trained language models known as word embedding 
provided by GloVe [28]. In this research, we use one model, which was trained 
on about six billion words from the 2014 Wikipedia and English Gigaword Fifth 
Edition corpora [29] and consists of 300 dimensions. The second model consists of 
200 dimensions and was trained on about 27 billion tweets from Twitter. 

In this study, for each claim, we build an aggregated GloVe word embedding 
vector based on the words included in the posts associated with the given claim. This 
means that each claim was represented by the bag-of-words model of all associated 
tweets related to the given claim. Then, for each word in a tweet, we search for the 
appropriate vector in the GloVe word embedding model. Lastly, we aggregate all 
those vectors to a single aggregated vector by exploiting pooling techniques. Often 
pooling techniques choose the highest average lowest value in each dimension from 
a set of vectors. In our approach, we use three aggregation functions (minimal, 
maximal, and average) in order to create three representations for each claim. 
The maximal representation is the most common since it should capture the most 
prominent words that exist in the tweets describing the claim [30]. The minimal 
and average representations have also been used for sentiment classification [31]. 
In the last stage, we extract each dimension that exists in the aggregated vector 
representation as a feature. 

This means that for each claim we build three aggregated word embedding 
models. In the last stage, we extract each dimension that exists in the aggregated 
vector representation as a feature. 

3.2.5 Doc2vec-Based Features 

In 2014, Le and Mikolov [32] extended the idea of feature representation of words 
as a basic unit to variable-length pieces of texts, such as sentences, paragraphs, and 
documents. 

In our approach, we treat each associated post as a basic unit, and the doc2vec 
model is trained on the associated posts. Afterwards, we aggregate all of these vec-
tors to a single aggregated vector which represents the given claim. The aggregation 
functions are: average, minimum, and maximum. As in the previous case, we extract 
each dimension that exists in the final aggregated vector representation as a feature.
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3.2.6 Topic-Based Features 

Topic-based features are a unique post feature type that reflects the social response 
from the general public. Topic features can be extracted using topic models, such as 
latent Dirichlet allocation (LDA) [33]. 

In our approach, for each claim, we collect all of the relevant corresponding posts 
and divide them into 10 topics. Each post has a probability of being related to the 
given topic. We assign each post to the topic which has the maximal probability. 
Later, we collect all of the maximal probabilities for all of the posts associated with 
a given claim and run aggregation functions, such as minimum, maximum, average, 
and standard deviation. 

3.2.7 Sentiment-Based Features 

In many cases, sentiment analysis can assist in the detection of deceptive news by 
detecting unintended emotions expressed by deceivers [34]. 

3.2.8 Temporal Features 

In many cases, the spread of fake news within OSM platforms involves unique 
temporal patterns that differ from those of true news [12]. 

According to our approach, for each claim, we calculate the time intervals 
in which the authors created or distributed associated posts. We aggregate those 
intervals by the functions: average, minimum, and maximum, skewness, and 
kurtosis. 

3.2.9 Behavioral Features 

One of the approaches for detecting fake news suggests detection based on the 
suspicious behavior of the authors that distributed misinformation [12]. 

In our approach, for each claim, we calculate the following features per author: 
the average minutes between posts, the average posts per day, and the number of 
retweets. 

3.2.10 Graph-Based Features 

This approach focuses on network patterns. In most cases, graph-based features are 
extracted by constructing networks among the authors that distributed posts related 
to a given claim [12]. 

In our approach, for each claim, we create graphs based on follower and followee 
connections. Later, we calculate network features as a Cartesian product between
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network measures (e.g., degree, betweenness, and closeness centrality, page rank, 
etc.) and aggregation functions (e.g., maximum, median, minimum, and standard 
deviation). 

3.3 Classification 

After the feature extraction phase has been completed, we construct a machine 
learning classifier using the extracted features, in order to differentiate between false 
and true claims. 

4 Data 

In this section, we describe the data collected according to the process described in 
Sect. 3.1. 

4.1 Claims 

First, we collected a set of 386 labeled claims from several fact-checking websites 
(see Table 1). 

The claims were published on the fact-checking websites between June 1997 and 
December 2018. 

Human fact-checkers for the websites investigated each claim and provided 
verdicts, such as “fact,” “mostly true,” “mostly false,” etc. Here, we consider “true,” 
“mostly true,” and “fact” as labels for true claims, and “barely true,” “mostly false,” 
“false,” “pants on fire,” and “scam” as labels for false claims. Each downloaded 
claim includes descriptive attributes, such as title, description, verdict, verdict date, 
and a link to the analysis report supporting the verdict. 

Table 1 Fact-checking 
websites 

Total True False Tweets Authors 

snopes.com 311 165 146 554,886 432,140 

politifact.com 36 8 28 118,366 91,883 

factcheck.org 17 0 17 29,148 20,705 

gossipcop.com 10 0 10 11,532 6,535 

thejournal.ie 1 0 1 1224 1075 

usnews.com 9 9 0 118,327 81,660 

hoax-slayer.net 2 0 2 1184 916 

Total 386 182 204 834,667 634,914



692 A. Elyashar et al.

Fig. 2 Author and tweet distributions using manual keyword assignment and automated POS 
tagging keywords 

4.2 Keywords 

In this study, we collected two datasets: one dataset collected using manual keyword 
assignment and the second dataset that was collected by an automated part of speech 
(POS) tagging keywords. The dataset extracted based on the keywords assigned 
manually contains 832,993 tweets and 492,615 authors. The POS tagging keyword 
dataset contains 163,045 tweets and 118,699 authors. The two datasets have an 
overlap of 15,177 tweets and 38,771 authors (see Fig. 2). 

4.3 Posts and Authors 

With the keywords assigned for each claim, we collected tweets using the public 
Twitter API. We chose Twitter because with more than 321 million active users 
at the end of 2018 [35], it is one of the largest and most popular OSM networks 
worldwide. 

In total, we retrieved 834,667 tweets published by 634,914 authors. The number 
of retrieved tweets ranged from 20 to more than 40,000 per claim (see Fig. 3). The 
number of authors ranges from 14 to more than 32,000 per claim. 

5 Evaluation 

5.1 Experimental Setup 

As part of our experiments, we constructed news classifiers that differentiate 
between false and true claims based on the proposed feature subsets. In total, we 
extracted 1826 features representing these claims (see Table 3).
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Fig. 3 Distribution of the number of posts (left) and the number of authors (right) across claims 

After the feature extraction phase, we trained several machine learning classifiers 
on the Fake News dataset presented in Sect. 4. The ML algorithms used were 
XGBoost, Random Forest, AdaBoost, and Decision Tree. The Fake News dataset 
was sorted according to the claims’ verdict date. The data was divided into train and 
test sets which contained 300 and 86 claims, respectively. Each classifier was trained 
with multiple sets of features sorted by the feature importance score (5, 10, and 15 
top features). The performance of the classifiers was evaluated in terms of the area 
under the receiver operating characteristic curve (AUC), accuracy, F1, precision, 
and recall. 

5.2 Results and Discussion 

In this section, we present the results of our study based on the utilization of the 
feature subsets for news classification (see Sect. 3). The results are presented as 
follows: First, we analyze the features’ effectiveness based on the information gain 
score. Then, based on the number of features (5, 10, 15), we find the best classifier 
and discuss its performance. 

5.2.1 Feature Importance 

To obtain an indication of the usefulness of the various features, we analyzed 
their importance using Weka’s information gain attribute selection algorithm. These 
attributes were then fed into Weka [36], a popular machine learning software suite 
written in Java and developed at the University of Waikato, New Zealand. 

According to the information gain score, we can see that while some attributes are 
very indicative, many other features are less useful for news classification. Among 
the 1824 extracted features, only 163 features were found to be indicative (obtained 
an information gain score higher than zero). Among these features, 133 features
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were word embedding-based, 22 were user-based, six were fake news oriented 
words-based, and there was one of the doc2vec- and behavioral-based features. 

In this research, we were interested in identifying the optimal word embedding 
model to use while working with data crawled from the OSM. Our intuition led us 
to believe that it is not possible to identify a single model for all cases and that in 
fact, it likely depends on the data used. Therefore, in this study in which we are 
working with tweets, we use a word embedding model trained on Twitter. 

In order to address this, we compared the indicative features extracted based on 
word embedding models trained on Twitter and Wikipedia. Surprisingly, there is no 
advantage for features extracted based on Twitter although the corresponding posts 
were collected from it. In addition, the differences between the information gain 
scores of the indicative features extracted based on the models trained on Twitter 
and those trained on Wikipedia were not to be significant (.p = 0.967). 

With regard to the author-based features, most of the features were found to be 
indicative according to the information gain score. Moreover, among the top 10 
indicative features, six features were author-based. These features are related to the 
attributes of authors that distributed tweets related to a given claim, such as the 
number of followers, lists, followees, etc. Regarding fake news oriented words-
based features, we can see that the indicative features are related to words that 
contradict the given claim, such as the words “fake” and “liar.” 

The 10 attributes with the highest rank are presented in Table 2. 
As can be seen, the most significant feature among all of the extracted features 

is the fraction of the word “fake” in posts related to the claim which obtained an 
information gain score of 0.12. The number of occurrences of this word was found 
to be useful for detecting fake news (information gain score of 0.08). Moreover, 
we can see that the fraction of the word “fake” is an average of six times higher in 
false claims (0.036) than it is in true claims (0.006); the occurrence of this word is 
three times higher in fake claims (31.28 versus 11.1). These results demonstrate the 
power of “the crowds” for helping detect false and true claims given the awareness 
of skeptical authors who participate in online discussions and raise doubt and call 
attention to deceptive content included in a claim by using words that contradict the 
claim. 

With regard to user-based features, there are a few features, such as the number 
of lists, followers, and followees, that were found to be essential for detecting 
fake news. We can see that authors that distributed true claims registered to more 
lists (250.1) than authors that distributed false news (151.45) and have two times 
more followers (33,275.86 versus 16,573.61 followers) and more followees (2825.5 
versus 2421.05). It is important to note that the differences between the top nine 
features were found to be statistically significant. 

5.2.2 Best Classifier 

After trying many combinations of machine learning algorithms and feature subsets, 
we determined that the best performing classifier on the training set was the
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XGBoost with 10 features, 30 estimators a maximal depth of six, and a learning rate 
of one. This classifier resulted in an AUC and the accuracy of one on the training set. 
Evaluating its performance on the test set, we obtained an AUC of 0.89, accuracy 
of 0.76, F1 of 0.6, precision of 0.5, and recall of 0.76. The classifier that performed 
the best on the test set was the XGBoost with 15 features, 30 estimators, a maximal 
depth of three, and a learning rate of 0.2; in this case, this classifier obtained an AUC 
of 0.89, accuracy of 0.76, F1 of 0.63, precision of 0.5, and recall of 0.86. 

5.3 Feature Subset Comparison 

In order to evaluate the effectiveness of the proposed feature subsets, we performed 
a comparison of various combinations of feature subsets and machine learning 
algorithms. For each feature subset, we trained four machine learning algorithms 
(XGBoost, Random Forest, AdaBoost, and Decision Tree) on the 5, 10, and 15 most 
influential features in the subset. The results of the best classifiers for each feature 
subset are summarized in Table 3. 

The results show that the best performance was achieved by fake news oriented 
words feature subset. This finding emphasizes the power of authors who doubt sus-
pected claims. Moreover, the second best classifier was trained on word embedding 
features. This finding implies that authors who discuss false and true claims speak 
differently and these differences can be detected using word embedding. Surprising, 
the classifier which was trained solely on Wikipedia outperformed slightly better 
than the classifier that was trained on the Twitter corpus. 

The third best classifier was a mixed model that was trained on behavior, syntax, 
sentiment, and topic-based features. Based on this result, we can conclude that 
features based on behavior (e.g., the average number of posts per day and average 
number of retweets), syntax (e.g., the average number of links, average post length, 
average user mentions), sentiment (e.g., average negative, and positive emotions), 
and topic-based features are useful for news classification. 

5.3.1 Number of Posts per Claim 

In this study, one of the questions that most interested us was whether the number 
of relevant posts retrieved for a given claim affects the classifier’s ability to detect 
fake news. In order to answer this, we trained four algorithms: Random Forest, 
XGBoost, AdaBoost, and Decision Tree with 10 and 15 features. The classifiers 
were trained using two different methods; the first used 10-fold cross-validation, 
while the second was based on the descending order of the number of posts related 
to each claim. The training set was divided equally by the targeted label, e.g., 10–10 
means 10 records of labeled true and false claims. The training size ranges from 20 
records (10–10) to 360 records (180–180). The 10-fold cross-validation experiments 
were run 10 times, whereas the experiments that include the descending order of the
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number of posts were run only once. We found that classifiers which were trained 
using the method based on the descending order of the number of posts related to 
each claim outperformed the random selection of records. Given this, we conclude 
that the number of associated posts related to a given claim affects the classifier’s 
performance. 

6 Ethical Considerations 

Collecting information from online social media has raised ethical concerns in 
recent years. To minimize the potential risks that may arise from such activities, 
this study followed the recommendations presented by [37], which deal with ethical 
challenges regarding OSM and Internet communities. 

In this study, we used the public service of Twitter REST API for two purposes: 
first, to collect tweets associated with given news topics and, second, to identify 
the authors who distributed those tweets. The Twitter REST API collects the 
information of accounts that agree to share their information publicly. Moreover, 
the research protocol was approved by the Ethics Committee of the Anonymous 
University. 

7 Conclusion and Future Work 

In this paper, we proposed an automated approach for detecting fake news based on 
OSM posts and authors participating in related online discussions. For this purpose, 
we collected online discussions (posts) and identified the authors associated with 
the given claims using automated keyword assignment. Based on these posts and 
authors, we extracted features with respect to these claims. Next, we trained a 
machine learning classifier which differentiates between false and true claims. We 
demonstrated the proposed approach on a novel fake news dataset collected from 
Twitter. Based on our results and analysis, we can make the following observations: 
First, we showed that the posts and authors on OSM platforms can be utilized in 
order to detect fake news. The best classifier which its features are post and author-
based obtained an AUC and accuracy of 0.89 and 0.76, respectively, on the test set 
(see Sect. 5.2.2). 

Second, analyzing the importance of the proposed features (e.g., the fraction of 
the word “fake” within the posts) emphasizes the power of authors participating in 
online discussions in identifying fake news. 

In addition, objective author-based features, such as standard deviation and 
average of number of lists and followers were found to be essential for the detection 
of fake news. This result reinforces the conclusions of Zhou et al. [18] who detected 
rumors in Sina Weibo based on personal user features. Furthermore, based on 
the results of word embedding-based features, we conclude that (1) there is no
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advantage to using a GloVe word embedding model that has been trained on 
Twitter when analyzing tweets (see Sect. 5.2), and (2) authors speak differently 
when discussing fake or true news. This finding reinforces the conclusion of 
Wang [38] who detected fake news using word vectors constructed based on the 
claim’s content. Lastly, we found a positive correlation between the news classifier’s 
performance and the number of posts associated with the given claim. In future 
work, we plan to demonstrate the proposed process on different OSM platforms, 
such as Reddit, Quora, etc. 
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Online Propaganda Detection 

Mark Last 

1 Introduction 

Propaganda is characterized by deliberate selectivity and manipulation of informa-
tion presented to the target audience [1]. Usually, the propaganda content is aimed at 
influencing peoples’ opinions while trying to avoid the detection of its real agenda. 
Though the term propaganda has become widespread only in the twentieth century, 
the concept itself goes back to the ancient times. One of the earliest examples 
of political propaganda can be found in the Behistun inscription (sixth century 
BCE), where the Persian King Darius I tried to establish the legitimacy of his 
claim to Cyrus the Great’s throne, to which he had no blood connection [2]. Five 
hundred years later, in the Ancient Rome, detailed guidelines for conducting a pre-
election propaganda campaign were sent by Quintus Cicero to his brother Marcus 
Cicero who was running for the Roman Consulship. Here are some of his practical 
suggestions written in 64 BCE: 

Lastly, take care that your whole candidature is full of éclat, brilliant, splendid, suited to 
the popular taste, presenting a spectacle of the utmost dignity and magnificence. See also, if 
possible, that some new scandal is started against your competitors for crime or looseness 
of life or corruption, such as is in harmony with their characters [3]. 

All content delivery technologies that have replaced stone and papyrus in the 
course of centuries were promptly adopted as propaganda tools. Thus, printed books 
and films were extensively used by the Nazi propaganda machine for justification 
of their massive crimes against humanity. Music propaganda has also served the 
dictatorships around the world. For example, one of the most popular Soviet songs 
during the terrible years of Stalin’s Great Terror (1936–1939) has been “Wide is my 
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Motherland,” which claimed that there is no other country, where “a man can breathe 
so freely.” Nowadays, the Internet has become a major medium for propaganda 
dissemination. Public websites, online forums, social network platforms, and 
multimedia channels are being actively misused by political leaders, authoritarian 
regimes, terrorist organizations, hate groups, and lone-wolf terrorists. In fact, online 
propaganda dissemination has a unique set of advantages over traditional mass 
media technologies (mainly, newspapers, radio, and TV). These advantages include: 

• Negligible Publication Cost. Social media platforms enable and even encourage 
publication of almost any textual and multimedia content free of charge. 

• Source Anonymity. The propagandist can easily conceal his/her real identity, 
location, political affiliation, etc. by exposing a fake profile or even pretending 
to be someone else. ID verification of every user is not required by most social 
media systems yet. 

• Global Accessibility. On the Internet, the content can be delivered from anywhere 
to anywhere almost instantly. In most cases, propagandists from one country can 
easily target users in other countries. 

• Content Personalization. Different propaganda content can be delivered to differ-
ent users based on their specific characteristics. 

• Low Signal-to-Noise ratio. As explained in the subsequent sections of this 
chapter, online propaganda is extremely hard to detect as it constitutes a very 
low percentage of the Internet traffic and often uses nearly the same vocabulary 
and symbols as legitimate web content. 

This survey chapter is organized as follows. Section 2 reviews machine learning 
methods for detecting radical propaganda content disseminated by terrorist orga-
nizations and their supporters. In Sect. 3, we proceed with automated detection of 
propaganda campaigns on social media platforms. Open issues and directions for 
future research are summarized in Sect. 4. 

2 Terrorist Content Detection 

2.1 Online Terrorist Propaganda 

Shortly after the invention of the World Wide Web (WWW) in the early nineties 
of the twentieth century, terrorist organizations have started using the Internet as 
an accessible and cost-effective propaganda infrastructure. For more than 20 years 
now, secure and non-secure web sites, online forums, and file-sharing services have 
been routinely used by terrorist groups for spreading their word, recruiting new 
supporters, communicating with their affiliates, and sharing knowledge on forgery, 
explosive preparation, and other “core” terrorist activities. The evidence of terrorists 
using the internet goes back as far as 1997. According to Jane’s Foreign Report, 
“a full range of instructions for terrorist attacks, including maps, photographs, 
directions, codes and even technical details of how to use the bombs are being
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transferred through the Internet” [4]. A few years after this report was published, the 
9–11 hijackers have used the internet to communicate with each other, while staying 
completely unnoticed by the intelligence agencies [5]. As the German authorities 
have discovered after the tragic events of September 2001, the members of the 
infamous Hamburg Cell have actively used a computer for Internet research on flight 
schools and other topics of their interest [6]. 

According to MSNBC News Services [9], a Pentagon research team was 
monitoring more than 5000 Jihadist Web sites back in May 2006. Examples of such 
continuously active websites include https://saraya.ps/, https://www.palinfo.com/, 
and http://www.moqawama.org/, which are associated with Palestinian Islamic 
Jihad, Hamas, and Hezbollah, respectively. Unlike legitimate media portals, the 
URLs of terrorist websites are extremely volatile. For example, in 2006, the same 
three organizations were running their websites from the following addresses: http:// 
www.qudsway.com, http://www.palestine-info.com/, and http://www.moqavemat. 
ir/. By October 2019, two of these three 2006 domains were offered for sale and 
one was just unavailable. Since terrorist propaganda websites, in general, try to 
avoid detection by frequently changing their web domains and URLs as well as the 
geographical locations of their web servers, there is a need to develop automated 
methods for detecting terrorist content in the massive amounts of regular web 
traffic [13]. 

Terrorist propaganda websites have proved themselves as an effective recruit-
ment tool. There is a growing evidence that online terrorist content may cause 
Internet users, having no direct links to any terrorist group, to undergo a process 
of radicalization and then perform acts of terror on their own. Thus, a Spanish court 
has concluded that the deadly 2004 Madrid train bombings were carried out by 
a local Islamist cell inspired by an Islamic essay published on the Internet [10]. 
Similarly, a British Government report concluded that the July 7, 2005 bombings 
in London were a low-budget operation carried out by four men who had no direct 
connection to Al Qaeda and who obtained all the information they needed from 
the Al Qaeda sites on the Internet [11]. A recent study of 223 convicted United 
Kingdom-based terrorists [12] has found that in 61% of cases, online activity was 
related to the offenders radicalization and/or attack planning. According to the same 
study, lone-actor terrorists and extreme-right-wing offenders were more likely to 
engage in online learning. 

2.2 Using Word Graphs for Terrorist Content Detection 

Terrorist-generated content detection can be seen as a binary categorization prob-
lem, where the goal is to label a document or a complete website as either terrorist or 
non-terrorist. This categorization task has the following specific requirements [14]: 

• High accuracy. A terrorist content detection system should be able to identify as 
many terrorist websites as possible while minimizing the amount of false alarms.
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• Explainability. An automatically induced model should be subject to scrutiny by 
a human expert who may be able to enhance/correct the classification rules based 
on her/his own knowledge in the terrorist domain. 

• Inference speed. Due to a huge amount of information that is being continuously 
posted and updated online, the model should be capable to process massive 
streams of web documents in minimal time. 

• Multilinguality. The model induction methods should maintain a high perfor-
mance level over web content in multiple languages used for terrorist propaganda. 
For example, Hamas official website (“The Palestinian Information Center”) 
currently provides content in eight different languages (English, French, Arabic, 
Russian, Persian, Urdu, Turkish, and Malay). 

Markov et al. [14] present a classification-based approach to multi-lingual detection 
and categorization of terrorist documents, which builds upon the graph-based text 
representation model developed by [15]. Unlike the traditional bag-of-words (BOW) 
model, this representation is based on the order of terms in a text document. Each 
unique term (keyword) appearing in the document becomes a node in the graph 
representing that document. Distinct terms (stems, roots, lemmas, etc.) can be 
identified by character n-grams normalization techniques. Each node is labeled with 
the term it represents. The node labels in a document graph are unique, since a 
single node is created for each distinct term even if a term appears in the document 
in several different contexts. Second, if a word a immediately precedes a word b, 
there is a directed edge from the node labeled as a to the node labeled as b. The  
ordering (contextual) information is particularly important for representing texts in 
languages like English and Arabic, where phrase meaning strongly depends on the 
word order. An edge is not created between two graph nodes if the corresponding 
words are separated by certain punctuation marks (such as periods). Word-based 
graph representations are language-independent: they can be applied to a tokenized 
text in any language without the need of applying any language-specific sentence 
parsing tools. 

In the hybrid representation approach [14], terms (discriminative features) are 
defined as sub-graphs selected to represent a document already converted into a 
graph form. After the training documents are labeled by categories (e.g., terrorist vs. 
non-terrorist, a frequent sub-graph extraction algorithm is used for the identification 
of the most discriminative sub-graphs. Then all document graphs are represented 
as vectors of Boolean features (1—a selected sub-graph appears in the graph of a 
particular document; 0—otherwise). The resulting binary vectors can be used for 
inducing text categorization models by any standard classification algorithm. 

2.3 Case Studies 

In the first case study, Last et al. [14] built a corpus of 648 Arabic documents 
including 200 web pages downloaded from terrorist web sites and 448 web pages
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from legitimate news websites. The corpus contained .47,826 distinct Arabic words 
(after normalization and stopword removal). Legitimate documents were taken 
from four popular Arabic news sites: Al Jazeera www.aljazeera.net/News, CNN  in  
Arabic http://arabic.cnn.com, BBC News in Arabic http://news.bbc.co.uk/hi/arabic/ 
news, and UN News in Arabic http://www.un.org/arabic/news. Each document 
was manually verified by a fluent Arabic speaker as not containing any terrorist 
propaganda content. Terror documents were downloaded from http://www.qudsway. 
com and http://www.palestine-info.com/ (calling itself The Palestinian Information 
Center, or PIC), which were associated, at that time, with Palestinian Islamic Jihad 
and Hamas, respectively, according to the SITE Institute web site (http://www. 
siteinstitute.org/). A human expert, fluent in Literary Arabic, has manually chosen 
100 pages from each web site and labeled them as containing terrorist propaganda 
based on the entire content of each document rather than just occurrence of any 
specific keywords. A typical example of such document, including its translation 
into English, is shown in Fig. 1. 

Using the popular C4.5 decision-tree algorithm with 100-nodes document graphs 
(representing 100 most frequent non-functional words in a document), which were 
converted into binary vectors, brought the highest classification accuracy of 98.5%, 
based on 10-fold cross-validation. The resulting decision tree is shown in Fig. 2. 
The tree contains five binary features: four features representing single-node sub-
graphs (the words “The Zionist” in two grammatical forms, “The martyr,” and “The 
enemy”) and one two-node sub-graph (“Call [of] Al-Quds” in the document text, 
standing for the alias name of the Hamas web site). This simple decision tree can be 
easily interpreted as follows: if at least one of these five terms appears in an Arabic 
web document with a predefined minimal in-document frequency (at least two 
occurrences), it can be safely labeled as “terrorist (propaganda).” On the other hand, 
a document that contains none of these terms more than once should be labeled 
as “non-terrorist.” Moreover, the induced model provides an important insight into 
Hamas propaganda, which tries to delegitimize the State of Israel by representing it 

Fig. 1 Example 1: Terrorist propaganda in Arabic
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Fig. 2 C4.5 decision tree for classification of web pages in Arabic [14] 

as a “Zionist entity” or just as an “enemy,” its population as “Zionist settlers,” etc. 
On the other hand, the website frequently praises the suicide bombers as “martyrs” 
(Shahids in Arabic) despite the fact that suicide is prohibited in Islamic law.1 

The goal of the second case study was identifying the source of terrorist propa-
ganda content. The experimental collection consisted of 1004 English documents 
obtained from the following two sources: 

• 913 documents downloaded in 2006 from a Hezbollah web site.2 These docu-
ments contained .19,864 distinct English words (after stemming and stopword 
removal). A typical example of such document is shown in Fig. 3. 

• 91 documents downloaded in 2006 from a Hamas web site.3 These documents 
contained .10,431 distinct English words. 

Both these organizations are located in the Middle East with Hezbollah based in 
Lebanon and Hamas operating fromGaza Palestinian Territory. Making a distinction 
between the content provided by Hezbollah and Hamas is a non-trivial task, since 
these two Jihadi organizations are known to have close ties with each other resulting 
from their common cause and ideology. 

The resulting decision tree is shown in Fig. 4. The tree contains four binary 
attributes: two attributes representing single-node sub-graphs (the words “Arab” 
and “PA”—Palestinian Authority) and two two-node sub-graphs (a hyperlink to

1 And do not kill yourselves [or one another]. Indeed, Allah is to you ever Merciful [Qur‘an 4: 29]. 
Source: http://www.dar-alifta.org/Foreign/ViewFatwa.aspx?ID=7149. 
2 http://www.moqawama.org/english/. 
3 www.palestine-info.co.uk/am/publish/. 
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Fig. 3 Example 2: terrorist propaganda in English 

Fig. 4 C4.5 decision tree for classification of web pages in English [14] 

“Zionist Terrorism” and the expression “Holy Land” in the document text). This 
simple decision tree can be interpreted as follows: if at least one of these four terms 
appears in an English document coming from one of these two Web sites, it can be 
safely labeled as “Hamas Propaganda.” On the other hand, a document that contains 
none of these terms should be labeled as “Hezbollah Propaganda.” The induced 
model indicates that, in contrast to Hamas, Hezbollah usually presents itself as an 
organization opposing “Israel” rather than “Zionist Terrorism” and their militant 
narrative, at least in English, does not emphasize the concept of “Holy Land.”
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2.4 Using Hybridized Term-Weighting Method for Terrorist 
Content Detection 

Sabbah et al. [16] utilize a hybridized feature selection method based on basic term-
weighting techniques for detection of terrorist-generated textual content in Arabic. 
In their work, they use the following popular weighting schemes for measuring the 
importance of a given term: 

• Term Frequency (TF): Number of term occurrences in a given document. 
• Document Frequency (DF): Number of documents containing a given term. 
• Term Frequency—Inverse Document Frequency (TF-IDF): Terms of a given in-
document frequency are more important if they appear in fewer documents. 

• Glasgow: Terms of a given in-document frequency are more important if they 
appear in shorter documents. 

• Entropy: Terms of a given in-document frequency are more important if they 
appear in fewer documents and have a higher entropy of in-document frequency 
over the entire corpus. 

The subsets of top K terms selected by each one of the above schemes are combined 
using two different hybridization functions: UNION and Symmetric Difference. 
The number of subsets (“views”) to be combined at a time varies between one 
and five. The resulting term vectors representing each document are used with 
the following popular classification techniques: Support Vector Machine (SVM), 
K Nearest Neighbor (KNN), Decision Trees (DT), Naive Bayes (NB), and Extreme 
Learning Machine (ELM). 

The experiments were conducted on a balanced dataset of 500 Arabic documents 
downloaded from the Dark Web Forum Portal [17] and labeled as “dark” and 500 
documents collected from multiple websites in Arabic and labeled as “non-dark.” 
The maximum F-measure and accuracy value of 96.00% was reached with the 
SVM classifier using a UNION-based hybridized set of 1040 predictive features. 
The paper provides no information on the terms having the highest discriminative 
power according to the various weighting schemes. 

2.5 Using Linguistic Markers for Detecting Violent Online 
Content 

Johansson et al. [18] utilize a predefined set of linguistic markers to discover violent 
textual content in social media. These markers are aimed at detecting the following 
categories of warning behaviors: 

• Leakage—communication of intent to do harm to a specific target (e.g., a 
government building, a house of prayer, etc.). 

• Fixation—an increasing pathological preoccupation with a person (e.g., a public 
figure) or a cause (e.g., white supremacy or ISIS (Islamic State in Iraq and Syria)).
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• Identification—a desire to be a “pseudo-commando,” i.e., have a warrior or a 
martyr mentality. 

A manual list of keywords and keyphrases is defined for each category. Since such 
a list may not cover the entire vocabulary of terms used by the online users, it 
is extended by a distributional semantic lexicon to ensure the lists of terms are 
exhaustive and up-to-date. Each addition to the keyword lists has to be confirmed 
by a human operator. 

A monitoring tool performs a keyword search in the incoming stream of 
social media data for occurrences of the linguistic markers. For each marker, the 
monitoring tool outputs a list of Uniform Resource Identifiers (URIs) and the 
frequency of occurrence of the marker in the document. Then an automated system 
can specify the amount of markers that have to be triggered in order for an URI to 
be shown as potentially relevant to the user of the system. Sentiment analysis with 
respect to specific targets of interest may serve as an additional content filter. 

In an initial three-day monitoring experiment, the authors detected 130 URIs 
that contained keywords matching both violence (intent) and at least one of bomb 
(intent) or weapons (intent). Applying an extra filter to these results so that they 
also should contain a negative sentiment against the Jews, only four URIs were left. 
Those originated from the website of a Neoconservative Right magazine, a Christian 
blog, and two anti-Jewish blogs. 

3 Detecting Propaganda Campaigns on Social Media 
Platforms 

3.1 Using Targeted Advertising on Facebook as a Propaganda 
Tool 

Ribeiro et al. [19] explored the effectiveness of socially divisive political ads 
(e.g., discussing immigration, racial bias in policing, etc.), which were posted by 
a Russian propaganda group named Intelligence Research Agency (IRA) prior to 
2016 U.S. elections using Facebook’s targeted advertising platform. Since targeted 
ads are not seen by non-targeted and non-vulnerable users, malicious ads are likely 
to go unreported and their effects undetected. The study [19] is based on an in-depth 
analysis of a publicly released dataset of 3517 Facebook advertisements from 2015, 
2016, and 2017 that are linked to IRA. 

The click-through rate (CTR) of IRA-sponsored ads, computed as a ratio between 
the number of clicks and the number of impressions received by an ad, was found 
incredibly high. The median CTR was 10.8% and 75% of the ads had a CTR higher 
than 5.6. The average CTR was 10.8%. This value is almost ten times higher than 
the average CTR of 0.90% computed for Facebook ads across all industries (see 
Fig. 5).
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Fig. 5 Average click-through rate on Facebook in 2019. From https://instapage.com/blog/ 
facebook-advertising-benchmarks 

Moreover, many of IRA ads were severely divisive, and generated strongly 
varied opinions across the two ideological groups of liberals and conservatives. 
The divisiveness of an ad was calculated based on the differences in reactions 
of people with different ideological persuasions to the ad. These reactions were 
examined by three online surveys on a U.S. census-representative sample, which 
included 2886 respondents having a range of political views (40% liberal, 40% 
conservative, and 20% moderate or neutral). Each one of 485 high impact ads 
was shown to 15 different people who were asked about 10 different ads in one 
survey. Most these ads used attribute-based targeting, containing complex target 
formula that included interest and behavioral attributes suggested by Facebook. 
Specific divisiveness measures included (a) the likelihood of reporting the ad as 
inappropriate, (b) the strength of approving or disapproving the ad’s content, and 
(c) the perception of false claims potentially presenting in the ad. Each one of 
these three measures was calculated both in terms of consistency within the same 
ideological group and in terms of differences between the respondents belonging 
to different ideological groups. In a significant percentage of the ads, liberals and 
conservatives completely disagreed with each other in their reporting and approval 
responses as well as in their perception of false claims. 

3.2 Disinformation Campaigns on Twitter 

Probably, the most cost-efficient way to distribute propaganda content on social 
media platforms, like Twitter, is to deploy a network of automated accounts, or 
bots. These are computer programs, which can post, tweet, and message on their 
own. Detection and subsequent blocking is not an issue for bots, since they can 
always be replaced at a negligible cost. Howard and Kollanyi [20] studied the use 
of political bots on Twitter during the UK referendum on EU membership. They

https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks
https://instapage.com/blog/facebook-advertising-benchmarks


Online Propaganda Detection 713

assumed that accounts posting more than 50 times a day have to be at least partially 
automated rather than being operated exclusively by human users. In fact, 32% of 
all Twitter traffic about Brexit was generated by less than 1% of all accounts, which 
tweeted 100 times or more per day. Moreover, the authors have concluded with a 
high degree of certainty that 7 of the 10 most active accounts generating traffic on 
StrongerIn-Brexit topics were actually bots. 

The authors of [21] have analyzed .27,000 tweets posted during the 2016 US 
Presidential Campaign by 1000 accounts suspended by Twitter due to having ties 
with Russia’s Internet Research Agency (IRA). These tweet posts are available from 
https://data.world/fivethirtyeight/russian-troll-tweets. Tables 1 and 2 show typical 
examples of such tweets related to Trump and posted before the Election Day in 
English and Russian, respectively. 

According to the findings of [21], some of these Russian troll accounts disguise 
themselves as news portals by using the term “news” in their screen name and/or 
description. The resemblance of this deceitful tactics to Hamas naming their 
website “The Palestinian Information Center” is hard to ignore. After continuously 
monitoring the troll accounts data during the period of 21 months (from January 
2016 to September 2017), they found several interesting differences between the 
Russian trolls and baseline (random) Twitter users: 

• The Russian troll accounts use a smaller number of languages in their tweets 
(mostly, English and Russian) as opposed to random users. 

• The trolls use less different clients for posting their tweets. The primary choice 
for most of them is a Web client rather than a mobile device. 

• The self-reported location of Russian trolls (mostly, US, Russia, and Germany) is 
much more stable over time than the location reported by random users. 

• Russian trolls use less images and video in their tweets, putting more emphasis 
on text. 

• Russian trolls post more tweets containing at least one hashtag. Their top hashtags 
include mostly generic terms like #news, #politics, and #sports. Some hashtags 
such as #ISIS and #IslamKills represent dissemination of propaganda and/or 
controversial topics. 

• Trolls’ tweets include less mentions, which are associated with a smaller amount 
of Twitter users. 

• Russian trolls include more URLs in their tweets compared to the baseline, 
probably to increase the credibility of their propaganda messages. 

• Russian tweets sentiment tends to be more negative or neutral as opposed to 
mostly positive benchmark tweets. This confirms the trolls intention to increase 
the divisiveness of their audience. 

• Using an LDA model, it was found that topics from Russian trolls often refer 
to specific events and political issues vs. more general issues discussed by 
benchmark tweets. 

• Russian trolls change their screen names less frequently than benchmark users.

https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
https://data.world/fivethirtyeight/russian-troll-tweets
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• On average, Russian trolls accumulated four times more followers and friends 
than the benchmark users over the same data collection period, which probably 
indicates the trolls effort to increase their reachability. 

• Unlike benchmark accounts, trolls tend to delete their tweets in batches. 
• The trolls influence on normal Twitter users appears to be stronger than the normal 
users influence on each other, probably because the trolls were used to disseminate 
propaganda to normal Twitter users. 

The overall conclusion of this study was that the trolls influence on normal Twitter 
users was not substantial compared to the other platforms, with the significant ex-
ception of news published by RT (Russia Today), a Russian international television 
network funded by the Russian government. 

3.3 Fake News Detection 

Fake news is intentionally false or misleading information presented as factual news. 
This kind of disinformation can be spread on social media quickly and efficiently 
via the users who tend to trust their online contacts more than the professional media 
outlets. Detecting false claims in news reports is a challenging task because human 
evaluators have shown only marginal improvements over random guesses [7]. 
Consequently, an automated fake news detection system would be very helpful for 
social media websites who currently rely on their users to report posted news stories, 
which they suspect to be significantly inaccurate or completely fake. 

The authors of [8] design and evaluate a deep convolutional neural network 
(FNDNet) for fake news detection. They use the GloVe pre-trained word embedding 
model of 100 dimensions for representing the text of a potentially unreliable news 
article. The input word vectors are distributed across three parallel convolutional 
layers having 128 filters each. After hyperparameter optimization of their model, 
the authors have reached the classification accuracy of 98.36% on the Kaggle fake 
news dataset, which was collected during the time of the 2016 U.S. Presidential 
Election. 

3.4 Troll Accounts Detection 

Ghanem et al. [22] attempt to detect online troll accounts using textual features 
extracted from the tweets posted by each Twitter user. Their study is based on 
Russian troll accounts from the IRA dataset that use English as main language. 
They have also removed all non-English tweets from the data of those accounts. 
To represent the behavior of normal Twitter users, as opposed to trolls, they have 
collected a random sample of regular accounts having the following characteristics:
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• The user declared region was US. 
• The user chose English as the language of the Twitter interface. 
• The user posted at least 5 tweets between 1st of August and 31 of December, 2016 
assuming that Russian trolls were most active during that period. 

• The account used hashtags related to the elections and their parties (e.g., #trump, 
#clinton, #election, #debate, #vote, etc.). 

Using a topic modeling algorithm, the tweets content was associated with seven 
main themes such as Police shootings, Islam and War, etc. The theme-based features 
extracted from each tweet represented the following propaganda-related aspects of 
the posted content: emotions, sentiment, bad & sexual cues, stance cues, bias cues, 
linguistic categories, and morality. Finally, the users were modeled by the mean and 
the standard deviation of the above textual features calculated over their tweets on 
each theme. In addition, the following two sets of features were calculated over all 
tweets of each user (disregarding their topic): Native Language Identification (NLI) 
features and stylistic features. 

The account classification performance was measured by .F1macro value using 
5-fold cross-validation. The best results were obtained with the logistic regression 
classifier. Though combining all proposed text-based features led to the highest . F1
value of 0.94, a model based only on the Native Language Identification (NLI) 
features was nearly as accurate (.F1 = 0.91), presumably because a large amount 
of IRA English tweets was written by native Russian speakers. Stylistic and theme-
based features have provided the . F1 values of 0.88 and lower. 

3.5 Propaganda and Misinformation in Social Media 

As indicated in [23], social media has been increasingly used for dissemination 
of misinformation, which is “false or inaccurate information that is deliberately 
created and is intentionally or unintentionally propagated.” The categories of 
misinformation most frequently used for propaganda purposes include: intentionally 
spread misinformation, fake news, trolls, and hate speech. Misinformation detection 
methods are similar to other propaganda detection algorithms. Here are the main 
detection approaches presented in [23]: 

• Content-based misinformation detection: usually based on supervised text cate-
gorization methods trained on collections of labeled content. 

• Context-based misinformation detection: based on the assumption that misin-
formation is intentionally promoted by certain groups of accounts and thus has 
special posting patterns in terms of location and time. 

• Propagation-based misinformation detection: detecting misinformation based on 
the information diffusion patterns in a social network. 

• Early detection of misinformation: The earliness, or timeliness of a detection 
method refers to the need of detecting misinformation as early as possible, before 
it becomes widespread in the social media. This is known as a challenging issue
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due to a lack of data and lack of labels. However, the waiting period can be 
shortened by utilizing structural information such as hashtags, web links and 
content similarity. 

Finally, Wu et al. [23] indicate several directions for future research in countering 
the spread of misinformation such as detecting the most influential spreaders of 
misinformation, exploring the most effective spreading behaviors, and developing 
detection methods that are robust to adversarial attacks by sophisticated misinfor-
mation spreaders who are knowledgeable of the detection algorithms. 

4 Conclusion and Future Research 

In this survey chapter, we have provided an overview of state-of-the-art methods for 
automated detection of online propaganda content disseminated via social media 
outlets and traditional web platforms. Though a significant progress has been made 
in detecting textual propaganda in English, identification and understanding of 
non-English propaganda messages remains a major challenge due to a shortage 
of labeled data and limitations of current machine translation tools. For example, 
the automatic translation of most Russian language tweets appearing in Table 2 by a 
popular online translation service resulted in significant inaccuracies up to distortion 
of the tweets actual meaning. Another open challenge is detecting propaganda 
messages in multimedia content such as images, audio, and video. 
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Interpretable Machine Learning 
for Financial Applications 

Boris Kovalerchuk, Evgenii Vityaev, Alexander Demin, and Antoni Wilinski 

October. This is one of the peculiarly dangerous months to 
speculate in stocks in. The others are July, January, September, 
April, November, May, March, June, December, August and 
February. Mark Twain, 1894 

1 Introduction: Financial Tasks 

Forecasting stock market, currency exchange rate, bank bankruptcies, understanding 
and managing financial risk, trading futures, credit rating, loan management, bank 
customer profiling, and money-laundering analyses are core financial tasks for 
machine learning [1, 26, 36, 55]. Stock market forecasting includes uncovering 
market trends, planning investment strategies, identifying the best time to purchase 
the stocks and what stocks to purchase. Financial institutions produce huge datasets, 
which build a foundation for approaching these enormously complex and dynamic 
problems with machine learning tools. Potential significant benefits of solving these 
problems have motivated extensive research for years. 

The focus of this chapter is a growing area of interpretable machine learning for 
financial applications. Interpretability is required for ML models to be reliable and 
trustful for applications of machine learning models [72]. 
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Almost every computational method has been explored and used for financial 
modeling for a long time. We will name just a few studies: Monte-Carlo simulation 
of option pricing, finite-difference approach to interest rate derivatives, and fast 
Fourier transform for derivative pricing [6, 10, 14, 34]. Such developments augment 
the traditional technical analysis of stock market curves [54]. 

Machine learning (ML) as a process of discovering useful patterns and correla-
tions has its own niche in financial modeling. Similarly, almost every ML method 
has been used in financial modeling. An incomplete list includes linear and non-
linear models, multi-layer neural networks, k-means and hierarchical clustering; k-
nearest neighbors, decision tree analysis, regression, ARIMA, principal component 
analysis, Bayesian learning; and most recently deep learning for price formation 
in financial markets, directional movements prediction of S&P500 index, financial 
sentiment analysis and others [16, 32, 34, 38, 57–59]. 

Less traditional relational deterministic and probabilistic methods based on the 
first-order logic (FOL) are growing in many domains including finance [19, 20, 31, 
39–42, 45, 50–54, 60–64, 66] due to the current surge of interest in interpretable 
machine learning and AI. 

Bootstrapping and other evaluation techniques have been extensively used for 
improving ML results. Specifics of financial series analyses with ARIMA, neural 
networks, relational methods, support vector machines, and traditional technical 
analysis are discussed in [3, 40, 49, 54]. 

The naive approach to ML in finance assumes a cookbook instruction on “how 
to achieve the best result.” Some publications continue to foster this unjustified 
belief. In fact, the only realistic approach proven to be successful is providing 
comparisons between different methods, showing their strengths and weaknesses 
relative to problem characteristics (problem ID) conceptually, and leaving for user 
the selection of the method, which likely fits the specific user’s problem. This means 
a clear understanding that ML is still more art than hard science. Fortunately, now 
there is a growing number of books, which discuss the issues of matching tasks 
and methods in a regular way [21, 40]. For instance, understanding the power of 
first-order logic If-Then rules, over the decision trees, can significantly change and 
improve ML design. In comparison with other fields such as geology or medicine, 
where test of the forecast is expensive, difficult, and even dangerous, a trading 
forecast can be tested next hour or day, without cost and capital risk involved in 
real trading. 

Attribute-based learning methods such as neural networks, the nearest neigh-
bor’s method, support vector machines, and decision trees dominate in ML financial 
applications. They are relatively simple, efficient, and handle noisy data, but are 
limited in using background knowledge and complex relations. The recent review 
[69] of ML models for financial market prediction revealed that the most commonly 
used models are support vector machines and neural networks. Unfortunately both 
are very limited in providing the interpretable models. That review references a 
single and quite old paper (2006), which deals with interpretability by using fuzzy 
rules showing that explainability of ML models in finance is in a very nascent stage.
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Only a few recent papers deal with explainability of machine learning models in 
finance; one of them [71] explores mortgage default risk based on a linear logistic 
regression (Logit) and gradient tree boosting model (GTB). Both models are not 
directly interpretable. The authors do not build a surrogate interpretable model, 
which will approximate those models but focus on computing the importance of the 
features by estimating their Shapley values from given models. It is motivated by 
the abilities of Shapley values capturing impact of feature combinations stating that 
this method estimates key drivers of mortgage defaults, such as the loan-to-value 
ratio and current interest rate, which are in line with the findings of the economics 
and finance literature. 

Unfortunately, interpretability approaches including the feature importance ap-
proach to interpret ML models have an important deficiency in general and for 
Shapley values specifically. How much the importance ranks of the features can 
explain the model, if the methods of getting these ranks are not interpretable 
themselves? In the case of the Shapley values, the computational formulas are not 
derived from the task at hand and are not justified by that task (e.g., mortgage risk), 
but use the analogy from the game theory [72]. Thus, there is a strong need and a 
vast area of opportunities for developing and applying more interpretable machine 
learning models in finance. 

Relational machine learning techniques based on the first-order logic, which 
includes Inductive Logic Programming (ILP) [24, 40, 50–53] intend to overcome 
these limitations on interpretability. Previously these methods have been relatively 
computationally inefficient and had rather limited facilities for handling numerical 
data [12]. These methods are enhanced in both aspects [40] and are expanded to 
several domains from bioinformatics to robotics. We expect that the applications of 
these methods will grow due to the current demand for interpretable ML. 

Various publications explored the use of ML methods like hybrid architectures 
of neural networks with genetic algorithms, chaos theory, and fuzzy logic in finance 
[70]. Also, many proprietary financial ML applications exist but rarely reported. 

This chapter is organized as follows. Section 2 describes the methodologies of 
machine learning in finance, Sect. 3 presents ML models and practice in finance 
covering Potfolio managent with neural networks, Interpretable trading rules and 
relational ML, Relational machine learning for trading, Visual knowledge discovery 
for currency exchange trading, and Discovering money laundering and attribute-
based relational machine learning. This chapter concludes with its summary and 
future studies. 

Who can benefit from this chapter? The finance people already working in the 
field can see that the arsenal of ML methods in finance is expanded significantly 
with interpretable methods, such as relational methods based on first-order logic 
and Visual Machine Learning. The finance newcomers will get the same benefits. 

Data science practitioners can see another important area of application for ML 
methods where they can work on. For developers of new ML methods, this is the 
area with new challenges to develop novel ML methods and tools.
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2 Methodologies 

2.1 Specifics of Machine Learning in Finance 

Specifics of machine learning in finance are coming from the need to: 

• Forecast multidimensional time series with high level of noise 
• Accommodate specific efficiency criteria (e.g., the max of profit) 
• Make coordinated multiresolution forecast (minutes, days, and so on) 
• Incorporate text stream as input data (e.g., Enron case and September 11) 
• Explain the forecast and the forecasting model (“black box” models have 

limited interest and future for significant investment decisions) 
• Discover very subtle patterns with a short lifetime 
• Incorporate the impact of market players on market regularities 

The efficient market theory/hypothesis discourages attempt to discover long-term 
stable trading rules/regularities with significant profit. This theory is based on the 
idea that if such regularities exist, they would be discovered and used by most of the 
market players. This would make rules less profitable, and eventfully useless or even 
damaging. The market efficiency theory does not exclude that hidden short-term 
local conditional regularities may exist. These regularities cannot work “forever,” 
they should be corrected frequently. It has been shown that the financial data are 
not random and that the efficient market hypothesis is merely a subset of a larger 
chaotic market hypothesis [23]. This hypothesis does not exclude successful short-
term forecasting models for prediction of chaotic time series [13]. ML does not 
try to accept or reject the efficient market theory. It creates tools for discovering 
subtle short-term conditional patterns in financial data. Thus, retraining should be 
a permanent part of ML in finance and any claim that a silver bullet trading has 
been found should be treated similarly to claims that a perpetuum mobile has been 
discovered. 

The impact of market players on market regularities stimulated a surge of 
attempts to use ideas of statistical physics in finance [11]. If an observer is a 
large marketplace player, then such observer can potentially change regularities of 
the marketplace dynamically. Attempts to forecast in such dynamic environment 
with thousands active agents lead to much more complex models than traditional 
ML models designed for. Therefore, such interactions are modeled using ideas 
from statistical physics. The physics approach in finance [35, 46] is also known 
as “econophysics” and “physics of finance.” The major difference from the ML 
approach is that the physics approach is deeper integrated into the finance subject 
matter. ML approach covers empirical models and regularities derived directly from 
data and almost only from data with little domain knowledge explicitly involved. 
Historically, deep field-specific theories emerge after accumulating enough empiri-
cal regularities. We see that the future of ML in finance would be to generate more 
regularities that are empirical and combine them with domain knowledge via generic 
analytical ML approach [48]. The first attempts in this direction are presented in
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[40] that exploit power of relational machine learning as a mechanism that permits 
to encode domain knowledge in the first-order logic language. 

Data Selection and Forecast Horizon The selection of data for ML in finance is 
tightly connected to the selection of the target variable. There are several options for 
target variable y: y = T(k + 1), y = T(k + 2),. . .  , y = T(k + n), where y = T(k + 1) 
represents forecast for the next time moment, and y = T(k + n) represents forecast 
for n moments ahead. Selection of dataset T and its size for a specific desired 
forecast horizon n is a significant challenge. For stationary stochastic processes, 
the answer is well known – a better model can be built for longer training duration. 
For financial time series such as S&P500 index, this is not the case [47]. Longer 
training duration may produce many contradictory profit patterns that reflect bear 
and bull market periods. Models built using too short durations may suffer from 
overfitting, and hardly be applicable to the situations, where market is moving from 
the bull period to the bear period. The standard ML assumes that the model quality 
does not depend on frequency of its use. In finance frequency of trading is a model 
parameter, because the model quality includes both the accuracy of prediction and 
its profitability. The frequency of trading affects the profit, the trading rules, and 
strategy. 

Measures of Success Traditionally the quality of forecasting models is measured 
by the standard deviation between the forecast and the actual values on training 
and testing data. For trading tasks two models with the same standard deviation 
can provide very different trading return [40]. A more specific success measure in 
financial ML is Average Monthly Excess Return (AMER) for industry i: 

. AMERj = Rij − βiR500j − �j=1:12
(
Rij − βiR500j

)
/12

where Rij is the average return for the S&P500 index in industry i and month j and 
R500j is the average return of the S&P500 in month j. The  β i values adjust the 
AMER for the index’s sensitivity to the overall market. A second measure of return 
is Potential Trading Profits (PTP), which shows investor’s trading profit versus the 
alternative investment based on the broader S&P500 index. 

Quality of Patterns and Hypothesis Evaluation A typical approach is the testing 
of the null hypothesis H that pattern P is not statistically significant at level α. A  
meaningful statistical test requires that pattern parameters such as the month(s) of 
the year and the relevant sectoral index in a trading rule pattern P have been chosen 
randomly [30]. In many tasks, this is not the case. 

Greenstone and Oyer argue that in the “summer swoon” trading rule, the 
parameters are not selected randomly. This means that rigorous test would require 
testing a different null hypothesis not only about one “significant” combination, 
but also about the “family” of combinations. A bootstrapping method was used 
to evaluate the statistical significance of such a hypothesis. Greenstone and Oyer 
[30] suggest a simple computational method – combining individual t-test results
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by using the Bonferroni inequality that given any set of events A1, A2, . . .,  An, the  
probability of their union is smaller than or equal to the sum of their probabilities: 

. P (A1 & A2 &. . . . & Ak) ≤ �i=1:k P (Ai) .

2.2 Aspects of ML Methodology in Finance 

ML in finance typically follows a set of general for any ML task steps such 
as problem understanding, data collection and refining, building a model, model 
evaluation, and deployment. An important step is adding expert-based rules in ML 
loop when dealing with absent or insufficient data. “Expert mining” is a valuable 
additional source of regularities. However, in finance, expert-based learning systems 
respond slowly to the market changes [18]. A technique for efficiently mining 
regularities from an expert’s perspective has been offered in [40]. Such techniques 
need to be integrated into financial ML loop similar to what was done for medical 
ML applications [41]. 

Attribute-Based and Relational Methodologies Several parameters characterize 
machine-learning methodologies for financial forecasting. Data categories and 
mathematical algorithms are the most important among them. The first data type 
is represented by attributes of objects, that is each object x is given by a set of 
values A1(x), A2(x),. . . ., An(x). The common ML methodology assumes this type of 
data, known as an attribute-based or attribute-value methodology. It covers a wide 
range of statistical and connectionist (neural network) methods. 

The relational data type is a second type, where objects are represented by their 
relations with other objects, for instance, x > y, y < z, x > z. Here, we may not know 
that x = 3, y = 1, and z = 2. Thus, attributes of objects are not known, but their 
relations are known. Objects may have different attributes (e.g., x = 5, y = 2, and 
z = 4), but still have the same relations. The relational methodology is based on 
such a relational data type. 

Another data characteristic, important for financial modeling methodology, is an 
actual set of attributes involved. A fundamental analysis uses all available attributes, 
but technical analysis uses only time series such as stock price, and parameters 
derived from it. Most popular time series are index value at open, index value 
at close, highest index value, lowest index value, and trading volume and lagged 
returns from the time series of interest. Fundamental factors include the price of 
gold, retail sales index, industrial production indices, and foreign currency exchange 
rates. Technical factors include variables, which are derived from time series, such 
as moving averages. The next characteristic is a form of the relationship between 
objects. Many ML methods assume its functional form, e.g., linearity of the border 
that discriminates between two classes, which is often hard to justify. Relational ML
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does not assume a functional form but learns symbolic relations on numerical data 
of financial data. 

Attribute-Based Relational Methodologies Below we discuss a combination of 
attribute-based and relational methodologies to mitigate their difficulties. Histori-
cally, relational ML was associated with Inductive Logic Programming (ILP), which 
is a deterministic technique in its purest form. The typical claim about relational 
ML is that it cannot handle large data assuming that input data are relations, which 
take more space than individual attributes. Computing relations from attribute-
based data on demand resolves this issue. For instance, to explore a relation, 
Stock(t) > Stock(t + k) for  k days ahead we can compute it for every pair of 
stock data as needed. Multiple studies had shown that relational ML is most suitable 
for applications, where structure can be extracted from the instances, while Graph 
Neural Networks attempt to capture relations in a less interpretable way. 

Problem ID and Method Profile Selection of a method for discovering regu-
larities in financial time series is a very complex task. Uncertainty of problem 
descriptions, and method capabilities are among the most obvious difficulties in this 
process. To deal with this issue, a unified vocabulary, and a framework for matching 
the problems and methods have been proposed in [21]. A problem is described using 
a set of desirable values (problem ID profile) and a method is described using its 
capabilities in the same terms. Use of unified terms (dimensions) for problems and 
methods enhances the capabilities of comparing alternative methods. Introducing 
dimensions also accelerates their clarification. Next, users should not be forced 
to spend time determining a method’s capabilities (values of dimensions for the 
method). This is a task for developers, but users should be able to identify desirable 
values of dimensions, using natural language terms [21]. 

In Sect. 3.3 an original relational machine learning method in presented with its 
capabilities (dimensions) relative to the desirable values in the problem ID profile. 
These capabilities are illustrated by rule (3) in Sect. 3.3. 

Relational Machine Learning in Finance Decision trees are very popular in 
ML applications. They provide human readable, consistent rules, but discovering 
small trees for complex problems can be a significant challenge in finance [40]. In 
addition, DT rules fail to compare two attribute values, while it is possible with 
relational methods. Several publications strengthened that relational ML area is 
moving toward probabilistic first-order rules to avoid the limitations of deterministic 
systems. Relational methods in finance such as Machine Method for Discovering 
Regularities (MMDR) [40] are equipped with probabilistic mechanism, which is 
necessary for time series with high level of noise. MMDR is well suited to financial 
applications given its ability to handle numerical data with high levels of noise 
[18]. In computational experiments, trading strategies developed based on MMDR 
consistently outperform trading strategies developed based on other ML methods, 
and the buy-and-hold strategy.
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3 ML Models and Practice in Finance 

Prediction tasks in finance typically are posed as: (1) straight prediction of the 
market numeric characteristic, e.g., stock return or exchange rate, and (2) the 
prediction whether the market characteristic will increase or decrease no less than 
some threshold. Thus, the difference between ML methods for (1) or (2) can be 
less obvious, because (2) may require numeric forecast. Another type of task is 
assessment of investing risk [8]. It used a DT technique C5.0 and neural networks to 
a dataset of 27 variables for 52 countries whose investing risk category was assessed 
in a Wall Street Journal survey of international experts. 

3.1 Portfolio Management and Neural Networks 

Historically, the neural network most used by financial institutions was a multilayer 
perceptron (MLP) with a single hidden layer of nodes for time series prediction. The 
peak of such research activities was in mid-1990s [2, 27], which covered MLP and 
recurrent neural networks. Other neural networks used in prediction are time delay 
networks, Elman networks, Jordan networks, GMDH, and multi-recurrent networks 
[28]. Later we review the most recent work on deep neural networks (DNN). 

Below we present typical steps of portfolio management using the neural network 
forecast of return values. 

1. Collect 30–40 historical fundamental and technical factors for stock S1, say for  
10–20 years. 

2. Build a neural network NN1 for predicting the return values for stock S1. 
3. Repeat steps 1 and 2 for every stock Si that is monitored by the investor. For 

example, 3000 stocks are monitored and 3000 networks, NNi are generated. 
4. Forecast stock return Si(t + k)for each stock i and k days ahead (say a week, 7 

days) by computing NNi(Si(t)) = S(t + k). 
5. Select n highest Si(t + k)values of predicted stock return. 
6. Compute a total forecasted return of selected stocks, T and compute Si(t + k)/T. 

Invest to each stock proportionally to Si(t + k)/T. 
7. Recompute NNi model for each stock i every k days adding new arrived data to 

the training set. Repeat all steps for the next portfolio adjustment. 

These steps show why neural networks became so popular in finance. Potentially 
all steps above can be done automatically including the actual investment. Even 
institutional investors may have no resources to analyze manually the 3000 stocks 
and their 3000 neural networks every week. If investment decisions are made more 
often, say every day, then the motivation to use neural networks with their high 
adaptability is even more evident. 

This consideration shows challenges of ML in finance – the need to build models 
that can be very quickly evaluated in both accuracy and interpretability. Because NN
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are difficult to interpret even without time limitation steps 1–6 have been adjusted 
by adding more steps after step 3 that include extracting interpretable rules from the 
trained neural networks, and improving prediction accuracy using rules, e.g., [28] 
and more recently for DNN. 

It is likely that extracting rules from the neural network is a temporary solution. 
It would be better to extract rules directly from data without introducing neural 
network artifacts to rules and potentially overlooking some better rules because 
of this. A growing number of computational experiments support this claim, e.g., 
[40] on experiments with S&P500, where first-order rules built directly from data 
outperformed backpropagation neural networks. 

The logic of using ML in trading futures is like portfolio management. The most 
significant difference is that it is possible to substitute the numeric forecast of actual 
return for the categorical forecast, will it be profitable to buy or sell the stock at 
a price  S(t) on date t. This corresponds to long and short terms used in the stock 
market, where Long stands for buying the stock and Short stands for sell the stock. 

Recently, due to the success of Deep Learning methods in various fields, the 
interest in using neural networks in financial forecasting problems has returned. 
Researchers actively use new neural network architectures and learning algorithms 
such as Deep Neural Network Classifier (DNNC), Long-Short Term Memory 
(LSTM), Gated Recurring Unit (GRU), and Convolutional Neural Networks (CNN) 
to solve financial tasks, including in conjunction with reinforcement learning to 
develop optimal solutions for the purchase and sale of assets [4, 16, 17, 37, 56]. 
However, in general, analyzing the results, we can conclude that the use of Deep 
Neural Networks (DNN) does not provide an obvious advantage compared to the 
simpler neural network models. 

3.2 Interpretable Trading Rules and Relational ML 

Comparison of Approaches Below we present the categories of rules, which 
can be discovered by different techniques. Categorical rules predict categorical 
attributes, such as increase/decrease and buy/sell. A typical example of a monadic 
categorical rule is the following rule: 

. If Si(t) < Value1 and Si (t − 2) < Value2 then Si (t + 1) will increase.

Here, Si(t) is a continuous variable, e.g., stock price at the moment t. If  Si(t) is 
a discrete variable, then Value1 and Value2 are taken from m discrete values. This 
rule is called monadic, because it compared a single attribute value with a constant. 
Such rules can be discovered from trained decision trees by tracing their branches 
to the terminal nodes. Unfortunately, decision trees produce only such rules. 

The technical analysis rule below is a relational categorical rule, because it 
compares values of 5- and 15-day moving averages (ME5 and ME15) and derivatives 
of moving averages for 10 and 30 days (DerivativeME10, DerivativeME30):
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. 
If ME5(t) =ME15(t) & Derivative ME10(t) > 0 & Derivative ME30(t) > 0

then Buy stock at moment (t + 1) .

This rule can be read as: If moving averages for 5 and 15 days are equal and 
derivatives for moving averages for 10 and 30 days are positive, then buy stock 
on the next day. Thus, classical for stock market technical analysis is superior to 
decision trees. This rule is written in a first-order logic form. Typically, technical 
analysis rules are not discovered in this form, but the relational ML technique does. 

Classical categorical rules assume crisp relations such as Si(t) < Value1 and 
ME5(t) = ME15(t). More realistic is to assume that ME5(t) and ME15(t) are equal 
only approximately and Value1 is not exact. Fuzzy logic and rough sets rules are 
used in finance to work with “soft” relations [9, 40]. The logic of using “soft” 
trading rules includes the conversion of time series to soft objects, discovering a 
temporal “soft” rule from stock market data, discovering a temporal “soft” rule from 
experts (“expert mining”), testing consistency of expert rules and rules extracted 
from data, and finally using rules for forecasting and trading. 

Unlike neural networks, below we use a probabilistic logic network (PLN) 
approach, which is related to Probabilistic logic network [29]. The main distinct 
characteristics of PNL are as follows: 

1. It uses first-order logic to record patterns, which makes it quite capable to 
discover a wide range of patterns. 

2. These patterns are readable and understandable and belong to the field of 
Explainable Artificial Intelligence [22]. 

3. The inductive-statistical inference (I-S inference) is used to derive the predic-
tions. 

4. The disadvantage of I-S inference is its statistical ambiguity, which was resolved 
recently [60–62]. 

In PLN we define the maximally specific rules, the I-S derivation by which is 
logically consistent [62]. Inductive inference of rules is carried out by a special 
semantic probabilistic inference, during which the conditional probability of rules 
strictly grows, which distinguishes it from probabilistic logical programming. The 
most specific rules are obtained in the training process, which uses semantic 
probabilistic inference, which is implemented in the Discovery software system 
[63–66]. 

