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Chapter 7
Animal Models of Tuberculosis

Huoming Li and Hao Li

Abstract  Tuberculosis (TB) is an important zoonotic disease caused by infection 
with Mycobacterium tuberculosis (Mtb) complex and has a significant impact on 
public health. Animal models are suitable tools to mimic the clinical symptoms 
observed in human TB and provide an opportunity to understand immune responses 
to infection and the pathophysiology and pathogenesis of TB. In this chapter, we 
summarize the animal models that are used in Mtb research, including common 
models such as the mouse, rat, guinea pig, non-human primates, rabbit, cattle and 
zebrafish, as well as discuss some newly established animal models.

Keywords  Animal models · Mycobacterium tuberculosis complex · Tuberculosis  
Zoonosis

7.1 � Introduction

In 2020, an estimated ten million people fell ill with tuberculosis (TB) worldwide, 
and approximately 1.5 million people died from TB. TB is the second leading infec-
tious killer after COVID-19 (above HIV/AIDS) [1]. In recent years, the global inci-
dence of TB has increased further due to antibiotic abuse and the prevalence of HIV, 
both of which aggravate TB control [2]. Therefore, the development of anti-TB 
drugs and vaccines has become urgent, to control TB spread. With the development 
of modern molecular sequencing technology, more information about the biological 
characteristics of Mycobacterium tuberculosis (Mtb) complex has been determined 
and promoted further research on the pathogenesis of TB.  In general, acquiring 
enough disease information is impossible simply by observing clinical symptoms, 
and the development of animal models has provided complementary tools for 
human disease research.
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In recent years, the pathogenesis of Mtb infection and the host immune response 
mechanisms have been widely researched and elucidated by immunological tech-
niques and animal models (Fig. 7.1). Since Robert Koch in 1882 first used guinea 
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Fig. 7.1  (a) The intracellular transport process of Mtb. After Mtb infects the host, macrophages 
engulf the pathogen with the assistance of a variety of receptors, including complement receptor, 
mannose receptor and scavenger receptors. Then, common signaling pathways are activated leading 
to cell activation and cytokine production. Mtb is a classical intracellular pathogen and can persist 
in the early phagolysosome. After phagosomes mature, intracellular bactericidal substances such as 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) will kill some Mtb. Surviving 
Mtb then begin to replicate and multiply within the macrophage, until the cell ruptures and dissemi-
nates bacteria to the surrounding cells. (b) T cell-dependent regulation of anti-TB immune response 
in vivo. There are several ways that cellular and humoral immunity may cooperate to protect the 
host from TB infection. CD4+ T cells can activate B cells to secrete antibody by major histocompat-
ibility complex; CD4+ T cells can produce cytokines, e.g. IL-2 that can activate Natural Killer (NK) 
cells and promote cytotoxic immune responses associated with antibodies. Conversely, specialized 
phagocytes process and present TB antigens to CD4+ T cells, which results in increased prolifera-
tion of cytotoxic CD8+ T cells and enhanced Mtb killing. Meanwhile, the different T cells produce 
interferon γ (IFN-γ) that synergizes with tumour necrosis factor α (TNF-α) to activate macrophages
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Fig. 7.2  Pie chart showing the different animal models used for TB research. A PubMed search 
was done using the following keywords: “mouse AND tuberculosis”, “rat AND tuberculosis”, 
“guinea pig AND tuberculosis”, “non-human tuberculosis AND tuberculosis”, “zebrafish AND 
tuberculosis”, “cattle AND tuberculosis” and other animal models, including “cat tuberculosis”, 
“deer tuberculosis”, “minipig tuberculosis”, “fruit fly tuberculosis” and “dog tuberculosis”. The 
pie chart percentages were calculated as the proportion of each animal model to all the ani-
mal models

pigs to prove that Mtb caused TB, various animal models—including the mouse, 
rat, rabbit, guinea pig, zebrafish, non-human primate, cattle, etc.—have been used 
to study various aspects of TB [3] (Fig. 7.2). Indeed, animal models have contrib-
uted to the development of infection technologies such as aerosol instillation and 
bacterial growth control following infection through innate and adaptive immune 
responses, which have provided invaluable contributions to our understanding of 
TB (Fig. 7.1). Each animal model cannot mimic completely the symptoms of human 
TB, so in practical application, the characteristics of different animals are often 
complementary to each other to fulfill research aims. For example, studies with the 
mouse, which lacks some immunological features, often require using guinea pigs 
as the complementary animal model to test vaccine effectiveness [4, 5]. At present, 
the main problem for every experimental animal model is that they cannot fully 
reflect human symptomatic TB.

