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Abstract. Mobile crowdsensing has attracted widely attention as a new
sensing paradigm, in which mobile users collect sensing data by their
devices embedded various sensors. To motivate mobile users participat-
ing in sensing tasks, a number of auction mechanisms have been pro-
posed. In our work, we focus on the task allocation problem with multi-
ple constraints for the auction-based crowdsensing system to maximize
profit of the central platform, which has been proved to be NP-hard. To
solve the problem, a greedy-based task allocation algorithm with (1+γ)-
approximation solution is proposed, in which the bid improving profit of
the platform most is selected as the winning bid greedily in each iter-
ation. However, bids for all tasks of a user submitted to the platform
might let out location of the user unexpectedly. Therefore, we further
design a secure auction mechanism with secret-sharing-based task allo-
cation protocol, where each user can submit at most a winning bid to the
platform instead of all bids for tasks to prevent locations of users from
being inferred. The effectiveness of task allocation and location privacy
protection based on our proposed secure auction mechanism is verified
by theoretical analysis and simulations.

Keywords: Mobile crowdsensing · Privacy protection · Auction
mechanism · Secret sharing

1 Introduction

With the improvement of 5G technology, Internet of Things (IOT) devices inter-
act with each other at low delay and high rate to provide services such as intel-
lisense, recognition and pervasive computing. As a new sensing paradigm of IOT,
mobile crowdsensing [1] collects data through large-scale smart mobile devices
embedded sensors like accelerator, camera, GPS, etc. Generally, a crowdsensing
system consists of many mobile user devices to collect sensing data and a central
platform resided on the cloud to extract valuable information from received sens-
ing data. Compared with the traditional data acquisition method which takes
advantage of purchasing and installing sensors, mobile user devices have more
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flexibility to collect a large amount of data in different regions in crowdsensing
system. Thanks to the effectiveness of mobile crowdsensing, it has been applied
in many fields such as health care [11], environmental monitoring [9], traffic
prediction [14,16].

In order to ensure the quality of service for mobile crowdsensing applica-
tions, it is important to stimulate mobile users to participant in sensing tasks.
Moreover, assigning tasks to users for execution (i.e., task allocation) is a crit-
ical step to impact profit of the platform, which has become a major concern.
So far, many task allocation methods have been proposed to address the prob-
lem of motivating users based on auction mechanisms [19,22,24]. Normally, a
mobile user should transmit bid data including bids for all tasks to the plat-
form for task allocation. However, the sensitive information such as location
of each user might be revealed unexpectedly in an auction-based crowdsensing
system without trusted third parties when raw bid data of users are submitted
to the platform. The intuition of location leakage is that the smaller the bid
for a task in bid data submitted by a user, the distance between the user and
the task is shorter. If mobile crowdsensing applications fail to effectively protect
location privacy of mobile users, users will be reluctant to take part in sensing
tasks. Thus, it is vitally important to protect sensitive information of users for
a crowdsensing system.

Nowadays, a number of literature is committed to protect the location pri-
vacy of mobile users for crowdsensing systems. Some location privacy protection
mechanisms are proposed for crowdsensing with third trusted parties by apply-
ing encryption and differential privacy (DP). For these encryption approaches
[2,4,7,20], they always assume there is a trusted authority in the crowdsensing
system which is responsible for key generation and distribution to collaborate
with smart mobile users to encrypt sensitive data. Differently, DP-based meth-
ods [6,18] perturb the original sensitive data of smart device users by a trusted
platform to keep privacy information from leakage. However, it is not realistic
to assume that there is a completely trusted third party. Fortunately, both loca-
tion differential privacy (LDP) and secret-sharing method are effective tools for
crowdsensing without a trusted third party. Compared to DP-based approaches,
LDP-based methods [5,12,17,23] perturb sensitive data by mobile users locally
instead of the platform. Differently, the research based on the secret sharing
scheme [21] divides private data into multiple shares and send these shares to
other users to compute collaboratively and safely through interactive communi-
cation. However, there are few methods considering location privacy leakage of
users by bid information for task allocation in the auction-based crowdsensing
system without any trusted third party.

Although these researches have protected the private locations of mobile
users, it is very difficult for them to be applied to our proposed model. Firstly,
we must ensure that the location privacy information cannot be inferred based
on bids submitted by users during the auction mechanism for our mobile crowd-
sensing system, meanwhile the task allocation decisions should be decided. How-
ever, it is ignored by many existing works. Secondly, the DP and LDP schemes
inevitably lead to performance degradation of results by adding noise. Thus, it
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is unjustified to adopt the methods to protect privacy for the NP-hard problem
in our work which can only obtain an approximate solution in polynomial time.
Finally, although existing works based on encryption schemes can achieve the
homomorphism of the calculation to ensure the validity of decisions, they set up
an authority agency to generate and distribute keys in the crowdsensing system.
Moreover, encryption will generate a huge computational cost, which greatly
increases the computation delay of privacy protection.

