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Abstract. Recently, many lane line detection methods have been proposed in the
field of unmanned driving, and these methods have obtained good results in com-
mon conditions, such as sunny and cloudy conditions. However, these methods
generally perform poorly in poor visibility conditions, such as foggy and rainy
conditions. To effectively solve the problem of lane line detection in a foggy
environment, this paper proposes a dual-subnet model that combines a defog-
ging model and a lane line detection model based on stacked hourglass model
blocks. To strengthen the features of important channels and weaken the features
of nonimportant channels, a channel attention mechanism is introduced into the
dual-subnet model. The network uses dilated convolution (DC) to reduce the net-
work complexity and adds a residual block to the defogging subnet to improve
the defogging effect and ensure detection accuracy. By loading the pretrained
weights of the fog-removing subnets into the dual-subnet model, the visibility is
enhanced and the detection accuracy is improved in the foggy environment. In
terms of datasets, since there is currently no public dataset of lane lines in foggy
environments, this paper uses a standard optical model to synthesize fog and adds
a new class of foggy lane line data to TuSimple and CULane. Our model achieves
good performance on the new datasets.

Keywords: Complex environment · Lane detection · Defogging · Channel
attention mechanism

1 Introduction

Self-driving technology imitates human driving by making decisions and performing
intelligent operations, such as gear shifting, collision avoidance, object detection, and
lane departure warnings, by the car system [1]. These accurate decisions and operations
made by artificial intelligence will greatly reduce the burden of human drivers and can
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effectively prevent traffic accidents caused by human error. Unmanned driving technol-
ogy integrates key technologies frommany frontier disciplines [2, 3]. Lane line detection
technology is one of the important technologies for realizing unmanned driving, and it
plays an important role in autonomous navigation systems and lane departure assist sys-
tems [2, 4, 5]. The information input sensors for lane line detection generally include
cameras, lidar, and global positioning systems (GPS) [6]. However, among the sensors
for lane line detection, lidar has high accuracy and is not easily affected by weather; it
is expensive, and GPS positioning technology is not accurate and cannot meet real-time
requirements. The processing algorithm is relatively mature, and camera sensors are the
main sensors for lane line detection at present. Therefore, choosing to process images
and videos with cameras as sensors is more common in the current lane line detection
task.

A lane line is an important traffic safety feature that has the functions of distin-
guishing road areas, specifying driving directions, and providing guidance information
for pedestrians [7]. In the actual driving environment, the general lane line detection
algorithm is sufficient because highways are in good condition and the lane markings
are clear; on foggy and rainy days with bad weather conditions, the detection algorithm
is often affected by light and rain. It can fail in complex urban road conditions, the lane
lines can be blocked due to the shuffle of vehicles and pedestrians, the lane markings can
be incomplete and faded, the shadows of trees beside the roads in the country can distort
lane lines, and lane lines might not be visible on urban roads and in tunnels where the
light changes rapidly. In clear conditions, for roadswith obvious ups and downs, lane line
detection is inaccurate [8]. The above mentioned road conditions are all problems faced
in the current lane line detection task and can be divided into the following four aspects:
poor road light, changes in the strong and weak light in the environment; incomplete and
damaged lane markings; other objects on the road blocking the lane lines; and changes
in the road slope.

The lane line detection algorithm needs to meet the requirements of detection accu-
racy. Although detection technology based on deep learning has achieved satisfactory
results, the general lane line detection method in some harsh environments still has poor
detection results. The main challenge for a generic approach, especially in foggy envi-
ronments (one of themost commonweather phenomena in driving scenarios), is that they
often fail to detect lane lines. This is because the specific spectrum between the captured
object and the camera is absorbed and scattered by very small suspended water droplets,
ice crystals, dust, and other particles, reducing the effectiveness of feature extraction from
these images for lane line detection [9]. To improve the performance of object detection
in foggy environments, previous works often regard enhancing the visibility of foggy
images as a preprocessing step. Image dehazing is beneficial not only for human visual
perception of image quality but also for many systems that must operate under different
weather conditions, such as intelligent vehicles, traffic monitoring systems, and outdoor
object recognition systems. However, a model that combines dehazing and detection
methods will have increased complexity and increased parameter numbers due to the
additional dehazing task, which will eventually lead to a decrease in detection speed.
In addition, training a convolutional neural network (CNN)-based detection network
requires a large quantity of data. Since there is no public lane line dataset containing
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images in a foggy environment, many lane line detection models cannot fully learn the
lane line features in foggy environments, resulting in inaccurate results.

