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Abstract. The distributed deployment and the relatively limited
resource of one edge node make it quite challenging to effectively manage
resources at the edge. Inappropriate scheduling may result in a quality
of service deterioration and brings significant cost. In this paper, we pro-
pose a per-user level management mechanism for joint scheduling of user
requests and container resources at the edge and study how to mini-
mize average cost as well as satisfy delay constraints. The cost model
of the system consists of operating cost, switching cost and delay viola-
tion cost. The key idea is to deploy a deep reinforcement learning-based
scheduler in the core network to conduct joint network and computation
management. To evaluate the performance, we build a test bed namely
MiniEdgeCore that contains a full user plane protocol stack and deploy
a real-time video inference application on it. A real-world dataset is used
as the workload sequence to conduct experiments. The results show that
the proposed method can reduce average costs effectively.

Keywords: Mobile edge computing · 5G · Request dispatching ·
Container management

1 Introduction

With the rapid development of the 5G network and Mobile Edge Computing
(MEC), the traditional end-cloud computation is evolving into the end-edge-
cloud mechanism. Thanks to this change, end devices are released from heavy
computation tasks by offloading tasks to edge nodes. As a result, end devices
could be more light and portable, providing more powerful services. This creates
several emerging big markets for the next generation of killer applications [33,34].
For example, mobile AR and VR are supposed to create a market of USD 766
billion by 2025, with compound annual revenue growth of 73.3% from 2018 to
2025 [28].

Guaranteeing the Quality of Service (QoS) of computation-intensive and
delay-sensitive services in MEC requires dynamic provisioning of computational
resources. That is, when the request number per slot increases, the edge node
should increase the number of container instances to avoid the long processing
delay resulting from requests queuing on the server side. When the request num-
ber per slot decreases, the edge node needs to appropriately reduce the number of
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Fig. 1. GTP-U Tunnel

running containers, thereby saving computing resources and improving resource
utilization. This is an intuitive method but still far from satisfactory. It has two
disadvantages: 1) Starting or terminating instances brings time costs. This pro-
cess lasts several seconds, during which the service is not available. 2) As each
instance serves more than one user, such an adjustment cannot achieve per-
user level management. Therefore, changing the number of running container
instances is only suitable for coarse granularity and low-frequency management.

In traditional cloud data centers, the per-user level management is achieved
by a load balance server. However, owing to the resource limitation of edge
nodes, it is very likely that only a few instances are kept for one service. As
a result, load balancing within one edge node is not enough. When container
instances within one edge node cannot handle all the requests, dispatching user
requests among different edge nodes is a practical way [17]. However, how to
implement such dispatching is quite challenging. First, traditional load balance
in cloud data centers relies on a centralized load balance server, which is not
applicable for request dispatching among different edge nodes. Second, using the
DNS mechanism in edge systems is not as efficient as it is in cloud computing
[16]. As the DNS records are updated periodically according to the Time to
Live (TTL) configured by the administrator, the DNS resolving results may
remain the same during this time. This means a per-user level dispatching is not
applicable and the resolving result may not match the state of the highly dynamic
environment. Finally, and most importantly, user request dispatching relies on
the selection of User Plane Function (UPF). User packets in the communication
network (no matter 4G or 5G) are transferred through GPRS Tunneling Protocol
User plane (GTP-U) tunnel, where original IP packets are encapsulated into
GTP-U protocol data units (shown in Fig. 1). The original IP address is not used
in packet routing within the communication network between gNB and Anchor
UPF (A-UPF). Therefore, per-user level management in MEC should rely on the
session management and traffic steering provided by the communication network
architecture to realize the request dispatching.
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Given the above facts, it is clear that achieving a per-user level matching
between user requirements and computation resources is essential for MEC to
realize its full potential. Thus, we pose a critical question: how to properly dis-
patch user requests and manage containers at edge nodes in 5G MEC to meet
the latency constraints and minimize the total cost. The total cost comes from
container operation cost, latency violation cost and container mismatching cost.

