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Abstract. We present a baseline for gesture recognition using state-of-the-art
sequence classifiers on a new freely available multi-modal dataset of free-hand
gestures. The dataset consists of roughly 100,000 samples, grouped into six
classes of typical and easy-to-learn hand gestures. The dataset was recorded using
two independent sensors, allowing for experiments on multi-modal data fusion at
several depth levels and allowing research on multi-modal fusion for early, inter-
mediate, and late fusion techniques. Since the whole dataset was recorded by a
single person we ensure a very high quality of data with little to no risk for incor-
rectly performed gestures. We show the results of our experiments on unimodal
sequence classification using a LSTM as well as a CNN classifier. We also show
that multi-modal fusion of all four modalities results in higher precision using
late-fusion of the output layer of an LSTM classifier trained on a single modality.
Finally, we demonstrate that it is possible to perform live gesture classification
using an LSTM-based gesture classifier, showing that generalization to other per-
sons performing the gestures is high.

Keywords: Hand gestures · Dataset · Multi-modal data · Data fusion ·
Sequence classification · Gesture recognition

1 Introduction

We present a freely available multi-modal dataset of freehand gestures that can be
used for research on sequence classification, multi-modal fusion, or other domains
in Human-Computer-Interaction and Machine Learning. Hand gesture recognition is
widely used as a natural way of non-verbal communication. In general, there are
two main applications for hand gesture recognition: Communication, e.g. in sign lan-
guage recognition, and manipulation, e.g. controlling a robot or other technical device.
Another typical application is controlling and communicating with a virtual environ-
ment [8].

Large, multi-modal, and reliable datasets are needed for modern deep learning tech-
niques to perform at a sufficiently high level. Important characteristics of a good dataset
with training data are the number of gesture classes, the number of samples per gesture
class, and the number of distinct modalities from (different) sensors. (cf. [24]).

We present results for baseline experiments to show that the dataset can be used
to train state-of-the-art machine learning models and can achieve very high prediction
rates. For this, we use Long Short-Term Memory (LSTM) networks as well as deep
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Convolution Neural Networks (CNN). LSTM networks [9] are widely used recurrent
neural networks with feedback connections to process sequences instead of just sin-
gle data points. CNN are feed-forward neural networks consisting of fully-connected
layers, pooling layers, and normalization layers. They are most common in image clas-
sification.

When working with multiple modalities, each sensor produces a separate data
stream, also called sensory modality. Each sensory modality contains unique and inde-
pendent information. But since all sensors observe the same situation – in our scenario
the same hand gesture – the information from all sensors at least partially correlates.
The goal of multi-modal fusion is to exploit that correlation to obtain more precise
and reliable observations. In general, sensor data can be fused at three stages. Early
fusion approaches combine data from sensors without preprocessing or after features
have been extracted from raw data and use collaborative representation classifiers [14].
Late fusion strategies often combine the output score provided by multiple classifiers
each trained on a single modality [28], i.e. by transforming the output to a probability
score by a softmax layer and combining it by sum rule, product rule, or max rule.

This paper is an extended version of our previous work [25]. In this version, we
conducted additional experiments using CNNs for uni-modal classification. We also
more thoroughly explained the reasoning behind our choices regarding the single-user
approach as well as the selection of our gesture classes.

2 Related Work

2.1 Hand Gesture Datasets

Several hand gesture datasets have been made available to researchers in recent years.
Regardless, we find that there are no publicly available datasets that include a large
enough number of gesture samples needed to suit the high requirement of machine
learning methods for an extensive dataset for training. On the other hand, we require
a dataset with a reasonable number of modalities recorded from independent sensors
since present-day sensors are increasingly cheap and universally available and we find
that gesture recognition can highly profit when including information from several
modalities.

The SHGD dataset [13] consists of 15 gesture classes recorded from 27 persons
with 96 sequence samples per class, resulting in a total size of 4,500 gesture samples.
It only contains depth data recorded by an RGB-D camera.

A multi-modal dataset is presented in [16]. It consists of 10 gesture classes recorded
from 14 persons with 140 sequence samples per class, resulting in a total size of 1,400
gesture samples. It contains depth data recorded by an RGB-D camera and data from a
LeapMotion sensor.

In the next dataset [19], the approach is to render gesture samples using an advanced
computer graphics pipeline instead of recording them. The dataset consists of 11 gesture
classes with about 3,000 sequence samples per class, totaling 35,200 gesture samples.
It only contains depth data.

The Cambridge dataset [12] contains 10 gesture classes recorded from two people
with about 100 sequence samples per class, resulting in a total size of 1,000 gesture
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Table 1. Comparison of the MMHG dataset with other hand-gesture datasets provided in litera-
ture. (Source: [25].)

