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Abstract. With the increasing amount of data, data privacy has drawn
great concern in machine learning among the public. Federated Learn-
ing, which is a new kind of distributed learning framework, enables data
providers to train models locally to protect privacy. It solves the problem of
privacy leakage of data by enabling multiple parties, each with their train-
ing dataset, to share the model instead of exchanging private data with
the server side. However, there are still threats of data privacy leakage in
federated learning. In this work, we are motivated to prevent GAN-based
privacy inferring attacks in federated learning. For the GAN-based pri-
vacy inferring attacks, inspired by the idea of gradient compression, we
propose a defense method called Federated Learning Parameter Compres-
sion (FLPC) which can reduce the sharing of information for privacy pro-
tection. It prevents attackers from recovering the privacy information of
victims while maintaining the accuracy of the global model. Comprehen-
sive experimental results demonstrated that our method is effective in the
prevention of GAN-based privacy inferring attacks.

Keywords: Federated learning · Inferring attacks · Generative
adversarial network · Intrusion detect · Parameter compress

1 Introduction

Deep learning, which is the most popular machine learning method driven by
big data, has been widely used in various domain like image recognition [1],
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social networks [2], speech technology [3], natural language process [4] and face
detection [5]. However, the centralized data storage currently has many prob-
lems. First, if all training data is stored and trained in a centralized manner, the
transmission of data requires a very large communication cost. Second, train-
ing learning algorithms on large dataset requires higher performance computing
equipment. Third, many scenarios cannot be relied on because of the absence of
trust boundaries. If personal information is submitted to the outside, users will
face privacy leakage risks because they cannot control how their data will be
used after sharing, which will directly disclose important personal privacy infor-
mation and may cause serious privacy problems [6]. Therefore, it is important
to run a machine learning in a way that protects sensitive data from privacy
leakage.

Federated learning (FL) [7,8] is a novel machine learning paradigm to solve
this problem. In federated learning, the data owner must participate in the whole
learning process instead of relying on a trusted third party. Federated learning
was first proposed by Google [7]. It is a server-client architecture consisting of
a parameter server and multiple clients. The server and the client carry out
multiple rounds of iterative communication and collaborate to train a global
model. Private data is stored in a locally isolated device and will not be shared
with other parties during the training process, which not only guarantees users’
privacy and data security but also solves the problem of data fragmentation and
isolation.

Although FL shows superb performance in privacy-preserving and breaks
data silos effectively, it’s still surprisingly susceptible to GAN-based data recon-
struction attacks [9], which is a kind of privacy inference attack [10] in the
training phase of FL.

Existing relatd work show that differential privacy (DP) [11] is regarded as
one of the strongest defense methods against these attacks. The core idea of DP
is introducing random noise into the privacy information, but DP often adds so
sufficient noise that the accuracy of the global model is reduced notably.

To address this problem, we focus on the inference attacks toward Non-
i.i.d federated learning. In addition, we conduct various experiments to evalu-
ate the privacy leakage that the adversary can get from the parameter of the
global model during the training phase and understand the relationship between
the reconstruction sample and global model information leakage. Thus, we find
parameter compression is an effective defense method against GAN-based recon-
struction attacks toward federated learning.

Our contributions can be summarized as the follows:

• We reveal that the gan-based privacy inferring attacks toward federated learn-
ing is defensible.

• We propose an efficient defense method to protect sensitive data against infer-
ring attacks toward federated learning.

• We compare our method with the current defense method that adds noise to
the parameter and the experiment result shows our method is better.
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2 Related Work

2.1 Overview of Federated Learning

It has been well recognized that FL is a peculiar form of collaborative machine
learning technique. FL allows the participants to train their model without
exchanging data to a centralized server, which combats the problems of privacy
concerned about central machine learning and communication costs.

A traditional FL system is built by a central server to aggregate and exchange
parameters and gradients. The end-user devices train their local model and
exchange their parameter or gradient periodically without uploading data to
ensure that there is no privacy leakage concern.

Generally, the whole process of FL can be expressed as follows.

