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Abstract. Mobile-edge computing (MEC) has emerged as a promis-
ing paradigm that moves tasks running in the cloud to edge servers. In
MEC systems, there are various individual requirements, such as less
user-perceived time and lower energy consumption. In this case, sub-
stantial efforts have been paid to task allocation, aiming at enabling
lower latency and higher resource utilization. However existing studies on
multiple-objectives task allocation algorithms rarely consider the Pareto
efficient problem, where no objective could be further improved without
vitiating the other objectives optimization. In this paper, we propose
a Pareto-efficient task-allocation framework based on a deep reinforce-
ment learning algorithm. We give the formal formulations for objectives
and construct a multi-objectives’ optimization model for task alloca-
tion. Then a Pareto efficient algorithm is proposed to solve the problem
of conflicting among multi-objectives. By coordinating multi-objectives
parameters get from Pareto efficient algorithm, the deep reinforcement
learning model takes a Pareto-efficient task allocation to improve real-
time and resource utilization performance. We evaluate the proposed
framework over various real-world tasks and compare it with existing
allocating tasks models in edge computing networks. By using the pro-
posed framework, we can get an accuracy that not be lower than 90%
under the 0.6 s latency requirement. The simulation results also show
that the proposed framework achieves lower latency and higher resource
utilization compared to other task allocation methods.
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1 Introduction

With the development of Internet of Things (IoT) and Artificial Intelligence (AI),
the number of terminal tasks has increased violently. This caused the increasing
energy consumption and latency. Mobile Edge Computing system (MEC) [2,
13,14] extends the tasks running in the cloud into edge servers to guarantee
QoS requirements. It integrates computing resources, storage space and network
bandwidth to ensure system lower latency [6,22], higher resource efficiency [30],
and better security [23,26,28]. This new kind of computing paradigm encounters
some new challenges. For example, it is an urgent issue that how to guarantee
the normal operation of tasks under limited resource capacity and response time.

Some research has addressed the above issue and put forward effective task
allocation solutions. Zhang et al. [27] designed a Load-Aware Resource Allocation
and Task Scheduling (LA-RATS) algorithm to deal with both delay-tolerant and
delay-sensitive mobile applications. They first formulated a resource allocation
model for delay-sensitive and delay-tolerant requirements, and then proposed
a task back filling mechanism that has two merits: (1) by using a backward
shifting strategy, it could full use of the idle resource, (2) by avoiding unnec-
essary queue growth for VMs to save energy consumption and running time.
Wang et al. [20] proposed a unified Mobile-Edge Computing and Wireless Power
Transfer model (MEC-WPT model) that addressed the latency-limited practical
scenario. It improves the MEC performance by jointly optimizing (1) the energy
transmit beamforming at the AP, (2) the CPU frequencies, (3) the offloaded bit
numbers, and (4) the time allocation among users. Based on the above work,
they developed an optimal resource allocation scheme that minimizes the total
energy consumption under the constraint that users’ individual computation
latency. Jiao et al. [21] proposed an online resource optimization algorithm that
points at a gap-preserving transformation of the problem. It offers a feasible
solution with a designed logarithmic objective for edge cloud resource allocation
over time.

However, the current task-allocation algorithms rarely consider the Pareto
efficient problem among multiple-objectives. The principal reason is that the
conflicts among different objectives, and it’s difficult for us to optimize multi-
objectives at the same time. In an edge computing system, the CPU utilization
rate and task running time are not entirely consistent.

To address the issues aforementioned, in this paper we study Pareto-efficient
task allocation and present a Pareto-efficient task allocation framework for
improving resource Utilization and Real-timing in Edge computing networks,
we call it Pure. The contributions of this paper are summarized as follows:

– First, we formulate the objectives (response time and CPU energy consump-
tion) and construct a multi-objectives optimization model for task allocation
in edge computing networks.

– Second, we propose a Pareto efficient algorithm to solve the problem of con-
flict among multi-objectives. It uses the scalarization method to transform
the multi-objectives problem into a single objective problem and gets QoS
optimization.
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– Third, by coordinating multi-objectives parameters get from Pareto efficient
algorithm, the deep reinforcement learning model takes a Pareto-efficient task
allocation to improve real-time and resource utilization performance.

