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Preface

The present book includes eight papers that are the extended and revised versions of a
group of selected papers from the 10th and 11th editions of the International Conference
on Pattern Recognition Applications andMethods (ICPRAM 2021 and ICPRAM 2022).

Since its first edition, the International Conference on Pattern Recognition Appli-
cations and Methods (ICPRAM) has aimed to be a major point of contact between
researchers, engineers, and practitioners in the areas of pattern recognition and machine
learning, both from theoretical and application perspectives. Therefore, the topics of
the conference papers span a wide range of investigation as well as development lines,
which of course always reflect the recent trends of research in the pattern recognition
community.

ICPRAM 2021 received 97 paper submissions from 30 countries, out of which 3%
were selected. ICPRAM 2022 received 107 paper submissions from 33 countries, out of
which 5%were selected. The selectionwasmade by the event chairs and their choicewas
based on a number of criteria that include the evaluations and comments provided by the
Program Committee members and by the session chairs during the event. The authors of
the selected papers were then invited to contribute to this book by submitting a revised
and extended version of their conference papers having at least 30% innovative and rel-
evant material. All the papers clearly reference the conference work and also underline
the nature and content of the extension. In particular, the first three papers in the book are
the updated versions of contributions presented at ICPRAM 2021, while the following
five papers are the updated versions of contributions presented at ICPRAM 2022. These
papers contribute to the research on several different topics tackled during the event,
including but not limited to deep learning and neural networks, image and video analy-
sis and understanding, machine learning methods, model representation and selection,
knowledge acquisition and representation, feature selection and extraction, ensemble
methods, data mining and algorithms for big data, biometrics and bioinformatics, and
systems biology.

The ICPRAM 2021 paper “Similiarity Constrained Conditional Generative Auto-
encoder with Generalized Dilated Networks” deals with the popular topic of generative
adversarial networks (GANs). Disentangled representations are considered to be an
important component for the property of interpretability, which may help overcoming
some limitations in the plausibility of GAN-generated results.

The next paper from ICPRAM2021, “Forecasting Overtime Budgets for Naval Fleet
Maintenance Facilities Using Time-Series Analysis During Transient System States”,
discusses the amendments necessary to adapt the predictive models that were initially
developed to predict an annual budget for staffing overtime hours within a Royal Cana-
dian Navy (RCN) fleet maintenance facility. In particular, the drastically changed work-
ing conditions caused by COVID-19 revealed some model flaws that this work aims at
fixing by adopting a novel strategy.
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The last paper from ICPRAM2021 is “Reduced Precision Research of a GAN Image
Generation Use-case” which again deals with GANs, but this time with a specific use-
case. The paper addresses a concrete problemof complexity reduction ofGAN-generated
models. In particular, a GAN model is quantized after training to a reduced precision
arithmetic with the aim to decrease the necessary model size and computing time yet
maintain the highest possible accuracy. The use-case is the reduction of the required
hardware resources for future Large Hadron Collider (LHC) detector simulations at
CERN.

The paper “Adaptive Sampling for Weighted Log-Rank Survival Trees Boosting”
is the extension of a paper presented at ICPRAM 2022. The field of survival analy-
sis tackles the problem of predicting the probability and time of the occurrence of an
event. Survival decision tree models have strong interpretability and can evaluate the
importance of predictors, but they demonstrate inferior performance in comparison to
classical Cox proportional hazards models. These in turn suffer from the assumption
of non-overlapping survival functions, which seldom hold on real data. The paper pro-
poses a new boosting of the survival decision tree model that uses adaptive sampling
and weighted log-rank split criteria.

The ICPRAM 2022 paper “Exploiting Temporal Coherence to Improve Person Re-
identification” tackles the interesting problem of person re-identification in long-term
scenarios. The use-case iswhole-body runner re-identification during ultra-running com-
petitions, where the task suffers from different illumination conditions, changes of cloth-
ing and/or accessories like backpacks, caps, and sunglasses. This paper explores integrat-
ing these cues with the spatio-temporal context information present in the competition
live track system.

The paper “Perusal of Camera Trap Sequences Across Locations” (ICPRAM 2022)
deals with the interesting problem of efficiently handling camera trap sequences in video
analysis related to ecological conservation. In particular, the paper proposes a pipeline
for wildlife detection and species recognition to expedite the processing of camera trap
sequences. The proposed pipeline consists of the three stages of empty frame removal,
wildlife detection, and species recognition and classification, which mostly rely on the
use of the recently spreading visual transformers.

The paper “Gesture Recognition and Multi-modal Fusion on a New Hand Gesture
Dataset” (ICPRAM 2022) presents a new hand gestures dataset and a baseline set of
experiments using state-of-the-art sequence classifiers and the new dataset as a bench-
mark. The dataset consists of about 100,000 samples, grouped into six classes of typ-
ical and easy-to-learn hand gestures. The dataset was recorded using two independent
sensors, allowing experiments on multi-modal data fusion at several depth levels.

The last paper from ICPRAM 2022 that closes this book is “Retinotopic Image
Encoding by Samples of Counts”. The generative approach proposed treats the image
coding within generative models as a special case of the classical statistical problem of
probability distribution density estimation, which is restricted to the class of parametric
estimation procedures. In particular, the authors propose to use themodel of a parametric
mixture of simple distribution components.

While the theoretical scene seems presently dominated by deep models, and espe-
cially by generative ones, the introduced works also demonstrate the wide range of
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possible applications. We hope that researchers, engineers, and practitioners in the areas
of pattern recognition and machine learning will find this book of interest.

Last but not least, we would like to thank all the authors for their contributions and
also the reviewers, who havemade this publication possible and helped ensure its quality.

February 2021 Maria De Marsico
Gabriella Sanniti di Baja

Ana Fred
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Theory and Methods



Reduced Precision Research of a GAN Image
Generation Use-case

Florian Rehm1,2(B) , Vikram Saletore3 , Sofia Vallecorsa1 , Kerstin Borras2,4 ,
and Dirk Krücker4

1 CERN, Esplanade des Particules 1, Geneva, Switzerland
florian.matthias.rehm@cern.ch

2 RWTH Aachen University, Templergraben 55, Aachen, Germany
3 Intel, 2200 Mission College Blvd., Santa Clara, CA, USA

4 DESY, Notkestraße 85, Hamburg, Germany

Abstract. In this research a deep convolutional Generative Adversarial Network
(GAN) model is post-training quantized to a reduced precision arithmetic for a
complex High Energy Physics (HEP) use-case. This research is motivated by
the aim to decrease the necessary model size and computing time for reducing
the required hardware resources for future Large Hadron Collider (LHC) detec-
tor simulations at CERN. However, in order to interpret the measured physics
results, the detector simulations have to maintain the highest possible accuracy.
Therefore, the quantized model is not only in detail analyzed in terms of hard-
ware resource consumption but additionally comprehensively evaluated in terms
of the achieved physics accuracy. We report that we achieve with the quantized
model a 3.0x speed-up versus the initial model on modern CPUs. Furthermore,
we investigate several new physics accuracy metrics to demonstrate that the accu-
racy does not significantly decrease due to the quantization process. Reduced
precision computing for classification problems is already adequately studied,
however, this is not the case for more complex image generation problems as we
require for our use-case of detector simulations in this research. By using the Intel
Neural Compressor, the quantization is performed in an iterative process. Neural
Compressor automatically quantizes only the parameters of the neural network
which do not decrease the accuracy of the model regarding a predefined accuracy
metric. In our research we post-training quantize the GAN model from the 32-bit
format down to 8-bit format.

Keywords: Reduced precision computing · Generative Adversarial Networks
(GAN) · Neural Compressor · HEP simulation · Quantization

1 Introduction

Deep Learning (DL) achieves today in many applications almost human efficiency and
replaces traditional computing algorithms because of its higher effectiveness [10]. Due
to increasingly deeper neural networks for achieving higher accuracies the simulation
time rises. In some application fields, for example on mobile edge devices, computa-
tional power is limited. However, for increasing model sizes hardware resource reduc-
tion additionally becomes relevant for applications on CPU and GPU architectures. This
c© Springer Nature Switzerland AG 2023
M. De Marsico et al. (Eds.): ICPRAM 2021/2022, LNCS 13822, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-24538-1_1
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http://orcid.org/0000-0002-7003-5765
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is also the case for High Energy Physics (HEP), where enormous amounts of data have
to be simulated within short time frames. A simple approach to reduce hardware needs
for a trained DL model represents the quantization of the neural networks into a reduced
precision.

In this section we provide an introduction to reduced precision computing, to the
physics use-case of detector simulations and to the generative model used for the simu-
lation. In the subsequent chapter we introduce the quantization tool Neural Compressor
applied in our study. In the following we evaluate the quantized model and compare the
results to the initial not quantized model and to the classical Monte Carlo simulation
we aim to replace. Finally, at the end we draw conclusions.

1.1 Reduced Precision Computing

In reduced precision computing higher throughput during inference and reduced mem-
ory storage are achieved by shrinking the activations and weights of the trained neural
network to a lower precision. The process of converting numbers from higher to lower
formats is named quantization. The standard number format in machine learning is
floating point 32 (float32) or also named single precision [11]. It uses 4 bytes or 32 bits
for representing a single number. The float32 format utilizes one bit for the sign, eight
bits for the exponent and 23 bits for the fraction. For illustration, the largest possible
number of float32 is 2128 = 3.40 · 1038. The format in which we quantize our model
is integer-8 (int8) which uses, as the name indicates, 8 bits (or 1 byte) for representing
a single number. This is a quarter of the number of bits of the float32 format. Integer
means only whole numbers without fractions are allowed. The number can be either
signed int8 (sint8) with a range of [−128, 127] or unsigned int8 (uint8) with a range of
[0, 255]. Figure 1 shows graphically the float32, sint8 and uint8 format for comparison.

Fig. 1. (top) Representation of the float32 format, (bottom left) signed int8 format and (bottom
right) unsigned int8 format. The int8 formats require only a quarter of the bits of the float32
format.
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Related Work Quantization: There exist two different quantization techniques. The
first is post-training quantization, where the model is trained in full precision and quan-
tized after training. For quantizing into a lower precision, the use of a calibration dataset
is necessary to calculate the maxima of the weights and activations. Because post-
training quantization represents a straightforward approach which leads in most cases
to a satisfying level of accuracy, it is commonly the first approach chosen [30]. Hence,
we employ this approach for the study in this paper and explain post-training quanti-
zation in the following section in more detail. Typically, models are trained in float32
precision on multi-node clusters, which are then quantized to lower precision formats
and loaded on light-weight devices, such as edge-devices. Ref. [13] describes the quan-
tization process for quantizing convolutional networks down to as low as 4-bits with
only using small calibration data sets while avoiding overfitting. Another research was
carried out in Ref. [5], where they applied different quantization techniques for quan-
tizing pre-trained state-of-the art neural networks down to 4-bit while only losing a few
percent of accuracy.

An alternative method to the one explained above, is named quantization-aware
training. It directly trains models using lower precision formats. However, quantization-
aware training is more complicated and, therefore, not used in this study. The benefit of
quantization-aware training is that the quantization errors which decrease the total loss
of the model can be reduced by optimizing the parameters accordingly. In Ref. [10],
they compare the training of neural networks in various precision formats. In Ref. [29],
they demonstrate a 2−4x training time improvement with the use of 8-bit floating point
numbers above today’s 32-bit systems.

A further step is to train models with mixed precision formats using both, float32
and int8 for example. In this case, some weights are represented in int8 format to
achieve a speed-up, but others are kept in float32 to maintain the level of accuracy.
Choosing which weights are represented in higher or lower precision is performed
by intelligent algorithms. Various studies have evaluated mixed precision for training
[16,17]. In particular Ref. [20] employs successfully a mixed precision approach for
the training of GANs.

In most cases, quantization techniques are targeted to int8 format. Because int8
is supported by most modern hardware and maintains almost the equivalent level of
accuracy, in comparison to even lower precision formats which cannot maintain the
accuracy [14]. Most of the existing benchmarks represent classification problems [31],
while in our case, we require an accurate description of generated image data.

The content of this paper represents an extension to the previous publication from
Ref. [25] where we published some preliminary results. The results presented in this
paper demonstrate the conclusive outcomes of our quantization research which are in
more detail explained and investigated here. The good physics accuracy of our quan-
tized model is confirmed with new optimized physics validation metrics which offer a
deeper insight and understanding of the model. For performing the quantization, we use
the quantization tool Neural Compressor as previously. Paying tribute to the hardware
evolution, we run the inference benchmark tests on the latest Intel Ice Lake hardware
just published a few months ago and accomplish an almost double as large speed-up
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than previously seen. Therefore, most of the content provided in this paper is novel
compared to the previous research in Ref. [25].

Mathematics Behind Quantization: In the post-training quantization process we want
to scale down the number from a range of [−3.4 · 1038, 3.4 · 1038] to a range of [0, 255]
for using uint8 format or [−127, 128] for using sint8. In order to do this, first the maxi-
mum absolute numbers of the weights Bw and activations Bα of the neural network are
identified. These are required to obtain the boundaries for calculating scaling factors
which allow to use the full range of the int8 numbers after quantization. To measure
the maxima Bw and Bα, it is required to run inference with a few batches of the train-
ing data with the trained model before quantizing it. The scaling factor can then be
calculated with

Sunsigned,(w,α) =
255

B(w,α)
(1)

for using the full range of uint8 numbers (∈ [0, 255]) or

Ssigned,(w,α) =
127

B(w,α)
(2)

for sint8 numbers (∈ [−127, 128]). The calculation is done independently for the
weights w and the activations α. The quantized weight Ii can then be calculated with

Qwi = round(Sw · Ii), (3)

where the results are rounded to the closest integer number. The index i denotes the ith

weight. Similarly, as the weights the quantized activations can be calculated.

1.2 High Energy Physics Simulations

The Large Hadron Collider (LHC) at CERN in Switzerland is the largest particle accel-
erator in the world ever built for accelerating charged particles to the maximum pos-
sible amount of energy. The high energetic particles are then collided with a second
counter-rotating beam in huge particle physics detectors to study the particle’s proper-
ties and new physics after the interaction. These detectors are constructed by multiple
sub-detectors, each serving different purposes in order to measure all the quantities
of the particles created in the collision, namely energy, momentum, angle and charge.
These quantities are necessary to determine the type of the measured particles as well
as to reconstruct the interaction. This is a complex process, and its analysis is borne
by simulations deriving the accuracy parameters of the reconstruction. Nowadays, the
Geant4 toolkit [2] is employed for detailed simulation of the interactions while the par-
ticles pass through the matter of the detectors. Geant4 is a complex tool consisting of
detailed Monte Carlo simulations for reproducing the known physics processes.

HEP Monte Carlo simulations are computing resources demanding tasks because
of the complex underlying physics processes. In particular, calorimeters, one type of
sub-detectors, are built from a dense material in a highly granular geometry with many
sensors which leads to elaborated and extended simulations. At the world leading HEP
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institution CERN detector simulations require currently more than half of the world-
wide (LHC) grid resources [3]. In the future LHC high-luminosity phase, presently
scheduled for 2027, the required amount of simulated data is expected to be around hun-
dred times larger than today due to more simultaneous particle collisions (called pile-
up) and calorimeter detectors with a novel grade of high granularity. This exceeds dras-
tically the expected computational resources even with taking the technology improve-
ment into account [4]. For mastering this obstacle, intense research is ongoing for devel-
oping alternative approaches to the recent Monte Carlo simulation. The major difficulty
for alternative simulation approaches lies in the required high level of accuracy in order
to successfully interpret the measured physics results with only small uncertainties.

In the recent years deep learning simulations were increasingly adopted in HEP
because they tend to work even better when more data is available. Once deep learning
models are trained in a complex and tedious process, their application or inference
is fast and scaling-up well. As a first step and serving as a proof of concept, in this
research the most hardware consuming part of the detector simulations, the calorimeter
simulations, are replaced by deep learning methods. For this several prototypes based
on deep generative models are tested [19,21,24].

Electromagnetic Calorimeters: Calorimeters are devices which are operated in HEP
detectors to measure particle energies. In this study we focus on electromagnetic
calorimeters which are a sub-type of calorimeters measuring electrons and photons
as primary particles. These primary particles enter the massive detector material and
produce a cascade of secondary particles while they pass through the detector. The sec-
ondary particles create then other particles with the same mechanism. This leads to
a particle shower inside the calorimeter. The dominant underlying physics processes
which cause secondary particles in matter are bremsstrahlung for electrons and pair
production for photons. When the energy of the particles falls below a certain thresh-
old, the energy of the secondary particles is absorbed and measured by the calorimeter
sensors.

The calorimeter in this study represents an illustrative prototype of a future high-
granularity calorimeter. A higher granularity corresponds to more detection and mea-
surement volumes and therefore to a higher detector precision. The calorimeter is built
as a three-dimensional volume and measures the absorbed energy with 25× 25× 25
cells summing up in a total of 15625 pixels. A demonstrative example shower image is
shown in Fig. 2. The primary particles enter the calorimeter in the middle of the x- and
y- direction and the particle shower is evolving in the z-direction named the calorimeter
depth.

It is worth to mention some particularities of the calorimeter training data. The
shower images are very sparse, only a minor fraction of pixels receives some energy
deposition. Furthermore, the energy range of the pixel entries can vary in more than six
orders of magnitude. In this study 200 000 shower images are used (90% training data,
10% test data) with primary particle energies in the range of Ep = [100, 500]GeV. As
we will explain in Sect. 3, for validation a second data set is used consisting of 40 000
additional images. The data of both data sets is generated by Geant4 with detailed
Monte Carlo simulation and is public available in Ref. [22].
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Fig. 2. (left) Schematics of the 3D calorimeter volume and (right) an example shower image for
a primary particle with 500GeV energy.

1.3 Deep Convolutional Generative Adversarial Networks

The simulation approach employed in this paper are Generative Adversarial Networks
(GANs). GANs were first introduced by Ian Goodfellow [9] in 2014 and represent today
a state-of-the-art technique for image generation. The GAN principle is that two mod-
els or two neural networks are carrying out an adversarial role based on game theory.
The generator network G tries to fool the discriminator network D by sending fake
images which are labeled as true images (training images). G generates the fake images
x from a random latent variable z. The discriminator on the other hand, tries to distin-
guish between real data (images from the training data set) and fake data x (generated
images). The training goes in alternating turns. In the first turn the generator tries to
improve its strategy to make its generated images closer to the one from the training
data. In the subsequent turn the discriminator improves its network to correctly distin-
guish between the generated and the training data before the generator is trained again,
etc. The training is successful, when the discriminator is no more able to distinguish
between the original images and synthetic results producing a classification prediction
y of 50% for each class. The two GAN models, generator and discriminator, are typi-
cally parameterized by deep neural networks which are trained simultaneously by the
following objective function:

min
G

max
D

V (G,D) = Ex˜pdata(x)[logD(x)] + Ez˜pz(z)[log(1 − D(G(z))]. (4)

Phased differently, the generator and discriminator play a two-player min-max game,
the generator tries to minimize the objective function in order to produce the gener-
ated images more similar to the training data until they are indistinguishable. The dis-
criminator, on the other hand, maximizes the objective function to distinguish between
generated data and training data. The GAN principle is demonstrated in Fig. 3.

Conv2D Neural Network Architectures: As we apply the GAN to an image gen-
eration task, the neural networks primarily consist of convolutional layers. Therefore,
the used model represents a Deep Convolutional GAN (DC-GAN). In the following
the neural network architectures of the generator and discriminator network are briefly
introduced because the contained layers are important for the later quantization process.
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Fig. 3. The GAN principle with the two neural networks, the generator and the discriminator,
which are trained in an adversarial strategy.

The generator architecture is shown in Fig. 4. The output of the generator is a 3D
image with the dimension 25× 25× 25 pixels, the same dimension as the training
images. The input into the generator represents a latent vector consisting of 200 ran-
dom numbers drawn from a uniform distribution. It is multiplied by the input energy
Ep of the primary particle which represents the only dependency of the generated show-
ers. After placing a dense layer, the input tensor is reshaped to a 3D volume with the
dimensions 5× 5× 5. Usually, one would use 3D convolutional (Conv3D) layers for
processing 3D images. However, as Conv3D layers are yet unsupported in the quan-
tization tool, we developed a smart neural network architecture consisting of 2D con-
volutional (Conv2D) layers. As shown in a previous publication in Ref. [24], with this
approach we were able to generate successfully 3D images with only Conv2D layers.
Furthermore, in terms of physics accuracy as well as computation time, the new model
clearly outperformed the previous Conv3D architecture.

Fig. 4. The Conv2D generator architecture [25].

In addition to the Conv2D layers, Conv2D Transpose layers are responsible for
upsampling the volume to a larger size to produce the required dimensions at the out-
put. Within the convolutional block after each Conv2D layer a LeakyReLU activation
function is applied in order to introduce none-linearities into the network to allow to
learn complex patterns from the data. The LeakyReLU is followed by a BatchNorm
layer which re-centralizes and re-scales the data to execute the parameters of the pre-
vious convolutional layer more stable. BatchNorm layers possess a high importance,
especially in helping to converge during the training process and to stabilize the train-
ing of deep neural networks. The last layers comprise Dropout layers, which represent
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a method of regularization of neural networks. They reduce the possibility of overfitting
by turning off, named “dropout”, some nodes from the previous convolutional layer by
setting its output to zero. We use a dropout rate of 20%, turning off randomly 20% of
the nodes to prevent mode collapse.

Initially, we wanted to implement within the generator network standard ReLU acti-
vation functions instead of LeakyReLU ones. However, our complex GAN model com-
bined with the sparse shower images as training data do not allow to use the plain ReLU
activation functions. Training our model with ReLU functions leads to convergence to
zero gradients everywhere after a few optimization steps. This issue is known as the
dying ReLU problem and appears in deep network architectures where many (or all)
neurons output the values 0. When all the gradients of the network return zero it is
unable to learn further in the backpropagation process and the full model remains unre-
coverable [15]. When using LeakyReLU activation functions this problem does not
appear and we are able to train the model and to generate meaningful images. Other
approaches which typically combat the dying ReLU problem are to decrease the learn-
ing rate and/or to adapt the weight initialization. However, these techniques do not
resolve the dying ReLU problem for our model, most probably because of the sparse
shower images.

Fig. 5. The Conv2D discriminator architecture [25].

The corresponding discriminator architecture similarly operates with Conv2D lay-
ers and is shown in Fig. 5. The inputs of the discriminator are either generated images
(called fake images) or images from the training dataset (called true images). The dis-
criminator outputs three values which represent the loss values for the optimization of
the neural network parameters during training:

– The first loss value is the typical GAN true/fake probability LTF [9]. It predicts how
likely it is, that the input image represents a true image (from the training set) or con-
trary, how likely it is, that the input image represents a fake image. The true/fake loss
is calculated using the binary cross entropy [18] after applying a sigmoid activation
function.

– The second loss, named AUX (for AUXiliary loss) LAUX , represents the result of
a regression task used to model the relation between the initial particle energy Ep
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and the discriminator estimate from the images using a separate dense layer. It is
implemented as a Mean Absolute Percentage Error (MAPE) [26].

– The third discriminator output comes from a Lambda layer, a custom layer calculat-
ing the sum over the pixels of the input image and corresponds to the total energy
of the input image. It is entitled ECAL LECAL and evaluates if the generated image
contain the correct amount of energy as expected from the training dataset. The loss
is calculated by the MAPE likewise. The ECAL loss does not depend on the dis-
criminator network and therefore only updates during training the parameters of the
generator network and not the ones of the discriminator network.

The total loss Ltotal of the discriminator is calculated by multiplying each of the
three losses with a scalar weight w as hyperparameter and summing them up:

Ltotal = wTF · LTF + wAUX · LAUX + wECAL · LECAL (5)

In addition to the true/fake loss, the two losses AUX and ECAL are required to help
the GAN to converge faster with fewer oscillations during training and to reach higher
accuracy’s. The loss weights are chosen to equally weigh each of the loss terms:

– wTF = 6.0
– wAUX = 0.2
– wECAL = 0.1

The aim of the trained generator is to provide the corresponding particle detec-
tor output for a specific particle type and energy. The discriminator is only required
for training the generator and, therefore, for the inference process not further needed.
Hence, in the following reduced precision research the focus lies exclusively on quan-
tizing the generator network.

2 Quantization Tool

Because reduced precision computing is nowadays an established technique of decreas-
ing hardware requirements there exist already many quantization tools. The primary
constraint for quantizing the above explained generator network into lower precision
is that in most of the tools, not all layers which are present in our neural network, are
integrated. In Sect. 1.3, we already indicated that Conv3D layers are not supported in
any quantization tool because they are in general not very frequently applied. In order
to explore and study reduced precision computing we had to come up with a new neu-
ral network architecture which uses the more common Conv2D layer as described in
Sect. 1.3. However, additionally there are other layers in our network which cause diffi-
culties in finding the appropriate quantization tool. These comprise Conv2D Transpose
layers and LeakyReLU activation functions which are at this time not supported in most
quantization frameworks. The reason for this is that quantization in deep learning is
typically applied to classification problems which employ simpler neural network out-
puts (probability values of classes) than compared to the complex 3D shower images
from our network. These classification tasks use the standard ReLU activation functions
instead of LeakyReLU’s. However, as explained in Sect. 1.3, we need the LeakyReLU
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activation functions to prevent the dying ReLU problem. Additionally, ordinary clas-
sification problems have no need for Conv2D Transpose layers, because there is no
upsampling in image size required. Therefore, also Conv2D Transpose layers are in
most quantization tools at this time not implemented.

For using quantized LeakyReLU layers an additional problem appears in Tensor-
Flow (TF). TF supports by default only uint8 (unsigned int8) operations and not sint8
(signed int8) operations. The sint8 operations are not needed for classification networks
with standard ReLU activations and, therefore, sint8 are by default not yet implemented
in TF. But, the latter ones are necessary for our model since LeakyReLU functions can
generate negative values. Therefore, because we need LeakyReLU layers in the net-
work, there is no other way than implementing sint8 operations within a patched TF
version, as we will discuss in the following.

Intel Neural Compressor: The Intel Neural Compressor [1] (formerly known as Intel
Low Precision Tool, LPOT) is an open-source python library for quantizing deep learn-
ing models and running low precision inference across multiple frameworks. It uses the
Intel oneAPI Deep Neural Network Library (oneDNNL) [12], which contains building
blocks for deep learning applications to improve the performance on Intel processors.
In the previous research in Ref. [25], we were the first who applied the brand-new Neu-
ral Compressor tool on a real use-case and achieved good results. An overview of the
Intel Neural Compressor infrastructure can be seen in Fig. 6.

Fig. 6. Overview of the Intel Neural Compressor framework [1].

Neural Compressor is a post-processing quantization tool which automatically opti-
mizes deep learning models with low-precision recipes during quantization in order to
achieve the optimal objectives. The objectives for which Neural Compressor tunes are
inference time, memory usage and model accuracy [1]. For achieving this, it searches
for the best order of magnitude for the scaling factors for an entire layer instead of sin-
gle pixels. A key feature is that Neural Compressor can drop single “outlier” bits which
are far away from the other values within the corresponding layer and which would dis-
tort the results. With a recurrent refinement of the topology and dropping outliers, the
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Fig. 7. The workflow of Intel Neural Compressor [1].

Neural Compressor quantization remains a challenging process instead of a one-step
task compared to most other quantization tools. The quantization workflow of Neural
Compressor that aids in increasing performance is displayed in Fig. 7. Furthermore, in
the automatic quantization process Neural Compressor keeps a few nodes of the neural
network in float32 precision in order to increase or to keep a high accuracy. Therefore,
Neural Compressor is a post-processing mixed precision tool. This is another advan-
tage compared to other simpler quantization tools because it can reach much higher
accuracies due to the mixed precision. A comparison of Neural Compressor versus Ten-
sorFlow Lite was demonstrated in Ref. [25]. There the Neural Compressor int8 model
performed in terms of accuracy much better than the TensorFlow Lite int8 model. For
measuring the accuracy during the quantization process we use for our model a physics
validation metrics which will be introduced in the evaluation Sect. 3.

As mentioned earlier, sint8 operations are by default not implemented in TF which
we employ for our research. This leads to the fact that the recent quantization tools
have not implemented quantized LeakyReLU functions. Therefore, in this study we
use a customized TF version supporting sint8 operations which was provided by Intel.
Furthermore, the Intel Neural Compressor team implemented for us the quantized
LeakyReLU function into the Neural Compressor quantization tool. Neural Compressor
with the patched TF version is at this time the only set-up which provides all required
functionalities to quantize our model. The Neural Compressor team applied their quan-
tization tool to popular neural network architectures, such as ResNet and Inception and
achieved on average a two to three times speed-up in inference while only loosing less
than a half percent in accuracy, see Ref. [8]. Due to the optimization process of Neu-
ral Compressor, they were even capable in some cases to increase the accuracy for the
quantized model.

In many neural network architectures a set of layers is multiple times repeated.
This is also the case in our generator network, where we have a Conv2D layer, fol-
lowed by a LeakyReLU and a BatchNorm layer multiple time. By combining these
often-repeated layers of a network one can significantly decrease the number of layers
within the network and further speed-up the inference process. The layer fusion strategy
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can be chosen in Neural Compressor to accelerate the deep neural networks inference
for quantized models. In the recent Neural Compressor release we are able to fuse
[Conv2D + LeakyReLU] together. Future releases should also support a full [Conv2D
+ LeakyReLU + BatchNorm] fuse, which could further improve the performance.

3 Evaluation Quantization

In this section we evaluate the quantized model in order to determine which improve-
ments or deterioration we experience. We evaluate the inference process of both, the
new quantized int8 and the initial not quantized float32 model and compare them to
the detailed simulations with Geant4, which are very computing resource intensive and
need to be replaced. Inference represents the process of applying a neural network after
training to the specific use-case for which it is designed. For the GAN model under
study inference is the process when we generate a shower image with the generator
model by providing an input energy Ep. It is very important, that the inference process
occupies as less computational resources as possible while reaching the best achievable
physics accuracy for interpreting the physics results of the generated showers. When
a potential new model replaces the presently used Geant4 Monte Carlo simulations, it
must produce shower images which are as close as possible to the Monte Carlo simu-
lation in order to interpret the results physics-wise correctly. Therefore, we will go into
the very details and discuss many different metrics which enable a better understand-
ing of the physics performance. In the following we investigate first the computational
performance and afterwards the physics accuracy.

3.1 Computational Evaluation

To evaluate the computational performance, we measure the inference time as well as
the model memory occupancy of the int8 model and compare it to the float32 model.
We aim for a significant improvement in order to make the calorimeter simulations as
computing resource efficient as possible in order to scale-up.

The inference time depends on the model and on the hardware on which it runs. The
hardware tests in this paper are performed on the brand-new Intel Ice Lake 2S Xeon
8380 processors which provide 40 cores and 80 threads. The Intel Ice Lake architecture
supports reduced precision data formats and therefore we employ it to benchmark the
quantized int8 model versus the float32 model. All tests were run including 100 warm-
up batches.

We measure the number of generated showers per second for both models. For all
hardware tests we use Python version 3.6.8, the customized TensorFlow version 2.3.0
from [25] and a batch size of 128. The inference is run with multiple configurations of
cores and streams and the results are summarized in Fig. 8. We can see that for all con-
figurations the int8 model generates more showers per second compared to the float32
model resulting in a higher throughput and a lower inference time. The goal is to reach
the highest possible throughput. The number of showers per second rises for configu-
rations with more cores and streams as expected (from left to right in Fig. 8). However,
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Fig. 8. The number of generated showers per second of the float32 and int8 model for multiple
cores and streams configurations.

at the last configuration with 80 cores and 20 streams the number of showers per sec-
onds drops slightly, most probably because the memory bandwidth limit is exceeded
and the CPU becomes oversubscribed. This phenomenon was already experienced and
discussed in the research in Ref. [25].

The best result in terms of number of showers per second is accomplished with the
configuration of 80 cores and 16 streams where we are capable to generate 7 309 show-
ers per second for the int8 model. Compared to the float32 model with 2 845 showers
per second the int8 model is 2.6x faster in inference as summarized in Table 1. With this
configuration the int8 model is 124 261 times faster than the Geant4 simulation which
we aim to replace. For the Geant4 simulation time we refer to a previous measurement
performed in Ref. [28], where it took 17 s for generating a single shower image on
an Intel Xeon processor. The highest speed-up of int8 vs. float32 we achieve with the
configuration of 80 cores and 20 streams where we measure a speed-up of 3.0x.

Table 1. The speed-up for the best configurations of the int8 model compared to float32 (denoted
as int8/float32 scaling) and the speed-up of the int8 model versus Geant4 simulation.

Configuration int8/float32 scaling int8 speed-up vs. Geant4

80 Cores, 16 Streams 2.6x 124 261x

80 Cores, 20 Streams 3.0x 122 291x

The speed-up is a result of savings in memory bandwidth and faster computing
with the int8 arithmetic. Because the number format of int8 is 4 times smaller than of
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float32 what leads to the expectation of a 4x speed-up. However, because through the
quantization some more operations are added to the model and the computational time
slightly increases. An example for an additional quantization operation at the beginning
is the formatting of the input of the model from float32 down to int8. Additionally, the
opposite appears at the end of the model, where a de-quantization layer de-quantizes
the model output from int8 back to float32 format such that it can be processed by
following algorithms. In comparison, the TensorFlow Lite team measures for different
models inference speed-ups of around 3x [27] and the PyTorch team speed-ups in the
order of 2 − 4x [23]. In the related work section of quantization we introduced already
another study which achieved also speed-ups of 2 − 4x. These values agree with our
measurement.

With the above results we set a new benchmark in terms of inference time for
calorimeter simulations. In our previous research in Ref. [25] we reached only a 1.7x
speed-up of int8 vs. float32 with a 67 000x speed up vs. Geant4. The new results in this
paper are almost twice better than in the previous research.

Table 2. The hardware memory consumption of the int8 and float32 model.

Model Memory Consumption

float32 8.083MB

int8 3.571MB

Next, we investigate the amount of hardware memory the model requires for both
precision formats. As displayed in Table 2, the initial not quantized float32 model occu-
pies 8.083MB of hardware memory. Due to the quantization we were able to reduce
the int8 model size to 3.571MB. This results in an improvement of 2.26x in memory
consumption for the int8 model with respect to the initial float32.

3.2 Physics Accuracy Evaluation

Performance evaluation of generative models remains a challenging task for which,
depending on the specific applications, no uniform but several methods have been pro-
posed [6]. Because calorimeter simulations are an image generation task, the majority
of our validation metrics are visual. For evaluating the physics accuracy, we measure
the energy patterns across the calorimeter volume focusing on specific quantities typi-
cally used to characterize calorimeter shower properties. For this study, we apply new
physics validation methods to compare the generated shower images of the generator
models to the ones of Geant4 in many possible aspects.

Example 3D Shower Images: As an initial investigation we compare the 3D shower
images visually. For this a shower for the float32 and for the int8 model are generated for
the same input vector. The example in Fig. 9 displays on the left the shower generated
from the float32 model and on the right from the int8 model for a particle with a primary
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Fig. 9. 3D shower image for an Ep = 400GeV example (left) for the float32 model and (right)
for the int8 model.

energy of Ep = 400GeV. As expected, there is not much difference between the 3D
shower images visible. Only looking into details at single pixels some minor differences
become visible. In the 3D shower plots an energy cut for energies below 0.004GeV is
applied in order to not overload the images and to make the core of the distribution
visible.

Shower Shapes: With the shower shape metrics one can visually investigate the 2D
projections of the energy shapes along the y- and z- axis averaged over 40 000 samples
over the full energy range. The x-axis projections are similar to the ones of the y-axis
due to the calorimeter geometry and therefore not shown. The validation data samples
are, as the training data, generated by Geant4 and represent an independent data set
used for all following validation metrics. The shower shape plots can be seen in Fig. 10
on a linear (left) and a logarithmic energy scale (right). The particle enters the detector
orthogonally to its surface at the coordinates x = 13, y = 13 and z = 0. Therefore,
in the transverse (x, y) plane larger energy depositions clusters are created around the
middle of the image. The energy deposition along the z-axis rises until a peak because
of the particle shower effect and then decreases because the secondary particle energies
fall below the sampling threshold and become absorbed. One can see, that both, the
float32 and the int8 model, are in the linear and logarithmic plot close to Geant4 except
for a few pixels where the int8 model is slightly off. Therefore, the accuracy of the
shower shapes of the int8 model is only marginally lower than for Geant4. However, it
is astonishing that the quantized model works even for the extremely low energies at the
distribution tails quite well, although it uses merely 256 numbers to represent the full
pixel energy range. This high accuracy in the shower shape plots of the int8 model is
possible due to the optimization process within Neural Compressor during quantization.
In Ref. [25] we provided a comparison to models quantized by TensorFlow Lite without
any optimization process. The TensorFlow Lite model performed especially at the low
energy distribution tails bad.

MSE Single Validation Number: The shower shapes are the most important metrics to
evaluate the generated shower images. Therefore, we created a validation number which
provides the accuracy contained in the shower shape plots within one single number.
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This number is calculated by the Mean Squared Error (MSE) from the 2-dimensional
shower distributions pixel wise along the x-, y- and z-axis between the corresponding
GAN model and Geant4. Afterwards, the MSE results of the three axes are averaged
to obtain a single number. This validation number possesses a high significance and
importance, because it is employed during the GAN training to evaluate the generator
model accuracy for the single epochs. Additionally, the MSE validation number is used
in Neural Compressor as accuracy metrics for which the model is optimized during
quantization.

Table 3. The mean MSE and standard deviation (STD) of ten inference runs.

Model Mean of MSE STD of MSE

float32 0.0620 0.0012

int8 0.0529 0.0018

Fig. 10. The generated shower shape plots (left) on a linear and (right) on a logarithmic energy
scale. On the horizontal axis the averages over the single pixels along the corresponding axis (top
y-axis, bottom z-axis) are shown and on the vertical axis the contained energy.

The MSE values of the models are provided in Table 3. The table shows the mean
and the standard deviation (STD) of the MSE for running ten times inference with
40 000 samples each. The MSE for the quantized int8 model (0.0529) is lower than for
the float32 model (0.0620), this results in a higher accuracy because the MSE repre-
sents an error and, the lower the value the better the accuracy. Usually, the accuracy of
models drops after quantization. In our case it was possible to accomplish a even higher
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accuracy because we optimized for the MSE single validation number in the quantiza-
tion process within Neural Compressor. As already mentioned above, this optimization
is key for maintaining a reasonable accuracy even after quantizing the model.

