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Abstract. Autonomous exploration is the essential task for various
applications of unmanned aerial vehicles (UAVs), but there is currently a
lack of available energy-constrained multi-UAV exploration methods. In
this paper, we propose the RTN-Explorer, an environment exploration
strategy that satisfies the energy constraints. The goal of environment
exploration is to expand the scope of exploration as much as possible,
while the goal of energy constraints is to make the UAV return to the
landing zone before the energy is exhausted, so they are a pair of contra-
dictory goals. To better balance these two goals, we use map centering,
and local-global map processing methods to improve the system per-
formance and use the minimum distance penalty function to make the
multi-UAV system satisfy the energy constraints. We also use the map
generator to generate different environment maps to improve generaliza-
tion performance. A large number of simulation experiments verify the
effectiveness and robustness of our method and show superior perfor-
mance in benchmark comparison.

Keywords: Multi-UAV exploration · Deep reinforcement learning ·
Energy constraints

1 Introduction

Autonomous exploration means that the agent, without any prior knowledge,
keeps moving in a new environment and constructs a map of the whole environ-
ment. It is an essential part of many tasks, such as planetary exploration [1],
reconnaissance [2], rescue [3], mowing [4], and cleaning [5]. Compared with single-
agent environment exploration, multi-agent environment exploration is more

This work was partially supported by the National Natural Science Foundation of
China No. 91948303.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022

Published by Springer Nature Switzerland AG 2022. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2022, LNICST 461, pp. 363–379, 2022.

https://doi.org/10.1007/978-3-031-24386-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24386-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-24386-8_20


364 Y. Zhou et al.

difficult because of cooperation between agents. Despite decades of research,
multi-agent environment exploration, as an NP-hard problem [6], remains a com-
plex problem to solve.

Many traditional methods have been proposed in recent years, but these
methods rely heavily on experts to manually design heuristic functions for dif-
ferent scenes [7,8]. Research on deep reinforcement learning methods gradually
increased [9–16]. However, the current environment exploration strategies based
on deep reinforcement learning only focus on exploration efficiency and do not
consider energy constraints. Due to the limited battery capacity of UAVs, it is
necessary to consider energy constraints for tasks in the real world.

Considering the energy constraints in a real exploration task, the UAV needs
to return to the landing zone before the energy is exhausted, which will bring
great challenges to the multi-agent exploration task. The first challenge is to
design an efficient reward function to ensure that the multi-agent system satisfies
the energy constraints. In [17], the energy constraint is considered in the path
planning task of a given environment, and a constant penalty is given to the
agent when the UAV runs out of energy. But the constant value penalty function
is difficult to make the UAV incline to return to the landing area. The second
challenge is that meeting the energy constraints and improving the exploration
rate are in conflict. Achieving a balance between the two goals requires well-
designed solutions. The third challenge is the need to stabilize the performance
of multi-UAV exploration systems on different maps.

Based on the above facts, this paper proposes RTN-Explorer, a multi-UAV
exploration strategy under energy constraints, while exploring the unknown envi-
ronment as much as possible while meeting energy constraints. We introduce the
minimum distance penalty function. The UAV obtains a penalty proportional
to the shortest distance to the landing zone to ensure that the UAV meets the
energy constraint. We design a DDQN-based network architecture and introduce
map centering, global-local map processing to improve the performance of the
multi-UAV exploration system. We also implemented a map generator, which
can generate different environment maps for training to improve generalization.
We have carried out many experiments and verification to prove the effectiveness
of our proposed method. Our contributions are summarized as follows:

1) We introduce energy constraints into exploration tasks based on deep rein-
forcement learning for the first time. Our minimum distance penalty function
effectively improves the return rate to more than 93%, which is 92% higher
than the return rate of the constant penalty.

2) We design a DDQN-based network architecture and introduce map centering,
global-local map processing to improve the performance of the multi-UAV
exploration system. We increase the exploration rate to more than 92.85%.