3.3 Relational Machine Learning for Trading 

This section presents the application of the first-order logic relational approach to 
develop a trading system for the S&P500 index.
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Let c(t1), . . . ,c(tn) be values of S&P500 close at time moments t1, t2, .., tn. The  
goal is to predict the direction of S&P500 (up or down) 5 days ahead. Thus, it is to 
predict the truth of the predicates c(t1) <  c(t1 + 5) and c(t1) >  c(t1 + 5). 

First, we formulate the hypotheses to be tested on time series. The experience 
of classical technical analysis shows that before changing the direction of their 
movement, prices form the so-called figures of technical analysis [54]. Based on this 
idea, a class of hypotheses and predicates were developed. The following predicates 
were used for this: 

Predicate c(ti) <  c(tj), which compares the time series value at ti and tj; 
Predicate ext(ti) = δi, where δi is −1 or 1 and ext(ti) = −  1 means a local 

minimum of c(t) is at time ti. 

. (ext (ti) = −1) ⇐⇒ (c (ti) < c (ti − 1)) & (c (ti) < c (ti + 1)) ,

ext(ti) = 1 means a local maximum of c(t) is at time  ti. 

. (ext (ti) = 1) ⇐⇒ (c (ti − 1) < c (ti)) & (c (ti + 1) < c (ti)) .

Below we use notation ext(t1, . . . , tn) = < δ1, . . . , δn>, which is equivalent to 
(ext(t1) = δ1) &  . . .  & (ext(tn) = δn). 

The hypotheses will test whether a certain combination of points of local minima 
and maxima has been formed in the past of the time series. If such a combination is 
found, a forecast is made 5 days ahead. Here is an example of the rule: 

. 

∀t1∃(t2, t3, t4, t5, t6) : (ext (t1, t2, t3, t4, t5, t6) =< −1, 1,−1, 1,−1, 1 >)

& (c (t1) < c (t2)) & (c (t2) < c (t4)) & (c (t3) < c (t2))

& (c (t5) < c (t6)) & (c (t6) < c (t4)) → (c (t1) > c (t1 + 5))

(1) 

Figure 1 shows a general view of the figure described by this rule. It says that if 
the time series formed a figure described by this rule, then the value of the series in 
5 days will become less than the value of the series on the current day. This figure 
resembles the well-known figure “head-shoulders” of the technical analysis. 

Fig. 1 Figure described by 
rule (1)
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Since several different rules may work on the same trading day, we may 
have several forecasts, with different probability, predicting the direction of price 
movement. Moreover, since the rules are probabilistic, the forecasts may contradict 
each other. The next step is determining the trading strategy, which deals with 
contradictory predictions. 

In this experiment, the final forecast is based on a comparison of the maximum 
probabilities of forecasts of an increase or decrease in price after 5 days. The trading 
strategy is to buy if the maximum probability that the price rises in 5 days is more 
than the maximum probability that it will fall and sell otherwise. A buy signal means 
to open a buy position for 5 days (buy and hold for 5 days, then close), if at the same 
time a sell position is already open, then it must be closed, If Signal(t) = 0, then do 
not trade on this day. 

Testing We used for testing the method of moving control on the 9-year time 
interval. This interval includes 2065 trading days. A training window of size of 
500 trading days and a testing interval of 100 days were used. Thus, for the entire 
testing period, the system passed 16 training and testing cycles, and the total testing 
interval was 1565 trading days. The quality of the trading system during testing was 
evaluated by modeling the real trading by assessing the potential profitability of the 
system. It requires ensuring that the system has a stable positive expected value: 

.PWinTradeWin + PLossTradeLoss > 0, (2) 

where PWin is the probability of gain, TradeWin is the average gain, PLoss is the
probability of loss, and TradeLoss is the average loss. The system trades with one
unit of the contract and does not use stop-loss orders. While it is not optimal, it
allows to fairly objectively evaluate the expected value (2). 

Figure 2 shows the test results with the dynamics of capital growth over the entire 
test period (1565 days) where trading days are numbered from 1 to 1565. Table 1 
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Fig. 2 Results of testing of the trading system
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Table 1 Characteristics of the trading system 

Indicator Value 

Profit 50,563 
Maximum drawdown −4960 
Expected value 568 
Percentage of profitable trades to all trades 69% 
Annual rate of return in relation to the maximum drawdown of the account 238% 

presents the indicators characterizing this trading system, where Profit is total profit 
that the trading system provided for the whole test period. 

A maximum drawdown (MDD) is the maximum observed loss from a peak to 
a trough of a portfolio, before a new peak is attained. Maximum drawdown is an 
indicator of downside risk over a specified time [68], 

. MDD = (Trough Value − Peak Value) / (Peak Value) ;

The expected value (EV) is computed by summing up each of the possible 
outcomes multiplied by its likelihood. 

Annual rate of return, in relation to the maximum drawdown of the account, 
characterizes the rate of return per unit of risk, where the value of the maximum 
drawdown of the account acts as a measure of risk. It is calculated by the formula: 

. Annual Rate of return = (Profit)

(Maximum drawdown)
· 365

(Number of trading days)
.

As the test results show, this trading system has fairly stable positive expected 
values. Figure 2 shows that the system provides a steady growth of capital over the 
entire test period. The use of capital management methods and risk limitation would 
significantly improve this trading system; however, this is a topic for a separate 
study. Here is an example of the rules that were found during training: 

. 

∀t1∃t2, t3, t4, t5 : (ext (t1, t2, t3, t4, t5) =< −1, 1,−1,−1,−1 >)

& (c (t5) < c (t2)) & (c (t4) < c (t1)) & (c (t4) < c (t2)) & (c (t3) < c (t4))

& (c (t1) < c (t5)) → (c (t1) > c (t1 + 5))

(3) 

This rule predicts a price reduction in 5 days. Figure 3 shows the general view of 
the figure described by this rule. The probability of this rule on the test set is 0.71. 

For this rule, the results of a test set are shown in Fig. 4 and Table 2.
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Fig. 3 Figure described by 
rule (3) 
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Fig. 4 Results of testing rule (3) 

Table 2 Characteristics of rule (3) 

Indicator Value 

Profit 28,786 
Maximum drawdown −2846 
Expected value, see (3) 993 
Percentage of profitable trades 72% 
Annual rate of return in relation to the maximum drawdown of the account 236% 

Comparison with Other Methods Comparison with other methods can be done in 
multiple ways. Below we start from desirable properties of the problem to be solved 
and the capabilities of the methods, which is conceptually outlined in Sect. 2.2 in 
terms of Problem ID and method profile. 

To evaluate the efficiency of the Discovery system, we compared this system with 
the sliding linear regression method and neural networks. To compare the quality 
of various methods, it is necessary to choose a method for comparing the results 
of various methods. As applied to financial problems, such a comparison method 
can be a comparison of the financial performance indicators of the trading systems
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based on these methods. Obviously, the method, whose forecast allows extracting 
more profit with less risk, has an advantage. 

Sliding Linear Regression For an arbitrary function c(t) represented by its values 
c(tk) at time moments tk, a moving linear regression is constructed as a function 
y(t) = ant + bn using the last n values of the time series. Based on this function, the 
following value is predicted by the formula y(t + 1) = an(t + 1) + bn. The trading 
strategy based on sliding linear regression is defined as follows: 

. Signal(t) =
⎧
⎨

⎩

1, if y(t) < y(t + 1)

− 1, if y (t + 1) < y(t)

0, otherwise

Signal(t) = 1 means to open a buy position, if at the same time a sell position is 
already open, then it must be closed. Signal(t) = −1 means to open a sell position, if 
at the same time a buy position is already open, then it must be closed. Signal(t) = 0 
means to keep open positions. The accuracy of the linear regression forecast largely 
depends on the choice of the size of the linear regression window. Linear regression 
was used for comparison, the window size of which was optimized, in order to 
obtain the best financial performance indicators of the trading system. 

Neural Network For comparison, we used multilayer neural networks with direct 
connections, trained by back propagation of errors. A greater influence on the 
quality of forecasts of neural networks is provided by the method of presenting input 
information [25]. Here, there is a large correlation between successive values – the 
most probable course value at the next moment is equal to its previous value: 

. c(t) = c (t − 1) + �c(t) ≈ c (t − 1) .

At the same time, to improve the quality of training, one should strive for 
statistical independence of inputs, i.e., to the absence of such correlations. There-
fore, the most significant values for prediction are not the values themselves, but 
their changes �c(t) as the most statistically independent values [25]. Based on 
these considerations, the initial series c(t) were converted into a series of relative 
increments 

. d(t), d(t) = �c(t)/c(t).

Here the input features of neural networks are k last values of the series: 
d(t),d(t − 1),...,d(t − k + 1) and the output value is (c(t + 5) − c(t))/c(t), i.e., 
neural networks were trained to predict the relative change of c in 5 days. 

Neural network training contains uncertainty associated with a random selection 
of initial weights. It leads to instability of neural networks for highly noisy financial 
time series. To increase the reliability of prediction, it is recommended to use a 
committee of neural networks [7]. We used a committee of 12 neural networks with 
different architectures and the following trading strategy:
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Table 3 Comparison of methods 

Indicator Discovery system Linear regression Neural networks 

Profit 50,563 27,805 33,117 
Maximum drawdown −4960 −19,059 −16,700 
Expected value, see (3) 568 66 106 
Percentage of profitable trades 69% 41% 57% 
Annual rate of return in relation to 
the maximum drawdown of the 
account 

238% 34% 46% 
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Fig. 5 Results of testing trading systems. Red – discovery system, blue –linear regression, violet – 
neural networks 

. Signal(t) =
⎧
⎨

⎩

1, if Out(t) > 0
− 1, if Out(t) < 0

0, otherwise
,

where Out(t) is the output of the set of neural networks to time t, Signal(t) is a signal 
to trade on day t. Signal(t) = 1 means to open a position to buy for 5 days, and if 
the position is already opened it needs to be closed. Signal(t) = −1 means to open a 
position to sell for 5 days, and if the position is already opened it needs to be closed. 
Signal(t) = 0 means no trading on day t. Testing of this trading system was also 
carried out by moving control, with the same parameters. 

Summary of the Comparison All methods were tested on the same time interval. 
Each trading system always entered the market with only one unit of the contract, 
and did not use stop-loss orders. Table 3 and Fig. 5 present the results of 
comparing the Discovery system with other methods. The graph in Fig. 5 shows the 
dynamics of capital growth over time for all three systems. Table 3 shows that the 
“Discovery” system surpasses other methods, in the percentage of correct forecasts 
and the indicators of the financial efficiency. Table 4 shows characteristics of the 
probabilistic logic network.
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Table 4 Comparison of model quality and resources for probabilistic logic network (PLN) 
approach 

Dimension 
Desirable value for stock price 
forecast problem Capability of PLN approach 

Explainability 
Ease to use logical relations 
Ease to use numerical attributes 
Tolerance for noise in data 
Tolerance for sparse data 
Tolerance for complexity 
Independence from experts 

Desirable 
Desirable 
Required 
Required 
Desirable 
Desirable 
Desirable 

Available 
Available 
Available 
High 
Available 
Available 
Available 

Comparing the profitability charts of trading systems, with the closing price chart 
of S&P500, shows that the trading system based on moving linear regression works 
well in areas with a noticeable trend. However, in places of a trend change and, 
especially, in the areas with very slight fluctuations of the price, it shows big losses. 
This is easily explained by the fact that linear regression at each moment of time 
tries to approximate the time series by a straight line, and this is acceptable only if 
there is a strong linear trend in the market. 

Compared to linear regression, the neural network trading system works slightly 
better in the areas with very slight fluctuations of the price, but a trend change 
still has a catastrophic effect on the shape of the yield curve, causing large dips. 
Moreover, the careful analysis of the graphs shows that neural networks work 
well only in those areas where the overall price dynamics coincides with the price 
dynamics of the area in which they were trained. This is because neural networks 
try to approximate the entire training set, trying to minimize the average error, so 
they first find the most general patterns that are satisfied for most examples from the 
training set. Thus, neural networks basically “catch” the most typical dynamics of 
the time series and cease to work when the trend changes. 

The relational system, in contrast to neural networks, can find the highly probable 
statistically significant patterns preceding a directional price movement. Most of 
these patterns continue to work successfully with trend changes. 

3.4 Visual Knowledge Discovery for Currency Exchange 
Trading 

This section presents a visual knowledge discovery approach to find an investment 
strategy in multidimensional space of financial time series [67]. Visualization based 
on the lossless Collocated Paired Coordinates (CPC) [43] plays an important role in 
this investment approach. The dedicated CPC subspaces constructed for EUR/USD 
foreign exchange market time series include characteristics of moving averages, 
differences between moving averages, changes in volume, and adjusted moving 
averages (Bollinger band).
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In this study, the profit is analyzed in normalized units: price interest points (pip) 
and PPC (Profit per candle). A pip indicates the change in the exchange rate for a 
currency pair, where one pip is 0.0001 USD in the pair EURUSD, which is used 
as a measurement unit of change. Profit per candle (PPC) is the difference between 
the cumulative profit at the end and the start of the period divided by the number of 
candles in the period, 

. PPC =
(

Profitend − Profitbegin

)
/
(
iend − ibegin

)
,

where iend and ibegin are the numbers of considered candles, e.g., one-hour candles. 
Effective relations were found for one-hour EURUSD pair in 2-D and 3-D 

visualization spaces, which lead to a profitable investment decision (long, short 
position, or nothing) that can be used in algotrading mode. 

Below we summarize steps of CPC: 

1. Representing a normalized to [0,1] n-D point x = (x1, x2, . . . , xn − 1, xn), as a set 
of pairs (x1, x2), . . . ,(xi, xi + 1), . . . , (xn − 1, xn); 

2. Drawing 2-D orthogonal Cartesian coordinates (X1, X2), . . . ,(Xn − 1, Xn) with all 
odd coordinates collocated on a single horizontal axis X and all even coordinates 
collocated on a single vertical axis Y; 

3. Drawing each pair (xi, xi + 1) in (Xi, Xi + 1); 
4. Connecting pairs by arrows to form a graph x*: (x1, x2) → (x3, x4) → . . .  → 

(xn − 1, xn). 

This graph x* represents n-D point x in 2-D losslessly, i.e., all values of x can be 
restored. Thus, this visualization is reversible representing all n-D data without loss 
of them. For the odd n the last pair can be (xn, xn) or (xn, 0). For 3-D visualization, 
the pairs are substituted by the triples (x1, x2, x3), . . . ,(xi, xi + 1, xi + 2), . . . , (xn − 2, 
xn − 1, xn). For an arbitrary n, some coordinates are repeated to get n divisible by 3. 

For time series, pairs of variables (xi, xi + 1) can be sequential pairs of values at 
time t and t + 1. In this way, a 4-D point x is formed as (vt, yt, vt + 1, yt + 1), where 
v is volume and y is profit at two consecutive times t and t + 1. A 4-D point (vt, yt, 
vt + 1, yt + 1) is represented in 2-D as an arrow from 2-D point (vt, yt) to 2-D point 
(vt + 1, yt + 1), respectively. This simple graph fully represents 4-D data. It has a 
clear and simple meaning, for instance, the arrow going up and to the right indicates 
the growth in both profit and volume from time t to t + 1. To observe better the 
beginnings and ends of events, the time pairs starting from odd time t are visualized 
separately from time pairs starting from even time t. 

Similarly, a 6-D point x can be (vt, dMAt, yt, dMA,t + 1, vt + 1, yt + 1), where dMA 
is the difference between the moving averages for some windows. We represent it in 
3-D as an arrow from 3-D point (vt, yt, dMAt) to 3-D point (vt + 1, dMA,t + 1, yt + 1). 
This simple graph fully represents 6-D data point with a clear meaning – the arrow 
going up and to the right indicates the growth in all three attributes: profit, dMA, and 
volume from time t to t + 1.
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Fig. 6 Two discovered cubes in Yr-dMAr-Vr space with the maximum asymmetry between long 
and short positions 

To shorten notation for the spaces, we will use notation like (Yr, Vr) instead of 
(Yrt, Vrt, Yr,t + 1, Vr,t + 1), and (Yr, dMAr, Vr), instead of (Yrt, Vrt, dMArt, Yr,t + 1, 
dMAr,t + 1, Vr,t + 1), where index r stands for normalized profit, volume, and dMA. 
Thus, 2-D and 3-D notations (Yr, Vr) and (Yr, dMAr, Vr) represent 4-D and 6-D 
spaces, respectively. In figures below, pins represent the arrows in the graphs, where 
circles indicate the beginnings of the arrows, with filled circles for the long position, 
and empty circles for the short positions. 

The CPC visualization gives an idea of how to create an investment strategy – to 
learn and discover places in 2-D/3-D CPC representation where asymmetry between 
number of suggestions to open long positions (filled circles) and short positions 
(empty circles) is high. A rectangle or a square in 2D space and a cube or a cuboid 
in 3D space have been used in the experiments. These areas are changing and need 
to be learned and updated regularly. 

The learning mode includes finding the optimal size rectangles and cuboids. 
Figure 6 shows the 2 colored cubes, with the largest asymmetry factor found by the 
learning algorithm. The proper positions can be opened, when subsequent events are 
located in the cubes. It provided the positive prediction with 0.619 accuracy for long 
positions, 0.686 for short positions, and a threshold Tmin = 10 on the number of pin 
circles required in the cube. The cumulative profit of this strategy for 5000 candles in 
learning period and 1700 candles during testing period is not too rewarding, because 
of small number of positive events, with a large period without trade. It indicates the 
need for a more dynamic strategy.
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Strategy Based on Quality of Events in the Cubes The next approach uses the 
sum of returns Yr accumulated in the learning period. A new hypothesis is that the 
more vertical arrows (pins) lead to higher profit. Consider a cube indexed by (k1, k2, 
k3) in a 3D grid, where k1, k2 k3 = 1, 2, . . . , K. We are interested in maximum of 
criterion Cl for long positions and Cs for short positions: 

. Cl (k1,k2,k3) =
∑ (

Yr i(k1,k2,k3) – Yr i−1(k1,k2,k3)

)

when (Yr i  – Yr i − 1) > 0 for all i that belong to a learning period and for all cubes 
(k1, k2, k3) and 

. Cs (k1,k2,k3) =
∑ (

Yr i(k1,k2,k3) – Yr i−1(k1,k2,k3)

)

when (Yr i  – Yr i − 1) < 0 for all i that belong to learning period and for all cubes (k1, 
k2, k3). 

Recall that the beginning of the arrow (Yr i − 1) belongs to (k1, k2, k3)-cube, not its 
head. For each learning period, the sums Cl (k1, k2, k3) and Cs (k1, k2, k3) are computed 
in every (k1, k2, k3)-cube. A corresponding investment strategy is – if Cl dominates, 
then open a long position, else open a short position: 

. Cl (k1,k2,k3) > Cs (k1,k2,k3) + dc then open long position,

. Cs (k1,k2,k3) > Cl (k1,k2,k3) + dc then open short position,

where dc is additional difference for Cl and Cs to make the difference more distinct. 
Figure 7a shows the bars, which represent the criteria C1 and Cs (by their length) 

in every cube (in grid 4 × 4 × 4). The bars have different lengths. A visual strategy, 
based on this difference, is one of the bars is longer than the other one, then open 
a proper position. It was checked for different values of periods of learning and 
testing, i.e., bars have been generated for the test data, and compared with bars for 
the training data. 

The thicker line in Fig. 7b is the best one, relative to the value of a linear 
combination of the cumulative profits, for the learning period, and Calmar ratio in 
the same learning period. For selecting the promising curve, the following criterion 
is used: 

. C = wc · Calmarlearn + wp · profitlearn

where wc is a weight of Calmar component (in these experiments wc = 0.3); wp 

is a weight of profit component (in these experiments wp = 100 for 500 hours of 
the learning period); Calmarlearn is the Calmar ratio at the end of learning period; 
and profitlearn is a cumulative profit at the end of the learning period measured as a 
change in EURUSD rate.
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(a) (b) 

Fig. 7 Bars in 3D after learning period which represent preferences to open long (green) or short 
(red) position and cumulative profits for different values of model parameters. (a) Bars in 3D space 
after learning period which represent preferences to open long (green) or short (red) position. (b) 
Cumulative profits for different values of parameters (f, s, kb) 

Here Calmar ratio, CR = (average of return over time �t)/max drawdown over 
time �t, which shows the quality of trading. In the literature the Calmar ratio of 
more than 5 is viewed as excellent, 2–5 as very good, and 1–2 as just good [67]. 

The curve with a significant profit and a small variance (captured by larger 
Calmar ratio for evaluating risk) is used in criterion C, as a measure of success 
of the algorithm, along with comparison of the result with typical benchmarks. 

The main idea in constructing the criterion C is to balance risk and profit 
contributions with different pairs of weights (wc, wp). 

Figure 7b shows that while the thicker line (best in criterion C) provides one 
of the top profits, it does not provide the best cumulative profits at the end of the 
learning period, due to the weighting nature of criterion C, which also takes into 
account the risk in the form of Calmar ratio. 

Figures 8 and 9 show cumulative profits for different learning and testing periods 
as a function of 20 shifted training and testing datasets (cycles). First the best values 
of parameters (f, s, kb) were found by optimizing them on training data, and then 
these values were used in the test period which follows the learning period. Figures 
8 and 9 show very efficient results for 1 hour and 1 day taking into account the 
profit-risk relation. 

Profit is represented by its pips value. These figures show the general direction 
of changes in cumulative profit, but y-axes have different scales and should not be 
compared directly. Practitioners consider the profit at the level of 10–20 pips per 
day as very high or even unrealistic to be stable [67]. The general conclusion is that 
the chosen space (Yr, Vr, dMAr) is very efficient.
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Fig. 8 Cumulative profit for main strategy with learning windows of 100 1 h-candles and test 
widows of 24 1 h-candles (Calmar ratio ~18, PPC = 0.87) 

Fig. 9 Cumulative profit for the strategy in 1d EURUSD time series with 5-day testing windows 
and 30-day learning windows in 20 periods, Calmar ratio = 7.69; PPC = 23.83 pips; delta = 0.05
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The learning period in Fig. 9 is about 1 month and the testing period is a 
1-week period (5 trading days). These are very convenient for automatic and 
manual trading. For model detail, other experiments and positive comparison with 
Buy&Hold benchmark see [67]. The CPC concept can be applied more generally for 
financial time series. Besides CPC, the whole class of General Line Coordinates [43] 
opens multiple opportunities to represent n-D financial data visually and discovering 
patterns in these data. See a chapter on explainable machine learning and visual 
knowledge discovery in this handbook [44]. This section illustrates the potential of 
an emerging joint area of visual knowledge discovery and investment strategies, to 
boost the creativity of both scientists and practitioners. 

3.5 Discovering Money Laundering and Attribute-Based 
Relational Machine Learning 

Problem Statement Forensic accounting is a field, which deals with possible 
illegal and fraudulent financial transactions. One of the tasks in this field is the 
analysis of funding mechanisms for terrorism (Prentice 2002), where clean money 
(e.g., charity money) and laundered money are both used for a variety of activities 
including acquisition and production of weapons, and their precursors. In contrast, 
traditional illegal businesses and drug trafficking make dirty money appear clean. 

The specific tasks in automated forensic accounting related to machine learning 
are the identification of suspicious and unusual electronic transactions and the 
reduction in the number of “false positive” suspicious transactions. Inexpensive, 
simple rule-based systems, customer profiling, statistical techniques, neural net-
works, fuzzy logic, and genetic algorithms are considered as appropriate tools. 

There are many indicators of possible suspicious (abnormal) transactions in 
traditional illegal business. These include the following: (1) the use of several related 
and/or unrelated accounts before money is moved offshore, (2) a lack of account 
holder concern with commissions and fees, (3) correspondent banking transactions 
to offshore shell banks, (4) transferor insolvency after the transfer or insolvency at 
the time of transfer, (5) wire transfers to new places [15], (6) transactions without 
identifiable business purposes, and (7) transfers for less than reasonably equivalent 
value. 

Some of these indicators can be easily implemented as simple flags in software. 
However, indicators such as wire transfers to new places produce a large number 
of “false positive” suspicious transactions. Thus, the goal is to develop more 
sophisticated mechanisms, based on interrelations of many indicators. 

Machine learning can assist in discovering patterns of fraudulent activities, which 
are closely related to terrorism, such as transactions without identifiable business 
purposes. The problem is that often an individual transaction does not reveal that it 
has no identifiable business purpose, or that it was done for no reasonably equivalent 
value. Thus, machine-learning techniques can search for suspicious patterns in
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the form of more complex combinations of transactions and other evidence using 
background knowledge. This means that the training data are formed not by 
transactions themselves but the combination of two, three, or more transactions. 

This implies that the number of training objects exploded. The percentage of 
suspicion records in the set of all transactions is very small, but the percentage 
of suspicious combinations in the set of combinations is minuscule. This is a 
typical task of discovering rare patterns. Traditional machine learning methods 
and approaches are ill equipped to deal these such problems. Relational machine 
learning methods open new opportunities for solving these tasks by discovering 
“negated patterns” described below based on [42]. 

Approach and Method Consider a transactions dataset with attributes such as 
seller, buyer, item sold, item type, amount, cost, date, company name, type, and 
company type. We will denote each record in this dataset as (<S>, <B>, <I>), 
where <S>, <B>, and <I> are sets of attributes about the seller, buyer, and item, 
respectively. We may have two linked records R1 = (<S1>, <B1>, <I1>) and 
R2 = (<S2>, <B2>, <I2>), such that the first buyer B1 is also a seller S2, B1 = S2. It  
is also possible that the item sold in both records is the same I1 = I2. We create a new 
dataset of pairs of linked records {<R1, R2>}. ML methods will work in this dataset 
to discover suspicious records, if samples or definitions of normal and suspicious 
patterns provided. Below we list such patterns: 

• A normal pattern (NP) – a Manufacturer Buys a Precursor & Sells the Result of 
manufacturing (MBPSR). 

• A suspicious (abnormal) pattern (SP) – a Manufacturer Buys a Precursor and 
Sells the same Precursor (MBPSP). 

• A suspicious pattern (SP) – a Trading Co. Buys a Precursor and Sells the same 
Precursor Cheaper (TBPSPC). 

• A normal pattern (NP) – a Conglomerate Buys a Precursor & Sells the Result 
of manufacturing (CBPSR). 

A machine learning algorithm A analyzes pairs of records {<R1, R2>} with say 
18 attributes total and can match a pair (#5,#6) with a normal pattern MBPSR, 
A(#5,#6) = MBPSR, while another pair (#1,#3) can be matched with a suspicious 
pattern, A(#1,#3) = MBPSP. 

If the definitions of suspicious patterns are given, then finding suspicious 
records is a matter of a computationally efficient search in a database, which 
can be distributed. This is not the major challenge. The automatic generation of 
patterns/hypotheses descriptions is a major challenge. One can ask: “Why do we 
need to discover these definitions (rules) automatically?” A manual way can work 
if the number of types of suspicious patterns is small, and an expert is available. For 
multistage money-laundering transactions, this is difficult to accomplish manually. 
Creative criminals and terrorists permanently invent new and more sophisticated 
money-laundering schemes. There are no statistics for such new schemes, to learn 
as it is done in traditional machine learning approaches. An approach based on the 
idea of “negated patterns” can uncover such unique schemes. According to this
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approach, highly probable patterns are discovered and then negated. It is assumed 
that a highly probable pattern should be normal. More formally, the main hypothesis 
(MH) of this approach is: 

If Q is a highly probable pattern (>0.9) then Q constitutes a normal pattern and 
not(Q) can constitute a suspicious (abnormal) pattern 

Below we outline an algorithm, based on this hypothesis, to find suspicious 
patterns. Computational experiments with two synthesized databases and few 
suspicious transaction schemes permitted us to discover transactions. The actual re-
lational machine-learning algorithm used was algorithm MMDR (Machine Method 
for Discovery of Regularities). Previous research has shown that MMDR based on 
first-order logic and probabilistic semantic inference is computationally efficient, 
and complete for statistically significant patterns [40]. 

The algorithm for finding suspicious patterns based on the main hypothesis (MH) 
consists of four steps: 

1. Discover patterns, compute probability of each pattern, select patterns with 
probabilities above a threshold, say 0.9. To be able to compute conditional 
probabilities patterns should have a rule form: IF A then B. Such patterns can 
be extracted using decision tree methods for relatively simple rules and using 
relational machine learning for discovering more complex rules. Neural Network 
(NN) and regression methods typically have no if-part. With additional effort, 
rules can be extracted from the NN and regression equations. 

2. Negate patterns and compute probability of each negated pattern, 
3. Find records database that satisfies negated patterns and analyze these records 

for possible false alarm (records maybe normal not suspicious). 
4. Remove false alarm records and provide a detailed analysis of suspicious records. 

The details can be found in [42]. 

4 Conclusion 

To be successful, a machine learning project should be driven by the application 
needs, and results should be tested quickly. Financial applications provide a unique 
environment, where efficiency of the methods can be tested instantly, by not only 
using traditional training and testing data, but making real stock forecast and testing 
it the same day or week. This process can be repeated daily for several months 
collecting quality estimates. This chapter highlighted problems of ML in finance, 
and specific requirements for the ML methods, including in making interpretations, 
incorporating relations, and probabilistic learning. 

The relational ML outlined in this chapter advances pattern discovery methods, 
which deal with complex numeric and non-numeric data, and involves structured 
objects, text, and data in a variety of discrete and continuous scales (nominal, order, 
absolute, and so on). This chapter shows the benefits of using such interpretable
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methods for stock market forecast and forensic accounting, which includes un-
covering money-laundering schemes. The technique combines first-order logic and 
probabilistic semantic inference. The approach has been illustrated with examples 
of discovery of suspicious patterns in forensic accounting, and stock market trading. 

The success of machine learning exercises on automated trading systems has 
been reported in literature extensively, e.g., [33, 67]. For instance, machine-
learning methods achieved better performance, than traditional statistical methods, 
in predicting bankruptcy and credit ratings, e.g., [5, 34]. 

The next direction is developing decision support software tools, specific for 
financial tasks, to adjust efficiently the financial ML models to a new data stream. 

In the field of ML in finance, we expect an extensive growth of hybrid methods, 
which combine different analytical and visual models [43, 67] to provide a better 
performance than individual methods. In the integrative approach, individual models 
can serve as trained artificial “experts.” Therefore, their combinations can be 
organized similar to a consultation of real human experts. Moreover, these artificial 
experts can be combined with real experts. These artificial experts can be built as 
autonomous intelligent software agents. Thus, “experts” to be combined can be 
machine learning models, real financial experts, trader and virtual experts (software 
intelligent agents), which run trading rules extracted from real experts. This requires 
“expert mining” for extracting knowledge from human experts to enhance virtual 
experts [41]. 

We expect that ML in finance will be shaped as a distinct field, which blends 
knowledge from finance and machine learning, similar to what we see now in 
bioinformatics, where integration of field specifics and machine learning is close 
to maturity. We also expect that the blending with ideas from the theory of dynamic 
systems, chaos theory, and physics of finance will deepen. 
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Predictive Analytics for Targeting 
Decisions 

Jacob Zahavi 

1 Introduction 

Predictive Analytics (PA), one of the hottest topics in Data Science today, is 
concerned with predicting future events of individual entities (e.g., customers and 
prospects) based on past observations for which the response values are known. The 
event which we want to predict is the response variable, more commonly known as 
the dependent variable. The variables used to “explain” the event are the explanatory 
variables, also known as predictors, independent variables, attributes or, simply, 
variables. Data mining people refer to them as features.1 

By and large, PA methods are divided into two main categories – classification 
and estimation. In classification, the objective is to classify observations to one of 
several predefined classes; in estimation, the objective is to predict the numeric value 
of the dependent variable. 

The most common classification problems are the binary problems in which the 
objective is to classify future events into one of two possible classes Yes/No, or 0/1. 
The examples are many:

• Will the customer respond to an offer to purchase a product or a service?
• Will the customer churn and switch to a competitive company?
• Will the customer pay his/her debt in full?
• Will the customer click on an online ad? 

1 In the following we use the terms predictors, explanatory variables, variables, independent 
variables, attributes and features interchangeably 
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• Will the customer recuperate from a given surgery?
• Will the customer file an insurance claim next year? 

Multiple methods have been developed in recent years to entertain classification 
problems including, among the rest, logistic regression (Ben-Akiva and Lerman 
1987), decision trees (Breiman et al. 1984), neural networks (Rumelhart et al. 1986), 
genetic algorithms (Goldberg 1989), Bayesian methods (Elkan 1997), SVM – 
support vector machines (Vapnik 1995), and others. The dependent variable in these 
methods is binary (0/1) and the independent variables are a collection of domain-
related variables and customers’ characteristics. Since it is not possible to predict 
future events for sure, all classification methods estimate the occurrence likelihood 
of the event. Depending upon the model used, the likelihood is expressed either by 
means of probability measures (such as in logistic regression), or some type of a 
ranking measures (such as in neural networks) – often the higher the measure, the 
higher the occurrence likelihood. 

In estimation problems the dependent variable is continuous or countable, and 
the objective is to predict the value of this variable, usually its expected value, as a 
function of the collection of the explanatory variables. Also, here, the examples are 
many:

• How much money will the customer spend on purchasing from a catalog?
• How many items will the customer order from a catalog?
• How much money will the customer donate to a given charity?
• How many insurance claims will the customer file next year?
• How big will the insurance claim be?
• What is the LTV (lifetime value) of the customer? 

The leading models for estimation problems consist of a variety of regression 
models, neural networks, decision trees, and other machine learning methods. A 
good reference on PA in general can be found in the book by Kelleher et al. (2015). 

The major problem afflicting PA models in the world of big data, continuous 
as well as discrete, is the dimensionality issue which renders the model-building 
process very tedious and time-consuming. The most complex problem is feature 
selection – selecting the most influential predictors explaining the response from 
among a much larger set of potential predictors, which can reach hundreds, even 
thousands, of predictors. The objective is to choose the predictors which optimize a 
given goodness of fit function subject to constraints that renders stable models and 
avoid over-fitting. 

A detailed discussion of some of the popular models used to address targeting 
decisions appears in Levin and Zahavi (2005). In this article, we provide an overall 
review of the process involved in building large-scale PA models in the world of big 
data with a focus on targeting decisions. Without loss of generality, we concentrate 
in this article on binary classification methods based on logistic regression. There 
are two conflicting concerns here: model accuracy represented by the bias caused 
by the difference between the “true” model parameters and the estimated model 
parameters (the specification error), and the sampling variance caused by the fact 
that the model parameters are estimated based on a random sample. The objective is 
to choose a model that both accurately capture the regularities in the learning dataset
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(i.e., reduce bias) but also generalizes well to unseen data and new observations. 
Unfortunately, it may not be possible to reduce both the bias and variance errors. A 
bias-variance trade-off is therefore required to find the “best” set of predictors for a 
model. 

2 PA – Predictive Analytics 

Prediction problems have been around us for generations. As a matter of fact, 
the “old” good linear regression model is, in a sense, also a prediction model. 
In its origin, the regression model is an explanatory model aimed at finding the 
relationship between an output variable, represented by the dependent variable, 
and a collection of domain-related input variables, often a small number of them, 
represented by the independent variables. The relationship between the variables 
could be either causal, often based on theory or practice, allowing one to affect the 
outcome of the output variable by changing the values of one or more of the input 
variables, or statistical that does not imply causal relationship but only expresses 
the strength of the relationships between the variables. A good explanatory model 
is a model with high fit between the output and the input variables that meet the 
assumptions underlying the regression models. If these assumptions are not met, 
one can apply transformations on the input and/or the output variables to render 
a model that meets the assumptions behind the regression model. Once a “good” 
model is found, one can also use it for predicting the value of the output variable for 
values of the independent variable which lie within the range of the input variables 
(interpolation). But one should be very cautious to use the model for predicting 
the values of the output variable for values of the independent variables which lie 
outside the range of the input variables (extrapolation). 

Prediction problems are problems in which there exists a consequential rela-
tionship between the variables that enables one to predict the values of the output 
variable as a function of the input variables. The objective is to predict the values of 
the output events beyond the range of the input values. The idea is to build a model, 
based on past observations, from which we can discern the relationships between 
the output and the input variables, and then apply this model to predict the values 
of the output variable for new observations. Typical applications in marketing are 
targeting decisions for a product or a service where the objective of the model is 
to estimate the purchase probability of the customers. Then, instead of approaching 
all millions of customers in the database, most of them are not going to respond to 
the offer anyways, soliciting only the customers who are most likely to respond to 
the offer based on the predicted response probabilities. In targeting decisions, the 
model is often based on previous campaigns for the same or “similar” products. If 
a new product is involved for which no information exists yet on how customers 
will react to the offer, the model is based on a representative sample of customers 
drawn randomly from the database, who are approached with the offer to purchase 
the product/service. Then, based on the customers’ response, building a response
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model which is applied on the balance of the customers in the database in order to 
identify the customers who will take part in the marketing campaign. This method 
saves redundant marketing costs, therefore increasing profitability, because it avoids 
approaching the many customers who, based on the model, are not likely to respond 
to the marketing offer. This model is cross-sectional, being based on a sample of 
customers selected randomly across the entire database. 

Another type is a temporal model where observations are drawn over time. A 
common example is a churn application which is based on a sample of customers in 
a certain time period, say the last quarter, some of whom have defected the company 
and some who have not, in order to build a churn model which is then applied 
to predict the churn probability of customers in the next quarter. This information 
enables the organization involved, e.g., a cellular company, to take actions ahead 
of time to avoid customers who were identified as potential churners by the model, 
certainly the profitable ones, to defect to a competitive company. 

By and large, the PA process consists of two main processes: a model-building 
process that fits a model to the data, and a scoring process that uses the model 
to predict the response of new observations. There are many types of response 
models to entertain the variety of prediction problems which exist in practice. As 
mentioned above, in this article we focus on the PA process for binary (Yes/No) 
targeting decisions involving logistic regression. 

3 How to Evaluate a PA Model? 

Certainly, the logistic regression model is one of the leading models to predict 
a binary Yes/No (0/1) target variable. While most other prediction models, such 
as neural networks, decision trees, Bayesian methods, and others, are heuristic 
methods with no much theory behind them, the logistic regression model has a solid 
theoretical basis which allows one to interpret and explain the model parameters 
and results. The output of the logistic regression model, the so-called scores, are 
well-defined probabilities. In targeting buy-no-buy applications, for example, these 
scores represent the purchase probabilities of the customers. Furthermore, the sum 
of the predicted purchase probabilities across a group of customers in the training 
dataset (e.g., females) yields the predicted number of orders of that group, certainly 
an important output of any targeting application. The fact that the output scores of 
the logistic regression model are well-defined probabilities allows one to apply solid 
economic analysis to make better targeting decisions which are based on economic 
criteria. Furthermore, Hastie et al. (2009) have shown that one can estimate the 
parameters of a logistic regression model by solving a series of weighted linear 
regression models, which provides yet another strong theoretical foundation for the 
logistic regression model. All these criteria make the logistic regression model an 
ideal candidate as a prediction model. Thus, in the following we use the logistic 
regression model for actual predictions, but the theoretical discussion will be based 
on the linear regression model.
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By and large, a regression model is basically an optimization model whose 
purpose is to find the best fit between the input and the output variables based 
on a certain criterion, e.g., the least squares criterion in linear regression, and the 
loglikelihood criterion in logistic regression. No wonder why such a model will 
yield accurate prediction results if applied on the same dataset that was used to build 
the model. But our objective is to estimate the output values for new observations 
which did not participate in the model-building process. So how does one evaluate 
the performance of a predictive model when applied on a new unseen dataset? 

The common way to evaluate the quality of the prediction process is to partition 
the learning dataset (also referred to as the test dataset) into two independent and 
mutually exclusive and exhaustive datasets – a training dataset for building the 
model, and a holdout dataset, also referred to as the validation dataset, which is 
set aside, for validating the model. In this approach, one builds the model based on 
the training dataset and then applies the model results on the validation dataset to 
predict the values of the dependent variable. Since the actual values of the response 
variable in the validation dataset are known, one can compare the predicted results 
to the actual values to assess the quality of the prediction process. Several variations 
of this approach exist for validating a model, including cross-validation, k-fold 
validation, and others, in all of which there is a separation between the training 
and the validation datasets. 

The quality of the prediction process is influenced by two main factors:

• The bias of the model originating from the specification errors
• Sampling error originating from the fact that the model parameters are estimated 

based on a sample 

Hastie et al. (2009) have shown that for a squared loss function, one can 
decompose the expected prediction error, EPE, into three components: 

. EPE = E
(
Y − f̂ (X)

)2 = E(Y − f (X))2
︸ ︷︷ ︸

Var
(
Y

)=σ 2

+ [E( f̂ (X) − f (X)
]

2

︸ ︷︷ ︸
Bias2

+ E
[
f̂ (X) − E

(
f̂ (X)

)]2

︸ ︷︷ ︸
Sampling Varaince

where: 

Y is the target variable (the independent variable) 
X is the vector of the independent variables 
Y = f (X) + ε is the regression model used to fit the data 
ε is the error term satisfying E(ε) = 0 and V(ε) = σ 2 

.f̂ (X) is the estimator of f (X) based on the training dataset. One can estimate . f̂ (X)

using a variety of supervised learning methods. 

The first term in the EPE equation, E(Y − f (X))2 = σ 2, expresses the variance of 
the target variable Y. This is a constant factor which we have no control on, even if 
we know the real f (X) function.
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Fig. 1 The bias and sampling variance trade-off 

The second term, .[E( f̂ (X) − f (X)
]

2, expresses the squared bias of the model, 

or the specification error, originating from the difference between the true f (X) 
function and its estimator .f̂ (X). 

And finally, the third term, .E
[
f̂ (X) − E

(
f̂ (X)

)]2
, expresses the sampling 

variance, originating from the fact that the model is built based on a random sample. 
The partition of the expected predicted errors to its component factors gives us 

a first glance on the difference between an explanatory and a prediction model. 
As mentioned above, we have no control on the first factor – the variance of Y. 
The second factor, the bias, is the factor that we try to minimize in building an 
explanatory model in order to attain the best fit of the model to the data. Prediction 
models, on the other hand, attempt to minimize the total error, i.e., the sum of the 
model bias and the sampling variance. 

The main problem afflicting predictive analytics is the over-fitting phenomenon – 
a model which gives good prediction results when applied on the training dataset but 
poor predictions when applied on the validation dataset. This phenomenon becomes 
more serious when the number of the input variables gets larger, certainly a very 
critical issue in the world of big data. Geman et al. (1992) showed that there is a 
tradeoff between the bias of the model and the sampling variance as a function of 
the model complexity (Fig. 1). 

The complexity level of a regression model is measured by means of the number 
of explanatory variables entering the model. On the one hand, the larger the number 
of variables entering the model, the better the model fits the data (the specification 
errors get smaller) and the higher the prediction accuracy on the training dataset. 
But on the other hand, the larger the number of variables entering the model, the 
larger are the chances that some insignificant variables will also enter the model, 
thus increasing the prediction error on the validation dataset.
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The objective function in a prediction model is, therefore, not to build a model 
that yields maximum accuracy with “perfect” fit between the input and the output 
variables on the training dataset, but a model which minimizes the prediction errors, 
namely the sum of the bias and sampling variance errors (the total error). Or, putting 
this in different words, the objective of the PA process is to build a model which is 
generalized enough to be applied also on new observations that did not take part in 
the model-building process. 

As we can see from Fig. 1, it is impossible to simultaneously decrease the 
specification errors and the sampling variance. A trade-off analysis between them 
is therefore required to yield a model which is accurate enough, yet minimizes the 
prediction errors for new observations. We demonstrate this process below for the 
case of linear regression. 

4 How to Select the Explanatory Variables for the Model? 

The most complicated problem in building large-scale multidimensional regression 
model is selecting the most influential explanatory variables for the model from 
among a much larger set of potential predictors. Data mining people refer to this 
problem as the feature selection problem, and statisticians as the specification 
problem (Miller 2002). PA models in the world of big data are characterized by 
a very large number of potential predictors, often hundreds, even thousands, which 
render the feature selection problem a most complex combinatorial problem. 

When the number of explanatory variables is relatively small, say less than 
10, one can select the most influential explanatory variables using a trial & error 
process. But when the number of potential explanatory variables is larger, certainly 
when dealing with big data problems, there i’s no escape but to use automatic or 
heuristic methods to find the most influential predictors to introduce to the model. 
Indeed, a variety of methods have been developed in recent years to deal with 
the feature selection problem for a regression model, including “naïve” methods 
which filter out the explanatory variables using heuristic methods (e.g., the top 
40 variables with the highest correlation with the dependent variable), StepWise 
regression methods (to be detailed later), dimensionality reduction methods such as 
PCA (principal component analysis) which represent the explanatory variables by 
means of a few “super” variables thus reducing the dimensions of the PA problem, 
regularization methods that “penalize” the objective function in order to decrease 
the model complexity (such as ridge regression or the LASSO approach), and many 
others. All these methods, and more, are widely discussed in the book of Hastie et 
al. (2009). 

Undoubtedly, the StepWise Regression (SWR) method (Efoymson 1960) is  
by far the most common approach for automating the feature selection process 
in regression models. It is easy to use and is supplied with most commercial 
statistical software (SAS, SPSS, R, . . . ). Several variations of SWR exist: the 
forward selection algorithm which starts with zero variables in the model and
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then adds the most significant variables to the model at each iteration until the 
termination criteria are achieved. The backward selection algorithm which starts 
with all variables in the model and then removes the least significant predictors at 
each iteration until the termination criteria are achieved. And the forward/backward 
SWR model which combines both of these methods by iteratively adding and 
removing predictors until convergence. 

All SWR models use per-comparison methods, testing one predictor at a time 
(Tukey 1977). The main disadvantage of this approach is that it tends to introduce 
too many predictors into the model. Tukey (1977) refers to this as the selection 
effect. Diaconis (1985) claims that “if enough statistics are compared, some of them 
will be sure to show structure”. In other words, even if the set of potential predictors 
consists of random variables which have got nothing to do with the response, if 
this set is large enough, some of them will erroneously be found significant just by 
pure chance. It is well known that using a significance level α = 5%, one out of 20 
insignificant predictors will be introduced, on average, erroneously into the model 
(type I error). However, when multiple tests are involved, the probability of making 
a type I error for any single predictor also grows. Using simple probability rules, 
it can be shown that in a per-comparison method involving k independent tests, 
the probability of making at least one type I error (i.e., declaring an insignificant 
predictor as significant) is 1 – (1 − α)k, which is much larger than the required level 
of significance. For example, if α = 5% and k = 10, the type I error probability 
is close to 40% (!), introducing many insignificant predictors to the model. One 
can reduce type I error by reducing the level of significance. But this will cause 
fewer significant predictors to enter the model and may increase the number of 
insignificant predictors in the model thus increasing the type II error. 

Unfortunately, there is no way to reduce both type I and type II errors. On the 
contrary, decreasing the type I error usually increases the type II error, and vice 
versa. Hence a trade-off analysis between these two types of errors is required to 
find the best subset of predictors to introduce to the PA model. Below we discuss 
two alternative approaches that have been proposed in the literature to adjust the 
level of significance to reduce the errors involved – Bonferroni and False Discovery 
Rate (FDR). 

Bonferroni Adjustment 
The Bonferroni adjustment belongs to the class of the Familywise Error Rate 
(FWER) methods, which is the probability of making a single Type-I error in a series 
of k tests (Hochberg and Tamhane 1987). This method controls the probability of 
erroneously rejecting even one of the true null hypotheses or accepting a model with 
even one erroneous predictor. A Bonferroni procedure with a significance level α is 
equivalent to a per-comparison procedure with significance level α* = α /k, where 
k is the number of simultaneous hypothesis comparisons. For example, in a feature 
selection problem for linear regression for which there are still 10 more predictors to 
consider for introducing to the model, using FWER with p-value smaller than 5% is 
equivalent to per-comparison error with p-value level smaller than 0.5% (= 5%/10). 
Reducing the level of significance is bound to reduce the Type-I error, because it
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will only introduce predictors which are highly significant. But when the number 
of potential predictors is large, the Bonferroni modification results in significance 
levels which are quite restrictive, thus eliminating important predictors from the 
model and letting more insignificant predictors in, thus increasing Type-II error. 

False Discovery Rate (FDR) 
So, per-comparison methods are too “loose” allowing too many predictors into a 
model, increasing Type-I error. FWER methods, like Bonferroni, are too “tight” 
excluding important predictors from the model, increasing Type-II error. The FDR 
approach offers a compromise by controlling the type I error rate based on the 
number of predictors already in the model (Benjamini and Hochberg 1995). We note 
that the terminology behind the FDR method is taken from the world of scientific 
discoveries where the null hypothesis is that there is no scientific discovery versus 
the alternative hypothesis that there is. Thus, the term “false discovery” corresponds 
to the case where we reject the null hypothesis that there is no discovery (with a 
certain probability) and accept the alternative hypothesis that there is a discovery 
even though it is not true. 

Unlike the traditional SWR approach, the FDR approach controls the false 
discovery rate rather than the chance of any false discovery. Thus, if the number 
of significant predictors is relatively small, FDR uses tight significance levels in 
order to introduce most of them to the model. However, if the number of significant 
predictors is relatively large, FDR relaxes the significance level in order to “capture” 
as many of them even if it means introducing a few insignificant predictors to the 
model. The idea behind the FDR approach is that if the number of significant 
predictors is small, even a small number of insignificant predictors entering the 
model may distort the model. But if the number of significant predictors is relatively 
large, no much harm will be caused if some insignificant predictors will also enter 
the model. This is definitely better than reducing the level of significance and 
introducing only a fewer number of significant variables to the model. 

We note that the approach of incorporating FDR within the SWR process is 
slightly different from the original FDR method of Benjamini and Hochberg (1995). 
The original approach tests the significance of all the predictors simultaneously 
in a single multi-comparison process using the FDR thresholds to select the 
influential predictors. This approach may not be suitable for multi-variate regression 
models in the business world which are characterized by high correlation between 
predictors. However, by combining SWR, which is better capable of coping with 
the multicollinearity issue, with the FDR approach, which balances between type 
I and type II errors, we can enjoy the best of all worlds – dealing explicitly with 
the multicollinearity issue while at the same time controlling the error probabilities. 
The clue is to appropriately change the level of significance at each of the SWR 
iterations. This may be accomplished by means of a search procedure by running 
the SWR method, at each step of the process, for several ranges of (Pe) (the  p-value 
for entering a predictor to the model) and (Pd) (the  p-value for deleting a predictor 
from the model), and then modifying the corresponding FDR value for each based 
on the number of predictors that already entered the model.
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5 Explanatory Model Versus Prediction Model 

The above discussion raises the question whether there is a difference between 
an explanatory model and a prediction model, and whether one may use an 
explanatory model to predict the dependent variable for new observations which 
lie outside the range of the explanatory variables that entered the model? Indeed, 
by the statistical literature, there is a fundamental difference between a model 
aimed at explaining a given phenomenon and a model aimed at predicting a given 
phenomenon for new observations. These differences also affect the way of building 
a prediction model versus an explanatory model. According to Shmueli and Koppius 
(2011) and Shmueli (2010), three main factors are responsible for the differences 
between an explanatory and a prediction model. The first is that explanatory models 
are usually based on causal relationships (often based on theory) or statistical 
relationships between variables, whereas prediction models are based on associative 
relationships between measurable variables. The second difference relates to the 
objective function of each model. While an explanatory model seeks the model that 
maximizes the fit for the data that took part in building the model (i.e., reduces the 
bias), a prediction model seeks the model that minimizes the total error (the bias plus 
the sampling variance). By Fig. 1 there is a trade-off between the model accuracy 
level and the prediction accuracy level which implies that one may sometimes need 
to give up model accuracy in order to attain a better prediction accuracy. In other 
words, a good explanatory model is not necessarily a good prediction model, and 
vice versa. And, finally, the third difference between an explanatory and a prediction 
model is that a prediction model is a proactive model for predicting unseen events, 
while an explanatory model is a retrospective model aimed at explaining a given 
phenomenon based on past and present data. Prediction models require that all the 
variables that entered the final prediction model must also be available for the new 
observations participating in the prediction process, while there is no such constraint 
for an explanatory model. Table 1 summarizes the differences between a model 
for explaining a given phenomenon and a model for predicting new observations 
(according to Shmueli 2010): 

6 So How Does One Build a Good Prediction Model? 

Since there is no way to determine upfront the explanatory variables that yield good 
model that is also general enough to apply to new observations, the process of 
building a prediction model is based on a trial & error procedure involving various 
measures for evaluating model and prediction accuracy. The idea is to control the 
complexity level of the model and find the “optimal” number of variables that will 
yield an accurate model yet provide reasonable predictions when applied on unseen 
data. As shown in Fig. 1, the priority is to build a parsimonious model that might be 
less accurate but yield good prediction results.
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Table 1 Explanatory versus prediction models 

Item Explanatory model Prediction model 

Analysis goal Find the “best” relationships 
between the input and the 
output variables 

Predicting events for new 
observations 

Variables Based on theory and domain 
knowledge, usually a small 
number of variables and 
relatively small samples 

Observed measurable variables, 
usually many of them and large 
samples 

Objective function Maximize fit, high accuracy, 
minimize bias 

High predictive power, 
minimize total sample error 
(bias and variance) 

Model building constraints Easy to interpret, supports 
statistical tests of hypotheses, 
adhere to theoretical model 

Use explanatory variables that 
are also available for the new 
observations 

Model evaluation Explanatory power is measured 
by the degree the model fits the 
data, such as significance tests, 
R2, variable coefficients 

Prediction power is measured 
by means of the accuracy of 
predictions for out-of-sample 
data 

Time frame Retrospective Prospective 

In this section, we discuss a few more complementary methods that can be 
incorporated within the StepWise regression procedure in order to control the type 
I and type II error probabilities and improve prediction accuracy.

• R2 – R-Squared 
R-Square (R2) , also known as the coefficient of determination, is undoubtedly 
the most common measure to evaluate the goodness of fit of a regression model. 
R2 expresses the proportion of the variance explained by the regression model. 
It is a measure in the range 0–1. The closer R2 is to 1, the better the fit of the 
model to the data, and vice versa, the closer R2 is to 0, the worse is the fit. 
The main problem with the R2 criterion is that it gets better, or at least doesn’t 
change, as we add more predictors to the model, even noisy and irrelevant ones, 
thus increasing model complexity and bringing us to the region in Fig. 1 beyond 
the minimal point of the total error where the prediction error increases. While 
R2 is a good measure for attaining high model accuracy, it is therefore less 
appropriate for building prediction models.

• .R2 - adjusted R2 

An alternative measure is a modified version of R2 that also accounts for the 
number of variables that were already introduced to the model. The adjusted R2, 
often denoted by . R2, is perhaps the most popular of these modified methods. 
The adjusted R2 adds a penalty function that decreases as more predictors are 
added to the model:
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. R2 = 1 −
(

1 − R2
k

) n − 1

n − k − 1

where:
• n is the number of potential variables
• k is the number of variables already in the model

• . R2
k is the adjusted R2 with k variables in the model 

When k = 0, the penalty is 1 and .R2 = R2. When k ≥ 1, .R2 ≥ R2. As we  
increase the number of predictors, the penalty function (n − 1)/(n − k − 1) 
decreases and only significant changes to R2 will increase .R2 (Miller 2002). 
Indeed, using the adjusted R2 criterion usually reduces the number of variables 
entering the regression model, thus making it a preferable criterion for selecting 
variables to a regression model.

• Information-based methods 
These methods measure the information loss between the true (but unknown) 
model that generates the data (e.g., a linear model), and the model estimated 
based on the sample data (e.g., the regression model). The less information is 
lost, the better the quality of the estimated model. The leading measures in this 
category are based on the AIC – Akaike Information Criteria (Akaike 1974): 

. AIC = m ∗ k − Lk

where:
• m = 1,2, . . . a constant integer
• Lk is the Log-Likelihood function of a model with k parameters 

The objective is to minimize the value of the AIC. The first expression m*k is a 
type of penalty that depends on the number of parameters (variables) in the model. 
The default value of the constant m in the AIC expression is 2. But one can pick a 
constant m which is larger than 2. The larger the value of m, the larger is the penalty 
and the smaller the number of variables entering the model. 

A variation of AIC is the BIC – Bayesian Information Criterion (Schwartz 1978): 

. BIC = m ∗ Log(k) − Loglikelihood

The BIC imposes even a higher penalty on the model complexity and reduces the 
number of variables entering the model even further. 

Other information-based criteria also exist but they are not as common as the 
above criteria.

• Significance-based Criteria 
In addition to experimenting with different goodness-of-fit criteria, one can 
affect the complexity of the prediction model by means of the level of
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significance. We’ve already mentioned the Bonferroni and the FDR criteria. 
Another way is to deviate from the common level of significance of 5% to build 
a model (say, 10%) that might yield a less accurate model, but will render a 
model that yields better predictions for new observations. Another alternative 
is to use different significance levels depending on the variables’ type, e.g., 
one significance level for continuous variables and another one for discrete and 
categorical variables. Another option is to vary the level of significance based 
on domain knowledge or even intuitive considerations.

• Selecting groups of predictors instead of individual predictors 
Transformations of explanatory variables are a popular means to decrease 
model bias. A common transformation is binning which represents continuous 
variables by means of a series of 0/1 categorical variables. For example, binning 
of a continuous variable based on quartiles will yield 4 categorical predictors, 
one for each quartile, each is set to 1 if the value of the continuous variable for 
the observation falls in the corresponding quartile, and zero otherwise. Another 
example is the marital status with four values – single, married, divorced and 
widowed, which is represented by means of four categorical predictors each of 
which is set either to 0 or 1 depending upon the observation’s marital status. 
These transformations usually increase the number of potential predictors in 
the model-building process. Introducing/removing individual predictors from 
the model in the SWR process is likely to increase the model complexity 
which may cause over-fitting and decrease prediction quality. To overcome this 
issue, it is recommended to select the explanatory variables to the model on a 
group basis, rather than on an individual basis. In the marital status example, 
for instance, this means introducing all 4 categorical predictors to the model 
if marital status significantly improves model quality, even if one or more of 
the individual categorical predictors is not significant. Similarly, remove all 4 
categorical predictors from the model if the marital status does not improve 
model quality, even if one or more of the individual categorical predictors 
is significant. Introducing/removing variables on a group basis may severely 
complicate the SWR process for building a regression model but it is certainly 
worth the effort as it yields a more stable model. 

7 Performance Measures for Assessing Prediction Accuracy 

The above represents only a partial list of methods to improve prediction accuracy. 
Since it is not known in advance which method works best, there is no escape but 
to experiment with alternative model configurations and various parameters and 
goodness-of-fit criteria, in order to converge to the “best” model. We emphasize 
again that what we seek here is not only a model that renders good predictions for 
unseen and new data, but also a model which is accurate enough and fits the data 
well. For this, we need performance measures that would allow one to assess the 
model fit as compared to its prediction accuracy.
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To recall, the model’s accuracy level is represented by means of the variance 
of the predicted values of the dependent variable for the training dataset, and the 
prediction accuracy level by means of the corresponding variance on the validation 
dataset. Hence, one way to assess the quality of a model is to compare the value 
of R2 between the training and the validation datasets. A “good” model is one for 
which the R2 values for the two datasets are “close” enough. Instead of R2, one can 
use other goodness-of-fit criteria such as . R2, AIC, BIC, and others. 

But all these criteria measure the overall quality of the model, namely how 
well the model fits the data, which may not suffice for making actual decisions. 
In targeting applications, for example, we are interested in assessing the gains 
achieved by the model, or how well the model discriminates between targets and 
non-targets. The objective is to approach only the “good” customers, namely the 
customers who are most likely to respond to a solicitation to buy a product/service. 
This way, one can avoid approaching most of the customers who are less likely to 
respond to the offer and thus save a lot of marketing costs. And in churning problems 
the objective is to differentiate between churners and non-churners and approach 
only customers who are more likely to churn, certainly the profitable ones, with 
an offer that may convince them to stay with the company. For this we need more 
detailed performance measures which are based on the distribution of the targeting 
results, known as the gains table, or its graphical representation – the gains chart. 
We describe these measures in more detail below. While these measures are taken 
from the marketing domain, they can also be applied to other domains as well. To 
be consistent with the discussion above, these measures also correspond to targeting 
decisions based on binary logistic regression models. 

Gains Table 
The gains table exhibits the model performance results in a tabular form. The 
gains table is created by sorting out the customers in descending order of the 
score they receive by the model and grouping the observations at a decile or any 
other percentile level. In targeting decisions involving logistic regression, the score 
of each observation represents the probability that the customer will respond to 
the purchase offer. Ordering the customers in decreasing order of their purchase 
probabilities will therefore place the “good” customers with the high probability of 
purchase at the top of the list and the less likely to respond people at the bottom of 
the list. Table 2 presents a sample gains table for a targeting application. 

The model results In Table 2 are presented at the decile level in decreasing order 
of the response probabilities estimated by the logistic regression model. The left-
most column (RESPONSE PROB. %) expresses the lower bound of the predicted 
response probabilities, at the corresponding decile. For example, the lower bound 
of the purchase probability in the top decile is 22.08%, meaning that the response 
probabilities of the customers in the top decile is larger than 22.08%. The response 
probabilities of customers in the second decile is between 12.42% and 22.08%, and 
so on. Table 2 also details, at the decile level, the following data:



Predictive Analytics for Targeting Decisions 765 

Ta
bl
e 
2 

G
ai

ns
 T

ab
le

, L
og

is
tic

 R
eg

re
ss

io
n 

M
od

el
, V

al
id

at
io

n 
D

at
as

et
 

R
E

SP
O

N
SE

 
PR

O
B

 %
.

C
U

ST
. 

%
C

U
ST

. 
R

E
SP

 
%

R
E

SP
 

A
C

T
U

A
L

 
R

E
SP

O
N

SE
 R

A
T

E
 %

 
%

R
E

SP
./

%
C

U
ST

. 
PR

E
D

IC
T

E
D

 
R

E
SP

O
N

SE
S 

PR
E

D
IC

T
E

D
 

R
E

SP
O

N
SE

 R
A

T
E

 %
 

22
.0

8
16

47
10

.0
66

0
43

.2
40

.0
7

4.
3

67
7

41
.0

7 
12

.4
2

16
47

10
.0

27
0

17
.7

16
.3

9
1.

8
27

0
16

.3
9 

8.
19

16
47

10
.0

17
4

11
.4

10
.5

6
1.

1
16

8
10

.1
9 

5.
90

16
46

10
.0

13
6

8.
9

8.
26

0.
9

11
4

6.
95

 
4.

32
16

47
10

.0
93

6.
1

5.
65

0.
6

84
5.

09
 

3.
25

16
47

10
.0

62
4.

1
3.

76
0.

4
62

3.
79

 
2.

34
16

46
10

.0
44

2.
9

2.
67

0.
3

45
2.

71
 

1.
61

16
47

10
.0

46
3.

0
2.

79
0.

3
32

1.
94

 
0.

89
16

47
10

.0
30

2.
0

1.
82

0.
2

21
1.

27
 

0.
03

16
46

10
.0

14
0.

9
0.

85
0.

1
8

0.
51



766 J. Zahavi

CUST. is the number of customers 
% CUST. is the percentage of customers 
RESP. is the number of actual responders 
% RESP. is the percentage of actual responders 
ACTUAL RESPONSE RATE % is the actual response rate 
% RESP./%CUST. is the ratio between the actual response rate and the percentage 

of customers 
PREDICTED RESPONSES is the number of responders predicted by the model 
PREDICTED RESPONSE RATE % is the predicted response rate 

Using Table 2 one can easily assess the prediction quality of the model by 
means of several measures. For instance, the number of actual responders is a 
monotonically decreasing function when one traverses across the deciles, indicating 
that the model was successfully able to place the good customers, with the high 
purchase probabilities, at the upper deciles and the less-likely-to-respond customers 
at the lower deciles. Indeed, the number of actual responders in the top decile is 
660 which constitutes 43.2% of the total number of responders with a response 
rate of 40.07%, versus only 14 responders in the bottom decile, which constitutes 
only 0.9% of the responders with a response rate of 0.85%. A similar pattern also 
exists for the predicted number of responders. For example, the model predicts 677 
responders at the top decile which makes up 41.07% of the total number of predicted 
responders, versus 8 predicted responders in the bottom decile which makes up 
only 0.51% of the predicted responders. Additional measure for the quality of the 
model is how well the model can predict the responders versus the actual number 
of responders. Indeed, comparing the actual number of responders to the predicted 
number of responders reveals close proximity at the decile level. For example, the 
actual number of responders in the top decile is 660 and the number of predicted 
responders is 677. In the second decile, the number of actual responders is 270, the 
same as the number of predicted responders, and so on. 

