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Chapter 7
Nanoparticles in Dye Degradation: 
Achievement and Confronts

Rekha Dhull, Kavita Rathee, and Vikas Dhull

Abstract  At present, the textile industries are growing very fast to meet the demand 
of exponentially growing population. They discharge effluent in an open environ-
ment, which is responsible for causing serious health concerns to the life forms and 
polluting the environment due to the presence of dye. So, it is necessary to degrade 
the harmful dyes from the effluent before their discharge in the surroundings. 
Several conventional methods are in use for dye removal such as activated carbon 
adsorption, ozonation, electrochemical oxidation, forward osmosis, biological deg-
radation, coagulation, and flocculation, but these methods are inefficient in success-
ful degradation of dye from the effluent and are also not environmentally friendly. 
Nowadays, nanomaterials have found a wide range of applications in different fields 
such as analytical, cosmetics, agriculture, electronics, and medical applications. 
This is due to their unique properties like small in size, large surface area, highly 
electrocatalytic, biocompatible, antimicrobial properties, and so on. These unique 
properties have attracted different researchers to use them for degradation of dyes 
from the effluent of various industries. This review highlights the toxicity caused by 
the dye-containing effluent and the mechanism of degradation of dye using nano-
materials. The chapter also emphasizes on the use of nanomaterials (nanoparticles, 
carbon nanotubes, nanorods, graphene sheets, and fullerene structure) for dye 
removal.
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7.1 � Introduction

A dye is a colored compound that possesses affinity to bind at specific substrate and 
imparts color to that substrate. The dyes have been categorized into ionic and non-
ionic dyes. The ionic dyes consist of cationic and anionic dyes. These anionic dyes 
are further subcategorized into acidic, reactive, and direct dyes. On the other hand, 
nonionic dyes have been categorized into vat and disperse dyes, as shown in Fig. 7.1 
(Tan et al. 2015). Presently, dyes have found a wide range of applications in paper-
making, food, pharmaceuticals, cosmetics, paint, textile, and leather industries 
(Nautiyal et al. 2016). To fulfill the demand of dyes in various industries, around 1.6 
million tons of dyes have been produced every year. Around 10–15% of this total 
produced dyes are being discharged unused as effluent in an open environment 
(Hunger et al. 2003). These untreated and unused dyes present in effluent are com-
posed of harmful chemicals, resulting in environment contamination. The toxic 
dyes percolate to groundwater via soil finally leading to groundwater contamina-
tion. As a result of this, these toxic dyes enter into the food chain causing serious 
health concerns in humans as well as in animals. These dyes are responsible for 
causing mutagenic, carcinogenic, and teratogenic effects in living beings (Alves de 
Lima et al. 2007). So, it is necessary to treat the dyes from the effluent before their 
discharge into the environment.

Several methods have been reported to treat these harmful dyes such as adsorption 
using activated carbon (Ruhl et al. 2014), ozonation of dyes (Punzi et al. 2015), 
photocatalytic degradation of azo dyes hydrothermally (Saleh 2019), electrochemi-
cal oxidation (Gao et al. 2019), biological treatment of textile dyes (Paz et al. 2017), 
forward osmosis (Korenak et al. 2019), coagulation-flocculation-based treatment of 
dye (GilPavas et al. 2017) using nanofiltration membranes (Wang et al. 2018), and 

Fig. 7.1  Schematic diagram of classification of dyes
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many more. Among all methods reported above, the activated carbon has been 
extensively used for the successful removal of dyes from effluent (Carrott et  al. 
1991). But the drawback of using activated carbon for dye removal is that it is 
expensive as its production and reactivation require steam, which is maintained at 
high pressure, and it further increases the dye removal cost (Marsh and Rodríguez-
Reinoso 2006). To make the process cost-effective, investigators have reported the 
use of adsorbents for dye removal, which include leaf-based adsorbents (Bulgariu 
et al. 2019), adsorption using palm oil (Hameed et al. 2009), calcium biochar adsor-
bent derived from crab shell (Dai et al. 2018), geopolymer paste adsorbent (Maleki 
et al. 2018), and palm oil-derived microcrystalline cellulose (Tan et al. 2018). The 
above adsorbents have been successfully used for dye removal from the effluent. As 
adsorption depends solely on the surface area, it is necessary to enhance surface 
area of the adsorbents.