Dataset Classes Samples/Class Persons Total samples Modalities

SHGD [13] 15 96 27 4,500 Depth

Cambridge dataset [12] 10 100 2 1,000 RGB

n.A. [16] 10 100 14 1,400 Depth, Motion

IsoGD [30] 249 190 21 50,000 RGB, Depth

EgoGesture [32] 83 300 50 24,000 RGB, Depth

SKIG [15] 10 360 6 1,080 RGB, Depth

ChaLearn [6] 20 390 27 13,900 Audio, RGB, Depth

n.A. [18] 11 3,000 – 35,200 Rendered Depth

MMHG (this paper) 6 ≈13,300 1 79,881 RGB, Depth, Motion, Audio

samples. The Sheffield Kinect Gesture Dataset [15] contains 10 gesture classes recorded
from six persons with 360 sequence samples per class, resulting in a total size of 1,080
gesture samples. It also only contains depth data recorded by an RGB-D camera.

One of the first large-scale hand gesture datasets is the ChaLearn-2013 dataset [6],
which consists of 20 gesture classes recorded from 27 persons with an average of 360
gesture samples per class, resulting in a total size of roughly 14,000 sequence samples.
It contains audio, RGB, and depth modality.

The IsoGD dataset [29] is even larger but only includes an RGB and a depth modal-
ity. It contains about 50,000 gesture samples, grouped into 249 gesture classes with an
average of 190 gesture samples per class, and it was recorded by 21 persons.

The next dataset [32] is of similar size and also includes only an RGB and a depth
modality, but it is egocentric and recorded from a head-mounted camera. The dataset
consists of 83 gesture classes with about 300 sequence samples per class, totaling about
24,000 gesture samples.

Table 1 shows a comparison of the MMHG dataset with the hand-gesture datasets
introduced in this section.

2.2 Multi-modal Fusion

Research in the field of psychology and neurophysiology [1,2] shows multi-sensory
fusion to be a common concept. This means, that the human brain is capable of proba-
bilistically combining different modalities [5,7].

Similar concepts are available in the field of multi-modal gesture or activity recog-
nition. There is not the one right way to carry out multi-modal fusion, but there are
several possibilities that have been used in experiments in recent years. Each possibility
has its own advantages and disadvantages depending on the data used and tasks at hand.

In general, multi-modal fusion techniques can be clustered into three categories:
early fusion, intermediate fusion, and late fusion. Early fusion describes that data from
different sensory modalities are combined either before any preprocessing steps [14] or
after features have been extracted from raw data [4] by using a collaborative represen-
tation classifier. The fused data is then passed onto a machine learning model.
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In late fusion techniques, there usually are multiple machine learning models for
single modalities which are fused at a later stage, very often right before output score
prediction. In [27], single modality-based classifiers each provide an output score and
the final score is produced by searching the maximum. Another possibility is to use a
collaborative representation classifier to combine classification outcomes of different
modalities [4]. A very easy and therefore commonly used late-fusion technique is soft-
max score fusion [11]. Here, multiple classifier outputs are seen as probability scores
by a softmax layer. Afterward, they are combined using either the sum rule, the product
rule, or the max rule.

Intermediate fusion happens between data level and output level. A possible tech-
nique is feature fusion [10]. Features that are the output from fully connected layers are
combined and then forwarded to a linear support vector machine or any other classifier.

2.3 Contribution

This work, like the original work [25], has its focus on describing our Multi-Modal
Hand Gesture Dataset. Almost 80,000 samples with over 13,000 samples per gesture
class in four modalities. There are six gesture classes that are all supposed to be easy
to perform by the user but also specifically chosen to make the dataset beneficial for
research on multi-modal fusion. All samples have been recorded by just one very well
trained and instructed user, therefore the dataset does not contain corrupted data sam-
ples. The recording and preprocessing steps were carefully designed to ensure high
quality. Thus, the dataset is perfectly suited for machine learning.

Additionally, we present experiments that prove the consistency of the dataset. The
first set of experiments shows that plausible classification accuracies can be achieved on
each of the four modalities when trained on two state-of-the-art sequence classification
models: LSTM networks and CNNs. The second set of experiments shows that even
with relatively simple late multi-modal fusion approaches it is possible to improve the
classification accuracies achieved by networks trained on uni-modal data.

In Sect. 6 we introduce an implementation based on the Robot Operating System
and the results for our experiments to determine the generalization capabilities of our
dataset to other people. This shows that although only a single user recorded all data
samples for the dataset, it is still possible to train a gesture classifier capable of correctly
classifying gestures performed by other users.

3 Dataset

In this paper, we present the Multi-Modal Hand Gesture Dataset (MMHGD). It is a
large-scale dataset with only six classes but a high number of samples for each class.
Each sample consists of modalities from an RGB and 3D camera, a microphone, and
an acceleration sensor.

All gesture samples are recorded and performed by just one single person. This is
an unusual choice but since only a well-instructed person performs all gestures, there
will be no incorrectly performed gesture samples in the dataset. Thus, we ensure a high
quality of gesture recordings and little to no corrupted data.
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The dataset contains about 13,300 recordings of each of the six classes. Therefore,
it contains a total of almost 80,000 samples. Table 2 shows the exact distribution of each
class. Each gesture sample consists of data from a two-second window. The dataset (raw
as well as preprocessed data) can be downloaded at http://data.informatik.hs-fulda.de.