A clear understanding of the advantages and disadvantages of each animal model 
is necessary for experimental Mtb research. Mouse models are currently the most 
widely used laboratory animals, but they lack some characteristics of human TB 
including the formation of mature granulomas, central necrosis and cavities [6]. 
Guinea pigs are highly susceptible to Mtb and often need only a few bacilli to estab-
lish an infection in vivo [4]. Traditionally, rabbits were thought to be resistant to TB 
infection: however, recent reports suggest that rabbits can be used to establish mod-
els of chronic progressive granulomatous disease [7]. Although the rabbit model has 
been widely used, because some of the histopathological features in this animal 
closely resemble human TB, the lack of available commercial reagents has limited 
its use [7, 8]. By contrast, non-human primate cynomolgus monkeys are known to 
mimic TB symptoms in humans, including the formation of solid masses, necrosis 
and cavities [9]. The major advantage of this model is that it can establish latent TB 
infection and provide an opportunity to understand latency mechanisms. However, 
the high cost and hard management of this model limit its wide use in TB research. 
The use of animal models has greatly boosted TB research in recent years, but 
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animals are not humans, and even Homo sapiens, who are highly similar at the 
genetic level, cannot fully mimic every aspect of human TB [8]. Therefore, key to 
successful experimental research is to consider the characteristics of the various 
animal models available and make reasoned choices. In this review, the characteris-
tics of various animal models are summarized, pointing out their advantages and 
disadvantages and the research progress that each one has made. Such information 
informs selection of the most appropriate models to be used for TB research.

7.2 � Mouse (Order Rodentia, Family Muridae, 
Mus musculus)

Mouse models are very popular in TB research, and they have been used extensively 
in developing diagnostics and experimental drugs and vaccines. The first scientist to 
use mice was Robert Koch [10]. The mouse is often chosen as the research animal 
model because the genetic and immunological background of humans and mice 
shares many similarities. Some important discoveries on the pathogenesis of TB, 
e.g. the roles of adaptive immunity and the process of granulomatous formation, 
have been discovered with mouse models. In addition, many preclinical trials of 
new TB drugs and vaccines must first be done in a mouse model before moving into 
human clinical trials.

In animal experiments, Mtb (usually the reference strain H37Rv) first invade and 
multiply in the lungs before spreading to other tissues. When establishing the mouse 
animal models, different infection routes are used, including aerosol exposure, 
intranasal, intratracheal and intravenous (Table 7.1). The evaluation standards are 
usually determined by observing the bacterial load in the lungs, histopathological 
changes and the immune index of the mice. A low-dose infection mouse model, e.g. 
with the C57BL strain, was established by inoculating ~100–200 bacilli via aerosol 
exposure. In this chronic infection mouse model, Mtb infection produced a well-
tolerated infection dominated by a Th1-type immune response. In contrast, a high-
dose infection BALB/c mouse model was established by intratracheal injection and 
resulted in a persistent pathological process characterized by progressive lung con-
solidation, extensive lung fibrosis and the presence of many T cells and anti-
inflammatory cytokines. This high infection dose led to a persistent high bacterial 
load and host mortality. In addition, the phenotype of the mouse infection model 
was also influenced by various factors including environment, nutrition, immune 
status, gut microbiota and Mycobacteria species. In addition, host genetic factors 
may have different effects on establishing the mouse TB model. For example, if the 
mouse models were deficient in superoxide genes, this may affect host killing of 
Mtb in vivo. Expression of the host sst1 gene has been reported to exacerbate dis-
ease progression [28].

The Mtb genetic background may also play an essential role in infection. For 
example, the (3 R)-hydroxyacyl-ACP dehydratases—HadAB and HadBC—which 
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Table 7.1  Biological characteristics of various murine subspecies used to model pathological 
features of TB

Species Strains Routes Doses Pathology References

CBA/2 H37Rv a Low Weight loss; extensive 
granulomatous infiltrates; necrosis 
and fibrosis

[11]

C3HeB/FeJ H37Rv; M. 
bovis

a; in Low Necrotic granulomas; caseous 
necrotic; highly loaded with bacilli; 
liquefactive necrosis

[12–14]

DBA/2 J H37Rv it Low Low bacilli burden in lungs; higher 
activated dendritic cells (DCs); 
increased expression of TNF-α, 
IFN-ϒ and iNOS

[15]

