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Preface

Workshop Description

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD) is the premier European machine
learning and data mining conference and builds upon over 20 years of successful events
and conferences held across Europe. ECML-PKDD 2022 took place in Grenoble,
France, during September 19–23, 2022. The main conference was complemented by a
workshop program, where each workshop was dedicated to specialized topics,
cross-cutting issues, and upcoming research trends. This standalone LNAI volume
includes the selected papers of the 7th International Workshop on Advanced Analytics
and Learning on Temporal Data (AALTD) held at ECML-PKDD 2022.

Motivation – Temporal data are frequently encountered in a wide range of domains
such as bio-informatics, medicine, finance, environment and engineering, among many
others. They are naturally present in emerging applications such as motion analysis,
energy efficient buildings, smart cities, social media, or sensor networks. Contrary to
static data, temporal data are of complex nature, they are generally noisy, of high
dimensionality, they may be non-stationary (i.e., first order statistics vary with time)
and irregular (i.e., involving several time granularities) and they may have several
invariant domain-dependent factors such as time delay, translation, scale, or tendency
effects. These temporal peculiarities limit the majority of standard statistical models and
machine learning approaches, that mainly assume i.i.d data, homoscedasticity, nor-
mality of residuals, etc. To tackle such challenging temporal data we require new
advanced approaches at the intersection of statistics, time series analysis, signal pro-
cessing, and machine learning. Defining new approaches that transcend boundaries
between several domains to extract valuable information from temporal data is unde-
niably an important topic and it has been the subject of active research in the last
decade.

Workshop Topics – The aim of the workshop series on AALTD1 was to bring
together researchers and experts in machine learning, data mining, pattern analysis, and
statistics to share their challenging issues and advances in temporal data analysis.
Analysis and learning from temporal data covers a wide scope of tasks including metric
learning, representation learning, unsupervised feature extraction, clustering, and
classification.

For this seventh edition, the proposed workshop received papers that cover one or
several of the following topics:

1 https://project.inria.fr/aaltd22/.

https://webdav.tuebingen.mpg.de/cause-effect/


– Advanced Forecasting and Prediction Models
– Classification of Univariate and Multivariate Time Series
– Data Augmentation for Time Series Classification
– Application Methods
– Temporal Alignment
– Anomaly Detection
– Temporal Data Clustering

Outcomes – AALTD 2022 was structured as a full-day workshop. We encouraged
submissions of regular papers that were up to 16 pages of previously unpublished
work. All submitted papers were peer-reviewed (double-blind) by two or three
reviewers from the Program Committee, and selected on the basis of these reviews.
AALTD 2022 received 22 submissions, among which 12 papers were accepted for
inclusion in the proceedings. The papers with the highest review rating were selected
for oral presentation (6 papers), and the others were given the opportunity to present a
poster through a spotlight session and a discussion session (6 papers). The workshop
had an invited talk on “Causal Discovery in Observational Time Series”2 given by
CNRS researcher Emilie Devijver of the CNRS/LIG-APTIKAL department, France3.

We thank all organizers, reviewers, and authors for the time and effort invested to
make this workshop a success. We would also like to express our gratitude to the
members of the Program Committee, the Organizing Committee of ECML-PKDD
2022 and the technical staff who helped us to make the AALTD 2022 a successful
workshop. Sincere thanks are due to Springer for their help in publishing the pro-
ceedings. Lastly, we thank all participants and speakers at AALTD 2022 for their
contributions. Their collective support made the workshop a really interesting and
successful event.

November 2022 Thomas Guyet
Georgiana Ifrim

Simon Malinowski
Anthony Bagnall
Patrick Schäfer

Vincent Lemaire

2 https://project.inria.fr/aaltd22/invited-speakers/.
3 https://lig-aptikal.imag.fr/*devijvee/.
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Causal Discovery in Observational Time Series
(Invited Talk)

Charles K. Assaad1, Emilie Devijver2, and Eric Gaussier2

1 EasyVista, 38000, Grenoble, France
cassaad@easyvista.com

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{emilie.devijver, eric.gaussier}@univ-grenoble-alpes.fr

Abstract. Time series arise as soon as observations, from sensors or experi-
ments for example, are collected over time. They are present in various forms in
many different domains, as healthcare (through, e.g., monitoring systems),
Industry 4.0 (through, e.g., predictive maintenance and industrial monitoring
systems), surveillance systems (from images, acoustic signals, seismic waves,
etc.) or energy management (through, e.g. energy consumption data).
In this paper, we propose an overview of existing methods for inferring a

causal graph for time series. Their behaviors are illustrated on different
benchmark datasets.

keywords: Causal discovery � Time series.

1 Motivation

Machine learning methods lack the ability to capture how the world works, to react to
events different from the training set, or to go beyond correlation relationships.
Causality is thus crucial for explanatory purpose, since an effect can be explained by its
causes, regardless of the correlations it may have with other variables [1]. In this paper,
we focus on the causal discovery for multivariate observational time series [2].

We consider a d-variate time series X of continuous values. For a fixed t, each Xt is
a vector X1

t ; . . .;X
d
t

� �
, in which Xp

t is the measurement of the pth time series at time t.
In Fig. 1 (top), we draw a running example with four time series with a diamond
structure.

A classical assumption for time series, needed when we want to do estimation from
a finite sample size, is the consistency throughout time: a causal graph for a multi-
variate time series X is said to be consistent throughout time if all the causal rela-
tionships remain constant in direction throughout time. Under this assumption, the
window causal graph is equivalent to the full time causal graph, the summary causal
graph can summarize the information while being easier to infer and to interpret, and
the extended summary causal graph is an intermediate representation, where instan-
taneous relations are discriminated from lagged relations. Those notions are illustrated
in fig. 1 for the running example of diamond structure.



We assume in this study that every relevant variable is observed (causal suffi-
ciency), but note that many methods have been proposed in the literature to solve this
problem as well.

2 Methods

Several methods have been proposed in the literature, relying on different assumptions.
We describe here several families on which we will focus on:

– Granger methods are inferring the Granger causality, which is not exactly the
causality, but used in many applications. The goal is to detect variables that are the
most relevant for prediction (no matter of spurious correlations).

– Constraint-based approaches exploit conditional independencies to build a
skeleton between variables, which is then oriented according to a set of rules that
defines constraints on admissible orientations. Remark that the solution is a Markov
equivalence class, being not able to detect which graph is the true one among
equivalent orientations. Those methods are based on the causal Markov condition
and the faithfulness assumption.
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Fig. 1. A diamond structure with self causes. The full time causal graph is represented (top), and the
diamond structure is highlighted in bold for a specific timepoint. Three representations of the diamond
structure are then given under the consistency throughout time assumption: the window causal graph
with a window of size 2 (bottom left), the summary causal graph (bottom middle) and the extended
summary causal graph (bottom right).
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– Noise-based methods describe the causal system by a set of causal equations,
where each equation explains one variable of the system in terms of its direct causes
and some additional noise. They are based on causal Markov condition and mini-
mality assumption.

Several methods for each class have been discussed in [2].We want to highlight two
new methods, not presented in the survey.

First, NBCB [3] is a method that takes benefit of the constraint-based approaches to
focus on conditional independencies and to the noise-based methods to relax the
unfaithfulness assumption. It achieves competitive performances on generated and real
datasets.

Second, PCGCE [4] is a constraint-based method that infer an extended summary
causal graph (the first method to introduce this kind of graph, to our knowledge) based
on conditional independencies. The main advantage is on the validation and inter-
pretation of the inferred graphs by experts: it is usually difficult for experts to have a
deep look on the lag of the causal effect, which is here only differentiate for instan-
taneous relations. It has also a reduced time complexity, compared with the window
causal graph.

3 Experimental Results

We compare different methods in Table 1 on three real datasets: the temperature
dataset1 , about indoor and outdoor temperatures; the diary dataset2 about prices of
milk, butter and cheddar cheese ; and FMRI3, that measures the neural activity of 50
regions of interest in the brain based on the change of blood flow.

We study MVGCL [5], a standard implementation of multivariate Granger
causality, from the Granger methods; PCMCI [6] to illustrate the performance of
constraint-based methods ; VarLiNGAM [7] and TiMINo [8] to illustrate noise-based

Table 1. Results for three real datasets. We report the mean and the standard deviation of the F1
score.

Temperature Diary FMRI

NBCB [3] 1 0.8 0.40 ± 0.21
PCGCE [4] 0 0 0.31 ± 0.20
MVGCL [5] 0.66 0.33 0.35± 0.08
PCMCI [6] 1 0.5 0.22 ± 0.18
VarLiNGAM [7] 0 0.0 0.49 ± 0.28
TiMINo [8] 0 0.0 0.32 ± 0.11

1 Data is available at https://webdav.tuebingen.mpg.de/cause-effect/.
2 Data available at https://future.aae.wisc.edu.
3 Data available at https://www.fmrib.ox.ac.uk/datasets/netsim/index.html, a preprocessed version at
https://github.com/M-Nauta/TCDF/tree/master/data/fMRI.
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methods, based on non-gaussian distribution assumption for Var-LiNGAM, and the
two new methods NBCB [3] and PCGCE [4].

The considered real datasets do not necessarily satisfy every classical assumption,
then it is difficult to conclude to a best method without giving precision on the context.
We argue that NBCB is challenging, because it relaxes classical assumptions by mixing
two worlds. PGCGE is also performing well on FMRI, but it needs large sample size to
achieve good performance, which is not the case in Temperature and Diary datasets.

4 Conclusion

We review in this paper some methods to infer causal graph for time series.If a general
conclusion cannot be drawn from the 3 real datasets studied here, we illustrate that all
the families of methods may be interested, depending on the assumptions underlying
the datasets. Causal sufficiency, which is often not satisfied in real datasets, has also
been studied [9]. Recent papers discuss the use of causality in machine learning [10] to
improve the generalization of inferred models, and this is an interesting open question
for time series.

Acknowledgements. This research was partly supported by MIAI@Grenoble Alpes
(ANR-19-P3IA-0003).
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Adjustable Context-Aware Transformer

Sepideh Koohfar(B) and Laura Dietz

University of New Hampshire, Durham, NH, USA
{Sepideh.Koohfar,Laura.Dietz}@unh.edu

Abstract. We propose a multi-horizon forecasting approach that accu-
rately models the underlying patterns on different time scales.

Our approach is based on the transformer architecture, which across a
wide range of domains, has demonstrated significant improvements over
other architectures. Several approaches focus on integrating a temporal
context into the query-key similarity of the attention mechanism of trans-
formers to further improve their forecasting quality. In this paper, we
provide several extensions to this line of work. We propose an adjustable
context-aware attention that dynamically learns the ideal temporal con-
text length for each forecasting time point. This allows the model to
seamlessly switch between different time scales as needed, hence pro-
viding users with a better forecasting model. Furthermore, we exploit
redundancies arising from incorporating the temporal context into the
attention mechanism to improve runtime and space complexity. The code
for reproducing the results is open sourced and available online (https://
github.com/SepKfr/Adjustable-context-aware-transfomer).

Keywords: Time series forecasting · Temporal systems · Neural
networks

1 Introduction

Time series forecasting is an important problem across many domains, such as
economics [4,34], retail [7,29], healthcare [19], and sensor network monitoring
[23]. In such domains, users are interested in future forecasts based on the his-
torical data to glean insights. Multi-horizon forecasting is a critical demand for
many applications, such as early severe weather events forecasting and travel
planning based on traffic congestion.

Recurrent Neural Networks (RNNs) have been applied to model repeating
patterns in time series [24,25], however RNNs and their variants are not able to
leverage information from the longer past as needed to model long-term depen-
dencies. Previous studies have demonstrated that RNNs including Long Short
Term Memory networks (LSTMs) [12] might also fail to capture long-term pat-
terns of dependency when information from the past is gradually overwritten by
information from recent observations [15].

Transformers [30] can incorporate any observations of the series (potentially
skipping over non-relevant data points) which renders them more suitable for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Guyet et al. (Eds.): AALTD 2022, LNAI 13812, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-24378-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24378-3_1&domain=pdf
https://github.com/SepKfr/Adjustable-context-aware-transfomer
https://github.com/SepKfr/Adjustable-context-aware-transfomer
https://doi.org/10.1007/978-3-031-24378-3_1
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Fig. 1. A synthetic example of predicting the future after the dashed red line given
the preceding data. The attention mechanism would choose the points that are most
similar to the query point at t0 (depicted in blue) and predict a similar trajectory. In
the case of (a) point-wise attention, this would be the green point, which would result
in an erroneous forecast following the blue dashed line, where the correct forecast is
depicted in black. In the case of (b) temporal attention the similarity is depending
on the context, depicted as rectangle, and the pink rectangle is determined to exhibit
most similar behavior. This results in an accurate forecast, depicted as blue dashed
line. (Color figure online)

capturing similarities in the longer past. We hypothesize that these similarities
are critical for achieving accurate forecasts. However, the basic attention mech-
anism in transformers estimates the similarity based on a point-wise vector of
the query and key, each representing individual time steps, thereby ignoring the
temporal context surrounding the query and key. As depicted in Fig. 1 estimat-
ing similarities based on point-wise vectors without incorporating the temporal
context might lead to misleading predictions, when observations have high point-
wise similarities but exhibit different temporal behaviours (Fig. 1 left).

Many approaches are based on the hypothesis that in a multi-layer model,
the temporal context can be absorbed into the representation of the query and
key from a previous layer. However, there are two shortcomings. 1) Previous
layers suffer from the same lack of temporal understanding. 2) Such a mecha-
nism operates indirectly which provides little insights for more explainability.
We strive for a direct approach that is even effective as a single-layer model, as
it obtains better performance while using fewer resources.

Li et al. [18] address this shortcoming with a Convolutional Neural Network
(CNN) transformer. CNNs are used as a preliminary layer to inform points with
context information to feed into the transformer stack. However, our experimen-
tal results demonstrate that integrating a fixed length temporal context limits
the degree of flexibility to detect similarities on different time scales in order to
improve the forecasting quality.

We dive into these issues and investigate the importance of incorporating a
flexible temporal context into the attention mechanism. Our contributions are
summarized as follows:
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• We propose the adjustable context-aware attention, an attention mechanism
that dynamically learns the optimal temporal context length for each query
and key pair to obtain the best forecasting results. We propose the adjustable
Context-aware Transformer (ACAT) which replaces the basic attention mech-
anism with our adjustable context-aware attention.

• We increase the efficiency of our approach by exploiting redundancies in tem-
poral contexts. While it seems counter intuitive to first introduce then remove
redundancies, the result is a more efficient model overall.

• We successfully apply our proposed architecture to real world time series
datasets to validate its potential in generating more accurate predictions.

2 Problem Definition

Given the input data prior to time step t0, the task is to predict the variables of
interest for multiple steps into the future from t0 to t0 + τ .

Given the previous time series observations of variables of interest y1 : t0 =
[y1,y2, . . . ,yt0], and time series covariates that are known over both the
historical and forecasting period x1 : t0 + τ = [x1,x2, . . . ,xt0 + τ ], we pre-
dict the variables of interest for the next τ time steps yt0 + 1 : t0 + τ =
[yt0 + 1,yt0 + 2, . . . ,yt0 + τ ]. Where yi ∈ Rdy and xi ∈ Rdx .

For a univariate problem each xi contains the information of static time-
based covariates such as hour of the day and day of the week. However, we
also include other exogenous covariates to xi, when dealing with a multivariate
problem. In this paper we focus on generating univariate predictions where the
total number of target variables at each step is one (dy = 1), although the
problem can be generalized to predict multiple target variables at a time step
(dy > 1).

3 Related Work

Time series forecasting methods can be categorized into classical and neural
network methods. Prominent examples of classical methods include ARIMA [3]
and state space models (SSMs) [8]. ARIMA and SSMs require the expertise of
practitioners to manually select the autocorrelation structure, seasonality, trend,
and other explanatory variables. Additionally, the core assumption of classical
methods, such as stationarity and homoscedasticity of the time series data, make
them unsuitable for sporadic and nonuniform large data.

Neural network methods have been widely applied to time series fore-
casting to model the non-linearity in large-scale data across related time series.
Deep neural networks have been proposed to model the interacting patterns
among time series and they have demonstrated strong performance improve-
ments over traditional time series models [1,22,24]. Many deep learning archi-
tectures depend on RNNs to model non-trivial time series data [10,24,25,32].
Deep AR [25] generates parameters of a one-step-ahead Gaussian distribution
using stacked layers of LSTM [13]. The Deep State Space Model (DSSM) [24]



6 S. Koohfar and L. Dietz

uses LSTMs to generate parameters of a linear state space model at each time
step. Multi-horizon Quantile Recurrent Forecaster (MQRNN) [32] uses an RNN
architecture as an encoder to generate a context vector for multi-layer percep-
trons to generate multi-step forecasts.

Transformers have shown superior performance in modeling long-term
dependencies compared to RNNs [9,18]. The Attention mechanism has been
applied to a variety of tasks such as translation [30], image classifications [31],
music generation [14], and tabular learning [2]. Recently, the attention mecha-
nism has gained popularity in the time series community as well [6,18,20,21,27].
To include temporal information in the query-key similarity of the attention
mechanism, several works benefit from CNNs [17,18,26]. CNN-trans [18] uses a
convolutional processing layer to integrate the temporal context into the atten-
tion mechanism to build an autoregressive transformer-based model. Temporal
Convolution Attention-based Network (TCAN) [28] follows a similar approach
by applying dilated convolution to the output of a temporal attention layer to
model the short- and long-term temporal behavior. However the aforementioned
approaches use a convolutional filter with a fixed size controlled by a hyperpa-
rameter. In natural language processing domain, Chen et al. [5] demonstrate the
usefulness of a max pooling layer on top of different CNN filters by proposing a
Dynamic Multi-pooling Convolutional Neural Network (DMCNN). Albeit in a
different domain, this idea is related in spirit to our approach.

Recently, new approaches have developed efficient transformer models to pre-
dict for long-time series forecasting problems. Informer [33] uses KL-divergence
and ProbAttention to select the most prominent queries and reduces the com-
plexity to O(L log L). Autoformer [11] includes the series decomposition as an
inner block of transformers and replaces the attention mechanism with the auto-
correlation among sub-series to achieve O(L log L) complexity. Our contribution
is complementary to these extensions since our attention mechanism can serve
as a substitute for auto-correlation and attention block in ProbAttention.

4 Methodology

In this section, we detail shortcomings to point-wise attention and elaborate
on principles of context-based temporal attention. We develop a self-adjusting
model that will select the most appropriate filter size for each forecasting deci-
sion. We remove redundancies of this model via a subsampling approach.

4.1 Background: Issues Arising from Point-Wise Attention

Given time series data, a basic single-layer transformer model with masked scaled
dot-product QKV attention would predict the layer output yi at time step i as
yi = softmax(

∑
j≤i aijvj) with attention aij = softmax

(
qᵀ
i · kj/

√
d
)

where
query, key, and value vectors are derived via qi = proj (xi), kj = proj (xj),
and vj = proj (xj) using three different multi-layer perceptron-style projections
of inputs to vectors with dimension d.
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We call this form of attention point-wise, because it does not incorporate the
temporal context, as we are solely considering the information at time points i
and j. Figure 1 illustrates a forecasting issue that might arise because of the
point-wise attention mechanism in transformers. The canonical approach to
incorporate the temporal context into the attention mechanism is to use a multi-
layer model. The hope is that in a multi-layer architecture, the previous layers
provide an appropriate representation of the temporal context. However, previ-
ous layers are also suffering from the problem induced by point-wise attention.
Therefore, while multi-layer transformers can theoretically learn a good tem-
poral representation, the architecture is an impediment to good performance.
In the following we address this issue with a simple-to-implement approach to
directly incorporate the temporal context and demonstrate in the experimental
evaluation that even a single layer of our approach can outperform a multi-layer
transformer model.

Fig. 2. An example of the temporal behaviour of the target variable taken from the
watershed dataset. The center of the plot depicts a stormy period with higher dynamical
behavior. Shorter context sizes are more appropriate for modeling temporal behavior
in these periods.

4.2 Temporal Attention

The first step towards a better model is to include the temporal context into the
attention. This idea has been discussed under the name convolutional attention
[18] or temporal attention [28].

This is achieved by deriving query and key vectors from the context of length
L preceding the time step i. Denoting this temporal context i<L = [(i − (L −
1)), . . . , i], the only modification to the temporal attention is how query and key
vectors are obtained: qi = proj (xi<L

) and kj = proj (xj<L
) . The attention

follows as: aij = softmax
(
qᵀ
i · kj/

√
d
)
.

Note that xj<L
∈ R

dx×L is a matrix, which can be interpreted as being
re-shaped into a vector.

While this kind of attention is considering the temporal context, the issue is
that this context is of a fixed length L, which needs to be either pre-determined
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or tuned as a hyperparameter. The common belief is that even if the ideal context
length L∗ would be unknown, choosing a sufficiently large context length L ≥
L∗ is sufficient. It is based on the hope that end-to-end training will set the
parameters of the MLP-projection to ignore parts that are not needed.

However, we hypothesize that the noise introduced by excessively large con-
text sizes will inhibit good performance and potentially mislead the model. In
the following we propose an alternative and demonstrate in the experimental
section that this leads to significantly better forecasting performance.

Fig. 3. An example of the adjustable context-aware attention architecture with context
lengths L = {1, 3, 6, 9}. We consider different context sizes to project the input data at
time step i and j to create a set of context-aware query and key vectors (the projections
is indicated in dashed arrows). Attention score aij is governed by the highest similarity
to query at time step i and key at time step j.

4.3 Adjustable Context-Aware Attention

Our goal is to provide the model with the flexibility to choose the optimal context
length L for the temporal attention. In the following we refer to optimality with
respect to the overarching model’s hold-out performance of forecasting target
variables, via the query-key similarity.

Rather than learning a single one-size-fits-all context length parameter L,
we hypothesize that a successful model would need to switch between different
lengths dynamically, depending on the situation. For example, as depicted in
Fig. 2 for the watershed domain, behavior of the target variable is much more
dynamic during storm events than during dry periods. Hence the ideal context
length would be much shorter during a storm event than during dry periods.
Hence, we will consider multiple context sizes L = {l1, . . . ln} when computing
the attention score. We will make the selection of the ideal context length part
of the prediction problem using the following model.

for all context length l ∈ L obtain:

• query vector qi,l = proj
(
xi<l

)

• key vector kj,l = proj
(
xj<l

)
.
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Then use the context length that maximizes the attention score:
aij = maxl∈L softmax

(
qᵀ
i,l · kj,l/

√
d
)

.

Fig. 4. An overview of our subsampling scheme with c = 9. Context sizes are from
L = {1, 3, 6, 9}. Each key with context length l ∈ L subsumes the information of its l
preceding inputs. Hence, even though keys from time step j−1 to j−8 are skipped, the
information of xj−1 to xj−8 is represented in key kj,9 via the context-aware attention.

The intuition is that all wrong filter lengths will miss to detect the similarity,
therefore if a filter length triggers a similarity, during training, the back prop-
agation encourages a low similarity across all filter lengths for intervals with
different temporal behavior. This adjustable context-aware attention score is
used inside the transformer model. Note that, with this approach, the query qi
and the key kj are represented by multiple context-aware query and key vectors
for different context lengths in L. Figure 3 depicts an overview of our proposed
attention mechanism.

We claim that this provides the attention mechanism with the flexibility
to dynamically determine the optimal query-key similarity and hence leads to
better forecasting results. We will provide empirical evidence for this claim in
the experimental evaluation.

The downside of this approach is its demand in resources. To calculate the
attention weights, our model needs to explore all possible context-aware query
and key pairs. For an attention model with Q queries and K keys, computing
the attention weights requires O(|L| ·Q ·K) space and time—not accounting for
the cost of projections. This is in contrast to O(Q ·K) for the original point-wise
attention. We address this next.
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4.4 Efficient Adjustable Context-Aware Attention

In order to increase the efficiency our adjustable context-aware attention, we
first propose a subsampling scheme for the keys used for attention then explain
how our model still incorporates the information from skipped time points.

Let c be the subsampling rate, our transformer would only consider keys
with index j ∈ Jc = [0, c, 2c, 3c, . . . ]. For example c = 2 would skip every other
key, where with c = 5, only every 5’th key is considered. However, multiple
filter lengths are available at each of these indices, therefore, as an example the
information between 0 and c is represented via kc.

Hence the predicted output yi at time i is obtained as:
yi = softmax(

∑
j∈Jc

aijvj).
In neural networks with point-wise attentions, such a subsampling approach

would potentially degrade the performance, as each of the skipped time steps
might be potentially crucial for an accurate forecasting result.

Due to the use of the temporal attention in our model, data between skipped
keys, for example data from 2c + 1 to 3c − 1 is represented via k3c. This is also
depicted in Fig. 4. In contrast, if we would not subsample keys, this would lead
to lots of redundancies as any input xj is incorporated into multiple key vectors
kj ,kj+1,kj+2 . . . due to the temporal attention paradigm.

Context lengths L and subsampling rate c have opposing effects on the overall
complexity, which renders the total memory usage and runtime to O( |L|

c ·Q ·K).
While L and c can be independently chosen, in our experimental setup, we use
c = max L. The effect on the overall network is that for the query at time step
i and the key at time step j, the network selects the context length l that is
sufficient to identify whether the temporal behavior of time step j is helpful to
forecast at time step i.

In other words, during periods where a short context is sufficient to identify
that the behavior is different, a small context window will be chosen and c keys
will be skipped as it is identified as not helpful. Also whenever the similarity is
only apparent when inspecting longer contexts, the longer context will be chosen
by the network and c keys can be skipped to avoid redundancies. We want to
remark that this approach is designed to work with target variables that are
smooth over time, with signals that can exhibit rapid or slow changes.

4.5 Overarching Architecture

Our model adapts an encoder-decoder architecture used by Vaswani et al. [30].

Encoder. While a stack of ACAT layers could be used, we use an encoder of
only a single layer. The encoder is comprised of a multi-head adjustable context-
aware self-attention and a feed forward network sub-layer. The encoder is used to
encode the information of previous observation (including the target variables)
into hidden representations.
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Decoder. The decoder is a single layer comprised of a masked multi-head
adjustable context-aware self-attention, a multi-head adjustable context-aware
cross-attention, and a feed forward network sub-layer. Masked multi-head atten-
tion is applied by setting masked dot-products to −∞. This prevents the current
time step from attending to future time steps. The decoder generates predictions
based on the encoder’s hidden representation of previous observations and cur-
rent known inputs. Alternatively a stack of ACAT decoder layers could be used,
here we demonstrate the efficacy of even a single layer.

5 Experiments

5.1 Datasets

We empirically perform experiments on three datasets, including two univariate
publicly available datasets and one multivariate dataset that we provide in our
github repository.

• Electricity:1 The univariate UCI Electricity Load Diagrams dataset, con-
taining the electricity consumption of 370 customers aggregated on an hourly
level.

• Traffic:2 The univariate UCI PEM-SF Traffic Dataset, containing occupancy
rate (yt ∈ [0, 1]) of 440 SF Bay Area freeways aggregated on an hourly level.

• Watershed:3 This multivariate dataset contains hydrological streamflow
responses of ten watershed sites, aggregated on a 15 min level.

Regarding our choices of datasets, we select the traffic and electricity datasets
that have been extensively used by a significant amount of research papers for
modeling and evaluation [11,18,20,25,33]. We are also working with collabora-
tors who are interested in modeling real-world stream chemistry for the water-
shed dataset. We use 160,000 samples for each dataset, each sample including
historical observations of one week (168 h) for the traffic and electricity datasets
and 42 (168 quarter) hours for the watershed dataset. We generate predictions
for 24 and 48 future horizons on all datasets. After zero-mean normalization, we
partition each dataset into three parts, 80% training set for the learning pro-
cedure, 10% validation set for hyperparameter optimization, and 10% hold-out
test set for performance evaluation.

5.2 Evaluation Metrics

Models are evaluated by two standard metrics, including root mean squared error

(RMSE):
√

1
n

∑n
i=1(y − ŷ)2 and mean absolute error (MAE): 1

n

∑n
i=1 |y − ŷ|.

MAE is a linear score that equally weighs the errors, where RMSE is a quadratic
score that assigns higher weights to larger errors.
1 https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011-2014.
2 https://archive.ics.uci.edu/ml/machine-learning-databases/00204.
3 https://github.com/a1992/Context-Aware-Transformer/data/watershed.

https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip
https://github.com/anonymous-1992/Context-Aware-Transformer/tree/master/data/data/watershed
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5.3 Baselines

We compare a single layer architecture of our proposed ACAT model to the
following methods. ARIMA is only applicable to univariate datatsets (traffic
and electricity).

1. ARIMA [3]: Auto-regressive integrated moving average.
2. LSTM [13]: A single layer encoder-decoder Long Short Term Memory.
3. Transformer [30]: A single layer transformer equivalent to our approach

with the basic multi-head attention.
4. Trans-multi [30]: A three encoder layer and one decoder layer transformer

with multi-head basic attention.
5. CNN-trans [18]: A single layer transformer with convolutional multi-head

attention.

Table 1. Results summary in RMSE and MAE of all methods on three datasets.
Lower RMSE and MAE indicate a more accurate forecast. Best results are highlighted
in boldface.

Dataset Horizon Metric ARIMA LSTM Transformer Trans-multi CNN-trans ACAT (Ours)

Traffic 24 RMSE 0.81 ± 0.00 0.50 ± 0.02 0.48 ± 0.00 0.59 ± 0.09 0.47 ± 0.00 0.38 ± 0.00

MAE 0.56 ± 0.00 0.28 ± 0.02 0.25 ± 0.00 0.35 ± 0.09 0.24 ± 0.00 0.16 ± 0.00

48 RMSE 0.79 ± 0.00 0.49 ± 0.00 0.46 ± 0.00 0.68 ± 0.09 0.46 ± 0.00 0.35 ± 0.00

MAE 0.56 ± 0.00 0.26 ± 0.00 0.24 ± 0.00 0.45 ± 0.09 0.23 ± 0.00 0.16 ± 0.00

Electricity 24 RMSE 3.98 ± 0.00 1.29 ± 0.03 1.29 ± 0.07 1.48 ± 0.08 1.27 ± 0.08 0.64 ± 0.02

MAE 0.41 ± 0.00 0.13 ± 0.01 0.15 ± 0.01 0.16 ± 0.00 0.14 ± 0.00 0.08 ± 0.00

48 RMSE 4.06 ± 0.00 1.40 ± 0.07 1.47 ± 0.02 1.56 ± 0.14 1.26 ± 0.04 0.84 ± 0.03

MAE 0.41 ± 0.00 0.14 ± 0.00 0.16 ± 0.00 0.17 ± 0.00 0.14 ± 0.00 0.09 ± 0.00

Watershed 24 RMSE – 0.35 ± 0.05 0.33 ± 0.01 0.35 ± 0.01 0.34 ± 0.00 0.28 ± 0.01

MAE 0.20 ± 0.03 0.19 ± 0.01 0.21 ± 0.01 0.20 ± 0.00 0.16 ± 0.01

48 RMSE – 0.42 ± 0.04 0.36 ± 0.01 0.35 ± 0.01 0.35 ± 0.01 0.31 ± 0.01

MAE 0.25 ± 0.01 0.21 ± 0.03 0.20 ± 0.01 0.20 ± 0.01 0.16 ± 0.01

5.4 Model Training and Hyperprarameters

Training Procedure. All neural network methods are trained and evaluated
multiple times. We use grid search for hyperparameter tuning. The model size is
chosen from {16, 32} for all neural network methods. The number of heads is set
to 8 for all transformer-based models. The kernel size for convolutional processing
layer of CNN-trans is chosen from {1, 3, 6, 9}. The mini batch-size is set to 256
for all datasets. We use the Adam optimizer [16] with β1 = 0.9, β2 = 0.98 and
ε = 10−9, we update the learning rate and use warmup steps = 4000 according
to the basic transformer [30]:

lrate = d−0.5
model.min(step num−0.5, step num.warmup steps1.5)

The total number of epochs is 50 with early stopping set to five iterations.
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Loss Function. For all methods, we choose the mean squared error (MSE)
loss function to calculate the loss of generated predictions compared to the tar-
get sequence in the training procedure. The loss is back-propagated from the
decoder’s outputs to the entire model.

Hardware and Computational Cost. All models were trained on a single
NVIDIA Titan XP GPU with 12 GB of memory. For our proposed ACAT model
with L = {1, 3, 6, 9}, it takes 0.3 s to finish one training step and each epoch
takes 150 s.

Time
t0 =

Time
t0 =

a) 24 horizons b) 48 horizons

Fig. 5. Forecasted predictions of one sample of hold-out test set on the traffic dataset
of neural network models. Predictions are generated for a) 24 and b) 48 horizons given
the previous 168 input samples. The predictions generated by our ACAT model are
exhibiting a higher accuracy than other baselines.

5.5 Results and Discussion

Results are reported as mean and standard error of RMSE and MAE scores
for the total number of three experimental runs for neural networks and one
experimental run for the ARIMA model.

Table 1 summarizes the evaluation results of all methods on three datasets
when generating predictions for 24 and 48 forecasting horizons. Across all
datasets we observe that ACAT outperforms other methods. The significant
improvements of our ACAT model over other methods stem from our proposed
adjustable context-aware attention. The difference in performance to CNN-trans
demonstrates the gain when providing the model with the flexibility to choose
the right context length adaptively. Regarding baselines, the performance of the
Trans-multi model indicates that even a multi-layer transformer is ineffective
in recovering from the point-wise attention. The performance of the CNN-trans
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model is relatively similar to the basic transformer. This indicates that inte-
grating a temporal context with a fixed length cannot enhance the forecasting
quality considerably if the model is not able to adjust the context length.

Figure 5 displays forecasted predictions of all neural network methods includ-
ing our ACAT on one example from traffic dataset over 24 and 48 forecasting
horizon. The predictions generated by ACAT are aligning closely with the ground
truth, while the generated predictions of other neural network baselines exhibit
larger errors and fail to resemble the temporal behaviour.

Table 2. Comparison of different subsampling rates. As a result of increasing the
subsampling rate (maximum context size max(L)) more keys are skipped. Lower RMSE
and MAE indicate a more accurate forecast. Best results are highlighted in boldface.
The last row indicates how many times this configuration obtained the best result. The
performance of our ACAT model is resilient towards the subsampling rate.

Dataset Horizon Metric max(L) = 9 max(L) = 12 max(L) = 15 max(L) = 18 max(L) = 21 max(L) = 24

Traffic 24 RMSE 0.38 ± 0.00 0.38 ± 0.00 0.37 ± 0.00 0.37± 0.00 0.37 ± 0.00 0.38 ± 0.00

MAE 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.15 ± 0.00 0.16 ± 0.00 0.15 ± 0.00

48 RMSE 0.35 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00

MAE 0.16 ± 0.00 0.16 ± 0.00 0.16 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.16 ± 0.00

Electricity 24 RMSE 0.64 ± 0.02 0.66 ± 0.02 0.63 ± 0.02 0.67 ± 0.03 0.73 ± 0.03 0.72 ± 0.05

MAE 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.09 ± 0.00

48 RMSE 0.84 ± 0.03 0.84 ± 0.01 0.83 ± 0.03 0.80 ± 0.09 0.83 ± 0.06 0.83 ± 0.01

MAE 0.09 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.09 ± 0.01 0.09 ± 0.00 0.09 ± 0.00

Watershed 24 RMSE 0.28 ± 0.01 0.25 ± 0.00 0.28 ± 0.01 0.27 ± 0.00 0.27 ± 0.00 0.28 ± 0.02

MAE 0.16 ± 0.01 0.13 ± 0.00 0.15 ± 0.01 0.14 ± 0.00 0.16 ± 0.00 0.15 ± 0.00

48 RMSE 0.31 ± 0.01 0.30 ± 0.01 0.31 ± 0.02 0.30 ± 0.01 0.29 ± 0.00 0.30 ± 0.01

MAE 0.16 ± 0.00 0.17 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 0.16 ± 0.00 0.16 ± 0.01

Total Wins 5 5 5 6 5 4

Ablation Study: The Impact of Subsampling Rate. To demonstrate that
the performance of our ACAT model is resilient towards how many keys are
skipped during subsampling, we conduct an ablation study by increasing the
subsampling rate. As a result of choosing the subsampling rate as the maximum
context size max(L), we skip more keys by increasing the value of the maximum
context size. Table 2 demonstrates the results of this ablation study, it is observed
that the performance of our model is resilient towards the subsampling rate. In
contrast, increasing the subsampling rate allows us to include a longer history
into the forecasting while adjusting the temporal context length, which leads to
a better performance in some cases.

6 Conclusion

In this paper, we study the multi-horizon time series forecasting problem and
introduce ACAT, the Adjustable Context-aware Transformer, which automat-
ically selects the ideal context size to obtain the best forecasting results. We
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demonstrate the effectiveness of our approach on three real-world datasets
in comparison with the classical forecasting method ARIMA, the RNN-based
encoder-decoder LSTM, transformers based with basic and CNN attention, as
well as multi-layer transformers. Our extensive analyses show that our ACAT
model obtains performance improvements over state-of-the-art temporal atten-
tion approaches, including those based on the convolutional attention models.
This indicates that incorporating the ideal context length in the query-key sim-
ilarity of the attention mechanism can improve the forecasting quality.

In the introduction we hypothesized that the structure of the basic atten-
tion mechanism presents an impediment for the original transformer architecture
when applied to temporal analyses, even when including multiple layers. Experi-
mentally we verify this claim, and demonstrate that our ACAT model addresses
its shortcoming even with a single layer.

Lastly, our ACAT model can benefit any application domain where accurate
forecasts are important. For example in the watershed domain, natural scientists
base their analysis on forecasting models. Incorrect forecasts can lead to false
models of natural processes. Another example are forecasts on traffic or electric-
ity consumption, which, if inaccurate, have severe negative effects on our society.
Our work demonstrates significant improvements in all these three domains.
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Abstract. This article proposes a new procedure to perform clustering
of time series. The approach relies on the classical K-means clustering
method and is based on two iterative steps: (i) K global forecasting
models are fitted via pooling by using the series belonging to each group
and (ii) each series is assigned to the cluster associated with the model
yielding the best forecasts in accordance with a specific criterion. The
resulting clustering solution includes groups which are optimal in terms
of overall prediction error, and thus the procedure is able to detect the
different forecasting patterns existing in a given dataset. Some simula-
tion experiments show that our method outperforms several alternative
techniques in terms of both clustering accuracy and forecasting error.
The procedure is also applied to carry out clustering in three real time
series databases.

Keywords: Time series · Clustering · Global forecasting models ·
Prediction error · K-means

1 Introduction

Time series clustering (TSC) is a fundamental problem in machine learning
with applications in many fields, including geology, finance, computer science
or psychology, among others. The task consists of splitting a large collection of
unlabelled time series realizations into homogeneous groups so that similar series
are located together in the same group and dissimilar series are placed in differ-
ent clusters. As result, each group can be characterized by a specific temporal
pattern, which allows to address key issues as discovering hidden dynamic struc-
tures, identifying anomalies or forecasting future behaviours. A comprehensive
overview on the topic is provided in [10].

A crucial point in cluster analysis is to establish the dissimilarity notion since
it determines the nature of the resulting clustering partition. Several distance
measures have been proposed in the literature, each one of them associated with
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a different objective. If the goal is to discriminate between geometric profiles of
the time series, then a shape-based dissimilarity is suitable. For instance, the
well-known dynamic time warping (DTW) distance has been used in several
works to perform TSC [3]. On the contrary, a structure-based dissimilarity is
desirable if the target is to compare underlying dependence models. Examples
of this type of distances are metrics comparing the autocorrelations [5] or the
wavelet coefficients [4] of two time series. Additional types of dissimilarities are
based on estimated model coefficients [2].

The goal of this work is to construct a TSC algorithm capable of returning
a partition which is optimal in terms of overall forecasting accuracy. To that
aim, we introduce the notion of dissimilarity between a time series and a given
model (e.g., ARIMA) as the average prediction error produced when iteratively
obtaining the point forecasts of the time series with respect to the corresponding
model. It is worth highlighting that, although there are a few TSC methods based
on forecast densities [14], to the best of our knowledge, nobody has employed
the concept of similarity previously exposed to perform clustering in time series
databases. Specifically, our clustering approach makes use of the so-called global
models to minimize the average prediction error. Global models are constructed
in the following way [12]: (i) each series in a set is lag-embedded into a matrix at
a given AR order, l, fixed beforehand, (ii) these matrices are stacked together to
form one big matrix, achieving data pooling and (iii) a classical regression model
(e.g., linear regression, random forest etc.) is fitted to the resulting matrix.

Global models have been shown to outperform local models in terms of fore-
casting accuracy in several datasets [12]. In other words, when a single model is
fitted to all the time series in the database, and used to obtain the corresponding
predictions, a lower average forecasting error is produced than in the case where
each time series is predicted by considering a different local model. Moreover,
global models do not need any assumption about similarity of the time series in
the collection, and need far fewer parameters than the simplest of local methods.

Although the global model approach produces outstanding results, it has one
important drawback: it ignores the possible existence of homogeneous groups of
series in terms of prediction patterns. For instance, a database could contain two
groups of series in such a way that the series within each group are helpful to each
other for obtaining accurate predictions (e.g., think of several countries whose
behaviour concerning monthly economic growth is very similar), but totally use-
less for the series in the remaining group. In the previous situation, it would be
desirable to fit a global method for each distinct set of time series. Then the
predictions would be computed for a given series by using its associated global
model. In order to detect groups of series sharing similar forecasting structures,
we propose a novel clustering method which is based on the traditional K-means
algorithm. The technique relies on the following iterative process: (i) K global
models (centroids) are fitted by taking into account the series pertaining to each
cluster independently and (ii) each time series is assigned to the group associated
with the centroid producing the lowest forecasting error according to a specific
metric.
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It is worth emphasizing that, by construction, the proposed algorithm pro-
duces a partition which is optimal in terms of overall prediction effectiveness.
In fact, the objective function of the pseudo K-means method can be seen as a
sum of forecasting errors (see Sect. 2), which is expected to decrease with each
iteration of the two-step procedure described above. Therefore, the clustering
algorithm is specifically designed to allocate the different time series in such a
way that the corresponding global models represent in the best possible manner
the existing prediction patterns. There are only a few works in the literature
combining clustering and global methods in a single technique. For instance, [1]
proposed an approach particularly devised to improve the forecasting accuracy
of global models. First, the set of series is partitioned into different groups by
using a specific clustering method. Then, global models are fitted by considering
the series within each cluster. Although successful, the method of [1] splits the
set of series by using a feature-based TSC clustering method so that there is
not guarantee that the resulting partition is optimal in terms of total prediction
accuracy. Note that our approach circumvents this limitation by adapting the
objective function to the specific purpose of forecasting error reduction.

Some simulation experiments are carried out in the paper to assess the per-
formance of the proposed algorithm in terms of both clustering effectiveness
and forecasting accuracy. In all cases, synthetic partitions where the groups are
characterized by different generating processes are considered, and the approach
is compared with several alternative methods, as one procedure based on local
models or the technique of [1]. The method is also applied to perform clustering
in some well-known datasets. Overall, the algorithm exhibits a great behaviour
when dealing with both synthetic and real data.