3) To improve the generalized performance of the multi-UAV system, we design
a map generator that can randomly change the position and size of obstacles.
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2 Related Work

Autonomous robotic exploration has always been a hot research topic in robotics
because of its applications in rescue tasks. Depending on whether deep reinforce-
ment learning techniques are used, existing exploration methods are categorized
as 1) classical or 2) deep reinforcement learning.

2.1 Classical Methods for Environment Exploration

Classical methods utilize handcrafted heuristics to allocate goal locations to
robots to maximize exploration efficiency [6]. To date, the most common method
used for exploring unknown environments is frontier exploration. Zhou et al. [18]
introduce a frontier information structure to generate efficient global coverage
paths, which completes the exploration tasks with unprecedented efficiency (3–8
times faster) compared to other single robot approaches. But multi-robot explo-
ration is a more effective way to improve the efficiency of exploration. In the
multi-robot frontier exploration method [19], each agent makes its own decision
to select a target to explore based on the shared frontier. And the multi-robot
frontier exploration was improved by ranking the agents to allocate to a particu-
lar frontier location based on their distances to the frontier [20]. And Lopez-Perez
et al. utilize a distributed multi-robot model to increase robustness [21]. In addi-
tion, some works [22–24] improve the practicality of multi-robot exploration by
considering inter-robot communication and cooperation.

2.2 DRL Methods for Environment Exploration

Deep reinforcement learning(DRL) methods can enable agents to learn com-
plex exploration strategies through repeated interactions with the environ-
ment, thereby improving their decision-making abilities [9]. Many existing DRL
approaches only focus on single UAV scenarios. Niroui et al. [10] proposed to com-
bine deep reinforcement learning with frontier exploration. They use deep rein-
forcement learning to learn exploration strategies and then use traditional naviga-
tion methods to complete exploration tasks. Koutras et al. [11] provided a frame-
work for learning exploration/coverage policies that possess strong generalization
abilities due to the procedurally generated terrain diversity. However, in the above
work, the autonomous exploration strategy is only suitable for single-agent scenar-
ios, which severely limits the efficiency and robustness of the exploration system.

Using multiple agents has several advantages, such as reducing task comple-
tion time, improving the fault tolerance of the whole system, and so on. This
motivates the need for further research on multi-agent collaborative exploration.
In [13], a hierarchical control architecture for networked explorers is proposed. A
Voronoi-based exploration algorithm and deep reinforcement learning-based col-
lision avoidance approach are then provided to coordinate the robots efficiently
while avoiding sudden obstacles. He et al. [14] proposed a distributed multi-
robot exploration algorithm based on deep reinforcement learning (DME-DRL)
for structured environments that enables robots to make decisions based on this
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high-level knowledge. DME-DRL is a distributed algorithm that uses deep neu-
ral networks to extract the structural pattern of the environment, and it can
work in scenarios with or without communication. Geng et al. [15] presented
the attention-based communication neural network (CommAttn) to “learn” the
cooperation strategies automatically in the decentralized multi-robot exploration
problem. The communication neural network enables the robots to learn cooper-
ation strategies with explicit communication. Moreover, the attention mechanism
can precisely calculate whether the communication is necessary for each pair of
agents by considering the relevance of each received message, which enables the
robots to communicate only with the necessary partners.

2.3 Summary of Limitations

In summary, classical methods utilize hand-crafted heuristics that require
domain expert knowledge and extensive manual tuning of utility and cost param-
eters to achieve expected cooperative behavior [25]. But DRL methods no longer
require hand-crafted features/functions. It can learn cooperative policies directly
from agent experience. However, existing DRL methods do not take energy con-
straints into account.

