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Abstract. Device-to-Device (D2D) communication has emerged as a
promising technique to cope with the increasing heavy traffic in mobile
networks. A critical problem in D2D service is request allocation, which
aims to find the best provider for each of the proposed service requests.
Most of the existing work focuses on optimizing the communication
resource allocation, such as interference management, spectrum allo-
cation, etc. In this paper, we originally address the request allocation
problem with the object of maximizing the cost performance of requests.
Moreover, we especially consider the impact of multi-service interactions
on the service quality in a feasible plan for the provider. To solve this
problem, we propose a combinatorial auction-based request allocation
model. Furthermore, and develop a pruning-based request allocation
algorithm called RABP to maximize the overall cost performance of
requests. Extensive simulation results demonstrate that RABP performs
well in improving the cost performance and is conducive to enhancing
the load balancing among mobile devices.

Keywords: D2D communication · Request allocation · Cost
performance · Combinatorial auction · Multi-service inter-impact

1 Introduction

Over the last few years, the explosive growth of mobile computing applications
as well as the ever-improving requirements of users have posed tremendous chal-
lenges to current cellular network architecture [1]. According to Ericsson Mobil-
ity Report [2], the total mobile network traffic is forecast to exceed 300EB per
month by 2026. 5G networks will carry more than half of the world’s smart-
phone traffic. Although edge computing and fog computing have been proposed
to share the core network’s burden at the edge of the network, in the 5G era, the
exponential growth of data traffic in mobile networks has made the spectrum
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resources of the mobile network go short. As a SPECTRUM-AND-ENERGY
efficiency technology, device-to-device (D2D) communication has been widely
applied in mobile computing. Under a certain level of interference, D2D enables
two devices to reuse the spectrum of cellular networks and connects proximity
devices directly with each other [3], which brings low translation delay and bet-
ter quality of service. Thus, D2D is expected to be a key enabling technology
supported by the next-generation cellular networks.

According to the Cisco Visual Networking Index projection [4], video ser-
vices are expected to account for 79% of the total internet traffic by 2022. Thus
a representative example of D2D service is video stream service in edge comput-
ing. When a video goes viral over the internet, a large number of mobile users
make requests for it. This creates immense pressure on the edge. To improve the
response speed of the edge, D2D service is utilized to provide higher QoS for
demanders, particularly those who are experiencing poor cellular conditions.

Existing surveys on D2D communication largely focus on interference man-
agement and power control, such as [5–7]. Another research hotspot is D2D-
enabled data traffic offloading. Most of them discuss how to assign tasks to min-
imize communication delay or energy consumption, such as [8–11]. Part of the
research focuses on the D2D content sharing [12–14], aiming to achieve optimal
or stable matching between D2D requesters and providers based on the prefer-
ences of both sides. Furthermore, some researchers proposed effective incentive
mechanisms to guarantee the provider’s revenue in the process of data transac-
tion [15–17].

However, two issues have not been addressed in the existing literature. One is
that current surveys on D2D mainly focus on the optimization of communication
latency or energy while neglecting differences in service quality and price among
different providers. However, device performance plays an important role in the
D2D service quality. Consider such a scenario, the requester issues a computa-
tionally intensive task, as not much data needs to be transferred, the requester
would prefer to choose a provider with strong computing power over one with
faster communication speed but restricted computing resources if both of them
can establish a stable D2D link. Furthermore, the service price is also a vital
metric for matching between requesters and providers. The other one is that the
impact of multi-service interactions on service quality is not considered when
the provider handles many requests at once. As providers are typically resource-
constrained mobile users, performing more requests will dramatically increase
competition for system resources, thus increasing system load and resulting in
service quality degradation. For ease of expression, we name the impact of multi-
service interactions on service quality as multi-service inter-impact.

To address the above problems, we originally concentrate on optimizing the
quality as well as the price of service on all D2D requests. In detail, we refer
to the ratio of service quality to the price of a request as cost performance. We
describe multi-service inter-impact in a feasible plan from the existing literature
on request scheduling and pricing. To fully express the cost performance of dif-
ferent feasible plans for a provider, we adopt the combinatorial auction based
on improved XOR language. We devise a request allocation algorithm RABP
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to obtain the optimal result. The algorithm consists of two steps, firstly search-
ing for all feasible bid sets, then pruning out the candidate strategies that are
concluded not to be the optimal solutions. The simulation results demonstrate
that the proposed method significantly outperforms baseline methods. The main
contributions of this paper are summarized as follows:

1) Taking into account the multi-service inter-impact, we formulate the request
allocation problem and propose a combinatorial auction model based on
improved XOR language.