The remainder of this paper is organized as follows. Section 2 describes the
clustering algorithm based on prediction accuracy of global forecasting models.
The approach is analysed in Sect. 3 by means of a simulation study where differ-
ent scenarios are taken into account. In Sect. 4, we apply the proposed method
to real datasets of time series. Section 5 contains some concluding remarks.

2 A Clustering Algorithm Based on Prediction Accuracy
of Global Forecasting Models

Consider a set of n time series, S =
{

X
(1)
t , . . . ,X

(n)
t

}
, where each X

(i)
t =

(
X

(i)
1 , . . . , X

(i)
Li

)
is a series of length Li, i = 1, . . . , n. We assume that each series

X
(i)
t contains training and a validation periods of lengths r(i) and s(i), denoted

by T (i) = (ti1, . . . , t
i
r(i)) and V(i) = (vi

1, . . . , v
i
s(i)), respectively, such that

– Both T (i) and V(i) are formed by consecutive observations and ti1 has a
position equal to or less than the position of vi

1, considering both ti1 and vi
1

as elements of the vector X
(i)
t ,

– mset(T (i)) ⊆ mset(X(i)
t ) and mset(V(i)) ⊆ mset(X(i)

t ) (both periods are
included in the original series),
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– mset(X(i)
t ) ⊆ mset(T (i)) + mset(V(i)) (both periods form a cover of the

original series),

where the operator mset(z) = [z1, . . . , zn] for the vector z = (z1, . . . , zn), denot-
ing [·] a multiset, i.e., a generalization of the traditional set in which each element
can appear multiple times. Note that, by virtue of the previous three conditions,
the training and validation periods may contain common observations. This gen-
eral feature allows to consider traditional validation measures as the in-sample
error.

The sets T = {T (1), . . . ,T (n)} and V = {V(1), . . . ,V(n)} are called the
training and the validation set, respectively. We wish to perform clustering on
the elements of S in such a way that the groups are associated with global models
minimizing the overall forecasting error with respect to the validation set. The
method we propose is a K-means-based algorithm having the classical two stages:
(i) constructing a prototype for each cluster, usually referred to as centroid and
(ii) assigning every series to a group. The assignment step often relies on the
distance from the series to the prototypes. In this work, we propose to consider
global models as prototypes for each group. Specifically, the prototype of kth
cluster is a global model which is fitted to the series pertaining to kth cluster.

Assume there are nk series in the kth cluster Ck, i.e., Ck ={
X

(1)
t,k , . . . ,X

(nk)
t,k

}
, with k = 1, . . . , K. A global model Mk is fitted in clus-

ter Ck by considering the training periods associated to X
(j)
t,k , j = 1, . . . , nk. It

is expected that the predictive ability of model Mk with respect to the series in
cluster Ck is better the more related the series in the group are. In sum, the set
of clusters C = {C1, . . . , CK} produce the prototypes M = {M1, . . . ,MK}.

Once the global models M1, . . . ,MK have been constructed, each series is
assigned to the cluster whose prototype gives rise to the minimal value for the
mean absolute error (MAE) by considering the validation period. Specifically,
series X

(i)
t , i = 1, . . . , n, is assigned to cluster k′ such that

k′ = argmin
k=1,...,K

dMAE
(
X

(i)
t ,Mk

)
= argmin

k=1,...,K

1
s(i)

s(i)∑
j=1

∣∣vi
j − F

(i)
j,k

∣∣, (1)

where F
(i)
j,k is the prediction of vi

j by considering the global model Mk. Note
that considering the MAE in (1) is appropriate because we are evaluating the
forecasting effectiveness of K global models with respect to the ith series inde-
pendently. Therefore, each assignation is only influenced by the units of the
corresponding series so that no scaling issues arise. In fact, the simplicity of the
MAE makes it a recommended error metric for assessing accuracy on a single
series [9].

Both steps the computation of prototypes and the reassignation of series are
iterated until convergence or a maximum number of iterations is reached. The
corresponding clustering algorithm is described in Algorithm 1. Below we provide
some remarks concerning the proposed method.
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Algorithm 1. pseudo-K-means clustering algorithm based on prediction accu-
racy of global forecasting models
1: Fix K, l and max.iter
2: Set iter = 1
3: Randomly divide the n series into K clusters
4: Compute the initial set of l-lagged global models M = {M1, . . . ,MK} = M(1)

5: repeat
6: Set MOLD = M {Store the current prototypes}
7: Assign each series to the cluster associated with its nearest prototype according

to the rule in (1)
8: Compute the new collection of prototypes by fitting a l-lagged global model to

the training periods of the series in kth cluster, k = 1, . . . ,K. {Update the set of
prototypes}

9: iter ← iter + 1
10: until M = MOLD or iter = max.iter

Remark 1 (Interpretation of objective function). Note that the objective func-
tion in Algorithm1 can be written as

J(C) =
K∑

k=1

n∑
i=1:

X
(i)
t ∈Ck

dMAE(X
(i)
t ,Mk), (2)

which is a sum of prediction errors with respect to the validation periods. In
particular, each series is forecasted by using the global model associated with
the cluster it pertains. In this regard, the value of the objective function returned
when Algorithm1 stops, say JOPT, can be regarded as the total optimal (mini-
mal) prediction error when K groups are assumed to exist in the dataset. In the
same way, the quantity JOPT/n can be interpreted as the average optimal pre-
diction error. In sum, the objective function of the proposed K-means clustering
algorithm is very interpretable from a forecasting perspective.

Remark 2 (Assessment of the resulting partition in terms of prediction error).
Although the quantity JOPT/n can be seen as the average optimal prediction
error, this value is not an appropriate metric to assess the predictive ability of
the resulting clustering partition. Note that the two-step procedure described
in Algorithm1 attempts to find the partition minimizing the average predic-
tion error with respect to the validation periods. Therefore, JOPT/n is likely
to underestimate the prediction error computed over future periods of the series
which are not involved in the optimization process. In this regard, a proper error
metric could be obtained through the following steps:

1. Given a prediction horizon h ∈ N, divide each series into two periods. The
first period contains all but the last h observations of the series. The second
period, referred to as test period, contains the last h observations. The first
periods constitute the set S =

{
X

(1)
t , . . . ,X

(n)
t

}
introduced above, whereas
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the second periods constitute the set S∗ =
{

X
(1)∗
t , . . . ,X

(n)∗
t

}
, where each

X
(i)∗
t = (X(i)∗

1 , . . . , X
(i)∗
h ) is a series of length h. The set S∗ is called the test

set.
2. Run Algorithm1 using the set S as input, obtaining the clustering solution.
3. Given the clustering solution computed in Step 2, and for k = 1, . . . ,K, fit

a l-lagged global model to the set of series in the kth cluster by considering
both training and validation periods. This produces the set of global models
M = {M1, . . . ,MK}.

4. Compute the average prediction error with respect to the test set as

1
n

K∑
k=1

n∑
i=1:

X
(i)
t ∈Ck

d∗(X(i)∗
t ,Mk

)
, (3)

where d∗ is any function measuring discrepancy between the actual values of
X

(i)∗
t and their predictions according to model Mk. Note that these predic-

tions are computed starting from the series X
(i)
t and in a recursive manner.

As an example, if the MAE is chosen as the error metric, then (3) becomes

1
n

K∑
k=1

n∑
i=1:

X
(i)
t ∈Ck

d∗
MAE

(
X

(i)∗
t ,Mk

)
=

1
n

K∑
k=1

n∑
i=1:

X
(i)
t ∈Ck

1
h

h∑
j=1

∣∣X(i)∗
j − F

(i)∗
j,k

∣∣, (4)

where F
(i)∗
j,k is the prediction of X

(i)∗
j according to the global model Mk.

The R code used for the implementation of Algorithm (1) is available at
https://anloor//clustering_procedure.

3 Simulation Study

In this section we carry out a set of simulations with the aim of assessing the
performance of the proposed approach in different scenarios. Firstly we describe
the simulation mechanism, then we explain how the evaluation of the method
was done and finally we show the results of the simulation study.

3.1 Experimental Design

Two specific scenarios were constructed, both of them including linear processes.
Specifically, the first and second scenario involve short memory and long memory
models, respectively. In this way, the proposed method is analysed under different
degrees of serial dependence. Both scenarios contain three distinct generating
processes. The particular generating models are given below.

https://github.com/anloor7/PhD_degree/tree/master/r_code/paper_clustering_prediction
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Scenario 1. Consider the AR(p) process given by

Xt =
p∑

i=1

ϕiXt−i + εt, (5)

where εt is a process formed by independent elements following the stan-
dard Gaussian distribution. We fix p = 4. The vector of coefficients ϕ4 =
(ϕ1, ϕ2, ϕ3, ϕ4) is set as indicated below.

Process 1: ϕ4 = (0.1, 0.2,−0.4, 0.3).
Process 2: ϕ4 = (0.2,−0.5, 0.3,−0.3).
Process 3: ϕ4 = (−0.3, 0.4, 0.6,−0.2).

Scenario 2. Consider the AR(p) process given in (5). We fix p = 12. The vector
of coefficients ϕ12 = (ϕ1, ϕ2, . . . , ϕ12) is set as

(0.9,−0.5,−0.3, 0.3, 0.1,−0.3, 0.2,−0.3, 0.5,−0.5, 0.3, −0.3),
(0.2, 0.3,−0.2,−0.2, 0.4, 0.2,−0.1, 0.2, 0.1,−0.2,−0.3, 0.5),
(−0.3,−0.1, 0.3,−0.1,−0.2,−0.1,−0.4,−0.2,−0.3, 0.4, 0.1, 0.2),

for Processes 1, 2 and 3, respectively. It is worth emphasizing that, in both
Scenarios 1 and 2, the vectors of coefficients were randomly selected with the
only requirement of fulfilling the standard stationary condition for AR processes.

The simulation study was carried out as follows. For each scenario, N time
series of length T were generated from each process. Several values of N and T
were taken into account to analyse the effect of those parameters (see Sect. 3.3).
The test set was constructed by considering the last h = 2lSIG observations of
each series, where lSIG is the number of significant lags existing in each scenario
(e.g., lSIG = 4 in Scenario 1). The training period was set to the first (T − h)
observations of each series. The validation period was set to observations from
(l + 1) to (T − h). Note that this choice implies that the reassignation step
in Algorithm1 is carried out by considering the in-sample error (see (1)). The
simulation procedure was repeated 200 times for each pair (T,N).

3.2 Alternative Approaches and Assessment Criteria

To throw light on the behaviour of the proposed algorithm, which we will refer
to as Clustering based on Prediction Accuracy of Global Models (CPAGM), we
decided to compare it with the alternative approaches described below.

– Local Models (LM). Specifically, a local model (e.g., an AR model) is fitted
to each of the series in the collection (by jointly considering training and
validation periods) and used to obtain the predictions with respect to the test
period. In this way, each local model gives rise to an error metric measuring
its forecasting accuracy. The average of these quantities can be seen as the
overall error associated to the LM approach. Note that the LM method was
already used by [12] to show the benefits of global models for forecasting
purposes.
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– Global Models by considering an Arbitrary Partition (GMAP). This procedure
is based on 2 steps: (i) the original set of series S is randomly partitioned into
K groups and (ii) for each group, a global model is fitted by considering the
series pertaining to that cluster. The assessment task is carried out as indi-
cated in Step 4 of Remark 2. It is worth highlighting that global models fitted
to random groups of series have been shown to improve the forecasting accu-
racy of one global model fitted to all the series in some datasets (see, e.g.,
Fig. 4 in [12]). The approach GMAP can be seen as a meaningful benchmark
for the proposed method, since it is expected that the groups produced by
Algorithm1 improve the forecasting effectiveness of global models in compar-
ison with a random partition.

– Global models by considering Feature-Based Clustering (GMFBC). Particu-
larly, the technique proposed by [1], which relies on two steps: (i) the original
collection of series is splitted into K groups by using a clustering algorithm
based on the feature extraction procedure described in [8] and (ii) K global
models are constructed according to the resulting partition. This approach
is evaluated in a similar way that GMAP. Note that, like CPAGM, GMFBC
also tries to exploit the notion of similarity between time series in order to
decrease the overall prediction error. However, GMFBC considers a specific
clustering algorithm before fitting the global models, while CPAGM iterates
until achieving the optimal clustering partition in terms of forecasting effec-
tiveness.

The number of clusters was set to K = 3, since all scenarios contain 3 different
generating processes. For approaches CPAGM, GMAP and GMFBC, the number
of lags l to fit the global models was set to l = lSIG. The considered global
models were standard linear regression models adjusted by least squares. As
for the method LM, a linear local model was fitted to each series by using the
function auto.arima in the forecast R package [7], which contains classical linear
regression as a particular case. Model selection was performed by means of AICc
criterion. Note that classical linear models are important as a benchmark because
they do not include any advanced machine learning technique and overlap the
model class with ARIMA model (a common local approach). Therefore, they are
ideal to isolate the effect of globality [12].

The quality of the procedures was evaluated by comparing the clustering
solution given by the algorithms with the true partition, usually referred to
as ground truth. Approaches CPAGM and GMFBC automatically provide a
clustering partition. For method LM, each series was first described by means of
the vector of estimated model coefficients returned by auto.arima function (all
vectors were padded with zeros until reaching the length of the longest vector).
Next, a standard K-means algorithm was executed by using these feature vectors
as input. Experimental and true partitions were compared by considering the
adjusted Rand index (ARI) [6], which is bounded between −1 and 1. Values of
ARI close to 0 indicate a noninformative clustering solution, while the closer to
1 the index, the better the partition.
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Note that, although CPAGM is a clustering method, it could be used as
a tool to perform forecasting in a given set of series, since the iterative process
outlined in Algorithm (1) attempts to minimize the total prediction error. In this
regard, the forecasting accuracy of methods CPAGM, GMAP and GMFBC was
assessed by recording the average MAE as indicated in (4). The MAE associated
with each local model computed with respect to the test set was stored for LM
and the average of those quantities was calculated as the error metric. Note that,
since all series within a given scenario are measured in the same scale, the MAE
is a proper measure to evaluate the overall prediction error.

In each simulation trial and given a pair (N,T ), the proposed technique
CPAGM was executed 5 times and the partition associated with the minimum
value of J(C) (see (2) in Remark 1) was stored. This way, we tried to avoid the
well-known issue of local optima related to K-means-based procedures. A similar
strategy was employed in the feature-based clustering of GMAP and GMFBC.
The overall MAE produced by GMAP was approximated via Monte Carlo (i.e.,
by considering several random partitions).

3.3 Results and Discussion

Average values of ARI and MAE attained by the different techniques in Scenario
1 are provided in Tables 1 and 2, respectively. In order to perform rigorous com-
parisons, pairwise paired t-tests were carried out by taking into account the 200
simulation trials. In all cases, the alternative hypotheses stated that the mean
ARI (MAE) value of a given method is greater (less) than the mean ARI (MAE)
value of its counterpart. As asterisk was incorporated in Tables 1 and 2 if the
corresponding method resulted significantly more effective than the remaining
ones for a significance level 0.01. The results associated with running the app-
roach CPAGM with K = 1 (only one global model) were incorporated to Table 2
by indicating “(K = 1)”.

According to Table 1, the proposed method CPAGM achieved significantly
greater ARI values than the alternative approaches in most of the cases. The only
exceptions were (T,N) = (400, 5) and (T,N) = (400, 20), where CPAGM and
LM showed a similar performance. What happens here is that, as long series
are considered, the models coefficients are very accurately estimated and the
clustering partition returned by the LM approach is quite similar to the ground
truth. An increasing in the number of series per cluster was clearly beneficial for
the proposed method when short series were considered (T ∈ {20, 50}), but it
had little impact when T > 50. In some way, more series per cluster has a similar
effect on CPAGM than longer lengths, since both phenomena result in better
estimated global models. The approach GMFBC showed a steady improvement
when increasing the series length, but it was still far from a perfect partition
for T = 400. Due to a reviewer’s suggestion, Table 1 also contains the results
associated with a standard K-means approach based on the DTW distance and
with the method of [13], denoted by KS, which relies on a normalized version
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Table 1. Average ARI in Scenario 1. The best result is shown in bold. An asterisk
indicates that a given method is better than the rest at level 0.01.

(T,N) LM CPAGM GMFBC DTW KS
(20, 5) 0.027 0.352∗ 0.094 −0.016 0.308
(20, 10) 0.032 0.459∗ 0.090 0.023 0.270
(20, 20) 0.029 0.556∗ 0.092 0.004 0.254
(20, 50) 0.026 0.612∗ 0.076 0.019 0.308
(50, 5) 0.305 0.914∗ 0.243 0.031 0.625
(50, 10) 0.336 0.956∗ 0.222 0.021 0.777
(50, 20) 0.331 0.988∗ 0.216 0.016 0.758
(50, 50) 0.331 0.981∗ 0.195 0.026 0.864
(100, 5) 0.747 0.946∗ 0.379 0.042 0.717
(100, 10) 0.740 0.954∗ 0.380 0.028 0.870
(100, 20) 0.743 0.961∗ 0.334 0.026 0.818
(100, 50) 0.740 0.956∗ 0.311 0.025 0.799
(200, 5) 0.876 0.906∗ 0.581 0.046 0.831
(200, 10) 0.854 0.919 0.561 0.040 0.873
(200, 20) 0.820 0.921∗ 0.516 0.025 0.813
(200, 50) 0.800 0.926∗ 0.488 0.030 0.817
(400, 5) 0.897 0.908 0.719 0.010 0.825
(400, 10) 0.848 0.900∗ 0.725 0.022 0.769
(400, 20) 0.877 0.881 0.732 0.036 0.841
(400, 50) 0.803 0.872∗ 0.726 0.034 0.688

Table 2. Average MAE in Scenario 1. The best result is shown in bold. An asterisk
indicates that a given method is better than the rest at level 0.01.

(T,N) LM CPAGM (K = 1) GMFBC GMAP
(20, 5) 1.066 1.043∗ (1.069) 1.072 1.078
(20, 10) 1.068 0.997∗ (1.075) 1.046 1.080
(20, 20) 1.070 0.964∗ (1.076) 1.036 1.052
(20, 50) 1.073 0.942∗ (1.075) 1.034 1.046
(50, 5) 1.019 0.921∗ (1.065) 1.011 1.100
(50, 10) 1.023 0.913∗ (1.073) 1.021 1.044
(50, 20) 1.024 0.910∗ (1.082) 1.024 1.072
(50, 50) 1.016 0.907∗ (1.074) 1.020 1.042
(100, 5) 0.976 0.919∗ (1.072) 0.994 1.225
(100, 10) 0.978 0.913∗ (1.075) 0.996 1.148
(100, 20) 0.976 0.911∗ (1.076) 1.003 1.067
(100, 50) 0.977 0.911∗ (1.079) 1.009 1.061
(200, 5) 0.929 0.911∗ (1.062) 0.949 1.025
(200, 10) 0.942 0.918∗ (1.083) 0.968 1.058
(200, 20) 0.938 0.912∗ (1.070) 0.969 1.062
(200, 50) 0.942 0.916∗ (1.073) 0.978 1.090
(400, 5) 0.920 0.915 (1.069) 0.937 1.092
(400, 10) 0.920 0.916 (1.076) 0.937 1.069
(400, 20) 0.929 0.926 (1.080) 0.949 1.071
(400, 50) 0.925 0.925 (1.076) 0.944 1.101

of the cross-correlation. Both methods exhibited worse overall behaviour than
the proposed approach, although KS obtained large values for the ARI index in
many settings.
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The results in terms of MAE (see Table 2) are very similar to those in Table 1,
with the proposed method outperforming the remaining approaches in most of
the settings. Specifically, Table 2 indicates that the forecasting accuracy of local
models is as good as that of global models for T = 400, but significantly worse
for shorter lengths. Note that CPAGM obtained substantially better results than
fitting one global model to all the series in the collection (K = 1) and GMAP,
which is expected since these approaches do not take into account the underlying
generating processes.

Average results for Scenario 2 concerning ARI and MAE are displayed in
Tables 3 and 4, respectively. The proposed approach showed a similar behaviour
than in Scenario 1 in terms of both clustering effectiveness and predictive accu-
racy, but the difference with respect to the remaining techniques was more
marked in Scenario 2. The long memory patterns arising in the processes of
this scenario negatively affected both methods LM and GMFBC. In fact, the
LM approach was not able to exhibit forecasting and clustering accuracies simi-
lar to CPAGM even when very long series (T = 1000) were considered. Method
KS displayed a similar performance than CPAGM in this scenario. In short, the
iterative procedure of Algorithm1 takes advantage of the excellent accuracy of
global models to properly estimate the complex forecasting patterns arising in
the long-memory processes of Scenario 2.

Table 3. Average ARI in Scenario 2. The best result is shown in bold. An asterisk
indicates that a given method is better than the rest at level 0.01.

(T,N) LM CPAGM GMFBC DTW KS
(50, 5) 0.243 0.584 0.238 0.107 0.765∗

(50, 10) 0.259 0.853∗ 0.222 0.135 0.789
(50, 20) 0.250 0.956∗ 0.219 0.144 0.723
(50, 50) 0.256 0.980∗ 0.205 0.155 0.767
(100, 5) 0.386 0.933∗ 0.278 0.198 0.869
(100, 10) 0.387 0.937∗ 0.274 0.122 0.907
(100, 20) 0.410 0.979 0.277 0.144 0.968
(100, 50) 0.412 0.986∗ 0.286 0.158 0.927
(200, 5) 0.453 0.907 0.302 0.123 0.934
(200, 10) 0.478 0.937∗ 0.317 0.174 0.897
(200, 20) 0.468 0.959 0.306 0.152 0.937
(200, 50) 0.477 0.972∗ 0.303 0.128 0.920
(400, 5) 0.517 0.898 0.383 0.165 0.955∗

(400, 10) 0.510 0.918 0.382 0.160 0.921
(400, 20) 0.507 0.926∗ 0.368 0.169 0.883
(400, 50) 0.487 0.921 0.365 0.131 0.983∗

(1000, 5) 0.571 0.846 0.497 0.184 0.935∗

(1000, 10) 0.556 0.841 0.456 0.249 0.878
(1000, 20) 0.552 0.867 0.453 0.272 0.863
(1000, 50) 0.532 0.877 0.457 0.273 0.923∗
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Table 4. Average MAE in Scenario 2. The best result is shown in bold. An asterisk
indicates that a given method is better than the rest at level 0.01.

(T,N) LM CPAGM (K = 1) GMFBC GMAP
(50, 5) 1.854 1.375∗ (1.871) 1.657 1.902
(50, 10) 1.855 1.333∗ (1.885) 1.616 1.888
(50, 20) 1.856 1.183∗ (1.905) 1.625 1.838
(50, 50) 1.857 1.153∗ (1.901) 1.647 1.898
(100, 5) 1.670 1.185∗ (1.871) 1.492 1.756
(100, 10) 1.665 1.173∗ (1.891) 1.553 1.667
(100, 20) 1.683 1.148∗ (1.898) 1.578 1.890
(100, 50) 1.683 1.147∗ (1.903) 1.590 1.884
(200, 5) 1.615 1.191∗ (1.884) 1.507 1.613
(200, 10) 1.628 1.168∗ (1.899) 1.558 1.772
(200, 20) 1.635 1.156∗ (1.902) 1.591 1.852
(200, 50) 1.631 1.152∗ (1.906) 1.624 1.866
(400, 5) 1.566 1.197∗ (1.906) 1.483 1.743
(400, 10) 1.574 1.177∗ (1.898) 1.526 1.729
(400, 20) 1.561 1.177∗ (1.900) 1.573 1.885
(400, 50) 1.563 1.181∗ (1.904) 1.596 1.916
(1000, 5) 1.486 1.219∗ (1.885) 1.394 1.898
(1000, 10) 1.513 1.231∗ (1.899) 1.473 1.887
(1000, 20) 1.516 1.210∗ (1.908) 1.497 1.892
(1000, 50) 1.505 1.205∗ (1.902) 1.516 1.881

4 Application to Real Data

In this section we apply the proposed algorithm to perform clustering in 3 well-
known datasets. They have been used in many peer-reviewed publications as
standard benchmarks, from local models to recent literature for global models.
Specifically, [12] employed these databases to show the advantages of global
methods over local methods in terms of forecasting accuracy. The datasets
pertain in turn to the data collection M1, used in a forecasting competition
[11]. It contains 1001 series subdivided in yearly (181), quarterly (203) and
monthly (617) periodicity. These three subsets define precisely the three con-
sidered databases.

Method CPAGM and the alternative approaches studied in Sect. 3 were exe-
cuted in each of the three datasets. No data preprocessing was performed, since
there is not a clear agreement about the benefits of preprocessing when fitting
global models [12]. Note that, unlike in the simulation study, there is no way of
objectively assessing the quality of the clustering partition in these databases,
since no information about the ground truth is available. Hence, our analy-
ses focus on the predictive effectiveness of the evaluated techniques. Proce-
dures CPAGM, GMFBC and GMAP were run for several values of K, namely
K ∈ {1, 2, 3, 4, 5, 7, 10} and l. Note that the range of l is limited by the minimum
series length existing in a given database.

To measure the forecasting accuracy, we considered the symmetric Mean
Absolute Percentage Error (sMAPE). Using a percentage error is desirable here
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because, unlike in the numerical experiments of Sect. 3, some databases contain
series which are recorded in very different scales. Thus, employing the MAE
could have resulted in the average forecasting error being corrupted by the higher
influence of the series in the largest scales. Note that, by considering the sMAPE
metric, the average prediction error in (3) takes the form
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Concerning the proposed algorithm CPAGM, the test sets were constructed

by considering the last h = 5 observations of each time series. As in the simula-
tions of Sect. 3, the in-sample error was used to assign each series to its closest
cluster in the iterative mechanism of Algorithm1. Traditional least squares linear
regression was considered to fit the global models.

Figures 1, 2 and 3 contain the results for yearly, quarterly and monthly
datasets, respectively. Left, middle and right panels refer to the approaches
CPAGM, GMFBC and GMAP, respectively. Curves of average sMAPE are
depicted as a function of the number of lags, l. Each colour corresponds to a
different value of the number of clusters, K. In all cases, the proposed algorithm
CPAGM attains a substantially lower average error than the alternative methods
GMFBC and GMAP for a large number of pairs (K, l). Specifically, the differ-
ences by taking into account the minimum average errors (those associated with
the optimal pair for each method) are dramatic in some cases. For instance, in
dataset M1 Quarterly, procedures GMFBC and GMAP obtain a minimum aver-
age error two times and three times higher, respectively, than the one associated
with CPAGM. In addition, considering a number of clusters of K > 1 is advanta-
geous in the three datasets, as the red curve is significantly above the remaining
curves in all of the settings. This suggests that M1 databases contain groups of
series sharing common forecasting patterns, and thus fitting a global model to
the series within each group is beneficial in terms of forecasting effectiveness.

It is worth highlighting that, for the proposed approach, there is usually at
least one nonoptimal pair (K, l) for which the average sMAPE is not significantly
different from that of the optimal one. For example, in dataset M1 Quarterly,
pairs (10, 10) and (7, 6) produce almost the same average error. In such a case,
selecting the latter could be more appropriate for performing further data mining
tasks, as it would result in better interpretability of centroids (fewer parameters)
and lower computational complexity.

Optimal pairs (K, l) for each method in Figs. 1, 2 and 3 are summarized
in Table 5 along with the corresponding forecasting errors. Average sMAPE
attained by the local-based approach LM in each dataset is also shown. It is
clear that the method CPAGM outperforms all alternative approaches in the
three cases.

In short, the application of this section shows the advantages of the proposed
algorithm CPAGM when performing forecasting in time series databases. It is
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Fig. 1. Average sMAPE as a function of the number of lags in dataset M1 Yearly. Each
colour corresponds to a different value of the number of clusters, K.

Fig. 2. Average sMAPE as a function of the number of lags in dataset M1 Quarterly.
Each colour corresponds to a different value of the number of clusters, K.

Fig. 3. Average sMAPE as a function of the number of lags in dataset M1 Monthly.
Each colour corresponds to a different value of the number of clusters, K.
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Table 5. Summary of results of Figs. 1, 2 and 3. The average sMAPE obtained by the
LM approach was also incorporated.

LM CPAGM (K = 1) GMFBC GMAP

M1 Yearly
Optimal (K, l) – (7, 7) (l = 4) (10, 3) (10, 6)

Average sMAPE 39.08 33.34 (124.00) 78.28 100.40
M1 Quarterly
Optimal (K, l) – (10, 10) (l = 6) (10, 8) (10, 8)

Average sMAPE 26.27 20.18 (75.52) 61.40 47.00
M1 Monthly
Optimal (K, l) – (7, 30) (l = 12) (4, 12) (10, 20)

Average sMAPE 18.51 14.22 (64.78) 42.95 52.20

worth highlighting that the proposed algorithm was also applied to perform clus-
tering in additional databases from several domains (M3 and M4 competitions,
medicine, finance...). In most cases, the obtained conclusions were very similar
to the ones associated with dataset M1. The scores of the different methods in
the considered datasets are available under request.

5 Conclusions

In this work, a clustering algorithm based on prediction accuracy of global fore-
casting models was introduced. The procedure is based on the traditional K-
means method and relies on a two-step iterative process: (i) K global models
(centroids) are fitted by considering the series belonging to each cluster and (ii)
each time series is assigned to the group associated with the centroid yielding
the lowest forecasting error according to the MAE metric. Although the main
goal of the method is to produce a meaningful clustering partition, the nature of
the iterative process makes the algorithm also an appropriate tool to be used for
forecasting purposes. In fact, we expect the centroid of a given cluster to predict
with high accuracy future values of the series belonging to that cluster. The
proposed approach was evaluated by means of a broad simulation study where
the groups were characterized by different underlying stochastic processes. The
algorithm was also applied to perform clustering in classical time series datasets.
Overall, the proposed technique showed an excellent performance.
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4 BRGM, Orléans, France

Abstract. Groundwater level prediction is an applied time series fore-
casting task with important social impacts to optimize water manage-
ment as well as preventing some natural disasters: for instance, floods
or severe droughts. Machine learning methods have been reported in the
literature to achieve this task, but they are only focused on the fore-
cast of the groundwater level at a single location. A global forecasting
method aims at exploiting the groundwater level time series from a wide
range of locations to produce predictions at a single place or at several
places at a time. Given the recent success of global forecasting methods
in prestigious competitions, it is meaningful to assess them on ground-
water level prediction and see how they are compared to local methods.
In this work, we created a dataset of 1026 groundwater level time series.
Each time series is made of daily measurements of groundwater lev-
els and two exogenous variables, rainfall and evapotranspiration. This
dataset is made available to the communities for reproducibility and fur-
ther evaluation. To identify the best configuration to effectively predict
groundwater level for the complete set of time series, we compared differ-
ent predictors including local and global time series forecasting methods.
We assessed the impact of exogenous variables. Our result analysis shows
that the best predictions are obtained by training a global method on
past groundwater levels and rainfall data.

Keywords: Time series · Forecasting · Groundwater · Local and
global forecasting · Benchmark

1 Introduction

Groundwaters are water bodies entrapped in soils and rocks, representing stor-
age of significant volumes of water, usually preserved from pollutants. Generally
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speaking, rainfall would penetrate through soils, rocks and tends to increase the
volume of groundwater, whereas drainage by springs or rivers, or water abstrac-
tion by pumping would decrease the volume of available groundwater in a given
reservoir. Wells and boreholes are the devices capable of monitoring the level
of water in the reservoir, and are more generally designated under the term of
piezometers. Forecasting groundwater levels contributes to the responsible man-
agement of an essential resource for different uses—human consumption (two-
thirds of the water supplies for human consumption come from underground
sources), irrigation, industrial uses (cooling, washing, etc.) – but also to water-
course flow management [21,22].

This article is focused on comparing local and global forecasting methods for
predicting the evolution of groundwater levels at single or multiple locations. In
France, groundwater levels records are stored in a publicly available database
(ADES) operated by BRGM1. Data can be requested using public API’s through
the Hub’Eau portal http://hubeau.eaufrance.fr/. The database stores a network
of approximately twenty thousand wells with at least one measure, but for more
than a thousand of those piezometers, several years of continuous data are avail-
able, with only a few missing data. The prediction horizon was set to about
three months (90 days). This corresponds to a forecast of the medium-term evo-
lution of the groundwater levels. In terms of water management, this length
of time corresponds to the needs of drought anticipation, usually performed in
the late spring after the winter recharge period. In general terms, this timescale
corresponds to the vast majority of the needs of applied water management.

The prediction of these levels is a true challenge given the complexity of
the hydrological mechanisms at play [5]. Many numerical models have been
developed for this purpose. Certain models are based on physical groundwa-
ter modelling. Physical models require their parameters to be adjusted to each
situation [19]. They offer an accurate prediction solution but are generally dif-
ficult to generalize on a large scale. For more systematic prediction, the use of
past groundwater level time series has been viewed for years as an essential tool
for water resource planning [14]. Many machine learning models have therefore
been developed to predict groundwater levels. For instance, Brédy et al. [5] put
forward a modelling approach for groundwater level forecasting based on two
decision-tree-based models, namely Random Forest (RF) and Extreme Gradient
Boosting (XGB). Rahman et al. [21] combined wavelet transform with random
forest and gradient boosting trees to predict groundwater level at scale in the
city of Kumamoto in Japan. Osman et al. [12] also evaluated an XGB model but
also support vector regression (SVR) and neural networks. In these studies, data
includes past groundwater level values as well as rainfall and evapotranspiration
data. With this information, two natural groundwater inflows and outflows are
taken into account. Note that we do not have information about water usage
that is difficult to collect from open resources.

Among the many state-of-the-art models, it is difficult to identify the best
one for predicting the evolution of groundwater levels. Therefore, it turns out

1 BRGM: Bureau des Recherches Géologiques et Minières (French geological survey).

http://hubeau.eaufrance.fr/
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to be relevant to explore various models designed to predict the evolution of
time series for the specific data provided and compare them to identify the best
model.

In this article, we focus specifically on the following question: “Is it prefer-
able to train a model on measurements from a single sensor (local model) or
to train a global model to forecast the evolution of piezometric levels?”. The
usual time series forecasting approaches are designed to train models to predict
future measurements from a sensor based on past measurements by the same
sensor. However, a model trained on each piezometer would require a large vol-
ume of past data for each device. Such an approach would rapidly fail as the
amount of available data is limited. This is also not the case for the installation
of new sensors for example, and more generally it means that the model has low
robustness to changes in the functioning of the hydrological system measured.
The use of models trained on several piezometers can ensure greater robust-
ness and less training effort for new piezometers. Recently, global forecasting
methods (GFM) has shown astonishing results by achieving the best score on
distinguished sales prediction competitions [16,17], however no prior work on
groundwater level forecasting has considered these approaches yet. In aquifers,
groundwater level fluctuations are not completely independent since water flows
from high to low altitudes, along flow paths that depend on the aquifer geom-
etry, porosity (the amount of connected void in the soils and rocks) and thus
types of rocks, geometry of the recharge area, or discharge area, unsaturated
zone thickness, etc. Inside a given aquifer, it is then expected that groundwater
levels at close locations or best, along a same flow path, would have a strong
co-linearity, whereas this similarity would fade with increasing distance. For dis-
tinct aquifers, it is expected that a similar groundwater level signal could be
observed when input signals (rainfall, effective rainfall) are similar or close, with
a certain proportion of divergence due to distinct aquifers properties. In simpler
words, a proportion of redundant signal can be found along all the groundwater
level records, the remaining signal being site specific. These reasons make us
hypothesize that GFM would be more effective on groundwater level forecasting
than local forecasting methods (LFM). Our exploration of models designed to
predict the evolution of groundwater level is therefore structured around the
goal of comparing two modelling strategies: local vs global methods.

For each of these types of modelling, we put forward several possible imple-
mentations and compared them with respect to the root mean squared scaled
error. The rest of this paper is organized as follows: The data used in this study
are described in Sect. 2. Section 3 presents the formalization of the studied prob-
lem and the resolution methods. The conducted experiment and the results are
detailed in Sect. 4. This work is finally concluded in Sect. 6.

2 Data Collection

For this study, we compiled a dataset for the period from January 2015 to Jan-
uary 2021 (2,221 days) for a subset of 1,026 piezometers in the French mainland.
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Fig. 1. From top to down, daily groundwater level, rainfall and evapotranspiration
time series for the piezometer BSS000EBLL.

In the following, we explain the selection of the subset of piezometers. Each
piezometer corresponds to a multivariate time series. The multivariate time series
has three variables: the groundwater level and two exogenous weather variables:
rainfall and evapotranspiration (ETO). These latter values have been collected
from ERA5 archives using the Climate Data Store (CDS) API [10] at the location
of the piezometer. This simple approach has been considered accurate enough
in the context of this work, even if a more realistic approach had considered
the recharge area. Nevertheless, considering a weather variable computed at the
scale of each recharge area would have led to a significant increase in the com-
plexity of the models. In addition, weather variables considered at this spatial
resolution do not vary significantly with small distances, then the value at the
location of the piezometer seems to be an accurate approximation. CDS pro-
vides daily weather variable measurements with a spatial resolution of 0.25◦ for
rain and 0.1◦ for ETO. Hence, the three variables (groundwater level, rainfall
and evapotranspiration) are available daily for each piezometer. Figure 1 shows
the data for the piezometer BSS000EBLL installed in the city of Senlis-le-Sec. It
illustrates a time series that is regular: the range of values remains between 7m
and 16m all over the period, and we can identify a yearly seasonality. This is
not the case for all the piezometers. Some of them do not have such seasonality
and exhibit brutal changes at some dates.
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In addition to groundwater level, precipitation and evapotranspiration, some
past works also included sea levels, reservoir levels, and some hydrological, geo-
logical, and physiographical factors. However, we used only groundwater level,
precipitation and evapotranspiration in this study as these are the three most
used inputs for groundwater level forecasting [24].

The selection of the subset of piezometers has been done according to the
number of missing values. The CDS data have no missing data, but piezometers
may be disconnected temporarily from the network and measurements may be
missed over long periods. We decided to select piezometers with less than 50
days of missing data (over the 2,221 days). This value is low and allows selecting
a sufficient number of piezometers. In addition, the selected piezometers are
spatially spread all over the French mainland. As a preprocessing, the missing
values were attributed by linear interpolation. Thus, in the sequel, time series
are considered without missing values. We open sourced the collected data on
Zenodo under the name FrenchPiezo2.

Note that we did not apply any normalization of the time series values. They
are provided as it to the forecasting methods.

3 Groundwater Level Forecasting

The groundwater levels database is a set of pairs Y = 〈Y k,Zk〉 where Y k : yk
1...t

is a univariate time series such that yk
i ∈ R for any i, and Zk : zk

1..∞ is a
multivariate time series, so-called exogenous time series data (Z : zk

i ∈ R
m,

where m is the number of exogenous time series), known as far as date t but
also beyond. Time series Y k is the groundwater level series for piezometer k,
while the exogenous data series corresponds to rainfall and evapotranspiration
associated to this piezometer (thus m = 2 in this study).

The prediction of a time series Y k for forecast horizon h consists in estimating
yk
t+1...t+h. For this time series prediction task, the conventional data analysis

approach is to construct an autoregressive model. Such a method constructs a
function for the prediction of the value at date t0 from the r latest observations
of Y and Z. Such a function for the prediction of the next value in the series is
denoted ϕ : Rr×(m+1) �→ R. ϕ can thus be seen as a regressor: it predicts a real
value from the input characteristics.

Classical autoregressive models assume that ϕ is a linear regression (AR
model), but ϕ can be modelled by any trainable regression function. We denote
such methods as a generalized autoregressive model. Notice that the classical AR
model is a special case of the generalized autoregressive model which assures a
linear relationship between the variables.

To produce a forecast for horizon h, the prediction function is recursively
applied h times. We note that it is assumed that the exogenous time series are
known in the future. This problem is therefore different from that of forecasting
a multivariate time series for which the prediction function outputs the value

2 FrenchPiezo dataset https://zenodo.org/record/7193812.

https://zenodo.org/record/7193812
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of the target series together with the values of the exogenous series. In our
problem, we hypothesize that rainfall and evapotranspiration were similar from
one year to the next. Consequently, forecasts can be obtained in the future by
taking the mean daily values of past years. The approximation error made by
this hypothesis is preferable to that of the cumulative errors of a medium-term
multivariate recursive prediction.

There exists many methods for constructing the ϕ function in the state-of-
the-art and one goal of this work is to compare the most classical on groundwater
level forecasting. The second goal is to decide whether it is better to use a local
or a global method.

3.1 Local Versus Global Time Series Forecasting

Given a set of time series, we denote by “local” the approaches that consider
each time series as an independent dataset and build an individual model to
forecast the future values of each time series. Local time series forecasting has
been the de facto approach for time series forecasting. However, nowadays, many
companies are collecting a large set of time series from similar sources routinely,
and training a single model for each individual series is time-consuming, costly,
and difficult to maintain; furthermore, possible relationships between these time
series are not taken into account by local approaches. For these reasons, a new
forecasting paradigm called global forecasting has emerged. A Global Forecasting
Model (GFM) [13] is trained on a set of time series and is then used to forecast
future values of each time series. In other words, a GFM learns to predict future
values given historic values regardless of the sources of data. Global forecasting is
obtaining astonishing results today, by winning prestigious competitions such as
the M4 and M5 challenges [16,17] and competitions held recently on the Kaggle
platform [4]. Former works on global time series forecasting claimed that time
series need to be related. However, Montero-Manso and Hyndman [18] shown
theoretically that whatever the heterogeneity of time series, there always exists
a GFM that is as good as, or even better than any collection of local models. This
result has been further supported by an experimental study [11]. Since global
method has shown good results, especially in forecasting time series of sales, we
are wondering if this is also the case for forecasting time series of groundwater
level.

3.2 Considered Methods

We explored four versions of the generalized autoregressive forecasting method
(see above) as well as recent state-of-the-art neural network methods in the field.
More specifically, we considered:

– Linear regression. This is the standard method for regression problems. This
method is equivalent to using an AR model of order r.

– SVR [2]. Support vector regression (SVR) models address high-dimensional
problems and propose non-linear models. We also used Gaussian kernels. After
a few experiments, we set parameter C = 100.
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– Random Forest [6]. This is a bagging method. We opted for a forest of 100
trees.

– Extreme Gradient Boosting [7]. This is a tree-based method which uses opti-
mization techniques to improve the calculation efficiency of machine learning.
It can thus process large datasets.

– DeepAR [23]. This is a probabilistic forecasting method based on autoregressive
recurrent neural networks.

– Prophet [25]. A modular regression model with parameters that are intuitive
for analysts and that can be easily adjusted using domain knowledge. Prophet
is a decomposable model with three components which are trending to model
non-periodic changes in the values of time series, seasonality to model periodic
changes (weekly, yearly, etc.) and holidays to represent the effect of holidays
on the time series values.

– NeuralProphet [26]. This is a neural network-based implementation of the
Prophet model with some enhancements. In addition to the trend, seasonality
and holidays components, NeuralProphet considers three additional regres-
sion components: auto-regression effect on past observations, regression effect
of exogenous variables, and regression effect of lagged observations of exoge-
nous variables. By using neural networks to learn each component, activation
functions can be used to learn non-linear behaviours in the time series.

4 Experimental Settings

This section presents our experimental settings. We start by presenting in detail
the experiments and then give the comparison metrics.