To solve the problem of task allocation for auction-based crowdsensing sys-
tem, we firstly propose the greedy-based task allocation (GBTA) algorithm.
Then, a secure auction mechanism utilizing secret-sharing-based task allocation
(SSTA) protocol is designed, in which each user only submits the winning bid
to the platform. For the auction mechanism based on GBTA algorithm, each
user submits bid data for all tasks to the platform and the algorithm greedily
selects a winning bid which can most improve profit of the platform in each
iteration. However, as the bid data of a user should be enclosed and submitted
to the untrusted platform, the location of the user might be inferred. Thus, we
apply secret sharing technology to design a secure auction mechanism, in which
each mobile user splits one bid into multiple polynomial bid shares and sends
them to other users. After these users complete security multi-party computa-
tion according to SSTA protocol, all users will return the decision shares they
hold for restoration. In the end, each user only needs to upload the price request
for the assigned task, not for all tasks. As the platform cannot infer the distance
relationship between tasks and a user according to the submitted winning bid of
the user based on our secure auction mechanism, the location privacy of users
can be well protected.

The main contributions of our work are summarized in the following:

– we consider the task allocation problem in the auction-based crowdsensing
system, in which one task can be allocated to multiple users under budget
constraint of the task. Meanwhile, the attack model which can infer locations
of users based on bid data is presented. We prove the task allocation problem
is NP-hard, then the GBTA algorithm is designed to obtain an approximate
solution.

– To protect the location information of users during the auction process, a
secure auction mechanism incorporating the SSTA protocol is proposed for
crowdsensing without a trusted third party, in which each mobile user can
only submit at most one winning bid to the platform. Moreover, the SSTA
protocol can obtain the same approximate solution as GBTA. We prove that
the location privacy of users is well protected from being disclosed to third
parties during the execution of SSTA.

– We conduct simulations to evaluate the effectiveness of task allocation and
location privacy protection level of the proposed mechanism. The results show
that our method can effectively protect the location privacy of users while
ensuring the profit of the platform.

This paper is organized as follows. We first discuss related works in Sect. 2.
Then, we present our system model, attack model and problem formulation in
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Sect. 3. The GBTA algorithm and the secure auction mechanism utilizing SSTA
protocol with a logarithmic approximation ratio are proposed in Sect. 4. Finally,
simulation results are presented in Sect. 5, and the paper is concluded in Sect. 6.

2 Related Work

In this section, we present briefly several location privacy-preserving mechanisms
for mobile crowdsensing which can be classified into two categories including of
trusted third party (TTP) assisted mechanisms and TTP-free mechanisms.

There are some works [2,4,6,7,18,20] focus on crowdsensing systems with
TTPs. The approach proposed in [2] can prevent leakage of geo-tagged sensing
data for crowdsensing with fog nodes effectively by applying Paillier encryption,
in which the users send ciphertext of sensing data encrypted with a key dis-
tributed by the TTP. In [4], locations of users and regions of sensing tasks can
be encrypted into a set of prefixes after key distribution by the trusted authority
based on prefix encoding method. Moreover, both [7,20] are committed to design
secure reverse auction mechanisms to protect locations of users by preventing
bid leakage during auction period for crowdsensing with a TTP distributing keys
to users. Li et al. [6] obfuscate position correlation weights between mobile users
through trusted edge nodes based on differential privacy for edge computing.
Wei et al. [18] assume that the cellular service provider is a TTP, and service
requesters and mobile users send raw location data to the TTP for adding noise.

In other works [5,12,17,21,23], researchers assume that there is no TTP in
the proposed crowdsensing system. Obviously, this assumption is more realis-
tic. To recruit mobile users, Li et al. [5] guarantee the crowdsensing coverage
meanwhile protecting locations of users based on LDP methods. Mobile users
need upload one of frequently visited obfuscated-locations and find a set of users
to maximize future crowdsensing coverage based on these perturbed locations in
[17]. A novel location privacy-preserving mechanism is designed in [23] to protect
the location of users in the space dimension and spatiotemporal activity. For the
field of Internet of Vehicles, Qian et al. [12] propose a location-preserving task
allocation method meanwhile improving task quality by perturbing locations on
mobile devices. Different from above works, Xiao et al. [21] protect the sensing
quality of each user to prevent location privacy leakage based on secret sharing
scheme.

However, there are few works which are commited to location privacy pro-
tection at the auction stage for the crowdsensing system without any TTP.

3 System Model and Problem Formalization

In this section, we introduce our crowdsensing system model which consists of
a semi-honest central platform and plenty of semi-honest mobile users. Then, a
security model is introduced to measure the computation security under semi-
honest model in our crowdsensing system and an attack model is presented to
infer locations of users based on the received bid data. Finally, the task allocation
problem formalization is given.
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3.1 Crowdsensing System Model

We consider there is a central platform to announce many sensing tasks T =
{t1, t2, · · · , tm} and some mobile users U = {u1, u2, · · · , un} participate in sens-
ing tasks in our crowdsensing system. Moreover, the platform and users are
semi-honest, which means they may extract extra information from received
data. After the platform announces sensing tasks, a user can be allocated at
most one task to execute and each task may be allocated to multiple users so
that the platform can obtain an accurate estimated value of the task based on
a mass of sensing data collected by these users. For sake of convenience, geo-
graphical locations can be represented by two-dimensional grid coordinates in a
2D space. Thus, each task is denoted by a tuple tj

def= <lj , Bj>, where lj is the
grid coordinate location of the sensing task tj , and Bj is the total budget of tj .