(1) Client Initialization: The participants download the parameter from the
central server to initialize their local global.

(2) Local training: Every client uses the private data to train the model and
upload parameters to the central server at last.

(3) Parameter Aggregation: The central server gathers the uploaded parameter
from every participant and generates a new global model by robust aggre-
gation and SGD.

(4) Broadcast model: The central parameter server broadcasts the global model
to all the participants.

Categorization of Federated Learning. Based on the characteristics of the data
distribution [10], federated learning can be classified into three general types.

HFL, which is also called homogeneous federated learning, usually occurs in
the situation where the training data of the clients have overlapping identical
feature space but have disparate sample space. Most research, which focuses on
FL, assumes that the model is trained in HFL.

VFL, which is also called heterogeneous federated learning, is suitable for
the situation where the participants have the Non-i.i.d datasets [12]. Meanwhile,
sample space is shared between participants who have different label spaces or
feature spaces.

FTL [13] is suitable for situations similar to that of traditional transfer learn-
ing [14], which aims to leverage knowledge from previously available source tasks
to solve new target tasks.

Threats in Federated Learning. FL is vulnerable to adversarial attacks such
as unauthorized data-stealing or debilitating global model [15]. The adversary
mainly focuses on both the privacy attacks and robustness attacks towards cen-
tralized federated learning.

In privacy attacks that often occur in the training phase, the target of the
adversary can be the sample reconstruction. This is an inferring attack that
aims to reconstruct the training sample and/or associated labels used by other
FL participants. The privacy leakage of the sample reconstruction attacks may
come from model gradients [16], loss function [17] or model parameters [9].
Furthermore, the sample reconstruction attacks are considered not only on the
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client-side but on the server-side [18]. Besides, Fu et al. [19] proposed a label
inference attack which is in a special and interesting Non-i.i.d. federated learn-
ing setting. Existing relatd work regard differential privacy as an efficient method
to defend the privacy inference attack [20]. In the local differential privacy, the
FL clients add Gaussian noise to the local gradients or parameters.

Another main attack toward federated learning is the robustness attack which
aims to corrupt the model. Due to the characteristic of the inaccessibility of local
training data in a typical FL system, poisoning attacks are easy to implement
which causes FL to be even more vulnerable to poisoning attacks than classic
centralized machine learning [21]. The goal of the adversary is to diminish the
performance and the convergence of the global model. These misclassifications
may cause serious security problems.

Besides, the backdoor attack [22] is known for its higher impact of its capa-
bilities to set the trigger. It’s an effective targeted method to attack FL system.
Various robust aggregation algorithms are proposed to defend against poisoning
attacks towards FL, such as Krum [23], Bulyan [24], Median [25] and Fang [26].

There also exist related work on the prevention of Android malware [27–33],
on the detection of software vulnerabilities [34], on the detection of network
anomalies [35], or on enhancing the privacy in other scenarios like communica-
tions of smart vehicles [36].

2.2 Generative Adversarial Networks

In the field of deep learning, generative adversarial networks (GANs) [37] have
recently been proposed, and they are still in a highly developed and researched
stage [38]. Various GANs has been proposed. They can be used to generate
deepfake face [39], generate image by text [40]. The goal of GAN is not to
classify images into different categories, but to generate samples that are similar
to the samples in the training dataset and have the same distribution without
touching the original samples.

The training of GAN network is a typical game confrontation process of
finding the maximum and minimum values. The game between discriminator
and generator is shown as in formula 1.

min
G

max
D

V (G,D) = Ex∼pdata(x)log[D(x)]

+Ez∼pz(z)log[1 −D(x)]
(1)

When the discriminator D cannot distinguish between the samples in the
original data and the samples generated by the generator G, the training process
ends.

Hitaj et al. [9] first proposed a GAN-based reconstruction attack. In the
attack, malicious participants in the system steal the private data information
of other honest participants. The attacker only needs to train a GAN locally
to simulate the victim’s training samples and then injects fake training samples
into the system over and over again. Without anyone in the system noticing,
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Fig. 1. The image recovered by the attacker

the attacker can trick the victim into releasing more information about their
training data, and eventually recover the victim’s sample data.