– Finally, we evaluate Pure over various real-world tasks and compare it with
three existing popular models in a simulation environment. The simulation
results show that Pure’s better performance in terms of latency, accuracy and
resource utilization.

The rest of the paper is organized as follows. Section 2 provides related work
and Sect. 3 describes the detailed design of Pure that includes Pure’s architecture
overview, quantifying the performance objectives and construction of the multi-
objectives optimization model, the description of the Pareto efficient algorithm
and the DRL-based Pareto-efficient task allocation model. The evaluations and
analysis are displayed in Sect. 4. Section 5 concludes this paper.

2 Related Work

Task allocation is one of the main challenges in MEC, and a variety of research
interests are emerging. In this section, we mainly focus on two aspects of multi-
objectives task allocation: the content of multiple objectives and how to solve
the multi-objectives model.

In the prior work, different optimization objectives and solution methods are
considered in task allocation. In [19], the authors provided a multi-objectives
task allocation mechanism in a multi-robot system. They mainly considered the
tasks’ actual energy and completion time objectives. Based on these, they built
the multi-robot dynamic task allocation problem and used a genetic algorithm to
solve the problem. Although the proposed algorithm is so flexibility that it can
be implemented in other domains, its computational complexity is very high, and
the tasks allocation could require high computational resources. Dinh et al. [4]
proposed an optimization framework of offloading from a single mobile server
to multiple edge servers. They built a multi-objectives model to minimize the
execution latency and the edge servers’ energy consumption objectives. A linea
relaxation-based approach and a semidefinite relaxation (SDR)-based approach
were proposed and be used to achieve the near optimal performance. The evalua-
tion results demonstrated the framework’s performance improvement in terms of
energy consumption and execution latency when multiple edge servers and CPU
frequency are considered. However, this paper was not considered about the
Pareto-efficient of multi-objectives model. In [17], Ziwen Sun et al. proposed an
Attack Localization Task Allocation (ALTA) algorithm in edge sensor networks.
They mainly focused on the total task execution time, total energy consumption
and load balance objectives. In the algorithm, the multi-objectives binary parti-
cle swarm optimization method is used to determine the nodes joining to locate
attacks in order to prolong the lifetime of networks during locating attacks’ posi-
tion. Same as before, this paper was not considered about the Pareto-efficient of
multi-objectives model.
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In particular, some work paid more attention to resource scheduling in edge
task allocation. In [16], Yan Sun et al. proposed a two-level resource scheduling
model to achieve a resource scheduling scheme. The scheme constructs multi-
objectives problems that optimizing the service latency and the overall stability
of task execution. In order to solve multi-objectives optimization problems, they
proposed a novel resource scheduling scheme using an improved Non-dominated
Sorting Genetic Algorithm II (NSGA-II). Although the scheme could reduce the
service latency and improve the stability, it did not consider how to reduce the
cost of resource. In [12], Liqing Liu et al. proposed a multi-objectives optimiza-
tion problem that minimizes the energy consumption, execution delay, and pay-
ment cost. They used the scalarization method to transform the multi-objectives
optimization problem into a single-objective optimization problem. And Interior
Point Method (IPM) was applied to solve the a single-objective optimization
problem. The simulation results showed that the proposed model could reduce
the accumulated error and improve the calculation accuracy effectively. But it
also could not consider the Pareto-efficient problem of multi-objectives model.
Chu-ge Wu et al. proposed a fuzzy logical offloading strategy based on multi-
objectives resource allocation in edge computing [12]. The optimization objec-
tives is both agreement index and robustness. A multi-objective Estimation of
Distribution Algorithm (EDA) was designed to solve and optimize the fuzzy
offloading strategy. Similarly, it was also not consider the Pareto-efficient prob-
lem of multi-objective model.

To sum up, it can be inferred that the energy consumption and latency are
important factors that need to be optimized in edge scenarios. Most of the above
references have optimized these two factors. But these previous works were rarely
considered the Pareto-efficient problem of multi-objectives model. However the
Pareto-efficient problem can be further improve the efficiency between delay
and resource utilization. In this paper, we present the quantitative formulas of
response time and CPU energy consumption, and construct a multi-objectives
optimization model for task allocation. Further, we achieve the parameters for
transforming the multi-objectives problem into a single-objective problem by
Pareto efficient algorithm and get the efficient tasks’ collocation by the DRL
algorithm. The details are as follows.