This requirement can be easily fulfilled using nanomaterials, especially 
nanoparticles. Metallic nanoparticles being small in size range from 1 to 100 nm 
and offer high surface area. Nowadays, nanomaterials are considered as an important 
candidate for adsorption of dyes due to their high surface area, presence of short 
intraparticle distance with respect to diffusion, pore size tunability, possess large 
surface area, high mechanical strength, presence of active sites, and low mass 
(Sweet et al. 2012; Mallakpour and Rashidimoghadam 2019). This review focuses 
on dye removal using nanoparticles, carbon nanotubes, nanorods, graphene, and 
fullerene with the amount of adsorbent used and the efficiency of dye removal.

7.2 � Toxic Effect of Dye

In the textile industry, synthetic dyes have been extensively used for developing 
colorfast and bright hues. But the toxic nature of these synthetic dyes resulted in 
carcinogenic effects on humans and animals and also affects the environment. The 
discharge from these industries comprises of dyes along with sulfur, soaps, dye fix-
ing agents, and other nonbiodegradable chemicals resulting in generation of toxic 
effluent. When this untreated effluent is discharged in open environment, it leads to 
clogging of soil pores, which results in decline of soil productivity, and also affects 
the quality of drinking water (Kant 2012).

Another source of toxic effluent is the paper and pulp industry, which contain 
dyes and lignocellulose material. Their discharge imparts dark color, increase in 
chemical oxygen demand, and imbalances pH of water (Pokhrel and Viraraghavan 
2004). This is mainly due to the presence of dyes and other organic ligands from 
wood and the tannins, lignin, etc. (Lacorte 2003). The untreated effluent is also 
responsible for the reduction in transparency of water affecting photosynthetic 
activity of aquatic plants and animals, resulting in death (Meriläinen and 
Oikari 2008).

Also, effluent from the cosmetic industry is nonbiodegradable due to the presence 
of organic dyes, which are polar in nature (Chen et  al. 2007). So, its untreated 
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discharge results in increase of chemical oxygen demand. Effluent-containing dyes 
from other industries such as paint and pigmentation also lead to serious health 
concerns to all life forms and the environment.

7.3 � Mechanism of Dye Removal Using Nanomaterials

The dyes have been successfully removed using a variety of nanomaterials via 
photodegradation. The process of photodegradation takes place on surface of 
nanomaterial in the presence of ultraviolet light, which excites electrons from 
valence band to conduction band leaving behind holes. The potential at valence 
band (h+) is positive, which can easily produce hydroxyl radicals (OH) on the 
surface of the nanomaterial. On the other hand, potential at conduction band (e−) 
will be negative, which is helpful in reduction of oxygen. The oxidizing nature of 
OH radical will degrade dye present in the vicinity of nanomaterial surface as 
illustrated in Fig. 7.2 (Khataee and Kasiri 2010). Photocatalysis of dye was also 
reported with SnO2 nanotube. The mechanism is nearly the same as discussed above 
in the case of nanoparticle. When nanotubes are exposed to light, photon is absorbed, 
and an electron is ejected from valence band of the nanotube, which moves toward 
conduction band leaving behind a hole in valence band. During this, holes start 
migrating toward conduction band, and electrons start moving to valence band. This 
movement will increase charge transfer leading to oxidation and reduction of 
oxygen and hydroxyl molecule, respectively. When the surface of nanotube is 
exposed to light, oxygen at the surface yield superoxide radical (°O2

−). As a result 
of this, new energy levels in bandgaps are created, which helped in the degradation 
of dye molecule to carbon dioxide and water as illustrated in Fig. 7.3 (Sadeghzadeh-
Attar 2018). The photocatalytic mechanisms of dye removal using nanoparticles 
and nanotubes are discussed above, which showed light-dependent degradation of 

Fig. 7.2  General mechanism of photodegradation of dye using nanoparticle
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Fig. 7.3  General mechanism of photodegradation of dye using nanotube

dye. The degradation process involves excitation of electrons from valence band of 
nanomaterial leading to the formation of holes in valence band and their successful 
migration to conduction band. This helps in the enhancement of charge transfer 
process during the oxidation and reduction resulting in degradation of the dye 
molecule on nanomaterial surface.

