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Abstract. Facial expression recognition is extremely critical in the pro-
cess of human-computer interaction. Existing facial expression recogni-
tion tends to focus on a single feature of the face and does not take full
advantage of the integrated spatio-temporal features of facial expres-
sion images. Therefore, this paper proposes a facial expression recog-
nition based on a deep spatio-temporal attention network (STANER)
to capture the spatio-temporal features of facial expressions when they
change subtly. A facial expression recognition with an attention mod-
ule based on spatial global features (SGAER) is created firstly, where
the addition of the attention module is able to quantify the importance
of each part of the expression feature map and thus extract the spa-
tial global appearance features at the time of subtle expression changes
from a single frame expression image. Then, facial expression recognition
with C-LSTM based on temporal local features (TLER) is built to pro-
cess image sequences of facial regions linked to expression creation and
extract dynamic local temporal information about expressions. Experi-
ments are carried out on CK+ and Oulu-CASIA datasets. The results
showed that STANER can achieve better performance with the accuracy
rates of 98.23% and 89.52% on the two mainstream datasets, respectively.

Keywords: Facial expression recognition · Spatio-temporal features ·
Deep attention network

1 Introduction

With the rapid development and application of human-computer interaction [3]
in various fields (e.g., healthcare [11], smart home [14]), facial expression recog-
nition (FER) has gained more and more attention due to its important role
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in human-computer interaction. Ekman et al. [5] in the 1970 s defined human
facial expressions into six categories: anger, contempt, sadness, fear, happy and
surprise. With the study of facial expressions, contempt was added as a basic
expression by Matsumoto [25], so that emotions are now commonly classified
into seven basic categories.
In some circumstances, changes in facial expressions appear to be very minor in
the facial region and a fundamental difficulty in FER is capturing the features
of minor changes in expression images. Although the process of facial expression
production is very complex, it was found that it is mainly assessed by the main
regions of the face (e.g., eyes, nose, mouth, etc.) after early studies [1,7,24].
Therefore, it is more helpful for FER to emphasize the detection of dynamic
temporal change features of expressions from consecutive frames of important
regions of the face.

According to the feature representation, FER is now classified into two
categories: static image-based methods and dynamic sequence-based methods
[18]. Static image-based methods [21,28,32] extract spatial appearance fea-
tures well, but they ignore the dynamic temporal information generated during
facial expression changes. On the contrary, dynamic sequence-based methods
[13,39,40] extract dynamic temporal information well, but they overlook the
change in the spatial appearance of the image. Hence, it is a difficult task to
extract and apply the spatio-temporal features of facial expression images in
FER activities.

In this paper, a facial expression recognition based on a deep spatio-temporal
attention network (STANER) is developed to learn both subtle expression change
features and dynamic change features of key facial regions. The first branch is
FER with attention module based on spatial global features (SGAER), which is
intended to leverage those subtle expression change features that are normally
missed because certain tiny changes in expressions are difficult to capture. The
second branch is FER with C-LSTM based on temporal local features (TLER),
which is proposed to acquire dynamic local temporal features in consecutive
expression frames. Based on a sequence of key facial regions that generate facial
expressions, i.e., eyes, nose and mouth. These local consecutive frames are fed
into the C-LSTM block to obtain high-level temporal features after extract-
ing the shallow features, capturing the dynamic information of the local facial
regions.

The contributions of this work are summarized as follows:
(1) A STANER is proposed to capture the spatio-temporal features of facial

expression images to improve the robustness of facial expression recognition. The
superiority of STANER has been demonstrated by extensive experiments on the
mainstream datasets CK+ [23] and Oulu-CASIA [38].

(2) A SGAER branch is designed to solve the problem that when the magni-
tude of facial muscle changes is small and subtle facial expression change features
are difficult to capture. The module optimizes the utilization of spatial features
by using the attention created to track the subtle features of expression changes.

(3) A TLER branch is established to learn dynamic fine-grained temporal
features of key local regions of the face. TLER detects spatio-temporal informa-
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tion of local sequences using C-LSTM blocks constructed by convolutional neural
networks (CNN) [17] and long short-term memory neural networks (LSTM) [10].

The rest of this paper is structured as follows. The survey of FER is discussed
in Sect. 2. In Sect. 3, STANER method is described. In Sect. 4, the experimen-
tal analysis and their results are discussed to prove the efficiency of proposed
method. Finally, the conclusion of the paper is presented in Sect. 5.