If a user ui’s location is inconsistent with the location of the task tj to be
performed, the user should move to the location of the task to collect sensing
data. The cost of the movement is denoted by cj

i , which is positively correlated
with the distance dj

i between user ui and task tj . Compared to the cost of
movement, the cost of performing tasks can be neglected so that the bid of user
ui performing task tj is equivalent to the cost of movement and can be also
denoted by cj

i . That is to say, the bid increases as the distance between the user
and the task increases. After the sensing data collected by user ui of task tj is
transmitted to the platform, the platform will make a profit αiGj − cj

i , in which
αi ∈ [0, 1] represents the credit of user ui for completing tasks according to
quality of historical sensing data and Gj is the basic earning of task tj provided
by the platform.

As shown as Fig. 1, the auction process for our auction-based crowdsensing
system can be divided into five steps: (1) The platform publishes m location-
sensitive tasks with location tags and budget constraints. (2) Each user generates
the bid set Ci = {c1i , c

2
i , · · · , cj

i} based on the distance to tasks and submits
these bid data to the platform. (3) The platform allocates tasks to users to
maximize the profit of the platform according to received bid sets of all users
C = {C1, C2, · · · , Cn}. (4) Each user submits the results of allocated sensing task
to the platform. (5) The platform pays some rewards to users according to the
winning bids.

However, as the raw bid sets are uploaded to the central platform in the
auction-based crowdsensing system, the platform may infer the location of a
user according to the distance between the user and each task contained in the
bid set. Therefore, a secure auction mechanism for crowdsensing without any
TTP will be designed in the Sect. 4.4 to prevent the location of each user from
being revealed.

3.2 Security Model

In our work, both the platform and mobile users are semi-honest. On the one
hand, the platform and mobile users follow the task allocation protocol, show-
ing the honest aspect. On the other hand, they may infer the location privacy
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Fig. 1. An auction-based crowdsensing system model.

according to the received bid data in the course of auction, showing the dishon-
est aspect. Moreover, if each semi-honest party in system cannot extract extra
information from the received data during execution of protocol, we can consider
the computation in the protocol to be private. The private computation under
semi-honest model can be defined in the following:

Definition 1 (Private computation under semi-honest model [3]). Sup-
pose there is a function F that is computed jointly by n parties, we let xi

be the input of the i-th party, and Fi is the output of the i-th party, i.e.,
F(x1, x2, · · · , xn) = (F1,F2, · · · ,Fn). Especially, let 1 ≤ i ≤ n represent
n mobile users. The view of the i-th party during the execution of the pro-
tocol is V IEWi = (xi, r,mi), where r represents the outcome of the i-th
party’s internal coin tosses and mi represents the messages that the user has
received. For I = {i1, i2, · · · , ik} ⊂ {1, 2, · · · , n}, the outcomes of these parties

Fi1 ,Fi2 , · · · ,Fik can be denoted by FI . Moreover, the view of I is V IEWI
def
=

(I, V IEWi1 , V IEWi2 , · · · , V IEWik). Then, for any party subset I, the compu-
tation protocol can compute the function F privately if there exists a polynomial
time algorithm A satisfying the following relationship:

A(I, (xi1 , xi2 , · · · , xik ,FI)) = V IEWI . (1)

According to Eq. (1), what is acquired from a party’s view can be obtained
entirely from the input and output of this party. That is to say, any party in our
system cannot infer the location information from they received data as long as
a private computation protocol is designed.

3.3 Attack Model

For the crowdsensing system, we introduce an attack model to infer the location
of a user according to bid data submitted by the user. For the convenience of
expression, the candidate locations, where the distance to tasks increases as the
bid increases, are denoted by L. Then, the attacker infers the location of a user
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Fig. 2. An attack example.

by calculating the Euclidean distance similarity between the normalized distance
vector from a candidate location to tasks and the normalized bid vector.

For example, there is a region divided to 4 * 4 grids and a user at location
(1,1), three tasks located at (2,2), (0,1), (3,1) respectively as shown as Fig. 2.
Suppose the original bid vector is set as (2,1,4) computed by the square func-
tion. Firstly, the candidate locations L can be determined as coloured areas in
the figure. That is to say, the distances from a location in L to task 2, task 1,
and task 3 are monotonically increasing and the user must be in one of these
candidate locations. Next, the Euclidean distance similarity between the nor-
malized distance vector of each candidate grid and normalized bid vector can
be obtained. Finally, we can find that the value of grid (1,1) is smallest which
means the user is most likely to be in the location. So far, an attacker may infer
the location of a user based on the received bid information.

