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Abstract. With the frequent occurrence of cyber attacks in recent
years, cyber attacks have become a major factor affecting the security
and reliability of power SCADA. We urgently need an effective SCADA
risk assessment algorithm to quantify the value at risk. However, tra-
ditional algorithms have the shortcomings of excessive parsing variables
and inefficient sampling. Existing improved algorithms are far from the
optimal distribution of the sampling density function. In this paper, we
propose an optimal sampling algorithm and a selective parsing algorithm
and combine them into an improved hybrid algorithm to solve the prob-
lems. The experimental results show that the improved hybrid algorithm
not only improves the parsing and sampling efficiency, but also realizes
the optimal distribution of the sampling density function and improves
the accuracy of the assessment index. The assessment indexs accurately
quantify the risk values of three widely used cyber attacks.

Keywords: SCADA · Cyber attack · Risk assessment · Improved
hybrid algorithm

1 Introduction

With the continued growth of electricity demand, the security of the power
system is becoming increasingly important. In a power system, the application
of the SCADA (Supervisory Control And Data Acquisition) is the most mature
[1], which reliability ensures the security of the entire system.

Cyber attacks against SCADA occurs frequently in recent years, which have
become a major factor affecting the security and reliability of power SCADA.
Therefore, how to conduct the risk assessment of the power system has gradually
been an urgent issue. We need to study an efficient risk assessment algorithm to
accurately quantify the impact of cyber attacks on system reliability and predict
potential threats to SCADA. The power system risk assessment algorithms can
be roughly classified into two categories: parsing algorithms and Monte Carlo
simulation algorithms [2].
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The parsing algorithm obtains the random state of the system by fault enumer-
ation and the probability of the random state by parsing calculation. The mathe-
matical model of the parsing algorithm is accurate and the reliability indexes are
highly precise. However, the number of system states to be analyzed by the parsing
algorithm grows exponentially with the number of system components, which is
difficult to apply to large-scale power system risk assessment.

The Monte Carlo simulation algorithm uses random sampling to obtain the
status of each component in the power system, thereby determining the overall
status of the power system and assessing system risk. The sampling number is
independent of the size of the system. Therefore, it is particularly suitable for
the risk assessment of large-scale power systems. However, the algorithm has
a contradiction of calculation accuracy and sampling number [3,4]. The more
precise the assessment index, the greater number of samples and the longer the
calculation time required. We need to optimize the existing sampling algorithm
to improve the convergence rate, which brings us great challenges.

In addition, most power SCADA risk assessments focus on the system itself,
ignoring that cyber attacks are becoming a major factor affecting system security.
Thus, we propose a novel power system risk assessment algorithm that takes into
account cyber attacks. The major contributions of the work are four-fold:

– We propose an optimal sampling algorithm based on multiple integration
models and variational problems, which realizes optimal sampling of the ran-
dom state for improving the sampling efficiency and the indexes accuracy.

– To provide more efficient selection of parsing variables, we propose a selective
parsing algorithm based on the projection variance, which overcomes the
shortcomings of the parsing algorithm for the excessive analytical number.

– We combine the optimal sampling algorithm and the selective parsing algo-
rithm into an improved hybrid algorithm for risk assessment of three attack
types, which is the first attempt in the field. The improved hybrid algorithm
combines the advantages of both algorithms.

– To assess the effectiveness of the improved hybrid algorithm, we conducted
an error analysis of the risk assessment index and performed an experimental
comparison on the UNSW-NB15 dataset. Experiments show that the algo-
rithm can achieve better performance than other algorithms.

2 Related Work

The study of power system risk assessment algorithms has continuously been
concerned by researchers.