2 Related Works

2.1 Facial Expression Recognition

FER research has been conducted by traditional methods [21,39] and deep
learning methods [13,28]. Traditional methods, including Local Binary Patterns
(LBP) [32], Scale-invariant Feature Transform (SIFT) [22], Histogram of Ori-
ented Gradients (HOG) [8], are adopted to extract facial expression image fea-
tures, which are then fed into a classifier (e.g., Support Vector Machine SVM
[2]) for the classification task. Pan et al. [29] proposed to bridge the gap between
visual features and emotions by using both the use of CNNs and HOG to obtain
more comprehensive VFER features and SVM for expression recognition. This
method had good performance and outperformed the current level of conven-
tional techniques. However, when the information becomes more complex, the
representational capacity of hand-crafted features diminishes and classic app-
roach models are unable to adequately fit large-scale complicated data. It was
not until the introduction of deep learning [9], its subsequent rapid development
in various fields and the great success of deep neural networks in many pat-
tern recognition tasks based on large data and complex scenes that more and
more researchers started to conduct experiments with deep learning-based facial
expression recognition [18].

In recent years, CNNs have been increasingly popular in FER tasks. Kim
et al. [15] combined multiple deep CNNs for training and won the FER interna-
tional competition EmotoW2015. Liu et al. [20] used several CNNs with differ-
ent structures for FER with good results. In addition, recurrent neural networks
(RNNs) have also been employed in FER because they are better at predicting
dynamic temporal aspects of arbitrary length sequences [4,6]. Researchers have
discovered that LSTMs [10] are better at solving gradient disappearance and
gradient explosion during training and they are commonly used to learn tem-
poral features in FER. Zhang et al. [36] proposed a PHRNN-MSCNN, which
consists of a partially hierarchy-based bidirectional RNN and CNN. In order to
extract spatial appearance aspects and temporal order features of facial expres-
sion images, Liang et al. [19] suggested a network framework combining CNN
and BiLSTM. Along with the development of FER, attention was introduced to
FER because of its ability to better capture local regions. In FER, the attention
focuses more on regional details of facial expression changes and filters out redun-
dant information irrelevant to expression generation. Zhang et al. [37] proposed
ECA-Resent for FER, using effective channel attention (ECA) to amplify the
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weight of effective information and suppress the weight of invalid information.
Sun et al. [33] combined feature attention weights of graphs and CNN to improve
the accuracy of FER. Minaee et al. [26] used a deep learning method based on an
attentional convolutional network that can focus on the regions most relevant to
expressions, resulting in improved FER. Pei et al. [31] proposed an end-to-end
spatially indexed attention model (SIAM) to extract valid potential appearance
representations from CNN feature maps, which were then fed into the temporal
attention layer constructed by LSTM to model temporal dynamics. Finally, the
output feature vectors were weighted and averaged to improve the efficiency.

2.2 Extraction of Spatio-Temporal Features

FER methods can be classified into static image-based methods and dynamic
sequence-based methods according to the feature representation [18]. In the
static image-based methods, Zhao et al. [40] created a peak-piloted deep network
(PPDN) to learn the association between peak expression images and non-peak
expression images and capture their spatial appearance features. Yang et al. [34]
designed a DeRL that can create neutral face images by training a face born
on any input and learning the deposits (or residues) that remain in the mid-
dle of the generative model for FER. In the dynamic sequence-based methods,
Liu et al. [21] proposed a facial expression recognition framework 3DCNN-DAP,
which combined 3DCNN with deformable convolution to localize facial change
regions and used a part-based representation for FER. Jung et al. [13] proposed
DTAGN to capture temporal information of facial expression and automatically
extract useful features from the raw data.

Both static image-based methods and dynamic sequence-based methods con-
sider only one-sided facial expression features. To extract more efficient expres-
sion features and apply them to FER, more and more studies turn to the spatio-
temporal properties of images for FER. Yu et al. [35] learned the spatio-temporal
feature representation of facial expressions simultaneously by a DCPN network.
Liang et al. [19] proposed to use CNN combined with BiLSTM to extract spatial
features of each frame and dynamic temporal features of consecutive frames. Ryo
Miyoshi et al. [27] proposed an enhanced convolutional long short-term memory
(ConvLSTM) algorithm that could automatically recognize facial expressions in
videos, which mainly used jump connections in spatio-temporal orientation and
time gates to suppress gradient disappearance. Pan et al. [30] proposed a main-
stream framework to fuse both spatial and temporal information to be utilized.
The framework mainly consisted of CNN and LSTM. Jeong et al. [12] proposed
a deep joint spatio-temporal feature recognition method for facial expressions.
Firstly, the spatio-temporal features of facial expression images were extracted by
3DCNN. Then the whole facial signs are analyzed by using geometric network,
and finally 23 facial sign points are selected to represent the dynamic muscle
movements of the whole face. Zhu et al. [41] proposed a cascaded attentional
facial expression recognition network with a pyramid structure and considering
local spatial features, multi-scale-stereoscopic spatial context feature and tem-
poral features to locate the changing features on dynamically changing regions
(e.g., eyes, nose and mouth) as accurately as possible.
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3 The Proposed Method