7.4 � Different Nanomaterials for Dye Removal

7.4.1 � Nanoparticles

A variety of nanoparticles have been used as adsorbent for dye removal from 
industrial waste as summarized in Table  7.1. Being small in size, nanoparticles 
provide a large surface area, and they are highly pure with narrow size distribution 
and reproducible (Verma et  al. 2019). In one of the studies, zinc oxide (ZnO) 
nanoparticles (NPs) were used as adsorbent to remove azo dye such as methyl 
orange (MO) and amaranth (AM) (Zafar et al. 2018). In another study, ZnO-NPs 
were used to adsorb three dyes: malachite green (MG), acid fuchsin (AF), and 
Congo red (CR) (Zhang et al. 2016) and ZnO-NPs using alginate to adsorb methylene 
blue (MB) (Tamer et al. 2018). Acid Black 210 (AB 210) and Reactive Blue 19 (RB 
19) dyes were adsorbed on 0.2  g of ZnO-NPs with adsorption capacities of 
34.13 mg/g and 38.02 mg/g, respectively (Monsef Khoshhesab and Souhani 2018). 
Reactive Blue 21 (RB 21) dye was also degraded via photodegradation using 50 mg 
of green-synthesized ZnO-NPs. In this study, it was also observed that RB 21 was 
fully decolorized in 270 min time. This shows that ZnO NPs are used as broad range 
nanoparticles for removal of a variety of dyes through adsorption. Other NPs such 
as copper nanoparticles (Davar et al. 2015) (CuNPs) have been used for catalytic 
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Table 7.1  Summarizes the nanoparticles used in dye removal

Nanoparticle
Dyes 
removed

Method of 
removal

Amount of 
nanoparticle 
used

Adsorption/
reduction 
capacity Reference

Zinc oxide 
nanoparticle

Methyl 
orange
Amaranth

Adsorption 0.3 g 40 ppm Zafar et al. 
(2018)

Malachite 
green
Acid 
Fuchsin
Congo red

Adsorption 0.05 g 2963 mg/g
3307 mg/g
1554 mg/g

Zhang et al. 
(2016)

Methylene 
blue

Adsorption 0.025–0.3 g 33.87–
45.38%

Tamer et al. 
(2018)

Acid black 
210
Reactive 
blue 19

Adsorption 0.2 g 34.13 mg/g
38.02 mg/g

Monsef 
Khoshhesab 
and Souhani 
(2018)

Reactive 
blue 21

Photodegradation 50 mg NR Davar et al. 
(2015)

Copper 
nanoparticles

Methylene 
blue
Methyl red
Congo red

Photocatalytic
Degradation

100 μM 91.53%
73.89%
84.89%

Fathima et al. 
(2018)

Gold 
nanoparticles

Rhodamine 
B
Methyl 
orange

Photocatalytic
Degradation

5 mg 87.64%
83.25%

Baruah et al. 
(2018)

Congo red
Methylene 
blue

Catalytic 
degradation

50 μg/ml 98%
88%

Nadaf and 
Kanase (2016)

Silica oxide 
nanoparticles

Methylene 
blue

Photocatalytic 
degradation

10 g/lt 85% Aly and 
Abd-Elhamid 
(2018)

Methylene 
blue

Adsorption 0.2 g 80.8 mg/g Dhmees et al. 
(2018)

Methylene 
blue

Adsorption 1000 mg/lt 679.9 mg/g Peres et al. 
(2018)

NR Not reported

degradation of MB, methyl red (MR), and CR. 100 μM of CuNPs were used for 
catalytic degradation of these three dyes (Fathima et al. 2018). The photocatalytic 
degradation of Rhodamine B (RB) and MO had been achieved using gold nanopar-
ticles (AuNPs). In this, 5  mg of each dye has been used for the process, which 
resulted in adsorption of 87.64% of RB and 83.25% of MO using AuNPs (Baruah 
et al. 2018). AuNPs were also biologically synthesized from Bacillus marisflavi and 
used for catalytic degradation of CR and MB.  Ninety-eight percent of CR was 
degraded in 20 min, and 88% of MB was catalytically degraded in 10 min using 
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AuNPs (Nadaf and Kanase 2016). The AuNPs are efficient in dye removal, but their 
synthesis is expensive, which finally adds to the cost of dye removal. Silica oxide 
nanoparticles (SiO2-NPs) were used to degrade dye via photodegradation. This is 
possibly due to the presence of silanols, which can interact with dyes and make 
them chemically stable that can successfully degrade dye on silica surface. In a 
study, 10 g/l of the adsorbent is used, which decolorized MB to 85% within 90 s 
(Aly and Abd-Elhamid 2018). Adsorption of MB was also reported using silica 
nanoparticles (SiNPs) obtained from blast furnace in which 0.2 g of SiNPs as adsor-
bent showed maximum sorption capacity of 80.8 mg/g (Dhmees et al. 2018). SiO2-
NPs obtained from rice husk used for degradation of MB dye showed adsorption 
capacity of 679.9 mg/g with 80% dye removal using 1 g/l of the adsorbent (Peres 
et al. 2018). Among all reported nanoparticles, ZnO NPs are best for the purpose of 
dye removal as they are easy to synthesize and are less costly as compared to the 
other nanoparticles. They also possess the inherent capacity to remove a broad 
range of toxic dyes from effluent.