As far as the author knows, the current exploration tasks are mainly used
in scenarios such as reconnaissance [2] and rescue [26]. In these scenarios, dis-
regarding the energy constraints is impossible for the UAV because the energy
that the UAV can carry is limited. This requires the UAV to return and land
before the energy is exhausted. To address these limitations, we introduce RTN-
Explorer, the first multi-UAV DRL method that considers energy constraints
and UAV return, which uniquely designs input processing, network structure,
and energy-constrained rewards. And training in different environments ensures
generalization.

3 Problem Formulation

We define the multi-UAV exploration problem as a team of UAVs I = {i1, . . . in}
cooperating to explore an unknown environment and generate a global map G. To
simplify the problem, we represent the environment as a grid graph M containing
M × M cells of size c. The set L represents the start/landing positions, and L
is given by Eq. (1). The lowercase letters l, b, g correspond to their respective
environment representation L, B, G.

L =
{[

xl
i, y

l
i

]T
, i = 1, . . . , L, :

[
xl

i, y
l
i

]T ∈ M
}

(1)

And the set B of the positions of the obstacles that the UAVs cannot occupy is
given by Eq. (2).

B =
{[

xb
i , y

b
i

]T
, i = 1, . . . , B, :

[
xb

i , y
b
i

]T ∈ M
}

(2)

The global map G composed of the exploration area is given by Eq. (3).

G =
{

[xg
i , y

g
i ]T , i = 1, . . . , G, : [xg

i , y
g
i ]T ∈ M

}
(3)
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3.1 UAV Model

For any UAV i ∈ I, the position of the i-th UAV at time t is defined as pi(t) =
[xi(t), yi(t), zi(t)]

T ∈ R
3 with zi(t) ∈ {0, h}. It means that the UAV is either at

ground level or in constant altitude h. In addition to the position of the UAV,
the state of the i-th UAV includes operating status φi(t) ∈ {0, 1} and battery
energy bi(t) ∈ N. The action space of each UAV can be defined as Eq. (4).

A = {
⎡
⎣

0
0
0

⎤
⎦

︸ ︷︷ ︸
hover

,

⎡
⎣

c
0
0

⎤
⎦

︸ ︷︷ ︸
east

,

⎡
⎣

0
c
0

⎤
⎦

︸ ︷︷ ︸
north

,

⎡
⎣

−c
0
0

⎤
⎦

︸ ︷︷ ︸
west

,

⎡
⎣

0
−c
0

⎤
⎦

︸ ︷︷ ︸
south

,

⎡
⎣

0
0

−h

⎤
⎦

︸ ︷︷ ︸
land

} (4)

The action of the i-th UAV at time t is ai(t) ∈ Ã (pi(t)). Ã (pi(t)) is defined
by Eq. (5). The UAV can only perform the landing action in the landing zone,
otherwise it can only perform the other five actions.

Ã (pi(t)) =

{
A, pi(t) ∈ L
A\[0, 0,−h]T, otherwise

(5)

Assume that the UAV can only move one unit distance c in each time slot δt.
The speed of each UAV is vi(t) ∈ {0, V }, which means that the UAV is either
moving at speed V = c/δt or stationary. The position transformation method
after the action is executed is shown in Eq. (6). The UAV’s position can only be
changed when its operating status is active (φi(t) = 1).

pi(t + 1) =

{
pi(t) + ai(t), φi(t) = 1
pi(t), otherwise

(6)

The transition function of the UAV’s operational status is given by Eq. (7).
If the UAV is inactive at time t or performs the landing action, it is inactive at
time t + 1.

φi(t + 1) =

{
0, ai(t) = [0, 0,−h]T ∨ φi(t) = 0
1, otherwise

(7)

The change of the UAV’s remaining energy is represented by Eq. (8). If the state
of the i-th UAV at time t is active, then the energy at time t + 1 is reduced by
one. Otherwise, it remains unchanged.

bi(t + 1) =

{
bi(t) − 1, φi(t) = 1
bi(t), otherwise

(8)

The size of the combined area that all the UAVs can explore at time t is
given by Eq. (9), where Di(t) represents the size of the i-th UAV’s exploration
area at time t.