2) We design an algorithm RABP to maximize the overall cost performance of
all requests, which can obtain the optimal result.

3) Simulation results demonstrate the proposed algorithm performs better than
baseline methods in different scenarios. Additionally, the RABP is conducive
to enhancing the load balancing among devices with the increase of the service
deployment rate.

The rest of this paper is organized as follows: Sect. 2 reviews the related
work. The system model and problem formulation are presented in Sect. 3. The
request allocation algorithm is elaborated in Sect. 4. Section 5 and Sect. 6 give
the simulation results and conclusions, respectively.

2 Related Work

As one of the key technologies to expand the network capacity, D2D communi-
cation has attracted a lot of attention. A number of papers concentrate on the
optimization of interference coordination and system throughput. Based on this,
different request allocation schemes have been proposed.

Some researchers adopted graph theory to complete the request allocation
problem. For example, [3] aimed to maximize the accessed D2D links while min-
imizing the total power consumption, then modeled the D2D pairing problem
as a min-cost max-flow problem and solved it by the Ford-Fulkerson algorithm.
[18] studied the problem of maximizing cellular traffic offloading in D2D com-
munication. The author formulated the maximal matching problem in a bipar-
tite graph, proposing a distributed matching algorithm. [19] originally proposed
a joint user-relay selection with load balancing schemes, adopting the Kuhn-
Munkres algorithm to maximize the overall matching utility.

Some authors addressed stable matching of D2D requesters and providers
by using algorithms from matching theory. For example, to encourage data for-
warding among cooperative users, [14] modeled the relay nodes selection prob-
lem as a stable matching problem and solved it by modified deferred acceptance
algorithm. Similarly, [12] proposed a two-sided physical-social-aware provider-
demander scheme for matching requesters and providers, and developed a dis-
tributed algorithm based on the Dinkelbach iteration and deferred acceptance
approach. In [20], the energy-efficient resource allocation between cellular users
and D2D users was constructed as a one-to-one matching problem, then the GS
algorithm was applied to the energy efficiency optimization scheme.
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Many auction models have emerged to solve the incentive problem for D2D
providers. [16] designed Rado, a randomized auction mechanism, to provide
incentives for users to participate in D2D content sharing. [21] presented a truth-
ful double auction-based model (TAD) to reward the D2D sellers. The auction
model that was applied to allocate requests in D2D mainly aimed to improve
the spectrum efficiency or control the power consumption. For example, [22]
presented an iterative combinatorial auction mechanism to allocate spectrum
resources to optimize the system sum rate over the resource sharing of both D2D
and cellular modes. [23] proposed a multi-round combinatorial double auction
(MCDA) algorithm to optimize the energy efficiency over the resource allocation
in D2D.

As most of the research on request allocation aimed to optimize the total util-
ity of communication resources, we focus on the assignment between requests and
providers according to the service cost performance. We originally formulate the
request allocation problem as an overall cost performance maximization problem
and develop an optimal algorithm based on an improved XOR-language combi-
natorial auction scheme. Beyond that, we take full consideration of the resource
constraints of mobile devices.

In cloud computing, some researchers considered the service correlations,
which means the service quality and price is not just dependent on itself but
also on other services being provided by the cloud. For example, [24] presented
a new cooperative coevolutionary approach for dynamic service selection with
inter-service correlations. [25] proposed an extended service model which con-
sidered the correlation in the service composition process as well as the service
matching process. The author designed a reservation algorithm to reserve ser-
vices with correlations in the matching stage. To systematically model quality
correlations and enable efficient queries of quality correlations for service compo-
sitions, [26] proposed a novel approach named Q2C. [27] focused on QoS-aware
service composition and took QoS correlations between services into account.
Then proposed the service selection method CASP4NAT . However, most of
them considered the correlations between services by offering discounts to bun-
dle services. This makes sense for large service providers such as the cloud, but
not for resource-constrained mobile devices. Furthermore, some research like
[27] generates the service correlations at random and only considers correlations
between two services. In contrast, we get the impact of multi-service interactions
on service quality via the scheduling and pricing model. We consider the degra-
dation in service quality caused by competition for resources by requests in a
feasible plan.