Table 2. Distribution of the six gesture classes in the MMHG dataset.

Class C1 C2 C3 C4 C5 C6 Total

Samples 13,440 13,410 13,228 13,233 13,308 13,262 79,881

Although the gestures were recorded with varying background and lightning, we
used a fixed setup to ensure that each sample is recorded within a predefined distance
of 0.5 m to 0.75 m from the camera. Thus, simplifying the preprocessing step (Fig. 1).

Fig. 1. The setup used for recording the gesture samples for the MMHG dataset, ensuring a fixed
distance to the camera (Source: [25]).

During the time of recording, the user is told which gesture to perform and the
recorded sample is immediately assigned the correct class label. Each recording there-
fore consists of RGB images, 3D point clouds, an mp3 file, the acceleration data and
the correct class label. We also have preprocessed data available to immediately use
for training and testing. The preprocessing step happens independently of the recording
and is described in Sect. 3.3.

3.1 Gesture Classes

We use easy-to-use gesture classes that are commonly used in human-machine-
interactions. The gesture classes are specifically designed to offer challenging tasks
for multi-modal fusion. Therefore, some of the classes rely heavily on fusing different
modalities for correct classification. For example, the last two classes – Snap Once and

http://data.informatik.hs-fulda.de
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Snap Twice – do not differ much in their motion. Thus, using only visual modalities will
probably not lead to very good classification results. However, fusing those modalities
with the audio modality will make them easily distinguishable.

Thumbs Up. (Class 1, denoted as C1): The first class describes a thumbs-up gesture,
which is a very typical gesture to show approval or agreement. The gesture starts with
a closed fist in front of the camera. During the gesture, the thumb is extended upwards.
There is no distinctive sound for this gesture and it is rather stationary with very little
movement of the whole hand. Four frames of the RGB modality of one gesture sample
are shown in Fig. 2 exemplarily.

Fig. 2. Four frames of the RGB modality of one Thumbs Up gesture sample.

Thumbs Down. (Class 2, denoted as C2): The second class is similar to the first class
as it describes a thumbs-down gesture. This gesture is commonly used to show rejection
or disapproval. This gesture also starts with a closed fist in front of the camera, but this
time the thumb is extended downwards. Just like the thumbs-up gesture class, there is
no distinctive sound. It shows more movement since the fist is tilted forwards while the
thumb is extended downwards. Figure 3 shows four frames of the RGB modality of one
gesture sample as an example.

Fig. 3. Four frames of the RGB modality of one Thumbs Down gesture sample.

Swipe Left. (Class 3, denoted as C3): The third class shows a swiping gesture of the
whole hand in a horizontal direction from the right side to the left. Therefore, it is a
dynamic gesture. It can be used to switch or forward to the next element or move an
object from right to left. Again, this gesture does not have a distinctive sound. Four
example frames from the RGB modality of one gesture sample can be seen in Fig. 4.
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Fig. 4. Four frames of the RGB modality of one Swipe Left gesture sample.

Swipe Right. (Class 4, denoted asC4): The fourth class is a swipe right gesture, similar
to the previous gesture class. It also is a dynamic hand gesture that describes a swiping
gesture of the whole hand in a horizontal direction from the left side to the right. It can
be used to switch or rewind to the previous element or move an object from left to right.
Unsurprisingly, this gesture also does not have a distinctive sound. Figure 5 shows four
frames from the RGB modality of one gesture sample.

Fig. 5. Four frames of the RGB modality of one Swipe Right gesture sample.

Snap Once. (Class 5, denoted as C5): The fifth class again is a rather stationary ges-
ture, where the hand remains almost still while only two fingers show motion. For this
gesture, the middle finger pushes hard against the thumb and then gets released so fast
that it creates a snapping sound. Therefore, this gesture class has a distinctive sound.
Four frames from the RGB modality of one gesture sample from this class are shown
in Fig. 6.

Fig. 6. Four frames of the RGB modality of one Snap Once gesture sample.

Snap Twice. (Class 6, denoted as C6): The sixth gesture class is very similar to the pre-
vious class and describes two snaps. Accordingly, the hand remains almost still while
only two fingers are moving. For this gesture, the middle finger and the thumb cre-
ate two snapping sounds consecutively. This gesture class also has a distinctive sound.
Figure 7 shows four frames of the RGB modality of one gesture sample as an example.
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Fig. 7. Four frames of the RGB modality of one Snap Twice gesture sample.

3.2 Modalities

RGB. The sensory modality of RGB images is recorded with an Orbbec Astra 3D
sensor. It outputs a stream of images at a resolution of 800× 600 pixels with a frequency
of 30 fps. To reduce the load and still be able to process all modalities at the same time,
we save images at a frequency of 6 fps. This leads to twelve images for every gesture
sample.

3D. The sensory modality of 3D images is also recorded with an Orbbec Astra 3D sen-
sor. The 3D camera outputs a stream of depth images with a size of 640 × 480 pixels.
Those images are converted to point clouds before being saved for further preprocess-
ing. Due to performance reasons and to get matching RGB images to every 3D image,
we also save point clouds at a frequency of 6 fps. Thus, receiving twelve point clouds
for every gesture sample.