Mean Energy Deposition: The mean energy deposition inside the calorimeter is
shown in Fig. 11 (left) with respect to the incident electron energy Ep for the full energy
range. This metrics was proposed in Ref. [7]. To minimize statistical effects, the input
energies for the GAN models are the same as for the Geant4 events in the validation
data. An almost linear dependency is seen between the incident electron energy Ep and
the measured mean energy μ90, for which only the 90% core of the distribution is taken
into account in order to discard boundary effects. In the upper plot the mean energy μ90

and in the lower plot the relative error is displayed. It can be seen, that the int8 model
performs slightly worse than the float32 model because of the higher relative error. At
100GeV the discrepancy of the int8 model is largest with a deviation of 2% versus
Geant4. However, it should be noted, that deviations up to a few percent compared to
Geant4 are expected for fast simulations as the GAN approaches. Therefore, the int8
model performance is acceptable.

Fig. 11. Deposited energy mean μ90 (left) and relative width σ90/μ90 (right). The lower panels
show the relative deviation to Geant4.

In the right plot in Fig. 11 the relative width σ90/μ90 is shown, where σ90 is the
standard deviation of the 90% core of the distribution. For lower energies the int8 model
performs worse than the float32 model with deviations up to 5% between the int8 model
and Geant4.

Energy Sum: The energy sum metrics represents the sum of the energy of all pix-
els of the shower image and corresponds to the total measured energy for one event.
In Fig. 12 the energy sum is displayed for the discrete input energy events Ep =
[100, 300, 500]GeV. On the x-axis is the measured energy in MeV shown and on the
y-axis the number of counts within an energy bin in an arbitrary unit.
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Fig. 12. Total deposited energy. A 10−6 GeV single cell energy threshold is applied for taking the
detector resolution into account. The left peak corresponds to 100GeV, the middle to 300GeV
and the right to 500GeV.

The distributions of the float32 and int8 model are close to the ones from Geant4.
However, the 100GeV and 300GeV event means are shifted slightly to higher energies.
The distribution parameters mean μ and standard deviation σ are shown in Table 4. One
can see there is a small shift in the energy sum distribution due to the quantization.
However, already the initial float32 model shows some shift in the distributions with
respect to Geant4.

Table 4. The means μ and the standard deviations of the energy distributions are shown for each
model.

Model μ100GeV μ300GeV μ500GeV

Geant4 175 ± 14 523 ± 32 856 ± 57

float32 197 ± 10 544 ± 36 864 ± 50

int8 222 ± 16 572 ± 37 862 ± 52

4 Conclusion

We quantized a deep neural network GAN model for a complex high energy physics
use-case into a reduced precision format. As quantization tool we applied Neural Com-
pressor from Intel to quantize a pre-trained model in float32 down to the int8 format.
With the quantized int8 model we achieved a state-of-the-art inference time improve-
ment of 3.0x compared to the not quantized float32 model on the latest Intel Ice Lake
CPU. This results in a tremendous 120 000x speed-up over the presently employed
Geant4 simulation which we aim to replace by modern generative models. Addition-
ally, we achieved a 2.24x reduction in model memory size.
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For the physics calorimeter use-case in this research, the highest possible accuracy
is required. Therefore, we investigated the generated images very detailed with mul-
tiple physics metrics. The initial float32 model performed in most metrics very good.
Furthermore, the quantized int8 model did not indicate a significant loss in accuracy
compared to the initial float32 model.

The proposed reduced precision strategies for GAN models in this paper achieved
encouraging results. These findings can help to reduce the required computing resources
for future high energy physics simulations and for other generative model use-cases
beyond. Therefore, as future work we want to improve our initial float32 model to
reach a higher accuracy and repeat the reduced precision tests. For quantization we
recommend to use accuracy driven quantization tools, as Neural Compressor in this
study, in order to keep a high physics accuracy.
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Abstract. Recent advancements in Generative Adversarial Networks have made
it possible to generate plausible results. But what these models fail to learn is to
disentangle different factors of variations to have a better control over the gener-
ated images. This makes generating images with specific features difficult. Typ-
ically, it is possible to do so, but with limited success, because models are prone
to mix features from different classes together when generating images. For suc-
cessful image generations with control over the content of the generated images,
it is necessary that the model is interpretable conditionally disentangled. In fact,
disentanglement is considered to be an important property of interpretability and
is our focus point in this work. We introduce a novel idea to generate disen-
tangled representations. In this approach, we add a Convolutional Encoder to
the Conditional GAN structure and scale down the latent features to a vector.
Labels are used at different levels in the Decoder with help of a separate network
called Label-Scaler, which can be seen as a convolutional projection. Doing this,
we drastically increase the disentanglement, which we visualize by performing
traversals in both the feature latent space as well as in the conditional latent space.
Additionally, we improve our intermediate results significantly by using Gen-
eralized Dilation Convolutions, increasing the reconstruction- and generation-
performance of our framework without a change in disentanglement.

Keywords: Deep learning · Generative networks · Dilated convolutions ·
Constrained learning

1 Introduction

In recent years, image data generation in particular has been a keen area of interest for
many researchers. Auto-Encoders (AE) and Generative Adversarial Nets (GANs [13])
are only two examples. One reason for the popularity is their ability to generalize on
wide range of images to produce plausible results in various application domains [9,20].

Deep Learning tasks in Computer Vision usually require lots of data to train on.
While there is plenty of data available, the data is not always clean, labelled and ready
c© Springer Nature Switzerland AG 2023
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to use for these algorithms. This makes pre-processing a very important step in the
Machine-learning projects. GANs can help in reducing this pre-processing step by using
the available labelled data to create synthetic samples. Another scenario can be in cases
where the given dataset is imbalanced and the synthetic samples are used to balance out
the classes. . An optimal solution is not always reached while training GANs, and there
are very few sets of parameters where the GANs will converge, so GANs suffer from
training instabilities and require a lot of tuning. One example of this instability is the
well known mode collapse, which standard GANs are very sensible towards. Mode col-
lapse occurs when the generator misses some modes in the data, resulting in a generator,
which only generates samples in a limited range, in the worst case identical samples.
Due to this problem, one area of interest in GANs and AEs is that of disentanglement
in the latent space. One common defintion of disentanglement in this context is that dis-
entanglement describes the ability of the trained GAN or AE to represent one feature
of the reconstructed image or data as a single prior or noise value [16]. For example,
if there are features such as color, size, and rotation represented by a vector, changing
the rotation information should only change that angle of an object and not the other
features. They also suggest that disentanglement leads to better feature representation
and learning due to a more stable and reliable latent space.

We introduce two novel methods to solve the aforementioned shortfalls. First, we
modify how the conditional information is passed to the generator framework. Here we
add the conditional information at multiple places, using a label-scaler to dynamically
adjust the label information to different target domains. To achieve disentanglement,
we combine an Auto-Encoder and a GAN into one framework with additional losses
to ensure cycle consistency. This helps to train the Encoder and Generator on adver-
sarial losses in order for us to be able to use random noise to generate images. With-
out proper disentanglement and uncorrelating latent features random generations is not
advised. We call this framework Similarity constrained AEGAN (SimAEGAN). The
second novelty is using this approach as another use-case of our previously developed
Generalized Dilation layer [5] (GDL) to significantly improve the performance of our
approaches.

The core contributions of the paper can be summarized as follows:

– Achieving a disentangled feature representation when training Auto-Encoders.
– Conditional generation of data using interpretable attributes.
– Adding Gradient information as an additional evaluation metric when reconstructing
data.

– A novel application of the Generalized Dilation Layer to prove its effectiveness not
only in image classification and Remaining Useful Lifetime prediction, but also in
image generation tasks.

The paper is organized as follows. Section 2 discusses the work related to our
paper both for generative networks and dilated convolution kernels. Section 3 explains
the basic idea of our proposed framework, how we train the framework is trained.
Experiments are discussed in Sect. 4, including the corresponding results and analysis.
Section 5 gives a brief summary of the paper and concludes our study.
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2 Related Work

Our related work is split into two parts: the first part will describe related literature
regarding the ideas of disentangled representation in the fields of AEs and GANs, while
the second part will deal with related literature regarding the GDL.

2.1 Generative Networks

AEs were first introduced to explain the possibility of learning internal representations
using back-propagation [39]. AEs are a form of unsupervised machine learning algo-
rithm where the input is reconstructed after a set of compression and decompression
operations, with the aim to reduce dimensionality of the data. With availability of com-
putation capabilities, Convolutional Auto-Encoders (CAEs) can be scaled to multiple
layers. As a result, it has seen a wide range of newer applications from the traditional
use cases such as in Generative Modelling [29], Clustering [14], or anomaly detection
[32].

CAEs, although good at tasks such as image restorations, completion, or denoising,
fall short when it comes to sampling images from the latent space. To overcome this
problem, methods to sample through the latent space with the help of Variational Auto-
Encoders (VAE) [21] were introduced. The encoder is used as a recognition network
to match the output with an arbitrarily chosen distribution such as Gaussian distribu-
tion, split into two outputs, mean and standard deviation, by using KL Divergence as
a similarity metric. VAEs yielded good reconstructions and opened up the possibility
to generate images, but images were typically blurry and dull. To overcome the short-
comings of VAEs, a modified of Auto-Encoder with a Discriminator network called
Adversarial Auto-Encoders (AAE) was developed [29]. Here authors replace the KL
Divergence with a adversarial training for the encoder. The use of discriminator in the
training helps to reduce the blurriness in the generated and reconstructed images and
makes them believable [2,36].

At the same time there has been a deep interest in the field of GANs [13], which
demonstrated the power of adversarial training to generate synthetic images. Compared
to the methods mentioned previously, GANs have the ability to generate sharp images
which has allowed them to be popular in various computer vision tasks such as image
generation [7,19,20], image translation [11,18,26,43] and image super resolution [25,
28] among the many.

Even though there has been a lot of progress, GANs are plagued by a few problems.
First, the training dynamics of GANs are quite unstable. Second, they are hard to eval-
uate and third, the lacking ability to have control over the generated images or to have
disentangled features. The Deep Convolutional GAN (DC-GAN) made it possible to
train the GAN algorithm stably with help of Deep Convolutional Networks [37], which
was further improved with the introduction of conditional GANs (cGANs) [33] with
help of adding class information as conditional inputs to the training schematics. In a
different version, the discriminator is not used for binary adversarial training, but rather
a s a classifier [35]. It was also proposed to disentangle style and class information in
an unsupervised manner using Mutual Information Maximation [6].



26 J. N. Reimann et al.

Another area of interest in GANs are loss criterions used to train the networks.
Wasserstein GANs [1] use wasserstein distance to give a score to the images. Another
group proposed the usage of Mean Squared Error as adversarial loss criterion for train-
ing GANs [30].

A possible extension that has got a lot of interest is combining both the power
of disentanglement from VAEs and generating sharper images from GANs. Invertible
GANs, for example attached two encoders to the GAN architecture, one for the latent
output and other for class labels or attribute labels [36]. In 2017, two research groups
happen to propose a similar idea of using an invertible AE structure while training the
GAN [9,10]. Ulyanov et al. [40] showed that it is entirely possible to achieve GAN like
sampling from generator by only using AE structure. α-GANs extended this framework
with help of a VAE and a discriminator to achieve a similar output [38].

These hybrid models are able to disentangle style and content and sometimes even
features, but it is still not clear what is considered to be a disentangled representa-
tion. Higgins et al. [16] gives a general definition of disentangled representations. They
claim that a vector is said to represent a disentangled output with respect to a partic-
ular decomposition of a symmetry group into subgroups, if it decomposes the group
into independent subspaces affected only by the action of a single element to change
the group by a single feature. They lay down the definition with three factors, first is
Modularity, which states a single latent dimension should encode no more than single
data generative factor. Second is Compactness, which states that each data generative
factor is encoded by a single latent dimension but also suggest that it is possible that a
data generative factor is shared by two or more latent dimensions. Third is Explicitness,
which is defined by the ability that all data generative factors can be decoded using a
linear transformation.

Since there is no single loss value that signifies the diversity or quality of generated
images Borji [3] carried out a detailed survey identifying pros and cons of different
GAN evaluation metrics. Although there are many available metrics to evaluate GANs,
they somehow fall short of being completely optimal. For example, Inception Score
and Fréchet Inception Distance, two of the most widely used methods, use a pre-trained
network to calculate these measures which may not adapt well to other domains (faces,
digits).

2.2 Dilated Convolution Kernels

Since the main idea why we want to use dilated convolution kernels is to get informa-
tion of a larger context, while preserving the fine details (i.e. edge information), this
scenario is a fitting new application for the previously published GDLs [5]. Most of
the related work still holds, so we will briefly mention key concepts in the context of
image generation. Similar to image classification, our receptive field is two dimensional
and should also capture the spatial information in a certain range. Since not all pixels
are important, the concept of dilation allows for a higher receptive field size, without
increasing the number of parameters. Optimizing integer values is a problem on its own,
so there exist different approaches how to implement ideas similar to the dilation into
convolutional kernels. Layers with a variable dilation factor typically realize this by
utilizing bilinear transformations of the weight matrix, while keeping the structure of
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the dilation fixed [8,15,41]. Compared to our previous work, we use the GDN not to
focus on specific regions in the input kernel, but to have a dynamic adjustment of local
gradient computation, resulting in a small change described in the Section. 3.2. Here,
the gradient is the gradient over the input image, not the gradient the parameters are
trained with. Using the gradient information of the input image as well as the difference
in terms of raw pixel data seems redundant on the first glance, but should put a stronger
emphasis on sharp edges at the correct locations. To the best of the authors knowledge
using the gradients of the input image as well as the pixel difference is a novel approach.

3 Fundamentals

In this Section we will describe the various approaches in detail. First, we will describe
the basic model of the SimAEGAN. Second, we will introduce the ideas of the Label
Scaler extension, before explaining how this is related to the usage of GDLs. For all
approaches we explain all the hyperparameters, the loss calculations and the general
training setup.

3.1 SimAEGAN

To lay the basis for our experiments, we use an architecture which is similar to the ones
used in [22,23,38,42]. The main components of this newly proposed architecture are an
Encoder E, Decoder/Generator G, Discimg , Discfeat and a Label Scaler Ls. Figure 1
shows the proposed architectures in detail.

Fig. 1. Overview of the proposed SimAEGAN.

Training Framework. The training begins with calculating the loss in reconstruction
between the input images x and reconstructed images x′. The Encoder E is a CNN
trained to produce latent features z in a range from −1 to 1. We restrict the latent



28 J. N. Reimann et al.

code to a smaller latent feature space to force E to learn meaningful features. The
Decoder and/or Generator G accepts these latent features and the conditional informa-
tion (class labels/attribute labels) y as inputs and reconstructs the image as shown in
Eq. (1). The conditional information is one-hot encoded, if applicable, and are passed
through the Label Scaler Ls to up-sample the labels to different feature sizes. In gen-
eral, both Ls and the G share the losses and weight updates. The architecture of G with
Ls is explained in Subsect. 3.1. Here λMAE is the loss weight for back-propagating the
losses for Auto-Encoder phase.

LMAE = λMAEMAE(x′, x) (1)

Next, the noise z̃ and generated labels ỹ are sampled from a prior distribution. The
noise is either a Gaussian distribution or Uniform distribution in range from −1 to 1 and
the labels are selected randomly with an equal distribution for each class individually.
In cases of attribute labels, the generated labels are directly sampled from the training
labels y. We assume that since there are multiple combinations for all the attributes, they
are unlikely to over-fit to the conditional information as each combination of attributes
would require large enough sample size to over-fit based on samples.

The sampled noise and the generated labels are passed through G to produce gen-
erated samples x̃. These generated images are then passed through E to recover the
noise back from E. This helps to make E-Decoder structure invertable by using an idea
similar to cycle consistency [44]. The difference between the noise z̃ and reconstructed
noise z′ is calculated using mean squared error for the samples as shown in Eq. (2).
Here λMSE is loss weight for back-propagating the losses to E.

LMSE = λMSEMSE(z′, z̃) (2)

Then we start with the adversarial training for E. In this case, E is trained to match
the outputs(z, z′) with the sampled noise z̃. Here the Discfeat is trained based on the
probability of the Discfeat identifying the outputs as real. This trains E adversarially to
match the sampled noise distribution (Eq. (3). It is to be noted that only E is trained in
this part and the weight updates to the generator are ignored. Here λEadv1 and λEadv2

are the weights for losses on respective values.

LEadv
= − λEadv1Ex∼pd

log(Dfeat(E(x)))
− λEadv2Ez̃∼pd

log(Dfeat(E(G(z̃|ỹ))) (3)

A similar process is done again when training G. G is trained on the probability of
Discimg such that the generated images x̃ and reconstructed images x′ are detected as
real images (Eq. (4)). Similar to previous step, only G is trained and the weight updates
to E are ignored. Here λGadv1 and λGadv2 are the weights for losses on respective
values.

LGadv
= − λGadv1Ex∼pd

log(Dimg(G(E(x)|y))
− λGadv2Ez̃∼pd

log(Dimg(G(z̃|ỹ)) (4)
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Then Discimg is trained using all three sets of images. The task of the Discimg is to
correctly identify input images as real and to detect both generated and reconstructed
images as fake. To overcome the bias from having more generated images, we add extra
input images from the real set (Eq. (5)). It is to be noted that loss updates are only made
for Discimg and loss for Encoder and Decoder are ignored. Here λDimg

is the weight
value for the loss on the reconstructed images.

LDimg
= − Ex∼pd

log(Dimg(x))
− λDimg

Ez∼pd
log(1 − Dimg(x′))

− Ez̃∼pd
log(1 − Dimg(x̃)) (5)

Similarly the Discfeat is also trained on three sets of features, where noise is the
real input and the reconstructed noise and latent features are marked as generated
(Eq. (6)). The Discfeat also is trained on equal number of real and generated inputs.
Only Discfeat is updated with the loss and loss for Encoder and Decoder is ignored.
Here λDfeat

is the weight value for the loss on the reconstructed noise.

LDfeat
= − Ex∼pd

log(Dfeat(z̃))
− λDfeat

Ez∼pd
log(1 − Dfeat(z′))

− Ez̃∼pd
log(1 − Dfeat(z)) (6)

The convergence criterion for our training is to train for a certain number of epochs.
We refrain from early-stopping method as GANs are a two player game, it is difficult to
judge when the training has converged due to the previously discussed problems of not
having a proper measurement of the quality of images.

Label Scaling in Detail. The traditional method of concatenating the label information
directly to the noise may result in the network completely or partially ignoring the
label information. This leads to the cGANs producing samples of unequal quality or
possibility of class mixing for some features. To overcome this problem, one can either
use an embedding layer to convert the labels into a different information domain and
then up-sample to match the image size, as mentioned in [12], or by using an auxiliary
classifier to the Discriminator so that the Discriminator has two tasks, the adversarial
one and to classify the class of the image [35]. We build upon the first idea but also
modify the idea which has been explained below.

Fig. 2. Overview of one Conv-Block in the generator.

Figure 3 shows the architecture of the modified conditional generator in detail. The
top row consists of a Label Scaler network which is used for scaling the labels to dif-
ferent feature sizes and latent spaces. The bottom row is the generator network. Up-
sampling + Convolutional Layer are preferred to increase the feature sizes instead of
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Fig. 3. Modified generator with label scaler.

traditional Transposed Convolutional layers as it is shown that the later method leads to
checkerboard effects in the generated images [34].

In the Label Scaler, the class labels or the attribute vector is soft one-hot encoded
that is, instead of having one-hot label for class three in total of three classes [0., 0.,
1.], small noise is added to the zeros and the same is subtracted from the one in the
vector to result [0.01, 0.01, 0.98]. This is done in-order to add some non-linearity in
the labels and convert the sparse input into dense input, similar to labels smoothing in
typical GAN applications. If the labels are not added with noise then we use a Softmax
layer to impose non-linearity. Then the labels pass through the multiple Transposed
Convolution layers and concatenated at respective sizes.

The first two layers of the generator network consists of Transposed Convolutional
layers to increase the feature sizes upto 4× 4. The rest of the generator network is
made up of Up-sampling and multiple ConvBlocks or ResBlocks as shown in Fig. 2.
The ConvBlocks are convolutional layers followed by Batch-Normalization layer fol-
lowed by a non linear activation function such as Leaky ReLU with a negative slope
of 0.2. The convolutional layer are used to increase or decrease the number of features
in the network while keeping the latent feature size constant by choosing the padding
accordingly.

3.2 Dilation

As an extension to the above mentioned architectures we will use Generalized Dilated
Networks (GDNs) [4,5] with the goal of reducing artifacts and generating sharper
images. Here, we will briefly introduce the main concept of GDNs. In a Generalized
Dilation Layer (GDL), an additional matrix, the masking matrix Ψ̃ , is introduced. This
matrix has the same shape as the convolution kernel and is elementwise multiplied with
the weight matrix before computing the strided convolution. Ψ̃ is not only trained on
the classification loss Ls(ω, Ψ̃), but also by the barrier function loss Lb(Ψ̃). As barrier
functions we use the same barrier functions as in [5]:

bc(x) = br(x) = max
((

eα1·(x−p) · α2 · (x − p)
)

, α3

)
, (7)

ba(x) = max
((

eα1·(x2−p2) · α2 · (
x2 − p2

))
, α3

)
, (8)
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∇Ψ̃Lb = bc(Ψ̃) + br(Ψ̃) + ba(Ψ̃), (9)

where bc, br, ba represent the barrier functions over the columns, the rows, and over all
entries, respectively. Using Eq. 8 to Eq. 10, the local loss is defined as

∇Ψ̃ij
=

∂Ls(ω, Ψ̃)
∂Ψ̃ij

+ ∇Ψ̃ij
Lb. (10)

Using these barrier functions, we force the dilation mask to result in sparse matrices.
This should put a stronger focus on generating sharp edges and reducing blurriness.

Due to the use of the tanh-function, we also changed the parameter initialization
and barrier functions accordingly. The barrier functions do not compute the barrier loss
based on σ(Ψ̃), but on |tanh(Ψ̃)|.

Before applying the GDLs on this approach, we used manually generated kernels
for derivatives in x- and y-direction to not only map the output pixels to the input pixels
(i.e. reconstruction loss), but also map the output gradient to the input gradient (gradient
loss over the pixel data). This was not as beneficial as expected, thus we made this step
learnable so the network can adapt and find a more suitable mask on its own.

4 Experiments

In this section we will introduce our experiments and ablation studies. First, we show
a proof of concept on the MNIST [24] and a customized version of the Dsprites
dataset [31]. Afterwards, we show a thorough study on the CelebA dataset [27], where
we also compare our generated and reconstructed images, as well as feature traversals
of said images. Traversals are step-wise changes in a constant vector, where we only
change one feature at a time, from the minimum value to the maximum value. These
traversals are done on the feature fector, as well as on the conditional information. Here,
we also give a brief summary of the results below.

Table 1. Shared Hyper-parameters used for all the experiments.

Parameter Value Parameter Value

Noise Distribution Uniform Image Size 32/64

LrE 0.0001 LrG 0.0001

LrDimg 0.0001 LrDfeat 0.0001

β1, β2 (0.50, 0.999) Batch Size 100

λMAE 1.0 λMSE 0.5

λEadv1 0.0001 λEadv2 0.0001

In Table 1 we show all hyper-parameter shared between all following results. The
Image Size depends on the dataset, where we rescale MNIST dataset to 32× 32 and
cSprites and CelebA to 64× 64. We transform the input images in range of −1 to 1
and do not use any further image augmentation techniques. The optimizer for all the
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networks is Adam. We train for 50 epochs and reduce the learning rate by 90% every
20 epochs. The details of network architectures have been attached in Tables 2 to 8
(appendix).

Considering the task at hand, we set the hypothesis that reducing the latent space
of the Decoder forces it to learn the features efficiently, while also helping in the case
of feature-disentanglement. We set a baseline model (without GDLs) and test on cus-
tomized Dsprites and MNIST dataset. The baseline model is able to disentangle the
features, but we will show that it suffers from drawbacks for CelebA dataset which
are explained in Sect. 1. The model wcan be seen as a modified AE-GAN structure,
combining idea from both DC-GAN, and AAE.

For CelebA dataset, we first train our model only on the previously mentioned train-
ing setup in Subsect. 3.1. For the runs with the original model, we see that the recon-
structed and generated images contains artifacts around the face regions and are blurry.
Training longer also does not solve the issue. Moreover, the reconstructed images show
a low resemblance to the original image. It is to be noted however, that manipulations
in the latent space are successful i.e. the original image attribute male can be change to
female to obtain an image of a female with the same features.

To overcome the effect of artifacts and overall blurriness of the reconstructed or gen-
erated images, we use the Generalized Dilation Layer as a similarity constraint between
the original and reconstructed images. The motivation behind this is that two similar
images should generate similar features and therefore the loss between the two sets of
images should be minimized. Here we use three GDLs, where each layer hase three
input channels and one output channel. Field sizes are fixed to 11, whereas the kernel
sizes are set to 5, 7, and 9. The optimizer for the generalized Dilation layer is Adam
with the default learning rate of 0.001.

First we train the algorithm on our base training setup without using the GDLs, we
only enable the similarity loss and comparison the generated features from both the
original and reconstructed images with Mean Absolute Error of the two set of features
for the last 20 epochs. The Dilation layer, as well as the Decoder and the Encoder, are
trained during the backward pass of the loss. We modify the original Dilation layer [5]
to make it possible to have positive and negative weights, indicating a pseudo-gradient
calculation. We see that the generated and reconstructed images show improved recon-
struction quality (Figs. 13, 14) and are also less blurry when compared to runs without
the use of dilation layer as feature similarity constraint (Figs. 9, 10).

4.1 Custom dSprites

Here, we show our results on the custom dSprites dataset. We extended the original
dSprites dataset [17] by adding different shapes (Square, Circle, Ellipse, Trapezoid),
as well as color information (Red, Blue, Green) and call the resulting dataset cSprites
(custom dSprites). We select the color and shape information as our conditional val-
ues, whereas the other features (x-position, y-position, size,...) are randomly sampled.
In total we sample 1680 images as our dataset. The images are split randomly with 70
percent for training and the remainder for testing data. We use the same hyperparame-
ters as described in Table 1. Detailed network architectures are shown in Tables 2, 7, 4
and 5 for E, G, Discfeat and Discimg .
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Since our generator supports two different inputs (the conditional information as
well as the random noise), we choose a subset of attributes as our conditional infor-
mation and leave it to our network to generate the other information by itself. Since
we selected the color and shape information as our conditional information, we sample
each of these values individually as one-hot encoded labels. All the other information
(e.g. x and y position and size) are randomly sampled since they should be a result of
our encoder.

Figure 4 shows multiple generated images, where each column affects only single
conditional information.

Fig. 4. Generated cSprites images. Each column represents three generations with the same con-
ditional information: blue, green, red, square, circle, ellipse, and trapezoid (Color figure Online)

Obviously the generation of such simple shapes works, but the conditional informa-
tion is interpretable and for all intents and purposes completely disentangled. We can
select the conditional information, randomly sample the remaining features and gen-
erate a corresponding sprite. Since our remaining features should capture position and
scale, we now keep the conditional information static and traverse through each latent
code individually. The results are depicted in Fig. 5.

Fig. 5. Traversal through the latent features of two generated images.
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Here, we observe the same results as when analyzing the conditional inputs: our
encoder outputs are also for all intents and purposes disentangled and interpretable. We
know, that the latent features from our encoder represent y-position, x-position, and
the scale of the sprite (row one, two and three in Fig. 5 respectively), exactly the three
features we left for the encoder to detect. Overall the framework is definitely working
in producing a disentangled and interpretable latent space.

4.2 MNIST

Similar to the cSprites-results, we use the MNIST dataset as a proof of concept. The
MNIST dataset is arguably more complex than the cSprites dataset due to its wider
spread of information in the input image. Shapes are more complex than basic sprites
and the object fills out a much bigger area of the input image, making capturing infor-
mation over a wider region much more important, while also introducing different styles
of the same object.

The Dataset consists of 70000 images with 60000 images as training data and the
remaining 10000 as testing data. The dataset consists of 10 classes of grey scaled digits
from 0 to 9. Tables 3, 4, 6, and 8 show the detailed architectures for E, G, Discfeat and
Discimg respectively. The hyper-parameters are also left unchanged as per Table 1.

Fig. 6. Conditionally generated images for the MNIST dataset. Each column represents three
generations with the same conditional information.

The generated images look realistic, while being conditionally generated (Fig. 6).
Obviously the conditional information is working, whereas the other (random) parame-
ters have a different impact on the generated images: they combine position, thickness,
sizes, rotation, different styles and various other features. The conditional information
is still highly disentangled, interpretable and reliable. Since our architecture consists of
two parts (GAN and AE), Fig. 7 shows the reconstruction performance on images from
the testing dataset.

The reconstruction performance is also as expected. All reconstructions share
the most common features of the input image, while still lacking the minor details,
such as small twirls or faded out ends. Typically, using parts of AEs, especially
non-variational AE, to generate images results in way worse generations, due to the
correlation/entanglement of the latent features. By introducing the various losses men-
tioned in Sect. 3.1 we are able to achieve a disentangled latent representation of our
encoder outputs. To analyze this, we computed the Encoder outputs for each image in
the testing dataset and separated them according to their conditional information (their
class) with and without our additional losses. Figure 8 shows the distribution of one of
these latent features.
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Fig. 7. Reconstructions from samples of the testing MNIST datset. Odd rows show the original
image, even rows the reconstructed image.

Fig. 8. Distributions of one latent feature (one output of E), separated by classes. (a) training
without our additional losses (b) SimAEGAN.

We see, that the latent features in the original AE section are highly condensed to
small areas in the possible output space (Fig. 8a). However, if we train the same network
with our introduced losses enabled (Fig. 8b), it results in a ”proper” distribution, closely
resembling the prior distribution which was used in the generator training (uniform
from [−1 . . . + 1]). This output distribution explains why we are able to exchange our
encoder part of the network with random noise to successfully generate images. Using
our proposed losses we do not need to analyze our encoder outputs in retrospect. We
do not need to analyze the correlation of encoder outputs before generating images to
make sure we are sampling in the correct subspace.

4.3 CelebA

The CelebA dataset [27] is a common dataset for generative tasks. It contains 202,599
images of 10,177 celebrities with 40 boolean features each. For easier visualization we
select a small subset of features based on their distribution in the dataset and their com-
plexity: we want the features to be evenly distributed (meaning almost an almost 50:50
split) and mostly to be pretty simple to see the changes visually. The selected attributes
are Bangs, Black Hair, Eyeglasses, Heavy Makeup, Male, Receding Hairline, Smiling,
Straight Hair, Wavy Hair and Young.
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We selected these attributes over the other not only because of their distribution,
but also because of the nature of these attributes themselves. Most selected attributes
only correspond to local changes in the image and can easily be observed (i.e. Bangs,
Black Hair, Eyeglasses, Receding Harline, Smiling, and both of the hair-attributes),
while other attributes (i.e. Heavy Makeup, Male, and Young) have a bigger and more
complex impact on the images. The training data is split to contain around 1,62,800
images and 20,000 images for testing. Detailed network architectures are shown in
Tables 2, 7, 4 and 5 for the E, G, Discfeat and Discimg. The hyper-parameters are
also left unchanged as per Table 1.

Without GDLs. To compare the effect of the additional dilation networks on the
whole architecture, we will show results without GDLs first. Here, we will focus
on three different aspects: image reconstruction, image generation and disentangle-
ment/interpretabiliy of latent features. These aspects were also used in the previous
two datasets, but the aspect of disentanglement and interpretability requires additional
explanation of what we understand as disentanglement when it comes to features of
the CelebA dataset. Whenever we change one conditional feature, the only thing that
should happen (in a case of perfectly disentangled features) is a change in the output
according to the semantic meaning of this individual feature. If we add eyeglasses to an
image (or remove eyeglasses from an image) it should only affect the region around the
eyes, but not the hair, the gender, the background etc. When we change the more com-
plex features, we also expect a bigger change of the overall image. These more complex
features were missing as conditional information in cSprites and MNIST.

Analog to cSprites and MNIST, we will start with the reconstruction performance.
We sample various images from the testing dataset and show the reconstructions of four
testing images in Fig. 10. The first row represents the original image, the second row
represents the reconstruction of our architecture.

Fig. 9. Reconstructed images from the CelebA dataset without additional GDLs.
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In all reconstructions we see a significant difference in quality. Reconstructed
images have considerable background artifacts, but also artifacts in the reconstructed
faces themselves (e.g. Figs. 9c and 9c), with artifacts being big colored stripes and
inconsistent edges. Based on the reconstructions we assume that the decoder effec-
tively only supports the information of the before mentioned more complex conditional
features, features which affect the whole image and thus have a big impact on the recon-
struction performance. HairColor, HairStyle, and Smiling are also somewhat consistent,
but the network was unable to correctly restore the remaining attributes. A similar per-
formance can also be seen in the generation of images, where we can observe similar
artifacts and inconsistencies (Fig. 10). To generate random images, the feature vector
(which would otherwise be the encoder output) is sampled from R with a uniform dis-
tribution between −1 and +1 (uniform distribution to mimic the tanh of E). The con-
ditional information is randomly selected to be 0 or 1 for each attribute individually.
We can see that the aforementioned artifacts, especially the ones in the background,

Fig. 10. Conditionally generated images without additional GDLs.

seem to be a trained bias in the network. We found out that this bias is not from the
conditional information, but rather from the feature information (see Fig. 20). Many of
the other common artifacts also seem to correspond to these features, indicating either
that the generator is still lacking training, or that the encoder features (even though they
are properly distributed) are slightly correlated, since artifacts (such as the artifacts in
Figs. 9c and 9c) are not constantly visible in all images, but rather only for some of
them.

Since we know which conditional attribute represents which high level informa-
tion in the resulting image, we encoded images from the testing dataset and manually
changed the latent information in multiple steps. Figure 11 shows the end-points while
traversing through the attribute vector of an encoded image from the testing dataset.
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Fig. 11. Traversals of conditionally reconstructed images without additional GDLs. (a) origi-
nal/reconstructed image (b) attribute bangs (c) attribute eyeglasses (d) attribute female/male (e)
attribute smile.

These attribute traversals match the previous assumptions. The network is not
always able to capture the lower level facial attributes and mostly reacts to changing the
higher level attributes, such as gender. We also see, that various disturbances, among
that the artifacts, are not changed by the lower level attributes. Even though the condi-
tional attributes can not be sufficiently generated, they only impact their actual region
of interest, e.g. the hair strain on the forehead is visible in all images which do not deal
with the bangs attribute. This behavior is also consistent when we are not traversing
with encoded features, but with features from a generated image (see Fig. 12).

Fig. 12. Traversals of conditionally generated images without additional GDLs. (a) attribute
bangs (b) attribute eyeglasses (c) attribute smile (d) attribute female/male.

The approach, which was shown in the case of the two toy datasets/proof of con-
cept datasets cSprites and MNIST, is also working on the much more complex CelebA
dataset. Both the reconstruction and generation performance is severely suffering from
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the increased complexity and restrictions to achieve a disentangled representation. Since
we are only evaluating the reconstructed and generated images on a very small scale
(pixel-wise optimization from the AE part) and the highest possible scale (using the
discriminator from the GAN part) an approach to quantify the performance on an inter-
mediate scale was the next approach. One problem in the reconstructed and generated
images is that of the big artifacts. Small changes in each of the RGB channels of the
image might only have a small impact with regards to the loss, but the resulting color
when ploting the image is significantly different for the human perception. Since we
assume that the discriminator focuses on general facial attributes instead of artifacts in
the background (which is where they typically can be found), the plan is to introduce
the GDNs as a seperate evaluation part parallel to Dimg .

With GDNs. For the following experiments we added the GDN as an evaluation layer
parallel to Dimg . The rest of the architecture, including all hyperparameters is kept the
same to have the best possible comparison and best possible traceback to the effect of
the GDN.

When comparing the reconstructions of the network without the GDN (Fig. 9) and
with the GDN (Fig. 9) it becomes clear that there is a significant performance increase.
The reconstruction performance is now much better than before. Artifacts are reduced,

Fig. 13. Reconstructed images from the CelebA dataset with additional GDLs.

images are less blurry, have more details, and have sharper edges. Images look mostly as
real images, even though they are missing certain features (pose information, specifics
in the background, azimouth etc.). We are training part of the network as an AE, but the
GAN part of training does not have access to the input image, thus leading the network
to different local features. Overall the reconstructions just seem to be a much clearer
and accurate representation than the reconstructions without GDNs, elevating most of
the problems of the framework without GDNs.

As before, the reconstruction performance gives us a good idea of what to expect in
the generated images, although the performance increase is even more recognizable in
the generated images (Fig. 14). In the previous approach, nearly all generated images
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had not only big artifacts in the background, but also in the regions around their hair
and eyes. Most of the artifacts in the image are gone, and the artifacts left are typically

Fig. 14. Conditionally generated images with additional GDLs.

scattered around the corner of the image and do not directly affect the generated faces.
One attribute, which previously was very rarely working, was the attribute of the eye-
glasses. Without the GDN, eyeglasses were generated as dark patches around the eyes,
not representing eyeglasses. Now, they are actually generated with temples and small
glass patches (e.g. Fig. 14g). The big gain in performance by using GDNs can also be
seen in the attribute traversals of a reconstructed image, especially for the attribute eye-
glasses (Fig. 16b). The source image for this reconstruction is the same as in Fig. 11.

Fig. 15. Traversals of conditionally reconstructed images with additional GDLs. (a) origi-
nal/reconstructed image (b) attribute bangs (c) attribute eyeglasses (d) attribute female/male (e)
attribute smile.
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The disentangled latent representation did not seem to suffer by introducing the
GDNs to the network (this can also be seen in Figs. 21 and 20, appendix), while sig-
nificantly improving the visual clarity of generated as well as reconstructed images.
Changes of local attributes still only affect the local region of importance, while changes
in more complex conditional information change the overall image, while keeping the
rest of the features unchanged. This can be seen in the bangs and smile attribute (see
Fig. 15a) when changing the gender from female to male (Fig. 16d).

Fig. 16. Traversals of conditionally reconstructed images with additional GDLs. (a) attribute
bangs (b) attribute eyeglasses (c) attribute smile (d) attribute female/male.

To more accurately represent the impact of the latent features and to make sure that
we still avoided mode collapse, we sampled a random conditional vector and generated
images with random feature vectors. Figure 17 shows that we can generate a variety of
different faces using identical conditional attributes.