3 System Model

3.1 System Architecture

As illustrated in Fig. 1, we consider a D2D Service Provision (D2DSP) system
which consists of one BS equipped with an edge cloud and multiple mobile
devices (MDs). The MDs are divided into two categories: supplying MDs and
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demanding MDs. The supplying MDs are D2D Providers who send the resource
supplying information to BS. The demanding MDs are D2D requesters who send
resource demand information (request) to BS. The base station acts as the broker
to match the supplying and demanding MDs.

In our paper, the MDs are assumed to have no prior knowledge of others,
thus all of them directly send their information to the base station. As shown in
Fig. 1, After the BS receives all requests in a period, it broadcasts the requests
to the providers who satisfy the following two conditions:

1) Communication conditions, which means the provider and requester must
be within the D2D communication range of each other, only in this way, can
they establish a stable D2D link.

2) Service conditions, based on the above, the provider must deploy the ser-
vice required by the request.

Fig. 1. D2DSP architecture

Figure 1 and Fig. 2 present an example. The distribution of MDs is presented in
Fig. 2. Within the 2D area circled by the box, each provider can cover the requests
within a dotted ellipse, the rectangle next to the provider represents the service
deployed by the provider, the color of the requests illustrates the service required
to complete them. So p1 covers r1, r2, r3 and deploys the services required by
them, in this case, p1 is able to complete r1, r2 and r3. Similarly, p2 can complete
r0, r1 and r2, while p3 can complete r1 and r4. As a result, upon receiving all
requests the base station presents r1 to p1, p2, p3; r2 to p1, p2; r3 to p1; r4 to p3
and r0 to p2, as shown in Fig. 1.

In our paper, a request corresponds to one service, we use the terms request
and service interchangeably in the paper. We allocate multiple requests in the
chronological order in which they arrive. The definitions of request and service
are as follows.
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Fig. 2. Auction example

Definition 1 (Request). A request is represented as a 5-tuple (d, s, L, ta, te)
, where:

– d is the index of the service requester who submitted the request;
– s is the service required to complete the request;
– L is the location of the requester;
– ta is the arrival time of the request;
– te is the execution time of the request;

Definition 2 (Service). A service is represented as a 3-tuple (d,G, F ) , where:

– d is the index of the provider where the service is deployed;
– G describes the resources required by the service, which can be denoted as

G = {gz1 , gz2 , . . . , gzm}, where m is the number of the resource type, gzi is the
amount of the zi kind of resource.

– F is the functional description of the service;

3.2 Scheduling and Pricing Model

As providers receive request information from the base station, they perform
scheduling and pricing model to determine the price and quality of service in
different feasible plans (or bids). Specifically, we use the scheduling algorithm
RESP presented in [28] to arrange the requests. Then run the dynamic pricing
method in [29] to calculate the service price. The impact of multi-service inter-
actions on service quality will be determined after the two processes. Then the
providers can obtain the cost performance of different feasible plans and submit
bids to compete for revenue. To elaborate on this, we present the definition of a
provider at first.

Definition 3 (Provider). Aprovider p is represented as a 5-tuple (i, L,S,A,V),
where:
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– i is the unique index of the provider in our system;
– L is the location of the provider;
– S={s1, s2, . . . sn} is the set of services that the provider deployed;
– A is the function used to describe the available resources of p. Given a time t,

the available resources can be denoted as At = {az1,t, az2,t, . . . , azm,t}, where
zi is the type of resource, m is the total number of resource types, azi,t is the
amount of zi at time t.

– V = {vz1,t, vz2,t, . . . vzm,t} describes the provider’s valuation on its own
resources. For example, vzi,t denotes the price of resource zi at time t.