3 The Pure Framework

3.1 The Architecture Overview

Generally, a MEC system involves three tiers: 1) the terminal device tier contains
end users, mobile devices and sensors, 2) the edge server tier contains multiple
interconnected edge servers, such as cloudlets, and 3) the cloud tier acts as a
monitor of the whole system. Here we mainly pay attention to the edge server
tier. Pure aims to take task allocation to improve edge server CPU utilization
and reduce the task execution time. There are three steps of Pure:

– Quantifying the performance objectives and constructing the multi-
objectives optimization model. We quantify the performance objectives
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that affects QoS requirement, including the response time and the energy con-
sumption of CPU of each task. Based on this, we construct a multi-objectives
optimization model for task allocation.

– The Pareto efficient algorithm. This step we use scalarization tech-
nique to achieve the parameters for transforming the multi-objectives problem
into a single-objective problem. This also makes Pareto-efficiency be guaran-
teed, where no objective can be further optimized without weakening other
objectives.

– The deep reinforcement learning-based Pareto-efficient task alloca-
tion model. Based on the single-objective model gets from the Pareto effi-
cient algorithm, in this step we introduce how to adapt deep reinforcement
learning technology completing the Pareto-efficient task allocation model.

We will detail each step in the following subsections.

3.2 Quantifying the Performance Objectives and Constructing
the Multi-objectives Optimization Model

Interdependent Tasks Model. This part, we mainly introduce the interde-
pendent tasks model.

Symbols representation of corresponding variables are explained in Table 1.
Given a task set N = {1, 2, ..., n}, an edge server set M = {1, 2, ...,m}. For an
edge server j(1 ≤ j ≤ m), its dominant frequency is fj . For an task i(1 ≤ i ≤ n),
the amount of data to be input during execution is dU

i , the total number of
CPU clock cycles required during execution is ci, the average upload rate from
task i to edge server j is vU

ij , the average download rate is vD
ij . And there is an

allocation indication variable set L = li,j(1 ≤ i ≤ n, 1 ≤ j ≤ m), i.e.,

li,j =

{
1, if task i is allocated to edge server j,

0, otherwise.

The Execution Time Model. In this part, we mainly focus on the execution
time. We can get the execution time of task i from following equation:

ti =
m∑

j=1

lij ∗ (ci/fi). (1)

And the whole application’ (including n tasks) execution time can be calcu-
lated as following equation:

T =
n∑

i=1

(
m∑

j=1

lij ∗ (ci/fi)). (2)

The Computational Energy Consumption Model. Considering that CPU
is the most energy consuming factor in edge servers, we take the CPU utilization
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Table 1. Table of notations and descriptions.

Notation Description

N The set of the tasks

M The set of the edge servers

fj The dominant frequency of edge server j

dU
i The amount of data to be input during execution task i

ci The total number of CPU clock cycles required during execution task i

vU
ij The average upload rate from task i to edge server j

vD
ij The average download rate from task i to edge server j

L The allocation indication variable set

li,j The allocation indication variable when task i is allocated into edge
server j (1 ≤ i ≤ n, 1 ≤ j ≤ m)

as the computational energy consumption model in system. The dynamic power
calculation model of CPU in edge server j is given in [3,25], that is

Pj(s) = σ + μsα, (3)

where σ is the static power, μ and α are constants that relate to the specific
hardware device, and α ≥ 1, s is the running speed of edge server j, which is
proportional to the frequency.

Thus the energy consumption of task i running in edge server j is

Pi =
m∑

j=1

lij ∗ Pj(s). (4)

And the whole application’ (including n tasks) energy consumption is

P =
n∑

i=1

(
m∑

j=1

lij ∗ Pj(s)). (5)

Multi-objectives Optimization Model. To sum up, this paper constructs
the following multi-objectives function,

min Γ (T, P ) (6)
Γ (T, P ) = γT + (1 − γ)P (7)

s.t. γ ∈ [0, 1], (8)
T ≤ ε, (9)
Pi ∈ [Pmin, Pmax], (10)∑
j∈m

lij = 1. (11)
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where ε denotes the execution time threshold. Pmin, Pmax represent the minimum
and maximum energy consumption that the current edge server can load.