In this paper,we propose a newdual-subnet lane detectionmodel to solve the problem
of lane detection in foggy environments. In summary, themain contributions of this paper
are as follows.

• To reduce the complexity of the dual-subnet model and reduce the number of model
parameters as much as possible, we choose the lightweight AOD-Net [10] as the
defogging subnet.

• To improve the dehazing effect, the subnetwork combines the channel attentionmech-
anism to focus on extracting the features of important channels and fuses the hazy
image of the input model as a residual block into three connection layers.

• In the detection subnetwork, we use a stacked hourglass network model.We introduce
a channel attention mechanism into the downsampling layer of the original model to
extract more features about lane lines, and dilated convolution (DC) is used to reduce
the network complexity to ensure detection accuracy.

• We use the standard optical model to synthesize fog to add a new class of foggy lane
lines to TuSimple and CULane. We conduct a comprehensive experiment on the new
datasets to comparatively evaluate and demonstrate the effectiveness of the proposed
model.

The remainder of this paper is organized as follows. Section 2 describes the related
works, Sect. 3 introduces the relevant preliminary knowledge used in this paper, Sect. 3
describes the proposed method, Sect. 4 presents the experimental results and Sect. 5
describes the conclusion of this paper.

2 Related Work

In the past two decades, research on lane line detection technology has achieved good
results. At present, the main methods are divided into traditional methods and methods
based on deep neural networks, and another category is the combination of traditional
image processing and deep learning.

2.1 Traditional Methods

Traditional methods detect lane lines by manually designing detection operators accord-
ing to the characteristic morphology of lane lines and rely on feature-based [11] and
model-based [12] detection methods.

Feature-based detection methods use the colour and greyscale features of a road
image [13] and combine the Hough transform [14] to realize lane line detection, in which
the detected element is generally a straight lane line. In addition, algorithms, such as the
particle filter [15], Kalman filter [16, 17], Sobel filter [18], Canny filter [19], and finite
impulse response (FIR) filter [20], are commonly used in lane line detection methods.
This method can adapt to the change in road shape and has a fast processing speed,
but when the road environment is complex, postprocessing is needed, which reduces
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the real-time performance; when lane lines are incomplete or occluded, the detection
performance of the algorithm decreases [21].

The model-based detection algorithm usually constructs a lane line curve model
and regards a lane line as a straight-line model, a higher-order curve model, and so
on. The principle of this method is to fit the geometric model structure of the lane line
by the least square method, random sampling agreement (RANSAC) algorithm, Hough
transform [8], or another method according to the geometric structure characteristics of
the lane line and obtain the model parameters to create a lane line detection method. The
advantage of this detection algorithm is that it can reduce the impact of missing lane
lines and has better environmental adaptability; the disadvantage is that if the detected
road environment is inconsistent with the present model, the detection effect will be
reduced.

2.2 Methods Based on Deep Neural Networks

For the lane line detection task, the process of using deep learning technology for detec-
tion is as follows: first, establish a marked lane line dataset, then train the lane line
detection network on the dataset, and finally, use the trained network for the actual
lane line detection task. Since the CNN AlexNet [22] won the 2012 ImageNet Large-
scale Visual Recognition Challenge (ILSVRC), CNNs have been widely used in image
classification, object classification, etc., due to their sparse connections and translation
invariance. Excellent results have been achieved in the fields of tracking, target detec-
tion, semantic segmentation, etc., and these results have brought new ideas to research on
lane line detection. Early CNN-based methods (e.g., [23, 24]) extract lane line features
through convolution operations. Lane detection methods can be divided into semantic
segmentation methods, row classification methods and other methods.

Segmentation-Based Methods. This method extracts the feature data of the image,
carries out the image binarization semantic segmentation, divides each pixel into the
lane or the background, and filters and connects the pixels of the lane line. Finally, it is
decoded into a group of lane lines on the segmentation feature map by postprocessing.
For example, GCN [25] and SCNN [26] do not need to manually combine different
traditional image processing techniques according to specific scenes and can directly
extract accurate images from input images in more complex scenes. In SCNN, the author
proposes an effective scheme specifically designed for a slender structure; however, the
method is slower (7.5 fps) due to larger backbones. In addition, GAN-based methods
(such as EL-GAN [27]), attention maps [28], and knowledge distillation [29] (such as
SAD [30]) provide new ideas for lane detection. A self-attention distillation (SAD)
module is proposed to aggregate contextual information. This module uses a lighter
backbone but has high efficiency and real-time performance.