The available resources vector A is the free resources of the provider that can
be used to complete requests. The dynamic resource pricing model used by the
provider is based on the inventory theory [29–31]. Due to space constraints,
we directly give the function between resource price and the available resource
amount n and time t, which was derived from Eqs. 9 and 10 in [29]:

vzi,t =
1
α

[
ln

(
1 +

(ke t)n 1
n!∑n−1

i=0 (ke t)i 1i!

)
+ 1

]
(1)

where n is the available resources of zi at time t, or called azi,t. k and α are
user-definable constants. According to Eq. (1), the resource price vzi,t is inversely
proportional to the available resource amount azi,t. The request price can be
calculated as a linear summation of the resource type, price and amount, as
described in Eq. (2).

ρr = ρs =
r.end∑

t=r.start

(Vt · Gs) (2)

where r.start and r.end are the start and end execution time of the request
respectively.

Take an example in Fig. 3, the provider can complete request r1, r2 and r3.
But the cost performance of r3 is different in different feasible plans. Specifically,
the scheduling algorithm determines the time interval in which the request is to
be executed. Meanwhile, the request price is obtained by the resource prices in
the time interval. For different feasible plans, the execution order of requests is
different and the resource price varies dynamically with the available resource
amount. Therefore the service quality may be completely different for a request.
Note that we regard the response time as service quality. As the figure shows,
the response time of s3 is 2 s in the first plan, however, it turns 3 s in the second
plan and 5 s in the third plan. Moreover, because the third plan consumes more
system resources, the resource price at t1, t2, t3, t4 and t5 will be higher than
it is in the first two plans. Thus the cost performance of the same request in
different plans will be quite different, which is the multi-service inter-impact.

3.3 Auction Model

After obtaining the scheduling and pricing information, the provider submits the
feasible plans and corresponding cost performance to the base station in the form
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Fig. 3. Scheduling & Pricing example

of bids. In order that each provider can express their will sufficiently, we adopt
the combinatorial auction model based on improved XOR bidding language,
which means every provider pi can submit multiple bids Bi = {bi1, bi2, . . . , bik},
and each bid bik can contain multiple requests. For example in Fig. 2, as the
provider p3 can complete requests r1 as well as r4, p3 presents bids including
b31 = {(r4), φ(b31)}, b32 = {(r1, r4), φ(b32)}. In general XOR bidding language,
the bidder will presents b31, b32 as well as b33 = {r1, φ(b33)}, but in our scenario,
r4 can only be completed by p3, so the b33 is meaningless and will definitely not
appear in the final result as we are aiming to distribute all requests. Thus we
call the bidding language as improved XOR bidding language. The definition of
a bid is described in Definition 4.

Definition 4 (Bid). A bid b is represented as a 6-tuple (i, c,R,P ,Q, φ) ,
where:

– i is the index of provider who presents the bid;
– c is the number of requests contained in the bid;
– R = {r1, r2, . . . rc} is the set of requests in the bid;
– P = {ρr1 , ρr2 , . . . ρrc} is the price set of requests set R;
– Q = {qr1 , qr2 , . . . qrc} is the service quality set of requests set R;
– φ(b) is the cost performance of b, which can be calculated by:

φ(b) = φ(r1) + φ(r2) + · · · + φ(rc) (3)

where φ(ri) is the cost performance of ri, which is defined by Eq. (4):

φ(ri) = qri/ρri (4)

Because of the multi-service inter-impact on the requests’ cost performance, it
is a challenging problem to distribute all requests to obtain the best overall cost
performance.

3.4 Problem Formulation

After receiving all bids, the base station acts as an auctioneer to dispatch requests
aiming to achieve the best overall cost performance. Since in XOR bidding lan-
guage, a bidder can win at most one bid even if it submits multiple bids, leading
to the first constraint for request allocation:

k∑
j=1

xij ≤ 1, ∀ pi ∈ P (5)
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where
xij = {0, 1} (6)

Among which xij = 0 means the bid bij is not selected, otherwise bij is selected.
k is the total number of bids submitted by pi. In addition, a request can only
be allocated to one provider, leading to the second constraint:∑

bij∈Wr

xij ≤ 1, ∀ r ∈ R (7)

Wr is the bid set including request r, Eq. (7) means only one bid can be selected
in Wr. Then the overall cost performance maximization problem can now be
formulated:

Max
m∑
i=1

k∑
j=1

φ(bij) · xij

s.t.

k∑
j=1

xij ≤ 1, ∀ pi ∈ P

∑
bij∈Wr

xij ≤ 1, ∀ r ∈ R

xij = {0, 1}

(8)

where φ(bij) is the cost performance of bij , m is the number of providers. Other
mathematical symbols used in this article are presented in Table 1.