Hall Institute 
multi-
coloured 
mice

H37Rv in Low Lung consolidation [16]

Melbourne 
University 
albino

H37Rv in Low Lung consolidation [16]

C57BL/6J H37Rv; 
CDC 1551; 
Erdman

a; in; 
ip; iv; 
it

Low Necrosis; less bacterial load; 
inflammatory lung lesions; small and 
diffuse lesions; less densely packed 
granulomas with mononuclear cells; 
cellular infiltration; expanding 
granulomas; high production of 
IFN-ϒ, TNF-α; early induction of 
IL-12

[17–19]

BALB/c H37Rv; 
950,100 
Beijing 
strain; S093 
Canetti; M. 
bovis

a; in; 
ip; iv; 
it.

High; 
Low

Necrosis; less bacterial load; high 
burden of bacteria cause death; rapid 
and massive pneumonia; low 
production of IFN-ϒ, TNF-α; low 
CD8 cytotoxic activity; low 
apoptosis

[20–27]

a aerosol, in intranasal, ip intraperitoneal, iv intravenous, it intratracheal

can affect Mtb growth, colony morphology and biofilm formation, can also signifi-
cantly influence the virulence of Mtb in a mouse model [29]. Mtb genes also exert 
a major influence on disease outcome by regulating innate and adaptive immunity 
[30]. Inducing low-level IL-1β production promotes macrophage phagocytosis, 
making it easier to establish infection in mice [31]. The total immunoglobulin iso-
lated from the exposed healthcare workers in a TB-specialized hospital was reported 
to inhibit Mtb growth in vivo in an aerosol infection mouse model [20]. Of course, 
the nutrition and feeding environment of the mouse could likely affect experimental 
data. It has been shown that a high-fat diet provided to C3HeB/FeJ strain made TB 
infection in this mouse more likely to develop into a progressive tuberculosis and 
also impaired the protective effect of BCG vaccination, which may be related to 
dysbiosis of the gut microbiota [32].
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Humans have different susceptibilities to Mtb infection because of heteroge-
neous immune responses. Only about 5% of infected humans would eliminate all 
pathogens, 5%–10% would develop active TB, and 90% become latent TB infection 
(LTBI) [33]. Thanks to advances in genetics technologies, many mouse models can 
be used in TB research. Currently, genetic approaches also provide a powerful tool 
to develop different species with special genetic backgrounds, including inbred 
Mtb-susceptible strains of CBA, DBA/2, C3HeB/FeJ and 129/SvJ mice and Mtb-
resistant strains of BALB/c and C57BL/6J mice, which would provide strong sup-
port for TB research [34]. For example, in the DBA/2 mouse infection model, 
expression of the Trl1–4 gene can significantly affect DBA/2 mouse susceptibility 
to Mtb infection, which could allow further study of the regulatory network and 
immune cells involved and promote the development of new drugs and vaccines 
[34, 35]. The BALB/c mouse is the most widely used mouse for Mtb infection stud-
ies, particularly for identification of virulence factors and in the evaluation of vac-
cines [36–39]. The recent studies have established mouse models that are 
contributing significantly to TB research [40]. For example, humanized mice have 
been used to investigate post-chemotherapy relapse TB [40], and a new outbred 
mouse model named Diversity Outbred (DO) can provide potentially a novel vac-
cination model that can better reflect the TB outcomes observed in humans [41].

Mouse models have several advantages, including low cost, the availability of 
abundant commercial reagents and mature immunological evaluating indices. 
Mouse models also have important disadvantages: (1) the mouse is not a natural 
reservoir for Mtb, and the pathways and immune cells involved during infection 
maybe different; (2) the current common mouse model(s) cannot fully mimic the 
symptoms of human TB; (3) humanized mice can mimic aspects of human infec-
tion, but are expensive; (4) some TB symptoms cannot be fully replicated in mouse 
models. Despite these disadvantages, there is still an urgent need to develop novel 
mouse models.