4.1 Setup

We organized our experiments by grouping the considered forecasting models in
three categories and by following a naming convention to make things easier to
follow. The three categories are generalized autoregressive models, DeepAR-based
models, and Prophet-based models.

Generalized autoregressive models which contains traditional models not
necessarily specifically designed for forecasting: eXtreme Gradient Boosting
(XGB), Linear regression (LM), Random Forest (RF), and Support Vector
Machine (SVR). These regression models consider a vector as input and out-
put a real value. Therefore, we create a dataset by sliding a window of length
r + h over our time series. Each position of the sliding window is a sample
in our dataset with the first r values (the history) being the input and the
last h (the horizon or the forecast) being the output. In the experiments, we
fixed the horizon h to 93 (three months), and did not put any constraint on r,
however r is generally required to be greater than h in order to expect good
forecasting. We tested values from 40 to 140 and found that the best value is
100 or 110 in average – this result is in accordance with the results from [15]
which suggests that a history length 1.25 × h leads to the best forecasting.



Groundwater Level Forecasting 41

DeepAR-based models composed of two models as DeepAR [23] is a global
forecasting method. DeepAR-L is the DeepAR model trained locally, meaning
that for each individual time series, a new instance of the model is trained on
this time series to forecast future values of this individual time series only. On
the contrary, DeepAR-G is a DeepAR model trained once on every time series
to predict future values of all the time series simultaneously.

Prophet-based models made of Prophet [25] and NeuralProphet [26]. Neu-
ralProphet is by default a local forecasting model, but can be configured to
run as a global method. Therefore, we considered NeuralProphet-L (for the
local version of NeuralProphet) and NeuralProphet-G (for the global ver-
sion). Prophet can only be used as a local forecasting method.

DeepAR, Prophet, and NeuralProphet are specifically designed for time series
forecasting: they take as input a time series and predict the user-defined number
of values in the future (93 in our case). Unlike the generalized autoregressive
models which use a fixed-length history, DeepAR, Prophet, and NeuralProphet
learn from the whole past observations of the time series to make predictions.

For each forecasting method, we considered two configurations and defined
a naming convention to make things easier to understand:

– the first configuration uses only historic groundwater levels in order to fore-
cast the future levels: exogenous data are not used. This configuration is
named using the forecaster name. For instance, this configuration is named
NeuralProphet-L and XGB when the models used are NeuralProphet-L and
XGBoost respectively.

– the second configuration does not use only historic groundwater levels
to predict the future, but also historic rain and/or evapotranspiration
(ETO) data as the dynamic of their corresponding phenomenons could
have a significant impact on groundwater level. This configuration is named
as [forecaster]+rain, [forecaster]+eto and [forecaster]+rain+eto
depending on the exogenous variables used: respectively, rain data, evapo-
transpiration data, or both. For instance, the configuration that uses Random
Forest (RF) to forecast the piezometric level using historic groundwater levels
and rain data is named RF+rain. These exogenous variables are times series
that made the Z variable.

The experiment source code is written in the Python programming language
using open source libraries. For DeepAR, we use the implementation provided in
the GluonTS library [1]; for Prophet and NeuralProphet we use the implemen-
tation provided by the authors; we use the official implementation of the eXtreme
Gradient Boosting model3; and for the remaining models we use Scikit-learn [20].
The source code is available as supplementary material and is available on a pub-
lic repository4.

3 Source code and supplementary material: https://github.com/dmlc/xgboost.
4 Source code: https://github.com/frankl1/piezoforecast.

https://github.com/dmlc/xgboost
https://github.com/frankl1/piezoforecast
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4.2 Comparison Metrics

The methods are compared with respect to their ability to predict the next three
months of daily values. More specifically, we analysed the root mean squared
scaled error (RMSSE) of the methods over the period from the 15th of October
2021 to the 15th of January 2022, corresponding to a horizon of 93 days (roughly
three months). This period is not used during the training phase of the methods.
Indeed, predictions may be easier or more difficult to perform depending on the
period of the year. For instance, during dry periods, groundwater is less affected
by rainfall, for example. However, we focused on these three months horizon
as it corresponds to the needs of drought anticipation and is also used in the
literature [21]. For a time series of length n and a forecasting horizon h, the
RMSSE is defined as follows:

RMSSE =

√
√
√
√

1
h

∑n+h
t=n+1 (yt − ŷt)

2

1
n−1

∑n
t=2 (yt − yt−1)

2 (1)

In addition to the RMSSE, we assess the significance of the difference between
the methods. This evaluation is summarized using critical difference diagrams [8]
by rejecting the null hypothesis using the Friedman test followed by a pairwise
post-hoc analysis as recommended by Benavoli et al. [3]. The critical difference
diagrams are drawn using the source code made public by Fawaz et al. [9].
Elsewhere, we also use box plots to summarize our results. Detailed results are
available in the accompanying repository of this paper (See footnote 4).

5 Results

5.1 Generalized Autoregressive Models Results

The performance achieved by the generalized autoregressive models are summa-
rized on Fig. 2 and the significance of the difference between each pair of models
is depicted on Fig. 3.

It can be observed that the best performing configurations use either only
evapotranspiration as exogenous data, or no exogenous data at all. These con-
figurations are made of linear models (see LM and LM+eto) and random forests
(see RF and RF+eto). Although the difference is not significant, LM+eto performs
better than LM. On the contrary, RF performs better than RF+eto. When there
are no exogenous data, LM is the best model.

SVR, SVR+rain and SVR+rain+eto have very similar RMSSE in average,
meaning that the impact of exogenous data is not significant for SVR-based con-
figurations. On the contrary, exogenous data have a significant negative impact
on tree-based configurations (RF and XGB) since XGB+rain and XGB+rain+eto,
RF+rain, and RF+rain+eto achieve the highest RMSSE while XGB and RF are
among the top four best configurations.

It is observed that the left part of Fig. 3 is mainly made of configurations
that use exogenous data, while the right part is mainly composed of a mix



Groundwater Level Forecasting 43

Fig. 2. RMSSE of the generalized autoregressive models.

Fig. 3. Critical difference diagram of the generalized autoregressive models.

of configurations that use or do not use exogenous data. Using exogenous data
decreases the performance of LM, XGB (XGB+eto, XGB+rain, and XGB+rain+eto
are the worst configurations), RF, but increases performances of SVR (see SVR+eto
and SVR+rain+eto). Therefore, using exogenous data makes the forecast better
or worse, depending on the used forecaster and its ability to capture complex
relationships.

5.2 DeepAR-Based Models Results

The results obtained using DeepAR as local method as well as a global method
are shown in Fig. 4 and Fig. 5.
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Fig. 4. Box plots summary of DeepAR models results.

Fig. 5. Critical difference diagram of DeepAR-based models.

DeepAR-L produces predictions that are significantly better than predictions
of DeepAR-G, and this regardless of using exogenous data or not. This suggests
that a local training strategy for DeepAR is better than a global one for ground-
water level prediction.

Although DeepAR is naturally designed to take advantage of exogenous data
when available, it can be observed that rain and/or evapotranspiration have
negative, yet insignificant impact on DeepAR-L’s predictions. On the contrary,
exogenous data significantly improve DeepAR-G’s predictions, except when rain
and evapotranspiration are used simultaneously.

5.3 Prophet-Based Models Results

The comparison of Prophet and NeuralProphet-based configurations are dis-
played in Fig. 6 and Fig. 7.

Unexpectedly, NeuralProphet-G produces forecasts that are worse than
those obtained by any other NeuralProphet or Prophet-based configurations.
However, using exogenous data (rain and/or evapotranspiration) makes Neural-
Prophet-G the best forecaster, particularly NeuralProphet-G+rain. This result
suggests that training a global NeuralProphet model for groundwater forecast-
ing achieves more reliable predictions when exogenous data are used.

Unlike DeepAR, NeuralPhophet works better when executed globally than
locally, in particular when exogenous data are used. Furthermore, using
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Fig. 6. Box plots summary of Prophet and NeuralProphet results.

Fig. 7. Critical difference diagram of Prophet-based models.

exogenous data has a positive impact on Prophet, NeuralProphet-L, and
NeuralProphet-G. This impact is not significant for Prophet, but it is for
NeuralProphet.

In the absence of exogenous data, Prophet significantly outperforms Neural-
Prophet at predicting the future values of groundwater levels.

5.4 Comparing the Three Groups of Models

The previous section discussed the performances of the three groups of mod-
els separately. It compares them to each other. For the sake of readability, we
selected some “representative” methods from each group. However, an exhaus-
tive comparison is available as supplementary material (See footnote 4). The
representative models for each category are the two best and the two worst
configurations. Also, we make sure that predictions of the selected methods are
significantly different from each other regarding the critical difference diagram
of the corresponding group. The comparison of the representatives methods is
depicted in Fig. 8.
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Fig. 8. Critical difference diagram comparing the representatives of groups.

The linear model (LM) and NeuralProphet-G respectively produce the most
accurate and the least accurate forecasts when exogenous data are absent.
The configuration NeuralProphet-G significantly outperforms the others when
exogenous data are used, with NeuralProphet-G+rain being the best of all.
The configuration NeuralProphet-G+rain is significantly better than the con-
figuration NeuralProphet-G+eto, suggesting that precipitations impact ground-
water level more than evapotranspiration does. However, as LM+eto outperforms
LM+rain, the impact of exogenous data depends on the capabilities of the model
to exploit these additional sources of knowledge.

Except for NeuralProphet-G, NeuralProphet-based configurations are bet-
ter than DeepAR-based configurations at forecasting groundwater levels, espe-
cially when exogenous data are available and the training is done on every time
series (i.e. globally).

DeepAR-L and LM+rain are not significantly different from each other in terms
of RMSSE. The same observation is true for XGB+rain+eto and DeepAR-G+rain.
This result suggests that no long-term dependency is lost by using a history of
length 100. In other words, the time dependency in groundwater level data is
not longer than 100 time steps when focused on the prediction at a horizon of
90 time steps.

Figure 9 shows predictions obtained with NeuralProphet-G+rain for some
piezometers. We observe that forecasts are very close to ground truth ground-
water levels.

5.5 Discussion

We have compared a set of state-of-the-art forecasting methods for groundwater
level prediction in order to come up with the best method. We have consid-
ered local forecasting methods as well as global methods and we evaluated the
impact of using exogenous data. Our finding is that selection of the best model is
highly dataset dependent. When no exogenous data are considered, LM models
perform better than more complex models. Nevertheless, these models do not
appear as the more useful, as they cannot efficiently afford any prediction given
a set of weather prediction (drought/flood). They can still be used when no rain
or evapotranspiration data are available at a given location. When considering
exogenous data, NeuralProphet-G+rain has been found to be the best model
among the set we tested. In this particular case, the global model tends to out-
perform local models. It catches useful information in the redundancy found in
the different piezometers. Our intuition is that complex processes are at play on
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Fig. 9. Some forecasts obtained using the configuration NeuralProphet-G+rain.

groundwater levels (trends, seasonality). They have to be taken into account in
forecasting models, for instance with NeuralProphet models. In addition, this
type of model is rather simple to implement and could be easily extended or
enhanced for a larger dataset. Nonetheless, this training strategy does not work
with all the forecaster, e.g. with DeepAR.

We did not consider a couple of aspects of this study and that could improve
groundwater level predictions.

The first limitation is related to the choice of the methods compared and the
datasets. On the one hand, we acknowledge that there exist many more forecast-
ing methods in the literature in addition to what we considered in this study.
But as we wanted to evaluate the performance of global methods trained on a
large collection of groundwater level time series, we selected the most effective
forecasting methods in the literature. On the other hand, the dataset used in
this study is only representative of the French groundwater levels – there is no
guarantee that our results generalize to a different country. Keeping this in mind,
we made our source public to allow our work to be extended easily. Neverthe-
less, as global methods achieved the best performance, we believe that they will
generalize at least as well as any local method.

The second limitation is that we did not search for the optimal hyperpa-
rameter values for each method. Instead, we used the default parameters of
the implementation used. Although we could have fixed this limitation using
techniques such as a grid search and Bayesian optimization. We chose a simple
approach with the default values because performing hyperparameter tuning for
such a large number of datasets (1,026 multiplied by the number of methods)
would require a lot of time and resources. However, knowing how methods are
compared to each other without hyperparameters tuning could be seen as a mea-
sure of the effort required by methods to be effective; in other words, how many
are methods “plug-and-playable”.

Finally, global forecasting methods we evaluated in this work have been
specifically designed for global forecasting. We have not assessed the capabilities
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of generalized autoregressive methods when trained globally. Although assessed
methods were enough to evaluate our hypothesis about the effectiveness of GFM
for groundwater level forecasting, comparing generalized autoregressive methods
when trained globally with specifically designed GFM is worthy.

6 Conclusion

In this work, we performed an experimental study consisting of evaluating sev-
eral methods for predicting the evolution of groundwater levels for 1,026 different
piezometers. We considered local and global forecasting methods, and we com-
pared them regarding the root mean squared scaled error metrics. The conducted
experiments confirmed our hypothesis that global forecasting methods could be
more effective than local ones for groundwater level prediction. In particular,
global NeuralProphet achieved the best predictions when using past groundwa-
ter levels and rainfall as input. However, when only past groundwater levels are
available (no rainfall and no evapotranspiration) local methods and particularly
the linear regression model achieve the best predictions. As mentioned in the
discussion section, this work could be improved. In particular, we are planning
to assess the performance of generalized autoregressive methods (XGB, RF, LM,
SVR, etc.) when they are trained globally and comparing them to specifically
designed global methods.
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Abstract. Symbolic representations of time series have proven to be
effective for time series classification, with many recent approaches
including BOSS, WEASEL, and MrSEQL. These classifiers use vari-
ous elaborate methods to select discriminative features from symbolic
representations of time series. As a result, although they have competi-
tive results regarding accuracy, their classification models are relatively
expensive to train. Most if not all of these approaches have missed an
important research question: are these elaborate feature selection meth-
ods actually necessary? ROCKET, a state-of-the-art time series clas-
sifier, outperforms all of them without utilizing any feature selection
techniques. In this paper, we answer this question by contrasting these
classifiers with a very simple method, named MrSQM. This method sam-
ples random subsequences from symbolic representations of time series.
Our experiments on 112 datasets of the UEA/UCR benchmark demon-
strate that MrSQM can quickly extract useful features and learn accu-
rate classifiers with the logistic regression algorithm. MrSQM completes
training and prediction on 112 datasets in 1.5 h for an accuracy compa-
rable to existing efficient state-of-the-art methods, e.g., MrSEQL (10 h)
and ROCKET (2.5 h). Furthermore, MrSQM enables the user to trade-
off accuracy and speed by controlling the type and number of symbolic
representations, thus further reducing the total runtime to 20min for a
similar level of accuracy. With these results, we show that random sub-
sequences extracted from symbolic transformations can be as effective as
the more sophisticated and expensive feature selection methods proposed
in previous works. We propose MrSQM as a strong baseline for future
research in time series classification, especially for approaches based on
symbolic representations of time series.

1 Introduction

Symbolic representations of time series are a family of techniques to transform
numerical time series to sequences of symbols, and were shown to be more
robust to noise and useful for building effective time series classifiers. Two of
the most prominent symbolic representations are Symbolic Aggregate Approxi-
mation (SAX) [18] and Symbolic Fourier Approximation (SFA) [26]. SAX-based
classifiers include BOP [18,19], FastShapelets [23], SAX-VSM [28]; SFA-based

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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classifiers include BOSS [24], BOSS VS [25] and WEASEL [27]. MrSEQL [17] is
a symbolic classifier which utilizes both SAX and SFA transformations, which
further improved the accuracy and speed of classification. Several state-of-the-
art ensemble methods, e.g., HIVE-COTE [2,3,20] and TS-CHIEF [29], incorpo-
rate symbolic representations for their constituent classifiers and are the current
state-of-the-art with regard to accuracy.

Symbolic representations of time series enable the adoption of techniques
developed for text mining. For example, SAX-VSM, BOSS VS and WEASEL
make use of tf-idf vectors and vector space models [25,28], while MrSEQL is
based on a sequence learning algorithm developed for text classification [15].
These apparently different approaches can be summarized as methods of extract-
ing discriminative features from symbolic representations of time series, coupled
with a classifier. While achieving high accuracy, the key challenge for symbolic
classifiers is to efficiently select good features from a large feature space. For
example, even with fixed parameters, a SAX bag-of-words can contain as many
as αw unique words, in which α is the size of the alphabet (the number of dis-
tinct symbols) and w is the length of the words. Even for moderate alphabet
and word sizes, this feature space grows quickly, e.g., for typical SAX parame-
ters α = 4, w = 16, there can be 4 billion unique SAX words. SAX-VSM works
with a single optimized SAX representation, but the process for optimizing the
SAX parameters is expensive. WEASEL has high accuracy by using SFA uni-
grams and bigrams but a high memory demand, due to needing to store all the
SFA words before applying feature selection. MrSEQL uses the feature space
of all subsequences in the training data, in order to find useful features inside
SAX or SFA words. It employs greedy feature selection and a gradient bound
to quickly prune unpromising features. Despite these computational challenges,
these methods are still vastly faster and less resource demanding than most state-
of-the-art classifiers, in particular ensembles, e.g., HIVE-COTE, TS-CHIEF, and
deep learning models, e.g., InceptionTime [10].

Recently, these symbolic classifiers had been outperformed by ROCKET [6]
and MiniROCKET [7], a family of methods that uses random kernels to extract
features from raw time series. Rather than finding the most discriminative fea-
tures, ROCKET generates 10,000 random kernels regardless of their discrimina-
tive strength. As a result, while they also combine large feature spaces with linear
classifiers, the ROCKET methods are faster and more accurate than the existing
symbolic classifiers. This intriguing observation raises a simple question: are the
expensive feature selection techniques employed by the previous symbolic classi-
fiers (e.g., SAX-VSM, BOSS, WEASEL, MrSEQL) necessary? This question has
inspired us to re-examine fast symbolic transformations, feature selection and
linear classifiers for working with symbolic representations of time series. We
thus propose MrSQM, a simple time series classifier which samples random sub-
sequences from symbolic representations of time series. Our experiments on the
UEA/UCR benchmark show that, even without any feature selection method,
a large enough number of random symbolic subsequences can be as effective for
learning accurate classifiers. More importantly, the method is significantly faster
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than most of its counterparts: it can complete training and prediction on 112
datasets in 1.5 h, for an accuracy comparable to existing efficient state-of-the-
art methods, e.g., MrSEQL (10 h) and ROCKET (2.5 h). Furthermore, MrSQM
enables the user to trade-off accuracy and speed by controlling the type and
number of symbolic representations.

Our main contributions in this paper are as follows:

– We propose Multiple Representations Sequence Miner (MrSQM), a
new symbolic time series classifier which builds on multiple symbolic repre-
sentations, random sequence mining and a linear classifier, to achieve high
accuracy with reduced computational cost.

– We present an extensive empirical study comparing the accuracy and runtime
of MrSQM to recent state-of-the-art time series classifiers on 112 datasets
of the new UEA/UCR TSC benchmark [1]. Our study demonstrates that
random subsequences can be as effective as complex feature selection methods
proposed in previous works on symbolic approaches.

– All our code and data is publicly available to enable reproducibility of our
results1. Our code is implemented in Python and C++ (in Python wrap-
pers) and a Python Jupyter Notebook with detailed examples to make the
implementation more widely accessible.

The rest of the paper is organised as follows. In Sect. 2 we discuss the state-
of-the-art in time series classification research. In Sect. 3 we describe our research
methodology. In Sect. 4 we present an empirical study with a detailed sensitiv-
ity analysis for our methods and a comparison to state-of-the-art time series
classifiers. We conclude in Sect. 5.

2 Related Work

The state-of-the-art in time series classification (TSC) has evolved rapidly with
many different approaches contributing to improvements in accuracy and speed.
The main baseline for TSC is 1NN-DTW [3], a one Nearest-Neighbor classifier
with Dynamic Time Warping as distance measure. While this baseline is at times
preferred for its simplicity, it is not very robust to noise and has been significantly
outperformed in accuracy by more recent methods. Some of the most successful
TSC approaches typically fall into the following three groups.

Ensemble Classifiers aggregate the predictions of many independent clas-
sifiers. Each classifier is trained with different data representations and feature
spaces, and the individual predictions are weighted based on the quality of the
classifier on validation data. HIVE-COTE [20] is the most popular example of
such an approach. It is an evolution of the COTE [3] ensemble and it is still
currently the most accurate TSC approach. While being very accurate, this
method’s runtime is bound to the slowest of its component classifiers. Recent
work [2,21] has proposed techniques to make this approach more usable by

1 https://github.com/mlgig/mrsqm.

https://github.com/mlgig/mrsqm
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improving its runtime, but it still requires more than two weeks to train on
the new UEA/UCR benchmark which has a moderate size of about 300Mb. TS-
CHIEF [29] is another recent ensemble which only uses decision tree classifiers.
It was proposed as a more scalable alternative to HIVE-COTE, but still takes
weeks to train on the UEA/UCR benchmark. This makes the reproducibility of
results with these methods challenging.

Deep Learning Classifiers were recently proposed for time series data and
analysed in an extensive empirical survey [16]. Methods such as Fully Convolu-
tional Networks (FCN) and Residual Networks (Resnet) were found to be highly
effective and achieve accuracy comparable to HIVE-COTE. One issue with such
approaches is their tendency to overfit with small training data and to have a
high variance in accuracy. In order to create a more stable approach Inception-
Time [10] was proposed to ensemble five deep learning classifiers. InceptionTime
achieves an accuracy comparable to HIVE-COTE, but requires vast computa-
tional resources and requires days to train on the same benchmark [2,10].

Linear Classifiers were recently shown to work well for time series clas-
sification. Given a large feature space, the need for further feature expansion
and learning non-linear classifiers is reduced. This idea was incorporated very
successfully for large scale classification in libraries such as LIBLINEAR [9].
In the context of TSC, this idea was first incorporated by classifiers such as
WEASEL [27], which creates a large SFA-words feature space, filters it with
Chi-square feature selection, then learns a logistic regression classifier. Another
linear classifier, MrSEQL [17], uses a large feature space of SAX and SFA sub-
words, which is filtered using greedy gradient descent and logistic regression. A
recent classifier ROCKET [6] generates many random convolutional kernels and
uses max pooling and a feature called ppv to capture good features from the time
series. ROCKET uses a large feature space of 20,000 features (default settings)
associated with the kernels, and a linear classifier (logistic regression or ridge
regression). MiniROCKET [7] is a recent extension of ROCKET with compara-
ble accuracy and faster runtime. These approaches were shown to be as accurate
as ensembles and deep learning for TSC, but are orders of magnitude faster to
train [6,17,21]. MrSEQL can train on the UEA/UCR benchmark in 10h, while
ROCKET has further reduced this time to 2.5 h. Another advantage of these
methods is their conceptual simplicity, since the method can be broken down
into three stages: (1) transformation (e.g., symbolic for WEASEL and MrSEQL,
or convolutional kernels for ROCKET), (2) feature selection and (3) linear clas-
sifier. Intuitively, these methods extract many shapelet-like features from the
training data, and use the linear classifier to learn weights to filter out the useful
features from the rest. While there is a vast literature on shapelet-learning tech-
niques, e.g., [2,3,14,23,30] these recent linear classification methods were shown
to be more accurate and faster than other shapelet-based approaches. In partic-
ular, the SFA transform does not require data normalisation (which may harm
accuracy for some problems), it was shown to be robust to noise [24], and has
very fast implementations which build on the past 20 years of work on speeding
up the computation of Discrete Fourier Transform [11,12].
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Based on these observations and the success of symbolic transforms and linear
classifiers, we focus our work on designing and evaluating new TSC methods built
on large symbolic feature spaces and efficient linear classifiers.

3 Proposed Method

The MrSQM time series classifier has three main building blocks: (1) symbolic
transformation, (2) feature transformation and (3) learning algorithm
for training a classifier. In the first stage, we transform the numerical time series
to multiple symbolic representations using either SAX or SFA transforms. We
carefully analyse the impact of parameter selection for the symbolic transform,
as well as integrate fast transform implementations, especially for the Discrete
Fourier Transform in SFA. For the second stage, random subsequences are sam-
pled from the symbolic representations. Each subsequence then becomes a fea-
ture for model training. The value of the feature is a binary value: 1 if the
subsequence can be found in the symbolic representation of the sample and 0
if not. The output of this stage is transformed data in tabular form. For the
third stage, we employ an efficient linear classifier based on logistic regression.
While the choice of the learning algorithm does not depend on the previous two
stages, we select logistic regression for its scalability, accuracy and the benefit
of model transparency and calibrated prediction probabilities, which can benefit
some follow up steps such as classifier interpretation. For example, as done in the
MrSEQL approach [17], the symbolic features selected by the logistic regression
model can be mapped back to the time series to compute a saliency map expla-
nation for the classifier prediction. A schematic representation of the MrSQM
approach is given in Fig. 1.
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Fig. 1. Workflow for the MrSQM time series classifier with 3 stages: 1. symbolic trans-
form, 2. feature transform, 3. classifier learning.

3.1 Symbolic Representations of Time Series

While SAX and SFA are two different techniques to transform time series data
to symbolic representations, both can be summarized in three steps:
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– Use a sliding window to extract segments of time series (parameter l: window
size).

– Approximate each segment with a vector of smaller or equal length (parameter
w: word size).

– Discretise the approximation to obtain a symbolic word (e.g., abbacc; param-
eter α: alphabet size).

0.323 0.742 0.912 1.021 -0.044 0.124 -0.532 0.001 -0.343 -1.211

babc      abcc      abcd

Fig. 2. Example symbolic transform using a sliding window over the time series.

As a result, the output of transforming a time series is a sequence of symbolic
words (e.g., abbacc aaccdd bbacda aacbbc). Figure 2 shows an example symbolic
transform applied to a time series, and the resulting sequence of symbolic words.

The main differences between SAX and SFA are the approximation and
discretisation techniques, which are summarized in Table 1. The SAX trans-
form works directly on the raw numeric time series, in the time domain, using
an approximation called Piecewise Aggregate Approximation (PAA). The SFA
transform builds on the Discrete Fourier Transform (DFT), followed by discreti-
sation in the frequency domain. Hence these two symbolic transforms should
capture different types of information about the time series structure. Each trans-
form results in a different symbolic representation, for a fixed set of parameters
(l, w, α). This means that for a given type of symbolic transform (e.g., SAX),
we can obtain multiple symbolic representations by varying these parameters.
This helps in capturing the time series structure at different granularity, e.g., by
varying the window size l the symbolic words capture more detailed or higher
level information about the time series.

MrSQM generates k × log(L) representations by randomly sampling values
for (l, w, α) from a range of values, as shown in Table 2. Parameter k ∈ N, k > 0 is
a controlling parameter that can be set by the user. In comparison, the MrSEQL
classifier creates approximately

√
L symbolic representations for each time series

Table 1. Steps for SAX and SFA symbolic transforms. N is the number of time series
and L is the length of time series. Piecewise Aggregate Approximation (PAA) is used
in SAX and Discrete Fourier Transform (DFT) is used in SFA.

SAX SFA

Approximation PAA DFT

Discretisation Equi-probability bins Equi-depth bins

Complexity O(NL) O(NL logL)
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Table 2. An example of parameter sampling for a dataset of time series length L = 64.

MrSQM MrSEQL

Window size 23+i/k for i in (0, 1, . . . log(L)) 16, 24, 32, 40, 48, 54, 60, 64

Word length 6, 8, 10, 12, 14, 16 16

Alphabet size 3, 4, 5, 6 4

(where L is the length of the time series). This new sampling strategy helps
MrSQM to scale better for long time series. Moreover, MrSQM samples the
window size using an exponential scale, i.e., it tends to choose smaller windows
more often, while MrSEQL gives equal importance to windows of all sizes (see
Table 2 for an example).

3.2 MrSQM Variants

We create two variants for MrSQM. The first variant (MrSQM-R) is the base
variant with three stages of transforming and learning as described in Fig. 1. The
second variant (MrSQM-RS) includes an extra step of feature selection. After
the features are extracted from each representation, a feature selection module
(SelectKBest from the sklearn library) ranks the features according to their
importance. Only the most important features are kept for the later stage. While
the number of features per representation is also configurable, in our experiments
we set it so both variants produce 500 features from each representation for
learning.

Time Complexity. All our classifier variants have a time complexity dominated
by the symbolic transform time complexity. In our case, the SFA transform,
which is O(NL log L) is the dominant factor. This is repeated O(log L) times
(the number of symbolic representations being generated) hence the overall time
complexity of MrSQM is O(NL(log L)2). Although SFA has a time complexity
of O(NL log L), we build our SFA implementation using the latest advances for
efficiently computing the Discrete Fourier Transform2, which results in signifi-
cant time savings as compared to older SFA implementations.

4 Evaluation

4.1 Experiment Setup

We ran experiments on 108 fixed-length univariate time series classification
datasets from the new UEA/UCR TSC Archive. MrSQM also works with
variable-length time series, without any additional steps being required (i.e.,
once it is supported by the input file format). Since the majority of state-of-the-
art TSC implementations only support fixed-length time series, for comparison,
we have restricted our experiments to fixed-length datasets.
2 FFTW is an open source C library for efficiently computing the Discrete Fourier

Transform (DFT): https://www.fftw.org.

https://www.fftw.org


Fast Time Series Classification with Random Symbolic Subsequences 57

MrSQM is implemented in Python and C++ (wrapped with Cython). For our
experiments we use a Linux workstation with an Intel Core i7-7700 Processor
and 32 GB memory. To support the reproducibility of results, we have a Github
repository3 with all the code and results. All the datasets used for experiments
are available from the UEA/UCR TSC Archive website4. We also obtained the
accuracy results for some of the existing classifiers from the same website. For
the classifiers that we ran ourselves, we have used the implementation provided
in the sktime library5.

For accuracy comparison of multiple classifiers, we follow the recommenda-
tion in [4,8,13]. The accuracy gain is evaluated using a Wilcoxon signed-rank test
with Holm correction and visualised with the critical difference (CD) diagram.
The CD shows the ranking of methods with respect to their average accuracy
rank computed across multiple datasets. For computing the CD we use the R
library scmamp6 [5]. While CDs are a useful visualization tool, they do not tell
the full story since minor differences in accuracy can lead to different ranks. We
thus supplement the CDs with tables and pairwise scatter plots for a closer look
at the accuracy and runtime performance.

4.2 Sensitivity Analysis

Comparing MrSQM Variants. Here, we investigate the two variants of
MrSQM (R and RS) in relation to the symbolic transformation (i.e., SAX and
SFA). Figure 3 compares four different combinations of MrSQM.

2 3

RS_SFA

R_SFA

RS_SAX

R_SAX

Fig. 3. Comparison of combinations between two variants of MrSQM and two symbolic
representations.

Table 3. Time (minutes) comparison for SAX versus SFA combined with different
feature selection strategies with k = 1.

Symbolic transform MrSQM-R MrSQM-RS

SAX 27 28

SFA 17 22

3 https://github.com/mlgig/mrsqm.
4 https://timeseriesclassification.com.
5 https://www.sktime.org/en/stable/get started.html.
6 https://github.com/b0rxa/scmamp.

https://github.com/mlgig/mrsqm
https://timeseriesclassification.com
https://www.sktime.org/en/stable/get_started.html
https://github.com/b0rxa/scmamp
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It is clear from this experiment (Fig. 3) that the SFA symbolic transform
is generally superior to SAX. On the other hand, feature selection (R versus
RS) appears to be useful with minimal cost (Table 3). All of these variants are
very fast, totaling less than 30 min for training and predicting on the entire
108 datasets. Since the RS-SFA combination is more accurate than the others,
from this point onward it is our default choice for the experiments unless stated
otherwise.

Parameter Sampling for the Symbolic Transform. In this set of exper-
iments, we study the impact of the symbolic transformation in terms of both
quality and quantity of representations. Figure 4 shows results comparing differ-
ent numbers of SFA representations (with k varying from 1 to 8), when using
the RS feature selection strategy for MrSQM. It also includes a comparison to
the MrSEQL classifier restricted to only using SFA features, in order to directly
compare the accuracy and speed, using the same type of representation. The
results show that adding more symbolic representations by varying the control
parameter k can benefit MrSQM, albeit with the cost of extra computation
reflected in the runtime. In addition, MrSQM at k = 3 is already significantly
more accurate than MrSEQL, while still being four times faster.

3 4 5 6 7

MrSQM_k8
MrSQM_k7
MrSQM_k5
MrSQM_k6

MrSQM_k4
MrSQM_k3
MrSQM_k2
MrSEQL_SFA
MrSQM_k1

Fig. 4. Comparison of average accuracy rank for MrSQM-SFA variants at variable k
and MrSEQL-SFA as baseline.

Figure 5 shows a comparison of the accuracy and runtime of MrSQM (for
different values for k) and the MrSEQL classifier. Overall, the MrSQM variant
with k = 5 seems to achieve a good trade-off between accuracy and speed, taking
slightly over 100 min total time.

Combining SAX and SFA Features. Next we explore the option of combin-
ing SAX and SFA feature spaces. The work of [17] found that the combination of
SAX and SFA features (with a 1:1 ratio) is very effective for the MrSEQL clas-
sifier. For MrSQM, we do not find the same behaviour when combining the two
types of representations. Figure 6 shows that the MrSQM variant that only uses
the SFA transform is as effective as when using combinations of SAX and SFA
representations in different ratios. These results suggest that, to maximise accu-
racy and speed, the recommended choice of symbolic transformation for MrSQM



Fast Time Series Classification with Random Symbolic Subsequences 59

Fig. 5. Comparison of average accuracy and total training and prediction time (min-
utes) for MrSQM-SFA variants at varying k and MrSEQL variants as baseline.

Fig. 6. Comparison between variants of MrSQM with different ratios of SAX and SFA
representations. k1 : k2 means MrSQM generates k1 × log(L) SAX representations and
k2 × log(L) SFA representations.

is SFA. However, it is worth noting that in practice this choice can depend on
the requirements of the application. Across the 108 datasets coming from a wide
variety of domains, SFA seems to be outperforming the SAX transform in both
accuracy and speed. Nevertheless, for many datasets, SAX and SFA models have
similar accuracy. Furthermore, like MrSEQL, the MrSQM classifier can produce
a saliency map for each time series, from models trained with SAX features. This
can be valuable in some scenarios where classifier interpretability is desirable.
MrSQM enables the user to select the transform (type and number) that best
fits their application scenario.

4.3 MrSQM Versus State-of-the-Art Symbolic Time Series
Classifiers

We compare the best classifier variant for MrSQM (MrSQM k5 has a good
accuracy-time trade-off as shown in Fig. 5) with state-of-the-art symbolic
time series classifiers. This group includes WEASEL, MrSEQL, BOSS and
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cBOSS [22]. All five classifiers use SFA representations to extract features, while
MrSEQL uses both SAX and SFA representations (Fig. 7).

2 3 4

MrSQM_k5

MrSEQL−SS

WEASEL

cBOSS

BOSS

Fig. 7. Comparison of state-of-the-art symbolic time series classifiers across 108
UEA/UCR TSC datasets. The leftmost method has the best average rank.

MrSQM has the highest average rank and is significantly more accurate than
the other symbolic classifiers. Furthermore, all the other methods require at
least 5–12 h to train, as shown in Fig. 10 and results reported in [2,17]. We note
that the ensemble methods (e.g., BOSS, cBOSS) are outperformed by the linear
classifiers. With regard to runtime, as shown in Table 5, MrSQM is significantly
faster than the other symbolic classifiers (MrSQM takes 1.5 h to complete train-
ing and prediction, versus 10 h for MrSEQL-SS).

4.4 MrSQM Versus Other State-of-the-Art Time Series Classifiers

The group of the most accurate time series classifiers that have been pub-
lished to date include HIVE-COTE, TS-CHIEF, ROCKET (and its extension
MiniROCKET), and InceptionTime. With the exception of the ROCKET family,
these classifiers are very demanding in terms of computing resources. Running
them on 108 UEA/UCR TSC datasets takes days and even weeks to complete
training and prediction [2,21].

3 4 5 6

TS−CHIEF

HIVE−COTE v1.0

ROCKET

MiniROCKET

InceptionTime

MrSQM_k5

MrSEQL−SS

Fig. 8. Comparison with state-of-the-art time series classifiers across 108 UEA/UCR
TSC datasets. The leftmost method has the best average rank.
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Figure 8 shows the accuracy rank comparison between these methods and
MrSQM. Among the methods compared, only TS-CHIEF and HIVE-COTE were
found to have a statistically significant difference in accuracy when compared to
MrSQM. Nevertheless, these methods require more than 100 h to complete train-
ing [2], for a relatively small gain in average accuracy, typically of about 2% (see
Table 4). In this diagram, MrSQM is in the same accuracy group as Inception-
Time, MiniROCKET and ROCKET. In terms of runtime, MrSQM is in a group
with ROCKET: MrSQM takes 100 min to complete training and prediction on
108 datasets, while ROCKET, in our run on the same machine, takes 150 min (see
more details on runtime in Table 5 and Fig. 10). The MrSQM-k1 variant takes
only 20 min and for many datasets this variant is enough to achieve high accu-
racy. This variant is comparable in accuracy and runtime to the MiniROCKET
classifier. In Fig. 10 we show a comparison of some of these methods with regards
to the accuracy versus runtime (we only include the methods that we ran our-
selves on the same machine).

Figure 9 shows the pairwise-comparison of accuracy between these methods
and MrSQM. Each dot in the plot represents one dataset from the benchmark.
MrSQM is more accurate above the diagonal line and highly similar methods
cluster along the line. We note that the accuracy across datasets is similar for
MrSQM versus ROCKET or MiniROCKET, the only other two methods in the
same runtime category.
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Fig. 9. Pairwise comparison between state-of-the-art time series classifiers and MrSQM
with regard to accuracy across 108 UEA/UCR TSC datasets.

In Table 4, we summarize the accuracy differences between MrSQM and the
other classifiers. For context, in Table 5 we also provide the runtime for all the
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Fig. 10. Comparison of accuracy and total time (minutes) trade-off for MrSQM vari-
ants and state-of-the-art methods that complete training within 12 h.

methods. We observe that when taken together, the average difference in accu-
racy and the total time to complete training and prediction over the 108 datasets,
we see a clear grouping of methods. If we focus on fast methods that can complete
training and prediction in a couple of hours, only the ROCKET/MiniROCKET
methods and MrSQM can achieve this. If we look at the average difference in
accuracy versus the other methods, there is only about 2% difference in accu-
racy, for orders of magnitude faster runtime. In the group of symbolic classifiers,
MrSQM is both significantly more accurate and much faster than existing sym-
bolic classifiers. Furthermore, while it is expected that MrSQM’s results are
aligned with the other symbolic methods (WEASEL, MrSEQL), it is surprising
that they are also very similar to MiniROCKET (second-highest correlation)
but not ROCKET (lowest correlation). Perhaps MiniROCKET is better than
ROCKET at extracting frequency domain knowledge from time series data.

Table 4. Statistical summary of differences in accuracy between MrSQM and state-
of-the-art time series classifiers.

Classifiers Mean diff Std diff Correlation

HIVE COTE 1.0 0.028 0.067 0.882

TS-CHIEF 0.026 0.071 0.866

InceptionTime 0.021 0.084 0.816

ROCKET 0.002 0.099 0.797

MiniROCKET 0.007 0.052 0.936

WEASEL −0.025 0.069 0.91

MrSEQL-SS −0.011 0.055 0.927

MrSQM K1 −0.021 0.038 0.97
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Table 5. Runtime of state-of-the-art classifiers for training and prediction over 108
datasets. For HIVE-COTE1.0 and TS-CHIEF the time is taken directly from [2].

Classifier Total (hours)

MiniROCKET 0.1

MrSQM K1 0.3

MrSQM K5 1.5

ROCKET 2.5

WEASEL 5

MrSEQL-SS 10

HIVE-COTE1.0 400

TS-CHIEF 600

5 Conclusion

In this paper we have presented MrSQM, a new symbolic time series classifier
which works with multiple symbolic representations of time series, fast feature
selection for symbolic sequences and a linear classifier. We showed that while
conceptually very simple, MrSQM achieves state-of-the-art accuracy on the new
UEA/UCR time series classification benchmark, and can complete training and
prediction in under two hours on a regular computer. This compares very favor-
ably to existing methods such as HIVE-COTE, TS-CHIEF and InceptionTime,
which achieve only slightly better accuracy, but require days to train on the same
datasets and require advanced compute infrastructure. MrSQM is comparable
to the recent classifier ROCKET, in regard of both accuracy and speed. This
work has shown again that methods from the group of linear classifiers working
in large feature spaces are very effective for the time series classification task.
For future work we intend to study methods to further reduce the computa-
tional complexity of symbolic transformations and extend MrSQM to work on
multivariate time series classification.
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Abstract. In the last decades, Internet of Things objects have been
increasingly integrated into smart environments. Nevertheless, new issues
emerge due to numerous reasons such as fraudulent attacks, inconsistent
sensor behaviours, and network congestion. These anomalies can have a
drastic impact on the global Quality of Service in the Local Area Net-
work. Consequently, contextual anomaly detection using network traffic
metadata has received a growing interest among the scientific commu-
nity. The detection of temporal anomalies helps network administrators
anticipate and prevent such failures. In this paper, we propose RESIST,
a Robust transformEr developed for unSupervised tIme Series anomaly
deTection. We introduce a robust learning strategy that trains a Trans-
former to model the nominal behaviour of the network activity. Unlike
competing methods, our approach does not require the availability of
an anomaly-free training subset. Relying on a contrastive learning-based
robust loss function, RESIST automatically downweights atypical cor-
rupted training data, to reduce their impact on the training optimiza-
tion. Experiments on the CICIDS17 public benchmark dataset show an
improved accuracy of our proposal in comparison to recent state-of-the-
art methods.

Keywords: Unsupervised anomaly detection · Robust transformers ·
Self and Co-attention · Network traffic anomaly detection

1 Introduction

With the substantial increase of network anomalies in modern communication
networks, anomaly detection has gained considerable interest over the last few
years. The classical detectors, i.e., signature-based detectors, identify anoma-
lies based on a predefined set of rules that models known attack signatures.
These signatures must repeatedly be updated to integrate new attacks. Despite
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their effectiveness in identifying known threats, these systems fail to detect new
emerging anomalies, e.g., zero-day attacks and non-malicious faults. To address
these limitations, all the more present with the development of the Internet
of Things (IoT), contextual anomaly detection becomes of big interest in the
network analysis landscape.

Anomaly Detection (AD) in time series is a broad research field affecting
numerous application domains such as network and object monitoring, medical
data analysis, fraud detection, and network intrusion detection [8]. In such fields,
detecting outliers mainly relies on the temporal continuity assumption, defined by
Aggrawal [1] as “the fact that the patterns in the data are not expected to change
abruptly unless there are abnormal processes at work.” As such, a temporal
outlier is an abrupt change in the data pattern, which results in a discontinuity
of the data with its local context. This assumption makes temporal AD more
challenging than the classical unsupervised punctual AD, since considering the
ordinal causality between observations is of paramount importance.