Audio. The audio data is also provided by the Orbbec Astra 3D sensor. The sensor has
a sensitivity of 30 dB and works with audio between 20Hz and 16 kHz. We save the
raw wave data for the entire two-second window for every gesture sample.

Acceleration. The sensory modality of the acceleration data is recorded using an accel-
eration sensor (BWT901CL from Bitmotion) attached to the users right wrist. The
acceleration sensor offers 9-axis: acceleration data in three axis, yaw rates also in three
axis, gyroscopic measurements, and magnetic field measurements. The sensor has a
frequency of 200Hz, which means we get 400 measurements for each gesture sample.

3.3 Preprocessing

RGB. To reduce the computational costs and remove unnecessary overload, we crop
the 800 × 600 px RGB images to the part where the hand is visible. Examples for
the original RGB images can be seen in Figs. 2, 3, 4, 5, 6 and 7. Since we always
perform the hand gesture in a predefined area in front of the camera, the complexity of
this step is reduced: The hand is always in the same area in the RGB image for every
frame for every gesture. Therefore, we do not have to perform object detection on every
single image but instead can define the area to which to crop and it will work for all
images. Afterward, we scale the cropped image to 72 × 48 pixels and then calculate
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the Histogram of Oriented Gradients (HOG) [17,31] descriptor. For this, we use the
OpenCV implementation with default parameters. The only parameters we set ourselves
are the cell size, which we set to 8 × 8 pixels, and the block size, which we set to
16 × 16 pixels. The calculated HoG descriptor has 756 entries. The resulting NumPy
array consists of twelve HoG descriptors for every gesture sample and thus has a shape
of (N, 12, 756).

3D. During the recording phase we store twelve point clouds for every gesture sample.
One exemplary frame from a sample of the Thumbs Up gesture is shown in Fig. 8a. Each
of these point clouds goes through the same three steps during the preprocessing phase.
The first step is downsampling the point cloud to reduce the size and computational
costs of the following steps. We begin by removing measurement errors by deleting all
points where one or more of the x-, y, or z-value is not a number (NaN), then we per-
form downsampling using the 3D-voxel grid technique. Using this downsampled point
cloud, we perform conditional removal to delete all points that are outside of our prede-
fined volume of interest. Again, this can be done using the same volume of interest for
every single gesture frame since we ensured that the gesture is always performed in the
same area in front of the camera. The result is a point cloud of just the hand without any
background data. In the second step, we infer surface normals by using approximation
and use those to calculate Point Feature Histograms (PFH) [22,23] in the third step.
With PFHs, we are able to receive a descriptor with the same size for every point cloud
- although they have a high variability in size. This is important since machine learning
models often require a fixed input size. According to [21], we randomly select two sur-
face normals and compute the “four values based on the length and relative orientation
of the surface normals” [25]. By dividing each value into five intervals, we receive 625
possible discrete values, which then get normalized. The resulting histogram consisting
of 625 dimensions is “able to feasibly characterize the hand and fingers” [25]. Figure 8a
shows a single point cloud (frame) of the Thumbs Up gesture class, while Fig. 8b shows
the corresponding PFH. The resulting NumPy array has a shape of (N, 12, 625).

Fig. 8. Example of one frame of a gesture sample from the gesture class Thumbs Up (C1) before
(a) and after (b) preprocessing (Source: [25]).
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Audio. We downsample the raw wave data to a frequency of 8,000Hz and ensure an
equal length by using zero-padding with a randomly picked offset. Afterwards, Short-
Time Fourier Transform (STFT) [3,20] with the following parameters is performed: a
window of 455 data points with an overlap of 420 data points. Using STFT we can
visualize the frequency information in 2D, more precisely the change of frequency dur-
ing certain time frames. The result is a NumPy array with a shape of (N, 182, 181).
Exemplarily, STFT data for a gesture sample with no distinct audio (Swipe Left, C3) is
shown in Fig. 9a. Figure 9b shows the STFT data for a gesture sample with one snap,
while Fig. 9c shows the STFT data for a gesture sample with two snaps. While Fig. 9a

Fig. 9. Examples of the STFT data of gesture classes without (a) and with (b, c) distinct audio
(Source: [25]).
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shows no distinct change in frequency, Figs. 9b and 9c show distinct changes in fre-
quency during one or two time frames respectively.

3.4 Acceleration

The acceleration data is rather noisy. Thus, we calculate statistical values over the 20
tuples from each 200-millisecond window.

x̄ =
1
N

(
N∑
i=1

xi

)
=

x1 + x2 + · · · + xN

N
(1)

Var(x) =
1
N

N∑
i=1

(xi − x̄)2 (2)

S(x) =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (3)

In our two-second window for every gesture sample, we receive a total of ten descrip-
tors. Each descriptor contains the mean (cf. Eq. 1), the variance (cf. Eq. 2) and the
standard deviation (cf. Eq. 3) for each of the six axes. The resulting NumPy array has a
shape of (N, 10, 3, 6).