Gains Chart 
The Gains chart exhibits the model results in a graphical form, displaying the 
added gains (e.g., profitability or response) in using a predictive model versus a 
null model that assumes that all customers are alike. Figure 2 exhibits the gains 
chart corresponding to the data in Table 2. The horizontal axis represents the 
cumulative percentage (or proportion) of the population (prospects), the vertical 
axis the cumulative percentage (or proportion) of the actual responders, where the 
customers are ordered in descending order of the predicted values of the dependent 
variable (the scores), i.e., .ŷi = ŷi+1, where . ŷi is the score estimated by the model 
for customer i. 

The diagonal 45◦ line represents the null model, namely the results that we expect 
if no targeting model is used. Thus, in a marketing campaign if we approach, say, 
30% of the customers at random, we expect to capture about 30% of the responders. 
But if we approach the best 30% of the customers as identified by the model 
(namely, the customers at the top three deciles), we expect to capture almost 75%
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of the responders, quite a hefty lift. Similarly, if we approach 50% of the customers 
randomly, we expect to capture about 50% of the responders, but if we approach the 
best 50% of the customers as identified by the model, we expect to capture almost 
85% of the responders. And so on. The curve above the null model exhibits the 
predicted responders, the curve above it is the model curve exhibiting the actual 
responders. As can be seen, the two curves are pretty close to one another indicating 
that the model is not only doing a good job in identifying the better customers, but 
it also doing a good job at predicting the number of responders. The larger the gap 
between the model curve and the null model, the better the prediction model. The 
curve at the top of the gains chart represents the “perfect” model, namely the model 
that captures all the responders, all of whom are included at the top deciles. Of 
course, one can never find that perfect model, but it serves as a reference curve for 
assessing the quality of the model results, the closer the model curve to the perfect 
model curve, the better the model. 

Two more metrics, based on the gains chart, are typically used to assess how the 
model predictions differ from the null model:

• Maximum Lift (M-L), more commonly known as the Kolmogorov-Smirnov 
(K-S) statistics (Lambert 1993) which is the maximum distance between two 
distributions (e.g., the model curve and the null model). The K-S statistics has 
a distribution known as the D distribution (DeGroot 1993) which allows one to 
test the hypothesis that an empirical distribution function is drawn from a given 
reference distribution (the one sample test) or that two empirical distributions 
are drawn from the same distribution (the two-sample case). In our case, the 
K-S test can be used to test the hypothesis that the model curve is significantly 
different than the null model, which indicates that the model discriminates well
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between targets and non-targets. Another application is to test the hypothesis 
that the actual responders curve and the predicted responders curve come from 
the same distribution, which provides yet another indication on the quality of the 
model because it implies that the model is also doing a good job in predicting 
the number of responses at each decile level.

• The Gini coefficient (Lambert 1993) expresses the area enclosed between the 
model curve and the null model, often divided by the area below the null model. 
In most applications, a large Gini coefficient indicates that the model curve is 
different from the null model. 

An alternative way to assess the quality of a prediction model is by means of the 
ROC (Receiving Operating Characteristics) curve and the AUC – the Area Under the 
ROC. The ROC is equivalent to the Gains chart and the AUC to the Gini coefficient. 

The K-S statistics, the Gini coefficient, and the AUC are all scalar values and are 
often used to also compare the performance of two alternative models applied on 
the same datasets. 

Finally, we note that the validation process discussed above applies primarily 
to a cross-sectional situation where both the training and the validation datasets are 
drawn from the same universe and at the same time frame. A typical application is in 
database marketing where a sample of customers are selected from the universe (the 
test data) and then partitioned into a training and validation datasets for building and 
validating the model. This approach may be less suitable for dynamic applications, 
such as streaming data and IOT, where the dynamics of the system, changing 
business environment, changes in the input data, aging of models over time, and 
others, may affect the model performance to an extent that it becomes inappropriate, 
even obsolete, for scoring new observations. In these cases, one needs to closely 
monitor the model performance over time and issue alerts whenever the model 
performance degrades to a degree that requires modifying the model. This topic 
falls outside the scope of our article but is handled extensively in the data streaming 
mining environment. A good reference is the book by Bifet et al. (2018). 

8 How to Detect Over-Fitting? 

Indeed, all performance measures above, which correspond to the validation dataset, 
indicate a good model. But what is the guarantee that the model does not “suffer” 
from the over-fitting phenomenon which often afflicts multi-dimensional prediction 
models? For this, we need to compare the model results between the training and the 
validation datasets. In Table 3 we present several performance measures to assess 
over-fitting at the decile level. For easy comparison, the performance measures for 
the two datasets are displayed side-by-side, where TRN denotes the training dataset 
and VAL the validation dataset. 

Looking at the actual RR (%) columns in Table 3, the actual response rate for the 
training dataset at the top decile is 40.61 which is very close to the actual response
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rate for the validation dataset – 40.07%, the corresponding values for the second 
decile are 16.43% and 16.39%, for the sixth decile the response rate is 3.76% in 
both files. And so on, the actual response rates at the decile level for the training and 
validation datasets are similar. Likewise, the predicted response rates for the training 
and validation datasets are also close enough. A similar phenomenon appears for the 
other measures. This is a clear indication of no over-fitting. As to the proximity level 
to rule out over-fitting, a rule of thumb is that a deviation in the range of 5–10% 
is quite reasonable. But one can use more accurate statistical tests to assess over-
fitting, for example test the hypothesis that the average response rates, across all 
deciles, between the training and the validation dataset are equal, or apply the two-
sample K-S test to test the hypothesis that the corresponding distributions of the 
results for the training and validation datasets are drawn from the same distribution. 

9 Economic Considerations and Decision-Making 

Finally, after checking the model quality and making sure we obtain a stable 
prediction model which is accurate enough with no over-fitting, the next stage is 
to deploy the model results to predict events for new observations. We use below 
a direct mail example to demonstrate the decision-making principles. But these 
principles may also apply to other domains. 

As mentioned above, the PA process consists of two principal components – 
model building and scoring. So far, we concentrated only on the first component 
having to do with building a good-quality prediction model. The next stage in the 
PA process is to apply the prediction formula coming out from the first stage (e.g., a 
regression equation) on the database which did not participate in the model-building 
process, or on new observations, to calculate a “score” for each observation. We 
recall that in the case of a binary logistic regression model with a 0/1 dependent 
variable, the score of each observation, in a targeting application, expresses the 
predicted purchase probability of the customer, the higher the predicted probability 
the higher the likelihood that the customer will respond to a solicitation to purchase 
the product/service offered to him/her, and vice versa. Sorting the customers in 
descending order of the predicted purchase probabilities will therefore place the 
“good” customers at the top of the list and the “bad” customers at the bottom of the 
list. 

The main decision problem is how far down the list one can go to include 
customers in the marketing campaign and still be profitable? Or, in other words, 
what is the cutoff response rate (CRR) which separates out the targets from the non-
targets? In the lack of economic considerations, a common way to select the CRR 
is either based on domain knowledge or to approach the customers in the top 4–5 
deciles of the predicted purchase probabilities. 

Clearly, a better way to select customers for the marketing campaign is based 
on economic considerations. The idea is to approach only the customers for whom
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the expected profit by purchasing the product/service is greater than or equal to the 
contact cost of approaching the customer. We denote: 

c – the contact cost (which consists mainly of the mailing cost and the brochure 
cost) 

g – the net profit per unit of the product (often the unit price minus the manufacturing 
cost, the shipment cost of the product to the customer’s house, discounts, 
packaging costs, . . . ) 

. p̂i – the predicted purchase probability of the ith customer 

The transaction is profitable if the expected profit from the customer is greater 
than or equal to the cost of approaching the customer (the investment cost), namely: 

. p̂i ∗ g ≥ c => p̂i ≥ c/g

And from here it is easy to obtain the CRR (in percentage terms): 

. CRR = 100 ∗ c/g

For example, if the cost of approaching the customer is $0.95 and the profit per 
unit of product is $120, the CRR is 0.79%, implying that it is worth approaching 
only the customers whose predicted purchase probabilities, coming out from the PA 
model, is equal or greater than 0.79%. 

Figure 3 exhibits the economic calculations in a graphical form for the gains 
table data in Table 2. But rather than presenting the results at the decile level, 
the economic calculations were conducted at percentile levels of 2.5%. The X-axis 
presents the cumulative percentage of customers. The Y-axis presents the expected 
profit (in $). For each percentile level, the expected profit is obtained by the sum 
of the products .p̂i ∗ g over all the customers in the percentile, minus the contact 
cost c times the number of customers in the percentile. The calculation in Fig. 3 is 
presented both for the actual profits and the predicted profits. 

As seen from Fig. 3, the expected profit initially increases as a function of the 
percentile level, until it reaches a maximal point, from which it declines until it 
reaches the zero point and turns to be negative. Contacting the top 4 deciles yields 
positive expected profits. Contacting customers beyond the 4 top deciles is not 
worthwhile as it yields negative profits. Maximal profit is obtained for the top 15% 
of the customers. Note how close are the actual profits to the expected predicted 
profits, certainly another clear indication of the quality of the model. 

In the above discussion, we assumed that the economic parameters (c, g) are the  
same for all customers. More realistic applications are those where each customer 
may have its own economic parameters (e.g., the profit per unit of sold product 
may vary by gender, the shipping cost of the product to the customer may vary 
by location, and so on). One can expand the above discussion also for the case of 
“personal” economic parameters. But at any case, the calculations are still based on 
the predicted purchase probabilities coming out from the PA model.
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10 Using Decision Trees for Feature Selection and Prediction 

Regression models are parametric prediction models. Several non-parametric mod-
els have also been proposed for feature selection and prediction, one of the most 
popular of which is decision trees, which we briefly discuss in this section. More 
comprehensive description of decision trees can be found in the literature, for 
example, Murthy (1998). 

A decision tree is a non-parametric heuristic method to partition an audience into 
“homogenous” classes (segments, groups) based on a discrete target variable, which 
may assume several predefined categories, usually a small number of them. The 
most popular case is the two-way classification where the target variable assumes 
only two possible categories, either Yes or No (e.g., targets and non-targets). The 
objective of the classification process is to partition the audience into mutually 
exclusive classes which are as pure as possible with respect to the target variable. A 
class is said to be totally pure if all observations in the class have the same target 
value. In the multi-attribute application, which is usually the situation in the world of 
big data, it is very rare, if not impossible, to find an attribute that splits an audience 
perfectly. Even if one subgroup may happen to be pure, the others are not. Thus, one 
cannot get by with only one split and needs to build a whole tree for this. 

Starting from a “root” node (the whole population), tree classifiers employ a 
systematic approach to grow a tree into “branches” and “leaves”. The process is
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iterative. In each stage of the process the algorithm looks for the most informative 
attribute to split the current “father” node into several “children” nodes which are 
as pure as possible. Then, using a set of predefined termination rules, some nodes 
are declared as “undetermined” and become the father nodes in the next stages 
of the tree development process, some others are declared as “terminal” nodes. 
The process proceeds in this way until no more node is left in the tree which is 
worth splitting any further. The terminal nodes, or “leaves”, define the resulting 
classes. The process results in a tree-like diagram. If each node in a tree is split 
into 2 children nodes only, one of which is a terminal node, the tree is said to be 
“hierarchical”. 

Several criteria have been proposed in the literature to split a node. The objective 
is to maximize the improvement in the node value by splitting it into two or more 
splits. In the case of targeting applications with two categories – targets (or buyers) 
and non-targets (non-buyers), the value of a node t is a function of the response rate 
(RR) of the node, RR(t), (i.e., the proportion of targets in the node). The “ideal” split 
is the one which partitions a father node into two children nodes, one which contains 
only buyers, i.e., RR(t) = 1, and the other only nonbuyers, RR(t) = 0. Clearly, the 
“worst” split is one which results in the two children having more-or-less the same 
proportion of buyers and nonbuyers, i.e., RR(t)~1/2. 

These requirements define a family of node value functions, which we denote by 
Q(RR), which satisfy the following conditions:

• Max  Q(RR) = Q(0) = Q(1)
• Min  Q(RR) = Q(1/2)
• Q(RR) is symmetric, i.e. Q(RR) = Q(1 − RR)
• Q(RR) is a concave function of RR. 

The first two conditions stem from our definition of the “best” and the “worst” 
splits; the concavity and symmetry condition also follows from these conditions and 
the condition for the worst split. 

Clearly, there are many functions that satisfy these requirements, including: 

The piecewise linear function: . Q(RR) =
{

RR RR ≤ 1/2

1 − RR RR > 1/2
The quadratic function: Q(RR) = (RR − 1/2)2 

The entropy function: Q(RR) = −  [RR log2(RR) + (1 − RR) log2(1 − RR)] 

And others. 
We note that the above definition of the node value functions applies to 

applications where the number of buyers is more-or-less equal to the number of non-
buyers. Clearly this condition does not apply in many marketing campaigns (e.g., in 
database marketing) where the number of buyers is much smaller than the number 
of nonbuyers. In these cases, the reference point of ½ may not be appropriate for 
defining the node value functions. A more suitable criterion to define the worst split 
in these cases is TRR, where TRR is the overall response rate of the test audience. 
This still results in the node value function being concave but non-symmetric.
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The entropy measure from information theory (Shannon 1948) has gained a lot 
of popularity in recent years for building decision trees, and constitutes the basis for 
several common tree classifiers, including CART –- Classification and Regression 
Trees (Breiman et al. 1984), ID3 (Quinlan 1986), C4.5 (Quinlan 1993), and others. 

Depending upon the attribute involved, the resulting value by partitioning a father 
node is obtained as the average values of the descendant nodes, weighted by the 
proportion of customers in the node, i.e.: 

. 
N1

N
Q(RR1) + N2

N
Q(RR2) + N3

N
Q(RR3) + . . .

where: 

N is the number of customers in the father node 
N1, N2, N3, . . . is the number of the customers in the descendant nodes 
RR1, RR2, RR3, . . .  are the response rates of the descendant nodes. 
Q(RR1), Q(RR2), Q(RR3), . . .  is the corresponding node value functions. 

Then the improvement in the node value resulting by the split, referred to as the 
Information Gain (IG), is given by the difference: 

. IG = Q (RR) −
[
N1

N
∗ Q(RR1) + N2

N
∗ Q (RR2) + N3

N
∗ Q(RR3) + . . .

]

To find the best split for each father node, one needs to go over all possible 
attributes in the dataset to split a father node by, calculate the resulting IG for each 
and then select the split that maximizes the IG value. Since the entropy function 
Q(RR) is a concave function, any split will result in a positive IG, however small. 
Thus, one needs to apply termination rules to stop the splitting process, such as 
restrict the number of observations and/or the number of targets in a node, set a 
minimum level on the IG to split a node, etc., or otherwise the algorithm will keep 
partitioning the tree until each node contains exactly one observation. 

A simple decision tree is described in Fig. 4, where the decision is either to grant 
a customer a mortgage (OK) or not (Delay). Note that the Age attribute with two 
values (Age�50 and Age < 50) is split into two branches whereas Residence-type 
with three values (Own, Rent, and Other) is split into 3 branches. The tree diagram 
also exhibits a sample observation (ID # 87594) to predict whether to grant the 
customer a mortgage based on his/her attributes. 

The advantage of a decision tree is that it can be used in two capacities, either 
as a feature selection process, or as a stand-alone prediction model. The main use 
of decision trees in practice has been as stand-alone prediction models in many 
domains, primarily because decision trees are easily interpretable and explainable. 
Trees are also displayed visually, which make it easy to track the path of any 
observations from the root node to its terminal node. For example, in the decision 
tree above, to determine whether to approve or deny the mortgage from customers
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All customers 

Balance≥50,000 Balance<50,000 

Residence = Own 
OK 

Residence = other 
Delay 

Age ≥ 50 
OK 

Age<50 
Delay 

Residence = Rent 
OK 

ID age>50 Gender Residence >=50K Delay 
87594 Y F own <50K ??? 

Fig. 4 A sample decision tree 

based on their attributes. Decision trees can also be used to estimate probabilities. 
For example, in a buy/no-buy application, the purchase probability of customers 
is estimated by the response rates of the terminal class that the customers belong 
to. And much like in the case of logistic regression above, these estimated response 
probabilities can be used to determine whether to include or exclude customers from 
a marketing campaign. 

The main disadvantage of using a decision tree as a prediction model in the world 
of big data is the risk of over fitting, which require that one experiments with various 
parameters, termination rules and tree configurations to yield a stable tree with no 
over fitting. A remedy for the over-fitting issue may be provided by the random 
forest approach (Hastie et al. 2009) in which the forecast of the target variable is 
based on the average scores of dozens, or even hundreds, of decision trees which 
are built on multiple random samples drawn from the same training dataset. The 
idea being that if something is missed in one model, it will be captured in another 
model. Thus, predicted values based on the average of multiple scores are likely to 
yield more accurate predictions with less errors. 

Alternatively, decision trees can be used for feature selection. In this case, one 
runs the decision classifier as part of the data preprocessing stage and then selects all 
attributes that took part in the splitting process as potential predictors for a predictive 
model, be that a linear regression model, a logistic regression model, or other. For 
example, in the decision tree above balance, residence-type, and age are reasonable 
candidates for a predictive model because they all took part in the tree-building 
process, whereas gender is excluded from this list of predictors because it did not 
participate in the splitting process.
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11 Conclusions 

Prediction models are assuming an increasing role in the world of big data for 
making decisions in many domains – marketing, banking, insurance, health care, 
cyber, and more. The complexity and dimensionality of the PA process and the huge 
number of potential predictors which could reach hundreds, if not thousands, render 
the model-building process very complicated and may increase the chances of over-
fitting and non-stable models. The “wisdom” in building large-scale PA models is to 
account for all conflicting concerns and the trade-off between model accuracy and 
prediction errors. 

In this article, we reviewed the process for building large-scale prediction models 
focusing on regression models, and to a lesser extent on decision trees, and discussed 
the differences between explanatory models and prediction models. We offered 
several performance measures for assessing the accuracy and prediction error for 
classification models based on logistic regression and the trade-off between them. 
We concluded the article with a short discussion on the deployment process of the 
predictive model and the manner the model results are applied for decision making 
in targeting problems. 
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Machine Learning for the Geosciences 

Neta Rabin and Yuri Bregman 

1 Introduction 

Geoscience is a branch of science that focuses on studying the Earth’s subsystems. 
These include studying the Earth’s soil, metallic core, surface, and interior. It is also 
concerned with investigating the oceans, rivers, lakes, ice sheets, glaciers, and the 
atmosphere. The analysis relies on model-based simulations, algorithms, and data-
driven analysis. The increasing available amounts of recorded data, which come in 
the form of images, maps, tables, and continuous waveforms, to name some, pose 
some challenges such as data integration and massive data processing. 

Machine learning is now rapidly expanding in all science and engineering 
domains that process big data. In geoscience, a large number of research papers 
utilize machine learning techniques for problems that were traditionally solved with 
other techniques. Several recent review papers [1, 2, 3, 4] describe central machine 
learning methods and their applications to different geoscience domains. Some of 
these papers approach the geoscience research community, as they aim to engage 
scientists in the field of machine learning. Other papers reach out to the machine 
learning community and explain the current challenges in geoscience. In this review 
paper, we approach researchers from the machine learning community and describe 
several data-driven fields in geoscience, with a special focus on seismology. 

There are a variety of subfields in the geosciences that study various features of 
the Earth and its dynamic systems. Apart from the common goal of studying the 
Earth, the geoscience sub-fields all share the theme of learning from observations. 
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Thus, as the size and quality of gathered data increase, data-driven modeling 
naturally becomes a significant form for understanding and prediction of the Earth’s 
phenomena. Below, we mention several sub-fields in geoscience, in which machine 
learning algorithms are presently implemented. 

Geology is centered on learning the Earth’s materials, organisms, the Earth’s 
structure, and how it has changed overtime. The need to move from knowledge-
driven analysis to data-driven analysis in the field of resource estimations, and 
in particular for determining the presence of gold in rock, is discussed in [5]. 
Application of random forests from different data sources that are gathered for 
mining explorations is described in [6]. Moreover, random forests are used for 
estimating sodium, a key geochemical element, by analyzing a multivariate chemo-
physical dataset measured on drill cores. There is a long and rich history related 
to inverse problems and simulation analysis in the oil and gas field [7]. A recent 
paper [8] deals with characterization of oil reservoirs based on geological properties 
and data extracted from seismic recording. Multi-gene genetic programming, 
which enables to model nonlinear relationships between variables, was applied for 
estimating porosity in an oil reservoir. 

Lithology, which is a branch in geology that studies the physical characteristics 
of rocks, often relies on remote sensing techniques. These aim to find the underlying 
physical characteristics of the studied area by monitoring and measuring from a rel-
atively far distance the reflected and emitted radiation from the area of interest. The 
measured data are typically high-dimensional; therefore, machine learning methods 
may simplify the analysis. Several machine learning methods were applied in [9] 
for recognizing patterns in data collected by airborne geophysics and multispectral 
satellite for the task of lithology classification. These detailed examples illustrate 
some of the challenges in geology, where data are gathered by multiple sensors of 
different types and inverse problems are aimed to be solved. Integration of machine 
learning algorithms that support sensor-fusion-based modeling opens a window of 
opportunities for making new discoveries by processing the large amounts of the 
various gathered datasets. 

The field of hydrology studies the Earth’s waters, which is a valuable resource. 
Nowadays, scientific research is aimed at monitoring and development of reliable 
prediction algorithms for tracking water movement, planning water usage, and 
assuring water quality. Many resources are invested for advancing the data acquisi-
tion technologies that support the water industry and water research. For example, 
the gravity recovery and climate experiment (GRACE) [10], which was a joint 
mission of NASA and the German Aerospace Center, sent satellites that provided 
valuable data for tracking water storage dynamics. Sun et al. [11] developed deep 
convolutional neural network models for learning spatial and temporal patterns of 
mismatch between total water storage anomalies that were recorded from GRACE 
and simulated by a widely used land surface model. Prediction of rain and snow 
rates in high latitudes based on satellite remote sensing data from multiple sources 
was processed in [12] by application of deep neural networks. The results show 
that the deep learning model outperforms prevalent rain prediction models. Long-
term prediction of water flow and level in rivers was addressed in [13] by utilizing
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deep convolutional neural networks, which tackled the challenge of data fusion. 
Such tasks are useful for water authorities, who need to plan the allocation of 
water resources for agriculture and for domestic use. Another important task is 
the monitoring of water quality, which is under the responsibility of reservoir 
managements. In [14], an approach that evokes four machine learning models 
(artificial neural networks, support vector machines, classification and regression 
trees, and linear regression) was established for predicting a known measure for 
water quality, the Carlson’s Trophic State Index [15]. Such an approach can assist 
water managers and engineer in assuring water quality, while reducing the cost and 
time of conducting chemical experiments. Overall, the data-driven challenges in 
the field of hydrology include data fusion, processing of high-dimensional remote 
sensing data, time-series prediction, and development of reliable models for helping 
us to wisely manage the water system. 

Climate modeling, in which the dynamical behaviors of the atmosphere, oceans, 
and land are coded into mathematical models, also incorporates machine learning 
method to assist in modeling some of the complex nonlinear dynamical phenomena. 
A machine learning toolbox name ClimateLearn was developed by Feng et. al. 
[16] for climate prediction task, which also includes data merging and data 
cleaning solutions. Prediction of sea ice anomalies based on analog forecasting with 
dynamics-adapted similarity kernel was presented in [17]. This forecasting problem 
was classically modeled by using single historical records. Machine learning tools 
can better learn the variability of the sea surface temperature by using ensembles 
of analogs for forecasting. A deep learning model was applied in [18] to overcome 
the course nature of simulation models, which are limited due to computational 
complexity. The data-driven deep learning model allows fast and accurate short-
term prediction of cloud-resolving simulations. Another paper that investigated 
neural networks as an alternative to numerical simulation-based predictions of 
climate is [19]. The dynamics of the Portable University Model of the Atmosphere 
(PUMA) [20], which is a simple general circulation model, was learned by the 
network in the training step. Then, the network was used for making future weather 
prediction. Last, in [21], the authors review several machine-learning-based models 
for prediction of the El-Niño climate pattern. 

As reviewed above, the processing obstacles in geoscience are related to large 
amounts of varied data and complex dynamical phenomena that are computationally 
demanding on the one hand, but required for detailed forecasting and prediction 
on the other hand. Techniques and tools from the field of machine learning are 
now being implemented, and they close some gaps by providing sensor fusion 
models and methods that result in more accurate data-driven simulations and future 
predictions of dynamic, complex systems. 

In what follows, we show the application of machine learning methods to 
the geoscience focusing on seismology, which is another sub-field of geoscience. 
In Sect. 2, basic seismological terms, concepts, and processing techniques are 
presented. Section 3 contains a schematic diagram that describes commonly used 
steps in machine-learning-based algorithms for seismology. Description of the 
detection and classification tasks together with examples of machine learning model
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implementations is given in Sects. 4 and 5, respectively. Recent applications of deep 
learning methods to event detection and classification tasks are reviewed in Sect. 6. 
Last, conclusions are presented in Sect. 7. 

2 Background on Seismology 

Seismology is the study of earthquakes and seismic waves that move through and 
around the Earth. The field also includes studies of earthquake environmental effects 
such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, 
oceanic, atmospheric, man-made explosion processes, and earthquake forecasting. 
One of the key problems in seismology is to solve the inverse problem, i.e., to 
derive from the analysis of seismic records information about the structure and 
physical properties of the Earth medium. Seismology is driven by observations; 
thus, improvements in instrumentation and data availability had always contributed 
to the progress in seismology theory and in our understanding of the Earth’s 
structure. There are several different kinds of seismic waves, and they all move in 
different ways and with different velocities [22]. The two main types of waves are 
body waves and surface waves. A body wave is a seismic wave that moves through 
the interior of the Earth, as opposed to surface waves that travel near the Earth’s 
surface. There are two types of body waves, pressure waves or primary waves (P-
waves) and shear or secondary waves (S-waves). 

Seismic waves are recorded by seismometers that measure the motion of the 
ground. Most modern seismometers include three separate channels that allow the 
determination of the simultaneous movement in three different directions: up–down, 
north–south, and east–west. A typical seismic station consists of a three-component 
(3-channel) seismometer, a GPS clock for determining time, and a recorder for 
collecting data [23]. A recording of the Earth motion as a function of time is called 
a seismogram (a seismic waveform). S-waves are slower than P-waves. Therefore, 
in the seismograms, the recording of S-waves (S-phase) appears later than P-phase. 
Some of the seismic stations were equipped by seismic arrays, which improve the 
signal-to-noise ratio (SNR) by finding directional information [24]. 

Seismic data processing includes seismic signal detection and phase picking, 
calculation of the origin time and location of the hypocenter (i.e., rupture starting 
point), and seismic event characterization (estimation of magnitudes and event 
classification) [25]. The signal detection and the phase picking are performed 
using the waveforms of each station separately, while the event location and 
characterization are network-level processing tasks, which involve multiple station 
processing. A significant step of event location is seismic phase association, i.e., the 
task of linking together phase detections on different seismometers that originate 
from a common seismic source. The analysis results are compiled in a seismic 
bulletin, i.e., a catalog including the hypocenter parameters together with the 
attributes of all detected phases (i.e., station, phase arrival time, amplitude, etc.).
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An important development in automatic seismic detection was the STA. /LTA 
trigger-based algorithm [26, 27, 28], introduced in the late 1970s. It utilizes as a 
criterion for picking the ratio of continuously calculated average energy (or envelope 
or absolute amplitude) of a recorded trace in two consecutive moving-time windows 
of different lengths. The first calculates a short-time average (STA), which captures 
the signal energy, and the second calculates a long-term average (LTA) that estimates 
current energy of the noise. 

A large number of machine learning papers that present applications to seismic 
event identification and classification rely on computing a time–frequency repre-
sentation of the signal as a first phase and processing it to extract features as a 
second step. The processed time–frequency representations are then fed as input 
to a machine learning algorithm. In Sect. 3, we provide a general block diagram, 
which explains the workflow of many algorithms that were developed for seismic 
processing with machine learning, in the spirit of the SonoDet detector. 

Today, the analysis tasks in most seismic observatories start with near real-
time automatic processing that implements automatic signal detection and P-phase 
picking, hypocenter’s localization, and magnitude determination. However, the 
current quality of most automatic seismic bulletins is insufficient. Therefore, 
seismological institutes heavily rely on manual analysis for performing routine 
tasks. Seismologists interactively revise and correct the automatic bulletins based 
on scientific reasoning, their knowledge, and practical experience. 

3 A General Machine Learning Framework for Seismic 
Signal Processing 

Many of the developed machine learning methods for seismic analysis rely on a 
set of similar processing steps. A general schematic block chart, which describes 
the central steps that are applied in machine learning algorithms for seismic signal 
analysis, is displayed in Fig. 1. These steps are also typical for other machine 
learning signal processing applications, and the main difference is the feature 
extraction step, which may rely on seismological expert knowledge. 

The left box describes the input data, which contain waveforms from a single 
seismic channel, from multiple channels, or from a seismic array. Then, an optional 
prepossessing of the raw data may be applied. This step can include signal filtering 

Fig. 1 Schematic description of seismic signal processing followed by machine learning steps
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or sensor fusion computations such as beamforming algorithms [24] for array data. 
Next, feature computation is performed. In this step, the rich historic experience of 
seismic signal processing comes in, and features that rely on theoretical understand-
ing of the studied problem are computed. This step results in a finite set of features 
computed from the time and frequency domain of each seismogram. Alternatively, 
a unified time–frequency representation, named a spectrogram, can be calculated 
and used as the seismogram’s features. The feature extraction step is typically 
followed by algorithms that perform signal selection or dimensionality reduction. 
These simplify the feature space by reducing the number of inputs that are fed into 
the last algorithmic box. The machine learning model is constructed from a subset 
of the data, a training set, which is represented by the previously calculated features. 
For a classification problem, the seismic event types of the training set are known. 
This knowledge is based on seismic bulletins and manual classifications. Last, the 
machine learning model is evaluated and applied to the test data for performing the 
task at hand. In fact, this scheme is very similar to application of machine learning 
methods in other fields of signal processing using features that were utilized by the 
seismologists throughout the years. 

A detailed example that follows the general model presented in Fig. 1 is 
described. A machine learning model for earthquake–explosion discrimination was 
presented in [29]. The raw data included seismogram waveforms of events from the 
Dead Sea area, recorded from two stations with three channels per station. 

The feature extraction step constructed a time–frequency representation from 
the given waveforms of each channel in each station. It was based on sonograms 
method [30, 31] with several modifications. A single-trace seismic waveform was 
decomposed into a set of overlapping windows. Then, the short-time Fourier 
transform is applied to the waveform segment in each time window, which was 
preliminary Hanning-tapered, and power spectral densities were computed. The 
sonogram was obtained by summing the spectrogram in logarithmically scaled 
frequency passbands for every time bin. The frequency scale is rearranged to be 
equally tempered on a logarithmic scale into near half-octave logarithmically scaled 
frequency passbands. Finally, the sonogram is normalized such that the sum of 
energy in every frequency band is equal to 1 and the result is a normalized sonogram. 
A similar normalization of sonograms was used in [32] for volcanic seismic signal 
classification and in [33, 34] for identification of repeated events. 

Figure 2 presents four sample seismograms and their corresponding normalized 
sonogram feature representation. The left part displays four seismograms that were 
recorded at the vertical channel of the MMLI station. The first three (from top) 
seismograms belong to earthquakes in the northern Dead Sea area with duration 
magnitudes Md of . 5.1, . 2.6, and . 3.5, respectively, and the bottom seismogram 
belongs to a co-located underwater explosion with duration magnitude Md =3. 
The right part presents the resulting normalized sonograms. Although the original 
seismograms have huge differences in amplitude ranges (between 10 and . 107), the 
normalized sonograms transform all waveforms in similar ranges of amplitudes. 

The third step of Fig. 1 is performed in this example by the application of a 
nonlinear dimensionality reduction method named diffusion maps [35]. Diffusion
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Fig. 2 Left: Four seismograms: earthquakes with duration magnitudes Md of 5.1, 2.6 and 3.5 and 
an underwater explosion with Md . = 3, ordered from top to bottom. Right: The resulting normalized 
sonograms of the four seismograms (Figure taken from [29]) 
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Fig. 3 Two-dimensional multi-view diffusion maps mapping. Blue points represent explosions, 
and yellow points represent recordings of earthquakes (figure taken from [36]) 

maps take the set of computed sonograms as input and reduce the dimension 
of each such sonogram. When a new test seismogram arrives, it undergoes the 
feature extraction steps and its sonogram is computed. Then, it is embedded in the 
low-dimensional space. The final classification step (which is associated with the 
bottom-left box in Fig. 1) is performed with k-nearest neighbors. A modification 
of the diffusion maps algorithm, multi-view diffusion maps, which perform sensor 
fusion and dimensionality reduction, was presented in [36] and plotted in Fig. 3. 
This resulted in an improved low-dimensional representation of seismograms that 
were recorded from multiple channels.
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4 Seismic Event Detection and Localization 

Seismic event detection is the real-time detection of seismic event from a continuous 
seismic recording. The prevalent techniques are trigger-based algorithms that 
compute amplitude thresholds or implement a pattern recognition method [26, 27]. 
Other trigger-based algorithms, which extend the STA. /LTA approach, are described 
in [37]. Detectors that are based on higher-order moments have been proposed in 
[38, 39, 40] for determining the onset of seismic waves. A nonlinear dimensionality 
reduction method was applied for the estimation of arrival times in [41] and for the 
seismic phase classification in [42]. 

In order to improve the seismic signal processing capabilities for detection and 
the classification problems, similarity-based algorithms were developed. The main 
transition was the advancement from signal processing methods, which analyze 
each event separately, to methods that learn from historic data. The earlier methods 
focused on template-based algorithms, and they developed in two directions: pattern 
recognition techniques and correlation-based analysis. 

The template-based detection utilizes the long-known observation that seismic 
events from close locations, with similar source mechanisms, recorded by the 
same receiver, often generate very similar seismograms while displaying different 
amplitudes [47, 48]. This is because the combination of the source mechanism 
and the path from source to receiver effectively determine the received signal 
at a given station [25]. Template-based approach is especially suited for the 
seismicity occurring in a circumscribed area with similar source mechanism (the 
so-called repeating events) like aftershocks and mining explosions. For instance, 
this approach enables to select the seismograms of strong aftershocks with high 
signal-to-noise ratio and subsequently to utilize those templates to detect the weak 
aftershocks with low signal-to-noise ratio. 

One of the first template-based methods was the SonoDet detector, initially devel-
oped to monitor induced seismicity in Germany [30, 31]. This method implements 
the STA. /LTA detector with a very low threshold as a preprocessor and subsequently 
performs the identification step using the smoothed time–frequency representation 
of a single-channel seismogram, named a sonogram. SonoDet detector and its later 
variants have found various applications that included detection and classification 
of seismic signal with very low signal-to-noise ratio [43, 44, 45, 46]. 

From the early 1990s to this day, template-based methods named waveform 
cross-correlation detectors are developed. These methods are vastly used nowadays 
as well. Waveform cross-correlation techniques may be applied for event detec-
tion, localization, and even characterization of repeated seismic events including 
aftershock sequences [49, 50, 51, 52, 53, 54]. Although this does not fall into the 
category of machine learning algorithms, the idea of pattern recognition learning is 
presented and resembles processes used in machine learning. 

A drawback of waveform cross-correlation detectors is a relatively high false 
alarm rate. The false alarms originate not only from detection of noise but 
rather from seismic arrivals with unrelated source locations. In [55], the authors
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presented a new approach to waveform correlation that utilizes techniques from 
supervised machine learning such as support vector machines (SVMs). Waveform 
templates were generated from a large labeled waveform training set of known 
historical seismic arrivals and used to discriminate between arrivals from a specific 
geolocation source and all other arrivals. Apparently, this is the first time that 
machine learning has been applied to generate alternative templates for seismic 
event detection. 

An alternative unsupervised pattern-mining approach, named Fingerprint and 
Similarity Thresholding (FAST), was introduced in [56] and extended in [57, 58, 
59]. Following Fig. 1, the method starts with waveform from a single channel. 
Feature extraction is denoted by fingerprint extractions, which is a modification 
of the Waveprint method developed for audio identification [60]. In the feature 
extraction step, spectrograms followed by Haar wavelet transforms are computed. 
These result in spectral images that represent the studied seismogram. Then, 
the significant image coefficients are selected and coded into a compact binary 
fingerprint scheme. A locality-sensitive Hashing [61] next groups together similar 
fingerprints. Last, detection of new events is performed by a similarity search, 
which is efficient because of the hashing procedure. FAST is computationally more 
efficient than template-based detection methods and can process up to 10 years of 
continuous datasets [62]. 

The Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO) imple-
mented the Network–Vertically Integrated Seismic Analysis (NET–VISA) for global 
nuclear explosion monitoring [67, 68]. The system adapted a Bayesian framework 
with a forward physical model using probabilistic representations of the propaga-
tion, station capabilities, background seismicity, and noise statistics to obtain the 
maximum a posteriori solution to the nonlinear problems of phase association and 
event location. Later the core seismic model was supplemented with a model of 
underwater as well as atmospheric events. The model is regularly retrained on many 
months of historical data to fine-tune the priors and the likelihoods. So, the system is 
able to detect and locate seismic, hydro-acoustic, and infrasound events considering 
the cross-over of energy between different mediums. NET-VISA is a fully fledged 
operational machine learning-based system running at the CTBTO since 2017. The 
latest event detection methods apply deep learning techniques, and some of these 
are reviewed in Sect. 6. 

5 Seismic Event Classification 

Typical event classification algorithms (also known as event discrimination) cal-
culate several seismic parameters from the input seismograms and use these 
parameters to distinguish between earthquakes and explosions. The simplest seismic 
parameter is focal depth. Its drawback is that estimation of focal depth is usually 
inaccurate in lack of depth phases. Other widely used seismic discrimination 
methods are Ms:mb (surface wave magnitude versus body wave magnitude) and
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spectral amplitude ratios of different seismic phases [63, 64]. However, discrim-
ination methods based on seismic parameters give only a partial solution to 
the discrimination problem. Due to these misclassifications, regional earthquake 
catalogues are often contaminated with explosions, which may cause the erroneous 
estimation of a seismicity hazard [65]. 

Over the last two decades, different machine learning algorithms were applied to 
classify seismic events in an unsupervised or in a supervised mode. Classification 
tasks that are related to separation of the events into two classes: natural and man-
made events are known as discrimination problems. This task is often related to 
monitoring and discrimination of nuclear explosions [66]. 

Several machine learning methods were utilized for the seismic discrimination 
problem. Artificial neural networks were applied in [69] after a feature extraction 
step that included complexity, spectral ratio, and third moment of frequency. In [70], 
the feature extraction step was based on Autoregressive Moving Average (ARMA) 
coefficient filters, and artificial neural networks were applied for discriminating 
between earthquakes and man-made events. Neural networks for discrimination 
were also applied in [71, 72, 73, 74], in [75] for discriminating between deep and 
shallow earthquakes, and in [76] for discriminating between local, regional, and 
teleseismic earthquakes. 

Kuyuk et al. [77] used self-organizing maps and artificial neural networks com-
bined with unsupervised learning for discrimination between small earthquakes and 
quarry blasts. Self-organization maps [78] were additionally applied for automatic 
recognition of volcano-seismic signal patterns in [79] and for single-station classifi-
cation of seismic events in [80] by application of principal component analysis [81] 
for dimensionality reduction and self-organization maps for classification. Reynen 
and Audet [82] have applied a logistic regression classifier for earthquake–explosion 
discrimination of events detected at a network of 13 three-component stations 
in Southern California. Using frequency-averaged spectrograms and polarization 
features, they reported classification accuracy of over 99%. 

Support vector machine (SVM) [83] is another common machine learning 
technique that was applied for seismic event classification to data collected from 
multiple stations in Finland ([65]). The feature extraction step included computation 
of 80 features for each input waveform and resulted in a 94% correct classification 
rate for the non-earthquakes and a correct classification of all but one of the 
earthquakes. Feature extraction using the wavelet transform followed by SVM was 
suggested in [84, 85] for discriminating between earthquakes and quarry blasts. 
SVM applied after a kernel-PCA dimensionality reduction was discussed in [86] 
and demonstrated for classification of synthetic waveforms. Two unsupervised 
machine learning methods, k-means and Gaussian mixture model, were applied for 
classification of seismic activities in Istanbul [96]. 

Hidden Markov model (HMM)-based earthquake detection and classification 
method is another notable automatic learning approach. The main algorithm was 
borrowed from speech recognition. This approach is originally introduced for 
the classification of seismic signals of volcanic origin [32] allowing to learn 
classifier properties from a single waveform example and some hours of background
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recording. Later the modifications of this method were applied for the detection and 
distance-dependent classification of small earthquakes recorded by the Bavarian 
Earthquake Service [87], volcano signal classification [88, 89, 90], classification 
between earthquakes, explosions and rockfalls [93], geothermal reservoir monitor-
ing [91], and array data classification [92]. Dynamic Bayesian networks, which 
generalize HMMs, have been used for real-time classification of seismic signals 
in context of supervised learning [94, 95]. Two unsupervised machine learning 
methods, k-means and Gaussian mixture model, were applied for classification of 
seismic activities in Istanbul [96]. 

Another impotent seismic processing task is concerned with earthquake early 
warning (EEW) systems, which are aimed to detect significant earthquakes so 
quickly that alerts can reach many people before shaking arrives. The developed 
method must rapidly estimate magnitudes and discriminate is between earthquakes 
and mine and quarry explosions given a few seconds after the arrival of the P-wave. 
MyShake is one of the interesting current earthquake early warning projects [97]. 
Its goal is to build an EEW system based on a crowd-sourcing global smartphone 
seismic network. Analyzing seismic data from smartphones require complex tasks 
that benefit from various machine learning tools including the artificial neural 
network, the density-based spatial clustering of applications with noise (DBSCAN), 
random forests, and convolutional neural networks (CNNs) [98]. Recent advances 
in machine learning for early warning that rely on deep learning techniques are 
referred to in Sect. 6. 

6 Deep Learning for Seismic Signal Processing 

The use of deep learning techniques in the field of geoscience and in particular 
seismology is relatively new, and most papers were published after 2017. A large 
number of papers focus on the problem of event detection and phase association. 
Deep convolutional networks were proposed for this task in a number of papers. 
The input to networks is either the seismograms or a time–frequency representation 
of them. Later papers utilize other deep network models such as residual, recurrent, 
and generative adversarial neural networks. Alongside, deep learning models have 
been explored for improving other seismic tasks such as hypocenter’s localization, 
event characterizations, and more general problems such as signal denoising. 

We review a number of recent papers that utilize deep convolutional networks 
and other deep learning methods for seismic event processing. For each work, we 
mention the type and size of training set that was used and provide details about the 
models’ performances.
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6.1 Seismic Event Detection Using Deep Learning Techniques 

A deep convolutional network for performing earthquake detection and location 
based on a single waveform was proposed in [99], denoted as ConvNetQuake. 
The model’s input is a window of three-channel seismograms data (the raw 
time-series data), and each window consists of 1000 samples. The training set 
contains 2,709 windows including seismic events and 700,039 noise windows. 
The output is a predicted label, of either a seismic event or seismic noise. Each 
convolutional layer has in it 32 filters that down-sample the data by a factor of 
2. Eight convolution layers are required to flatten the data into a 1D vector of 
128 features. A fully connected layer outputs the predicted class scores. The test 
set performance of ConvNetQuake has demonstrated a 94.8% precision (fraction 
of detected events that are true events) and a 100% recall (fraction of true events 
correctly detected). Based on the ConvNetQuake model, the deep convolutional 
network ConvNetQuake_INGV was investigated in [100]. The network aims to 
detect and characterize global earthquakes over a broad range of epicentral distances 
and magnitudes. These include characterizing the earthquake’s parameters such as 
the distance, azimuth, depth, and magnitude of the event. The training set included 
15,200 events and 10,724 noise waveforms recorded at different three-component 
stations. The detection precision of ConvNetQuake_INGV on the test set is 97% 
and recall is 81%, while it shows moderate overall performance for predicting event 
distance, azimuth, depth, and magnitude for the test dataset. 

An additional deep learning application for the problem of earthquake early 
warning is described in [101]. A combination of generative adversarial networks 
(GANs) and random forests was used. The GAN network was inserted for dis-
tinguishing between real earthquakes and noise signals to reduce false alerts. 
The GAN network was trained on .300, 000 waveforms recorded in southern 
California and Japan. Then, the output from the GAN networks, which includes 
produced synthetic samples, is used for training a random forest classifier with 
about 700,000 earthquake and noise waveforms. The high-discrimination results 
show that 99.2% of the earthquake P-waves and 98.4% of the noise signals can 
be correctly recognized by the combined method. Another model that is proposed 
for the problem of earthquake early warning in [102] is a long short-term memory 
network (LSTM), applied to data gathered in Japan. The input to the LSTM network 
was based on computed features from the short 1 s P-wave recordings. The method’s 
accuracy is above 98%. 

Separating the seismic signal from noise is another task related to earthquake 
detection. This topic was addressed in [103] by developing a deep-learning-based 
denoising algorithm named DeepDenoiser. The convolutional neural network learns 
a sparse representation of data that is used for decomposing the input signal into two 
parts: a signal of interest and noise. This type of decomposition is shown to improve 
earthquake detection, and it may be useful as a prepossessing step for a variety of 
seismic learning tasks.
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In [104], the authors used a CNN with three convolutional layers for P-wave 
arrival picking and first-motion polarity discrimination. The networks were trained 
on 18.2 million seismograms recorded by the Southern California Earthquake Data 
Center that included with 4,847,248 manually determined P-wave picks. Through 
cross-validation on 1.2 million independent seismograms, the differences between 
the automated and manual picks showed to have a standard deviation of 0.023 secs. 

Zhu and Beroza [105] introduced the PhaseNet, a U-shaped deep CNN [106] 
that picks the arrival times of both P- and S-waves. The network was trained on over 
7,000,000 manually labeled seismic records from over thirty years of earthquake 
recordings from the Northern California Earthquake Data Center. PhaseNet uses 
three-component seismic waveforms as input and generates probability distributions 
of P-arrivals, S-arrivals, and noise as output. They demonstrated that this deep 
learning method achieves much higher picking accuracy and recall rate than existing 
methods. 

The application of CNNs on relatively smaller sized training sets for seismic 
phase classification was tested in [107]. Around .11, 000 of P- and S-phase pair 
were used as input to a CNN to classify seismic phases. Three one-dimensional 
waveform sample windows, which correspond to 3 components, were fed to the 
network. The network outputs the probability of P-phase, S-phase, or noise for each 
time sample within that window. A softmax or normalized exponential function was 
used in the final layer for generating the associated probabilities for each class. 
The experimental results show that even when data are scarce, a CNN architecture 
significantly improves the P- and S-arrival pick residuals. When comparing the 
results to a classical approach, optimized short-term average/long-term average 
(STA/LTA) [108], the CNN outperforms the STA/LTA approach and achieves results 
that are close to those done by manual inspection. 

The phase association task was recently addressed in [109], where a method 
named PhaseLink was introduced. PhaseLink is a deep learning approach that 
utilizes recurrent neural networks (RNNs) for learning temporal and contextual 
relationships in sequential data. Another advantage of this method is that it is 
trained on synthesized data samples generated from simple 1D velocity models. 
The training set included about six billion artifactually generated seismic phase 
arrival times. So, even in the most seismically active regions, the available data may 
barely be enough to effectively train such a deep network. PhaseLink was applied 
to associate more than 70,000 arrival times that were picked by seismic analysts 
and has demonstrated the state-of-the-art performance (precision and recall were 
0.98 and 0.96, respectively). Phase association for pairing between waveform arrival 
from two stations for predicting whether they originate from a common source was 
investigated in [110], while convolutional neural networks were applied to a large 
dataset from Chile.
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6.2 Seismic Event Localization and Characterization with 
Deep Learning Models 

Seismic event localization is another common task that is used for determining the 
location of a seismic event. Traditional methods use the arrival times of seismic 
phases in different stations to estimate the event’s location. Deep learning was 
recently utilized for event localization in [111] by implementing a deep CNN 
applied to a small area in West Bohemia. The network was trained on 2118 
localized earthquakes from the same region. Input consisted of three-component 
full-waveform records of multiple stations. The network was evaluated on 908 
events, which were located with small standard deviation errors of 56.4 m in east– 
west, 123.8 m in north–south, and 136.3 m in vertical direction. 

Seismic event characterization tasks have also been approached with deep 
learning techniques. CNNs were constructed in [112] for discriminating between 
tectonic tremor, local earthquakes, and noise. The input to this network was a set 
of 17,213 spectral images of size .64 × 64 pixel, which capture the event’s high-
resolution features in both frequency and time domains. The constructed CNN 
was sensitive to the absolute frequency of signal appearance, but at the same time 
invariant to the time of the signal onset. An accuracy of 99.5% was achieved. 

In [113], convolutional and recurrent neural networks were used to accomplish 
discrimination of earthquakes and explosions for local distances. Using a 5-year 
manually reviewed event catalog generated by the University of Utah Seismograph 
Stations (13,313 events; 103,944 phases), the authors train the deep learning models 
to produce automated event labels using 90 sec. event spectrograms from three-
component and single-channel sensors. Both network architectures are able to 
replicate analyst labels 98% of the time. Moreover, each model is able to identify 
human errors within the event catalog (label noise constitutes about 1% of the 
catalog). 

The classification performance of CNN model from previous work [113] was  
compared in [114] with a traditional, physics-based spectral amplitude ratio method. 
The test dataset contained a manually reviewed local catalog of seismic events 
recorded during a 14-day period by the same network of University of Utah (7,377 
events). The task was to provide more detailed classification than earthquake– 
explosion discrimination, for instance, attributing explosions to known mines. The 
CNN model has achieved success rates between approximately 91% and 98% versus 
rates of 80% to 90% for the amplitude ratio method. Thus, the deep learning 
approach outperforms the traditional method, and a major advantage of CNN is 
its robustness to low signal-to-noise-ratio data, allowing to classify significantly 
smaller events. 

In [115], the authors introduce a seismic event discrimination model based on 
deep canonical correlation analysis [116], which extracts a nonlinear transformation 
from sonograms into a low-dimensional space. It is shown that even based on 
relatively small sample size (1,609 events), the neural net-based representation 
(DCCA) outperforms the state-of-the-art kernel-based methods.
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7 Conclusions 

Machine learning methods are nowadays used in many sub-fields of geoscience 
for performing data-driven analysis, accompanying traditional signal processing, 
hypothesis-based analysis, and numerical simulation models. In this review paper, 
we described several machine learning applications to geoscience with a special 
focus on observational seismology. Nonetheless, several interesting applications, 
even in the seismology, have not been discussed in detail. Topics such as simulation 
of seismic waves and full-waveform inversion [117, 118, 119, 120], seismic hazard 
assessment [121, 122, 123], and prediction of experimental laboratory earthquakes 
[124, 125] have been approached by machine learning and deep learning techniques 
over the last years. Earthquake prediction attracted the interest of hundreds of 
teams during the “earthquake prediction” competition on the Kaggle platform (Los 
Alamos National Laboratory, 2019 [126]). Machine learning methods including 
neural and deep networks were applied to earthquake prediction. So far, machine 
learning predicts well the timing and size of laboratory earthquakes by recon-
structing and properly interpreting the spatio-temporal complex loading history of 
the system. Although these results promise substantial progress in real earthquake 
forecasting, machine learning has not yet led to a breakthrough in earthquake 
predictability [127]. 

The majority of research papers describe the use of machine learning techniques 
for supervised problems. However, since geoscience is driven by underlying 
physical phenomena, utilization of advanced learning techniques, which model the 
data with respect to the underlying intrinsic geophysical phenomena, may also be 
an exciting future direction for forming data-driven models. 

One drawback of some existing machine learning and deep learning techniques 
that are applied in geophysics is the large dependency on the training set. There 
is no guarantee that a model that was constructed using data gathered form one 
area would work as well on a different dataset. In addition, since many of the deep 
learning models require huge amounts of labeled data, these types of algorithms 
may not be applicable to regions that are sparse in data, for example, in seismology, 
for low-seismicity regions. Another known drawback of deep learning and some 
machine learning algorithms is their “black box” nature, which makes it hard to 
interpret the underlying features that drive the classification results. One example is 
the field of nuclear test monitoring, where geophysical results may have significant 
political consequences. 

On the other hand, machine learning and deep learning methods often outperform 
other detection and classification techniques; therefore, they are suitable for tasks 
such as earthquake early warning, where rapid and accurate detection is required. In 
addition, machine learning methods can improve our understanding of the physical 
phenomena. Moreover, the rapid development in this field encourages researchers 
to collect labeled data of good quality and to make it available to a large community 
of developers. Last, it is expected that future mutual fertilization between machine 
learning and geoscience will advance both fields, by providing real-life, complex
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challenges for the machine learning community and by relying on data-driven 
analysis (to enhance or replace model-based techniques) in the geoscience field. 
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Sentiment Analysis for Social Text 

Nir Ofek 

1 Introduction 

This work is an essential map for sentiment analysis (SA) in social media. Instead of 
providing the readers with a pull of methods, we chose to provide a comprehensive 
map to understand the field. Methods that were explicated more thoroughly in each 
section are brought due to several reasons: they are robust to noisy text and therefore 
particularly suitable to be used with social text, and they allow easy fusion with other 
methods. 

Sentiment analysis, which is also called opinion mining, is the computational 
detection and study of opinions and viewpoints underlying a text span; it enables 
organizations to sound out public or consumer opinions and paves the way for 
researchers to better model and understand a large variety of human commu-
nications in order to provide significant insight into the sentiments, emotions, 
thoughts, and opinions of people. Examples include analysis of social support 
[1], distilling personality from language [2], detecting political opinions [3], and 
even measuring the quality of life [4]; gauging the quality of various products in 
reviews and microblogs has become the de-facto standard for assessing the quality 
of products and services [5]. The unprecedented popularity and evolution of social 
communication platforms has led to an abundance of user-generated content (UGC) 
that has become the primary source of information for sentiment analysis. 

The focus of this chapter is sentiment analysis in social text, which is typically 
short, informal, and is generated by users in a variety of social media platforms, 
such as microblogs, forums, and social networks. We focus on the English language, 
arguably the most widely used language in the world, especially as a lingua franca; 
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however, most of the presented methods can be easily adopted to other languages. 
Our choice to focus on platforms that allow and encourage personal expressions, 
e.g., Twitter, online health communities, and Websites that support product and 
service rating (e.g., TripAdvisor and Amazon), stems from the understanding that 
they are integral part of human communications. Apart from text, social data may 
include various of modalities such as image and voice; for example, users’ profile 
information can be utilized to rate their level of expertise in the discussed topic and 
rate their opinions accordingly [6]. In this chapter, we explore methods for textual 
data itself, overlooking any other contextual data, since it is the leading and principal 
resource for sentiment discovery and can be fused with non-textual and contextual 
information. 

Making meaning out of unstructured information is extremely difficult since text, 
despite being perfectly suitable for human consumption, is largely unintelligible for 
machines. Challenges include versatility, namely, the multiple variations to convey 
the same meaning, and the tendency to not comply with simple rules, particularly 
in UGC, where characters are limited, and often text is grammatically erroneous, 
without punctuation marks and informal. Compared with other natural language 
processing (NLP) challenges, such as simple text categorization, sentiment analysis 
relies heavily on understanding of the context, e.g., negation. In addition, some 
words do not carry any specific polarity of their own but acquire it in context: 
for example, the adjective small is usually positive in the context of problem and 
negative in the context of hotel room. 

There are various of approaches to address sentiment analysis; the granularity 
level of sentiment and the problem setting are the main factors to consider in 
choosing an approach. The level of granularity defines the sentiment resolution. 
This is important when we want to capture multiple opinions within the same 
sentence, since computing sentiment at the sentence level will not consider divergent 
opinions. Consider the following review: “the treatment was successful but the 
staff were unpleasant.” A positive viewpoint is expressed regarding the treatment, 
while a negative opinion is expressed toward the staff. The brevity of social text 
(e.g., the character limitation of Twitter) invites for fine analysis of sentiment. This 
also allows in-depth analysis, such as investigating sentiment change in an online 
community (e.g., change within threads, by detecting opinions at the post-level 
within forum threads), without having to directly survey the population, a time-
consuming and expensive task [7]. 

The characteristics of the available data determine the approach we will adopt 
or avoid. For example, we may avoid using parsers for noisy text that hardly 
adhere to grammatical rules since this causes a decline in the performance of NLP 
techniques [8]. Other characteristics include the availability of annotated data and its 
quantity. Due to the above-mentioned, there is no single robust method for sentiment 
analysis. The level of granularity depends on the desired outcome, e.g., do we 
want to be sensitive to divergent opinions within the same sentence? The problem 
setting invites different approaches, e.g., supervised or unsupervised, depending on 
the availability of annotated training data. Supervised learning is less relevant for 
aspect-level SA because it is impractical to obtain annotations for every opinion
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target (aspect). This chapter guides through the relevant approaches for various of 
problem settings. 

Current trends in sentiment analysis involve deep learning (DL) approaches that 
had been proven to function well in various of NLP tasks [9]. The main advantage of 
employing deep learning approach lies in its independence from expert knowledge, 
since the text representation is learnt according to the task. However, many methods 
are not specific for sentiment analysis, and their merit to the understanding of the 
problem is limited, despite the fact that they can work well. See further discussion 
in Sect. 7. 

This chapter is organized by first mapping the field and its relevant terminology. 
It proceeds with three main tasks for SA in social data, according to their granularity. 
In lexical level, the task is to create a set of single expressions along with a measure 
of their polarity. In aspect-level SA, the task is to capture opinions per opinion 
targets; in this section, there is a special sensitivity to the availability of annotated 
data because it is impractical to obtain sufficient labeled data for every target aspect 
(e.g., for screen, price, weight, and battery life in the context of smartphone). Finally, 
in sentence-level SA, we regard a sentence as any fragment of text. Each task can 
support additional tasks. For example, document-level SA (which is less prevalent 
in social data) can be supported by sentence-level analysis by considering document 
as a collection of (ordinal) sentences. At the end of the chapter, we describe several 
applications and continue to discuss the sentiment problem and to raise questions 
about ethics in SA. 

1.1 Ontology 

In this section, we provide a map of concepts related to sentiment analysis on user-
generated text. 

Opinion The field of sentiment analysis is mainly referred to as the task of iden-
tifying the polarity, namely positive or negative, of a text fragment, or identifying 
the level of being positive. It seeks to develop automatic methods to address the 
problem. In the literature, opinion mining and sentiment analysis primarily refer 
to the same computational task that is generally ascribed to the detection of the 
viewpoints underlying a text span [10]. The task refers to as opinion extraction, 
sentiment mining, subjectivity analysis, affect analysis, emotion analysis, and 
review mining—all fall under the umbrella of opinion mining. 

Sentiment Word Sentiment word refers to a word that expresses opinion by 
itself, although its polarity may depend on the context. Sentiment words are 
instrumental for many sentiment analysis applications and include words with 
strong sentiment such as “terrible” and “exiting” or words with weaker sentiment 
such as “considerable” and “nice.”
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Sentiment Level Sentiment can be computed in many levels of granularity: at 
a document or sentence level, for specific target word and for a single word (or 
phrase) in inself. However, detecting opinions at the document level is not relevant 
in this work due to the brevity of UGC. Sentence-level SA is often insufficient for 
applications because it does not assign sentiments to opinion targets [11]. Aspect-
level SA aims to associate sentiment words with their opinion targets, i.e., aspects. In 
word/phrase-level SA, a sentiment lexicon is created. Choosing the sentiment level 
depends on the task, and there is a link between the various levels. For example, 
finding polarity of aspects and expressions can support sentiment analysis at various 
granularity levels, since the orientation of a text fragment can be determined by 
the polarity of its known components. The organization of this chapter follows a 
bottom-up approach. The more fine-grained approaches are discussed first. 

Sentiment Lexicon Sentiment lexicon is a knowledge base of words or phrases 
along with their sentiment score. It is a fundamental component for sentiment 
analysis and can support sentiment analysis in all levels of granularity. Lexical 
words such as “amazing,” “horrible,” and “excellent,” are assigned with a positive 
or negative score reflecting their sentiment polarity and strength. 

Sentiment Score The sentiment score is the output of a sentiment computation 
task. In some cases, sentiment analysis aims to predict the rating of a review, as 
in aspect-level SA where rating (from one to five) is often predicted; in others, the 
goal is to discriminate between binary classes (positive or negative), or in a trinary 
scale (positive, neutral, and negative categories). This work presents methods that 
are relevant to the common scheme prediction. 

Ambiguity Unlike simple text categorization, opinion mining relies heavily on 
understanding of the context, since some words do not carry any specific polarity 
of their own or are ambiguous. For example, the adjective “great” is likely to be 
positive in the context of an idea and negative in the context of a problem. To address 
this, a popular approach aims to couple sentiment words along with their contextual 
words to disambiguate their polarity. 

Classification vs. Extraction Sentiment is computed in two main approaches: the 
extraction approach and the classification approach. The extraction approach aims 
to identify words, multiword expressions, phrases, or clauses that express attitudes 
and determine the polarity of these attitudes [12]. Therefore, it often involves a 
sentiment lexicon where words or phrases are coined with their polarity orientation. 
This allows calculation of sentiment in any fragment of text by extracting its known 
components from the lexicon and building the sentiment picture accordingly, as 
shown by Turney [13]. The classification approach involves building classifiers from 
labeled texts (essentially a supervised classification task). 

Supervised vs. Unsupervised Typically, SA is handled by supervised classifica-
tion, and the goal is to discriminate between the two classes. Supervised machine 
learning methods rely on the availability of quality labelled data and are desired 
because of their ability to focus on the specific resources of interest. In SA, often
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positive examples outnumber the negative examples; in this case, the imbalance 
class distribution problem may occur, because there are significantly more instances 
from one class relative to other classes [14]. In such cases, the classifier tends to 
misclassify the instances of the less represented classes, for a variety of reasons. 
There are several approaches to address this problem, as discussed and suggested 
by Ofek et al. [15]. The unsupervised approach tends to be less labor-intensive, 
and the extraction approach becomes more relevant by utilizing rules and lexicons. 
For example, bootstrapping techniques can be employed to label data according 
to syntactic patterns, and clustering techniques can form clusters according to the 
feature space, while labels can be manually or heuristically obtained. In this scope, 
there are also methods that utilize signals such as emoticons, to obtain labeled data, 
or utilize given label information in their optimization function, while the predicted 
target class is different; see, for example, the weakly supervised approach in Sect. 4. 

2 Text Representation and Normalization 

Text, an unstructured type of data, requires representation that bridges the human 
understanding of language to that of a machine. This process is conducted by an 
expert or by machines that learn representation. Below are several concerns related 
to text mining in the context of sentiment analysis. 

Bag-of-Words (BOW) Word models represent text as a fixed-length vector; if each 
term occurring in the training documents is used as a feature, the vector length 
equals to the distinct n-grams in the vocabulary. Term frequency (TF) vectors [16] 
are used to represent terms as their normalized counts; the distance between vectors 
can be measured by employing cosine similarity or other measures. Although it 
is not without merit, the BOW approach is often incapable of representing the 
order and proximity of terms in the text. This poses significant limitations in some 
sentiment analysis scenarios, as explained in [17]. Another major drawback of 
BOW-based solutions is the difficulty of integrating additional information into the 
model because of the large number of features it utilizes. This problem is known as 
the curse of dimensionality. 

Curse of Dimensionality Many text classification methods use sparse features 
representation, mainly terms and their frequencies, in which each feature is the 
frequency of an n-gram unit. Despite being simple, this approach is highly effective 
for traditional text classification, and in particular for some sentiment analysis tasks 
[18]. Since this approach involves high feature space, classifiers find it difficult 
to utilize them in an efficient manner. This problem is known as the curse of 
dimensionality [19, 20]. The large number of features also narrows the selection 
of possible classifiers, ruling out popular algorithms such as the C4.5 decision trees 
algorithm [21], which are incapable of efficiently dealing with a feature set of large 
magnitude. This problem is considerably aggravated when the training dataset is 
relatively small and can lead to overfitting of the learned models. Feature abstraction
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methods have been shown to effectively reduce the number of parameters without 
sacrificing classification accuracy as, demonstrated by [22, 23], and by conSent 
method in Sect. 5. 