Numerous extensive studies have been carried out in the field of tempo-
ral AD. Contributions have shifted their focus towards semi-supervision, a.k.a.,
One-Class Classification. Here, an algorithm is first trained to model the nom-
inal patterns of the anomaly-free training data. Then, any deviation from the
trained model is flagged as an outlier. Despite yielding encouraging results in
some specific applications, these classical anomaly detectors generally assume
the availability of anomaly-free training data, and their performance drastically
declines in the presence of corrupted observations. Unfortunately, in real-world
applications, the data collection process is prone to contamination, as the train-
ing data may be corrupted with an unknown fraction of outliers. For example, in
network intrusion detection, diverse anomalies may occur during the collection
of the training network trace, due to faulty sensors, traffic congestions, and secu-
rity attacks. The manual filtering of training anomalies is laborious, because of
increasing data volumes and the diversity of emergent anomalies. This motivates
the development of robust unsupervised temporal anomaly detectors, insensitive
to training contamination.

In this paper, we propose RESIST, a Robust transformEr designed for unSu-
pervised tIme Series anomaly deTection. We introduce a novel training strat-
egy that identifies and downweights the impact of contaminants. RESIST is
trained to mine the common temporal correlations that link successive sliding
windows. Only common patterns are modelled and instance-specific rare pat-
terns are ignored, since they may be caused by training corrupted data. RESIST
training optimizes the robust Geman-McClure loss function to reduce the impact
of training outliers.

This paper is organized as follows: Sect. 2 introduces related work in temporal
AD, and focuses particularly on Transformers for robust AD. Section 3 presents
our contribution: RESIST. Section 4 depicts the datasets used in our experi-
ments, the training protocols, and the experimental results. Finally, conclusions
and perspectives are drawn.
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2 Related Work

Time series AD is an active research field that has drawn increasing attention
in the data mining and machine learning community [5,8].

Time series AD mainly include four main families: density-based, clustering-
based, prediction-based, and reconstruction-based methods. Density-based
methods rely on a local density criterion to identify outliers. Observations that
have few adjacent neighbours are considered anomalous. Density-based meth-
ods, such as Local Outlier Factor (LOF) [6] and Deep Autoencoding Gaussian
Mixture Model (DAGMM) [32], are extensively used in non-temporal anomaly
detection. Many works extend these classical methods to time series anomaly
detection, by restricting the local density criterion to local sliding windows [2].
Cluster-based methods firstly determine the optimal set of clusters that model
the nominal data. Then, these clusters are used as a reference for normality:
the anomaly score is defined as the distance to the closest cluster centre. The
most common cluster-based anomaly detectors include Support Vector Data
Description (SVDD) [22], and Deep-SVDD [16]. Similarly, numerous studies
aimed to adapt such methods to temporal AD [2]. Prediction-based methods
train a model to forecast a posterior observation using only past data. Anoma-
lies are points that are different from their predictions. Various models were
developed within this category, ranging from AutoRegressive Integrated Moving
Average (ARIMA) [31], to Long Short-Term Memory recurrent neural networks
[9]. Finally, reconstruction-based methods learn to compress the nominal data
points into a low-dimensional representation and reconstruct the original data
based on these compressed encodings. In other words, these methods learn to
extract the most important information of the norm by mapping the data into
a subspace of lower dimensionality, with the least reconstruction error. Since
anomalies generally comprise non-representative features, it is harder to project
them in this subspace without loss of information, which results in a larger
reconstruction error. The most common reconstruction-based anomaly detectors
are AutoEncoders. They are extensively used to identify non-temporal anoma-
lies [13–15,20]. To extend this approach to time series data, Su et al. [20] pro-
pose a hybrid method that combines a Variational AutoEncoder (VAE) and a
Gated Recurrent Unit (GRU). While the GRU learns the temporal correlations
of the input sequences, the VAE is trained to map the observations into a latent
stochastic space. Similarly, Malhotra et al. [13] propose an LSTM-AE.

Within the reconstruction-based category, a series of recent studies has
shown the advantage of using Transformers over classical methods [7]. Benefiting
from the self-attention mechanism and parallel computations, Transformer-based
anomaly detectors show a higher detection performance and a more efficient
training process [26]. Some recent studies, e.g., TranAD [23] and MT-RVAE
[25], propose combining the Transformer-based architecture with common gen-
erative models, Generative Adversarial Networks (GANs) and VAEs, to further
improve the model performance and robustness to training contaminations.

Alternatively, Xu et al. [27] renovate the self-attention mechanism by intro-
ducing a new AnomalyAttention module, specifically tailored for unsupervised
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time series anomaly detection. Their method, called AnomalyTransformer, is
based on the intuition that, due to the rarity of anomalies, it is harder to find an
association spread over the whole sequence. The authors remark that the self-
attentions of anomalous points generally tend to be located in their adjacent
data points. Consequently, AnomalyTransformer leverages this adjacent concen-
tration bias to make anomalous points more distinguishable. The authors for-
malize the adjacent concentration bias by defining the Association Discrepancy
(AssDis) criterion. For each data point, the Association Discrepancy quantifies
the disparity between the local attention relative to the adjacent points and the
global attention with the whole series. As it is difficult to find a global map-
ping that links anomalous points with the whole sequence, both local and global
self-attentions are mostly localized in the surrounding. As such, anomalies have
smaller Association Discrepancy than nominal points.

After training, AnomalyTransformer is used to assess the anomalousness of
new samples. For a test data matrix X ∈ R

T×d, containing T consecutive data
points of dimension d, and its reconstruction ̂X ∈ R

T×d, the anomaly score is
computed as follows:

AnomalyScore(X) = Softmax(−AssDis)
∥

∥

∥X − ̂X
∥

∥

∥

2

2
. (1)

The classical reconstruction error is amplified with a term inversely proportional
to the AssDis. Since anomalies have smaller AssDis than inliers, their reconstruc-
tion error is amplified, which improves anomaly detection performance.

AnomalyTransformer shows that encouraging global attention spread over
the entire sequence improves Transformer anomaly detection performance.
Despite being more robust than vanilla Transformers, AnomalyTransformer
attention is still restricted to the input sequence and lacks longer-term dependen-
cies extracted from historical sequences. In fact, time-series data are usually split
into fixed-length consecutive segments using a sliding window. The reference of
normality in AnomalyTransformer is bounded to a single segment and ignores
all previous windows. Even though anomalies are rare, the same anomaly may
occur twice in the same window. In this case, the adjacent concentration bias
becomes invalid, as anomalous observation self-attention is no longer limited to
its surroundings. This is why we propose RESIST, which addresses this limita-
tion, by extending the adjacent concentration prior to accounting for historical
long-range properties.

3 Method

Unlike AnomalyTransformer, we propose to extend the Transformer attention to
cover the historical data, in order to reject unusual observations. We hypothe-
size that rejecting training contaminants requires building pairwise associations
not only between data points of the same sequence but also with instances of
previous segments. The main intuition is that nominal instances present a reg-
ular behaviour shared across multiple segments. That is, reconstructing nom-
inal sequences using either self-information extracted from the current input
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(i.e., self-reconstruction) or using relevant information extracted from the his-
tory (i.e., cross-reconstruction) would lead to similar results. In contrast, since
anomalies are rare and different, building inter-sequence associations (or similar-
ities) is more difficult and less informative. Building on this insight, we propose
RESIST, a Robust transformEr for unSupervISed Time-series anomaly detec-
tion. RESIST is trained to reconstruct input sequences using a hybrid represen-
tation that combines local intra-sequence information as well as global proper-
ties, shared between multiple segments. Firstly, we introduce a Siamese training
strategy that ensures that the model pays equal attention to the input sequence
as well as to the previous ones. Secondly, we train RESIST with a robust loss
function to reduce the impact of large reconstruction errors caused by training
outliers. In the following, we detail our contributions and the hypotheses that
we will analyze in the experimental part. First, we depict a global architecture
overview of RESIST to present its main building blocks. Then, we present each
component separately. Finally, we present our hypotheses, the corresponding
experimental protocols and results.

3.1 RESIST Architecture

RESIST presents an encoder-decoder architecture, comprised of four main com-
ponents: a positional encoding and embedding layer, a siamese encoder, a fusion
layer, and a decoder (cf. Fig. 1). Similar to vanilla Transformers [24], the original
data is firstly encoded using the linear embedding and the positional encoding
units. Both encoder and decoder are composed of stacked identical blocks, where
each block contains a multi-head attention unit followed by a Feed-Forward Net-
work (FFN) layer.

RESIST takes as input K non-overlapping sequences Xw
t = (xw

t−K+1, ...,x
w
t ):

an input sequence xw
t and its K − 1 previous sequences. Here, each sequence is

composed of w consecutive data points xw
t = (xt−w+1, ...,xt), where xt ∈ R

d

is an observation of dimension d, recorded at the timestamp t. In Fig. 1, we
illustrate our method for K = 2. Firstly, the linear embedding and the posi-
tional encoding units encode the input sequences (xw

t−K+1, ...,x
w
t ) and output

the K embedded sequences (ew
t−K+1, ..., e

w
t ). Secondly, the encoder extracts from

each embedded sequence ew
t a low-dimensional latent encoding zw

t . Then, the
fusion layer aggregates these encodings into a single representation. The decoder
maps the fusion encoding to the input space in order to reconstruct the original
sequence xt. Finally, RESIST minimizes the Geman-McClure robust function
between the reconstructed sequence ̂xw

t and the original one xw
t .

After presenting the global architecture of our method, we will thoroughly
review each component in the following Sections.

Siamese Encoder. RESIST encoder, illustrated in Fig. 1, learns to project K
consecutive sequences into K low-dimensional embeddings. The encoder receives
a sequence xw

t and its associated history, which contains the K − 1 sequences
preceding xw

t . It models the point-wise correlations between xw
t and the history.
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Fig. 1. RESIST architecture.

Fig. 2. Self-attention unit

Fig. 3. Co-attention unit

Then, it learns to project these data into a common reduced space of dimension
denc ∈ N

∗, where common data points share similar representations. This task is
notoriously hard for anomalies, since they present non-representative uncommon
patterns. For this reason, we propose an encoder with a Siamese architecture,
with K identical sub-networks that share the same parameters. Input sequences
are simultaneously processed using these networks. The sequences that share
common proprieties have close encodings.

Unlike classical Siamese Neural Networks, our encoder is not trained to
learn a similarity metric between input sequences. Its objective is to reduce the
data dimensionality to only keep the most important information. Each siamese
encoder sub-network is composed of a stack of N = 2 identical blocks. Each block
comprises two sub-modules: a multi-head attention unit followed by a FFN layer
(cf. Figs. 2 and 3). While the attention mines the temporal correlations in the
data, the FFN layers are used for dimensionality reduction.

The Siamese encoder is a hybrid composition of both Self-Attention (SA) and
Co-Attention (CA) units. While the SA units are used to extract the contextual



72 N. Najari et al.

properties of the current sequence, the CA unit is destined to extract inter-
segment properties and only keep common relationships.

Self-attention and Co-attention Module. Attention modules are intended
to mine pairwise interactions between data points. We propose to leverage the
SA and CA layers, initially introduced in multimodal Visual Question Answering
(VQA) [28], to our task of unsupervised AD.

VQA is a visual reasoning task where we train a model to answer a ques-
tion concerning an image. Identifying joint visual-linguistic representations is
crucial in VQA. In [28], Yu et al. propose a Transformer-based VQA model
where they introduce a co-attention layer, a.k.a., guided attention layer (see
Fig. 3). This layer is mainly designed to model multimodal interactions between
a sentence and an image. The architecture of co-attention is the same as the
self-attention layer. The main difference is that co-attention receives two differ-
ent input sequences, a sentence and an image. It extracts the Query from the
image and the pair (Key, Value) from the sentence. Recent studies [21] show
the potential of co-attention to learn contextual representations and to improve
model generalization performance.

We propose to extend CA to our task of unsupervised anomaly detection.
CA can be seen as a module that filters similar data points between a sequence
and the history. Then, it weights the current sequence observations with the
relative normalized similarities. The aim is to guide the reconstruction with inter-
sequence common information and to filter out sequence-specific rare patterns.
This encourages the model to ignore unusual patterns that are only relevant for
a single sequence. Different compositions of CA and SA may result in different
configurations of RESIST. In Sect. 4.3, we will present these configurations and
we will experimentally evaluate their impact on the AD performance.

Fusion Layer. We propose to leverage multiple data views for robust recon-
struction. The fusion layer combines the multiple encodings extracted by
RESIST encoder into a single vector representation. In this work, we propose
an addition-based fusion. This module comprises a fusion layer, followed by a
FFN layer. The RESIST additive fusion strategy is inspired from the well-known
manifold mixup method [30]. The original mixup method was initially proposed
for data augmentation in supervised learning. For two training inputs xi and
xj , having two labels yi and yj , respectively, mixup generates a new training
instance, x̂, using a linear interpolation:

x̂ = βxi + (1 − β)xj and ŷ = βyi + (1 − β)yj . (2)

ŷ is the corresponding label of x̂. The interpolation term β ∈ [0, 1] is an hyper-
parameter. In other words, mixup trains supervised classifiers to adapt a linear
behaviour in the boundaries between training classes. Mixup reduces classifier
regularization error and makes classifiers more robust to corrupted labels [30].

We extend the mixup method to robust unsupervised anomaly detection.
Similar to the original mixup strategy, mixup fusion merges K instances into
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a single vector through linear interpolation. The merged representation of K
encodings (zw

t−K+1, ..., z
w
t ) is defined as follow:

̂zw
t =

1
K

t
∑

i=t−K+1

zw
i (3)

We propose a uniform contribution of all encodings. For K = 2, we have
̂zw
t = 0.5 zw

t−1 + 0.5 zw
t . When the input sequence xw

t presents common prop-
erties relative to its history, represented by xw

t−1, we expect that the siamese
encoder extracts close latent representations zw

t and zw
t−1. In this case, the fusion

representation would be similar to the encoding of a vanilla Transformer, i.e.,
̂zw
t ≈ zw

t−1. In contrast, when the current sequence comprises an uncommon
pattern, the encoder self-attention and co-attention modules potentially extract
different encodings. Therefore, the linear interpolation may generate an incon-
sistent sample and the reconstruction task become more difficult.

Finally, this compact representation ̂zw
t is forwarded to the FFN of the fusion

module and the final output is:

Fw
t (zw

t−K+1, ..., z
w
t ) = ReLU(̂zw

t Wf + bf ), (4)

where Wf ∈ R
denc×df refers to the linear layer weights and bf ∈ R

df to the bias
vector. denc is the dimension of the fusion module inputs and df is the dimension
of the outputs. In all experiments, we use df = denc = 16.

RESIST Decoder. Finally, the RESIST decoder learns to reconstruct the last
sequence of the input using the compact representation that is the output of the
fusion module. It is composed of a stack of N = 2 identical blocks. Each block
comprises two sub-modules: a multi-head self-attention unit followed by a FFN
layer. While Rectified Linear Unit (ReLU) activation function is used in the first
block, the last block is followed by a Sigmoid function to ensure that the output
has the same range as the input [0, 1].

3.2 Robust Training Loss

To hedge against training contaminants, we train RESIST using a robust loss
function. Indeed, the commonly used Mean Squared Error (MSE) is sensitive to
outliers, since squaring large deviations results in the dominance of anomalies
during the training. In contrast, a robust loss can resist noise and anomalies
by reducing the influence of their large reconstruction errors. There have been
numerous studies to explore robust leaning in the presence of outliers. The robust
function list includes Charbonnier loss, Cauchy loss, Geman-McClure loss, and
Welsch loss. Recently, Barron [4] generalizes these common losses in a single
parametric function, ρ(x, α, c), parameterized by the scale c and the robustness
parameter α.
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ρ(x, α, c) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2 (x

c )2 if α = 2
log(12 (x

c )2 + 1) if α = 0
1 − exp(− 1

2 (x
c )2) if α = −∞

|α−2|
α (( ( x

c )2

|α−2| + 1)
α
2 − 1) otherwise

(5)

Particular values of α define common robust losses: L2 loss (α = 2), Char-
bonnier loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α = −2), and
Welsch loss (α = −∞). These cases are visualized in Fig. 4, extracted from [4].
We refer the reader to [4] for a detailed description of these losses.

Fig. 4. The general robust loss function proposed in [4].

In particular, we propose to train RESIST by minimizing the Geman-
McClure robust function, which reduces the influence of high reconstruction
errors in gradient computations during training. The Geman-McClure function
is:

L(x) = ρ(x, α = −2, c) = 2
(x

c )2

4 + (x
c )2

(6)

where c is a scale parameter that modulates the loss robustness range. In all
our experiments, we set x = λIQR, where IQR is the interquartile range and
λ = 0.1.

3.3 Hypotheses

We synthesize our contributions into the following hypotheses:

– Hypothesis 1 (H1) We conjecture that guiding the Transformer recon-
struction with both intra-sequence properties, extracted using SA units, and
inter-sequence pairwise interactions with the history, extracted with CA units,
results in a more robust anomaly detector.

– Hypothesis 2 (H2) We hypothesize that training RESIST with a robust
loss function, and particularly the Geman-McClure loss, reduces the impact
of training noise and anomalies;
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4 Experiments and Results

In this section, we explore the validity of the assumed hypotheses on the bench-
mark dataset: the Canadian Institute of Cybersecurity Intrusion Detection Sys-
tem (CICIDS17) evaluation dataset [18]. In addition, we extensively compare our
contribution against common unsupervised anomaly detectors. First, we provide
an overview of the dataset. Then, we develop the training and testing protocols.
Finally, we present and analyze the empirical results.

4.1 Dataset Description

CICIDS17 [18] is a recent public dataset developed by the Canadian Institute of
Cybersecurity (CIC) for IDS evaluation. Overall, this dataset comprises about
3 million labelled network flows collected over 5 days, starting from July 3,
2017, and ending on Friday, July 7, 2017. 83% of this traffic is benign and the
remaining 17% is anomalous. To collect the traffic, Sharafaldin et al. developed
a testbed containing two networks: an Attack-Network and a Victim-Network.
The Victim-Network comprises three servers, one firewall, two switches and ten
interconnected PCs. One switch was configured to mirror all the traffic pass-
ing through the network. The Attack-Network is a separate network that runs
network attacks on the Victim-Network.

CICIDS17 provides full packet capture of the collected data in pcap files.
In addition, the raw data are processed using CICFlowMeter, a flow-based fea-
ture extractor, to extract metadata from the packet traces. Each flow record is
represented by 85 features: a flow ID, 83 flow metadata features, and a class
label. A detailed description of the 83 flow-based features is presented in [10].
CICIDS2017 comprises 15 classes: a nominal class and 14 attack types, includ-
ing DoS, Distributed DoS (DDoS), Web attacks, and Infiltration attacks. This
dataset was extensively used in many recent publications [10], since it covers
various recent attacks and it comprises both punctual and collective anomalies.

4.2 Data Preprocessing

We follow the same preprocessing steps proposed in [11]. Since the original
dataset is voluminous, we focus on the data subset that is collected during one
day: Thursday, July 6 2017. This subset contains 170231 network flow and rep-
resents around 6% of the whole dataset. 98.7% of this traffic is benign and the
remaining 1.3% is anomalous. We rescale numerical features to be in the range
[0, 1], using the min-max normalization method. Then, we randomly split the
benign data into 40% for the training and 60% for testing.

4.3 Training and Testing Protocols

Protocol 1 (P1): Modular Composition of Co-attention and Self-
attention Modules. RESIST encoder is composed of two attention-based com-
ponents: the self-attention and the co-attention modules. Different combinations
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of these modules result in different variants. In this section, we study the per-
formance of RESIST with three modular compositions of these units.

For ease of illustration, we only visualize the RESIST encoder part for the
three configuration. The first variant, RESIST-SS (cf. Fig. 5), is the baseline.
This first configuration does not consider the history for data reconstruction. In
this case, only the input sequence flows through self-attention units to gradu-
ally extract the intra-properties of each sequence Then, RESIST-SS decoder is
trained to reconstruct the sequence based only on this self-encoded representa-
tion. The second configuration, RESIST-SC (cf. Fig. 6), considers inter-sequence
similarities between the input and the history. Indeed, both sequences are pro-
cessed using a first self-attention unit to model intra-sequence relationships.
Then, the encoded representation of the current sequence is processed using a
self-attention unit, while the historical representations are fed into a co-attention
unit to introduce pairwise similarities between consecutive sequences. Finally,
the third variant is RESIST-CC (cf. Fig. 7). Here, the input sequence is encoded
through cascaded self-attention units and adjacent sequences are encoded using
co-attention units. The main difference between RESIST-SC and RESIST-CC
is that the former encodes the history with a hybrid encoder that alternates
CA and SA, while in the latter, only CA units are used to encode the previous
segments.

Fig. 5. RESIST-SS Fig. 6. RESIST-SC Fig. 7. RESIST-CC

Protocol 2 (P2): Robust Loss Function. In this section, we explore the
importance of the robust loss function to reduce model sensitivity with respect to
anomalies. As previously mentioned in Sect. 3.2, various robust losses are devel-
oped in the literature, such as Charbonnier loss, Cauchy loss, Geman-McClure
loss, and Welsch loss. In particular, we compare three different training losses.
The first function is the classical L2 loss. Here, we train this first variant of
RESIST with the common L2 loss to study its sensitivity to training outliers, in
the absence of a robust training loss. Then, we compare three common robust
functions: Charbonnier loss, Cauchy loss, and Geman-McClure loss [4].
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Protocol 3 (P3): Comparison with Competing Methods. Finally, we
globally compare our contribution against common unsupervised time series
anomaly detectors. In this experiment, we select the best performing config-
uration of RESIST: a siamese encoder that comprises a hybrid composition of
self and co-attention units, and trained with the Geman-McClure loss. The base-
lines selected in our experiments belong to the different categories of unsuper-
vised anomaly detection presented in Sect. 2. These baselines include one-class
classifiers: IF [12], OSVM [22]; density-based methods: LOF [6]; reconstruction-
based algorithms: OmniAnomaly [20], LSTM-AE [13], MSCRED [29], USAD [3],
and vanilla Transformer [24]. In addition, we assess the performance of robust
Transformers including TranAD [23] and AnomalyTransformer [27].

4.4 Training Parameter Settings and Evaluation Criteria

We follow the well-established protocol used by many recent papers [19]. We
transform the input time series into consecutive sub-sequences using non-
overlapped sliding windows of length w = 100. After preliminary tests, we use
the same architecture for all autoencoder-based models. The autoencoders are a
5-layer MLP with 78-32-16-32-78 units. All latent layers are followed by ReLU
activation function. The last layer is followed by a sigmoid function. We use
the Adam optimizer to train all the neural networks, with an initial learning
rate of 0.001, and a step-scheduler with a step of 0.5. All models are trained for
100 epochs, with a batch size of 64 in all experiments, and random parameter
initialization. To limit the impact of random parameter initialization, we repeat
each experiment five times and average the results over these five runs. Regard-
ing Transformer-based anomaly detectors, we set the dimension of the embed-
ding to 128 and we use 2-head attention units. In all our experiment, RESIST
hyperparameter c is set as c = 0.1IQR (cf. Eq. 6). Similar to the validation pro-
tocol adapted by Ruff et al. [17], the competing methods hyperparameters are
tuned on the predefined validation subset. To minimize hyperparameter selection
problems, we select the optimal hyperparameters that maximize their validation
Area Under the Curve of the Receiver Operating Characteristics (AUROC). This
deliberately grants competing methods an advantage over RESIST. Lastly, all
the experiments were run on a laptop equipped with a 12-core Intel i7-9850H
CPU clocked at 2.6 GHz and with NVIDIA Quadro P2000 GPU.

4.5 Results

Protocol 1 (P1): Modular Composition of Co-attention and Self-
attention Modules. For a fair comparison, the three variants have the same
architecture and configuration. The three variants use the mixup fusion strategy
and are trained with the same robust loss: Geman-McClure loss. The only dif-
ference between the three variants, is the modular composition of co-attention
and self-attention units. The experimental results of these 3 variants are shown
in Fig. 8. These first results highlight that the structure of RESIST encoder
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has a significant impact on the global performance, since varying the encoder
composition of self and co-attention units is clearly reflected in the results.

Firstly, RESIST-SS, whose encoder is purely composed of a cascade of
self-attention units, performs poorly compared to the other variants. Indeed,
RESIST-SS is similar to a vanilla Transformer trained to reconstruct the input,
using the robust Geman-McClure loss, and without considering the historical
data. This variant shows the lowest AUROCs in this first set of experiments,
with a mean equal to 76.6%, and with a large standard variation of 5%. The
other two variants, which integrate intra and inter-sequence properties with co-
attention units, globally show better results with reduced standard variations.
This confirms our first hypothesis (H1), in the sense that guiding the Transformer
reconstruction with both intra-sequence properties and inter-sequence pairwise
interactions with the history results in a more robust anomaly detector.

Furthermore, we note that the hybrid RESIST-SC reports higher AUROC,
80.5% ± 0.9, compared to RESIST-SS, 78.8% ± 0.3. This advantage is statisti-
cally significant, according to Welch’s test with p-value = 0.05. This observation
reveals that encoding the history with both self-attention and co-attention units
is better than using only co-attention units. In RESIST-SC, the self-attention
unit firstly extracts the intra-dependencies of the history. Then this first repre-
sentation, which considers the history local context, is combined with the inter-
mediate representation of the input. In contrast, RESIST-CC neglects history
intra-sequence context and focuses only on inter-sequence properties. This result
is consistent with other works in VQA [28]. In the following, we will use RESIST-
SC encoder architecture as the basis for all next RESIST variants.

Protocol 2 (P2): Robust Loss Function. Similar to the protocol followed
previously, all the variants share the same configuration, except the training loss
function. The three variants have a hybrid siamese encoder, similar to RESIST-
SC encoder. The results are reported in Fig. 9. From this figure, we can see that
the training loss function has a significant influence on the performance. We note
that the results steadily improve when decreasing the robustness parameter α
of the loss function ρ(x, α, c), defined in Sect. 3.2. Firstly, RESIST-MSE, trained
with the common Euclidean distance, i.e., α = 2, show the worst performance,
with an AUROC around 74%. This result is in line with previous studies, which
state that the mean-squared error is considerably influenced by outliers. Sec-
ondly, the Charbonnier loss, a.k.a, the pseudo-Huber loss, with α = 1, does not
improve the performance (cf. Fig. 9). As shown in Fig. 4 (left), even though the
gradients of large error are reduced compared to the L2 loss, these gradients
saturate to a non-zero value. That is, even though their contribution is slightly
reduced, training contaminants still contribute to parameter optimization during
the training. Nevertheless, when α ≤ 0, the gradient magnitude decreases and
converges to 0, when the error is higher than the scale parameter c. As such,
large errors are completely ignored and do not impact the training. The speed
of converging to 0 clearly depends on the parameter α. The lower α, the higher
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Fig. 8. Comparison between RESIST
three variants: RESIST-SS, RESIST-SC,
and RESIST-CC, on the CICIDS17.

Fig. 9. Experimental results for RESIST
trained with different loss functions, on
the CICIDS17 dataset.

Fig. 10. Comparison between RESIST and the baselines on CICIDS17 dataset.

the decreasing speed of large error gradients. Our results confirm this interpreta-
tion, in the sense that RESIST-GM, trained with Geman-McClure loss (α = −2),
exceeds RESIST-Cauchy, trained with Cauchy loss (α = 0), by 2.6% on average.
We can conclude that the second hypothesis (H2) is validated. Training RESIST
with the Geman-McClure loss significantly reduces the impact of anomalies.

Protocol 3 (P3): Comparison with Competing Methods. In this section,
we compare RESIST performance against common unsupervised anomaly detec-
tors, presented in Sect. 4.3. We aim to demonstrate that RESIST outperforms
these competing methods. The RESIST configuration used in this part is com-
posed of the default architectures: a hybrid siamese encoder, i.e., the encoder of
RESIST-SC, the mixup fusion layer, and the robust Geman-McClure loss, with
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c = 0.1IQR. The experiment results are reported in Fig. 10. Globally, RESIST
achieves superior results compared to all the baselines, on the CICIDS17 dataset,
with an average AUROC of 80.6%±1.3. First, we note that RESIST is substan-
tially more robust than vanilla Transformers. RESIST improves vanilla Trans-
former average AUROC by 10%. Second, the lowest results are reported with a
density-based anomaly detector: LOF. Indeed, detecting contextual and collec-
tive outliers based on the local density of high-dimensional data is challenging.
Surprisingly, Transformer-based anomaly detectors show poor performance on
this dataset, even with a careful tuning of these architectures. TranAD and
AnomalyTranformer report AUROCs of 50.7% ± 1.0 and 52.4% ± 2.1. This
implies that these methods are significantly sensitive to training outliers, on this
network traffic dataset. It is however difficult to explain such poor results, despite
the careful fine-tuning of the hyperparameter on the dedicated validation sub-
set. Third, classical anomaly detectors, i.e., IF and OSVM, give better results
than deep neural network-based anomaly detectors, including OmniAnomaly,
MSCRED, Vanilla Transformer, and LSTM-AE. This observation ties well with
the previous study conducted by Lai et al. [11]. We speculate that this might be
due to the fact that the latter are developed for semi-supervised AD. Indeed, they
assume that the training data are anomaly free. In the case of data pollution with
anomalies, this assumption is not respected and consequently, these methods
fail to distinguish both classes. Fourth, RESIST exceeds IF AUROC by 4% and
OSVM AUROC by 3%, on average. These results demonstrate that RESIST is
more robust than these competing anomaly detectors on the CICIDS17 dataset.

5 Conclusion and Perspectives

In this paper, we introduced RESIST, a Robust transformEr designed for unSu-
pervised tIme Series anomaly detection. Thanks to the modular composition of
self and co-attention units, RESIST learns to reconstruct each input sequence
using a hybrid representation that aggregates both the local information that is
specific to the current input and the global information shared with the history.
Moreover, we proposed a robust training strategy that minimizes the Geman-
McClure function, to reduce the impact of training contaminants. We extensively
studied the contributions of RESIST components in the global performance, and
the experimental evaluation on the CICIDS17 benchmark dataset confirmed that
RESIST outperforms existing unsupervised anomaly detection.
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Abstract. Time series (TS) are sequences of values ordered in time.
Such TS have in common, that important insights from the data can
be drawn by inspecting local substructures, and not the recordings as
a whole. ECG recordings, for instance, are characterized by normal or
anomalous heartbeats that repeat themselves often within a longer TS.
As such, many state-of-the-art time series data mining (TSDM) meth-
ods characterize TS by inspecting local substructures. The window size
for extracting such subsequences is a crucial hyper-parameter, and set-
ting an inappropriate value results in poor TSDM results. Finding the
optimal window size has remained to be one of the most challenging
tasks in TSDM domains, where no domain-agnostic method is known
for learning the window size. We provide, for the first time, a systematic
survey and experimental study of 6 TS window size selection (WSS) algo-
rithms on three diverse TSDM tasks, namely anomaly detection, segmen-
tation and motif discovery, using state-of-the art TSDM algorithms and
benchmarks. We found that WSS methods are competitive with or even
surpass human annotations, if an interesting or anomalous pattern can
be attributed to (changes in) the period. That is because current WSS
methods aim at finding the period length of data sets. This assumption
is mostly true for segmentation or anomaly detection, by definition. In
the case of motif discovery, however, the results were mixed. Motifs can
be independent of a period, but repeat themselves unusually often. In
this domain, WSS fails and more research is needed.

Keywords: Time series · Unsupervised · Learning · Subsequences ·
Windows · Data mining · Motif discovery · Segmentation · Anomaly
detection · Review · Benchmark

1 Introduction

Time series (TS) are sequences of real values ordered in time. Use cases include
biological processes like ECG recordings of patient’s heartbeats, EEG recordings
collected from people taking a nap or physical processes like printer pressure
pump sensor recordings from industrial printers. Such recordings have in com-
mon, that the main insights from the data can be drawn by inspecting local
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T. Guyet et al. (Eds.): AALTD 2022, LNAI 13812, pp. 83–101, 2023.
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Fig. 1. The famous NYC taxi traffic data set contains anomalous as well as reoccurring
local temporal patterns that can be analysed with TSDM techniques.

substructures, and not the recordings as a whole. As such, most state-of-the-art
TS data mining (TSDM) algorithms are applied to local substructures, which
are referred to as windows. However, setting the right window size is crucial for
most of these tasks. When applied to production-ready systems, failure to pro-
vide an optimal window size may cause bad decision-making and thus monetary
damage.

Many state-of-the-art unsupervised TSDM algorithms can be formulated as a
self-join of all pairs of subsequences for a given window length. Examples include
Matrix Profile I-XXV [20], ClaSP [14], EMMA [11], etc. With a poor choice of
window length, these methods fail to give good results. While in a supervised
setting, the window length can be learned by maximizing an evaluation metric,
in an unsupervised setting, such as anomaly detection, segmentation or motif
discovery, this is not possible by definition, and algorithms rely on human anno-
tations. Using domain-agnostic methods to learn the window length for unsu-
pervised TSDM is at the core of this experimental study.

Many window size selection (WSS) methods for finding the period length of
a TS have been published. This is the first survey and experimental evaluation of
WSS for TSDM tasks. We chose three common, yet diverse unsupervised TSDM
tasks, namely motif discovery, anomaly detection and segmentation for analysis.
We use the famous NYC taxi data set in Fig. 1 as an example to illustrate the
different requirements of the TSDM tasks. It shows the hourly traffic in NYC
throughout the year in 2015. It has a weakly pattern with increasing traffic
throughout the weekdays and during rush hours. It has some known anomalies
that can be attributed to events, marches or public holidays. The task of anomaly
detection aims at finding anomalous structure in a periodic TS [1]. In the NYC
taxi data set, this corresponds to anomalous (increased or decreased) traffic
at Independence Day, Labor Day, etc. Such anomalies can be attributed to a
deviation from the periodicity of the TS. The window size, used for anomaly
detection, should thus roughly capture the length of an anomalous event, i.e.
some hours or at most a day, or we may miss this anomalous event. The task
of segmentation is the process of dividing a periodic TS into disjoint segments,
e.g. based on detecting changes in periodicity [6]. In our example, we see a clear
weekly or monthly pattern of taxi traffic that repeats throughout the year. These
segments themselves are highly repetitive. A window size should thus roughly
capture the weekly or monthly periodicity to identify relevant segments. The task
of motif discovery aims at finding frequent, similar local patterns in a TS [11].
In our running example, this could be similar traffic on public holidays or on
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some weekdays, e.g. the first Monday in every month is similar. Other than in
the former two use cases, the TS itself need not be periodic, but the window size
should be set to discover repetitive local behaviour.

To sum up, the tasks have very diverse requirements for a WSS method:
small vs large window sizes, associated with vs independent of the period. The
survey and experimental evaluation of WSS techniques is the main focus of this
study. The contributions of this paper are as follows:

1. We review 6 established and recent domain-agnostic WSS algorithms from the
literature, including technical descriptions, computational complexity analy-
ses and examples for illustration.

2. We benchmarked, for the first time, 6 WSS methods and compared these
to human annotations on three diverse and challenging unsupervised TSDM
tasks: anomaly detection, segmentation and motif discovery. For all of these
tasks, we tested the state-of-the-art algorithms in their field in combination
with all WSS methods on established benchmarks.

3. Overall, we find that if the analysed TS were periodic, as is the case for
anomaly detection or segmentation, the WSS methods even surpassed human
annotations. If the analysed TS were non-periodic, as for motif discovery, WSS
fails.

4. In this work, we make a special effort to provide the sources codes and results
on our website [15] to foster follow-up works and reproducibility. We provide
a Python implementation of the used methods as well as Jupyter-Notebooks,
visualizations and raw measurement sheets.

The remainder of this paper is structured as follows: Sect. 2 introduces related
work, Sect. 3 reviews the WSS algorithms, Sect. 4 presents our experimental eval-
uation, and Sect. 5 explains our results and concludes the paper.

2 Background and Related Work

In this study, we assume that a TS is generated by observing some output of a
physical process, that consists of one (or several) distinct states at arbitrary and
a-priori unknown points in time, leading to different measurements [6] in the
signal. Unsupervised TSDM algorithms are concerned with finding anomalous
subsequences in such signals, detecting their segmentation or instances of similar
substructures. We introduce these concepts and the related literature in the
following subsections.

2.1 Definitions

Definition 1. A time series (TS) T is a sequence of n ∈ N real values, T =
(t1, . . . , tn), ti ∈ R that measures an observable output of a process. The values
are also called data points.
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Definition 2. Given a TS T , a subsequence (or window) Ts,e of T with start
offset s and end offset e consists of the contiguous values of T from position s
to position e, i.e., Ts,e = (ts, . . ., te) with 1 ≤ s ≤ e ≤ n. The length (or width)
of Ts,e is ‖Ts,e‖ = e − s + 1.

Definition 3. A periodic TS is one that approximately repeats a subsequence of
values after a fixed length of time. We call such a subsequence a temporal pattern
(or period) of a TS.

The two tasks anomaly detection (Sect. 2.2) and segmentation (Sect. 2.3) are
applied to periodic TS by definition. Still, local parts of a TS can nevertheless
deviate from each other, e.g. in period length, shape or amplitude. This is typ-
ically due to anomalies, motifs, evolving patterns, or regime changes. In motif
discovery (Sect. 2.4), data need not be periodic, however, but the pattern to be
identified repeats unusually often.

2.2 Anomaly Detection

Time series anomaly detection (TSAD) aims to find erroneous or novel behaviour
within expected observations. Such outliers are typically categorized as point or
subsequence outliers. While the former is an unexpected high (low) data point,
the latter is a deviation of the baseline temporal pattern (as consecutive obser-
vations). Blázquez-Garćıa et al. [1] formalize the TSAD problem and review
techniques to tackle it. Model-based approaches like Isolation Forest (IF) and
one-class support vector machine (SVM) learn the temporal dynamics from sub-
sequences of a baseline TS to estimate the novelty of new incoming data points as
a reconstruction score. Discord detection is another approach to anomaly detec-
tion that reports the subsequence in a TS with the highest pairwise distance
to its nearest neighbour as an outlier [20]. It considers subsequences anoma-
lous or unusual in relation to the TS as a reference. Discord detection can be
numerically solved as a minimization problem with the matrix profile (MP) [20].
Runtime optimizations exist based on admissible pruning. Frequentist methods
further measure the novelty of subsequences by the count of their occurrence,
and related information-based algorithms utilize their rate of compressibility as
a means of uniqueness.

2.3 Segmentation

The time series segmentation (TSS) task assumes that a TS consists of seg-
ments that capture the inherent statistical properties and temporal patterns of
the process states at hand. The a priori unknown change points (CPs) between
segments are assumed to be abrupt shifts of these properties and indicate state
transitions [6]. The TSS problem is to partition a TS into disjoint segments, sepa-
rated by CPs, corresponding to states of the data-generating process. A number
of domain-specific TSS methods that can detect changes in TS with suitable
value distributions (e.g. piecewise-constant or Gaussian) have been published in
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the last decades. Truong et al. [17] present a review of such techniques. They
compare methods regarding their cost function, search method, and whether the
number of change points is known a priori. Search methods like window-based
segmentation (Window) [17] then use such cost functions to find meaningful
segmentations that minimize the associated costs. More recently, two domain-
agnostic subsequence-based techniques have been proposed, namely FLOSS [6]
and ClaSP [5,14]. Both methods use a k-NN to relate similar subsequences and
compute a profile, from which CPs can be extracted as local minima (maxima).

2.4 Motif Discovery

Motif discovery in TS (TSMD) has been researched intensively for approximately
20 years [11]. A majority of research is centred on pair motifs, which are defined
as the pair of most similar subsequences in a TS. However, substructures com-
monly do not only occur in pairs but frequently, such as heartbeats in an ECG
recording. Thus, it is more natural to think of a motif as a set of frequently
appearing and similar subsequences. We will thus focus on those approaches to
motif discovery, that aim for finding sets of the most similar subsequences, aka
motif sets. EMMA [11] was the first motif set discovery algorithm. It is based
on the discretization of subsequences using Symbolic Aggregate approXimation
(SAX) [10]. It hashes the discretized SAX words into buckets, where similar
subsequences hash into similar buckets, and the buckets are subsequently post-
processed to obtain the final motif sets. The concept of Learning Motif (LM)
was introduced by Grabocka et al. [7] to better deal with noisy TS. The paper
approaches LM discovery as a process which, starting from a random initializa-
tion, iteratively modifies a motif core S′ to increase its frequency, i.e., the size of
the surrounding motif, while keeping its radius fixed. As the frequency function
is not differentiable, they propose a smooth Gaussian-kernel approximation that
allows using gradient ascent to find the hopefully best hidden motif cores. The
LM solution is a heuristic, as the optimization problem is non-convex and the
gradient ascent might get stuck in a local optimum.

Table 1. Properties of WSS algorithms.

Method name Type Properties Complexity

DFT Whole series Frequency-Domain O(n logn)

AC Whole series Time-Domain O(n logn)

AutoPeriod [18] Whole series Hybrid O(n logn)

RobustPeriod [19] Whole series Hybrid O(n2)

MWF [8] Subsequence Summary statistics O(m · n)

SuSS [5] Subsequence Summary statistics O(n logw)
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3 Window Size Selection

Window size selection (WSS) algorithms can be divided into two major cat-
egories: (a) whole-series-based and (b) subsequence-based. Whole-series-based
methods analyse global properties of a signal in order to detect dominant
period sizes. They can further be divided into frequency-based and time-based
approaches. While the former decompose a TS into single frequency components,
the latter measure the self-similarity of the entire signal when shifted by an off-
set (lag). A dominant frequency or a high correlation for a certain shift is then
used to derive an appropriate window size [4]. Subsequence-based methods, in
turn, extract local features from TS. They compare how well statistics computed
over temporal patterns (with increasing size) align with the global properties of
the signal. A small subsequence width in line with the global TS properties is
then chosen as a window size [5,8]. While whole-series-based methods can easily
identify strong and repetitive periods in signals, subsequence-based methods are
more able to identify window sizes in more diverse TS like with regime changes
(different segments) or varying temporal patterns, as they rely on the data set’s
descriptive statistics as a proxy instead of exact frequencies or shifts (Table 1).

In the following subsections, we discuss four whole-series-based methods,
namely Dominant Fourier Frequency, Autocorrelation, AutoPeriod and Robust-
Period, as well as two subsequence-based algorithms, Multi-Window-Finder and
Summary Statistics Subsequence.

3.1 Dominant Fourier Frequency

The Fourier transform decomposes a signal into a sum of sinusoid waves, also
called Fourier coefficients. Each of these coefficients is characterized by its fre-
quency, equal to a period length in the TS, and its phase shift. The main hypoth-
esis of this whole-series-based method is that the most dominant sinusoid wave,
i.e. with the largest magnitude, in a signal captures its period best.

Definition 4. The Discrete Fourier Transformation (DFT) of a TS T , |T | = n
is a series of complex coefficients C := (c0, . . . , cn−1) ∈ C

n, such that ck :=
∑n

j=1 Tj · e−2πi· jkn , for k = 0, . . . , (n − 1) and i =
√−1. The corresponding

series of frequencies is defined as F = (f0, . . . , f� n−1
2 �), such that fk := k

n , for
k = 0, . . . , �n−1

2 �.
A Fourier coefficient ck describes the phase and magnitude for its associated

frequency fk, with the first c0 being the mean of the TS T . In order to obtain
the magnitude of ck, we can calculate its modulus mk :=

√
Re(ck)2 + Im(ck)2.