Fig. 17. Conditionally generated images with identical conditional attributes: no bangs, no black
hair, eyeglasses, no makeup, male, receding hairline, not smiling, straight hair, no wavy hair and
young.

In a visual comparison of our model with a VAE-GAN [22], we can clearly see
that our model works better in disentangling different attributes and does not result in
unwanted change in the reconstructed image or generated image. This is not the case
with VAE-GANs (Fig. 18), where it is clearly seen that changing attributes result in
additional changes.
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Fig. 18. Attribute traversals for VAE-GAN [22] for different attributes. (a) input image, (b) Bald,
(c) Eyeglasses, (d) Moustache.

We can see, that even though VAE-architectures are widely considered to be dis-
entangled (or at least more disentangled), changes in the conditional attributes heavily
influence other global features. When making the ”person” in the upper image bald,
it also impacts the gender and age information, the same happens when changing the
feature eyeglasses or moustache. Even for an image where the features might be more
fitting (a male person), we see similar results. When making the person bald, he auto-
matically gets older and gets a beard. When adding glasses, a beard is also added.

Randomly conditionally generated images using VAE-GANs are able to reconstruct
and generate the images with a better overall visual quality, which we believe is partly
because of zooming into the faces and making the background information almost irrel-
evant, but are significantly worse in terms of disentanglement.

5 Conclusion

In this work we introduced a novel architecture, which we termed SimAEGAN. By
cycling through the different domains in our network we achieve proper distributions in
our latent space, which significantly improves the generation capabilities of AEGANs.
We also introduced the labels/attributes at multiple locations in our decoder, each pro-
jected to a self-learned representation, since different features might be relevant at dif-
ferent stages during generation and reconstruction. This proved to be highly effective
in terms of disentanglement of our latent features, as shown in our feature traversals
(Fig. 15and 17). Finally, the addition GDNs reduced not only the blurriness in our
images without loosing any disentanglement performance, but also removed most of
the unwanted artifacts.

In future research we plan to tune our network for even sharper reconstructions
and generations, without sacrificing disentanglement performance. We also want to test
the effect of incorporating the generated images into different applications, e.g. use
conditionally generated examples to balance out datasets, increasing the generalization
performance when only limited data is available.
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Appendix

Network Architectures

Table 2. Encoder for CelebA and cSprites.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

Input 3× 64× 64 – – –

Conv + BN + LReLU 3× 64× 64 64 5,1,0 False

Conv + BN + LReLU 64× 60× 60 128 5,1,0 False

Max-Pool 2d 128× 56× 56 – 2,2,0 –

Conv + BN + LReLU 128× 28× 28 128 5,1,0 False

Conv + BN + LReLU 128× 24× 24 256 5,1,0 False

Max-Pool 2d 256× 20× 20 – 2,2,0 –

Conv + BN + LReLU 256× 10× 10 256 5,1,0 False

Conv + BN + LReLU 256× 6× 6 256 5,1,0 False

Conv + Tanh 256× 2× 2 feat 2,1,0 True

Flatten feat – – –

Table 3. Encoder for MNIST.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

Input 1× 32× 32 – – –

Conv + BN + LReLU 1× 32× 32 64 4,2,1 False

Conv + BN + LReLU 64× 16× 16 128 4,2,1 False

Conv + BN + LReLU 128× 8× 8 128 3,1,1 False

Conv + BN + LReLU 128× 8× 8 256 4,2,1 False

Conv + BN + LReLU 256× 4× 4 256 3,1,1 False

Conv + Tanh 256× 4× 4 feat 4,1,0 True

Flatten feat – – –

The tables explain the network architectures used for various datasets for the experi-
ments. Here (K,S,P) refers to Kernel, Stride and Padding respectively.

Here in Table 4, linear feats refer to the feature outputs of the encoder or noise
reshaped to (N,−1) where N is the number of samples and −1 is the flattened output.
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Table 4. Feature Discriminator (Discfeat).

Layer Input size (C×H×W) Filters units (width) K, S, P bias

Input linear Feats – – –

Linear + LReLU linear Feats 64 – True

Dropout(p = 0.5) 64 – – –

Linear + Sigmoid 64 1 – True

Output 1 – – –

Table 5. Discriminator (Discimg) for CelebA and cSprites.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

label scaler

Linear + Tanh Label Size 256 – –

Reshape 1× 16× 16 – – –

Discriminator Network

Input Ins× 64× 64 – – –

Conv + LReLU Ins× 64× 64 48 4,2,1 False

Conv + LReLU 48× 32× 32 48 4,2,1 False

Conv + LReLU 48 + 1× 16× 16 96 4,2,1 False

Conv +LReLU 96× 8× 8 96 4,2,1 False

Conv 96× 4× 4 192 4,2,1 False

LReLU 192× 2× 2 – – –

Conv + Sigmoid 192× 2× 2 1 2,1,0 True

Flatten 1× 1× 1 – – –

Output 1 – – –

Table 6. Discriminator (Discimg) for MNIST.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

label scaler

Linear + Tanh Label Size 256 – –

Reshape 1× 16× 16 – – –

Discriminator Network

Input Ins× 64× 64 - - -

Conv + LReLU Ins× 64× 64 32 4,2,1 False

Conv + BN + LReLU 32× 32× 32 32 4,2,1 False

Conv + BN + LReLU 32 + 1 × 16× 16 64 4,2,1 False

Conv + BN + LReLU 64× 8× 8 64 4,2,1 False

Conv 64× 4× 4 128 4,2,1 False

BN + LReLU 128× 2× 2 – – –

Conv + Sigmoid 128× 2× 2 1 2,1,0 True

Flatten 1× 1× 1 – – –

Output 1 – – –
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Table 7. Generator for CelebA and cSprites.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

label scaler

Labin Label size× 1× 1 – – –

Lab2 ConvT + Tanh Label Size× 1× 1 Label Size 2,1,0 True

Lab4 ConvT + LReLU Label Size× 2× 2 Label Size 2,2,0 True

Lab8 ConvT + LReLU Label Size× 4× 4 Label Size 2,2,0 True

Main network

Input Ins + labin × 1× 1 – – –

ConvT + Tanh Ins + labin × 1× 1 256 2,1,0 True

ConvT + BN + LReLU Lab2 + 256× 2× 2 512 2,2,0 False

Upsample@2 Lab4+512× 4× 4 – – –

Conv + BN + LReLU 522× 8× 8 256 3,1,1 False

Upsample@2 Lab8+256× 8× 8 – – –

Conv + BN + LReLU 266× 16× 16 256 5,1,2 False

Conv + BN + LReLU 256× 16× 16 128 3,1,1 False

Upsample@2 128× 16× 16 – – –

Conv + BN + LReLU 128× 32× 32 128 5,1,2 False

Conv + BN + LReLU 128× 32× 32 64 3,1,1 False

Upsample@2 64× 32× 32 – – –

Conv + BN + LReLU 64× 64× 64 64 3,1,1 False

Conv + Tanh 64× 64× 64 Out 3,1,1 True

Output Out× 64× 64 – – –

Table 8. Generator for MNIST.

Layer Input size (C×H×W) Filters units (width) K, S, P bias

label scaler

Labin Label size× 1× 1 – – –

Lab2 ConvT + Tanh Label Size× 1× 1 Label Size 2,1,0 True

Lab4 ConvT + LReLU Label Size× 2× 2 Label Size 2,2,0 True

Lab8 ConvT + LReLU Label Size× 4× 4 Label Size 2,2,0 True

Main network

Input Ins + labin × 1× 1 – – –

ConvT + Tanh Ins + labin × 1× 1 256 2,1,0 True

ConvT + BN + LReLU Lab2 + 256× 2× 2 512 2,2,0 False

Upsample@2 Lab4+512× 4× 4 – – –

Conv + BN + LReLU 522× 8× 8 256 3,1,1 False

Upsample@2 Lab8+256× 8× 8 – – –

Conv + BN + LReLU 266× 16× 16 128 3,1,1 False

Upsample@2 128× 16× 16 – – –

Conv + BN + LReLU 128× 32× 32 64 3,1,1 False

Conv + Tanh 64× 64× 64 Out 3,1,1 True

Output Out× 32× 32 – – –
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Fig. 19. Full feature traversal of a reconstructed image. Columns from left to right: −1, −0.75,
−0.5, −0.25, 0, 0.25, 0.5, 0.75, 1. Rows represent the input channels/encoder output channels.
Without GDNs.
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Fig. 20. Full feature traversal of a generated image. Columns from left to right:−1,−0.75,−0.5,
−0.25, 0, 0.25, 0.5, 0.75, 1. Rows represent the input channels/encoder output channels. With
GDNs.
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Fig. 21. Full attribute traversal of a generated image. Columns from left to right: −1, −0.75,
−0.5, −0.25, 0, 0.25, 0.5, 0.75, 1. Rows from top to bottom: Bangs, Black Hair, Eyeglasses,
Heavy Makeup, Male, Receding Hairline, Smiling, Straight Hair, Wavy Hair, Young. With
GDNs.
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Abstract. The article is devoted to the synthesis of image encoding methods
based on the images data themselves. The proposed approach is based on a previ-
ously developed special representation of images by samples of counts (sampling
representations). Since the sampling representations are essentially random con-
structions, the synthesis of encoding methods is carried out strictly within the
framework of the generative paradigm. In essence, the approach proposed treats
the image coding within generative model as a special case of the classical sta-
tistical problem of probability distribution density estimation. In the paper we
restrict ourselves to the class of parametric estimation procedures, which imply
some parametric family of probability distributions. Namely, we propose to use the
model of a parametric mixture of simple distribution components. Accordingly,
a set of component weights estimates calculated from a sampling representation,
considering as input data, is interpreted as an encoded image – output data. In
this context, optimal coding is synthesized with the maximum likelihood method.
For the algorithmic implementation of the coding procedure the mixture model
is equipped with the structure of receptive fields, that is a well-known organizing
principal for receptors in the human eye retina. On this basis, we synthesize a
relatively simple recurrent coding algorithm, which turned out to be close to the
popular in machine learning EM algorithm. The paper presents interpretation of
several features of the algorithm from the point of view of well-known facts about
the image processing in the periphery of the visual system, discusses options for
the algorithm implementation, and presents the results of numerical simulation of
its operation.

Keywords: Perceptual image coding · Generative models · Machine learning

1 Introduction

The principles of transformation, registration, and processing of the light flux in the
human/higher vertebrate visual system have been used since the invention of the first
photo cameras. In the process of development from the simplest camera obscura to
modern digital cameras, the number of borrowed principles has only increased. We
could mention here the use of a camera diaphragm as an analogue of the pupil, the
optical system of the camera as a crystalline lens, and a registering light element in the
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form of a plate with a photographic emulsion, or in the form of a CCD/CMOS matrix
as an analogue of the retina with a huge number of photoreceptors, see Fig. 1. The fact
that the light-sensitive surface of the eye (retina) has the form of hemisphere and not a
plane, is not important for image formation.

Fig. 1. The correlations of the light transformation/registration methods in the human eye and in
the photo camera – in natural and in artificial imaging systems.

It should be noted that the most profound study and implementation of the visual
perceptionmechanisms into artificial imaging systems concerns some aspects of the light
registration. It is worth recalling such discoveries as the daguerreotyping – a mercury
vapor imaging technology developed in 1837 and its heirs, silver-coated plates, which by
the 20th century hadbeen improved into celluloid photographic filmswith a gelatin-silver
emulsion that marked the age of analogue photography. By the beginning of the 21st
century, radiation registration technology had risen to a new level, ushering in the era of
digital photography, based on matrixes of photodiodes. These advances were primarily
due to the invention of charge-coupled devices (CCDs) in 1969 and the subsequent
invention of photosensitive matrices based on complementary metal-oxide-conductor
(CMOS) structures. In 1993, the first active pixel CMOS sensor was developed [1]. The
transition from analogue to digital photographymade it possible to significantly improve
almost all parameters of imaging systems, among which there are: the increase in spatial
resolution, reduction in power consumption, shortening of exposure time, etc.

With the transition to digital imaging devices, it became possible to control the size
of individual recording elements – jots, artificial analogues of retinal photoreceptors.
To date, the release of a 41 MB matrix with a pixel pitch of 2.2 microns, operating at a
frequency of 30 frames per second, has been announced [2]. Considering that the human
eye contains ~100 million receptors each of them 2.5–5 microns in size, it becomes clear
that modern artificial imaging systems if not already reaching the characteristics of the
retina, have come close to it. Note that with such a detector sizes (~1 µm), the radiation
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registration mechanisms acquire a pronounced quantum character, which leads to the
operation of video-matrices in the so-called single photon counting mode (quanta image
sensors - QIS). This opens principally new possibilities and raises new challenges in the
field of imaging [3].

However, the most important advantage of digital images, which provided themwith
a quick and unconditional victory over analogues, is their ability to convert the recorded
light radiation directly into an output electric current. This photocurrent, without any
intermediate accumulation, storage, fixing agents, can be directly transferred to the
electrical circuits following the video matrix, which, in turn, includes microprocessors
for performing numerous processing/imaging tasks. The computing power of modern
microprocessors makes it possible to solve not only a standard set of video-signal pre-
processing tasks, such as glare compensation, dark current correction, white balance,
etc., but also performs muchmore complex operations like those that occur in the central
visual system of the human brain. The online use of microprocessors in modern digital
systems opens almost unlimited possibilities for the formation, processing and analysis
of recorded images using numerous data processing methods.

Among the most popular and effective methods of data processing, in the first place,
of course, machine learning (ML) should be noted. To date, ML methods, especially
those associated with neural networks, have achieved such impressive results, that their
widespread implementation is regarded as an artificial intelligence (AI) revolution [4].
The most impressive applications of ML in the field of image processing are the follow-
ing: handwriting recognition, textual images description, recognition of faces/objects in
images, etc. At the same time, paradoxically, the reasons for these results are not entirely
clear – often achieved by experimental verification, they still do not have a convincing
theoretical explanation. The most you can say with confidence is which of ML methods
are most successful in practice.

Since the main feature of machine learning is the focus on data, the characteristics
of various methods are determined, firstly, by the specification of the training data,
and, secondly, by the choice of a decision (markup)/data model. The specification of
training data means the presence or absence of explicit markup in the data (i.e. decision
labels, annotations associated with the data). This leads to a division ofMLmethods into
supervised and unsupervised learning. Regarding the used (statistical) model that relates
data to the markup, the machine learning methods are divided into discriminant and
generative methods, depending on whether the markup model is based on a conditional
probability of decision with respect to the data, or on their joint distribution [5]. The
history of machine learning development knows examples of all combinations of these
dichotomies – supervised/unsupervised learning and discriminant/generative modeling.
The experience obtained up to now says that approaches based on generative models and
unsupervised learning are more successful in terms of overall quality. Such approaches
include generative adversarial networks [6], variational autoencoders [7], deep belief
networks [8], etc.

Certainly, the reason for the success of unsupervised generative models is also not
fully understood. However, it is increasingly being argued that this may be due to more
adequate modeling of the mechanisms of natural (human/higher vertebrate) intelligence
[9]. Indeed, as the above models [6–8] improved, every new stage of development added
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new functions/elements to them, modeling, for example, features of the hierarchical
architecture of the cerebral cortex, deep reinforcement learning, working memory in
recurrent cortical networks, long–term memory etc. (see details in [9]). Since the details
of information processes in the cerebral cortex are not completely clear, it is necessary to
model the corresponding functions/elements using computer data representation struc-
tures. Hence great importance is attached to the choice of adequate representations. Of
course, the modeled functions and structures of ML largely determine the representa-
tions of the input – intermediate – output data and (linear/non-linear) relations between
them. At the same time, there are several examples where a good choice of data repre-
sentation significantly improved the efficiency of the functions [6–8]. In this regard, a
very important question arises – to what extent can the choice of one or another data
representation predetermine the synthesis of the expected functions of the method? In
other words, to what extent data representation can determine the development of effec-
tive ML methods, just as, in the mid-80s, the object–oriented approach fundamentally
changed the software development [10]?

This work provides a partial answer to the question posed. We propose a new app-
roach to the specificMLproblem – the problem of synthesizing image encodingmethods
based on the data of the images themselves. The proposed approach is based on a previ-
ously developed special representation of images using a samples of counts (sampling
representations) [11, 12]. The main arguments in favor of the usefulness of such repre-
sentations were discussed in detail in [11] and summarized in the next section. Section 2
also presents a more rigorous derivation of the statistical description of sampling repre-
sentations from the ideal image model. The convenience of sampling representations for
machine learning problems, noted in [11] and demonstrated by the example of smooth-
ing noisy images using the Parzen-Rosenblatt window method [11], is demonstrated in
this paper for a more complex problem of perceptual image coding. Section 3 is com-
pletely devoted to one of the possible its solutions. Since for sampling representations
the complete statistical description is given by the product of the probability distribution
densities of its individual counts, the proposed approach is based, in essence, on the clas-
sical problem of estimating their probability densities (density estimation) [13]. In the
paper we restrict ourselves to the class of parametric estimation procedures [13], which
implies a parametric family of probability distributions. Namely, we propose to use the
model of a parametric mixture of simple distribution components [14]. Accordingly, a
set of component weights estimates calculated from a sampling representation (input
data) is considered as an encoded image (output data). In this context, optimal coding is
synthesized with the maximum likelihood method [15]. For the algorithmic (computer)
implementation of the coding procedure, mixture model is introduced in the form of a
system of receptive fields (RF), which are covering the entire image.

2 Image Representation by Sample of Counts (Sampling
Representation)

The motivation of the image representation proposed below can be obtained from an
analysis of two types of light registering systems: natural, represented by the human
eye retina, and artificial, represented by photographic plates, video matrices, etc. It was
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emphasized in introduction, that the parallels between natural and artificial systems
are not accidental, since the structure of the registering elements in almost all imaging
systems explicitly or implicitly borrowed the structure of the retina as a 2D–set of
photoreceptors. An interesting fact is that the development of such elements from gelatin
plates to CMOSmatrices was accompanied by an increase in their similarity to the retina.
To emphasize it and to make subsequent formal definition of sampling representation
and associated models not too formal, we present below some facts about natural and
artificial light detecting systems.

The input element in the human imaging system is the retina. It includes about
100 million rods and 10 million cones capable of registering individual photons of the
radiation in visible spectrum. The density of photoreceptors in retina varies from 100
to 160 thousand receptors per mm2 (so the distance or pitch between receptors is ~2–5
microns). The reaction time of single photoreceptor is about or greater than 20 ms. But it
is worth noting that the signals going to the brain via the optic nerve are not the same as
those registered by photoreceptors in outer layer. These signals are formed in a complex
system of cells of the middle and inner retina layers, after which they come along the
set of ganglion cell axons composing optic nerve to the visual cortex. The number of
axons is about a million, which is about two orders of magnitude less than the number
of photoreceptors.

The technical implementation of the registering element in modern photo cameras
is the CMOS video matrix. As it was announced in the Gigajot company press release
(Apr 04, 2022) [2], the following characteristics have been achieved for implemented in
CMOS technology Quanta image sensor (QIS) – a room-temperature photon-counting
sensorwithout avalanchemultiplication: 41Megapixel matrix utilizes a 2.2-micron pixel
and has a read noise of only 0.35 electrons, photon counting and photon number resolving
up to its top speed of 30 frames per second at full resolution. The high resolution and the
extremely low read noise provide flexibility for binning and additional post-processing,
while maintaining a read noise that is still lower than native lower resolution sensors.

Comparing the artificial and natural registering systems, it is easy to outline their
common features. Both have a finite photosensitive 2D–surface, containing a huge num-
ber of receptors/photodetectors. All detectors can register single photons of incident
radiation. Both systems memorize for a short period of time (frame) the events asso-
ciated with the photons registration. The noted set of characteristics can be used to
formalize the concept of the imaging device, which generalizes not only the above sys-
tems, but also several others, including photographic films, plates, etc. (not only in the
visible spectrum).

Formally, by an ideal imaging device, we further understand a flat 2D–surface � on
which identical point detectors, or “jots” in terms of [1], are located close to each other.
Point detectors, by definition, have a photosensitive surfaces with a very small area ds.
Accordingly, the total number of detectors will be N = S/ds, where S is the total area
of surface �. Assuming that S is fixed and ds → 0, the number N is assumed to be very
large: N → ∞. Thus, an ideal imaging device is an almost continuous sensitive surface
� with coordinates −→x = (x1, x2), that define the positions of ideal point detectors, as
shown in Fig. 2.
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Based on the concept of an ideal imaging device, an ideal image model can be
defined. An ideal image is understood as an (ordered) set X = (

−→x 1, . . . ,
−→x n) of all n

random counts registered by point detectors of an ideal imaging device with coordinates−→x 1, . . . ,
−→x n, during the frame time T . An ideal image is, therefore, a fundamentally

random object. The random nature of an ideal image is determined not only by random
coordinates −→x i of counts, but also by their random total number n (size of X ).

Fig. 2. An ideal imaging device � and the result of radiation intensity I
(−→x )

registration in the
form of a set of photocounts X = (

−→x 1, . . . ,
−→x n).

A complete statistical description of ideal image in the form of a set of all multi-
variate distribution densities

{
ρ
(−→x 1, . . . ,

−→x n, n|I
(−→x ))}

can be obtained by assuming
conditional independence of counts −→x i (for a given registered intensity I

(−→x )
). The

detailed statistical deduction of this description is presented in [11]. Alternative deduc-
tion, based on the Poisson approximation (ds → 0, S = const,N → ∞) of the joint
probability of a large ensemble of Bernoulli point detectors, registering counts with the
probability (success probability) P

(−→x |I(−→x )
) = αTI(−→x ), can be found, for example,

in [16]. Here we present only the result, which establishes that the random set of counts
X = (

−→x 1, . . . ,
−→x n) coincides with the 2D Poisson point process (PPP) on �, which

intensity n(−→x ) (average number of counts per unit area) up to a factor αT coincides
with the intensity I(−→x ) of radiation registered (n

(−→x ) = αTI(−→x )):

ρ
(−→x 1, . . . ,

−→x n, n|I
(−→x )) = ρ

(−→x 1, . . . ,
−→x n, |n, I

(−→x )) × Pn
(
I
(−→x ))

= ∏n
i=1ρ

(−→x i|I
(−→x )) × Pn,

Pn = nn

n! exp(−n), n = ˜
�
n(−→x )ds = αT

˜
�
I
(−→x )

ds,
(1)

where the density of single count ρ
(−→x i|I

(−→x ))
has the form:

ρ
(−→x i|I

(−→x )) = n(−→x i)

n
= I

(−→x i
)

˜
�
I
(−→x )

ds
(2)
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In the above expressions, the parameter α = η(hν)−1 depends on hν – the average
energy of the detecting photon (h is Planck’s constant, ν is the characteristic radiation
frequency) and on dimensionless coefficient η – the quantum efficiency of detector.
Questions of substantiation of the given model of registration, based on the modern
(quantum) physics, can be found in [17].

The model of an ideal image and its statistical description (1–2) are certainly not
something original, they have long been commonly used at low intensities I

(−→x )
of regis-

tered radiation, for example, in the fields of fluorescence microscopy, positron emission
tomography (PET), single photon emission computed tomography (SPECT), optical and
infrared astronomy, etc. [18]. However, under normal conditions, with radiation intensi-
ties corresponding, for example, to day light, the practical use of an ideal image model
turns out to be problematic. The fact is that photon fluxes, for example, on a clear day
from the sun are huge – they amount to ~1015–1016 photons per area S ~ mm2 in 1 s.
For ideal devices operating in the photon counting mode, even if they register one count
per ~10 photons (with quantum efficiency η = 0.1), the number of counts per second
will be n ~ 1015 (1 Peta-count). Obviously, working with such data flows will require
too many resources. Therefore, it is desirable to somehow adapt the ideal image model
to real practical conditions.

Some time ago, we proposed the following solution to the above problem [11, 12].
Let us fix from the very beginning some acceptable size of the representation k � n
and, considering the ideal image X = (

−→x 1, . . . ,
−→x n) as some statistical population

of random counts, select from it, in full accordance with the approach of the classical
statistical theory, a random a sample of k counts Xk = (

−→x j1 , . . . ,
−→x jk ). Obviously, such

a “subset” still, although with a much smaller size k � n, represents the original (ideal)
image X . Let us call this Xk the image representation by a sample of random counts or, in
short, a sampling representation. The statistical description of sampling representation
easily follows from (1) by integrating ρ

(−→x 1, . . . ,
−→x n, n|I

(−→x ))
over counts not selected

in Xk and summing over the number l = n − k = 0, 1, . . . of unselected counts:

ρ
(
Xk |I

(−→x )) = ∏k
j=1ρ(

−→x j|I
(−→x )

) × Pn≥k ,

Pn≥k = ∑∞
l=0Pk+l .

(3)

where Pn≥k denotes the probability that an ideal image contains more than k counts.
As it is known, for the Poisson distribution Pn (1), probability Pn≥k is equal to ratio of
incomplete gamma function to complete gamma function [19] Pn≥k = γ (k, n)/�(k).

Using in the case k � n for γ (k, n) approximation ~
[
�(k) − n(k−1) exp{−n}

]
and for

�(k) the Stirling’s approximation [19], we can find the following estimate:

Pn≥k ≈ 1 − 1√
2π(k − 1)

nk−1exp{−n}
(k − 1)k−1exp{−(k − 1)} > 1 − 1√

2π(k − 1)
(4)

which follows from monotonic decrease of the function ξ k−1exp{−ξ} for ξ ≥ k − 1.
It follows from the estimate (4) that the probability Pn≥k differs from unity by a

small value not exceeding 1/
√
2π(k − 1), and therefore, under the assumption implied

1 � k � m, it can be set equal to one. This allows us to rewrite the statistical description
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of the sampling representation Xk (3) in the following independent of n form:

ρ
(
Xk |I

(−→x )) = ∏k
j=1ρ(

−→x j|I
(−→x )

)

ρ(
−→x j|I

(−→x )
) = I(−→x j)˜

�I(
−→x )ds

(5)

where the indexing of counts −→x j is introduced internally within the framework of the
sampling representation Xk by means of the j = 1, . . . , k.

Statistical description (5) for sampling representation Xk = (
−→x 1, . . . ,

−→x k) has
several remarkable properties in terms of its subsequent processing/utilization. First, (5)
fixes the conditional independence and the identical distribution (iid property) of all k
counts of the representation. Secondly, the distribution density of each of the counts
ρ
(−→x j|I(−→x )

)
is related to the intensity of the detected radiation I(−→x ) in the simplest

way – it is equal to normalized intensity. And, thirdly, description (5) is, in a certain
sense, universal – it does not depend on the details of the registration mechanism (jots
of CMOS matrix, receptors of retinal, etc.), namely on the quantum efficiency η, or
on the spectrum of the registered radiation, or on the frame time T . These properties
characterize sampling representations as an extremely convenient form of input data
representation for many well-developed and proven machine learning methods [20].

Moreover, since ρ(
−→x j|I

(−→x )
), and hence ρ(Xk |I

(−→x )
) (5) do not depend on the

absolute values of the intensity, but are determined by its normalized version, the statis-
tical description of sampling representation also does not depend on the chosen units of
I
(−→x )

. So, if the intensity of the registered radiation is given by pixels {ni} of some dig-
ital image, the description (5) will not depend on the quantization resolution parameter
Q = �I , but only on the pixel bit depth υ. In this regard, we note that the procedure for
generating a sampling representation for digital images can essentially be reduced to the
normalization πi = ni/

∑
ni of the pixel values ni ∼ Ii/Q of the image and the subse-

quent sampling of k counts from resulting probability distribution ρ
(−→x j|I(−→x )

) ≈ πi,
where the count −→x j belongs to the surface d� of the pixel ni. It should be noted that in
the field of machine learning there is a whole arsenal of methods for organizing sampling
procedures, united by the common name Monte Carlo methods [21].

To illustrate the Monte Carlo method for generating sample representations of dig-
ital images and to get a general idea of the quality of such representations, let us con-
sider representations of the standard image “GRAY_R02_0600x0600_093.png” from
the TESTIMAGES archive. [22] (see Fig. 3 A).

In this example, a rejection sampling algorithm was used [21]. The algorithm is
executed iteratively, at each iteration generating a randomvector−→x ∈ �, having floating
point coordinates x1, x2. The coordinates x1 = l1 ∗ z1 and x2 = l2 ∗ z2 are obtained by
multiplying the corresponding image sizes l1, l2 by random numbers z1, z2, uniformly
distributed over [0,1), which are generated by a standard random number generator. For
given −→x , the value ni of the pixel in the row round (x1) and in the column round (x2) of
the image bitmap is determined, where round (x) is the rounding operation. After that
an auxiliary random value th = 2υ ∗ z3 is produced, where υ is the pixel bit depth of the
image and z3 is standard, uniformly distributed over [0,1) random number. If the pixel
value ni is less than threshold th, the count −→x is accepted to the sample Xk , if not, it
is rejected. When the number of counts in Xk becomes equal to given k, the algorithm
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stops, and the generated counts sample is considered as sampling representation of the
image. Figure 3 fragments B-D show examples of sampling representations of 500,000,
1,000,000 and 5,000,000 counts, respectively. Note, that since the B-D images in Fig. 3,
showing sampling representations, are physically also bitmap images having the same
dimensions as the original one, each their pixel is equal to the number of counts that fell
into it, i.e. in a certain sense, B-D can be considered as the results of some representations
"digitization".

Fig. 3. Representations of the “GRAY_R02_0600x0600_093” image from TESTIMAGES
archive [22] by samples of random counts: A – original image in PNG format, B, C, D – sampling
representations of sizes, respectively 500.000, 1.000.000 and 5.000.000 counts.
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3 Retinotopic Encoding of the Sampling Representation
as the Image Compression Method (Perceptual Coding)

Let us use the proposed sampling representations to solve one of the most important
problems in the field of image processing – the problem of coding methods synthesis.
The synthesis of image coding, which in a broad sense implies their compression, is
usually carried out on one of two platforms. The first of them considers the compression
as the elimination of statistical (or deterministic) redundancy in the original image, the
other – as optimal vector quantization of images, matching with the properties of the
human visual system [23]. The goal of both approaches is to achieve the most compact
digital representation of images, which would provide maximum economy of resources
during their transmission or storage (with limited channel bandwidth or with limited
storage media) but would guarantee a given level of possible loss of information (a
given quality level).

In this paper, according to the declared focus on modeling the mechanisms of visual
system, the second approach is taken as the basis – the synthesis of optimal quantization
methods, or, as it is commonly referred to in the field of video/image processing, the syn-
thesis of perceptual coding [24]. Themain difference of perceptual coding from encoders
reducing redundancy in images is the choice of the similarity metric for the encoded
and decoded images [25]. As a rule, traditional coding methods use a metric based on
the mean square error (MSE) – the L2 norm of the difference between the intensities
of both images. The MSE metric is easy to calculate, but it is known that it is largely
indifferent to image features significant for the human perception. Therefore, although
perception-centric coding uses more complex metrics, which are more computationally
intensive, the proximity of perception-centric encoders to human intelligence implies a
more attractive path for the development of image coding methods [25]. This is con-
firmed by the noted impressive results in the development of variational autoencoders
[7].

To motivate the perceptual metric proposed below for encoding images, we will
briefly describe the known facts of visual perception,whichmainly concern the periphery
of the visual system (the retina) [26]. The retina of the eye is organized in layers. In the
outer layer, there are photoreceptor cells – rods and cones, which, under the action of
incident light, activate the bipolar cells lying in the middle layer. Bipolar cells transmit
receptor signals to ganglion cells located in the inner layer. Ganglion cells, the only ones
of all retinal neurons capable of generating an action potential, form nerve impulses in
response to received signals and transmit them along the axons collected in the optic
nerve to the central visual system (to the brain). It is important to note here that in most
cases the nerve impulses sent to the brain are not the same data directly recorded by
photoreceptors. They are formed by the retina with the help of numerous intermediate
neurons of the middle and inner layers. Among them, in addition to bipolar cells, which
carry out vertical connections from the outer to the inner layer, an important role is played
by horizontal and amacrine cells, which carry out horizontal connections in the layers. As
a result, each ganglion cell can receive signals from dozens and sometimes thousands
of receptor cells. A direct consequence of this is an increase in the photosensitivity
of ganglion cells to variations in the intensity of the incident radiation. The reverse
side of such aggregation is, obviously, a decrease in the spatial resolution of the image
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neural representation transmitted to the brain. In this regard, it seems that the main
purpose of the retina is the optimal resolution of the main problem of communication
theory –minimization of data distortionswith a limited channel bandwidth [26]. For these
purposes, certain mechanisms of primary processing (coding) of photocounts recorded
by receptors are implemented in the retina, primarily compression of the stream of
recorded events by two orders of magnitude, i.e. ~100 times. Considered in this context,
the small areas of the retina, which include photoreceptors associated with a different
ganglion cells and provide preprocessing of the corresponding counts, are defined as the
receptive fields [26].

The concept of a receptive field (RF) was introduced in 1953 by S. Kuffler [27] and
is currently one of the central concepts in neurobiology both in the case of the visual
system and in relation to the entire sensory system. As for the retina itself, the details of
its RF structure have been elucidated experimentally in the last decade using a special
technique that makes it possible to trace the distribution of activation signals from an
individual receptor to an array of ganglion cells associated with it [28]. Briefly, the
results obtained can be summarized as follows (see Fig. 4). Individual receptors may
belong to several RFs, which may differ both in size and function. In turn, the types
(functions) of RFs are determined by the types of ganglion cells associated with them.
Although today the number of different ganglion cells fits into ~20 types, most cells
(~75%) belong to only two of them – midget and parasol types, each with subtypes of
ON- and OFF-cells [26]. The cells of the midget type are distinguished by the smaller
size of the RF and are responsible for assessing the spatial distribution of the radiation
intensity on the RF (see Fig. 4). Parasol cells are characterized by largeRF sizes and
are responsible for the change (movement, temporal dynamics) of intensity in the field.
Cells of both types are subdivided into ON- and OFF-cells according to the nature of
their activation in response to illumination/darkening of their centro-antagonistic RFs
[27]. Namely, ON-cells are activated upon stimulation of receptors in the center of RF
and inhibited upon stimulation of receptors in the concentric surround, while OFF cells,
on the contrary, are activated upon stimulation of receptors in the surround and inhibited
upon stimulation of receptors in the center of RF. In the most common models of RF,
equal power of photoreceptor stimulation creates a Gaussian spatial activity profile in
the narrow center and a slightly broader concentric Gaussian inhibition profile in the
antagonistic surround. This model successfully reproduces ganglion cell responses to
light spots, grids, and rough chessboards.However, it should be noted that severalmodern
studies have found significant deviations from Gaussian models [28].

As for the RF sets of each of the ganglion cell types, they are all organized in a semi-
regular mosaic, uniformly covering the surface of the retina. Moreover, local spatial
heterogeneities in the neighboring RFs of the same type complement each other like
pieces of a puzzle [30], indicating a finely tuned pattern of their arrangement, covering
the entire visual field without gaps. Note that a similar coordination in the location of the
RFof different types of ganglion is also observed. Functionally, this coordination appears
to make information processing more efficient, allowing for more uniform sampling of
the visual world and decorrelation of ganglion cell signals. Figure 5 shows in schematic
way the results of experimental measurements of RF locations and shapes in a large
populations of ganglion cells [30, 31].
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Fig. 4. Schematic representation of the receptive fields. A) Bipolar cell in middle retina layer
receives direct synaptic input from a cluster of photoreceptors, constituting the RF center. In addi-
tion, it receives indirect input from surrounding photoreceptors via horizontal cells. B) Schematic
layout of the connections of cones forming the receptive fields of different types (midget and
parasol) ganglion cells. Adapted from [26] and [29].

Fig. 5. Locations and shapes of RFs in large populations of ON- and OFF-parasol cells on the
retina surface. A) The RFs of ON- and OFF-cells as a regularly spaced mosaic, represented by a
collection of contour lines. B) The RFs of ON- and OFF-cell as a connections with the receptors
identified in a single recording of the cell sampling. Adapted from [30] and [31].

Let us use the facts presented above to synthesize perceptual methods for encod-
ing recorded images. Since, within the framework of this paper, k-samples of random
counts – sampling representationXk = (

−→x 1, . . . ,
−→x k) are considered as input data, gen-

erated by the probability density distribution (5), it is quite reasonable to understand the
input image as the distribution density ρ(

−→x j|I
(−→x )

),
−→x ∈ � (which, up to a norm factor
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coincides with the representation of the image by the radiation intensity I
(−→x )

, see (5)).
This automatically brings us to generative data models [32]. Unlike traditional encoders,
which are most naturally interpreted as diminishing redundancy operators, encoders in
the generative paradigm consider the code as variables associated with a probability
distribution, and the encoding operation as a statistical inference procedure (finding
probability distribution variables by a given sampling data Xk ). In this regard, generative
models learn to restore from training sample observations Xk = (

−→x 1, . . . ,
−→x k) the

probability distribution ρ(
−→x j), that generate them, rather than map the input data to the

output with compression.
Considering the above clarification, let us form a model of the desired estimation of

probability distribution density ρ(
−→x j|I

(−→x )
) as a member of some parametric family of

distributions G =
{
ρ(

−→x ;−→
θ )

}
,
−→x ∈ �,

−→
θ ∈ � ⊂ R

p. Such a choice implies that we

restrict the following discussion to parametric estimation procedures [13]. Even more

specifically: we would restrict ourselves in the search for optimal parameters
−→
θ

ML
by

the maximum likelihood method of R. Fisher [15]:

−→
θ

ML = argmax−→
θ ∈�

lnρ
(
Xk;−→

θ
)

ρ
(
Xk;−→

θ
)

= ∏k
j=1ρ(

−→x j;−→
θ ),

(6)

where, in full accordance with (5), the joint distribution ρ(Xk;−→
θ ) of sampling

representation Xk is decomposed into the product of distributions of iid counts
ρ(

−→x j;−→
θ ).