Word Embedding Word embedding learns semantically meaningful representa-
tions for words and encodes them in fixed-length vectors, so similar words have 
similar representation. Often the principle is to describe words by its frequent co-
occurring words in a large text corpus, using unsupervised methods. In practice, 
word embedding techniques such as word2vec [24] learn to predict a word given 
the other words in its vicinity. In this space, vectors embody semantic relatedness 
of words, such that “bee” is closer to “butterfly,” than to “Japan,” which enables the 
effective comparison between words. This representation can be used to feed any 
feature-based technique. 

Text Embedding Sentence or document embedding models [25] map each frag-
ment of text to a dense, low-dimensional vector, in continuous vector space. 
Sentence embedding vectors take into consideration the word order while inheriting 
an important property of the word vectors: the semantics of the words, so semanti-
cally related texts, should be represented by close vectors. In sentiment analysis, a 
sentence can be represented by such manner to feed any classifier, while the choice 
of text representation is often more important than the type of classifier used. 

Negation Detection Negation is a very common linguistic construction that affects 
the semantic orientation of words, and therefore, negation detection is important 
to sentiment analysis. In order to detect negation, a simple technique can be 
adopted. The following prefixes are considered as negating: mis-, un-, dis-, and 
im-. Additionally, negation words can be adopted from [26], and consider a word as 
negated if it is dependent on a negated word. In case a parser is not available to draw 
the dependency tree, other methods can be implemented as described by [8, 27]. 
Further discussion and analysis of negation detection are beyond the scope of this 
work and can be reviewed in [28], and negation words can be found at Christopher 
Potts’ tutorial. http://sentiment.christopherpotts.net/lingstruc.html. 

Normalization Textual irregularities in UGC are numerous and diverse; normal-
izing them may result in reducing the level of noise and the dimensionality of 
the data, e.g., by bringing multiple variations that convey the same meaning, to a 
single normal form. Below are several irregularities in Twitter, whose grammatical 
structure is different from common structure of longer texts (e.g., new articles). The 
limitation on length of tweets (140 characters) encourages the use of abbreviations; 
the letter “c,” which is included among the top 100 most frequently used terms 
according to Google’s Twitter frequency lexicon, is often used instead of the word 
“see.” Other irregularities include a lack of punctuation marks, the use of informal 
text, slang, non-standard shortcuts, and words concatenations. For example, in 
Twitter, the hashtag #coronavirusoutbreak could be converted into “corona virus 
outbreak,” and user names can be mapped into a single token.

http://sentiment.christopherpotts.net/lingstruc.html
http://sentiment.christopherpotts.net/lingstruc.html
http://sentiment.christopherpotts.net/lingstruc.html
http://sentiment.christopherpotts.net/lingstruc.html
http://sentiment.christopherpotts.net/lingstruc.html
http://sentiment.christopherpotts.net/lingstruc.html
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2.1 Resources 

NLTK. The Natural Language Toolkit (NLTK) is a Python platform for performing 
NLP-related tasks, e.g., tokenization, Part-Of-Speech (POS) tagging, stemming, 
parsing, and semantic reasoning. NLTK also provides interfaces for many corpora 
and lexicons that are useful for and sentiment analysis. http://www.nltk.org/ 

CoreNLP Stanford CoreNLP is a Java framework that supports NLP task, e.g., 
named entity recognization, parsing, POS tagging, coreference resolution, and some 
sentiment analysis capabilities. http://stanfordnlp.github.io/CoreNLP/. 

Gensim Gensim is a Python open-source library for topic modeling with large-
scale capabilities; it suggests word2vec implementation, online latent semantic 
analysis (LSA), latent Dirichlet allocation (LDA), random projection, and hierar-
chical Dirichlet process. http://radimrehurek.com/gensim/. 

3 Lexical-Level Sentiment Analysis 

Words are fundamental component tokens in human language; knowing words’ 
sentiment is a basic step in sentiment analysis, because it can be utilized to 
compute sentiment of any fragment of text, under the assumption that individual 
words have what is referred to as prior polarity. Prior polarity is referred to as the 
sentiment orientation independent of context. In this section, we introduce methods 
to construct a sentiment lexicon that comprised of sentiment words along with 
a measure of their polarity, to indicate the direction the word deviates from the 
norm of its semantic group. Apart from words, lexical components may include 
expressions and concepts. 

The basic approach for lexicon construction assembles manually a small list of 
seed words, along with their measure of polarity. Then, an algorithm is adopted to 
propagate sentiment information to words that relate to the seed words. In more 
details, first seed words (word or phrase) are added as nodes. Second, a graph 
is expanded by adding related words to each seed word as new nodes, while the 
similarity with known words is considered as weighted edges. Then, graph prop-
agation algorithms, such as PageRank [29], label propagation [30], implemented 
in [31], or random walk (used in constructing SentiWordNet [32]), are utilized to 
iteratively compute the sentiment score of new words. Two main approaches are 
taken in selecting the data source for the graph expansion process. One is corpus-
based, where rules, linguistic patterns, or simple words co-occurrences aim to define 
the sentiment relationship between pairs of words. In this case, sentiment of new 
words is computed based on a large number or co-occurrence with known words. 
Obtaining a large corpus will not only improve the accuracy of words’ sentiment, 
but also increase the lexicon coverage; the challenge here is to maintain accuracy

http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://stanfordnlp.github.io/CoreNLP/
http://stanfordnlp.github.io/CoreNLP/
http://stanfordnlp.github.io/CoreNLP/
http://stanfordnlp.github.io/CoreNLP/
http://stanfordnlp.github.io/CoreNLP/
http://radimrehurek.com/gensim/
http://radimrehurek.com/gensim/
http://radimrehurek.com/gensim/
http://radimrehurek.com/gensim/
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by, e.g., using a rigid set of rules or patterns, in order to ensure a quality inference 
process while obtaining a reasonable coverage. 

Turney and Littman [33] conducted a seminal study in this line of work; they 
count word co-occurrences by feeding queries to a search engine and collecting the 
number of hits; therefore, the computation is based on a very large dataset, namely, 
the entire indexed Web. Then, they employ pointwise mutual information (PMI) 
between two items that measures the degree of statistical dependence between two 
terms, such that: 

. PMI (word1, word2) = log2
p(word1&word2)

p(word1)p(word2)
,

where .p(word1&word2) is the probability that .word1 and .word2 co-occur. If 
the words are statistically independent, the probability that they co-occur is given 
by the product .p(word1)p(word2). The ratio given by .p(word1&word2) and 
.p(word1)p(word2) is a measure of the degree of statistical dependence between 
the words. The log of the ratio corresponds to positive correlation when the words 
tend to co-occur and negative when they do not. 

The second approach for lexicon construction is thesaurus-based. It exploits 
semantic relationships (e.g., synonym and antonym) in a dictionary to expand the 
words graph. As a consequence, under this direction, the majority of existing works 
regard word as their basic unit [34]. 

SentiWordNet [32] is a lexical resource for sentiment analysis that assigns 
to each synset of WordNet [35]—a lexical database for English—three sentiment 
scores: positive, negative, and objective. Since it is indexing the meaning of a word, 
a word can be associated with several sentiment scores, according to its meaning. 
The lexicon is generated by employing expansion of words from small sets of seed 
words. Here are the main steps of the process: 

1. First, seven positive and seven negative terms are collected and considered as 
seed set. 

2. In this step, the seed set is automatically expanded. The process involves 
traversing WordNet in several iterations to enrich the lexicon by words of 
similar polarity (by, e.g., a relation of synsets) and of opposite polarity (a 
relation of antonymy). 

3. Here, a third collection of objective words is added. They assume that terms 
with a similar polarity tend to have “similar” glosses—a brief textual definition 
of each synset in WordNet, used for sense disambiguation. Therefore, synset 
glosses are labeled with one of three sentiment classes: positive, negative, and 
objective. The glosses are used for training so as the ternary model is actually a 
gloss classifier (in this case averaging ensemble of classifiers). 

4. The classifier trained in the previous step is used to classify all synsets in 
WordNet. 

Word Sentiment Embedding Word sentiment embedding is another approach 
for lexicon construction where words are represented in continuous vector space;
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however, words that are likely to appear in similar contexts, from a sentiment 
point of view, should not necessarily have similar representations in typical 
embeddings. For example, the words “safe” and “unsafe” can appear in similar 
contexts. By merely looking at word co-occurrences, we would learn similar vector 
representations for “safe” and “unsafe.” To capture their opposite polarity, there 
is a need to incorporate sentiment knowledge in the learning process so as better 
distributional representations for SA could be learnt. The study of [36] suggests 
considering sentiment information in word embedding, by incorporating a measure 
of sentiment similarity so as to capture the sentiments from prior information; 
they compound sentiment similarity as a ratio for appearing in every sentiment 
category, with co-occurrence measure, so as similar words by context, such as “safe” 
and “unsafe,” which have different sentiment distributions, correspond to different 
vector representations. 

SSPE The sentiment-specific phrase embedding [37] generates Twitter-specific 
sentiment lexicon of words and phrases. The embedding phase starts with collecting 
tweets containing positive and negative emoticons and considering all phrases in 
a positive tweet as positive and similarly for negative tweets. Next, they employ 
learning phrase representation with Skip-Gram model for phrase embedding [38]. 
However, in addition to that, their objective includes predicting the polarity of the 
whole sentence representation, given by averaging the embedding of its phrases. 

The main limitation of the lexical approaches is the ambiguity of words. This can 
be alleviated by adding more context to words themselves. Thus, it is suggested to 
construct text into small meaning units, i.e., concepts—semantic forms of human 
language—and assigning emotions to such concepts. 

SenticNet SenticNet [39] is a popular knowledge base of concepts (compiled 
based on commonsense), along with their polarity scores. Using polarity of nat-
ural language concepts can mitigate the complexity of sentiment analysis, since 
understanding concepts does not require a great deal of familiarity with the 
language. Concepts may consist of a product’s feature described by an opinion 
word (small room) or an expression (keep alive). Concept-level sentiment analysis 
aims to infer the semantics associated with natural language opinions and thereby 
facilitating comparative fine-grained feature-based sentiment analysis [40]. Such 
knowledgebase enables a deeper and multifaceted analysis of natural language 
opinions; since it does not contain domain-specific knowledge, the majority of these 
concept’s sentiments are unambiguous. 

SentiLARE SentiLARE [41] acquires the linguistic knowledge of each word, to 
compute its sentiment polarity via a context-aware sentiment attention mechanism 
over all the matched senses in SentiWordNet. Using the lexical information, 
they achieve state-of-the-art performance on a several aspect- and sentence-level 
sentiment analysis tasks.
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3.1 Resources 

SentiWordNet [32] is a lexical resource for sentiment analysis that assigns polarity 
to each synset of WordNet. It is freely available for non-profit research purpose at 
http://sentiwordnet.isti.cnr.it/. 

SenticNet is a popular knowledge base of concepts (compiled based on com-
monsense), along with their polarity scores. It provides the semantics and polarity 
scores associated with about 30,000 multiword expressions (concepts); its current 
version, SenticNet5, contains 100,000 concepts by adding conceptual primitives. 
http://github.com/senticnet 

MPQA Subjectivity Lexicon The MPQA lexicon [42] includes 8,222 words 
with their measure of subjectivity (strong or weak), part-of-speech tags, and their 
polarities. http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/. 

Harvard General Inquirer Harvard General Inquirer [43] contains 182 categories 
including positive and negative marking for 1,915 positive words and 2,291 negative 
words. http://www.wjh.harvard.edu/~inquirer/. 

Hu and Liu Opinion Lexicon This lexicon [44] includes 4783 negative words and 
2006 positive words. https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html. 

4 Aspect-Level Sentiment Analysis 

Aspect-level sentiment analysis captures opinions per opinion targets (which is 
considered as “aspect”). This granularity allows, for example, comparing products 
according to their specific aspects (e.g., a laptop’s screen or price), instead of 
extracting opinions about a whole product (e.g., laptop). There are two major 
challenges in aspect-level SA. The first relates to the recognition that several 
opinions can co-occur in the same text fragment, for multiple aspects. Consider 
the following text: “the recovery was fast but the stuff was unfriendly.” A positive 
viewpoint is conveyed for recovery, while a negative viewpoint for staff. The  
second challenge stems from the ambiguity of some sentiment words, which 
acquire context-sensitive polarity. Consider the word “cold” that conveys a positive 
sentiment in cold beer and negative in cold pizza. 

Because natural languages do not always comply with simple rules, addressing 
the first challenge that involves connecting aspects with sentiment words is not a 
simple task. In the excerpt “the staff is caring and also very gentle but the pain I 
feel is intensive,” applying a rule that connects adjectives with their nearest noun 
will identify pain as being gentle. Thus, connecting sentiment words with their 
corresponding aspects becomes crucial for aspect-level sentiment analysis. This 
can be addressed by extraction methods using patterns, dependency parsers, or by 
designated classification tasks [8]. When a strict approach is taken, i.e., using rigid
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pattern structures, accuracy is increased on the expense of coverage, since in last 
cases a relationship between sentiment word and an aspect is captured. 

Another line of approaches do not model the relationship between aspect and 
sentiment words, but instead fuse context information into the representation of the 
sentence; attention-based long short-term memory (LSTM) network can account the 
aspect during attention in two main ways: one way involves concatenating the aspect 
vector into the sentence hidden representation for computing attention weights, and 
the other way is appending the aspect vector into the input of every word vector. 
When the relationship between aspect and sentiment words is modeled, as shown 
by the next algorithms Ex1 and Ex2, it is more likely to obtain more accuracy on 
the expense of coverage and to yield explainable results. On the other hand, the 
method given by Section 4.2 does not model the relationship, but likely to attain 
relatively high coverage. Pragmatically, several methods could be combined in a 
cascade approach, while the most accurate method is employed first, and if there is 
no solution (e.g., the relationship between the aspect and the sentiment words could 
not be recognized), another method is adopted. 

Aspect Detection The aspect detection phase is a preliminary phase that aims 
to identify aspects that are in focus for sentiment computation. This includes 
identifying implicit and explicit aspects and normalizing them to canonical form; 
however, this phase is beyond the scope of this work, since there are many other 
methods that perform the task in a satisfactory manner [45, 46]. Note that this step 
becomes redundant if the desired aspects are known. For more reading, please refer 
to [47]. 

4.1 Unsupervised 

Supervised methods rely on the availability of labeled data; however, because it is 
impractical to obtain labeled data for every aspect (e.g., screen, price, weight, battery 
life, etc.), the unsupervised paradigm is more suitable for aspect-level SA. In this 
line of work, it is considered a logical choice to use adjectives as sentiment words 
[48, 49, 50], since their function is to characterize nouns. Without being restricted to 
adjectives, Blair-Goldensohn et al. [51] report that adjectives comprise 90% of their 
sentiment words, although other semantic groups, as pronouns [52], can convey 
sentiment. 

Below we suggest two corpus-based algorithms that construct a quality sentiment 
lexicon for each aspect, which comprises adjectives, along with a measure of 
their polarity to indicate the direction the word deviates from the neutral form. 
The main advantage of the proposed algorithms is threefold: (1) they utilize only 
unlabeled data; no labels or metadata are required; (2) they allow easy adaptation 
to other domains and languages, and (3) they maintain relatively accurate polarity 
scores for lexical words. These three contributions are ascribed primarily to the 
following properties of the algorithms: a. An exhaustive corpus-based expansion
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process that opens up the ability to use only two seed sentiment words (“good” and 
“bad”) and two conjunction patterns (“and” and “but”) that are trivial to obtain in 
many languages. b. Using adjectives as sentiment words, a choice that stems from 
their functionality to directly convey information on nouns. c. Minor reliance on 
dependency parsing. Recall that parsers are shown to be less effective in processing 
informal or transcribed text [14]. The following methods use a parser mainly to 
identify relations between nouns and adjectives. Being a sub-task of a dependency 
parser, identifying such relations can be solved by a classification process, as 
suggested in [8]. 

Ex1: Algorithm for Lexicon Construction The purpose of the Ex1 algorithm [40] 
is to construct a lexicon of sentiment words, in this case adjectives, given a target 
aspect a, and to assign to each adjective a polarity measure in the context of a. 

Connecting Aspects with Adjectives For each aspect a, given a sentence s, we  
seek to identify the set of adjectives in s that are semantically related to a and to 
associate them with aspect a. For this association, the method to connect adjectives 
with nouns in classification, presented in [8], can be employed. Alternatively, a 
dependency parser—capable of producing dependency representation in order to 
provide a simple description of the grammatical relationships in a sentence—can be 
employed. It outputs a set of triplets, each comprised a pair of words, and a label 
to represent their dependency (or relation) type. For example, the noun service is 
recognized by the Stanford Parser1 to be modified by the adjective excellent in the 
following review taken from TripAdvisor: “Breakfast at the hotel is very good and 
the service of the staff here is excellent.” This is given by the triplet <amod: service, 
excellent>. The question whether to use a dependency parser or a classifier depends 
on the nature of the data (e.g., level of noise) and the availability of a high-quality 
parser in the target language; for further discussion and more examples, refer to [8]. 

We consider aspect a and adjective jj connected if: 
Definition: connected: Aspect a and adjective jj that co-occur in the same 

sentence are connected if they comply with three constraints: (1) they are interde-
pendent, and the dependency type is one of the following {amod, nsubj , dep}, 
where amod captures adjectival modifier, nsubj captures a noun phrase that is 
the syntactic subject of a clause, and dep is an unlabeled dependency. (2) The 
dependency governor is the aspect a, and its POS tag is either NN or NNS (singular 
or plural noun). (3) The dependency dependent is the adjective jj , and its POS 
tag is JJ, JJR (adjectives with the comparative ending) or JJS (adjectives with the 
superlative ending). When the parser outputs the dep dependency type, it is in 
cases when it detects a dependency but fails to determine the correct type of the 
dependency. Therefore, allegedly, it is counterproductive to use dep. However, due 
to the informal language in UGC, there are many cases in which the dependency 
type is not recognized (e.g., in “staff: very helpful”), and therefore, considering

1 http://nlp.stanford.edu:8080/parser/index.jsp. 
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this dependency type is important. When there are two adjectives . jj1, .jj2 in the 
sentence, while the first adjective (. jj1) is connected with aspect a, and there is a 
conjunct relation between the two adjectives, we also consider a connected with 
. jj2. The conjunct relation indicates a coordinating conjunction dependency type 
and implies that the second adjective (. jj2) is also modifying aspect a. Consider the 
following excerpt: “the room is wide and clean.” The adjective “wide” is connected 
with the aspect “room” according to the above-mentioned constraints. Since there 
is a conjunct relation in between the adjectives “wide” and “clean,” the adjective 
“clean” also becomes connected with the aspect room. 

Based on the homogeneous condition that constrains two arguments that share 
something in common [53], two types of conjunction patterns are defined. 

Definition: Homogeneous pattern: The “and” conjunction is defined as a homo-
geneous pattern since it connects two adjectives that share semantic meaning in 
common; we consider it semantic orientation feature. 

Definition: Diversified pattern: The “but” conjunction is defined as a diversified 
pattern since it connects two adjectives that have contradictory features; we consider 
this contradictory feature to be the semantic orientation. 

These patterns can be easily obtained in most languages. Next, we define two 
types of interactions that constrain the semantic orientation of their arguments. 

Definition: Interaction: Two adjectives . jj1, .jj2 that co-occur interact with each 
other if they are both connected with the same occurrence of aspect a. 

Definition: Homogeneous interaction: Two adjectives are in homogeneous in-
teraction if they adhere to the following constraints: (1) there is an interaction 
involving the two adjectives and (2) there is a homogeneous pattern between the 
two adjectives, and either none of them is negated, or both of them are negated; or 
there is a diversified pattern between the two adjectives, while only one of them is 
negated. For example, there is a homogeneous interaction in the sentence “the pool 
is cold and small,” between the adjectives cold and small, because both adjectives 
are connected with the aspect “pool,” and there is a homogeneous pattern between 
the adjectives, while none of them is negated. 

Definition: Diversified interaction: Two adjectives are in diversified interaction if 
they adhere to the following constraints: (1) there is an interaction involving the two 
adjectives and (2) there is a diversified pattern between the adjectives, and either 
none of them is negated, or both of them are negated; or there is a homogeneous 
pattern between the two adjectives, while only one of them is negated. Consider the 
sentence “the pool is not crowded and large,” where both adjectives, “crowded” and 
“large,” are “connected” with the aspect “pool.” In addition, there is a homogeneous 
pattern between the adjectives, and one of them is negated, and therefore, it is a 
diversified interaction. 

For negation detection, a set of prefixes can be used and the indication of the 
dependency parser. This also facilitates the process of pattern matching; when 
looking for homogeneous or diversified patterns, we generalize negation indicators 
in the following way: a negated adjective jj is transformed to the form of .¬jj , 
and the negation indicator is omitted from the text. For example, after detecting 
negation in the sentence “the pool is crowded and not large,” it is transformed to the
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Algorithm 1 Ex1: Constructing Lexicon for aspect a 

Input: SL – seed lexicon
{
jj: polarity|∀jj ,jj.polarity =

{
1,if positive 0,if negative

}}

Input: D – corpus of reviews, segmented to sentences {s1, . . . , sn} 
Input: P – set of patterns 
Output: lexicon(a) – the extended lexicon for aspect a 
1: M ← ∅; itr  ← 0; Initialize DAG(a) with SL 
2: Fill M with all interactions of adjective pairs in D which are connected with aspect a; 
3: itr  ← itr  + 1; 
4: Let jj i x be adjective x, where  i represents the iteration (itr) in which it was added to DAG(a) 

adjective jj i x ∈ DAG(a) where i == itr  − 1 interaction in M comprised of jj i x and jj j y 
where (jj j y /∈ DAG(a) or j == itr) 

5: neg(jj i x ) ← detect negation of jj i x; neg(jj j y ) ← detect negation of jj j y 
6: pk ← extract pattern between jj i xandjj j y detected homogeneous or diversified interaction using 

neg(jj i x ),neg(jj 
j 
y ),pk 

7: Add jj j y to DAG(a) unless jj j y ∈ DAG(a) 

8: Update edge from jj i x to jj j y with counter corresponds to the interaction type jj j y ∈ DAG(a), 
where (j == itr) 

9: jj i x .polarity ← compute polarity using incoming edges information 
no adjective was added to DAG(a) in current iteration (itr) 

10: Return a lexicon of all adjectives in DAG(a) 

form “the pool is crowded and .¬large” and the inverse sentiment score of “large” 
is considered; thereby, the “and” pattern can be matched in between the adjectives, 
and subsequently, diversified interaction is detected. 

The exhaustive algorithm generates a graph of adjectives for every target aspect 
a, DAG(a), and computes the polarity for each adjective. Algorithm 1 provides a 
detailed description for constructing the lexicon. The algorithm’s main steps are 
described below: 

Step 1 Initializing. At starting point, add to DAG(a): good, which is assigned with 
polarity score “1” (represents positive polarity), and bad, which is assigned 
with polarity score “0” (represents negative polarity). For each iteration i, 
using corpus D: 

Step 2 Graph expansion. Iterate through all occurrences of each . jj1 ∈ DAG(a)

in D, where .jj1 is connected with a, and count the number of homoge-
neous and diversified interactions with each adjective .jj2 /∈ DAG(a). 
Add adjective .jj2 to DAG(a) at the end of this step with the incoming 
edges from interacting adjectives, and record interaction type counters. For 
example, consider the sentence “the pool is crowded but wide.” Assume: 
a=’pool,’ i=2, .’crowded’ /∈ DAG(a), .’wide’ ∈ DAG(a). Since there is a 
diversified interaction of the adjectives “crowded” and “wide,” “crowded” 
will be added to the graph with an incoming edge from the node “wide.” 
Figure 1 illustrates the graph at the end of iteration .i = 2. It can be seen 
that the adjective “crowded” has sixteen interactions in the corpus with the
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Fig. 1 Example of adjective graph for the aspect pool. Labels above each edge represent 
homogeneous (left) and diversified (right) counters 

adjective “wide,” and in fourteen out of sixteen times, the interaction type 
is diversified. 

Step 3 Polarity assignment. At the end of the iteration, the polarity of new 
adjectives that were added to the graph in the current iteration is computed. 
This is performed by averaging the polarities of adjectives from which 
edges are incoming; the average is weighted according to the number 
of interactions of each adjective. In the case of diversified interaction, 
consider the inverse polarity of the source adjective (i.e., 1-polarity). 
The final polarity of each adjective is in the range of [0:1], since the 
initial polarity assignment of seed adjectives is either “0” or “1.” Once 
an adjective is added to the graph, it is used in extracting new adjectives 
and its polarity score is clamped. 

Steps 2 and 3 repeat until no new adjective is added to .DAG(a). 
Ex2: Lexicon Construction Through Co-Expansion. The co-expansion al-

gorithm utilizes a mutual expansion process—patterns are used to expand the 
sentiment word lexicon and vice versa, and sentiment words are used to expand 
the extraction patterns set—thus its name. 

Definition: Interaction: An occurrence of two adjectives . jj1, .jj2 that interact 
with each other if they are both connected with same occurrence of aspect a. 

After identifying interacting adjectives, patterns in between them can be ex-
tracted. Based on the homogeneous condition that constrains two arguments that 
share something in common, two classes of patterns are defined by utilizing the 
extracting adjectives’ polarity. If a negated adjective is detected, the inverse polarity 
of the adjective is counted. 

Each extracted pattern pertains to one of the following classes:
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Definition: Homogeneous pattern: A set of consequent words in between two in-
teracting adjectives is a homogeneous pattern when the adjectives share something 
in common; we consider this homogeneous feature to be semantically oriented, i.e., 
both adjectives are either positive or negative. Consider the excerpt “the room is 
wide and very clean.” Since the adjectives “wide” and “clean” convey positive-
semantic orientation in this context, the pattern “and very” becomes homogeneous 
pattern. 

Definition: Diversified pattern: A set of consequent words in between two 
interacting adjectives is a diversified pattern when the adjectives have contradictory 
features; we consider this contradictory feature to opposing orientation class, i.e., 
one is positive and the other is negative. Consider the following sentence involving 
two interacting adjectives: “the room is outdated but quite spacious.” In this context, 
the polarity of the adjective “outdated” is negative, and the polarity of the adjective 
“spacious” is positive. Due to the polarity of their semantic orientations, the pattern 
“but quite” becomes diversified pattern. 

Once patterns are extracted and their function is determined, they are used 
to extract new adjectives and compute their polarity, because they constrain the 
semantic orientation of their arguments. 

The process is presented in Algorithm 2, and its main steps are as follows: 

Step 1: Initializing. At the starting point, the two adjectives: “good,” which is 
assigned positive polarity, and “bad,” which is assigned negative polarity, 
are added to DAG(a); the two patterns: “and,” which is considered 
a homogeneous pattern, and “but,” which is considered a diversified 
pattern, are added to the pattern set P . Seed adjectives’ polarities and 
seed patterns’ classes are considered statistically significant. For each 
iteration i, using corpus D: 

Step 2: Adjective extraction. Use statistically significant patterns (step 5) from P 
and statistically significant adjectives (step 3) from DAG(a) to extract new 
adjectives. This begins by iterating through all interactions in D. Extract 
adjective .jj2 /∈ DAG(a) if it interacts with statistically significant 
.jj1 ∈ DAG(a), and the pattern in between them p is known (.p ∈ P) 
and statistically significant. Add .jj2 into DAG(a) at the end of this step 
with the incoming edge from . jj1, and retain counters for encountered 
patterns classes. Negation of adjectives is considered, that is, if there is 
an odd number of negated adjectives, i.e., one adjective is negated, the 
other pattern class counter is incremented. 
Consider the sentence “the pool is crowded but pretty wide.” Given: 
a=’pool’, i=2, .crowded /∈ DAG(a), .wide ∈ DAG(pool) (and is 
significantly positive), .“but pretty” ∈ P (and is significantly diversified). 
Since the adjectives crowded and wide interact, and the pattern in between 
p is “but pretty,” the adjective “crowded” is added to DAG(pool) with the 
incoming edge from the node “wide.” The diversified counter for this edge 
is incremented. If one of the adjectives was negated, the homogeneous 
counter would be incremented. Figure 1 illustrates the graph at the end
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of iteration .i = 2. It can be seen that the adjective crowded had been 
extracted by using the adjective wide; the  diversified counter has been 
incremented fourteen out of sixteen possible times. 

Step 3: Polarity assignment by statistical test. After processing the entire dataset, 
a two-tailed test is conducted for each adjective in DAG(a) that is not 
marked statistically significant. The null hypothesis is tested to determine 
whether the adjective’s polarity is drawn from a random distribution. The 
adjective population is comprised of polarity values—either positive or 
negative—of the incoming edges’ nodes, according to their counters. The 
random population is drawn from all of the extraction events of all of the 
adjectives in DAG(a), i.e., polarity values of all nodes that have outgoing 
edges, according to their counters. In cases of diversified patterns, the 
inverse polarity of the adjective is considered. If the difference is found 
to be statistically significant, we clamp the adjective class, positive 
(equivalent to “1”) or negative (equivalent to “0”), which is determined 
according to the p-value. Otherwise, the adjective is not used in the 
co-expansion process due to the uncertainty with regard to its polarity. 
Nevertheless, they are included in the lexicon and can be utilized in 
sentiment detection tasks, while their polarity score is set to the p-
value. For example, when creating the population of the node “wide,” we 
consider all of its incoming edges (see Fig. 1). The population is 26 times 
the value positive, since it has 24 homogeneous interactions with “good” 
(positive polarity) and two diversified interactions with “bad” (negative 
polarity, which is the inverse polarity of positive), and two times the value 
of negative due to the homogeneous interactions with “bad” (negative 
polarity). It can be seen that the polarity of “wide” is marked statistically 
significant in the first iteration, since it is used in expanding the graph 
(i.e., it has outgoing edges). The motivation behind the statistical tests is 
to ensure the quality of the extraction process. That is, only adjectives 
whose polarity values are not drawn from a random distribution are used 
in co-expansion. This increases the precision at the expense of recall, 
since not all adjectives are used in extracting new adjectives. However, 
by mining the entire dataset in each iteration, we wish to increase recall 
by constantly adding new adjectives to the graph (until exhaustion). 

Step 4: Pattern extraction. Find all interactions < . jj1, . jj2> in  D where . jj1, jj2 ∈
DAG(a) and both adjectives are statistically significant. Extract the 
pattern p in between each such adjective pair and add to P . If .jj1 and 
.jj2 have the same polarity (after considering negation), mark p as a 
homogeneous pattern; otherwise, mark it as a diversified pattern. At the  
end of this step, each extracted pattern retains two counters corresponding 
with each pattern class. 

Step 5: Determine pattern class by statistical test. The goal of this step is 
to determine the pattern’s class, i.e., homogeneous or diversified, by  
conducting a statistical test. Similar to step 3, a two-tailed statistical 
test is conducted for each statistically non-significant pattern in P . The
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null hypothesis is tested to determine whether the pattern’s class is 
drawn from a random distribution. A pattern’s population is comprised 
of homogeneous and diversified values multiplied by their counters, 
according to step 4. The random population is drawn from all of the 
counters of patterns in P , i.e., classes of all patterns multiplied by their 
counters. If the difference is found to be statistically significant, the 
pattern is marked as either homogeneous or diversified according to the 
p-value; otherwise, the pattern is not used in the co-expansion process 
due to the uncertainty with regard to its class. The test is performed for 
all statistically non-significant patterns, whether extracted in the current 
iteration or in previous iterations; recall that the pattern set is constantly 
growing due to step 4, and therefore, the random distribution is also 
constantly changing. We keep extracting patterns (step 4) and updating 
their counters until they are found to be significantly homogeneous or 
diversified. 

Steps 2–5 repeat until no adjective polarity or pattern class is found to be 
statistically significant. 

Once aspect lexicons are constructed, they are used in computing sentiment 
by the connected principle, and by presenting the supporting adjectives, the 
computation is explainable. Because those methods are designed to achieve high 
accuracy, in the expense of coverage, other methods can be used in a fallback 
approach; if, for example, not a single known adjective is connected with the target 
aspect, another method can be employed. 

4.2 Weakly Supervised 

LARA Latent aspect rating analysis (LARA) [54] is a weakly supervised technique 
based on rating regression approach. It utilizes the overall rating of each review to 
predict the latent rating of aspects in the review, and therefore, it is bound to the 
type of opinioned text that is associated with overall user ratings. The principal 
of LARA is to train a generative latent rating regression (LRR) model to predict 
aspect ratings based on the review text and the associated overall rating; therefore, 
it is considered to be a weakly supervised technique. LRR assumes that the overall 
rating is generated based on a weighted combination of the latent ratings over all 
the aspects, where the weights constitute the relative emphasis that the reviewer 
has placed on each aspect when giving the overall rating. They propose aspect 
segmentation algorithm that ascribes each sentence to the aspect that shares the 
maximum term overlapping with it and use this in training their model. More works 
rely on minimal annotations, such as in [55] and [56].
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Algorithm 2 Ex2: Constructing lexicon for aspect a 

Input: SL – seed lexicon
{
jjk :polarity |∀jjk ,jjk .polarity =

{
positive negative

}}

Input: D – corpus of reviews, segmented to sentences {s1, . . . , sn} 
Input: SP – seed set of extraction patterns

{
p:class |∀p, p.class={

homogeneous diversified
}}

Output: lexicon(a) – the extended lexicon for aspect a 
1: M ← ∅; itr  ← 0; Initialize DAG(a) with SL; Initialize P with SP 
2: Fill M with all interactions of adjective pairs in D which are connected with aspect a; 
3: itr  ← itr  + 1; 
4: Let jj i x be adjective x, where  i represents the iteration (itr) in which it was added to 

DAG(a), and its property sig indicates whether it is statistically significant or not; adjective 
jj i x ∈ DAG(a) where jj i x .sig==true interaction in M comprised of jj i x and jj j y where 

(jj j y /∈ DAG(a) or j == itr) 

5: neg(jj i x ) ← detect negation of jj i x; neg(jj j y ) ← detect negation of jj j y 
6: pk ← extract pattern between jj i xandjj j y pk ∈ P and pk .sig==true 

7: Add jj j y to DAG(a) unless jj j y ∈ DAG(a) 

8: Update edge from jj i x to jj j y and increment pattern class counter using pk .class, neg(jj i x ), 

neg(jj j y ) jj 
j 
y ∈ DAG(a), where  jj j y .sig==false 

9: jj j y .sig ← perform statistical test using incoming edges information jj j y .sig==false 

10: jj j y .polarity ← p-value 

11: jj j y .polarity ← negative, positive according to p-value interaction in M involving jj i x and jj j y 
where (jj i x , jj  

j 
y ∈ DAG(a) and jj i x .sig==true and jj j y .sig==true) 

12: pk ← extract pattern between jj i xandjj j y not (pk ∈ P and pk .sig==true) 
13: Add pk /∈ P to P 
14: Update pattern class counters using jj i x .polarity, jj j y .polarity, neg(jj i x ), neg(jj j y ) pk ∈ P 

where pk .sig==false 
15: pk.sig ← perform statistical test using counters pk .sig==true 
16: pk.class ← {homogeneous, diversified} according to p-value 

no adjective of pattern were found statistically significant in current iteration (itr) 
17: Return a lexicon of all adjectives in DAG(a) 

4.3 Supervised 

In this context, supervised methods rely on the availability of a measure of polarity 
of each target aspect in each sentence. The availability of such data attracted 
attempts to incorporate aspect information in various of deep neural network 
architectures. 

AdaRNN AdaRNN [57] adopts recurrent neural network (RNN) to utilize the 
dependency tree structure. It manipulates the dependency tree based on the aspect 
target and then performs semantic compositions of words in bottom-up manner. The 
target-oriented tree helps in propagating sentiment information forward, while the 
information is dependent on the target. As we travel up, the vectors of two child 
nodes along with their dependency types are used to select a composition function. 
The main steps are as follows:
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Step 1: Generate a dependency tree of the sentence containing the target, by using 
dependency parser. 

Step 2: Convert the dependency tree recursively, starting with the target node, and 
finding all words connected to the target. These words will be combined 
with the target node by a certain order, and the process is recursively 
employed. 

Step 3: The dimensions of a parent node are calculated by a linear combination 
of the child vectors’ dimensions using composition functions. They learn 
to select a composition function according to the input parameters: the 
dependency types as a one-hot binary feature vector, along with the 
children vectors. 

Step 4: Use the root node representation as input feature for the final softmax 
classifier, to predict the final distribution over sentiment classes. 

ATAE-LSTM Attention-based LSTM with aspect embedding [58] appends the 
given aspect embedding with each word embedding as the input of LSTM and uses 
attention layer above the LSTM layer; the main steps are as follows: 

Step 1: Employ LSTM on the input sentence. 
Step 2: Regard the last hidden vector N as the representation of the sentence and 

put N into a softmax layer after linearizing it into a vector whose length 
equals to the number of class labels. 
Standard LSTM cannot effectively detect which is the important part for 
aspect-level sentiment classification. In order to address this issue, it is 
proposed to design an attention mechanism that can capture the key part 
of the sentence in response to a given aspect. 

Step 3: To make the best use of aspect information, learn an embedding vector 
for each aspect. 

Step 4: The specific aspect target embedding is incorporated to each hidden state 
to be considered in computing the attention weight of the word. 

Notice that LSTM is very time-consuming during training since it processes one 
token in a step, and demands a relatively large amount of training set. [59] suggest a 
traditional machine learning method that uses SVM classifier. It is based on a large 
amount of features that have been derived mainly from the aspect term itself, lexical 
features on its surrounding and on its relatives in a parsed tree structure. 

4.4 Resources 

TripAdvisor Travel Reviews TripAdvisor provides, in addition to textual reviews, 
multiple user ratings for each one of them. Each review contains ratings ranging 
from “1” to “5” stars for seven aspects: value, room, location, cleanliness, check-
in/front desk, service, and business services, in addition to an overall rating. Wang 
et al. [54] prepared this dataset that was collected in a one-month period (from
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February 14, 2009 to March 15, 2009) on 1,850 hotels and 239,963 hotel reviews. 
If this dataset becomes unavailable, the author of this chapter will be happy to share 
it. 

Twitter This dataset was collected by querying the Twitter API with target names, 
services, and products, such as “bill gates,” “taylor swift,” “xbox,” “windows 7,” 
“google.” After obtaining them, nearly 7,000 tweets were manually labeled with 
sentiment labels (negative, neutral, positive) for these targets. In order to eliminate 
the effects of data imbalance problem, they randomly sample the tweets and make 
the data balanced. The negative, neutral, and positive classes account for 25%, 50%, 
and 25%, respectively. http://goo.gl/5Enpu7. 

Amazon Laptop Reviews A collection of reviews posted on Amazon.com from 
June 1995 to March 2013. 

Yelp Restaurant Reviews This dataset contains customer reviews posted on the 
Yelp website. The businesses for which the reviews are posted are classified into 
about 500 categories, and many of the businesses are assigned multiple business 
categories. 

5 Sentence-Level Sentiment Analysis 

In this chapter, we regard a sentence as any fragment of text—a short set of con-
secutive written words. This can be, for example, a sentence in a review or a tweet. 
A straightforward approach for sentence-level sentiment analysis involves looking 
on sentiment words themselves. However, from a linguistic viewpoint, ignoring 
words order in semantic task could overlook important contextual information. For 
example, the word “blue” has different meanings in the context of lips and in the 
context of sky. 

Typically, the supervised machine learning approach is adopted for sentence-
level SA that relies on the availability of labeled data. Apart from obtaining a 
training set by manual annotation, or exploiting labeled sources, distant supervision 
labels the data automatically in cases when it is straightforward to do so; in Twitter, 
distant supervision is popular by using emoticons to determine the sentiment class 
of tweets [60]. After obtaining a training set, typical machine learning approaches 
require text representation, while it is challenging to go beyond lexical information. 

Deep learning approaches alleviate the representation challenge by learning it 
according to the task. Despite that these approaches typically require a large number 
of labeled samples and their results can be challenging to explain, they attract many 
researchers to design mainly variations of LSTM and CNN architectures. Wang et 
al. [61] design a joint CNN and RNN architecture for sentiment classification of 
short texts, which takes advantage of the coarse-grained local features generated by 
CNN and long-distance dependencies learned via RNN. The work of [62] developed 
the Stanford Sentiment Treebank dataset. They proposed recursive neural tensor

http://goo.gl/5Enpu7
http://goo.gl/5Enpu7
http://goo.gl/5Enpu7
http://goo.gl/5Enpu7
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network for capturing the interaction among the words in a sentence. A phrase is 
represented by word vectors and a parsing tree; vectors for higher nodes in the tree 
are computed by the same tensor-based composition function. 

conSent conSent [63] is a supervised classification method that requires positive 
and negative texts. It does not rely on sequential information and is tolerant to texts 
that do not adhere to the rules of grammar and to texts that involve missing words. 
Instead, it builds on techniques from the field of information retrieval to identify key 
terms indicative of the existence of sentiment. Additionally, the contexts in which 
they appear are analyzed and used to generate features for supervised learning. This 
allows to fuse features from multiple sources to the feature set. In the paper, the 
robustness to noisy data is demonstrated in Twitter, transcribed text, and reviews. 

Key Terms Identification 

Step 1: Generate a language model for the set of positive-sentiment documents 
(.Tpos). 

Step 2: Generate a language model for the set of negative-sentiment documents 
(.Tneg). 

Step 3: For each term t result in step 1, compute score(t) that is the ratio of its 
frequency in positive-sentiment and negative-sentiment documents. 

Step 4: If score(t) exceeds a predefined threshold, t is identified as a key term. 

Context Terms Identification. For each key term t : 

Step 1: Locate all instances of t both in .Tpos and in .Tneg . If a document contains 
several instances of the same key term, the following steps are applied for 
each instance separately. 

Step 2: For each instance found in .Tpos , extract the terms located around t by 
using a sliding window of size X denoted as the context span. Every term 
.tcontext in this text excerpt, aside from the key term itself, is considered a 
possible context term. 

Step 3: Group all context spans of .Tpos , and generate a language model. Repeat 
the process for .Tneg . 

Step 4: Subtract for each .tcontext its score in .Tpos language model from that of 
.Tneg . 

Step 5: If score(.tcontext ) exceeds a predefined threshold, it will be defined as a 
context term for the key term t . 

Based on key terms that were identified, and on their context terms, various of 
features are computed. For example, they compute the number of key terms that 
share at least one context term in the analyzed text. Finally, a classifier is trained to 
discriminate between positive and negative examples, in this case the rotation forest 
[64]. 

CharSCNN A Character to Sentence Convolutional Neural Networks (CharSC-
NNs) [65] model is proposed. CharSCNN uses two convolutional layers to extract 
relevant features from words and sentences of any size to capture sentiment 
information. Following are the main steps:
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Step 1: Word-Level Embeddings. For capturing syntactic and semantic informa-
tion, word-level embeddings are utilized to learn embedding matrix of all 
words in the vocabulary; in the proposed study, the English Wikipedia is 
taken as a source of unlabeled data for learning the embeddings. 

Step 2: Character-level embeddings. The motivation here is to extract features 
around each character of the word and, specifically, to capture morpho-
logical and shape information, so as Twitter tokens such as #SoSad could 
be utilized. The convolutional layer applies a matrix–vector operation 
to each window of characters; then, they are combined using a max 
operation to create a fixed-sized character-level embedding of the word. 
The convolutional layer allows the extraction of relevant features from 
any part of the word and does not need handcrafted inputs such as 
stems and morpheme lists. As opposed to word embeddings, character-
level embeddings are not pre-trained, but instead initialized randomly by 
sampling from a uniform distribution. 

Step 3: Sentence-Level Representation. In this step, a second convolutional layer 
is used to compute the sentence-wide feature vector in a similar way it 
was used for character level. The input is a joint word-level and character-
level embedding, and the outputs are local features around each word in 
the sentence; then they are combined by a max operation to form a fixed-
sized feature vector representation. 

Step 4: Classification. The network is trained to perform sentiment classification 
task by minimizing a negative likelihood over the training set. 

SA of Twitter Data In their study, Agarwal et al. [66] explore several feature 
groups as well as utilize tree representation of a tweet. The first feature model uses 
several feature types, including lexical and POS features. They found that the most 
important features are those that combine prior polarity of words (using dictionaries) 
with their POS tags, while other features only play a marginal role. A tree model is 
designed to represent tweets, combining many categories of features in one succinct 
convenient representation. This is done by adapting partial tree kernel algorithm 
[67] to calculate the similarity between sub-trees of tweet. Finally, it is shown that 
combining unigrams with the best set of features outperforms the tree kernel-based 
model and gives about 4% absolute gain over a unigram baseline. 

5.1 Resources 

Stanford Sentiment Treebank This dataset is suggested as a benchmark for 
sentiment analysis. It comprises 11,855 sentences taken from the movie review site 
Rotten Tomatoes. Every sentence in the dataset has a label that goes from very 
negative to very positive in the scale from 0 to 1. The labels are generated by human 
annotators using Amazon Mechanical Turk. Every sentence is parsed to phrases that
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were also manually annotated in this scale; in total, fine-grained sentiment labels are 
given for 215,154 phrases. http://nlp.Stanford.edu/sentiment/. 

CSN People diagnosed with cancer, as well as caregivers for individuals with 
cancer, join the Cancer Survivors Network (CSN) of the American Cancer Society 
to seek social support and information from members who have experienced a 
particular situation first hand, as well as to seek emotional support. More than 
468,000 forum posts from 48,779 threads were downloaded from the Cancer 
Survivor Network, posted from July 2000 to October 2010 by 27,173 participants. In 
total, 293 posts were selected randomly from the breast cancer forum of the Cancer 
Survivor Network, and each post was manually classified as being of positive or 
negative sentiment, with the result that 201 of them were labeled as positive and 92 
were labeled as negative. Further details are given in [68]. 

IMDB The IMDB dataset consists of 100,000 movie reviews taken from IMDB 
given two types of labels: positive and negative. These labels are balanced in both 
the training and test sets. http://ai.Stanford.edu/amaas/data/sentiment/index.html. 

Stanford Twitter Sentiment This dataset was collected by [60], which contains 
1.6 million automatically tagged tweets (half-positive and half-negative); they serve 
as the training set and 359 manually tagged tweets that serve as the test set. http:// 
help.sentiment140.com/. 

6 Applications 

Online Health Communities Due to the impact that social networks have on 
individuals, it is encouraged to utilize sentiment analysis knowledge in supporting 
the lives of millions of online users. Specifically, there is a potential to help people 
in Online Health Communities—a resource that provides an outlet for patients and 
caregivers to discuss their related issues. Studies of online cancer support groups and 
communities have shown that members benefit from online interactions in multiple 
ways: increased optimism [69], reduced stress, depression, psychological trauma 
[70], and reduced cancer concerns [71]. People typically join online communities 
to get information and support but quickly discover that giving support to others is 
equally important to their survivorship [72]. 

Portier et al. [1] address community support within the Cancer Survivors 
Network (CSN) community by assessing the change in sentiment between an 
initiating post and the first follow-up post of the initiator. Their goal is to examine 
whether sentiment change, a measure of social support, is influenced by the main 
topic of the initiating post. Another application is enabling investigation of factors 
that affect the sentiment change and discovery of sentiment change patterns, by 
analyzing Online Health Communities [68].

http://nlp.Stanford.edu/sentiment/
http://nlp.Stanford.edu/sentiment/
http://nlp.Stanford.edu/sentiment/
http://nlp.Stanford.edu/sentiment/
http://nlp.Stanford.edu/sentiment/
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://ai.Stanford.edu/amaas/data/sentiment/index.html
http://help.sentiment140.com/
http://help.sentiment140.com/
http://help.sentiment140.com/
http://help.sentiment140.com/
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User Reviews Online opinions and recommendations have become a significant 
decision-making factor in a wide variety of areas. Many people rely on them when 
planning their next vacation, purchasing a new camera, or applying for a new job. 
However, with the advent of sentiment analysis, an individual is no longer strictly 
limited to asking friends and family for their opinions; organizations are no longer 
limited to conducting surveys, opinion polls, and focus groups to sound out public 
or consumer opinions. Sentiment analysis paves the way to several and interesting 
applications, in almost every possible domain. 

TripAdvisor is a major hotel rating site; due to its popularity, it contains a large 
number of reviews. Apart from textual content, TripAdvisor.com provides multiple 
user ratings within each review. Each review contains ratings ranging from “1” 
to “5” stars for seven aspects: value, room, location, cleanliness, check-in/front 
desk, service, and business services, in addition to an overall rating. The works 
of [40], and [54] suggest aspect-level sentiment analysis to enable summarizing 
reviews and ranking hotels based on their inferred ratings on each different aspect. 
Profiling users’ rating behavior can support a recommendation system in which 
recommendations are based on reviews of users that share similar rating patterns. 
In case the user provides outlier rating, the system can ask her if this is a mistake. 
Automatically surveying hotels by accessing user ratings summarization can help 
cities in monitoring and improving their hotel services. 

More applications belong to politics [73, 74], disaster response [75], financial 
market prediction [76, 77], and much more. 

7 Summary and Discussion 

This chapter provides understanding of the sentiment problem in social media plat-
forms. The lexical methods could be the principal components of every sentiment 
task, while the main challenge is to maintain a quality lexicon, using a large corpus 
or existing lexical sources. Once constructed, using predefined lexicons in various 
of sentiment tasks has two main advantages; first, there is no need to annotate 
further data, and second, since the lexicons are defined independently of the data, it 
may prevent overfitting. The main strength of the lexicon-based approaches is also 
their weakness: as the lexicons are predefined, they are unable to adapt to novel or 
domain-specific forms of expression. 

Lexicons are far from being sufficient for sentiment analysis. Specifically, for 
aspect-level SA, a general sentiment lexicon will fail in adapting to aspects’ context. 
This chapter puts focus on aspect-level SA, which has a great potential to capture 
multiple opinions, linking them with various of topics, and conduct more in-depth 
analysis. In this context, the unsupervised methods have coverage problem since 
they rely on adjectives; other presented methods consider all word classes to convey 
sentiment; however, this occurs at the expense of accuracy since they do not strictly 
model the relation between sentiment words and the target aspect.
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The end of this chapter explores sentence-level SA, which is similar to document-
level SA, since a document can be considered as a collection of (ordinal) sentences. 
This level of analysis (e.g., a tweet, or a forum post) enables investigating sentiment 
change in an online community. The conSent method is in focus due to its robustness 
to noise and its ability to work well in various of social media platforms. 

The increasing emergence of deep learning approaches had been proven to 
function well in various of NLP tasks [9]. The main advantage of employing deep 
learning approach lies in its independence from expert knowledge, since the text 
representation is learnt according to the task. However, despite the fact that neural 
networks have a large capacity to learn complex decision functions, they tend 
to easily overfit especially on small-sized datasets. Neural models achieve high 
accuracy in sentiment analysis, specifically in aspect level [78]; despite the attention 
such methods get, the following must be said. Many of the published methods 
are not specific for sentiment analysis and work well with many text classification 
tasks. Therefore, some of the authors do not deeply understand the challenges and 
complexity of the task, and it feels that their only contribution is in adapting a 
variation of known deep learning architecture for SA. In this context, state-of-the-art 
baselines are not considered, error analysis is missing, many works do not discuss 
their method’s strengths and weaknesses, and they lack motivation. This limits the 
merit of these works and promotes poor understanding of the problem. 

Notice that the ATAE-LSTM method in Sect. 4 outperforms standard LSTM, 
which cannot capture any aspect information, only by nearly 2% in all evaluated 
datasets. Similar observation is given for the AdaRNN method on their Twitter 
dataset; using a simple RNN on the converted dependency tree yielded 63% 
accuracy, comparing with 66.3% for AdaRNN. This may tell us that most sentiment 
information can be captured by methods that ignore the target aspect (e.g., standard 
LSTM); could it be that the majority of the sentences do not contain shift in 
sentiment but rather have homogeneous polarity? 

In the study of [79], it is reported an average drop in performance of nearly 20% 
for sentences that have multiple sentiments and multiple aspect terms (hard cases). 
This invites further discussion on the merit of complex methods, and performing 
evaluation on hard cases. Apart, we encourage researchers to provide examples 
and error analysis; this is essential to understand in which cases the method was 
successful, and why. 

7.1 A Call for Responsible SA 

Artificial intelligence (AI) is bringing about profound changes in the lives of human 
beings, and it will continue to do so. The coronavirus era demonstrated this by 
showing us how online communications, social support, and e-learning can be 
done by using AI-based technologies. We are witnessing a world in which many 
decisions are not made by humans anymore; self-driving cars, algo-trading, and 
fraud detection well demonstrate this.
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Sentiment analysis has the potential to open the doors to investigate how people 
influence each other, what are their opinions, and why. This invites us to discuss in 
every research project privacy concerns. The kind of technology we create provides 
organizations and authorities with valuable knowledge, while the benefit of the users 
is not guaranteed. 

The research and development of such praxes invite researchers and practitioners 
to discuss responsible usage, from individual and social points of views. When the 
right questions are asked, e.g., does what we do really contribute to our societies, 
there could be a synthesis between research, praxis, and responsibility. When we 
are able to see the data we collect and mine as something that was written by people 
care about, maybe we could be more sensitive to the consequences of our research 
and applications. 
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Human Resources-Based Organizational 
Data Mining (HRODM): Themes, 
Trends, Focus, Future 

Hila Chalutz-Ben Gal 

1 Introduction 

In recent years, there has been a trend in many organizations toward data-driven 
decision-making in various aspects of business (Holsapple et al. 2014) with the 
use of big data in daily activities (Chong and Shi 2015). Many organizations are 
experiencing a period of transformation as modern businesses both exploit oppor-
tunities and face numerous and complex challenges. Today’s organizational data 
mining (hereafter ODM) transformation is a direct result of rapid changes within 
organizations caused by the combined forces of demographics, globalization, and 
information technology. Some departments (e.g., human resources) rely on data to 
execute activities that were traditionally performed in a somewhat intuitive manner. 
This transformation plays a crucial role in firms’ ability to achieve a competitive 
advantage in today’s challenging economy (Kapoor and Sherif 2012; Sparrow 2012; 
Fulmer and Ployhart 2013). In light of the rapid changes in technology and the 
environment, traditional organizational metrics have become unsuitable for many 
situations (Fink 2010; Handa and Garima 2014; Sharif 2015). 

ODM is defined as leveraging data mining (hereafter DM) tools and tech-
nologies to enhance organizational decision-making process by transforming data 
into valuable and actionable knowledge to gain a strategic competitive advantage 
(Nemati and Barko 2002, 2003). ODM domains are wide in scope. Some focus on 
customer relationship management, customer segmentation, retention and attrition 
management, risk forecasting, and profitability analysis (Kharb 2019; Meghyasi and 
Rad 2020). Additional ODM domains include organizational processes and Human 
Resources data (hereafter HRODM) for improved organizational decision-making. 
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This chapter focuses on HRODM utilizing data to improve people-related 
organizational decision-making processes. HRODM is sometimes referred to in 
terms such as “people analytics,” “human capital analytics,” or “human resources 
analytics,” among others. Within the ODM domain, HRODM is defined as “the 
application of sophisticated DM and business analytics techniques to the field of 
human resources” (Vihari and Rao, p. 1). It is also referred to as quantitative and 
qualitative data and information management that aims to gain insight and support 
decision-making processes with regard to managing people in organizations (Fitz-
Enz 2000; Handa and Garima 2014; Zhao and Carlton 2015). A third definition 
pertains to “processes to collect, transform and manage key people related data 
and documents; to analyze the gathered information using DM models; and to 
disseminate the analysis results to decision makers for making intelligent decisions” 
(Kapoor and Sherif, p. 1626). 

HRODM has several goals. The first is “to gather and maintain data for predicting 
short and long term trends in the supply and demands of workers in different 
industries and occupations and to help global organizations make decisions relating 
to optimal acquisition, development and retention of their human capital” (Kapoor 
and Sherif, p. 1627). The second is “to provide an organization with insights 
for effectively managing employees in order to achieve business goals quickly 
and efficiently” (Davenport et al. 2010; Hota and Gosh, p. 169). Third, some 
scholars emphasize that the goal of HRODM is to positively influence the successful 
execution of an organization’s strategy (Heuvel and Bondarouk 2016; Huselid 2015; 
Kapoor and Sherif 2012; Levenson 2005, 2011; Zang and Ye 2015). 

In this chapter, we propose a new definition for the adoption of HRODM by 
focusing on the return on investment (hereafter ROI) gained by an organization 
when utilizing HRODM tools. ROI is a performance measure used to evaluate 
the efficiency of an investment or compare the efficiency of a number of different 
investments. ROI tries to directly measure the amount of return on a particular 
investment, relative to the investment’s cost. To calculate ROI, the benefit (or 
return) of an investment is divided by the cost of the investment. The result 
is expressed as a percentage or a ratio. We propose an ROI-based focus of 
HRODM, because it enables organizational insights and supports decision-makers 
with respect to the human capital dilemma by providing business insight and 
consequently helping them make better business decisions. Our proposed ROI-based 
approach is grounded upon a systematic review and analysis of the literature in 
the field. In recent years, the connection between ODM and HR has resulted in a 
growing body of literature that proposes various approaches to combining the two 
disciplines, sometimes in an unstructured, blunt manner. Moreover, despite notable 
evidence of a growing interest in HRODM, researchers have found very limited 
scientific evidence to help decision-makers determine whether and how to adopt 
and implement HRODM (Rasmussen and Ulrich 2015). 

This chapter aims to bridge this gap by proposing an ROI-based review of 
HRODM in the sense that the efforts required to adopt analytic data mining methods 
and apply them to HR tasks must be justified. This chapter has two objectives. 
The first objective is to provide an integrative analysis of the literature on the
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topic of HRODM through the lens of ROI to provide scholars, executives, and 
practitioners with a comprehensive but practical view of the topic (Huselid 2015). 
The chapter emphasizes the developments in HRODM in recent years, particularly 
by highlighting works that have been published within the past 5 years (Vihari and 
Rao 2013; Rasmussen and Ulrich 2015; Heuvel and Bondarouk 2016; Bamber et 
al. 2017). The second objective is to systematically analyze the literature from 
the ROI perspective, highlighting scientific evidence to assist decision-makers in 
determining how to adopt HRODM (Rasmussen and Ulrich 2015). This work aims 
to aid both researchers and practitioners with respect to specific directions within 
HRODM in which an expected ROI may be found. 

Understanding what we have learned and how it has changed the ODM field helps 
direct future research. To this end, this chapter asks and answers three interrelated 
research questions (Cuozzo et al. 2017): 

RQ1. What are the major themes that have been developed within HRODM 
research? 

RQ2. What are the focus and ROI-based critique of HRODM research? 
RQ3. What is the future of HRODM research? 

This chapter includes four sections. The methodology section outlines the 
database development approach. The results and discussion sections answer the 
first two research questions through descriptive statistics and a critique of the 
results from categorizing the HRODM literature. This section also discusses how 
we developed and applied the ROI theoretical framework. In the third section, we 
answer the last research question by discussing key implications for scholars and 
practitioners and noting a few directions for future research. Finally, in the fourth 
section, we utilize two real-life examples to demonstrate HRODM implementation. 

2 Methodology 

The methodological approach for the review and analysis comprised four steps. 
First, we developed a database by undertaking a comprehensive and systematic 
search to identify and extract all the relevant literature on HRODM that has been 
published in peer-reviewed academic journals. Second, in an iterative process 
between theoretically derived and empirically emerging themes, we developed a 
template for analyzing the reviewed articles (Table 1). Third, a manual content 
analysis of the retrieved articles, based on the template, was used to extract 
descriptive and qualitative conceptual data. Finally, the results were interpreted and 
the findings meaningfully synthesized (Short 2009; Webster and Watson 2002). This 
method was used to ensure a comprehensive, meaningful, and high-quality data 
compilation (Cuozzo et al. 2017).
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Table 1 Classification system for analyzing HRODM articles 

Code Cluster/category Number of articles % Example references 

E Empirical 14 17 Aral et al. (2012), Bondarouk and Ruël 
(2013), Kandogan et al. (2014), Harrison 
and Getz (2015), Hou (2015), and 
Ramamurthy et al. (2015) 

E1 Quantitative 4 30 
E2 Qualitative 6 40 
E3 Mixed methods 4 30 
C Conceptual 36 45 Davenport et al. (2010), Kapoor (2010), 

Wiblen et al. (2010), Harris et al. (2011), 
Snell (2011), Minbaeva and Collings 
(2013), and Pape (2016) 

C1 Management tools 10 28 
C2 General 18 50 
C3 Specific 8 22 
CB Case based 11 14 Davenport (2006), Fitz-Enz (2000), Briggs 

(2011), Mondore et al. (2011), Boyd and 
Gessner (2013), Singh and Roushan (2013), 
Varshney et al. (2014), Frigo et al. (2015), 
and Russell and Bennett (2015) 

CB1 General 4 36 
CB2 Specific 7 64 
T Technical 19 24 Karasek (2015), Kazakovs et al. (2015), 

Korpela (2015), Momin and Mishra (2015), 
Perrin (2015), Stone et al. (2015), Ulrich 
and Dulebohn (2015), Welbourne (2015), 
and Ryan and Herleman (2016) 

T1 Informative 9 47 
T2 Specific 5 26 
T3 Literature review 3 16 
T4 HRA trends 2 11 

Based on: Chalutz Ben-Gal (2019) 

2.1 Database Development 

The initial step comprised the identification of the relevant research. To capture 
previously published research, we used 11 EBSCO online databases.1 We conducted 
a Boolean search using “human resources analytics” as a key search term within the

1 Databases included for the review: Business Source Premier; EconLit; Regional Business 
News; SocINDEX; ERIC; Library, Information Science & Technology Abstracts; Historical 
Abstracts; Communication & Mass Media Complete; GreenFILE; Political Science Complete; 
PsycARTICLES. 
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Fig. 1 Human resources 
organizational data-mining 
(HRODM) clusters. (Based 
on: Chalutz Ben-Gal (2019)) 

Categorization by 
Methodological 

Approach 

Empirical Conceptual 
Case 

Based 
Technical 

title, abstract or subject terms.2 We continuously updated the database throughout 
the period of our research project by means of a Google Scholar alert specific to our 
key terms. The selection criteria are based on the following items: (1) the paper was 
published between 2000 and 2016, (2) the search terms appear in the title, abstract, 
or paper, and (3) the paper appears in a peer-reviewed journal. Overall, the searches 
resulted in a database of 80 articles. 

2.2 Categorization 

In reviewing and analyzing the selected papers, we identified four HRODM research 
clusters: empirical, conceptual, case-based, and technical. These research clusters 
are depicted in Fig. 1. This categorization is useful in developing an ROI-based 
analysis of HRODM (Webster and Watson 2002; Gilbert et al. 2008; Bukhari et al. 
2017). 

2.3 Classification System 

The articles were first coded by the lead category (i.e., cluster) and then checked 
for consistency by an external judge who had extensive experience with the topic. 
Any discrepancies were reviewed and discussed before a final classification was 
agreed upon. Rather than describe each category in the framework as presented here 
in Table 1, we outline each at the beginning of the corresponding discussion in the 
descriptive results (Cuozzo et al. 2017). 

3 Results and Discussion 

In this section, we use descriptive statistics and commentary to answer the first 
two research questions: RQ1. What are the major themes that have been developed 
within HRODM? RQ2. What are the focus and ROI-based critique of HRODM? The

2 Additional search terms included “organizational data mining,” “workforce analytics,” “people 
analytics,” and “human capital analytics.” 
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Fig. 2 HRODM publications over time. (Based on: Chalutz Ben-Gal (2019)) 

data reported in Fig. 2 and in Tables 1, 2, 3, and 4 form the basis for this section. 
Additionally, the discussion is complemented by further analysis that delves deeper 
than the descriptive results. 

We analyze the findings of our systematic review of a sample of 80 articles 
associated with research in HRODM according to the chronological development of 
this research (presented in Table 2 and Fig. 2). We thereby identify shifting trends 
over time and extract key themes of existing HRODM literature. Additionally, we 
analyze and present key trends in HRODM research in Table 3 in a unique synthesis 
(presented below). 