For the GAN-based privacy inferring attacks, Yan et al. [41] proposed to
detect the GAN-based privacy inferring attacks by setting hidden points on the
parameter server side, and adjusting the parameters of the model to make the
training model GAN invalid. Since GAN must alternately optimize G and D
to achieve the optimal synchronization, G may collapse if the optimal balance
between G and D is not reached. Since the learning rate has a great influence
on the training process, this method disrupts the training process of GAN and
makes it invalid by changing the learning rate.

The GAN-based privacy inferring attacks aim to reconstruct recognizable
data images from the victim’s personal data information. The GAN effectively
learns the distribution of training data. In order to prevent such attacks, Luo et
al. [42] proposed an Anti-GAN framework to prevent attackers from learning the
true distribution of victim data by adding fake images into the source real image.
The victim first inputs the personal training data into the GAN generator, and
then inputs the generated fake images into the global model for training of fed-
erated learning. Besides, the author designed a new loss function so that the
images generated by the victim’s GAN not only have classification features sim-
ilar to the original training data, but also have indistinguishable visual features
to prevent privacy inferring attacks.



44 H. Cao et al.

Fig. 2. Defense result when R% = 90%

2.3 Compression

Distributed Stochastic Gradient Descent algorithm has been widely used in the
training of large-scale deep learning models, and the communication cost between
working nodes has become a new system bottleneck.

Gradient compression is a solution that improves communication efficiency
by compressing the gradient of transmission. In general, the gradient change of
the model parameters in each iteration is relatively small, most of the parameters
are still the same as before. So there will be a lot of redundant parameters during
the transmission process, but the attacker can use the redundancy parameters
updates to reconstruct the sample. Gradient compression uses this feature to
compress the gradient generated in each iteration. This method reduces the
amount of gradient in communication and reduces the burden on bandwidth by
sending a sparse vector of a subset of important values in the gradient.

There are many optimization algorithms for Gradient Compression. For
example, Lin et al. [43] proposed the Deep Gradient Compression algorithm
to preserve the model accuracy in the gradient compression process. In order
to reduce the gradient sparsification time, Shi et al. [44] proposed an optimal
algorithm to find the trade-off between communication cost and sparsification
time cost. There are also optimization algorithms of adaptive compression ratios
to increase the flexibility of compression schemes [45], etc.
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Fig. 3. Defense result when R% = 99%

3 Defense Against GAN-Based Privacy Inferring Attacks

3.1 Threat Model of GAN-Based Privacy Inferring Attacks

In federated learning, all participants have their own data, and they train a global
model with a common learning goal, which means that each participant knows
the data labels of the other participants. The central server is authoritative and
trustworthy, it cannot be controlled by any attacker.

The attacker pretends to be an honest participant in the federated learn-
ing system, but tries to extract information about local data owned by other
participants. The attacker builds a GAN model locally. At the same time, the
attacker follows a protocol that is agreed upon by all participants. He uploads
and downloads the correct number of gradients or parameters according to the
agreement. The attacker influences the learning process without being noticed
by other participants. He tricks the victim into revealing more information about
his local data.

Adversary A participates in the collaborative deep learning protocol. All such
participants agree in advance on a common learning objective, which means that
they agree on the type of neural network architecture and labels on which the
training would take place. Let V be another participant (the victim) that declares
labels [a,b]. The adversary A declares labels [b,c]. Thus, while b is in common,
A has no information about class a. The goal of the adversary is to infer as much
useful information as possible about class a [42].

The attack begins when the test accuracy of both the global model and
the local model of the server is greater than a threshold. The attack process is
as follows. First, V trains the local model and uploads the model parameters
to the central server. Second, A downloads the parameters and updates his
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Fig. 4. Defense result when R% = 99.9%

discriminator of GAN accordingly. A then generates samples of class a from GAN
and marks it as class c. A trains his local model with these fake samples and
uploads these parameters to the global model on the server side. Then A tricks
victim V to provide more information about class a. Finally, A can reconstruct
images of class a that are very similar to V’s own original images.