G(t) =
I∑

i=1

Di(t + 1) −
I∑

i=1

Di(t) (9)
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3.2 Optimization Problem

The objective of the above problem is to maximize the joint exploration area
while satisfying the energy constraint. The maximization problem is given by
Eq. (10) optimizing over joint actions ×iai(t). At the same time, the following
five constraints must be satisfied. The first constraint is that each active UAV
cannot be in the same position as the other active UAVs to avoid collisions.
The second constraint is that the UAV cannot collide with obstacles. The third
constraint is that the UAV’s residual energy is always greater than or equal to
0. The last two constraints ensure that the UAV is initially in the start/landing
zone, active, and at height h.

max×iai(t)

∑T
t=0 G(t)

s.t. pi(t) �= pj(t) ∨ φj(t) = 0, ∀i, j ∈ I, i �= j,∀t
pi(t) /∈ B, ∀i ∈ I,∀t
bi(t) ≥ 0, ∀i ∈ I,∀t
pi(0) ∈ L ∧ zi(0) = h, ∀i ∈ I
φi(0) = 1, ∀i ∈ I

(10)

3.3 UAV System

Figure 1 is a system-level diagram depicting the sensors and software components
of a UAV. The UAV is equipped with a localization module and a scanning
camera for exploring the environment. The map processing module generates
the current map and feeds it to the reinforcement learning agent. Each UAV
is initialized with a fixed movement budget which is its initial energy. The safe
controller is responsible for translating the RL agent’s proposed action into a
safe action, and we will introduce the conversion method in Sect. 4.

Fig. 1. System-level diagram depicting sensor and software components on the UAV
during an multi-UAV exploration task.
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4 Deep Reinforcement Learning Framework

In this section, we convert the multi-robot exploration problem under energy con-
straints into a decentralized partially observable Markov decision process (Dec-
POMDP) [27]. The network architecture is shown in Fig. 2. We break down the
observations into a map of the start/landing zone, a map of the exploration area,
UAV’s positions and battery information, and a map of obstacles in the current
view. The decomposed views are then subjected to map processing, including
map centering and global-local map processing. The global and local maps are
fed through convolutional layers with ReLU activation and fully-connected net-
works to extract features. Then we calculate the next action and reward through
the DDQN model trained in Sect. 4.3.

Fig. 2. The architecture of the RTN-Explorer. In decomposed representation, the
information of obstacles and the explored area is incrementally increased during the
unknown environment exploration.

4.1 Markov Decision Process

The Dec-POMDP is defined through the tuple (S,A×, T,R,Ω×,O, γ). In the
Dec-POMDP, S represents the state space, A× represents the joint action space
and T is the transition probability function. R : S × A × S �→ R represents
the reward function that maps the current state, action and next state to a
real number representing the reward. Ω× = ΩI is the joint observation space.
O : S ×I �→ Ω represents the observation function that map state and agents to
one agent’s individual observation. γ is a discount factor, which represents the
trade-off between current and future returns.

State Space. The state space of the multi-UAV exploration problem under
energy constraints is given by Eq. (11), where the state s(t) ∈ S at time t is
given by Eq. (12). ∀i ∈ I, M ∈ B

M×M×3 is the tensor representation of the set
of start/landing zones L, explored area G, and obstacles B. The other elements
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of the tuple S represent positions, remaining flying times, and operational status
of all agents.