3.1 Overview

STANER is shown in Fig. 1. SGAER and TLER are the two key components
of the approach. To begin, the facial key regions are cut from the input facial
image sequence and input to TLER to extract high level temporal information.
Then, the peak frame is chosen and fed into SGAER to learn spatial appearance
features with an emphasis on subtle expression change features. At the end of the
model, the recognition results from the two branches of the parallel structure are
fused using decision-level fusion techniques, enabling the model to synthetically
capture the spatio-temporal characteristics of subtle expression changes as they
occur. The key branches of the proposed method are detailed in the following.

Fig. 1. Overview of the proposed method.

3.2 FER with Attention Module Based on Spatial Global Features

Subtle changes in distinct face regions that are linked together to make an expres-
sion are frequently used to create expressions. Capturing the intricacies of expres-
sions is critical at FER. Therefore, SGAER is constructed to learn the nuances
of expressions, in addition to quantifying the correlation of each position in the
expression feature map and understanding the nuances of facial regions caused
by expressions. The structure of the method is shown in Fig. 2.
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Fig. 2. Network structure of SGAER.

SGAER is composed of the front-end convolutional, the attention module
and the end convolutional layer. The front-end convolution is made up of the
first 10 layers of VGG-16. The structure of the constructed attention module is
shown in Fig. 3. Shallow spatial appearance features are extracted from selected
single-frame images through the front-end convolution, which is passed through
the attention module to produce feature maps with attention. The processed
feature maps are then transferred to the end convolution layer to obtain fine-
grained appearance features. The attention is weighted in the range [0,1] using
the Sigmoid function in the last layer of the attention module.

Fig. 3. Attention Module.The 3× 3 convolutional kernel increases the received domain
of feature information and acquires more spatial contextual information. The 1× 1
convolutional kernel integrates multi-channel information into a single channel.

SGAER is designed in the following way. Firstly, the selected peak frame Ip
is fed into the front-end convolution of SGAER to pick up the shallow spatial
global features U of the expression image. Then, the spatial features at different
locations after transmitting U to the attention module are given different weights
and the main regional features generated by facial expressions are enhanced and
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the expression features with subtle variations are amplified. Thus, the feature
map M containing attention is formed.

M = σ {Conv[w;AvgPool(U)]} (1)

where σ is the Sigmoid activation function; Conv represents the convolution
operation; And w denotes the weight matrix; AvgPool represents the global
average pooling in the attention module.

Then, M is computed together with the originally obtained shallow spatial
global features U to obtain the final feature map F .

F = (1 + M) ⊗ U (2)

where ⊗ denotes multiplication between elements.
F is sent to the end convolutional layer to extract the spatial appearance

features FG. And finally, FG is input to the SoftMax layer for final expression
classification to generate expression classification result PG(C), where C is the
number of facial expressions classification categories; x denotes the input vector
of the SoftMax function and PG(C) is defined as:

PG(C) = S(x)C =
exC

∑c
i exi

(3)

where xi denotes the computed output value of the ith category in the output
vector, xc denotes the current category output value to be computed, and the
final loss function can be defined as:

LossS = −
C∑

i=1

yi ln (PG(C)) (4)

where yi is the true value of the current facial expression.

3.3 FER with C-LSTM Based on Temporal Local Features

Since the generation of facial expressions is highly correlated with changes in only
a few key regions of the face, TLER is created to enable the model to concentrate
on learning the dynamic temporal changes in the facial regions associated with
expression generation in consecutive frames. Figure 4 depicts the structure of
TLER.