7.4.2 � Carbon Nanotubes

Carbon nanotubes (CNT) are allotropes of carbon, which achieve cylindrical shape 
during synthesis and are used for a variety of purposes. They are used for applica-
tions in optics and electronics and are one of the most important nanomaterials, 
which can be used to adsorb dyes present in wastewater effluent from various indus-
tries as summarized in Table 7.2. Here, we discuss some reported methods, which 
successfully used CNTs for dye removal. One of the methods exploits amorphous 
CNT for removal of two textile dyes, MO and RB. For this, two dye degradation 
methods were used: one was adsorption based, and the other was UV-based cataly-
sis. In this method, concentration of dyes used was 4.79 mg/L and 3.27 mg/L for RB 
and MO, respectively. Though the concentration of adsorbent used was not reported, 
but it was stated that adsorbent took lesser time of 30 min to degrade MO as com-
pared to 45 min for the RB dye. For both dyes, adsorbent had 90% removal effi-
ciency (Dutta et al. 2018). In some reported studies, composites were also used for 
dye removal process. A composite mixture of modified CNT has been reported for 
removal of cationic dyes (MB, MG, RB) and anionic dye (MO). For achieving dye 
removal, multiwalled carbon nanotubes (MWCNT) were prepared and functional-
ized by acid treatment (ACNT), amine treatment (NH2CNT), and finally with the 
heat treatment (HCNT). It was clear from the study that cationic dyes were adsorbed 
with high efficiency using ACNT and MWCNT, whereas the anionic dyes were 
decolorized using NH2CNT.  So, a composite of ACNT/NH2CNT and MWCNT/
NH2CNT was finally used for dye removal (Dutta et al. 2017). A nanohybrid of 
microporous carbon xerogels and MWCNT (CX/MWCNT) was successfully used 
for removal of RB dye in which concentration of adsorbent varied from 1 to 4 g/L. It 
was documented that nanohybrid prepared possessed dye removal efficiency  
ranging from 154 to 256  mg/g (Shouman and Fathy 2018). MWCNTs were 
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Table 7.2  Use of carbon nanotubes in dye removal

Carbon 
nanotubes

Dyes 
removed

Method of 
removal

Amount of 
nanomaterial 
used

Adsorption/
reduction 
capacity Reference

Amorphous 
CNT

Methyl 
orange
Rhodamine 
B

Adsorption and 
UV-assisted 
catalysis

NR More than 
90%

Dutta et al. 
(2018)

ACNT/
NH2CNT
MWCNT/
NH2CNT

Methylene 
blue
Malachite 
green
Rhodamine 
B
Methyl 
orange

Adsorption 5 mg ACNT/
MWCNT
5 mg NH2CNT
Mixture

93%
91%

Dutta et al. 
(2017)

CX/
MWCNT

Rhodamine 
B

Adsorption 1 to 4 g/L 154–256 mg/g Shouman and 
Fathy (2018)

MWCNTs/
Gly/β-CD

Methylene 
blue
Acid blue 
113
Methyl 
orange
Disperse 
red 1

Adsorption 0.01 g 90.90 mg/g
172.41 mg/g
96.15 mg/g
500 mg/g

Mohammadi 
and Veisi 
(2018)

ZnO/
MWCNT

Congo red Adsorption 9 mg 99.8% Seyed Arabi 
et al. (2019)

NR Not reported

functionalized using β-cyclodextrin and glycine (Gly) for the adsorption of organic 
dyes such as MB, Acid Blue 113 (AB113), MO, and disperse red 1 (DR1). The 
0.01 g of adsorbent (MWCNT/Gly/β-CD) was used for the dye removal (Mohammadi 
and Veisi 2018). One work revealed that when ZnO-NPs were loaded on MWCNT, 
they successfully removed CR dye in the aqueous medium (Seyed Arabi et  al. 
2019). So, it is clear from the above reported methods that CNTs work better when 
they are used as composite mixtures for dye removal.