Algorithm 1. Parameter Compression on client C
Require: parameters w = {w[0], w[1], ..., w[n]}
1: for j = 0 to n do
2: diff ⇐ wt[j] − wt−1[j]
3: count ⇐ |diff |
4: k ⇐ count · (1 − R%)
5: wcompressed[j] ← topk(abs(diff)) + wt−1[j]
6: end for
7: C submit wcompressed to server

3.2 Parameter Compression Method

There is a gradient compression method in distributed learning, which reduces
the communication overhead by compressing the gradient in each communication
round. Gradient sparsification is a kind of gradient compression. The sparsifica-
tion algorithm decides to send a small part of the gradient to participate in the
parameter update, and most of the gradients with small changes are temporarily
updated. The widely used gradient sparsification method is to select the gradi-
ent according to the compression rate R%. In this method, the gradient with a
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Fig. 5. Test accuracy of global model

maximum change of 1-R% was finally chosen. Usually, the compression ratio is
90% , 99% and 99.9%.

Parameter Compression (PC) method takes advantage of the idea of gradient
compression. Since the parameters of the model contain the key information
about the training data, compressing the parameters is equivalent to truncating
some parameters, which reduces the data information leaked to the attacker and
achieves the purpose of privacy protection.

The algorithm of parameter compression of a single client model is presented
in Algorithm 1. In the tth round, for the jth parameter component, it calculates
the difference diff between round t and the previous round t-1. Then the k
largest parameters are selected from the absolute value of diff . Finally, it can
obtain the compression parameters of the jth parameter component by adding
these k parameters and the parameter of the round t-1. When all the parameter
components are compressed, the final compressed parameters of the model can be
obtained. Define R% as the compression ratio. If R% is 90%, it means that only
the first 10% (1-R%) of the absolute value of the difference e will be updated.

The parameter compression scheme is applied to the GAN-based privacy
inferring attacks. Before uploading the local model parameters, each client com-
presses the parameters and uploads them to the server. The server keeps its
aggregation algorithm unchanged, and still uses the federated average algorithm
(FedAvg) to aggregate all parameters.
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Fig. 6. Defense result when noisescale is 10−4

3.3 Experiments

Datasets and CNN Architectures MNIST Dataset: It consists of handwritten
gray-scale images of digits ranging from 0 to 9. Each image is 28 × 28 pixels.
The dataset consists of 60,000 training data samples and 10,000 testing data
samples [46]. This experiment used a convolutional neural network (CNN) based
architecture on the MNIST dataset. The layers of the networks are sequentially
attached to one another based on the keras.Sequential() container so that layers
are in a feed-forward fully connected manner. The neural networks are trained
by Tensorflow.

Results. The defense of GAN-based privacy inferring attacks takes the attack
experiment of reconstructing the digital image of “3” as an example. Figure 1
shows the victim’s data finally reconstructed by the attacker. It can be seen that
the attacker recovers a very clear image.

The results of the parameter compression scheme are as follows. When R%
= 90%, the image finally recovered by the attacker is shown in Fig. 2. As can
be seen, the image is much more blurred than the original image recovered by
the attacker, but the number 3 in the image is still recognizable. Thus, this
compression ratio isn’t high enough to prevent information leakage.

When R% = 99%, the attacker eventually recovers an image like Fig. 3. The
image is too fuzzy for the number to be recognized, but there are some outlines,
which means some valid information is still leaked.

When R% = 99.9%, the image recovered by the attacker is shown in Fig. 4.
It can be seen that no valid data information can be seen at all. Therefore, when
compression rate is 99.9%, the privacy leakage can be completely prevented.
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Fig. 7. Defense result when noisescale is 10−3

Global Model Accuracy. In order to test whether the accuracy of the global model
is influenced after the parameters of the client are compressed, the accuracy of
the global model on the test dataset is calculated during each round of feder-
ated learning. Figure 5 shows the accuracy change of the global model on the
test dataset: the final accuracy of the global model with different compression
rates is above 94%. Compared with the baseline of the original attack without
compression, it has no significant effect on the accuracy of the global model.