In the light of the receptive fields concept discussed above, let us refine the parametric
family G in the form of a mixture of components corresponding to RFs in the sense
described below:

ρ
(−→x ;−→

θ
)

=
∑K

i=1
πiρi

(−→x ;−→
θ

)
, (7)

whereK denotes the number ofmixture components, {πi}, πi i ≥ 0, i = 1, . . . ,K are nor-

malized weights that satisfy the condition
∑K

i=1πi = 1 and
{
ρi(

−→x ;−→
θ )

}
, ρi(

−→x ;−→
θ ) ≥

0, i = 1, . . . ,K are the probability distribution densities of count−→x for all components.
To relate the components in (7) to receptive fields, we make the following assump-

tions. Let us associate each component with some RF so that the corresponding area of
that field in the retina would be the carrier �i = {−→x ∣∣ρi(

−→x ;−→
θ ) �= 0} of the compo-

nent probability distribution. It assumes the finite carriers �i of all distribution densities
and the covering of surface � by the set {�i}, i = 1, . . . ,K . In addition, we simplify
the model (7) by assuming that only two components ρic(x) and ρis(

−→x ) are associated
with any RF. We will interpret them as the centers and surrounds of the corresponding
RFs of some selected ganglion cell type (midget, parasol). Moreover, we accept that
components ρic(x) and ρis(

−→x ) are dependent only on the RF index i (from now on, the
index i used for numbering the receptive fields) and on no other parameters. Under these
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assumptions, the model (7) takes the form:

ρ
(−→x ;−→

θ
)

= ∑K
i=1wiρic

(−→x ) + viρis
(−→x )

,
∑K

i=1wi + vi = 1.
(8)

where
−→
θ hereinafter is a set of weights {(wi, vi)}.

Considering themixture (8) as a law of total probability, one can interpret theweights
wi and vi as the probabilities of registering count

−→x in the center or in the surround of the
i-th RF, and ρic

(−→x )
and ρis

(−→x )
as conditional distribution densities, provided that −→x

belongs to the center or surround of the given RF.Mixture (8), in turn, can be represented
as mixture (7) (but with the index i numbering the receptive fields) denotingwi+vi = πi

and introducing the conditional probabilities πic = wi/πi and πis = vi/πi of hitting
−→x

to the center or surround of i-th RF, provided that it already belongs to this field. So,
introducing unconditional probability density ρi

(−→x ) = πicρic
(−→x ) + πisρis

(−→x )
, we

will immediately get the mixture (7).
Let us note once again that model (8) relates the ρic

(−→x )
and ρis

(−→x )
to the locations

of receptive fields {�i} and to the positions of centers and surrounds in them, but not to
the ON-OFF types of these fields. However, it is possible to give an interpretation of (8)
in terms of ON- and OFF-RFs, if we use some concepts of multiresolution analysis [33].
Namely,we introduce somefixing conditional probabilitiesπ0

ic andπ0
is,π

0
ic+π0

is = 1, i =
1, . . . ,K such that corresponding ρ0

i = π0
icρic

(−→x ) + π0
isρis

(−→x )
will be the smoothest

density in all mixtures πicρic
(−→x ) + πisρis

(−→x )
on �i. Then (8) can be rewritten as:

ρ
(−→x ;−→

θ
)

= ∑K
i=1πiρ

0
i

(−→x ) + δiDi
(−→x )

,

Di
(−→x ) = ρic

(−→x ) − ρis
(−→x )

,

δi = πi(πic − π0
ic) = πi(π

0
is − πis),

πi = wi + vi.

(9)

where it is natural to consider the sum of πiρ
0
i

(−→x )
as the (smooth) approxima-

tion of ρ
(−→x ;−→

θ
)
, and the sum of δiDi

(−→x )
as its details [33]. Unfortunately, the

functionDi
(−→x )

, unlikeρ0
i

(−→x )
, is not a distribution density (even not positive func-

tion), which somewhat violates the generative paradigm. However, representation (9) is
often used in image processing, for example, in the form of image processing operator
proposed in [34], that is selective for a texture made up of dots or spots.

However, it is possible to correct the noted shortcoming in (9) and come to ON-
OFF-interpretation of (8), close to center-surround selective operator [34], if we use the
approximation:

ρ0
i

(−→x ) ≈ π0
icρic

(−→x ) + πisρis
(−→x ) ≈ πicρic

(−→x ) + π0
isρis

(−→x )
, (10)

and rewrite (9) once again in the form:

ρ
(−→x ;−→

θ
)

=
∑K

i=1
πiρ

0
i

(−→x ) + r+(δi)ρic
(−→x ) + r−(δi)ρis

(−→x )
(11)

where r+(δi) = max(δi, 0) and r−(δi) = max(−δi, 0) are positive rectifying func-
tions, only one of which is non-zero (depending on the sign of δi). In accordance with
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this refinement, the last two terms in (11) can be interpreted as contributions to the i-
component from ON- and OFF- corresponding receptive fields.

Returning to the originalmodel (8), we can nowwrite the joint distribution ρ(Xk;−→
θ )

of sampling representation Xk and corresponding likelihood function:

lnρ
(
Xk;−→

θ
)

= ln
∏k

j=1ρ(
−→x j;−→

θ ) = ∑k
j=1 lnρ(

−→x j;−→
θ )

= ∑k
j=1 ln

(∑K
i=1wiρic

(−→x j
) + viρis

(−→x j
)) (12)

The maximum-likelihood parameters
−→
θ

ML = {(wML
i , vML

i

)}, corresponding to like-
lihood function (12), can be found using the Lagrange multiplier method, considering
the only constraint

∑K
i=1wi + vi = 1 (8). The result is a system of equations:

∂lnρ
(
Xk ;−→θ

)

∂wl
= ∑k

j=1
ρlc(

−→x j)∑K
i=1w

ML
i ρic(

−→x j)+vML
i ρis(

−→x j)
= λ

∂lnρ
(
Xk ;−→θ

)

∂vl
= ∑k

j=1
ρls(

−→x j)∑K
i=1w

ML
i ρic(

−→x j)+vML
i ρis(

−→x j)
= λ

(13)

The Lagrange multiplier λ in (13) can be found as follows. We multiply each of
the Eqs. (13) by wl and vl , respectively, add them up and sum these sums over all l.
By virtue of constraint

∑K
i=1wi + vi = 1 there will be λ on the right side, and k on

the left, as it is not difficult to see. Therefore, λ = k, which allows us to rewrite the
Eqs. (13) for maximum-likelihood parameters in the following form, which does not
contain Lagrange multiplier:

1
k

∑k
j=1

ρlc(
−→x j)∑K

i=1w
ML
i ρic(

−→x j)+vML
i ρis(

−→x j)
= 1

1
k

∑k
j=1

ρls(
−→x j)∑K

i=1w
ML
i ρic(

−→x j)+vML
i ρis(

−→x j)
= 1

(14)

In the general case of arbitrary forms and allocations on surface � of ρic
(−→x )

and
ρis

(−→x )
, the analytical solution of system (14) is problematic. However, it can be reduced

to a convenient for applying numerical recurrentmethods form, like themethods for fixed

points approximation of equations
−→
θ = F

(−→
θ

)
,
−→
θ = {(wi, vi)}} [35], if we multiply

Eqs. (14) by wl and vl , and rewrite the resulting system in the iterative form:

w(n+1)
l = 1

k

∑k
j=1

w(n)
l ρlc(

−→x j)
∑K

i=1w
(n)
i ρic(

−→x j)+v(n)
i ρis(

−→x j)
;

v(n+1)
l = 1

k

∑k
j=1

v(n)
l ρls(

−→x j)
∑K

i=1w
(n)
i ρic(

−→x j)+v(n)
i ρis(

−→x j)
;

(15)

where n + 1 denotes the number of current iteration. Note that if we interpret the terms
in sums (15) as the estimates of a posteriori probabilities for l- th RF center or surround
to contain count −→x j:

p(n+1)
lc|j = w(n)

l ρlc(
−→x j)

∑K
i=1w

(n)
i ρic(

−→x j)+v(n)
i ρis(

−→x j)
;

p(n+1)
ls|j = v(n)

l ρls(
−→x j)

∑K
i=1w

(n)
i ρic(

−→x j)+v(n)
i ρis(

−→x j)
;

(16)
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then relations (15)will be theM-step of thewell-knownEM-algorithm (while (16)will be
E-step) [36]. It is well known that the EM-algorithm, when the number of componentsK
is relatively small (~10–100) is quite stable and allows calculating maximum-likelihood

parameters
−→
θ

ML
in a reasonable time. Unfortunately, with large amounts of data (k ~

107 counts) and for a sufficiently large model dimension (K ~ 106 RFs), the use of the
traditional EM algorithm turns out to be ineffective. The high memory requirements
k×K ~ 1012 bytes (1 Terabyte) and, accordingly, a large amount of calculations, as well
as with a low convergence rate of the (linear) EM algorithm [37] make its traditional
computational scheme poorly implemented. In this regard, it seems extremely important
that the concept of receptive fields makes it possible to significantly adapt the algorithm
(16) to the case of very large input dataXk such as sampling representation of images. An

adaptation scheme for iterative calculations of maximum-likelihood parameters
−→
θ

ML
,

based on a lattice partition of the visual field �, was proposed in [12} and consists in the
following simplifying assumptions about the locations and shapes of receptive fields.

First, it is assumed that components of mixture (8) are placed at the nodes
{−→μ i

}
, i =

1, . . . ,K of some regular (rectangular or hexagonal) lattice on the surface of �. It is
assumed that the carriers �i of the adjacent RFs complement each other in such a way,
that their covering of the entire visual field has no gaps. This is ensured by the requirement
D > d , where D is the characteristic size of RF and d is the lattice spacing. Under this
condition, obviously, every point −→x ∈ � belongs to at least one of the carriers. Hence,
the set of nodes whose carriers contain −→x is not empty. We denote the nonempty set of
indices of these nodes by δ−→x = {i|−→x ∈ �i} and call it the lattice environment of −→x
[12].

Second, let us take as components ρic
(−→x )

and ρis
(−→x )

the copies of some base
functions C

(−→x )
and S

(−→x )
, C

(−→x )
, S

(−→x ) ≥ 0 moved to the lattice nodes −→μ i, i.e.
components have the form ρic

(−→x ) = C
(−→x − −→μ i

)
and ρis

(−→x ) = S
(−→x − −→μ i

)
. The

area� in whichC
(−→x )

or S
(−→x )

are not equal to zero will be called the base carrier. This

base carrier is assumed to be symmetric in the sense that it contains the origin
−→
0 ∈ �

and together with each point −→x ∈ � it contains −−→x ∈ �.
Under the assumptions made, the general recurrent algorithm (15) takes the form:

w(n+1)
l = 1

k

∑−→x j∈�l
j

w(n)
l C(−→x j−−→μ l)

∑i∈δ−→x j
i w(n)

i C(−→x j−−→μ i)+v(n)
i S(−→x j−−→μ i)

;

v(n+1)
l = 1

k

∑−→x j∈�l
j

v(n)
l S(−→x j−−→μ l)

∑i∈δ−→x j
i w(n)

i C(−→x j−−→μ i)+v(n)
i S(−→x j−−→μ i)

;
(17)

Due to the changed summation limits, the system (17) becomes sparse, which, as is
known, significantly reduces the requirements for memory and time resources. Indeed,
if each count can belong to the intersection of not more than δ components, and each
field contains, on average, k/K counts, then the amount of memory required to store
intermediate data (16) will be reduced to ~ δk values, and the number of calculations
will be reduced to ~ (δ + 1)k operations, both are much less than in the general case (~
k × K).



68 V. Antsiperov and V. Kershner

The algorithm (17) can be further simplified if we use the fact that receptive fields
of the same type intersect each other very weakly (see the above facts about the RF
sets of the same type and Fig. 7 illustrating it). Assuming that there are no intersections
between adjacent RFs at all, we get that each count −→x j can belong to only one receptive
field carrier �l , i.e. δ−→x j

consists of only one index l of that field. So, the denominators
of the right-hand sides of (17) will contain only the couple of components – the center
and the surround of the given field and the system (17) is reduced to the following set
of independent two-equation systems:

l = 1, . . . ,K :
w(n+1)
l = 1

k

∑−→x j∈�l
j

w(n)
l C(−→x j−−→μ l)

w(n)
l C(−→x j−−→μ l)+v(n)

l S(−→x j−−→μ l)
;

v(n+1)
l = 1

k

∑−→x j∈�l
j

v(n)
l S(−→x j−−→μ l)

w(n)
l C(−→x j−−→μ l)+v(n)

l S(−→x j−−→μ l)
;

(18)

Note that by summing Eqs. (18), it is easy to obtain that at any iteration the relation
w(n)
l +v(n)

l = πl = kl/k is satisfied,where kl is the number of counts fromXk belonging to

carrier�l . Thus, in (18) only one of twoparametersw(n+1)
l or v(n+1)

l should be calculated,
the other is obtained from the above relation automatically. It is also convenient, in view
of this relation, to pass in Eqs. (18) from probabilities wl and vl to the conditional
probabilities πlc = wl/πl, πls = vl/πl, πlc + πls = 1 introduced above, replacing the
total number of counts in Xk – k by the local number of counts kl in �l :

l = 1, . . . ,K :
π

(n+1)
lc = 1

kl

∑−→x j∈�l
j

π
(n)
lc C(−→x j−−→μ l)

π
(n)
lc C(−→x j−−→μ l)+π

(n)
ls S(−→x j−−→μ l)

;
π

(n+1)
ls = 1

kl

∑−→x j∈�l
j

π
(n)
ls S(−→x j−−→μ l)

π
(n)
lc C(−→x j−−→μ l)+π

(n)
ls S(−→x j−−→μ l)

;
(19)

Simplification (19) could be continued along in the same way if we assume that
the carriers �c and �s of the base functions C

(−→x )
and S

(−→x )
do not intersect either.

Considering that in this case for −→x ∈ �c we have S
(−→x ) = 0 and, conversely, for−→x ∈ �s we have C

(−→x ) = 0, we get that some of the terms in Eqs. (19) turn to 0, and
the rest of the terms are equal to unity in the first sum for −→x j ∈ �c and for

−→x j ∈ �s in
the second. This immediately leads to simple final solutions:

l = 1, . . . ,K : πlc = klc
kl

, πls = kls
kl

; (20)

where klc and kls are the numbers of counts from Xk belonging to carriers of corre-
sponding center and surround �lc,�ls ⊂ �l . Here it is interesting to note that solutions
(20) do not depend at all on the forms of C

(−→x )
and S

(−→x )
functions (only on the shapes

of their carriers).
However, solutions (20) are apparently an oversimplification of the realistic situation,

so the intersection of carriers �c and �s should not be neglected, and (19) should be

considered as the main system for finding the maximum-likelihood parameters
−→
θ

ML
.

Solutions (20) can be considered in this context as zero approximations π
(0)
lc and π

(0)
ls ,
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initializing algorithm. Domains �c and �s should be understood now as some partition
of �: �c ∪ �s = �,�c ∩ �s = ∅, determined by the forms of C

(−→x )
and S

(−→x )
. For

example, such a partition could be taken as concentric domains of �, the ratio of the
areas of which is equal to π0

c /π0
s , where π0

c and π0
s are the introduced above conditional

probabilities for the smoothest mixture ρ0
(−→x ) = πcC

(−→x ) + πsS
(−→x )

.
The above theoretical synthesis of methods for solving the maximum likelihood

(6) is illustrated below by the results of numerical experiments on encoding the image
presented in Fig. 3. Recall that in the framework of the generative paradigm a code

is understood as such a set of parameters
−→
θ

ML
(6) of the distribution density from

parametric family G =
{
ρ(

−→x ;−→
θ )

}
, which fits best the sample representationXk .

The main elements of the computational scheme (19) are presented in Fig. 6. They
concern, firstly, the choice of the lattice, in whose nodes

{−→μ i
}
, i = 1, . . . ,K the recep-

tive fields are located. The lattice is chosen to be of a rectangular type with vertical and
horizontal spacing equal to d . Thus, RFs are located at the vertices of square lattice cells
with dimensions d × d . The base carrier � is also chosen to be square with dimensions
d × d , which, when copied to the nodes

{−→μ i
}
, ensures dense covering without overlap-

ping of the surface � by the set {�i} (see Fig. 6A). The size of the base carrier D = d
is assumed to be an integer and is equal to the number of jots of the sensitive surface
� along any of its sides. In other words, hereinafter, the size of an individual jot (pixel)
is taken as unity. The number of cells in the rows/columns of the lattice is assumed to
be equal to l, so the total number of RFs is K = l2, and the total number of jots is
N = (ld)2.

The second main choice concerns the forms of components ρic
(−→x )

and ρis
(−→x )

,

which are the moved copies of base functionsC
(−→x )

and S
(−→x )

,C
(−→x )

, S
(−→x ) ≥ 0. The

basic functions are chosen to be axisymmetric with respect to the origin of coordinates.
It allows them to be specified using one-dimensional profiles depending on r = ‖−→x ‖,
which in this case are selected in the form (see Fig. 6B)):

C(r) = 1
πσ 2 exp

{−r2/σ 2
}
,

S(r) = 1
d2−πσ 2

(
1 − exp

{−r2/σ 2
}); (21)

where σ is the characteristic size of the center of the receptive field, which could be
adjusted in the calculations with respect to the field size d , so that the ratio γ = σ/d is
an instrumental parameter of the method. Looking ahead, we note that the best results in
the experiments were obtained at γ ≈ 2. The choice of profiles (21) wasmotivated by the
consideration that there areπ0

c = πσ 2/d2 andπ0
s = (d2−πσ 2)/d2, which for a smooth

mixture ρ0
(−→x ) = π0

c C
(−→x )+π0

s S
(−→x )

give exactly a uniform distribution�
(−→x )

. This
distribution, together with the difference (center-surround selective operator) D

(−→x ) =
C

(−→x ) − S
(−→x )

, are shown in Fig. 6C.
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Fig. 6. Computational scheme of algorithm (19). A) The outline of the lattice and the locations
of receptive fields on � with the structure of the basic center/surround domains. B) Profiles of
the center C

(−→x )
and surround S

(−→x )
(21). C) profiles of the smoothest mixture ρ0

(−→x )
(uniform

distribution �
(−→x )

) and difference D
(−→x )

of the center and surround.

Following are the encoding results of the “GRAY_R02_0600x0600_093” image
sampling representations, shown in the Fig. 3. The results are presented as screenshots
of a computer application specially designed for the current investigation. The appli-
cation was written on the platform.NET Framework 4.6.1 of integrated development
environment Microsoft Visual Studio Community 2019.
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Fig. 7. The results of encoding the sampling representations for different sizesk, shown in Fig. 3.
A) Sampling representation for k = 5000000 counts ( Fig. 3.D)). B) Encoding the sampling
representation A. C) Sampling representation for k = 1000000 counts ( Fig. 3.C)). D) Encoding
the sampling representation C.

Later on if it is not explicitly stated, the following parameters of the algorithm (19)
have been used: the size of the sampling representation (number of counts) k = 1000000,
the size of the RF size d = 10, the number of cells in the rows/columns of the lattice
l = 120 (K = 14400), center/RF size ratio γ = 4, number of iterations in (19) n+ 1 =
10.
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Fig. 8. The results of encoding the sampling representation for different numbers of cells in
lattice rows/columns.A) Sampling representation for k = 1000000 counts (Fig. 3C)). B) Encoding
sampling representation A by a lattice of l = 80 cells in row. C) Encoding sampling representation
Aby a lattice of l = 120 cells in row.D)Encoding sampling representationAby a lattice of l = 200
cells in row.
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Fig. 9. The results of encoding the sampling representation for different parameters γ = σ/d
of center to field size ratio. A) Sampling representation for k = 1000000 counts ( Fig. 3.C)). B)
Encoding sampling representation A by a ratioγ = 3. C) Encoding sampling representation A by
a ratioγ = 4. D) Encoding sampling representation A by a ratioγ = 6.

4 Conclusions

The synthesized method of perceptual image coding showed good characteristics in
many respects. Firstly, this is a fast method focused on big data. With the number of
calculations in several iterations on sampling representations of several million counts,
code calculation requires only a fraction of a second for amodern personal computerwith
average performance. Secondly, a medium-sized image “GRAY_R02_0600x0600_093”
(600 × 600 pixels, gray, 8-bit color depth, 144 KB on disk) being compressed to a set
of K = 2 × 100 × 100 = 20000 mixture weights (20 KB) has nevertheless sufficient
visual quality (see Figs. 7–9) for understanding the image, recognizing objects on it, etc.

Note that the achieved characteristics are only the first results obtained on the way
of modeling the mechanisms of visual perception, and so far only at the level of retinal
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functions. In this regard, we express the cautious hope that the potential of the proposed
approach can be revealed to an even greater extent in subsequent studies.
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Abstract. We present a baseline for gesture recognition using state-of-the-art
sequence classifiers on a new freely available multi-modal dataset of free-hand
gestures. The dataset consists of roughly 100,000 samples, grouped into six
classes of typical and easy-to-learn hand gestures. The dataset was recorded using
two independent sensors, allowing for experiments on multi-modal data fusion at
several depth levels and allowing research on multi-modal fusion for early, inter-
mediate, and late fusion techniques. Since the whole dataset was recorded by a
single person we ensure a very high quality of data with little to no risk for incor-
rectly performed gestures. We show the results of our experiments on unimodal
sequence classification using a LSTM as well as a CNN classifier. We also show
that multi-modal fusion of all four modalities results in higher precision using
late-fusion of the output layer of an LSTM classifier trained on a single modality.
Finally, we demonstrate that it is possible to perform live gesture classification
using an LSTM-based gesture classifier, showing that generalization to other per-
sons performing the gestures is high.

Keywords: Hand gestures · Dataset · Multi-modal data · Data fusion ·
Sequence classification · Gesture recognition

1 Introduction

We present a freely available multi-modal dataset of freehand gestures that can be
used for research on sequence classification, multi-modal fusion, or other domains
in Human-Computer-Interaction and Machine Learning. Hand gesture recognition is
widely used as a natural way of non-verbal communication. In general, there are
two main applications for hand gesture recognition: Communication, e.g. in sign lan-
guage recognition, and manipulation, e.g. controlling a robot or other technical device.
Another typical application is controlling and communicating with a virtual environ-
ment [8].

Large, multi-modal, and reliable datasets are needed for modern deep learning tech-
niques to perform at a sufficiently high level. Important characteristics of a good dataset
with training data are the number of gesture classes, the number of samples per gesture
class, and the number of distinct modalities from (different) sensors. (cf. [24]).

We present results for baseline experiments to show that the dataset can be used
to train state-of-the-art machine learning models and can achieve very high prediction
rates. For this, we use Long Short-Term Memory (LSTM) networks as well as deep
c© Springer Nature Switzerland AG 2023
M. De Marsico et al. (Eds.): ICPRAM 2021/2022, LNCS 13822, pp. 76–97, 2023.
https://doi.org/10.1007/978-3-031-24538-1_4
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Convolution Neural Networks (CNN). LSTM networks [9] are widely used recurrent
neural networks with feedback connections to process sequences instead of just sin-
gle data points. CNN are feed-forward neural networks consisting of fully-connected
layers, pooling layers, and normalization layers. They are most common in image clas-
sification.

When working with multiple modalities, each sensor produces a separate data
stream, also called sensory modality. Each sensory modality contains unique and inde-
pendent information. But since all sensors observe the same situation – in our scenario
the same hand gesture – the information from all sensors at least partially correlates.
The goal of multi-modal fusion is to exploit that correlation to obtain more precise
and reliable observations. In general, sensor data can be fused at three stages. Early
fusion approaches combine data from sensors without preprocessing or after features
have been extracted from raw data and use collaborative representation classifiers [14].
Late fusion strategies often combine the output score provided by multiple classifiers
each trained on a single modality [28], i.e. by transforming the output to a probability
score by a softmax layer and combining it by sum rule, product rule, or max rule.

This paper is an extended version of our previous work [25]. In this version, we
conducted additional experiments using CNNs for uni-modal classification. We also
more thoroughly explained the reasoning behind our choices regarding the single-user
approach as well as the selection of our gesture classes.

2 Related Work

2.1 Hand Gesture Datasets

Several hand gesture datasets have been made available to researchers in recent years.
Regardless, we find that there are no publicly available datasets that include a large
enough number of gesture samples needed to suit the high requirement of machine
learning methods for an extensive dataset for training. On the other hand, we require
a dataset with a reasonable number of modalities recorded from independent sensors
since present-day sensors are increasingly cheap and universally available and we find
that gesture recognition can highly profit when including information from several
modalities.

The SHGD dataset [13] consists of 15 gesture classes recorded from 27 persons
with 96 sequence samples per class, resulting in a total size of 4,500 gesture samples.
It only contains depth data recorded by an RGB-D camera.

A multi-modal dataset is presented in [16]. It consists of 10 gesture classes recorded
from 14 persons with 140 sequence samples per class, resulting in a total size of 1,400
gesture samples. It contains depth data recorded by an RGB-D camera and data from a
LeapMotion sensor.

In the next dataset [19], the approach is to render gesture samples using an advanced
computer graphics pipeline instead of recording them. The dataset consists of 11 gesture
classes with about 3,000 sequence samples per class, totaling 35,200 gesture samples.
It only contains depth data.

The Cambridge dataset [12] contains 10 gesture classes recorded from two people
with about 100 sequence samples per class, resulting in a total size of 1,000 gesture



78 M. Schak and A. Gepperth

Table 1. Comparison of the MMHG dataset with other hand-gesture datasets provided in litera-
ture. (Source: [25].)

Dataset Classes Samples/Class Persons Total samples Modalities

SHGD [13] 15 96 27 4,500 Depth

Cambridge dataset [12] 10 100 2 1,000 RGB

n.A. [16] 10 100 14 1,400 Depth, Motion

IsoGD [30] 249 190 21 50,000 RGB, Depth

EgoGesture [32] 83 300 50 24,000 RGB, Depth

SKIG [15] 10 360 6 1,080 RGB, Depth

ChaLearn [6] 20 390 27 13,900 Audio, RGB, Depth

n.A. [18] 11 3,000 – 35,200 Rendered Depth

MMHG (this paper) 6 ≈13,300 1 79,881 RGB, Depth, Motion, Audio

samples. The Sheffield Kinect Gesture Dataset [15] contains 10 gesture classes recorded
from six persons with 360 sequence samples per class, resulting in a total size of 1,080
gesture samples. It also only contains depth data recorded by an RGB-D camera.

One of the first large-scale hand gesture datasets is the ChaLearn-2013 dataset [6],
which consists of 20 gesture classes recorded from 27 persons with an average of 360
gesture samples per class, resulting in a total size of roughly 14,000 sequence samples.
It contains audio, RGB, and depth modality.

The IsoGD dataset [29] is even larger but only includes an RGB and a depth modal-
ity. It contains about 50,000 gesture samples, grouped into 249 gesture classes with an
average of 190 gesture samples per class, and it was recorded by 21 persons.

The next dataset [32] is of similar size and also includes only an RGB and a depth
modality, but it is egocentric and recorded from a head-mounted camera. The dataset
consists of 83 gesture classes with about 300 sequence samples per class, totaling about
24,000 gesture samples.

Table 1 shows a comparison of the MMHG dataset with the hand-gesture datasets
introduced in this section.

2.2 Multi-modal Fusion

Research in the field of psychology and neurophysiology [1,2] shows multi-sensory
fusion to be a common concept. This means, that the human brain is capable of proba-
bilistically combining different modalities [5,7].

Similar concepts are available in the field of multi-modal gesture or activity recog-
nition. There is not the one right way to carry out multi-modal fusion, but there are
several possibilities that have been used in experiments in recent years. Each possibility
has its own advantages and disadvantages depending on the data used and tasks at hand.

In general, multi-modal fusion techniques can be clustered into three categories:
early fusion, intermediate fusion, and late fusion. Early fusion describes that data from
different sensory modalities are combined either before any preprocessing steps [14] or
after features have been extracted from raw data [4] by using a collaborative represen-
tation classifier. The fused data is then passed onto a machine learning model.
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In late fusion techniques, there usually are multiple machine learning models for
single modalities which are fused at a later stage, very often right before output score
prediction. In [27], single modality-based classifiers each provide an output score and
the final score is produced by searching the maximum. Another possibility is to use a
collaborative representation classifier to combine classification outcomes of different
modalities [4]. A very easy and therefore commonly used late-fusion technique is soft-
max score fusion [11]. Here, multiple classifier outputs are seen as probability scores
by a softmax layer. Afterward, they are combined using either the sum rule, the product
rule, or the max rule.

Intermediate fusion happens between data level and output level. A possible tech-
nique is feature fusion [10]. Features that are the output from fully connected layers are
combined and then forwarded to a linear support vector machine or any other classifier.

2.3 Contribution

This work, like the original work [25], has its focus on describing our Multi-Modal
Hand Gesture Dataset. Almost 80,000 samples with over 13,000 samples per gesture
class in four modalities. There are six gesture classes that are all supposed to be easy
to perform by the user but also specifically chosen to make the dataset beneficial for
research on multi-modal fusion. All samples have been recorded by just one very well
trained and instructed user, therefore the dataset does not contain corrupted data sam-
ples. The recording and preprocessing steps were carefully designed to ensure high
quality. Thus, the dataset is perfectly suited for machine learning.

Additionally, we present experiments that prove the consistency of the dataset. The
first set of experiments shows that plausible classification accuracies can be achieved on
each of the four modalities when trained on two state-of-the-art sequence classification
models: LSTM networks and CNNs. The second set of experiments shows that even
with relatively simple late multi-modal fusion approaches it is possible to improve the
classification accuracies achieved by networks trained on uni-modal data.

In Sect. 6 we introduce an implementation based on the Robot Operating System
and the results for our experiments to determine the generalization capabilities of our
dataset to other people. This shows that although only a single user recorded all data
samples for the dataset, it is still possible to train a gesture classifier capable of correctly
classifying gestures performed by other users.

3 Dataset

In this paper, we present the Multi-Modal Hand Gesture Dataset (MMHGD). It is a
large-scale dataset with only six classes but a high number of samples for each class.
Each sample consists of modalities from an RGB and 3D camera, a microphone, and
an acceleration sensor.

All gesture samples are recorded and performed by just one single person. This is
an unusual choice but since only a well-instructed person performs all gestures, there
will be no incorrectly performed gesture samples in the dataset. Thus, we ensure a high
quality of gesture recordings and little to no corrupted data.
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The dataset contains about 13,300 recordings of each of the six classes. Therefore,
it contains a total of almost 80,000 samples. Table 2 shows the exact distribution of each
class. Each gesture sample consists of data from a two-second window. The dataset (raw
as well as preprocessed data) can be downloaded at http://data.informatik.hs-fulda.de.

Table 2. Distribution of the six gesture classes in the MMHG dataset.

Class C1 C2 C3 C4 C5 C6 Total

Samples 13,440 13,410 13,228 13,233 13,308 13,262 79,881

Although the gestures were recorded with varying background and lightning, we
used a fixed setup to ensure that each sample is recorded within a predefined distance
of 0.5 m to 0.75 m from the camera. Thus, simplifying the preprocessing step (Fig. 1).

Fig. 1. The setup used for recording the gesture samples for the MMHG dataset, ensuring a fixed
distance to the camera (Source: [25]).

During the time of recording, the user is told which gesture to perform and the
recorded sample is immediately assigned the correct class label. Each recording there-
fore consists of RGB images, 3D point clouds, an mp3 file, the acceleration data and
the correct class label. We also have preprocessed data available to immediately use
for training and testing. The preprocessing step happens independently of the recording
and is described in Sect. 3.3.

3.1 Gesture Classes

We use easy-to-use gesture classes that are commonly used in human-machine-
interactions. The gesture classes are specifically designed to offer challenging tasks
for multi-modal fusion. Therefore, some of the classes rely heavily on fusing different
modalities for correct classification. For example, the last two classes – Snap Once and

http://data.informatik.hs-fulda.de
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Snap Twice – do not differ much in their motion. Thus, using only visual modalities will
probably not lead to very good classification results. However, fusing those modalities
with the audio modality will make them easily distinguishable.

Thumbs Up. (Class 1, denoted as C1): The first class describes a thumbs-up gesture,
which is a very typical gesture to show approval or agreement. The gesture starts with
a closed fist in front of the camera. During the gesture, the thumb is extended upwards.
There is no distinctive sound for this gesture and it is rather stationary with very little
movement of the whole hand. Four frames of the RGB modality of one gesture sample
are shown in Fig. 2 exemplarily.

Fig. 2. Four frames of the RGB modality of one Thumbs Up gesture sample.

Thumbs Down. (Class 2, denoted as C2): The second class is similar to the first class
as it describes a thumbs-down gesture. This gesture is commonly used to show rejection
or disapproval. This gesture also starts with a closed fist in front of the camera, but this
time the thumb is extended downwards. Just like the thumbs-up gesture class, there is
no distinctive sound. It shows more movement since the fist is tilted forwards while the
thumb is extended downwards. Figure 3 shows four frames of the RGB modality of one
gesture sample as an example.

Fig. 3. Four frames of the RGB modality of one Thumbs Down gesture sample.

Swipe Left. (Class 3, denoted as C3): The third class shows a swiping gesture of the
whole hand in a horizontal direction from the right side to the left. Therefore, it is a
dynamic gesture. It can be used to switch or forward to the next element or move an
object from right to left. Again, this gesture does not have a distinctive sound. Four
example frames from the RGB modality of one gesture sample can be seen in Fig. 4.
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Fig. 4. Four frames of the RGB modality of one Swipe Left gesture sample.

Swipe Right. (Class 4, denoted asC4): The fourth class is a swipe right gesture, similar
to the previous gesture class. It also is a dynamic hand gesture that describes a swiping
gesture of the whole hand in a horizontal direction from the left side to the right. It can
be used to switch or rewind to the previous element or move an object from left to right.
Unsurprisingly, this gesture also does not have a distinctive sound. Figure 5 shows four
frames from the RGB modality of one gesture sample.

Fig. 5. Four frames of the RGB modality of one Swipe Right gesture sample.

Snap Once. (Class 5, denoted as C5): The fifth class again is a rather stationary ges-
ture, where the hand remains almost still while only two fingers show motion. For this
gesture, the middle finger pushes hard against the thumb and then gets released so fast
that it creates a snapping sound. Therefore, this gesture class has a distinctive sound.
Four frames from the RGB modality of one gesture sample from this class are shown
in Fig. 6.

Fig. 6. Four frames of the RGB modality of one Snap Once gesture sample.

Snap Twice. (Class 6, denoted as C6): The sixth gesture class is very similar to the pre-
vious class and describes two snaps. Accordingly, the hand remains almost still while
only two fingers are moving. For this gesture, the middle finger and the thumb cre-
ate two snapping sounds consecutively. This gesture class also has a distinctive sound.
Figure 7 shows four frames of the RGB modality of one gesture sample as an example.
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Fig. 7. Four frames of the RGB modality of one Snap Twice gesture sample.

3.2 Modalities

RGB. The sensory modality of RGB images is recorded with an Orbbec Astra 3D
sensor. It outputs a stream of images at a resolution of 800× 600 pixels with a frequency
of 30 fps. To reduce the load and still be able to process all modalities at the same time,
we save images at a frequency of 6 fps. This leads to twelve images for every gesture
sample.

3D. The sensory modality of 3D images is also recorded with an Orbbec Astra 3D sen-
sor. The 3D camera outputs a stream of depth images with a size of 640 × 480 pixels.
Those images are converted to point clouds before being saved for further preprocess-
ing. Due to performance reasons and to get matching RGB images to every 3D image,
we also save point clouds at a frequency of 6 fps. Thus, receiving twelve point clouds
for every gesture sample.

Audio. The audio data is also provided by the Orbbec Astra 3D sensor. The sensor has
a sensitivity of 30 dB and works with audio between 20Hz and 16 kHz. We save the
raw wave data for the entire two-second window for every gesture sample.

Acceleration. The sensory modality of the acceleration data is recorded using an accel-
eration sensor (BWT901CL from Bitmotion) attached to the users right wrist. The
acceleration sensor offers 9-axis: acceleration data in three axis, yaw rates also in three
axis, gyroscopic measurements, and magnetic field measurements. The sensor has a
frequency of 200Hz, which means we get 400 measurements for each gesture sample.

3.3 Preprocessing

RGB. To reduce the computational costs and remove unnecessary overload, we crop
the 800 × 600 px RGB images to the part where the hand is visible. Examples for
the original RGB images can be seen in Figs. 2, 3, 4, 5, 6 and 7. Since we always
perform the hand gesture in a predefined area in front of the camera, the complexity of
this step is reduced: The hand is always in the same area in the RGB image for every
frame for every gesture. Therefore, we do not have to perform object detection on every
single image but instead can define the area to which to crop and it will work for all
images. Afterward, we scale the cropped image to 72 × 48 pixels and then calculate
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the Histogram of Oriented Gradients (HOG) [17,31] descriptor. For this, we use the
OpenCV implementation with default parameters. The only parameters we set ourselves
are the cell size, which we set to 8 × 8 pixels, and the block size, which we set to
16 × 16 pixels. The calculated HoG descriptor has 756 entries. The resulting NumPy
array consists of twelve HoG descriptors for every gesture sample and thus has a shape
of (N, 12, 756).

3D. During the recording phase we store twelve point clouds for every gesture sample.
One exemplary frame from a sample of the Thumbs Up gesture is shown in Fig. 8a. Each
of these point clouds goes through the same three steps during the preprocessing phase.
The first step is downsampling the point cloud to reduce the size and computational
costs of the following steps. We begin by removing measurement errors by deleting all
points where one or more of the x-, y, or z-value is not a number (NaN), then we per-
form downsampling using the 3D-voxel grid technique. Using this downsampled point
cloud, we perform conditional removal to delete all points that are outside of our prede-
fined volume of interest. Again, this can be done using the same volume of interest for
every single gesture frame since we ensured that the gesture is always performed in the
same area in front of the camera. The result is a point cloud of just the hand without any
background data. In the second step, we infer surface normals by using approximation
and use those to calculate Point Feature Histograms (PFH) [22,23] in the third step.
With PFHs, we are able to receive a descriptor with the same size for every point cloud
- although they have a high variability in size. This is important since machine learning
models often require a fixed input size. According to [21], we randomly select two sur-
face normals and compute the “four values based on the length and relative orientation
of the surface normals” [25]. By dividing each value into five intervals, we receive 625
possible discrete values, which then get normalized. The resulting histogram consisting
of 625 dimensions is “able to feasibly characterize the hand and fingers” [25]. Figure 8a
shows a single point cloud (frame) of the Thumbs Up gesture class, while Fig. 8b shows
the corresponding PFH. The resulting NumPy array has a shape of (N, 12, 625).