S = L︸︷︷︸
Landing
Zones

× G︸︷︷︸
Explored

Area

× B︸︷︷︸
Obstacles

× R
I×3︸ ︷︷ ︸

UAV
Positions

× N
I︸︷︷︸

Flying
Times

× B
I︸︷︷︸

Operational
Status

(11)

s(t) = (M, {pi(t)} , {bi(t)} , {φi(t)}) (12)

Safety Controller. Figure 1 shows the architecture of the UAV, which includes
the safety controller. As shown in Eq. (13), the safety controller rejects an action
with a safety threat and converts the action into a hover action while preserving
the safe action. Safety-threatening maneuvers include collisions with other UAVs,
collisions with obstacles, and landings in non-landing zones.

as,i(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 0, 0]T, pi(t) + ai(t) ∈ B
∨ pi(t) + ai(t) = pj(t) ∧ φj(t) = 1, ∀j, j �= i

∨ ai(t) = [0, 0,−h]T ∧ pi(t) /∈ L
ai(t), otherwise.

(13)

Reward Function. The reward of the i-th UAV at time t is calculated by
Eq. (14). Di(t+1)−Di(t) represents the difference between the exploration range
of two adjacent moments, and α is the weight parameter of the reward obtained
by the exploration. ε represents the punishment caused by energy consumption.

ri(t) = α (Di(t + 1) − Di(t)) + βi(t) + γi(t) + ε (14)

βi(t) is the penalty value when the RL agent’s proposed action is rejected by
the security controller. β is a hyperparameter.

βi(t) =

{
β, ai(t) �= ai,s(t)
0, otherwise

(15)

γi(t) is the penalty for the UAV not landing in the landing zone when the
remaining energy is zero. Unlike the method calculated in [17], we do not use
a constant as a penalty here but a value proportional to the minimum distance
between the UAV and the landing zone. In Eq. (16), s represents the position
vector of the center of the landing zone and λ is a multiplier times the minimum
distance. Relative to the constant value penalty, using γi(t) as the penalty can
impose different penalties for landing in a non-landing zone depending on the
distance so that the UAV gets less penalty when it is closer to the landing zone.

γi(t) =

{
λ × dis(pi(t), s), bi(t + 1) = 0 ∧ pi(t + 1) = [·, ·h]T

0, otherwise.
(16)
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4.2 Map Processing

The map processing methods we introduced include map centering and global-
local map processing. Map centering is the transformation of the input map of
each UAV into an expanded map with the UAV as the center. It can make the
network pay more attention to the information closely related to the current
UAV and avoid the influence of invalid details. Localized processing is to crop
the centered map and retain the middle part. The localization makes the network
pay more attention to the information near the UAV to assist the action decision.
Globalized processing is to compress the centered map and extract its features.

Map Centering. For input map A ∈ R
M×M×n, we utilize Eq. (17) for centering

to get B ∈ R
Mc×Mc×n, where Mc = 2M−1. p̃ is the position vector of the current

UAV and xpad is the fill value of the augmented map.

B = fcenter (A, p̃,xpad ) (17)

The function fcenter is given by Eq. (18).

fcenter : RM×M×n × N
2 × R

n �→ R
Mc×Mc×n (18)

The calculation formula for each element in B is shown in Eq. (19). It effectively
pads map A with the padding value xpad .

bi,j =

⎧
⎪⎨
⎪⎩

ai+p̃0−M+1,j+p̃1−M+1, M ≤ i + p̃0 + 1 < 2M

∧M ≤ j + p̃1 + 1 < 2M

xpad , otherwise
(19)

Localized Processing. Localized processing transforms B ∈ R
Mc×Mc×n into

X according to the parameter l.

X = flocal (B, l) (20)

The function flocal is given by Eq. (21).

flocal : RMc×Mc×n × N �→ R
l×l×n (21)

Each element in X is calculated as shown in Eq. (22). X is obtained by inter-
cepting the middle l × l part on B.

xi,j = bi+M−� l
2�,j+M−� l

2� (22)

Globalized Processing. Globalized processing transforms B ∈ R
Mc×Mc×n

into Y according to the parameter g.