Currently, it has become a consensus that resource provision and request dis-
patching are highly interdependent and should be considered jointly as two levels
of QoS guarantee methods [15,24,30]. That is, adjusting computation resource
provision to cope with workload change in a long period and dispatching requests
of each user to different edge nodes to deal with instantaneous changes. How-
ever, prior arts either provide a pure theoretic method based on specific delay
models [10,39] or only consider the scheduling of computing resources at the ser-
vice deployment level [11,24,31,32,36]. In addition, the aforementioned works
neglect the key role of the 5G core network in request dispatching. To pave the
way for deploying emerging applications such as cloud AR/VR at the edge, this
paper focuses on how to achieve joint management of user request dispatching
and container instance number scheduling in 5G architecture. The target is to
minimize the total operating cost while satisfying the delay constraint.

In this paper, we study how to reduce total operation cost as well as satisfy
the low delay requirement. The main contributions are listed as follows:

1) We propose a per-user level user request dispatching and container instance
scheduling mechanism. This mechanism takes full consideration of 5G core
network architecture and achieves the joint management of network and com-
putation resources.

2) A deep reinforcement learning-based scheduling algorithm is proposed to
jointly manage user request dispatching and container instance scheduling.
The container switching delay during starting or terminating a container
instance is considered so that the proposed method is more practical in real-
world scenarios.

3) We build a test bed, namely MiniEdgeCore, to emulate the complicated
request dispatching scenarios in MEC. MiniEdgeCore provides a full-stack
5G core network user plane that can dispatch user requests by setting up
different GTP-U tunnels. It also has a Docker-based edge node system that
works under the guidance of the core network.

4) Extensive experiments are conducted on MiniEdgeCore with a real-world
dataset as the workload sequence input. The experiment results show that
the proposed method can minimize the average total cost as well as guaran-
tee a low access delay.

2 System Model

2.1 Scenario

As is shown in Fig. 2, we consider a mobile network consisting of base stations,
edge nodes and UPFs. The topology of the network is an undirected graph G =
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Fig. 2. System topology.
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U,L). Let B = {b1, b2, · · · , bnb
} denote the set of base stations, where

nb(nb = 1, 2, 3, . . . ) is the total base stations number. Let E = {e1, e2, · · · , ene
}

denote the set of edge nodes, where ne(ne = 1, 2, 3, . . . ) represents the edge node
number. Let U = {u1, u2, · · · , unu

} denote the set of UPFs, where nu(nu =
1, 2, 3, . . . ) represents the UPF number. L denotes the physical communication
links among base stations, edge nodes and UPFs. The operation of the system is
described in a set of time slots T , indexed by t = 1, 2, 3, . . . , T with a slot length
τ .

At time slot t, there are several user requests. Let Rt denote the set of all
requests that exist at time slot t. nt

r represents the number of user requests in
time slot t, i.e., nt

r = |Rt|. rtx represents the request of user x at time slot t.
If user x is requesting a service at t, rtx ∈ Rt. Otherwise, rtx /∈ Rt. Let B(rtx)
denote the base station that user i links to. E(rtx) denotes the edge node that is
serving rtx. U(rtx) denotes the UPFs that is in the connection of rtx. As a result,
the offloading information of a request is determined by (B(rtx), E(rtx),U(rtx)).
Each User Equipment (UE) has two types of network connections. The first one
is the physical link with the base station. It is determined by user location.
Let αt

xi ∈ {0, 1} denote such a physical connection. If B(rtx) = bi, αt
xi = 1.

Otherwise, αt
xi = 0. The other one is the logical link between UE and edge node,

which connects the request producer and request consumer. Such a relationship
is denoted by βt

xj ∈ {0, 1}. If E(rtx) = ej , then βt
xj = 1. Otherwise, βt

xj = 0.
Generally, a certain number of container instances need to be started to serve

these requests in each edge node. Current container platforms support CPU core
number limitation for one container [20,23]. In this paper, it is supposed that
each container instance works with only one CPU core assigned to it. As a
result, the computing resources provided by each edge node at time slot t can
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be represented by the number of running container instances. Let mt
i(m

t
i =

0, 1, 2, · · · Mi) denote the number of running container instances of edge node ei
at time slot t, where Mi represents the maximum number of container instances
that can be started at edge node ei.