Fig. 8. Example of one frame of a gesture sample from the gesture class Thumbs Up (C1) before
(a) and after (b) preprocessing (Source: [25]).
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Audio. We downsample the raw wave data to a frequency of 8,000Hz and ensure an
equal length by using zero-padding with a randomly picked offset. Afterwards, Short-
Time Fourier Transform (STFT) [3,20] with the following parameters is performed: a
window of 455 data points with an overlap of 420 data points. Using STFT we can
visualize the frequency information in 2D, more precisely the change of frequency dur-
ing certain time frames. The result is a NumPy array with a shape of (N, 182, 181).
Exemplarily, STFT data for a gesture sample with no distinct audio (Swipe Left, C3) is
shown in Fig. 9a. Figure 9b shows the STFT data for a gesture sample with one snap,
while Fig. 9c shows the STFT data for a gesture sample with two snaps. While Fig. 9a

Fig. 9. Examples of the STFT data of gesture classes without (a) and with (b, c) distinct audio
(Source: [25]).
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shows no distinct change in frequency, Figs. 9b and 9c show distinct changes in fre-
quency during one or two time frames respectively.

3.4 Acceleration

The acceleration data is rather noisy. Thus, we calculate statistical values over the 20
tuples from each 200-millisecond window.

x̄ =
1
N

(
N∑
i=1

xi

)
=

x1 + x2 + · · · + xN

N
(1)

Var(x) =
1
N

N∑
i=1

(xi − x̄)2 (2)

S(x) =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (3)

In our two-second window for every gesture sample, we receive a total of ten descrip-
tors. Each descriptor contains the mean (cf. Eq. 1), the variance (cf. Eq. 2) and the
standard deviation (cf. Eq. 3) for each of the six axes. The resulting NumPy array has a
shape of (N, 10, 3, 6).

4 Unimodal Classification

To show that every single modality of the MMHG dataset can be used to train state-of-
the-art machine learning models to be able to perform with high gesture classification
accuracies, we provide results of unimodal classification experiments with different
architectures. We conducted experiments on the modalities with sequential data (RGB,
3D, and acceleration) using LSTM networks. Then, we conducted experiments on all
four modalities using CNNs.

4.1 LSTM

We provide results of our experiments (cf. [25]) using LSTM networks for the RGB,
3D, and acceleration modalities, since after preprocessing those three modalities consist
of sequential data, while the audio data is only one 2D plot per gesture sample. LSTM
networks [9] are recurrent neural networks capable of learning dependencies over time
(long-term). They are often used in sequence classification since due to the feedback
connections they are able to process sequences of data instead of single data points
such as in images.

We randomly select 20% of our dataset to use as a test set and train the LSTM net-
work on the remaining 80%. Preliminary experiments were used to determine network
parameters for every modality that result in the highest classification accuracies.

The gesture classification accuracy is the fraction of correct predictions compared
to all predictions, as shown in Eq. 4. Precision defines the proportion of correct positive
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classifications compared to all positive classifications for a class, as shown in Eq. 5.
Recall defines how many samples were classified correctly compared to all predictions
of that class, as shown in Eq. 6. The F1-score is the harmonic mean between precision
and recall, as shown in Eq. 7. (tp = true positive, tn = true negative, fp = false positive,
fn = false negative)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

Precision =
tp

tp+ fp
(5)

Recall =
tp

tp+ fn
(6)

F1 =
2

recall−1 + precision−1 =
2 · tp

2 · tp+ fp+ fn
(7)

RGB. For the RGB modality, we use an LSTM network with S = 200 cells each on
L = 2 hidden layers and train it in I = 3, 000 iterations with a batch size of b =
250. After training the network on our training set with those parameters, we achieve
an average gesture classification accuracy on the test set of 85.55%. Table 3a shows
the confusion matrix for the unimodal gesture classification, while Table 3b shows the
precision, recall and F1-score for every class.

Table 3. Results for the unimodal classification on the RGB modality using an LSTM network
(Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2662 26 0 0 0 0

0 2335 90 38 26 193

0 165 2430 26 25 0

0 76 64 2430 76 0

0 166 0 25 1806 664

0 318 0 38 293 2004

(a) Confusion matrix for an LSTM network
trained on RGB data.

Class Precision Recall F1-Score

C1 1.00 0.99 0.99

C2 0.75 0.86 0.80

C3 0.94 0.92 0.93

C4 0.95 0.92 0.93

C5 0.80 0.67 0.73

C6 0.69 0.74 0.72

(b) Classification report for an LSTM network
trained on RGB data.

3D. For the 3D modality, we use an LSTM network with S = 250 cells each on L = 2
hidden layers and train it in I = 5, 000 iterations with a batch size of b = 1, 000. After
training the network on our training set with those parameters, we achieve an average
gesture classification accuracy on the test set of 93.43%. Table 4a shows the confusion
matrix for the unimodal gesture classification, while Table 4b shows the precision, recall
and F1-score for every class.
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Table 4. Results for the unimodal classification on the 3D modality using an LSTM network
(Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2688 0 0 0 0 0

2 2667 4 8 1 0

0 4 2613 29 0 0

0 0 16 2627 3 0

1 0 0 0 2350 310

0 0 1 0 670 1982

(a) Confusion matrix for an LSTM network
trained on 3D data.

ClassPrecisionRecall F1-Score

C1 1.00 1.00 1.00

C2 1.00 0.99 1.00

C3 0.99 0.99 0.99

C4 0.98 0.99 0.99

C5 0.74 0.86 0.80

C6 0.84 0.70 0.77

(b) Classification report for an LSTM network
trained on 3D data.

Acceleration. For the acceleration modality, we use an LSTM network with S = 250
cells each on L = 5 hidden layers and train it in I = 1, 000 iterations with a batch size
of b = 500. After training the network on our training set with those parameters, we
achieve an average gesture classification accuracy on the test set of 83.66%. Table 5a
shows the confusion matrix for the unimodal gesture classification, while Table 5b
shows the precision, recall and F1-score for every class.

Table 5. Results for the unimodal classification on the acceleration modality using an LSTM
network (Source: [25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2571 25 20 12 39 21

524 2124 17 4 8 5

36 273 2250 52 30 5

16 7 328 2204 86 5

26 3 17 163 2116 336

8 1 2 9 533 2100

(a) Confusion matrix for an LSTM network
trained on acceleration data.

Class Precision Recall F1-Score

C1 0.81 0.96 0.88

C2 0.87 0.79 0.83

C3 0.85 0.85 0.85

C4 0.90 0.83 0.87

C5 0.75 0.80 0.77

C6 0.85 0.79 0.82

(b) Classification report for an LSTM network
trained on acceleration data.

4.2 CNN

We also provide the results of our experiments using CNNs for all four modalities. The
modalities with sequential data are passed through the network as one data point with
an additional temporal dimension. CNNs are state-of-the-art networks for image classi-
fication since they are highly able to recognize patterns in images. CNNs are designed
according to multilayer perceptrons to reduce processing requirements and they usually
consist of a combination of convolutional layers, pooling layers, fully connected lay-
ers, and normalization or reshaping layers. For our experiments, we use a CNN with
eight layers: Three convolutional layers, two pooling layers, one reshaping layer, and
two fully connected layers. The CNN was trained using the Adam Optimizer and cross-
entropy as loss function. Again, we randomly select 20% of our dataset to use as a test
set and train the CNN on the remaining 80% in ten epochs.
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RGB. After training the CNN on the training set of the RGB modality, we achieve an
average gesture classification accuracy on the test set of 85.45%. Table 6a shows the
confusion matrix for the unimodal gesture classification of RGB data, while Table 6b
shows the precision, recall and F1-score for every class.

Table 6. Results for the unimodal classification on the RGB modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2660 24 1 0 2 1

0 2412 21 15 39 195

0 138 2464 19 23 2

0 55 79 2441 71 0

0 202 2 117 1611 729

0 271 0 45 274 2063

(a) Confusion matrix for a CNN trained on
RGB data.

Class Precision Recall F1-Score

C1 1.00 0.99 0.99

C2 0.78 0.90 0.83

C3 0.96 0.93 0.95

C4 0.93 0.92 0.92

C5 0.80 0.61 0.69

C6 0.69 0.78 0.73

(b) Classification report for a CNN trained on
RGB data.

3D. After training the CNN on the training set of the 3D modality, we achieve an
average gesture classification accuracy on the test set of 94.05%. Table 7a shows the
confusion matrix for the unimodal gesture classification of RGB data, while Table 7b
shows the precision, recall and F1-score for every class.

Table 7. Results for the unimodal classification on the 3D modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2687 1 0 0 0 0

3 2666 1 10 1 1

1 7 2619 17 2 0

0 0 20 2620 1 0

3 1 0 2 2376 279

0 2 4 0 589 2058

(a) Confusion matrix for a CNN trained on 3D
data.

Class Precision Recall F1-Score

C1 0.94 1.00 1.00

C2 1.00 0.99 0.99

C3 1.00 0.99 0.99

C4 0.99 0.99 0.99

C5 0.80 0.89 0.84

C6 0.88 0.78 0.82

(b) Classification report for a CNN trained on
3D data.

Audio. After training the CNN on the training set of the audio modality, we achieve
an average gesture classification accuracy on the test set of 45%. Table 8a shows the
confusion matrix for the unimodal gesture classification of audio data, while Table 8b
shows the precision, recall and F1-score for every class. As can be seen, there is a
high recall for the two gestures depending on sound (C5 and C6, Snap Once and Twice
respectively) while there was a very low recall for the four gestures not depending
on sound (C1 to C4, Thumbs Up and Down, Swipe Left and Right respectively). As
explained in Sect. 3.1, the purpose of the audio modality lies in reinforcing predictions
in combination with other modalities [25].



90 M. Schak and A. Gepperth

Table 8. Results for the unimodal classification on the audio modality using a CNN (Source:
[25]).

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

525 171 207 1771 9 5

460 230 217 1772 2 1

462 168 264 1750 2 0

480 188 178 1798 0 2

85 53 41 60 2076 346

9 6 10 4 381 2243

(a) Confusion matrix for a CNN trained on
audio data.

Class Precision Recall F1-Score

C1 0.26 0.19 0.22

C2 0.28 0.09 0.13

C3 0.29 0.10 0.15

C4 0.25 0.68 0.37

C5 0.84 0.78 0.81

C6 0.86 0.84 0.85

(b) Classification report for a CNN trained on
audio data.

Acceleration. After training the CNN on the training set of the acceleration modality,
we achieve an average gesture classification accuracy on the test set of 69%. Table 9a
shows the confusion matrix for the unimodal gesture classification of the acceleration
data, while Table 9b shows the precision, recall, and F1-scores for every class. As can
be seen, it is difficult for the CNN to distinguish Snap Once and Snap Twice (C5 and
C6 respectively) using only the acceleration modality.

Table 9. Results for the unimodal classification on the acceleration modality using a CNN.

Predicted class C[1−6]

Ta
rg
et

C
[1
−
6
]

2422 5 29 150 53 29

606 1960 37 56 17 6

114 290 1575 616 44 7

109 2 350 2109 65 11

245 2 43 487 1520 364

129 3 15 138 967 1401

(a) Confusion matrix for a CNN trained on
acceleration data.

Class Precision Recall F1-Score

C1 0.67 0.90 0.77

C2 0.86 0.73 0.79

C3 0.77 0.60 0.67

C4 0.59 0.80 0.68

C5 0.57 0.57 0.57

C6 0.57 0.53 0.63

(b) Classification report for a CNN trained on
acceleration data.

5 Multi-modal Fusion

The results of our experiments on unimodal prediction show that both the visual modal-
ities and the acceleration modality have difficulties to distinguish the two classes with
little movement but distinct audio (C5 and C6 respectively). They also show that the
audio modality cannot distinguish the four classes with no distinct sound (C1 to C4) but
leads to acceptable results in the other two classes. Therefore, we investigate the effect
of fusing different modalities to increase the prediction accuracy that can be achieved.

Since the sensors output the data in different formats and also in different frequen-
cies, we discard early fusion methods that fuse the data before using them as input to
the machine learning model. We choose two commonly used and easy-to-implement
late fusion strategies to prove our assumption, other late fusion strategies as well as
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intermediate fusion strategies are possible and might even lead to better results but are
not within the scope of this work.

We analyse the LSTM or CNN readout layer rm after the whole gesture sample has
been processed, where m denotes the modality m ∈ M = {RGB, 3D, Audio, Acc}.
The readout layer provides one entry for every available gesture class, every entry has a
value of rmi ∈ [0, 1] and all entries are normalized

∑
i r

m
i − 1∀m ∈ M. C denotes the

decision based on the fused modalities, while Cm denotes the decisions based on the
uni-modal predictions. (Cf. [24])

The first late fusion strategy is called max-conf. Here, the uni-modal prediction of
the modality with the highest confidence is used, as described in Eq. 8.

x = argmaxm∈M
(
max

i
rmi

)
C = Cx (8)

The second late fusion strategy is called prob. Here, the readout layer entries are treated
as independent conditional probability distributions for a class i given the uni-modal
input sequence xm (cf. [24]). We denote the probabilities as rmi = pm (Cm = i|xm)
and use the class with the highest probability after multiplying the independent condi-
tional probabilities, as shown in Eq. 9. (Cf. [24])

C = argmaxi

( ∏
m∈M

p (C = i|xm)

)

= argmaxi

( ∏
m∈M

rmi

)
(9)

Figure 10 exemplarily shows some of the results of our multi-modal experiments. It
can be seen that the results – that are already very high – can be further improved, even

Fig. 10. Gesture classification accuracies achieved by the LSTM networks trained on uni-modal
data (Acceleration data, RGB data, 3D data, Audio data) and by performing multi-modal fusion:
max-conf of audio and RGB data, prob of audio and RGB as well as max-conf and prob of all
four modalities. (Source: [25]).
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with rather simple fusion strategies as used here. While fusing two modalities like audio
and RGB does not yield better or the same results as uni-modal prediction on 3D data,
these results show that fusing two modalities can improve the prediction accuracy, i.e.
when a 3D sensor is not available or processing 3D data is not computationally feasible
or even possible.

6 Live Demonstrator

Since our choice of only one person performing all the gestures in the dataset, we want
to prove that the dataset still can be used to train a real-live system that is able to cor-
rectly classify hand gestures that are performed by different people. Thus, experiments
on the live system prove that a machine learning model trained on the MMHG dataset
is able to generalize to another person apart from the one who recorded all gesture
samples.

As a proof of concept, we implement a live system that consists of an LSTM net-
work trained only on the 3D modality of the MMHG dataset and the live classifier based
on the Robot Operating Systems (ROS) that receives and processes 3D data from an
Orbbec Astra as described in Sect. 3.3 and then feeds it into the trained LSTM network.
Afterward, it receives the prediction and outputs it to the user. The other three modal-
ities can be handled accordingly, the network model can be swapped out by another
pre-trained model, i.e. a CNN, or fusion can be implemented as well, if needed.

6.1 Implementation

The implementation consists of a Point Cloud Processor that receives the data stream
from our 3D sensor and processes it according to the preprocessing steps described
in Sect. 3.3. It also consists of an LSTM classifier that receives the preprocessed data
from the Point Cloud Processor and feeds it into multiple pre-trained LSTM networks.
The third part is the Aggregator which collects the output predictions from the LSTM
networks, selects the most likely prediction, and outputs it to the user.

Point Cloud Processor. The Point Cloud Processor is implemented as a ROS node and
is responsible for receiving the data stream from the Orbbec Astra, processing the point
clouds, and publishing the preprocessed data to the LSTM classifier.

According to Sect. 3.3, the Point Cloud Processor subscribes to the 3D camera sen-
sor. It accepts 3D data at 6Hz corresponding to the frequency used in the MMHG
dataset. The node receives the 3D image and performs the same preprocessing steps
performed on the 3D data in the MMHG dataset. Thus, it downsamples the point clouds,
infers surface normals, and then calculates Point Feature Histograms. Those PFHs are
then published for further processing by the other nodes.

LSTM Classifier. The LSTM Classifier is also implemented as a ROS node and is
responsible for performing gesture classification by passing the PFHs published by the
Point Cloud Processor through multiple pre-trained LSTM networks. Since gestures can
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start at any given moment in time, we use an approach called Shifted Recognizer [26]:
N identical classifiers or recognizers are run simultaneously. Each classifier is pre-
trained on the MMHG dataset and has learned to classify gestures with a fixed length
T = 12 which determines the Temporal Receptive Field (TRF) (accordin to [26]). The
LSTM Classifier node feeds the PFHs it receives from the Point Cloud Processor to
all N classifiers. Each classifier has a delay of Δ = T

N frames compared to the other
classifiers. Therefore, “if we run enough parallel classifiers, a gesture of length l ≤ T
will always correlate with the TRF of a single classifier which will then classify it and
report its prediction” [25]. Figure 11 shows N = 4 parallel classifiers or recognizers
denoted as Rn with n ∈ [1, N ]. The delay between the classifiers is set to Δ = T

N . A
performed gesture will fall into exactly one classifiers TRF (indicated as a green bar in
the figure), therefore this classifier will predict the gesture and output the results. All
other classifiers (indicated as red bars) will only receive part of the gesture in their TRF,
therefore they will not predict the gesture correctly.

In our system, we use N = 12 LSTM classifiers since the gesture samples in the
MMHG dataset have 12 frames. Therefore, as described above, a gesture will always
correlate to exactly one classifier with no onset or offset.

Fig. 11. Shifted Recognizer with N = 4. The delay is set to Δ = T
4
. The red and green bars indi-

cate the TRF of the four Shifted Recognizers (denoted R1...4). The currently performed gesture
is shown as a black bar on the top. The current gesture fits in exactly one classifiers TRF, thus it
can predict the gesture correctly. (Source: [25]). (Color figure online)

Aggregator. The Aggregator is the third ROS node. It gathers the predictions from the
readout layers from all N = 12 LSTM classifiers. According to previous research [26]
LSTM networks are able to classify sequences with varying onset and offset to some
extent. Thus, it is very likely that not just the LSTM classifier in whose TRF the gesture
fits in completely but also some of the other LSTM classifiers will predict the correct
gesture. Therefore, the Aggregator chooses the gesture class with the highest prediction
score, but only if it exceeds a predefined threshold and has been stable for the past three
frames. Thus, no prediction is chosen if there is no gesture in the data stream.

6.2 Experiments

We asked four people to perform gestures and had them classified by our live system.
Neither of those people were the person who conducted the gestures in the MMHG
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dataset. Each person was given a short introduction on how to perform the six differ-
ent gestures correctly, then they performed gestures from every gesture class and we
recorded the prediction made by the live system.

There were two male and two female users with different hand sizes and skin col-
ors to present as much variation as possible to our system and test the capability of our
system to generalize to different users (cf. [25]). Table 10 shows the results of our exper-
iments. Pi denotes the ratio of correct classifications of a gesture class Cj (as described
in Sect. 3.1) for the i-th user with i ∈ {1, 2, 3, 4}.

Table 10. Resulting gesture classification accuracies using our live system trained on the 3D
modality of the MMHG dataset (Source: [25]).

P1 P2 P3 P4 Total

C1 5/5 1/1 1/1 3/3 100%

C2 5/5 1/1 1/1 2/3 90%

C3 5/5 1/1 0/1 2/3 80%

C4 2/5 0/1 1/1 1/3 40%

C5 5/5 1/1 1/1 2/3 90%

C6 0/5 0/1 0/1 1/3 10%
∑

73.3% 66.7% 66.7% 61.1% 66.7%

Since our live system is meant as a proof of concept and depends only on the 3D
modality, it is not surprising that the system is not able to distinguish between the ges-
ture classes Snap Once and Snap Twice (C5 and C6 respectively). Using multi-modal
fusion of the 3D data with the audio data will most likely improve those results. Also,
for our system Swipe Left and Thumbs Up (C3 and C1 respectively) are difficult to
distinguish since the angle and movement of the hand is similar (cf. [25]). Again, using
multi-modal fusion of the 3D data with – for example – acceleration data, could possi-
bly improve the gesture classification accuracies for that gesture class (C3).

Nevertheless, the experiments on our live system show that a system trained on the
MMHG dataset is able to generalize to other people performing the gestures. The results
can be improved by the use of multi-modal fusion with one or more other modalities.

7 Conclusion

We provide an in-depth description of the new, freely available Multi-Modal Hand Ges-
ture Dataset consisting of almost 80,000 samples in six gesture classes with the four
sensory modalities RGB, 3D, audio, and acceleration. The gesture classes of the dataset
were carefully chosen to be easy to perform by all users and also suitable for application
oriented experiments on sequence classification and multi-modal fusion.

It can be seen that even very simple late-fusion techniques can be combined with
state-of-the-art sequence classification models such as LSTM and CNN models, thus
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improving the results of uni-modal gesture classification. Unsurprisingly, the audio
modality alone leads to disappoint gesture classification accuracies, but can improve
the quality of gesture classification when being fused with other modalities. Of course
this stems from the fact that our gesture classes were specifically chosen to show this
kind of behavior, to allow the dataset to be well suited for research on multi-modal
fusion.

Also, experiments conducted on a live system prove that a generalization to other
persons is high even though only a single person recorded all gesture samples available
in the dataset.

Future research will include further experiments on generalization capabilities and
the possible bias in recognition due to the single subject in the dataset. Also, we will per-
form experiments using probabilistic models for multi-modal sequence classification,
outlier detection, and sampling. Another focus in future work will be more complex –
intermediate – fusion strategies, i.e. with an end-to-end learned fusion contribution at
multiple stages in a network.
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Abstract. The field of survival analysis is devoted to predicting the probability
and time of the occurrence of an event. The global problem is to predict the event
probability over time. It has applications in healthcare, credit scoring, etc. The
most widely used method for assessing the covariate impacts on survival is the
Cox proportional hazards approach. However, the assumption of non-overlapping
survival functions usually does not hold on real data, and the linear dependence
on features limits the quality of the method. There are tree-based machine learn-
ing methods to solve these problems. Usually, to evaluate the difference between
the samples, it used the log-rank test. Obtained survival decision tree models also
have strong interpretability, they can evaluate the importance of predictors, but
they demonstrate inferior performance in comparison to Cox proportional haz-
ards models.

To overcome these issues, this paper proposes a new boosting of the survival
decision tree model that uses adaptive sampling and weighted log-rank split cri-
teria. The model iteratively corrects an error in the ensemble. Each decision tree
is trained on a sample, taking into account the weights of observations and subse-
quently adjusting the probabilities of getting into the next sample. We introduce
an experimental comparison of the proposed adaptive boosting method against
Cox proportional hazard and widely used survival trees and their ensembles: ran-
dom forest and gradient boosting. Experiments on healthcare datasets show that
our model outperforms the state-of-the-art survival models in terms of the follow-
ing metrics: the concordance index, the integrated Brier score, and the integrated
AUC.

Keywords: Machine learning · Time-to-event analysis · Survival analysis ·
Random survival forest · Cox proportional hazard · Gradient boosting survival
analysis · Adaptive boosting

1 Introduction

Time-to-event analysis originated from the idea of predicting the time until an event
occurs. Also, survival analysis tries to measure probability and evaluate the importance
of features on survival over the event at some time. The main problem is estimating the
event probability for each timemoment. These methods are used in medicine, insurance,
manufacturing, etc. For example, in manufacturing, survival analysis is used to solve
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reliability problems, assuming a system failure is an event. In healthcare, the problem
is predicting the event time for a patient with a particular disease. The event is the
outcome of the patient’s treatment: death, relapse, or recovery.

Missing data is a serious problem. In particular, it is necessary to be able to process
observations at an unknown time of the event. Then, if the study ended before the event
or the patient disappeared from the study, the event is called censored. Henceforth, we
consider only right censoring. Also, we consider the application of survival analysis to
medical data.

In the case of patient mortality data, the event is death. Discharge or discontinuation
of the observation is considered a censored event. In the problem of mortality analysis,
a favorable outcome for the patient is expressed by a longer expected time of occurrence
of the event.

In the case of patient admission data, the event is the patient’s discharge. Death
or termination of the observation is considered a censored event. In the problem of
hospitalization analysis, a favorable outcome for the patient is expressed by a shorter
expected time of occurrence of the event.

The problem of event probability prediction over time formulates in terms of a sur-
vival function:

S(t) = P (T > t),

where t is the time of observation, and T is the random value of the occurrence of the
event.

Also, the T distribution determines based on the hazard function:

h(t) = − ∂

∂t
logS(t)

In practice (e.g. disease research), the data contain covariate information (e.g. anam-
nesis). The challenge is to evaluate the covariation impact on survival function. Let us
define X as a random vector of variables and T as a non-negative random variable of
time. For an observation with a vector x, we define the probability of the event, which
does not occur to a time t, as a conditional survival function:

S(t | x) = P (T > t | X = x).

Similarly, the conditional hazard function is:

h(t | x) = − ∂

∂t
logS(t | x).

The state-of-the-art method of survival analysis is Cox proportional hazards
(CoxPH) [4]. The method assumes that the shape of the hazard function is the same
for all observations, and the differences are determined by the scale coefficient. In par-
ticular, the model assumes that the log hazard is a linear function of covariates. Thus,
there is a constant relationship between the dependent variable and the regression coef-
ficients:

h(t | x) = h0(t) exp
(
xT β

)
,

where h0(t) is the baseline hazard function, x is a vector of covariates, and β is a vector
of covariates weights.
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To predict the survival function for a specific observation, the survival function
S0(t) is constructed based on the Breslow [19] estimate, and shifts by the weights β:

S(t | x) = S0(t)exp(x
T β).

By the way, for the given weights β, we can calculate the risk coefficients (hazard
ratio) exp(β), which determine the influence of input features.

However, there are several disadvantages:

– The ratio between the two conditional hazard functions does not change over time.
– The weights of the variables remain constant. In medicine, the impact of risk factors
can change (for example, a patient is at greater risk after a surgical operation and
has a more steady health condition after recovery).

– A linear combination may not have a basis for a subset of variables.

Finally, for real datasets, there are additional obstacles to the applicability of the
existing approaches. Firstly, models do not take into account possible data peculiari-
ties. In particular, early and late events have the same effect on the forecast. Secondly,
models cannot work directly with categorical features and missing values, which have
widespread in real data.

Our goal is to develop a new approach that eliminates the above-mentioned disad-
vantages. We suggest tree-based models, which outperform existing tree models and
Cox proportional hazards on several benchmark public datasets.

The structure of this paper is as follows. Section 2 contains review and discussion
of existing survival analysis algorithms: Survival Tree [17], Random Survival Forest
[13], and Gradient Boosting Survival Analysis [7]. We provide a detailed description of
the proposed approach in Sect. 3 that is based on iterative ensemble construction with
adaptive sampling. Section 4 begins with a discussion of existing survival tree accu-
racy metrics and public healthcare datasets. It is followed by the experimental results
of existing and proposed models. We conclude with Sect. 5 with a summary of our
contributions, and further research.

2 Related Work

Features in survival analysis are as follows: input variables X to the beginning of the
observation, the time T of the event occurrence, and the binary flag E of the event
occurrence (henceforth, we consider that the observations with E = 0 are censored).

In survival analysis, we need to train a model on available data with the input fea-
tures X and the target features T and E and predict the survival and hazard functions.

Further, in this section, we briefly review the most used models in survival analysis:
the tree-based model Survival Tree and their ensembles: Random Survival Forest, and
Gradient Boosting Survival Analysis.

2.1 Survival Tree

The paper [17] presents a tree algorithm based on the idea of recursively splitting a
sample into groups with different survival functions. The tree is built starting from the
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root node and considers all possible intermediate values for each feature from X . Each
value generates two partition branches, and the criterion value is calculated through the
targets T and E. The best partition is associated with the maximum difference value
between partitioned samples.

The root node is split into two children nodes by the log-rank [18] criterion that
is the most commonly used to measure differences between survival functions of two
groups. A larger value of the log-rank statistic determines a larger difference between
the survival functions of the two samples. The log-rank test has optimal power for
detecting a difference in samples in the case of proportional hazard functions. The null
hypothesis of the test assumes that there is no difference in the survival rate of the two
samples.

Suppose that the times of event occurrence are ordered: τ1 < τ2 < ... < τK .
Denote numbers of patients in two groups by n1 and n2. For these groups, define N1,j

and N2,j as numbers of patients at the moment τj , and O1,j and O2,j as numbers of
events at the moment τj . Then, the total number of patients and events at the moment
τj is Nj = N1,j + N2,j and Oj = O1,j + O2,j .

Let us define the expected event number at the moment τj as Ei,j = Ni,jOj

Nj
, i =

1, 2. Based on the available data, we obtain statistics of the log-rank criterion:

LR =

∑K
j=1 wj (O1,j − E1,j)

√
∑K

j=1 w2
j E1,j

(
Nj−Oj

Nj

) (
Nj−N1,j

Nj−1

) , (1)

where wj = 1. The weights show the sensitivity to the time of events.
According to feature vector x, the survival function is defined as the Kaplan-Meier

[14] estimate, which builds on a leaf sample for x.
The tree growth is controlled by: the depth of the tree, the number of splitting fea-

tures, the number of leaves, and the size of nodes.
The main advantage of the method is interpretability in the form of

human-understandable rules. For each leaf, there is a set of rules obtained from the
root of the leaf. Thus, for a tree with a small depth, an expert can analyze the rules for
consistency and correctness.

However, the method has significant disadvantages: tree construction is based on
filled data, any decision tree tends to overfit, and a large amount of data is needed to
achieve high accuracy of the decision tree. In the case of limited data, the decision tree
model is usually used as the base «weak» model in ensembles.

2.2 Random Survival Forest

The aggregation of several model forecasts improves the quality of forecasting and
prevents overfitting.

In [13], it defines the Random Survival Forest (RSF) model as a survival trees
ensemble [17] that uses an aggregation of forecasts in the following way:

1. From the source dataset, generate N bootstrap samples.
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2. For each sample, build a survival tree. The splitting at each node uses P random fea-
tures. The best partition is associated with a maximum difference between children
nodes.

3. Each tree builds until exhausted.

The ensemble error based on OOBi, i = 1...N , where OOBi is out-of-back sam-
ple of i tree. According to the covariate vector x, the OOB forecast is the average
prediction over base models with x ∈ OOBi.

The predicted survival or hazard functions are the average forecasts of ensemble
base models. Averaging allows us to enhance quality and avoid overfitting.

The RSF model is controlled by: the size of the ensemble, the size of the sample,
the ratio of features for splitting, and the tree growth control parameters.

2.3 Gradient Boosting Survival Analysis

An alternative ensemble approach is Gradient Boosting [7]. Unlike Random Survival
Forest, the Gradient Boosting Survival Analysis (GBSA) algorithm [12] uses an itera-
tive tree learning.

The algorithm has devoted the idea of sequential ensemble construction, that each
new model uses the errors of the previous models as a target. The GBSA adds a new
model with a weight that minimizes the aggregated loss of the new ensemble.

The purpose of the GBSA is to minimize the ensemble error via a loss function L.
In time-to-event analysis, the loss function is usually defined as Cox partial likelihood
deviation [4]. Denote the training set by {(xi, yi)}n

i=1, the loss function by L, and the
ensemble size by M . Also, we denote the prediction model (boosting ensemble) by Fi,
where i describes the ensemble size. The loss function L have two arguments: target
value y and prediction value F (x) for features x. The algorithm of GBSA consists of
the following steps:

1. Find the α that minimizes the total loss:

F0(x) = argmin
α

n∑

i=1

L(yi, α)

2. For associated model number m = 1 to M :
(a) Calculate pseudo-residuals for each observation i:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

(b) Build a base model (survival tree) hm(x) on the training set {(xi, rim)}n
i=1

(c) Compute the model weight vm(0 < vm < 1) based on following equation:

vm = argmin
v

n∑

i=1

L(yi, Fm−1(xi) + v · hm(xi))

(d) Add the base model with associated weight to the ensemble:

Fm(x) = Fm−1(x) + vm · hm(x),
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3. Define the resulting ensemble as FM .

For input observation, the prediction function is a weighted sum over ensemble
predictions for each time.

The model is controlled by: the loss function, the ensemble size, the weights calcu-
lation approach, and the tree growth control parameters.

As well as the random forest method (in Sect. 2.2), the interpretability of the fore-
cast is lost. However, the ensemble methods have a high forecasting performance and
resistance to overfitting. It is important to note that both methods (GBSA and RSF) are
the ensemble of survival trees (in Sect. 2.1), which uses only filled data. On the other
hand, the bagging method (Sect. 3.2) is the ensemble of survival trees with weighted
log-rank criteria (Sect. 3.1), which can use continuous, categorical features and missing
values.

3 Proposed Approach

The Survival Tree (Sect. 2.1), RSF (Sect. 2.2), and GBSA (Sect. 2.3) approaches use the
log-rank criterion for finding a best split. The log-rank assumes uncorrelated censoring
and prediction. Also, early and late events have the same impact on survival differences.
Finally, these approaches allow only complete data and can not work with categorical
features.

In [3,18], authors notice poor sensitivity of log-rank to a real dataset with early
events and suggest using weighted log-rank splitting criteria.

The weighted log-rank statistics use the following weights wj definition in (1).
In Wilcoxon statistic [8], it uses the events weights as a count of observations Nj at

the moment of time τj . The early events have greater weights and pay a greater impact
on statistical value. Nonetheless, Wilcoxon criterion depends on the censoring groups.

In Peto-Peto criterion [21], it uses the events weights as a survival function value
Ŝ(τj) at the moment of time τj . Thus, it is suited for disproportional hazard function
cases. However, differences in the censoring groups are not taken into account by the
criterion.

In Tarone-Ware criterion [25], it uses the events weights as a square root of a number
of observations

√
Nj at the moment τj . It determines greater weights to earlier events,

same as in Wilcoxon criterion. In [16], it notes that Tarone-Ware is the «golden mean»
among the weighted criteria.

In the previous work [26], we developed decision trees (Sect. 3.1) and bagging
(Sect. 3.2) ensemble that take into account missing values and use weighted log-rank
criteria. However, at the moment, we have not found studies about the applicability
of adaptive boosting ensembles to survival analysis. Based on the developed survival
trees, the adaptive boosting model allows to save advantages and enhances the quality.
In this paper, we propose further development of a tree models ensemble with weighted
log-rank criteria considering them as a boosting model with adaptive sampling.
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Fig. 1. An example of a parent node splitting by values 65 and 35. For each split, the plot images
survival functions and a corresponding p-value. The age value of 35 determines the split with a
smaller p-value for child nodes.

3.1 Survival Tree with Weighted Log-Rank Criteria

In [26], we present the new tree-like method, which uses weighted criteria and increases
the sensitivity of trained models to data peculiarities. The method uses an algorithm for
constructing a binary partition at a decision tree node.

Initially, we choose the best split for each available feature in the node. For continu-
ous feature, intermediate points a1, a2, ...ak is defined as v1 < a1 < v2 < a2...an−1 <
vn, where vi is a ordered unique values. For each split point ai, left determined with
v ≤ ai and right determined with v > ai. Also, we used quantile discretization of
points for complexity control. For categorical features, we count all non-overlapping
sets l, r of unique values. Then, we obtain left (values from l) and right (values from
r) sets of observations.

Then, we count statistic differences (as p-value) for left and right samples. Also,
for each sample, in turn, we add missing values and count statistic differences. Finally,
the missing values were assigned to the sample with a minimal p-value.

Later, for each available feature, we take splits left, right with a minimum p-value
and apply Bonferroni adjustment [1]. The adjustment reduces the significance of the
widespread features and gives preference to the rare splits. After all, we choose the
feature and its partition with a minimal p-value. The algorithm is repeated recursively
for each tree node.

Figure 1 shows a node splitting process by «age» with 65 and 35 values. There are
survival functions for the main and child nodes. For a split with age 65, the p-value is
equal to 0.25853, and the plots are close to each other. For split with age 35, the p-value
is equal to 0.00041, and the right sample (with age over 35) is below the left one. Hence,
we take a split with age 35 because it minimized a p-value for child nodes.

The predicted survival function is the Kaplan-Meier estimate for the leaf corre-
sponding to the input observation.
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3.2 Survival Bagging with Weighted Log-Rank Criteria

In [26], we present the bagging ensemble of survival decision trees. The bagging ensem-
ble is constructed from a set of «base» independent models with subsequent aggrega-
tion of forecasts. The main goal of the «base» model is to describe the training sample
accurately. Therefore, approaches to combat overfitting are not applied to the «base»
models.

The «base» model is a decision tree Sect. 3.1, built without restriction on the level
of significance of partitions and without pruning on the validation set.

The bagging algorithm is based on an iterative decision tree construction. It is made
with a bootstrap sample with the same probability for observations. The algorithm con-
tinues while the new ensemble model reduces the out-of-back error of the ensemble.

The model forecast is built on the average of ensemble base forecasts. The survival
and hazard functions are the mean for each time. The bagging model is controlled by:
the size of the ensemble, the size of samples, the tolerance mode indicator, the approach
of forecasts aggregation, the type of ensemble error, and the parameters of tree growth
control.

3.3 Weighted Boosting

In the Random Forest and Gradient Boosting algorithms, the probabilities of getting
observations into the bootstrap subsample are the same. An alternative approach for
constructing a boosting ensemble of decision trees is the adaptive boosting algorithm
(AdaBoost) proposed by Freund and Schapire [6]. In AdaBoost, each base model is
fitted on a sample with weighted observations. Weights allow for an increase or decrease
in the significance of the prediction error. After a base model fitting, the observation
weights are adjusted, taking into account the base model error. For observations with
a low-quality forecast, the weights increase. Using the normalized weights, the next
decision tree fits on a more «significant» target of observations.

In [5], Drucker proposes a modification of the AdaBoost algorithm. Unlike
AdaBoost, the method uses the weighting of probabilities of getting observations into
training subsamples (adaptive sampling). In this case, the next decision tree fits on a
more «difficult» subset of observations.

Initially, there are weights wi = 1 for i = 1, ..., N1 for all observations of the
training set (with size N1). The modification has the following steps that are executed
until the average loss L̄ is less than 0.5 or the number of models in the ensemble is less
than M :

1. For an observation i, the probability of getting into the subsample is pi = wi∑
wi

. A
bootstrap subsample is constructed from N1 observations.

2. Let t be a decision tree that fits on the bootstrap subsample.
3. Get forecast y(t)

i (xi) for each observation i, i = 1, ..., N1 of the train sample.

4. Count loss L for each observation: Li = L
(
y
(t)
i (xi) − yi

)
. The loss L usually has

linear (2), square (3), or exponential (4) from:

Ll
i =

∣
∣
∣y(t)

i (xi) − yi

∣
∣
∣

D
, (2)
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Ls
i =

∣
∣
∣y(t)

i (xi) − yi

∣
∣
∣
2

D2
, (3)

Le
i = 1 − exp

⎡

⎣
−

∣
∣
∣y(t)

i (xi) − yi

∣
∣
∣

D

⎤

⎦, (4)

where D = D = sup
∣
∣
∣y(t)

i (xi) − yi

∣
∣
∣.