Roslan [5] proposed sequential Monte Carlo (SMC) and non-sequential Monte
Carlo (NSMC). They found that the SMC algorithm is more suitable to assess the
distribution system. Zhang [6] proposed an improved SMC algorithm approach to
substation connection risk assessment. Wu [7] adopted the SMC algorithm based
on the minimal path sets to assess the risk of the distribution network. [8–10] pro-
posed improved SMC algorithms to assess the risk of power systems respectively.
However, the traditional Monte Carlo algorithm is memory-intensive, which leads
to inefficiency.
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Liu and Shen [11] used the improved important sampling algorithm, which
meets the needs of assessment speed and accuracy. Bavajigari [12] presented the
importance sampling algorithm to improve the computational efficiency of Monte
Carlo sampling. Guo and Feng [13] calculated the security risk of the power sys-
tem by the Latin hypercube sampling algorithm. Liu and Li [14] proposed a new
algorithm combining Latin hypercube sampling (LHS) and Monte Carlo sequen-
tial simulation. The probability density functions adopted by these improved algo-
rithms are superior to traditional sampling algorithms, but they are still far from
the optimal distribution.

To overcome the shortcomings of the above algorithms, we propose a risk
assessment algorithm that combines optimal sampling and selective parsing algo-
rithms. The context of the assessment is that the power SCADA suffers cyber
attacks. We aim to compare the performance of the risk indexes obtained by
different algorithms and thus validate the superiority of the algorithm. The algo-
rithm quantifies the impact of cyber attacks on power SCADA more accurately
as well as has good engineering application value.

3 Preliminaries

3.1 SCADA Cyber Attack Types

Reports in [15] show an increasing number of security incidents and cyber attacks
against SCADA in recent years. We have investigated the Repository of Indus-
trial Security Incidents (RISI) [16] and SCADA cyber attacks that have occurred
in the last 20 years [17]–[21] all over the world.

The three attacks that appear most frequently and bring us the biggest secu-
rity challenges are Analysis, DDoS, and Worm. Specifically, Analysis contains the
port scan, spam, and HyperText Mark-up Language (HTML) file penetrations.
Attackers can use analysis tools to identify active ports and prepare for subsequent
attacks. DDoS blocks the communication network by sending a large number of
attack packets. Legitimate network packets are flooded with fake attack packets
and can not reach the control center, while the network packets sent down from
the control center can not be transmitted to the next layer of the network. Worm
attacks Programmable Logic Controller (PLC) and other computers in the control
center. Once the Worm infects the PLC, it can replicate itself to spread to other
computers.

3.2 Traditional Risk Assessment Algorithm

To quantify the impact of three cyber attack types on the system, we take the
32 generators of the test system IEEE RTS-79 [22] as the example for the risk
assessment. In the paper, we study the circuit breakers and generators of the
power system as a whole object. Note that the circuit breakers and generators
of the power system are treated as a whole object.

The forced outage rate (for) of a generator is the probability of an outage
occurring when a component is forced out of operation immediately due to a
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fault. for of the power system generator i corrected under conditions of cyber
attack fori.

The traditional Monte Carlo simulation algorithm samples each component
and determines the component state. The combination gives the state of the
entire system.

For the generator i, consider two states of normal operation (denoted by 1)
and fault (denoted by 0):

xi =

{
0 0 ≤ Ui ≤ fori

1 fori<Ui ≤ 1,
(1)

where xi is the state of generator i. Ui is a random number that obeys a uniform
distribution U(0, 1) generated by a computer. By comparing Ui with fori, the
generator state xi can be determined.

LOLP (Loss of Load Probability) is the probability that the available capac-
ity of a generation system will not be able to meet the annual maximum load
demand of the system:

LOLP =
1
N

N∑
i=1

FLOLP ( �Xi), (2)

where N denotes the number of random states for the system. FLOLP is the test
function of LOLP . �Xi is the system random state vector. When the system is in
condition �Xi without a load cut, then FLOLP ( �Xi)=0. Otherwise, FLOLP ( �Xi)=1.

EDNS (Expected Demand Not Supplied) is the expected value of load
demand power reduction due to generation capacity shortage in a given time
range of the system, which is measured in MW:

EDNS =
1
N

N∑
i=1

FEDNS( �Xi), (3)

FEDNS is the test function of EDND. FEDNS( �Xi) represents the active
power of the system in the random state �Xi in accordance with the cut-off
power.

LOLP and EDNS are both risk assessment indexes. The smaller value of
both, the lower the risk value of the system. The higher the risk value of cyber
attacks means the greater the threat to power SCADA.