In ideal situations, all user requests are dispatched to the nearest edge node
to achieve the lowest access delay and best quality of service. However, the near-
est edge node is not always the best choice in real world [6,17,35]. Considering
computing resources are limited at edge nodes, if the nearest edge node gets
overloaded, the total delay may exceed the upper limit as a result of long com-
putation delay. However, the spatial and temporal distribution of user requests is
uneven in cities. On the one hand, user number in different regions differs a lot,
which makes the request number of different edge nodes at the same time slot
vary a lot. On the other hand, user request number changes dynamically at one
edge node because of user movement. Therefore, user requests may be routed to
other edge nodes to prevent the nearest edge node from getting overloaded.

2.2 Delay

In mobile edge computing, access delay is one of the most important metrics.
In most cases, access delay comes from transmission, processing, and backhaul
[27]. Transmission delay refers to the delay brought by wireless communication
between UE and base stations. Processing delay refers to the time needed for
a processor to finish the task and the time consumed by tasks waiting in the
queue. Backhaul delay refers to the total time for a packet to wait in the queues
of network equipment when it traverses the distance between edge servers and
base stations. As request dispatching does not affect the transmission delay of
wireless communication, the service delay in this paper involves backhaul delay
and processing delay.

Let ϕi and ϕj denote network devices located at the two ends of one link.
d(ϕi, ϕj) denotes the delay between these to devices. Then, the backhaul delay
of a user request consists of two parts, i.e., the delay between the base station
and UPF as well as the delay between UPF and the edge node. The backhaul
delay can be defined as follows:

DN(rtx) = d(B(rtx),U(rtx)) + d(U(rtx), E(rtx)), (1)

where DN(rtx) denotes the backhaul delay of service request rtx.
The computation delay of request rtx is defined as the total time it takes

from the request’s arriving at the edge node to the edge node’s sending back the
result.

DC(rtx) = Te(rtx) − Ts(rtx), (2)

where Ts(rtx) denotes the time edge node receives the request and start to process
it. Te(rtx) denotes the time that the process ends.
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The total delay consists of communication delay and computation delay. It
is given as follows

D(rtx) = DN(rtx) + DC(rtx). (3)

In real-world scenarios, average delay is not a good indicator of the system
because it can be easily affected by extreme values. Besides, pursuing extremely
short delays cannot improve the quality of service if delays have already been
lower than a specific threshold. As a result, statistical delay guarantee is a more
practical way to evaluate the quality of service [19]. We adopt delay ratio as the
key metrics to evaluate the network state. To get the delay ratio, the delay of
each user request is sampled Nd times in a time slot. Supposing that user x has
nt
d samples satisfying the delay constraint in time slot t, then the delay ratio is

defined as follows:

Rt
x =

nt
d

Nd
. (4)

2.3 System Cost

For a time period between ta and tb (ta, tb ∈ T ), the total system cost contains
three parts, i.e., operating cost, switching cost and delay violation cost. Oper-
ating cost refers to the rental cost that tenants are charged according to the
number of containers they are using in each time slot. There are many charging
systems. Tenants can pay by the year, by month, pay as you use, etc. To simplify
the problem, we adopt a charging system of pay by time slot.

Cr(ta, tb) = prun

tb∑

t=ta

ne∑

i=1

mt
i, (5)

where Cr(ta, tb) denotes the total operating cost, prun represents the cost of one
container running for one time slot, mt

i is the total container number of edge
node ei running in time slot t.