Table 1. Mathematical notations.

Symbol Description

R Demanding MD set

B Bids set

P Supplying MD set

tij The jth feasible bid set (candidate strategy) of request r0 to ri

Ti The candidate strategy set of request r0 to ri

Wri The bid set including request ri

bik The kth bid from the ith provider

lR/Ti
The length of set R or Ti

Rtij/b
The requests set of tij or bid b

Ptij/b
The providers set of tij or bid b

φ(tij/b) The cost performance of tij or bid b

4 The Proposed RABP Algorithm

In this section, we introduce our dispatching algorithm in detail. To better under-
stand the algorithm, we definite the feasible bid set (or called candidate strategy)
and candidate strategy set as follows.
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Definition 5 (Feasible Bid Set or Candidate Strategy). A feasible bid
set or called candidate strategy ti can be represented by a 5-tuple (d,Bti ,Rti ,Pti ,
φ(ti)), where:

– d is the index of the candidate strategy;
– Bti = {b1, b2, . . . bk} is the set of bids in ti;
– Rti = {r0, r1, . . . rk} is the set of requests covering by ti;
– Pti = {p1, p2, . . . pk} is the set of providers of bid in ti;
– φ(ti) is the cost performance of ti, which can be obtained by Eq. (9):

φ(ti) = φ(b1) + φ(b2) + · · · + φ(bk) (9)

The feasible bid set or called candidate strategy ti = {b0, b1, . . . , bk} is the bid
set that must cover the requests from r0 to ri and may cover other requests in
R, which we call them Following Requests. Feasible means these bids are from
different providers and will not overlap a request.

Definition 6 (Candidate Strategy Set). A candidate strategy set Ti = {ti1,
ti2, . . . , tin} is the set of candidate strategy ti that not be pruned.

Algorithm 1. RABP Algorithm
Input: The requests set R, provider set P , bid set B , the bid set of candidates for each
request Wr.
Output: Winning bid set t̂.
Initialize: T0 = ∅, t̂ = ∅, i = 0.

1: for every b ∈ Wr0 do
2: tnew ← b ; Rtnew ← Rb ; Ptnew ← Pb ; φ(tnew) ← φ(b) ;
3: Pruning(tnew, Ti);
4: end for
5: for i = 1 to lR do
6: for every t ∈Ti−1 do
7: if ri ∈ Rt then
8: Pruning(t, Ti) ;
9: else

10: for every b ∈ Wri do
11: if Pt ∩ Pb = ∅ and Rt ∩ Rb = ∅ then
12: tnew ← t ∪ b ; Rtnew ← Rt ∪ Rb ; Ptnew ← Pt ∪ Pb ;

φ(tnew) ← φ(t) + φ(b) ;
13: Pruning(tnew, Ti);
14: end if
15: end for
16: end if
17: end for
18: end for
19: return t̂
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Upon the base station receives bid set B from all service providers, base
station acts as an auctioneer to dispatch requests aiming to maximize the overall
cost performance, as depicted in Sect. 3.

To solve the problem optimally, we propose a pruning-based request alloca-
tion algorithm RABP as shown in Algorithm 1. The algorithm consists of two
steps: enumeration and pruning. To begin, we initialize T0 with bids in Wr0

(lines 1–5) since every bid in Wr0 is a feasible bid for r0, then we call Pruning
algorithm to determine whether the candidate strategy tnew should be pruned
(line 6). The pruning rules will be described later.

Algorithm 2. Pruning Algorithm
Input: The current feasible bid set tnew for request r0 to ri and all feasible bid sets
Ti until now for request r0 to ri.
Output: Candidate bid sets Ti.