Row-Wise Classification Methods. The row-by-row classification method is a simple
method for lane detection based on input imagemeshes. For each row, themodel predicts
the cell most likely to contain partial lanemarkings. It also requires a postprocessing step
to build the lane set. This method was first introduced in E2E-LMD [31] and achieved
good results. In [32], by using this method, the model loses some accuracy, but the
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number of computations is small, and the detection speed is fast (up to 300 fps or more).
Moreover, the global receptive field can also deal with complex scenes well.

Other Methods. PolyLaneNet [33] proposed amodel based on deep polynomial regres-
sion. In this approach, the model outputs a polynomial for each lane. Although it is fast,
this method is highly biased towards straight lanes compared with curve lanes due to
the imbalance of the lane detection dataset. In [34], lane lines are modelled by the curve
description function, and lane lines are described by predicting the third-order Bezier
curve based on the Bessel curve description (curve description can be realized by a small
number of control points).

3 Proposed Method

In this section, a new dual-subnet model, which combines the defogging model with
the lane line detection model, is introduced. The model achieves this goal through two
subtasks: visibility enhancement after defogging and lane line detection. The basic struc-
ture of the dual-subnet model is shown in Fig. 1. The entire model structure is divided
into two main modules, and the lane detection subnet module is divided into a resizing
module and a prediction module.

• Defog subnet module: The defog module is composed of a CNN. The defog subnet
module estimates the parameters required for defogging based on the input foggy
image and then uses this parameter value as the input adaptive parameter to estimate
the clear image after defogging. In other words, the clean image tensor after defogging
is obtained to achieve the effect of feature enhancement (visibility of lane line feature).

• Resizing module: The resizing module consists of three convolutional layers, which
resize the output of 256 × 128 × 32 obtained from the defog subnet to 64 × 32 ×
128.

• Prediction module: The prediction module consists of three stacked hourglass mod-
ules. The output branch predicts confidence, offset, and embedding features. Three
output branches are applied at the ends of each hourglass block. The loss function can
be calculated from the outputs of each hourglass block.

3.1 Defogging Subnet Module

The original AOD-Net model consists of a K estimation module and a clean image
generation module. According to formulas (1)–(4) in [10], the K estimation module
mainly estimates K(x) from the input I(x), and the clean image generation module
uses K(x) as its input adaptation parameter to estimate J(x), that is, to obtain the final
clean image. The K estimation module utilizes 5 convolutional layers, and the 1st to
5th convolutional layers use convolution kernels of size 1*1, 3*3, 5*5, 7*7 and 3*3,
respectively, through 3 layers. The connection layer fuses filters of different sizes to
form multiscale features. As shown in Fig. 2, to make the K(x) module extract more
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Fig. 1. Dual-subnet model: First, the foggy lane line image was processed through the defog
subnet to obtain the clean feature map tensor with the same size as the input, which was resized
to a 64 × 32 × 128 feature map by resizing the network, and then the adjusted feature map was
input to the prediction network for lane line detection.

accurate fog features and effectively improve the dehazing effect, we introduce the
channel attention mechanism SE block into the defogging subnet. The channel attention
mechanism introduced by us can greatly improve the network performance, although it
will increase the computational consumption by a small amount. Moreover, the AOD-
Net model is a lightweight network, so it can improve the subnet haze removal effect
under the condition of ensuring the model prediction time. The input original image is
added to the connection layer of the network as a residual block, and finally, the feature
tensor of the clean image is obtained and input into the detection subnet. Table 1 shows
the network details of the dehazing subnet.

In the specific detection process, the foggy RGB lane line image of size 512 × 256
× 3 is converted into three matrices of size 512 × 256 as the input of the dual-subnet
model,where the numbers in thematrix represent the pixels in the image. In the defogging
subnet, the 512× 256× 3matrix is input into “conv1”with a convolution kernel size of 1
× 1, and the result of “conv1” is input into “SeLayer1” (channel attention layer 1). Then,
we input the result of “SeLayer1” to “conv2” with a convolution kernel size of 3 × 3
and then input the result of “conv2” to “SeLayer2”. The “concat1” concatenates features
from the “SeLayer1”,”SeLayer2” and input image. The result of “concat1” is used as the
input of “conv3”, and then the calculation continues. Similarly, “concat2” concatenates
those from “SeLayer2”, “SeLayer3” and the input image; “concat3” concatenates those
from “SeLayer1”, “SeLayer2”, “SeLayer3”, “SeLayer4” and the input image. After 5
convolutional layers, the clean tensor generation module finally retains the dehazed lane
line feature map (clean tensor) with a size of 512 × 256 × 3 as the input of the lane line
detection module.