Note that we can only capture �n
2 � frequencies because of the Nyquist-Shannon

sampling theorem.
Algorithmically (see Algorithm 1), we first transform a TS using the Discrete

Fourier Transform (DFT), and then select the most dominant Fourier coefficient,
from which we may infer the frequency. Its corresponding period size can then
be used as a window size. The quality of this computation can be negatively
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Algorithm 1. Most dominant Fourier Frequency
1: procedure DominantFourierFrequency(T )
2: C,F ← DFT(T )
3: M,W ← √

Re(C)2 + Im(C)2, 1
F

4: return W[argmax(M)]
5: end procedure
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Fig. 2. The magnitudes of the Fourier coefficients show a substantial global maximum
for the window size 49 and a smaller local maximum for the window size 72.

affected by spectral leakage in the DFT as well as large (or multiple) dominant
periodicities in the signal. However, windowing techniques can be applied to
increase the accuracy of the harmonic analysis [18].

The runtime complexity depends on the computation of the DFT, which
is in O(n log n). The calculation of the magnitudes and window sizes can be
performed in O(n) as well as the linear search for the most dominant frequency.
Thus, the overall runtime complexity is in O(n log n). Its space complexity is in
O(n) as it uses four additional arrays.

Figure 2 illustrates instances of different arrowhead shapes as blue and orange
segments [2]. The corresponding magnitude profile (Fig. 2, bottom) shows a clear
global maximum (window size 49, magnitude 921) which captures the period of
the signal (between 40–60 data points). The 2nd highest local maximum (window
size 72, magnitude 398) also protrudes and captures multiple longer periods
containing 70–90 data points.

3.2 Highest Autocorrelation

The autocorrelation (AC) of a TS reports the correlation with a delayed copy of
itself. For different time shifts, called lags, it shows how similar the signal is to
its shifted version. If the TS has a distinctive period, its AC will be high for the
lag that equals the size of the repeated temporal pattern, which in turn can be
located and used as a window size.
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Fig. 3. The AC profile shows substantial deflections for window size 119 and its multiple
236.

Definition 5. The Autocorrelation Function (ACF) of a TS T , |T | = n defines
the zero-normalized cross-correlation a(l) := 1

n−l−1

∑n
j=l+1

(Tj−μT )·(Tj−l−μT )

σ2
T

for
a given lag l and with μT , σT being the mean or rather the standard deviation
of T . The series of cross-correlations A := (a(0), . . . , a(n − 1)) ∈ R

n, is the
autocorrelation (AC) of T .

The cross-correlation a(l) captures the similarity of T with its shifted version
for a lag of size l. The AC A of T contains such similarities for all possible lags
0 ≤ l ≤ n − 1 as a profile. It is highest for no lag and contains local maxima
for dominant periods in T as well as their multiples. To determine the period
(and hence a window size) for a given TS T , the algorithm calculates the AC
A of T . It then searches for the highest non-trivial local maximum in A with
a peak finding algorithm. Lastly, it reports the lag for the highest peak. While
the AC of a signal provides higher quality periodicity estimates, compared to its
DFT [18], the selection of the best period size (and not one of its multiples) is
more complicated.

The runtime complexity is dominated by the computation of the cross-
correlations, which can be reformulated using the Wiener-Khinchin theorem and
solved using the FFT in O(n log n). The runtime for peak finding using simple
baseline approaches utilizing exclusion zones, differencing or shape constraints
is in O(n). Thus, the total runtime is in O(n log n). Its space complexity is in
O(n), as it uses one additional array.

As an example of AC based WSS, see Fig. 3. At the top, it shows the concate-
nation of six beef spectrograms [2] (each consisting of 118 data points) and in
the bottom we plotted the corresponding AC profile. It shows the trivial global
maximum (for no lag) as well as a distinctive local maximum for a lag of 119
(29.6% correlation) and a more subtle one for a lag of 236 (23.5% correlation),
which is an approximate 2× multiple of 119. Its substantial local maximum accu-
rately captures a single instance of a spectrogram, which is the dominant period
in this data set.
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Algorithm 2. Multi-Window-Finder
1: procedure MultiWindowFinder(T , s, e)
2: DT ← initialize array with Inf of size m
3: for w ← s to e do
4: Mw ← mov avg(T,w)
5: DT [w] ← sum(log(abs(Mw − mean(Mw))))
6: end for
7: M ← find local minima(DT )
8: top3 = M1,3 · [1, 1

2
, 1
3
]

9: return mean(top3), std(top3)
10: end procedure

3.3 Hybrids: AutoPeriod and RobustPeriod

It is much easier to extract a signals’ top-k frequencies using the DFT rather
than its AC. The DFT contains strong peaks, which can be thresholded. It can,
however, include false positives due to spectral leakage. In contrast, the AC
contains hills and valleys which require a peak finding algorithm (compare Fig. 2
and 3). AC peaks however, when correctly retrieved, capture more accurately
the period size estimations [18].

AutoPeriod [18] is a hybrid algorithm that combines both approaches to
overcome their own limitations. It computes the DFT, thresholds it to retrieve
dominant period size candidates, and then validates them using AC. It filters
the Fourier frequencies with a 99% confidence interval and assigns the remaining
candidates to their closest AC hills or valleys. It then outputs the top location of
the selected hills as the dominant periods. From these, the best autocorrelated
frequency can be selected as a window size.

Another hybrid approach is RobustPeriod [19], which first removes the trend
in a TS, then decouples its periodicities and lastly detects dominate ones using a
bespoke filtered DFT and AC. It uses a Hodrick-Prescott (HP) filter to estimate
and remove the TS trend, which can negatively impact the AC computation.
The procedure then decomposes a TS into multiple frequency ranges (using max-
imal overlap discrete wavelet transform) to facilitate the detection of multiple
dominant periods. Lastly, RobustPeriod detects periods (in dominant frequency
ranges) using bespoke modified variants of DFT and AC that use Fisher’s signif-
icance test for filtering false positives. From these, the most significant frequency
is selected as a window size.

3.4 Multi-Window-Finder

Multi-Window-Finder (MWF) [8] is a subsequence-based approach. Its main
hypothesis is that the variance in the moving averages is small given a suitable
window size. This suitable window size then captures a temporal pattern that
repeats throughout a TS. In order to determine the width of this pattern, MWF
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measures the variance for a range of candidate windows and summarizes the
best-fitting ones as the window size for the TS.

Definition 6. The moving average of a TS T , |T | = n and a window size
w, is a series of mean values Mw := (m1, . . . , mn−w+1) ∈ R

n−w+1, such that
mk := 1

w · ∑w−1
j=0 T [k + j], for k = 1, . . . , n − w + 1.

Given a suitable window size w, its variance, measured as the distance of the
moving average Mw to its mean μMw

, produces a local minimum compared to
smaller (or larger) window sizes.

The Multi-Window-Finder (Algorithm 2) takes a TS T , start offset s and end
offset e as input. The procedure then calculates the moving averages Mw over
all window sizes between s and e (line 4). While s is set to a low constant value
(e.g. 10), e must either be set using domain knowledge or as a fraction of the TS
length (e.g. n

5 ). The absolute distances between the moving averages Mw and
their means are stored in an array DT at corresponding offsets (line 5). The local
minima in these distances represent suitable window sizes. They are located using
a differencing technique (line 7), and the first three are selected and weighted
by position (line 8). Thereby, the final window size is represented by the three
smallest dominant window sizes. These either represent multiples of temporal
patterns in the TS or distinct ones. The algorithm reports the final window size
as their average, as well as the associated confidence as their standard deviation
(line 9–10).

Its runtime complexity is dominated by the calculation of the moving aver-
ages and the distances to their means. A single moving average for a given
window size can be efficiently computed in O(n) differencing cumulative sums
of the TS. The absolute distance of the moving average to its mean can then
simply be computed in O(n), too. For a total of m = e − s candidate window
sizes, this computation takes O(m · n). The local minima distances are located
in O(n) and the final window size calculation is computed in constant runtime.
Hence, the overall runtime complexity is in O(m ·n). The space complexity is in
O(n), as two additional arrays are used.
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Fig. 4. The moving average distance has distinctive local minima for window size 201
and 416 as well as a more shallow one for 636.
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Algorithm 3. Summary Statistics Subsequence
1: procedure stats diff(T , w, statsT )
2: statsw ← (roll mean(T,w), roll std(T,w), roll range(T,w))
3: statsdiff ← 1√

w
· euclidean distance(statsT , statsw)

4: return mean(statsdiff )
5: end procedure
6: procedure suss score(T , w, statsT )
7: smin, smax ← stats diff(T, ‖T‖, statsT ), stats diff(T, 1, statsT )
8: score ← min-max scale stats diff(T,w, statsT ) to [smin, . . . , smax]
9: return 1 − score

10: end procedure
11: procedure calc suss(T , t)
12: T ← min-max scale T to range [0, . . . , 1]
13: statsT ← (mean(T ), std(T ), 1)
14: lbound, ubound ← exponential search(T, statsT ,suss score, t)
15: w ← binary search(T, statsT ,suss score, lbound, ubound, t)
16: return w
17: end procedure

Figure 4 shows an example of the moving average distances computed by
MWF. The TS (top) shows an ECG recording with normal (and one PVC)
heart beats (each one recorded within 250 data points) [9]. The corresponding
moving average distances (from 1 to 1k) (Fig. 4 bottom) show a substantial local
minimum for window size 200 and 416 as well as a more subtle one for 636.
MWF uses these three positions to calculate a final window size of 207 which
accurately captures one heart beat.

3.5 Summary Statistics Subsequence

Summary Statistics Subsequence (SuSS) [5] is a recent subsequence-based WSS
algorithm that compares summary statistics (mean, standard deviation, range
of values) computed over subsequences with those computed over the full TS.
Its assumption is that these summary statistics of appropriate subsequences are
close to those of the entire TS. Hence, their width is a good choice as a window
size.

The pseudocode for SuSS is given in Algorithm 3. It takes a TS T as input
and calculates its mean, standard deviation and range as a summary statistics
vector statsT of size 3 (line 13). It uses these global statistics to calculate their
distance to the rolling statistics of subsequences with changing length. For a
candidate window size w ∈ [1, ‖T‖], the rolling summary statistics statsw are
calculated as a matrix such that the i-th row contains the statistics for Ti,i+w

(line 2). SuSS calculates the Euclidean distances between statsT and all rows in
statsw and weighs them with the inverse of the root of the window size (line 3).
The normalization of the distances corrects a bias for larger windows that are
inherently more similar to the full TS. It creates length-invariant distances com-
parable across window sizes. The mean distance over all window sizes (line 4) is
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Fig. 5. SuSS locates a narrow range between 16 and 32 (using exponential search) in
which the requested window size 20 is found (using binary search), which corresponds
to half of the period size.

scaled and represents the final SuSS score for w (line 7–9). These scores mono-
tonically increase with w as the statistics of the windows and the TS eventually
align. SuSS first conducts an exponential, followed by a binary search to effi-
ciently find the smallest window size w with a score larger than a pre-defined
threshold t ∈ [0, . . . , 1], fixed to a domain-agnostic constant value of 89%. The
exponential search identifies a small interval lbound ≤ w ≤ ubound, in which the
binary search locates the best w (line 14–16).

The runtime complexity is in O(n) for a given candidate window size. Search-
ing the candidate space is in O(n · log w) for the combined search. As the window
size is constraint by n, SuSS has a worst-case complexity of O(n · log n). In most
applications, however, w is a small constant, which leads to a runtime complexity
of O(n). The space complexity is also in O(n), as the algorithm uses a matrix
of shape n − w + 1 × 3 to calculate a SuSS score (which is a single real value)
for a given subsequence width.

Figure 5 illustrates an EPG recording of an Asian Citrus Psyllid used for
studying its feeding behaviour [9]. In the bottom, we show (for illustration) all
the SuSS scores between window size 1 to 300. The scores quickly converge as
the appropriate window size is independent of the TS length. For a threshold of
89%, SuSS firstly bounds the search space between 16 and 32 and then finds the
window size 20 (score 89,2%) which accurately captures half of a period (see the
red dot that captures the entire period).

4 Experimental Evaluation

We experimentally evaluate the six WSS methods for anomaly detection, seg-
mentation and motif discovery. We first describe the data sets, methods and
evaluation metrics used for the study (see Subsect. 4.1). We analyse the perfor-
mance results for anomaly detection (see Subsect. 4.2) and segmentation (see
Subsect. 4.3) in a quantitative study, and explore the quality of motifs in Sub-
sect. 4.4. In order to foster the application and development of WSS algorithms
in follow-up works, we provide source codes, Jupyter-Notebooks, visualizations
and raw measurement sheets on our website [15].
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4.1 Setup

Data Sets: We use the two largest benchmark data sets available for the
anomaly detection and segmentation task, and two selected TS from the motif
discovery literature (Table 2).

Table 2. Benchmark Data sets used. For motif discovery no annotated benchmark
exists.

Benchmark name Type Number of data sets

HEX UCR Anomaly Benchmark
2021 (HUAB) [9]

Anomaly detection 250

Time Series Segmentation
Benchmark (TSSB) [16]

Segmentation 83

ECG heartbeats Motif discovery 1

Muscle activation Motif discovery 1

The HEX UCR Anomaly Benchmark Dataset 2021 (HUAB) [9] consists of
250 TS from natural, human and animal processes recorded with medical, motion
and other sensors. It was released as part of a SIGKDD’21 competition [9] and
used to evaluate MWF [8]. Each TS contains an anomaly-free training prefix
and a subsequent test suffix, in which exactly one natural or synthetic anomaly
is present.

The Time Series Segmentation Benchmark (TSSB) [16] contains 83 TS from
a wide variety of device, medical, image, motion and other sensors. It was pub-
lished in [14] and later extended [5]. Each TS is constructed from one UCR data
set by grouping TS by label and concatenating them to create segments with
controlled distinctive temporal patterns and statistical properties. The offsets,
at which the segments are concatenated, are annotated as CPs.

For motif discovery, we present two use cases. Muscle Activation was col-
lected from professional in-line speed skating [12] on a large motor driven tread-
mill with Electromyography (EMG) data of multiple movements. It consists of
29.899 measurements at 100 Hz corresponding to 30 s in total. A muscle activa-
tion and recovery takes around 120 ms. ECG Heartbeats contains a patient’s (ID
71) heartbeat from the LTAF database [13]. It consists of 3k measurements at
128 Hz corresponding to 23 s. The heartbeat rate is around 60 to 80 bpm.

Data Mining Methods: We compare three window-based methods from the
anomaly detection and segmentation literature, as well as two algorithms for
motif discovery. Note, that we are not mainly interested how these methods
compare to each other (per task), but rather how window sizes from the differ-
ent algorithms influence their performance. We use default parameters for all
algorithms.
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For anomaly detection, we evaluate discord discovery (with the matrix pro-
file) (MP) [20], isolation forest (IF) and a linear one-class support vector machine
(SVM). These methods represent a variety of very different approaches to the
problem of anomaly detection, and many new techniques extend their prin-
ciples. For segmentation, we assess window-based segmentation (with maha-
lanobis cost) (Window) [17], FLOSS [6] and ClaSP [5]. Window is a baseline
approach, and FLOSS and ClaSP are the most recent domain-agnostic meth-
ods published. From the motif discovery literature, we chose EMMA [11] and
Learning Motifs [7], the two reference implementations for K-Motifs and Latent
Motifs.

Evaluation Metrics. For the quantitative analysis of TSS and AD, hard and
soft metrics exist. The former measures if an algorithm’s predictions match the
ground truth, while the latter reports the degree to which the predictions pre-
cisely match with it. We choose hard metrics suggested in the literature, which
provides a fair evaluation in the presence of ties. This is inherently the case for
parameter-tuning (in general) and WSS specifically, as all algorithms in Sect. 3
try to estimate a signal’s period. In TSDM, it is common practice to consider a
prediction (change point or anomaly) to be correct (TP), if it is in proximity to
the ground truth.

F1 score for AD: Assume a TS T of length n, with a train segment
from [1, . . . , l] with l < n and a true anomaly subsequence in the interval
[begin, . . . , end] with l < begin ≤ end ≤ n. Assume an algorithm predicts the
timestamp p as an anomaly, we label it correct if it is contained in the true
anomaly interval max(1, begin − 100) ≤ p ≤ min(end + 100, n), considering
slack, false otherwise. From this matching, we infer the binary F1 score of either
100% or 0%. We choose a slack of 100 as suggested in [9] for HUAB.

F1 score for TSS: Consider again a TS T of size n and sets of ground truth
CPs cptsT and predicted CPs cptspred, with each location in [1, . . . , n]. The F1
score reports the harmonic mean between precision and recall, where precision
reflects the fraction of correctly identified CPs over the number of predicted
CPs. Recall computes the number of correctly identified CPs over the number
of ground truth CPs. We choose a slack of 1%, as suggested in [5], and allow
exactly one correctly predicted CP to count as a TP.

For both TSS and AD, we show critical difference diagrams (as introduced
in [3]) to compare the average ranks between approaches per benchmark. The
best approaches scoring the lowest (average) ranks over all benchmark TS are
shown to the right of the diagram. Groups of approaches that are not significantly
different in their ranks are connected by a bar, based on a Nemenyi two-tailed
significance test with α = 0.05.

Motif discovery is an exploratory task applied to unlabelled data. Thus, it is
hard to measure the quantitative effect of WSS. Instead, we did a qualitative
analysis with weakly labelled TS, and compared the found motifs with the ones
reported in the literature.
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Fig. 6. F1 ranks on 250 benchmark data sets for MP, SVM and IF in combination with
human and detected window sizes and window sizes correlation between approaches

4.2 Anomaly Detection

We compare discord detection (with MP), isolation forest (IF) and one-class
support vector machine (SVM) in combination with human annotations on the
250 benchmark data sets (HUAB). Figure 6 shows average F1 ranks for the
methods.

For discord detection, AutoPeriod ranks first, followed by ACF, MWF, FFT,
human, SuSS and RobustPeriod. The first two best-ranking WSS approaches
rank significantly better than the last two and the 3rd to 6th approaches
rank insignificantly different. The accuracy of the candidates range from 32.8%
(RobustPeriod) to 54% (ACF) with high standard deviations between 47–50%
(due to the binary scoring). Considering IF (and SVM), the performance dif-
ferences fade for all WSS algorithms and become statistically indifferent. The
mean ranks range minimally, the accuracy is low and between 16.8% and 24.4%
(13.2% and 18%) and the standard deviation ranges between 37.5% and 43%
(33.9% and 38.5%). Compared to discord detection, MWF and human window
sizes perform worse, while FFT and SuSS perform better.

The main finding of these results is that the six WSS methods perform com-
parably to each other but surprisingly better than human window size anno-
tations. The correlation heatmap in Fig. 6 confirms that FFT, ACF, SuSS and
MWF have a moderate to strong correlation, indicating all find similar win-
dow sizes. AutoPeriod protrudes with weak correlation, but best-ranking results
(rank 1 and 2). Hence, AutoPeriod may be concluded as a favourite for WSS in
the TSAD task. AutoPeriod is a hybrid of FFT and ACF and finds anomalies
in frequency- and time-domain. This might be the reason for its superior perfor-
mance. However, the differences are not significant. As such, we expected WSS
to perform favourably well for anomaly detection, as a change of the period is
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indicative of an anomaly. The results underline that it is competitive with or
even surpassed human annotations.

4.3 Segmentation

Figure 7 contains the average F1 ranks for ClaSP, FLOSS and Window for the
83 TSSB benchmark data sets as well as a window sizes correlation heatmap.
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Fig. 7. F1 ranks on 83 benchmark data sets for ClaSP, FLOSS and Window in com-
bination with human and detected window sizes and window sizes correlation between
approaches

ClaSP performs best with human windows, followed by FFT, SuSS, MWF,
AutoPeriod, ACF and RobustPeriod. While the top-4 approaches do not rank
significantly different, only human window sizes perform significantly better than
the 3 worst approaches. Performances (standard deviations) range from 69.1%
to 88.5% (20.1% to 30.9%). FLOSS (and Window) show only insignificant differ-
ences between WSS approaches. The mean ranks are in range of 1.8 to 2.7 (1.4
to 2.1), the mean F1 score is between 56.6% and 62.5% (39.2% and 43.5%) and
the standard deviations range in 22.8% to 27.3% (20.7% to 25.3%). In contrast
to ClaSP, human annotations rank worse and ACF as well as MWF score better
results.

As observed for anomaly detection, the WSS methods perform competitive to
human annotations. This is surprising, as the TS have changing periods between
segments, such as “running” and “walking” in human activity. All methods
except RobustPeriod further show moderate to strong relationships (compare
Fig. 7). FFT and SuSS are both within the top-3 ranking approaches and may
be concluded as favourites for this task. Interestingly, the WSS by AutoPeriod is
more correlated with the ones from other methods, yet it performs worse (rank
5 and 6). This may indicate that the AutoPeriod detection deteriorates in TS
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with regime changes, as opposed to FFT and SuSS. However, all differences are
not significant.

4.4 Motif Discovery

We present the quality of the found motifs of two challenging real-life data sets
for EMMA and LM using human and detected window sizes in Fig. 8.

Fig. 8. Found motifs on two popular use cases: ECG heartbeats and inline skating
motions

ECG Heartbeats: This data set contains two motifs, a calibration signal with 6
occurrences and the actual heartbeats with 16 occurrences. Two top motif sets
as computed by the different methods are shown in Fig. 8 (left). The best results
could be achieved using EMMA or LM in combination with ACF and SuSS.
Both methods found calibration waves as TOP-1 motif and heartbeats as TOP-
2 motif (bottom images). The location of the motifs and its lengths are shown in
Fig. 8 (center). The found periods of the other window selection methods result
in unrecognizable noisy signals or no motifs found.

Muscle Activation: The two top motif present in this data set are the activation
and the recovery phase of the Gluteus Maximus muscle and have 12–13 occur-
rences as shown in Fig. 8 (right). The best results could be achieved using EMMA
and LM using FFT, ACF and AutoPeriod. The TOP-1 motif for EMMA is a
whole activation and recovery cycle. The TOP-2 motif found is a shifted variant
of the TOP-1 motif and represents - in parts - the recovery phase. MWF failed
to find motifs, and SuSS found a too small window size to return meaningful
motifs.

Overall, the window lengths of all methods are either too small or too large
to distinguish between recovery and activation. ACF, however, seems to find
period lengths that produce meaningful motifs on both data sets, the other
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competitors did not succeed to give good lengths on all data sets. The problem
of TSMD is different from that of the other two use cases mentioned before,
as the TS are non-periodic. In motif discovery, we search for frequent similar
substructures. This substructure may or may not be correlated to a period of
the TS. WSS, however, tries to identify a period in the TS. Thus, by design
it fails for TSMD. On our supporting website [15], we show the results of two
additional (non-periodic) data sets for motif discovery.

5 Summary

We applied window size selection (WSS) to three distinct time series data mining
tasks. Segmentation and anomaly detection require the input data to be peri-
odic. As such, WSS even surpasses human annotations. In anomaly detection, a
change in the period is even a sign of an anomaly. Segmentation is further char-
acterized by changing window sizes between segments. In motif discovery, the
TS itself must not be periodical, but we search for frequently appearing, similar
subsequences. As such, we did not see a clear winner for all scenarios covered.
From the WSS methods, the window sizes from FFT, ACF, SuSS and MWF are
correlated and do not lead to significantly different performances. AutoPeriod,
however, ranked highest for anomaly detection and FFT and SuSS are the two
best-ranking whole and subsequence-based methods for the segmentation task
and have low runtimes. In a global ranking (across both tasks and all methods),
FFT ranks first, AutoPeriod and SuSS second, ACF and MWF third, followed
by human window sizes, and RobustPeriod. For motif discovery, the presented
approaches gave unsatisfactory results, as the size of non-trivial substructures
in TS cannot easily be determined by its period size. Hence, more research is
needed in data mining domains where the TS is non-periodic or contains changes
in its period length. Also, incremental and online detection of changing window
sizes is an interesting research area. Future work could further evaluate one of
the mentioned TSDM tasks in more detail or explore more of its algorithms,
benchmarks and evaluation metrics.
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Abstract. Accurate forecasting of water quality parameters is a significant part of
the process of water resourcemanagement. In this paper we demonstrate the appli-
cability of Long Short-Term Memory (LSTM) combined with attention mecha-
nism for the long-term forecasting (after 24 h) of Dissolved Oxygen content at
various stations of Ganga River flowing through the state of Uttar Pradesh, India.
In the given model, the hidden states of the LSTM units are passed to the attention
layer. The attention layer then gives different weights to the hidden states based
on their relevance. The performance of the models is evaluated using root mean
square error, mean absolute error and coefficient of determination. The experi-
mental results indicate that combining attention mechanism with LSTM signifi-
cantly improves the forecasted values of Dissolved Oxygen when compared with
state-of-the-art models like Recurrent Neural Network, LSTM, and bidirectional
LSTM. The demonstrated model is particularly useful during the availability of
only univariate datasets.

Keywords: Dissolved oxygen · Water quality forecasting · Long short-term
memory · Attention

1 Introduction

Water is an essential and irreplaceable resource supporting human, animal, and plant life
on earth through its consumption in various forms. Because of rapid urbanization in the
recent decades, the number of industrial setups and towns near the rivers has increased
substantially in India, causing water quality to deteriorate day by day. This water qual-
ity deterioration has called for the efficient management of water resources. Accurate
forecasting is an essential step in improving the management of water resources.

Dissolved Oxygen (DO) is one of the many important parameters used to determine
the standard of water in rivers and other water bodies. Dissolved Oxygen is the balanced
amount of oxygen dissolved in the water bodies left after oxygen-producing processes
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like absorption from the atmosphere and photosynthesis and oxygen-consuming pro-
cesses like aerobic respiration and chemical oxidation. Water must contain sufficient
DO for the aquatic life to survive. However, continuous anthropogenic activities near
the water bodies have led to the depletion of Dissolved Oxygen, thereby resulting in the
deterioration of water quality standards.

Currently, many departments managing water resources worldwide have set up sen-
sors to monitor the quality of water at different monitoring stations. However, they
cannot be used to forecast the quality of water. However, at the same time, the enor-
mous data collected by these stations can be used to build certain data-based models to
predict future values of specific water quality parameters. The forecasts obtained from
the models can be used further to control the degree of pollution in the water bodies
by encouraging policymakers and government officials to take appropriate actions to
manage water resources properly.

In this paper, we have demonstrated the applicability of the attention mechanism
combined with LSTM for long-term forecasting of DO content in River Ganga flowing
through the state of Uttar Pradesh in India. We also compare the developed model with
other state-of-the-art models like Recurrent Neural Network, LSTM, and bidirectional
LSTM. The presented method is particularly beneficial when only univariate datasets
are available.

2 Related Work

Several studies have used different variations of Artificial Neural Networks for forecast-
ing of different water quality parameters. The employment of artificial neural network
(ANN) to determine the amount of biological oxygen demand (BOD) and DO of Gomti
river in India has been suggested by Singh et al. in [1]. The study concluded that phos-
phate, nitrate nitrogen, ammoniacal nitrogen and Chemical Oxygen Demand were the
main factors in determining DO. Ruben G. B. et al. [2] recommends the utilization
of MLP model with Levenberg-Marquardt algorithm for learning for the forecast the
level of COD in Xuxi River, China. I. S. Yeon et al. [3] proposes the use of Levenberg-
Marquardt Neural Network (LMNN), Modular Neural Network (MDNN) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) models for forecasting DO. Rankovic et al. [4]
have conducted a studymaking use of a feed forward neural network (FFNN) to estimate
the strength of DO in the Gruza Reservoir of Serbia. S. Emamgholizadeh et al. [5] sug-
gests the use of various kinds of neural networks like Multi-Layer Perceptron (MLP),
Radial basis network (RBF) and ANFIS for water quality forecasting. It is found in the
study that pH and temperature have the highest contribution in improving efficiency of
the model whereas the nitrates, phosphates and chlorides have been useless in determin-
ing the level of DO. Sarkar A. et al. [6] have proposed a study making the use of ANN
with feed forward error back propagation to determine the level of DO in Yamuna River
in the downstream ofMathura city in India. The authors suggested that better forecasting
is possible if higher frequency data is available for training purpose.

A successful demonstration of wavelet neural network (WNN) and artificial neural
network models with different combinations of input parameters with different time
lags was used to predict DO, temperature, and salinity by Alizadeh et al. [7]. A study
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comparing linear and non-linear models to forecast the DO levels in the river Danube
has been conducted by Csábrági, A. et al. [8]. For this, the authors have employed
four different models namely, multi-linear regression, multi-layer perceptron neural net-
work (MLPNN), Radial Basis FunctionNeural Network, andGeneral RegressionNeural
Network (GRNN).

Several advanced neural networks have also been used in several studies to find
out the complex relationship between the input and output parameters. Zou Q. et al.
[9] suggested the use of multi-time scale bidirectional LSTM for prediction of water
quality in Beilun River. The authors made use of both water quality and meteorological
features in the prediction process. Li et al. 2018 [10] proposed the use of combination
of Sparse Auto-encoder and LSTM for predicting DO in a shrimp pond by making use
of multivariate dataset containing both water quality and meteorological parameters.

Attention based mechanism was originally used for Natural Language Processing
[11]. Nevertheless, the attention mechanism has recently been used for forecasting in
several areas like wind power [12], flood [13], electrical loads [14], etc. Liu et al. 2019
[15] makes use of recurrent neural network combined with attention on short and long-
term prediction of DO in a pond in Zhejiang Institute of Freshwater Fisheries, Zhejiang
province, China. The studymakes use of DO, soil parameters andmeteorological param-
eters for short term and long term DO forecasting. The earlier works have made use of
historic data consisting of multiple water quality metrics and other external factors like
meteorological features. There is a need for methods to be able to handle the non-
linear complex relationship between the input and the output features while considering
minimal historic data for forecasting DO levels.

3 Data and Methods

3.1 Study Area and Water Quality Data

River Ganga is considered one of themost sacred rivers to the Hindus. The river flows for
a length of around 2525 km, flowing through the states of Uttarakhand, Uttar Pradesh,
Bihar, and West Bengal in India. The dataset contains values of Dissolved Oxygen
for a total of 5 monitoring stations of River Ganga flowing through the Uttar Pradesh
region of India. The data is collected from monitoring stations at Ghatiya Ghat bridge
(Farrukhabad), Manimau bridge in Kannauj, Bridge at Bithoor, Bridge near Fatehpur
(Asni Village) and Bridge in Varanasi. The studied locations aremarked onGooglemaps
in Fig. 1. The water quality data is collected from the Uttar Pradesh Pollution Control
Board, Lucknow, Uttar Pradesh.

The dataset contains records from 1 April 2017 to 30 April 2021. The dataset avail-
able has a sampling rate of one observation per hour for the years 2017 to 2018 and
a sampling rate of one observation per 15 min for the years 2019 to 2021. In order to
ensure consistency of the sampling rate, we retrieved the records with a sample rate of
one observation per hour for all the years. Table 1 illustrates the total number of records
in the dataset for each of the monitoring stations. The dataset is divided in such a way
that 80 % of the data is used for training and 20 % is used for testing.
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Fig. 1. Study area marked on Google maps

3.2 Data Preprocessing

The dataset contains some random missing values. These missing values are imputed
using linear interpolation. The data is further normalized using min-max normalization,
thus mapping the values in the range [0, 1]. The following is the equation used for
normalizing the dataset:

x
′ = x − xmin

xmax − xmin
(1)

where, x
′
is the normalized value, x is the original value, xmin is the minimum value and

xmax is the maximum value of the variable.

Table 1. Number of records in the dataset for the monitoring stations

Station Number of records

Ghatiya Ghat bridge, Farrukhabad 31970

Manimau bridge, Kannauj 32298

Bridge at Bithoor 33526

Bridge near Fatehpur 35094

Bridge in Varanasi 34938
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3.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) are an advancement over simple neural networks
making use of sequential data as input. While simple neural network considers input
and output to be independent, RNNs takes into account the previous input sequence to
determine the current output. The problem with a simple RNN is that it suffers from
vanishing and exploding gradients.

3.4 Long Short-Term Memory

To solve the problem of vanishing gradient and gradient explosion, Hochreiter et al.
[16] proposed LSTMs. The LSTMs are a special kind of RNNs, with the ability to learn
long-term dependencies by storing information related to different time periods using
cell states. The cell state at a specific LSTM unit describes the information that has
been considered relevant till that particular timestamp. The LSTMs regulate the flow
of information to the cell states by making use of forget, input and output gates. The
information passed to the gates is a function of hidden states passed from the previous
LSTM unit at the previous timestamps and information at the current timestamp.

3.5 Bidirectional Long Short-Term Memory

Bidirectional LSTM is an advancement over the basic LSTMmodel. The input is passed
to the two LSTMs: first through the forward layer and then through the backward layer.
In the forward layer, the LSTM is applied on the input in the forward direction and in the
backward layer, another LSTM is applied to the input in the backward direction. After
learning the sequence in both the directions, merging operation is performed on the two
models.

3.6 Long Short-Term Memory with Attention

Originally, attention mechanism was intended for use in Natural Language processing
[11] but was quickly adopted in other disciplines as well [12–14]. The basic idea in the
attention mechanism is to consider only the most relevant information and to reduce the
impact of less important information from further processing.

The LSTM units extract the long-term dependencies. In temporal attention model,
the hidden states of the LSTM units are passed to the attention layer. The attention layer
assigns different weights to the various hidden states based on their significance for
forecasting dissolved oxygen, thus further enhancing the performance of the model. The
features thus generated are then further passed to the fully connected layer which finally
generates the forecasts. Figure 2 shows the block diagram for our proposed framework.
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Fig. 2. Block diagram for the proposed framework

4 Results and Discussions

The work has been implemented in Python 3.8 using TensorFlow 2.3.1 and Keras 2.4.3.
All the experiments are conducted in Windows 10 operating system with 16 GB RAM
and Intel(R) Core (TM) i7-10750H CPU at 2.60 GHz. Adam optimizer is used to accel-
erate the gradient descent algorithm to minimize the mean squared error. The activation
function used is the tanh function for all hidden layers.

The performance of the models is checked on learning rates [0.01, 0.001, 0.0001]
and on the batch sizes of [64, 128, 256]. The models perform best with the learning
rate of 0.0001 and batch size of 64. The models are also fitted over a variable number
of epochs ranging from 10 to 2000. Then a suitable value of epoch is chosen for the
model corresponding to each monitoring site. For forecasting DO at a particular time of
the day, the DO values measured at the same time for the past n days is taken as input.
The performance of the models is also checked by considering a lag of 1 to 5 days as
input for each monitoring station. After finding a suitable lag value for each monitoring
station, a corresponding window of n previous DO values is given as input for the final
building of the model.

The demonstrated model makes use of the LSTM layer as the first hidden layer. The
window containing the sequential DO values are first given to the LSTM layer as input.
This is followed by the attention layer, which assigns weights to themost relevant hidden
states of the previous LSTM layer. The most relevant features generated is then passed
to the fully connected dense layer. In the end, an output layer is added, which returns a
single forecasted value.
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The experiments demonstrate the LSTM combined with attention mechanism per-
formed drastically better than the simple RNN, LSTM and bidirectional LSTM. More-
over, to compare and demonstrate the effectiveness of models, we employed root mean
squared error (RMSE), coefficient of determination (R2), and mean absolute error
(MAE). Table 2 shows the RMSE values while considering different number of DO
values in the input window. The lower values of RMSE and MAE and higher R2 values
indicate better models. Table 3 summarizes the results corresponding to RMSE, MAE
and R2 for all the models thereby showing that the results obtained by combining LSTM
with attention mechanism are significantly better as compared to the other models. The
values also indicate that LSTM performs almost similarly or marginally better than the
RNN model. Whereas the bidirectional LSTM gives significantly better results as com-
pared to basic RNN and LSTMmodels. Further, attention combined with LSTM further
outperforms all the models.

Table 2. RMSE of LSTM combined with attentionmodel making use of different number of days
as lags for River Ganga monitoring stations

Station/Number of days considered as lags 1 Day 2 Days 3 Days 4 Days 5 Days

Ghatiya Ghat bridge, Farrukhabad 0.344 0.343 0.345 0.348 0.347

Manimau bridge, Kannauj 1.771 1.762 1.752 1.758 1.757

Bithoor 0.817 0.823 0.849 0.850 0.853

Fatehpur (Asni Village) 1.276 1.262 1.310 1.257 1.320

Bridge in Varanasi 1.124 1.113 1.088 1.102 1.088

Figure 3 shows the scatter plots for all the stations for the testing phase of the
dataset. The x-axis and the y-axis correspond to the measured and predicted values of
DO respectively. Figure 4 shows the measured and predicted values of the DO during
the testing phase of the model for the month of April 2021.
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Table 3. Performance evaluation of models for River Ganga monitoring stations for Train and
Test sets

Stations Models RMSE MAE R2

Train Test Train Test Train Test

Ghatiya Ghat Bridge,
Farrukhabad

RNN 0.630 0.464 0.337 0.293 0.832 0.904

LSTM 0.630 0.464 0.338 0.295 0.832 0.904

Bidirectional LSTM 0.458 0.344 0.226 0.198 0.911 0.947

LSTM with Attention 0.457 0.343 0.224 0.197 0.911 0.947

Manimau Bridge,
Kannauj

RNN 1.854 2.381 1.170 1.570 0.481 0.476

LSTM 1.852 2.385 1.176 1.573 0.482 0.474

Bidirectional LSTM 1.305 1.797 0.694 1.066 0.743 0.701

LSTM with Attention 1.299 1.752 0.680 1.044 0.746 0.716

Bithoor RNN 1.158 1.191 0.648 0.636 0.785 0.714

LSTM 1.130 1.179 0.630 0.620 0.796 0.720

Bidirectional LSTM 0.847 0.821 0.439 0.416 0.885 0.864

LSTM with Attention 0.843 0.817 0.435 0.414 0.886 0.865

Fatehpur (Asni
Village)

RNN 2.018 1.830 1.304 1.172 0.540 0.610

LSTM 1.994 1.833 1.274 1.148 0.550 0.609

Bidirectional LSTM 1.315 1.274 0.765 0.755 0.804 0.811

LSTM with Attention 1.286 1.257 0.732 0.723 0.813 0.816

Bridge in Varanasi RNN 2.170 1.760 1.452 1.172 0.587 0.794

LSTM 2.159 1.732 1.438 1.144 0.591 0.801

Bidirectional LSTM 1.494 1.089 0.920 0.638 0.804 0.921

LSTM with Attention 1.480 1.088 0.912 0.639 0.808 0.921
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Fig. 3. Scatter plots for the test dataset
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Fig. 4. Plots showing measured and predicted Dissolved Oxygen for the test dataset
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5 Conclusion

Managing water resources is one of the significant challenges for governments world-
wide. Accurate long-term forecasting ofwater quality parameters likeDissolvedOxygen
can help control the degree of pollution by encouraging the officials to make suitable
policies and take precautionary actions.

Deep learning models like LSTM have been used successfully in several fields
to forecast electricity demand [17, 18], air pollution [19], rainfall [20], etc. Combin-
ing LSTM with the attention mechanism can significantly enhance its performance by
assigning more weights to certain relevant hidden states for DO forecasting. The results
suggest that the suggested temporal attention-based LSTM models perform better than
the traditional standalone RNN, LSTM and bidirectional LSTM models. Further, the
demonstrated model takes only previous DO values as input features and would there-
fore be helpful in situations when multivariate datasets are not available. Additionally,
because the exhibited model simply relies on historical data, it is simple to extend it to
any monitoring station.
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Abstract. Deep Learning models for time series classification are bench-
marked on the UCR Archive. This archive contains 128 datasets. Unfor-
tunately only 5 datasets contain more than 1000 training samples. For
most deep learning models, this lead to over-fitting. One way to address
this issue and improve the generalization of the models is data augmen-
tation. Although it has been extensively studied and is widely used for
images, fewer works have been done on time series. InceptionTime is
an ensemble of 5 Inception classifiers and is still regarded as the state-
of-the-art deep learning model for time series classification. However,
most of the work on data augmentation were not done on the Inception
classifier. In this paper we solve this issue by studying 4 different data
augmentation methods through 4 experiments on the Inception model.
We studied trainings with one or several augmentations at the same time
and with or without generating new samples at each epoch. We also con-
ducted experiments with ensembling and benchmarked our results on the
UCR Archive. We showed that using a combination of both the scaling
and window warping data augmentation methods, we can significantly
improve the accuracy of Inception and InceptionTime models.

Keywords: Data augmentation · Time series · Scaling · Window
warping · Inception

1 Introduction

As deep learning models get deeper and deeper, training them has become a real
challenge. The training part is based on statistics. A distribution of the data is
learned on a training set. The aim is to generalize on a test set, unseen by the
model. Generalization is the main challenge for the training as we expect the
model to perform as well on unknown data as on the training set. If a model
performs better on the training set than on the test set, we say that it over-fits.
For this reason, in addition to an important computing power, the training needs
quality and quantity of data. This raises the question “For a given task how much
data do we need ?”. In the literature, this problem is called sample complexity as
the answer depends on both the complexity of the problem and that of the chosen
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T. Guyet et al. (Eds.): AALTD 2022, LNAI 13812, pp. 117–132, 2023.
https://doi.org/10.1007/978-3-031-24378-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24378-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-24378-3_8


118 G. Pialla et al.

model. In computer vision, state-of-the art models are benchmarked on huge
datasets like ImageNet [3], MS-COCO [14] or Open Image [12]. These datasets
contain thousands of samples for each different class. Regarding time series, most
of the models are benchmarked on the UCR Archive [1]. The latest version of
this archive contains 128 datasets regrouped in 7 categories such as Sensor, ECG,
or Devices. The downside is their few number of training samples, and the lack
of validation sets. As a matter of fact only 5 of them contain more than a 1000
training instances. Thus, it is hard for the models to generalize well because
of the over-fitting. In order to improve further generalization and reduce over-
fitting, different strategies can be carried out in machine learning. Among them,
one can reduce the complexity of a model by simply removing layers or reducing
the number of neurons. Regularization consists of adding a penalty term to the
loss function. Usually, the chosen penalty is the L1 or the L2 norm. Regarding the
weigths, the L1 norm minimizes their absolute value while the L2 norm minimizes
their squared magnitude. Early stopping is also a form of regularization. It entails
stopping the training before the appearance of over-fitting. It is widely used for
training deep learning models. Differently, Ensembling combines several weak
independent models in order to obtain a stronger model. Ensembles can have
different size, and be composed of different models. It exists several ways to create
ensembles. An easy and effective one is to average to predictions of the different
models. Another regularization method consists of using more data. One can
either collect new data, or increase artificially the amount of training data by
creating of modifying existing samples. This is called data augmentation (DA).
Using synthetic data is particularly useful when it is too difficult to obtain new
data. Such data can be created in a realistic way using algorithms, or deep models
like Variational Encoders or Generative Adversarial Networks. Most of the time,
the augmented data is simply a copy of the training set to which has been applied
random transformations. Commonly, for images these transformations are color
changes, rotations, zooming, blurring or cropping parts of the images. Increasing
the dataset in such a way, helps to provide more context. InceptionTime [8],
introduced in 2019, is considered as the state-of-the-art deep learning time series
classifier. It is an ensemble of 5 Inception networks. To reduce over-fitting, beside
creating an ensemble, Fawaz et al. used early stopping during the training of each
separate network. Despite that, InceptionTime still over-fits most of the UCR
datasets. To overcome this issue, data augmentation appears like an interesting
solution. Unlike in computer vision, where this is widely used, few time series
classifiers are using it during training. Iwana et al. [9] benchmarked 12 data
augmentation methods over 6 time series classifiers. Some of these methods were
adapted from computer vision, but other are specific for time series. As this
survey was not conducted on Inception networks and InceptionTime ensembles,
we propose to investigate the use of data augmentation on this state-of-the-art
architecture. After having selected 4 promising data augmentation methods from
[9], our main contributions are:

– We benchmarked them on both Inception and InceptionTime over the entire
UCR Archive.