Switching cost comes from operations of starting or terminating a container
in an edge node. Changing the number of running containers according to the
variation of total workload can prevent operating cost waste but will introduce
extra system overhead [4]. Besides, the switching operation cannot take effect
immediately because of the startup and termination time of a container. In order
to prevent frequent switching operations, switching cost is introduced, which is
defined as follows:

Cs(ta, tb) = pswitch

tb∑

t=ta

ne∑

i=1

|mt
i − mt−1

i |, (6)

where Cs(ta, tb) denotes the total switching cost and pswitch is the price for one
single switching operation.

Delay violation cost results from the potential access delay violation. The
violation may come from the long network delay stemming from improper request
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dispatching. It could also come from the extra computation delay caused by
improper resource scheduling. Access delay violation will lead to unacceptable
quality of service, and, as a result, the edge operator has to compensate users.
Thus, a delay violation cost is introduced.

Cd(ta, tb) = pdelay

tb∑

t=ta

∑

rtx∈Rt

ηt
x, (7)

ηt
x =

{
1, Rt

x < Rmin

0, otherwise
, (8)

where Cd(ta, tb) denotes the total delay violation cost, pdelay is the punishment
for one delay violation, Rt

x is the delay ratio of user x at time slot t, Rmin is the
lowest acceptable delay ratio according to service level agreement.

Therefore, the total cost of the system during the period from ta to tb can
be denoted as follows:

Ctotal(ta, tb) = Cr(ta, tb) + Cs(ta, tb) + Cd(ta, tb). (9)

Then the average cost per request per slot is defined as follows:

Creq =
Ctotal(ta, tb)
∑tb

t=ta
nt
r

. (10)

2.4 Problem Formulation

In mobile edge computing, edge service provider changes the number of running
containers at different edge nodes to dynamically adjust the computing resource
provision to the computing demands of users. Besides, request dispatching is
used to route user requests to proper edge nodes in a fine-grained manner to
prevent frequent container switching operation and achieve a quick response. It
is quite challenging to achieve a joint management of request dispatching and
container scheduling with a low cost. This paper studies how to minimize the
average cost per request per slot from the perspective of edge service providers.

Minimize Creq, (11)

s.t.

nb∑

i=1

αt
xi = 1, ∀0 ≤ x ≤ nt

r, (12)

ne∑

j=1

βt
xj = 1, ∀0 ≤ x ≤ nt

r, (13)

mt
i ≤ Mi, (14)

where Eq. 12 represents that each UE connects to only one base station. Equa-
tion 13 guarantees that each user request is responded by only one edge node.
Equation 14 represents that the running container number of one edge node can-
not exceed the upper limit.
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3 Algorithm Design

User requests dispatching and container scheduling in mobile edge comput-
ing are typical sequential decision-making problems, which are often modeled
as Markov decision processes [5,29]. This is a challenging problem because it
involves joint management of network and computing resources. In this paper,
Advantage Actor Critic (A2C) algorithm is adopted to solve this problem. First,
we map the problem into Markov decision process. A Markov decision process
M = (S,A, P,R) consists of a finite set of state S, a finite set of actions A,
a state transition probability P and a reward function R. In this problem, the
effect of actions on the system is deterministic, so the key points of this Markov
decision process are the state, action and reward function, which are defined as
follows:

At the beginning of each time slot t, the state of the system is constructed
as the input of the A2C agent, which consists of: 1) The maximum number of
container instances that each edge node can launch, i.e., Mi; 2) The number
of running container instances of each edge node in the current time slot, i.e.,
Mi − mt

i; 3) The dispatching relationship of user requests that are launched in
previous time slots and haven’t been terminated; 4) The information on new
user requests that will be launched in this time slot.