3.1 Emergence of HRODM Research 

The results of our research, displayed in Table 2, clearly show an increasing 
interest in the topic of HRODM over time (see also Fig. 2). We identified three 
periods of HRODM research. The first is a period of incubation (2000–2005) during 
which 4% of the HRODM research was published. The second was a period of 
incremental growth (2006–2010) during which 10% of the HRODM research was 
published. Finally, there was a period of substantial growth (2011–2016) when 
86% of the HRODM research was published. In line with this typology, and 
consistent with previous research (Rasmussen and Ulrich 2015; Nemati and Barko 
2002, 2003), our study results demonstrate that the research attention devoted to 
HRODM has increased in recent years. The shift in publication over this 17-year 
period underscores the growing academic interest in the field of HRODM (Bose 
2015; Kazakovs et al. 2015). Moreover, the understanding of HRODM has changed 
over time. While early publications examined HRODM from a narrow economic
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Table 3 Trends in HRODM research 

Trend Challenges & outcomes ROI Example references 

HRODM as strategic 
management tool 

Management-HR-DM 
interface Business impact 

High Levenson (2005, 2015), 
Newcomer and Brass (2015), 
Welbourne (2015), and Xiu et al. 
(2017) 

Evidence-based 
approach in HRODM 

Adoption of correct tool 
Technological 

High Bassi (2011), Nemati and Barko 
(2002, 2003), McIver et al. 
(2018), and Strohmeier (2018) 

HRODM as 
decision-making 
support tool 

Various analytical 
techniques 
Multi-step process 

High Pessach et al. (2020), Dulebohn 
and Johnson (2013), Singh and 
Roushan (2013), Holsapple et al. 
(2014), Rasmussen and Ulrich 
(2015), Pape (2016), and 
Chamorro-Premuzic et al. (2017) 

HRODM as 
management fad 

HRODM is not part of 
DM 
HR professional’s role in 
HRODM 

Low Rasmussen and Ulrich (2015) and  
Nemati and Barko (2003) 

Based on: Chalutz Ben-Gal (2019) 

perspective by highlighting technical aspects (e.g., Lazear 2000), the relevance of 
HRODM has gained importance both in research and in practice from a strategic 
and managerial perspective, which has transformed it into a vibrant and interesting 
topic of research. 

More specifically, HRODM research has evolved such that in the incubation 
period (2000–2005), none of the publications found their way into management 
nor business journals, whereas almost 40% (37%) of the publications did so in the 
substantial growth period (2011–2016). Moreover, the study results indicate that 
a vast share of HRODM research (91%) was published in either HR management 
or in management and business journals. Forty-eight percent of HRODM research 
was published in HR management journals, while 43% of HRODM research was 
published in management and business journals. 

These findings indicate the increase in the strategic importance of the field. One 
explanation is the growing centrality of human capital as a key organizational asset 
(Bontis and Fitz-Enz 2002; Fitz-Enz 2000; Nemati and Barko 2002, 2003). Both HR 
and ODM as a broader field are in a constant state of change (Bamber et al. 2017; 
McIver et al. 2018). A second explanation is the growing availability of readily 
accessible data, which can be transformed into valuable and actionable insights 
through the implementation of ODM tools (Macan et al. 2012; Strohmeier 2018). 
These findings also show that our ROI-based analysis is an appropriate platform to 
expand upon in order to determine precisely how management HRODM. 

Research results suggest an emerging shift over time regarding the geographical 
regions upon which HRODM research focuses. Most articles on the topic of 
HRODM that specified a geographical region in the substantial growth period 
shifted from Europe (10% of publications) to North America (61% of publications).
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Table 4 ROI-baseda analysis of HRODM 

Study Authors Research Cluster Logic Analytics Measurements Processes ROI 

Harrison and Getz Empirical × × × High 
Hou Empirical × × × × High 
Ramamurthy et al. Empirical × × × × High 
Sharif Empirical × × × High 
Bose Conceptual × × Medium 
Church et al. Conceptual × × Medium 
Huselid Conceptual × × × High 
Levenson Conceptual × × × × High 
Momin and Mishra Conceptual × × Medium 
Newcomer and Brass Conceptual × × Medium 
Perrin Conceptual × × Medium 
Rasmussen and Ulrich Conceptual × × Medium 
Sharma et al. Conceptual × × Medium 
Steffi et al. Conceptual × Low 
Ulrich and Dulebohn Conceptual × × Medium 
Zang and Ye Conceptual × × Medium 
Zhao and Carlton Conceptual × × × × High 
Frigo et al. Case Based × Low 
Russell and Bennett Case Based × × Medium 
Chong and Shi Technical × Low 
Karasek Technical × Low 
Kazakovs et al. Technical × Low 
Korpela Technical × Low 
Stone et al. Technical × × Medium 
Welbourne Technical × Low 

Based on: Chalutz Ben-Gal (2019) 
N = 25. Included in 2015 publications analysis only (represents the highest publishing year in the 
Substantial Growth period) 
aBoudreau and Ramstad (2006) 

This focus on North America could be linked to the emerging trend, which 
originated in the United States, of linking technology and data along with the major 
effect that technology has on organizations as a whole (Chamorro-Premuzic et al. 
2017). 

Most of the research articles are conceptual (45%) rather than purely technical 
(24%). The conceptual studies in HRODM provide management and analytical 
tools to facilitate working processes and procedures. They include talent analytics 
(Burdon and Harpur 2014), tools for improved organizational decision-making 
(Minbaeva and Collings 2013; Pape 2016), and a conceptual framework (Boudreau 
and Ramstad 2006). The focus has thereby shifted over time from a predominance 
of conceptual articles to technical articles, which comprise nearly one-quarter (24%) 
of the total number of articles (see Table 2). To a certain extent, this may be due to
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the growing interest in specific topics within ODM (Macan et al. 2012; Yadav 2014; 
Momin and Mishra 2015). 

3.2 Trends in HRODM Research 

Our integrative review reveals that HRODM research is dominated by four trends 
(see Table 3). We synthesize these trends by depicting their key challenges, 
outcomes, and ROI. 

The first identified trend in HRODM research is the exploration of HRODM as 
a strategic management tool. This approach yields a high ROI for the organization 
because its impact may be on the organization as a whole and on the business level 
for the purpose of continuous improvement (Delbridge and Barton 2002). Where 
HRODM is presumed to be an integral part of management processes, the key 
challenges associated with this trend include answering questions regarding specific 
strategic measures. One example is organizational key performance indicators 
(KPIs), for example: turnover and churn, which have a long-term business impact 
on the organization as a whole (Levenson 2005, 2015; Newcomer and Brass 2015; 
Welbourne 2015). Along these lines, one researched theme associated with this 
trend is the management and organizational interfaces within organizations (Huselid 
2015; Xiu et al. 2017; McIver et al.  2018). 

The second identified trend in HRODM research is the evidence-based approach 
to organizational data mining research. This approach also yields a high ROI for 
the organization because it uses a variety of methodological and technological tools 
to predict improved individual or organizational performance. The key challenges 
associated with this trend include answering key questions regarding which tool 
would be the correct one to adopt for a specific people analytic challenge and which 
form of technology to use (Strohmeier 2018). 

The third identified trend in HRODM research that uses ODM for effec-
tive organizational processes involves incorporating data mining as an effective 
decision-making support tool (Dulebohn and Johnson 2013; Singh and Roushan 
2013; Holsapple et al. 2014; Chamorro-Premuzic et al. 2017). The ROI associated 
with this trend is high because it suggests efficiency in the decision-making 
processes. The key challenges associated with this trend include the efficiency of 
the process itself, e.g., collecting and analyzing the data, thereby raising issues of 
efficiency and effectiveness (Rasmussen and Ulrich 2015; Pape 2016; Dastyar et al. 
2017). 

Finally, the studies focusing on the future of ODM incorporate a fourth trend 
in HRODM research. This approach yields a low ROI because it is speculative in 
nature. The key challenges associated with this trend include discussions of whether 
HRODM should be part of the HR function and the role of HR professionals 
(Rasmussen and Ulrich 2015). This paper builds upon this trend and pinpoints 
specific practical directions regarding how to implement HRODM. We thus move to



Human Resources-Based Organizational Data Mining (HRODM): Themes,. . . 843

our substantive contribution, an ROI-based analysis of HRODM that sets the ground 
for our proposed future research avenues in ODM. 

3.3 Theoretical Framework: ROI-Based Analysis of HRODM 

The theoretical framework of ROI guided our analysis. The literature suggests that 
ROI is an important measurement tool that may assist stakeholders in managerial 
decision-making. ROI is rooted in early theoretical research in the accounting and 
management professions that aimed to provide a qualitative approach to decision-
making. ROI is also used in various academic fields (Philips 2012; Bontis and 
Fitz-Enz 2002; Bukhari et al. 2017). One example is in the corporate training 
and education literature, where ROI is used to measure the impact of training 
and educational investments on an organization’s “bottom line,” i.e., organizational 
performance measures (Charlton and Osterweil 2005). 

We examine the results of this study from an ROI-based perspective for two 
reasons. First, we believe that this framework is suitable in light of the limited 
high-quality research that has been conducted in the field (Fink 2010; Handa and 
Garima 2014; Xiu et al. 2017). Second, we believe that analyzing HRODM from 
an ROI-based perspective can increase the chances of the practical adoption of 
HRODM. We therefore categorized the research reported in this article based on 
the LAMP framework (Boudreau and Ramstad 2006). We identified this framework 
as a suitable framework to analyze ROI in the field of HRODM. In particular, the 
LAMP framework assists in analyzing useful components of HRODM, i.e., “logic,” 
“analysis,” “measurement,” and “process” (Boudreau and Ramstad, p. 27). Using 
this categorization, we found that the majority of articles from the empirical and 
conceptual research clusters resulted in high or medium levels of ROI. Additionally, 
we found that most studies focusing on cases or technical aspects of HRODM 
resulted in medium or low levels of ROI. We summarize the coding of our sample 
in Table 4. 

3.4 Empirical Studies 

Empirical studies attempt to obtain knowledge in the field of HRODM. The majority 
of studies were conducted by direct and indirect observations and/or experience 
(Aral et al. 2012). Their analyses were either quantitative or qualitative. An 
advantage of empirical studies is that by quantifying evidence or making sense 
of it in a qualitative manner, scholars answer empirical questions that are clearly 
defined and answerable based on data and the use of the evidence collected. The 
research designs vary by field and by the question being investigated. Some scholars 
perform mixed-methods research, combining qualitative and quantitative forms of 
analysis to better answer their research questions, especially in the social sciences
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and education (Gilbert et al. 2008; Aral et al.  2012; Kandogan et al. 2014; Fire and 
Puzis 2016). 

The contributions of empirical studies in the literature are evident as they explore 
new and current trends in HRODM research in all or some of the following ways. 
First, they conduct interviews with practitioners in a variety of organizations from 
different industries on the topic of HRODM. Additionally, they conduct interviews 
with thought leaders in the area of human capital analytics and research. Finally, 
they attempt to draw informative conclusions in the area of HRODM (Lazear 2000; 
Fink 2010; Hausknecht 2014; Kandogan et al. 2014; Sharif 2015). 

As documented in Table 4, a review of the literature suggests that most empirical 
studies apply the LAMP model (Boudreau and Ramstad 2006) in a meaningful 
manner, thereby yielding a high level of ROI. Moreover, our results indicate that 
most empirical studies are consistent with the LAMP model because they focus 
on at least three of the model’s components by providing meaningful content to 
the “logic,” “analytics,” “measurement,” or “process” of HRODM (Boudreau and 
Ramstad 2006; Gilbert et al.  2008). Moreover, empirical studies yield the highest 
ROI because they focus on organizational practices and business performance. 
Furthermore, empirical studies highlight the metrics used by organizations as well as 
the impact of HRODM on business outcomes (Lazear 2000; Lawler III et al. 2004). 
Finally, empirical studies tend to use strategic tools, such as forecasting techniques 
to predict various human-related measures (Hausknecht 2014; Bondarouk and Ruël 
2013; Del Angizan et al. 2014). 

To conclude, there appear to be clear benefits to exploring HRODM from 
an empirical standpoint. Some of the benefits include increased organizational 
performance, greater accuracy regarding performance specifications, accurate and 
rapid assessment processes, and better HR processes (Harrison and Getz 2015; Hou  
2015; Ramamurthy et al. 2015). 

3.5 Conceptual Studies 

Some of the studies covered in this systematic review offer conceptual contributions 
to the field of HRODM. The advantage of the conceptual studies is that their 
contributions are wide; they range from providing management tools (Davenport 
et al. 2010; Wiblen et al. 2010; Kapoor 2010; Snell 2011; Harris et al.  2011) 
to providing an ethical perspective to talent analytics (Burdon and Harpur 2014) 
and adopting a data-mining-based approach (Ramamurthy et al. 2015). Their 
contributions relate to various content areas in the HRODM field (Gilbert et al. 
2008). Some studies apply statistics, technology, and expertise to large sets of people 
data, which results in improved organizational decisions (Minbaeva and Collings 
2013; Pape 2016). Other studies emphasize analytical processes to enhance an 
organization’s competitive advantage (Burdon and Harpur 2014). 

Reviewing the conceptual literature, we identified four main themes: Orga-
nizational data mining’s ROI, the conceptual framework contribution, the Orga-
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nizational data mining process, and the domain of Organizational data mining. 
The conceptual contribution of Organizational data mining’s ROI is discussed by 
Levenson (2005), Ingham (2011), Huselid (2015), Rasmussen and Ulrich (2015), 
and Zang and Ye (2015). A conceptual framework contribution is provided by 
Boudreau and Ramstad (2006). A discussion of the ODM process is provided by 
Baron (2011), Hota and Ghosh (2013), Dulebohn and Johnson (2013), Handa and 
Garima (2014), and Bose (2015). Finally, the domain of organizational data mining 
is presented and discussed by Carlson and Kavanagh (2011). 

Interestingly, the results presented in Table 4 indicate that like the empirical 
studies, the majority of conceptual studies apply the LAMP model (Boudreau and 
Ramstad 2006) in a meaningful manner, thereby yielding a medium to high level of 
ROI. Moreover, our results indicate that most conceptual studies are consistent with 
the LAMP model because they focus on at least two of the model’s components, i.e., 
“logic,” “analytics,” “measurement,” or “process” (Boudreau and Ramstad 2006). 

Conceptual studies in HRODM yield a medium to high ROI because some 
propose new frameworks to analyze and implement organizational and employee 
data (Davenport et al. 2010; Wiblen et al. 2010; Garcea et al. 2011), while 
others discuss the roles and responsibilities of HR in this transformational era 
of technological change and globalization (Kapoor 2011; Snell 2011; Harris et 
al. 2011; Burdon and Harpur 2014). Some of the reviewed literature focuses on 
performance management (Schläfke et al. 2012; Ding and Zhang 2014; Church et 
al. 2015; Ryan and Herleman 2016)3 and may provide a new method for managers 
to obtain insight into the effectiveness of employee performance and, ultimately, 
organizational performance (Ding and Zhang, p. 5). Some of the conceptual studies 
take a broader approach to the measurement of human capital in light of constant 
organizational change (Baron 2011; Carlson and Kavanagh 2011; Ingham 2011; 
Dulebohn and Johnson 2013). 

The increased level of ROI that is derived from the conceptual literature on 
HRODM (medium to high level of ROI, as indicated in Table 4) is also derived from 
some of its strategic implications. Some conceptual studies in HRODM provide 
tools for workforce analytics and emphasize the strategic importance of HRODM 
within the organizational context (Huselid and Becker 2011; Van Barneveld et al. 
2012; Hota and Ghosh 2013; Boudreau 2014; Guszcza and Richardson 2014; Handa 
and Garima 2014; Holsapple et al. 2014; Bose  2015; Huselid 2015; Rasmussen and 
Ulrich 2015; Ryan and Herleman 2016; Sharma et al. 2015; Steffi et al. 2015; Zang 
and Ye 2015; Ulrich 2016). 

To conclude, the common feature of the conceptual studies is that they artic-
ulate a clear connection between the investment in analytics and organizational 
effectiveness. Moreover, they all have indicators of increased level of ROI. Finally, 
the conceptual research studies present a robust approach for strategic alignment

3 The literature on performance management analytics focuses on business, sales and individual 
performance. This review includes the last. 
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with state-of-the-art organizational processes (Boudreau and Ramstad 2006), which 
complements their overall effectiveness. 

3.6 Case-Based Studies 

The case-based literature has two foci. First, it covers studies that provide practical 
examples of organizations that have implemented HRODM and recommendations 
for successful implementation. Second, some studies were written by scholars or 
practitioners who have consulting experience in the area of HRODM and share it 
with their readers. An advantage of the case-based studies is their practicality in the 
field of HRODM (Gilbert et al. 2008). 

The results presented in Table 4 indicate that in contrast to the empirical 
and conceptual studies, most case-based studies do not apply the LAMP model 
(Boudreau and Ramstad 2006) in a meaningful manner, and they therefore yield 
a medium to low level of ROI. Moreover, our results indicate that most case-based 
studies are inconsistent with the LAMP model and therefore yield lower levels of 
ROI because they focus on only one or two of the model’s components, i.e., “logic,” 
“analytics,” “measurement,” or “process” (Davenport 2006; Fitz-Enz 2000; Briggs 
2011; Mondore et al. 2011; Boyd and Gessner 2013; Singh and Roushan 2013; 
Varshney et al. 2014; Frigo et al. 2015; Russell and Bennett 2015). 

To conclude, the common grounds for what we categorized as case-based studies 
(Gilbert et al.  2008) is that the majority do not articulate a clear connection between 
HRODM investment, organizational effectiveness, and ROI. Moreover, they provide 
limited scientific evidence to aid decision-makers concerning whether to adopt or 
implement organizational data mining tools within an organization (Strohmeier 
2018). 

3.7 Technical Studies 

The technical literature analyzed in this study has four focus areas: The studies 
present informative research on the topic of HRODM (Welbourne 2015), focus on 
a specific subject within HRODM (Perrin 2015), present a literature review (Vihari 
and Rao 2013; Chong and Shi 2015), or illustrate future trends in HRODM (Yadav 
2014; Momin and Mishra 2015). Thus, the advantage of technical studies is their 
specificity (Gilbert et al. 2008). 

The results presented in Table 4 indicate that similar to the case-based literature, 
and in contrast to the empirical and conceptual studies, the majority of technical 
studies do not apply the LAMP model (Boudreau and Ramstad 2006) in a meaning-
ful manner, and they therefore yield a medium to low level of ROI. Moreover, our 
results indicate that most technical studies are inconsistent with the LAMP model 
because they focus on only one or two of the model’s components, i.e., “logic,”
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“analytics,” “measurement,” or “process” (Mayo 2006; Rivera and Smolders 2013; 
Stone and Dulebohn 2013; Vihari and Rao 2013; Fernández-Delgado et al. 2014; 
Yadav 2014; Chong and Shi 2015; Karasek 2015; Kazakovs et al. 2015; Korpela 
2015; Momin and Mishra 2015; Perrin 2015; Stone et al. 2015; Ulrich and Dulebohn 
2015; Welbourne 2015; Ryan and Herleman 2016). 

To conclude, the common ground of what we categorized as technical studies 
(Gilbert et al. 2008) is that similar to case-based studies, most papers do not 
articulate a clear connection between HRODM investment and organizational 
effectiveness. Moreover, they provide limited scientific evidence to aid decision-
makers concerning whether to adopt organizational data mining. 

4 HRODM: Practical Implementation Tools and Expected 
ROI 

4.1 Implications for Organizations 

Our review of the literature underscores the importance of two notable fields 
within the HRODM research, namely, empirical and conceptual research. We further 
explore specific HRODM tasks and challenges in light of practical implementation 
tools and the expected ROI within organizational functions (Bassi 2011; Buede et 
al. 2018). 

From a practical perspective, the ROI-based approach presented is important for 
a data-driven decision-making process in the field of HRODM. It also provides 
a step-by-step procedure for handling data and subsequently utilizing these data 
to attain meaningful managerial insights. Moreover, the need for a better focus 
in conducting and implementing HRODM projects within organizations is clear. 
Albeit with an element of shortage, some HRODM efforts in organizations today 
could be defined as reactive rather than proactive. Hence, it is not unusual for 
practitioners to use data that they receive access to in order to perform interesting 
analyses by addressing a question or set of questions with various levels of 
viability to the organization (Huselid 2015). The ROI-based approach to HRODM 
presented in this study provides a robust tool to compare and contrast different 
dilemmas and associated values that can be derived from conducting various types 
of ODM projects. The ROI-based approach also supports continuous improvement 
in organizations (Delbridge and Barton 2002). 

From a theoretical perspective, the proposed categorization (Gilbert et al. 2008) 
provides a robust ROI framework for conducting research in the field of HRODM, 
thus enabling scholars and practitioners to focus on a desired topic in a more 
structured manner (Becker 2009; Lipkin 2015; Rasmussen and Ulrich 2015; Ghosh 
and Sengupta 2016; Pape 2016). 

In Table 5, we illustrate the implications of HRODM for organizations. We 
present how addressing organizational challenges using various analytical tools,
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Table 5 HRODM implications for organizations: Practical implementation tools & expected ROI 

Task Sample challenges Toola Expected ROI 

Industry Analysis Macro market effect on 
turnover 

Descriptive Low 

Workforce Planning High-demand jobs and attrition 
Person-Organization Fit 

Predictive High 

Job Analysis Robustness of job components Descriptive Low 
Recruitment and Selection Person-Job Fit Predictive High 
Training and Development ROI in training Descriptive 

and Predictive 
Medium 

Compensation Total compensation scenarios Descriptive 
and Predictive 

Medium 

Performance Management Performance management 
cycle scenarios 

Descriptive Low 

Retention Can retention be predicted Descriptive 
and Predictive 

Medium 

Based on: Chalutz Ben-Gal (2019) 
aDescriptive analytics tools may include: Descriptive statistics, Graphs and plots, Benchmarking 
tools, KPIs-Based Methods (scorecards), Business Intelligence (BI) Dashboards, and Advanced 
Survey Analytics 
Predictive analytics tools may include: Market Basket Analysis, Regression and parametric 
modeling (including Logistic Regression), Time Series Analysis, Classification Methods (e.g. 
decision trees, SVM, Discriminant Analysis, Neural Networks, Deep Learning), Clustering (K 
nearest neighbors, K-means, ) Anomaly detection, Profiling, Association rules, Link-Analysis, 
Causality modeling (Bayesian networks), Text Analysis & NLP and Attrition Modelling 

namely, descriptive and predictive, may impact the expected ROI. This analysis may 
further assist scholars and practitioners in the ongoing effort to improve HRODM 
tools and impacts (Rasmussen and Ulrich 2015; Chamorro-Premuzic et al. 2017; 
Strohmeier 2018). 

Table 5 presents the implications of HRODM for organizations as well as 
practical implementation tools. Specifically, it offers a summary overview of 
eight major tasks and activities that organizations are faced with, including their 
corresponding sample challenges (Srinivasan and Chandwani 2014; Bamber et al. 
2017), practical implementation tools, and the expected ROI. The expected ROI 
is categorized into three levels – low, medium, and high – in accordance with the 
complexity of data-handling procedures that are relevant to the HRODM research 
(Fitz-Enz 2009; Rasmussen and Ulrich 2015; Ghosh and Sengupta 2016). The 
results documented in Table 5 yield two notable conclusions. The two areas of tasks 
that yield the highest ROI are workforce planning and recruitment and selection 
because both rely on predictive analytics tools (Fitz-Enz 2009). 

As presented in Table 5, the first task focuses on industry analysis. This task 
ensures the analysis of basic parameters in an organization’s specific industry (e.g., 
retail, financial, technology). Empirical research tools are descriptive analytics that 
use BI and benchmarking to analyze government data, consulting firms’ data, census 
data, and macro-industry data. Our observations suggest examining macro market
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effects on specific constructs, such as turnover. Relevant ratios include industry 
average job turnover, average cost per hire, and job-specific retention budget, among 
others. Accordingly, the ROI for performing an industry analysis utilizing these 
HRODM tools is expected to be low. 

Workforce planning is the second task, and we call for extended empirical analyt-
ics on this task because we believe it entails a high ROI. Workforce planning ensures 
the use of a continual process to align the needs and priorities of the organization 
with those of its workforce to ensure that it can meet its legislative, regulatory, 
service and production requirements as well as long- and short-term organizational 
objectives (Huselid 2015). Empirical research tools include predictive analytics that 
use various analysis techniques based mostly on internal data (e.g., ERP, headcount, 
product mapping, financials, budget) and external data (e.g., surveys, salary tables, 
syllabuses, and training program materials). Our observations suggest that certain 
challenges to test are person-organization fit and the connection between high-
demand jobs and attrition. Accordingly, the ROI for performing workforce planning 
using these HRODM tools is expected to be high. 

The third task focuses on job analysis, which is a process to identify and 
determine in detail a given job’s duties, requirements, and interfaces as well as 
its relative importance. This is a process in which judgments are made about data 
collected for a job (Levenson 2005). Empirical research tools include descriptive 
analytical tools (e.g., financial ERP, organizational structure, and headcount). Our 
observations suggest that some specific challenges to test are the robustness of job 
components and their effect on satisfaction and retention. Accordingly, the ROI for 
performing job analysis using these HRODM tools is expected to be low. 

Recruitment and selection of talent is the fourth task, and we call for extended 
empirical research on this task because we believe it entails a high ROI. Practical 
research tools include predictive analytics. Our observations suggest that specific 
challenges to test are methods of classifying the talent pool according to available 
organizational resources; text analysis of interviews and profiling of vacant roles and 
organizational requirements; and logistics regression or other parametric models 
that predict recruitment probability of success, satisfaction, and person-job fit. 
Accordingly, the ROI for the recruitment and selection of talent using these 
HRODM tools is expected to be high. 

The fifth task refers to  training and development, which is primarily concerned 
with organizational activity aimed at improving the performance of individuals 
and groups in the organization. The recommended empirical research tools include 
both descriptive and predictive analytics. Our observations suggest that some 
specific challenges to test are the analysis of training ROI (through BI), whereas 
classification methods may assist in improving the training investment per job class. 
Accordingly, the ROI for performing training and development using these HRODM 
tools is expected to be at a medium level. 

The sixth task refers to compensation and benefits. This management challenge 
assists in the execution of organizational strategy and may be adjusted according 
to business needs, goals, and available resources. Empirical research tools are de-
scriptive (e.g., BI, scorecards, or other KPI-based methods) and predictive analytics.
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Our observations suggest that some specific challenges are total compensation 
scenario testing; Monte Carlo simulations assess various compensation plans and 
regression analyses and their interplay with selected organizational phenomena. 
Accordingly, the ROI for performing compensation research using these HRODM 
tools is expected to be at a medium level. 

The seventh task refers to performance management. This task is an ongoing 
process of communication between a supervisor and an employee that occurs 
throughout the year in support of accomplishing the organization’s strategic ob-
jectives (Huselid 2015). Future empirical research tools are based on descriptive 
analytics. Our observations suggest that some specific challenges to explore are 
performance management cycle scenarios mainly through BI, dashboarding, and 
KPI-based methods. Additionally, various levels of performance are clustered 
for the purpose of performance evaluation. Accordingly, the ROI for performing 
performance management using these HRODM tools is expected to be low (Buede 
et al. 2018). 

Finally, the eighth task that is illustrated in Table 5 is retention of talent. The  
recommended empirical research tools are based on descriptive and predictive 
analytics. We call for a specific challenge to test and believe that further research on 
the topic of whether retention can be predicted is required. This challenge can be 
addressed by the profiling of key jobs, the classification of various talent retention 
scenarios, logistic regression, anomaly detection, and attrition modeling for various 
job groups. Accordingly, the ROI of performing talent retention using the proposed 
HRODM tools is expected to be at a medium level. 

Our observations documented above apply to both scholars and practitioners 
when planning their future HRODM priorities. Furthermore, the ROI-based ap-
proach, which is the focus of this study, underscores the call for a more systematic 
approach for researchers and decision-makers to use evidence-based information as 
a guide to the adoption of HRODM and to understand its effectiveness (Rasmussen 
and Ulrich 2015; Buede et al. 2018). 

The challenge for future research in HRODM is to reach beyond general studies 
in order to identify important contextual variables of HRODM and to consistently 
add value to existing organizational systems on both the contextual and practical 
levels. As emphasized earlier, we believe that much of this potential added value lies 
within the empirical and conceptual research in HRODM. Therefore, fertile avenues 
for future research contributions should focus on both empirical and conceptual 
studies in HRODM since these are the noticeable directions where the highest return 
rates are expected. Enhancing and developing empirical and conceptual knowledge 
in HRODM and state-of-the-art tools may serve as adequate future contributions to 
the field of HRODM. 

If decision-makers have ROI information to guide the adoption of HRODM, a 
more focused and systematic research approach must evolve. Macro-organizational 
theoretical frameworks can add to the ROI-based approach by proposing different 
perspectives. For example, the contextual approach (Johns 2006, 2018) may offer 
a basis for understanding the organizational context in which specific ROI is to 
be found in line with new scholarly insights in the HRODM field. Additionally,
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further theory development may integrate the LAMP framework (Boudreau and 
Ramstad 2006) with contextual elements (Johns 2006, 2018), which may also 
offer an appealing framework for testable hypotheses. Future rigorously constructed 
research questions may focus on the various tasks of HR from a holistic point 
of view while challenging the recommended analytical approach presented in this 
paper. Finally, future research may propose a new methodology that differs from 
the ROI-based approach to systematically analyze the scholarly and practical field 
of HRODM. 

5 Contributions: ROI – Model to Guide the Way Forward 

This section answers the third research question, RQ3: What is the future of 
HRODM research? It also reiterates the study’s contributions and emphasizes the 
ROI approach as a model to guide the way forward in HRODM research. 

HRODM is a fascinating, dynamic discipline (Levenson 2011; Huselid 2015). 
The dynamic role of ODM enables it to focus both on the operational tasks of HR 
and on the organizations’ long-term and strategic business objectives. The growing 
field of HRODM enables management and engineering scholars and executives 
to implement a broader approach, which may increase their strategic contribution 
(Kazakovs et al. 2015; Strohmeier 2018). Machine-learning and data analytics in 
general, and more specifically in the field of HRODM, can aid in making informed 
decisions based on knowledge extracted from the available data and options (Sharma 
et al. 2015). 

Our unique synthesis of the literature underscores the importance of two 
important fields within HRODM, namely, the empirical and the conceptual research. 
Our observations that we analyze and discuss in this study offer an ROI-based 
perspective to the HRODM field. Moreover, the ROI-based approach on the topic of 
HRODM presented in this paper provides theoretical and practical contributions. As 
a result, it provides a model to guide the way forward in HRODM research. From 
a theoretical perspective, this paper assists data analytics scholars who may find the 
ROI-based framework useful when fine-tuning their theoretical contributions in the 
field. From a practical perspective, this paper clarifies the dilemma associated with 
the HRODM field and assists practitioners regarding the expected ROI of HRODM 
initiatives within their organizations. 

In conducting our ROI-based review of the literature on HRODM by integrating 
the analysis above, several major conclusions emerge. First, there is a need for 
more scientific empirical research in HRODM. Focusing on the development of 
such research might increase the potential for action-oriented, data-driven research, 
which can assist management and technical professionals. Second, as with the 
previous conclusion, and in light of notable deficiencies in the existing HRODM 
literature (Boudreau and Ramstad 2006; Dastyar et al. 2017), there emerges a need 
to focus on an ROI-based approach, which is our proposed model to guide the way 
forward.
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We have taken a step toward systematically explaining some notable questions 
in the HRODM field. Not only does a focus on an ROI-based approach improve the 
adoption of HRODM as an important field in data science, but the context in which 
it is being adopted and implemented also matters, both practically and theoretically 
speaking. 

6 HRODM Implementation: Two Examples 

In this section, we provide two examples of HRODM implementation. The first 
example presents a Workforce Analytics and Big Data Analysis of Employee 
Turnover example – taken from Sela and Chalutz Ben-Gal (2018). The second 
example presents an Employee Recruitment Decision-Making Support Tool taken 
from Pessach et al. (2020). 

6.1 HRODM Implementation Example I: Workforce Analytics 
and Big Data Analysis of Employee Turnover 

Workforce analytics and turnover are strategic domains in HRODM implementation 
(Chalutz Ben-Gal 2019; Hausknecht 2014). This example shows that by utilizing 
HRODM tools for the purpose of workforce analytics through big data analysis 
and cluster analysis, management can gain a nuanced perspective on employee 
turnover and career path trajectories. This knowledge is important for strategic 
workforce planning across various industries. Furthermore, the digital world we 
live in results in weaker social connections between individuals. This drives the 
development of new workforce models, which are based on social networks and 
artificial intelligence (Fire and Puzis 2016; Aghabaghery et al. 2020). For example, 
in recent years, labor markets experience fundamental changes (e.g., social networks 
platforms and artificial intelligence-based recruitment and placement processes). 
Additionally, more candidates utilize online-based tools in their job search (Sela 
and Chalutz Ben-Gal 2018). 

In this numerical example, taken from Sela and Chalutz Ben-Gal (2018), the 
authors extracted a unique dataset of over 970,000 curriculum vitas (CVs) based on 
LinkedIn profiles. Their analysis revealed just a slightly opposite relation between 
employee job satisfaction and turnover rate. The researchers found that while higher 
compensation packages provided by companies often lead to higher employee job 
satisfaction, they do not ensure lower turnover rates (Hausknecht 2014). The authors 
demonstrate that by utilizing HRODM tools, surprising and non-intuitive patterns 
are revealed, especially in global high-technology companies (see Fig. 3a, b). 

In their research, the authors implemented the following methodology. They 
calculated the average employment period based on a dataset of 973,134 CV’s
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retrieved from active LinkedIn profiles. Their dataset included 44 features, including 
control variables. For example, gender, country of employment, seniority, endorsed 
skills, as well as employment archival data – company name, job title, employment 
duration in previous firms, industry sector, etc. The dataset was merged with two 
additional benchmark data sources (Fortune 100; Glassdoor). The authors present 
their analysis and findings in Fig. 3. 

Figure 3a presents machine-learning-based big data analysis of employee 
turnover. Figure 3a presents the average employee job satisfaction level, the average 

Fig. 3 (a–d) HRODM implementation: Example I – workforce analytics and big data analysis of 
employee turnover. (a) Big data analysis of employee turnover. Average employee job satisfaction 
(x-axis), average work duration in months (y-axis) and average salary in 39 organizations. 
Organizations such as Facebook or Google, have high salaries, high employee job satisfaction 
level, however a low average employment duration. In comparison, Intel has an average level 
of employee job satisfaction, but longer working durations. Symantec and Bristol-Myers Squibb 
both offer lower salary levels, relatively higher employee job satisfaction levels, and longer 
employment durations. Finally, Apple and EMC have rather low employee job satisfaction levels, 
high-average salary levels, and average work durations. (b) Analysis of employee turnover. 
Comparison of employment (work) duration histograms for eight companies: Facebook, Google, 
eBay, IBM, Apple, 3M, Intel, and Motorola (ordered by descending average employment periods). 
(c) Workforce Analytics of Career Paths. Three career path network clusters: financial cluster (red); 
consulting cluster (green); and the high technology cluster (blue). (d) Workforce analytics of career 
paths. Analysis of career paths within and across career network clusters reveals that Facebook and 
Google dominate two distinct employment clusters; IBM is a “Career Hub”. (Taken from: Sela and 
Chalutz Ben-Gal (2018))
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Fig. 3 (continued)
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Fig. 3 (continued) 

employment (work) duration, and the average salary in thirty-nine organizations. 
As demonstrated by the authors in Fig. 3a, the companies Google and Facebook 
are located in the bottom left corner. These companies offer higher compensation 
packages (the red color indicates a compensation package of 130–140 k USD per 
year), and demonstrate higher job satisfaction levels. Utilizing HRODM tools,
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the authors are able to demonstrate some surprising findings. For example, the 
researcher’s results indicate that Facebook has an average employment duration 
of 16.9 months. As extracted from their research and illustrated in Fig. 3a, 
organizations such as Facebook or Google, which offer high compensation 
packages, which seem to influence higher employee job satisfaction levels, 
demonstrate a surprisingly low employment periods for their employees. 

The researchers compare and contrast their findings to other organizations. 
For example, they found that Intel, which demonstrates an average employee job 
satisfaction score, shows a relatively very long employment duration. They also 
found that, both Symantec and Bristol-Myers Squibb have lower compensation 
packages, however demonstrate higher job satisfaction levels, as well as longer 
employment durations. Finally, the researchers found that Apple or EMC have 
low job satisfaction scores, high compensation packages, and demonstrate average 
employment durations. 

HRODM tools enable, researchers and practitioners alike, further data-driven 
analysis of the workforce. Furthermore, HRODM tools enable a granular view of 
the data. In Fig. 3b Sela and Chalutz Ben-Gal (2018) present a comparison of eight 
company’s employment (work) duration histograms. In Fig. 3b, the authors present 
histograms representing employment duration for eight technology companies. For 
example, while the upper three figures (representing Facebook, eBay, and Google) 
resemble an exponential function, the lower two histograms (representing Intel and 
Motorola) have a peak at an employment period of approximately 24 months, and 
smaller bins in lower and in higher values. The authors conclude that assuming 
an entry-level job, which usually requires about 6 months up to 1 year in order 
to reach mastery level of performance, these patterns are unexpected compared to 
Facebook or Google, where the average employment period is 16.9 and 23.3 months, 
respectively. 

The authors emphasize the counterintuitive nature of their findings and claim 
that as Fig. 3a, b indicate, despite higher levels of employee job satisfaction and 
higher compensation packages, both Facebook and Google demonstrate shorter 
employment periods. 

However, it is management’s role to analyze, interpret, and ultimately act upon 
such results, thus maximizing organizational ROI (Chalutz Ben-Gal 2019). There-
fore, HRODM tools may assist the understanding of such macro market phenomena. 
For example, technology companies such as Google, Facebook, and eBay may 
be perceived as technological trendsetters, thus serve as “career platforms” for 
candidates toward their next desired job or professional challenge (Sela and Chalutz 
Ben-Gal 2018). 

HRODM tools enable a deeper understanding of the workforce flows by ana-
lyzing employees’ career trajectory patterns. The researchers further illustrate an 
HRODM implementation example across industries. In Fig. 3c, the authors present 
three main career network clusters extracted from the LinkedIn dataset: the financial 
cluster (represented in red color), the consulting cluster (represented in green color), 
and the high technology cluster (represented in blue color).
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The cluster analysis methodology presented by the authors, a popular tool 
within the HRODM domain, enables to detect employment and career moves for 
the purpose of workforce analytics. The authors claim that examining Fig. 3c, 
it seems that employees tend to make more frequent career moves within their 
own career network cluster. For example, employees working in the financial 
cluster (represented in red color), tend to make career moves to other financial 
companies, but less frequently to other career network clusters. Similar career 
trajectory patterns exist in the consulting cluster (represented in green color), 
and the high technology cluster (represented in blue color). Moreover, within the 
consulting cluster, the authors identified IBM as a “career hub,” which they define 
as a company that serves as a central crossroad junction for employees from which 
they can easily transfer to a different career network cluster. The author’s finding 
is surprising when compared to their Facebook and Google results, because both 
companies’ positioning represent a less central point as potential employers, and 
thus do not serve as industry hubs. Consequently, the authors conclude that one 
can detect that working at IBM may serve as a strategic career bridge to other 
attractive employment industries, compared to working in other companies, in 
which employees are more likely to stay within the borders of their career network 
cluster, especially when performing career choices (Sela and Chalutz Ben-Gal 
2018). 

Additional findings are illustrated by the authors in Fig. 3d, in which it is shown 
that both Facebook and Google are companies that dominate two distinct employ-
ment clusters (i.e., industries). Applying HRODM tools, the researchers analyzed 
employment clusters within a network that consists of almost 50 thousand individual 
career moves. They found that only one single career move was performed between 
these two companies. They also found that IBM is centrally located within its 
employment cluster, based on its physical central location, as well as on its evident 
large size. 

This example emphasizes HRODM utility in the integration of machine-learning 
and data-driven tools, in order to maximize organizational ROI (Sela and Chalutz 
Ben-Gal 2018; Chalutz Ben-Gal 2019; Aghabaghery et al. 2020). 

6.2 HRODM Implementation Example II: Employee 
Recruitment Decision-Making Support Tool 

Employee recruitment is a strategic domain for HRODM implementation and is 
associated with high organizational ROI (Chalutz Ben-Gal 2019; Pessach et al. 
2020), because it improves fit levels (Johns 2006, 2018) between a candidate 
and a specific position to be staffed. Recruitment and selection of talent is an 
organizational task associated with predictive analytics tools. Some HRODM 
application domains include methods of the talent pool classification; text analysis 
of interviews and profiling of vacant jobs compared to organizational demand;
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prediction models for recruitment probability of success. Accordingly, the ROI for 
the recruitment and selection of talent using HRODM tools is expected to be high 
(Vihari and Rao 2013; Chalutz Ben-Gal 2019). 

In this numerical example, taken from Pessach et al. (2020), the authors extracted 
a unique dataset and illustrated an application of a decision-making support tool for 
organizations and for the Human Resources community in order to improve the 
accuracy of recruitment and placement decisions. The example utilizes HRODM-
driven machine-learning models for the prediction of recruitment success, as well 
as for extracting interpretable insights. 

The authors measure the recruitment success based on a combination of the 
candidate turnover rate (Hausknecht 2014; Sela and Chalutz Ben-Gal 2018), and 
an objective target indicator based on performance. The authors also measure the 
performance indicator based on the position-changing conditions. For the purpose 
of classification and prediction of successful and unsuccessful recruitments and 
placements, as well as for mining significant patterns, the researchers use a Variable-
Order Bayesian Networks Model (VOBN) (Ben-Gal et al. 2005; Singer and Ben-Gal 
2007). 

The authors evaluate the model compared to other machine-learning models 
applied to an extracted unique organizational dataset. The dataset utilized by 
the researchers includes about 700,000 cases of employee candidates who were 
recruited to an organization throughout a period of a decade (hired between the 
years 2000 and 2010). The authors detail some pre-hire features in the dataset. 
For example, position requirement, age, gender, marital status, education, grades, 
skills, interview and test scores, professional preferences, and additional socio-
demographic features. Furthermore, the authors describe pre-processing activities. 
For example, data tables consolidation, sensitive data masking, etc. 

In line with HRODM tools and techniques, the authors identified several clusters 
of position groups. Furthermore, using statistical data extracted from the Central 
Bureau of Statistics enabled the researchers to enrich the dataset with additional 
socio-demographic features. Missing values were tagged by zeros, and candidates 
with many missing values were removed by the researchers. In line with HRODM 
practices, additional dimensionality reduction procedures were performed by the 
researchers in accordance with the applied machine-learning algorithms. 

The authors classified a “successful” and “unsuccessful” recruitment process as 
follows: They analyzed key reasons for employee turnover and categorized them 
into two groups: “successful recruitment” group, i.e., turnover associated with 
“natural” reasons, such as promotion (Hausknecht 2014), and an “unsuccessful re-
cruitment” group, i.e., unexpected turnover, such as short-term or poor performance 
based turnover. Additionally, turnover was classified by the researchers as negative 
(e.g., “misfit”) or positive (e.g. “promotion”). Finally, the combination of turnover 
and position changes was utilized as a combined measure for labeling “successful” 
vs. “unsuccessful” recruitment.4 

4 In line with HRODM practices, and in order to maintain consistency, the researchers applied an 
a-priori distribution of the target class on both a training and a testing datasets.
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In this example, the authors were able to prove that the VOBN Model performs 
well in terms of both interpretability and accuracy in predicting recruitment success 
because it identifies context-based patterns that can support the organization in the 
recruitment process. Therefore, the authors explain that it can be used to extract 
rules and actions for the recruiters who sometimes lack the HRODM and machine-
learning background, providing actionable and implementable insights – See Fig. 
4a, b below. This HRODM implementation example is clear and easy to understand, 
therefore allows for an examination HR policies and procedures by what the authors 
call “extraction of interpretable and actionable insights” (Pessach et al. 2020). 

In Fig. 4a – taken from Pessach et al. (2020) – the authors present the predicted 
probabilities of success in assigning sixteen candidates of two types to four 
positions by the machine-learning models (e.g., VOBN Model). For clarity purpose, 
the authors present colored entries in order to differentiate between the success 
probability values (i.e., high probability marked in green and low probability marked 
in red). 

Fig. 4 (a, b) HRODM implementation: Example II – employee recruitment decision-making 
support tool. (a) Predicted probabilities of success in assigning sixteen candidates of two types 
of populations to four positions. The entries are color-coded by the success probability values. 
High probability (green), low probability (red). (b) Assignment of candidates to positions by four 
different solutions. Solution 1 (red) suggests the following: (i) recruiting 4 candidates to position 
1409; (ii) recruiting 6 candidates to position 1509; (iii) recruiting 6 candidates to position 379 (note 
that none of them are of type 1); and (iv) not recruiting any of the candidates to position 40. (Taken 
from: Pessach et al. (2020))
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Fig. 4 (continued) 

The data presented by the researchers in Fig. 4a includes four positions 
(columns), sixteen candidates (rows), and two types of candidates who need to 
be assigned in a pre-determined way (e.g., based on their specific background, 
skills, and departmental demand). Figure 4a also presents the predicted success 
probability for each pair of candidate and position (the authors use shades of green 
to represent high probability and shades of red to represent low probabilities). For 
calculation purpose, the authors assumed a demand of six employees per position. 
Analyzing their dataset under these constraints, the authors conclude that based on 
the machine-learning algorithms if the goal is to maximize the sum of recruitment 
success probabilities, then position 379 requires staffing by type 2 candidates only. 

In Fig. 4b, the researchers present four solutions to the allocation problem based 
on four different formulations where the rows represent candidates and the columns 
represent positions. 

This example illustrates how HRODM techniques can be implemented as an 
employee recruitment decision-making support tool. This tool can support managers 
and recruiters alike when seeking candidates to be placed in target vacant positions. 
Moreover, the proposed decision-making tool illustrated in this example can further
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assist the HR function in making relevant strategic decision. For example, employee 
development and retention procedures, in order to maximize organizational ROI 
(Chalutz Ben-Gal 2019; Pessach et al. 2020). 
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(2014, August), “Predicting employee expertise for talent management in the enterprise”, In 
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and 
data mining (pp. 1729–1738). ACM. 

Vihari, N. S. & Rao M. K. (2013), “Analytics as a Predictor for Strategic and Sustainable Human 
resources Function: An Integrative Literature Review”, (Doctoral dissertation, IIT), Roorkee. 

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a 
literature review. MIS Quarterly, pp. xiii–xxiii.


 29282 45079 a 29282
45079 a
 
http://doi.org/10.1111/1744-7941.12104


866 H. Chalutz-Ben Gal

Welbourne, T. M. (2015), “Data-Driven Storytelling: The Missing Link in HR Data Analytics”, 
Employment Relations Today, 41(4), pp. 27–33. 

Wiblen, S., Grant, D., & Dery, K. (2010), “Transitioning to a new HRIS: The reshaping of human 
resources and information technology talent”, Journal of Electronic Commerce Research, 
11(4), pp. 251–267. 

Xiu, L., Liang, X., Chen, Z., Xu, W. (2017) “Strategic flexibility, innovative HR practices, and firm 
performance: A moderated mediation model”, Personnel Review, 46 (7), pp. 1335–1357. 

Yadav, R. (2014), “Managing global HR issues in today’s challenging times”. 
Zang, S., & Ye, M. (2015), “Human resources Management in the Era of Big Data”, Journal of 

Human resources and Sustainability Studies, 3(01), pp. 41–45. 
Zhao, G., & Carlton, D. (2015), “Forecast Competency Migration by a Methodology of Compe-

tency Analytics”, Open Journal of Social Sciences, 3(11), pp. 16–22.



Algorithmic Fairness 

Dana Pessach and Erez Shmueli 

1 Introduction 

Nowadays, an increasing number of decisions are being controlled by artificial 
intelligence (AI) and machine learning (ML) algorithms. The motivation for an 
automated learning model is clear—we expect algorithms to perform better than 
human beings for several reasons: First, algorithms may integrate much more data 
than a human may grasp and take many more considerations into account. Second, 
algorithms can perform complex computations much faster than human beings. 
Third, human decisions are subjective, and they often include biases. 

Hence, it is a common belief that using an automated algorithm makes decisions 
more objective or fair. However, this is unfortunately not the case since ML 
algorithms are not always as objective as we would expect. The idea that ML 
algorithms are free from biases is wrong since the assumption that the data injected 
into the models are unbiased is wrong. More specifically, a prediction model 
may actually be inherently biased since it learns and preserves historical biases 
(Kleinberg, Mullainathan, & Raghavan, 2017). 

Since many automated decisions (for example, which individuals will receive 
jobs, loans, medication, bail, or parole) can significantly impact people’s lives, there 
is great importance in assessing and improving the ethics of the decisions made 
by these automated systems. Indeed, in recent years, the concern for algorithm 
fairness has made headlines. One of the most common examples was in the field 
of criminal justice, where recent revelations have shown that an algorithm used by 
the United States criminal justice system had falsely predicted future criminality 
among African–Americans at twice the rate as it predicted for White people 
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(Angwin, 2016). In another case of a hiring application, it was recently exposed 
that Amazon discovered that their ML hiring system was discriminating against 
female candidates, particularly for software development and technical positions. 
One suspected reason for this is that most recorded historical data were for male 
software developers (Dastin, 2018). In a different scenario in advertising, it was 
shown that Google’s ad-targeting algorithm had proposed higher-paying executive 
jobs more for men than for women (Datta, Tschantz, & Datta, 2015; Simonite, 
2015). 

These lines of evidence and concerns about algorithmic fairness have led to 
growing interest in the literature on defining, evaluating, and improving fairness 
in ML algorithms (see, for example, Berk, Heidari, Jabbari, Kearns, & Roth, 2018; 
Chouldechova & Roth, 2018; Friedler et al., 2019; Holstein, Wortman Vaughan, 
Daumé III, Dudik, & Wallach, 2019). It is important to note, however, that the task 
of improving fairness of ML algorithms is not trivial since there exists an inherent 
trade-off between accuracy and fairness. That is, as we pursue a higher degree of 
fairness, we may compromise accuracy (see, for example, Kleinberg et al., 2017). 

The rest of this chapter is structured as follows: Sect. 2 discusses the potential 
causes of algorithmic unfairness; Sect. 3 presents definitions and measures of 
fairness and their trade-offs; Sect. 4 reviews fairness mechanisms and methods and 
a comparison of the mechanisms, focusing on the pros and cons of each mechanism; 
Sect. 5 outlines commonly used fairness-related datasets; and Sect. 6 provides 
concluding remarks and sketches several open challenges for future research. 

2 Potential Causes of Unfairness 

The literature has indicated several causes that may lead to unfairness in ma-
chine learning (Chouldechova & Roth, 2018; Martínez-Plumed, Ferri, Nieves, & 
Hernández-Orallo, 2019): 

• Biases already included in the datasets used for learning, which are based on 
biased device measurements, historically biased human decisions, erroneous 
reports, or other reasons. Machine learning algorithms are essentially designed 
to replicate these biases. 

• Biases caused by missing data, such as missing values or sample/selection bi-
ases, which result in datasets that are not representative of the target population. 

• Biases that stem from algorithmic objectives, which aim at minimizing overall 
aggregated prediction errors and therefore benefit majority groups over minori-
ties. 

• Biases caused by “proxy” attributes for sensitive attributes. Sensitive attributes 
differentiate privileged and unprivileged groups, such as race, gender, and age, 
and are typically not legitimate for use in decision-making. Proxy attributes are 
non-sensitive attributes that can be exploited to derive sensitive attributes. In the 
case that the dataset contains proxy attributes, the machine learning algorithm
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Fig. 1 If the SAT scores were used for hiring, then unprivileged candidates with high potential 
would be excluded, whereas lower potential candidates from the privileged group would be hired 
instead 

can implicitly make decisions based on the sensitive attributes under the cover 
of using presumably legitimate attributes (Barocas & Selbst, 2016). 

To illustrate the last cause mentioned above, consider the example depicted 
in Fig. 1. The figure illustrates a case of SAT1 scores for two sub-populations: a 
privileged one and an unprivileged one. 

In this illustration, SAT scores may be used to predict the probability of job 
success when hiring candidates since the higher the SAT score is, the higher 
the probability of success. However, unprivileged candidates with SAT scores 
of approximately 1100 perform just as well as privileged candidates with SAT 
scores of 1400 since they may have encountered more challenging pathways to 
achieve their scores. In other words, if the SAT scores were used for hiring, 
unprivileged candidates with high potential would be excluded, whereas lower 
potential candidates from the privileged group would be hired instead. 

3 Fairness Definitions and Measures 

This section presents some general legal notions for discrimination followed by a 
survey of the most common measures for algorithmic fairness, and the inevitable 
trade-offs between them.

1 The SAT is a standardized test widely used for college admissions in the United States. 
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3.1 Definitions of Discrimination in Legal Domains 

The legal domain has introduced two main definitions of discrimination: (i) dis-
parate treatment (Zimmer, 1995; Barocas & Selbst, 2016): intentionally treating 
an individual differently based on his/her membership in a protected class (direct 
discrimination); (ii) disparate impact (Rutherglen, 1987; Barocas & Selbst, 2016): 
negatively affecting members of a protected class more than others even if by a 
seemingly neutral policy (indirect discrimination). 

Put in our context, it is important to note that algorithms trained with data that do 
not include sensitive attributes (i.e., attributes that explicitly identify the protected 
and unprotected groups) are unlikely to produce disparate treatment but may still 
induce unintentional discrimination in the form of disparate impact (Kleinberg 
et al., 2017). 

3.2 Measures of Algorithmic Bias 

This section presents the most prominent measures of algorithmic fairness: 

1. Disparate impact (Feldman, Friedler, Moeller, Scheidegger, & Venkatasub-
ramanian, 2015)—This measure was designed to mathematically represent 
the legal notion of disparate impact. It requires a high ratio between the 
positive prediction rates of both groups. This ensures that the proportion 
of positive predictions is similar across groups. For example, if a positive 
prediction represents acceptance for a job, the condition requires the proportion 
of accepted applicants to be similar across groups. Formally, this measure is 
computed as follows: 

.
P [Ŷ = 1|S �= 1]
P [Ŷ = 1|S = 1] ≥ 1 − ε, (1) 

where S represents the protected attribute (e.g., race or gender), .S = 1 is the 
privileged group, and .S �= 1 is the unprivileged group. .Ŷ = 1 means that the 
prediction is positive. Let us note that if .Ŷ = 1 represents acceptance (e.g., 
for a job), then the condition requires the acceptance rates to be similar across 
groups. A higher value of this measure represents more similar rates across 
groups and therefore more fairness. Note that this notion relates to the “80% 
rule” in disparate impact law (Feldman et al., 2015), which requires that the 
acceptance rate for any race, sex, or ethnic group be at least 80% of the rate for 
the group with the highest rate. 
Note that this notion may be applied as a measure if the right-hand side is 
omitted, or as a constraint if it is kept. In the case of utilizing the notion as 
a constraint, the value of . ε might be a non-trivial task and should be determined 
according to the specific characteristics of each application.
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2. Demographic parity—This measure is similar to disparate impact, but  the  
difference is taken instead of the ratio (Calders & Verwer, 2010; Dwork, Hardt, 
Pitassi, Reingold, & Zemel, 2012). This measure is also commonly referred to 
as statistical parity. Formally, this measure is computed as follows: 

.

∣
∣
∣P [Ŷ = 1|S = 1] − P [Ŷ = 1|S �= 1]

∣
∣
∣ ≤ ε. (2) 

A lower value of this measure indicates more similar acceptance rates and 
therefore better fairness. Demographic parity (and disparate impact) ensures 
that the positive prediction is assigned to the two groups at a similar rate. 

One disadvantage of these two measures is that a fully accurate classifier may 
be considered unfair, when the base rates (i.e., the proportion of actual positive 
outcomes) of the various groups are significantly different. Moreover, in order 
to satisfy demographic parity, two similar individuals may be treated differently 
since they belong to two different groups—such treatment is prohibited by 
law in some cases (note that this notion also corresponds to the practice of 
affirmative action Fullinwider, 2018). 

3. Equalized odds—This measure was designed by Hardt, Price, and Srebro 
(2016) to overcome the disadvantages of measures such as disparate impact and 
demographic parity. The measure computes the difference between the false 
positive rates (FPR), and the difference between the true positive rates (TPR) of 
the two groups. Formally, this measure is computed as follows: 

.

∣
∣
∣P [Ŷ = 1|S = 1, Y = 0] − P [Ŷ = 1|S �= 1, Y = 0]

∣
∣
∣ ≤ ε (3) 

.

∣
∣
∣P [Ŷ = 1|S = 1, Y = 1] − P [Ŷ = 1|S �= 1, Y = 1]

∣
∣
∣ ≤ ε, (4) 

where the upper formula requires the absolute difference in the FPR of the 
two groups to be bounded by . ε, and the lower formula requires the absolute 
difference in the TPR of the two groups to be bounded by . ε. Smaller differences 
between groups indicate better fairness. In contrast to demographic parity and 
disparate impact measures, a fully accurate classifier will necessarily satisfy the 
two equalized odds constraints. Nevertheless, since equalized odds relies on the 
actual ground truth (i.e., Y ), it assumes that the base rates of the two groups are 
representative and were not obtained in a biased manner. 
One use case that demonstrates the effectiveness of this measure investigated 
the COMPAS (Practitioners Guide to COMPAS, 2012) algorithm used in the 
United States criminal justice system. For predicting recidivism, although its 
accuracy was similar for both groups (African–Americans and Caucasians), it 
was discovered that the odds were different. It was discovered that the system 
had falsely predicted future criminality (FPR) among African–Americans at 
twice the rate predicted for White people (Angwin, 2016); importantly, the
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algorithm also induced the opposite error, significantly underestimating future 
crimes among Caucasians (FNR). 

4. Equal opportunity—This requires true positive rates (TPRs) to be similar 
across groups (meaning the probability of an individual with a positive outcome 
to have a positive prediction) (Hardt et al., 2016). This measure is similar to 
equalized odds but focuses on the true positive rates only. This measure is 
mathematically formulated as follows: 

.

∣
∣
∣P [Ŷ = 1|S �= 1, Y = 1] − P [Ŷ = 1|S = 1, Y = 1]

∣
∣
∣ ≤ ε, (5) 

Let us note that following the equality in terms of only one type of error 
(e.g., true positives) will increase the disparity in terms of the other errors 
(Pleiss, Raghavan, Wu, Kleinberg, & Weinberger, 2017). Moreover, according 
to Corbett-Davies and Goel (2018), this measure may be problematic when base 
rates differ between groups. 

Thus far, we have mapped the most common group notions of fairness, which 
require parity of some statistical measure across groups. The literature has addi-
tionally indicated individual notions of fairness. It is alternatively possible to match 
other measures such as accuracy, error rates, or calibration values between groups 
(see for example Verma & Rubin, 2018). Group definitions of fairness, such as 
demographic parity, disparate impact, equalized odds, and equalized opportunity, 
consider fairness with respect to the whole group, as opposed to individual notions 
of fairness. 

5. Individual fairness—This requires that similar individuals will be treated 
similarly. Similarity may be defined with respect to a particular task (Dwork 
et al., 2012; Joseph, Kearns, Morgenstern, & Roth, 2016). Individual fairness 
may be described as follows: 

. 

∣
∣
∣P(Ŷ (i) = y|X(i), S(i)) − P(Ŷ (j) = y|X(j), S(j))

∣
∣
∣ ≤ ε; if d(i, j) ≈ 0,

(6) 

where i and j denote two individuals, .S(·) refers to the individuals’ sensitive 
attributes, and .X(·) refers to their associated features. .d(i, j) is a distance metric 
between individuals that can be defined depending on the domain such that 
similarity is measured according to an intended task. This measure considers 
other individual attributes for defining fairness, rather than just the sensitive 
attributes. However, note that in order to define similarity between individuals, 
a similarity metric needs to be defined, which is not trivial. This measure, 
in addition to assuming a similarity metric, also requires some assumptions 
regarding the relationship between features and labels (see, for example, 
Chouldechova & Roth, 2018).



Algorithmic Fairness 873

3.3 Trade-Offs 

Determining the right measure to be used must take into account the proper legal, 
ethical, and social context. As demonstrated above, different measures exhibit 
different advantages and disadvantages. Next, we highlight the main trade-offs 
that exist between different notions of fairness, and the inherent trade-off between 
fairness and accuracy. 

Fairness Measures Trade-Offs 
Interestingly, several recent studies have shown that it is not possible to satisfy 
multiple notions of fairness simultaneously (Berk et al., 2018; Chouldechova, 2017; 
Corbett-Davies & Goel, 2018; Corbett-Davies, Pierson, Feller, Goel, & Huq, 2017; 
Friedler, Scheidegger, & Venkatasubramanian, 2016; Kleinberg et al., 2017; Pleiss 
et al., 2017). For example, when base rates differ between groups, it is not possible 
to have a classifier that equalizes both calibration and odds (except for trivial cases 
such as a classifier that assigns all examples to a single class). Additionally, there 
is also evidence for the incompatibility between equalized accuracy and equalized 
odds, as in the COMPAS criminal justice use case (Angwin, 2016; Berk et al., 2018). 

Pleiss et al. (2017) recommend that in light of the inherent incompatibility 
between equalized calibration and equalized odds, practical implications require 
choosing only one of these goals according to the specific application’s require-
ments. We recommend that any selected measure of algorithmic fairness be 
considered in the appropriate legal, social, and ethical contexts. 

Fairness–Accuracy Trade-Off 
The literature extensively discusses the inherent trade-off between accuracy and 
fairness—as we pursue a higher degree of fairness, we may compromise accuracy 
(see for example Kleinberg et al., 2017). A theoretical analysis of the trade-
off between fairness and accuracy was studied in Corbett-Davies et al. (2017) 
and Lipton, Chouldechova, & McAuley (2017). Since then, many papers have 
empirically supported the existence of this trade-off (for example, Friedler et al., 
2019; Menon & Williamson, 2018; Bechavod & Ligett, 2017a). Generally, the 
aspiration of a fairness-aware algorithm is to achieve a model that allows for 
higher fairness without significantly compromising the accuracy or other alternative 
notions of utility. 

It is worth noting that in this chapter, we refer to fairness that relates to human 
beings; however, the term “fair” is also used in other applications in a different 
sense. For example, in concurrent computing systems, an algorithm is considered 
fair, if it ensures an equitable resource allocation, such that no process is starving 
(starvation happens when a process is denied adequate resources that are required 
for its execution) (Mutlu & Moscibroda, 2008; Pandey & Shanker, 2018). As seen 
in this section, we refer to notions of fairness that are different from the above-
mentioned concurrent computing fairness.
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For further reading about algorithmic fairness measures, we refer the reader to 
Corbett-Davies and Goel (2018), Kleinberg et al. (2017), and Verma and Rubin 
(2018). 

4 Fairness-Enhancing Mechanisms 

Numerous recent papers have proposed mechanisms to enhance fairness in machine 
learning algorithms. These mechanisms are typically categorized into three types: 
pre-process, in-process, and post-process. The following three subsections review 
studies in each one of these categories. The fourth subsection is devoted to 
comparing the three mechanism types and providing guidelines on when each type 
should be used. 

4.1 Pre-process Mechanisms 

Mechanisms in this category involve changing the training data before feeding 
it into a machine learning algorithm. Preliminary mechanisms, such as the ones 
proposed by Kamiran and Calders (2012) and Luong, Ruggieri, and Turini (2011), 
proposed changing the labels of some instances or reweighing them before training 
to make the classification fairer. Typically, the labels that are changed are related 
to samples that are closer to the decision boundary since these are the ones that are 
most likely to be discriminated. More recent mechanisms suggest modifying feature 
representations, so that a subsequent classifier will be fairer (Abusitta, Aïmeur, & 
Wahab, 2019; Calmon, Wei, Vinzamuri, Ramamurthy, & Varshney, 2017; Feldman 
et al., 2015; Louizos, Swersky, Li, Welling, & Zemel, 2016; Madras, Creager, 
Pitassi, & Zemel, 2018; Samadi, Tantipongpipat, Morgenstern, Singh, & Vempala, 
2018; Xu, Yuan, Zhang, & Wu, 2018; Zemel, Wu, Swersky, Pitassi, & Dwork, 
2013). 