Data Augmentation for TSC with Deep Learning Models 119

– We went further than existing papers by testing the methods independently
but also combined together.

– We created ensembles of Inceptions networks trained with the same data
augmentation method but also with different ones.

– Finally, we showed how data augmentation can significantly improve the accu-
racy of both architectures.

2 Related Work

The aim of using data augmentation is to reduce over-fitting, by improving the
generalization of a deep learning model, thus also improving it’s accuracy. Many
well-known networks have used it to boost their performances and become the
state-of-the-art. Among them, AlexNet [11] in 2012 used cropping, mirroring,
zooming, blurring and rotation. VGG [16] in 2014 used scaling and cropping.
The inception networks [17] introduced in 2014 used cropping and mirroring.
ResNet [7] has used cropping and mirroring.

Hence, data augmentation is not a new technique and has been extensively
studied for computer vision. Most of the previously cited architectures have been
adapted for time series classification. They have given FCN [20], ResNet [20]
and InceptionTime [8]. These architectures have all achieved state-of-the-art
performances, but unlike their counterparts in computer vision, they have not
used data augmentation.

Regarding time series, data augmentation has not been explored in depth
until recently. Indeed, two surveys benchmarked most of the existing methods.
The first one from Iwana et al. [9] benchmarked 12 data augmentation methods
over 6 different classifiers. Similarly, the second study by Weng et al. [21] com-
pared data augmentation methods, but considered not only classification but
also anomaly detection and prediction.

Out of the benchmarked methods, most of them are adaptations from the
ones used in computer vision. Jittering consists of adding to each time step
of a time series a random Gaussian noise. Window slicing [13] is the process
of extracting sub-parts or windows from a time series. Each part is then clas-
sified. The majority class obtained within the patches is then assigned to the
original series. Flipping inverts a time series. Some of these techniques can only
be used for specific datasets. Indeed, it does not make sense to apply flipping
for every kind of time series, like ECGs. Similarly, for Window slicing, if the
discriminative parts are not present in each slice, it can result in false predic-
tions. For this reason, some methods were specifically designed for time series.
Guided Warping techniques like Random Guided Warping and Discriminative
Guided Warping [10] use DTW to warp patterns from one time series to another.
Forestier et al. [6] introduced weighted DBA which averages a set of time series
to create a new one.

Instead of using and modifying existing time series, other methods focus
on creating synthetic data. Generative Adversarial Networks (GANs) and Vari-
ational Auto-Encoders (VAEs) are popular ways to do so. Regarding GANs,
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TimeGAN [22], Recurrent Conditional GAN [5] or Continuous recurrent neural
networks [22] are adapted for time series. Regarding auto-encoders we can cite
TimeVAE [4], the use of masked autoencoders [23], or the averaging of time series
using auto-encoders [18]. Differently, Pialla et al. [15] designed a smooth adver-
sarial attack and showed through adversarial training how adversarial samples
can also be used to improve the robustness of deep models.

Although these generative methods can be used as some kind of data aug-
mentation, they require to train new models and often to fine tune them for each
dataset. Thus, they do not represent a general and quick approach to implement.

3 Proposed Approach

3.1 Data Augmentation Methods Used

In this paper, we took 4 methods from [9]. We selected the methods that were
the most recommended across all deep learning models to asses if they also
generalize on the Inception models.

RGW. Random Guided Warping (RGW) has been introduced in [10]. For a
given class, two different patterns are selected. Then, these patterns are randomly
switched between the samples. The warping between the samples is computed
using the DTW algorithm.

DGW. Discriminative Guided Warping (DGW) was also introduced in [10] and
is similar to RGW. This time, only the most discriminative pattern is selected
inside a batch.

Scaling. The scaling method multiplies a time series with a random scalar α.
It can be taken from a random Gaussian distribution α ∼ N (1, σ2). We use
the same parameters as in [19]: μ = 1 and σ = 0.1. This method modifies the
magnitude of the time series. An example of a scaled time series is displayed in
Fig. 1.

Fig. 1. Example of scaling a time series from the EthanolLevel dataset.
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Window Warping. Window warping as been introduced in [13]. It consists of
selecting a random window. The window is then sped up by a factor 2 or slowed
down by a factor 0.5.

We used a window size equal to 10% of the TS length. An example of Window
Warping can be seen below in Fig. 2.

Fig. 2. Example of Window Warping. The part of the original time series in blue has
been increased two times. (Color figure online)

3.2 Models Used

The Inception network was first introduced by Fawaz et al. in [8]. It is an adap-
tation for time series from the famous Inception architecture in computer vision.
The model is composed of 6 inception modules, a Global Average Pooling (GAP)
and a Dense layer. The architecture is represented in Fig. 3 and the inception
modules in Fig. 4.

Fig. 3. Inception network. Fig. 4. Inception module.
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Each inception module, is composed of several convolutions with different
kernel sizes. All the convolutions outputs are concatenated and followed by a
Batch Normalization layer and a Relu activation function. The intuition behind
the inception module is to make the network wider instead of deeper and prone
to over-fitting.

3.3 Ensembling of Inception Networks

InceptionTime [8] is an ensemble of 5 Inception classifiers. Today, it is still
regarded as the state-of-the-art deep learning model for time series classifica-
tion. The ensemble is done by averaging the softmax predictions made by the 5
Inception networks. Thus, for a given input x, the final prediction of the ensem-
ble of n models is:

ŷ = arg max

(
1
n

n∑
i=1

fi(x)

)
(1)

In this paper, we use InceptionTime to benchmark our ensembling results. We
did several kinds of ensemblings: ensemblings of Inception models trained with
the same data augmentation method, ensemblings of Inception models trained
with different data augmentation methods and finally ensemblings of Inception
models trained with several data augmentation methods.

3.4 ROCKET

ROCKET [2], is a non-deep model for time series classification. It is composed of
random, unlearnt convolutions. Using theses convolutions, features are extracted
using the percentage of positive values (PPV). Finally, the classification is done
using a linear classifier. This model is really famous because of its accurate clas-
sifications and its exceptionally fast training time, hence the name. As ROCKET
is a state-of-the-art time series classifier, we proposed to use it as a benchmark
for our best models.

4 Experimental Setup

4.1 Datasets

All our experiments where conducted on the UCR Archive [1]. This archive is
commonly used by the time series community to benchmark methods or deep
learning classifiers. The 2018 version of the UCR Archive contains 128 different
time series datasets. Instead of using the whole archive, many research papers
only use a subset of 112 datasets. The reason is that 15 datasets are unequal
in length and one, Fungi, has a single instance per class in the training set.
Regarding the datasets with unequal length, we decided to use a padded version
provided by the same authors. For the Fungi dataset, we could not used it, as
the methods RGW and DGW require several training samples of the same class.
Thus, in total, we used 127 datasets.
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4.2 Implementation

For this work we have reused the code and data from several sources. Regarding
the data augmentation, we used the implementation provided by [10]. We used
the code and results of Inception and InceptionTime as presented in [8] and the
results of ROCKET [2]. As we used several open source codes, we also made
freely available all the code and results in our companion GitHub repository1.

4.3 Protocol and Parameters

If not specified otherwise, we use the same following parameters for each experi-
ment. All trainings where realized using the Adam optimizer during 900 epochs.
At each epoch, the training set was randomly shuffled. The objective was to mix
the original training samples and the augmented ones. Regarding the training
data, we use a mix of original samples and augmented ones. Each original sample
has its augmented counterpart generated by each data augmentation method.
Thus, if we use 1 data augmentation method, the training set will be twice the
size of the original dataset. If we use 2 methods, the amount of training data
used is 3 times the size of the training set, and so on. Each training was con-
ducted 5 times. Having several iterations helps to have more consistent results.
Indeed the random initialization of the models and the stochasticity of some
data augmentation method can have an impact on the trainings. The results
presented in Sect. 5, are always an average over the 5 runs. In order to compare
the data augmentation with InceptionTime, we created ensembles out of the 5
runs. Theses ensembles average the predictions made by each model composing
it. It is the same process used by InceptionTime. These ensembles are unique,
and thus, the results presented for those are not an average over several runs.

5 Experiments

5.1 Experiment 1

In the first experiment, we aim to compare the vanilla Inception model, as pre-
sented in [8], to Inception models trained with data augmentation.

Results. Figure 5 represents a critical diagram. Such diagrams are useful when
comparing multiple methods over several datasets, as it is the case here. The
methods are ordered given their average rank over the datasets. A thick hori-
zontal line links a set of classifiers that are not significantly different, according
to the Wilcoxon-Holm analysis. With the Fig. 5, we learn that for the Inception
classifier, the data augmentations Scaling and Window Warping are both sig-
nificantly better than DGW and RGW. DGW is the only method significantly
worst than the vanilla Inception classifier. Both RGW and Window Warping are
not significantly different than the vanilla classifier. Only Scaling is significantly
1 https://github.com/Gpialla/DataAugForTSC.

https://github.com/Gpialla/DataAugForTSC
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Fig. 5. CD diagram of experiment 1

better than the vanilla classifier. Globally, the Guided Warping methods seems
in average to degrade the performances. However these methods are not useless.
Indeed, for respectively 43 and 55 datasets, DGW and RGW are still better than
the vanilla classifier.

Fig. 6. Pairwise diagram: Inception vs best Inception with augmentation for each
dataset. Each dot represent a single dataset. Blue dots represent datasets whose accu-
racy is improved by at least one data augmentation. Gold dots represent datasets whose
accuracies have not changed (same as Inception). (Color figure online)

The Fig. 6 compares for each dataset, the vanilla Inception model to the best
augmented Inception model. We can observe that for 92 datasets, using one of the
four data augmentation methods improves the accuracy of the Inception model.
The vanilla Inception is the best method for only 30 datasets. This shows the
relevance of data augmentation for time series. Like for image classification, most
of the time series datasets can leverage the use of data augmentation. Using the
best data augmentation method improves the average accuracy by +1.40%. The
best improvement regards the DodgerLoopDay dataset with an improvement of
+43.00% using the RGW data augmentation. For this specific dataset, all data
augmentation methods, significantly improve the accuracy, with an average of
+41.75%.
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Results with Ensembling. Following the previous results, we propose to ana-
lyze the impact of data augmentation over ensembling. For each method, we
created ensembles in the same way as InceptionTime, by averaging the predic-
tions made by the 5 iterations.

Fig. 7. CD diagram of experiment 1 with ensembling

In Fig. 7 we can see that the methods that were performing the best individu-
ally, Scaling and Window Warping, are the ones that provide the best ensembles
in term of rank. After ensembling, the rank of the data augmentation methods
is conserved. However, all methods are not significantly different and none is
significantly better than InceptionTime. Creating an ensemble will smooth and
improve the individual performance of the models that compose it. Thus, it is
harder to observe any difference between the augmentation methods.

Results with Ensembling of Several Data Augmentation Methods. Pre-
viously, we created ensembles using the five trainings of each data augmentation
method. Another way to make ensembles is to use different methods. Here we
created five ensembles. Within each ensemble, we used four models, each one
trained using a different data augmentation method. In the following results,
the accuracy of the five ensembles is averaged.

Fig. 8. CD diagram of experiment 1 with ensembling of several data augmentation
methods

We called this ensemble Ens. Mix. We can see in Fig. 8 that it significantly
outperforms InceptionTime. It seems that using different methods inside the
same ensemble leads to better results. Even if the gap between these ensembles
and InceptionTime is not huge, this result is important. Before, we should have
had to benchmark and select a single data augmentation method, but now we
can simply use them all within a single ensemble.
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Table 1. Average accuracy

Method Avg. Accuracy

DGW 83.55

RGW 83.51

Scaling 83.99

Win. Warp 84.06

Inception 83.48

Ens. DGW 84.47

Ens. RGW 84.53

Ens. Scaling 84.73

Ens. Win. Warp 85.13

Ens. Mix 84.86

InceptionTime 84.24

In Table 1 is recorded the average accuracy for each method presented so
far. We observe that all data augmentation method improve the accuracy over
their competitor Inception or InceptionTime. Regarding this metric, Window
Warping is provide the best results with and without ensembling.

5.2 Experiment 2

This second experiment aims to put in light the importance of the original train-
ing set. As all data augmentation methods improve the accuracy of the Inception
model, is it efficient to train a model using only augmented data? We reproduced
the experiment 1, with the same parameters, but only using augmented data.

Fig. 9. CD diagram of experiment 2

Results. Figure 9 shows that all methods trained only on augmented data,
performs worse than before. The vanilla Inception is significantly better than all
of them. The models trained with DGW and RGW are the ones which suffer the
most, with a loss in accuracy of respectively −9.63% and −7.89%.

These results underline the importance of the original data. Augmented data
can not be used as a substitution of the original data but should be used as a
complement.
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Fig. 10. CD diagram of experiment 2 with ensembling

Results with Ensembling. The previous results are also reflected with ensem-
bling. Only the Scaling ensemble, despite not having been trained on the original
data, remains competitive with InceptionTime. The intuition behind this is that
Scaling produces augmented samples that are close to the original data. Thus,
even without the original data, the model can still generalize over the test set.

5.3 Experiment 3

In image classification, data augmentation is randomly applied at each epoch.
As the model never sees several times the same augmented sample, it improves
the generalization power of the model. In this experiment we aim to apply this
computer vision trick to time series by generating new data augmentation at
each epoch. Except for the Discriminative Guided Warping, all presented data
augmentation methods use randomness to generate the augmented sample. Thus,
we can create almost an infinity of different augmented samples. We only consider
the methods Scaling and the Window Warping. As explained before, DGW is
not random and both Guided Warping methods are slow at runtime. Indeed,
they compute warping paths using the DTW algorithm which is time consuming.
Generating augmented samples once, prior to the training does not slow it much,
but using them at each epoch would have taken too much time.

Results. Figure11 compares the results from the experiment 1, with their coun-
terpart trained with data augmentation randomly generated at Each Epoch
(EE). None of the results are significantly different from Inception. Window
Warping seems to be the method that benefits the most from it as Win. Warp.
EE has a better rank than Win. Warp.. For the Scaling method, EE data aug-
mentation provides a slightly lower rank.

Fig. 11. CD diagram of experiment 3
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Fig. 12. CD diagram of experiment 3 with ensembling

Results with Ensembling. After ensembling, we notice that once more, Win-
dow Warping is the method that benefits the most. Once again the results with
EE data augmentation do not outperform the baseline.

Table 2. Detailed results of experiment 3

Method Avg. Accuracy

Scaling EE 83.84

Win. Warp. EE 83.89

Inception 83.48

Ens. Scaling EE 84.66

Ens. Win. Warp. EE 85.05

InceptionTime 84.24

When comparing Table 1 and Table 2 we notice that using data augmentation
at each epoch results in a slightly lower average accuracy. EE data augmentation
should improve the generalization power of the model if used correctly. However,
our experiments did not result in significant improvements of the performances,
neither in the rank or the accuracy. This shows that this trick, while being
efficient in computer vision, does not work well on the UCR archive for time
series.

5.4 Experiment 4

Experiment. Until now, we used the different data augmentation methods
individually, only one for each training. In experiment 1, we showed that some
data augmentation methods are complementary when ensembled together. This
can be referred as late fusion.

In this experiment we aim to assess early fusion by training our models with
multiple data augmentation methods. As Scaling and Window Warping proved
to be the best methods, we did a training using them both. Finally, we did a
second training using all four methods.

As we use more training samples, we can reduce the number of epochs. We
decided to fix it to 300 epochs.
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Fig. 13. CD diagram of experiment 4

Results. Figure 13 represents the results of the experiment 4. We can notice that
the ensemble Scaling&Window Warping is significantly better than the other two
methods. DGW&RGW&Scaling&Win. Warp. is equivalent to Inception.

This shows that the combined use of several methods can be better than the
use of them independently. However the choice of the methods is important. If
we use our two best methods this lead to even better results, but using all of
them provides the same results as the baseline.

With this early fusion strategy, it is the first time we managed to obtain a
single Inception model not significantly worse than the InceptionTime model. As
InceptionTime is composed of 5 Inception models, using this training method,
we can reduce the training time and the inference time by a factor 5, with similar
performances.

Fig. 14. CD diagram of experiment 4 with ensembling

Results with Ensembling. After ensembling, Fig. 14 shows that Scal-
ing&Window Warping is still significantly better than InceptionTime. As this
ensemble represent our best result, we also compared it with ROCKET. Accord-
ing to the CD diagram and the Wilcoxon-Holms test, we can not say that it is
significantly better than ROCKET but it represents a serious competitor.

In Table 3 we can observe than the combined use of Scaling and Window
Warping provides the best results across all our experiments, for both with and
without ensembling.
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Table 3. Detailed results of experiment 4

Method Avg. Accuracy

DGW & RGW & Scaling & Win. Warp 83.16

Scaling & Win. Warp 84.32

Inception 83.48

Ens. DGW & RGW & Scaling & Win. Warp 84.18

Ens. Scaling & Win. Warp 85.34

InceptionTime 84.24

ROCKET 84.68

6 Conclusion

In this paper, we have shown the relevance of data augmentation for time series
classification through four different experiments, each time, with and without
ensembling and on the entire UCR Archive.

First, we trained an Inception classifier using the original train sets along with
the augmented ones. Then, we repeated the training using only augmented data.
These experiments showed the importance of the original training set. Without
it, it is much harder for the model to generalize on the test sets which do not
contain any augmented samples. This also highlighted the methods Scaling and
Window Warping, as the most efficient ones of our benchmark.

As the data augmentation methods are stochastic, for our third experiment,
we tried to generate new data augmentation at each epoch. This experience lead
to unsatisfactory results, close to the previous ones.

Finally, we did trainings using several data augmentation methods at the
same time. Using all four data augmentation methods was not conclusive but
using only Scaling and Window Warping lead to our best results. With this
method, we manage to train a single Inception model obtaining similar perfor-
mances to InceptionTime. As InceptionTime is an ensemble of five Inception
models, our method requires 5 times less training, and also reduces the inference
time by a factor five. When ensembled like InceptionTime, this method becomes
significantly better than InceptionTime. Although not significantly better than
ROCKET, this method obtain a better average accuracy.

We think that data augmentation will become commonly used for time series
classification but still need further improvements. As our future work, we would
like to apply data augmentation to Inception and InceptionTime, but for multi-
variate time series. Moreover, in order to create smarter ensembles, we would like
to use weighted ensembles in order to automatically choose the best combination
of data augmented models.
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Abstract. Multivariate time series classification (MTSC) is an area of
machine learning that deals with predicting a discrete target variable
from multidimensional time dependent data. The possible high dimen-
sionality of multivariate time series can affect the training time and pos-
sibly accuracy of complex classifiers, which often scale poorly in dimen-
sions. We explore dimension filtering algorithms for high dimensional
MTSC used in conjunction with the state of the art MTSC algorithm,
HIVE-COTEv2.0. We apply and adapt recently proposed selection algo-
rithms and propose new methods based on the ROCKET classifier built
on single dimensions. We find that, for high dimensional MTSC prob-
lems, the best approach can on average filter between 50% and 60% of
dimensions without significant loss of accuracy, reducing train time by a
similar proportion.

1 Introduction

Time series classification (TSC) is an area of machine learning that deals with
predicting a discrete target variable from time dependent data. Recently there
has been a focus on a specific time series problem called multivariate time series
classification (MTSC) i.e. TSC problems where each time series has more than
one dimension or channel. MTSC are generally more common than univariate
TSC problems, and occur in a wide range of domains such as EEG classifica-
tion, human activity recognition and classification of medical sensor data. MTSC
problems have the added complexity of high dimensionality, which can affect
the training time and possibly accuracy of the time series classifier; redundant
or highly correlated dimensions may confound the classifier. There have been
many recently proposed algorithms for MSTC based on, for example, distance
measures, transformation, ensembles and deep learning. A review of MTSC algo-
rithms [18] found that there was no one approach significantly better than the
others, when assessed on a benchmark set of data referred to as the UEA MTSC
archive [17]. The conclusion of [18] was that an algorithm called the ROCKET [5]
was recommended due to its superior speed compared to the rest of the state of
the art. Subsequently, a new algorithm, HIVE-COTEv2 (HC2) [16] was shown
to be significantly more accurate than all of the algorithms for MTSC evaluated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Guyet et al. (Eds.): AALTD 2022, LNAI 13812, pp. 133–147, 2023.
https://doi.org/10.1007/978-3-031-24378-3_9
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in [18], including ROCKET. HC2 represents the current state of the art for both
univariate and multivariate TSC, but it does not scale well in terms of number of
dimensions. Our aim is to investigate whether we can improve the efficiency (and
possibly the accuracy) of HC2 for high dimensional problems using a pipeline
approach of filtering dimensions prior to classification.

Standard approaches for classifying high dimensional data are to employ
a filter to select a subset of attributes or to transform the data into a lower
dimensional feature space using, for example, principal component analysis. Our
focus is on dimensionality reduction through filtering. For MTSC, filtering is
generally accepted to be selecting the most important dimensions to use before
training the classifier. Dimension selection can, on average, either increase, not
change or decrease the accuracy of classification. The first case implies that the
higher dimensionality is confounding the classifier’s discriminatory power. In the
second case it is often still desirable to filter due to improved training time. In
the third case, filtering may still be desirable, depending on the trade-off between
performance (e.g. accuracy) and efficiency (e.g. train time): a small reduction in
accuracy may be acceptable if build time reduces by an order of magnitude. We
address the task of how best to select a subset of dimensions for high dimensional
data so that we can speed up and possibly improve HC2 on high dimensional
MTSC problems.

Detecting the best subset of dimensions is not a straightforward problem,
since the number of combinations to consider increases exponentially with the
number of dimensions. Selection is also made more complex by the fact that
the objective function used to assess a set of features may not generalise well
to unseen data. Furthermore, since the primary reason for filtering the dimen-
sions is improving the efficiency of the classifier, dimension selection strategies
themselves need to be fast. HC2 is not as fast as ROCKET. We investigate
whether we can use the speed and competitive accuracy of ROCKET to serve
as a dimension filter for HC2. We use a stripped back version of ROCKET to
assess and select dimensions through cross validation, then measure the impact
this has on HC2 on both the train and the test data. We compare the ROCKET
filter to recently proposed algorithms from the literature. Our contribution is
to incrementally improve our understanding of how best to classify high dimen-
sional time series: we introduce four new high dimensional MTSC problems to
the UEA archive; we propose a hybrid approach for classifying high dimensional
MTSC problems using ROCKET as a filter; and we compare our approach to a
range of alternative algorithms and analyze the results.

The rest of the document is presented as follows. We review current
approaches for dimension selection in Sect. 2, then provide a description of the
ROCKET based method in Sect. 3. Section 4 describes the new data we are
adding to the archive and our experimental design, and our results are described
in Sect. 5. Finally, we draw general conclusions from our experiment and high-
light areas of future investigation in Sect. 6.
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2 Related Work

Time series classification can be categorized based on the number of dimensions
as univariate (1 dimension) or multivariate (d > 1 dimensions). In univariate
time series classification, an instance is a pair {x, y} with m scalar observations
(x1, . . . , xm) (the time series) and discrete class variable y with c possible values.
A classifier is a function or mapping from the space of possible inputs to a
probability distribution over the class variable values. In MTSC, each observation
of a time series has d dimensions (or channels), assumed to be aligned in time, so
that for a single case {x, y}, x = {x1, . . .xm }, where xj = (xj,1, xj,2, . . . , xj,d).
If referring to multiple cases, we denote the jth observation of the ith case of
dimension k as the scalar xi,j,k.

2.1 MTSC Algorithms

MTSC approaches are often simple extensions of univariate TSC, which is a more
extensively researched field. In a review of recently proposed algorithms [18]
it was found that the best performing classifiers were Random Convolutional
Kernel Transform (ROCKET) [5] and HIVE-COTEv1.0 [1]. Given equality of
accuracy, ROCKET was recommended as a starting point for MTSC due to its
much faster build time. We use ROCKET in our filtering approach, so a brief
overview of the algorithm is appropriate.

ROCKET is based on a large number of random convolution kernels (default-
ing to 10,000) used in conjunction with a linear classifier (ridge or logistic regres-
sion). It is a pipeline classifier that involves transformation followed by classi-
fication. A convolution is a transformation enacted by sliding a weight vector
(the convolution) across a series, vector multiplying the weights and the win-
dow at each time point to form a new value for each window. Each randomly
generated convolution is applied to the time series to create a new series. The
maximum value and the proportion of positive values (ppv) are derived from the
transformed series and form part of a new feature set. This huge new feature
space (by default, 20,000 features for each instance), is used to train the classi-
fier, which internally performs some feature selection/weighting to ignore non-
discriminatory features. ROCKET is fast because the convolutions are randomly
generated and the classifiers are simple. The original ROCKET was proposed for
univariate TSC. However, an approach to enable use on multivariate datasets is
available in the sktime toolkit1. For multivariate datasets, kernels are randomly
assigned dimensions. Weights are then generated for each dimension.

More recently, version 2.0 of the HIVE-COTE classifier (HC2) was shown to
be significantly more accurate than ROCKET on the UEA MTSC problems. HC2
is a heterogeneous meta ensemble of four ensemble classifiers built on different
data representations: the Shapelet Transform Classifier (STC) [3], the Temporal
Dictionary Ensemble (TDE) [14], the Diverse Representation Canonical Interval
Forest (DrCIF) [15] and the Arsenal, an ensemble of ROCKET classifiers [16].

1 https://github.com/sktime.

https://github.com/sktime
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HC2 does not scale very well for high dimensional MTSC. This led us to consider
whether we could combine approaches to improve HC2 efficiency. Our aim is to
find the simplest approach that speeds up HC2 on high dimensional MTSC
problems without significantly decreasing accuracy. Hence, our focus is pipeline
approaches that select dimensions prior to classification, rather than wrapper
approaches that combine classification and selection.

2.2 MTSC Dimension Selection Algorithms

The Common principal component Loading based Variable subset selection
method (CleVer) [20] algorithm is PCA based approach that is adapted for
dimension selection for multivariate time series. CleVer uses PCA and cluster-
ing techniques to select dimensions. A PCA is performed independently on each
instance, and the principal components are extracted. Next, all components that
belong to the same class are combined to create common principal components
through a process called Common Principal Component Analysis (cPCA). A
proportion of the common components are used to create a feature space. These
features are clustered, and the closest dimension to each centroid is chosen as
selected dimensions. CleVer requires a separate PCA on each series, which is
both time and space consuming. It is also complex, and we cannot find an open
source implementation. Since we are looking for a lightweight feature selector,
we do not evaluate CleVer in this study.

A method based around one nearest neighbour classification with dynamic
time warping (1-NN DTW) is described in [10]. A merit score function (MSTS) is
used to assess the quality of a subset of dimensions. The DTW distance function
between cases and dimensions is precalculated. A prediction for each dimension
pair is found through a three fold cross validation of 1-NN DTW. Similarity
between each dimension is estimated using the adjusted mutual information
(AMI) between the predictions of dimensions (dimension-to-dimension) and for
the predictions of each dimension and the class (dimension-to-class). The MSTS
for any subset of dimensions is a function of the average of the dimension-to-
dimension and dimension-to-class AMI. A subset of features is chosen either
through enumerating MSTS for all 2d feature combinations, or using a wrapper
on the top 5% of subsets. The algorithm first calculate the dimension-to-class
(DC) correlation for each dimension which is the accuracy of the predictions ŷ on
train data by cross validation with 3 folds. Second, the dimension-to-dimension
(DD) is calculated by the adjusted mutual information (AMI) between the pre-
dictions of each pair of dimensions. Finally, for each possible subset, the merit
score function is calculated as follows:

MS(subset) =
kDC√

k + k(k − 1)DD
(1)

where DC is the average of dimension-to-class of each dimension in the subset
and DD is the average of dimension-to-dimension of each pair of dimensions in
the subset. The evaluation of all dimension combinations makes MSTS infeasible
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Algorithm 1. MSTS(X, y, |X|)
Parameters: Training data X , labels y, the number of dimensions |X|
1: for i ← 1 to |X| do
2: ŷi ← CrossValidate(Xi , classifier : DTW , folds : 3)
3: DCi ← accuracy(ŷi, yi)
4: for (i, j) in pairs(|X|) do
5: DDi,j ← AMI(ŷi, ŷj)
6: bestSubset ← Ø
7: bestScore ← −∞
8: for each subset ⊆ |X| do
9: subsetScore ← MS(subset)

10: if subsetScore > bestScore then
11: bestSubset ← subset
12: bestScore ← subsetScore
13: return bestSubset

for very high dimensional problems. MSTS has recently been applied to sensor
data, and used in conjunction with ROCKET [9].

The recent research most closely aligned to our work is described in [7],
where dimensions are selected based on distances between series within classes.
A synthetic series that characterises each dimension/class combination is found
through averaging the relevant dimension of series belonging to that class. A
matrix of the pairwise Euclidean distance between all dimension/class centroids
is then found. Three algorithms were proposed to use this d× c · (c− 1) distance
matrix for dimension selection.

1. The KMeans approach applies k-means clustering (with k = 2) on the dis-
tance matrix to separate the channels. The cluster centroid represents the
mean distance of dimensions across all class pairs and the average of the
centroid describes the within cluster variation of dimensions. The kmeans
algorithm selects all dimensions in the cluster with the largest average.

2. The Elbow Class Sum (ECS) algorithm sums each row of the distance
function, then uses the elbow cut method [19] to select dimensions based on
the rank order of the sums.

3. The Elbow Class Pairwise (ECP) iterates through every class pair, selects
the best set of dimensions for that pair using the same elbow cut method as
ECS and finally takes the union of dimensions over all pairs.

KMeans, ECS and ECP are compared to full enumeration of dimension subsets
and random selection with the accuracy of a range of TSC classifiers, including
ROCKET, used to measure performance on evaluate the effectiveness on the
multivariate problems in the UEA/UCR time series archive [4].
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3 Dimension Selection for HIVE-COTEv2.0

We propose a range of methods for dimension selection, including adaptations of
the algorithms described in Sect. 2, with the goal of making HC2 more efficient.

Our classifier pipeline involves dimension selection followed by the HC2 clas-
sifier. We want to evaluate the effect of changing the dimension selection mech-
anism whilst keeping everything else the same. Dimension selection is either
through scoring and ranking then selection or dimension subset evaluation.

Our first filtering approach is to employ ROCKET as a mechanism for scoring
features from the training data, then using the elbow method to select features.
This involves scoring a ROCKET classifier on each dimension independently,
then ranking dimensions. We consider three scores all based on ROCKET pre-
dictions found through three fold cross validation:

– Accuracy (A): proportion of cases correctly classified.
– Silhouette (S): As alternative to using accuracy the silhouette method used

in clustering to determine the optimal numbers of clusters. It is a score that
goes from -1 to 1 indicating how good is the clustering based on the distances
within a cluster and their differences to the points from other clusters. To use
in dimension selection, the train data is cross validated with 3 folds and the
predictions are used as clusters. The formula for the silhouette method is:

S =
(b− a)

max(a, b)
(2)

where a is the mean distance between data points in the same cluster and b is
the mean distance between all other data points of the next nearest cluster.

– Adjusted Mutual information (M). It is a variation of mutual information
that adds an element of chance, usually used in clustering. The formula is:

AMI(U, V ) =
MI(U, V ) − E(MI(U, V ))

avg(H(U),H(V )) − E(MI(U, V ))
(3)

We also consider using both ECP and ECS as a filtering algorithm for HC2.
As another cluster variant, we propose that instead of calculating the centroid
distances as with ECP and ECS, we calculate the distance between each instance
and the centroid which is calculated as the mean vector of all instances that
belong to that class. This method is called CLUSTER. Finally, we also evaluate
using MSTS subset selection algorithm, although we make two changes to the
version described in Sect. 2.2.

– We use ROCKET instead of DTW as classifier on line 2 of Algorithm 1;
– The exhaustive subset selection done on lines 8–12 of Algorithm 1 is infeasible

for some problems, because there are 2d possible subsets of attributes. Instead,
a forward selection procedure is used where the best k subsets starting with
size two are selected and one dimension is added per step until the merit score
function MSTS stops improving.

Table 1 summarises the attribute selection methods used in our evaluations.
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Table 1. Summary of different dimension selection ranking methods with elbow
method.

Attribute ranking then selection with elbow method

Algorithm Ranking

ECS Sum of difference between centroid pair distance [7]

ECP Union of sum of individual centroid pair distances [7]

CLUSTER Error between centroid and examples

ROCKETA Accuracy of ROCKET predictions on each dimension

ROCKETS Sillouette of ROCKET predictions on each dimension

ROCKETM AMI of ROCKET predictions on each dimension

Attribute subset selection

MSTS Subset selection using merit score [10]

KMeans Cluster distance function [7]

Table 2. Summary of 15 data sets used in experimentation. (*) indicates a padded
series, bold indicates a data set new to the UEA archive.

Name Train size Test size Dimensions Length Classes

ArticularyWordRecognition 275 300 9 144 25

DuckDuckGeese 50 50 1345 270 5

EMOPain 1093 50 30 180 3

FingerMovements 316 100 28 50 2

MotionSenseHAR 217 144 12 200 6

HandMovementDirection 160 74 10 400 4

Heartbeat 204 205 61 405 2

JapaneseVowels(*) 270 370 12 25 9

MindReading 727 653 204 200 5

MotorImagery 278 100 64 3000 2

NATOPS 180 180 24 51 6

PEMS-SF 267 173 963 144 7

PhonemeSpectra 3315 3353 11 217 39

Siemens 700 395 39 180 10

SpokenArabicDigits (*) 6599 2199 13 65 10

4 Evaluation

We use the time series machine learning toolkit sktime [12] for our experiments.

4.1 Data

The UEA multivariate time series repository contains 30 datasets from a wide
range of fields such as EEG classification and human activity recognition [18]. In
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our experience, filtering does not improve the performance of HC2, so our pri-
ority is improving efficiency. Low dimensional data can mask the performance
differences of filtering algorithms, so we restrict our attention to higher dimen-
sional problems, which we define as nine or more dimensions. Ideally, we would
set the threshold even higher, but there are just nine equal length problems
in the archive with nine or more dimensions. There are also two high dimen-
sional data that are unequal length: JapaneseVowels and SpokenArabicDigits.
We made these equal length by padding to the longest length. We also include
four new high dimensional datasets into the archive to help improve the power of
our tests of performance. These four datasets are available on the UEA archive
website2.

EMOPain: The goal of the project that generated this data was the automatic
detection of pain behaviours [8] and pain levels, based on data collected from
people with chronic pain performing movements that are identical to those that
make up daily physical functioning. The data consist of 26 sensor calculating
angle positions on distinct parts of the body and 4 electromyography sensor
that have the objective of measure the electric signals generated by a muscle
when is moved. The sensors are positioned on the upper fibres of trapezium and
on the lumbar para spinal muscles approximately at the 4/5 lumbar vertebra.

MindReading: The data consists of MEG recordings [11] of a single subject,
made during two separate measurement sessions (consecutive days). In each
session the subject was watching five different movie categories without audio.
The goal is to predict the category of the movie the subject is watching.

Siemens: This data consist of a group of sensors from four tanks that pumps
water from a reservoir tank to three small tanks [2]. The goal is to detect the
type of failure the tank is experiencing based on the value of the different sensors.

MotionSenseHAR: This dataset includes time series data generated by
accelerometer and gyroscope sensors (attitude, gravity, user acceleration, and
rotation rate) [13]. A total of 24 participants in a range of gender, age, weight,
and height performed 6 activities in 15 trials in the same environment and con-
ditions: downstairs, upstairs, walking, jogging, sitting, and standing. With this
dataset, we aim to look for personal attributes fingerprints in time-series of
sensor data, i.e. attribute-specific patterns that can be used to infer gender or
personality of the data subjects in addition to their activities.

4.2 Experiments

The experiments were carried out on the High Performance Computing Cluster
supported by the Research and Specialist Computing Support service at the
University of East Anglia. Each classifier was trained on the same 30 train test
resamples of the 15 high dimensional datasets. Build time was limited to 7 days.
Our performance metric is test set accuracy. To compare multiple classifiers

2 www.timeseriesclassification.com.

www.timeseriesclassification.com
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on multiple data sets with use ranks rather than accuracy, and we use critical
difference diagrams [6] to display average ranks and cliques: a clique is a group
of classifiers that are labelled as not significantly different to each other. We find
cliques through pairwise comparison at the 5% alpha level with an adjustment
for multiple testing commonly called the Holm correction. This adjustment is less
severe than a Bonferroni adjustment: we order classifiers by rank then start with
the best performing classifier as our control. We pairwise test using Wilcoxon
sign-rank test in order, making the adjustment as to the maximum size of the
clique. Thus, if testing 11 classifiers, the maximum number of tests to find the
top clique is 10, so we require a p-value of alpha/10 to be considered significantly
different. Once we find a classifier that fails the pairwise test, we form a clique of
those prior to it. We then repeat the process with the second best classifier, with
the caveat that if a clique is found that is contained with one found already, we
ignore it.

This is the most robust way we have found to form cliques, but it can still
lead to anomalies. Given three classifiers, A, B and C, where A is the highest
rank and C the lowest, it is possible that A is significantly better than B but
not significantly better than C. However, our approach would put A and C
in different cliques. We intend to move towards a more graphical display of
pairwise tests and recommend that CD diagrams should only form part of the
methodology of presenting results that compare classifiers.

5 Results

Our first experiment defines the scope of further experiments by bounding our
expectations as to the accuracy of filtering prior to training HC2. Figure 1 shows
the ranks of full HC2, full ROCKET, HC2 with 20% of dimensions selected
randomly and HC2 with 60% of dimensions selected randomly.

1.4333 HC2
2.3 HC2-Rand602.8ROCKET

3.4667HC2-Rand20

Fig. 1. Critical difference diagram for comparing ROCKET, full HC2 and HC2 with
random dimension selection.

Figure 1 illustrates that HC2 is significantly more accurate than ROCKET.
We reran the experiments with the sktime implementation of HC2, so this serves
to recreate the results reported in [16]. HC2 is, on average, 2.5% more accurate
than ROCKET, winning on 11 problems and losing on 4. By default, HC2 is
not configured for speed: it takes several hours to complete one resample of
experiments, whereas ROCKET takes minutes. Figure 1 also shows that our
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basic straw man for comparison, randomly selecting 20% or 60% of attributes,
results in a significant loss of accuracy in HC2. Our second experiment addresses
the question as to whether applying any of the dimension selection algorithms
listed in Table 1 can speed up HC2 without loss of accuracy. Figure 2 shows the
relative ranked performance of eight different filtering algorithms in addition to
the four classifiers shown in Fig. 1. Cliques were formed with the p-values shown
in Table 3. The average accuracy data for four classifiers is provided in Table 4,
and full results are available in the associated repository.

3.4667 HC2
4.8333 HC2-ECP
5.4667 HC2-MSTS
6.0333 HC2-Rand60
6.0333 HC2-RA

6.1 HC2-RM6.7667HC2-CLST
7HC2-RS

7.2667HC2-ECS
7.3ROCKET
8HC2-KMEANS
9.7333HC2-Rand20

Fig. 2. Critical difference diagram for comparing all dimension selection methods pro-
posed.

Table 3. P-values for pairwise Wilcoxon rank-sum test on 15 high dimensional MTSC
problems.

ECP MSTS R60 R A R M CLST R S ECS RCKT KMNS R20

HC2 0.753 0.198 0.004 0.011 0.016 0.019 0.004 0.096 0.041 0.048 0.001

ECP 0.256 0.272 0.173 0.246 0.124 0.140 0.011 0.100 0.020 0.015

MSTS 0.394 0.570 0.056 0.125 0.173 0.334 0.334 0.281 0.006

R60 0.551 0.551 0.041 0.272 0.246 0.173 0.233 0.001

R A 0.975 0.096 0.158 0.433 0.307 0.233 0.004

R M 0.246 0.397 0.551 0.496 0.496 0.015

CLST 0.331 0.510 1.000 0.691 0.140

R S 0.925 0.910 0.158 0.002

ECS 0.532 0.683 0.061

RCKT 0.826 0.307

KMNS 0.364
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Our first conclusion is that our hypothesis that ROCKET could be a good
way of filtering dimensions for HC2 is not supported by these results. The three
ROCKET variants are significantly worse than HC2, and no better than ran-
domly selecting 60% of dimensions. Table 4 shows that using HC2-RA results
on average in an approximate 1% decrease in accuracy. However, the two filters
ECP and MSTS both achieve an accuracy rank that is not significantly worse
than HC2. Table 4 shows that HC2-ECP performs very similarly to full HC2,
but that HC2-MSTS may slightly reduce accuracy on average.

Table 4. Accuracy of four classifers averaged over 30 resamples of 15 high dimensional
datasets.

Name HC2 HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 99.51 99.51 99.37 99.27

DuckDuckGeese 55.07 57.93 55.2 54

EMO 88.78 89.87 89.05 88.77

FingerMovements 55.57 52.53 54.5 55

MotionSenseHAR 99.71 99.67 99.66 99.67

HandMovementDirection 41.26 42.48 41.53 41.89

Heartbeat 73.59 74.29 73.06 73.24

JapaneseVowelsEq 93.15 94.51 93.06 91

MotorImagery 53.63 52.77 53.73 53.53

MindReading 68.36 68.17 60.81 60.44

NATOPS 89.04 87.54 85.98 87.17

PEMS-SF 99.96 97.23 99.92 99.96

PhonemeSpectra 32.01 31.72 32.01 31.67

Siemens 100 100 99.92 100

SpokenArabicDigitsEq 99.67 99.62 99.64 99.63

Average 76.62 76.52 75.83 75.68

Wins 9 7 2 2

Of course, filtering will perfectly recreate HC2 results if it selects all dimen-
sions. Table 5 shows the proportion of dimensions selected for three classifiers.
On average, HC2-MSTS selects fewer dimensions, and in some cases, massively
fewer. For example, with PEMS-SF3 it selects just 13 out of 963 attributes and
achieves an accuracy very close to that of full HC2. Each dimension in PEMS-SF
is a single traffic sensor, and the data is measured over time. There will be high
correlation between adjacent sensors, and HC2-MSTS is effective at removing a
high degree of the redundancy in this data.

Similarly, with DuckDuckGeese4, HC2-MSTS chooses just 33 of the 1345
attributes, and gets comparable accuracy to HC2, although HC2-ECP actually
3 http://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF.
4 http://www.timeseriesclassification.com/description.php?

Dataset=DuckDuckGeese.

http://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF
http://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese
http://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese
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Table 5. Percentage of dimensions used.