Every action at ∈ A in the action set consists of two parts: the information for
container instance management and the information for user request dispatching.
Supposing that there are ne edge nodes in the system and at most nq new user
requests in a time slot. Then at will be an array with ne+nq bits. The first ne bits
correspond to the container instance operations of each edge node. This paper
assumes that in each time slot, each edge node can only have three container
operations: adding a container, reducing a container, or keeping the number of
containers unchanged. The value of each bit could be 1,0 or -1, respectively. The
last nq bits correspond to the request dispatching decision and its value refers to
the ID of the target edge node. Since the actual number of user requests in each
time slot satisfies nt

r ≤ nq, the first ne + nt
r bits of the entire action array are

valid, and the rest bits are filled with 0 by default. The output of A2C’s policy
network is a continuous action array a′

t. The value of each bit of a′
t is limited

between -1.5 and 1.5. Then a′
t is discretized to at through an action discreteness

algorithm shown in Algorithm 1.
The reward function is defined as wt − ct, where wt = w0(nt

r −
∑

rtx∈Rt ηt
x)

is the reward brought by requests whose delay ratio meets the requirements. w0

is the reward for a single request. ct = Ctotal(t − 1, t) is the cost of the system
in one time slot.

In 5G architecture, the orchestrator in MEC, acting as an Application Func-
tion (AF), can interact with the core network to provide application influence on
traffic routing [1,8]. This mechanism makes it applicable to achieve joint man-
agement of 5G network and edge nodes. Therefore, this paper uses a centralized
control method and deploys the A2C agent in the core network to schedule user
requests and edge-side containers jointly.
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Algorithm 1. Action Discreteness Algorithm
Input: a′

t

Output: at

1: Clamp each bit of a′
t to [-1.5, 1.5]

2: for i = 0; i < ne; i + + do
3: if a′

t[i] > 0.5 and 2mt
i − ∑

rtx∈Rt βt
xi < 2 then

4: at[i] = 1
5: else if 2mt

i − ∑
rtx∈Rt βt

xi ≥ 4 then

6: at[i] = −1
7: else
8: at[i] = 0
9: end if

10: end for
11: for i = ne; i < ne + nq; i + + do
12: if i < ne + nt

r then
13: at[i] = �ne(a

′
t[i] + 1.5)/3� + 1

14: else
15: at[i] = 0
16: end if
17: end for
18: return at.

4 Experiment

4.1 5G MEC Experiment Platform

We build a test bed called MiniEdgeCore. The test bed consists of two parts. The
first part is a 5G core network system consisting of a simplified control plane
and a full-stack user plane. The control plane only implements the necessary
functionalities related to traffic steering such as session management and UPF
selection. The user plane implements UPF with a full GTP-U protocol stack [2,
3]. GTP-U is widely used in protocol which creates a UDP-based tunnel between
gNB and Protocol data unit Session Anchor (PSA) to enable interconnection
between UE and external packet data networks such as the Internet and local
data network. Generally, there are two roles for UPFs. It can either serve as an
Uplink Classifier (UL CL) or as PSA. For the convenience of expression, in the
following, we use Intermediate UPF (I-UPF) to refer to the UPF working as
ULCL,, and A-UPF to refer to the UPF that serve as PSA.

The second part of the system is edge nodes composed of several servers
deployed with Docker [20] system. In each edge node, an AF is implemented
based on Docker Python SDK1, which is in charge of interacting with the core
network and starting or terminating a container instance.

To achieve a flexible network architecture, we run network functions in
Mininet [21] hosts. Mininet is a Linux-based system that consists of virtual net-
works, switches and applications running in a real kernel. By leveraging Mininet,
1 https://docs.docker.com/engine/api/.

https://docs.docker.com/engine/api/
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we can create different net topologies and test realistic network streams in one
network node. Besides, the wireless network between UE and gNB is replaced
by Ethernet because we were not concerned with the communication status of
the wireless terminal. This can help to save the cost of software-defined radio
devices and make the system capable of emulating large-number user scenarios.

One network node together with several edge servers composes one cluster
that emulates one service area in the city. Multiple clusters linking with each
other can emulate complicated request dispatching scenarios in MEC. For one
user request, the dispatching is achieved by setting up a GTP-U tunnel. The
I-UPF in this tunnel will route request data packets to the target A-UPF, which
is connected with an edge node. If the target A-UPF locates in the same cluster,
user requests are routed to the local edge node, otherwise, user requests will be
processed by edge nodes located in another service area.