4 Improved Risk Assessment Algorithm

The disadvantages of traditional sampling algorithms are low sampling efficiency
and slow convergence. As a useful supplement to the sampling algorithm, the
parsing algorithm can speed up the convergence rate. However, the number of
parsing algorithm is excessive, increasing exponentially with the number of sys-
tem components. We improve the two algorithms and combine them into an
improved hybrid algorithm, as shown in Fig. 1.
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Fig. 1. The framework of the improved hybrid algorithm.

4.1 Multiple Integral Models for Risk Assessment

To reduce the variance of the test function, we need to optimize the probability
distribution function of the system state variables. Rewrite the test function in
the form of a random number vector �x as the independent variable.

F ( �X) = H(�x), (4)

The element xi of the vector �x is a continuous variable.

R = E[F ( �X)] = E[H(�x)] =
∫

Ω

H(�x)d�x, (5)

where R is the risk assessment index. Ω is an n-dimensional hypercube sur-
rounded by planes x1 = 0, x1 = 1, x2 = 0, x2 = 1, ...xn = 0, xn = 1.
d�x = dx1dx2...dxn. We transform the power SCADA risk assessment problem
into a multiple integral model.

4.2 Optimal Sampling Algorithm

Optimal Sampling Density Function. According to [11]–[14], reducing the
variance V {H(�x)} of the test function can improve sampling efficiency and com-
putational speed. Calculate the estimated value R̂ of the risk assessment index.

R̂ =
1
N

N∑
k=1

H ′ (x̄k) , (6)

p(�x) is the probability density function.
The probability density function of sample �xk is p( �xk).

H ′(�x) =
H(�x)
p(�x)

, (7)

H ′(�x) is the corresponding test function of sample �xk. �x takes continuous
values in the integration region.

V {H ′(�x)} =
∫

Ω

[
H2(�x)/p(�x)

]
d�x −

[∫
Ω

H(�x)d�x

]2

, (8)
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V {H ′(�x)} is the variance of the test function. For the Eq. (8),
[∫

Ω
H(�x)d�x

]2
is a constant. When J [p(�x)] =

∫
Ω

H2(�x)/p(x̄)dx̄ gets the minimum value,
V {H ′(�x)} gets the minimum value. Consider the independence of component
states in power systems.

p(�x) = p1 (x1) p2 (x2) · · · pn (xn) =
n∏

i=1

pi (xi) . (9)

The problem of minimizing the variance of the test function is transformed
into a variational problem J = min{J [p]}.{

J [p] =
∫

Ω

[
H2(x̄)/

∏n
i=1 pi (xi)

]
dx̄∫ 1

0
pi (xi) dxi = 1(i = 1, 2, . . . , n).

(10)

According to the variational principle, the optimal edge distribution density
of the ith (i = 1, 2, ...n) dimension is:

pi (xi) =

√∫
Ωi

[
H2(x̄)/

∏n
j=i
j �=i

pj (xj)
]

d�x(i)

∫ 1

0

√∫
Ωi

[
H2(�x)/

∏n
j=1
j �=i

pi (xi)
]

dx̄(i)dxi

, (11)

d�x(i) = dx1dx2 . . . dxi−1dxi+1 . . . dxn. Ωi is a subspace surrounded by planes
x1 = 0, x1 = 1, x2 = 0, x2 = 1, ...xi−1 = 0, xi−1 = 1, xi+1 = 0, xi+1 = 1,...xn =
0, xn = 1.

Optimal Sampling Algorithm. We set Ii (xi):

Ii (xi) =
∫

Qi

⎡
⎢⎢⎣H2(�x)/

n∏
j=1
j �=i

pj (xj)

⎤
⎥⎥⎦ d�x(i), (12)

The piecewise function Ii (xi) is constant in subintervals [0, fori) and
[fori, 0]:

Ii (xi) =

{
Ii1 xi ∈ [0, fori)
Ii2 xi ∈ [fori, 1]

, (13)

Calculate the estimated value Îi1, Îi2 of Ii1 and Ii2:

Îi1 =
1

N1

N1∑
k=1

⎡
⎣ H (�xk)∏n

j=1
j �=i

pj (xj)

⎤
⎦
2
∣∣∣∣∣∣∣
xi∈(0,fori)