3.4 Compare with Gaussian Noise

Local differential privacy is often used to defend against this attack, but it may
negatively impact the model performance if the strength of the noise is not
appropriate.

Experiments. Adding noise is a common way to disturb the information. When
all clients upload updated parameters, they first add Gaussian noise to the
updated parameters to protect their data information from leaking. In the exper-
iments, the mean of Gaussian noise is set to 0, and the standard deviation of
different noise is marked as noisescale. And noisescale’s value is set as 10−4,
10−3, 10−2.

When noisescale = 10−4, the noise added is the smallest. It can be seen that
it cannot prevent the leakage of data information, as shown in Fig. 6. When
noisescale = 10−3, the final image recovered by the attacker is shown in Fig. 7.
Although the image is more noisy than when noisescale = 10−4, there are very
few outlines of the number three. When noisescale = 10−2, the image finally
recovered by the attacker is shown in Fig. 8. At this time, the content of the image
is completely invisible. The attacker can not obtain any valuable information
about the digital image 3, which indicates that the attack failed.
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From the above experiments, it can be seen that only in the situation where
the Gaussian noise standard deviation is greater than or equal to 10−2, data
leakage can be completely prevented. However, the accuracy of the global model
is greatly affected. Figure 9 is the accuracy change curve of the global model on
the test dataset. When noisescale =10−3 and noisescale =10−4, the final accuracy
of the global model is similar to that of the baseline, both around 95%. But when
noisescale =10−2, as the blue curve shown in the figure, the final accuracy of
the global model is 80.35%, which is a very large drop. It directly destroys the
training and learning process of the global model.

Fig. 8. Defense result when noisescale is 10−2

Analysis of Privacy Protection. From the above experiments, it can be seen that
although noise can be added to the parameters when the noise is small, it is not
enough to cover up the information of the real samples. When the noise is large,
it directly decreases the accuracy of the global model. Therefore, adding noise to
the parameters is not a desirable defense method. In the parameter compression
defense method, not only the private information is protected from leaking, but
no great influence on the accuracy of the global model is exerted when the
compression rate is 99.9%. Therefore, parameter compression is a desirable and
efficient defense method. In GAN-based privacy inferring attacks, the premise
on which the attacker’s GAN network takes effect is that the model at the server
and both local models have reached an accuracy that is higher than a certain
threshold [9]. When the parameters are compressed, the accuracy of the model
has reached a relatively high level and the accuracy of the model cannot be
greatly affected. In the Gaussian noise defense method, adding larger noise is
equivalent to directly making larger changes to the model parameters, which
has a great impact on the accuracy of the global model. Therefore, parameter
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Fig. 9. Test accuracy of global model

compression is an efficient defense method that prevents GAN-based privacy
inferring attacks.

4 Conclusion

For the GAN-based privacy inferring attacks, experimental results demonstrate
that our proposed parameter compression method, which uploads part of the
parameters with the largest changes in each round, is effective in protecting
data privacy.

In this way, the sharing of information is reduced to prevent private infor-
mation leakage. By adopting Gaussian noise defense method, although privacy
can be protected when the noise is large enough, the accuracy of the global
model is reduced. Therefore, parameter compression is a better defense method,
as it guarantees the accuracy of the model to a great extent by sharing only the
important parameter updates.

The core idea of the parameter compression defense method proposed in this
paper is gradient compression which was originally proposed to reduce commu-
nication costs by reducing the gradient amount to compress the gradient. The
Parameter compression method also reduces the exposure of data information
by reducing the shared parameters so as to achieve the role of defending against
GAN privacy inference attack. Therefore, studying whether the idea of gradient
compression can prevent other privacy leakage problems in federated learning,
and how to optimize this compression algorithm to protect information can be
our future work.
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