5. Count mean loss L̄ =
∑N1

i=1 Lf
i pi, where f ∈ {l, e, s}.

6. Count measure of confidence βt = L̄
1−L̄

. Less value of βt determines high confi-
dence of forecast for tree t.

7. Update the weights of the observation in the training set wi → wiβ
(1−Lf

i )
t , where

f ∈ {l, e, s}. The small loss for the observation leads to a decrease in the weight
and probability of the observation getting into the next training sample.

The forecast for the observation with the feature vector x is the weighted sum of the
base models t forecasts with normalized weights log 1

βt
.

y(x) =

∑M
t=1 log

1
βt

y(t)(x)
∑

t log
1
βt

(5)

The following parameters control the modification of adaptive boosting: the loss
function L, the size of ensemble M , and the tree growth control parameters.

3.4 Proposed Adaptive Boosting Ensemble

In this paper, we propose a boosting algorithm based on the iterative construction of
a survival trees ensemble. As in [5], we consider a scheme for iteratively updating the
probabilities of observations getting into the bootstrap sample:

1. Generate a bootstrap sample with a certain size (specified as a hyperparameter) such
that the probability of observations depends on its weight (initialize as 1). Denote
by OOB the observations out of the sample.

2. Construct the decision tree on the bootstrap sample (Sect. 3.1).
3. Update the weights of the observation in the training set like AdaBoost does. Each

normalized weight is the probability of observations getting into the next bootstrap
sample. We use the integrated Brier score [9] as the loss metric. It evaluates the
calibration error between forecasting and true survival function.

4. Calculate the OOB-error for the updated ensemble. In terms of OOB-error and an
observation x, the prediction is the forecast aggregation over the trees, which contain
x in OOBi.

5. If the new model reduces the OOB-error, then the algorithm goes to step 1. Other-
wise, the model eliminates, and the construction breaks.
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Fig. 2. An example of the probability sample updating for an adaptive boosting model with size
= 4. Axis x describes the number of observations in the training set, and axis y describes the
corresponding probability. The figures show the probabilities by observation number and final
sampling for the new survival tree. For each figure, we highlight sample selection with two colors:
orange for the training sample and blue for the out-of-back sample. (Color figure online)

Also, there is tolerance mode: an ensemble constructs for full size N , and the final
size figure out by the minimal OOB-error over all iterations.

Figure 2 shows an example of probability updating for the adaptive boosting based
on 4 trees. In each figure, we highlight two colors for sample selection: orange for the
training sample and blue for the out-of-back sample. The left top plot shows probability
initialization for each observation in the training set and data splitting for Tree 1 (into
bootstrap and out-of-back samples). The right top plot shows probability after updating
weights with Tree 1 and data splitting for Tree 2. Similarly, the left bottom plot and
right bottom plot correspond to Trees 3 and 4.

The forecast of the boosting model calculates by Formula (5). The survival and
hazard functions calculate as the weighted sum for each time point.

Figures 3 and 4 show an example of prediction for an adaptive boosting model with
ensemble size M = 3. Figure 3 shows the predicted survival functions of each tree in
the ensemble (Tree 1, Tree 2, Tree 3). Figure 4 shows an example of obtaining the final
forecast.
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Fig. 3. An example of prediction survival functions for an adaptive boosting model (ensemble
sizeM = 3).

Fig. 4. An example of the final forecast for adaptive boosting. The left plot shows the predicted
survival functions for each model. The center plot shows the weighted forecasts corresponding to
the tree weight log 1

βt
. The right plot shows the final survival function (the weighted sum of the

predictions of the ensemble models).

To control the computational complexity of the method, we use the following
parameters: the ensemble size, the sample size, the tolerance mode flag, the ensem-
ble aggregation metric, the ensemble loss, the observation weight calculation metric,
and the tree growth control parameters.

4 Experiments

4.1 Metrics

In this paper, we use following metrics for evaluation the models quality: concordance
index [10], integrated Brier score [9] and integrated AUC [11].

The concordance index (CI) is the most commonly used metric for survival analysis.
The metric measures the ratio of correctly ordered pairs. The best value of the metric
is 1 (proper order), the worst value is 0 (reverse order), and 0.5 reflects the randomness
ordering of the model response.
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The concordance index calculates as follows:

CI =

∑
i,j I(Tj < Ti) · I(ηj < ηi)

∑
i,j I(Tj < Ti)

,

where Tk is the true time, ηk is the predicted time, and I is a binary indicator (I(Tj <
Ti) = 1 if Tj < Ti else 0).

However, the CI is based only on the event time and can not evaluate the sur-
vival function overall. Thus, the metric value is the same for shifted survival functions,
although the forecasted and true values can be significantly different.

To overcome these disadvantages, in this paper, we use the integrated Brier score
(IBS) [2,9,20], which evaluates the difference between predicted and true survival func-
tions. The true function equals 1 before the event and 0 otherwise.

The Brier score (BS) metric [2] estimates the forecast performance at the fixed time
moment t and can be calculated as follows:

BS(t) =
1
N

∑

i

(I(Ti > t) − S(t, xi))2 (6)

where S(t, xi) is the forecast at time t for observation xi with the corresponding event
time Ti, and the I is the binary indicator.

If the censorship of observations does not take into account, the following state-
ments are true for a fixed moment t and an observation xi:

– If the event happened before time t, a low probability of survival (close to 0) is
expected,

– If the event occurred after the moment t, a high probability of survival (close to 1)
is expected.

Finally, the deviation squares average over all-time moments. The best BS value is
0 when the prediction and truth coincide.

However, the BS metric (6) does not use censoring information. In this case, the
Brier score can be modified [9,20] as follows:

BS′(t) =
1
N

∑

i

⎧
⎪⎪⎨

⎪⎪⎩

(0−S(t,xi))
2

G(Ti)
if Ti ≤ t, δi = 1

(1−S(t,xi))
2

G(t) if Ti > t

0 if Ti = t, δi = 0

(7)

As in (6), S(t, xi) is a forecast of the survival function at time t for observation xi

with event time Ti. The parameter δi (7) is the occurrence indicator of observation xi.
In addition, the G(t) is the Kaplan-Meier estimation, which uses an inverted occurrence
flag. Later, the deviation squares (7) need to adjust by the following weights: 1

G(Ti)
if

Ti ≤ t, and 1
G(t) if Ti > t. Censored observations ahead of time t do not take into

account.
Integrated Brier score is used for aggregating the BS estimates over time:

IBS =
1

tmax

tmax∫

0

BS(t)dt
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An alternative metric for assessing the quality of a forecast is the integrated AUC
(IAUC) proposed by Heagerty and Zheng in [11]. They present a method for calculating
the ROC curve and area under the curve (AUC) in multi-class or temporary cases. For a
fixed time t, divide the observations into two sets that have occurred and non-occurred
events. The ̂AUC(t) metric measures the weighted proportion of pairs of observations
from each set that have a concerted hazard order (earlier events should have a higher
hazard at time t):

̂AUC(t) =

∑n
i=1

∑n
j=1 I(yj > t)I(yi ≤ t)wiI(ĥ(t, xj) ≤ ĥ(t, xi))
(
∑n

j=1 I(yj > t))(
∑n

j=1 I(yi ≤ t)wi)
,

where ĥ(t, xi) is the cumulative hazard estimate for observation xi at time t, wi is
the inverse censoring probability for observation xi obtained from the Kaplan-Meier
estimate (wi = G(ti)).

Integrated AUC is aggregation ̂AUC(t) score over time:

IAUC(tmin, tmax) =
1

Ŝ(tmin) − Ŝ(tmax)

tmax∫

tmin

̂AUC(t)dŜ(t)

Thus, to evaluate the forecasting performance, this paper considers metrics:

1. Concordance index evaluates the correctness of the event time ordering,
2. Integrated AUC evaluates the correctness of the predictions ordering for the cumu-

lative hazard function,
3. Integrated Brier score evaluates the calibration error for survival function.

4.2 Datasets

In this paper, we consider the following medical datasets:

1. PBC [15] – dataset from the Mayo Clinic (diagnosis K74.3)
2. GBSG [24] – dataset from the German Breast Cancer Study (diagnosis C50)
3. Wuhan [27] – dataset of patients with COVID-19 from Wuhan, China.

The dataset on Primary Biliary Cirrhosis (PBC) was collected from 1974 to 1984.
A lethal outcome is considered an event. There are 276 observations and 17 features,
which determine the status of cirrhosis, optimal treatment strategy, and clinical and lab-
oratory tests. Also, the PBC contains five categorical features: trt, sex, ascites, hepato,
spiders. The twelve features of PBC (including treatment strategies and clinical indica-
tors) contain missing. The maximal missing numbers are contained in the cholesterol
(134 missing values) and the triglyceride (136 missing values) tests. By the end of the
follow-up, 263 patients were without lethal outcomes.

The dataset from the German Breast Cancer Study Group (GBSG) was collected
from 1984 to 1989. The relapse of breast cancer is considered an event. There are 686
observations and 8 features, which determine the characteristics of the tumor and opti-
mal treatment strategies. The GBSG dataset contains three categorical features: htreat
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Table 1. Hyperparameters for models.

Predictive model Hyperparameter Values

CoxPH survival analysis Regularization penalty 0.1, 0.01, 0.001

Ties Breslow, efron

Survival tree Split strategy Best, random

Max depth From 10 to 30 step 5

Min leaf size From 1 to 20 step 2

Max features Sqrt, log2, None

Random survival forest Num estimators From 10 to 100 step 10

Max depth From 10 to 30 step 5

Min leaf size From 1 to 20 step 2

Max features Sqrt, log2, none

Gradient boosting SA Num estimators From 10 to 100 step 10

Max depth From 10 to 30 step 5

Min leaf size From 1 to 20 step 2

Max features Sqrt, log2, none

Loss function Coxph, squared, ipcwls

Learning rate From 0.01 to 0.5 step 0.01

Tree Max depth From 10 to 30 step 5

Min leaf size From 1 to 20 step 1

Significance threshold 0.01, 0.05, 0.1, 0.15

Bagging Bootstrap sample size From 0.3 to 0.9 step 0.1

Num estimators From 10 to 100 step 5

Max depth From 10 to 30 step 2

Min leaf size From 1 to 20 step 1

Boosting Bootstrap sample size From 0.3 to 0.9 step 0.1

Num estimators From 10 to 100 step 5

Max depth From 10 to 30 step 2

Min leaf size From 1 to 20 step 2

Ensemble metric ibs, c_index

Weighted sum True, false

(hormonal therapy), menostat (menopausal status), and tumgrad (tumor grade). There
are no missings in the GBSG dataset. By the end of the follow-up, 387 patients were
without relapse.

The Wuhan dataset was collected from January 10 to February 18, 2020, and pre-
sented in [27]. The time of the patient’s discharge is considered an event. There are
375 observations and 76 features, which determine an anamnesis and clinical findings
during treatment. The feature space builds from the minimum, maximum, and average
scores of the patient clinical tests. All features can contain missings, and the maximum
missing number in antithrombin and fibrin breakdown products (173 missing values).
By the end of the follow-up, 174 patients were without discharge.

4.3 Experimental Setup

Initially, we preprocess the datasets and form the feature space and target variables (time
before the event, censoring flag). Then, we perform cross-validation [23] with 5 folds
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Table 2. GBSG dataset results.

Predictive model CI IBS IAUC

CoxPHSurvivalAnalysis 0.61544 0.17628 0.71584

SurvivalTree 0.58911 0.19151 0.64322

RandomSurvivalForest 0.61777 0.17504 0.72281

GradientBoostingSurvivalAnalysis 0.61627 0.19331 0.71959

Tree (Peto-Peto) 0.59089 0.19397 0.68932

Tree (Tarone-Ware) 0.59915 0.18586 0.68986

Tree (Wilcoxon) 0.59887 0.18331 0.69028

Tree (Log-rank) 0.58786 0.18934 0.67687

BootstrapTree (Peto-Peto) 0.61871 0.17236 0.73048

BootstrapTree (Tarone-Ware) 0.62162 0.17418 0.73173

BootstrapTree (Wilcoxon) 0.62281 0.17137 0.73456

BootstrapTree (Log-rank) 0.62331 0.17102 0.73165

BoostingTree (Peto-Peto) 0.63099 0.17103 0.73366

BoostingTree (Tarone-Ware) 0.62298 0.17164 0.73383

BoostingTree (Wilcoxon) 0.61875 0.17622 0.73303

BoostingTree (Log-rank) 0.62557 0.16958 0.73924

on the grid of hyperparameters (selected hyperparameters are presented in the Table 1).
Cross-validation involves dividing the original sample into five non-overlapping parts,
where four are used to train the model (the training set contains 80% of the observa-
tions), and one part is used to test the model and calculate quality metrics. In this case,
there are five iterations of training/testing the model, where each part is used once as a
test sample.

At the time of testing the model, we calculate the following quality metrics: CI
(estimates the predicted time of the event), IAUC (estimates the predicted cumulative
hazard function), and IBS (estimates the predicted survival function). The resulting
cross-validation metric is the average value of the metric over all iterations.

According to the cross-validation results, the calculated metrics correspond to the
selected hyperparameters. The best hyperparameters for the model are determined by
the minimum IBS over cross-validation.

4.4 Results

For the existing approaches (CoxPH, Survival Tree, RSF, GBSA), we used the scikit-
survival library [22] implementation. For the proposed methods (Tree, Bagging, Boost-
ing), we implemented our own code. For each proposed model, we consider four
weighted log-rank criteria.

The performance of estimating for all methods are presented in Tables 2, 3, and 4
(the best result by each metric is marked with bold).

For the GBSG dataset (the problem of mortality analysis), the proposed adaptive
boosting approach retains two out of three places in terms of the best value for each
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Table 3. PBC dataset results.

Predictive model CI IBS IAUC

CoxPHSurvivalAnalysis 0.63886 0.23128 0.7486

SurvivalTree 0.62985 0.29417 0.71021

RandomSurvivalForest 0.66176 0.2138 0.79107

GradientBoostingSurvivalAnalysis 0.65848 0.24946 0.78322

Tree (Peto-Peto) 0.62684 0.25655 0.74223

Tree (Tarone-Ware) 0.64873 0.27711 0.74629

Tree (Wilcoxon) 0.63631 0.24615 0.74749

Tree (Log-rank) 0.63353 0.23548 0.76233

BootstrapTree (Peto-Peto) 0.66665 0.19739 0.79075

BootstrapTree (Tarone-Ware) 0.65899 0.20317 0.79243

BootstrapTree (Wilcoxon) 0.66096 0.21042 0.79524

BootstrapTree (Log-rank) 0.66399 0.19226 0.79677

BoostingTree (Peto-Peto) 0.66232 0.20656 0.79744

BoostingTree (Tarone-Ware) 0.66448 0.21184 0.79782

BoostingTree (Wilcoxon) 0.65611 0.20723 0.78512

BoostingTree (Log-rank) 0.65568 0.20276 0.80031

Table 4.Wuhan dataset results.

Predictive model CI IBS IAUC

CoxPHSurvivalAnalysis 0.70672 0.17098 0.66714

SurvivalTree 0.66951 0.16176 0.67725

RandomSurvivalForest 0.70611 0.13251 0.73522

GradientBoostingSurvivalAnalysis 0.74251 0.13492 0.74467

Tree (Peto-Peto) 0.69466 0.13262 0.73758

Tree (Tarone-Ware) 0.69129 0.13578 0.73296

Tree (Wilcoxon) 0.69913 0.13757 0.7343

Tree (Log-rank) 0.69524 0.14711 0.71774

BootstrapTree (Peto-Peto) 0.75495 0.12432 0.75212

BootstrapTree (Tarone-Ware) 0.75962 0.12497 0.75285

BootstrapTree (Wilcoxon) 0.76266 0.12629 0.75787

BootstrapTree (Log-rank) 0.75204 0.12624 0.75085

BoostingTree (Peto-Peto) 0.76593 0.12575 0.74751

BoostingTree (Tarone-Ware) 0.77369 0.11874 0.74108

BoostingTree (Wilcoxon) 0.7634 0.12344 0.75114

BoostingTree (Log-rank) 0.75735 0.11981 0.75044

metric. According to the totality of metrics, the best method is adaptive boosting with a
log-rank criterion. This method shows the best IBS and IAUC metrics. In terms of the
CI metric, the best result is the boosting algorithm with the Peto-Peto criterion. Note
that all proposed ensembles (bagging and boosting) outperform the existing methods
from scikit-survival in all metrics.

For the PBC dataset (the problem of mortality analysis), the proposed adaptive
boosting approach retains three places in terms of the best IAUC metric. Based on the
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set of metrics, boosting methods with log-rank and Tarone-Ware criteria are the best.
According to the CI and IBS metrics, the best result has the proposed bagging ensemble
with log-rank and Peto-Peto criteria. Note also that all proposed ensembles outperform
the existing methods in terms of IBS and IAUC metrics, and in terms of CI metrics, 5
out of 8 proposed ensembles show the best results.

For the Wuhan dataset (the problem of hospitalization analysis), the proposed adap-
tive boosting approach retains the top three places in terms of CI and IBS metrics.
According to the totality of metrics, boosting ensembles with the Tarone-Ware and
Wilcoxon criteria are the best. According to the IAUCmetric, the best result has the pro-
posed bagging ensemble. Also, all proposed ensembles outperform the existing meth-
ods in all metrics.

It is important to note that our implementation of decision trees shows better results
(according to the totality of metrics) compared to the existing Survival Tree for all
datasets.

5 Conclusions

In this paper, we proposed a method of constructing a nonlinear boosting ensemble of
survival trees with adaptive sampling. The idea is to fit the next decision tree on a more
«difficult» subset of observations. The boosting ensemble overcomes some disadvan-
tages of the existing methods. Also, it does not assume the proportionality of hazards
over time and linear dependences between the hazard logarithm and a feature combina-
tion.

The boosting ensemble can handle missing values and categorical features and can
pay more attention to early events. The Bonferroni adjustment allows the selection of
the best feature with the correct comparison of significant splits.

The experiments included the real medical datasets PBC, GBSG, andWuhan for two
tasks of survival analysis: analysis of mortality and hospitalization of patients. Accord-
ing to the results of the experiments, the proposed boosting algorithm outperforms the
existing methods CoxPH, RSF, and GBSA in terms of the following metrics: concor-
dance index (CI), integrated Brier score (IBS), and integrated AUC (IAUC). Also, the
proposed method outperforms the previously developed tree bagging ensemble for the
mortality analysis problem and shows the best CI and IBS values for the hospitalization
problem.

In further research, we are planning to investigate efficient algorithms for selecting
optimal split for high-dimensional categorical features. Also, we are planning to explore
the time and memory performances of the proposed approaches on real datasets from
alternative application areas of survival analysis.
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Abstract. In 2019, predictive models were initially developed to attempt to better
predict an annual budget for staffing overtime hourswithin aRoyal CanadianNavy
(RCN) fleet maintenance facility. The H20.ai open-source framework was used,
and models were implemented in the R programming language. Model validation
at the time showed the predicted hours were within 5% error rate compared to the
actual data. However, when it came to re-apply the process to fiscal year 2020/2021
data, the impact of the COVID-19 pandemic on factors such as the workforce
and the logistics supply chain, changed the system dynamics sufficiently that
the autoML algorithms had difficulty generating accurate estimates. Therefore,
it was decided to examine how times series forecasting methods would predict
overtime hours at the fleet maintenance facility. Since historical daily data were
readily available, the open-source Prophetmodel developed by Facebookwas used
because it can incorporate multiple seasonal patterns, as well as variable holiday
effects. The models were tested on fiscal years 2019/2020 and 2020/2021, which
showed over 90% accuracy in predicting the total overtime hours. The revised
approach in this follow-on study was used to provide financial comptrollers with
a prediction for fiscal year 2021/2022.

Keywords: Time series analysis · Predictive analytics · Forecasting · Budget ·
Overtime hours · Fleet maintenance facilities ·Work orders

1 Introduction

1.1 Background

Fleet maintenance facilities operated by the Royal Canadian Navy (RCN) [1] require
staff, both civilian and military, to complete repair work for which accurate budget
estimates must be derived. The complex and often repetitive nature of the maintenance
operations means that the tasks are tracked in detail in enterprise resource management
systems over time. Establishing a relationship between the tasks completed and the
overtime hours accrued by staff is key to accurate budget predictions.

The RCN operates two repair facilities for its naval platforms, FMF Cape Breton
(FMF CB) collocated with Canadian Forces Base (CFB) Esquimalt and FMF Cape
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Scott (FMF CS) collocated with CFB Halifax. At these facilities, maintenance tasks
are tracked using Work Orders (WOs), which capture the nature of task, the client
for delivery, platform, and various details related to the task. FMFs process hundreds of
thousands ofWOs every year, only a portion of which require overtime (OT) to close out.
Overtime hours can be accrued by staff completing maintenance tasks, which are driven
by internal or external factors such as the operational demand tempo for ready naval
vessels, maintenance or human resource policies, supply chain logistics, or resource
limitations. As large quantities of detailed data are tracked within the Defence Resource
Management Information System (DRMIS) on WOs, the problem becomes amenable
to predictive learning approaches that can take advantage of such stores of information.

1.2 Motivation

Financial comptrollers from FMF CB initially proposed a study that was conducted by
Holmes [2] to identify factors associated with accrual of overtime and improve the accu-
racy of budget predictions at a single FMF. The use of such predictive analytics would
allow decisionmakers to preparemore accurate funding estimates over time – potentially
reserving funds for upcoming critical maintenance tasks or saving funds through alter-
native approaches to task management. Once an end-to-end process is developed, OT
hours are but a single use case of predictive analytics that can leverage data from existing
enterprise resource management systems to demonstrate the real-world applicability of
mining of large data sets.

To facilitate trend analysis, FMF CB supplied seven years of their past OT data,
budgets, and WO attributes. Major variables of importance for OT accrual were then
identified [2]. The prior approach by Eisler and Holmes [4] utilized AutomatedMachine
Learning (autoML) from H2O.ai [3] that predicted both total OT for a given WO and
the month within the Fiscal Year (FY) that the OT was accrued based on the attributes
of the WO.

It was found that a fitted logistics function provided an improved estimate for annual
cumulative OT accrued as a function of time per fiscal year (FY). Tree-based algorithms
were informative as to what WO attributes contribute the most to OT, enabling quan-
tification of relative importance. The use of autoML algorithms improved OT budget
estimates for the FMF with a maximum error of 5% observed for fiscal year 2019/2020
(FY19/20), and use of multiple, related datasets (i.e., multiple fiscal years) enabled
prediction of multiple variables.

One of the primary assumptions in the prior approach, as described in Sect. 2.1 was
that the pool of personnel and resources required to complete WOs would not shrink
or grow significantly compared to current levels. This assumption was reasonable in
a steady-state system, with no significant changes to supply or demand [4]. However,
when looking to re-apply the same process to the next fiscal year (FY20/21) to try to
predict the OT accrual, the assumption was no longer valid. As a result of the impact of
COVID-19 pandemic on the workforce, in terms of restrictions required to comply with
public health orders and measures on base, within the logistics supply chain to provide
parts to conduct vessel maintenance, and the ability to deploy fully trained, healthy
crews, systemic shocks were observed from March 2020 onwards. Because the system
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was no longer in steady state operation, the autoML algorithms had difficulty generating
an accurate estimate for OT for FY20/21.

Several methods were examined in this revised approach to incorporate in-year
accrual data into the autoML models, such as to train on a monthly basis to provide
faster feedback response to the system. The results of these trials will be discussed in
Sect. 2.1. Rather than continue to develop more complex machine learning models, a
new approach was needed. Since the historical OT hours are recorded by date, these data
are time series data and time series forecasting methods can be applied; the methodology
for which will be covered in Sect. 2.2. Results of the revised approach will be presented
in Sect. 3 and conclusions regarding their applicability to the FMFs in Sect. 4.

1.3 Related Work

Supervised machine learning algorithms were applied to a similar Canadian defence
application where the variables of importance associated with maintenance task com-
pletion times were examined [5]. Clustering techniques were utilized to examine WOs
by completion time and task type. This study also provided insights on data cleaning
and pre-processing from DRMIS extracts.

For the prior approach described in Sect. 1.1, H2O autoML was used in order to
predict both the total OT for a given WO and the month within the FY when the OT is
accrued based on attributes of the WO [2]. Open-source tools for automating machine
learning pipelines from end-to-end to reduce the time and effort spent on repetitive
tasks have been compared in the literature (see [6–9]), and H2O autoML was initially
selected [4]. Usually, autoML algorithms predict on a single output variable of interest,
but there were two variables to predict in the prior approach: the amount of OT hours (a
non-negative numeric value) and the month OT is accrued by WO (categorical). There
are relatively few machine learning applications that attempt such a combined variable
approach (see [10–15]), which informed the prior approach in [4].

Reapplying the techniques to additional fiscal years with sudden changes in system
dynamics revealed the inherent limitation of large datasets required when using autoML
algorithms, as the algorithms could not readily adapt to recent changes in the system
and could not generate an accurate estimate of OT hours for FY20/21. As a result, it was
decided to examine other forecasting techniques applied to the same dataset we used in
[4] in order to improve the accuracy of predictions.

Since the OT hours by date are time series data, time series forecastingmodels can be
used to project OT hours to the end of the FY. This would enable analysts to extrapolate
on trend and seasonal patterns that had not previously been examined. Many time series
forecasting algorithms, related to machine learning and statistics, have been proposed
in the literature. A literature review was conducted in 2006 that summarized 25 years of
publications on time series forecasting [16]. Over 940 papers were categorized accord-
ing to forecasting model, e.g., exponential smoothing, autoregressive integrated mov-
ing average (ARIMA), dynamic regression, and generalized autoregressive conditional
heteroskedasticity.

Time series forecasting has many applications, such as stock prices forecasting,
weather forecasting, business planning and resource allocation. Time series forecasting
has been used in certain military applications. In [17], exponential smoothing models
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were applied to voluntary Regular Force attrition data by month and determined that
seasonal models were most suitable to provide point predictions for six- and twelve-
month attrition volumes. Subsequent work in [18] applied two time series models, the
Holt-Winter’s exponential smoothing and the Kalman filter, to all Regular Force attrition
data by month in order to forecast the attrition volume at the end of the FY. Other mili-
tary applications where time series models are applied include: forecasting enrollments
using ARIMA [19]; forecasting future Marine Corps personnel inventory levels using
Holt-Winter’s exponential smoothing and the Box-Jenkins ARIMA models [20]; and
forecasting military expenditures in India using Box-Jenkins ARIMA model [21].

Advanced forecastingmethods such as neural networks and the Prophetmodel devel-
oped by Facebook, Inc. Are described in [22]. Practical issues with forecasting are also
presented, which include the challenges when the data are a daily time series involv-
ing multiple seasonal patterns. When such a time series is long, which it is in the case
of OT hours by date for several FYs, it becomes necessary to use Seasonal and Trend
decomposition using Loess (STL), dynamic regression or Prophet that allow for reg-
ular seasonality. The Prophet model can also easily incorporate seasonality associated
with moving holiday effects (e.g., Thanksgiving does not occur on the same date each
year) which can influence when OT hours at the FMFs occur [23]. Several studies using
Prophet have been documented in the literature where applications include forecasting
wholesale food prices [24], air pollution [25] and traffic forecasting on telecom networks
[26].

2 Methodology

2.1 Prior Approach

As described by Eisler and Holmes [4], the autoML pipeline was engaged with a human-
in-the-loop during the data pre-processing and feature engineering phases. This enabled
two separate models to be generated: the amount of OT hours (a non-negative numeric
value) and the month OT accrued by WO (categorical), followed by automatic hyper-
parameter optimization. Previously built models were used to cross checked against
the final model interpretation, and identify correlations between WO variables, and the
predictive analysis output for visualization.

Data Pre-processing. Datasets were initially limited to FY13/14 through FY19/20
information extracted from official enterprise records management systems. To pre-
dict for two variables of output, it was necessary to have two separate - although linked -
datasets fromwhich to build eachmodel. First, the amount ofOT accruedwas determined
from a dataset with all past WOs from FY13/14-FY18/19 (for initial model develop-
ment, referred to as Dataset A) [4]. An initial snapshot of open WO near the beginning
of FY19/20 was collected for predictive purposes (Dataset Ap). These data detailed
information associated work order identification (ID), history, maintenance specifics,
and financial coding. The second dataset (Dataset B) was limited to only those WO that
accrued OT, which detailed work order identification, OT hours by date, and classifica-
tion of personnel assigned. Both datasets included numerical, categorical and time-series
data.
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Data cleaning and augmentation steps were completed manually using Microsoft
Excel®. A variety of tools were utilized to transform the raw data into features that
better represented the underlying problem. Datasets A and B were then stacked to build
a model which used all available FYs as training data. Checks for multicollinearity and
correlation of dataset fields were completed [6] to address potential issues in the use
of autoML techniques. Simple decision and regression trees provided initial insight by
displaying variables of importance for feature construction and extraction.

Fig. 1. Models A and B, for predicting Hours per WO and Month OT Accrued [4].

Model Generation. Figure 1 illustrates the two models that were built using H2O
autoML; the first predicted OT hours by WO and the second that predicted the month in
which the OT hours accrued against the WO. A single model could not predict both OT
hours and months because there was insufficient linking data. Dataset A did not contain
a date or month column to train the model on, and Dataset B was not suitable to predict
OT hours, due to overestimation if OT were accrued for all WO [3].

Four assumptions were made prior to using the predictive outputs of both models
[4]:
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• The pool of personnel and resources required to complete WOs will not shrink or
grow significantly compared to current levels. This assumption is only reasonable in
a steady-state system, with no major changes to supply or demand.

• The total number of WO for FY19/20 used to predict on was 65% of the average WO
total over the past six years; thus, it is assumed the model predicts 65% of OT for
FY19/20, and the actual predicted values must be scaled up accordingly. Over time
in a steady state system, as more data becomes available, the estimate should become
more accurate. It is important to note that this scaling factor would have to be updated
annually, based on the fraction of WO available when the predictions were made.

• OT predicted by the model must be greater than or equal to zero; thus, small negative
values predicted from H2O autoML’s distribution support were rounded to zero. This
was necessary to ensure realistic output from the model.

• The distribution of all WO for FY19/20 over time (by month) was represented by the
same distribution of WO currently used to build the model. Again, this assumption
is likely only realistic in a steady-state system or when adapting to slow trends over
time.

Dataset A was used to build Model A, which predicted the OT hours per WO and
Dataset B was used to build Model B, which predicted the Month in which the OT was
accrued against the WO. Once these models were built, all planned WO for FY19/20 up
to 26 June 2019 (Dataset Ap) were used as input for prediction [2].

Model Interpretation. The previous model output [2] was used to generate a budget
prediction graph for FY19/20 by fitting a logistics function for the predicted values1

results in Fig. 2. After the completion of the fiscal year, the actual OT data was collected
for comparison. As shown, the final predicted total of OTwas within 5%maximum error
of the actual hours reported by the FMF at the end FY19/20.

The top WO attributes that are important for predicting OT accrual were also iden-
tified and found to be similar to those of Maybury [5] when analyzing the primary
attributes behind WO maintenance hours for the FMFs.

Model Re-use. Themodel was prepared for use at the beginning of FY20/21 bymoving
the data from the previously predicted year (Dataset Ap) to Dataset A. A new Dataset
Ap was obtained shortly after the new FY began with all WO from 1 Apr to 19 Jun 2020
and the existing model could be re-trained or a new model using the established process
could be developed. It was postulated that having this more recent data could also allow
for previous years with visibly differentiable trends in reporting to be removed from the
input dataset.

However, both the re-trained model and a new model trained on the additional data
produced significant overestimations and high variance (~30–50%) of the OT hours
required, when compared to the first several months of OT hours accrued and later once
additional data became available, due to violation of the steady state assumption of the
system.

1 Error bars on the predictive estimates are shown, although they are difficult to discern early on
because they are on the order of magnitude of the size of the marker at the start of the FY.
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Fig. 2. Cumulative OT prediction with logistics function fit, and actual accrual over FY19/20 [4].

TheCOVID-19 pandemic had a significant effect on supply and demand for resources
in both directions. Initially, mandates to work from home, enforced physical distancing,
lack of personal protective equipment, high physical protective measures, and reluctance
to increase exposure reduced levels of OT accrual. However, maintenance demands
continued to accumulate, requiring personnel to complete OT to sustain operational
capability. Different provinces in Canada applied policies at different points in time,
leading to complications at coordinating at the federal level. Thus, it was necessary
to try to incorporate change points in the system, to learn and adapt from the system
dynamics as they evolved.

An attempt was made to incorporate in-year accrual data by training the system on
a monthly basis to try to provide faster feedback response to the system. However, as
this type of approach is dependent upon large quantities of data, new data points that are
introduced are generally overwhelmed by the bulk response. As a result, it was necessary
to select a new approach that could handle transient system dynamics.

2.2 Revised Approach

In this approach, since the historical OT hours are recorded by date, it was decided to
examine how time series forecastingmethodswould performon these data. The objective
would be to estimate how the sequence of observations will continue without attempting
to discover the specific factors that affect the behaviour as we did in [4]. Thereby we
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explore the temporal information in the same dataset from [4] in order to build a more
robust predictive model. There are time series models that can extrapolate on trend and
seasonal patterns, both potentially providing useful information for the comptrollers at
FMF CB.

Data Pre-processing. An additional objective of the revised approach was to simplify
the data pre-processing steps required. In the initial approach, two separate datasets
were extracted from DRMIS. Furthermore, the month and year that WOs occurred was
available in Dataset A, but the calendar date and the regular hours expended for WOs
was not available in either Dataset A or B. In the revised approach, a single dataset was
extracted from the official enterprise records management system which provided the
expended hours (either regular orOThours) for allWOs fromFY13/14-FY20/21 by date.
For each record where expended hours occurred, detailed information of maintenance
specifics, financial coding and classification of personnel assigned to the work were
included in order to have all data fields as were extracted in the previous approaches.
The dataset included numerical, categorical and time-series data. A snapshot for all
expended hours in FY21/22 was also extracted for predictive purposes.

Data cleaning were completed using the Python Pandas package [27] and filtered out
any records where military personnel were assigned to the WO since the FMF overtime
budget is used for civilians only. Similarly, any expended hours incurred during sea
duty or sea trials were removed from the analyses, as this would not apply to second-
or third-line maintenance. To build the time series models, only two fields were used;
calendar date and expended OT hours (where this value was greater than zero).

Model Generation. There are a number of time series models available for forecasting
data; however, given that daily data were available for several years, the Prophet model
appeared to be most capable [23]. The algorithm automatically forecasts data using an
additive model, where non-linear trends are fit with yearly, weekly and daily seasonality,
as well as variable holiday effects. The implementation utilized is available as open-
source software for both Python and R [28], with Python being used for this work.

The Prophet time-series forecast is developed using an additive regressive model, as
given in Eq. 1where it is the date and y(t) is the actual OT hours accrued. The components
of the model include the long-term trend, g(t), the holiday effect, h(t), yearly seasonality,
sy(t), weekly seasonality, sw(t), and error, e(t). Each of these components contains linear
or non-linear terms with parameters that can be tuned to the problem at hand. In the
Prophet model specification, these parameters can be adjusted manually in order to
improve the model fit (referred to as Analyst-in-the-Loop modeling in [23]).

y(t) = g(t)+ h(t)+ sy(t)+ sw(t)+ e(t) (1)

The long-term trend may be modelled as a logistic growth model or a piecewise
linear model; a logistic growth model was selected in this case from a grid search used
to tune the hyperparameters. The behaviour of the long-term trend can be adjusted using
two hyperparameters. The first is changepoint_ range: this was set at 80% so that only
the first 80% of the time-series data were used to infer change points in the trend to avoid
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overfitting. The second is changepoint_prior_scale, where an increase of this prior scale
value adds more flexibility to the trend changes; a larger prior scale can result in the
model overfitting due to too much flexibility, and a smaller prior scale can make the
model not being flexible enough, causing an underfit. It was set to the recommended
default value of 0.05.

The holiday effect can be tailored to country and date-specific input. Here, Canadian
holidays were manually added and formatted into the Prophet data frame format using
an open-source Github repository [29].

Seasonality components utilize Fourier series, with multiplicative or additive param-
eters for individual periods. The order of the Fourier series found to give the best fit was
3, the seasonality mode was additive, and the seasonality prior scale was set to 15.

Once all the hyperparameters were specified, the Python implementation of the
Prophet model followed the standard sklearn application programming interface (API)
[30]. Prophet has its own implementation of the fit() and predict() methods from the
sklearn API; the fit() method was used to train the model using specified hyper-
parameters for the given training data and the predict() method was used to forecast
future values for a specified period (in this case from 1 September to 31 March of the
following calendar year).

3 Results

3.1 Model Fitting

The fitted model was trained on two columns of data from 01 April 2012 to 31 August
2021 with individual dates as the date series input and the daily OT hours accrued as
the response; the components of the trained time series model are plotted in Fig. 3 using
Python’s Matplotlib [31] with Seaborn [32] to visualize the results.

The long-term trend component explains the general trend of OT hours irrespective
of seasonality components. There is a slight downward trend in OT hours during last
three years, which can be explained due to COVID-19 pandemic.

Holidays were found to be generally negatively correlated with OT hours, except for
the Labor Day holiday, which is positively correlated.

Two different weekly seasonality are captured instead of the default weekly sea-
sonality: 1) weekly_on_seasonality captures the OT patterns during regular weeks (5
January – 23 December), and 2) weekly_off_seasonality accounts for the effect of long
holidays during Christmas and New Year’s season (24 December – 4 January) where the
day of week may not play as significant a role. The weekly seasonality data confirms
an intuitive understanding of when OT hours are accrued – few OT hours are typically
reported onweekday,whilemore are reported on theweekends. Saturdays see the highest
number of hours reported, which may be explained as further ability and/or willingness
to work Saturdays compared to Sundays.

Yearly seasonality captures the effect of the time of the year for OT hours. This
seasonal data also confirms an intuitive understanding of the drop of OT hours accrued
duringChristmas leave andMarch (end of the fiscal year, likely due to restricted budgets).
There are some notable peaks in the yearly seasonality component:
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Fig. 3. Time series components of OT hours accrued for FMF CB from 01 April 2012 to 31
August 2021.
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• January – after Christmas Leave, which corresponds to the start of a number of major
military personnel deployments every 6 months;

• April – the beginning of new fiscal year and release of new budgets;
• July – corresponding to the start of major military personnel deployments every
6 months or summer leave season when fewer personnel are available and more OT
is required to sustain operations with fewer resources; and,

• September – the end of summer leave and the start of the newmilitary posting season.