3.2 Resizing Module

As shown in Fig. 1, the resizing network is contained in the detection module behind the
fogging subnet. To save memory and prediction time, the network is adjusted to reduce
the size of the input image tensor. To make the output denser, it is suitable for instance
segmentation tasks, and we increase the receptive field without reducing the resolution.
We transform the first and second layers of the original resizing network into dilated
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Fig. 2. Improved AOD-Net

Table 1. Details of the defogging subnet

Layer Size/Stride Output size

Input data 512*265*3

Conv1 1/1 512*265*3

SeLayer1 512*265*3

Conv2 3/1 512*265*3

SeLayer2 512*265*3

Concat1 512*265*9

Conv3 5/1 512*265*3

SeLayer3 512*265*3

Concat2 512*265*9

Conv4 7/1 512*265*3

SeLayer4 512*265*3

Concat3 512*265*15

Conv5 (K) 3/1 512*265*3

convolution operations with dilated rates of 3 and 2, respectively. Table 2 shows the
details of tuning the network component layer.

Before detection, the lane line feature maps of size 512 × 256 × 3 obtained by the
defogging subnet are input into the resizing network. In the first layer of the resizing
network, 32 convolution kernels with a size of 3 × 3 and dilated rate of 3 are used, and
feature maps with a size of 256 × 128 × 32 are obtained through the convolution of the
first layer. In the second layer, 64 convolution kernels with a size of 3 × 3 and dilated
rate of 2 are used, and feature maps of 128 × 64 × 64 are obtained through the second
layer convolution. In the third layer, 128 standard convolution kernels with a size of 3
× 3 are used, and feature maps of 128 × 64 × 64 are obtained through the third layer
convolution. Finally, 128 × 64 × 32 feature maps were input into the stacked hourglass
network.
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Table 2. Details of resizing the network

Layer Size/Stride/Padding Dilation Output size

Input data 512*265*3

Conv + PReLU + BN 3/2/2 3 256*128*32

Conv + PReLU + BN 3/2/1 2 128*64*64

Conv + PReLU + BN 3/2/1 64*32*128

3.3 Prediction Module

The PINet [35] lane line detection model uses a deep learning model inspired by stacked
hourglass networks to predict some key points on a lane line. The model transforms
the clustering problem of predicting key points into an instance segmentation problem
to generate points on the lanes and discriminate the predicted points into individual
instances. The network for extracting lane line features and making detections in this
model consists of four stacked hourglass networks, so the network size can be adjusted
according to the computing power of the target system (cutting several hourglass mod-
ules) without changing the network structure or performing extra training. The original
PINet model is finished by stacking 4 hourglass blocks, with three output branches
applied at the end of each hourglass block. They are the prediction confidence, offset,
and embedding features, respectively. The loss function can be calculated based on the
output of each hourglass block.

This stacked network model can transfer information to deeper layers, thus improv-
ing detection accuracy. Therefore, with knowledge distillation, we can expect better
performance in cropped networks. However, with the increase in the number of stacked
hourglassmodels, the number of parameters of the whole detectionmodel also increases,
and the detection speed is reduced. To balance high detection accuracy and high detec-
tion speed, our model stacks three hourglass blocks. The basic structure of the hourglass
model is shown in Fig. 3. Some jump connections transfer information of different scales
to deeper layers, and each colour block is a bottleneck module. These bottleneck mod-
ules are shown in Fig. 4. There are three types of bottlenecks: the same bottleneck, the
down bottleneck, and the up bottleneck. The same bottleneck produces output of the
same size as the input. The first layer of the “down bottleneck” is replaced by a dilated
convolutional layer with a filter size of 3, a stride of 2, a padding of 2, and a dilated rate
of 2. Add a channel attention mechanism after each “down bottleneck”. Table 3 shows
the detailed information about the detection subnet.
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Fig. 3. Basic structure of an hourglass block

During detection, 128 feature map tensors with a size of 64 × 32 output from the
resizing network are input to the stacked hourglass model. First, the feature map tensor
with a size of 4 × 2 × 128 is obtained through four downsampling layers, and then the
feature map with a size of 64 × 32 × 128 is restored after four upsampling layers. Each
output branch has three convolution layers and generates a 64 × 32 grid. Confidence
values about the key point existence, offset, and embedding feature of each cell in the
output grid are predicted by the output branches. The channel of each output branch is
different (confidence: 1, offset: 2, embedding: 4), and the corresponding loss function
is applied according to the goal of each output branch.