The TLER consists of a C-LSTM block and an end convolution. The shallow
spatial features of the local sequences are extracted by the first few convolu-
tional layers of the C-LSTM block, they are reconstructed into vectors and then
passed through the LSTM to obtain the dynamic change information of the local
sequences. Finally, the high-level semantic information of the expression features
is learned by the end convolution. LSTM is proved to recover the temporal fea-
tures of the expression sequence, and it is composed of an input gate, an output
gate and a forget gate. Among them, the input gate determines which values the
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Fig. 4. Network structure of TLER.

unit will update; the output gate determines which values will be finally output
and the forget gate defines which information the unit will discard. Where forget
gate is defined as ft:

ft = σ (Wfxt + Wfht−1 + bf ) (5)

input gate is defined as it:

it = σ (Wixt + Wiht−1 + bi) (6)

gt = tanh (Wgxt + Wght−1 + bg) (7)

ct = ft ⊗ ct−1 + it ⊗ gt (8)

output gate is defined as ot:

ot = σ (Woxt + Woht−1 + bo) (9)

ht = ot ⊗ tanh (ct) (10)

where ht−1 is the LSTM hidden layer output at moment t − 1; xt is the input
vector. And ct is the current update cell. gt is the current alternative update
cell, which contains all the update information of the current time node. W and
b denote the weight matrix and bias value, respectively. σ is Sigmoid activa-
tion function and tanh is the hyperbolic tangent activation function; ⊗ denotes
multiplication between elements.

The input to TLER is the extracted consecutive frames Ie,In, Im of the
three key facial regions of eyes, nose and mouth associated with the generated
facial expressions. The processed local region image sequences are fed into the
constructed C-LSTM block. Region-based low-level features are first generated
by the CNN of the C-LSTM block and then the fine-grained dynamic temporal
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features Fe, Fn, Fm of these local sequences are captured using the LSTM. At the
end of the C-LSTM, Fe, Fn, Fm are connected to represent the global temporal
features F ′:

F ′ = Concatenation (Fe : Fn : Fm) (11)

F ′ is input to the end convolution layer to form the high-level local feature FL.
And finally, FL is fed to the Softmax layer for the final expression classification.

The result is obtained as PL(C), where C is the number of facial expression
classification categories; x denotes the input vector of the SoftMax function
and PL(C) is defined as:

PL(C) = S(x)C =
exC

∑c
i exi

(12)

where xi denotes the computed output value of the ith category in the output
vector; xc denotes the current category output value to be computed.

The final loss function can be defined as:

LossT = −
C∑

i=1

yi ln (PL(C)) (13)

where yi is the true value of the current facial expression.
Researchers have found that combining multiple networks for FER can yield

more diverse information to ensure complementarity of features, often result-
ing in better recognition than individual networks. In the process of expression
change, the overall spatial appearance features and local dynamic change fea-
tures are equally important. In order to make the constructed model take into
account the local dynamic change features while utilizing the spatial appearance
change of expressions and without emphasizing or ignoring one feature, a sim-
ple average decision fusion method is used in the paper to fuse the expression
classification results of SGAER and TLER, which is calculated as follows.

O(C) = argmax (αPG(C) + (1 − α)PL(C)) (14)

where α is 0.5. O represents the final output category of facial expression.
The loss function Loss of the whole network is:

Loss = LossG + LossT (15)

in which, LossG and LossT represent the final loss functions of SGAER and
TLER, separately.
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3.4 Algorithmic Description

The algorithm of STANER is described as follows:

Algorithm 1: STANER for FER
Require: Dataset D;
Output : Facial expression category: O

1 for images in dataset D do
2 face cropping, grayscale processing and data augmentation obtain

dataset D∗
3 end
4 for images in dataset D∗ do
5 Selecting peak frame: Ip and partial Sequences: Ie, In, Im
6 end
7 for Ip∈D∗ do
8 PG(C) ← SGAER (Ip);
9 Calculate → LossG = −∑C

i=1 yi ln (PG(C))
10 end
11 for Ie, In, Im ∈D∗ do
12 PL (C) ← TLER (Ie, In, Im);
13 Calculate → LossL = −∑C

i=1 yi ln (PL(C))
14 end
15 for PG(C),PL(C) do
16 Calculate: O(C)=argmax(αPG(C)+(1-α) PL(C))
17 end
18 Calculate: Loss=LossT+LossG
19 Output:O

4 Experiments

This section first describes the datasets and data preprocessing, followed by the
implementation details of the proposed method and finally the experimental
results and analysis.