4.2 Experiment Setup

The experiment is conducted in the MiniEdgeCore system mentioned above. The
application used in the experiment is a live stream real-time action inference. A
UE node in MiniEdgeCore pushes a pre-recorded hand motion video to the edge
server using an RTSP [25] stream set up by FFMPEG [12]. Then, a processing
service based on Mediapipe [14] detects hand locations frame by frame and
return hand-knuckle coordinates to the user. In the process of video streaming,
the system records the time stamp when a frame is sent, received, and processed
so that the backhaul delay and processing delay can be calculated. The system
clocks of the servers are synchronized using Network Time Protocol [22].

This experiment is conducted by emulating the user request scenarios in
the whole city. We use Edge Computing Dataset2 as input to provide workload
sequence. The dataset records the mobile Internet access log of users in Bei-
jing. Each record in the dataset provides information including phone number
(encrypted to protect privacy), location area code and cell identification code
of the connected base station, access point name, international mobile device
identification code (the first six digits), the start time and end time of network
access, upstream and downstream traffic, and gateway information. One exam-
ple of user request workload sequences is shown in Fig. 3. In this paper, all base
stations are divided into six service areas. Each service area is equipped with
an edge server. According to the location information of the user’s access to the
base station, the user’s access requests can be mapped to each service area as
the input workload of the area.

In this experiment, MiniEdgeCore deploys six service areas, corresponding
to the six service areas of the dataset respectively. Each service area has four
base stations, and each base station has five UEs. Each UE is in a dormant state
by default. MiniEdgeCore activates a different number of dormant UEs in each
time slot according to the workload sequence recorded in the dataset. UEs start
to upstream video after it is activated. UE requests in one area are offloaded to

2 https://github.com/BuptMecMigration/Edge-Computing-Dataset.

https://github.com/BuptMecMigration/Edge-Computing-Dataset
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Fig. 3. User request number per time slot.

A-UPFs in different areas by I-UPF. A-UPF is connected to an edge server by
binding the physical network card through the Open vSwitch3. The edge server
is a Lenovo ThinkCenter M910t with a 3.40 GHz Intel Core i7-6700 CPU and
a 16G DDR4 memory. Intel Core i7-6700 has four cores. One CPU core is used
to run AF which is in charge of communicating with the core network. The
remaining three CPU cores are used to run container instances. Each container
instance is mapped to one CPU core.

4.3 Benchmark Algorithms

In this section, Creq and Average Service Satisfaction Rate are selected as the
main metrics. Average Service Satisfaction Rate is defined as the average propor-
tion of users whose request delay ratio meets the requirements. The benchmark
algorithms are listed as follows:

1. Local All user requests are processed in the edge node within the service
area. The edge node will start a new container when the processing delay
reaches the upper limit. It terminates a container if instances work in an idle
state.

2. Random User’s service requests are randomly dispatched to different edge
nodes. Each edge node adjusts the number of container instances according
to its workload. When the upper limit is reached, a new container is started,
and the container is terminated when the container is idle.

3. Greedy User requests in each time slot are dispatched to the edge node with
the most sufficient computing resources in the time slot. Each edge server
opens a new container when this server’s processing delay reaches the upper
limit and closes one container instance when it is idle.

3 https://www.openvswitch.org/.

https://www.openvswitch.org/
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4.4 Experiment Results

In this experiment, the time slot length is set to 5 s. The maximum service
satisfaction delay is 220 ms. The minimum delay ratio Rmin is 0.9. prun is set
to 1. pswitch is set to 3, and pdelay is set to 3. As for parameters used in A2C
training, the cross-entropy coefficient is 0.01. The reward discount is 0.9, and
the learning rate is 0.001.

Fig. 4. Algorithm performance with different container switching delay.