, (14)
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Îi2 =
1

N2

N2∑
k=1

⎡
⎣ H (x̄k)∏n

j=1
j �=i

pj (xj)

⎤
⎦
2
∣∣∣∣∣∣∣
xi∈(fori,1)

, (15)

N1,N2 are the number of samples that satisfy the two subintervals respec-
tively. The expression of the optimal sampling density function is:

pi (xi) =

{
pi1 xi ∈ [0, fori)
pi2 xi ∈ [fori, 1]

, (16)

pi1 ≈
√

Îi1

fori

√
Îi1 + (1 − fori)

√
Îi1

, (17)

pi2 ≈
√

Îi2

fori

√
Îi2 + (1 − fori)

√
Îi2

. (18)

The whole algorithm is divided into two stages: pre-sampling and formal
sampling. The purpose of pre-sampling is to obtain the optimal density function
for each sub-interval by iterative calculation. Then, we sample the random states
of the system according to the optimal density function during formal sampling
by Eq. (17) and (18). Finally, the risk index of the power SCADA is assessed by
Eq. (5).

4.3 Selective Parsing Algorithm

The selective parsing algorithm uses the projected variance to quantify the effect
of the randomness of the variables on the variance of the test function. The vari-
ables with high impact are selected for parsing to effectively reduce the variance.

We set Ki(xi):

Ki (xi) =

∫
Ωi

H(�x)d�x(i)

pi (xi)
. (19)

Transform Eq. (6):

R =
∫ 1

0

dxi

∫
Ωi

H(�x)d�x(i) =
∫ 1

0

Ki (xi) pi (xi) dxi, (20)

R̂i =
1
N

N∑
j=1

Ki (xij) . (21)

The accuracy of R̂ depends on the variance of Ki (xij):

V {Ki} =
∫ 1

0

{Ki (xi) − E [Ki (xi)]}2 pi (xi) dxi, (22)
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V {Ki} represents the effect of the randomness for the variable xi on the
variance of the risk assessment index, called the projected variance of xi.

Analogous to Ii (xi), the piecewise function Ki (xij) is constant in subinter-
vals [0, fori) and [fori, 0]:

Ki (xi) =

{
Ki1 xi ∈ [0, fori)
Ki2 xi ∈ [fori, 1]

. (23)

Calculate the estimated value K̂i1, K̂i2:

K̂i1 =
1

N1

N1∑
k=1

[
H (�xk)∏n

j=1 pj (xj)

]∣∣∣∣∣
xi∈(0,fori)

, (24)

K̂i2 =
1

N2

N2∑
k=1

[
H (�xk)∏n

j=1 pj (xj)

]∣∣∣∣∣
xi∈(0,fori)

, (25)

The projected variance of xi is:

V {Ki} ≈
{

K̂i1 − E [Ki (xi)]
}2

foripi1 +
{

K̂i2 − E [Ki (xi)]
}2

(1 − fori) pi2,

(26)

E [Ki (xi)] ≈ foripi1K̂i1 + (1 − foriri) pi2K̂i2. (27)

Similar to the optimal sampling algorithm, the selective parsing algorithm is
divided into two stages: pre-sampling and formal sampling. Pre-sampling calcu-
lates the projection variances and arranges them in order of magnitude, which
is used to select the parsing variables. The optimal set of parsing variables is
determined in this order. The optimal parsing variables are analyzed in the for-
mal sampling stage. We can improve parsing efficiency by the selective parsing
algorithm.

4.4 Improved Hybrid Algorithm

We combine optimal sampling with selective parsing algorithms and propose
an improved hybrid algorithm. The optimal sampling algorithm improves the
efficiency of sampling calculation by optimizing the sampling density function.
The selective parsing algorithm improves the efficiency of parsing calculation by
optimizing parsing variables.

Figure 2 shows the flow chart of the proposed algorithm. First, we enter the
system state, set the pre-sampling iterations and the sampling number to set
the initial sampling density to 1. Then iteratively calculate the optimal den-
sity function for each dimension and interval in pre-sampling 1. Calculate the
projection variance of variables according to the optimal density function and
rank them in order of magnitude to determine the optimal parsing variables
in pre-sampling 2. Next, sample the random states of the simulated variables
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according to the optimal density function and enumerate the states of the pars-
ing variables to obtain the system states in the formal sampling until sampling
completes. Finally, count risk assessment indicators, test function variances and
coefficients of variance, and output the assessment results.