Y = fglobal (B, g) (23)
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The function fglocal is given by Eq. (24).

fglobal : RMc×Mc×n × N �→ R

⌊
MC

g

⌋
×

⌊
MC

g

⌋
×n (24)

The elements in Y are defined by Eq. (25). This operation equals an average
pooling operation with pooling cell size g.

yi,j =
1
g2

g−1∑
u=0

g−1∑
v=0

bgi+u,gj+v (25)

4.3 Multi-agent Reinforcement Learning

Deep Q-network (DQN) is a Q-learning algorithm based on deep learning, which
mainly combines value function approximation and neural network [28]. It adopts
the method of target network and experience replay to train the network. Experi-
ence replay builds a replay buffer D. New experiences of the agent, represented by
quadruples of (s, a, r, s′), are stored in the replay buffer. r represents the reward
obtained by performing action a after state s and s′ represents the next state.
DQN uses a separate target network to estimate the next largest Q value. In
order to solve the problem of DQN overestimating the Q value, DDQN improves
the target value as:

Y DDQN (s, a, s′) = r(s, a) + γQθ̄

(
s′, argmax

a′
Qθ (s′, a′)

)
(26)

And its loss function is given by:

LDDQN(θ) = Es,a,s′∼D
[(

Qθ(s, a) − Y DDQN (s, a, s′)
)2]

(27)

During training, the sampled soft-max policy for exploration of the state and
action space is given by Eq. (28). The hyperparameter β is used to balance
exploration and exploitation.

π (ai | s) =
eQθ(s,ai)/β

∑
∀aj∈A eQθ(s,aj)/β

(28)

The DDQN training process is described in Algorithm 1. Following the ini-
tialization of the replay buffer and network parameters, new training begins to
reset the state, select a random UAV starting position, and a random mobile
budget b0 ∈ B for each UAV. As long as the exploration task is not completed,
the event will continue. For each activate UAV i, a new action a ∈ A is chosen
according to Eq. (28) and the subsequent experience stored in the replay mem-
ory buffer D. The main network parameter θ is updated by utilizing the ADAM
optimizer to execute gradient steps on data with a small batch of m samples
in the replay buffer. Subsequently, updating target network parameter θ̄ and
reducing the mobile budget. The exploration task ends when all the UAVs have
successfully landed or are at zero power. Then, a new episode begins, unless the
maximum number of episodes is Nmax.
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Algorithm 1. DDQN training for exploreation under energy constraints
input: maximum training steps Nmax, initial movement budget range B
output: network parameter θ

1: Initialize D, initialize θ randomly, θ̄ ← θ
2: for t = 0 to Nmax do
3: ∀i ∈ I, initialize the UAV’s state si with random starting position and sample

initial movement budget bi uniformly from B
4: while the task is not completed do
5: for each UAV i ∈ I do
6: if the i-th UAV is inactivate then continue
7: Sample ai according to Eq. (28)
8: Observe ri, s

′
i

9: Store (si, ai, ri, s
′
i) in D

10: for j = 1 to m do
11: Sample

(
sj , aj , rj , s

′
j

)
uniformly from D

12: Yj =

{
rj , if s′

j terminal

according to Eq. (27), otherwise

13: Compute loss Lj(θ) according to Eq. (26)

14: Update θ with gradient loss 1
m

∑m
j=1 Lj(θ)

15: θ̄ ← (1 − τ)θ̄ + τθ
16: bi = bi − 1

5 Experiments

In this section, we evaluate different exploration strategies under different con-
ditions. We conduct simulation experiments on a variety of maps generated by
the map generator. The exploration rate and the return rate are the metrics
we use to evaluate the agents’ performance on different maps and under differ-
ent scenario instances. We define the exploration rate as the ratio between the
amount of explored area and the total area of the ground truth map. The return
rate equals the number of UAV successful returns divided by the total number
of trials.