3.4 Problem Formalization

In the work, we focus on the secure task allocation problem in the auction-based
mobile crowdsensing under the semi-honest model to maximize the total profit
of the platform. Then, the problem can be formalized as follows:

Maximize :
∑m

j=1

∑n

i=1
(αiGj − cj

i )x
j
i (2)

Subject to :
∑n

i=1
cj
ix

j
i ≤ Bj (3)

∑m

j=1
xj

i ≤ 1 (4)

xj
i ∈ {0, 1} (5)

Eq. (1) holds (6)

Here, Eq. (3) represents the budget constraint, which means the total cost of
multiple users performing a task cannot exceed budget of the task and Eq. (4)
indicates that each user can be allocated at most one task. Equation (5) shows
the task allocation decision xj

i is binary. If the task tj is allocated to the ui (i.e.,
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bid cj
i is one of winning bids), the decision variable xj

i = 1, otherwise xj
i = 0. To

protect the location of each user from being revealed, Eq. (6) should be satisfied
so that additional location information of users can not be inferred during the
execution of a secure computation protocol.

4 Methodology

In this section, we first introduce a GBTA algorithm for the system without secu-
rity guarantee, and we analyse theoretically the approximation ratio achieved by
the GBTA algorithm. Moreover, a secure auction mechanism with SSTA proto-
col is designed on this basis. Finally, we prove that the location of each user can
be preserved well during the execution of SSTA and the accuracy of this method
is same as GBTA algorithm.

4.1 Problem Complexity Analysis

Theorem 1. The task allocation problem is NP-hard.

Proof. We consider a special case of the task allocation problem, in which there
is only one task to be allocated, i,e., | T |= 1. Thus, each user ui will generate
a bid ci for the task. Moreover, the credit of user ui is denoted by αi, G is the
basic earning of the task provided by the platform and the budget of the task is
B. Then, we should select some users U ′ ⊆ U performing the task to maximize∑

ui∈U ′(αiG− ci), while the total bid of users U ′ is no more than the budget B.
Obviously, the special problem is regarded as 0–1 knapsack problem equivalently
which is a classic NP-hard problem: Given a knapsack with capacity B and an
item set U , the value of item ui is αiG − ci and the weight is ci, select some
items to put into the knapsack to maximize the total value within the capacity
of the knapsack. Accordingly, the general task allocation problem in our work is
at least NP-hard.

4.2 Greedy-Based Task Allocation Algorithm

As the task allocation problem is NP-hard, an algorithm based on greedy strat-
egy is designed to obtain an approximate solution in polynomial time. Firstly,
let X be the set of decision variable xj

i whose initial value is 0. The GBTA algo-
rithm contains multiple iterations and the algorithm always selects the bid which
most improves the profit of the platform within the budget constraints of tasks
in each iteration. That is to say, if there is a bid cj

i that makes αiGj − cj
i the

largest non-negative value, the task tj will be allocated to user ui, i,e., xj
i = 1.

Moreover, if there is no bid to meet the budget constraint or make non-negative
profit in bid data of a user, the user will be not assigned tasks. Since each user
is assigned at most one task, the user ui should be removed from the user set U
after a task is allocated to the user and GBTA terminates when the user set is
empty.
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Algorithm 1: Greedy-Based Task Allocation algorithm
Input: U , S, C, {αi | i ∈ U , j ∈ T }, {Bj , Gj | j ∈ T }
Output: X

initialization: X = 0, max = −1
1: while U �= ∅ do
2: for each user i in U do
3: construct task set of each user ui:

T ′
i = {tj | cji ≤ Bj , αiGj − cji ≥ 0}

4: if T ′
i = ∅ then

5: U = U\ui;
6: for each user i in U do
7: for each task j in T ′

i do
8: if αiGj − cji > max then
9: max = αiGj − cji

10: allocTask = j
11: selUser = i
12: xAllocTask

selUser = 1
13: U = U\selUser
14: BallocTask = BallocTask − cji
15: return task allocation decision X

The detailed GBTA algorithm is as shown as Algorithm1. From step 2 to
step 5, we construct a candidate task set for each user, in which each task has
enough budget and the profit of the platform will be improved by assigning the
task to the user. If the candidate task set of a user ui is empty, the user will not
be assigned any task. Then, a winning bid which produces largest non-negative
profit αiGj −cj

i within task budget constraint is determined in step 6–11 for each
iteration and we record the index of the winning bid. When a bid cj

i is winning
bid, the task tj will be allocated to the user ui. Thus, we remove the user who
has been assigned a task from the user set and update the budget of the task tj
in step 12–14.