Objective functions (6) and (7) represent to minimize the application’s execu-
tion time and computational energy consumption. We use a customized weighted
product method [18] to approximate Pareto solutions, with multi-objectives
fusion and optimization goal. Constraint (8) limits the range of γ, and γ is
the balance factor of T and P . Constraint (9) guarantees the whole application’s
execution time is not to exceed the time threshold ε. Constraint (10) keeps the
energy consumption of task i cannot exceed the upper and lower limits of the
edge server’s capacity. Constraint (11) indicates that each task is allocated and
can only be allocated to a unique edge server.

In the above multi-objectives optimization model, the goal of task allocation is
to map n tasks to m edge servers, so as to minimize the energy consumption on the
premise of reducing the task execution time as much as possible. In this way, given
a set of tasks and edge servers, under the execution time and server energy con-
sumption thresholds, the multi-objectives optimization problem is transformed
into an optimal task allocation problem to minimize execution time and energy
consumption. Therefore, how to get a solution that optimizes for two objectives
in the sense that no objective can be further improved without vitiating the other
objectives optimization is introduced as the following subsection.

3.3 The Pareto Efficient Algorithm

Currently, the existing solutions for Pareto optimization mainly includes two
categories: the heuristic search method and scalarization method [11]. In order to
obtain the Pareto efficient solution of the multi-objectives model in Subsect. 3.2,
we use scalarization method to transform multi-objectives problem into single
objective problem, and then solve the value of γ.

There we assume that there are δ optimization objectives in the multi-
objectives optimization model. Γ (θ) represents the model to optimize all objec-
tives (corresponding the objective function (6)). Suppose δ objectives have δ
differentiable loss functions li(i ∈ (1, 2, ..., δ)) correspondingly, then the loss func-
tion L(θ) of δ objectives is:

L(θ) =
δ∑

i=1

γili. (12)

Based on above, we optimize δ objectives that is equal to minimizing L(θ).
We use scalar technology to combine multiple objectives into one objective, and
then solve it, get the value of γ. The problem is transformed into solving the
minimization loss function L(θ) process:

min ||
δ∑

i=1

γi∇θli||22 (13)

s.t.
δ∑

i=1

γi = 1, γi ≥ ci,∀i ∈ 1, 2, ..., δ. (14)
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This is a non-negative least squares problem, paper [11] gave the whole solu-
tion to this problem. Due to page limited, we omit the details of the solution
process. From the result of the solution, we get the generated Pareto Frontier set,
the solution with minimum requirement to get the γ value. Finally, we get the
single objective model depending on the choice of fairness. Solving it γ = 0.73.
Unless explicitly stated we use γ = 0.73 in our experiments. Next subsection will
describe the DRL-based Pareto-efficient task allocation model.

3.4 The DRL-Based Pareto-Efficient Task Allocation Model

Deep Reinforcement Learning (DRL) [9,10] is one of the machine learning tech-
niques that combines the perception ability of deep learning with the decision-
making ability of reinforcement learning. It drives agent(s) learning to maximize
reward while interacting with an uncertain and varying environment in deep
learning networks. We choose it to take tasks allocation for three reasons. Firstly,
DRL is a Markov decision process, in which future strategies are only related to
the present state, not past state. Secondly, the well-trained DRL model is running
fast, while the edge task allocation also requires real-time characteristic. Thirdly,
the DRL has the advantages of scalability and versatility. Our well-trained DRL
model can adapt to current scenario through corresponding training dataset,
and we can cope with the change of various scenarios by changing corresponding
training dataset.

In order to deal with the task allocation in the case of edge servers, we apply
Deep Q-Learning Network (DQN) [5].

A Markov Decision Progress (MDP) of our problem is defined as a five-tuple
< S,A, P (s, a), R(s, a), s0 >, S is a finite set of states appeared in the environ-
ment, A is a finite set of actions, P (s, a) is a next state transition probability
matrix gets from action a in the state s, R(s, a) is the reward function that
indicates how well the agent is doing after taking the action a in the state s, and
s0 is the initial state in the environment.