Figure 4 shows the average cost per request per slot Creq(Fig. 4a) and the
average service satisfaction rate (Fig. 4b) of each algorithm in the experiment.
The horizontal axis Tc in the figure represents container switching delay, that
is, the adjustment operation on the number of containers needs to pass Tc time
slots to take effect. As shown in the figure, when Tc = 0 (container operation
takes effect immediately), Greedy achieves the highest service satisfaction rate
(98.96%) and the lowest Creq (1.56). Local achieves a delay satisfaction rate
of 94.68% with a Creq of 1.92, and A2C achieves a delay satisfaction rate of
93.03% with a Creq of 1.96. The performance of Random is the poorest, and
its delay satisfaction rate is less than 90%. However, the performance of A2C
begins to stand out when Tc �= 0. As Tc increases from 1 time slot to 3 time
slots, A2C maintains the lowest Creq, which is on average 4.51% less than Greedy,
14.96% less than Local, and 21.17% less than Random. In terms of average service
satisfaction rate, when container switching delay is non-zero, only Greedy and
A2C can maintain a service satisfaction rate of above 90%. Both Local and
Random are lower than 90%. In the ideal case where the container operation
takes effect immediately, Greedy is the optimal strategy. Because the system can
immediately adjust the number of running container instances according to the
change of workload and dispatch the user’s service requests to the edge node with
the most abundant computing resources. This can avoid the processing timeout
caused by the overload of a single container. However, in real-world scenarios, it
takes a certain amount of time for the container instance to start or terminate
[4]. In this situation, although Greedy can ensure a high service satisfaction
rate, its container operations bring extra costs due to the existence of container
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Fig. 5. Running container number.

Fig. 6. Container switching times

switching delays. A2C has a forward-looking decision-making process through
the training of the agent. As a result, the cost of container scheduling is lower.

In order to further explain the reason why A2C achieves the lowest Creq in the
presence of container switching delay, a complete epoch is analyzed in the case of
Tc = 2. As shown in Fig. 5, during the whole experiment, the number of running
container instances and the number of user requests (see Fig. 3) have a simi-
lar fluctuation pattern. Among all algorithms, the real-time running container
number of A2C (shown in Fig. 5a) has a smaller fluctuation range than other
algorithms. Its cumulative number of containers (shown in Fig. 5b) is basically
the same as that of Greedy and Local, and less than that of Random. However,
the performance of each algorithm on container switching times is significantly
different. As shown in Fig. 6a, the real-time container switching times of A2C
are significantly lower than that of other algorithms. The gap of cumulative
container switching times (see Fig. 6b) is much more distinct. The cumulative
container switching times of A2C are 23.38% less than that of Greedy, 24.06%
less than that of Local, and 34.62% less than that of Random. Since A2C has
smaller container switching times, the Creq of A2C is relatively lower (Fig. 7a),
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Fig. 7. Total cost.

and the cumulative cost of A2C is 6.52% less than that of Greedy, which is
14.74% less than Local and 21. 07% less than Random.

5 Related Work

5.1 Joint Scheduling Methods

In mobile edge computing, dynamic resource scheduling in service offloading
generally includes two levels, i.e., coarse-grained edge node computing resource
scheduling and fine-grained request dispatching. The former mainly adjusts the
provision of computing resources in the edge node dynamically to meet the user
requirement in the service area. The latter mainly selects target edge node and
chooses transmission path to guarantee that the user side delay meets the QoS
requirement.