4.3 Approximation Performance Analysis

Theorem 2. Suppose the profit produced by Algorithm 1 is Falg and the profit
generated by the optimal solution is Fopt. They satisfy the following equation:

Fopt

Falg
≤ 1 + γ, where γ = max{Bj

cj
i

| tj ∈ T , ui ∈ U} (7)

Proof. Then, we can prove Eq. (7) by adopting mathematical induction method.
(1) Firstly, when | U |= 1, we can find obviously that the greedy solution is

same as optimal solution and Fopt/Falg = 1(< 1 + γ).
(2) Next, suppose Fopt/Falg ≤ 1 + γ holds when | U |= n.
(3) Given | U |= n+1. Without loss of generality, we assume that α1G1−c11 =

max{αiGj −cj
i | ui ∈ U , tj ∈ T } and the value is non-negative. According to the
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GBTA algorithm, u1 must be assigned task t1, i,e., xj
i = 1. Now, we consider

two cases in the following:

In the Optimal Solution, Task t1 is also Allocated to User u1. Consider
the sub-problem P ′ in which the user set is U ′ = U −{u1} and the budget of task
t1 is B′

1 = B1−c11. After running the GBTA algorithm for the sub-problem P ′, we
can get the profit Falg|P ′ . Moreover, the profit generated by optimal solution for
the sub-problem is denoted by Fopt|P ′ . Then, we have Falg = Falg|P ′ +(α1G1−c11)
and Fopt = Fopt|P ′ + (α1G1 − c11) based on optimal structure of our problem.
According to the step (2) of the mathematical induction, we find Fopt|P ′ ≤
(1 + γ)Falg|P ′ . Accordingly, we have:

Fopt

Falg
=

Fopt|P ′ + (α1G1 − c11)
Falg|P ′ + (α1G1 − c11)

≤ 1 + γ (8)

In the Optimal Solution, Task t1 is Not Allocated to User u1. Thus, the
task t1 is assigned to other users U (1)

opt and the profit generated by the allocated

task t1 based on optimal solution is denoted by F
(1)
opt . Then, we have:

F
(1)
opt =

∑

ui∈U(1)
opt

(αiG1 − c1i ) ≤ γ(α1G1 − c11) (9)

Without loss of generality, we assume the user u1 is allocated task t2 in optimal
solution. Consider the sub-problem P ′′ in which the user set is U ′′ = U −{u1}−
U (1)

opt, the task set is T ′′ = T −{t1} and the budget of task t2 is B2−c21. The profit
produced by optimal solution for the sub-problem can be denoted by Fopt|P ′′ .
Then, we have:

Fopt = Fopt|P ′′ + F
(1)
opt + (α1G2 − c21) (10)

It should be noted that the sub-problem P ′′ is contained in problem P ′ so that
Fopt|P ′′ ≤ Fopt|P ′ . Moreover, as |U ′| = n in sub-problem P ′, we can get Fopt|P ′ ≤
(1 + γ)Falg|P ′ . Thus, the following inequality exists:

Fopt|P ′′ ≤ (1 + γ)Falg|P ′ (11)

From Eq. (9) to Eq. (11) and α1G1 − c11 = max{αiGj − cj
i | ui ∈ U , tj ∈ T }, we

have:
Fopt

Falg
=

Fopt|P ′′ + F
(1)
opt + (α1G2 − c21)

Falg|P ′ + (α1G1 − c11)

≤
(1 + γ)Falg|P ′ + γ(α1G1 − c11) + (α1G2 − c21)

Falg|P ′ + (α1G1 − c11)

≤ 1 + γ

(12)

So far, Theorem 2 is proved. That is to say, GBTA algorithm can achieve (1+γ)-
approximation solution where γ = max{Bj

cji
| tj ∈ T , ui ∈ U}.
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4.4 A Secure Auction Mechanism for Task Allocation

For the basic auction-based crowdsensing system, the location of a user could be
leaked out as the bid set of the user is submitted to the platform to execute the
GBTA algorithm. To protect the bid information from third parties, we apply the
secret sharing scheme to the GBTA. Firstly, we introduce the preliminaries of a
well-known Shamir secret sharing scheme and then a secure auction mechanism
with SSTA protocol is designed for protecting sensitive information and assigning
tasks to users.

Preliminaries

Definition 2 (Shamir secret sharing). Let p be an odd prime and Zp be
a prime field. A secret s ∈ Zp means that s ∈ {0, 1, 2, · · · , p − 1}. If a secret
s is shared among n parties based on a random polynomial fs = s + α1x +
α2x

2 + · · · + αtx
t mod p with randomly chosen αk ∈ Zp for 1 ≤ k ≤ t ≤ n

2 ,
[s]p = {fs(i) | 1 ≤ i ≤ n} is a share set of the secret s ∈ Zp. Moreover, the share
of secret s received by party i in the [s]p is denoted by [s]ip.

Suppose that there are two secrets a, b to be shared and the random polynomials
with degree t of them are fa = a + a1x + a2x

2 + · · · + atx
t mod p and fb =

b + b1x + b2x
2 + · · · + btx

t mod p, respectively. For the sake of writing, we use [·]
instead of [·]p in the following. Then, there are some mathematical operations
of secure multi-party computation to calculate one function based on Shamir
secret sharing scheme. The addition operation and subtraction operation can be
redefined and computed as follows:

[a] + [b] � [(a + b) mod p] = ([a] + [b]) mod p (13)

[a] − [b] � [(a − b) mod p] = ([a] − [b]) mod p (14)

The Eq. (13) above can be established as fa + fb = (a + b) + (a1 + b1)x + (a2 +
b2)x2+· · ·+(at+bt)xt mod p and in a similar way, Eq. (14) is correct. Obviously,
we can find that each user ui can calculate the redefined addition and subtraction
of own shares locally by the received share [a]ip and share [b]ip.