Table 3. Lane line detection subnet details

Layer Size/Stride Output size

Input data 64*32*128

Encoder Bottleneck (down) 32*16*128

SeLayer1 32*16*128

Bottleneck (down) 16*8*128

SeLayer2 16*8*128

Bottleneck (down) 8*4*128

SeLayer3 8*4*128

Bottleneck (down) 4*2*128

SeLayer4 4*2*128

(continued)
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Table 3. (continued)

Layer Size/Stride Output size

(Distillation layer) Bottleneck 4*2*128

Bottleneck 4*2*128

Bottleneck 4*2*128

Bottleneck 4*2*128

Decoder Bottleneck (up) 8*4*128

Bottleneck (up) 16*8*128

Bottleneck (up) 32*16*128

Bottleneck (up) 64*32*128

Output branch Conv + PReLU + BN 3/1 64*32*64

Conv + PReLU + BN 3/1 64*32*32

Conv 1/1 64*32*C

3.4 Loss Function

The training of the entire network relies on the dehazing loss and detection loss. A simple
mean squared error (MSE) loss function is used in the defog subnet model. The detection
loss is the sum of the output losses of each hourglass block, and the output branch of
each hourglass network block includes four loss functions. As shown in Table 3, three
loss functions are applied separately to each cell of the output grid. Specifically, the
output branch generates 64 grids, and each cell in the output grid consists of 7 channels
of predicted values, including confidence values (1 channel), offset values (2 channels),
and embedded feature values (4 channels). The confidence value determines whether
the keypoint of the traffic line exists. The offset value locates the exaction location of

Fig. 4. Bottleneck details. The three kinds of bottlenecks have different first layers according to
their purposes.
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the keypoint predicted by the confidence value and utilizes the embedding feature to
distinguish the key point as a single instance. The distillation loss function for extracting
teacher network knowledge is adapted to the distillation layer of each encoder.

Dehazing Loss. MSE is the average value of the square of the difference between the
predicted value and the true value calculated element by element. The calculation formula
is shown in formula (1), where n is the total number of sample sets, ŷ is the predicted
value of the ith sample, and y is the true value of the ith sample.

Loss
(
ŷ, y

) = 1

n

∑(
ŷi − yi

)2 (1)

Confidence Loss. The confidence output branch predicts the confidence value for each
cell. The confidence value is close to 1 if there is a key point in the cell and 0 otherwise.
The output of the confidence branch has 1 channel and is fed into the next hourglass
module. As shown in Eq. (2), the confidence loss consists of two parts, the presence loss
and the absence loss. The presence loss is used for cells containing key points, and the
absence loss is used to reduce the confidence value of each background cell. No loss is
computed in cells with predicted confidence values above 0.01.

Lexist = 1

Ne

∑

CC∈Ge

(
c∗
c − cc

)2
,

Lnon−exist = 1

Nn

∑

CC ∈ Ge

cc > 0.01

(
c∗
c − cc

)2 + 0.00001 ∗
∑

cc∈Gn
c2c (2)

whereNe represents the number of cells containing key points,Nn represents the number
of cells that do not contain any key points, Ge represents a set of cells containing key-
points, Gn represents a set of cells containing points, and cc represents the confidence
level of the predicted value. For each cell in the output branch, c∗

c represents the true
value.

Offset Loss. The offset branch predicts the exact location of the keypoint for each
output cell. The output value for each cell is between 0 and 1, and the value indicates
the position relative to the corresponding cell. As shown in Eq. (3), the offset branch has
two channels for predicting the x-axis and y-axis offset.

Loffset = 1

Ne

∑

Cx∈Ge

(
c∗
x − cx

)2 + 1

Ne

∑

Cy∈Ge

(
c∗
y − cy

)2
(3)

Embedding Feature Loss. When the embedding features are the same, the training
branchmakes the embedding features of each unit closer. Formula (4) is the loss function
of the feature branch:

Lfeature = 1

N 2
e

∑Ne

i

∑Ne

j
l(i, j),

l(i, j) =
{∥∥Fi − Fj

∥∥
2, Iij = 1

max
(
0,K − ∥∥Fi − Fj

∥∥
2

)
, Iij = 0

(4)
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where Fi represents the predictive embedding feature of cell i, Iij represents whether cell
I and cell j are the same instances and K is a constant such that K > 0. If Iij = 1, the
cells are the same instance, and if Iij = 0, the cells are different instances.