7.3 � Rat (Order Rodentia, Family Muridae, 
Rattus norvegicus)

The use of rats in TB research was first reported in 1923 by Gloyne and Page, but it 
was not until 1950 that the characteristics of the rat model were elaborated by Gray 
et al. [42, 43]. Earlier reports showed that rats are resistant to infection with human, 
bovine and avian strains of tubercle bacilli [16, 44]. However, later research has 
shown that if the bacteria can directly infect some target organs of the host, such as 
the lungs, liver or spleen, the result will be significant pathological changes in the 
rats. The rat model is very similar to the mouse model, and infection can be estab-
lished through a variety of inoculation methods, including oral, subcutaneous, intra-
peritoneal, intranasal and aerosol [42]. Currently, several rat breeds, such as Wistar 
[45], nude [46], American cotton [47] and Lewis [48], have been used in TB 
research. The pathology following infection is influenced by the breed and route of 
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Table 7.2  The biological characteristics of rats as models for TB research

Species Strains Routes Doses Pathology Reference

Lewis H37Rv (TMC 
102); RlRv 
(TMC 205)

iv Various Non-caseating tubercles; 
delayed-type tuberculin 
hypersensitivity

[50]

Nude M. 
tuberculosis 
(ATCC 35812)

a Low Pulmonary granulomas with 
central necrosis; thick 
collagen fibres; 
multinucleated giant cells

[46]

Wistar H37Rv (ATCC 
27294)

a Low Granulomatous lesions; mild 
inflammatory; mononuclear 
cell infiltration

[45, 51]

Albino rats M. bovis it Low Abscess formation; fibrous 
adhesions; lesions with 
caseous central

[52]

American cotton 
rats

H37Rv it; a High; 
low

Necrotic granulomas; highly 
cellular granuloma without 
central necrosis; nodular 
lesions; calcification; grossly 
enlarged intrathoracic lymph 
node

[47]

Spontaneously 
diabetic Goto 
Kakizaki rats

M. 
tuberculosis 
(ATCC 
358,121)

a Low Larger granulomas; no 
necrotic lesions; tumour 
growth factor (TGF)-β, IL-1β, 
IL-2, IL-18 and iNOS 
expressed strongly

[48]

a aerosol, iv intravenous, it intratracheal

infection: for example, pulmonary infection of American cotton rats produced 
necrotic granulomas, whilst the granulomas observed in Wistar and Lewis rats did 
not have necrotic lesions [49]. Previous studies have shown that all pathological 
changes and disease processes are dose-dependent in rat models. Even different 
subspecies of the same rat can have different immune responses: for example, the 
American cotton rat has two subspecies S. fulviventer and S. hispidus, and the infec-
tion mortality rate in S. fulviventer was significantly higher than that observed in 
S. hispidus [47]. Although there have not been many reports on the use of the rat 
model in TB research in recent years, the rat has some specific characteristics that 
make it still a promising TB research animal model (Table 7.2).

7.4 � Rabbit (Order Lagomorpha, Family Leporidae, 
Oryctolagus cuniculus)

In nature, there are very few reported cases of Mtb infection in rabbits, and they 
mainly involve non-tuberculous mycobacteria (NTM) such as Mycobacterium 
avium [53]. There is only one reported case of a rabbit on a New Zealand farm 
infected with M. bovis [54]. Therefore, it seems plausible that rabbits might be 
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resistant to TB or have some sort of self-protection mechanisms against Mtb infec-
tion [55]. Interestingly, the rabbit was the first laboratory animal to be used for TB 
research, recorded in 1867 [56]. Generally, rabbits have been widely and success-
fully used as animal models for many years, both in the production of immunologi-
cal reagents and as infection models [57, 58]. In recent years, the New Zealand 
white rabbit has become common in laboratory research [53], and because rabbit 
animal models closely reflect the symptoms of some human diseases, they are 
often used to explore the pathogenesis of diseases and to develop new vaccines and 
therapies [58].

Rabbits are relatively resistant to Mtb infection when compared with mice and 
guinea pigs. Furthermore, different infection routes, mycobacterial strains and 
doses may lead to different disease outcomes (Table  7.3). Rabbits infected with 
HN878, a hyper-virulent Mtb strain, can develop progressive cavitation that is simi-
lar to cavitation seen in humans with active TB [64]. However, rabbits infected with 
CDC1551, a hyper-immunogenic clinical Mtb isolate, became latently infected 
[59]. In terms of infection route, rabbits infected with Mtb HN878 by aerosol inocu-
lation developed granulomas and lung cavitation [65, 66]. In addition, the rabbit 
model was resistant to mimicking natural infection with M. bovis but showed sig-
nificant susceptibility through inhalation or bronchial inoculation [67]. Interestingly, 
different subspecies are also susceptible to different Mtb strains; thus, inbred strains 
of New Zealand white rabbits have higher susceptibility to Mtb than outbred 
strains [68].