4 Unimodal Classification

To show that every single modality of the MMHG dataset can be used to train state-of-
the-art machine learning models to be able to perform with high gesture classification
accuracies, we provide results of unimodal classification experiments with different
architectures. We conducted experiments on the modalities with sequential data (RGB,
3D, and acceleration) using LSTM networks. Then, we conducted experiments on all
four modalities using CNNs.

4.1 LSTM

We provide results of our experiments (cf. [25]) using LSTM networks for the RGB,
3D, and acceleration modalities, since after preprocessing those three modalities consist
of sequential data, while the audio data is only one 2D plot per gesture sample. LSTM
networks [9] are recurrent neural networks capable of learning dependencies over time
(long-term). They are often used in sequence classification since due to the feedback
connections they are able to process sequences of data instead of single data points
such as in images.

We randomly select 20% of our dataset to use as a test set and train the LSTM net-
work on the remaining 80%. Preliminary experiments were used to determine network
parameters for every modality that result in the highest classification accuracies.

The gesture classification accuracy is the fraction of correct predictions compared
to all predictions, as shown in Eq. 4. Precision defines the proportion of correct positive
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classifications compared to all positive classifications for a class, as shown in Eq. 5.
Recall defines how many samples were classified correctly compared to all predictions
of that class, as shown in Eq. 6. The F1-score is the harmonic mean between precision
and recall, as shown in Eq. 7. (tp = true positive, tn = true negative, fp = false positive,
fn = false negative)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

Precision =
tp

tp+ fp
(5)

Recall =
tp

tp+ fn
(6)

F1 =
2

recall−1 + precision−1 =
2 · tp

2 · tp+ fp+ fn
(7)

RGB. For the RGB modality, we use an LSTM network with S = 200 cells each on
L = 2 hidden layers and train it in I = 3, 000 iterations with a batch size of b =
250. After training the network on our training set with those parameters, we achieve
an average gesture classification accuracy on the test set of 85.55%. Table 3a shows
the confusion matrix for the unimodal gesture classification, while Table 3b shows the
precision, recall and F1-score for every class.

Table 3. Results for the unimodal classification on the RGB modality using an LSTM network
(Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2662 26 0 0 0 0

0 2335 90 38 26 193

0 165 2430 26 25 0

0 76 64 2430 76 0

0 166 0 25 1806 664

0 318 0 38 293 2004

(a) Confusion matrix for an LSTM network
trained on RGB data.

Class Precision Recall F1-Score

C1 1.00 0.99 0.99

C2 0.75 0.86 0.80

C3 0.94 0.92 0.93

C4 0.95 0.92 0.93

C5 0.80 0.67 0.73

C6 0.69 0.74 0.72

(b) Classification report for an LSTM network
trained on RGB data.

3D. For the 3D modality, we use an LSTM network with S = 250 cells each on L = 2
hidden layers and train it in I = 5, 000 iterations with a batch size of b = 1, 000. After
training the network on our training set with those parameters, we achieve an average
gesture classification accuracy on the test set of 93.43%. Table 4a shows the confusion
matrix for the unimodal gesture classification, while Table 4b shows the precision, recall
and F1-score for every class.
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Table 4. Results for the unimodal classification on the 3D modality using an LSTM network
(Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2688 0 0 0 0 0

2 2667 4 8 1 0

0 4 2613 29 0 0

0 0 16 2627 3 0

1 0 0 0 2350 310

0 0 1 0 670 1982

(a) Confusion matrix for an LSTM network
trained on 3D data.

ClassPrecisionRecall F1-Score

C1 1.00 1.00 1.00

C2 1.00 0.99 1.00

C3 0.99 0.99 0.99

C4 0.98 0.99 0.99

C5 0.74 0.86 0.80

C6 0.84 0.70 0.77

(b) Classification report for an LSTM network
trained on 3D data.

Acceleration. For the acceleration modality, we use an LSTM network with S = 250
cells each on L = 5 hidden layers and train it in I = 1, 000 iterations with a batch size
of b = 500. After training the network on our training set with those parameters, we
achieve an average gesture classification accuracy on the test set of 83.66%. Table 5a
shows the confusion matrix for the unimodal gesture classification, while Table 5b
shows the precision, recall and F1-score for every class.

Table 5. Results for the unimodal classification on the acceleration modality using an LSTM
network (Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2571 25 20 12 39 21

524 2124 17 4 8 5

36 273 2250 52 30 5

16 7 328 2204 86 5

26 3 17 163 2116 336

8 1 2 9 533 2100

(a) Confusion matrix for an LSTM network
trained on acceleration data.

Class Precision Recall F1-Score

C1 0.81 0.96 0.88

C2 0.87 0.79 0.83

C3 0.85 0.85 0.85

C4 0.90 0.83 0.87

C5 0.75 0.80 0.77

C6 0.85 0.79 0.82

(b) Classification report for an LSTM network
trained on acceleration data.