4.1 Datasets

Two facial expression datasets named CK+ [23] and Oulu-CASIA [38] are used
to evaluate this model.

The extended Cohn-Kanada database (CK+) [23] is made up of 593
sequences from 123 distinct people. Anger (An), disgust (Di), fear (Fe), happy
(Ha), sadness (Sa) and surprise (Su) are the six basic emotion categories in
this dataset. In addition, there is a unique term known as “contempt.” Only
327 sequences out of 118 patients were tagged with seven expressions and they
all started with a neutral expression and finished with a peak expression. The
training and test sets are built using 10-fold cross-validation.
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Oulu-CASIA [38] is more complex than CK+ and contains 480 image
sequences recorded by 80 individuals under normal lighting conditions, with six
basic emotion categories. Each of the six expressions has a sequence, each start-
ing with a neutral expression and ending with a peak expression. The dataset is
processed using the same 10-fold cross-validation.

Due to the fact that the experimental dataset is acquired from a real envi-
ronment, all images in the CK+ and Oulu-CASIA datasets are first cropped and
grayscale processed in order to prevent the effect of other expression-independent
noise such as jewelry, lighting and color on the FER [18]. Then, the processed
dataset is horizontally flipped to enhance the data to avoid the overfitting prob-
lem caused by the limited number of training samples. Finally, the peak frame
of the facial expression image sequence is selected as the input of SGAER in the
new dataset that had been processed. The 68 facial marker points of the face are
identified using the Dlib [16], the eyes, nose and mouth regions are extracted.
The consecutive frames of the local region are used as the input of TLER.

4.2 Evaluation Metrics and Implementation Details

The recognition accuracy Acc of expression classification is used to evaluate the
model’s overall classification capabilities. which is defined as:

Acc =
TP + TN

TP + TN + FP + FN
(16)

where FP represents false positive, FN represents false negative, TP represents
true positive, TN represents true negative.

The parameter selection for the experiment is as follows:
The number of training networks is set to 150 epochs, and the training batch

size is set to 64. The initial learning rate is 10−4. The first 100 epochs remain
the same and the learning rate is set to 10−5 after 100 epochs.

4.3 Ablation Experiments

Table 1 illustrates the Acc of ablation experiments on CK+ and Oulu-CASIA
datasets. The result of C1 is to extract low-level features of the face from a single
frame image using the first ten layers of VGG-16 and then input these features
into the end convolutional layer to learn advanced feature information for FER.
C2 is a FER that extracts spatio-temporal features of local facial sequences
using only TLER. C3 is a FER that uses only SGAER. C4 is the fusion model
of C1 and C2. STANER is the method proposed in this work, which utilizes
both static-based and dynamic-based methods to capture the spatio-temporal
features of the face for FER.

The experimental results of C1, C2 and C4 indicate that using only static
image-based methods and dynamic sequence-based methods does not lead to
good FER performance because they tend to consider only one-sided expres-
sion features. The fusion models of static image-based methods and dynamic
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Table 1. ACC of ablation experiments on CK+ and Oulu-CASIA

Methods CK+ Oulu-CASIA

C1 91.64% 79.40%

C2 92.70% 80.23%

C3 94.52% 82.66%

C4 96.19% 86.50%

STANER(Our method) 98.23% 89.52%

sequence-based methods can obtain complete cues of face expression changes and
capture spatio-temporal features. The application of attention increases the per-
formance of FER in both the static image-based methods and the fusion model,
as seen by the comparison of C1, C3, C4 and STANER recognition results. This
demonstrates that FER benefits from focusing on subtle expression change fea-
tures, and that using attention not only allows the model to better explore the
spatial appearance features of the original image, but also allows the model to
capture more fine-grained high-level semantic features, greatly improving the
model’s proactivity.

4.4 Confusion Matrix

To measure the specific manifestation of STANER on each expression category,
the confusion matrices of STANER on CK+ and Oulu-CASIA datasets are shown
in Fig. 5(a) and (b). Figure 5(a) demonstrates that STANER is more accurate
in recognizing disgust, fear, happy on CK+ and does well with contempt, which
is not easily distinguished. Figure 5(b) illustrates that STANER not only has
the highest recognition rate for surprise and happy on Oulu-CASIA, but also
discriminates fear and anger, two frequently confused expression categories.

Fig. 5. The confusion matrix. (a) The confusion matrix on CK+. (b) The confusion
matrix on Oulu-CASIA.
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4.5 Comparisons with Existing Methods

Tables 2 and 3 show the performance comparison of STANER with existing main-
stream methods on CK+ and Oulu-CASIA, respectively. It can be seen that
STANER exhibits better properties than most methods.