Fig. 2. Flow chart of the improved hybrid algorithm.

5 Example Analysis

5.1 Optimal Sampling Algorithm Assessment Results

To verify the sampling efficiency of the optimal sampling algorithm, we take 32
generators of IEEE-RTS79 as the object.

We conduct an error analysis of the reliability assessment indexes. Figure 3
shows βLOLP , βEDNS , VLOLP , VEDNS under different sampling number for four
sampling algorithms. βLOLP , βEDNS is the variance of LOLP and EDNS.
VLOLP , VEDNS are the variances of the test function for LOLP and EDNS.
The pre-sampling of the optimal algorithm consists of two iterations of the cal-
culation, each with 2000 samples. The number of samples starts from 6000.

It can be seen that the values of βLOLP , βEDNS of four sampling algorithms
decrease as the number of samples increases. It means that the accuracy of the
reliability index increases with the number of samples. The curves smooth out
when the number of sampling reaches 20,000. At this point, the four sampling
algorithms have the highest sampling efficiency and the most accurate calcula-
tion accuracy. Tests have shown that a sampling density function with minimal
variance is obtained after 2 iterations for the optimal sampling algorithm.

As can be seen from the bar charts, the latter three improvements all reduce
the sampling variance to some extent compared to the traditional algorithm.
In particular, the optimal sampling algorithm has the largest reduction. It not
only has the smallest variance of the test function under the same sampling
number, but also the variance of the test function tends to decrease with each
iteration. This proves that the index accuracy and sampling efficiency of the
optimal sampling algorithm are the highest among the four algorithms.
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Fig. 3. βLOLP , βEDNS , VLOLP , VEDNS for four algorithms

5.2 Improved Hybrid Algorithm Assessment Results

To verify the performance of the improved hybrid algorithm, we assessed the
selective parsing algorithm in combination with traditional and optimal sam-
pling algorithms respectively. Based on the conclusion in Sect. 6.1, we selected a
sample number of 20,000 for comparison. We consider the effect of the projection
variance of the system state variables on reliability, which takes 32 generators of
IEEE-RTS79 as the parsing variables.
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Our experiment is divided into three stages.
In the first stage, we combine selective parsing with the traditional sampling

algorithm to obtain an improved traditional algorithm. The pre-sampling is car-
ried out according to the traditional sampling algorithm, which consists of two
iterations of the calculation, each with 2000 samples. The projection variance
of the variables is calculated from the obtained sampling density function by
the selective parsing algorithm and the 32 generators are reordered according
to the magnitude of the projection variance. In the formal sampling process,
the reordered parsed variables are parsed. The variance of the test function is
calculated to obtain the results of the improved traditional algorithm.

In the second stage, we combine selective parsing with the optimal sampling
algorithm to obtain the improved hybrid algorithm. The traditional algorithm
of the first stage is replaced with the optimal sampling algorithm. Repeat the
steps of the first stage and obtain the results of the improved hybrid algorithm.

In the third stage, the performance of the improved algorithms are verified
by comparing the variance of the test functions obtained in Sect. 5.1.

Figure 4 shows the comparison results of four algorithms. The abscissa is the
generator number reordered according to the projected variance. The smaller
the number, the larger the projected variance. We can conclude that VLOLP

and VEDNS decrease as the projection variance increases. It means that parsing
variables with larger projected variances have a greater impact on the variance
of the test function. The greater the projection variance of the parsing variables,
the more efficient the parsing of the selective parsing algorithm. Selecting parsing
variables with large projection variance for parsing can reduce the variance of the
test function and improve the parsing efficiency. The improved hybrid algorithm
further improves the performance of the optimal sampling algorithm, which has
the highest sampling efficiency in Sect. 5.1.