4.2 CNN

We also provide the results of our experiments using CNNs for all four modalities. The
modalities with sequential data are passed through the network as one data point with
an additional temporal dimension. CNNs are state-of-the-art networks for image classi-
fication since they are highly able to recognize patterns in images. CNNs are designed
according to multilayer perceptrons to reduce processing requirements and they usually
consist of a combination of convolutional layers, pooling layers, fully connected lay-
ers, and normalization or reshaping layers. For our experiments, we use a CNN with
eight layers: Three convolutional layers, two pooling layers, one reshaping layer, and
two fully connected layers. The CNN was trained using the Adam Optimizer and cross-
entropy as loss function. Again, we randomly select 20% of our dataset to use as a test
set and train the CNN on the remaining 80% in ten epochs.
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RGB. After training the CNN on the training set of the RGB modality, we achieve an
average gesture classification accuracy on the test set of 85.45%. Table 6a shows the
confusion matrix for the unimodal gesture classification of RGB data, while Table 6b
shows the precision, recall and F1-score for every class.

Table 6. Results for the unimodal classification on the RGB modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2660 24 1 0 2 1

0 2412 21 15 39 195

0 138 2464 19 23 2

0 55 79 2441 71 0

0 202 2 117 1611 729

0 271 0 45 274 2063

(a) Confusion matrix for a CNN trained on
RGB data.

Class Precision Recall F1-Score

C1 1.00 0.99 0.99

C2 0.78 0.90 0.83

C3 0.96 0.93 0.95

C4 0.93 0.92 0.92

C5 0.80 0.61 0.69

C6 0.69 0.78 0.73

(b) Classification report for a CNN trained on
RGB data.

3D. After training the CNN on the training set of the 3D modality, we achieve an
average gesture classification accuracy on the test set of 94.05%. Table 7a shows the
confusion matrix for the unimodal gesture classification of RGB data, while Table 7b
shows the precision, recall and F1-score for every class.

Table 7. Results for the unimodal classification on the 3D modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2687 1 0 0 0 0

3 2666 1 10 1 1

1 7 2619 17 2 0

0 0 20 2620 1 0

3 1 0 2 2376 279

0 2 4 0 589 2058

(a) Confusion matrix for a CNN trained on 3D
data.

Class Precision Recall F1-Score

C1 0.94 1.00 1.00

C2 1.00 0.99 0.99

C3 1.00 0.99 0.99

C4 0.99 0.99 0.99

C5 0.80 0.89 0.84

C6 0.88 0.78 0.82

(b) Classification report for a CNN trained on
3D data.

Audio. After training the CNN on the training set of the audio modality, we achieve
an average gesture classification accuracy on the test set of 45%. Table 8a shows the
confusion matrix for the unimodal gesture classification of audio data, while Table 8b
shows the precision, recall and F1-score for every class. As can be seen, there is a
high recall for the two gestures depending on sound (C5 and C6, Snap Once and Twice
respectively) while there was a very low recall for the four gestures not depending
on sound (C1 to C4, Thumbs Up and Down, Swipe Left and Right respectively). As
explained in Sect. 3.1, the purpose of the audio modality lies in reinforcing predictions
in combination with other modalities [25].
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Table 8. Results for the unimodal classification on the audio modality using a CNN (Source:
[25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

525 171 207 1771 9 5

460 230 217 1772 2 1

462 168 264 1750 2 0

480 188 178 1798 0 2

85 53 41 60 2076 346

9 6 10 4 381 2243

(a) Confusion matrix for a CNN trained on
audio data.

Class Precision Recall F1-Score

C1 0.26 0.19 0.22

C2 0.28 0.09 0.13

C3 0.29 0.10 0.15

C4 0.25 0.68 0.37

C5 0.84 0.78 0.81

C6 0.86 0.84 0.85

(b) Classification report for a CNN trained on
audio data.

Acceleration. After training the CNN on the training set of the acceleration modality,
we achieve an average gesture classification accuracy on the test set of 69%. Table 9a
shows the confusion matrix for the unimodal gesture classification of the acceleration
data, while Table 9b shows the precision, recall, and F1-scores for every class. As can
be seen, it is difficult for the CNN to distinguish Snap Once and Snap Twice (C5 and
C6 respectively) using only the acceleration modality.

Table 9. Results for the unimodal classification on the acceleration modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2422 5 29 150 53 29

606 1960 37 56 17 6

114 290 1575 616 44 7

109 2 350 2109 65 11

245 2 43 487 1520 364

129 3 15 138 967 1401

(a) Confusion matrix for a CNN trained on
acceleration data.

Class Precision Recall F1-Score

C1 0.67 0.90 0.77

C2 0.86 0.73 0.79

C3 0.77 0.60 0.67

C4 0.59 0.80 0.68

C5 0.57 0.57 0.57

C6 0.57 0.53 0.63

(b) Classification report for a CNN trained on
acceleration data.

5 Multi-modal Fusion

The results of our experiments on unimodal prediction show that both the visual modal-
ities and the acceleration modality have difficulties to distinguish the two classes with
little movement but distinct audio (C5 and C6 respectively). They also show that the
audio modality cannot distinguish the four classes with no distinct sound (C1 to C4) but
leads to acceptable results in the other two classes. Therefore, we investigate the effect
of fusing different modalities to increase the prediction accuracy that can be achieved.