1: if Rtnew = R then
2: if φ(tnew) > φ(t̂) then
3: t̂ ← tnew;
4: end if
5: return
6: else
7: j = 0
8: while j < lTi do
9: if Rtnew = Rtij then

10: if Ptij ⊆ Ptnew and φ(tij) ≥ φ(tnew) then
11: return
12: end if
13: if Ptnew ⊆ Ptij and φ(tnew) ≥ φ(tij) then
14: remove tij from Ti

15: else
16: j = j + 1
17: end if
18: else
19: j = j + 1
20: end if
21: end while
22: add tnew to Ti

23: return
24: end if

After initializing T0, we try to find the feasible bid set for r0 to ri where
i = 1, 2, . . . , lRc

(lines 7–18). We firstly traverse the candidate strategy t in set
Ti−1, checking whether t has already covered the request ri, if so, t is already a
feasible bid set for r0 to ri, then we call Pruning algorithm to determine whether
it should be pruned (lines 9–10). Otherwise, traversing the bid b in Wri (which
is the bid set covering ri), if the bids in t and the bid b are all from different
providers and they will not overlap a request (line 13), then we find a new
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candidate strategy tnew for r0 to ri, which is the union of t and b. So we update
the request set, provider set and the cost performance of tnew (lines 14–17) and
running Pruning algorithm to check whether the solution has the possibility of
becoming the optimal solution. If not, prune it off.

The pruning rules are presented in Algorithm 2. For the candidate strategy
tnew for r0 to ri, if it contains all requests in R (line 1), we compare the cost
performance of tnew with t̂, if the former is greater, which means tnew can obtain
a better solution than current optimal solution t̂, then we update t̂ (lines 2–4)
and return. If tnew only contains part of the requests in R, compare it to all
candidate strategies in the current Ti (lines 7–8), if tnew and one of the candidate
strategy tij in Ti have the same requests set (line 9), and the provider set of
tij is the subset of tnew and the cost performance of tij is greater than tnew,
which means tij can cover the same requests with less providers while achieving
a better cost performance than tnew, in this case, tnew definitely will not be the
optimal solution, the algorithm will not add tnew to Ti and return directly (lines
10–11). Otherwise, if the provider set of tnew is the subset of tij and the cost
performance of tnew is greater than tij , we remove tij from Ti since it certainly
can not obtain a better solution than tnew (lines 12–13). Then add tnew to Ti

(line 18).
The time complexity of RABP is O(nhl2), where n denotes the length of R,

h denotes the average length of candidate bids Wri for each request ri. l denotes
the average length of the candidate strategy set (Ti). l has a greater impact
on the execution time. It is mainly affected by the bid amount submitted by
different providers. Through the pruning operation of algorithm 2, the length of
Ti can be effectively reduced, thus lowering the time cost of the algorithm.

Fig. 4. Example for RABP

Fig. 4 shows the process of using the algorithm to solve the example in Fig. 2.
Firstly, we get the T0 initialized by Wr0 , as shown in Step 1. Specially, Following
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Requests means the requests in tij except r0 to ri. Then we traverse t0j in T0

to get T1. For example, t01, we check for whether it contains r1, as it does not
contain, we traverse Wr1 , if t01 can combine with a bid b in Wr1 and does not
violate the constraints of the Eq. (8), that is, the intersection of the provider set
of b and t01 is empty, and the intersection of the request set of the two is empty,
such as t01 · b2, t01 · b4 and t01 · b10, then we obtain a new solution for r0 to r1,
t11, t12 and t13 respectively. If the candidate strategy t0j contains r1, such as
t02, we obtain the new solution directly. Every time we get a new solution for
r1, we run Algorithm 2 to determine whether prune it or not. For example, when
we obtain t15 after combining t03 and b2, firstly judging whether it contains all
requests, if not, we compare it with candidate strategies in current T1, that is
t11, t12, t13 and t14, we find t15 and t12 is in the case of the same request set
as well as the provider set, but the overall cost performance realized by t15 is
greater, thus we remove t12 from T1. Otherwise, if in the same case and the
overall cost performance realized by t12 is greater than t15, we will not add t15
to T1. For example, in step 4, the new solution t33 is in the same case of t31, but
the overall cost performance of t31 is greater, so we prune t33 off. If we find a
solution contains all requests, such as t21 in Step 3, we compare it with current
optimal solution t̂, if the overall cost performance of new solution (t21) is better
than t̂, we update t̂, if the new solution is worse than t̂, for example t32 in Step
4, we prune it off directly. Following this pruning rule, we will get the optimal
solution stored in t̂ after getting T5.