For example, Feldman et al. (2015) suggest modifying the features in the dataset 
so that the distributions for both privileged and unprivileged groups become similar, 
and therefore, making it more difficult for the algorithm to differentiate between 
the two groups. A tuning parameter . λ was provided for controlling the trade-off 
between fairness and accuracy (.λ = 0 indicates no fairness considerations, while 
.λ = 1 maximizes fairness). Chierichetti, Kumar, Lattanzi, and Vassilvitskii (2017); 
Backurs et al. (2019) use the same notion of fair representation learning and apply it 
for fair clustering, and Samadi et al. (2018) apply it for fair dimensionality reduction 
(PCA). 

Note that this approach to achieving fairness is somewhat related to the field 
of data compression (Tishby, Pereira, & Bialek, 1999; Zemel et al., 2013). It is 
also very closely related to privacy research since both fairness and privacy can 
be enhanced by obfuscating the sensitive information, with the adversary goal of
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minimal data distortion (Edizel, Bonchi, Hajian, Panisson, & Tassa, 2019; Kazemi, 
Zadimoghaddam, & Karbasi, 2018). 

4.2 In-process Mechanisms 

These mechanisms involve modifying the machine learning algorithms to account 
for fairness during the training time (Kamishima, Akaho, Asoh, & Sakuma, 
2012; Woodworth, Gunasekar, Ohannessian, & Srebro, 2017; Bechavod & Ligett, 
2017a,b; Zafar, Valera, Gomez Rodriguez, & Gummadi, 2017b,a; Goh, Cotter, 
Gupta, & Friedlander, 2016; Calders & Verwer, 2010; Agarwal, Beygelzimer, 
Dudik, Langford, & Wallach, 2018). 

For example, Kamishima et al. (2012) suggest adding a regularization term to 
the objective function that penalizes the mutual information between the sensitive 
feature and the classifier predictions. A tuning parameter . η was provided to 
modulate the trade-off between fairness and accuracy. 

Zafar et al. (2017a), Zafar et al. (2017b), and Woodworth et al. (2017) suggest 
adding constraints to the classification model that require satisfying a proxy for 
equalized odds (Zafar et al., 2017a; Woodworth et al., 2017) or  disparate impact 
(Zafar et al., 2017b). Woodworth et al. (2017) also show that there exist difficult 
computational challenges in learning a fair classifier based on equalized odds. 

Bechavod and Ligett (2017a) and Bechavod and Ligett (2017b) suggest incor-
porating penalty terms into the objective function that enforce matching proxies 
of FPR and FNR. Kamiran, Calders, and Pechenizkiy (2010) suggest adjusting a 
decision tree split criterion to maximize information gain between the split attribute 
and the class label while minimizing information gain with respect to the sensitive 
attribute. Zemel, Wu, Swersky, Pitassi, & Dwork (2013) combine fair representation 
learning with an in-process model by applying a multi-objective loss function based 
on logistic regression, and Louizos, Swersky, Li, Welling, & Zemel (2016) apply 
this notion using a variational autoencoder. 

Quadrianto and Sharmanska (2017) suggest using the notion of privileged 
learning2 for improving performance in cases where the sensitive information is 
available at training time but not at testing time. They add constraints and regular-
ization components to the privileged learning support vector machine (SVM) model 
proposed by Vapnik and Izmailov (2015). They combine the sensitive attributes as 
privileged information that is known only at training time, and they additionally 
use a maximum mean discrepancy (MMD) criterion (Gretton, Borgwardt, Rasch, 
Schölkopf, & Smola, 2012) to encourage the distributions to be similar across 
privileged and unprivileged groups.

2 Privileged learning is designed to improve performance by using additional information, denoted 
as the “privileged information” that is present only in the training stage and not in the testing stage 
(Vapnik & Izmailov, 2015). 
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Berk et al. (2017) propose a convex in-process fairness mechanism for regression 
tasks and use three regularization terms that include variations of individual 
fairness, group fairness, and a combined hybrid fairness penalty term. Agarwal, 
Dudik, and Wu (2019) propose an in-process minimax optimization formulation for 
enhancing fairness in regression tasks based on the suggested design of Agarwal 
et al. (2018) for classification tasks. They use two fairness metrics adjusted for 
regression tasks. One is an adjusted demographic parity measure, which requires the 
predictor to be independent of the sensitive attribute as measured by the cumulative 
distribution function (CDF) of the protected group compared to the CDF of the 
general population (Agarwal et al., 2019) using  the  Kolmogorov–Smirnov statistic 
(Lehmann & Romano, 2006). The second measure is the bounded group loss (BGL), 
which requires that the prediction errors of all groups remain below a predefined 
level (Agarwal et al., 2019). 

4.3 Post-process Mechanisms 

These mechanisms perform post-processing of the output scores of the classifier 
to make decisions fairer (Corbett-Davies et al., 2017; Dwork, Immorlica, Kalai, & 
Leiserson, 2018; Hardt et al., 2016; Menon & Williamson, 2018). For example, 
Hardt et al.  (2016) propose a technique for flipping some decisions of a classifier 
to enhance equalized odds or equalized opportunity. Corbett-Davies et al. (2017) 
and Menon and Williamson (2018) similarly suggest selecting separate thresholds 
for each group separately, in a manner that maximizes accuracy and minimizes 
demographic parity. Dwork et al. (2018) propose a decoupling technique to learn 
a different classifier for each group. They additionally combine a transfer learning 
technique with their procedure to learn from out-of-group samples (to read more 
about transfer learning, see Pan & Yang, 2009). A possible approach for enhancing 
fairness through a post-process mechanism is utilizing a mathematical programming 
methodology that takes as input the results of a classifier and incorporates fairness 
constraints in order to make the results fairer. 

4.4 Which Mechanism to Use? 

The different mechanism types present respective advantages and disadvantages. 
Pre-process mechanisms can be advantageous since they can be used with any 
classification algorithm. However, they may harm the explainability of the results. 
Moreover, since they are not tailored for a specific classification algorithm, there 
is high uncertainty with regard to the level of accuracy obtained at the end of the 
process. 

Similar to pre-process mechanisms, post-process mechanisms may be used with 
any classification algorithm. However, due to the relatively late stage in the learning
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process in which they are applied, post-process mechanisms typically obtain inferior 
results (Woodworth et al., 2017). In a post-process mechanism, it may be easier 
to fully remove bias types such as disparate impact; however, this is not always 
the desired measure, and it could be considered discriminatory since it deliberately 
damages accuracy for some individuals in order to compensate others (this is also 
related to the controversies in the legal and economical field of affirmative action, 
see Fullinwider, 2018). Specifically, post-process mechanisms may treat differently 
two individuals who are similar across all features except for the group to which 
they belong. This approach requires the decision-maker at the end of the loop to 
possess the information of the group to which individuals belong (this information 
may be unavailable due to legal or privacy reasons). 

In-process mechanisms are beneficial since they can explicitly impose the 
required trade-off between accuracy and fairness in the objective function (Wood-
worth et al., 2017). However, such mechanisms are tightly coupled with the machine 
learning algorithm itself. 

Hence, we see that the selection of the method depends on the availability of 
the ground truth, the availability of the sensitive attributes at test time, and on the 
desired definition of fairness, which can also vary from one application to another. 

Several preliminary attempts were made in order to understand which methods 
are best for use. The Hamilton (2017) study was a first effort in comparing 
several fairness mechanisms previously proposed in the literature (Kamishima et al., 
2012; Feldman et al., 2015; Calders & Verwer, 2010; Zafar et al., 2017b). The 
analysis focuses on binary classification with binary sensitive attributes. The authors 
demonstrated that the performances of the methods vary across datasets, and there 
was no conclusively dominating method. 

Another study by Roth (2018) showed as a preliminary benchmark that in several 
cases, in-process mechanisms perform better than pre-process mechanisms, and for 
other cases, they do not, leading to the conclusion that there is a need for much more 
extensive experiments. 

A recent empirical study (Friedler et al., 2019) provided a benchmark analysis 
of several fairness-aware methods and compared the fairness–accuracy trade-offs 
obtained by these methods. The authors tested the performance of these methods 
across different measures of fairness and across different datasets. They concluded 
that there was no single method that outperformed the others in all cases and that 
the results depend on the fairness measure, on the dataset, and on changes in the 
train–test splits. 

More research is required for developing robust fairness mechanisms and metrics 
or, alternatively, for finding the adequate mechanism and metric for each scenario. 
For instance, the conclusions reached when considering missing data might be very 
different than those reached when all information is available (Kallus, Mao, & Zhou, 
2019; Martínez-Plumed et al., 2019). Kallus et al. (2019) explore the limitations of 
measuring fairness when the membership in a protected group is not available in 
the data. Martínez-Plumed et al. (2019) tested imputation strategies to deal with 
the fairness of partially missing examples in the dataset. They showed that rows 
containing missing values may be more fair than the rest and therefore suggest
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imputation rather than deletion of these data. Pessach and Shmueli (2021) find 
that when there is an evident selection bias in the data, meaning that there is an 
extreme under-representation of unprivileged groups, pre-process mechanisms can 
outperform in-process mechanisms. 

Tip: Software packages for applying fairness mechanisms and metrics have 
become available in recent years. Several examples include Bantilan, 2018; 
Bellamy et al., 2018; Friedler et al., 2019; Saleiro et al., 2018; Sokol, Santos-
Rodriguez, & Flach, 2019. 

5 Fairness-Related Datasets 

In this section, we review the most commonly used datasets in the literature of 
algorithmic fairness. Some of these datasets are publicly available, and we further 
indicate this for each of these datasets in their description. 

ProPublica Risk Assessment Dataset 
The ProPublica dataset includes data from the COMPAS risk assessment system 
(see Practitioners Guide to COMPAS, 2012; Angwin, 2016; Larson, Mattu, 
Kirchner, & Angwin, 2016). 

This dataset was previously extensively used for fairness analysis in the field of 
criminal justice risk (Berk et al., 2018). The dataset includes 6,167 individuals, and 
the features in the dataset include the number of previous felonies, charge degree, 
age, race, and gender. The target variable indicates whether an inmate recidivated 
(was arrested again) within two years after release from prison. 

As for the sensitive variable, this dataset was previously used with two 
variations—the first when race was considered as the sensitive attribute and the 
second when gender was considered as the sensitive attribute (Bechavod & Ligett, 
2017b; Calmon et al., 2017; Emelianov, Arvanitakis, Gast, Gummadi, & Loiseau, 
2019; Friedler et al., 2019; Martínez-Plumed et al., 2019). 

Adult Income Dataset 
The Adult dataset is a publicly available dataset in the UCI repository (Dua & Graff, 
2017) based on the 1994 US census data. The goal of this dataset is to successfully 
predict whether an individual earns more or less than 50,000$ per year based on 
features such as occupation, marital status, and education. The sensitive attributes 
in this dataset include age (Louizos et al., 2016), gender (Zemel et al., 2013), and 
race (Zafar et al., 2017b; Friedler et al., 2019; Martínez-Plumed et al., 2019).
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This dataset is used with several different pre-processing procedures. For 
example, the dataset of Zafar et al. (2017b) includes 45,222 individuals after pre-
processing (48,842 before pre-processing). 

German Credit Dataset 
The German dataset is a publicly available dataset in the UCI repository (Dua & 
Graff, 2017) that includes information of individuals from a German bank in 1994. 

The goal of this dataset is to predict whether an individual should receive a good 
or bad credit risk score based on features such as employment, housing, savings, 
and age. The sensitive attributes in this dataset include gender (Louizos et al., 2016; 
Friedler et al., 2019) and age (Zemel et al., 2013; Kamiran & Calders, 2009). This 
dataset is significantly smaller, with only 1000 individuals with 20 attributes. 

Ricci Promotion Dataset 
The Ricci dataset includes the results of an exam administered to 118 individuals to 
determine which of them would receive a promotion. The dataset originated from a 
case that was brought to the United States Supreme Court (Miao, 2011; Rutherglen, 
2009). The goal of this dataset is to successfully predict whether an individual 
receives a promotion based on features that were tested in the exam, as well as 
the current position of each individual. The sensitive attribute in this dataset is race. 

Mexican Poverty Dataset 
The Mexican poverty dataset includes poverty estimation for determining whether 
to match households with social programs. The data originated from a survey of 
70,305 households in 2016 (Ibarrarán et al., 2017). The target feature is poverty 
level, and there are 183 features. This dataset was studied, for example, in Noriega-
Campero, Bakker, Garcia-Bulle, and Pentland (2019). The authors studied two 
sensitive features: young and old families; urban and rural areas. 

Diabetes Dataset 
The Diabetes dataset includes hospital data for the task of predicting whether a 
patient will be readmitted. It is publicly available in the UCI repository (Dua & 
Graff, 2017). The data contain approximately 100,000 instances and 235 attributes. 
This dataset was studied, for example, in Edwards and Storkey (2015), where it was 
studied with race as the sensitive feature. 

Heritage Health Dataset 
The Heritage health dataset originated from a competition conducted by the United 
States as a competition to improve healthcare through early prediction. It includes 
data of 147,473 patients with 139 features. The goal of this dataset is to predict 
whether an individual will spend any days in the hospital during the next year 
(Brierley, Vogel, & Axelrod, 2011). This dataset was studied, for example, in Zemel 
et al. (2013), Louizos et al. (2016), and Tramer et al. (2017), where age was the 
sensitive feature. 

The College Admissions Dataset 
The College Admissions dataset was collected by the UCLA law school (Sander, 
2004). It includes data of over 20,000 records of law school students who took the
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bar exam. The goal of this dataset is to predict whether a student will pass the exam 
based on factors such as LSAT score, undergraduate GPA, and family income. 

This dataset was used, for example, by Berk et al. (2017), where gender was 
studied as the sensitive feature, and Bechavod and Ligett (2017b), where race was 
studied as the sensitive feature. 

The Bank Marketing Dataset 
The Bank Marketing dataset is a publicly available dataset in the UCI repository 
(Dua & Graff, 2017; Moro, Cortez, & Rita, 2014), and it includes 41,188 individuals 
with 20 attributes. The task is to predict whether the client has subscribed to a term 
deposit service based on features such as marital status and age. It was previously 
investigated by Zafar et al. (2017b), where age was studied as the sensitive attribute. 

The Loans Default Dataset 
The Loans Default dataset includes 30,000 instances and 24 attributes of credit card 
users. It is publicly available in the UCI repository (Dua & Graff, 2017; Yeh  &  
Lien, 2009). The goal is to predict whether a customer will default on payments. 
The features include age, gender, marital status, past payments, credit limit, and 
education. 

This dataset was used, for example, by Bechavod and Ligett (2017b) and Yeh 
and Lien (2009), where gender was studied as the sensitive feature. 

The Dutch Census Dataset 
The Dutch Census dataset includes 189,725 instances and 13 attributes of indi-
viduals. It is publicly available in the IPUMS repository (Center, 2015). Kamiran 
and Calders (2012) and Agarwal et al. (2018) use this dataset with only the 
60,420 individuals who are not underaged. Their goal is to predict whether an 
individual holds a highly prestigious occupation by using features such as gender, 
age, household details, location, citizenship, birth country, education, economic 
status, and marital status. The sensitive feature utilized is gender. 

The Communities and Crimes Dataset 
The Communities and Crimes dataset includes 1994 instances and 128 attributes 
of communities in the United States. It is publicly available in the UCI repository 
(Redmond & Baveja, 2002; Dua  & Graff,  2017). The goal is to predict the number 
of violent crimes per 100,000 individuals based on features such as percentage of 
population by age, by marital status, by the number of children, by race, and more. 
Kamiran and Calders (2012) add a new sensitive attribute that represents whether 
the percentage of the African–American population in the community is greater than 
0.06. 

6 Discussion and Conclusion 

In this chapter, we presented a comprehensive and up-to-date overview of the 
algorithmic fairness research field. We started by describing the main causes
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of unfairness, followed by common definitions and measures of fairness, and 
the inevitable trade-offs between them. We then presented fairness-enhancing 
mechanisms, focusing on their pros and cons, aiming at better understanding which 
mechanisms should be used in different scenarios. Lastly, we reviewed commonly 
used fairness-related datasets. 

In recent years, multiple research sub-fields of algorithmic fairness have emerged 
(Pessach & Shmueli, 2022). Notable sub-fields include: (i) fairness in sequential 
and online learning scenarios, where the data are collected over time; (ii) fairness 
in text analysis and natural learning process (NLP) modeling, where one of the 
major concerns is that the word embeddings may exhibit social biases and gender 
stereotypes; (iii) learning fair representations using generative adversarial networks 
(GANs); (iv) fairness in generating image textual descriptions; (v) fair recommender 
systems; and (vi) fair causal learning. 

In addition to the already studied problems and the emerging ones, we identify 
several open challenges that should be further investigated in future research. One 
major challenge stems from biases inherent in the dataset. Such biases may arise, for 
example, when the labeling process was performed in an already unfair manner, or 
if there are under-represented populations in the dataset, or in the case of systematic 
lack of data and in particular labels. Representative datasets are very difficult to 
achieve, and therefore, it is crucial to devise methods to overcome these issues. 

Another challenge is the proliferation of definitions and measures, fairness-
related datasets, and fairness-enhancing mechanisms. It is not clear how newly 
proposed mechanisms should be evaluated, and in particular which measures should 
be considered? which datasets should be used? and which mechanisms should be 
used for comparison? A closely related challenge is the difficulty in determining the 
balance between fairness and accuracy. That is, what are the costs that should be 
assigned to each of these measures for evaluation purposes. Future efforts should 
be invested in generating a benchmarking framework that will allow a more unified 
and standard evaluation process for fairness mechanisms. 

The interpretability and transparency of how fairness is addressed by ML 
algorithms is an important challenge. Such transparency is crucial to increase the 
understanding and trust of users in these algorithms and, in many domains, is 
even required by law. This need is further supported by several recent studies that 
have addressed the question of how devised mathematical notions of fairness are 
perceived by users (Srivastava, Heidari, & Krause, 2019; Grgic-Hlaca, Redmiles, 
Gummadi, & Weller, 2018). It turns out that users tend to prefer the simpler notion 
of demographic parity, probably due to the difficulty of grasping more complex 
definitions of fairness. 

To conclude, since the use of algorithms is expanding to all aspects of our lives, 
demanding that automated decisions be more ethical and fair is inevitable. We 
should aspire to not only develop fairer algorithms, but also to design procedures 
to reduce biases in the data. Such procedures may rely, for example, on integrating 
both humans and algorithms in the decision pipeline. However, thus far, it seems that 
biased algorithms are easier to fix than biased humans or procedures (Mullainathan, 
2019).



882 D. Pessach and E. Shmueli

Acknowledgements This study was partially supported by the Koret Foundation grant for Smart 
Cities and Digital Living 2030. 

References 

Abusitta, A., Aïmeur, E., & Wahab, O. A. (2019). Generative adversarial networks for mitigating 
biases in machine learning systems. arXiv preprint arXiv:1905.09972. 

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., & Wallach, H. (2018). A reductions 
approach to fair classification. In International Conference on Machine Learning (pp. 60–69). 

Agarwal, A., Dudik, M., & Wu, Z. S. (2019). Fair regression: Quantitative definitions and 
reduction-based algorithms. In International Conference on Machine Learning (pp. 120–129). 

Angwin, J. (2016, May). Machine bias — ProPublica. Retrieved 2020-11-08, from https://www. 
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., & Wagner, T. (2019). Scalable fair 
clustering. In International Conference on Machine Learning (pp. 405–413). 

Bantilan, N. (2018). Themis-ml: A fairness-aware machine learning interface for end-to-end 
discrimination discovery and mitigation. Journal of Technology in Human Services, 36, 15– 
30. 

Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. Calif. L. Rev., 104, 671. 
Bechavod, Y., & Ligett, K. (2017a). Learning fair classifiers: A regularization-inspired approach. 

arXiv preprint arXiv:1707.00044, 1733–1782. 
Bechavod, Y., & Ligett, K. (2017b). Penalizing unfairness in binary classification. arXiv preprint 

arXiv:1707.00044. 
Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., ... others (2018). 

AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted 
algorithmic bias. arXiv preprint arXiv:1810.01943. 

Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., ... Roth, A. (2017). A 
convex framework for fair regression. arXiv preprint arXiv:1706.02409. 

Berk, R., Heidari, H., Jabbari, S., Kearns, M., & Roth, A. (2018). Fairness in criminal justice risk 
assessments: The state of the art. Sociological Methods & Research, 0049124118782533. 

Brierley, P., Vogel, D., & Axelrod, R. (2011). Heritage provider network health prize round 1 
milestone prize: How we did it–team ‘market makers’. ed. 

Calders, T., & Verwer, S. (2010). Three naive bayes approaches for discrimination-free classifica-
tion. Data Mining and Knowledge Discovery, 21, 277–292. 

Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K. N., & Varshney, K. R. (2017). Optimized 
pre-processing for discrimination prevention. In Advances in Neural Information Processing 
Systems (pp. 3992–4001). 

Center, M. P. (2015). Integrated public use microdata series, international: Version 6.4 [The Dutch 
Virtual Census of 2001]. Minneapolis: University of Minnesota. Retrieved 2019-11-10, from 
https://microdata.worldbank.org/index.php/catalog/2102/study-description doi: http://doi.org/ 
10.18128/D020.V6.4 

Chierichetti, F., Kumar, R., Lattanzi, S., & Vassilvitskii, S. (2017). Fair clustering through fairlets. 
In Advances in Neural Information Processing Systems (pp. 5029–5037). 

Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism 
prediction instruments. Big Data, 5, 153–163. 

Chouldechova, A., & Roth, A. (2018). The frontiers of fairness in machine learning. arXiv preprint 
arXiv:1810.08810. 

Corbett-Davies, S., & Goel, S. (2018). The measure and mismeasure of fairness: A critical review 
of fair machine learning. arXiv preprint arXiv:1808.00023.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
https://microdata.worldbank.org/index.php/catalog/2102/study-description
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4
http://doi.org/10.18128/D020.V6.4


Algorithmic Fairness 883

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., & Huq, A. (2017). Algorithmic decision 
making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (pp. 797–806). 

Dastin, J. (2018, October). Amazon scraps secret AI recruiting tool that showed bias against 
women. Reuters. Retrieved 2020-11-08, from https://www.reuters.com/article/us-amazon-
com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-
against-women-idUSKCN1MK08G 

Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated experiments on ad privacy settings. 
Proceedings on Privacy Enhancing Technologies, 2015, 92–112. 

Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved from http://archive.ics. 
uci.edu/ml 

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. 
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (pp. 214– 
226). 

Dwork, C., Immorlica, N., Kalai, A. T., & Leiserson, M. (2018). Decoupled classifiers for 
group-fair and efficient machine learning. In Conference on Fairness, Accountability and 
Transparency (pp. 119–133). 

Edizel, B., Bonchi, F., Hajian, S., Panisson, A., & Tassa, T. (2019). FaiRecSys: mitigating 
algorithmic bias in recommender systems. International Journal of Data Science and Analytics, 
1–17. 

Edwards, H., & Storkey, A. (2015). Censoring representations with an adversary. arXiv preprint 
arXiv:1511.05897. 

Emelianov, V., Arvanitakis, G., Gast, N., Gummadi, K., & Loiseau, P. (2019). The price of local 
fairness in multistage selection. arXiv preprint arXiv:1906.06613. 

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S. (2015). Cer-
tifying and removing disparate impact. In Proceedings of the 21st ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (pp. 259–268). 

Friedler, S. A., Scheidegger, C., & Venkatasubramanian, S. (2016). On the (im) possibility of 
fairness. arXiv preprint arXiv:1609.07236. 

Friedler, S. A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E. P., & Roth, 
D. (2019). A comparative study of fairness-enhancing interventions in machine learning. In 
Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 329–338). 

Fullinwider, R. (2018). Affirmative action. In E. N. Zalta (Ed.), The Stanford Encyclopedia of 
Philosophy (Summer 2018 ed.). Metaphysics Research Lab, Stanford University. https://plato. 
stanford.edu/archives/sum2018/entries/affirmative-action/. 

Goh, G., Cotter, A., Gupta, M., & Friedlander, M. P. (2016). Satisfying real-world goals with 
dataset constraints. In Advances in Neural Information Processing Systems (pp. 2415–2423). 

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel two-
sample test. Journal of Machine Learning Research, 13, 723–773. 

Grgic-Hlaca, N., Redmiles, E. M., Gummadi, K. P., & Weller, A. (2018). Human perceptions 
of fairness in algorithmic decision making: A case study of criminal risk prediction. In 
Proceedings of the 2018 World Wide Web Conference (pp. 903–912). 

Hamilton, E. (2017). Benchmarking four approaches to fairness-aware machine learning (Unpub-
lished doctoral dissertation). Haverford College. 

Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. In 
Advances in Neural Information Processing Systems (pp. 3315–3323). 

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H. (2019). Improving 
fairness in machine learning systems: What do industry practitioners need? In Proceedings of 
the 2019 CHI Conference on Human Factors in Computing Systems (p. 600). 

Ibarrarán, P., Medellín, N., Regalia, F., Stampini, M., Parodi, S., Tejerina, L., ... others (2017). How 
conditional cash transfers work. IDB Publications (Books). 

Joseph, M., Kearns, M., Morgenstern, J. H., & Roth, A. (2016). Fairness in learning: Classic and 
contextual bandits. In Advances in Neural Information Processing Systems (pp. 325–333). 

Kallus, N., Mao, X., & Zhou, A. (2019). Assessing algorithmic fairness with unobserved protected 
class using data combination. arXiv preprint arXiv:1906.00285.

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/
https://plato.stanford.edu/archives/sum2018/entries/affirmative-action/


884 D. Pessach and E. Shmueli

Kamiran, F., & Calders, T. (2009). Classifying without discriminating. In 2009 2nd International 
Conference on Computer, Control and Communication (pp. 1–6). 

Kamiran, F., & Calders, T. (2012). Data preprocessing techniques for classification without 
discrimination. Knowledge and Information Systems, 33, 1–33. 

Kamiran, F., Calders, T., & Pechenizkiy, M. (2010). Discrimination aware decision tree learning. 
In 2010 IEEE International Conference on Data Mining (pp. 869–874). 

Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J. (2012). Fairness-aware classifier with prejudice 
remover regularizer. In Joint European Conference on Machine Learning and Knowledge 
Discovery in Databases (pp. 35–50). 

Kazemi, E., Zadimoghaddam, M., & Karbasi, A. (2018). Scalable deletion-robust submodular 
maximization: Data summarization with privacy and fairness constraints. In International 
Conference on Machine Learning (pp. 2549–2558). 

Kleinberg, J., Mullainathan, S., & Raghavan, M. (2017). Inherent trade-offs in the fair determi-
nation of risk scores. In 8th Innovations in Theoretical Computer Science Conference (ITCS 
2017). 

Larson, J., Mattu, S., Kirchner, L., & Angwin, J. (2016, May). How we analyzed the COMPAS 
recidivism algorithm. Retrieved 2020-11-08, from https://www.propublica.org/article/how-we-
analyzed-the-compas-recidivism-algorithm 

Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses. Springer Science & 
Business Media. 

Lipton, Z. C., Chouldechova, A., & McAuley, J. (2017). Does mitigating ML’s disparate impact 
require disparate treatment? Stat, 1050, 19. 

Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2016). The variational fair autoencoder. 
International Conference on Learning Representations (ICLR). 

Luong, B. T., Ruggieri, S., & Turini, F. (2011). k-NN as an implementation of situation testing 
for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (pp. 502–510). 

Madras, D., Creager, E., Pitassi, T., & Zemel, R. (2018). Learning adversarially fair and 
transferable representations. arXiv preprint arXiv:1802.06309. 

Martínez-Plumed, F., Ferri, C., Nieves, D., & Hernández-Orallo, J. (2019). Fairness and missing 
values. arXiv preprint arXiv:1905.12728. 

Menon, A. K., & Williamson, R. C. (2018). The cost of fairness in binary classification. In 
Conference on Fairness, Accountability and Transparency (pp. 107–118). 

Miao, W. (2011). Did the results of promotion exams have a disparate impact on minorities? using 
statistical evidence in Ricci v. DeStefano. J. of Stat. Ed, 19. 

Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank 
telemarketing. Decision Support Systems, 62, 22–31. 

Mullainathan, S. (2019, Dec). Biased algorithms are easier to fix than biased people. New York 
Times. Retrieved 2020-11-08, from https://www.nytimes.com/2019/12/06/business/algorithm-
bias-fix.html?smid=nytcore-ios-share 

Mutlu, O., & Moscibroda, T. (2008). Parallelism-aware batch scheduling: Enhancing both perfor-
mance and fairness of shared DRAM systems. In 2008 International Symposium on Computer 
Architecture (pp. 63–74). 

Noriega-Campero, A., Bakker, M. A., Garcia-Bulle, B., & Pentland, A. (2019). Active fairness in 
algorithmic decision making. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, 
and Society (pp. 77–83). 

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and 
Data Engineering, 22, 1345–1359. 

Pandey, S., & Shanker, U. (2018). CART: A real-time concurrency control protocol. In Proceedings 
of the 22nd International Database Engineering and Applications Symposium (pp. 119–128). 

Pessach, D., & Shmueli, E. (2021). Improving fairness of artificial intelligence algorithms in 
Privileged-Group Selection Bias data settings. Expert Systems with Applications, 185, 115667. 
Elsevier.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share
https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html?smid=nytcore-ios-share


Algorithmic Fairness 885

Pessach, D., & Shmueli, E. (2022). A review on fairness in machine learning. ACM Computing 
Surveys (CSUR), 55(3), 1–44. ACM New York, NY. 

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., & Weinberger, K. Q. (2017). On fairness and 
calibration. In Advances in Neural Information Processing Systems (pp. 5680–5689). 

Practitioners guide to COMPAS. (2012). Northpointe Inc. Retrieved from https://njoselson.github. 
io/pdfs/FieldGuide2_081412.pdf 

Quadrianto, N., & Sharmanska, V. (2017). Recycling privileged learning and distribution matching 
for fairness. In Advances in Neural Information Processing Systems (pp. 677–688). 

Redmond, M., & Baveja, A. (2002). A data-driven software tool for enabling cooperative 
information sharing among police departments. European Journal of Operational Research, 
141, 660–678. 

Roth, D. (2018). A comparison of fairness-aware machine learning algorithms. (Unpublished 
doctoral dissertation). Haverford College. 

Rutherglen, G. (1987). Disparate impact under title VII: an objective theory of discrimination. Va. 
L. Rev., 73, 1297. 

Rutherglen, G. (2009). Ricci v DeStefano: Affirmative action and the lessons of adversity. The 
Supreme Court Review, 2009, 83–114. 

Saleiro, P., Kuester, B., Stevens, A., Anisfeld, A., Hinkson, L., London, J., & Ghani, R. (2018). 
Aequitas: A bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577. 

Samadi, S., Tantipongpipat, U., Morgenstern, J. H., Singh, M., & Vempala, S. (2018). The price 
of fair PCA: One extra dimension. In Advances in Neural Information Processing Systems (pp. 
10976–10987). 

Sander, R. H. (2004). A systemic analysis of affirmative action in American law schools. Stan. L. 
Rev., 57, 367. 

Simonite, T. (2015, July). Probing the dark side of Google’s ad-targeting system. MIT Technology 
Review. Retrieved 2023-04-07, from https://www.technologyreview.com/2015/07/06/110198/ 
probing-the-dark-side-of-googles-ad-targeting-system/ 

Sokol, K., Santos-Rodriguez, R., & Flach, P. (2019). Fat Forensics: A Python toolbox for 
algorithmic fairness, accountability and transparency. arXiv preprint arXiv:1909.05167. 

Srivastava, M., Heidari, H., & Krause, A. (2019). Mathematical notions vs. human percep-
tion of fairness: A descriptive approach to fairness for machine learning. arXiv preprint 
arXiv:1902.04783. 

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck method. In Proc. 37th 
Annual Allerton Conference on Communications, Control and Computing (pp. 368–377). 

Tramer, F., Atlidakis, V., Geambasu, R., Hsu, D., Hubaux, J.-P., Humbert, M., ... Lin, H. (2017). 
FairTest: Discovering unwarranted associations in data-driven applications. In 2017 IEEE 
European Symposium on Security and Privacy (EuroS&P) (pp. 401–416). 

Vapnik, V., & Izmailov, R. (2015). Learning using privileged information: similarity control and 
knowledge transfer. Journal of Machine Learning Research, 16, 2.  

Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 IEEE/ACM International 
Workshop on Software Fairness (FairWare) (pp. 1–7). 

Woodworth, B., Gunasekar, S., Ohannessian, M. I., & Srebro, N. (2017). Learning non-
discriminatory predictors. In Conference on Learning Theory (pp. 1920–1953). 

Xu, D., Yuan, S., Zhang, L., & Wu, X. (2018). FairGAN: Fairness-aware generative adversarial 
networks. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 570–575). 

Yeh, I.-C., & Lien, C.-h. (2009). The comparisons of data mining techniques for the predictive 
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36, 
2473–2480. 

Zafar, M. B., Valera, I., Gomez Rodriguez, M., & Gummadi, K. P. (2017a). Fairness beyond 
disparate treatment & disparate impact: Learning classification without disparate mistreatment. 
In Proceedings of the 26th International Conference on World Wide Web (pp. 1171–1180). 

Zafar, M. B., Valera, I., Gomez Rodriguez, M., & Gummadi, K. P. (2017b). Fairness constraints: 
Mechanisms for fair classification. In Artificial Intelligence and Statistics (pp. 962–970).

https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://njoselson.github.io/pdfs/FieldGuide2_081412.pdf
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/
https://www.technologyreview.com/2015/07/06/110198/probing-the-dark-side-of-googles-ad-targeting-system/


886 D. Pessach and E. Shmueli

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. (2013). Learning fair representations. In 
International Conference on Machine Learning (pp. 325–333). 

Zimmer, M. J. (1995). Emerging uniform structure of disparate treatment discrimination litigation. 
Ga. L. Rev., 30, 563.



Privacy-Preserving Data Mining (PPDM) 

Ron S. Hirschprung 

1 Introduction 

Contemporary information systems aggregate a massive amount of data that are 
often used deductively. While these data may yield significant benefits, they also 
introduces a privacy violation threat. A good example that demonstrates this 
phenomenon is the medical information research field, when sensitive information 
on patients is collected, stored in a database (DB), and analyzed. This DB is a 
precious source for medical research, thus may save life, and however can also 
violate an individual privacy that may result in shame or an increase of the health 
insurance rate if falling into the wrong hands. The above example demonstrates the 
inherent trade-off between the gain and the loss when concerning privacy issues 
(Rastogi et al., 2007). 

Privacy is perceived as a human right in many societies, and in all democracies, 
governments regulate privacy in various degrees of intrusiveness and with various 
regulatory mechanisms (Newman, 2008). Privacy protection laws are usually 
general, for example, the GDPR (General Data Protection Regulation) made by the 
EU and went into effect from 2016 (EUR-Lex, 2016). However, while the GDPR 
as its name suggests is a general law, it also contains some sections that address 
the issue of data mining in a more direct way. For example, Art. 13 of the GDPR 
requires that: “...the controller shall, at the time when personal data are obtained, 
provide the data subject with the following further information necessary to ensure 
fair and transparent processing:... (f) the existence of automated decision-making, 
including profiling, ..., at least in those cases, meaningful information about the 
logic involved, as well as the significance and the envisaged consequences of such 
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processing for the data subject.” Thus, even when privacy collides with lifesaving 
that is by all means a supreme value, privacy has a significant weight that must 
be considered. In most cases, less dramatic values than lifesavings are at stake, 
and privacy weight becomes even more significant. Moreover, privacy is a basic 
human need (Altman, 1976). If an individual privacy is compromised, he may 
refuse to cooperate, resulting in the stall of beneficial processes. For example, if 
an e-commerce transaction potentially holds a threat to privacy, one might choose 
an alternative way of purchasing, even at a higher price (Chiu et al., 2014). In 
this chapter, privacy is related to individuals and not to organizations, a common 
approach throughout the vast majority of researches and non-academic publishers. 

The more the information released is detailed, the higher the privacy risk is. The 
common idiom “God is in the details” should be “The devil is in the details” from a 
privacy-preserving point of view. A naive approach to this problem may require that 
identifiers (e.g., user name) will be omitted from the published data. This approach 
creates a fault anonymity. Considering the massive amount of data, the existence of 
auxiliary data sources (which are not controlled by the publisher) that can be crossed 
with the published data, and the availability of data mining (DM) algorithms as 
well as high computational power, re-identification and exposure of the individual 
becomes a real threat. Thus, DM is one of the most powerful tools that may 
violate privacy and the methodologies that take privacy into account when applying 
DM algorithms, in other words performing an action or taking measures for data 
privatizing are called privacy-preserving data mining (PPDM1 ). In the literature, 
data mining and machine learning are used interchangeably (Mohassel and Zhang, 
2017), and in most cases, PPDM methodologies apply as well to machine learning. 
PPDM aims to enable carrying knowledge discovery from data (KDD), which is the 
core goal of DM, while preserving privacy. However, since those two objectives are 
in a trade-off relationship, PPDM techniques actually provide the ability to mitigate 
privacy loss while achieving the KDD goals, and also the ability to tune the accuracy 
of KDD vs. privacy loss. PPDM may also be defined from another point of view: 
The strive to publish microdata (information at the level of the individual), which 
will enable DM process to discover general patterns, without revealing anything 
on the individual. We used the term “strive” because “revealing anything” is a 
utopian reality. The comprehensive process (which in most cases is only partially 
implemented) of PPDM on a centralized source data is depicted in Fig. 1. The green 
area stands for the core of the DM process under some PPDM measures. The path 
of privatizing starts with the raw data that are sanitized.2 Sanitation is one of the 
common actions in PPDM, when the data and/or the results are altered in a way 
that increase privacy but still enable the DM task (e.g., some attributes are omitted).

1 Not to be confused with “Professional Petroleum Data Management” Association, which is a 
non-related concept. 
2 The term “sanitation” is used here for all PPDM techniques on centralized DB (i.e., exclude 
cryptography), for example, adding a random noise to the data. The literature is not consistent 
regarding this term, and sometimes, it relates only to some of the methods. 
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Fig. 1 The process of privacy-preserving data mining process (PPDM), demonstrated with 
centralized data source 

Then, the sanitized data are processed through the DM mechanism, and the output 
can also be sanitized (e.g., hiding some association rules) before revealed to the 
end user (a person or an organization). One of both sanitations may be skipped as 
indicated by the dashed line. The masking partition depicts data hiding: Observer 
A is exposed to the result of the DM process only, and raw and sanitized data are 
hidden from him. Observer E1 (external) is exposed only to the sanitized data, and 
Observer E2 (external) is not exposed to the raw neither not to the sanitized data. 

The figure also depicts few utopias: The first utopian situation will be if the 
knowledge of observer E1 about individuals is not greater than the knowledge that 
observer E2 has. In other words, the release (data that are published to a non-
trusted entity) of the sanitized data contributes nothing to privacy discourse. The 
second utopia is that observer A’s knowledge about individuals is not greater than 
the knowledge that observer E1 has. In other words, the DM process contributes 
nothing to privacy discourse. The third utopia is that observer A’s knowledge about 
individuals is not greater than the knowledge of observer E2. In other words, the 
results of the DM process contributed nothing to the knowledge about the individual. 
This is the highest level of PPDM we can desire to. Finally, the forth utopia deals 
not with the privacy loss, but with the utility decrease. We strive to accept results 
from the sanitized data with the same accuracy level as from the raw data.
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This last utopia suggests an inherent trade-off that may introduce significant 
ethical issues, e.g., when lifesaving and privacy values collide (see the example in 
Sect. 7). The issue of ethic in DM is controversial and lately made headlines with the 
Facebook–Cambridge Analytica data scandal (Chang, 2018). Cambridge Analytica 
purchased from Facebook private data of over 50 million US citizens without their 
consent, purposed to be used for political targets. In this chapter, we will not deal 
with the ethical aspects but only provide the techniques that can mitigate the trade-
off and can also be used by developers to line up with policy-makers’ requirements 
or regulations. 

Finally, it is important to distinct between privacy and security (of the data). 
Security deals with the question of how do we protect our data, which is not 
necessarily sensitive from an individual mental point of view (e.g., credit-card 
details). On the other hand, privacy deals with protecting such a sensitive data (e.g., 
purchase history). Privacy introduces a dimension that does not exist in security: 
while with security we strive for total defense, with privacy we are ready to give up 
some of it, in order to gain some benefits. This is the inherent trade-off mentioned 
above. Thus, privacy and security protection methods may share the same or similar 
techniques but serve different goals. 

2 PPDM Classification 

PPDM is classified in the literature according to a few dimensions such as the 
knowledge that the data owner has on the expected analysis, the nature of the 
protection procedure, the number of data sources, the stage at which protection takes 
place, etc. There are no common conventions regarding PPDM classification, and 
various parameters or hierarchies may be applied. Anyway, while it is not really 
important to seek for the “true” classification, the purpose of this section is to 
draw a comprehensive picture of PPDM common approaches, methodologies, and 
techniques. Because DM is an on-the-rise prevalent tool, and privacy is at the top of 
list of concerns, PPDM adoption is widespread. The literature thus, as in many other 
domains, can be categorized into: general reviews of the subject, e.g., (Aggarwal 
and Philip, 2008; Agrawal and Srikant, 2000), focused on specific subdomains, e.g., 
(Nabar et al., 2008), and researches of new ideas and methodologies that are usually 
an extension of existing ones, e.g., (Holohan et al., 2017). 

The general architecture of the PPDM system is classified by the location where 
privatizing takes place: (a) Trusted Third-Party Analyzer: When a trusted third 
party (a centralized server) exists, each data source transfers all its data to the server 
without privatizing. This server usually sanitizes the data before publishing a release 
to a non-trusted analyzer, or carries out the DM process and sanitizes the results 
before publishing them. The most common approaches to achieve privacy under this 
model are anonymization, randomization, and privatizing results; (b) Distributed 
Analysis: When there is no trusted third party, each data source privatizes its data 
before publishing, and the DM process can be carried out everywhere. The most
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Fig. 2 Privacy-preserving data mining (PPDM)major approaches (gray boxes) and methodologies 
(white boxes) 

common approach to achieve privacy under this model is cryptography, as parties 
cannot necessarily trust each other. 

Considering the nature of the privatization process, i.e., the PPDM type, four 
major approaches are in use: (a) Anonymization: Parts of the data are omitted 
or generalized in order to avoid uniqueness. This approach aims to prevent re-
identification of an individual in the dataset; (b) Randomization: Data are altered 
with some random-based operators that yield results with no noticeable laws 
to a bystander. This approach aims to prevent learning sensitive data about the 
individual, even if re-identified; (c) Cryptography: Data are encrypted. This 
approach aims to handle distributed data sources that cannot trust each other; (d) 
Privatizing results: The privatization process is applied to the results of the DM 
process (rather than to the raw data). The aim of this approach is to minimize the DM 
utility reduction resulted from the privatization process. These major approaches 
and the main methodologies under each one of them are depicted in Fig. 2. 

2.1 Data Attributes Classification 

When datasets are handled from privacy point of view (in general, and specifically 
in the PPDM field), it is common to classify attributes into three types: 

(a) Key attributes: Attributes that uniquely identify the data owner, e.g., I.D. 
number, social security number.3 

3 Some attributes that are not unique by definition but close to uniqueness are also considered key 
attributes, e.g., the tuple first and last name.
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(b) Quasi-identifiers: Attributes that are not unique, but can be used to re-identify 
the data owner, e.g., age, home town. 

(c) Sensitive attributes: Attributes containing sensitive information, e.g., blood 
pressure, salary. 

3 Anonymization 

Uniqueness of an individual in a DB exists when one or a combination of a few 
quasi-identifiers are unique (have only one occurrence). Anonymization approaches 
aim to “hide” an individual among a group of others by reducing uniqueness, i.e., 
changing the dataset so that each individual’s quasi-identifiers (or their combination) 
are identical or “similar” to those of other individuals. The first step toward 
anonymization will be to remove the key attributes or alternatively to generalize 
them (explained below) in order to lose uniqueness. However, as mentioned above, 
since quasi-identifiers may introduce uniqueness (e.g., an individual is the only 
one in the dataset with a specified birthday), more steps are required to reach 
anonymization. This is done by using one or both of two major techniques: 

(a) Generalization—Replacing a relatively accurate attribute value with a less 
specific one, e.g., replacing the birth day 20/Oct/1965 with 1965 (which will 
join into one group all individuals that were born in 1965) 

(b) Suppression—Replacing some values with an asterisk (*), i.e., value is actually 
omitted and not reported 

Generalization and suppression are demonstrated in Sect. 3.1 bellow. The use of 
these techniques holds a “price” of a significant information loss, especially when 
the DB contains a large number of quasi-identifiers that sometimes called the “curse 
of dimensionality” (Agrawal and Srikant, 2000). 

3.1 k-Anonymity 

The concept of k-anonymity is based on the definition that a release of data is k-
anonymous if each individual contained in the release cannot be distinguished from 
another at least k-1 individuals also contained in the release. It was first introduced 
by Latanya Sweeney and Pierangela Samarati (1998). Table 1 demonstrates this 
concept: The left subtable (a) is the original dataset with k-anonymity = 1. The right 
subtable (b) is the release after suppression of the I.D. number (a key attribute), 
generalization of the birth date (quasi-identifier), and suppression of the gender 
(quasi-identifier) of some tuples(marked with asterix)—to achieve k-anonymity = 
2.

To formalize k-anonymity, let R be a dataset with m quasi-identifiers . q1, q2...qm

for each record. If r is a record in R, then .r(qx) is the value of attribute . qx of this 
record. R complies with k-anonymity iff :
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Table 1 An example of k-anonymity 

I.D. Birth date Gender Blood pressure Birth date Gender Blood pressure 

457,894 20/10/65 M 140/90 1965 * 140/90 

946,588 2/9/65 F 120/80 .�⇒ 1965 * 140/90 

129,846 1/3/68 M 130/85 1968 M 110/80 

945,687 5/9/68 M 120/80 1968 M 110/80 

a. The release before anonymization b. The release after anonymization

. ∀r ∈ R : |{s ∈ R : (∀i ∈ 1...n : r(qi) = s(qi)}| ≥ k.

And a suppressor O complies with k-anonymity, if for a dataset R’, .O(R′) complies 
with k-anonymity as defined above. Applying k-anonymity with minimal data loss 
is an optimization type problem and was proven to be NP-hard for .k ≥ 3. To solve  
the computational issue, the literature offers approximation algorithms that may for 
example reduce complexity to .O(k logk) (Meyerson and Williams, 2004). 

The k-anonymity methodology is considered a basic defense and exposed 
to many attacks as explained in Sect. 3.2. Thus, k-anonymization is usually a 
requirement but cannot stand for itself. Some alternative methods are described 
below, and the literature also provides variations of k-anonymity. For example, with 
the (.α-k)-anonymity in addition to the “k” requirement, it is required that the relative 
frequency of the sensitive value in each equivalence class (a group of records that 
have the same values of the quasi-identifiers in between records) is less than or 
equal to . α (.0 < α < 1) when . α is user specified (Wong et al., 2006). While k-
anonymity provides some protection against re-identification, the (.α-k)-anonymity 
methodology is an upgrade that also provides protection concerning the relationship 
between sensitive attributes in the DB. This problem is also NP-hard and poses a 
challenge to implement, especially with large DBs. 

3.2 l-Diversity 

When data are released, k-anonymity provides some defense against identity 
disclosure, but not against attribute disclosure. There are 2 major attacks that can 
bypass k-anonymity defense: 

• Homogeneity Attack: When all values of the sensitive data within a group of 
k records that have the same quasi-identifiers are the same (or have a common 
characteristic, like greater than a specific value), the sensitive data of a person 
who belong to this group can be inferred. For example, in Table 1, although the 
record of the person with I.D. 457894 is 2-anonymized, since all persons in his 
group have blood pressure above the norm (120/80), we can deduce that if a 
person is in this table, and born in 1965, he has high blood pressure.
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• Background Knowledge Attack: This attack is based on a background 
knowledge that is usually public and not included in the released dataset. 
The attacker can use this auxiliary knowledge to disclose sensitive data. For 
example, it has been shown that based on the well-known fact that “Japanese 
have an extremely low incidence of heart disease,” if we know that a Japanese 
person is included in the release, and all records within his anonymity group 
(that have the same quasi-identifier values) have either heart disease or viral 
infection, then we can deduce with high probability that this person is suffering 
from a viral infection (Machanavajjhala et al., 2006). 

The .l-diversity methodology is an extension of k-anonymity and aimed to address 
these weaknesses. When a release has classes with the same quasi-identifiers value, 
and each class includes at least k records (k-anonymized), .l-diversity required 
that: “An equivalence class is said to have .l-diversity if there are at least . l ‘well-
represented’ values for the sensitive attribute. A table is said to have .l-diversity if 
every equivalence class of the table has .l-diversity” (Li et al., 2007). There are few 
ways to address the requirement of “well-represented”: 

• Distinct l-diversity: There are at least . l distinct values for sensitive data in an 
equivalence class. However, if one value occurrence is significantly higher than 
another, the release is exposed to a probabilistic attack. 

• Entropy l-diversity: Entropy is a concept taken from thermodynamics, while 
in DM domain it represents the amount of disorder in the data. While DM seeks 
to decrease entropy, the higher the entropy—more privacy is gained. To define 
the entropy of a class V’, let  S be the group of sensitive data values, and p(V’,s) 
is the fraction of records in V’ with sensitive value s. The entropy of V’ is given 
by 

. entropy(V ′) = −
∑

s∈S

p(V ′, s) logp(V ′, s).

And a table has entropy .l-diversity, if for every equivalence class . V ′, 
.entropy(V ′) > log . l. 

• Recursive (c,l)-diversity: This technique is a compromise that ensures that the 
most frequent value has an upper bound and the less frequent value has a lower 
bound on their fractions of records. 

.l-diversity can be sometimes difficult to achieve, especially when the distribution 
of the original DB is radically asymmetric. .l-diversity is also sensitive to skewness 
attack. For example, assume an equivalence class with one sensitive data of the 
binary values positive/negative HIV, and a significant bias toward positive value. In 
this case, a person who belongs to this class will be considered to be HIV positive 
with high probability.
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3.3 t-Closeness 

Privacy loss when publishing a release can be defined by the amount of information 
gained by the observer as a result of receiving the release (. V ′). Let the observer 
knowledge (or belief) before receiving the release be K and the knowledge after 
receiving the release be . K ′. Now assume an intermediate hypothetical step of 
creating table .V m when all quasi-identifiers are removed or generalized in a way 
that they form a single class. The observer is now exposed only to the distribution 
of the sensitive data in the general population, and he cannot limit a specific person 
to a class. We define his knowledge as . Km, and we expect .K ≤ Km ≤ K ′. While 
.l-diversity seeks to limit the difference between K and . K ′, t-closeness minimizes 
the difference between .Km and . K ′. The rationale behind this methodology lies on 
the assumption that the distribution of the sensitive data in the general population is 
a public knowledge anyway. The definition of t-closeness is: “An equivalence class 
is said to have t-closeness if the distance between the distribution of a sensitive 
attribute in this class and the distribution of the attribute in the whole table is no 
more than a threshold t . A table is said to have t-closeness if all equivalence classes 
have t-closeness” (Li et al., 2007). To measure the distance D between .Km and . K ′, 
we can use one of two common metrics: 

(a) The variational distance: 

. D
[
Km,K

′] =
m∑

i=1

∣∣∣km
i − k

′
i

∣∣∣
2

(k ∈ K).

(b) The Kullback–Leibler (KL) distance: 

. D
[
Km,K

′] =
m∑

i=1

km
i log

km
i

k
′
i

= entropy
(
Km

) − entropy(K
′
),

where .k ∈ K . 
Many other metrics can be found in the literature, e.g., the Earth Mover’s distance 

(EMD) (Rubner et al., 2000). Some of them may be domain-specific, addressing a 
pre-known data distribution behavior. 

4 Randomization 

In the anonymization approach, the data in the release match the raw data, when 
the privatization process only reduces the resolution (generalization) or omits some 
of the data (suppression). On the other hand, the randomization approach allows 
altering the data in a way that strives to make an individual-specific record irrelevant
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as a source of sensitive knowledge about this individual. Yet, even when data were 
altered, the goals of the DB release may still be achieved. For example, assume 
we would like to know the average height of people in a group. By adding some 
random symmetric distributed noise to the height attribute in a released dataset 
(perturbation), even if an individual is re-identified, the observer cannot know his 
height. However, if the dataset is large enough, the average calculated from the 
release will have no significant difference from the one calculated from the original 
one. A more related example to DM can be found in building a decision tree. It 
has shown that it is possible to build classifiers with the perturbed data (the release) 
with the same accuracy as of the classifiers built with the original data (Agrawal and 
Srikant, 2000). 

4.1 Perturbation 

Perturbations methodology is based on adding some random noise to the sensitive 
data. To formalize this technique, assume an original dataset V with n records, 
containing the values .(x1 , x2 , . . . , xn) for a specific attribute. A random noise 
vector .(y1 , y2 , . . . , yn) is drawn independently from a probability distribution . FY . 
The perturbed values will be .wi = xi + yi , i.e., .(x1 + y1 , x2+y2 , . . . , xn + yn).4 

The original data can be materialized as a set of independent random variables 
.(X1 , X2 , . . . , Xn), all with equal distribution . FX. The random variable W of 
the released dataset is given by: .W = X + Y , and naturally .X = Z − Y . 

The challenge of processing perturbed data is to reconstruct the original data 
distribution . FX from the perturb set. This can be approximated with a methodology 
based on iterative algorithm (Agrawal and Srikant, 2000). The distribution of each 
. xi can be estimated by 

. F ′
Xi (a) ≡

∫ a

−∞
fXi (z | Xi + Yi = w1i ) dz =

∫ a

−∞ fY (wi − z)fX(z) dz
∫ ∞
−∞ fY (wi − z)fX(z) dz

(relying on Bayes rule for density function). 
The estimation of the distribution .F ′

X is calculated by averaging the distributed 
functions for all . Xi : 

. F ′
X = 1

n

n∑

i=1

F ′
Xi

= 1

n

n∑

i=1

∫ a

−∞ fY (wi − z) fX (z) dz
∫ ∞
−∞ fY (wi − z) fX (z) dz

.

And the density function .f ′
X si given by

4 To measure the amount of privacy achieved by the noise addition, see the end of Sect. 4.2. 
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. f ′
X (a) = 1

n

n∑

i=1

fY (wi − a)fX(a)∫ ∞
−∞ fY (wi − z)fX(z) dz

.

The distribution of Y can be found approximately from the released dataset by 
using a variety of methods such as kernel density estimation (KDE) (Wand and 
Jones, 1994). However, we can also approximate . fY , and we still need . fX (or its 
approximation) to mind knowledge from the release. To resolve the problem, the 
iterative algorithm 1 may be used, with uniform distribution as an initial value: 

Algorithm 1 Iterative algorithm to reconstruct the original probability of a perturbed 
attribute 
1: . f 0

x := Unif orm

2: .j := 0 // Iteration number 
3: repeat 

4: . f
j+1
X (a) := 1

n

∑n
i=1

fY (wi−a)f
j
x (a)∫ ∞

−∞ fY (wi−z)f
j
x (z) dz

5: . j := j + 1
6: until (stopping criteria) 

An example of the results of reconstructing a distribution is depicted in Fig. 3. 
The circle marked lines are the original distributions, while the diamond and triangle 
marked lines in the Gaussian (a) and uniform (b) distributions, respectively, are the 
reconstructed ones. It can be clearly noticed that the reconstructed distributions have 
the general shapes, usually the same or close center to the original distributions, but, 
however, deviate to some extent from the variance (Agrawal and Aggarwal, 2001). 

Fig. 3 Reconstruction of the original distribution
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4.2 Multiplicative Noise 

The multiplicative noise methodology is a randomization approach in which rather 
than adding the noise (perturbation) to the original data, the value of the original 
data is multiplied by the noise. Multiplicative noise can be perceived intuitively as 
a specific technique to achieve perturbation, however usually refereed as a stand-
alone methodology. Additive noise was defined above as: .wi = xi + yi , where . wi

is the value in the released data , . xi the original data, and . yi the random noise. 
In the multiplicative methodology, .wi = xi×yi . There are two techniques to add 
multiplicative noise (Kim and Winkler, 2003): 

(a) Direct multiplication: Generate a random number y, usually from a Gaussian 
distribution, with a mean of . μ and a small variance . σ , so that: .y ∼ N(μ, σ). The  
noise y is usually truncated with lower and upper bounds A and B, respectively, 
and then re-truncated again with 

. f (y) =
1√
2πσ

exp
(
− 1
2σ2

(y − μ)2
)

1√
2πσ

∫ B

A
exp

(
− 1
2σ2

(y − μ)2
)

de
A < y < B.

(b) Logarithmic multiplication: Calculate .ti = lnxi ; let  . � be the variance– 
covariance matrix of T . Generate a random number e from a Gaussian 
distribution .N(0, c�) where .0 < c < 1. Let .zi = ti+ei , and .wi = antilog(zi). 
The values can be negative, and in cases where this makes no sense (e.g., the 
number of students in a class), it is possible to add the same value to all of the 
data. 

It is argued that multiplicative noise methodology, especially when adopting 
the logarithmic technique, provides higher efficiency in the DM process (more 
accurate results) than with noise additive (perturbation) with the same level of 
privacy protection (Kumar Pandya et al., 2014). 

The amount of privacy achieved by supplementation of noise (with both pertur-
bation and multiplicative methodologies) is a function of the amount of the noise. 
This dependency introduces a need to measure the amount of privacy achieved 
by the noise. One way to do so is by observing the confidence interval (CI) 
that was formed with a confidence level (CL), indicating the probability of the 
perturbed/multiplicative value being in this interval with respect to the original 
value. For example, assume a uniform noise of .Y ∼ U [−3, 3] inches added to a 
height attribute. A CI of 5.4 in, which means that the perturbed height will fall 
in the range of .±2.7 inches from the original height, has CL = 0.9. Since the 
deviation from the original value is with high probability, privacy is not obtained. It 
is important to notice that privacy is domain-dependent, e.g., 2 pounds of an adult 
weight is not significant, and however, 2. ◦C difference in body temperature can be 
considered as a sign for illness. The method of measuring privacy based on CI/CL 
does not take into account the distribution of the original data, which in some cases
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may result in deducting an original specific value at higher accuracy than expected 
(considering the CI). To resolve this problem andmeasure privacy in a more accurate 
way, a method based on the differential entropy of a random variable is offered in the 
literature (Aggarwal and Philip, 2008). In some cases, the observer does not receive 
the dataset (the release), rather he can only query it. The amount of privacy loss in 
this case can also be influenced by the total number of queries allowed, and not only 
by noise. Under this architecture, the amount of noise can be reduced to achieve 
more accuracy, given that the number of queries is limited. For example, it has 
shown that “a strong form of privacy can be maintained using a surprisingly small 
amount of noise—much less than the sampling error—provided the total number of 
queries is sub-linear in the number of DB rows” (Blum et al., 2005). This family of 
queries is called SuLQ (Sub-Linear Queries), and the assumption of sub-linearity is 
reasonable with large DBs. 

4.3 Differential Privacy (DP) 

The differential privacy methodology (DP) is based on measuring the effect of the 
presence of an individual’s record in the dataset on its privacy. Assume a given 
dataset of m records, sanitized to provide general statistic information, but to block 
the access to a specific information about an individual. We can assume that if 
a specific person is not included in the set, his privacy is completely kept. Now, 
utopian situation is when adding a person to the DB, yet his privacy remains in 
the same level as with the set that does not include his record. Unfortunately, this 
is not possible, and more realistic demands will be: “The risk to one’s privacy, or 
in general, any type of risk, such as the risk of being denied automobile insurance, 
should not substantially increase as a result of participating in a statistical database” 
(Dwork, 2011). 

DP is quantified with the . ε index (.ε ∈ R , ε > 0) as follows: We define adjacent 
datasets as a pair of datasets that differ in only 1 record. Let . K be a randomization 
function. The function . K is said to be .ε-differential if for all datasets . D1 and . D2 that 
are adjacent and for all the subsets of the image of . K: 

. Pr [K (D1) ∈ S] ≤ eε ≤ Pr[K(D2) ∈ S].

And the sensitivity . �f of a function f on a dataset D is 

. �f = max‖f (D1) − f (D2)‖1.

When datasets . D1 and . D2 are all pairs of adjacent datasets in D, .‖�‖1 is the . l1
norm. 

A common technique used to create noise that addresses the .ε-differential privacy 

criteria is with the Laplace distribution (.fLaplace (x) = exp

(
− |x|

b

)
), with mean
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.μ = 0 and standard deviation of .
√
2b. In this case, the .ε-differential of a query 

function f is .e
f (D1)−f (D2)

b ≤ e
�f
b ; thus, it addresses .

�f
b
-differential privacy. 

The methodology of .ε-differential privacy can be combined with k-anonymity, 
a framework known as (k-. ε)-anonymity (Holohan et al., 2017). This technique 
decreases data loss due to the need to suppress a smaller number of records. 

4.4 Data Swapping 

Data randomization can be achieved not only by adding noise, but also by swapping 
some of the sensitive attributes across records. If for example we know that few 
specific records are more vulnerable than others, their sensitive attributes may be 
swapped with other records that are randomly selected from the table (Fienberg 
and McIntyre, 2004). This methodology has the advantage of preserving lower 
order marginal statistics (e.g., averaging attributes across a dataset). Usually, it is 
not a stand-alone methodology and combined with others such as k-anonymity. 
The idea was first introduced by Dalenius and Reiss (1982), who developed a 
theoretical framework for data swapping. While this methodology indeed preserves 
basic statistics, it may significantly lower the utility of extracting association rules 
for example, thus less relevant for PPDM. 

5 Cryptography 

The data in some cases may distribute among different sources that do not trust each 
other, so microdata cannot be simply shared. However, DM processes are based on 
calculating aggregated statistics and other outputs from the spread DBs. The data 
may be distributed in two major ways, horizontally and vertically. In horizontal 
distribution, each DB holds different records (or with some overlap), but with the 
same attributes. For example, each hospital holds information only about patients 
that were treated in its facility. The attributes containing the patient key attributes 
(e.g., full name), some quasi-identifiers (e.g., age), and sensitive attributes (e.g., 
HIV diagnostic) are common to all of them or may be easily transformed to create 
a unified single DB. In vertical distribution, each DB holds all of the records but 
with only part of the attributes (which may overlap). To exemplify the vertical 
partitioning, assume a researcher who wants to find the correlation between some 
disease (can be collected from hospitals) and buying trends (can be collected from 
retailers). Obviously, some attributes are common to both (e.g., I.D., home address), 
and others may be found only in one of them (e.g., blood pressure in the hospital 
DB and item number that was purchased in the retailer DB). Horizontal and vertical 
partitioning can also be mixed to create a hybrid distribution, a case in which each 
DB holds part of the records with part of the attributes. Cryptography is the most



Privacy-Preserving Data Mining (PPDM) 901

common approach used to apply distributed PPDM but is not the only one. Other 
approaches such as randomization by perturbation can be adopted here (Liu et al., 
2005); however, they have some significant limitations. 

5.1 Secure Multi-party Computation 

Secure multi-party computation (SMC) methodology is based on join calculations, 
when each participant contributes its share, but not disclosed to other participants 
its sensitive data (Goldreich, 1998). Among those, we can find the secure sum, 
for example, a problem that defines as follows: Obtain from n distributed sources 
the sum of inputs . mi (.i ∈ 1..n), so that every source may finally know the sum 
.
∑

i∈n mi , but not the inputs of other sources (source i does not know . mj , where 
.j ∈ n , j �= i). This problem can be solved with the following algorithm: Assume 
we know an upper bound .

∑
i∈n mi ≤ N. Pick one of the sources as a master, defined 

source number 1. The master generates a random number R distributed uniformly 
.R ∼ U [0..N] and calculates .v1 = (R +m1) mod N . The  value . v1 is transferred to 
the 2’nd source who calculates .v2 = (v1 + m2) mod N and back again till the last 
source .i = n, who transfers his value back to the master source. Note that since R 
distributes uniformly in the range .[0..N], the value .(R+vi) mod N also distributes 
uniformly in this range, so source .i+1 learns nothing about source i. Now the master 
source can subtract R from the value he received, to yield the required sum (Clifton 
et al., 2002). Other problems of this type are: (a) Secure set union: Each source has 
a set of rules, item sets, etc., and he is ready to publish its data in order to create a 
union with other datasets, but without revealing the owner of each set; (b) Secure 
Size of Set Intersection: Each source has a set as above, and we want to calculate the 

size of the intersection of these sets (.
∣∣∣
⋂

i∈{1..n} si

∣∣∣). 
The implementation of SMC is based on one of two major assumptions, 

regarding the level of trust: 

(a) Semi-honest adversaries: The participants obey the protocol but may try to 
learn more than they are supposed to. For this reason, this mode is also called 
“honest-but-curious.”5 

(b) Malicious adversaries: The participants may not obey the protocol and may 
even cooperate with malicious third parties. 