Since the sensors output the data in different formats and also in different frequen-
cies, we discard early fusion methods that fuse the data before using them as input to
the machine learning model. We choose two commonly used and easy-to-implement
late fusion strategies to prove our assumption, other late fusion strategies as well as
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intermediate fusion strategies are possible and might even lead to better results but are
not within the scope of this work.

We analyse the LSTM or CNN readout layer rm after the whole gesture sample has
been processed, where m denotes the modality m ∈ M = {RGB, 3D, Audio, Acc}.
The readout layer provides one entry for every available gesture class, every entry has a
value of rmi ∈ [0, 1] and all entries are normalized

∑
i r

m
i − 1∀m ∈ M. C denotes the

decision based on the fused modalities, while Cm denotes the decisions based on the
uni-modal predictions. (Cf. [24])

The first late fusion strategy is called max-conf. Here, the uni-modal prediction of
the modality with the highest confidence is used, as described in Eq. 8.

x = argmaxm∈M
(
max

i
rmi

)
C = Cx (8)

The second late fusion strategy is called prob. Here, the readout layer entries are treated
as independent conditional probability distributions for a class i given the uni-modal
input sequence xm (cf. [24]). We denote the probabilities as rmi = pm (Cm = i|xm)
and use the class with the highest probability after multiplying the independent condi-
tional probabilities, as shown in Eq. 9. (Cf. [24])

C = argmaxi

( ∏
m∈M

p (C = i|xm)

)

= argmaxi

( ∏
m∈M

rmi

)
(9)

Figure 10 exemplarily shows some of the results of our multi-modal experiments. It
can be seen that the results – that are already very high – can be further improved, even

Fig. 10. Gesture classification accuracies achieved by the LSTM networks trained on uni-modal
data (Acceleration data, RGB data, 3D data, Audio data) and by performing multi-modal fusion:
max-conf of audio and RGB data, prob of audio and RGB as well as max-conf and prob of all
four modalities. (Source: [25]).
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with rather simple fusion strategies as used here. While fusing two modalities like audio
and RGB does not yield better or the same results as uni-modal prediction on 3D data,
these results show that fusing two modalities can improve the prediction accuracy, i.e.
when a 3D sensor is not available or processing 3D data is not computationally feasible
or even possible.

6 Live Demonstrator

Since our choice of only one person performing all the gestures in the dataset, we want
to prove that the dataset still can be used to train a real-live system that is able to cor-
rectly classify hand gestures that are performed by different people. Thus, experiments
on the live system prove that a machine learning model trained on the MMHG dataset
is able to generalize to another person apart from the one who recorded all gesture
samples.

As a proof of concept, we implement a live system that consists of an LSTM net-
work trained only on the 3D modality of the MMHG dataset and the live classifier based
on the Robot Operating Systems (ROS) that receives and processes 3D data from an
Orbbec Astra as described in Sect. 3.3 and then feeds it into the trained LSTM network.
Afterward, it receives the prediction and outputs it to the user. The other three modal-
ities can be handled accordingly, the network model can be swapped out by another
pre-trained model, i.e. a CNN, or fusion can be implemented as well, if needed.

6.1 Implementation

The implementation consists of a Point Cloud Processor that receives the data stream
from our 3D sensor and processes it according to the preprocessing steps described
in Sect. 3.3. It also consists of an LSTM classifier that receives the preprocessed data
from the Point Cloud Processor and feeds it into multiple pre-trained LSTM networks.
The third part is the Aggregator which collects the output predictions from the LSTM
networks, selects the most likely prediction, and outputs it to the user.

Point Cloud Processor. The Point Cloud Processor is implemented as a ROS node and
is responsible for receiving the data stream from the Orbbec Astra, processing the point
clouds, and publishing the preprocessed data to the LSTM classifier.

According to Sect. 3.3, the Point Cloud Processor subscribes to the 3D camera sen-
sor. It accepts 3D data at 6Hz corresponding to the frequency used in the MMHG
dataset. The node receives the 3D image and performs the same preprocessing steps
performed on the 3D data in the MMHG dataset. Thus, it downsamples the point clouds,
infers surface normals, and then calculates Point Feature Histograms. Those PFHs are
then published for further processing by the other nodes.

LSTM Classifier. The LSTM Classifier is also implemented as a ROS node and is
responsible for performing gesture classification by passing the PFHs published by the
Point Cloud Processor through multiple pre-trained LSTM networks. Since gestures can
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start at any given moment in time, we use an approach called Shifted Recognizer [26]:
N identical classifiers or recognizers are run simultaneously. Each classifier is pre-
trained on the MMHG dataset and has learned to classify gestures with a fixed length
T = 12 which determines the Temporal Receptive Field (TRF) (accordin to [26]). The
LSTM Classifier node feeds the PFHs it receives from the Point Cloud Processor to
all N classifiers. Each classifier has a delay of Δ = T

N frames compared to the other
classifiers. Therefore, “if we run enough parallel classifiers, a gesture of length l ≤ T
will always correlate with the TRF of a single classifier which will then classify it and
report its prediction” [25]. Figure 11 shows N = 4 parallel classifiers or recognizers
denoted as Rn with n ∈ [1, N ]. The delay between the classifiers is set to Δ = T

N . A
performed gesture will fall into exactly one classifiers TRF (indicated as a green bar in
the figure), therefore this classifier will predict the gesture and output the results. All
other classifiers (indicated as red bars) will only receive part of the gesture in their TRF,
therefore they will not predict the gesture correctly.