5.1 Experiment Setup

The algorithm of DDQN is implemented with TensorFlow [29] and the group of
UAVs with a scanning camera. We train the multi-UAV coordinated exploration
on a computer with an Intel Xeon W-2235 CPU and an NVIDIA GeForce RTX
3090 GPU. The environment is presented as 32 × 32 cells space. As shown in
Fig. 2, each unit in the environment is assigned to one object: obstacle (grey),
the unexplored region (dark grey), the start/landing zone (purple), and UAV
(blue). In the training experiment, we assume each UAV can only move one cell
within one cell scanning range at a time in the environment. We reinitialize the
exploration scene when the UAVs are reaching the maximal steps or completing
all the tasks. To demonstrate the robustness of our model, we randomly place the
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UAVs in the start/landing zones, generating random environments for the UAVs
at each re-initialization. We set the number of UAVs to be a random number
in the range of [2, 6], and the energy of the UAVs to be a random number in
the range of [400, 450]. The key hyperparameters during the training process are
listed in Table 1.

Table 1. DDQN hyperparameters

Parameter Value Description

|θ| 1,175,302 trainable parameters

Nmax 3,000,000 maximum training steps

l 17 local map scaling

g 3 global map scaling

|D| 50,000 replay buffer size

m 128 minibatch size

τ 0.005 soft update factor

γ 0.95 discount factor in Eq. (26)

β 0.1 temperature parameter in Eq. (28)

λ 0.2 the minimum distance multiplier in Eq. (16)

5.2 Experiment Results

Comparison of Different Map Processing Methods. To prove the valid-
ity of our proposed map processing method, we compared four different map
processing methods. Table 2 shows the performances of the exploration systems
using four different map processing methods when the number of UAVs ranges
from [2, 6]. As for the evaluation, Table 2 shows the results from the experiments
as averaged over 5000 runs for each different method. We also use different maps
generated by the map generator during the test to ensure the reliability of the
results.

Increasing the exploration rate and increasing the return rate are conflicting
goals. In our experiment, the weight of the exploration reward is greater than the
weight of the return failing penalty, so the UAVs will tend to explore the unknown
area. This is why no processing method makes the exploration system obtain
more than 86% exploration rate and less than 1% return rate. Only using global-
local map processing can improve the return rate to a certain extent but reduce
a certain exploration rate. Only using map centering can significantly improve
the return rate. Combining map centering and global-local map processing, we
can get the highest return rate and exploration rate. This is because the local
map processing intercepts the central part of the UAV view, strengthens the
information around the UAV, and globalizes the centralized view to extract
the global features. As the number of UAVs increases, so does the scale of the
problem, which leads to a certain reduction in the return rate of UAVs.
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Table 2. Performance comparison of different map processing methods.

Map Processing\UAVs 2 3 4 5 6

No processing Exploration rate 86.25% 90.91% 94.77% 95.18% 96.54%

Return Rate 0.00% 0.10% 0.22% 0.72% 0.47%

Global-Local Exploration Rate 83.59% 90.68% 94.22% 95.53% 96.17%

Return Rate 2.28% 3.66% 3.77% 3.39% 2.75%

Centering Exploration Rate 87.82% 93.25% 93.68% 93.23% 92.44%

Return Rate 13.52% 33.55% 64.10% 72.84% 73.87%

Global-Local
+Centering

Exploration Rate 92.85% 96.00% 97.67% 98.40% 98.84%

Return Rate 93.10% 98.23% 97.30% 94.16% 93.01%

Comparison of Different Return Strategies. To verify that our return
strategy can explore new areas while returning, we compare the exploration rate
with the return strategy based on the original path. The strategy of return based
on the original path is that when the energy consumption of the UAV reaches
half of the initial energy, the UAV returns to the landing zone.

Fig. 3. Comparison of exploration efficiency between RTN-Explorer and the return
strategy based on the original path.