Name d HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 9 100 55.17 57.09

DuckDuckGeese 1345 29.93 2.48 21.08

EMOPain 30 55.29 31.72 35.52

FingerMovements 28 38.18 17.49 50.49

MotionSenseHAR 12 86.78 30.75 65.8

HandMovementDirection 10 83.1 44.14 56.21

Heartbeat 61 15.38 13.85 45.56

JapaneseVowelsEq 12 75.57 97.41 62.07

MotorImagery 64 25.11 6.25 54.8

MindReading 204 61.56 12.81 16.23

NATOPS 24 79.31 45.98 63.07

PEMS-SF 963 35.03 1.38 13.8

PhonemeSpectra 11 18.18 100 59.25

Siemens 39 30.77 10.88 55.61

SpokenArabicDigitsEq 13 53.85 53.85 54.91

Average 52.54 34.94 47.43

Table 6. Train time in hours, including the time to filter.

Name HC2 HC2-ECP HC2-MSTS HC2-RA

ArticularyWordRecognition 3.80 4.13 3.42 3.47

DuckDuckGeese 8.16 5.34 4.09 3.87

EMO 23.99 17.72 12.57 11.52

FingerMovements 4.15 3.29 2.98 3.70

HAR 21.36 21.70 12.82 19.39

HandMovementDirection 3.63 3.55 3.20 3.46

Heartbeat 6.71 3.94 3.96 4.42

JapaneseVowelsEq 3.04 3.07 3.06 3.00

MotorImagery 33.06 15.35 9.32 26.44

MindReading 42.38 29.9 14.06 15.56

NATOPS 3.06 3.00 2.70 2.90

PEMS-SF 32.64 13.54 5.74 9.44

PhonemeSpectra 112.49 68.18 113.20 85.18

Siemens 14.96 7.70 4.96 10.16

SpokenArabicDigitsEq 118.89 79.21 78.59 76.84

Sum 432.31 279.63 274.65 279.33

improves on HC2 when selecting about a third of attributes. DuckDuckGeese
contains audio spectrograms of different bird species, and each dimension repre-
sents a frequency range. Both HC2-MSTS and HC2-RA over filter on the problem
MindReading, whereas HC2-ECP correctly selects a larger number of dimensions
and achieves a similar accuracy to full HC2.
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Table 6 summarises the average training time for the HC2 and the three
main filtering methods, and includes the time taken to filter. There is hardly
any difference in time between the three algorithms, and each method takes
about 60% of the time of full HC2.

MSTS and RA both rely on ROCKET to score dimensions, but differ pri-
marily in how attributes are selected. It seems that the subset selection used by
MSTS may be marginally better than the elbow method used by RA, although
our tests do not have the power to reject the null hypothesis that there is no
difference. ECP is based on distances between predictions and rather than accu-
racy, and uses 1-NN DTW to make predictions. It tends to select more attributes
that MSTS, but the extra time the resultant HC2 classifier takes is offset by the
more time consuming components of MSTS.

Overall, these experiments show that, although there is no significant differ-
ence between HC2-ECP, HC2-MSTS and HC2-RA, only ECP and MSTS reduce
dimensionality without reducing the accuracy of HC2 significantly. Both can
prove useful tools for filtering prior to using HC2 with high dimensional data,
with ECP marginally preferred because it more closely recreates HC2 results.

6 Conclusion

There are of course limitations to this study. We have focused purely on the HC2
classifier, with the justification that this is the current state of the art. However,
HC2 is a meta ensemble of four ensemble classifiers, each of which handles multi-
variate data differently. It may be interesting to explore how filtering may affect
each component, and indeed other classifiers. It may be more useful to embed the
dimension selection within the component classifiers to create different feature
subsets for each. We have also only evaluated dimension selection algorithms.
Dimension creation algorithms may also be of use in MSTC.

We have donated four new datasets to the archive, but even then we are lim-
ited to evaluation with 15 datasets. Furthermore, many of these are not genuinely
high dimensional. More realistic cut off points would be 50 or 100 dimensions.
MTSC data is very diverse in origin, and finding algorithms significantly better
than others over all problem domains may prove unrealistic. In future work we
will continue to seek out new high dimensional problems, and our intention is to
focus more specifically on EEG/MEG datasets, to make our research question
more specific to that problem domain.
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interface for machine learning with time series. arXiv preprint arXiv:1909.07872
(2019)

13. Malekzadeh, M., Clegg, R.G., Cavallaro, A., Haddadi, H.: Mobile sensor data
anonymization. In: Proceedings of the International Conference on Internet of
Things Design and Implementation, pp. 49–58. IoTDI 2019, ACM, New York
(2019). http://doi.acm.org/10.1145/3302505.3310068

14. Middlehurst, M., Large, J., Cawley, G., Bagnall, A.: The temporal dictionary
ensemble (TDE) classifier for time series classification. In: Hutter, F., Kersting,
K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp.
660–676. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2 38

15. Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest (CIF) clas-
sifier for time series classification. In: 2020 IEEE International Conference on Big
Data (Big Data), pp. 188–195. IEEE (2020)

16. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: HIVE-
COTE 2.0: a new meta ensemble for time series classification. Mach. Learn.
110(11), 3211–3243 (2021). https://doi.org/10.1007/s10994-021-06057-9

17. Pasos-Ruiz, A., Flynn, M., Bagnall, A.: Benchmarking multivariate time series
classification algorithms. arXiv preprint arXiv:2007.13156 (2020)

18. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great mul-
tivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Min. Knowl. Disc. 35(2), 401–449 (2020).
https://doi.org/10.1007/s10618-020-00727-3

https://doi.org/10.1007/978-3-319-22729-0_20
https://doi.org/10.1007/s10618-020-00701-z
https://doi.org/10.1007/978-3-030-91445-5_3
https://doi.org/10.1007/978-3-031-09037-0_44
https://doi.org/10.1007/978-3-030-65742-0_15
http://urn.fi/URN:ISBN:978-952-60-4456-9
http://arxiv.org/abs/1909.07872
http://doi.acm.org/10.1145/3302505.3310068
https://doi.org/10.1007/978-3-030-67658-2_38
https://doi.org/10.1007/s10994-021-06057-9
http://arxiv.org/abs/2007.13156
https://doi.org/10.1007/s10618-020-00727-3


Dimension Selection Strategies for MTSC with HC2 147

19. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a
haystack: detecting knee points in system behavior. In: Proceedings of 31st Inter-
national Conference on Distributed Computing Systems Workshops, pp. 166–171
(2011)

20. Yang, K., Yoon, H., Shahabi, C.: CLe Ver : a feature subset selection technique for
multivariate time series. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 516–522. Springer, Heidelberg (2005). https://doi.
org/10.1007/11430919 60

https://doi.org/10.1007/11430919_60
https://doi.org/10.1007/11430919_60


EDGAR: Embedded Detection
of Gunshots by AI in Real-time

Nathan Morsa1,2(B)

1 Department of Electrical Engineering and Computer Science, University of Liège,
Liège, Belgium

nathan.morsa@uliege.be
2 Research and Development, FN Herstal, Herstal, Belgium

Abstract. Electronic shot counters allow armourers to perform preven-
tive and predictive maintenance based on quantitative measurements,
improving reliability, reducing the frequency of accidents, and reducing
maintenance costs. To answer a market pressure for both low lead time to
market and increased customisation, we aim to solve the shot detection
and shot counting problem in a generic way through machine learning.

In this study, we describe a method allowing one to construct a dataset
with minimal labelling effort by only requiring the total number of shots
fired in a time series. To our knowledge, this is the first study to pro-
pose a technique, based on learning from label proportions, that is able
to exploit these weak labels to derive an instance-level classifier able to
solve the counting problem and the more general discrimination problem.
We also show that this technique can be deployed in heavily constrained
microcontrollers while still providing hard real-time (<100 ms) inference.
We evaluate our technique against a state-of-the-art unsupervised algo-
rithm and show a sizeable improvement, suggesting that the information
from the weak labels is successfully leveraged. Finally, we evaluate our
technique against human-generated state-of-the-art algorithms and show
that it provides comparable performance and significantly outperforms
them in some offline and real-world benchmarks.

Keywords: Event detection · Time series classification · Preventive
maintenance · Deep learning · Weak labels · Label proportions ·
Resource-constrained devices

1 Introduction

1.1 Motivation for Electronic Shot Counters

In recent years, the defence industry has seen an increasing interest in preven-
tive and predictive maintenance. In the context of infantry firearms, the number
of rounds fired is the prime contributor to their deterioration. Thus, keeping
track of the number of rounds fired is an important part of weapon maintenance
as it allows a quantitative measure of wear and tear. While this operation has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Guyet et al. (Eds.): AALTD 2022, LNAI 13812, pp. 148–166, 2023.
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historically been done through logbooks updated manually by operators, these
are prone to human error and can prove unreliable. Entries might be omitted
or subject to inaccurate estimations. The introduction of electronic shot coun-
ters to individual weapons allows for much more accurate tracking of weapon
usage. These devices are either clipped on or embedded in the firearm and usu-
ally rely on MEMS accelerometers, measuring in particular, the acceleration in
the firing axis to provide shot detection and counting, burst rate evaluation, and
ammunition type discrimination. This allows armourers to perform more accu-
rate maintenance of their inventory by both prioritizing weapons in most need of
maintenance and potentially skipping those which have not been operated since
their previous maintenance. In addition, the maintenance can more reliably be
performed in a data-driven, predictive manner. Modern firearms maintenance
guidelines can be broken down into manufacturer-provided estimations for indi-
vidual parts or components given as an average lifespan in amounts of shots.
This allows the armourer to replace those parts preemptively, avoiding potential
firearms malfunction during operation. This change in maintenance paradigm is
estimated to save up to 50% on armourer labour time, increase weapon avail-
ability up to 90%, and reduce operating costs by up to 20%. [3]

While some shot counters employ different types of sensors, our proposed
method should be equally applicable to any temporal data from one or a combi-
nation of sensors. Although microphones are a popular method of shot counting
in controlled environments such as shooting ranges, they require exposing an
external sensor that is not compatible with military requirements for weapons
which include prolonged exposure to hostile environments such as water, salt,
dust, grease or acid. They also suffer from echoes in enclosed environments
requiring frequent recalibration. Magnet-based methods have shown very effec-
tive; however, the requirement for close proximity to the firing mechanism is
often a cause for concern due to either encumbrance or safety reasons. They also
require more expensive parts. As a result, accelerometer-based solutions have
been preferred by the defence market as these can be fully and invisibly embed-
ded in any part of the weapon, in particular grips and handles, which are often
hollow and separated from the firing mechanism.

1.2 Counting Problem

The problem of counting the number of shots in a time series lies firstly in detect-
ing relatively-rare individual events from unrelated ones, such as normal weapon
manipulations or falls on hard ground interspersed in-between shots. We illus-
trate some example inputs in Fig. 1. Example #1 shows a shot that is followed
in close proximity by a purely mechanical event which should not be counted.
Example #2 illustrate other non-shot events. In addition, shots need to be dis-
cerned from each other for proper counting and the start of each one properly
identified for burst rate evaluation. However, shots can present a wide variety of
signatures depending on external factors (see Sect. 3). Example #3 shows shots
fired with the same weapon as #1 presenting differing signatures both from #1
and from each other even though they happen in close succession. Example #4
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shows how shots can blend into each other rendering individual detection dif-
ficult, with the common occurrence of a mechanical event also blending in at
the end of a burst. Mechanical events visually very similar to shots also happen
in close proximity. Examples #4, 5 and 6 are taken from different weapons and
show how the signature can significantly differ between them.

Fig. 1. Example inputs (high resolution available in digital version). Events have been
individually labelled by a human expert between shot in green (numbered at the bot-
tom) and non-shot in red. (Color figure online)

1.3 The Case for Machine Learning

As the market for shot counters develops, requests for new types of shot counters
have increasingly high requirements and lower accepted lead time. Nowadays,
clients of the defence industry expect a higher grade of personalisation, including
modifications impacting the core design of the weapon and necessitating new
R&D work. On the other hand, fast product delivery is also more and more
expected in an increasingly competitive market. This has led to a fundamental
restructuring of the manufacturing processes from make-to-stock to assemble-
to-order and even engineer-to-order strategies.

In recent public tenders of the firearms market, shot counters have progres-
sively become an important criterion in the attribution process. It is thus grow-
ingly important for shot counters to be available with very low delay, ideally at
the latest when the weapon prototype is delivered to the client for initial testing
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so that the shot counter can be evaluated alongside its platform. However, since
a shot counter can only be developed when at least one corresponding weapon
design prototype is available, the window of time left for development between
the end of the weapon R&D work and the first delivery can be slim, sometimes
in the order of a few weeks. Combined with the increasing complexity of the
many existing weapon variants leading to a correspondingly high required devel-
opment time as described in Sect. 3, the current techniques of manually written
algorithms can result in a failure to meet the market.

The automatisation of the shot counting algorithm generation aims to allevi-
ate this issue by trading labour time from a qualified expert to computation time,
which can be scaled through cloud computing according to urgency. In addi-
tion, automatically-generated algorithms have been shown to outperform and
replace human-generated ones in some situations. However, as further described
in Sect. 2, there is currently no publicly available generic technique for automat-
ically deriving shot counting algorithms.

1.4 Contributions

Our paper makes the following contributions:

– We describe a procedure allowing one to use a single-axis accelerometer to
construct a dataset representative of a firearm’s behaviour with minimal work
related to data labelling through weak labels only.

– We propose a new technique that is able to exploit these weak labels to derive
an instance-level classifier able to solve the counting problem and the more
general discrimination problem.

– To our knowledge, we are the first to propose a neural network structure
suitable to solve this problem in real-time on embedded microcontrollers.

– We propose a series of generic and domain-specific improvements to the base
technique allowing it to reach much higher performance levels.

– We evaluate our technique against a state-of-the-art unsupervised algorithm
and show a very large improvement, suggesting that the information from the
weak labels is successfully leveraged.

– We finally evaluate our technique against human-generated state-of-the-art
algorithms and show that it provides comparable performance and signifi-
cantly outperforms them in some offline and real-world benchmarks.

2 Related Work

Owing to the specific nature of the problem and the relatively recent indus-
try interest in embedded shot counters, publicly available academic research on
this specific problem is scarce. FN Herstal owns several international patents
on the topic since 2006. In particular, one covers the use of successive events in
accelerometer data for the purpose of shot counting [4] and has likely hindered
further research into exploiting this signal. Loeffler [7] and Reese [11] limit them-
selves to low scale and sampling frequency, are restricted to a few shots and do
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not make use of machine learning. Ufer et al. [14] offer a calibration technique
on a pre-made expert algorithm. Calhoun et al. [1] propose a method for gun-
shot detection involving deep learning; however, this technique is aimed solely
at acoustic detection (not counting) from a network of city-wide microphones
and involves a human in the loop.

Inspiration could be gleaned from the richly studied domain of fall detec-
tion. For example, Putra et al. [10] study accelerometer-based fall detection
by decomposing the impact into sub-events in the time domain, thereby show-
ing similarities with our problem and applying machine learning techniques. A
recent paper by Santos et al. [12] applies deep-learning techniques to this same
problem and proposes a CNN with good results when using data augmentation
techniques. These approaches however rely on strongly labelled data.

A recent patent application by Weiss et al. [15] for Secubit Ltd. details con-
current work aimed at using deep-learning for shot counting from accelerometer
data, facultatively augmented by other sensors. The method proposed in this
work differs from the Weiss et al. patent in many aspects:

– A concrete proposition is made for the model structure, data preprocessing,
effective input vector selection, dataset construction, training process and an
effective method for ammunition type discrimination.

– Our work proposes an innovative technique allowing us to leverage the low-
effort data about the number of shots contained in a time series. This allows
efficient learning directly from the input dataset in its whole variance without
the need for potentially unrepresentative GAN-synthesized data.

– Our technique shows performance best with an input vector significantly
smaller than the normal event length.

– Our technique can be entirely performed in an embedded device in real-time,
requiring no intermediate representation to be stored and/or transferred.

– The Weiss et al. proposition does not make a concrete description of how
their technique can be employed in an embedded device, apart from the flow
control system and mentioning possible optimizations through graph prun-
ing and knowledge distillation. Our technique bypasses the need for these
optimizations by directly training a network adapted to the target platform.

3 Dataset Acquisition and Construction

For a given model and calibre of firearm, the following external variables are known
to have a significant impact on the weapon behaviour: shooting sequence, ammu-
nition type, ammunition load, gas-operated reloading nozzle size, shooter posi-
tion/mountingmechanism,mounted accessoriesweight, ammunition loading type,
usage of a suppressor, shooting angle,weapon and canon temperature, firearmdirt-
iness, and firearm wear and tear (by including both new and used weapons).

To acquire a dataset representative of the whole spectrum of possible real-life
weapon behaviours, one would ideally have to record and control these external
variables independently. However, the number of variables and the large space of
possible values for each of them can rapidly lead to an unmanageable number of
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combinations. As a result, a discrete and possibly reduced number of significantly
differing settings for each variable will be chosen according to expert armourer
knowledge of the weapon and existing experimental results. A reduced num-
ber of combinations will then be chosen according to the development budget,
attempting to capture both nominal and extreme behaviours of the weapon.

Raw data can be acquired by recording the sensor output while operating
the weapon. However, the labelling of this data presents a significant challenge:
Creating strong labels identifying the position of individual shots in the data
requires the intervention of a firearms expert to discern shots from unrelated
acceleration events. This is a very labour-intensive task and is prone to human
error. On the other hand, weak labels in the form of a total number of shots
fired in a given recording can be produced cheaply and reliably by manually
counting the number of rounds used, especially when these come in pre-numbered
containers such as ammunition boxes and magazines.

4 Proposed Method

To exploit our dataset, we need to find a technique allowing us to work from
the weak labels. This can be accomplished by finding a way to reformulate the
counting problem into a category proportion problem. To do so while keep-
ing a detector with suitable time and space constraints for embedded use, two
hypotheses are made:

1. A shot has a finite and known maximum duration.
2. At least one sub-event of a shooting event can always be reliably distinguished

from the background noise.

Hypothesis 1 is related to the length of the candidate windows that will be
considered. Since it imposes no maximum bound on the duration, a sufficiently
large number will always exist to satisfy it. However, larger numbers will nega-
tively impact the performance of the resulting detector. A good number can be
easily derived from the minimum theoretical burst rate of the weapon.

Hypothesis 2 allows us to reduce the number of candidate windows that will
be considered. It is done by producing candidate windows only when a certain
metric is satisfied, preventing useless computations during rest periods where the
only input is background noise. The difference between metric and detector is
that the metric is not subject to any constraint on the number of false positives
it provides. However, a metric with fewer false positives will further reduce the
computation time. It is important that the metric avoids false negatives, which
would result in a valid candidate not being presented to the detector.

Satisfying hypothesis 2 in practice will depend on the nature of the input sig-
nal. For the most common input signal of accelerometer time series, we propose
the use of a rolling average on the instantaneous accelerations squared:

m[t] =
1
w

w/2∑

i=−w/2

(a[t + i + o])2 (1)
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where a[t] is the input acceleration time series, w is a positive integer hyperpa-
rameter for the size of the metric window, and o is an optional integer offset that
can be applied to shift the position of the metric relative to the input signal.

The input signal and metric are illustrated in Fig. 2. It can then be compared
against the high (TH) and low (TL) thresholds, whose values are hyperparameters
of the model. A candidate would, for example, only be generated when the signal
dipped below TL and increased above TH .

Fig. 2. Example of candidate generation on an ideal input.

Each candidate defines a slice of the input series of a fixed size determined
according to Hypothesis 1 at most. In practice, experiments have shown that
similar or better classification performance can be obtained with a significantly
smaller input vector. A smaller input vector has a major benefit regarding
inference-time performance.

Let N be the number of categories of inputs to classify. The classification
categories can be arbitrarily decided as long as their number of occurrences can
be known for each input series. In the simplest case, a database could be classified
as non-shot or shot, leading to N = 2. A more complex example would be
classifying between non-shot, shot with live ammunition, and shot with training
ammunition leading to N = 3. Shot types could then be further subdivided
according to whether or not they include a suppressor with N = 5. Given a time
series including a shooting sequence with different counts ci with i ∈ {1, ..., N}
being the number of occurrences of each event category. Let its division into
candidate slices be X. We can then define event proportions between the known
number of events of a certain category and the total number of candidates as
pi = ci

|X| . A machine-learning-based classifier fθ(x) with trainable parameters θ

can then be run on each candidate input vector, attempting to classify it into its
corresponding category. The resulting predictions over a given time series can
then be aggregated into proportions as follows:

p̂ =
1

|X|
∑

x∈X

fθ(x) (2)

The two proportions can then be compared according to a label proportion
technique such as the one described by Tsai et al. [13] to tune the trainable
parameters θ to optimal values. In particular, the related part of the loss function
will be:
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Lprop = −
N∑

i=1

pilog(p̂i) +
N∑

i=1

pilog(pi) (3)

The second term is an original addition allowing the loss function to converge
to 0 in the case of perfect predictions (i.e., when p̂ = p). Without it, the minimal
achievable loss has different values depending on the ratio of the different pro-
portions. This makes the comparison of loss values across different inputs more
meaningful, as well as their aggregation in an average loss over the dataset. Aver-
age loss can be viewed as a smooth metric of model quality, whereas the model
accuracy can only take discrete values, corresponding to a discrete number of
counting errors. This enables us to monitor the model learning evolution more
precisely and employ early stopping techniques based on the average loss on
the validation dataset. Comparative experiments have shown that its addition
provides increased numerical stability and prediction accuracy.

In theory, this formulation does not guarantee the expected assignation of
predicted classes in the edge case where the proportion of some of them are
systematically equal (pi = pj) in every sample of the training set. However, this
is not a practical concern as the natural variability in the number of occurrences
of each class will quickly break any potential tie and allow the model to converge
appropriately. In addition, it is generally easy to obtain samples containing only
non-shot data or a single class of shot data thereby providing some heavily
skewed samples preventing this problem from occurring.

This technique allows us to train a model from our weak aggregated labels.
Note that our proposed method only relies on a particular definition of the loss
function while not imposing any constraints on the type or structure of the
model. A proposed model for embedded usage is described in Sect. 4.2, but can
be swapped for other types of neural networks or machine learning techniques
as long as it is able to train from such a loss function.

4.1 Minimum Cycle Time

An important factor limiting the performance of the technique, as previously
described, appears when the metric generates two candidates very close in time.
The model will receive two very similar input vectors, different slices of the same
shot, which it is likely to both classify as being a shot, leading to false positives in
the counting as a typical firearm is only able to shoot one projectile at a time in
a cycle. However, we could leverage the known information of the minimum cycle
time of the weapon to alleviate these false positives. For example, the modern
Minimi 5.56 specifications allow a maximum firing rate of 950 rounds per minute
(rpm), corresponding to a 63 ms average cycle time. Since this burst rate can be
slightly exceeded in exceptional situations and individual cycle times might vary,
it is necessary to incorporate a margin of error over that theoretical number. A
value of 40 ms (corresponding to a theoretical cycle rate of 1500 rpm) has been
used in our experiments.

While we could consider filtering out candidates at the metric level, at this
step, we do not yet know which candidate the model would usually classify as
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a shot. Doing so thus risks removing the candidate closest to the actual shot
ignition in favour of one before or after it. This could lead to non-detections
and would diminish the model’s ability to precisely identify the position of the
shot in the time series. A better approach is to apply this filtering after the net-
work predictions. We first change successive shot predictions to non-shot if they
fall within an exclusion window of the first prediction. Experimental data (see
Sect. 5.2) show that this already leads to a significant reduction in error rate.
In addition, we can avoid performing model inference on the ignored predic-
tions leading to an overall computational performance increase in deployment.
A drawback of implementing this as a post-processing step is that the model has
no knowledge of it and remains penalized during training for the duplicate pre-
dictions. This might produce a model overall unnecessarily “reluctant” to predict
shots. In other words, one can assume that if the model had knowledge of this
post-filtering, it would not hesitate to predict a shot for slightly offset candi-
dates, knowing that it would not be penalized for duplicate predictions. We can
accomplish this during training by implementing Algorithm 1, which corrects
the predictions while ensuring the duplicates do not take part in the loss compu-
tation. This process is performed in an iterative fashion since a masked-out shot
prediction must not itself create a mask. Redefining Eq. 2 to substitute fθ(x) by
f ′

θ(x) will then prevent backpropagation for the masked-out predictions. This
leads to another significant reduction in error rate in experiments.

Algorithm 1. Remove duplicate predictions in training
Require: ti: timestamp for each candidate xi.
Require: TM : minimum event duration
Require: fθ(x): instance-level classifier with trainable parameters θ,
Require: e: vector corresponding to a non-shot prediction with maximum certainty

ŷi ← max1≤k≤Nfθ(x)i,k � Individual category predictions
mi ← � � Mask to be computed
for i = 1, ..., |x| do

ŷ′
j ←

{
ŷj , if mj

0, if ¬mj

, j ∈ {1, ..., |x|}
if ŷ′

i predicts a shot then
updatej ← (tj ≤ ti) ∨ (tj > ti + TM ), j ∈ {1, ..., |x|}
m ← m ∧ update

end if
end for

f ′
θ(x)j ←

{
fθ(x)j , if mj

e, if ¬mj

, j ∈ {1, ..., |x|}
return f ′

θ(x)

4.2 Model Structure

We have chosen to implement our model as a convolutional neural network
(CNN) inspired by the one described by Santos et al. [12], as described in Fig. 3.
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Fig. 3. Neural network structure for an input size of 232. Convolutions do not use
strides nor padding. The input size and number of convolution channels depends on
the application and the available computational budget.

The illustrated model totals only 33242 parameters, as we look for a small model
suitable for real-time embedded inference.

The original ReLU activations have been changed to ReLU6 to make the
network more suitable for quantization. ReLU6 activation bounds the values,
limiting their possible range. This allows us to use a fixed point representation
with more bits allowed to the fractional part, reducing the quantization artefacts
and improving overall accuracy. Results outside the scope of this paper have
shown the difference in error rate before and after quantization to be reduced
both in median and variance when applying ReLU6 activations.

In testing, the maximum value of 6 has shown to produce the best median
results, whereas ReLU2 has shown the best best-case performance. Since 6 is not
a power of 2, the full [0; 6] range does not quantize efficiently, needing up to 3 bits
for the integer part while not making full use of them. However, we speculate
that even when the distribution of activation values uses the full range, only
a low percentage of values actually falls near the bounds. Better performance
can thus be achieved in those cases by only quantizing a 2-bit range around
the average, saturating the outliers but leaving one more bit to be used in the
fractional part.

As previously mentioned, this paper focuses on the definition of a loss func-
tion allowing the leveraging of our weak labels independently of the trained
model type. This network serves as a basis proving the viability of the tech-
nique on heavily constrained hardware, and the derivation of the optimal
model structure will be the subject of future research. While our small model
and dataset sizes allow for relatively fast training, we plan on exploring how
MINIROCKET [2] could enable us to further reduce it thereby allowing a faster
exploration of the hyperparameter space. With proper hardware support, spik-
ing neural networks could also be a good candidate for this type of application.
While this work focuses only on instance-level information, long short-term mem-
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ory (LSTM) networks could prove a worthwhile extension to add contextual
information to the prediction.

4.3 VAT

Following the good results of Tsai et al. [13], we apply Virtual Adversarial Train-
ing (VAT) as described by Miyato et al. [9]. As advised in the original paper,
optimization is only done through the perturbation size ε. The regularization
coefficient α is fixed at 1, the finite difference factor ξ is fixed at 10−6, and a
single power iteration is performed (K = 1). Contrary to the findings of Laine
et al. [6], our experiments have shown that the best results on our problem are
obtained when the VAT loss is introduced as soon as possible. Thus, we do not
include any ramping up to the VAT loss component.

5 Experiments

5.1 Methodology

We chose to evaluate the technique on two firearms: the FN MinimiR© 5.56 and
the FNR© M2HB-QCB. The Minimi was selected due both to its availability for
in-depth testing and its reputation of being a notoriously difficult weapon to
provide counting algorithms for due to its very wide number of possible configu-
rations. In addition, the weapon tends to show low-information signals in some
configurations due to its heavy weight regarding the low-power 5.56 ammunition.
The M2 was selected as a contrast to the Minimi, being on the higher end of
ammunition power and using a completely different action mechanism.

External variables considered for the Minimi were: ammunition type (live/
blank), barrel size (short/long), accessory weight (none/3kg accessories), gas-
operated reloading nozzle size (minimal/nominal/maximal), shooter position
(shoulder/bipod/waist), and firing sequence (semi-automatic, three to six rounds
bursts, 4-1-4-1 bursts, full bursts). Data were acquired in groups of ∼15 rounds.
Non-shot data acquisition includes: dry firing, 1.5m falls onto concrete, opening
and closing the top cover, full reloading manipulation, and user randomly bump-
ing the weapon. In addition, similar data were also acquired on the Minimi 7.62.

External variables considered for the M2 were: ammunition type (live/blank),
the weight of ammunition belt (minimal belt/100 rounds belt), mount (tripod,
fixed mount, elastic mount, deFNderR© teleoperated station), and firing sequence
(manual rearming, single rounds in automatic mode, 3–6 rounds bursts, 4-1-4-1
bursts, full bursts). Data were acquired in groups of ∼10 rounds. Non-shot data
acquisition includes: dry firing, rearming and releasing the mobile parts, opening
and closing the top cover, and user randomly bumping the weapon.

In all cases, input that contains firing incidents (weapon malfunctions) is
rejected. To evaluate the final performance of the algorithm, a validation dataset
is split from the input dataset. To ensure that the validation set captures the
behaviour of the firearm in a wide range of situations, the input series are first
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sorted into different bins for each available combination of external variables.
The validation set is then constructed by randomly sampling 10% of the data
in each bin, rounding in favour of the validation set. The composition of the
different datasets is shown in Table 1. Note that the number of non-shot events
is not exactly known. This is firstly because there is no easy and reliable way
to provide weak labels for these data, meaning we have to rely on operator
estimations. In addition, a significant number of non-shot events is also acquired
as part normal shooting tests as the operator has to manipulate the weapon
before and after firing sequences for both practical and safety purposes. These
are unaccounted for in our count. Thus, we only provide a lower bound on the
number of non-shot events. A measure of their actual number can be gained
from the total number of candidates generated by the preprocessing.

The real-world distribution between shots and non-shots is also unknown, as
this will heavily depend on the end user and their doctrine. For example, some
users will frequently manipulate the weapon without shooting during training
and/or perform dry firings and safety checks before or after shooting, and trans-
port it in vehicles generating significant vibrations. Other users will leave the
weapon mostly in storage, and do a minimal number of manipulations around the
shooting. We thus evaluate these separately, by including in the firing samples
only the minimal number of manipulations and safety checks around the shoot-
ing (which also generates unavoidable non-shot candidates due to the inherent
behaviour of the weapon). Other non-shot events are ideally sampled separately
so that a measure of the number of false positives generated during weapon
manipulation can be given. These will be given in the “non-shot only” rows of
the following section.

Table 1. Summary of the number of shots per dataset.

Minimi 5.56 Minimi 7.62 M2
Learning Validation Learning Validation Learning Validation

Live 4461 1785 4707 1800 5263 729
Blank 2130 719 943 348 4238 529
Non-shot events >400 >55 >97 >35 >1550 >180
Candidates (total) 14857 5494 12029 2355 60844 8096

Randomly initialized neural networks are then trained in groups of 20. Opti-
mization is done through stochastic gradient descent with fixed 0.9 Nesterov
momentum. The learning rate is reduced by a factor of 2 for every 20 epochs
without improvement larger than 10−5 on the validation loss. A learning phase
is stopped if 40 epochs occur without any improvement on the validation loss.
Learning occurs in three phases: an optional pre-training phase on a wider
dataset, normal training on desired firearm’s dataset, and quantization-aware
training on the same dataset. After each phase, the best model is selected accord-
ing to the lowest number of validation errors, then the lowest validation loss in
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case of a tie and proceeds to the next phase or final evaluation. The resulting
network is quantized to eight bits and runs on the target platform through the
TFLite for Microcontrollers framework accelerated by the CMSIS-NN [5] library.

To iteratively optimize the different hyperparameters, we start by optimizing
individually the preprocessing hyperparameters starting with w from Eq. 1, the
associated thresholds TH and TL and the network input vector length. We then
proceed to optimize the learning rate and VAT perturbation size ε. The model
can then be reduced according to the desired performance/computational budget
tradeoff by reducing the number of convolution channels. A second round of
fine-tuning can then be applied. The model shows a single minimal error rate
for all hyperparameters, which can thus be optimized by bisection until the
minimum is found. The only exception is w which has been shown to produce
several local minima requiring a more thorough exploration within the acceptable
computational budget. The details of the hyperparameter survey are outside the
scope of this article and will be included in a future paper. The values used for
our experiments are reports in Table 2.

Table 2. Chosen preprocessing and EDGAR hyperparameters.

Hyperparameter Minimi 5.56
(#1)

Minimi 5.56
(future)

M2

|x| 232 232 360
w 5ms 5ms 5 ms
TH 30 114 114
TL 10 90 90
Filters 18 18 64
Learning rate 0.002 0.002 0.0032
VAT ε 5 5 5

For the Minimi, pre-training is performed on the 5.56 and 7.62 datasets.
For the M2, pre-training is performed on all three datasets. Acquisition and
testing are done on a custom hardware platform, including a 64 MHz Cortex-
M4F microcontroller and a ±200g, 6400 Hz MEMS accelerometer.

Due to technical limitations of our current data collection setup, the extrac-
tion of samples currently requires the intervention of a trained technician on the
shooting range making it significantly more expensive than autonomous count-
ing operation. As a result, we have chosen to test the final performance of our
method in this fashion pending the acquisition of truly independent test datasets.

As detailed in Sect. 2, no ML-based approach or device is currently publicly
available for our problem. While the domain of time series classification is well
studied, as described in Sect. 3 the lack of labels for individual shots prevents
us from using supervised techniques. As a baseline, we include for comparison
a method of unsupervised clustering on the candidates based on deep learning:
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Deep Temporal Clustering (DTC) as described by Madiraju et al. [8]. Hyperpa-
rameters have been fine-tuned following a similar procedure and are reported in
Table 3, and pre-training is also applied.

Table 3. Chosen preprocessing and DTC hyperparameters.

Hyperparameter Minimi 5.56 M2

|x| 232 360
w 5ms 5 ms
TH 126 114
TL 119 90
Distance metric CID CID
α 17.5 1
γ 90 1
Batch size 64 64
Pool size 4 8
Kernel size 96 10
Filters 50 50

For the human baseline, we compare our technique with FN SmartCoreR© shot
counters, which share the same hardware and sensor, running algorithms gener-
ated by human firearm experts. These work by first detecting discrete shocks in
the input signal. They then attempt to interpret groups of shocks as sub-events
of a firing cycle (such as feeding, locking, firing or rearming) by considering
their relative energies, timings, directions and the duration of “calm zones” in-
between [4]. These devices have been commercially available since 2012 and are
available for a wide range of machine guns and assault rifles.

5.2 Performance

In this section, we examine the performance of our technique on both the valida-
tion datasets and real-world testing. Since we are dealing with weak labels, we
are unable to verify model predictions at the instance level. Models are evaluated
through their error rate, which we define as the sum of the counting differences
(category by category) for all time series, divided by the real total count. More
formally, we define the error rate E as:

E =

∑
i,j |ĉij − cij |∑

i,j cij
(4)

where cij is the count of shots (or, if applicable, other countable events) of type
i for time series j and ĉij is the one estimated by the model.
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A model that always predicts non-shots will have an error rate of 100% by
this definition. In practical applications, non-shots constitute the majority of
candidates (see Table 1). In these conditions, a model that always predicts shots
will have an error rate over 100% (119% for the Minimi 5.56 and 544% for the
M2 datasets). We can expect applications with a larger class imbalance between
non-shots and shots to show a higher base error rate due to the increased number
of false positives, denoting a harder problem for shot counters. Note that we could
also define the error rate compared to the total number of candidates, resulting
in smaller error rates but with identical relative levels for a given dataset.

Another interesting baseline is a classifier that predicts shots randomly
according to the relative frequency of shots to non-shots in the learning set,
which would be the most trivial exploitation of the weak labels over a random
predictor. While such a model would report a fairly accurate total count in iden-
tical benchmark situations, it would vary wildly on individual inputs. This is
detected in the error rate: the weighed random model obtains E = 31.5% for
the Minimi 5.56 and E = 37.5% for the M2. Note that since the class imbalance
depends on the external conditions and usage, practical applications or different
datasets are likely to have a different class distribution which would make such a
model increasingly inaccurate. Such a model would also produce a large number
of false positives during non-shot usage, which is highly undesirable.

In the experimental results of this section, we also mention (in smaller print)
the raw counting result, which is the metric eventually used by the armourer
and allows for some desirable error compensation. This also lets the reader know
how many real shots an error rate is based on.

Minimi 5.56. Table 4 compares our method with DTC and the human-
generated algorithm. Real-world testing (model #1) was performed in similar
conditions but with different weapons and sensors. Since then, we have found
better values for hyperparameters TH and TL, which significantly improved per-
formance, and report the results of this model as “future” as it has not yet under-
gone real-world testing. The machine-learning model runs in 65ms/inference on
our testing platform and the preprocessing runs in 22 µs/sample. It uses 41 kB
of program memory and has peak usage of 11 kB of RAM.

We observe that the model significantly outperforms not only the unsuper-
vised baseline but also the human-generated algorithm on the validation set
and that the “future” model is even able to obtain a perfect score. The expert
model shows better performance in real-world testing on a previously unseen
weapon and sensor. We believe this is due to the validation set over-representing
extreme cases compared to the nominal-case real-world test. Our machine learn-
ing model shows a slightly degraded error rate, falling behind the expert model,
but still remains well below the threshold for commercial viability (E < 5%).
We assume that this difference is mainly due to an input distribution shift to
which the machine learning model is sensitive. In particular, we discovered that
our dataset for this weapon did not accurately reproduce the moment at which
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Table 4. Error rates and reported count of Minimi 5.56 algorithms on the validation
set and during real-world testing, broken down by ammunition type.

Human EDGAR DTC
Valid. Real Valid. (model #1) Real (model #1) Valid. (future) Valid

Live 2.07% 0.41% 0.17% 2% 0% 9.2%
1752/1785 1205/1210 1788/1785 404/400 1785/1785 1841/1785

Blank 0.69% 0.74% 0.28% 0.75% 0% 11.4%
714/719 1201/1210 719/719 403/400 719/719 795/719

Total 1.68% 0.58% 0.20% 1.37% 0% 9.82%
Non-shot only
(false positives)

30/>55 0/>100 0/>55 6/>100 0/>55 34/>55

our accelerometer starts sampling in practical situations, leading to a slight dif-
ference in inputs for the first shot of a burst.

In addition, some false positives were detected. This is not a surprising result
as this weapon is notoriously difficult to filter out false positives for, as attested
by the result of the expert algorithm on the validation set. We believe that
increasing their representation in the learning set would alleviate this issue.

M2. The M2 weapon platform provides a special firing mode allowing the user
to manually control the weapon cycle, ensuring only single shots are possible.
This functionality fundamentally alters the weapon cycle and, so far, human-
generated algorithms have not been able to support it without suffering from a
significant number of false-positives. These are currently completely ignored by
existing shot counters. With this experiment, we have attempted to solve this
problem by training and testing the neural network on the whole dataset, includ-
ing 20% of samples using this functionality. Results are compared in Table 5. In
addition, the M2 platform offered us the unique possibility of mounting two
counters in parallel, thus providing directly comparable results.

The machine-learning model runs in 87ms/inference on our testing platform
and the preprocessing runs in 22 µs/sample. It uses 52 kB of program memory
and has peak usage of 14 kB of RAM.

Following the Minimi results, a greater emphasis was put on including non-
shot data in the learning set. This seems to have proven successful as no false-
positives have been detected during transport, setup, normal manipulations and
over 80 supplementary manipulations and dry firings.

On the validation set, the human-generated algorithm obtains a perfect score
on the partial dataset but rises to a 16% error rate when including manually
rearmed shots. The EDGAR model shows satisfactory performance (E < 5%)
on the partial and full datasets by obtaining a stable 2% error rate on both.

Due to the larger class imbalance of this dataset causing it to report many
more false positives, the unsupervised baseline performs very poorly on this
dataset and does not manage to beat the previously described weighed random
model. This interpretation is supported by the non-shot data on which the DTC
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Table 5. Error rates and reported count of M2 algorithms on the validation set and
during real-world testing, broken down by ammunition and mount types.

Fixation Ammun. Full-auto only Full-auto + Manual rearm
Human EDGAR DTC Human EDGAR DTC
Valid. Real Valid. Real Valid. Valid. Real Valid. Real Valid.

Tripod live 0% 0% 0% 12% 23% 16% 20% 1% 10% 25%
160/160 40/40 160/160 35/40 153/160 160/190 40/50 188/190 45/50 193/190

blank 0% 0% 0% 20% 38% 20% 18% 2% 22% 62%
160/160 40/40 160/160 32/40 159/160 160/200 40/49 195/200 38/49 262/200

Fixed live 0% 0% 5% 0% 58% 13% 20% 4% 4% 56%
209/209 40/40 203/209 40/40 275/209 209/239 40/50 229/239 48/50 318/239

blank 0% 0% 2% 17% 36% 24% 20% 1% 26% 41%
130/130 40/40 131/130 33/40 101/130 130/170 40/50 169/170 37/50 159/170

Elastic live 0% 0% 1% 0% 26% 18% 20% 1% 10% 26%
140/140 40/40 139/140 40/40 160/140 140/170 40/50 169/170 45/50 185/170

blank 0% 6% 6% 7% 39% 19% 26% 5% 10% 41%
129/129 75/80 121/129 37/40 157/129 129/159 75/101 151/159 91/101 182/159

deFNder live 0% 0% 0% 0% 30% 6% 22% 0% 8% 42%
110/110 39/39 110/110 40/40 103/110 122/130 39/50 130/130 46/50 144/130

Average 0% 1% 2% 8% 36% 16% 21% 2% 13% 42%
Non-shot only
(false positives)

0
>110

0
>80

0
>180

0
>80

314
>180

0
>180

0
>80

0
>180

0
>80

314
>180

model reports (multiple) shots for every weapon manipulation, which would be
unacceptable for practical use. We thus show a large improvement from this
baseline.

Real-world testing shows performance falling for both algorithms, especially
the machine-learning model rising to 8%. Results on the ammunition discrimi-
nation problem outside the scope of this paper suggest that this is at least partly
due to a distribution shift in the input, which affects the machine learning model
more significantly. Due to equipment availability constraints, only one weapon
and three sensors were used to construct the dataset, while testing was done on
brand-new, unseen weapons and sensors. Despite this, when including manually
rearmed shots, the machine-learning model still shows overall better performance
than the human-generated one.

We assume that supplementary testing on a more diverse batch of weapons
and sensors could significantly improve the real-world performance of the model.

Breakdown of Performance Improvements. In Fig. 4, we compare the per-
formance of incremental improvements to the base method as discussed in Sect. 4.
We start with the base technique. As we move to the right we successively
add improvements, conserving all previously enabled ones. Hyperparameters are



EDGAR: Embedded Detection of Gunshots by AI in Real-time 165

Fig. 4. Effects of incremental improvements. Each box represents the error rate of 20
randomly initialized models on the validation set.

identical to those used to obtain the experimental results in the previous sec-
tions. Some models fail to converge at all, especially when zero-loss is disabled;
these are treated as 100% error rate and explain the high maximums of some
boxes.