3.2 Model Testing

The time series model was tested on partial in-year data from FMF CB from both
FY19/20 and FY20/21 (Figs. 4 and 5) and compared to the actual data for the remainder
of the fiscal year. The forecast was predicted from 31 August until the end of fiscal year
(31 March). For each tested fiscal year, the model was only trained on the data until 31
August of that FY to avoid data leakage. Figure 4 shows the daily OT hours accrued,
while Fig. 5 is the cumulative OT hours accrued.

The accuracy of the model is calculated as per Eq. 2. The cumulative forecast OT
in FY19/20 was 36,683 h, and the actual OT accrued was 39,382 h; thus, the accuracy
was 93.7%. The cumulative forecast OT in FY20/21 was 20,519 h, and the actual OT
accrued was 22,483 h; thus, the accuracy was 90.4%.

Accuracy =
(
1− |ActualOTHours− ForecastOTHours|

ActualOTHours

)
× 100% (2)

3.3 Model Forecasting

A forecast is given in Fig. 6 by applying the new approach to FY21/22 based on the WO
available up until 31 August 2021. The total forecast OT accrued is 29,186 h.

If model is at least 90% accurate (based on theworst-case performance of the last two
years of forecasts), Eq. 2 for model accuracy can be used to calculate the error interval
on the total forecast estimate, as per Eq. 3. Thus, the actual OT accrued for FY21/22 is
estimated to fall between 26,532 to 32,428 total hours.

90% =
(
1− |ActualOTHours− 29, 186|

ActualOTHours

)
× 100% (3)
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a) Daily OT hours 

b) Cumulative OT hours 

Fig. 4. Forecast versus actual OT hours accrued for FMF CB in FY19/20 (01 April 2019 – 31
March 2020).

a) Daily OT hours 

b) Cumulative OT hours 

Fig. 5. Forecast versus actual OT hours accrued for FMF CB in FY20/21 (01 April 2020 – 31
March 2021).
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a) Daily OT hours 

b) Cumulative OT hours 

Fig. 6. Forecast versus actual OT hours accrued for FMF CB in FY21/22 (01 April 2021 – 31
March 2022).

4 Conclusions

4.1 Prior Approach

The autoML approach to forecasting OT accrual for a naval FMF was both easy to apply
and accuratewithin the constraints of the assumptions applied. Insights tomajor variables
of importance forOTwere explored and a simple logistics functionwas fit for cumulative
OT hours per fiscal year. However, due to the destabilizing factors introduced in March
2020 as a result of the COVID-19 pandemic, the system was no longer in steady-state
operation for a variety of reasons. Attempts to refine the predictions using month-by-
month forecasting and updates were not successful. As a result, an alternative method
was sought to forecast OT using time-series analysis during transient system states.

4.2 Revised Approach

The time-series approach generally works well to forecast cumulative overtime hours
accrued, including during large fluctuations. The advantage of the time series approach is
its ability to capture different seasonality components such as holidays, day of the week
effect and the time of the year, which provide more insights into the system, leading
to better modeling accuracy in the predictions. Both the FY19/20 and FY20/21 models
showed over 90% accuracy in predicting the total OT hours which was an improvement
compared to the previous approach during transient system states.
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4.3 Future Work

The revised time series approach used Prophet in Python, a scalable forecasting tool
based on a generalized additive time series model. Additional areas of research may
include developing forecasts of OT accrual by other variables of importance, such as
work centre and employee classification. The approach could also be used to develop
forecasts for FMF CS, and compare policies and accrual trends between facilities. It
may also be useful to compare the results obtained using Prophet to other time series
models, to determine if accuracy can be improved. After sufficient testing and validation,
operationalizing these algorithms as a budgeting tool accessible from within enterprise
resource management systems would allow for decision makers to have updated and
readily available information on the projected OT at the start of a FY, with adjustments
as new data for the FY is in included in the analysis.
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Abstract. The uncontrolled characteristics of long-term scenarios, like ultra-
running competitions, are challenging for person re-identification approaches
based on computer vision methods. State-of-the-art techniques have reported
hardly moderate success for whole-body runner re-identification due to the exis-
tence of distinct illumination conditions, as well as changes of clothing and/or
accessories like backpacks, caps, and sunglasses. This paper explores integrat-
ing these biometric cues with the particular spatio-temporal context information
present in the competition live track system. Our results confirm the significance
of this strategy to limit the gallery size and boost re-identification performance.

Keywords: Temporal coherence · Ultra-distance race · Sporting event · Person
re-identification · Computer vision

1 Introduction

Nowadays, running events of all kinds are becoming increasingly popular, opening
up various business opportunities. The organizers of massive running competitions,
attended by hundreds or even thousands of participants, face significant logistical chal-
lenges. Among these challenges, managing the race ranking is the most relevant in the
long term.

To control each runner’s position in the race ranking, personal chips are generally
used to identify the participants as they pass through each track checkpoint. Based on
the data provided by these chips, rankings are generated and prizes are awarded. Since
only particular locations are monitored, it would be possible for a runner to cheat by
taking shortcuts and not following the entire course of the race. Still, the timing sys-
tem permits the analysis of all the collected data to determine whether a participant is
suspicious of course cutting.
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An evident flaw of this approach is that it is not the person but the chip being mon-
itored. In addition, there is no control over whether the runner carrying the chip tag is
the same person who registered for the race. Indeed, there are no mechanisms to verify
whether the runner who passes through each checkpoint carrying a particular chip is
always the same person. Such a situation would create substantial issues for the organi-
zation, especially regarding insurance policies, while the bad user experience generated
by wrong ranking results would damage the reputation of the organizers and the race
event itself.

Deep learning and computer vision strategies can be used to address these problems.
Some initial proposals have focused on detecting the racing bib number [1], although
this would not solve the aforementioned issues. Thus it is necessary to look for biomet-
ric features to identify the person wearing the bib [5,18,23].

In this context, our work focuses on the re-identification (ReID) of runners partici-
pating in an ultra-marathon race. We capture the images of a runner passing through a
particular checkpoint (probe) and verify if they belong to the same person who passed
through one of the previous checkpoints (gallery). This is a real-world wild scenario
in which any computer vision method would struggle due to the wide variety of run-
ner poses, as well as the challenges raised by scene lighting, camera location, image
resolution, sharpness, focus, motion blur, etc.

In our previous work [14], we explored the integration of different elements to boost
ReID performance in this complex scenario: face recognition, body recognition, and
temporal coherence. With the latter, the size of the gallery for a probe runner in a partic-
ular checkpoint is significantly reduced by filtering out those runners who have already
left that checkpoint and those runners who have not had enough time to reach it. This is
achieved by making use of the temporal information available to the race organization
at the moment a runner passes the probe checkpoint.

Our original temporal coherence strategy does indeed boost ReID performance, but
it relies on an adaptive threshold computed for each runner according to their progres-
sion through the previous stages of the race. Although this heuristic proves helpful in
the later stages of the race, its improvement is limited in earlier stages, as there is less
information available to estimate the appropriate threshold value.

In this new work, we analyze different strategies for improving ReID using time
coherence. In addition, since face recognition has proven to yield poor ReID perfor-
mance in this scenario, we focus on using only techniques based on the body appear-
ance. Our results reveal significantly better performance than the one reported in our
previous paper, emphasizing the importance of considering all the available context
information for ReID tasks.

2 Related Work

Computer vision in sporting events is a challenging research field, with an active com-
munity as suggested by recent surveys [15,21] and regular conference workshops such
as CVPR’s CVsports and ACM’s MMSports. In those venues, the community has
mainly focused on the analysis of athlete movements and the study of team sports to
collect statistical data and evidence different ways for improvement [10,21]. Since this
work is focused on ReID for race participants, we briefly summarise the most relevant
proposals on this topic.
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Race bib number recognition is the most commonly adopted approach for runner
ReID. Most works in this area deal with the marathon context, characterized by daylight
conditions and large bib number fonts. However, even when these competitions are
being organized almost everywhere, the amount of publicly available data is limited.
The pioneering work by Ben-Ami et al. [1] encloses a public dataset for race bib number
detection and recognition. Firstly, face detection is applied to estimate the region of
interest, i.e., the most likely bib position, to later identify the bib number using optical
character recognition. Shivakumara et al. [20] and Boonsim [2] also adopt the initial
face detection step to later apply text detection and recognition. On the other hand, De
Jesus and Borges [8] skip the first face detection step, focusing on text detection, but at
the risk of getting confused by runner poses.

More recently, deep learning has been adopted for bib number recognition. Kam-
lesh et al. [9] use TextBoxes [11] to detect the bib location and then a convolutional
recurrent neural network to identify the runner according to the bib number, essentially
simplifying the person ReID problem into a text recognition problem. Wong et al. [22]
propose a similar two-stage approach, where the popular You Only Look Once algorithm
[19] is applied to detect the runner and the bib, while a convolutional recurrent neural
network is later used to recognize the number. A more complex multi-stage approach
is proposed by Nag et al. [16], using the single shot multibox detector [12] to detect
individuals and then extracting those body parts more likely to contain the bib; the bib
is later detected by means of a convolutional neural network and the number is finally
identified using a convolutional recurrent neural network.

The main drawback of runner ReID using the bib number is that the digits cannot
be guaranteed to be clearly visible, as illustrated in Fig. 1. Ultra-distance runners tend
to prioritize comfort and may wear the race bib in positions where capturing a clear
image becomes difficult, if not impossible. When the bib number is not a reliable ReID
method, it would be necessary to use the information provided by more visual cues,
such as the face, body, or clothing. However, this approach is much less frequent in the
literature.

Wrońska et al. [23] combine facial appearance with race bib number recognition
to improve the overall ReID performance. This double identification improves perfor-
mance in marathon-like scenarios captured in daylight conditions, but it has problems
detecting features on darker images. Ultra-distance races provide more challenging in
the wild scenarios. Indeed, face and bib number occlusions are frequent due to the
runner poses. Bearing this in mind, Peñate et al. [18] define a new benchmark for
ultra-marathon ReID approaches based on the body/clothing appearance. The evalu-
ation presented in that work for top-ranked ReID approaches shows the scenario dif-
ficulties, mainly because the race covers a significant time lapse and participants may
change their clothes along the track due to the weather conditions or simply for personal
hygiene.
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Fig. 1. Runners with the race bib not placed in front or folded.

The inherent low resolution of the faces captured during an ultra-distance race
makes face ReID provide significantly worse results than face recognition techniques
in other scenarios. As pointed out by Cheng et al. [4], differences exist in the clas-
sical surveillance scenario compared to the familiar face recognition context, further
evidenced by the reduced success obtained by present face-based techniques in chal-
lenging benchmarks. This is also shown by Dietlmeier et al. [7], suggesting the reduced
negative effect of blurring faces in ReID benchmarks regarding overall system accuracy.

Interestingly, all of the aforementioned proposals are based on photographs or static
frames extracted from videos. Runner ReID using the dynamic information in video
footage is getting more attention lately. We may mention the recent CampusRun dataset
[17] of images captured for each participant every kilometer by hand-held cameras dur-
ing a half marathon event, offering a large number of samples per identity. Given this
video stream availability, the gait trait is adopted by Choi et al. [5] focusing on the arm
swing features extracted from the silhouette. The author’s strategy is to remove the prob-
lems present in race bib number or face occlusions, as well as the similarity in clothing
appearance, e.g., runners of the same team. Another interesting scope focuses on player
ReID in broadcast videos of team sports. For instance, Comandur [6] has developed
a hierarchical data sampling procedure and a centroid loss function, increasing ReID
performance when combined.

3 Dataset

We evaluate ReID performance using a dataset of images collected during Transgranca-
naria 2020 [18], a mountain ultra-marathon race in which runners face a wide variety of
extremely demanding conditions. It is a 128 km race that takes runners across the island
of Gran Canaria from north to south. The 2020 race edition started at 11 pm on March
6th (one week before the Covid-19 lockdown in Spain), and the finish line closed 30 h
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later, although the winners only needed 13 h to complete the entire distance. The infor-
mation provided by this dataset is complemented with the official rankings published
by the race organizer, Arista Eventos SLU, to evaluate the impact of time coherence
strategies on ReID performance.

Runners were captured at five recording points (RPs) distributed along the race
track. Images were recorded using a set of Sony Alpha ILCE 6400 (16–50 mm lens)
configured at 50 fps and 1920 × 1080 pixel resolution. Figure 2 shows the recording
setup near some of the RPs.

Fig. 2. Recording setup at different RPs.

The capture conditions vary significantly among the different RPs. The first two
RPs were located in the first 30 km, while the last three were located in the last 40 km,
see Table 1. Those locations affect the starting recording time. Indeed the first two RPs
were recorded at nighttime and the remaining three were recorded in daylight. Figure 3
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shows a collage of sample images taken at the race start and each of the five RPs. It
becomes clear that there are significant differences, not just among them. Still, it is evi-
dent that frames extracted from video footage differ from those taken by a professional.
Figure 4 shows professional photographs with well-focused and posed runners, some-
times even looking at the camera. Actual footage is far from ideal snapshots, hence the
great difficulty of ReID tasks in wild scenarios.

Table 1 also summarizes the dataset statistics. Due to the arduous nature of the race,
only 435 of the 677 runners who started the race completed the course within the time
limit. The closer to the finish line, the lower the number of annotated participants, even
if the number of captured frames is larger because the elapsed time between each run-
ner increases as the race progresses. To keep this ReID analysis within a closed set of
identities, our results have been obtained considering only the 109 runners recorded and
annotated in all the five RPs.

Race Start: Playa de Las Canteras RP1: Arucas

sonroHedaserP:3PRroreT:2PR

ruSeuqraP:5PRseruagayA:4PR

Fig. 3. Leaders of the Transgrancanaria Classic 2020 recorded at the different RPs. Figure from
[14], original images from [18].
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Fig. 4. The ideal case: images captured by a professional photographer during Transgrancanaria
2014. Photographs courtesy of Carlos Dı́az-Recio and Arista Eventos SLU.

Table 1. Dataset statistics: location in the race track (kilometer point), recording start time (Satur-
day, March 7th, 2020), total number of frames in the recorded footage, and number of annotated
runners. Data from [18].

Km Start time Footage (frames) Runners

RP1 16.5 00:06 140,616 419

RP2 27.9 01:08 432,624 586

RP3 84.2 07:50 667,872 203

RP4 110.5 10:20 1,001,208 139

RP5 124.5 11:20 1,462,056 114

4 Proposal Description

We adopt a ReID scenario instead of a verification scenario because multiple runners
may reach a RP together, not being straightforward for the system to relate a timing
system tag with a captured individual. The classic ReID experimental scenario aims
to determine which runner in a gallery matches the probe identity. For each runner
image, the dataset provides a bounding box enclosing its whole body. In order to per-
form the ReID process, runners must be represented as numerical vectors providing
body descriptors. Two recent ReID frameworks were evaluated for the chosen scenario
in [18] to generate these embeddings, AlignedReID++ [13] and ABD-Net [3], since
they have provided state-of-the-art results in the popular Market-1501 benchmark [24].
In this work, we have chosen to use the AlignedReID++ framework to compute the
embeddings because it provides slightly better performance according to [13] .

Our work relies on the fact that, besides body embeddings, the ReID process can be
supported by contextual information. An ultra-running competition has a clear timeline,
as participants reach each checkpoint in order, not repeating any of them. The proposed
vision-based system would work in parallel with traditional timing systems, i.e., the
elapsed times of every runner are available at each location.

Lets t be the total number of RPs in the race track, we consider an individual
detected in RPp as probe, where p belongs to the interval [2, t], and all the samples
from RPg as the gallery, where g belongs to the interval [1, p − 1]. Note that any RPg
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is always preceding RPp, and thus a runner captured in RP1 can never be the probe.
Assuming there are nk participants recorded in RPk, where k is p or g, we call ri,k to
the runner crossing in position ith through RPk and ti,k his/her elapsed time. Hence,
given the probe sample ri,p in RPp, its gallery in RPg is defined as:

gallery = {rj,g} for j = 1, . . . , ng (1)

However, not all runners in the gallery are coherent ReID candidates. On the one
hand, we can exclude from the gallery those runners that have already crossed RPp,
that is, to identify the probe runner ri,p we can discard from the gallery the runners r1,p
to ri−1,p. In other words, we filter out those runners who already left RPp.

On the other hand, it is possible that not every runner captured in RPg had enough
physical time to reach RPp by the time the probe runner crossed RPp. If we can predict
how long it will take for a runner who has crossed RPg to reach RPp, we can determine
whether the runner may have reached RPp to exclude him/her from the gallery. In the
following subsections, we discuss different strategies, extending those described in [14],
to filter out those runners who could not have arrived at RPp.

4.1 Runners in the Gallery

As illustrated in Fig. 5, when the first runners arrive at RPp, some runners have still
not crossed through RPg. Taking this into account, the most simple temporal coherence
heuristic for filtering the gallery of a probe runner ri,p would be to remove those gallery
samples that have not yet reached RPg.

gallery = {rj,g} such that tj,g < ti,p (2)

4.2 Fastest Elapsed Time

Given the spatial distances between RPs, any runner would need some time to reach
RPp after crossing RPg physically. Thus, we can apply more restrictive filtering estab-
lishing that runners should have passed RPg at least x minutes ago. A possible value for
x would be the organization’s expected time between RPs, estimated in advance based
on the distance and accumulated positive slope between RPs. However, personal issues
and weather conditions may affect runner performance. As a conservative approach, we
calculate the fastest possible time between RPp and RPg as the difference between the
elapsed time of the first runner to cross both RPs. Thus, we filter the gallery assuming
that any runner should need at least that time to cover the distance between both points.

Δt = t1,p − t1,g

gallery = {rj,g} such that tj,g ≤ ti,p − Δt
(3)

Nevertheless, we should take into account that runners could exchange positions
along the race. We illustrate this circumstance with an example. Consider that the
first three runners depicted in Fig. 5 (red, blue, and green t-shirts) passed RPg at
times 00:05:00, 00:05:20, and 00:06:30, respectively. The same three runners
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leaded the race in RPp but exchanged positions (green, blue, and red), passing at times
01:15:32, 01:15:50, and 01:16:30, respectively.

If we are considering the gallery set for the first probe runner r1,p then candidate
runners in the gallery should verify tj,g ≤ t1,p − Δt which sets the temporal threshold
to 01:15:32–00:05:00 = 01:10:32, excluding runners blue and green from the
gallery, i.e. the desired runner will be excluded from his own gallery. To overcome
that circumstance, we weight the temporal threshold introducing a value thr, where
thr ∈ (0, 1], to avoid removing an excessive number of identities from the gallery.

gallery = {rj,g} such that tj,g ≤ ti,p − (Δt × thr) (4)

Setting the thr value to 1.0 would leave the previous equation unchanged, but some
runners may be excluded from their gallery. Assigning a lower value will define a mar-
gin to skip those situations. We have found that a thr value of 0.9 is enough to prevent
the probe runner from being excluded from the gallery in all cases, since the RPs in this
dataset are located at least ten kilometers away from each other, with the fastest runners
requiring almost one hour to cover the distance.

Fig. 5. Temporal coherence illustration. Top) Let’s assume that red, blue, and green runners cross
RPg in that order. Bottom) Red and green runners exchange positions in RPp when they arrive
roughly one hour later. Using temporal coherence, for a probe runner arriving at RPp, we remove
from the gallery those individuals who have not had enough time to reach RPp from RPg . Figure
adapted from [14] (Color figure online).

4.3 Adaptive Time Estimation

Regarding the real race, the fastest split time is not reachable for most runners. Due to
the conservative nature of a fixed threshold, we have explored using a variable threshold
defined by the runner performance. The elapsed time of probe runner ri,p in the previous
points RP1 to RPp−1 serve to estimate the elapsed time from RPp−1 to RPp.

˜Δti,p = w0 + w1Δti,2 + · · · + wp−2Δti,p−1 (5)

We evaluated such estimation using linear regression and random forest models.
The latter reported better results and therefore was adopted to compute the adaptive
threshold to filter the gallery for a particular runner ri,p.

gallery = {rj,g} such that tj,g ≤ ti,p − (˜Δti,k × thr) (6)



Exploiting Temporal Coherence to Improve Person Re-identification 143

4.4 Average Time

Accurately estimating each runner’s performance requires using as much information
as possible. This would be a problem for the RPs located at the beginning of the race
because less information is available. To address this problem, we consider a second
adaptive mechanism: instead of estimating each runner’s performance, we assess all
runners’ overall performance. As runners arrive at RPp, we get their elapsed time from
the live track system. Then we can calculate and update the average time that all the
runners have needed to reach RPp from RPg.

gallery = {rj,g} such that tj,g ≤ ti,p − (
∑i−1

1 Δt

i − 1
× thr) (7)

This average value considers the race’s particular conditions, as the weather will
affect all runners alike. It is also updated as the race progresses, as runners will take
longer to get from one point to the next. However, there will be fluctuations in this
value, and there may also appear some runners who go faster than the average at any
given time, which is why we have found it necessary to use a more aggressive thr value
of 0.85.

4.5 Individual Time

When a runner reaches a particular RP, the race timing system detects the chip in the bib
and enters the elapsed time in the database. As this system works in parallel with runner
ReID, we can take advantage of this information to apply a more restrictive strategy:
filtering the gallery according to the time the runner has spent traveling the distance
from RPg to RPp, that is, removing all the runners who have not been able to arrive in
the time measured for the probe runner.

gallery = {rj,g} such that tj,g ≤ ti,p − Δti,p (8)

Since the runners who have already left the RPp are also removed, the gallery will
consist only of the runner him/herself and those who should have arrived before him/her
and have not yet arrived, i.e., those runners that the probe runner has passed on his way
from RPg. In addition, as we know exactly how long it took the runner to cover the
distance, it is not necessary to weigh this value with a thr factor because the probe
runners cannot be excluded from their galleries.

5 ReID Experimental Evaluation

To compare the different approaches to match the runners embeddings, we use the mean
average precision (mAP) score, a metric well established in the recent ReID literature
[3,13], especially when each identity may be present more than once in the probe and
gallery sets. Given a probe set with a total of np runners, the average precision APi for
each probe runner i is computed as the area under the precision-recall curve for that
runner. In particular, we compute the APi value using the euclidean distance, since we
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have checked other distance functions and found no significant variation. Once APi has
been calculated for every runner, the mAP value is computed as the arithmetic mean of
the APi for each probe runner.

mAP =
∑np

i=1 APi

np
(9)

Table 2 shows the mAP results using as probe all the RPs except the first one. For
each RPp, all the previous RPs are used separately as gallery. As expected, the RPs
with nighttime images show evident poor results, although the worst effects are demon-
strated by RP3, which is recorded at daybreak in a region with broad shadows. The best
results appear in the daytime RPs, although there is considerable room for improve-
ment, illustrating the great difficulty of this scenario.

Going deeper, the first column of Table 2 shows the mAP results without apply-
ing any temporal coherence method, and the second column shows the mAP results
when using the most straightforward temporal coherence technique: removing from the
gallery the runners who already left RPp. The significant improvements achieved with
this simple rule show the potential of temporal coherence.

Table 2. ReID mAP without applying any temporal coherence method (base) and removing the
runners who already left the probe RP (left) from the gallery. The left method was proposed in
[14] but not evaluated separately.

Gallery Base Left

RP2 RP1 15.0 25.3

RP3 RP1 9.2 17.7

RP2 7.2 16.7

RP4 RP1 23.0 35.6

RP2 13.6 27.1

RP3 19.5 25.9

RP5 RP1 22.7 35.4

RP2 20.6 31.3

RP3 15.2 21.7

RP4 48.4 57.3

Table 3 shows the mAP results using the alternatives proposed to control the runners
that cannot have arrived at RPp. All these methods are mutually exclusive, though we
have included for all of them the rule that removes the runners who have already left
RPp. In this sense, we are effectively addressing the two extremes of the time interval:
those runners who had no time to arrive and those who had already left.

Removing the runners that have not reached RPg has little impact in the earlier
RPs because, by the time the first of the captured runners reaches RPp, the last of the
captured runners has already passed by RPg. The effect is only noticeable in the later
RPs, especially in RP5 when RP4 is used as a gallery, since the runners are already far
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apart at that point in the race. Removing the runners that have not beaten the fastest
possible time between RPp and RPg provides better results. Still, the improvement is
slight, especially in the initial RPs where runners are closer.

The adaptive strategy does not involve a significant performance improvement. It
even implies a performance degradation in the initial RPs. There is not enough informa-
tion on each runner’s behavior at these earlier points. Thus, the elapsed time estimation
provides poor results. The strategy that calculates the average elapsed time alleviates
this problem since the assessment does not depend on the individual behavior of each
runner. However, this strategy still does not provide significant performance improve-
ments.

Table 3. ReID mAP removing from the gallery the runners who already left the probe RP (base)
and the runners who cannot have arrived: runners who did not reach the gallery RP (gallery),
runners who had not beaten the fastest possible time (fastest), runners who had not beaten the
estimated time for the probe runner (adaptive), runners who had not beaten the average time for
the probe RP (average), and runners who had not beaten the particular time of the probe runner
(individual). The gallery, fastest, and adaptive methods were proposed in [14], but only results
for the latter were provided. The average and individual methods are new contributions.

Gallery Base Gallery Fastest Adaptive Average Individual

RP2 RP1 25.3 25.3 26.6 17.9 26.6 63.6

RP3 RP1 17.7 17.7 17.7 16.0 17.7 48.6

RP2 16.7 16.7 16.8 10.3 16.7 47.3

RP4 RP1 35.6 35.6 35.6 36.3 35.6 61.9

RP2 27.1 27.1 27.1 28.2 27.1 59.8

RP3 25.9 26.8 32.5 39.2 35.5 77.2

RP5 RP1 35.4 35.4 35.4 36.8 35.4 61.8

RP2 31.3 31.3 31.3 33.0 31.3 61.5

RP3 21.7 21.8 26.4 28.4 26.7 71.8

RP4 57.3 65.6 76.1 78.7 83.2 97.4

Overall, the heuristic that provides best results is the one considering the particular
time of each individual runner, since it is the most restrictive approach. We analyze the
cumulative matching characteristics curve (CMC) to provide more insight. This metric
ranks the gallery samples according to the distance to the probe. For a given probe, the
CMC rank-k accuracy is 100% if the first k ranked gallery samples contain the probe
identity and 0% otherwise. The final CMC curve averages the respective probe curves.
For instance, a CMC rank-1 of 80% indicates that the correct identity is ranked first for
80% of the probes.

Figure 6 shows the CMC curves for ReID without time coherence applied, ranging
from rank-1 to rank-10. Once again, the great difficulty of this in the wild ReID problem
becomes evident. In most cases, when runner ReID is not successful, the correct identity
is not even in the top ten. The only curve that shows good behavior involves the two
RPs recorded during daylight, i.e., RP4 (gallery) and RP5 (probe).
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RP2 probe

RP1 gallery

RP3 probe

RP1 gallery RP2 gallery

RP4 probe

RP1 gallery RP2 gallery RP3 gallery

RP5 probe

RP1 gallery RP2 gallery RP3 gallery RP4 gallery

Fig. 6. CMC curves for ReID without time coherence: all the identities captured in RPg are used
as gallery. The horizontal axis represents ranks 1 to 10. The vertical axis shows the cumulative
value from 0 to 1.



Exploiting Temporal Coherence to Improve Person Re-identification 147

RP2

RP1 gallery

RP3

RP1 gallery RP2 gallery

RP4

RP1 gallery RP2 gallery RP3 gallery

RP5

RP1 gallery RP2 gallery RP3 gallery RP4 gallery

Fig. 7. CMC curves for ReID using the best time coherence strategy: excluding those runners
that cannot have arrived to RPp because they had not beaten the probe runner elapsed time and
those runners who already left RPp. The horizontal axis represents ranks 1 to 10. The vertical
axis shows the cumulative value from 0 to 1.
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Figure 7 shows the CMC curves for ReID using the best time coherence strategy.
All the curves show good behavior; in most cases the correct identity is classified in the
top ten. Indeed, in the full daylight scenario, involving RP5 as the probe and RP4 as the
galleries, all the identities are classified at least as rank-3. Given the high performance of
the classifier in this RP, it is interesting to examine the reasons behind the identification
errors still occurring.

Figure 8 shows an example of a misidentified runner in this probe-gallery combina-
tion. As can be observed, there is some physical resemblance between the runners, and
they are wearing similar clothing: sneakers, shorts, and a backpack. The most notable
differences are in the cap and the shirt, although the shadows in the gallery images
make it difficult to perceive the color contrast of the latter. However, the most remark-
able detail is that the probe runner was not wearing the bib when he passed through
the gallery RP, which has undoubtedly been a decisive factor in confusing the classifier.
These results prove that, even when we can use contextual information to reduce the
gallery size, there is still room for improvement.

probe runner wrong gallery correct gallery

Fig. 8. Misidentified runner using RP5 as probe and RP4 as gallery.
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Fig. 9. The same subject captured in RP3 and RP4. Medium or long-term ReID implies that
subjects will not only vary in the location and time they are captured, but also their clothes may
change.

6 Conclusions

Addressing in the wild scenarios poses challenging difficulties for current
computer vision methods. Using datasets with well-illuminated individuals and
trained poses is helpful for testing the theoretical potential of a given method, but the
reality is far from ideal. Therefore, it is is also essential to analyze the behavior of these
methods with more complex datasets, closer to the actual conditions that any video
surveillance system would have to face. Long-distance races offer the opportunity to
create such datasets, where there are not only significant changes in lighting and land-
scape but also the physical appearance of the runners varies with changes in clothing,
not to mention changes in the position of the race bib.

As evidenced in Fig. 9, the possibility that runners may change their clothes, given
the time gap among RPs, makes ReID much more challenging when it is grounded
uniquely on body appearance. Certainly, our earlier evaluations [14,18] and the liter-
ature on face recognition at this resolution [4,7] do not help much to cope with the
problem. It seems that other cues must be considered in the future to make the prob-
lem completely tractable, such as monitoring gait or focusing on detailed human body
parsing to analyze specific elements of the runner outfit.

In our previous paper [14], we proposed to use the contextual information provided
by the live track timing system to refine the runner gallery and boost ReID perfor-
mance by excluding all those identities that would be inconsistent for the probe run-
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ner at a particular point of the race track, either because the corresponding runner has
already passed that point or because he/she had no material time to get there. This new
work revisits the time coherence strategies proposed in [14] and presents new ones that
achieve significantly better performance.

Our best time coherence strategy provides near-optimal results at the points where
the probe runner and the gallery samples are captured in good lighting conditions. How-
ever, there is plenty of room for improvement on the rest of the points. Having datasets
in which current techniques cannot identify runners, not even using temporal informa-
tion, provides an interesting testing ground for the new computer vision methods that
will be developed in the future.
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Abstract. The current rate of decline in biodiversity exclaims ecological conser-
vation. In response, camera traps are being increasingly deployed for the perlus-
tration of wildlife. The analyses of camera trap data can aid in curbing species
extinction. However, a substantial amount of time is lost in the manual review
curtailing the usage of camera traps for prompt decision-making. The insuperable
visual challenges and proneness of camera trap to record empty frames (frames
that are natural backdrops with no wildlife presence) deem wildlife detection and
species recognition a demanding and taxing task. Thus, we propose a pipeline for
wildlife detection and species recognition to expedite the processing of camera
trap sequences. The proposed pipeline consists of three stages: (i) empty frame
removal, (ii) wildlife detection, and (iii) species recognition and classification.
We leverage vision transformer (ViT), DEtection TRansformer (DETR), vision
and detection transformer (ViDT), faster region based convolutional neural net-
work (Faster R-CNN), inception v3, and ResNet 50 for the same. We examine
the adroitness of the leveraged algorithms at new and unseen locations against
the challenges of domain generalisation. We demonstrate the effectiveness of the
proposed pipeline using the Caltech camera trap (CCT) dataset.

Keywords: Camera traps · Empty frame removal · Wildlife detection · Wildlife
species classification · Domain generalisation · DEtection TRansformer
(DETR) · Vision transformer (ViT) · Vision and detection transformers (ViDT) ·
Inception v3

1 Introduction

Apropos the ecological crisis, there is a recent upsurge in research endeavours to
conserve wildlife. Camera traps provide wildlife conservation pursuits with continual
records of wildlife activity patterns. However, the colossality and obscurity of camera
trap data curtail its usage. A primary bottleneck in extracting wildlife insights from cam-
era trap sequence is the overbearing time required to manually extract the required data
and the dependence on wildlife experts for the same [20,27]. Surfeit empty frames and
preposterous visual challenges such as low resolution, low illumination, deep camou-
flage, high degree of occlusion, a small region of interest (ROI), and deceiving animal-
like background clutter are the major cause of the hefty time consumption in processing
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camera trap sequences [3]. Therefore, in our previous work [1] to speed up the camera
trap data processing, we elucidated deep learning based two-stage end-to-end camera
trap processing pipeline for empty frame removal and wildlife detection. Inspired by
this, we extend our previous work [1], by converting the two-stage pipeline to a three-
stage pipeline by adding a third stage: wildlife classification. Therefore, we propose
a three-stage end-to-end pipeline for processing camera trap data. In the first stage,
we propose to automatically identify and remove empty frames. In this context, empty
frames are frames that do not contain any wildlife; bird, or animal. In the second stage,
we propose to detect and localise birds and animals using bounding box(es), and in the
third stage, we propose to recognise and classify wildlife species.

In the existing literature deep learning based approaches commonly use convolu-
tional neural network (CNN) based algorithms such as faster region-based convolu-
tional neural network (Faster R-CNN) [24], you look only once (YOLO) [23], and sin-
gle shot detector (SSD) [16] for processing camera trap sequences. But convolution
operation has the limitation that the long-range dependencies between semantic con-
cepts are often not deciphered. Though convolutional filters easily capture edges sparse
discriminative features escape [31]. As camera trap images are sparse and sporadic in
terms of wildlife content it is needed that long-range dependencies are preserved. We
need a remedy for alleviating these impediments. Therefore, in our previous work [1]
we used transformer-based algorithms DEtection TRansformer (DETR) [4] and vision
transformer (ViT) [8] that correlates wildlife presence with the overall image content. In
this work, in addition to DETR and ViT, we propose to use another transformer-based
deep learning algorithm vision and detection transformer (ViDT). Transformer-based
algorithms had an upper hand in the task of empty frame removal and wildlife detection
in our previous work [1]. However, in the existing literature, convolution neural net-
works (CNNs) are eminent for the classification task. Thereby, in this work for wildlife
species recognition in addition to DETR, ViT, and ViDT we propose to use inception
v3 [30] and ResNet 50 [12].

Camera trap studies are spread across a wide range of camera trap locations. Every
biome or natural habitat within the scope of the study is unique due to characteristic
flora and fauna, weather and climate patterns, soil, temperature range, day and night
duration, and amount of water available. However, deep learning algorithms leveraged
for the camera trap processing pipeline cannot be trained on all the locations due to
frequent data collection constraints at several locations. The major hindrance to data
collection is geographic barriers, adverse weather conditions, and a limited number
of camera trap operators. Considering which, in our previous work [1] we critically
examined the applicability of the leveraged deep learning based techniques against the
challenges of domain generalisability such that pipeline is deemed deployable at new
and unseen test locations. In this work, we increase the size of the testbed for unseen
locations to encompass a broader range of challenges associated with domain general-
isation. Increasing the size of the testbed for unseen locations is particularly required
for species classification tasks. The reason is that several species appear different at
different locations due to variations in geographic factors.

The approaches available in the existing literature discuss some of the challenges;
wildlife detection and species classification etc. in isolation [3,5,33]. Thus, there is a
need to address these challenges in a single pipeline. Considering this, we had addressed
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(i) empty frame removal and (ii) detection through an end-to-end pipeline in our pre-
vious work [1]. In this work, in addition to addressing (i) empty frame removal, (ii)
wildlife detection, and (iii) wildlife species classification from camera trap sequences
through an end-to-end pipeline, we compare the performance of the proposed pipeline
with the pipelines from the existing literature.

Briefly, our contributions in this work are:

– a three-stage end-to-end pipeline for processing camera trap data
– addressing the task of empty frame elimination from camera trap sequences with a
competitive performance

– addressing wildlife detection and species classification in camera trap sequences and
set a benchmark performance

– critical assessment of leveraged algorithms and each stage of the pipeline against the
challenges of domain generalisability

– explicating the suitability of the most competent algorithms via attention maps

The contents of the subsequent sections in this paper are; Sect. 2 reviews the existing
literature, Sect. 3 elucidates our proposed pipeline for processing camera trap sequences
and proposed approaches to address empty frame removal, wildlife detection, and
species classification task, Sect. 4 describes the experiments, results, and inferences for
experiments on empty frame removal, wildlife detection, and species classification task
and presents the proposed pipeline for processing camera trap sequences, and Sect. 5
provides the conclusion of this work.

2 Related Works

Wildlife detection system finds their application not just in conservation endeavours but
also in collision avoidance systems for roads near wildlife sanctuaries [19]. For develop-
ing collision avoidance system scale invariant feature transform (SIFT) [18], speeded up
robust features (SURF) [2] and continuously adaptive mean shift (CAMShift) algorithm
is used. CAMShift is suitable for scenarios where the object to be detected has high
contrast against the background [9,13]. Camouflage is a natural survival and adaptation
strategy for wildlife. Therefore, the usage of CAMShift in wildlife detection systems
may not be a wise proposition. Some approaches use handcrafted features to detect
wildlife [10,28]. Low-pixel level changes are used to track wildlife. However, these
approaches are not suitable when ROI is small [9,10,19,28]. Due to the fixed camera
perspective, wild animals captured are often too far, too close or only a part is visible.
Thus, the detection system in the wild should be size invariant. Local binary pattern
(LBP) [11] and histogram of gradients (HOG) [7] is investigated in [35] for generating
features for wildlife detection. LBP [21] was mainly designed for monochromatic and
static images. An iterative embedded graph cut (IEC) based method was designed for
region proposals in [34]. However, this method is prone to generate false positives due
to shadows, waving leaves, and moving clouds.

Ensemble of CNNs namely: AlexNet [14],VGG [26], NiN [15], ResNet [12], and
GoogLeNet [29] is used for detecting wildlife from camera trap sequences in [20]. In
[3], domain generalisation is explored while using Faster R-CNN and inception v3 for
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detection and classification. In [25], Faster R-CNN and YOLOv2.0 is used for detection.
For wildlife detection and classification, most approaches explore CNN based models.
But CNNs have restricted receptive field.