In our system, we use N = 12 LSTM classifiers since the gesture samples in the
MMHG dataset have 12 frames. Therefore, as described above, a gesture will always
correlate to exactly one classifier with no onset or offset.

Fig. 11. Shifted Recognizer with N = 4. The delay is set to Δ = T
4
. The red and green bars indi-

cate the TRF of the four Shifted Recognizers (denoted R1...4). The currently performed gesture
is shown as a black bar on the top. The current gesture fits in exactly one classifiers TRF, thus it
can predict the gesture correctly. (Source: [25]). (Color figure online)

Aggregator. The Aggregator is the third ROS node. It gathers the predictions from the
readout layers from all N = 12 LSTM classifiers. According to previous research [26]
LSTM networks are able to classify sequences with varying onset and offset to some
extent. Thus, it is very likely that not just the LSTM classifier in whose TRF the gesture
fits in completely but also some of the other LSTM classifiers will predict the correct
gesture. Therefore, the Aggregator chooses the gesture class with the highest prediction
score, but only if it exceeds a predefined threshold and has been stable for the past three
frames. Thus, no prediction is chosen if there is no gesture in the data stream.

6.2 Experiments

We asked four people to perform gestures and had them classified by our live system.
Neither of those people were the person who conducted the gestures in the MMHG
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dataset. Each person was given a short introduction on how to perform the six differ-
ent gestures correctly, then they performed gestures from every gesture class and we
recorded the prediction made by the live system.

There were two male and two female users with different hand sizes and skin col-
ors to present as much variation as possible to our system and test the capability of our
system to generalize to different users (cf. [25]). Table 10 shows the results of our exper-
iments. Pi denotes the ratio of correct classifications of a gesture class Cj (as described
in Sect. 3.1) for the i-th user with i ∈ {1, 2, 3, 4}.

Table 10. Resulting gesture classification accuracies using our live system trained on the 3D
modality of the MMHG dataset (Source: [25]).

P1 P2 P3 P4 Total

C1 5/5 1/1 1/1 3/3 100%

C2 5/5 1/1 1/1 2/3 90%

C3 5/5 1/1 0/1 2/3 80%

C4 2/5 0/1 1/1 1/3 40%

C5 5/5 1/1 1/1 2/3 90%

C6 0/5 0/1 0/1 1/3 10%
∑

73.3% 66.7% 66.7% 61.1% 66.7%

Since our live system is meant as a proof of concept and depends only on the 3D
modality, it is not surprising that the system is not able to distinguish between the ges-
ture classes Snap Once and Snap Twice (C5 and C6 respectively). Using multi-modal
fusion of the 3D data with the audio data will most likely improve those results. Also,
for our system Swipe Left and Thumbs Up (C3 and C1 respectively) are difficult to
distinguish since the angle and movement of the hand is similar (cf. [25]). Again, using
multi-modal fusion of the 3D data with – for example – acceleration data, could possi-
bly improve the gesture classification accuracies for that gesture class (C3).

Nevertheless, the experiments on our live system show that a system trained on the
MMHG dataset is able to generalize to other people performing the gestures. The results
can be improved by the use of multi-modal fusion with one or more other modalities.

7 Conclusion

We provide an in-depth description of the new, freely available Multi-Modal Hand Ges-
ture Dataset consisting of almost 80,000 samples in six gesture classes with the four
sensory modalities RGB, 3D, audio, and acceleration. The gesture classes of the dataset
were carefully chosen to be easy to perform by all users and also suitable for application
oriented experiments on sequence classification and multi-modal fusion.

It can be seen that even very simple late-fusion techniques can be combined with
state-of-the-art sequence classification models such as LSTM and CNN models, thus
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improving the results of uni-modal gesture classification. Unsurprisingly, the audio
modality alone leads to disappoint gesture classification accuracies, but can improve
the quality of gesture classification when being fused with other modalities. Of course
this stems from the fact that our gesture classes were specifically chosen to show this
kind of behavior, to allow the dataset to be well suited for research on multi-modal
fusion.

Also, experiments conducted on a live system prove that a generalization to other
persons is high even though only a single person recorded all gesture samples available
in the dataset.

Future research will include further experiments on generalization capabilities and
the possible bias in recognition due to the single subject in the dataset. Also, we will per-
form experiments using probabilistic models for multi-modal sequence classification,
outlier detection, and sampling. Another focus in future work will be more complex –
intermediate – fusion strategies, i.e. with an end-to-end learned fusion contribution at
multiple stages in a network.
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