However, the multiplication operation [a]∗[b] � [(a∗b) mod p] and comparison
operation Comp([a], [b]) can not be realized locally for any party. Let l be the bit
size of the prime p. In our work, [a]∗[b] is computed by communicating with other
parties according to the secure distributed multiplication protocol [8] based on
Newton’s interpolation theorem, in which the computation complexity is O(n2l)
bit-operations per user and the communication complexity is O(nl). To compare
the value a and value b, a multiparty comparison computation protocol [10] is
proposed, in which the communication complexity is 279l+5 times as large as the
multiplication operation and the computation complexity depends on 15 rounds
of performing the multiplication protocol in parallel. Note that if a ≤ b, the com-
parison protocol determines Comp([a], [b]) = [1], otherwise Comp([a], [b]) = [0].
Then, the max selection operation Max([a], [b]) � [max(a, b)] can be calculated
by [a] + (Comp([a], [b]) ∗ ([b] − [a])).
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Fig. 3. A secure auction mechanism for crowdsensing system.

Design for Secure Auction Mechanism. In auction-based crowdsensing
system, if only the winning bid of a user is submitted to the platform, the
platform can not infer location of the user according to the distance relationship
between the user and tasks contained in bid set of the user. This gives us the
inspiration to design our secure auction mechanism to maximize total profit of
the platform by task allocation. The main steps of our secure auction mechanism
are as shown as Fig. 3.

(1) Task Publication: The platform publishes m tasks, the location lj and the
budget Bj of each task tj , 1 ≤ j ≤ m. Moreover, the platform computes the
value of αiGj and sends the value to each user ui.

(2) Parameters Generation: Each user ui submits an odd prime pi which is
larger than max(c1i , · · · , cm

i ). Then, the platform determines the odd prime p
which is larger than max(αiGj + 1, {pi | ui ∈ U}, {Bj | tj ∈ T }) and the degree
of polynomial is t(≤ n). The parameters including the odd prime p and degree
t are released to all users.

(3) Secret Sharing: Each user ui computes function Ij
i according to the

received value αiGj and bid cj
i as follows:

Ij
i =

{
αiGj − cj

i + 1, if αiGj − cj
i ≥ 0

0, if αiGj − cj
i < 0.

Then, each user ui generates a share set [cj
i ] of secret cj

i and a share set [Ij
i ] of

secret Ij
i and transmits the shares [cj

i ]
i′
p , [Ij

i ]i
′

p to each other user ui′ .
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Algorithm 2: Secret-Sharing-based Task Allocation protocol
Input: U , S, [cji ], {αiGj , Bj | i ∈ U , j ∈ T }
Output: [X ]

initialization: [xj
i ] = [0], [yi] = [0], [sj ] = [Bj ]

1: for round 1 to n do
2: for i in candidate user set U do
3: for j = 1 to m do
4: [f j

i ] = [Ij
i ] ∗ Comp([cji ], [sj ])

5: [fmax] = Max([f j
i ] | 1 ≤ i ≤ n, 1 ≤ j ≤ m)

6: users compute and reveal Comp([fmax], 0).
7: if Comp([fmax], 0) == 1 then
8: break;
9: else

10: for i in candidate user set U do
11: for j = 1 to m do
12: [z] = Comp([fmax], [f j

i ]) ∗ (1 − [yi]) ∗ Comp([cji ], [sj ])
13: [xj

i ] = [z] + [xj
i ]

14: [yi] = [yi] + [z]
15: [sj ] = [sj ] − ([z] ∗ [cji ])

each user ui′ send [yi]
i′
p to user ui for restoration,

16: if yi = 1 then
17: the user ui communicates with the platform, then the platform updates

and broadcasts the candidate user set U = U − {ui} to all users.
18: else
19: continue;
20: return polynomial decision share [X ]

(4) Task Allocation: This step is also regarded as the process of selecting
winning bids. Users jointly make the task allocation decision share [X ] = {[xj

i ] |
∀ui ∈ U ,∀tj ∈ T } according to SSTA protocol.