Next, we describe the adaptive DRL task allocation approach including state
space, action space, reward function, offline training and online allocation.

State Space: Given the state set S : {s0, s1, ..., st, ..., sω}, s0 is the initial state,
ω denotes the states number. For the current task i allocation, we want to deal
with how to minimize the energy consumption while ensuring less execution time
according to the definition of function (6–7), constraints (8–11)). We adopt the
initial state s0 is the state that all servers is unoccupied and no tasks has been
assigned, and st = Lt, Lt is an n ∗ m matrix representing n tasks’ allocation
scheme in m edge servers at state t. If task i(i ∈ n) is allocated to edge server
j(j ∈ m), li,j is 1, otherwise it is 0. So L is a (0,1) allocation matrix that makes
up of li,j .



A Pareto-Efficient Task-Allocation Framework 205

Action Space: At each state, assuming that n tasks come to our system to
be allocated, there are m edge processors. Hence, each task has m optional
processing positions to be allocated, the action space size is nm. This leads to
unbearable amount of computation and training time on edge processors. In our
model, for each task i to be allocated, we keep the agent to take only one action
(0 or 1, 0 denotes task i is not allocated into the current edge server, 1 denotes
i is allocated into the current edge server). Therefore the task i action space is
{a1, a2, ..., am}, and n tasks action space size is n ∗ m.

Reward Function: The reward function R(s, a) indicates how well the agent
is doing after taking the action a in the states s, it helps the learner learn the
feedback value of action and impacts the network learning quality highly.

Our goal is to get tasks allocation through solving the multi-objectives opti-
mization model in Subsect. 3.3. Base on the execution time and energy con-
sumption optimization objectives, we define a reward function about them. We
denote Ti and Pi as the sum of execution time and energy consumption of entire
tasks from state i−1 to state i. Then we normalize them to get the reward value
in state i which has a regular form for DRL algorithms.

ri = γ ∗ Ti−1 − Ti

T0
+ (1 − γ) ∗ Pi−1 − Pi

P0
. (15)

In Eq. (15), we first get the execution time T0 and energy consumption P0

in initial state s0, and take them as baseline. To have a comparison with the
last state si−1, we do the corresponding values in state si−1 minus the values in
state si, then divide the result by s0’s corresponding value. This reward function
returns the reward value of the state i. Obviously, a higher value of ri stands
for the greater reward, the more execution time and energy consumption the
current state save compared to the prior state si, and the more effective the
current action is.

Offline Training. Based on the above, the well-trained model could be gen-
erated offline. Algorithm 1 illustrates the training process. In Algorithm 1, we
set x epochs(that makes the training process converge enough), and each epoch
of training has y steps. At the beginning of the algorithm, we require the tasks
queue Qtask, the execution time constraint ε and the limit of energy consumption
[Pmin, Pmax] as the input factors. Then the s0 and empty task allocation matrix
L are initialized. We run the tasks in FIFO order from Qtask, and periodically
sample the edge servers’ resource conditions. Then allocate the task according
to the actions and compute the rewards after the actions are performed. At
last update the parameters of the neural network. Repeat the step and epoch
until convergence or getting the maximum epoch threshold. The DRL model is
well-trained.
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Algorithm 1. DRL Training
Require:

Build the DRL neural network architecture A;
Put tasks into priority queue Qtask according to FIFO;
[Pmin, Pmax] ← the limit of energy consumption;
ε ← the execution time constraint;

Ensure: The well-trained DRL model.
1: Initialization:

Replay memory B to capacity CB ;
s0 ← initial state;
L ← the task allocation matrix;

2: for epoch ← 1 to x do
3: Get the current task from Qtask;
4: Update the current state s;
5: Update the task allocation matrix L;
6: for step ← 1 to y do
7: if e < ε then
8: Select the action a by running A;
9: Get the next state sstep+1 and compute the next edge reward r;

10: Store transition(s, a, r, sstep+1) in B;
11: Update the network by sampling transitions;
12: s = sstep+1.
13: end if
14: end for
15: end for

After all the epochs are performed or the model gets convergence, the rein-
forcement learning neural network is adjusted to the best state. And the models
in different epochs are saved. We can obtain a well-trained model which has been
loaded and use it inference without retraining. The algorithm time complexity
is O(x ∗ y).