Naturally, the level of protection is derived directly from the level of trust. To 
demonstrate the idea, let us take a look at 1 out of 2 oblivious-transfer protocol, 
which is among of the most common protocols, and used as a basic building block 
for SMC (Mendes & Vilela, 2017). This protocol aims to solve the following

5 If curiosity does not exist, the model is actually a fully honest. In this case, although the 
architecture is distributed—SMC becomes redundant from a privacy-preserving point of view, and 
it may be handled as a centralized DB. 
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problem: Assume Alice (the sender) has a pair of values .(m0,m1), and Bob 
has a bit .σ ∈ {0, 1}. The target is that by the end Bob will learn only . mσ

(without knowing .m1−σ ) and Alice will learn nothing. Under the semi-honest 
model, 1 out of 2 oblivious-transfer protocol provides the following solution: The 
protocol is established based on the RSA asymmetric encryption. In asymmetric 
encryption, the receiver of the data generates one (or more) public key and a private 
key. The encryption can be done with the public key, and the decryption with the 
private key. The complexity of calculating the private key from the public key 
is so high that practically this task is impossible. The receiver publishes to the 
transmitter of the data only the public key; this way, the transmitter can encrypt 
the data, but an attacker, even if holds the public key (that was published), cannot 
decipher the encrypted message. Bob generates two RSA public encryption keys 
.
(
Kpub0,Kpub1

)
but knows only the private decryption key of .Kprivσ . He sends 

only the public keys to Alice, and she encrypts . m0 with .Kpub0 and . m1 with 
.Kpub1 and sends back the encrypted values to Bob. Bob can only decrypt . mσ , and 
Alice does not know which of the values .(m0,m1) was chosen. The semi-honest 
assumption exists here since for example, we trust Bob to know the private key of 
only one of the public keys he sent. 

In case the semi-honest assumptions are not realistic, different protocols that 
address the malicious situation may be used: Alice generates public keys . Kpub =
N, e, a private key d, and a pair of random numbers .(x0, x1) and sends the public 
key and the random numbers to Bob. Bob selects . xσ , generates a random number 
k, blinds . xσ by .v = (xσ + ke) mod N , and sends v to Alice. Alice who does not 
know which of . x0 or . x1was chosen by Bob calculates two possible values for k: 
.k0 = (v − x0)

d mod N and .k1 = (v − x1)
d mod N . Now Alice calculates the two 

values .m′
0 = m0 + k0 and .m′

1 = m1 + k1 and sends them to Bob. Bob calculates 
.mσ = m′

σ − k. It can be noticed that under this protocol the assumption of two 
partially trusting each other is not necessary. 

5.2 Homomorphic Encryption 

Homomorphic encryption is a methodology that enables calculations on encrypted 
data without the need to decrypt it first. Since the entity that carries the calculation 
does not have to (and cannot) decrypt the data, privacy violation may be avoided 
(Rivest et al., 1978). The results of the computation carried out on the encrypted 
data are the same as if the operations had been performed on the unencrypted data. 
There are two major classes of homomorphic encryption, partial and full. In partially 
homomorphic encryption, additive or multiplicative homomorphism enables but not 
both, while fully homomorphic enables both (Acar et al., 2018). 

Homomorphic encryption can be used for privacy-preserving outsourced storage 
and computation. This allows data to be encrypted and outsourced to commer-
cial cloud environments for processing, all while encrypted. In highly regulated 
industries, such as health care, homomorphic encryption can be used to enable
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new services by removing privacy barriers inhibiting data sharing. For example, 
predictive analytics in health care can be hard to apply due to medical data privacy 
concerns, but if the predictive analytics service provider can operate on encrypted 
data instead, these privacy concerns are diminished. 

6 Privatizing Data Mining Results 

Even when microdata are not published, and the observer can only query the DB for 
statistic results, a potential of privacy violation still exists. An attacker can purposely 
query the DB in a way that aims to identify differentials in the dataset, and by doing 
so he may retrieve specific records. For example, let us have a look at Table 2: 
This table includes information about peoples’ names, hometown, and income. 
Assume we can only query for averages, but to avoid record retrieval, querying a 
single record is blocked. Now let us consider 2 valid queries: Q1) average monthly 
income of those who live in the East Coast (NY & Washington); Q2) average 
monthly income of everyone. 

Clearly, Q1 yields: .
R1+R2+R3

3 = 4,500+6,500+3,200
3 = 4100, 

and Q2 yields: .
R1+R2+R3+R4

3 = 4500+6500+3200+6200
3 = 4625. 

Now, let .�Q be the average of the records included in Q2 only (not included in Q1), 
therefore: 

. Q1·3
4
+�Q·1

4
=Q2 ⇒ �Q=

(
Q2−Q1 · 3

4

)
·4=

(
4, 625−4, 100 · 3

4

)
·4=6, 200,

and we actually retrieved Elizabeth’s salary, which is a classic sensitive information! 
As clearly stems, this problem is directly related to differential privacy and can 

be addressed with one of the above-mentioned methodologies such as randomized 
perturbations. However, those techniques reduce laterally the accuracy of the DM 
process. Assuming the DM server is trusted, i.e., only the observer is non-trusted, 
another approach of privatizing the results may be adopted. Rather than altering the 
microdata, the results of the DM process or the microdata may be altered or blocked 
for some queries, keeping the microdata accurate for use in other harmless queries.

Table 2 An example of 
retrieving microdata by 
querying only 

Record Monthly 

# Name Hometown income ($) 

1 Dana NY 2500 

2 Andrew Washington 6500 

3 Tom NY 3300 

4 Elizabeth San Francisco 6200 
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6.1 Association Rule Hiding 

In DM, association rule mining is the method of discovering “interesting” relations 
between attributes. However, as demonstrated above, combining few association 
rules may disclose sensitive data. The association rule hiding methodology, first 
distinct ‘sensitive rules’ that may disclose sensitive information, and then apply 
methods as described herein. The concept was first introduced in 1999 as “disclosure 
limitation of sensitive rules” (Atallah et al., 1999), later on coined as association rule 
hiding. Association rule hiding includes two main methods: (a) Distortion: Altering 
the entry of specific records of certain queries while keeping the entry accurate for 
others (Oliveira et al., 2004); (b) Blocking: Selective removal of specific records 
from the DB when certain queries are applied; however, data are preserved for other 
queries that are believed not to compromise privacy when mining the sensitive rules 
(Saygin et al., 2001). 

Both methods have the potential of lowering the accuracy of non-sensitive rules, 
thus directly affecting the level of the DM utility. The strategy of most algorithms 
of association rule hiding is based either on the support indication, the confidence 
indication, or a combination of both. Support and Confidence are used in their 
original definition in associating rule mining. The support of an item set X with 
respect to transaction t is given by .supp(X) = |{t∈T ;X⊆t}|

|T | , when T is the set of 
transactions. Intuitively, support is the proportion of transactions t in the dataset that 
contains the item set X. The confidence of the rule mapping datasets .X ⇒ Y is given 
by .conf (X ⇒ Y ) = supp(X∪Y )

supp(X)
. Confidence is the proportion of the transactions 

that contains X and that also contains Y. 

6.2 Downgrading Classifiers Accuracy 

Classifiers are commonly used in DM process and considered as one of its central 
tools. However, just like with association rules, classifiers may be used to disclose 
private information—even when the microdata are not disclosed. To preserve 
privacy when DM classification is performed, it is possible to lower the accuracy 
of a classifier, but keep the original data as is (Mendes and Vilela, 2017). The 
accuracy of a classifier is its ability to predict the class it belongs to, in other words 
its effectiveness. In many cases, this methodology of reducing the accuracy of the 
classifier can have a minor effect on the utility required but provides a significant 
defense against privacy violation. This is naturally an outcome of the amount of 
accuracy reduction and the nature of the application (its sensitivity to the accuracy). 
Downgrading classifier effectiveness can be viewed as a private case of association 
rule hiding, and thus, algorithms from this domain may be applied here.



Privacy-Preserving Data Mining (PPDM) 905

6.3 Query Auditing and Inference Control 

This methodology addresses directly the privacy threat described in the head of this 
section, when an adversary has no access to the microdata, yet with aggregated 
queries he may infer some knowledge at the microdata level. There are two main 
techniques under this methodology to provide a defense: 

(a) Query auditing: Denying some specific queries out of all queries launched, in 
such a way that sensitive data will not be inferred (Chin and Ozsoyoglu, 1982). 
A major challenge of this methodology is that we have no prior knowledge on 
the sequence of the coming queries; thus the method has to be applied at real 
time. 

(b) Query Inference Control: Perturbing the microdata (the data used in the DM 
process) or the results (output of the DM process) (Mishra and Sandler, 2006). 
This technique is similar to the perturbation methodology (under randomization 
approach); however, here the data are perturbed under the assumption that the 
adversary has no access to the microdata. Thus, the level of the perturbation is 
only required to reduce the risk of privacy violation based on the DM results. 

For example, when the query operator is sum, for queries with k elements, when 
each pair of queries has at r shared elements, and the adversary already knows l 
values—the query auditing method may be applied: The number of queries must be 
limited to be smaller than .(2k − l + 1)/r in order to preserve privacy (Nabar et al., 
2008). 

7 Utility Assessment 

Most PPDM approaches, especially randomization, reduce the data quality and thus 
cause some utility loss. Utility assessment is a broad issue in DM and not limited 
to PPDM. However, because of the inherent trade-off between utility and privacy 
loss, it is briefly mentioned here. There are three major indexes that evaluate the 
data quality: (a) Accuracy: A measure of how close is the secured data to the 
original data. (b) Completeness: The loss of individual data in the secured DB; and 
(c) Consistency: The loss of correlations in between records in the secured DB. A 
common way to measure and evaluate the utility loss is by comparing the results that 
the DM process yields from the original data against those from the secured data 
(e.g., perturbed). For example, a metric to compare the reconstructed distribution 
that the algorithm yields .f̂x (x) with the original distribution .fx (x) is based on 
calculating the information loss I , and given by (Agrawal and Aggarwal, 2001): 

.I
(
fx (x) , f̂x (x)

) = 1

2
E

[∫

	X

∣∣fx (x) −, f̂x (x)
∣∣ dx

]
.



906 R. S. Hirschprung

Fig. 4 The trade-off between privacy and utility in dose predicting for the Warfarin medicine 

An interesting test case that demonstrates the trade-off between utility and 
privacy preserving is a research of pharmacogenetics (study of the role of the 
genome in drug response) on the medicine Warfarin (Fredrikson et al., 2014). 
Warfarin is an anticoagulant widely used to help preventing strokes. However, this 
medicine is highly dose sensitive, and an improper dose may lead to increased risk 
of stroke or uncontrolled bleeding. A dose can be predicted based on other patients’ 
history and genomic information, by applying DM techniques. Naturally, genomic 
information of an individual is highly sensitive data, and thus, a release that includes 
such data is a major privacy concern. The researchers simulate analysis of the data 
with 5 levels of privacy (noted as privacy budget), and measured with .ε-differential 
privacy. The “utility” is measured here by the mortality rate (naturally the lower the 
mortality—the higher the utility) and may also be referred as an accuracy index. As 
clearly shown in Fig. 4, increasing privacy decreases utility and vice versa. 

In this example, two values collide: one of privacy preserving by protecting 
disclosure of sensitive health data (might be one of the most significant privacy 
concern) and the other of lifesaving. The inherent trade-off between privacy 
preserving and accuracy of the result may be reduced but cannot be completely 
avoided. 

8 Personalized Privacy and Risk Assessment 

In most of the models, privacy is treated as an important issue, but with an 
equal cost value to all records. However, this cost is not singular and may be 
varied as a function of: who owns the data, what is the nature of the data, what 
is the spread of distribution, etc. The value of privacy is context-dependent, for 
example, a specific user may consent to divulge the same personal information 
for different minimal rewards in different contexts (Acquisti et al., 2015). In other
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words, privacy loss has some cost that under the common methodologies is fixed 
across all those dimensions. A relatively new methodology offers models that do 
not treat all records homogeneously, for example, in location-based privacy (Agir 
et al., 2014). Actually, most of the methodologies (if not all) mentioned above 
may be personalized by weighting records or a group of records according to the 
sensitivity to privacy. For example, the generalization technique mentioned above, 
which provides privatization (e.g., increasing k-anonymity), can be personalized so 
that different users will gain different levels of anonymity (e.g., different k values of 
k-anonymity) according to their preferences (Xiao and Tao, 2006). This approach 
prohibits the situation in which microdata are privatized according to the highest 
level demanded by any of the individuals included in it, and the utility of the DM 
process is reduced unnecessarily. To measure the level of information disclosure, we 
have to take into account two parameters: 

(a) The odds of inferring the sensitive data: 
Few metrics may be used to evaluate this parameter, for example, the confidence 
level and the entropy that were described under the randomization section. 

(b) The value of the sensitive data: 
As mentioned above, this value exists and, however, is context-dependent. The 
rest of this section describes a methodology to estimate this value. 

Information disclosure is a loss in the process; thus the value of the sensitive data 
together with the odds may yield the expectancy of the cost. 

The major problem in applying personalized privacy methodology is the lack 
of technological literacy from the user side that will enables him to understand 
the implication of privacy violation in a given scenario and architecture. Thus, 
he is unable to quantify his privacy loss. A methodology to address this issue 
is based on estimating the value of privacy, coined VOPE—Value Of Privacy 
Estimator (Hirschprung et al., 2016). VOPE takes an approach of simulating real-
life scenario (e.g., e-commerce transaction) and an iterative converged algorithm. 
VOPE was tested empirically (.n = 118) and provided bounded (converged) results 
on average in 74% of the cases. To validate the values received, an independent 
validation methodology was presented, which was proved empirically. Figure 5 
depicts the values of privacy for various items in e-commerce scenario with different 
probabilities of disclosure. The X-axis describes various goods that were purchased 
with two different probabilities of disclosing this information (the fact that an 
individual with some quasi-identifiers performs this purchase). The value of privacy 
is measured with a tangible value6 in US dollars ($), and described on the Y-axis. 
It can be clearly seen, for example, that the value of the information about “Adult 
toy” purchase is significantly higher than that for “Batteries.” The whiskers in the 
plot indicate the standard error of the mean (SEM). It can be clearly seen that the

6 This trait provides a significant usability in considering this cost vs. some other utilities (e.g., 
discount). 
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Fig. 5 Values of privacy for all items with different probabilities of disclosure 

value of privacy varied across different persons, an insight that motivates the idea of 
personalized privacy. 

9 Conclusions 

This chapter starts with the description of the inherent privacy threat, directly stems 
from the DM process. Moreover, the utility of the DM is usually in trade-off with 
the amount of privacy gained. This reality introduces tough decisions of preferences 
between benefits, costs, and even values. The trade-off may be empowered when a 
conflict of interest is present, e.g., an e-commerce site collects information about 
individuals in order to maximize revenue, against the individual will to preserve 
privacy. A naive approach of just removing key attributes (e.g., full name) from the 
DB was found inadequate, and more sophisticated solutions are required. 

To address this issue, privacy-preserving data mining (PPDM) methodologies 
are presented. PPDM aims to: (a) mitigate the inherent trade-off; (b) control the 
trade-off according to a policy. We discussed four major approaches of PPDM: 
Anonymization provides some defense against uniqueness that may lead to re-
identification of the individual. The sensitive data under anonymization are not 
changed, and thus, in case of re-identification did occur—the individual is exposed; 
Randomization alters the sensitive data randomly, so that even if the individual 
record was re-identified, the sensitive data are useless at the microdata level;
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Cryptography is used in case of distributed resources of data, when they cannot 
fully trust each other, yet a DM process should be carried on aggregated data that are 
ciphered; Privatizing results is an approach in which the DM output is privatized, 
while keeping the raw data intact. This approach enables later queries at the original 
data accuracy level by an authorized entity. 

Usually, there is no single approach that provides a satisfying solution, and a 
combination of two or more is applied. The selection of the methodologies is derived 
from parameters such as: sensitivity of the data, size of the DB, distributions of 
quasi- and sensitive attributes in the datasets, level of trust, etc. 

Finally, an important refinement of PPDM is presented, when records of different 
individuals (with possibly different levels of sensitivity) are not treated symmetri-
cally, rather each individual concern and the estimation of the risk are considered. 

Most researches in the field of PPDM are theoretical and are not straightforward 
to be implemented. The research constitutes an important novel ground for PPDM; 
however, further steps are required to provide privatization in the real world. Since 
the use of data mining and machine learning is on the rise, as well as privacy 
concerns and regulations, this process will most likely occur. Future algorithms 
will address a few opened problems and issues: (a) Better handling the trade-off 
between privacy protection and the utility of the DM process; (b) Dealing with high 
complexity of PPDM algorithms that result in consuming enormous computational 
power, and sometimes make the task unrealistic; and (c) Development of algorithms 
with higher involvement of “soft” disciplines such as psychology, to better address 
privacy concerns and individual’s preferences. 
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Explainable Machine Learning 
and Visual Knowledge Discovery 

Boris Kovalerchuk 

1 Introduction 

Visual reasoning and discovery have a long history [30]. Chinese and Indians knew a 
visual proof of the Pythagorean Theorem in 600 B.C. Many scientists such as Bohr, 
Boltzmann, Einstein, Faraday, Feynman, Heisenberg, Helmholtz, Herschel, Kekule, 
Maxwell, Poincare, Tesla, Watson, and Watt have declared the fundamental role that 
images played in their most creative thinking. 

1.1 Motivation 

The major challenge for visual creative thinking and discovering, in multidimen-
sional data (n-D data) used in ML, is that we cannot see multidimensional data with 
a naked eye. We need visual analytics tools (“n-D glasses”) for this. The challenge 
starts at 4-D. Since only 2-D and 3-D data can be directly visualized in the physical 
3-D world, visualization of n-D data becomes more difficult with higher dimensions 
as there is greater loss of information, occlusion, and clutter. Often, we use non-
reversible, lossy Dimension Reduction (DR) methods such as Principal Component 
Analysis (PCA) that convert, say, every 10-D point into a 2-D point in visualization. 
While such reduction of 10 numbers to 2 numbers is valuable, in general, it is 
lossy, and producing non-interpretable features [49]. Thus, it can remove key 
interpretable multidimensional information before starting to learn complex n-D 
patterns. Alternative lossless reversible methods include General Line Coordinates 
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(GLC) [22] that visualize multidimensional data losslessly without dimension 
reduction or loss of information during the visualization process. GLC projects the 
n-D points onto 2-D graphs preserving n-D information, but suffers more from 
occlusion [22] than lossy methods. Thus, there is great interest in the hybrid 
methods, which join the benefits of reversible and non-reversible methods for ML. 

1.2 Analytical Versus Visual ML 

Below we use the following terms. Analytical ML models (AML) are models 
built by computational ML methods without using visual graphical tools. Visual 
ML models (VML) are models built by using visual graphical tools. These 
models differ in many aspects, including generalization of ML training data, as 
we illustrate below with Iris data in Figs. 1 and 2. Here, Visual ML models 
generalize more conservatively and intuitively justified more than AML, which 
rather overgeneralize. 

The Human Visual and Verbal Learning (HVVL) process from images shown 
in Fig. 1 leads to the following verbal description of Iris petal classes:

• Setosa – small length and small width of petal.
• Versicolor – medium length and medium width of petal.
• Virginica – large length and medium to large width of petal. 

The Logistic Regression, Random Forest, Naïve Bayes, and Support Vector 
Machine (SVM) violate these meaningful descriptions (see Fig. 2). All of them 
allow long and short Versicolor Iris petals that violate the “medium” petal length 
and width of Versicolor (class 1 in Fig. 2). Next, all of them allow short Virginica 
Iris petal length that violates the “large” length of petal” of Virginica (class 2 in 
Fig. 2). The Logistic regression and Random forest allow extremely long Setosa Iris 
petals that violates the “short” length of Setosa (class 0 in Fig. 2). 

All these ML methods dramatically overgeneralize unseen data, being quite 
correct on training data. This is an example of a very typical overgeneralization 
by common ML methods. It is a source of predictions errors for many unseen cases. 
Such errors are not a result of insufficient training data, but overgeneralized task 

Fig. 1 Examples of Setosa, Versicolor, and Virginica Iris petals
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Fig. 2 Example of logistic regression classification of Iris classes. (Reproduced from ML software 
system [3]) 

formulation – discovering discrimination functions that classify every point in the 
space by Logistic Regression, Linear Discriminant Analysis, SVM, Naïve Bayes, 
Random Forest, Decision Trees (DT), and many other ML methods. 

Figure 2 is reproduced from [3] that is a software ML package MLxtend with 
tools for plotting decision regions. It is surprising that not only MLxtend but many 
other software tools that produce such “decision regions” do not mention and do 
not point out how severe such “decision regions” overgeneralize classes. A more 
detailed analysis of these issues can be found in [23]. 

In contrast, the HVVL does not start with a predefined set of models – linear 
or non-linear functions, which discriminate all points in the space to three classes. 
It starts with observation of the training data without any predefined model set. It  
generalizes the training data more conservatively because of this observation [23]. 

This leads to HVVL-inspired analytical ML models, which use the envelopes 
around the training data of each class, e.g., reflecting the small length and width 
of petal for Iris Setosa. Such algorithms refuse to classify points outside of the 
envelopes. How can we know that we need to use an envelope? We need tools to 
visualize n-D data in 2-D without loss of n-D information (lossless visualization) 
allowing to see n-D data as we see 2-D data. In the petal example, we have a
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linguistic term “small petal” and two corresponding 2-D visuals: a picture of the 
small petal in Fig. 1, and visualization of two of its attributes: length and width 
that form a “small blob” in Fig.  2. These verbal and visual representations are 
synergetic describing the same physical object in intelligible and well-understood 
ways, while both are quite uncertain and need formalization. Subjective probabilistic 
and fuzzy logic concepts are commonly used to formalize “small” and to “compute” 
and reason with words. This synergy is going further and deeper to “computing” 
with images [27]. The Iris petal example illustrates an important property of the 
explainable ML – it can be in uncertain, but understandable linguistic and visual 
terms, not necessarily in the formal mathematical terms. 

Black Box Versus Glass Box The Black Box models include Deep Learning Neural 
Networks (DNN), Boosted Trees, Random Forests, and others. It is important to 
evaluate the interpretability of such methods, by comparing with human explana-
tions, in accuracy [19]. Methods for explaining these models are surveyed in [13]. 

The Glass Box models include single Decision Trees (DT), Naive-Bayes, 
Bayesian Networks, Propositional and First Order Logic (FOL) rules [31], and 
others. Often these models are viewed as less accurate, but more intelligible, 
interpretable, and human understandable than black-box models. This leads to the 
problem of choosing between accuracy and interpretability. It is a major obstacle 
to the wider adoption of ML in areas with high cost of error, such as cancer 
diagnostics, and other domains where it is necessary to understand, validate, and 
trust decisions. As this chapter shows visual knowledge discovery helps getting 
both model accuracy and its explanation instead of choosing between them. 

1.3 Approaches 

Visual Analytics for Machine Learning The goals of visual analytics in ML 
include: aiding users in developing models, understanding how complex models 
work and perform, visually debugging models’ outputs, analyzing production-level 
models, generating a workflow from training to production, analyzing datasets 
and model’s results, exploring and subdividing large datasets, and comparing 
the accuracy of data groups [4, 10, 14, 18, 32, 39]. These goals belong to the 
stages of developing, understanding, evaluating, and improving models. The visual 
techniques used at these stages overlap. Heatmap is one of them. At the development 
stage, it visualizes n-D input data to get insight for selecting a class of ML models. 
At the model understanding stage, it highlights the salient elements identified 
by the model within input data, helping to understand features that the model 
discovered and used. At the model evaluating and improving stages, it allows seeing 
inconsistent salient elements to be changed. 

The complementary approaches with the different roles of analytical, visual, 
black box, and glass box ML models are (1) visualization of analytical models, (2)  
discovering analytical models aided by visual methods, (3) discovering visual mod-
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els aided by analytical methods, and (4) visual explanation of analytical models. In 
(1) visual methods are not involved in model creation, but help in understanding, 
evaluating, and improving the models. In (2) creation of the analytical ML models 
is guided by visual methods. In (3) analytical methods guide creation of the visual 
ML models. In (4) visual methods explain fully or partially the analytical models. 

This chapter is organized as follows. Section 2 is devoted to visualization of 
trained ML models. Section 3 covers discovering analytical ML models aided by 
visual methods with case studies in Sect. 4. Section 5 is on methods to scale the 
process of discovering visual ML models for big data, and Sect. 6 is on methods of 
visual explanation of analytical models. 

2 Visualization of Analytical ML Models 

The goals of ML model visualizations include understanding misclassified samples, 
diagnosis of the model performance, model refinement, and others [34]. Input-
based and structure-based are the two major approaches here. Often in the former, 
the model is overlaid on the data space with input data visualized. Here, point– 
to-point or point-to-graph methods are used to visualize data, which we discuss 
later. 

In the structure-based approach, the model structure is visualized often along 
with dataflow traced in it. These visualizations are model specific, e.g., visualization 
of the decision tree differs from visualization of DNN [5], association rules, and 
the Convolutional Neural Network (CNN) for images [34]. In [34] clustering 
combines layers, neurons, edges, and only representative ones are visualized to 
decrease occlusion in visualizing CNN with thousands of neurons and millions of 
connections. 

2.1 Matrix and Parallel Sets Visualization for Association 
Rules 

Below we illustrate the input-based and structure-based ML model visualizations 
for the association rules (AR). A general AR form is A ⇒ B, where A and B are 
statements. Commonly A consists of several other statements, A = P1 & P2 & 
. . .  Pk, e.g., If customers buy both tomato (T) and cucumbers (Cu), they likely buy 
carrots (Ca). Here A = T & Cu and B = Ca. 

The qualities of the AR rule are measured by support and confidence that express, 
respectively, a frequency of the itemset A in the dataset, and a portion of transactions 
with A and B relative to frequency of A. ARs are interpretable being a class of 
propositional rules expressed in the original domain terms.
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Fig. 3 Matrix and Parallel Sets visualizations of association rules: (a) Structure-based visualiza-
tion of association rules h a matrix and heatmap. (b) The input-based model visualization for a set 
of association rules [46] 

The typical questions about ARs are as follows. What are the rules with the 
highest support/confidence? What are outliers of the rule and their cause? Why is 
the rule confidence low? What is the cause of rule? What rules are non-interesting? 
Visualization allows answering some of these questions directly. Figure 3a shows 
structure-based visualization of association rules with a matrix and heatmap [46]. 
Here left-hand sides (LHS) of the rules are on the right and right-hand sides (RHS) 
of the rules are on the top. Respectively, each row shows a possible rule LHS itemset 
of each rule, and each column shows a possible RHS itemset. The violet cells 
indicate discovered rules A ⇒ B with respective LHS and RHS. The darker color of 
the rule cell shows a greater rule confidence. Similarly, the darker LHS shows the 
larger rule support. The major challenges here are scalability and readability for a 
large number of LHS and RHS [46]. 

Figure 3b shows the input-based model visualization for a set of ARs. It uses 
Parallel Sets. Parallel Sets display dimensions as adjacent parallel axes and their 
values (categories) as segments over the axes. Connections between categories in 
the parallel axes form ribbons. The segments are similar to points and ribbons are 
similar to lines in Parallel Coordinates [16]. The ribbon crossings cause clutter that 
can be minimized by reordering coordinates and other methods [46]. Both model 
visualizations shown in Fig. 3 are valid for other rules-based ML models too. 

2.2 Dataflow Visualization in ML Models 

One of the structure-based model visualizations is model dataflow visualization, 
which is important for complex models such as DNN with difficulties to optimize 
them and understand how they work. Graph Visualizer, TensorBoard, TensorFlow’s 
dashboard Olah’s interactive essays, ConvNetJS, TensorFlow Playground, and
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Fig. 4 DT dataflow tracing visualizations for WBC data. (a) Traditional visualization of WBC 
data decision tree. Green edges and nodes indicate the benign class and red edges and nodes 
indicate the malignant class. (b) DT with edges as Folded Coordinates in disproportional scales. 
The curved lines are cases that reach the DT malignant edge with different certainties due to the 
different distances from the threshold node 

Keras are current tools for DNN dataflow visualization [45]. They allow observing 
scalar values, distribution of tensors, images, audio, and others to optimize and 
understand models by visualizing model structure at different levels of detail. 

While all these tools are very useful, the major issue is that dataflow visualization 
itself does not explain or optimize the DNN model. An experienced data scientist 
should guide data flow visualization for this. In contrast, the dataflow for explainable 
models can bring explanation itself, as we show below for Decision Trees (DTs). 
Tracing the movement of a given n-D point in the DT shows all interpretable 
decisions made to classify this point. For instance, consider a result of tracing 4-
D point x = (7, 2, 4, 1) in the DT through a sequence of nodes for attributes x3, x2, 
x4, x1 with the following thresholds: x3 < 5,  x2 > 0,  x4 < 5, x1 > 6 to a terminal node 
of class 1. The point x satisfies all these directly interpretable inequalities. 

Figure 4a shows a traditional DT visualization for 9-D Wisconsin Breast Cancer 
(WBC) data from UCI Machine Learning repository [48]. It clearly presents the 
structure of the DT model, but without explicitly tracing individual cases. The trace 
is added with a dotted polyline in this figure. Figure 4b shows two 5-D points 
a = (2.8, 5, 2.5, 5.5, 6.5) and b = (5, 8, 3, 4, 6). Both points reach the terminal 
malignant edge of the DT, but with different certainty. The first point reaches it with 
lower certainty, having its values closer to the thresholds of uc and bn coordinates. 

In this visualization, called Folded Coordinate Decision Tree (FC-DT) visu-
alization, the edges of the DT not only connect decision nodes, but also serve as 
Folded Coordinates in disproportional scales for WBC data. Here, each coordinate 
is folded at the node threshold point with different lengths of the sides. For instance, 
with threshold T = 2.5 on the coordinate uc with the interval of values [1, 10], the 
left interval is [1, 2.5) and the right interval is [2.5, 10]. In Fig. 4b, these two unequal 
intervals are visualized with equal lengths, i.e., forming a disproportional scale.
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Fig. 5 Full 11-D Boolean space visualized in centered Hansel chain order with discovered 
classes – malignant (dark) and benign (light) breast cancer cases 

2.3 Input-Based ML Model Visualization for Binary Data 

This section presents the MDF algorithm for input-based ML model visualization 
for binary input n-D data [28–30]. Such data are common in medical applications 
with binary symptoms, where parallel line coordinates often produce heavily 
overlapped visualization of classes due to only two values on each binary coordinate 
[28, 30]. The method relies on the monotone structural relations between Boolean 
points in the n-D binary cube, En, and visualizes them in 2-D as chains of Boolean 
points located as bars in the multiple disk form (MDF). All 2048 11-D points of the 
E11 Boolean space are shown in MDF in Fig. 5, where each 11-D point is visualized 
as a dark bar (class 1, malignant) and light bar (class 2, benign). 

To construct MDF the algorithm computes the Boolean norms of the n-D 
vectors – the number of 1s in each point. Then points are grouped according to 
these norms from 0 to n forming n + 1 groups. Each group occupies a strip (disk). 
Disks are located one on the top of another one. Then, alternative procedures assign 
the horizontal position to each of the n-D point on the disk. 

The procedure P1 orders points according to their numerical decimal value 
allowing visual comparison of multiple Boolean functions. The procedure P2 orders 
points according to monotone Hansel chains [29] allowing, in addition, visualizing 
the structure of the data along Hansel chains. The procedure P3 orders the Hansel 
chains, in addition to P2, unveiling the border between the two classes of elements, 
The procedure, P4 expands Hansel chains from P3 up and down to points absent in 
training data generalizing the border between classes using monotone expansion, 
which is first tested on the training data. Figure 5 shows the resulting directly 
interpretable visualization of benign and malignant classes in the original cancer 
features [28].
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3 Discovery of Analytical ML Models Aided by Visual 
Methods 

There is a growing trend to move from visualization of solution to discovering the 
solution visually [22]. The methods for discovering ML models by visual means rely 
on lossless and lossy methods for visualizing n-D data based on Parallel and Radial 
Coordinates, RadVis, Manifolds, t-SNE General Line Coordinates, Shifted Paired 
Coordinates, Collocated Paired Coordinates, and others. Methods of interactive 
visual model discovery leverage human perceptual abilities and human abilities to 
adjust tasks on the fly. Analytical ML methods enhance visual knowledge discovery 
by computational means making visual discovery easier. 

As was pointed out above, the main challenge in visual knowledge discovery is 
that we cannot see patterns in multidimensional data by a naked eye in contrast with 
2-D and 3-D spaces. Figure 6 shows an example of visual knowledge discovery in 
2-D for the data in the table on the left. Here a single black line cannot discriminate 
these two “crossing” classes. In addition, the visualization clearly shows that any 
single line cannot discriminate these classes. 

However, a common ML modeling practice (without visualizing the data) starts 
with a simplest model, which is a linear discrimination function (black line in Fig. 6) 
to separate the blue and red points. It will fail. In contrast, visualization immediately 
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Fig. 6 “Crossing” classes that cannot be discriminated by a single straight line
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gives an insight of a correct model class of “crossing” two linear functions, with one 
line going over blue points, and another one going over the red points. The question 
is – how to reproduce such success in 2-D for n-D data, where we cannot see the data 
with a naked eye? The next section presents methods for lossless and interpretable 
visualization of n-D data in 2-D for this. 

3.1 Approaches to Visualize Multidimensional Data 

Often multidimensional data are visualized by lossy dimension reduction (e.g., 
Principal Component Analysis (PCA), Multidimensional Scaling (MDS), t-SNE) 
or by splitting n-D data to a set of low dimensional data (pairwise correlation plots). 
While splitting is useful it destroys integrity of n-D data, and leads to a shallow 
understanding complex n-D data. To mitigate splitting difficulty an additional and 
difficult perceptual task of assembling 2-dimensional visualized pieces to the whole 
n-D record must be solved. An alternative way for deeper understanding of n-D data 
is developing visual representations of n-D data in low dimensions without such data 
splitting and loss of information as graphs not 2-D points. 

The examples of such visualization methods for n-D data are Parallel Line 
Coordinates (PLC) where all coordinates are parallel, Radial Line Coordinates 
(RLC) where all coordinate are radial and other General Line Coordinates (GLC) 
[22]. Figure 7 shows 6-D point x = (4, 3, 0, 5, 4, 10) in PLC and in RLC. The major 
challenges of methods like PCA, MDS, and t-SNE are in the loss of n-D information 
[35] and difficulties to interpret new coordinates, while the major challenge for 
GLCs is occlusion [22]. 
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Fig. 7 6-D point x = (4, 3, 0, 5, 4, 10) in PLC and 7-D point in RLC
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3.2 Theoretical Limits to Preserve n-D Distances in Lower 
Dimensions: Johnson-Lindenstrauss Lemma 

The source of the loss of information in dimension reduction from n-D to a smaller 
k-D is in the smaller neighborhoods in k-D. The 2-D/3-D visualization space does 
not have enough neighbors to represent the same n-D distances in 2-D. For instance, 
the 3-D binary cube has 23 nodes, but the 10-D hypercube has 210 nodes. Mapping 
210 10-D points to 23 3-D points leads to the distortion of n-D distances, because 
the variability of distances between 3-D points is much smaller than between 10-D 
points. It leads to the significant corruption of n-D distances in 2-D visualization. 
The Johnson-Lindenstrauss lemma states these differences explicitly. It implies that 
only a small number of arbitrary n-D points can be mapped to k-D points of a 
smaller dimension k that preserves n-D distances with relatively small deviations. 

Johnson-Lindenstrauss Lemma [17 
] Given 0 <  ε < 1, a set X of m points in Rn, and a number k > 8 ln (m)/ε2, there is a 
linear map f : Rn → Rk such that for all u, v ∈ X. 

. (1 − ε) ‖ u − v‖2 ≤‖ f (u) − f (v)‖2 ≤ (1 + ε) ‖ u − v‖2.

In other words, this lemma sets up a relation between n, k, and m when the 
distance can be preserved with some allowable error ε. A version of the lemma [6] 
defines the possible dimensions k < n, such that for any set of m points in Rn there 
is a mapping f: Rn → Rk with “similar” distances in Rn and Rk between mapped 
points. This similarity is expressed in terms of error 0 <  ε < 1. 

For ε = 1 the distances in Rk are less or equal to . 
√

2 S, where S is the distance 
in Rn. This means that the distance s in Rk will be in the interval [0, 1.42S]. In 
other words, the distances will not be more than 142% of the original distance, 
i.e., it will not be much exaggerated. However, it can dramatically diminish to 0. 
The lemma and this theorem allow to derive three formulas, to estimate the number 
of dimensions (sufficient and insufficient) to support the given distance errors. See 
Table 1. For details, see [22]. These formulas and table show that to keep distance 
errors within about 30%, for just 10 arbitrary high-dimensional points, the number 
of dimensions k needs to be over 1900 dimensions, and over 4500 dimensions for 
300 arbitrary points. The point-to-point visualization methods do not meet these 
requirements for arbitrary datasets. Thus, the Johnson-Lindenstrauss Lemma sets 
up the theoretical limits to preserve n-D distances in 2-D. 

3.3 Visual Knowledge Discovery Approaches 

Visual knowledge discovery approaches include discovering:
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Table 1 Dimensions required supporting errors within ±31% 

Number of arbitrary 
points in n-D space 

Sufficient dimension 
by formula 1 

Sufficient dimension 
by formula 2 

Insufficient dimension 
by formula 3 

10 1974 2145 1842 
20 2568 2791 2397 
30 2915 3168 2721 
40 3162 3436 2951 
50 3353 3644 3130 
60 3509 3813 3275 
70 3642 3957 3399 
80 3756 4081 3506 
90 3857 4191 3600 
100 3947 4289 3684 
200 4541 4934 4239 
300 4889 5312 4563 

n-Ddata 2-D data & 
2-D patterns 

n-D data 
and n-D 
patterns 

2-D data 
& n-D  
patterns 

Fig. 8 Visual knowledge discovery approaches 

1. Patterns in 2-D: converting n-D data to 2-D data and then discovering 2-D 
patterns in this visualization. 

2. Patterns in n-D: discovering n-D patterns in n-D data then visualizing n-D 
patterns in 2-D as graphs. 

3. Patterns in 2-D and n-D: some patterns are discovered in (1) with controlled 
errors and some are discovered in (2). 

Figure 8 illustrates the first two approaches. 
The patterns in 2-D approach have lossy and lossless versions. The lossy version 

includes three stages:

• Point-to-point lossy Dimension Reduction (DR) – converting each n-D point 
to a 2-D point.

• Visualization of 2-D points.
• Interactive discovery of 2-D patterns in point-to-point visualization. 

The use of Principal Component Analysis (PCA) as DR with visualization of the 
first two principal components is an example of this approach. In general, there is 
no way to restore a given n-D point from these two principal components. 

The lossless approach also has three stages:
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• Point to graph lossless DR – converting each n-D point to a graph in 2-D (n-D 
data fully restorable from the graph).

• Visualization of the graph in 2-D.
• Interactive discovery of 2-D patterns on graphs in visualization. 

3.4 Point-to-Point Projections 

Multiple embedding techniques are in use for input-based ML model visualization, 
such as Principal Component Analysis, and t-Distributed Stochastic One Neighbor 
Embedding (t-SNE) [44]. These point-to-point projection methods convert n-D 
points to 2-D or 3-D points for visualization. PCA can distort local neighborhoods 
[9]. Often t-SNE attempts preserving local data neighborhoods, at the expense of 
distorting global structure [9]. Below we summarize and analyze the challenges 
and warnings with t-SNE highlighted in [9, 44]. One of them is that t-SNE may not 
help to find outliers or assign meaning to point densities in clusters. Thus, outlier 
and dense areas visible in t-SNE may not be them in the original n-D space. Despite 
this warning, we can see the statements that users can easily identify outliers in t-
SNE [5]. It will be valid only after showing that the n-D metrics is not distorted in 
2-D for the given data. In general, t-SNE similarity in 2-D differs from similarly in 
n-D similarly as shown in the Johnson-Lindenstrauss lemma above. 

The AtSNE algorithm [11] is to resolve the difficulties of t-SNE algorithm 
for capturing the global n-D data structure by generating 2-D anchor points (2-
D skeleton) from the original n-D data with a hierarchical optimization. This 
algorithm is only applicable to the cases when the global structure of the n-D dataset 
can be captured by a planar structure using point-to-point mapping (n-D point to 
2-D point). In fact, 2-D skeleton can corrupt the n-D structure (see the Johnson-
Lindenstrauss lemma above). Moreover, the meaningful similarity between n-D 
points can be non-metric. Thus, t-SNE may not reflect n-D structures in a low-
dimensional map [44]. This is the most fundamental deficiency of all point-to-point 
methods. Therefore, we focus on point-to-graph GLC methods, which open a new 
opportunity to address this challenge. 

3.5 General Line Coordinates to Convert n-D Points to Graphs 

General Line Coordinates (GLC) [22, 26] break a 400-year-old tradition of using 
orthogonal Cartesian coordinates, which fit well to modeling the 3-D physical 
world, but are limited, for lossless visual representation, of the diverse and abstract 
high-dimensional data, which we deal with in machine learning. GLC relaxes the 
requirement of orthogonality. In GLC, the points on coordinates form graphs, 
where coordinates can overlap, collocate, be connected or disconnected, straight
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Table 2 General Line Coordinates (GLC): 3-D visualization 

Type Characteristics 

3-D General Line Coordinates (GLC) Drawing n coordinate axes in 3-D in a variety of 
ways: curved, parallel, unparalleled, collocated, 
disconnected, etc. 

Collocated Tripled Coordinates (CTC) Splitting n coordinates into triples and 
representing each triple as 3-D point in the same 
three axes; and linking these points to form a 
directed graph. If n mod 3 is not 0 then repeat the 
last coordinate Xn one or two times to make it 0. 

Basic Shifted Tripled Coordinates (STC) Drawing each next triple in the shifted coordinate 
system by adding (1, 1, 1) to the second triple, (2, 
2, 2) to the third triple (i − 1, i − 1, i − 1) to the 
i-th triple, and so on. More generally, shifts can 
be a function of some parameters. 

Anchored Tripled Coordinates (ATC) in 3-D Drawing each next triple in the shifted coordinate 
system, i.e., coordinates shifted to the location of 
the given triple of (anchor), e.g., the first triple of 
a given n-D point. Triple are shown relative to the 
anchor easing the comparison with it. 

3-D Partially Collocated Coordinates (PCC) Drawing some coordinate axes in 3-D collocated 
and some coordinates not collocated. 

3-D In-Line Coordinates (ILC) Drawing all coordinate axes in 3D located one 
after another on a single straight line. 

In-Plane Coordinates (IPC) Drawing all coordinate axes in 3D located on a 
single plane (2-D GLC embedded to 3-D). 

Spherical and polyhedron coordinates Drawing all coordinate axes in 3D located on a 
sphere or a polyhedron. 

Ellipsoidal coordinates Drawing all coordinate axes in 3Dlocated on 
ellipsoids. 

GLC for linear functions (GLC-L) Drawing all coordinates in 3D dynamically 
depending on coefficients of the linear function 
and value of n attributes. 

Paired Crown Coordinates (PWC) Drawing odd coordinates collocated on the closed 
convex hull in 3-D and even coordinates 
orthogonal to them as a function of the odd 
coordinate value. 

or curvy and go to any direction. Table 2 describes 3-D GLC types. Figure 9 shows 
examples of several 2-D GLC types. The case studies below show the benefits of 
GLC for ML. 

4 Case Studies on Visual Discovery 

Below we show several examples of case studies with the lossless/reversible GLC 
approach, for ML model discovery, based on point-to-graph methodology.
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Fig. 9 Examples of different GLCs: Parallel, Non-parallel, Curved, In-line Coordinates Pentagon, 
Triangular, and Radial Coordinates 

4.1 Case Study with GLC-L Algorithm 

The first example is on the linear discrimination of 4-D data, by applying GLC-L 
algorithm [22, 25]. This algorithm allows both visualization of an existing trained 
ML model, and visual discovery of a new ML model. We start from presenting 
visualization of an existing model. GLC-L can visualize any two-class linear or 
additive non-linear discrimination function, 

. F (x) = a1f1 (x) + a2f2 (x) + · · · + anfn (x) ,

where x = (x1, x2, . . . , xn). Here if F(x) >  T then x belongs to class 1, else x belongs 
to class 2. In a linear case, each fi(x) = xi. 

Figure 10 demonstrates the GLC-L for a linear model with four vectors X1–X4 in 
black. Each of them is a coordinate that form a non-parallel unconnected coordinate 
system. This figure also contains four vectors x1–x4 (in blue) located on coordinates 
X1–X4 with lengths |xi| =  xi. These vectors represent a 4-D point x = (x1, x2, x3, 
x4) = (1, 0.8, 1, 1.2). Thus, each blue vector xi shows one of xi from x and together 
x1–x4 represent losslessly x. 

The next step is drawing vectors x1–x4 one after another, to form a directed graph 
(see Fig. 10 on the left). Then the last point of this graph B = A + x1 + x2 + x3 + x4 
is projected onto the horizontal axis U (see a blue dotted line in Fig. 10). To simplify,
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Fig. 10 GLC-L concept 

Fig. 11 GLC-L WBC data example 

visualization axis U can be collocated with the horizontal lines that define the angles 
Qi as shown on the left in Fig. 10. The length of the projection on coordinate U 
(black horizontal line) from the origin of U is a linear function F(x). 

Figure 10 on the right shows graphs of two 4-D points (in blue) and two 4-
D points (in red), which are drawn mirrored relative to the axis U. The blue 4-D 
points belong to class 1 and red ones belong to class 2. The vertical yellow line is a 
threshold line, which discriminates the two classes. Figure 11 shows the application 
of the GLC-L algorithm for visual linear discrimination of 9-D Wisconsin Breast 
Cancer (WBC). The blue polylines (graphs) represent 444 benign cases and red 
ones 239 malignant cases with vertical yellow line discriminating these two classes.
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Fig. 12 6-D point a = (3, 2, 1, 4, 2, 6) in Shifted Paired Coordinates. (a) Point a in (X1, X2), (X3, 
X4), (X5, X6) as a sequence of pairs (3, 2), (1, 4) and (2, 6). (b) Point a in (X2, X1), (X3, X6), (X5, 
X4) as a sequence of pairs (2, 3), (1, 6) and (2, 4) 

The confusion matrix shows that it misclassified 1 malignant case and 20 benign 
cases with the total accuracy of 96.92% [22, 25]. To get a 100% accurate classifica-
tion of cancer cases, the threshold line can be moved to the left interactively. It will 
misclassify more benign cases, which is a less of a problem, than missing a cancer 
case. The angles at the bottom of Fig. 11 show the contribution of each attribute to 
the discrimination function F(x). The angles with green outlines contribute the most 
(have larger positive coefficients in F(x)). A user can interactively adjust angles (and 
respective importance and contribution of attributes) to get a more meaningful and 
interpretable classification model. This example shows the idea of using the GLC-L 
algorithm beyond just visualizing the already existing ML classification model, but 
using GLC-L to find a better model by modifying the existing one. Alternatively, 
a GLC-L classification model can be built from scratch by assigning coefficients 
(via angles) and sliding thresholds interactively. The advantage of GLC-L is its 
explanatory power. It provides a full and interpretable visual representation of the 
function F(x) without any loss of n-D information. 

4.2 Case Study with the FSP Algorithm 

This case study deals with the same 9-D WBC data by using the FSP algorithm [24] 
and Shifted Paired Coordinates (SPC) [26] for a graph representation of n-D points. 
The idea of SPC is presented in Fig. 12. The  Shifted Paired Coordinates (SPC) 
visualization of the n-D data requires the splitting of n coordinates X1–Xn into pairs 
producing the n/2 non-overlapping pairs (Xi, Xj), such as (X1, X2), (X3, X4), (X5, 
X6), . . . ,(Xn − 1, Xn). In SPC, a pair (Xi, Xj) is represented as separate orthogonal 
Cartesian Coordinates (X, Y), where Xi is X and Xj is Y, respectively. 

In SPC, each coordinate pair (Xi, Xj) is shifted relative to other pairs to avoid 
their overlap. This creates n/2 scatter plots. Next, for each n-D point x= (x1, x2, . . . , 
xn), the point (x1, x2) in (X1, X2) is connected to the point (x3, x4) in (X3, X4) and 
so on until point (xn − 2, xn − 1) in (Xn − 2, Xn − 1) is connected to the point (xn − 1,
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Fig. 13 Benign and malignant WBC data visualized in SPC as 2-D graphs of 10-D points 

xn) in (Xn − 1, Xn) to form a directed graph x*. Figure 12 shows the same 6-D point 
visualized in SPC in two different ways due to different pairing of coordinates. 

The FSP algorithm has three major steps: Filtering out the less efficient visu-
alizations from the multiple SPC visualizations, Searching for sequences of paired 
coordinates that are more efficient for classification model discovery, and Presenting 
the model discovered with a best SPC sequence, to the analyst [26]. The results of 
FSP applied to CPC graphs of WBC data are shown in Figs. 13, 14, and 15. Figure 
13 illustrates the motivation for filtering and searching in FSP. It shows WBC data 
in SPC, where graphs occlude each other making it difficult to discover the pattern 
visually. Figure 14 presents the results of automatic filtering and searching by FSP 
algorithm. It shows only cases that are located outside of a small violet rectangle at 
the bottom in the middle, and go inside of two larger rectangles on the left. These 
cases are dominantly cases of the blue class. Figure 15 presents the remaining cases, 
which go through the small rectangle and do not go to the larger ones. The most of 
these cases are from the red class. Together these properties provide a rule: 

. If (x8, x9) ∈ R1& (x6, x7) /∈ R2& (x6, x7) /∈ R3 then x ∈ class Red else x ∈ class Blue,

where R1 and R2 and R3 are three rectangles described above. This rule has 
accuracy of 93.60% on all WBC data [26]. This fully interpretable rule is visual 
and intelligible by domain experts, because it uses only original domain features 
and relations. 

This case study shows the benefits of combining analytical and visual means 
for interpretable knowledge discovery. The analytical FSP algorithm works on the 
multiple visual lossless SPC representations of n-D data, to find the interpretable 
patterns. While occlusion blocks discovering these properties by visual means, 
the analytical FSP algorithm discovers them in the SPC simplifying the pattern 
discovery, providing the explainable visual rules, and decreasing the cognitive load.
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Fig. 14 SPC visualization of WBC data with areas dominated by blue class 

Fig. 15 WBC data in 4-D SPC as graphs in coordinates (X9, X8) and (X6, X7) that go through 
rectangle R1 and not go to rectangles R2 and R3 in these coordinates 

4.3 Case Study with GLC-L+CNN Algorithm 

This case study uses the same WBC data as above. The occlusion was a major 
challenge there, which was dealt by FSP algorithm. Below for this, we use a 
combination of GLC-L algorithm, described in Sect. 4.1, and a Convolutional 
Neural Network (CNN) algorithm. The first step is converting non-image WBC 
data to images by GLC-L and the second one is discovering a classification model 
on these images by CNN. Each image represents a single WBC data case as a single 
polyline (graph) completely avoiding the occlusion. Figure 16 illustrates this design. 
It resulted in 97.22% accuracy on tenfold cross-validation [7]. 

4.4 Case Study with CPC-R+CNN Algorithm 

This case study uses the same WBC data as the case studies above, but with CPC-R 
algorithm [21] for converting non-image data to images, and CNN algorithms for
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class 0 (1) class 0 (2) class 0 (3) class 0 (4) class 0 (5) 

class 1 (1) class 1 (2) class 1 (3) class 1 (4) class 1 (5) 

Fig. 16 WBC data samples visualized in GLC-L for CNN model 

discovering the classification model in these images. Each image represents a single 
WBC data case, as a set of squares with a different level of intensities and colors. 

The CPC-R algorithm is a modification of Collocated Paired Coordinates (CPC) 
algorithm [22]. The CPC algorithm first splits attributes of an n-D point x = (x1, x2, 
. . .  , xn) to consecutive pairs (x1, x2), (x3, x4), . . .  (xn − 1, xn). If n is an odd number, 
then the last attribute is repeated to get n + 1 attributes. Then all pairs are shown 
as 2-D points in the same 2-D Cartesian coordinates and connected by arrows to 
form a directed graph x*: (x1, x2) → (x3, x4) → . . .  → (xn − 1, xn). This graph is 
equivalent to the n-D point x and it can be fully restored from the graph. 

The CPC-R algorithm, instead of connecting pairs (x1, x2) by arrows, uses the 
grayscale intensity from black for (x1, x2) and very light gray for (xn − 1, xn) for  
cells. Alternatively, intensity of a color is used. This order of intensities allows full 
restoration of the order of the pairs from the image. The size of the cells can be 
varied from a single pixel to dozens of pixels. For instance, if each attribute has 
10 different values then a small image with 10 × 10 pixels can represent 10-D 
point by locating five gray scale pixels in this image. This visualization is lossless 
when values of all pairs (xi, xi + 1) are different and do not repeat. An algorithm for 
treatment of colliding pairs is presented in [21]. 

Figure 17a shows the basic CPC-R image design and Fig. 17b shows a more 
complex design of images, where a colored CPC-R visualization of a case is 
superimposed with mean images of the two classes, which are put side by side, cre-
ating double images. The experiments with such images produce accuracy between 
97.36% and 97.80% in tenfold cross-validation for different CNN architectures on 
benchmark datasets [21]. The advantage of CPC-R is in lossless visualization of n-D 
cases, and the ability to overlay them using heatmap with salient points discovered 
by the CNN model, for model explanation. See Sect. 6 for more details on heatmap 
explanations.
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Fig. 17 CPC-R visualization of non-image 10-D points. (a) 10-D point (8, 10, 10, 8, 7, 10, 9, 7, 
1, 1) in CPC-R. (b) Visualization in colored CPC-R of a case superimposed with mean images of 
two classes put side by side 

Fig. 18 DCP algorithm process 

4.5 Case Study with RPPR Algorithm 

This case study continues using the same WBC data as case studies above, but using 
Reverse Prediction Pattern Recognition (RPPR) algorithm [37]. This algorithm 
incorporates the prior DCP algorithm [20]. The goal is reaching both interpretability 
and high accuracy with of RPPR at the level or above it for non-interpretable 
algorithms on the same WBC data. The DCP algorithm starts with producing the 
dominance classifier structure S = 〈{Vi, h1i, h2i, . . . , hki,}〉, essentially a table 
containing intervals {Vi} and the number of cases h1i, h2i, . . . , hki, of each class 
on the training data within the respective interval on each predictor attribute Xi. 

The next steps are combining dominance intervals in the voting methods, 
learning parameters of dominance intervals and voting methods for prediction, 
visualizing the dominance structure, and explaining the prediction. Figure 18 
illustrates this process of construction of dominance intervals. The RPPR algorithm 
boosts DCP by discovering pair relations between attributes, then learning from said 
relations to override inaccurate DCP predictions. Figure 19 shows the result of the 
DCP algorithm on WBC data, with a benign case on the left and malignant case on 
the right, where each column represents an attribute, with colored intervals being 
the dominant intervals for red and blue classes, respectively.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X1 X2 X3 X4 X5 X6 X7 X8 X9 

Fig. 19 Visualization of WBC data dominant intervals with a benign (on the left) and a malignant 
case (on the right) 

The steps of RPPR algorithm are: (1) Encoding elements of DCP algorithm 
as Boolean vectors, (2) Finding training cases misclassified by the DCP, (3) 
Discovering all the unique pairs for DCP False-Negative (FN) and DCP False-
Positive (FP) n-D points on training data, (4) Finding FN and FP n-D points in the 
validation/testing dataset with these unique pairs, and (5) Reversing prediction for 
these n-D points. Boosting DCP with RPPR allowed achieving accuracy over 99%, 
reaching the accuracy of non-interpretable algorithms and beyond using tenfold 
cross-validation on this WBC data. For more details and other experiments, see 
[37]. As far as we know, for this benchmark dataset, for the first time it is possible 
to have both accuracy and interpretability, rather than having to choose one at the 
expense of the other. 

5 Scaling of Visual Discovery of ML Models 

This section presents methods for scaling GLC-based methods of visual knowledge 
discovery and machine learning to large structured and unstructured data that is 
important for many application domains. 

5.1 GLC and Embeddings to Cut Dimensions 

The combining methods of Visual Knowledge Discovery (VKD) with Dimension 
Reduction (DR) methods expands applicability of VKD to large high-dimensional 
data. The approaches include combining General Line Coordinates (GLC) with 
different embeddings. Embedding [9] as mapping from discrete objects of very 
different nature, such as words, images, and graphs to vectors of real numbers have 
been very productive in many ML and DNN applications. However, usually new 
dimensions lack interpretability and special efforts are needed to interpret them. 
The combination consists of two steps. The first step is applying embedding to get
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Fig. 20 Comparing encoded digit 0 and digit 1 on the parallel coordinates using 24 dimensions 
found by the Autoencoder among 484 dimensions. Each vertical line is one of the 24 dimensions. 
(a) Digit “1”. (b) Digit “0”  

data of the lower dimension k from original n-D data and the second step is using 
lossless GLC-based algorithms, like used in cases studies above, on k-D data for 
ML model discovery. Below we illustrate this approach on classification of MNIST 
images of handwritten digits “0” and “1” [25]. 

At the first step, the Neural Network auto-encoder converts each 22 × 22 image 
(484-D point) to a vector of 24 features (24-D point). At the second step, these 24-D 
points are visualized in Parallel Line Coordinates. See Fig. 20 for digits “1” and “0”. 
The third step is searching for discriminating features in these visualizations for the 
given digits. The direct observation of visualizations allows seeing the differences in 
these 24 coordinates that are shown by black and green circles. For instance, in Fig. 
20, x2 and x7 are above the zero for all “1”, but can be zero for “0”. More specifically, 
x2 > 3 and x7 > 2 for all “1”. Also, x24 < 7 for all “1”, but it can be greater than 7 
for “0”. The fourth step is designing rules from discriminating features, directly 
from visualization without any computation, and explaining them. For instance, the 
observed properties of x2, x7 and x24 allow generating rules R1–R3: 

. R1 : if x2 < 3 then“0";R2 : if x2 < 2 then“0"; if x24 > 7 then“0".

These rules can be converted to a more conservative single rule: 

. R4 : if (x2 < 3) & (x2 < 2) & (x24 > 7) then“0".

The fifth step is removing the cases, which satisfy these rules, and then searching 
for rules from the remaining cases, in the same visual way as in the above steps, 
or assisted by analytical ML methods. The sixth step is tracing these 24 features in 
the images of “0” and “1” to find their origin for interpreting them and to make the 
classification rules/models intelligible. See Sect. 6 such for methods. Many other 
DR methods, not only auto-encoders, can be used in this approach. For instance, 
the first k principal components of Principal Component Analysis (PCA) can be
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used for DR as embedding, instead of the Auto-encoder. Similarly, it is not required 
to use the Parallel Line Coordinates, to visualize the reduced set of coordinates 
losslessly. Many other GLC- based methods can be used in this approach. The 
important advantage of this approach is the ability to control the loss of original 
n-D information in the DR process. For PCA, it can be done by selecting the first k 
principal components that cover, say, 90% of the total variance. 

5.2 Dimension Reduction and Visual PCA Interpretation 
with GLC 

While PCA is a most known and commonly used method for Dimension Reduction 
(DR) and n-D data visualization, it suffers from two major deficiencies: (1) 
difficulties to explain principal components and (2) loss of information when only 
the first two principal components are used to visualize n-D data. 

The GLC-PCA algorithm presented below provides a solution for both chal-
lenges. It combines a visual explanation of each of the principal components using 
the GLC-Linear (GLC-L) visualization algorithm [22], and the one described above, 
which visualizes the n-D linear functions, in 2-D and Shifted Paired Coordinates 
[22], also described above, to visualize all the n principal components in 2-D, 
without the loss of information. 

Figure 21 illustrates the GLC-PCA visualization algorithm, which allows rep-
resenting all PCA principal components, without loss of information, using two 
types of General Line Coordinates (GLC) – Shifted Paired Coordinates (SPC) and 
GLC-L. In Fig. 21, the value of explained variance (EV) ratio for each principal 
component wi is shown next to its name wi. All principal components are ordered 
according to their EV value. The black polyline (graph) shows losslessly all 8 
Principal Components of 8-D data, as a sequence of pairs in SPC: (w1, w2) → (w3, 
w4) → (w5, w6) → (w7, w8). 

The red and blue polylines show, in GLC-L coordinates, how each Principal 
Component wi is formed as a linear combination of the original attributes x1–x8 
of the 8-D point x. The length of each red and blue segment shows the value of 
the respective original attribute xj. The angle qij of the segment to the respective 

PrC w2 
E E  

E E E 

E E 
PrC w4 

PrC w6 PrC w8 

PrC w1 

Explained 
Variance 

PrC w3 PrC w5 PrC w7 

Fig. 21 All PCA principal components w1–w8, visualized in Shifted Paired Coordinates, and 
GLC-Linear coordinates, for an 8-D data point x = (x1, x2, . . . , x8), without loss of information
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Fig. 22 Two 4-D points in 
the first two principal 
components in GLC-PCA 

PrC w2 

PrC w1 

coordinate represents the contribution of the original attribute xi to the principal 
component wi. The original attributes xj with smaller angles qij are most contributing 
to the principal component wi. Figure 22 shows two 4-D points in the first two 
principal components in GLC-PCA. 

The idea of GLC-PCA algorithm is visualizing not only the first two components 
y1 and y2 of each n-D point y, as it is done in visualization using PCA, but other 
yi components of y too. In addition, the GLC-PCA algorithm shows visually how 
each yi from y is formed as a linear combination of xi of n-D point x. GLC-PCA 
allows the visualization of dimension reduction naturally. For instance, let the first 
4 principal components out of 8 principal components, cover 85% of total variance 
and it is considered that these 85% are sufficient for the task then only these 4 will 
be visualized in GLC-PCA and used later for the model discovery. 

5.3 Cutting the Number of Points and Dealing with Complex 
Data 

Another aspect of visual knowledge discovery at scale is dealing with a large number 
of n-D points not only with large dimensions. A common approach to move from big 
data to smaller data is selecting a data subset, which captures properties of big data. 
The most popular idea here is data clustering with selecting representative cases 
from each cluster for further model discovery. Such clustering often is conducted 
by solving the optimization problems to maximize different similarity measures 
between n-D points. The review of these approaches can be found in [8]. This 
general idea is specified for different data types such as sequential and relational 
data, which is the area of active research [8, 34].
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6 Visual Explanation of Analytical ML Models 

Often visual ML model explanation relies on the same techniques as ML model 
visualization, while the goal of explanation is more specific. The ML model 
visualization typically does not produce an explanation itself but can create a basis 
for deriving the explanation. In this section, we focus on conceptual differences 
between the different methods of visual explanations. 

6.1 Types of Explanations 

While multiple definitions of terms “understanding”, “interpreting”, and “explain-
ing” exist [1, 33] we favor one that requires describing the trained ML model in 
terms of domain ontology without using terms that are foreign to the domain where 
the ML task must be solved. Below we focus on externally and internally interpreted 
ML models. 

The externally interpreted models are trained ML model explained in terms of 
interpretable input data and variables, but without interpreting the model structure. 
In [36] it is called as post-hoc interpretability, functional understanding, and 
decision understanding. This type of explanation is common for trained “black-
box” Deep Neural Networks (DNN). Visualization of the space of input and output 
data of the trained ML model is an attractive approach for visual explanation of the 
trained ML model. It allows seeing the borders between classes produced by the 
model, e.g., see Figs. 2 and 5 in this chapter. While it is often challenging for the 
high-dimensional data, lossless or hybrid visualization methods make it feasible for 
many datasets. 

The internally interpreted models are trained ML models explained in terms of 
interpreted elements of their structure not only inputs, e.g., trained decision trees, 
which are both internally and externally explainable ML models. Visualization of 
the model structure, in addition to visualization of the input data space and outputs 
of the model, is an attractive approach for this type of visual explanation. 