As shown in Fig. 3, the abscissa represents the number of robots. We com-
pared the exploration rates of two return strategies with the number of UAVs in
[2,6]. It can be seen from Table 1 that our exploration strategy can ensure a high
return rate of more than 93%. In terms of exploration rate, our strategy is at
least 10.88% higher than the return strategy based on the original route. RTN-
Explorer can explore new areas while returning, but the return strategy based on
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the original path can not explore new areas when returning. So the exploration
efficiency of RTN-Explorer is significantly higher than that of returning based
on the original path.

Comparison of Different Penalty Functions. As described in Sect. 4, We
impose the minimum distance penalty proportional to the shortest distance from
the UAV to the landing zone for UAV forced landing in the non-landing zone.
Compared with the constant value penalty set in [17], our minimum distance
penalty can significantly improve the return rate. Common distances also include
European distance and Manhattan distance, which are relatively inexpensive
to calculate. So in addition to the constant value penalty, we also compared
the performance of the Euclidean distance penalty and the Manhattan distance
penalty on the return rate (Fig. 4).

Since there is no correlation between the penalty function of landing in the
non-landing area and the exploration rate, we only need to compare the return
rate of these four penalty functions in different UAV numbers.

After a lot of experiments, we can get the following conclusion: the minimum
distance penalty function we use can effectively improve the return rate. Using
the Euclidean distance to the landing zone as the penalty can also obtain a
high return rate. But the return rate of the Euclidean distance penalty function
is lower than the minimum distance penalty function by at least 7.67%. The
Manhattan distance penalty function yields a return rate of less than 60%. And
the constant penalty yields a return rate of less than 11.88%.

Fig. 4. Comparison of return rate under different penalty functions. The return rate of
the method based on the constant value penalty function is 0.00% for two UAVs and
0.41% for three UAVs.
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Comparison of Environments with Different Difficulties. At the begin-
ning of each episode, we reinitialize the environment map. We allow the map gen-
erator to generate initial environment maps with different complexity according
to the difficulty vector. Specifically, the difficulty vector consists of two elements
[dm, dt].

dm represents morphological randomness, which can define the shape of
obstacles in the environment. dm controls the area each obstacle may occupy.
The bigger the value of dm, the larger the possible obstacle composite area in
the training environment. dm gets values from {1, 2} discrete set.

dt represents topological randomness, which defines the positions of obstacles
on the map. The fundamental positions of the obstacles are equally arranged
in a 3 columns - 3 rows format. dt controls the deviation radius around these
base positions. As the value of dt increases, the topology of obstacles has more
unstructured forms. dt gets values from the {1, 2} discrete set.

Higher values in the elements of the difficulty vector correspond to less struc-
tured behavior in the obstacles formation. As a result, a trained agent that has
been successful in higher-difficulty training setups may have better generalization
abilities. It can be seen from Fig. 5 that the environment of different difficulty
levels has less impact on exploration rates. In contrast, the return rate is more
sensitive to the difficulty of the environment. Nevertheless, when the difficulty
vector lvl = [2, 2], the exploration rate can still be maintained at more than
85%, and the return rate can be maintained at more than 70%.

Fig. 5. The sensitivity of the exploration rate and the return rate with respect to the
different levels of the difficulty vector.

6 Conclusion

We propose an environment exploration strategy (RTN-Explorer) that satisfies
the energy constraints. RTN-Explorer makes the UAV return to the landing
zone before the energy is exhausted while ensuring exploration efficiency. Before
training, we centralize, globalize, and localize environment map representations
to improve performance. To satisfy the energy constraint, we design a penalty



378 Y. Zhou et al.

function based on the shortest path distance to the landing zone and use the
map generator to generate the environment map for training. A large number
of simulation experiments show that RTN-Explorer is effective and robust. In
order to further improve the stability of the system, we can increase the difficulty
dimension in the map generator to increase the randomness of the environment.
In future work, we’ll expand the UAVs’ action space to include altitude and
continuous control, which will necessitate a different RL method than Q-learning,
as well as adding height information to the agents’ observations space.
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