Existing works mainly focus on the joint optimization of request dispatching
at network side and dynamic service placement in the edge node. Ting He et al.
[31] study the joint service placement and request scheduling in mobile edge
computing with consideration of both sharable resources (storage) and non-
shareable resources (communication, computation). They develop a constant-
factor approximation algorithm and evaluate performance of the algorithm using
simulation. Vajiheh Farhadi et al. [11] try to maximize the expected requests
served by edge nodes per slot by optimizing service placement and request
scheduling. They leverage trace-driven simulation to evaluate the performance of
their algorithm. Konstantinos Poularakis et al. [24] jointly consider storage, com-
munication, computation resource constraints in service placement and request
scheduling. Bo Yin et al. [37] introduce the concept of age of information in the
study of scheduling in mobile edge computing. They leverage age of information
to quantify the information freshness and propose two computationally tractable
scheduling policies to minimize age of information. Yiwen Han et al. [15] study
distributed request scheduling and dynamic service deployment in edge nodes.
They proposed multi-agent reinforcement learning-based algorithm to improve
system throughput while reducing system scheduling overhead.
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These works are effective but still can be improved. Most of these works
study the problem in two time scales, i.e., service deployment at a larger scale
and request dispatching at a smaller scale. However, the computing resource
management is still coarse-grained. Edge nodes not only have to decide what
service to deploy, but also have to schedule how many container instances to run
in each time slot. In addition, these works fail to take session management and
traffic steering mechanism of 5G core network architecture into consideration.

5.2 Test Beds

Yoohwa Kang et al. [18] implement a test bed system to evaluate their multipath
transmission control protocol based on multi-access traffic steering solution. In
their test bed, UE get access to the data network through WLAN and 5G gNB.
The 5G gNB uses software-defined radio to emulate an LTE gNB. Mingyuan
Zang et al. [38] leverage the open source project OpenAirInterface to build an
in-lab emulation test bed. They use this test bed to verify mobile edge cache in
different network scenarios. Bhaskar Prasad Rimal et al. [26] design a two-level
edge computing scheme in a fiber-wireless access network. In order to evaluate
the performance of their proposed solution, they implement an experimental test
bed with edge applications in optical fiber backhaul networks. Mona Ghassemian
et al. share their experience in building a 5G test bed platform in [13]. Their
5G-VINNI project deploys 5G-NR radio as well as virtualized EPC outside to
test performance in the 3.6 GHz (first implementation phase) and 5G mmWave
(second implementation phase). Multiple use cases are tested including cloud-
based gaming, connected care for assisted living, remote robotic control, etc.,
covering gaming, health and industry. However, such a test bed system is based
on Samsung network equipment, which is expensive and may not be suitable
for in-lab experiments. Mohammad Kazem Chamran et al. [7] study the inde-
pendent decision-making of distributed nodes in 5G scenarios by implementing
a distributed test bed. Different from traditional centralized decision-making
systems, the proposed system consists of Universal Software Radio Peripheral
nodes embedded with Raspberry Pi3 B+. That is, test bed nodes can commu-
nicate with each other as well as make decisions independently. Ali Esmaeily
et al. [9] also leverage OpenAirInterface to implement a test bed for end-to-end
network slicing.

The aforementioned systems take advantage of open source projects to imple-
ment network emulation. These test beds emulate various network scenarios and
can get data close to the real scene. However, limited by the coverage area of
software-designed radio, the access limit of total equipment number and the high
price of software designed radio devices, these systems lack scalability. Evaluat-
ing large-scale research, such as service deployment, mobile edge offloading and
user request scheduling, on these systems are difficult.
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6 Conclusion

In order to guarantee the QoS of delay-sensitive applications, MEC relies heav-
ily on the dynamic joint management of user request dispatching and edge-side
container scheduling. In this paper, we first establish a cost model for service
offloading scenarios. Then, we map the joint scheduling problem into a Markov
decision process and proposed a reinforcement learning-based algorithm to solve
it. Next, instead of conducting simulations leveraging mathematical delay mod-
els, we build a test bed called MiniEdgeCore, which provides a full-stack 5G
core network user plane and a Docker-based edge node system. MiniEdgeCore
implements user request dispatching by setting up GTP-U tunnels to different
UPFs. Besides, it uses the interaction process between the core network and
the edge nodes to control the starting and terminating of container instances.
Finally, experiments are conducted on MiniEdgeCore. A real-time video infer-
ence application is deployed on MiniEdgeCore and a real-world dataset is used
as workload sequence input. The experiment results show that the proposed
method can reduce at least 4.51% of cost.
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