7.4.3 � Nanorods

Nanorods are one of the morphological structures of nanomaterials with size ranging 
from 1 to 100 nm and standard aspect ratio of 3–5. They can be easily synthesized 
from metal oxides and other semiconducting material through chemical synthesis. 
They have found a wide range applications in analytical methods and also used for 
adsorption of unused dyes. Different earlier reported methods have been documented 
in Table 7.3 given below. Among one of these methods, manganite (γ-MnOOH) 
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Table 7.3  Nanorods used for dye degradation

Nanorods
Dyes 
removed Method of removal

Amount of 
nanorod 
used

Adsorption/
reduction 
capacity/% dye 
removal Reference

γ-MnOOH Methylene 
blue

Adsorption 8 mg/L 89% Varghese 
et al. (2017)

AgCl-
NR-AC

Methylene 
blue

Adsorption 15 mg 96% Nekouei 
et al. (2016)

ZnCo2O4 Methylene 
blue

Adsorption 5 mg 2400 mg/g Lin et al. 
(2018)

ZnO-
NR-AC

Bromocresol 
green
Eosin Y

Ultrasonic assisted 
adsorption

0.01 to 
0.03 g

57.80 mg/g
61.73 mg/g

Ansari et al. 
(2016)

SBP Methylene 
blue

Adsorption 0.05 g 1691.8 mg/g Zhang et al. 
(2015)

ZnS/
SnS/A-FA

Congo red Photocatalytic 
degradation

10 mg NR Kalpana and 
Selvaraj 
(2016)

WO3 Methylene 
blue

Adsorption 5.0 mg 57.6 mg/g Park and 
Nam (2017)

Cu-doped-
ZnO

Methyl 
Orange

Solar-assisted 
photodegradation

0.3 g/L 99% Perillo and 
Atia (2018)

SnS 
nanorods

Tryphan blue Photocatalytic 
degradation

0.9 mg/ml More than 95% Das and 
Dutta (2015)

NR Not reported

nanorods were used as adsorbent for adsorption of MB dye. The concentration of 
adsorbent used was 8  mg/L, which successfully decolorized 89% of MB dye in 
aqueous solution (Varghese et al. 2017). In one other method, AgCl nanorods were 
modified on the activated carbon (AC) and AgCl-NR-AC composite when used in 
concentration of 15 mg successfully removed MB in aqueous solution and observed 
dye removal efficiency of about 96% in 16 min (Nekouei et  al. 2016). ZnCo2O4 
nanorods have also been used, which were synthesized through hydrothermal 
method and applied for dye removal. It was observed that 5 mg of nanorods when 
used as adsorbent removed MB dye with adsorption capacity of 2400 mg/g (Lin 
et al. 2018). An ultrasonic assisted adsorption of the Bromocresol Green (BCG) and 
Eosin Y (EY) dyes was also reported using ZnO nanorods and AC complex. The 
adsorption capacities recorded were 57.80 mg/g and 61.73 mg/g for BCG and EY, 
respectively, when 0.01–0.03 g of adsorbent was used (Ansari et al. 2016). In this, 
0.05 g of strontium phosphate and barium phosphate (SBP) composite of nanorod 
had been used for MB dye removal with adsorption capacity of 1691.8 mg/g (Zhang 
et al. 2015). Zinc sulfide (ZnS) in combination with tin sulfide (SnS) was used to 
synthesize ZnS/SnS/A-FA nanorods for removal of CR dye from wastewater.  
The nanorods were in concentration of 10 mg for removal of dye in the wastewater. 
The dye was completely photodegraded in 150 min (Kalpana and Selvaraj 2016). 
Other methods for dye removal using nanorods are also available using tungsten 
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trioxide (WO3) (Park and Nam 2017), copper (Cu)-doped-ZnO (Perillo and Atia 
2018), SnS nanorods (Das and Dutta 2015), etc. All the above-reported methods 
demonstrated that nanorods are more efficient in dye removal when they are used in 
combination with materials, which enhances their dye removal capacity.