A few approaches elucidate pipelines for processing camera trap sequences [5,33]
[3]. In [5], a two-stage pipeline is introduced with the first stage for wildlife detec-
tion and the second stage for individual recognition of patterned animals. A one-stage
pipeline consisting of species classification is presented in [33]. Some works use a two-
stage pipeline with the first stage as wildlife detection and the next stage as species
classification [3]. All these approaches manually remove empty frames i.e. the frames
captured in camera trap sequences that do not contain any bird or animal part or whole.
To remove empty frames every nook and corner of about millions of frames captured in
a camera trap sequence is manually examined exhaustively for months and even years.
Only a handful of works address the problem of automating empty frame removal [6].

3 Proposed Pipeline to Process Camera Trap Sequences

We propose a three-stage end-to-end pipeline for processing camera trap sequences.
The three stages in the proposed pipeline are: (i) empty frame removal, (ii) wildlife
detection and localization using bounding box(es), and (iii) wildlife species classifica-
tion as shown in Fig. 1. In the first stage: empty frame removal, we propose to identify
wildlife containing frames and remove the frames in which no wildlife content is cap-
tured. The input to stage 1 is camera trap sequences captured at the source and the
output is retained wildlife containing frames while empty frames are discarded. In the
second stage: wildlife detection, we propose to detect and localize birds or animals with
tight-fit bounding boxes. The input to the second stage is the retained wildlife contain-
ing frames obtained from stage 1 and the output is the localized birds and animals with
bounding box(es). In the third stage: species classification, we propose to recognise
and classify the wildlife species. The input for the third stage is the cropped bird or
animal images using bounding boxes obtained from stage 2 and the output is the pre-
dicted species label. We propose to critically assess the proficiency of each stage in the
pipeline against the challenges of domain generalisability.

The comparison of the stages in each camera trap processing pipeline in the existing
literature and our proposed pipeline is given in Table 1.

Table 1. Stages in camera trap processing pipeline in existing literature and our proposed pipeline.

Stages Pipelines

Ours From [5] From [3] From [33]

Empty frame removal � × × ×
Wildlife detection � � � ×
Species classification � � � �

Empty Frame Removal: Transformers lack inductive biases: translation equivariance
and locality in contrast to CNNs [8]. We hypothesise that translation invariance and
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Fig. 1. Proposed pipeline for processing camera trap sequence.

absence of regionally restricted receptive fields in transformers may be suitable for dis-
carding empty frames from camera trap sequences as empty frames do not have any
particular object or locality to distinguish them from wildlife containing frames. Empty
frames are a collection of a large number of natural scenes of the jungle, grasslands,
deserts, river banks, rural dwellings, etc. on a variety of geographic terrains without
any bird or animal. Persuaded by this notion, we propose to use transformer-based algo-
rithms ViT, ViDT, and DETR for empty frame removal.

Wildlife Detection: Animals in the wild are often occluded leading to a discontinu-
ity in animal image pixels. Despite discontinuity in animal image pixels, it is needed
that the distant but related animal features should be interweaved to correctly detect
and localise the animal in a tight-fit bounding box. In addition to discontinuity in ani-
mal image pixels due to occlusions, the camera trap data is crammed with nighttime
images, negligible tonal gradient, variations in animal sizes and poses, and camouflage.
In the existing literature deep learning based approaches commonly use convolutional
neural network (CNN) based algorithms such as faster region-based convolutional neu-
ral network (Faster R-CNN) [24], you look only once (YOLO) [23], and single shot
detector (SSD) [16] for processing camera trap sequences. But convolution operation
has the limitation that the long-range dependencies between semantic concepts are often
not deciphered. Though convolutional filters easily capture edges sparse discriminative
features escape [31]. For extracting bionomical statistics from camera trap sequences,
alternatives alleviating these encumbrances are needed. Therefore, we propose to exper-
iment with DEtection TRansformer (DETR) [4]; a recent object detection algorithm
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that computes relationships between wildlife pixels with all the image pixels. DETR
comprises transformer attention-based encoder-decoder stacks for performing global
reasoning. The obscured animal parts can be deciphered by the means of global rea-
soning. Low illumination, negligible tonal gradient and occlusion being predominant,
transformers should have an upper hand. Building upon the notion that the transformer-
based models are suitable for wildlife detection in camera trap sequences, we choose
to explore another transformer based model ViDT. ViDT generates hierarchical fea-
tures capturing context semantics across different scales and sizes. The cross-attention
between image patches and region proposals teases out patterns between related het-
erogeneous concepts. We envisage that capturing rich feature semantics across different
scales and sizes and cross-attention will help in the wildlife detection task. The reason
is that the birds and animals captured in camera trap sequences are inordinately variable
in sizes. Therefore, we propose to use DETR and ViDT for wildlife detection.

We hypothesise that transformer-based algorithms in comparison to purely
convolution-based algorithms will prove to be more suitable for handling the adverse
challenges of data from camera traps, especially for addressing the empty frame
removal and wildlife detection tasks. Thus, for comparison and to validate our hypoth-
esis we choose Faster R-CNN.

Species Classification: Transformer attention-based classification models outperform
CNN based classification model only under very specific preconditions [8,22]. Even
under specific conditions, the percentage improvement in performance given by
transformer-based classification model in comparison to CNNs is marginal [8]. Hence,
transformers are yet to prove their competence over CNNs in an image classification
task. Therefore, in addition to ViT, DETR, and ViDT we rope in a state-of-the-art
CNN-based image classification model inception v3 [30]. Inception v3 is built by stack-
ing several inception modules composed of several factorised convolution blocks [30].
Factorised convolution in comparison to larger convolutions is more suitable for tasks
that require the model to decide based on minuscule features. A larger convolution filter
quickly diminishes the size of the input feature maps causing minuscule and important
discriminative features to be lost. On the contrary, factorised convolution diminishes
the feature maps gradually through multiple hierarchical and parallel smaller convolu-
tion operations. It is felt that for species recognition and classification from camera trap
sequences factorised convolution will be helpful. This is because in camera sequences
the animal captured are far, small in comparison to large swaths of vegetation and sky,
and frequently only a part of the animal is captured. Thus, we propose to use incep-
tion v3 for species recognition and classification task from camera trap sequences. In
addition to inception v3, we propose to use another state-of-the-art CNN classification
model ResNet 50 for recognising and classifying species from camera trap sequences.
The building block of ResNet 50 is a residual block. A skip connection in a residual
block concatenates the input of a previous layer with the output of the current layer.
The residual blocks ensure that minuscule context semantics are preserved throughout
using heterogeneous feature map concatenation. Thus, the residual blocks will be par-
ticularly helpful in species recognition and classification from camera trap sequences.
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4 Experimental Studies for Processing Camera Trap Sequences

This section discusses the experimental studies on processing camera trap sequences.
Our experimental study is divided into; (1) studies on empty frame removal, (2) studies
on wildlife detection and localization, and (3) studies on species classification. All these
studies are performed on Caltech camera traps (CCT) dataset [3].

4.1 Experimental Studies on Empty Frame Removal

We first discuss the Caltech camera traps (CCT) dataset and data split for addressing
empty frame removal.

Caltech Camera Traps (CCT) Dataset and Data Split for Addressing Empty
Frame Removal: Caltech camera traps (CCT) dataset is a camera trap sequence data
that was collected unobtrusively from Southwestern United States across 140 locations.
It is a sequence of 243,100 frames. The wildlife recorded in this dataset is badger, bat,
birds, bobcat, cat, coyote, cow, deer, dog, fox, insect, lizard, mountain lion, opossum,
pig, rabbit, raccoon, rodent, skunk, and squirrel. Alike most camera trap sequences
more than 70% frames are empty. Therefore, the distribution of frames is biased toward
frames that are empty as illustrated in Fig. 2. Although on average more than 70%
frames are empty, from Fig. 2 it is seen that the percentage of empty frames per loca-
tion greatly varies between 10%-97%. Here, an wildlife/animal frame means an image
with an animal or bird present and an empty frame means an image with no animals or
birds. Before experimentation, we select equal numbers of wildlife containing frames
and empty frames for the training data from each location. This is done to prevent the
leveraged algorithms from developing a bias towards the more commonly occurring
class; empty frames. The data split is given in Table 2. The training data comprises
camera trap sequences from 20 random locations. A total of 8, 028 images having equal
numbers of wildlife containing frames and empty frames is extracted, from which 70%
is used for training and 30% is used for testing. Thus, 5, 638 training and 2, 390 testing
images are used. We create another set for testing from the remaining 120 locations that
are not seen by the algorithm at the time of training. By additionally testing our models
on unseen locations we analyze the domain generalisability of the models. Therefore,
all in all, we create two test sets; (1) ‘cis’: from 20 locations seen by the algorithm at the
time of training and (2) ‘trans’: from 120 locations not seen by the algorithm at the time
of training. Therefore, the ‘trans’ set consists of frames from 120 locations accounting
for 105, 745 empty frames and 35, 498 wildlife frames with background characteristics
different from ‘cis’ locations.

Table 2. Data splits for empty frame removal.

Number of locations Wildlife frames Empty frames Total

Train: ‘cis’ 20 2819 2819 5638

Test: ‘cis’ 20 1195 1195 2390

Test: ‘trans’ 120 25,000 105, 745 141, 243
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Fig. 2. Number of wildlife containing frames and empty frames vs. locations in the CCT dataset.

Experimental Setup and Results for Empty Frame Identification and Removal:
ViT, DETR, ViDT, and Faster R-CNN is used for segregating empty frames from
wildlife frames. Empty frame identification is posed as a classification problem with
two classes: (i) empty frames and (ii) frames containing wildlife. We use percentage
accuracy (% of images correctly classified into an empty or wildlife frame) as the met-
ric for evaluating performance. The models are trained on ‘cis’ locations and tested on
both ‘cis’ and ‘trans’ location sets.

The ViT model is trained using AdamW [17]. The weight decay parameter is set
to 0.0001 and the initial learning rate is 0.001. Random rotation, horizontal flip and
zoom are the data augmentation techniques used in conjunction with ViT experiments.
DETR and ViDT models are finetuned with AdamW [17] with 0.0001 learning rate.
Random horizontal flips is employed for data augmentation in experiments with DETR
and ViDT. When training images are passed to the trained model, it is observed that
all wildlife frames are recognised with a confidence score of 0.95. Therefore, 0.95 is
chosen as the confidence threshold for identifying and sieving out empty frames. While
testing, a frame under scrutiny is deemed empty if the confidence score for wildlife pres-
ence is below 0.95. Pretrained Faster R-CNNwith ResNet-101 backbone is availed from
Detectron2 codebase [32]. For experiments with Faster R-CNN the absence of wildlife
is marked in the empty frames by using [0, 0, 0, 0] co-ordinate values for bounding box
annotations; to represent null dimensions and area. A null tensor for both confidence
score and bounding box is expected as output for correct identification of empty frame.
Stochastic gradient descent (SGD) with momentum set at 0.9 is used. The initial learn-
ing rate 0.001 is decayed by a factor of 0.05 after every 1000 epochs.

The performance of different deep learning techniques: ViT, DETR, ViDT, and
Faster R-CNN on empty frame identification and removal is given in Table 3. Among
these four algorithms, the best accuracy (87.28%) for ‘cis’ locations is given by ViT.
The best overall performance on ‘trans’ locations 67.83% is set by DETR. DETR, ViDT
and Faster R-CNN for wildlife containing frames bestow an accuracy of greater than
90% but for an empty frame, the accuracy is 61.51%, 59.51 and 40.59% respectively.
These models detect birds or animals with high precision but a significant number of
empty frames are misclassified as wildlife containing frames. Thus the objective of
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identifying and discarding empty frames will not be met. Especially in the case of
Faster R-CNN, there are many false positives as more than 66% of empty frames are
being recognised as wildlife frames. At both ‘cis’ and ‘trans’ locations we see that ViT
has the highest accuracy in correctly classifying empty frames. The primary objective
of empty frame removal is to identify empty frames correctly. Therefore, we choose
ViT for empty frame removal.

Domain Generalisability: It is observed from Table 3 that ViT gives 87.28% accuracy
on ‘cis’ and 64.28% accuracy on ‘trans’. This provides evidence of the existence of a
generalisation gap between seen and unseen domains. At ‘cis’ locations, the precision
for correctly identifying empty frames is higher and on the contrary, for ‘trans’ loca-
tions the precision for correctly classifying wildlife frames is higher. The background
at a particular location for empty frames and wildlife containing frames is the same.
Hence, for ‘cis’ locations the algorithm develops a bias for learning empty frame char-
acteristics. On the flip side, for ‘trans’ locations the same wildlife species as in ‘cis’
are seen but the background differs leading to higher precision for classifying wildlife
frames. Faster R-CNN gives an accuracy of 65.35% at ‘cis’ locations and accuracy of
45.24% at ‘trans’ locations, and hence there exists a performance gap across seen and
unseen locations. ViDT gives an accuracy of 78.90% on ‘cis’ locations and an accuracy
of 65.08% on ‘trans’ locations. The precision obtained in classifying wildlife frames
in both ‘cis’ and ‘trans’ is fairly higher than in classifying empty frames. We deduce
that the generalisation gap is fairly less in ViDT due to the hierarchical cross-attention
mechanism. DETR gives an accuracy of 80% on ‘cis’ locations and an accuracy of
67.83% on ‘trans’ locations. It is inferred that DETR shows least generalisation gap
due to transformer attention-based encoder-decoder self and cross attention.

Table 3. Accuracy in % for empty frame identification from ViT, DETR, ViDT and Faster R-
CNN.

Model ‘cis’ ‘trans’

Wildlife Empty Total Wildlife Empty Total

ViT 84.60 89.96 87.28 69.29 63.26 64.28

DETR 98.49 61.51 80.00 90.71 62.43 67.83

ViDT 98.29 59.51 78.90 88.76 59.43 65.08

Faster R-CNN 98.74 31.96 65.35 95.06 33.47 45.24

Supposedly, we extend our algorithms for detecting rare species. We would retain
any frame having even the slightest hint of an uncommon species as they are extremely
difficult to capture in camera trap sequences. Therefore, we would slacken discard-
ing empty frames if the price is losing frames containing rare species. DETR, ViDT,
and Faster R-CNN have nearly the same performance while classifying wildlife frames
(98.49%, 98.29%, and 98.74% respectively) on ‘cis’ locations. However, DETR out-
performs Faster R-CNN approximately by 30% and ViDT by 2% on ‘cis’ locations. On
‘trans’ locations DETR has nearly the same performance as ViT (≈ 63%) for empty
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frame removal, but it is the most suitable model for detecting infrequently encountered
species. This is so because DETR recognises 90.71%wildlife frames correctly and only
9.29% of wildlife frames get misclassified as empty frames. In comparison, Faster R-
CNN (95.06%) gives greater accuracy than DETR in detecting wildlife frames but the
number of empty frames it is detecting correctly is 30% less for ‘trans’ locations, totally
defeating the purpose of empty frame removal. The presence of surfeit empty frames
may be counterproductive and may obfuscate the process of recognising rare species in
Faster R-CNN.

Generally, camera traps record colossal amounts of data consisting of more than
70% surfeit empty frames. Thus, the sweet spot between detecting wildlife species and
eliminating empty frames can be achieved by using ViT. To further affirm ViTs prowess
on the empty frame removal task, we visually scrutinize the performance of ViT on
1000 randomly selected frames from ‘cis’ and ‘trans’ location sets each by plotting
self-attention maps. The plotted self-attention maps help us to verify if the attention
is indeed focusing itself on birds and animals present in wildlife containing frames.
Some self-attention maps plotted for visual scrutiny are shown in Fig. 3. From Fig. 3
(a) and (b) we see that the attention is solely focused on the animal in wildlife con-
taining frames. From Fig. 3 (c) and (d) we observe that the attention is not localized
but dispersed in empty frames. Approximately 82% and 73% of the attention maps
for wildlife containing frames from ‘cis’ and ‘trans’ respectively have attention rightly
focusing itself on the bird or animal present in the frame irrespective of pose variations,
poor illumination, masquerading camouflage, low contrast and occlusion. Further, we
observe that for approximately 90% of the empty frames at ‘cis’ locations the attention
score is negligible, and for 61% of the empty frames at ‘trans’ location the attention is
either scattered or negligible. Therefore, through visualization of attention maps, it is
seen that indeed ViT accurately focuses its attention on the birds or animals present and
is consignable for the camera trap processing pipeline.

Fig. 3. Attention map from ViT: (a) ‘cis’ and (b) ‘trans’: The attention is rightly focused on the
animal in frames containing wildlife. (c) ‘cis’ and (d) ‘trans’: The attention is not focused but
negligible or dispersed in empty frames.
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The next section presents results on detecting (localizing) wildlife.

4.2 Experimental Studies for Wildlife Detection

The dataset used and data split for the wildlife detection task is discussed first. Then we
discuss the results on wildlife detection and localization.

CCT Data for Wildlife Detection and Localization: We train our model for wildlife
detection and localization task on 20 randomly chosen ‘cis’ locations same as in the
empty frame removal task. We opt to test the applicability of our models on both ‘cis’
and ‘trans’ locations to critically assess the prowess of our models in the light of domain
generalisation. The data split for the wildlife detection task is given in Table 4. The
number of training images used for the wildlife detection task is 13, 553 with 14, 071
bounding box annotations. The validation set has 3, 484 wildlife images with 3, 582
bounding box annotations. The ‘cis’ test set has 15, 827 images with 16, 395 bound-
ing box annotations. The ‘trans’ set consists of 120 unseen locations with 25, 000 test
images and 25, 895 bounding box annotations. The ‘trans’ set of locations is contrived
to be completely unseen by the model, hence we do not extract validation data from
‘trans’ locations.

Table 4. Data splits for wildlife detection task.

Data Number of
locations

Number of
frames

Number of bounding box
annotations

Train: ‘cis’ 20 13,553 14,071

Validation: ‘cis’ 20 3,484 3,582

Test: ‘cis’ 20 15,827 16,395

Test: ‘trans’ 120 25,000 25,895

Evaluation Metric for Wildlife Detection: The metric used for evaluating the perfor-
mance of algorithms for wildlife detection task is COCO average precision (AP). The
computation of COCO AP is based on a preliminary calculation of Intersection over
Union (IoU) between predicted and ground truth bounding boxes. IoU calculation is
illustrated in Fig. 4. IoU is calculated as the ratio between the area of intersection and
the area of union between predicted and ground truth bounding boxes. The area that
is common overlaps or intersects between the predicted bounding box and the ground
truth bounding box is the area of intersection. The resulting area if we fuse the predicted
and ground truth bounding boxes together is the area of union. Figure 5 depicts sample
IoU scores computed between predicted and ground truth bounding boxes. From Fig. 5
(a) we see that an IoU score of 0.9 is nearly a perfect overlap between the predicted and
ground truth bounding boxes. Hence, an IoU score of 0.9 and above is considered near-
perfect detection. From Fig. 5 (c) we can observe that an IoU score of 0.33 between the
predicted and ground truth boxes is greater than the 50% area overlap. It is interesting
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to note from Fig. 5 (d) that a seemingly low IoU score 0.14 is an area-wise overlap
of nearly 25% between predicted and ground truth boxes. The bottom line is that the
IoU score being a ratio between the area of intersection and area of union should not
be directly perceived as a percentage of area overlap. Generally, the percentage of area
overlap is greater than the absolute IoU score. We observe that IoU is indeed a strict
metric.

After the preliminary calculation of IoU scores between predicted and ground truth
bounding boxes, the next step for the computation of COCO AP is to demarcate the
predictions into true positives (TP), false positives (FP), false negatives (FN), and true
negatives. In the detection paradigm, a detection is considered a true positive (TP) if the
IoU score between the predicted and ground truth box is above a threshold, otherwise,
it is considered a false positive. In Fig. 6 (a), the IoU score between the predicted and
ground truth bounding box is 0.53. If the IoU threshold is set at 0.5, then Fig. 6 (a) is a
true positive (TP). On the contrary, if the IoU threshold is set at 0.75, then it is a false
positive (FP). The case where there is no detection for a frame with an animal is called
false negative (FN) as shown in Fig. 6 (c). A true negative (TN) is an empty frame that
does not contain any animal. After demarcating TP, FP, and FN, precision ( TP

TP+FP )

and recall ( TP
TP+FN ) are calculated for a decided IoU threshold.

Fig. 4. Intersection over union (IoU) calculation.

Fig. 5. Sample IoU scores (boxes in green are ground truth and boxes in blue are ground truth).
(Color figure online)
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Thereby, COCO AP 0.5–0.95 is calculated as the average precision over multiple
IoU thresholds (10 IoU thresholds) ranging from 0.5 to 0.95 with a step size of 0.05.
Mathematically, the average precision (AP) is defined as the average of precision values
at 101 equally spaced recall levels [0, 0.01 . . ., 1] at a step size of 0.01 as given below:

AP =
1
101

∑

r∈{0.0,0.01,...,1}
pinter-p (r) (1)

The interpolated precision, pinterp (r) in the above equation, is calculated at each
recall level, r, by taking the maximum precision measured for that r :

pinterp (r) = max
r̃:r̃≥r

p(r̃) (2)

Fig. 6. Sample bounding predictions. (a) IoU score is 0.53; a true positive (TP) if the IoU thresh-
old is 0.5 and a false positive (FP) if the IoU threshold is 0.75. (b) IoU score is 0.37; a false
positive (FP) because the IoU threshold is generally set at 0.5 or above. (c) No detection output;
false negative. (d) True negative as the frame is empty and has no animal in it. (The boxes in red
are ground truth and in blue are predicted). (Color figure online)

In Eq. 2 p(r̃) is the measured precision at recall r̃. COCO AP 0.5 and COCO AP 0.75 is
calculated on similar lines as that of COCO AP 0.5–0.95. The difference is that instead
of using multiple thresholds, 0.5 and 0.75 are taken as IoU thresholds for COCO AP
0.5 and COCO AP 0.75 respectively.

Experimental Results for Wildlife Detection and Localization Task: The perfor-
mance of DETR, ViDT and Faster R-CNN on wildlife detection is given in Table 5. It
can be seen that DETR and ViDT have less generalisation gap and have an upper hand
over Faster R-CNN in the wildlife detection task. It is deduced that computation of
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pixel-wise relationship by the self and cross attention mechanism is the reason for the
superior performance of DETR and ViDT. DETR has marginally higher performance
than ViDT. Thus, we employ DETR for further scrutiny.

Table 5.Wildlife detection results in AP (COCO AP 0.5–0.95).

Test data Faster R-CNN DETR ViDT

‘cis’ 54.8 56.8 56.0

‘trans’ 52.9 55.2 55.1

Domain Generalisability: In the case of wildlife detection, we observe from Table 5
that the generalisation gap is negligible across ‘cis’ and ‘trans’ locations for any of the
three algorithms.

Sequence Analysis of Camera Trap Images with Results fromDETR:Whenever the
camera trap sensor receives a trigger to capture images, a varying length of sequence
consisting of 1–5 frames is recorded [3]. It is assumed that at least one frame will record
the bird or animal. Thus, we exploit frame sequence information as in [3] in two ways:

1. Most Confident: Wildlife instance in a sequence of frames is considered correctly
detected if the frame associated with the highest detection score in the sequence has
an IoU more than 0.5.

2. Oracle: Wildlife instance in a sequence of frames is considered accurately detected
if any frame has an IoU more than 0.5.

For sequence analysis frames with multiple wildlife instances are not considered.
The results for sequence analysis are given in Table 6. Without sequence informa-
tion an average precision (COCO AP 0.5) of 90.1 on ‘cis’ and 89.2 using on ‘trans’.
With sequence information ‘most confident’ and ‘oracle’ we wield an average precision
(COCO AP 0.5) of 93.0 and 96 respectively on ‘cis’. With sequence information ‘most
confident’ and ‘oracle’ we obtain average precision (COCO AP 0.5) of 91.4 and 94
using respectively on ‘trans’. Multiple frames in a sequence are shot to capture wildlife
instances accurately at least in one frame. Therefore, exploiting sequence information
for detection evaluation is appropriate. 94 average precision (COCO AP 0.5) points on
‘trans’ seem to be up to the mark against the dire challenges in camera trap sequences;
motion blur, camouflage, only a part of bird or animal captured, low illumination, nearly
flat tonal gradient and occlusion.

Table 6. Sequence analysis of camera trap data using DETR.

‘cis’ ‘trans’

No sequence
information

Most
Confident

Oracle No sequence
information

Most
Confident

Oracle

AP 0.5–0.95 56.9 62.9 69.4 55.4 61.2 68.5

AP 0.5 90.1 93.0 96 89.2 91.4 94
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For further scrutinizing the performance of DETR on camera trap sequences 1000
images are randomly selected. Some images used for visual scrutiny are shown in Fig. 7.
Near perfect detection is observed in 93.1% of the daytime images (Fig. 7 (a)) and in
81.39% of low-light images (Fig. 7 (b) and (c)). Despite the lack of luminance and
colour gradient in a fair share of images, DETR accurately locates birds or animals
in 85.77% images. Most poor localisations arises due to deceiving animal-like back-
ground clutter (Fig. 7 (d)), due to extreme low illumination (Fig. 7 (e)), and due to deep
camouflage (Fig. 7 (f)). Certainly, in many such cases, it is not evident if the animal is
present or not.

The DETR encoder self-attention using four reference points is shown in Fig. 8.
The self attention visualised for a reference point illustrates the computed relationship
between the reference points and the remaining points. This visualisation gives insights
into how accurately the model learns to knit context semantics. In Fig. 8 it is seen that
for all reference points belonging to the deer ((a), (b) and (c)), the model assigns maxi-
mum weight to the point belonging to the deer. The self-attention matrix visualised for
three spatially apart reference points belonging to the deer is approximately the same.
Thus, it is deduced that the model correctly knits related context semantics. It is also
observed that in each self-attention map (Fig. 8 (a), (b) and (c)) the background pixels
are weighted less, and hence the model learns to filter out background clutter. Fur-
ther, for a background reference point (d), the overall background pixels are assigned
higher weight in comparison to animal pixels. This reaffirms that the DETR encoder
weaves long-range dependencies. The ability to have a global perspective beyond the
local restrictive field of a convolution filter is the primary reason for the better perfor-
mance of DETR on camera trap sequences.

Fig. 7. DETR detection output on ‘trans’ locations. (a) IoU equal to 0.99, (b) IoU equal to 0.79,
(c) IoU equal to 0.63, (d) False positive; IoU equal to 0.39, (e) False negative detection, and
(f) False positive detection (The bounding boxes in red are ground truth and boxes in blue are
predicted). (Color figure online)
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Fig. 8. Visualization of DETR encoder self-attention weights for a ‘trans’ image; (a), (b) and (c):
self attention map for reference point belonging to the animal. (d): self attention map for reference
point belonging to background.

4.3 Experimental Studies on Species Recognition from Camera Trap Sequences

The dataset and data split for species classification task from camera trap sequences are
discussed beneath.

CCT Data for Species Recognition from Camera Trap Sequences: We use the CCT
dataset for species recognition from camera trap sequences. The wildlife category labels
identified in the dataset are: badger, bat, birds, bobcat, cat, coyote, cow, deer, dog,
fox, insect, lizard,mountain lion, opossum, pig, rabbit, raccoon, rodent, skunk,
and squirrel. We split the data in congruence to empty frame removal and wildlife
detection experiments. The data split is shown in Table 7. 13, 553 images with species
labels from 20 ‘cis’ locations are apportioned for training. The ‘cis’ test set has 15, 827
images and ‘cis’ validation set has 3, 484 images. The ‘trans’ has 25, 0000 images for
testing.

Table 7. Data splits for species classification task.

Data Number of locations Number of images

Train: ‘cis’ 20 13553

Validation: ‘cis’ 20 3484

Test: ‘cis’ 20 15827

Train: ‘trans’ 120 25000

Experimental Results for Species Classification Task from Camera Trap
Sequences: DETR, ViDT, Faster R-CNN, ViT, inception v3, and ResNet 50 are used
for our experiments. For species classification, the input to the algorithms is the output
of the second stage from the proposed pipeline for processing camera trap sequences.
We use percentage accuracy (% of images correctly classified into the respective species
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category) as the evaluation metric. DETR and ViDT models are finetuned with AdamW
with a learning rate of 0.0001. Random horizontal flip is used as the data augmenta-
tion technique. Congruous with our experiments on empty frame removal and wildlife
detection this choice of hyperparameters is found to be most suitable. Pretrained Faster
R-CNN with ResNet-101 backbone is availed from Detectron2 codebase [32]. Stochas-
tic gradient descent (SGD) with momentum set at 0.9 is used. The initial learning rate
0.001 is decayed by a factor of 0.05 after every 1000 epochs. Inception v3 and ResNet
50 are trained using Adam with a learning rate of 0.0001. ViT is trained using AdamW
with a learning rate of 0.001.

The experimental results of species classification from the leveraged deep learning
techniques DETR, ViDT, Faster R-CNN, ViT, inception v3 and ResNet 50 are given in
Table 8. ViDT gives 90.77% accuracy on ‘cis’ locations and 72.12% accuracy on ‘trans’
locations. DETR gives 86.85% accuracy on ‘cis’ locations and 61.90% accuracy on
‘trans’ locations. ViDT and DETR algorithms are consignable considering the adverse
challenges in species identification from camera trap sequences. The merit of ViDT and
DETR can be attributed to the coalescing of context semantics by attention-based global
reasoning and pixel-wise self-attention. Faster R-CNN gives 74.2% accuracy on ‘cis’
locations and 52.08% accuracy on ‘trans’ locations. Congruence to our observation in
empty frame removal and wildlife detection experiments, the performance of Faster
R-CNN is subordinate to DETR and ViDT in camera trap sequence processing. From
Table 8 it seen that 91.75%, 74.58% and 84.93% accuracy is given by inception v3, ViT
and ResNet 50 respectively on ‘cis’ locations and 72.83%, 55.18% and 68.42% is given
by inception v3, ViT and ResNet 50 on respectively ‘trans’ locations. We see that the
performance of ViT is subordinate to inception v3 and ResNet 50. In agreement with
the existing literature, we see that the transformer attention-based classification models
are yet to prove their dominance over CNN-based classification models in image clas-
sification tasks. The overall highest accuracy is given by inception v3. The success of
inception v3 is accredited to the inception modules comprising the factorised convolu-
tion operation. Hence, experimentally it is established that the factorised convolution
is indeed helpful in capturing context semantics and features across various scales and
hierarchies in the case of camera trap sequences.

Table 8. Species classification results from camera trap sequences (accuracy in %).

Test location DETR ViDT Faster R-CNN ViT Inception v3 ResNet 50

‘cis’ 86.85 90.77 74.2 74.58 91.75 84.93

‘trans’ 61.90 72.12 52.08 55.18 72.83 68.42

Domain Generalisability: Consistent across all algorithms, we observe from Table 8
that the performance on ‘cis’ locations is better than on ‘trans’ locations. This obser-
vation directly establishes a link between the difference in image distribution and char-
acteristics in ‘cis’ and ‘trans’ location sets. Upon visual scrutiny, it is observed that
the ‘trans’ locations are comparatively more challenging due to the larger degree of
motion blur observed in nighttime images causing the animals in ‘trans’ to appear less
prominent. Another major factor causing the algorithms to work less proficiently on
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‘trans’ locations is high intra-class variance, especially amongst bird, cat, dog, deer
and rabbit. At ‘trans’ locations different kinds of birds are present, different breeds of
dog and cat are present, sexual dimorphism is observed in deer, and the fur and coat
of rabbit vary in colour. In addition, to intra-class variance high inter-class similarity
is also observed. For example; coyote and fox appear very similar and are difficult to
tell apart, especially in images with only a part of coyote or fox captured. Despite the
significant observable difference in flora and fauna at ‘trans’ locations inception v3 and
ViDT generalise well to unseen locations.

Experiment to Verify the Need for Detection Prior Species Classification: In the
above experiment set following the proposed approach for processing camera trap
sequences, we feed camera trap sequences into the classification models after empty
frame removal and wildlife localization and detection. To check the significance of
detection and localization before species classification we pass camera trap sequences
to ViT, inception v3 and ResNet 50 directly after the empty frame removal stage. The
results for species classification from full images are given in Table 9. We observe
that the performance of inception v3, ResNet 50 and ViT significantly drops when fed
with full images from camera trap sequences. The presence of background confounds
the algorithms. Therefore, we conclude that for species recognition from camera trap
sequences it is indeed required that after removing empty frames, birds and animals
should be localized and detected before feeding to classification algorithms.

Table 9. Species classification results from camera trap sequences on full images (accuracy
in %).

Test location Inception v3 ResNet 50 ViT

‘cis’ 51.64 54.52 48.49

‘trans’ 35.39 37.58 31.54

We culminate the experimental analyses on species classification from camera
sequences and conclude that inception v3 is the most suitable choice amongst all the
leveraged algorithms.

Discussion on the Proposed Pipeline: Persuaded by our results, we propose a three-
stage end-to-end pipeline for empty frame removal, wildlife detection and species iden-
tification in camera trap sequences. The proposed pipeline is shown in Fig. 1. The pro-
posed pipeline first filters out the empty frames and then locates and finally recognises
and classifies the species of the bird or animal present. We use ViT for empty frame
removal, DETR for detection and inception v3 for the classification task. The proposed
pipeline is applied to the entire data and 85.42% of the total empty frames are discarded.
Approximately 76 GB of total 102 GB of the camera trap sequence data used for testing
contains empty frames. By removing 85.42% of empty frames, roughly 65 GB of the
space used in futile for storing empty frames is freed. In the next stage, 93.41% of the
wildlife is detected with IoU greater than 0.5 and 98.56% of the wildlife is detected
with IoU greater than 0.3. In the third stage, 90% of birds and animals are classified
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correctly. The results from the pipeline are shown in Fig. 9. We see in Fig. 9 (a) that
despite low illumination the raccoon is correctly detected and classified. In Fig. 9 (b)
it is seen that even if the part of coyote is captured, it is detected and classified cor-
rectly. In Fig. 9 (c) it is seen that the cat is detected correctly but incorrectly classified
as badger. In Fig. 9 (c), it is indeed difficult to see the animal due to occlusion and
extremely low light. In Fig. 9 (d), the rabbit is detected with IoU less than 0.5 but is
correctly classified. We maintain our pipeline to be of three stages considering the dire
challenges of camera trap sequences wherein in many cases it is likely the detection is
accurate but the classification is not and vice versa. Therefore, a three stage pipeline
allows us to leverage at least one correct output.

We compare the performance of the proposed camera trap processing pipeline with
the camera trap processing pipelines in the existing literature. The pipeline in [3] pro-
cesses camera trap sequences (containing only wildlife containing frames) using Faster
R-CNN for wildlife detection and Inception v3 for species classification on images
cropped using ground truth bounding box annotation. To replicate the pipeline in [3],
we input wildlife containing frames into Faster R-CNN for wildlife detection and input
image cropped using bounding boxes obtained from Faster R-CNN into Inception v3.
We ablate the empty frame removal block in our pipeline and directly feed in camera
trap sequences with only wildlife containing frames for comparison with [3]. The com-
parison result is shown in Table 10. Upon comparison, we see that our algorithms out-

Fig. 9. Results from the proposed pipeline for processing camera trap sequences. (a) raccoon
correctly detected with IoU 0.9 and correctly classified, (b) coyote correctly detected with IoU
0.97 and correctly classified, (c) cat detected correctly with IoU 0.79 but incorrectly classified as
badger (d) rabbit detected with IoU less than 0.5 but correctly classified.
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perform at both stages. To replicate the pipeline given in [33], we feed in only wildlife
containing frames and use DenseNet-161 used for species classification as in [33]. For
comparison with the pipeline given in [33], we ablate empty frame removal and wildlife
detection blocks and directly feed in camera trap sequences with only wildlife contain-
ing frames with cropping. We see from Table 11 that our proposed pipeline outperforms
the pipeline given in [33]. The pipeline given in [5] is used for automatic detection and
individual recognition in patterned animal species. Therefore, the scope of work in [5]
is limited to individual identification and is different from our objectives. Hence, it is
not fair to compare the pipeline given in [5] with our pipeline.

Table 10. Comparison of our proposed pipeline with pipeline given in [3] (detection performance
in COCO AP 0.5–0.95 and classification accuracy in %).

Stage Pipelines tested on ‘cis’ Pipelines tested on ‘trans’

Ours From [3] Ours From [3]

Wildlife detection 56.8 54.8 55.2 52.9

Species classification 91.75 83.49 72.83 66.13

Table 11. Comparison of our proposed pipeline with pipeline given in [33] (classification accu-
racy in %).

Stage Pipelines tested on ‘cis’ Pipelines tested on ‘trans’

Ours From [33] Ours From [33]

Species classification 91.75 46.1 72.83 31.14

5 Conclusion

We propose a three-stage pipeline for processing camera trap sequences. We envisage
that the pipeline for processing camera trap sequences will reduce the time taken to
extract valuable statistics. Thus, enabling camera trap sequences to be used for large-
scale comprehensive environmental studies. Alone, empty frame removal through deep
learning techniques can fasten the camera trap processing by a few months. By dis-
carding empty frames at regular intervals approximately 70% of the total storage space
required to store camera trap sequences can be saved. Most camera trap data reposi-
tories are untapped due to their colossal size. Unless the camera trap data is used to
obtain ecological insights and subsequent environmental policy and decision-making,
the deployment of camera traps across locations is futile. Therefore, by addressing
wildlife detection and species classification through deep learning techniques we speed
up the extraction of ecological statistics from camera trap sequences and render cam-
era trap sequences serviceable. Despite the preposterous challenges: low illumination,
negligible colour tones, extreme occlusion, masquerading camouflage, inexact perspec-
tive, and small ROI; the proposed approaches give a consignable performance. The
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visually imperceptible wildlife presence in camera traps can be located and identified
decreasing the burden on wildlife experts. Further, we obtained competent performance
while critically assessing the adroitness of the proposed approaches in empty frame
removal, wildlife detection, and species classification across new and unseen locations.
Therefore, the camera trap processing pipeline can be used directly without retraining
the leveraged algorithms in new and unseen locations. In future, we plan to make the
proposed pipeline even more robust against domain generalisation challenges by incor-
porating an additional functional block for open-set recognition. Further, as the species
distribution in nature is heavily imbalanced and non-uniform, we plan to improve the
performance of the leveraged algorithms on less represented classes through few-shot
recognition.
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