We first enable pre-training, add our second term of Eq. 3 in “Zero-Loss”,
and replace ReLU activations with ReLU6 (see Sect. 4.2). We then enable simple
post-filtering (see Sect. 4.1), add our implementation of Algorithm 1 in “Learned
P-F”, and finally enable VAT (see Sect. 4.3).

6 Conclusion and Future Work

In this study, we have presented an approach that successfully learns an instance-
level shot classifier from a weakly-labelled dataset, which we believe opens
the way for new machine-learning applications. We showed that it significantly
improves predictions from the unsupervised baseline by successfully exploiting
the information from weak labels. We also showed that it outperforms human-
generated algorithms in most offline testing, reach commercially acceptable levels
of performance in real-world testing and are able to solve previously unanswered
problems. We expect this to save several weeks of development time per product
and enable increased customisation to specific platforms thus further increasing
performance. Finally, we showed that our technique could yield models giving
this level of performance in real-time on microcontrollers while using less than
14kB of RAM and 87ms per inference. In the future, we aim to bring real-world
performance closer to the one obtained on offline benchmarks by improving the
data collection technique and taking systematic measures against input distri-
bution shifts. Outside the scope of this paper, our technique has also shown
consistent better-than-human performance on the ammunition discrimination
problem. It is already being deployed for that purpose in commercial appli-
cations. We hope to bring to light these results and the associate technique
improvements in a further study.
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Abstract. While human activity has received much attention in time-
series analysis research, animal activity has received much less attention.
The monitoring of cattle in Precision Livestock Farming is a promising
application area as it is reasonable to expect that cattle will be equipped
with low-cost sensors for animal welfare reasons. In this paper, we present
work on feature selection to detect disturbance in calves such as diseases
or stressful events from accelerometer sensors attached to a neck-collar.
While the long-term objective is to generate an alert when a disturbance
is detected, the work presented here focuses on identifying the most dis-
criminating accelerometer features to detect activity changes associated
with a calf stressful event. For that purpose, we used accelerometer data
from 47 calves who were dehorned at 16 days ± 10 days, a routine proce-
dure known to be painful and stressful for calves. We calculated 7 primary
features that could change after an occurrence of a disturbance, within
a 24 h period before and after dehorning for each calf, falling under the
areas of energy expenditure and the structure of the calf activity. These
features were explored under 17 time-scales from 1 s to 24 h to find the
best time-scale associated with each feature. First filtering with Mutual
Information (MI) and Gini index was applied to reduce the candidate set
of features for the second features selection with Random Forest Features
Importance (RFFI). Performance were evaluated with Random Forest,
k-Nearest Neighbor and Gaussian Naive Bayes models on test-sets to
assess the relevancy of the selected features. Performance of all classi-
fiers is improved or maintained when features from MI and Gini selec-
tion are used but decreased when further feature reduction with RFFI is
applied. Therefore, based on MI and Gini selection, the most discriminat-
ing features are linked to activity peaks (maximum), amount of dynamic
behaviors (standard-deviation) and activity structure (spectral entropy,
Hurst exponent) with time-scales ranging from 1 s to 24 h depending on
the features, which is consistent with animal welfare literature.
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1 Introduction

New decision tools are emerging in the context of Precision Livestock Farming
(PLF) to improve the efficiency of livestock management [1] and the monitoring
of health and welfare [2]. Especially, PLF greatly encourages the development
of tools to detect any disease or stressful events in livestock [3]. Early detection
would improve animal health and welfare as requested by consumers [4], but
would also reduce the costs of treatment for the farmer when it is necessary.

In dairy cattle, several tools are already available to automatically obtain
the behaviour over time, such as the time spent grazing, ruminating, resting,
and detect heat events (oestrus) [5,6] but no proper tools are available to detect
disturbances such as stressful events or diseases in cattle. It is also worth men-
tioning that no disturbance detection tools exist for calves even though they are
prone to a lot of different stressful events during the first few months (separation
from the mother, weaning, dehorning, transport, etc.) and vulnerable to certain
diseases (neonatal diarrhoea, bovine respiratory disease, etc.) [7]. Thus, improv-
ing the welfare and health status of calves through early detection of stressful
events or disease would be a major contribution to the field.

Calf activity changes when a disease or distress is experienced [7]. More rest-
ing behaviours are usually observed around the time of the diagnosis of diseases
[8] while fewer dynamic behaviours such as running or playing are observed
after dehorning and after separation from their dams [9,10]. Accelerometer sen-
sors attached to a neck-collar are now used abundantly in livestock management
to automatically obtain the behaviour of animals in their daily routines from raw
accelerometer time-series data [11–13]. Accelerometers have the advantages of
(1) being small enough not to alter the behaviour of the cattle, and (2) collecting
accelerometer data over time without interruption over a long period (>1 month)
as they have low battery consumption [14]. Accelerometer data collected from
a neck collar seems therefore relevant for detecting a disturbance based on a
sudden change in calf activity and should be able to support the development
of a stress or health event detection model.

Energy expenditure and activity structure are both likely to change after
a disturbance in calves [15,16]. Accelerometer features can thus be computed
from the raw accelerometer data to account for these two components. Indeed,
features like mean, median, standard deviation, motion variation and maximum
are related to the energy expenditure levels while features like entropy and fractal
patterns are informative about the structure of activity. Such features could thus
be used as inputs to a Machine Learning (ML) model to detect disturbances.
To develop such a ML model, it is first required to identify the accelerometer
features that are altered after a disturbance and that are therefore the most
promising for discriminating a normal situation from a disturbed one in calves.
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In this context, the objective of this study is to identify the best accelerometer
features and the relevant time-scales to detect a disturbance in calves. Especially,
we focused on the disturbance related to dehorning, a procedure carried out
routinely in farming to comply with Regulations under the Diseases of Animals
Act (1966) which prohibits the sale or export of horned animals [17]. Dehorning
is known to be stressful and painful in calves [16,18] and is therefore used as a
disturbance model to select features in our study.

2 Background Research

2.1 Animal Welfare

2.1.1 Energy Expenditure A decrease of the energy expended by calves can
be expected when experiencing a disease. For example, calves with a respiratory
disease lay for longer and tended to have longer lying bouts a few days before
the diagnosis and during the peak of the disease [8]. Similarly, Hixson et al. [15]
applied an experimental disease challenge model with Mannheimia haemolytica
(MH) in group-housed Holstein bull calves and observed less activity following
inoculation with MH.

A drop in overall activity level may also be observed after stressful events.
An increase in the time spent lying, combined with a decrease of the time spent
running, jumping [19] and playing [10] is for example observed in the following
days after the separation of the calves from their dams. In the same way, calves
may spend more time lying down in hours following dehorning [20,21] and less
time playing [9], running or walking [19]. Such a change in the amount of time
spent expressing these behaviours may lead to an overall decrease in the energy
expended by the calves after these stressful events.

2.1.2 Structure of the Activity An alteration of the activity structure in
calves experiencing disease is also expected. Indeed, Hixson et al. [15] observed a
decrease in grooming, feeding and social interactions in the MH-infected calves.
This reduction in the range of expressed behaviours may lead to a loss of com-
plexity in calf activity, as observed in other livestock species experiencing para-
sitic infection [22].

An alteration of the activity structure in calves after certain stressful events
is also expected. Dehorned calves are highly restless in the hours following the
procedure and expressed a higher frequency of abnormal behaviors such as tail
flicking, head shaking and ear flicking [16,18]. Similarly, the agitation manifested
by vocalisation and searching for the dam is observed in calves after separation
from the mother [10,23]. These repetitive, unvarying behaviors without apparent
biological function may also lead to a loss of activity complexity [22].
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2.2 Feature Selection

Model development to classify livestock behavior from raw accelerometer data
has been explored elsewhere [11] but only a few studies have focused on dis-
turbance detection in livestock. Calf disturbance detection has been recently
investigated from behavioral metrics (e.g., number of daily lying bouts, daily
lying time) obtained either from a commercial system [24] or from a behavior
classification model applied on raw-time series data [25]. However, relevancy of
accelerometer features indicative of the energy expended level and the structure
of the activity has never been explored. Furthermore, the focus in these stud-
ies is on disease detection and the detection of a stressful event has never been
investigated. Features selection would therefore be relevant to gain knowledge
about the accelerometer features that would help to address the research ques-
tion. This requires to identify (i) potential accelerometer features-candidates to
feed the model and (ii) a suitable pipeline to select the accelerometer features.

Several accelerometer features have already been investigated to address a
similar issue in related communities. For example, the average of acceleration
has already been used to classify human motion quality for knee osteoarthritis in
humans [26]. Similarly, spectral entropy displayed a good ability to characterize
the Parkinson posture at an early stage [27]. Stress detection in humans has
also been explored with accelerometer features including statistical features and
energy expenditure features with a considerable accuracy [28].

There are several ways to select features in the ML context proposed in the
literature, such as filter, wrapper, embedded, hybrid, etc. Filter methods basi-
cally use statistic measures to select the best features in the pre-processing step
rather than relying on the learning algorithm. This method include techniques
such as Information Gain, Gini and the Chi-square metric. Advantages of using
filter methods are the low computation time and they usually do not overfit
the data. Wrapper methods basically consider the feature selection as a search
problem. It creates different combinations of the features and evaluate the out-
come in terms of classifier performance to compare it with other combinations.
Forward selection, exhaustive feature selection are some of the wrapper meth-
ods. Embedded methods combine the advantages of both the filter and wrapper
methods. These methods are faster and more accurate than wrappers. Regular-
ization and regression methods such as lasso or ridge regression are some of the
techniques of the embedded methods [29–31]. It is worth noting that a common
limitation in model development in livestock science is the few animals available
to train and validate the model, which usually leads to a drop in performance
when the model is applied on new animals [11]. Consequently, features selection
with Gini index or Mutual Information (MI) combined with Random Forest Fea-
ture Importance (RFFI) sounds promising mainly as we are dealing with a high
amount of features and few individuals to train and validate the model [32,33].
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3 Materials and Methods

3.1 Time-Series Data Collection Around Dehorning in Calves

The experiment was conducted at Teagasc Moorepark Research Farm (Fermoy,
Co. Cork, Ireland; 50◦07′N ; 8◦16′W ) from January 21 to April 5, 2022. Ethical
approval for this study was provided by the Teagasc Animal Ethics Committee
(TAEC; TAEC2021-319). All experimental procedures were performed in accor-
dance with European Union (Protection of Animals Used for Scientific Purpose)
Regulations 2012 (S.I. No. 543 of 2012).

Forty-seven Holstein Friesian and Jersey calves were used for the trial. All
calves were dehorned at the age of 16 ± 10 days using cauterisation and were
administrated a local anaesthetic on each side of the head in the corneal nerve
(Lidobel; 2 cc/side) 15 min before the procedure. AX3 dataloggers1 were used for
this trial. Activity AX3 are MEMS 3-axis accelerometers and have a flash based
on-board memory (512 MB), measuring 23 × 32.5 × 7.6 mm and weighting 11 g.
The accelerometers were configured 25 Hz during the experiment. The 47 calves
under study were equipped with a AX3 data logger attached to a neck-collar.
Accelerometer data were collected from 1–4 weeks before dehorning, during the
dehorning procedure, and 4–9 weeks after dehorning.

3.2 Methodology Applied to Calculate and Select Features

The pipeline of the methodology is described in Fig. 1.

3.2.1 Calculate Features from Time-Series Two periods of 24 h of data
were selected for the feature selection process:

– The 24 h period immediately preceding the dehorning procedure. No disrup-
tion occurred during these 24 h. This period is therefore considered as the
baseline period and labeled D− 1.

– The 24 h period immediately following dehorning. The disruption has just
occurred and the main change in activity due to dehorning is expected at this
time [21]. This period is therefore considered as the period after disturbance
and labeled D + 1.

In each D− 1 and D + 1 period, the magnitude (see Eq. 1) was first calculated
from the 3 axis-accelerometer readings to get a time-series independent of the
sensor orientation. A unit value was reduced from the magnitude time-series to
remove the gravitational acceleration component.

magnitude = |
√

x2 + y2 + z2 − 1| (1)

The magnitude scalar of the activities got in pre-dehorning (D− 1) and post-
dehorning (D + 1) phases is shown for two calves in Fig. 2.

1 Axivity Ltd.; https://axivity.com/product/ax3.

https://axivity.com/product/ax3
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Fig. 1. Pipeline of the methodology followed.

Fig. 2. Behavior of the raw magnitude time-series data in pre-dehorning (D− 1) and
post-dehorning (D + 1) phases.
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Magnitude time-series were then split into 17 time-scales ranging from 1 s to
24 h. Six features indicative of energy expenditure and activity structure were
then calculated in each time-scale in the D− 1 and D + 1 periods resulting in 102
different features. The Hurst exponent fractal feature was calculated considering
a 24-hour time-scale only, as proposed in Burgunder et al. [22]. Thus the final
feature dataset consists of 103 features. The details of the features calculated
are listed in Table 1.

Table 1. Main feature details
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3.2.2 Two Stages Feature Selection Strategy The data was split into
train, test and validation data in a ratio of 60 : 20 : 20%. It was ensured that
the labels D + 1 and D− 1 for each calf are both in one of the training set, test
set or in the validation set.

Features selection was applied with a two stages pipeline (see Fig. 1). A first
filter stage was applied with Gini filter and MI filter [32,33] in order to remove
the least informative features thereafter. The tree-based structure of the Random
Forest model is naturally ranked by how well they improve the purity of the node
thus giving an idea itself about the importance of the features considered. In that
way, the least informative features can be identified easily based on the features
ranking. The training data was first fed into Gini and MI filters separately and
the feature importance scores were calculated for each feature.

Next, the bottom 60% of features from the MI and Gini rankings were respec-
tively removed for the rest of the features selection process. Thus, 40 features
from MI and Gini filters were fed separately into the RFFI procedure with the
validation dataset to obtain the RFFI ranking. This process was carried out in 10
iterations and the features that were outputted in each iteration were recorded.
Next, a count of occurrence for each feature was taken and the presence value
for each feature was calculated by taking the percentage of occurrences to the
number of iterations.

3.2.3 Classification Performance with Selected Features To get a bet-
ter knowledge of the features selected, five subsets of features were used:

– All the features: As a baseline, the 103 features were used in the training and
testing data.

– Initial filtering features from MI (noted MI features) and from Gini (noted
Gini features): Features leading to non-zero MI and Gini scores were used to
filter out the training data and the testing data.

– RFFI features from MI (noted MI+RFFI ) and from Gini (noted Gini+RFFI
features): Features obtained after the first filtering with a presence value
greater than the mean presence value in the RFFI process were used to filter
out the training data and the testing data.

For each subset of features, Random forest (RF), K-Nearest Neighbour(k-
NN) and Gaussian Naive Bayes (GNB) models were trained with the training
data and the model accuracies were assessed.

4 Results

4.1 Model Performance Obtained with Each Subset of Features

Accuracy with the 103 features is above 75% for each model, with the highest
achieved with the RF model (87.35%) (Fig. 3).
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Fig. 3. Model accuracies obtained for all the features, 65 non-zero MI features, 65 best
Gini features, best 14 MI + RFFI features and best 8 Gini + RFFI features.

Sixty-five features got a MI score greater than 0 over the 10 iterations (see
Fig. 4). The accuracy obtained with the 65 non-zero MI features is similar to
that obtained with all features for k-NN and GNB and even higher for RF where
90% was achieved (Fig. 3). This suggests that the subset of the 65 non-zero MI
features is a relevant one to use in future work. All features got a Gini index
greater than 0 over the 10 iterations (see Fig. 5). By analogy with the MI ranking,
the Gini features used to filter out the training and testing data are the 65 best
features from the Gini ranking. The top 65 Gini features also lead to similar
accuracy to that obtained with all features for the three ML models (Fig. 3).

After removing the 60% of the least informative features based on MI and
Gini ranking, RFFI procedure with 10 repetitions led to 14 MI+RFFI features
and 8 Gini+RFFI features with a presence value greater than the mean presence
value of the features of the subset. While the performance was maintained or
improved after the first filtering with MI and Gini, a drop of performance is
observed when models are trained and tested with MI+RFFI and Gini+RFFI
features, especially for RF and k-NN models (Fig. 3), probably due to overfitting.

The accuracy obtained with the different subsets of features suggests that
the second stage of feature selection with RFFI does not highlight the most
important features and that it is therefore preferable to rely on the first stage of
selection with MI and Gini filters to identify the most informative features for
the future studies.

4.2 Most Informative Features Based on MI and Gini Selection

Ranking features obtained for MI and Gini selection are displayed in Fig. 4 and
Fig. 5, respectively. A visual cut-off to get the most informative features (see
highlighted box in Fig. 4 and Fig. 5) leads to the features selection and associated
time-scales proposed in Table 2.
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Fig. 4. Mean of MI score for each feature after 10 iterations. 65 features have non-zero
MI scores. Highlighted box shows the most important features.

Fig. 5. Mean of Gini score for each feature after 10 iterations. Highlighted box shows
the most important features

As per the Table 2, features maximum and standard deviation are both in
the top rankings of MI and Gini filtered features. These features are indicative
of activity peaks and amount of dynamic behaviors, respectively, which seem
to be the most important components of calf activity to discriminate between a
24 h baseline period and a 24 h post-stressful event period. This is also consistent
with the Fig. 2 where less peak activity appears to occur from 6 h after dehorn-
ing. The lower expression of peak activity and dynamic behaviors suggests less
social behaviors such as agonistic behaviors and playing, and less maintenance
behaviors such as feeding, over the day following dehorning. This finding is con-
sistent with the calf welfare literature [9]. It is worth noting that 3 time-scales
for the feature maximum are common for both the MI and Gini filters (2 h, 6 h
and 12 h; Table 2), suggesting that these time-scales should be retained for the
future model development. For the standard-deviation feature, there is no time-
scale in common between MI and Gini. There is thus no specific time-scale to be
preferred, but time-scales from 15 min to 12 h may work properly (see Table 2).
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Table 2. Top features and associated time-scales obtained from MI and Gini selection
based on their ranking score

Top features Time-Scale MI Gini

1 second

30 minutes

1 hour

2 hours

6 hours

Maximum

12 hours

15 minutes

1 hour

2 hours

6 hours

Standard Deviation

12 hours

Hurst Exponent 24 hours

Spectral Entropy 12 hours

Legend: Cell background is in orange if
the features and time-scales are included in
the top ranking for the corresponding feature
selection method.

Hurst exponent with 24-hour time-scale and spectral entropy with 12 h time-
scale are also in the top ranking of Gini filter, suggesting that the structure of the
activity is also helpful to discriminate between a 24 h baseline period and a 24 h
post-stressful event period (see Table 2). It should be noted that the decrease
in spectral entropy observed in this study (data not shown) suggests a loss of
complexity in the calf activity. Similarly, the Hurst exponent increases towards
1 in the post-dehorning period, reflecting a strengthening of the persistent trend
after dehorning, and thus less stochasticity, namely less complexity. This can also
be seen in the Fig. 2, as we observe a peak of activity in the 6 h after dehorn-
ing, probably due to agitation (ear flicking, tail shaking, frequent transitions
between standing and lying down), followed by a period without clear activity
peaks, reflecting a long and constant state of rest [9]. It is worth noting that
loss of complexity of animal activity associated with pathology or stress is also
consistent with the animal welfare literature [22].

Finally, mean and median features are not included in the top ranking of
neither MI nor Gini. Overall activity level is thus not helpful to discriminate
between a 24 h baseline period and a 24 h post-stressful event period.

5 Conclusions

In terms of insights on the problem domain, both features for energy expenditure
and structure are included in the most important features with a time scale that
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is different from one feature to another suggesting that (i) both components of
the activity must be considered and (ii) the time scale should be adapted to each
feature in the final model.

In terms of the subset to be selected for the development of the model in
future work, it seems that the 65 non-zero MI features are the best candidates
for the moment as the addition of the second filtering stage with the RFFI
procedure decreases the performance of the models. This may be due to the
high correlation between features. In future work, we will evaluate correlation-
based feature selection [30] and wrappers to address this issue.

Finally, the model that will be developed in the future will also have to
take into account the variation of the features animal-wise, which has not been
considered in the present study. It is also necessary to consider other sources
of disturbances, such as diseases or other stressful procedures (e.g., weaning,
transport) to develop a robust model of disturbances detection in calves. This
work should contribute to the development of an intelligent model to improve
calf welfare by detecting stressful events from accelerometer data, which will be
a major addition to the field.
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Abstract. Anomaly detection (AD) in numerical temporal data series
is a prominent task in many domains, including the analysis of indus-
trial equipment operation, the processing of IoT data streams, and the
monitoring of appliance energy consumption. The life-cycle of an AD
application with a Machine Learning (ML) approach requires data col-
lection and preparation, algorithm design and selection, training, and
evaluation. All these activities contain repetitive tasks which could be
supported by tools. This paper describes ODIN AD, a framework assist-
ing the life-cycle of AD applications in the phases of data preparation,
prediction performance evaluation, and error diagnosis.

Keywords: Time series · Anomaly detection · Data annotation ·
Model evaluation · Evaluation metrics

1 Introduction

With the advent of IoT architectures, the analysis of numerical temporal data
series is being increasingly applied in such industries as manufacturing and con-
struction, in which machines, appliances, and whole systems are equipped with
sensors producing timestamped numerical data streams. Applications include
anomaly detection (AD) [5] whose primary focus is to find anomalies in the oper-
ation of working equipment at early stages to alert and avoid breakdowns. AD is
also at the core of predictive maintenance (PdM) [29], which aims at optimizing
the trade-off between run-to-failure and periodic maintenance, improving the
Remaining Useful Life (RUL) of machines, and avoiding unplanned downtime.
The development of an AD solution follows the typical life-cycle of a data-driven
application, illustrated in Fig. 1. Such a workflow differs from that of a tradi-
tional software system because it relies on predefined parametric algorithms that
must be fit to the specific task and data at hand [7].

The workflow illustrated in Fig. 1 contains many repetitive tasks. In the
preparation stage, the collected data must be annotated with ground truth labels
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Fig. 1. Life-cycle of a data-driven application

(GT) for training and evaluation purposes. They could also be enriched with
additional domain- or task-dependent meta-data, which could be exploited for
performance diagnosis purposes [11]. In the tuning stage, the quality of an algo-
rithm is assessed by computing general and task-specific prediction performance
metrics. When multiple candidate algorithms are available, their performances
must be compared head-to-head on the same data set. Their generalization capa-
bility must be checked too, by testing a model trained on the data from a specific
source with the data of another distinct source of the same type. Model refine-
ment also entails diagnosing the causes of prediction failures, which may require
the categorization of errors into general and task-specific types, the attribution
of errors to particular characteristics of the input data, and the quantification of
the impact that a certain error type has on the prediction performance metrics.

All these activities are amenable to support by computerized tools. An ideal
development environment should enable the data scientist to load multiple data
sets and annotate each one with GT labels or with other meta-data, pick the
selected algorithms from a library and execute them, and obtain per-algorithm
and also comparative performances reports. In the refinement phase, it should be
possible to break down the performance metrics based on user-defined criteria,
classify errors with user-defined criteria, and assess the impact of the various
types of errors on each metrics.

This paper presents ODIN AD, a framework supporting the development
of AD applications on numerical uni- and multi-variate data series. ODIN AD
offers the following features:
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– Data ingestion. Temporal data series can be imported with CSV files. Existing
meta-data can be imported too, in CSV format.

– Data annotation. If needed, a data set can be enriched with GT labels and
custom meta-data, with a dedicated annotator GUI.

– Algorithm selection and execution. ODIN AD does not support model design
and execution but lets the user import the predictions made with any algo-
rithm into the workspace. One or more prediction CSV files can be loaded in
the same analysis session.

– Model/algorithm evaluation under multiple configurations. The user can
define the configuration of an evaluation session, by choosing the anomaly
definition and matching strategy to use and the metrics to compute. ODIN
AD implements 5 anomaly definition strategies, 4 anomaly to GT matching
strategies, 7 performance metrics and 4 performance curves off-the-shelf. The
users can plug in their own strategies and metrics.

– Error diagnosis. Prediction errors can be categorized with user-defined criteria
and the impact of a specific type of error on the performance metrics can be
quantified.

– Model/algorithm performance visualization and reporting. Prediction perfor-
mance metrics can be displayed in a visualization GUI and embedded in a
performance evaluation report.

– Performance comparison. The visualization and the reporting functions can
be applied to a single algorithm or to multiple ones. In the latter case, the
head-to-head comparison of the selected algorithms on all the chosen metrics
is provided.

ODIN AD is algorithm-agnostic and designed to be extensible. Its architec-
ture allows the integration of other input/output data formats, AD definition
strategies, performance metrics, and visualization widgets.

2 Related Work

Statistical and ML algorithms are applied to temporal data series for such appli-
cations as forecasting [19], anomaly detection [3,27] and predictive maintenance
[33]. The computer-based aid to AD application development mostly focuses on
the evaluation phase. Benchmark data sets, such as SKAB [16] and NAB Bench-
mark [18], annotate data with GT labels and implement common evaluation
metrics such as F1 score, NAB score, false alarm rate, and miss alarm rate.

Contributions such as [2,10,34] extend the support beyond the use of the
basic performance measures in the evaluation phase. The work [2] generalizes
the metrics provided by AD benchmarks by introducing the concept of Preced-
ing Window ROC, which extends the popular ROC diagram to the case of time
series. Also, the evaluation process is adapted to better fit the needs of AD algo-
rithm assessment, e.g., by rewarding early anomaly detection. The Darts library
[10] assists time series analysis in general. It implements multiple models, from
ARIMA to Deep Neural Networks (DNNs). It supports uni- and multi-variate
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series, meta-learning on multiple series, training on large datasets, model ensem-
bles, and probabilistic forecasting. The library is designed for usability, achieved
by wrapping the underlying functions under a simple and uniform Python inter-
face. The RELOAD tool [34] aids the ingestion of data, the selection of the most
informative features, the execution of multiple AD algorithms, the evaluation
of alternative anomaly identification strategies, the computation of performance
metrics, and the visualization of results in a GUI. RELOAD implements multiple
metrics and algorithms off-the-shelf and has an extensible architecture. However,
it does not support yet the breakdown of performance metrics by user-defined
criteria and the characterization of errors.

The PySAD tool [32] supports AD application development on streaming
data. It comprises pre-processors for data normalization and enables the exe-
cution of AD models and of model ensembles. It also features post-processors
to transform model scores for learning purposes. Its evaluator module includes
multiple AD metrics (e.g., precision, recall, and window score) and a wrap-
per to adapt Sklearn metrics so as to allow extensibility. Other tools, such as
TagAnomaly [23], Curve [1] or TRAINSET [13], focus mainly on the data prepa-
ration step. They let developers annotate anomalies but do not offer the possi-
bility to add meta-data to them. The Wearables Development Toolkit (WDK)
[9] is a framework for the analysis of time series produced by wearable and IoT
devices. It supports the annotation, the analysis, and the visualization of time
series and the performance assessment of activity recognition algorithms.

In the specific field of intrusion detection, the work [22] describes CyberVTI,
a client-server tool for AD in network time series. CyberVTI incorporates multi-
ple state-of-the-art unsupervised algorithms and helps the analyst inspect their
performances with different parameters. It supports the phases of data ingestion,
data preparation, in which the imported data are validated, feature engineering,
in which the features are selected, extracted, and normalized, and processing, in
which the AD algorithms are executed.

All the mentioned tools that support the evaluation step restrict performance
assessment to a few standard metrics. The use of DNNs for AD [3] is evidencing
the limits of such a basic approach. DNNs have a complex architecture which
makes their behavior hard to understand and debug. This characteristic demands
more informative approaches to error diagnosis and model refinement. One pos-
sibility is to exploit the semantic richness of time series, which are characterized
by many properties (e.g., the sampling frequency, the stationarity, and period-
icity of the series, the type and physical characteristics of the signal and of the
corresponding acquisition sensor). Such an abundance of significant input prop-
erties could be exploited to enable the breakdown of performance indicators and
to correlate the errors with specific features of the input and with user-defined
categories. The exploitation of data series semantic features, beyond those used
for training, and the characterization of errors in user-defined categories are
distinctive capabilities of ODIN AD.
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3 ODIN AD

In this section we illustrate the main functionalities of ODIN AD. The running
example employed to produce the diagrams and the visualizations exploits the
time series of the REFIT data set, specifically the fridge consumption data series
of house 1 [26]. The GT labels used to compute the performance metrics have
been created by three independent annotators. The algorithms used to produce
the diagrams are GRU-autoencoder and LSTM-autoencoder [4,20].

3.1 Data Ingestion, Analysis, and Preparation

ODIN AD lets the user import the time series data, the GT labels, and the
semantic input annotations. The artifacts follow the formatting guidelines com-
mon to most public datasets. Temporal series are imported as CSV files with
a timestamp identifier followed by the feature values; GT data are encoded in
JSON files listing the timestamps at which anomalies occur; input properties can
be imported as CSV files with a timestamp identifier and a column per property.

When the GT labels are not available, ODIN AD lets the user define them
with the anomaly annotator GUI shown in Fig. 2. An anomaly is created by
selecting a point or an interval on the time axis. Anomalies can be annotated
with user-defined meta-data, which can be inserted and/or modified with the
annotator GUI. In Fig. 2 the custom annotations refer to a user-defined cate-
gorization of the anomalies. The anomaly annotations of the running example
include: Continuous OFF state, when the appliance is in the low consumption
state for a long time, Continuous ON state, when the appliance is in the con-
sumption state for an abnormally long time, Spike, when the appliance has an
abnormal consumption peak, Spike + Continuous, when the appliance has a
consumption peak followed by a prolonged ON state, Other, when the anomaly
does not follow a well-defined pattern.

Anomalies and their annotations can be deleted, updated, and exported to
a CSV file.

When the same time series is annotated by more than one user, ODIN AD
supports the analysis of the inter-annotator agreement over the anomalies and
their associated properties, with the help of the diagrams shown in Fig. 3.

In addition to the manually provided properties, ODIN AD supports the
automatic extraction of properties from the data series, so as to speed up the
annotation process. The current version of ODIN AD implements some basic
property extractors: hour of the day, day of the week, month, and duration. The
user can add her own extractors to automatically compute custom and domain-
dependent properties. As an example, a custom extractor is implemented to
automatically derive the anomaly annotations shown in Fig. 2. The user can
display and validate or modify the automatically extracted proposals in the
annotator GUI. In this way, the GT semantic labeling process is accelerated.
Figure 4 shows the distribution of the GT anomalies across the duration and
anomaly type properties of the time series.
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Fig. 2. The interface of the GT anomaly annotator at work on the running
example time series. The user can specify the anomalies and add meta-data to
them. The user has annotated the currently selected GT anomaly, shown in red,
with the Continuous ON state label. (Color figure online)

Fig. 3. Diagrams of the inter-annotation agreement: the annotator consensus
diagram (left) shows the percentage of data points that are classified in the
same way by each pair of annotators. The GT anomalies histogram plots the
number of anomalies (points or intervals) created by each annotator.

The temporal data series can be pre-processed before the application of AD
algorithms. ODIN AD currently implements the following pre-processors: the
stationarity pre-processor, implemented with the Dickey-Fuller test [6], the peri-
odicity pre-processor, implemented with the Fast Fourier Transform method [15],
and the seasonality, trend and residual decomposition pre-processor [12]. Resid-
uals decomposition can be done with an additive model (addition of the decom-
posed values restores the original times series) or with a multiplicative one (the
original series is obtained by multiplying the decomposed values). ODIN AD also
supports data transformations. The input time series and the output predictions
can be manipulated using scalers. The current version of ODIN AD implements
some predefined scalers (MinMaxScaler, StandardScaler) and can be extended
with user-defined ones.
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Fig. 4. ODIN AD shows the annotated anomalies in the running example time
series distributed by the automatically extracted duration property (left) and by
the manually refined anomaly type property (right).

3.2 Execution

AD algorithms are executed outside ODIN AD and their output is imported
into an analysis session. Depending on the AD approach, predictions can be
structured as follows:

– If the AD algorithms exploits classification (e.g., OneCLassSVM, LocalOut-
lierFactor, Isolation Forest), for each timestamp the prediction contains the
confidence score.

– If the AD algorithms exploit forecasting (e.g., ARIMA, LSTM) or recon-
struction (e.g., LSTMAutoencoder, GRUAutoencoder) the prediction file can
contain one value per timestamp (single-valued prediction) or multiple val-
ues per timestamp (multi-valued prediction). The latter case is relevant for
the methods that exploit a sliding window (e.g., GRU, Autoencoder-based),
which assign a different predicted/reconstructed value to the same data point
based on the window used to compute the prediction.

3.3 Evaluation and Refinement

ODIN AD supports the assessment of anomaly detectors under multiple anomaly
definitions and matching strategies and performance metrics.

Anomaly Definition Strategies. An anomaly definition strategy specifies
the way in which the data points of the input time series are compared with
the predicted or reconstructed points of the anomaly detector in order to infer
whether a point or an interval is anomalous. Each strategy takes in input a pair
of entities to compare (points and/or sets of points) and returns a score value
s or a score vector s interpretable as the confidence with which the prediction
is considered an anomaly. Different strategies can be adopted for the types of
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predictions computed by the AD algorithms. The current version of ODIN AD
implements the following anomaly definition strategies:

– Absolute and Squared Error (AE/SE) [25]: computes the score s as the abso-
lute or squared error between the input and the predicted/reconstructed
value. It applies to single-valued predictions.

– Likelihood: each point in the time series is predicted/reconstructed l times
and associated with multiple error values. The probability distribution of the
errors made by predicting on normal data is used to compute the likelihood of
normal behavior on the test data, which is used to derive an anomaly score.
This method was introduced in [21]. It applies to single- and multi-valued
predictions.

– Mahalanobis: as in the likelihood strategy, each point in the time series is
predicted/reconstructed l times. For each point, the anomaly score s is cal-
culated as the square of the Mahalanobis distance between the error vector
and the Gaussian distribution fitted from the error vectors computed during
validation [20]. It applies to single-valued and to multi-valued predictions.

– Windows strategy: the strategy computes a score vector s of dimension l
associated with each point. Each element si of the score vector is the MAE
(by default) or the MSE of the i-th predicted/reconstructed window that
contains the point [17]. It applies to multi-valued predictions.

The AE, SE, Gaussian, and Mahalanobis strategies compute an anomaly
score s. A threshold τ is then applied to such a value for classifying the point
as normal or anomalous. The Windows strategy computes an array of anomaly
scores and in this case, a point is considered anomalous if each element of the
array is above the threshold.

Anomaly Matching Strategies. An anomaly matching strategy specifies the
way in which an identified anomaly is compared to the GT, so as to categorize
it as a true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). ODIN AD implements four strategies:

– Point to point: each anomalous point is compared only to the corresponding
data series point using the GT label.

– Interval to interval: the Intersection over Union (IoU) metrics is calculated
between the GT anomaly interval and the predicted anomaly interval and a
threshold τ is applied to categorize the prediction (IoU > τ qualifies a TP).
By default, the threshold is set to 0.5, but it can be modified.

– Interval to point(s): each predicted anomalous interval is considered a TP if
it contains at least X GT anomaly points. By default, X is set to 50% of the
interval points.

– Point to interval: each predicted anomaly point is considered TP if it lies
within the boundaries of a GT anomaly interval.
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Metrics. ODIN AD implements the basic time series metrics and diagrams
(accuracy, precision, recall, F1 score, F0−1 score, miss alarm rate, false alarm
rate, NAB score, Matthews Coefficient, PR and ROC curves). The predefined
portfolio can be extended with additional metrics.

Fig. 5. Break down of the recall metrics based on the values of the anomaly type
and of the duration property. The diagram shows that the algorithm identifies
well anomalies of type spike + continuous and has more difficulty in detecting
the continuous state types. Recall is maximal for long duration anomalies, which
are rare and easier to detect.

Analysis, Reporting, and Visualization. The analysis and reports include:

– Performance summary. The values of the selected metrics (standard and cus-
tom) are organized in a comprehensive report.

– Performance per confidence threshold value. The performance metrics that
exploit a threshold on the anomaly confidence score are plotted for each value
used in their computation.

– Performance per IoU threshold value. The performance metrics that exploit
a threshold on the overlap between the prediction and the GT interval are
plotted for each value used in their computation.

– Confusion matrix. The TPs, FPs, FNs, and TNs are displayed in the usual
tabular arrangement.

– Per-property metrics break down. One or more performance metrics are dis-
aggregated by the values of a semantic property of the input. An example is
presented in Fig. 5: recall metrics break down by anomaly type and anomaly
duration.

– FP error categorization. FP errors are grouped into classes and for each class
the performance improvement achievable if such errors were removed is com-
puted. Figure 6 shows an example of FP error categorization and impact
analysis predefined in ODIN AD. The user can define other categorizations
and apply the break down to any metrics.



190 N. Zangrando et al.

– Anomaly duration difference and distribution. The difference of duration
between the GT and the TP anomalies and the distribution of the duration
of the GT and of all the predicted anomalies are plotted.

– Calibration analysis. The confidence histogram and the reliability diagram [8]
enable the assessment of how well the distribution of the predicted anomalies
agrees with that of the real anomalies.

Fig. 6. The FP errors per category diagram (left) shows the distribution of
the FPs across four categories. In this breakdown, FPs are grouped by position
(before/after) and distance (close/not close) w.r.t. to the closest GT anomaly
based on a distance threshold parameter. The FP errors impact diagram (right)
shows the contribution of removing each error type on the precision metrics. The
distance distribution diagram (bottom) shows the distribution of the distance
between FPs and the closest GT anomaly. The analysis shows that most FPs
are positioned after more than two hours w.r.t. the closest anomaly and that the
post-anomaly false alarms impact the precision metrics the most.

In addition to the performance reports and diagrams, an interface permits
the inspection of the data set and of the predictions, as shown in Fig. 7. The
user can import a data set and the predictions of one or more AD algorithms,
select the feature to display, in the case of multi-variate data series, and scroll
the timeline to inspect the anomalies. The visualization can be configured by
setting the slice of the time series to show, the number of points per slice and
the granularity of the timeline. The default granularity is equal to the sampling
frequency of the data set but can be adjusted by aggregating the data points.
The user can also set the threshold value used by the anomaly definition strategy.
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Fig. 7. The user interface of the anomaly visualizer showing the point-wise pre-
dictions of one model vs. the GT intervals. A scrollable window lets the user
browse the time series. GT interval anomalies are highlighted as colored rectan-
gles and the predicted anomalous points as dots. Adjusting the threshold value
used by the anomaly definition strategy updates the diagram.

Fig. 8. The user interface of the anomaly visualizer for jointly assessing the
results of multiple algorithms: head-to-head display of performance metrics (left)
and comparison of identified anomalies (right).

Model Comparison. ODIN AD also supports the comparison of the result of
multiple models applied to the same data set. The comparative diagrams can
contrast the anomalies detected by the different models and the values of the
performance metrics. Figure 8 shows the comparative performance diagram and
anomaly visualization.
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Fig. 9. Simplified class diagram of the architecture of ODIN AD. The compo-
nents marked with (*) denote the entry points for the extension of ODIN AD.

3.4 ODIN AD Architecture

ODIN AD is open-source1 and implemented in Python. The annotator and the
visualizer are Jupyter Notebook applications.

Figure 9 illustrates the structure of the classes. The five main modules are: (1)
DatasetAD, responsible for loading the dataset and pre-processing/analyzing it;
(2) AnalyzerAD, for computing the performance metrics and diagrams based
on the imported prediction files; (3) AnnotatorAD, for creating/editing GT
and meta-data annotations; (4) ComparatorAD, for contrasting different mod-
els on the same dataset; (5) VisualizerAD for displaying the input time series
and the predictions. Other modules permit the customization of the data set
pre/post-processing (Scaler, PropertiesExtractor) and of the types of anal-
ysis (AnomalyDefinitionStrategy, AnomalyMatchingStrategy, CustomMetrics,
ErrorCategory).

3.5 Extending ODIN AD

ODIN AD is publicly available and the code repository contains a test suite that
facilitates extension and bug checking. The “plug&play” architecture enables the
customization of the anomaly definition and matching strategies, of the per-
formance metrics, of the pre- and post-data processors, and of the property
extractors. Next, we illustrate some examples of how the extension works.

Listing 1 shows how to add a custom anomaly definition strategy. The listing
imports the necessary interface (line 1), defines a CustomAnomalyDefinition
1 https://github.com/nahitorres/odin.

https://github.com/nahitorres/odin
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class implementing such interface (line 3), and codes the two required functions.
The get_anomaly_score function computes the anomaly scores (line 5) and the
check_prediction_format function verifies that the anomaly definition strat-
egy works with the proper prediction formats, single or multi-valued (line 8).

Listing 1. Addition of a custom anomaly definition strategy

1 from TOOL.classes.TimeSeries import AnomalyDefinitionStrategy
2

3 class CustomAnomalyDefinition(AnomalyDefinitionStrategy):
4

5 def get_anomaly_scores(self, gt, predictions):
6 # returns the anomaly score for the input time series
7

8 def check_prediction_format(self, predictions):
9 # returns a Boolean indicating if the predictions have the valid

type for the strategy↪→

Listing 2 shows an example of custom metrics. It declares a new class
that implements the CustomMetricTS interface (line 3), with the method
evaluate_metric that actually computes the measure (line 4) given the GT,
the predicted anomalies and the matching strategy. An instance of the new met-
rics is instantiated (line 18) and added to the Analyzer module (line 19).

Listing 2. Custom metrics implementation

1 from TOOL.classes.TimeSeries import CustomMetricTS
2

3 class MyEvaluationMetric(CustomMetricTS):
4 def evaluate_metric(self, gt, predictions, matchingStrategy):
5 # Parameters:
6 # gt: contains the GT anomalies
7 # predictions: contains the predicted anomalies
8 # matchingStrategy: the selected by the user
9

10 # Returns:
11 # metric_value: the calculated value in the set
12

13 #TODO: call metrics computation code using the matchingStrategy
14 metric_value = #...
15 std_deviation = # only if apply
16 return metric_value, std_deviation
17

18 my_evaluation_metric = MyEvaluationMetric("my metric name")
19 my_analyzer.add_custom_metric(my_evaluation_metric)
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4 Conclusions

This paper presents ODIN AD, a framework supporting the life-cycle of AD
applications in the phases of data preparation and model evaluation and refine-
ment. Data scientists can load multiple data sets and annotate each one with
GT labels or with other meta-data, import the predictions made by the algo-
rithms of their choice, and obtain per-algorithm and also comparative perfor-
mance reports. In the refinement phase, they can break down the performance
metrics based on multiple criteria, classify errors in user-defined types, and assess
the impact of the various types of errors on each metrics. ODIN AD is open source
and designed with an architecture that eases the customization of such aspects
as the anomaly definition and matching strategy, the performance metrics, and
the pre- and post-processors.

The future work will focus on extending the support for the analysis of multi-
variate time series with algorithms that exploit forecasting and reconstruction.
This will require the design and implementation of multi-valued anomaly def-
inition strategies for multi-variate time series in which the user can select the
features and the distance function to exploit for the definition of the anomaly.
We will also improve the support for the analysis of periodic time series, by
implementing more robust approaches to the periodicity detection, such as the
one described in [28]. Finally, we aim at integrating interpretability techniques,
such as [14,24,30,31], within the performance-oriented analysis functionalities
of ODIN AD.
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