Distillation Loss. The more stacked hourglass modules there are, the better detection
performance is, so the deep hourglass module can be the teacher network. After using
the distillation learningmethod, the short network that is lighter than the teacher network
will show better performance. The distillation loss is shown in Eq. (5).

Ldistillation =
∑M

m
D(F(AM ) − F(Am)),

F(AM ) = S(G(Am)), S : spatialsoftmax,

G(Am) =
∑C

i=1
|Ami|2,G : RC×H×W → RH×W , (5)

where D represents the sum of squares and Am represents the distillation layer output of
the mth hourglass module. M represents the number of hourglass modules, and Ami rep-
resents the ith channel of Am. Similar to the summation and exponential sum operations,
the absolute value (|·|) operations are calculated elementwise.

The total detection loss is the weighted sum of the above four loss terms, and the
total loss is shown in Eq. (6).

Ltotal = γeLexist + γnLnon−exist + γoLoffset + γf Lfeature + γdLdistillation (6)

γo is set to 0.2, γf to 0.5, and γd to 0.1. Both γe and γn are set to 1, with γe varying from
1.0 to 2.5 during the last 40 training periods.

4 Experiments

In this section, we first introduce the dataset details and the information for adding
foggy lane lines to TuSimple [36] and CULane [26]. Second, we describe the evalua-
tion indexes of the two datasets, the experimental environment and the implementation
details. Finally, we show our experimental results and make some comparisons and
analyses of the results.

4.1 Dataset

Most of the images in TuSimple were taken on sunny days with good lighting conditions
and are often used for lane detection on structured roads. CULane is a large and chal-
lenging dataset that provides many challenging road detection scenarios. In this paper, a
new class of foggy lane scenario types is added to TuSimple and CULanet by using the
fog synthesizing method of the atmospheric scattering model, and the fogged dataset
is used to train and verify our model. To simulate the influence of different degrees of
fog, the key parameter brightness A ranges from 0.68 to 0.69, and the fog concentration
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parameter Beta ranges from 0.11 to 0.12. The original image is shown in Fig. 5 below,
and the image after fogging by the above method is shown in Fig. 6. Table 4 shows
a detailed data comparison of the two datasets before and after the fogging operation.
Table 5 shows the comparison of the test set of the CULane dataset before and after the
fogging operation.

Fig. 5. The original image Fig. 6. Image after fogging

Table 4. Comparison of the datasets and the fogged datasets

Category TuSimple Fogged TuSimple CULane Fogged CULane

Frames 6,408 7,637 133,235 140,544

Train 3,268 4,036 88,880 96,864

Validation 358 358 9,675 9,675

Test 2,782 3,601 34,680 43,680

Resolution 1280 × 720 1280 × 720 1640 × 590 1640 × 590

Scenarios 1 2 9 10

4.2 Evaluation Indicators

Because different lane datasets have different collection devices and collection methods,
as well as different lane line labelling methods, different indicators are generally used
to evaluate the accuracy and speed of detection. This paper adopts the official TuSimple
and CULane evaluation criteria.

(a) TuSimple

The main evaluation indexes of this dataset are accuracy, false positives and false
negatives. The specific expressions are shown in (7), (8) and (9). Table 6 shows the
meaning of each symbol.

Accuracy =
∑

clip Cclip
∑

clip Sclip
(7)
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Table 5. Comparison of the test sets of CULane and fogged CULane

Category CULane Fogged CULane

Normal 9,610 9,610

Crowded 8,115 8,115

Night 7,040 7,040

No line 4,058 4,058

Shadow 936 936

Arrow 900 900

Dazzle light 486 486

Curve 415 415

Crossroad 3,120 3,120

Fog 0 9,000

FalsePositive = Fpred

Npred
(8)

FalseNegative = Mpred

Ngt
(9)

Table 6. The meaning of each symbol

Variable Definition

Cclip Number of correct points detected

Sclip Number of true points

Nt Number of lanes

Fpred Number of lanes with errors detected

Mpred Number of missed lanes

Ngt Number of lanes with actual labels

Npred Actual number of lanes

(b) CULane

The CULane contains images of various road types, such as sheltered, crowded,
urban, and nighttime roads. We followed the official evaluation criteria [B] to evaluate
the CULane. According to [B], assuming that the width of each traffic line is 30 pixels,
the intersection-over-union (IoU) ratio between the prediction of the evaluation model
and the ground truth is calculated. Predictions above a certain threshold are considered
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truly positive. Assuming that the threshold is set strictly at 0.5, the final score of the
F1-measure is taken as the final evaluation indicator. The definition of the F1-measure
is shown in (10).