To avoid the problem of hard convergence in training, we get experience
replay method to alleviate correlation in the sample sequence (the detailed oper-
ation is not described here, refer to [24]).

Online Allocation. After the training process, we obtain a well-trained model,
with the network parameters corresponding to each action. However, what we
need is the current task’s optimal allocation of the inference system. When a new
task starts coming into task queuing by FIFO, the trained model periodically
observes the system states and takes corresponding actions online. Repeat the
process until all the epochs are performed or the model gets convergence, then
return the final task allocation matrix L.

4 Evaluations

In this section, we evaluate the performance of Pure with simulation experiments
in edge computing scenarios.
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4.1 Experiments Setup

We use the cloudlet-discovery project [15] to establish our edge computing sim-
ulation environment, and 2-tier architecture was simulated, which includes edge
tier and cloud tier. VMware 12 tool is used to install multiple virtual machines
to mimic edge servers. We simulate three edge servers in edge tier and one cloud
server in cloud tier, their configuration is listed in Table 2, and they are all
inter-connected via WiFi. The Network Time Protocol (NTP) tool is applied to
synchronize time among edge servers and cloud server. The perf tool is used to
monitor the hardware performance in Linux. The bandwidth is set to 8Mbps
according to Internet connection speeds in different countries in [1].

In order to catch the CPU features, we use tested tasks are divided from
autonomous driving applications. We choose Image classification, Real-time posi-
tioning, Feature extraction and Object detection application domains under dif-
ferent models and datasets to enrich the number of tasks, such as image clas-
sification applications under Resnet-50, Yolo, MobileNet-v3 (etc.) models used
Imagenet, Cifar-100, and KITTI [7] (etc.) datasets. And eventually we get 216
tasks in different types.

Baselines. We employ the following task allocation methods as baselines.

– The shortest distance task allocation strategy (SD) [15]: It selects the
closest edge server to requesting terminal device. Although the shortest dis-
tance method reduces the network transmission distance, it does not consider
whether the shortest distance edge server is suitable for task execution or not.
Therefore, it may lead to multiple allocations, so as to prolong the delay.

– The prioritized task scheduling strategy (PS) [8]: It prioritizes the tasks
according to a priority policy. Generally, the task with tighter time limits
should have higher priority to be allocated. The latest allowable start time
(LAST) of task is defined as priority score. That is the task with earlier LAST
should have higher priority, and be allocated to edge server preferentially.

– Greedy algorithm (GA) [29]: For each task, GA takes out the maximum
resource capacity by greedy algorithm, then places them into the correspond-
ing edge server under the QoS requirements, at last updates allocated servers
tasks combination and resource capacity.

Table 2. Hardware configurations

Equipment CPU frequency No. core Memory

Laptop 3.6 GHz 4 cores 8 GB

Edge server A 2.4 GHz 2 cores 4 GB

Edge server B 2.4 GHz 4 cores 8 GB

Edge server C 1.2 GHz 2 cores 1 GB
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Fig. 1. The comparison of four task allocation strategies’ execution time

4.2 The Execution Time Evaluation

Latency is an important metric in edge computing scenarios. Here we mainly
focus on the execution time in formula (2). Figure 1 shows the execution time of
different task allocation strategies. It can be seen that when performing tasks,
Pure achieves the lowest execution time and the SD task allocation strategy’s
execution time is rather high. The execution time of PS and GA are lower than
that SD and higher than Pure.

The reason for this is that SD only considers the distance between mobile
device and edge server, it does not consider whether the closest server meets the
network congestion and insufficient computing resources, re-allocation is possi-
ble. Compared with SD, PS takes consideration of the tasks’ running time and
the available resources of servers, so it ensures the tasks with stricter time con-
straints are allocated with more sufficient computing resources, thereby reducing
overall execution time. GA gets greedy algorithm to select the current most suit-
able edge server under the execution time threshold. Compared with above three
baselines, the Pure leverages the Pareto efficient algorithm and well-trained DRL
allocation algorithm to take allocation. Online selection edge server time is short.
Therefore, Pure obtains the minimum execution time.