5 Simulation

To evaluate the effectiveness of the algorithm proposed in this paper, we carry
out two sets of experiments. The first one examines the effectiveness of RABP ,
the second one evaluates the load balancing effect of RABP .

We implemented the RABP algorithm in Python. Our experiments were con-
ducted on a Windows machine equipped with an Intel Core i7-9700 processor and
16 GB RAM. As there is no standard experimental platform, we automatically
generate the parameters and use them as the experimental data sets.

5.1 Effectiveness Evaluation

In this section, we evaluate the effectiveness of RABP . We choose the reciprocal
of the response time as the service quality. Each device is equipped with available
resources ranging from 5 to 10. Requests are randomly generated with execution
time ranging from 3 to 5, the required number of each resource ranging from 2
to 5. The service number is 10. The function of resource price and the available
resource of a provider follows Eq. (1). We set k = 10 and α = 1. Particularly
worth mentioning is the location of the providers and requesters, we generate
them in a 2D area and ensure that all provider communication ranges cover the
entire region, as shown in Fig. 2. Each request can be completed by at least one
of the providers covering it. To evaluate the effectiveness of RABP , we compare
it with the following four methods:



338 D. Li et al.

1) Primal-Dual Approximation Algorithm (PDAA): The method presented in
[32], which adopts a greedy primal-dual algorithm to obtain the approximate
solution of problem 8.

2) Auction Efficiency Maximization Algorithm (AEMA): The method proposed
in [33], which developed a double auction-based scheme to solve the request
allocation problem between cloud computing providers and cloud users. We
migrate this method to our environment and modify the fitness function to
be feasible strategy’s (ti) cost performance.

3) Greedy Algorithm (GA): Greedy by bid density is widely used to solve the
winner determination problem in combinatorial auctions [34–36]. Similar to
them, our bid density w is calculated as Eq. (10).

wb = φ(b)/c (10)

4) CALP Algorithm (CALP ): The method presented in [36], was designed to
solve the winner determination and payment problem of combinatorial auc-
tion.

As analyzed in Sect. 4, the scale of the problem is mainly related to the
request number, the provider number, and the service deployment rate (sdr). To
examine the impact of these three parameters on the result of our method, we
consider three sets of parameters, as shown in Table 2. In each set, one of the
three parameters is varied while the others remain fixed. All experiments are
repeated 500 times, and we use the average values as the result.

Table 2. Variable settings for effectiveness evaluation.

Set Request number Provider number Service deployment rate

1 8–22 15 0.6

2 15 6–20 0.6

3 15 10 0.1–1.0

To explore the impact of request number on the overall cost performance of
requests, we set the parameters according to Set 1 in Table 2. The results, shown
in Fig. 5(a), demonstrate that the overall cost performance improves with the
increasing number of requests. As the allocated request number increases, the
overall cost performance will definitely go up. But from Fig. 5(b), we can see that
the average cost performance of requests decreases consistently. This is because
when the provider number is fixed, the total available resources of all providers
remain the same, as the request number rises, more resources are occupied and
the request response time increases, causing the rise in price and the drop in
service quality. Therefore, the average cost performance of requests continuously
decreases.

Obviously, our algorithm significantly outperforms the other four methods
as shown in Fig. 5. The PDAA algorithm can obtain a second good result to
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Fig. 5. Impact of the request number

RABP , because it adopts a well-designed primal-dual framework to improve
the approximation ratio. The AEMA algorithm employs a double auction model
and allocates each request with a greedy selection of the most cost-effective bid,
so it cannot get a globally optimal solution. Similarly, the GA algorithm greedily
selects bids with the largest bid density. As AEMA and GA not allocate requests
from a global perspective, thus the optimality of the results is not guaranteed.
CALP uses a linear programming relaxation method to solve the problem, and
it can be seen that the approximate ratio is much worse than PDAA.