F1measure = 2 ∗ Precision ∗ Recall

Precision + Recall
(10)

Precision = TP

TP + FP
(11)

Recall = TP

TP + FN
(12)

TP denotes a true positive; that is, the prediction is true, and the reality is also true.
FP denotes a false positive; that is, the prediction is true, but the reality is false. FN
denotes a false negative; that is, the prediction is false, but the reality is true.

4.3 Experimental Environment and Implementation Detail

The experiments in this paper are performed in an Ubuntu16.04 operating system. The
hardware configuration used in the experiment is as follows: CPU: Intel Core i9-10900K;
GPU: NVIDIA RTX 3080. The programming language used is Python 3.7, and the deep
learning development framework is PyTorch 1.8.

In the process of model training, the defogging subnetwork is first trained separately,
then the weight of the defogging subnetwork is loaded and the partial network is frozen,
and finally, the whole dual network is trained.

In the training process of the defogging subnet, the indoor NYU2 Depth Database
processed by the atmospheric scattering model to synthesize fog in [10] is used, and
the Gaussian random variable is used to initialize the weights. Using ReLU neurons,
momentum and decay parameters are set to 0.9 and 0.0001, batch_size is set to 8, learning
rate is set to 0.001, and training iteration period is set to 10. Then, when training the
whole dual-subnetmodel, theweights trained by the defogging subnet are loaded into the
dual-subnet model as pretrained weights, and this part of the defogging subnet is frozen.
Then, the whole dual-subnet model is trained with fogged TuSimple and CULane. In
the whole training process of the dual-subnet model, the confidence threshold was set to
0.36, the learning rate was set to 0.00001, the batch_size was set to 6, and the training
iteration period was set to 1000. The distance threshold used to distinguish each instance
is 0.08.

4.4 Experimental Results and Analysis

Fogged TuSimple. This paper requires exact X-axis and Y-axis values to test our dual-
subnet model on the fogged TuSimple. The nH values in Tables 7 and 8 indicate that the
network consists of n hourglassmodules.Detailed evaluation results are shown inTable 7,
and Fig. 7 shows the results on the images in the test set of the fogged TuSimple dataset.
Table 7 summarizes the performance of our method, PINet(1H~4H), PolyLaneNet and
SCNN(ResNet18, ResNet34, ResNet101) on the test set of fogged TuSimple. The first-
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and second-best results are highlighted in red and blue, respectively, in Table 7. It can
be seen from the results that the detection accuracy of the dual-subnet model with only
three hourglass blocks is higher than that of the PINet model with four hourglass blocks.
Therefore, the dual-subnet model achieves a good improvement in detection accuracy
with the benefits of using a lightermodel and calculating fewer parameters.By comparing
the following detection algorithms, our method achieves better detection accuracy on
the test set of foggy datasets, which also demonstrates the effectiveness of our defog
subnet.

The last two columns of Table 7 show the number of frames set and parameters on the
RTX 3080 GPU based on the number of hourglass modules. When only one hourglass
block is used, the network detection speed is approximately 32 frames per second.When
using four hourglass blocks, the dual-subnet model can run at 17 frames per second.
Clipping a corresponding number of hourglass blocks can evaluate shorter networks
without retraining. As the number of hourglass blocks increases, the dual-subnet model
has higher performance and slower detection speed. The confidence thresholds are 0.35
(4H), 0.32 (3H), 0.30 (2H) and 0.52 (1H).By comparison, PolyLaneNet can output
polynomials representing lane markers in images and obtain lane estimation values
without post-processing, which can reach 115 FPS with fewer parameters. Although our
method has a small number of parameters, it still needs to be defogged, so the detection
speed is slow.

Table 7. Evaluation results on fogged TuSimple.

Method Acc FP FN fps parame-
ter(M)

PINet (1H) 89.42% 0.182 0.090 40 1.08

PINet (2H) 90.38% 0.168 0.084 35 2.08

PINet (3H) 91.75% 0.156 0.072 30 3.07

PINet (4H) 92.50% 0.150 0.080 25 4.06

PolyLaneNet[33] 91.16% 0.120 0.094 115 4.05

SCNN(ResNet18)[26] 90.67% 0.131 0.095 21 12.66

SCNN(ResNet34)[26] 91.14% 0.123 0.090 22 22.78

SCNN(ResNet101)[26] 91.82% 0.110 0.081 14 44.21

Ours (1H) 90.87% 0.171 0.092 32 1.20

Ours (2H) 91.01% 0.159 0.089 27 2.20

Ours (3H) 92.53% 0.147 0.072 22 3.19

Ours (4H) 92.54% 0.103 0.086 17 4.18
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Fig. 7. Results on fogged TuSimple. The first row is the ground truth; the second row is the
predicted results of the dual-subnet model.