Another aspect of the interpretability is its coverage: entire model explaining 
vs. explaining individual model predictions. Often individual predictions are 
explained using what we call tabular pro-con explanation. For a given new case 
c to be predicted, it shows pro cases (similar cases) and con cases (dissimilar cases) 
from classes. This is also an external explanation that does not go inside the model 
structure. This is a common explanation idea in k-nearest neighbors and case-based 
reasoning algorithms [33]. Respectively, there are two types of visual explanations 
based on (1) visualization of the entire model and entire input data space and (2) 
visualization of the given case and its nearest neighbors. 

Two other explanation types are explicit and implicit explanations. Decision 
trees exemplify the former and heatmap-based explanations for deep neural network 
exemplify the latter. The next section is devoted to implicit explanations.
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6.2 Heatmap Pixel-Based Implicit Explanations 

Classification of an image A by deep neural network (DNN) can be explained 
implicitly by showing another image B, as an explanation. The idea is that if two 
inputs and predictions are similar then the explanation should be similar. If the 
similar property is not identified, then it is an implicit explanation that depends 
on the person who see the image B and needs to discover this similar property. 

Often a similar image B contains dominant (salient) pixels of image A that are 
presented as an explanation of A. For example, DNN classifies the image A as a boat 
vs. a car and a truck [36]. The dominant pixels of image B represent the mast as a 
distinct feature of the boat relative to a car and a truck. Commonly such dominant 
pixels are colored according to their positive and negative scores for classes forming 
a heatmap. 

While this is an acceptable implicit explanation, it assumes a human who 
recognizes a mast in these pixels. Thus, it is incomplete explanation, a more  
complete explanation names a group of pixels, e.g., mast. Next, this explanation 
is not applicable to another boat in the same image A, because that boat has no 
mast and requires its own explanation with another concept represented by its 
named group of pixels, e.g., people. Such conceptual explanations cannot be derived 
from the given trained DNN model, which recognized the boat, because it was not 
trained to recognize a mast or people explicitly. It is easy for a human to recognize 
such meaningful feature as a mast in a picture of the natural scene. In contrast, 
in medical imaging, if a radiologist cannot match DNN dominant pixels with the 
domain concepts such as tumor, these pixels will not serve as an explanation for the 
radiologist. 

One of the methods to generate similar images B with dominant pixels is the 
activation maximization. The objective function of the optimization model for this 
maximization includes two components: one for maximization of activation and 
another one (regularizer) to ensure similarity of images [36]. The major challenges 
in activation maximization methods are (1) getting an image B with clear features, 
(2) selecting between competing images B (and dominant pixels) [38], and (3) 
interpreting dominant pixels as meaningful features. 

Some alternative methods to find dominant (salient) pixels in DNN include: (i) 
sensitivity analysis by using partial derivatives of the activation function to find the 
max of its gradient, (ii) Taylor decomposition of the activation functions by using 
its first-order components to find scores for the pixels, (iii) Layer-wise relevance 
propagation (LPR) by mapping the activation value to the prior layers, and (iv) 
blocking (occluding, perturbing) sets of pixels and finding sets, which cause the 
largest change of activation value that can be accompanies by the class change of 
the image [36]. More approaches are reviewed and compared in [2, 5, 12, 40, 42, 
47]. 

Two criteria are commonly used to find the sets of dominant (salient) pixels: 
(i) max contribution to output activation, and (ii) max of the changes in the output 
(class change). These criteria can contradict each other and, in general, a difficult
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Fig. 23 Example of different heatmap methods [41] 

multi-objective optimization problem must be formulated and solved. In practice, 
different linear combinations of them are used. 

Guidotti et al. [13] review methods for explaining black box models based on 
Saliency Masks (maps), SM, visualization serving as meta-predictors that predicts 
the response of a black box to certain inputs. The sources of the SM are network 
activations. These approaches are known as Class Activation Mapping (CAM). 
They can visualize the linear combination of a late layer’s activations, label-specific 
weights, or gradients by invoking back propagation and/or activation. Often these 
results are aesthetically pleasing providing heuristic explanations of image saliency 
[13]. For texts, it can provide a rationale (local “explanator) – a few words sufficient 
for the prediction of the original text. 

Figure 23 illustrates the difference between the two heatmap methods. It shows 
that LRP explains the bird better, but this explanation is still implicit. The formal 
measure based on destroying some pixels and checking the change of the activation 
function captured this difference [41]. A human can understand that Fig. 23 shows a 
bird, due to the nose n, the tail t, and their relation R(n, b, t) with the body b, which 
is between them. This relation R is not a part of the heatmap implicit explanation. 
A human derives it from the image, knowing that the body must be between the 
nose and the tail to be a bird. This is a common situation for all heatmap implicit 
explanation – they do not identify explicitly the relations between the features that 
they represent. This example shows the need to go beyond heatmaps. 

7 Conclusion and Future Work 

This chapter surveyed explainable machine learning approaches boosted by visual 
means. It includes motivation and comparison of analytical and visual ML method-
ologies, the input-based and structure-based types of methods of visualization 
of analytical ML. The chapter demonstrated that the approaches for discovering 
analytical ML models aided by visual methods are diverse and are growing. The
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theoretical limits to preserve n-D distanced in lower dimensions are presented based 
on the Johnson-Lindenstrauss Lemma for point-to-point approaches. Further studies 
beyond the arbitrary points explored in this lemma are needed for the point-to-
point approaches. In contrast, point-to-graph GLC approaches do not suffer from 
the limitations established in this lemma. Several real-world case studies, based 
on multiple GLC-based algorithms, had shown their advantages while multiple 
enhancements will be beneficial. The dimension reduction and clustering methods 
are outlined to support scalability and interpretability of the reviewed methods, 
including the visual PCA interpretation with GLC, and clustering for cutting the 
number of points. 

Heatmap methods belong to the growing sensitivity [19] and the attribution 
[43] approaches that identify the elements of the input, which most affect the 
output. It is likely that heatmap implicit visual explanations will continue to be 
the focus of further studies, while this chapter has shown the need to go beyond 
heatmaps. Next, both the local and global explanation approaches need to be 
developed deeper. Below we list just a few future directions in interpretable visual 
knowledge discovery and ML among many others that can be developed. The first 
one is explaining ML models in human-relatable features in the Concept Activation 
Vectors (CAV) [19]. The next direction is combining neural networks with logic 
rules [15], which opens an opportunity to visual ML models, beyond the pixels and 
heatmaps, in line with the association rule visualization shown in Sect. 2.1. The  
GLC-based methods can contribute significantly to developing future interpretable 
ML models, due to their advantages such as lossless (reversible) visualization of 
n-D data, as graphs, and the interpretability of GLC-based predictive ML models. 
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Visual Analytics and Human Involvement 
in Machine Learning 

Salomon Eisler and Joachim Meyer 

1 Introduction 

The use of computers and sensors in practically all parts of life dramatically 
increased the amount of available data. Numerous visualization techniques and 
graphic tools have been developed to help people understand and analyze the 
information in the data. Keim [35] and others suggested that for data mining (an 
old synonym of data science) to be effective, humans have to be included in the 
data exploration process to combine the flexibility, creativity, learning capability, 
and general knowledge of the human with the enormous storage capacity and the 
computational power of today’s computers. However, humans’ cognitive abilities 
have not changed, creating a large discrepancy between the complexity of the data 
and human cognitive capacities. Since humans inspect the data largely through 
visualizations, the discrepancy can be seen as a problem of visual scalability, which 
is defined as the capability of visualization tools to effectively display large data sets 
in terms of either the number or the dimension of individual data elements [34, 41]. 

But what happens when humans do not have to “see” the information, when the 
analysis and learning processes are done by a machine? The current huge demand 
for data scientists indicates that even though ML and AI have become major tools 
for knowledge discovery with databases (KDDs) [23], humans are still strongly 
involved in the process. To this end, humans need to gain knowledge about data 
properties and the results of analytical procedures. These “insights” rely to a large 
extent on the visual display of information, i.e., visualization. The choice of the 
visualization method and its implementation will depend on properties of the data, 
the problem for which the data are analyzed, the purpose of the analysis, and other 
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factors [60, 65]. In the following sections, we will review the major tasks carried 
out by data scientists and the user interfaces and visual analytics related to them. 

2 Overview: Visualizations Used During the Steps of the 
Machine Learning Process 

In this section, we provide a high-level overview of the steps of machine learning 
(ML) and discern when and why visualizations can be used to improve the process. 
In the next section, we provide details for each step. 

The seven steps of machine learning (ML) are data collection, data preparation, 
model selection, model training, evaluation and interpretation, parameter tuning, 
and prediction making [59, 28, 14]. They are similar to the process described by 
Fayyad for KDD [23]. Figure 1 depicts these seven steps of machine learning.

The analytical methods of ML usually require the data to have a certain form 
and structure. The process of converting the data into the required structure is called 
data preparation. Transforming the data to a tabular format, removing or inferring 
missing values, removing outliers and anomalies, and converting data to different 
types are examples of data preparation. Sometimes the techniques use categorical 
data, while others handle only numeric values. Usually, also, numerical values need 
to be normalized or scaled so that they are comparable [24]. During this step, several 
tasks often involve data visualizations to help detect relevant relations between 
variables or class imbalances, identify anomalies and outliers, and perform other 
exploratory analyses [59]. Visualizations for this step should not be very different 
from the visualizations used in classical KDD, with the exception that they often 
involve large amounts of data, and the data scientist can encounter visual scalability 
issues. 

Model selection is determined by the business or scientific question that has to be 
answered using ML, the type of data, and its behavior. Often more than one model 
can answer the question. One therefore needs to understand the data to select the 
ML model, and visualizations may support this task. Again, as mentioned above, 
visualizations should not be very different from visualizations in traditional KDD. 
Even if visualizations are not used during model selection, it is important to review 
this step, because the selected model may also determine the visualizations used in 
the next steps of the process. 

The model training step is when the model learns by using the data and computes 
its internal parameters. This is done on a set of data that should be as ergodic as 
possible, so that when the model is applied to the testing data and to real-world 
data, it will continue to provide good results. Here, visualizations are important, as 
they can help to monitor how the model converges to a solution. 

The goal of the evaluation step is to assess the ML results rigorously to gain 
confidence that they are valid and reliable and that the model satisfies the original 
business goals before moving on [24]. This is done, using a separate set of data,
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Fig. 1 The 7 steps of machine learning

called test data, with the expectation of getting results, similar to those achieved 
during the training step. Visualizations can also support this step very efficiently. 

The interpretation step involves qualitative assessments. Various stakeholders 
have interests in the decision-making that will be accomplished or supported 
by the resultant models [24]. During this step, it is important to consider the 
comprehensibility of the model to stakeholders [24], and here visual analytics may 
be crucial. 

Once the model has been defined, the model building is done with a programming 
language, supported by ML frameworks. More details will be introduced in Sect. 5. 

The parameter tuning step refers to hyperparameter tuning, which is more an 
art than a technique. The objective is to improve performance through fine-tuning 
of the number of training steps, learning rate, initialization values and distribution, 
etc. [28, 59]. The values of hyperparameters configure characteristics of the model 
and may highly impact the training performance. However, given the complexity 
of the model algorithms and the training processes, identifying a sweet spot in the 
hyperparameter space for a specific problem can be challenging [39]. Dashboards 
of SPLOM, heatmaps, and line plots can be used to determine the optimal set of 
parameters. 

The prediction in the real-world step uses data that were not used during the 
training to generate predictions [28, 59]. Prediction, or inference, is the step that 
provides the answers to the initial questions [28]. In this step, visualizations are 
mainly used for monitoring the results over time and to detect if the ML model 
needs to be modified because of changes in the data behavior. This is less relevant 
for the data scientist, and it is out of scope of this chapter.
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In the next sections, we will discuss the visualizations for data preparation, model 
selection, training the model, evaluation and interpretation, and parameter tuning in 
more detail. 

3 Visualizations in the Steps of the ML Process 

3.1 Data Preparation 

As mentioned above, during data preparation, one often wants to visualize data to 
help detect relevant relationships between variables or class imbalances, extract 
anomalies and outliers, and perform other exploratory analyses [59]. With the 
huge increase in the number of available observations and the number of features 
(variables) for each observation, it has become harder to provide clear and easy-
to-understand visualizations. One way to overcome the visualization scalability 
problem is to use automatic analysis methods to extract potentially relevant visual 
structures from a set of candidate visualizations and to rank the visualizations in 
accordance with a specified user task [80]. Once a manageable number of potentially 
useful visualizations are identified, the data scientist can start interactive data 
analyses [80]. 

From a data perspective, the most popular automatized available tool for sim-
plifying visualizations and for providing a better understanding is dimensionality 
reduction (DR). DR has become a core building block in the visualization of 
multidimensional data [74]. Examples of DR algorithms can be found in [21, 32]. 
Studies, [21, 16], have used scatterplots to evaluate users’ perceptions for different 
DR algorithms on four different data sets and four techniques to achieve DR. Not 
surprisingly, performance depends on data characteristics [21], and the density and 
surrounding information affects the perception of clusters [76]. Performance will 
also be affected by characteristics of the individual user’s cognition and perception 
[3, 27]. 

It is also possible to apply DR to network data that are visualized through 
graphs. A first step is to convert the graph data into a sparse matrix (called an 
adjacency matrix) that can be easily visualized. The second step is usually a matrix 
reorganization to reduce the graph to smaller graphs by partitioning its nodes into 
mutually exclusive groups [8]. The Laplacian matrix transformation is the most 
common example of this type of graph partitioning. The premise in the reordering 
of the adjacency matrix is to align the non-zero values close to the diagonal of 
the matrix, reducing the geometric distances between vertices, which results in a 
simpler visualization of graph partitioning [8]. Figure 2 shows graph visualization 
of 15,000 nodes from an Email network, based on traffic data collected for 112 days 
[18].
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Fig. 2 Left, graph visualization; right, adjacency matrix using the R igraphs package 

3.2 Choosing a Model 

ML models are either unsupervised or supervised learning models, depending on the 
type of problems they are intended to solve. With supervised learning, the machine 
(“the learner") receives target information, along with a samples collection [24]. The 
machine must develop a solution, which will match the target with the sample data. 
In unsupervised learning, target information is not included. The machine is left to 
reach its own conclusions about the common properties that exist in the samples 
collection [24]. 

Numerous supervised and unsupervised ML methods exist and require different 
visualization techniques. It is beyond the scope of this chapter to present an 
exhaustive review of all types of visual analytics for all methods, and we will focus 
only on some popular ones. 

The visualization techniques to be used for a specific machine learning model, as 
mentioned above, depend on the combination of the data types and the selected 
model [65]. The prevailing practice among data scientists is to use simple and 
intuitive visualizations: line plots, scatterplots, heat maps, contour plots, hierarchical 
trees, and several combinations of the above. The main differences between the 
visualization techniques are in the data elements that are visualized and the methods 
used to transform them. 

On the other hand, when having to cope with very large numbers of features, 
these visualization techniques are less beneficial for data scientists. One method, 
which tries to overcome this high-dimensionality problem, is the use of parallel 
coordinates (also called PCP for parallel coordinates plot). PCPs were introduced 
by Inselberg [44, 45, 46, 47] as a different approach to visualizing multivariate data 
[50, 49]. Instead of graphing every pair of variables in two dimensions, the data are 
plotted repeatedly on parallel axes, and then the corresponding points are connected
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with lines. There are many visualizations that are related to PCP either by sharing the 
typical parallel layout of axes or by the mapping of data points to lines [51]. PCPs 
treat each dimension uniformly. Because of this, users can make comparisons among 
dimensions without distortion. Uniform treatment becomes critical as the number 
of dimensions increases, as it is difficult, if not impossible, to make comparisons 
when dimensions are mapped to different visuals (shape, color, etc.) [48]. Parallel 
coordinates were originally used to visualize multivariate data by mapping different 
sequence charts, but they may also be used to present time-series data by mapping 
the different time steps to the individual axis [52]. The choice of the coordinate 
system will largely determine the patterns the visualization shows, and it is therefore 
important to learn how to “read” it. For parallel coordinates, this is not a trivial task, 
making its use less intuitive. R and Python already have libraries that support PCPs, 
so this visualization technique is available for data scientists. Figure 3 shows a PCP 
for the Iris data set. With it, one can see easily that there are three categories in the 
data.

The big challenge in parallel coordinates is the clutter produced by many lines, 
which hide the patterns contained in the data [51]. Lines use much more “real-
estate” than points, so that the mass of data appears much larger in parallel 
coordinates than in scatterplots. 

In parallel coordinates, the order of the axes is important. Reordering the axes 
may reduce clutter by revealing patterns that might have been hidden before. There 
are methods to reorder the axes [53]. 

Other variations of non-orthogonal axis visualizations are flexible linked axes 
[54, 55, 56], where a set of scatterplot matrices are linked with PCPs for analyses 
of high-dimensional data. Users can draw and drag axes freely, which is useful for 
different applications. Star Coordinates [48] is another example, where coordinates 
are arranged on a circle, sharing the same origin at the center. They use simply 
points to represent data, treating each dimension uniformly, even though this leads 
to rather crude representations. The purpose of the visualization is to gain insights 
and not accurate numerical analyses. A more recent and promising approach, 
which generalizes parallel, radial, and Cartesian coordinates, is lossless general line 
coordinates (GLCs) [58, 57]. Experiments showed [57] that methods using GLC can 
have higher expressiveness, while decreasing clutter and occlusion and simplifying 
visual patterns. At the same time, one can preserve all the multi-dimensional data 
in two dimensions by adjusting the GLC for the given multi-dimensional data sets. 
Still, this approach is so far not widely used. 

Different approaches are used for image processing and data graphs. In face 
recognition, the visualizations can be the arrays of face images. With network data, 
the visualizations are graph representations of the network, using different layouts 
of the data points (either in 2D or 3D). Sometimes symbols are used to consolidate 
several data points, with specific meanings assigned to the types of connections of 
the group of data points to reduce the visual clutter. Below is a short overview of the 
different ML models and their related visual analytics.
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Fig. 3 Iris data set visualization with parallel coordinates, using Ggparcoord function from 
GGally R package

3.2.1 Supervised Models 

Classification Trees Users either want to edit the tree (grow, prune, or optimize 
it), use the tree (classification), or analyze it (data exploration). Typically, users 
often switch between the edit and analysis process. For each task, one can identify 
important elements and extract requirements [82]. Several examples of classification 
tree models were cited in [32], and [82] present a good example of an interactive 
interface with a decision tree that supports editing, classifying, and exploring the 
tree. 

Regression Models These models can be used to isolate the relationship between 
outcome and explanatory variables, while holding other variables constant. Vi-
sualizations are important when interacting with this kind of models, because it 
is possible to visually represent these relationships in an easy-to-understand way 
with simple scatterplots. When the relationship between an explanatory variable 
and the response depends on multiple regression coefficients, the model’s fit is 
more readily understood with a visual representation than by looking at a table of 
regression coefficients [7]. Examples of classification regression models are shown
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Fig. 4 SPLOM plot using R and the plotly package—[69]

in [32]. Figure 4 shows a scatterplot matrix (SPLOM) that can be used to quickly 
explore distributions (clustering—unsupervised) and relationships (regressions— 
supervised), based on the known Iris data set and created with R. 

Cross-sectional plots, contour plots, and 3D representations of the regression 
surface [7] are helpful in visualizations for regression models. Figure 5 depicts 
examples of this type of visualizations. 

Bayesian Networks (BNs) These plots, also known as belief networks [4], are 
related to the family of probabilistic graphical models (GMs). Their graphical struc-
tures are used to represent knowledge about an uncertain domain [4]. Visualizations 
of this type of models are similar to decision tree visualizations. An example of a 
tool that visualizes BNs is BayesViz’s [13]. This tool presents the inferred network 
with edges, colored per correlation coefficient, and colormap tables, representing 
the conditional relationships between the values of parent and child nodes.
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Fig. 5 Representations of the regression surface as a function of X1, X2, and X3, using 
synthesized data where Y = 22 + 3X1 + 2X2 + 3X3. Left: Filled contour plots. Right: Perspective 
plots. Using R and code from [7]

Decision Tree Inducers Decision trees are constructed with inducers (also called 
classifiers). A decision tree inducer is basically an algorithm that automatically 
constructs a decision tree from a given (training) data set. Visualizations here are 
practically the same as in the decision trees above. Several models of this type exist: 
ID3, C4.5, CART, CHAID, QUEST, CRUISE, and many others [32, 70]. 

Support Vector Machines (SVMs) These models are used for both classification 
and regression challenges. SVMs are the only linear models that can classify data 
that are not linearly separable [4]. Visualizations are used in SVM to understand 
the decision boundary in the space of input variables. This decision boundary is 
estimated from available training data but is intended to be used for classifying 
future input samples [13]. Examples of SVM models are shown in [32]. In [4, 13], it
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Fig. 6 Clustering tendency [33] is detected in a visual form by counting the number of square-
shaped dark blocks along the diagonal in the image. The data set used is synthesized data shown 
in Fig. 7. Red: high similarity (i.e., low dissimilarity), Blue: low similarity

is possible to see a comparison of visualizations of the decision boundary for linear 
and nonlinear SVM models. 

3.2.2 Unsupervised Models 

Clustering Before applying any clustering algorithm to a data set, one first has 
to assess the clustering tendency (to understand whether the data set has natural 
clusters or not) (Fig. 6 [33]). The classification of objects into clusters requires 
methods for measuring the distance or the (dis)similarity between the objects. 
Visualizations can help to expose and analyze both the clustering tendency and 
similarity distances in the data [33]. Density-based clusters [20] are an additional 
way to visualize possible clusters. The main reason why it is possible to recognize 
clusters in Fig. 7 is that the density of points within each cluster is clearly higher 
than the density outside the cluster [20]. 
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Fig. 7 Density-based clustering can help to find clusters with different shapes and sizes from data 
containing noise and outliers [33] 

The percentage of data points above the similarity–dissimilarity line (PAS) 
shows the expected accuracy of the classifier, using a particular feature set [2]. 
The similarity–dissimilarity visualization for a high-dimensional feature space can 
provide very important information that can later help in the development of the 
models [2]. 

Hierarchical clustering is another type of a clustering analysis method that is well 
supported by visual analytics. Hierarchical clustering is an algorithm that is intended 
to create a hierarchy of clusters. The last layer of the hierarchy is a group of clusters, 
where each cluster is separate from the others, and the objects within each cluster are 
very similar to each other. Strategies for hierarchical clustering generally fall into 
two types: agglomerative and divisive. Agglomerative is a “bottom-up” method: 
each observation starts in its own cluster (leaf), and pairs of clusters are merged 
as one moves up the hierarchy until there is just one single big cluster (root) [33]. 
Divisive is a “top-down” approach: all observations start in one cluster (the root), 
and splits are performed recursively down the hierarchy. 

The visual representation of hierarchical clustering is a tree-based visualization 
of the objects, which is also known as dendrogram [33]. It can also be used to 
analyze network data. Figure 8 depicts four visualizations of the same data set 
(Offences recorded by the police in England and Wales by offence and police force 
area for 2001/02, from https://www.gov.uk/government/statistics/historical-crime-
data), with dendrograms and a heat map using R.

Graphs—Network Data A network consists of a collection of entities and the 
connections or relations between them. It can be visually represented as a graph, 
with vertices representing entities and edges representing their relationships [68]. 
This is an intuitive representation, because of the close similarity between the real 
world and the visualization. When data scientists explore the data via visualization, 
they almost explore the actual network. Networks are a special case, where the data 
scientist can use different ML techniques. These include routines for clustering,

https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
https://www.gov.uk/government/statistics/historical-crime-data
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Fig. 8 (a) Simple dendrogram, (b) dendrogram with 4 groups, (c) heat map using package 
pheatmap, (d) phylogenic dendrogram. Visualizations were prepared with R

decomposition, random graph generation, statistical analysis, and calculation of 
network distances [12]. Graphs need a separate approach for almost all the 7 
steps of the ML process. An example that specializes in graph data with specific 
graph visualizations is GRAPHVIS, which supports interactive techniques, such as 
brushing, linking, highlighting, as well as semantic zooming. 

3.2.3 Advanced Methods 

Deep Learning Deep learning includes a wide range of techniques, including 
neural learning networks, genetic algorithms [2], convolutional neural networks, 
recurrent neural networks, deep belief networks, etc. One characteristic of these 
methods is that it is hard to understand and interpret the underlying rules or 
mechanisms that produce the predictions, i.e., the methods are black boxes. These 
methods can be supervised or unsupervised. As we will see later, for the adoption 
and use of the model, it is often crucial to assure that one can interpret and explain 
the model, and this can be done using visualizations. One way of trying to interpret a 
neural network model is to create heat maps of the cells of the actual neural network. 
Reference [68] presents an example of a visualization for a neural machine that 
translates it. There, the x-axis and y-axis of a heat map plot correspond to the words
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in the source sentence (English) and the generated translation (French), respectively. 
Each pixel shows the weight ij of the annotation of the j -th source word for the i-th 
target word, which corresponds to the cells of the neural network. 

Ensemble Models Ensemble models are models that make predictions, based on 
a group of different models. While deep learning models are more appropriate 
in fields, such as image recognition, speech recognition, and natural language 
processing, tree-based ensemble models frequently outperform standard deep learn-
ing models with structured data where features are individually meaningful [11]. 
Visualizations of these decision trees are relatively easy to understand, as they show 
a hierarchical view of the step decisions, made by the classification model. 

3.3 Training the Model 

The goal of training is to enable the machine to learn the data, so that the answers to 
questions or the prediction are as correct as possible. If the processing is too heavy 
and takes too long, independently from the ML framework used, trained models 
need to be saved in a file and afterward restored to compare the model with other 
models, to test the model on new data or for checkpoints. The saving of data is 
called serialization, and restoring the data is called deserialization. Supporting this 
task with visualizations can be very helpful to the data scientist. An example of a 
framework that enables this feature is TensorFlow with TensorBoard (its suite of 
visualization tools) [1, 6, 26]. 

One also often needs to monitor the algorithm iterations to verify convergence 
and to evaluate the results. Several types of visualizations enable the data scientist 
to manage this process. For example, the progress of gradient descent on a test 
surface can be visualized for all the steps [30]. Sometimes it is useful to display the 
three-dimensional data in two dimensions, using contours or color-coded regions 
[83]. Figure 9 depicts a contour plot for gradient descent. The red line shows the 
convergence of the process to the minimum of the cost function.

3.4 Evaluation and Interpretation 

3.4.1 Evaluation 

Human interaction is very important in the evaluation step of the process. The 
right data, combined with the right data science techniques, will help to identify 
the models that optimize a cost criterion. However, only humans can decide on 
what is the best criterion [24]. One strategy for making decisions is to rank a set 
of cases by scores and then take actions on the cases at the top of the ranked list. 
This can be achieved using profit curves, which consider costs/benefits related to
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Fig. 9 Contour plot illustration using R. The red line shows the gradient descent convergence

true positives, false positives, true negatives, and false negatives. Profit curves are 
appropriate when the conditions under which a classifier will be used are known 
with high certainty. A profit curve can help optimize overall profit and help select the 
best model and predicted probability threshold [37]. Figure 10 shows an example of 
cumulative gains and profit curves for three classifiers, using R package modelplotr 
based on the Bank Marketing Data Set [64].

Different evaluation methods should be used when the conditions under which 
the classifiers are used are uncertain or unstable. One such method is the receiver 
operating characteristics (ROC) curve. ROC curves can serve as the basis for 
performance measurements in classification problems at various thresholds settings. 
ROC is a probability curve, and area under the curve (AUC) represents the degree 
of how much the model is capable of distinguishing between classes. The higher 
the AUC, the better the model predicts 0s as 0s and 1s as 1s or distinguishes 
between positives and not positives [66]. Figure 11 depicts an example of a 
ROC curve, and the diagonal line .x = y represents random performance, using 
the wine quality data set from https://archive.ics.uci.edu/ml/data-sets/wine+quality 
and the pROC R package, code from https://www.kaggle.com/milesh1/receiver-
operating-characteristic-roc-curve-in-r. Another, more intuitive visualization for 
model evaluation is the “cumulative response curve.” Cumulative response curves 
plot the true positive rate, which is the percentage of positives correctly classified, 
as a function of the percentage of the population that is targeted (x-axis) [24].

Another metric that can be useful for evaluating a clustering model is the 
silhouette coefficient (Si) [73]. It is a visualization method for interpreting and 
validating the consistency within clusters of data. A value of Si close to . −1 indicates 
that the object is poorly clustered. The silhouette plot displays a measure of how 
close each point in one cluster is to points in the neighboring clusters. It thereby 
provides a way to visually assess parameters, such as the number of clusters. 
Figure 12 shows the silhouette plot of a k-means clustering, using the synthesized 
data set shown in Fig. 7.
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https://archive.ics.uci.edu/ml/data-sets/wine+quality
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Fig. 10 Cumulative gains and profit plot for classifiers

Fig. 11 ROC curve. The 
diagonal line . x = y

represents random 
performance, comparing 2 
classification models
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Typically, data scientists will perform several training processes to be able to 
compare model performance. The visual comparison of model performance for 
several experiments can result in heavy cognitive load for the data scientist. A couple 
of examples that support this visual process are Squares [71] and iVisClassifier 
[15]. Squares has been used for displaying the performance of a classifier trained 
on a handwritten digits data set. iVisClassifier includes dimensionality reduction 
techniques, scatterplots, and parallel coordinates to support examination of model 
behavior. 

In ML, a confusion matrix is commonly used to present the accuracy of a learning 
algorithm. It is possible to compare model performance, showing the evolution 
of the confusion matrix over the training steps [40]. Its visual representations are 
stacked plots that reveal the changes of true positives and false positives for each 
feature over iterations [40].
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Fig. 12 [33] clusters silhouette plot, and silhouette width is also an estimate of the average 
distance between clusters. Values are between 1 and . −1, with a value of 1 indicating a very good 
cluster

3.4.2 Interpretation 

One of the most debated topics in deep learning is how to interpret and understand a 
trained model, particularly in the context of high-risk industries, such as healthcare 
[77]. The interpretation step includes interpreting the discovered patterns and 
possibly returning to any of the previous steps, as well as visualization of the 
extracted patterns, removing redundant or irrelevant patterns and translating the 
useful ones into terms users can understand [32]. The visualizations in this step 
are critical, as they can be crucial in getting the organization’s trust to accept and 
adopt the specific ML model and algorithms [72]. Visualization methods provide the 
necessary means to simultaneously analyze the huge amount of information hidden 
in a deep learning neural network [5]. 

It is possible to typifyMLmodels interpretability into two types [61] according to 
the models interpretability: glassbox and blackblox models. The first type is related 
to ML models that are interpretable by design, such as linear models, rule lists, 
decision trees, regressions, and generalized additive models [61]. The second type 
is related to ML models for which interpretability was not an intrinsic element 
of their design (such as CNNs) and that need an additional “ML” layer that uses 
explainability methods (i.e., partial dependence, LIME, SHAP) for explaining those 
models [61]. Here we will focus on the interpretability of blackbox ML models.
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Interpretability Techniques for Blackbox Models Deep learning networks, such 
as neural networks, convolutional neural networks, or deep belief networks, are 
considered black boxes. It is possible to divide the visualization methods used 
to interpret the ML models into three classes: preliminary methods, qualitative 
patterns, network visualizations methods, and model-agnostic [62] quantitative 
methods. 

Preliminary Methods [77] These are simple methods, which show the overall 
structure of a trained model. These methods just show a diagram of the neuron’s 
connections. In [81], an example of such a method is shown for the overall structure 
of a model using the Theano framework. 

Qualitative Patterns Network Visualizations Methods [19] These are qualitative 
representative methods that try to improve the CNNs interpretability using visually 
perceptible image patterns [19]. This approach is based on the CNNs hierarchical 
feature representation mechanisms that try to mimic (biomimicry) the hierarchical 
structure of the visual area in the human brain (this is also the reason why ML 
models for image processing are usually CNNs). With this type of methods, it is 
possible to elucidate the roles of individual neurons or groups of neurons and to 
gain insights on what they are doing [77]. 

To get insights regarding the association between features and neurons, the data 
scientist needs to seek the preferred stimulus to recognize the individual kind of the 
reaction and show the response to specific visual patterns. These methods tend to 
manipulate the gradients that are formed from a forward and backward pass while 
training a model. Saliency maps are a visualization technique based on gradients, 
to understand and visualize the nonlinearities embedded in feed-forward neural 
networks [63]. Examples can be seen in [79]. Color segmentation is used, because 
the saliency map might only capture the most discriminative part of an object, and 
saliency thresholding might not be able to highlight the whole object. Therefore, the 
map with the thresholding was propagated to other parts of the object, which was 
achieved using the color continuity cues [79]. A recent survey [19] identified four 
representative types for this approach: activation maximization, deconvolutional 
networks, network inversion, and network dissection. 

Model-Agnostic Quantitative Methods Model-agnostic methods do not depend 
on the ML model to be interpreted and assign a number to each of the features that is 
related to its importance. Examples are partial dependence plots, accumulated local 
effects, feature interaction, feature importance, global surrogate models, prototypes 
and criticisms, local surrogate models (LIME), and Shapley values explanations and 
counterfactual explanations [62]. For a quite exhaustive review of those examples 
and more, see [62]. 

Two very known methods are Shapley Values and LIME. LIME tests what 
happens to the predictions when there are variations in the features data of the ML 
model, which is a very intuitive approach. However, the Shapley value, according to 
[62], might be the only method to deliver a full explanation for ML models, while
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Fig. 13 SHAP plots for a rental bike data set [22] using R code from [9]. Left—SHAP summary 
plot of a 10-feature model. Right—importance plot, based on SHAP, using a classical bar chart, 
showing the importance of the predictors[42] 

methods such as LIME only assume linear behavior of the ML locally that has not 
been theoretically proven. 

The Shapley value has also some disadvantages [62] and may not be the preferred 
method for all cases. Its computation requires a lot of system resources. The Shapley 
value may not be efficient if one needs an interpretation that uses only a subset 
of the features because it always uses all the features. For selective explanations, 
LIME or a variation of the Shapley value method called SHAP (SHapley Additive 
exPlanations) [43, 42], which does not require the full features set [62], may be 
better choices. Another possible disadvantage of SHAP, compared to LIME, is that 
SHAP does not provide explanations regarding the “sensitivity” of the predictions to 
changes of the features (which exist in LIME) [62]. SHAP only provides the feature 
importance for every feature. The impact of features is frequently plotted with bar 
charts to represent global feature importance, or with a partial dependence plot to 
represent the effect of changing a single feature [25]. SHAP summary plots replace 
typical bar charts of global feature importance, and SHAP dependence plots provide 
an alternative to partial dependence plots that capture interaction effects better [42]. 
Figure 13 depicts a SHAP summary plot of a 10-feature model. The y-axis indicates 
the variable names, in order of importance from top to bottom. The value next to 
them is the mean SHAP value. On the x-axis is the Shapley value, which indicates 
the change in log-odds. From this number, it is possible to extract the probability 
of success. Gradient color indicates the original value for that variable. Each point 
represents a row from the original data set [10, 9]. 

Figure 14 depicts SHAP interaction dependence plots, which use the SHAP value 
of a feature for the y-axis and the value of the feature for the x-axis to present how 
the feature’s attributed importance changes as its value varies. SHAP dependence 
plots capture vertical dispersion, due to interaction effects in the model. These
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Fig. 14 SHAP dependence plots for each of the 10 features from the rental bike data set [22], 
using R code from [9] 

effects can be visualized by coloring each dot with the value of an interacting 
feature. 

As mentioned above, graph data need different treatments for almost all 7 steps 
of the ML process. There are two main entities that are usually considered when 
exploring graph data: Triplets and Motifs. Computing triangles in graphs has wide 
applications in network analysis, for identifying dense subgraphs, and for uncov-
ering hidden thematic layers [8]. Triangle computations help to visualize clusters 
in graphs and support the data exploration during data preparation. Motifs are 
frequently recurring patterns of basic structural elements that occur in graphs [17]. 
They are small, local patterns of interconnections that occur throughout a network 
with significantly higher probability than in random networks. Motif detection 
is helpful for interpreting the graph. One way to detect and to simplify motifs 
visualizations is by replacing motifs in the network with easily understandable 
glyphs [17]. 

A similar approach, which goes beyond motifs, is identifying and visualizing 
clusters of motifs, called modules in [38], in the graph and then visualizing the 
relations between the modules in a hierarchical way [38]. This reveals graph patterns 
for each module and allows users to gain a better understanding of the structure of
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the graph. ModulGraph [38] graph visualization can show the relations between the 
communities of motifs and the different kinds of communities. 

Another element, when exploring a graph, is to use graphlet frequencies to 
analyze the topological similarity of its subgraphs, using graph kernels [36]. In 
simple terms, the graphlet frequency vector of a graph is like the feature vector 
of the graph [36]. If the graphlet frequency vectors are not similar, then the layout 
of each graph will look different. 

3.4.3 Hyperparameters Tuning 

Today’s hyperparameter tuning processes are highly empirical, using rules-of-
thumb. They are “human driven,” as they are performed manually by the data 
scientists. The ML tuning step has been described as a “a project involving multiple 
experiments, which may last several hours or days.” The number of hyperparameters 
differs between models, but there may often be more than 12 parameters. The 
optimizing algorithm, dropout rate, the number of layers, and the width of each 
layer are hyperparameters that are commonly tuned. For supervised models, the key 
performance metrics (KPIs) are usually accuracy, precision, recall, and ROC curves. 
Additional KPIs are the learning curve (how steep is the initial step and when does 
it approach the asymptote), training loss vs. validation loss (to detect overfitting) 
[39]. To create visual analytics for hyperparameter tuning, it is necessary to capture 
and efficiently store the received KPIs, together with the employed parameters, per 
each tuning round. In this regard, this is similar to the traditional BI approach, 
where the data are stored and then visualized, using dashboards with combinations 
of SPLOM, heatmaps, and line plots for different combinations of the KPIs and 
hyperparameters. Such an approach was described by Tian [39]. 

3.4.4 Summary 

In Fig. 15, we summarize the visualization methods, using a mapping of the 
techniques related to 6 of the 7 machine learning steps: data preparation, training, 
evaluation, interpretation and hyperparameters tuning for classic supervised and 
unsupervised models, deep learning models, and ensemble models.

4 User Interfaces and Frameworks 

As mentioned in section 2, once the model has been defined, it is necessary to 
build it. Model building is done, using a programming language, such as Python, 
R, C++, JavaScript, or Java (see [29, 67, 78] for a more complete list), supported by 
well-known ML frameworks such as TensorFlow, Torch, PyTorch, Jupyter Python, 
etc. (see [29, 67, 78] for a more complete list). ML frameworks are interfaces,
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libraries, or tools that allow developers to build machine learning models easily 
and quickly, without needing to code all the underlying algorithms. ML frameworks 
have collections of pre-built, optimized components. They come with user interfaces 
that are intended to make it easier to understand, debug, and optimize the ML 
programs. 

Not all the ML frameworks have the same level of interactive features. Some 
of them only provide a coding platform for the data science practitioner. Others 
can turn into an end-user application for the expert analyst, including interactive 
visualization features, such as zooming and filtering different regions of the 
display, switching between types of visualizations, and moving graphs via drag 
and drop. This is mainly the case for interactive visualizations with graphs, 
such as GRAPHVIZ (www.graphviz.org) and D3VIZ from Theano [81]. As the 
development of interactive visualization frameworks for ML is trying to catch up 
with the explosion of ML development, many applications and tools are appearing 
in this domain. However, these visualization tools mainly focus on specific steps 
of the ML process or on specific models. Examples are BOOSTVis, which is a 
visual diagnosis tool to help experts analyze and diagnose the training process of 
tree boosting [40], or iVisClassifier [15] for face recognition. 

5 Discussion 

One of the big challenges of the adoption of ML in organizations is understanding 
and interpretation [31]. Trust is hard to get when the ML algorithm is a “black box” 
[72]. The areas of explainability and interpretability are still emerging. Whenever 
a new ML model is proposed, questions arise regarding the data used and how the 
model works and how it will impact the current processes. Visualizations are one of 
the best ways to interpret and explain the data and the models. 

Questions, such as what the data were used to train the model, and why was 
this data and model combination used, often do not have the straightforward 
answers one might expect. To partly address this problem, data lineage methods, 
using visualizations, can be employed to explain how the data were changed and 
transformed [31]. 

In many academic fields, algorithms showing high explanatory power are often 
assumed to be highly predictive [84], but this is not always the case. There are many 
situations where building the best predictive model differs from building the best 
explanatory model [84], and modeling decisions often result in trade-offs between 
the two objectives. When the only objective is to get the best prediction, the goal 
is quite clear: to find a systemic function that can be treated as a black box, which 
will result in the lowest average error in the predictions. On the other hand, when the 
objective is to support “singular, monumental decisions made by businesses, such as 
how to position a new entrant within a competitive market” [75], the function cannot 
be completely treated as a black box. In this event, visualizations are and will be a
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necessary persuasion tool to convey the message of what and why a specific data-
driven decision should be made. 
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Explainable Artificial Intelligence (XAI): 
Motivation, Terminology, and Taxonomy 

Aviv Notovich, Hila Chalutz-Ben Gal, and Irad Ben-Gal 

1 Motivation 

Deep learning algorithms and deep neural networks (DNNs) have become extremely 
popular due to their high-performance accuracy in complex fields, such as image and 
text classification, speech understanding, document segmentation, credit scoring, 
and facial recognition. As a result of the highly nonlinear structure of deep learning 
algorithms, these networks are hard to interpret; thus, it is not clear how the 
models reach their conclusions and therefore, they are often considered black-box 
models. The poor transparency of these models is a major drawback despite their 
effectiveness. In addition, recent regulations such as the General Data Protection 
Regulation (GDPR), require that, in many cases, an explanation will be provided 
whenever the learning model may affect a person’s life. For example, in autonomous 
vehicle applications, methods for visualizing, explaining, and interpreting deep 
learning models that analyze driver behavior and the road environment have become 
standard. Explainable artificial intelligence (XAI) or interpretable machine learning 
(IML) programs aim to enable a suite of methods and techniques that produce more 
explainable models while maintaining a high level of output accuracy [1–4]. These 
programs enable human users to better understand, trust, and manage the emerging 
generation of artificially intelligent systems [4]. 

Many people do not feel comfortable when blindly agreeing with an AI system’s 
decisions in various situations, without some understanding of the decision-making 
process used by such a system. To achieve trust in AI systems, detailed “explana-
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tions” of AI system decisions seem necessary. Such explanations provide insights 
into and interpretability of the rationale of the applied AI algorithms and help users 
trust the system conclusions. As ML and AI modeling are increasingly involved in 
critical areas such as transportation, retail, insurance, medicine, criminal justice, and 
financial markets, it seems vital that these models become more easily understood 
[9]. 

The XAI-related concepts of explainability, interpretability, and accuracy are 
presented next, followed by segmentation of XAI methods. 

2 Explainability, Interpretability, and Related XAI Terms 

The definitions of both AI explainability and AI interpretability have multiple 
meanings and sometimes there is little to no consensus in the research community 
regarding these terms [1]. There are a few conflicting definitions that differ from 
each other in terms of theme and community. In particular, various AI-related 
communities approach the concept of explainability from different angles. The term 
explainable AI (XAI) has a double meaning itself. Sometimes it is used to represent 
methods that help explore the mechanisms of the AI methods or the AI systems 
themselves; for example, a researcher may seek an interpretation of how these 
methods or systems work or which features are important when making predictions. 
In other cases, the term XAI is related to explanations about particular inputs, 
outputs and examples, such as understanding how a record in a dataset was mapped 
to a specific segment or recommendation. 

Lipton [9] addresses this ambiguity and claims that many XAI papers provide 
diverse and sometimes non-overlapping motivations for interpretability and offer 
myriad notions of what makes render models interpretable. Despite such ambiguity, 
many papers proclaim interpretability axiomatically, absent further explanation. 

Explainability and interpretability are closely related concepts in the literature. 
Sometimes, the term “explainability” refers to “why” a recommendation has been 
made, while the term “interpretability” refers to “how” that recommendation was 
obtained [2]. Accordingly, it has been claimed that interpretability is one of the 
approaches that achieves explainability [3]. Explainable AI (XAI) aims to develop 
tools that are able to explain AI model decisions to inexpert users. To do so, the 
model might be either interpretable or non-interpretable. Interpretable models try 
to develop models whose decision mechanism is locally or globally transparent. 
Therefore, the model outputs are usually naturally explainable. 

Other approaches claim that “Explainability” and “Interpretability” are two 
related, yet distinct, concepts when referring to AI systems. 

“AI Explainability” refers to the ability of an AI or ML model to provide un-
derstandable and clear explanations for its predictions or decisions. An explainable 
model should be able to articulate the reasons behind the model outputs in an easy 
and comprehended way by human users. For example, explainability is particularly 
important in domains where the impact of AI decisions can have legal, ethical,
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or societal consequences (e.g., healthcare, finance, and autonomous vehicles). An 
explainable model contributes to trust the model’s decision-making process. 

“AI Interpretability,” on the other hand, refers to the ability of a model to 
be understood by humans in terms of its internal robustness or how it arrives at 
its outputs. An interpretable model is one that can be explained in terms of its 
feature importance, decision rules, or other transparent representations, which allow 
humans to understand how the model arrives at its predictions. Interpretability is 
often used interchangeably with explainability, but it can also refer specifically to 
the technical characteristics of a model that make it transparent and understandable. 

Even though interpretability and explainability have been used interchangeably, 
Došilović et al. [4] claim it is important to distinguish between them. As such, 
explainable models are interpretable by default, but the reverse is not always true. 
However, interpretability is not the only way to achieve explainability. There are 
models that reveal their internal decision mechanisms for explanation purposes and 
use complex explanation techniques, such as neural attention mechanisms [3]. 

According to Došilović et al. [4], interpretability alone is insufficient. To increase 
human trust in black-box methods, it is necessary to develop explainability models 
that summarize the reasons for the model output. The authors assume that, while 
both mechanisms are important, interpretability is a substantial first step that 
provides the capacity to defend model actions and recommendations, provide 
relevant responses to questions, and be audited. 

Interpretable models encompass much of the present work in explainable AI [1]. 
The main reason is the increased usage of deep neural networks that are so hard 
to interpret. However, it is still challenging to formulate a line of reasoning that 
explains a model’s decision-making process to the user while relying on human-
understandable features of the input data. Nonetheless, reasoning is a critical step 
when formulating an explanation about why or how an AI-based recommendation 
has been made. 

To summarize the above discussion, despite the inherent inconsistency that one 
can find in the literature, the following list presents some of the common terms and 
their popular explanation in the XAI community. The list is mainly based on [2–4] 
that provide an excellent overview on the topic. 

• Interpretability – users should be able to understand and reason about the 
model output. 

• Model Transparency – defined in terms of simulatability, decomposability, and 
algorithmic transparency. 

• Simulatability – whether a human can use the input data together with the 
model to reproduce every calculation necessary to make the prediction. 

• Decomposability – whether there is an intuitive explanation of all the model 
parameters. 

• Algorithmic Transparency – an ability to explain how the learning algorithm 
works. 

• Model Functionality – defined in terms of textual description, visualization, 
and local explanation.
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• Textual Description – a semantically meaningful description of the model 
output. 

• Visualization – a method for explaining a model through visualization of its 
output and its parameters. 

• Local Explanation – rather than explaining the mapping of an entire model, 
local changes are introduced using specific input vectors for a given output 
class. Explanation is provided on specific use cases or instances. 

• Global Interpretability – understanding the entire ML model behavior, holistic 
reasoning that leads to all different possible outcomes. 

• Local Interpretability – understanding a single model prediction. 
• Activation Maximization – generation of an input image that maximizes the 

filter output activations. 
• Anchor – rule that sufficiently “anchors” the prediction locally such that 

changes to the rest of the instance’s feature values do not matter. 
• Surrogate Model – a simple model on top of (or besides) a complex model, 

trained based on the same input and the same predictions of the original 
complex model in order to mimic a better explanation and interpretation. 

• Partial Dependence Plot (PDP) – a graphical representation that helps visual-
ize the average partial relationship between one or more input variables and the 
predictions of a complex model. 

• Individual Conditional Expectation (ICE) – a graphical representation that 
reveals interactions and individual differences by separating the PDP output. 

• Knowledge Extraction – the task of extracting explanations/knowledge from 
the complex model during training and encoding that knowledge as an internal 
representation of a complex model. 

• Influence Methods – several techniques that carefully modify the inputs and 
measure how much the prediction changed according to each modification. 

• Example-Based Explanation – selection of specific data points to explain the 
behavior of machine learning models. 

3 Accuracy and Explainability 

A conventional statement is that there is an inherent trade-off between model 
explainability and model effectiveness, thus stating that one can either achieve high 
explainability with simpler models or high accuracy with more complex models, 
which are generally harder to interpret [3]. Figure 1 presents a possible schematic 
view of the trade-off between the model explainability and the model effectiveness. 
Similar graphs can be found in many papers, with the same message.

This belief raises a common dilemma among practitioners regarding whether to 
choose an understandable/explainable simple algorithm, while sacrificing prediction 
accuracy or to choose an accurate latent factorization modeling approach, while 
sacrificing explainability [5]. However, there is also a belief that these two goals
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Fig. 1 The inherent trade-off between model performance to model interpretability

do not necessarily contradict each other [6], which claims that this assumption is 
primarily relevant for cases related to structured data with meaningful features. 

Extensive research has focused on state-of-the-art techniques, such as deep 
learning approaches, which emphasize a model design that is both effective and 
explainable. Developing explainable deep models is thus an attractive direction in 
the broader AI community, leading to progress in essential explainable machine 
learning problems [3]. 

4 Segmentation of XAI Approaches 

There are several ways to classify and segment the different XAI approaches [1, 2, 
4]. Adadi and Berrada [3] propose a categorization for XAI methods that considers 
the model’s complexity of interpretability, scope of interpretability, and level of 
dependency. In the next sections, we follow earlier surveys by Chakraborty [2], as 
well as Adadi and Berrada [3]. 

4.1 Complexity-Related Methods 

Many works in the literature assume that model complexity is directly related 
to interpretability. Thus, simpler models are easier to interpret. Accordingly, to 
better interpret complex models, there is a need to introduce a simpler surrogate 
model or an algorithm for interpretability. Several works following this direction 
are described in this section.
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Xu et al. [8] consider the task of automatically generating image captions as 
a goal that is central to scene understanding. The authors introduce an attention-
based image caption model that automatically learns how to describe image content. 
They train the attention model using standard backpropagation techniques over deep 
neural networks and by maximizing a variational lower bound. The proposed model 
gains insight and interpretation by visualizing “where” and “what” the attention is 
focused on. Relying on visualization and benchmark datasets, they demonstrate how 
their model is able to interpret the images. 

Caruana et al. [7] deal with pneumonia risk prediction by applying generalized 
additive models with pairwise interactions (GA2Ms). The proposed model achieves 
state-of-the-art accuracy and is able to uncover surprising patterns in the data that 
previously challenged researchers and prevented the implementation of complex 
machine learning models in this domain. The model is used to identify and remove 
such patterns to obtain a better performance. 

Letham et al. [6] propose a method based on decision trees called Bayesian 
Rule Lists (BRL), which produces a predictive model that is not only accurate 
but also interpretable to human experts. This model generates conditional “if/then” 
statements (e.g., “if high blood pressure, then stroke”) that discretize a high-
dimensional, multivariate feature space into a series of simple, readily interpretable 
decision statements. Such an outcome is highly interpretable and provides concise 
and convincing capabilities that are able to gain the trust of domain experts. 

Lipton [9] proposes following a post hoc explanation approach with two stages. 
This approach first allows complex, uninterpretable black-box models to generate 
high-performance outputs, and then it applies a separate set of techniques to obtain 
explainability and interoperability over the outputs. Such an approach views the 
interpretability task as a reverse engineering process that provides the required 
explanations without altering or even knowing the inner works of the original black-
box model. 

4.2 Global and Local Interpretability Approaches 

There are two primary approaches when seeking explainability and interpretability 
for AI and ML models. The first is the global interpretability approach, which aims 
to provide a systematic view and general understanding of the AI system in use. 
Thus, the global interpretability approach seeks a complete view of the decisions and 
operations of the entire AI model. For example, this approach focuses on explaining 
the overall model analysis using a set of rules and measures that determine the global 
feature importance and explain the model outcomes. Such explainability could be 
used for example by technical experts to obtain a better modeling decision. 

The second is the local interpretability approach, which is focused on approx-
imating and explaining individual predictions and case-by-case outcomes. Thus, 
unlike global interpretability, it does not seek to explain the whole model but rather 
the specific outcomes of the AI system under different feature values and conditions.
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For example, local interpretability can be used to explain and justify an AI system 
recommendation that a specific client is not entitled to a bank loan due to his income 
level and previous loans or other personal financial conditions. As such, global 
interpretability is often better for non-technical users. 

Note that some studies aim to combine global and local interpretability; examples 
of this approach include Guidotti et al. [21] and Linsley et al. [22]. 

Global Interpretability 
As indicated, the goal of the global XAI approach is to understand the entire logic of 
a model and the entire pattern of reasoning that leads to different possible outcomes. 
This approach is most relevant in situations that require a high level of accountability 
and justification, such as AI applications in medical domains [1]. In these cases, a 
global effect estimate is often more helpful than many separate explanations for 
different possible predictions. Some examples that imply such an approach are as 
follows. 

Nguyen et al. [12] aim to study what each of a DNN’s neurons is learning to 
detect. They use activation maximization (AM), which synthesizes an input (e.g., 
an image) that highly activates a neuron. The proposed method generates synthetic 
images and reveals the features learned by each neuron in an interpretable way. 

Valenzuela-Escárcega et al. [11] propose a supervised approach for information 
extraction, which combines bootstrapping with representation learning. The pro-
posed algorithm iteratively learns custom embeddings for multi-word entities and 
their matched patterns from example entities for each classification category. This 
approach outputs a globally interpretable model consisting of a decision list that acts 
as an interpretation of the model. 

Yang et al. [10] propose a method that interprets black-box machine learning 
models globally using a binary interpretation tree. The interpretation tree explicitly 
represents the most important decision rules that are implicitly contained in the 
black-box machine learning models. The proposed learning algorithm partitions the 
input variable space by maximizing the difference between the average contributions 
of the split variable over the divided spaces. This method results in a contribution 
matrix that consists of the contributions of input variables to the predicted scores for 
each single prediction. The authors demonstrate the effectiveness of their method for 
diagnosing machine learning models over multiple tasks as well as for analyzing the 
models in terms of human understanding. 

Local Interpretability 
The goal of local interpretability is to explain the reasons for a specific decision 
or single prediction that the ML model has made. Here, we discuss research works 
focused on this type of interpretability. 

Ribeiro et al. [13] proposed a novel technique to explain the predictions of a 
classifier in an interpretable and faithful manner, by locally learning an interpretable 
model based on individual predictions. They called it the local interpretable model-
agnostic explanation (LIME). The method, which is formulated as a submodular
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optimization problem, approximates a black-box model locally in the neighborhood 
of any prediction. 

Ribeiro et al. [14] extend LIME using decision rules called “anchors”. An anchor 
explanation is a rule that sufficiently “anchors” the prediction locally, such that 
changes to the rest of an instance’s feature values do not affect the AI system 
recommendation. 

A similar approach was used in a series of studies [15–19] that analyzed image 
classification by a family of ML models. In particular, the analyses identified 
image regions (pixels) that were found to be particularly influential on the final 
classification. Several names were given to this approach, including sensitivity maps, 
saliency maps, or  pixel attribution maps. These techniques assign an “importance” 
score to individual pixels, which is meant to reflect their influence on the final 
classification of the image. A similar yet opposing concept is applied in adversarial 
learning, which aims to find and modify these specific pixels as a means to distort 
and change the correct classification [40]. 

Lundberg and Lee [20] present a unified framework for interpreting predictions, 
named SHAP (SHapley Additive exPlanations). SHAP assigns each particular 
prediction’s features an importance value. Its novel components include (i) the 
identification of a new class of additive feature importance measures and (ii) 
theoretical results showing that there is a unique solution in this class with a set of 
desirable properties. Additionally, the authors show that by using different kernels, 
SHAP can be model agnostic. 

According to surveys by Chakraborty et al. [2] and by Adadi and Berrada [3], 
local explanations are the most commonly used explanation methods in XAI and 
are particularly applied to DNN models. 

4.3 Model-Related Methods 

Another popular way to classify model interpretability techniques is according to 
whether they are model agnostic or model-specific; model-agnostic methods can 
be applied to any model type, while model-specific methods work only for specific 
models. 

Model-Specific Interpretability 
As model-specific techniques are limited to a particular model; according to [2, 
3], they are less popular than model-agnostic interpretability methods, which often 
generate more interest. 

Model-Agnostic Interpretability 
According to Mary [4], a specific class of model-agnostic methods is related to 
those that can be applied primarily to black box models’ inputs and outputs. The 
usability and popularity of these methods can be found by examining a variety 
of use cases [5]. This class of methods addresses prediction tasks and explanation 
tasks separately. Model-agnostic interpretations are usually post hoc, i.e., they are



Explainable Artificial Intelligence (XAI): Motivation, Terminology, and Taxonomy 979

generally applied to interpret DNNs and could be either local or global interpretable 
models [3]. Herein, we present an overview of the studies focused on model-
agnostic interpretability, grouped by the applied techniques. In particular, one can 
find four primary technique types: visualization, knowledge extraction, influence 
methods, and example-based explanation [3]. 

4.3.1 Visualization 

One way to illustrate and better understand an ML model output, especially a 
DNN, is to represent it visually; for example, researchers have previously explored 
hidden patterns within a segment of the neural network (including a single neural 
unit). Many visualization techniques are applied to supervised learning models 
in which the active neurons and pixels can be highlighted per labeled class. The 
literature contains three primary types of explainability techniques that are related 
to visualization: Surrogate models, Partial Dependence Plots (PDP), and Individual 
Conditional Expectation (ICE) [3]. 

Surrogate Models 

Surrogate modeling refers to building a simple model (e.g., a linear model or 
decision tree) to approximate a more complex model (e.g., a DNN) to help explain 
how the complex model reaches its decisions. To build a surrogate model, one 
should often train the simpler model based on the inputs and the outputs of the 
more complex original model. In many cases, the simpler model’s output can be 
visualized to further highlight the important features on the model output. This 
technique is sometimes useful; however, there is no theoretical guarantee that this 
technique will produce a clean and effective explanation for the complex model. 

LIME [13] is a popular method for constructing local surrogate models around 
subsets of observations. Bastani et al. [23] built such a surrogate model approach by 
extracting a decision tree that represents a complex model’s behavior. Thiagarajan 
et al. [24] proposed an approach for building the “TreeView” representation using a 
surrogate model that performs hierarchical partitioning of the feature space. This 
surrogate model reveals the iterative rejection of unlikely class labels until the 
correct association is predicted. 

Partial Dependence Plot (PDP) 

The partial dependence plot is another graphical representation that helps visualize 
the average partial relationship between one or more input variables and a complex 
model’s predictions. PDP has been used in several studies to understand the 
relationship between predictors and inputs under several conditions (e.g., [25–27]).
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Individual Conditional Expectation (ICE) 

Individual conditional expectation (ICE) can be considered an extension of PDP. 
ICE plots reveal interactions and individual differences by separating the PDP 
output. ICE has been used in several studies (e.g., [28, 29]), in which the advantage 
of ICE over PDP has been demonstrated and analyzed. 

4.3.2 Knowledge Extraction 

Knowledge extraction (KE) refers to the task of extracting explanations and 
knowledge from a complex model during the training phase and encoding it as 
an internal representation of a complex model. In the literature, two primary KE 
techniques include rule extraction and model distillation [3]. 

Rule Extraction 

Rule extraction (RE) aims to find rules that provide approximation of the decision-
making process for a more complex model. In a sense, it is similar to the 
association rules that were used in data-mining tasks to extract simple rules from 
ML classification models. 

Using RE, one can obtain a better description of the knowledge learned by the 
complex model during training. Several studies have implemented rule extraction 
(e.g., [30, 31]). 

Model Distillation 

Model distillation (MD) is based on model compression techniques. MD was 
originally proposed to reduce the computational cost of a model at runtime but was 
later targeted at interpretability. Distillation is a model compression that transfers 
information from deep networks to shallow networks in the form of “teacher to 
student” [32]. Several studies have implemented model distillation (e.g., [33, 34]). 

4.3.3 Influence Methods 

Influence methods refer to several techniques that systematically modify a model’s 
inputs and then measure how much the prediction changed according to each 
modification. In this way, a relevance score for each feature is computed. According 
to [3], the literature describes three alternative methods for obtaining the input 
variable’s relevance: sensitivity analysis, layer-wise relevance propagation, and 
feature importance. These approaches are discussed next.
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Sensitivity Analysis 

Zhang and Wallace [35] introduce a sensitivity measure that determines how a 
complex model’s output is influenced by its input and/or weight perturbations. In 
particular, they conducted a sensitivity analysis examining one-layer convolutional 
neural networks (CNNs) to explore the effect of architecture components on model 
performance; their aim was to distinguish between important and comparatively 
inconsequential design decisions for sentence classification. 

Sensitivity analysis (SA) is widely used to verify whether model outputs remain 
stable when the data are changing and to support robustness verification in general. 
Cortez and Embrechts [36] proposed a global SA (GSA) method, which extends 
the applicability of previous SA methods and several visualization techniques 
when assessing input relevance and effects on the model’s responses. The authors 
demonstrate the GSA method’s capabilities by conducting several experiments 
using an NN ensemble and SVM model and including both synthetic and real-
world datasets. It is worth mentioning, however, that this approach produces an 
explanation only over the variation of the function values but not the function itself. 

Layer-Wise Relevance Propagation (LRP) 

Bach et al. [37] proposed a pixel-wise decomposition for nonlinear classifiers. 
This technique provides visualization of the contributions of single pixels to the 
predictions of kernel-based classifiers, which can be visualized using heat maps. 
The proposed technique focuses the analysis on regions of potential interest while 
tracing backward from the prediction to the input layer. Unlike sensitivity analysis, 
this technique explains the predictions relative to the state of maximum uncertainty. 

Feature Importance 

Feature importance provides a score for each input feature that represents its 
contribution to the predictions of a complex ML model. Basically, this technique 
generates a permutation of the input features and measures the corresponding model 
error. Features with high importance increase the model error more significantly 
when permutated than a feature with low importance. Fisher et al. [38] proposed 
a technique called model class reliance (MCR), which sets the range of feature 
importance values across several models for a pre-specified class. Casalicchio et 
al. [29] used SHAP values to generate a feature importance score for every input 
feature.
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4.3.4 Example-Based Explanation 

Example-based explanations (EBEs) are techniques that select particular data points 
from the dataset to explain the behavior of the ML/AI model. In the reviewed 
literature, the two primary EBE techniques are prototypes and criticisms and 
counterfactual explanations [3]. 

Prototypes and Criticisms 

To avoid overfitting the learning model, a strong representation for the data points 
must be selected. Kim et al. [39] claim that although example-based explanations 
are often used to interpret highly complex distributions, prototypes alone rarely 
sufficiently represent the essence of the model complexity. Motivated by the 
Bayesian model criticism framework, they develop the MMD-critic, which effi-
ciently learns prototypes and criticism designed to aid human interpretability. The 
authors evaluate the prototypes selected by MMD-critic using a nearest prototype 
classifier, demonstrating competitive performance when compared to baselines. 

Counterfactual Explanations 

Counterfactual explanations attempt to find the boundary at which the learning 
model will change its decision or recommendation with minimum conditions. This 
outcome is achieved without the need to describe the algorithm’s full logic. Yuan 
et al. [40] noted that ML models are vulnerable to well-designed input samples, 
called adversarial examples. Adversarial examples may be invisible to humans but 
can fool a complex ML model and alter their decision with minimal change to the 
input. The authors review recent findings related to adversarial examples for deep 
neural networks, summarize the methods that generate adversarial examples, and 
propose a taxonomy for these methods. 

5 Final Remark 

Adadi and Berrada [3] provide an excellent summary of different XAI methods. In a 
summary taxonomy table, they classify various XAI models and techniques by an-
alyzing whether they are intrinsic/post hoc, global/local, and model specific/model 
agnostic. 

As claimed by the authors, XAI is a vital interdisciplinary research direction 
and a major building block in the AI ecosystem. The potential impact of XAI can 
affect various new applications in areas such as transportation, healthcare, military, 
retail, legal, finance, and well-being. Yet, despite its importance, XAI research is 
still unstructured, and the human aspects in it can be further studied.
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