Fig. 6. Impact of the provider number

Next, we examine the impact of provider number on the result of the overall
cost performance. To this end, we set the experimental parameters in accor-
dance with Set 2 in Table 2. The result is shown in Fig. 6. From Fig. 6(a) we
can see that the overall cost performance gradually increases as the provider
number grows. As more providers will provide more available resources which
is conducive to decreasing the response time and request price, thus improving
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the cost performance of each request. So, as shown in Fig. 6(b), the average cost
performance of requests goes up with the increasing provider number, which is
consistent with the overall cost performance result. Meanwhile, we can see that
the growth trend is more dramatic between 6 and 16, and then slows down. This
is because as the resources required for the requests gradually become sufficient,
the improvement in the cost performance of all requests becomes less effective.
The comparison of five methods is consistent with the preceding experiment:
RABP performs best and the second one is the PDAA algorithm. The AEMA
and GA are a little worse than PDAA and CALP is the worst.

Fig. 7. Impact of the sdr Fig. 8. Load balancing performance
with sdr

Finally, we investigate the impact of service deployment rate on the result of
overall cost performance. We set the parameters according to Set 3 in Table 2.
The results are presented in Fig. 7. From which we can see that our algorithm and
PDAA can improve the overall cost performance consistently with the increase
of the service deployment rate. AEMA and GA improve the overall cost per-
formance ranging sdr from 0.1 to 0.5 and then slow down. CALP has the worst
performance which raises the cost performance between 0.1 and 0.3 and then
remains stable. As the service deployment rate increases, the number of requests
that a provider can complete gradually increases, thus the average number of
requests contained in a bid increases. Other methods greedily select bids that
perform best in particular aspects, and on the basis to select other bids. Subject-
ing to the limitations imposed by already selected bids (constraint limitations
in Eq. (8), they can only select among a fraction of the remaining bids, that
is, they can only select bids from different providers and which not contain the
request covered by selected bids. Thus limiting the optimality of the solution.
In contrast, our approach retains all feasible bid sets that are possible to be
the optimal solution until the final step. As a result, the superiority of RABP
becomes increasingly apparent as the sdr increases.
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In summary, whether varying the number of requests, the number of
providers, or the service deployment rate, the overall cost performance obtained
by RABP is significantly better than other methods.

5.2 Load Balancing Performance

In this section, we examine the load balancing performance of RABP . To this
end, we simulate two scenarios as described below.

Table 3. Variable settings for effectiveness evaluation.

Set Request number Provider number Service deployment rate

1 15 5 0.2–1.0

2 6–20 5 0.6

In the first scenario, we set the parameters according to Set 1 in Table 3 while
other parameter settings are the same in the previous section. The result is
presented in Fig. 8, which denotes the load balancing effect gradually gets better
as the service deployment rate increases. This is because our allocation object is
to achieve the best overall cost performance, which means we pursue the lower
price as well as request response time. At the same time, a provider equipped with
more available resources will bid lower and respond quickly. Thus the probability
of winning the bid is greater. Otherwise, the provider with less available resources
will bid higher and be less likely to be a winner. So the provider with a lower
load rate and more available resources will obtain more requests, promoting load
balancing among providers. With the growth of service deployment rate, each
request has a greater possibility to be allocated to the provider with sufficient
resources, thus improving the load balancing effect.

Fig. 9. Load balancing performance with request number
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In the second scenario, we set the parameters according to Set 2 in Table 3. We
obtain the load rate of providers with the request number continuous increases
when the service deployment rate is 0.6. The result is presented in Fig. 9, which
demonstrates that the load balancing effect of RABP is excellent when the
service deployment rate is 0.6.

6 Conclusion

In this paper, we investigate the request dispatching problem in the D2D envi-
ronment. We originally focused on the optimization of service cost performance
while taking into account the multi-service inter-impact on service quality in a
bid. We design a combinatorial auction-based request allocation model, using
XOR bid language to motivate providers fully express their matching inten-
tion. To solve the request allocation problem optimally, we design the algorithm
RABP . Extensive simulation results demonstrate that RABP is superior to the
PDAA, AEMA, GA, and CALP in terms of cost performance. Meanwhile, the
RABP performs well in load balancing.

As our algorithm is significantly affected by the bid amount, so we will try
to design a less complex approach in the future. Furthermore, more complex
scenarios with requirements on service quality will be taken into consideration.
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