Table 2. Comparison of FER Acc on CK+ Dataset

Methods Experiment Setting ACC(%)

3DCNN-DAP [21] 10 folds 92.40%

ECA-ResNet [37] 10 folds 94.58%

DTAGN [13] 10 folds 97.25%

PPDN [40] 10 folds 99.30%

DeRL [34] 10 folds 97.30%

PHRNN-MSCNN [36] 10 folds 98.50%

Our method 10 folds 98.23%

Table 3. Comparison of FER Acc on Oulu-CASIA Dataset

Methods Experiment setting ACC(%)

ResNeXt-50 + pyramid + cascaded
attention block + GRU [41]

10 folds 89.29%

DTAGN [13] 10 folds 81.46%

PPDN [40] 10 folds 84.59%

DeRL [34] 10 folds 88.00%

DCPN [35] 10 folds 86.23%

PHRNN-MSCNN [36] 10 folds 86.25%

Our method 10 folds 89.52%

Firstly, the comparison between STANER and the state-of-the-art methods
on the CK+ dataset is shown in Table 2. The average accuracy of STANER is
98.23%. STANER does not perform as well as the static-based method PPDN
[40], which only considers six expression categories in CK+ dataset and does not
consider the expression contempt while STANER considers all expression cate-
gories in CK+. STANER performs slightly lower than PHRNN-MSCNN [36] on
the CK+ dataset, where STANER only considers the appearance change feature
of facial expressions, while both geometric and appearance information of expres-
sions are utilized in PHRNN-MSCNN. Compared to the dynamic sequence-based
method 3DCNN-DAP [13], STANER improved the accuracy by 4.03% in CK+,
which led to the demonstration of the effectiveness of using spatial-temporal fea-
tures in the FER task. STANER also improved in CK+ compared to the static
image-based method using attention, ECA-Resnet [37], because it did not focus
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only on single-sided facial expression features, but also considered information
about the temporal variation of expressions.

Then, the comparison of STANER with other methods on the Oulu-CASIA
dataset is shown in Table 3. The average accuracy of STANER is 89.52%. The
accuracy of STANER is improved by 4.93% compared to that of PPDN [40]
using a static image-based method. STANER is compared with the approach
that exploits the spatio-temporal information of facial expression images. Com-
pared with the DTAGN [13], STANER’s recognition accuracy on Oulu-CASIA
dataset is improved by 8.06%. STANER improves the recognition performance
by 3.29% over the DCPN designed by Yu et al. [35] on Oulu-CASIA. It improved
3.27% over the PHRNN-MSCNN model proposed by Zhang et al. [36].STANER
outperforms the Oulu-CASIA dataset compared to a cascaded attentional facial
expression recognition network with a pyramidal structure that simultaneously
considers local spatial features,multi-scale-stereoscopic spatial context feature
and temporal features, as presented by Zhu et al. [41].

5 Conclusion and Future Work

In this study, STANER is designed to improve the performance of facial expres-
sion recognition when facial expressions change subtly. STANER can not only
make full use of the spatio-temporal change information of incoming expressions,
but also localize key parts of the face by attention to better utilize the features
generated when facial expressions change subtly.

Specifically, SGAER is firstly constructed in order to learn the spatial appear-
ance information of facial expressions when they change, and the attention
module in SGAER can more precisely localize specific regions with significant
dynamic changes. Secondly, TLER is constructed to extract temporal features
from key local facial parts. For the input expression image sequences, the main
parts related to facial expression changes (i.e., image sequences of eyes, nose, and
mouth) are cropped, and temporal features are extracted using C-LSTM. Finally,
SGAR and TLER are further fused using an average decision level strategy
to obtain different expressions for recognition. Through extensive experiments,
the excellent recognition properties of STANER on CK+ and Oulu-CASIA are
demonstrated.

To apply STANER to more complex, realistic and natural environments,
future work will include: (1) training and validating the model in complex natural
environment datasets to further improve the accuracy and robustness of the
model; (2) using a more accurate attention mechanism to capture changes in the
appearance of key parts of the face during the spatial feature extraction stage;
(3) using the model to design a real-time facial expression recognition system
to improve the human-computer interaction capability of the model; and (4)
improving the model network structure to reduce computation and save resource
consumption.
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