7.4.4 � Graphene

Graphene is an allotropic form of carbon in which carbon atoms are arranged in 
single-layer hexagonal lattice. Its basic structure reveals that there is a small overlap 
between valence band and conduction band, which makes it an important nanoma-
terial for dye removal. Many researchers have used graphene for dye removal as 
summarized in Table  7.4. A composite of 3D graphene and calcium carbonate 
(CaCO3) was synthesized in the presence of calcium carbonate and iron oxide 
nanoparticles. Further, this nanocomposite of graphene was used for the removal of 
Acid Red 88 (AR88) dye. The amount of adsorbent used was 87 mg to remove 
100% of AR88 in 18 min (Arsalani et al. 2018). Three-dimensional graphene was 
functionalized with magnetic citric acid to prepare a nanocomposite (MCF3DG) for 
removal of crystal violet (CV) in aqueous medium (Nasiri and Arsalani 2018). 
Reduced graphene oxide (rGO) coupled with bismuth vanadate (BiVO4) was used 
to remove MG and RB dye. It was reported that the adsorbent used possessed low 
catalytic and dye removal efficiency. MG was degraded to 99.5% in two hours, and 
RB was decolorized 99.84% in four hours (Zhang et al. 2018). Several other meth-
ods are also available, which include liquid laser-treated rGO (Russo et al. 2015), 
polyvinyl alcohol (PVA) hydrogel in combination with GO (Li et al. 2014), mag-
netic sulfonic and graphene nanocomposite G-SO3H/Fe3O4 (Wang et al. 2013), GO 
nanosheet functionalized using dithiocarbamate (GO-DTC) (Mahmoodi et  al. 
2017), GO and cellulose nanowhisker hydrogel nanocomposite removed MO and 
RB dye in 20 min (Soleimani et al. 2018), rGO and TiO2 nanocomposite (TiO2@
rGO) (Ali et  al. 2018), GO and chitosan aerogel composite (GOCA) (Lai et  al. 
2019), magnetite nanoparticles and GO nanocomposite (Fe3O4@GO) (Mishra 
2018), graphene-tannic acid hydrogel (GT hydrogel) (Tang et al. 2018), sulfonated 
GO (SGO) (Wei et  al. 2018), and GO and magnetic iron oxide NPs (GO-MNP) 
(Othman et al. 2018).

7.4.5 � Fullerene

Fullerene is also an allotrope of carbon, which is hollow sphere in shape. They are 
also known as buckminsterfullerene or the bulkyball. Fullerene is also used for dye 
removal, and the reported methods are summarized in Table 7.5. Fullerene (C60) has 
been used as composite with TiO2 for removal of CV dye. The dye-removing capac-
ity of 82% was achieved when TiO2 and C60 fullerene nanocomposites were used in 
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Table 7.4  Graphene sheets used in dye removal

Graphene
Dyes 
removed Method of removal

Amount of 
graphene 
used

Adsorption/
reduction 
capacity/% dye 
removal Reference

3D graphene 
aerogel/CaCO3

Acid red 88 Adsorption 87 mg 100% Arsalani 
et al. (2018)

MCF3DG Crystal 
violet

Adsorption 28 mg 100% Nasiri and 
Arsalani 
(2018)

BiVO4-rGO Malachite 
green
Rhodamine 
B

Adsorption 
enhanced with 
visible light 
irradiation

50 mg 99.5%
99.84%

Zhang et al. 
(2018)

rGO Methylene 
blue

Adsorption 0.17 mg/ml 746 mg/g Russo et al. 
(2015)

PVA/GO 
hydrogels

Methylene 
blue

Adsorption 1 g NR Li et al. 
(2014)

G-SO3H/Fe3O4 Safranine T
Neutral red
Victoria 
blue

Adsorption 10 mg 199.3 mg/g
216.8 mg/g
200.6 mg/g

Wang et al. 
(2013)

GO-DTC Basic 
blue 41
Basic 
red 46

Adsorption 0.01–0.04 g 128.5 mg/g
111 mg/g

Mahmoodi 
et al. (2017)

GO-cellulose 
nanowhisker 
hydrogel

Methylene 
blue
Rhodamine 
B

Adsorption 0.025 g 100%
90%

Soleimani 
et al. (2018)