The number of samples is set to 20,000. We compare the assessment results
of the five algorithms in Table 1. Note that Time(/s) is the parsing time. From
Table 1, compared to the other algorithms, we can conclude that βLOLP , βEDNS ,
VLOLP , VEDNS of the improved hybrid algorithm are minimum, which means
that the improved hybrid algorithm has the highest sampling efficiency and the
assessment indexes obtained are the most accurate. In addition, the improved
hybrid algorithm greatly reduces the parsing time of algorithms due to the selec-
tive parsing algorithm’s improved parsing efficiency. The parsing time improved
94.545% compared to the traditional algorithm. It is of great significance in the
reliability assessment of modern large-scale power systems.
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Fig. 4. VEDNS , VLOLP for improved algorithms

Table 1. The assessment results of five algorithms

Algorithm LOLP (10−2) VLOLP (10−2) βLOLP (10−2) EDNS VEDNS βEDNS(10−2) Time

Traditional 8.43019 7.81100 1.45035 15.2672 4568.45 1.94486 165

Improved Important 8.49715 0.72946 0.45807 15.0129 289.65 0.52224 21

Latin Hypercube 8.50148 3.74545 1.04238 15.1606 1692.56 1.29878 132

Optimal Sampling 8.32678 0.50213 0.003406 14.5367 156.483 0.00369212 17

Improved Hybrid 8.30146 0.32541 0.001534 14.5246 102.152 0.00161354 9
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Table 2. LOLP (10−2) for cyber attack

Type Traditional Improved
Important

Latin
Hypercube

Optimal
Sampling

Improved
Hybrid

Primary value 8.4302 8.4972 8.5015 8.3268 8.3015

Worms 16.1869 16.3136 16.3459 15.8672 15.9496

DDoS 15.3428 15.4124 15.4423 15.1454 15.0887

Analysis 16.6942 16.8568 16.8154 16.5478 16.4983

Table 3. EDNS(/MW) for cyber attack

Type Traditional Improved
Important

Latin
Hypercube

Optimal
Sampling

Improved
Hybrid

Primary value 15.2672 15.0129 15.1606 14.5367 14.5246

Worms 30.0572 29.5787 29.8675 28.6785 28.6033

DDoS 31.5478 31.1878 31.4865 30.1853 30.1502

Analysis 33.9645 33.3752 33.7457 32.3458 32.3071

5.3 Risk Assessment for Cyber Attack

The UNSW-NB15 dataset [23] is used to generate attacks for evaluation. LOLP
and EDNS are obtained for cyber attack in Table 2 and Table 3. Note that the
primary values for the assessment index are obtained without cyber attacks. As
a result of the five algorithms calculations, we can conclude that LOLP and
EDNS values of Analysis attack are the largest among the three attack types.
Through our error analysis it is clear that although the five algorithms produce
consistent conclusions, the other four are not sufficiently precise in their indexes.
To maximize the accuracy of the calculation, we have adopted the assessment
indexes of the improved hybrid algorithm calculation. Analysis attack has the
largest LOLP and EDNS values among the three attack types, meaning it
has the greatest impact on the reliability of the system. The value of LOLP
increases 98.74% and EDNS increases 122.43% compared to the primary value.
For Worms attack, the value of LOLP increases 92.13% and EDNS increases
96.93%. For DDoS attack, the value of LOLP increases 81.76% and EDNS
increases 107.58%. As a result of our precise assessment, the risk value of Analysis
attack is the maximum, meaning it is the most dangerous for the power SCADA.

6 Conclusion

In this paper, we first propose an optimal sampling algorithm based on multiple
integration models and variational problems, which improves sampling efficiency
and indexes accuracy. Besides, a selective parsing algorithm based on the pro-
jection variance is proposed to provide a more efficient selection of parsing vari-
ables for improving parsing efficiency. Then, we combine the two improved algo-
rithms to form an improved hybrid algorithm for risk assessment of three attack
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types. After error analysis and experimental comparisons, we can confirm that
the improved hybrid algorithm outperforms the traditional and existing algo-
rithms. The assessment results accurately quantify the impact of cyber attacks
on SCADA security, which show that the Analysis attack has the greatest risk
value. It is extremely well predicted that Analysis attack is the greatest threat
to power SCADA, providing insights into the establishment of the power system
security enhancement strategies.
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