Specially, Users compute jointly the function [f j
i ],∀ui ∈ U ,∀tj ∈ T . If the

bid cj
i is larger than the budget Bj , SSTA determines the function [f j

i ] = [0],
otherwise [f j

i ] = [Ij
i ] in step 2–4. Step 5–8 indicates that the maximum value of

the function is determined as fmax privately and the protocol will be terminated
in advance if fmax < 0. From step 12–17, users determine the winning bid and
make task allocation decisions. If the function f j

i is largest and user ui has
not been assigned a task on the condition that the budget of tj is adequate,
users determine the decision share set [xj

i ] = [1] and execution flag of the user
is [yi] = [1]. Then, the budget of task tj should be updated and the user ui

should be removed from the candidate user set. Moreover, the decision share set
[X ] can be decided after at most n iterations. When the [X ] is decided, each
user ui′ sends {[xj

i ]
i′
p | ∀tj ∈ T } to user ui. Then, the task allocation decision

{xj
i | ∀tj ∈ T } can be derived by user ui according to decision share [xj

i ] based
on Newton’s interpolation theorem.
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(5) Task Submission: If the task allocation decision xj
i = 1, user ui arrives

the location of task tj . Moreover, the user sends the sensing data of task tj and
the winning bid cj

i to the platform. Note that the platform only obtains the
winning bid and the allocated task of each user so that the locations of users
can be protected.

(6) Reward Users: The platform pays rewards for each user ui according to
the winning bid cj

i submitted by the user.

Theorem 3. The SSTA protocol in the secure auction mechanism can protect
location of each user from being revealed to other semi-honest mobile users and
the platform, even if t−1 users are monitored at the same time by other attackers.

Proof. In the step 1 and step 2 of our proposed mechanism, each user submits
some random numbers which are independent of the user’s location. Then, each
user receives some bid polynomial shares uploaded by other users in step 3. As
the coefficients of polynomials are random, users cannot infer bid information
from received bid shares. Thus, the inputs of SSTA will not leak the bid informa-
tion of each user. Since the multiplication operation and comparison operation
have been proved to be secure [8,10], we just focus on proof of the compu-
tation security of SSTA protocol itself. Let I = {i1, i2, · · · , ik} ⊂ {1, · · · , n}
represent any k = t − 1 users selected from mobile users U . According to the
SSTA protocol, we can obtain the received message of user ih, denoted by
mih = {[f j

i ]ihp , [z]ihp , [xj
i ]

ih
p , [yi]ihp , [sj ]ihp , [fmax]ihp }. Thus, the view of user ih is

V IEWih = ({n,m, cj
ih

, αiGj , Bj}, r,mih). Then, the view of user set I can be
denoted as V IEWI = {I, V IEWi1 , · · · , V IEWik}. In V IEWI , the number of
shares of each secret is no larger than the degree t, so that information of these
secrets cannot revealed by these shares according to the secret sharing scheme.
Moreover, the platform obtains only some flags 0 or 1 independent of locations
of users to determine whether the protocol can be terminated in advance. Thus,
Eq. (6) holds and the whole SSTA protocol is secure.

Theorem 4. The SSTA protocol can also produce (1 + γ)-approximation solu-
tion, where γ = max{Bj

cji
| tj ∈ T , ui ∈ U}.

Proof. Originally, the SSTA protocol applies secret sharing scheme based on the
GBTA algorithm to protect sensitive information of users. By analysis of GBTA
and SSTA, we can find that both of them select a bid which can most improve
profit of the platform as the winning bid in each iteration. Thus, SSTA protocol
can obtain the same task allocation decisions as GBTA, and then the Theorem4
is proved.

5 Evaluation

In this section, we first introduce compared algorithms and simulation settings,
and then the SSTA protocol is evaluated in two perspectives, i,e., task allocation
performance measured by total profit of the platform and privacy protection level
evaluated by location privacy leakage rate.
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5.1 Algorithms for Comparison

Although many existing researches have focused on task allocation in mobile
crowdsensing, the various crowdsensing models and problems in these works
are not exactly same as ours. Generally, greedy strategies are often adopted to
deal with NP-hard task allocation problems. In order to measure the validity of
task allocation results of GBTA algorithm and SSTA protocol, we design two
task allocation algorithms in the following based on the basic idea of algorithms
proposed by [13,15] for comparison, which can be applied to our work.

The first comparison method is Minimum Bid First (MBF) task allocation
algorithm, in which the platform selects the smallest bid in each iteration for
task allocation. Another approach is Maximum Profit per Cost First (MPCF)
algorithm, where the bid with the largest platform profit obtained by unit cost
is decided as a winning bid in each round of execution, i,e., max{αiGj−cji

cji
|

ui ∈ U , tj ∈ T }. In addition, we compare the task allocation algorithm without
privacy protection GBTA and SSTA protocol to analyse the impact of secret-
sharing-based privacy protection approach applied in SSTA on the total profit
of the platform.

5.2 Simulation Settings

In our simulations, we conduct the experiments on geographic areas which are
divided into 50∗50 grids. The basic earning of task Gj is constrained in the range
[20, 100]. To obtain bids by mobile users, four basic monotonically increasing
functions are considered as follows:

cj
i = fi(d

j
i ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ai ∗ dj
i if ui selects linear function

ai ∗ dj
i

2
if ui selects square function

ai ∗
√

dj
i if ui selects square root function

ai ∗ log (1 + dj
i ) if ui selects logarithmic function

(15)

where ai ∈ (0, 20].