TiO2@rGO Rhodamine 
B

Photodegradation 0.1–0.5 g 97% Ali et al. 
(2018)

GOCA Metanil 
yellow

Adsorption 8 mg 430.99 mg/g Lai et al. 
(2019)

Fe3O4@GO Rhodamine 
6G

Adsorption 0.005–
0.02 g

68–89% Mishra 
(2018)

GT hydrogel Methylene 
blue

Adsorption NR 714 mg/g Tang et al. 
(2018)

SGO Methylene 
blue

Adsorption 1 mg/25 ml 2530 mg/g Wei et al. 
(2018)

GO-MNP Methylene 
blue

Adsorption 10–15 mg 98% Othman 
et al. (2018)

NR Not reported

10 mg concentration (Panahian et al. 2018). Fullerene-modified SiO2 material was 
used for efficient removal of MB dye. The percentage of dye removed via photodeg-
radation was 45% and 90% under VIS and UVC light, respectively (Rogozea et al. 
2015). One of the studies was also reported in which Fe2O3 was doped on C60 to 
achieve a composite of C60-Fe2O3. The composite was further used for 
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Table 7.5  Fullerene structures for dye removal

Fullerene
Dyes 
removed

Method of 
removal

Amount of 
fullerene 
used

Adsorption/
reduction 
capacity/% dye 
removal Reference

F-TiO2(B)/
fullerene

Crystal violet Photocatalysis 10 mg 82% Panahian 
et al. (2018)

Fullerene-
modified 
silica

Methylene 
blue

Photodegradation 20 mg 45% via VIS
90% via UVC

Rogozea 
et al. (2015)

C60-Fe2O3 Methylene 
blue
Rhodamine B
Methyl 
orange

Photodegradation 50 mg/L 98.9% Zou et al. 
(2018)

NR Not reported

photocatalytic degradation of three dyes MB, RhB, and MO in the presence of 
hydrogen peroxide. 98.9% dye decolorization was achieved in 80 min (Zou et al. 
2018). The fullerene structures are less exploited as compared to other nanomaterials. 
This may be due to complexity in their structure,and they are not easy to synthesize.

7.5 � Conclusion and Future Prospects

Untreated industrial discharge contains toxic dye, and they are being released in 
open environment, which is extensively harmful to living beings and environment. 
Variety of conventional methods is available for effluent treatment, but these meth-
ods suffer from limitations of less efficiency, costly, labor-intensive, and time-
consuming. Therefore, the use of nanomaterials for dye degradation is considered 
as novel and eco-friendly approach. Many types of nanomaterials are being reported 
for dye removal such as nanoparticles, nanotubes, nanorods, graphene, and fuller-
ene. Nanomaterials possess unique properties like highly electroactive, small size, 
high surface area, easy to synthesize in laboratory, nontoxic nature, biodegradabil-
ity, and biocompatibility, which make them suitable for dye removal. Due to these 
properties, nanomaterials can be used with other composites as reported in this 
review. It is suggested that photocatalytic degradation of dyes is based on light irra-
diation, which helps in excitation of electrons and causes movement of electron to 
form electron hole pair, and formation of radicals takes place, which caused degra-
dation of dyes. Out of nanomaterials, which are discussed here, nanoparticles are 
more exploited. Although the researcher has used a variety of nanomaterials, but 
fullerene is less exploited. Fullerene should be used as nonabsorbent in combination 
with the other nanomaterials. Quantum dots are also to be explored for their ability 
to adsorb dye from the effluent. Besides this toxicity of nanomaterials used as 
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nanosorbents in dye removal must be examined. There are also some challenges in 
using nanomaterials for dye degradation such as photocatalyst loading, dye concen-
tration, pH of the medium, intensity of light, temperature, photocatalyst morphol-
ogy, wavelength of light used in photodegradation, effect of oxidizing species, and 
so on. These above parameters should be optimized carefully before using any 
nanomaterial for photodegradation of harmful dye.
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�Questions

	1.	 Write a note on classification of dyes.
	2.	 What are the toxic effects of dyes on the environment and living beings?
	3.	 Discuss in detail conventional methods used to remove dyes.
	4.	 Write down different types of nanomaterials along with their properties.
	5.	 How nanomaterials can be used for removal of dyes and what are their inherent 

properties, which make them an excellent candidate for dye removal?
	6.	 Discuss the mechanism dye removal via photodegradation.
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