Fogged CULane. Table 8 summarizes the performance of our method, PINet(1H~4H)
and SCNN(ResNet18, ResNet34, ResNet101) on the test set of fogged CULane. The
first- and second-best results are highlighted in red and blue, respectively, in Table 8.
The following conclusions can be drawn from the experimental results in this paper.
First, the detection accuracy of the dual-subnet model in a foggy environment is much
higher than that of the original PINet model, and the detection effect in the dazzle light
environment is also significantly improved. This is because our defog subnet has good
de-fogging and de-noise effect in the fog and dazzling light environment, which makes
the characteristics of the lane line more obvious. Second, in normal, no lane line, strong
light and foggy environments, the dual-subnetmodel with three stacked hourglass blocks
has higher detection accuracy than the original PINet model with four stacked hourglass
blocks; that is, it realizes higher detection accuracy with a lighter model. However, the
lane line detection subnets in the dual-subnet model in this paper are based on the key
point estimation method, and local occlusion or unclear traffic lines will have a negative
impact on performance. Therefore, the dual-subnet model performs poorly in crowded,
arrow and curved environments. Finally, the dual-subnet model obtains a high F1 value
on fogged CULane.

Figure 8 intuitively shows the detection effect of our dual-subnetmodel on the images
in the test set of the fogged CULane dataset. Although the detection effect of our method
is improved in the fogged environment, the detection effect of most methods is not good
enough because vehicles block part of the lane lines in the figure.
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Table 8. Evaluation results on fogged CULane.

Category Normal Crowed Night No Line Shadow Arrow Dazzle Light Curve Crossroad(fp) Fog

Proportion 22% 18.68% 16.12% 9.29% 2.14% 2.06% 1.11% 0.95% 7.14% 20.6%

PINet (1H) 82.17 61.22 48.97 36.60 59.01 75.31 56.10 57.41 1930 51.06

PINet (2H) 86.50 65.73 55.67 40.18 63.22 81.12 59.03 60.24 1892 52.97

PINet (3H) 87.47 66.45 55.89 40.30 64.67 80.55 59.45 60.01 1701 58.90

PINet (4H) 87.61 66.42 55.98 40.58 64.69 80.60 59.69 60.08 1622 59.81

SCNN(Res18) 88.03 65.39 56.10 39.69 62.15 78.18 58.50 58.21 1828 57.38

SCNN(Res34) 89.36 65.69 57.21 39.91 63.30 79.84 59.12 58.52 2178 58.69

SCNN(Res101) 90.01 66.41 58.09 40.20 65.01 81.76 60.22 60.21 1744 59.80

Ours (1H) 83.30 60.41 48.01 36.39 58.33 71.85 57.64 57.57 1869 56.21

Ours (2H) 87.21 64.51 54.29 40.12 62.76 76.23 59.20 60.78 1794 57.14

Ours (3H) 88.01 65. 49 54.33 40.61 63.01 79.89 60.39 60.03 1622 63.01

Ours (4H) 88.03 65.76 54.77 40.70 63.85 78.97 61.03 60.15 1540 64.53

Fig. 8. Results on foggedCULane. Thefirst row is the ground truth; the second row is the predicted
results of the dual-subnet model.

5 Conclusion

In this paper, we propose a new dual-subnet model for lane detection in a foggy envi-
ronment. The dual-subnet model combined with the defogging subnet module and the
lane line detection module used the lightweight defogging subnet to improve the visual
conditions in a foggy environment to improve the lane line detection accuracy. Our dual-
subnet model achieves high accuracy and a low false positive rate and guarantees the
safety of autonomous vehicles because the model rarely predicts the incorrect lane lines.
Especially for detection in foggy environments, our dual-subnet model can improve
the detection accuracy while ensuring fewer model parameters. However, in terms of
detection speed, to realize visual enhancement, a preprocessing defogging process is
added to our model, so the performance in terms of detection efficiency needs to be
improved. In addition, in terms of datasets, a class of foggy lane line scenes was added
to TuSimple and CULane by using a standard optical model, and these new datasets will
be convenient for follow-up studies on lane line detection in foggy environments.
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