Table 1. Parameter Settings

Parameter name Values

Number of users n 100, 200,300, 400, 500

Number of tasks m 50,100, 150, 200, 250

Range of task budget B [50, 60], [50, 70], [50, 80][50, 80][50, 80], [50, 90], [50, 100]

Mean of user credit α 0.5, 0.6,0.7, 0.8, 0.9

Moreover, we consider four variable parameters including the number of users
n, the number of tasks m, the range of task budget B and the mean of user credit
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α. The values of these parameters are shown in Table 1, in which default values
of the parameters are highlighted in bold. When we change one of the variable
parameters, the other parameters will remain as the default values.

5.3 Evaluation on Task Allocation Performance

To evaluate the influence of the number of users and the number of tasks on task
allocation performance, we compare the total profit of the platform obtained by
MBF, MPCF, GBTA and SSTA. The results are depicted as Fig. 4 and Fig. 5.

Fig. 4. Total profit of the platform v.s.
number of users.

Fig. 5. Total profit of the platform v.s.
number of tasks.

On the one hand, we can find that our approach GBTA and SSTA can achieve
more profit than MBF and MPCF when the number of users participating sens-
ing tasks increases from 100 to 500 or the number of tasks increases from 50
to 250. This is because MBF only takes the cost of the platform into consid-
eration but ignores the benefits obtained by the platform. Moreover, only if a
winning bid is less than 1, the profit obtained by MPCF will be greater than
that of GBTA and SSTA. On the other hand, we can observe that the profit of
the platform increases significantly as the number of users and tasks increases.
Additionally, the results obtained by GBTA are consistent with those obtained
by SSTA due to the same basic idea which is discussed in Theorem 4.

In addition, we also report experimental results of profit of the platform with
different range of task budget and various mean of user credit in Fig. 6 and Fig. 7,
respectively. With the changes of the two parameters B and α, we can find that
the results of SSTA and GBTA are superior to the comparison methods MBF
and MPCF. Moreover, we can observe that the profit of the platform obtained
by our approach improves in either situation. In particular, when the range of
task budget extends, the profit obtained by MPCF, GBTA, SSTA slightly but
steadily increases. This is because the task allocation decisions change only when
the budget of a task is insufficient.
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Fig. 6. Profit of the platform v.s. range
of task budget.

Fig. 7. Profit of the platform v.s. mean
of user credit.

5.4 Evaluation on Privacy Protection Level

To evaluate the privacy protection level of our proposed auction mechanism,
the location privacy leakage rate (i,e., the percentage of users who let out their
positions) is considered. Here, we will not evaluate whether users participating
in multi-party security computing can infer the locations of other users or not
during the execution of SSTA since the security has been proved in Theorem3.
Specifically, when the privacy protection method is not adopted, the platform
infers location of each user based on the original bids for all tasks of the user
according to attack model mentioned in Sect. 3.3. Moreover, the platform can
only obtain the results of the auction including the winning bid and an assigned
task of a user in the case of applying our mechanism so that the platform can
only infer the location of a user by blindly assuming that the location of the
assigned task is the user’s location.

As shown as Fig. 8, we can observe that the privacy leakage rate with our
approach remains around 0.02 while the locations of 98% of users are exposed to
the platform without any protection method as the number of users increases.
The essence of stability is that a constant number of bids submitted by a user
does not allow the platform to extract more location information during the auc-
tion without protection. Naturally, the increase of users may lead to an increase
in the number of users consistent with the location of the assigned task. How-
ever, the privacy leakage rate keeps stable by adopting our effective mechanism
in the crowdsensing system.

In Fig. 9, although there are only 50 tasks in the region of crowdsensing sys-
tem, the location privacy of users is revealed with probability 0.963. Moreover,
the privacy leakage rate is closer to 1 which means almost all locations of users
can be inferred by the platform as the number of tasks increases. This is because
the platform may deduce the location of a user according to more bid informa-
tion, in which the number of bids is consistent with the number of tasks. We
also report the privacy leakage rate for our auction mechanism with protection
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Fig. 8. Profit of the platform v.s. num-
ber of users.

Fig. 9. Profit of the platform v.s. num-
ber of tasks.

in the figure, and we can find that the probability of location privacy disclosure
increases slowly and monotonously as the number of tasks increases. The reason
is that an increase in the number of tasks makes it more likely that users and
tasks are in the same location. However, when there are 250 tasks, the privacy
leakage rate descends about 95% by adopting the proposed auction.

6 Conclusion

In this paper, we consider the problem of task allocation with location privacy
protection in an auction-based crowdsensing system without any trusted third
party. We first formalize the problem as a NP-hard problem and propose GBTA
algorithm with (1 + γ)-approximation solution for task allocation without the
security constraint. However, the bid information of a user is positively and
strongly correlated with the distance from the user to tasks, which may lead to
the location leakage of the user in the crowdsensing based on the attack model.
Thus, we next design a secure auction mechanism by applying SSTA protocol to
assign tasks privately which can achieve the same results as GBTA. It is proved
that the security of the auction mechanism is guaranteed. Finally, the simulation
results show that our approach has excellent performance in task allocation and
it can protect location privacy of users effectively.
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