4.3 The Reliability in Mobile Scenario Evaluation

To better understand of the reliability in mobile scenario, we explore the accu-
racy ratio of image recognition tasks, that is, the probability of correct image
recognition ratio. Figure 2 plots the accuracy ratio of four strategies under the
0.6s latency requirement while meeting the mobility demand. The reliability is
measured by accuracy under three states of the mobile terminals including static,
low mobility and high mobility. The speed of mobile terminal at low mobility
is 10 miles per hour (MPH) and the speed at high mobility is 35 MPH. The
corresponding observations and analysis are as follows.
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Fig. 2. The comparison of reliability of four task allocation strategies in mobile scenario

First, the accuracy ratios decrease as the speeds of the mobile device increase.
The reason is obvious. On the one hand, the higher speed of mobile terminal
makes the wireless network unstable. On the other hand, the quality of the net-
work link between different cellular unit may decrease in the mobile environment.

Second, for four strategies, we can see that the reliability of Pure is higher
than the others at various moving speed. Compared with SD, the Pure allocates
the edge server with sufficient computing resources while ensuring the execution
time in the mobile process, however the SD may have the problem of insufficient
computing resources and network congestion, therefore the Pure’s result is higher
than SD. On the other hand, for the PS and GA, no matter how fast the mobile
terminal moves, it will select the edge server in the current link range, so their
accuracy rates will not be affected largely. And Pure will select the edge server
of network transmission quality in the process of moving. Furthermore, at the
latency requirement of 0.6 s, the reliability of Pure is able to achieve not be lower
than 90%, which maintains the highest reliability at different moving speeds.

4.4 The CPU Cost of Edge Servers

In this subsection, we monitor the CPU utilization of the four strategies in the
dynamic time situation. There we run the 10 tasks to record the changes in CPU
utilization of SD, PS, GA and Pure strategies, which is shown in Fig. 3. Analysis
for each algorithm is as follows.

For SD, from the start time of the task (CPU utilization up to non-zero value,
we can get this from abscissa) in Fig. 3 (a), (b), (c), the first task is allocated
to edge server A, then to edge server B and finally to edge server C. According
to the duration running time of edge servers, there are more tasks performed on
edge servers A and B compared with edge server C. In addition, because resource
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Fig. 3. The CPU utilization of (a) Edge server A (b) Edge server B and (c) Edge
server C.

optimization is not considered, the total CPU resource loads (the shadow part
covered by the blue curve in three figures) on the servers are very high.

For PS, we get from PS’s curve that it first allocates task to edge server B
based on the time constraints and available resources on the edge server. Since
the resources of edge server B are occupied by the first task, the other tasks
are allocated to edge servers A and C successively, which have more available
computing resources. Judging from the duration running time, the CPU load
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is more balanced than SD and GA, and the time to finish all the tasks is also
shorter them.

For GA, it uses the greedy algorithm to assign tasks to the server A, server
B, and server C in time order. The tasks’ execution time of GA is longer than
PS and Pure, because GA is not taking much more consideration on execution
time, the same is true for imbalance CPU utilization.

Last but not least, for Pure, three servers start executing tasks almost simul-
taneously and the completion time is about 39 s (we get the longest running time
in three servers). In addition, the total CPU load (the shadow area covered by
purple curves) is much smaller and more balanced than other baselines. It shows
that the proposed algorithm Pure can balance decreasing execution time and
CPU utilization well.

5 Conclusions

In this paper, we present Pure framework to ensure that tasks with various
demands run efficiently in MEC system. It constructs a multi-objectives opti-
mization model for task allocation, and a Pareto efficient algorithm is proposed
to solve the problem of conflict among multi-objectives. Then a deep reinforce-
ment learning model takes a Pareto-efficient task allocation for improving real-
time and resource utilization performance. The evaluations were presented to
illustrate the effectiveness of the Pure framework and demonstrate the superior
performance over the existing traditional task-allocation strategies. Specifically,
Pure could get much lower latency, more accurate result and lower CPU cost.

In the future, some other issues could be considered. We will try to take Pure
test more types resources, such as I/O, bandwidth and so on.
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