Rabbits have several advantages in TB research: (1) due to their relative resis-
tance to Mtb infection, latent TB infection can be studied in this model [59, 69]; (2) 
rabbits can develop similar pulmonary cavitation as seen in humans, so they can be 
used to study the factors of disease formation and the pathogenesis of bronchial 
infection [67]; (3) rabbits are large animals to allow facile collection of sufficient 
blood and tissue samples from a single animal without sample enrichment [53]; (4) 
rabbits are also suitable for pharmacological experiments with anti-TB drugs, 
including drug penetration, distribution and cell accumulation [70]; (5) rabbits have 

Table 7.3  Biological characteristics of the rabbit as model for TB research

Species Strains Routes Doses Pathology Reference

New 
Zealand 
white

H37Rv 
(ATCC36801); 
H37Rv 
(ATCC25177); 
Mtb CDC1551; 
Erdman strains; M. 
smegmatis; M. 
bovis Ravenel; M. 
bovis AF2122

Aerosol; 
intradermal; bore 
hole filled with 
medical gelatin 
sponges; 
inhalation; 
bronchial; 
subcutaneous; 
intratracheal; 
intraperitoneal

Different 
doses

Inflammatory cell 
infiltration or necrosis; 
abscesses; pulmonary 
granulomas with 
caseous necrosis; 
liquefaction in the 
centre; accumulation 
of lymphocytes, 
fibroblasts and 
macrophages; 
pulmonary cavitation; 
granuloma and lung 
cavity formation

[53, 
59–63]
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been used to study bovine para-TB infection [71]. However, there are some disad-
vantages principally that they require higher biocontainment, there is a lack of 
immunological reagents and often the clinical signs are not obvious. Regardless, 
rabbit models for TB research will become increasingly popular in the future as new 
reagents are developed and biosafety conditions are established.

7.5 � Zebrafish (Order Cypriniformes, Family Cyprinidae, 
Subfamily Danioninae, Danio rerio)

The zebrafish was first used in TB research by the group of Ramakrishnan in 2002 
[72]. It is a useful tool to demonstrate Mtb virulence and pathogen-vertebrate host 
interactions (Table 7.4). Their use has become common in recent years and has ben-
efited from the development of genetic approaches and improved imaging techniques 
[78]. Zebrafish are vertebrate, but they do not have lungs and are not a natural Mtb 
reservoir, so they cannot present some symptoms of mammalian TB. Mycobacterium 
marinum, which shares 85% genome homology with Mtb, can establish an infection 
in zebrafish that shares some similarities to human and mouse infections. There are 
two established zebrafish infection models with their own characteristics: an embry-
onic-larval model and an adult model [49, 78]. The immune markers during TB 
infection in adult zebrafish are similar to those of mammals, such as humans and 
mice. However, the embryonic-larval model is preferred for studying the effects of 
innate immunity on Mtb infection, due to its lack of an adaptive immune system.

In nature, zebrafish infection by M. marinum via the gastrointestinal tract has 
been reported [79]. However, zebrafish can be infected in the laboratory with 
M. marinum via various routes, including intraperitoneal and intramuscular and via 

Table 7.4  Biological characteristics of zebrafish as models for TB research

Zebrafish 
stage Mtb strains Routes of injection Doses Pathology Reference

Embryonic-
larval

M. marinum Caudal vein; duct of 
Cuvier in embryos; 
hindbrain ventricle; 
muscle; notochord; otic 
vesicle; intravenous; 
yolk injection

Low Macrophages adopt 
a distinctive 
epithelioid 
morphology; 
granulomas form; 
macrophage 
aggregates with 
pathological 
features

[73, 74]

Adult M. 
marinum; 
M. 
peregrinum

Caudal vein; duct of 
Cuvier in embryos; 
hindbrain ventricle; 
muscle; notochord; otic 
vesicle; intravenous; 
intraperitoneal; 
intramuscular

Low Necrotic (caseating) 
granulomas; most 
granulomas form a 
fibrotic and/or 
cellular cuff

[73, 75–77]
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the caudal vein. Local injections via the notochord, muscle, hindbrain ventricle, otic 
vesicle and yolk have been developed in zebrafish to study macrophage and neutro-
phil chemotaxis. Latent, chronic and active TB states can be established in zebrafish 
and depend on the inoculation doses and the different M. marinum strains. Latent 
infection model can be established by low-dose inoculation, and chronic progres-
sive disease and acute infection by high-dose inoculation [80]. Early injection of 
M. marinum into the yolk of zebrafish embryos can provide a method to achieve a 
systemic Mycobacteria infection [75]. In addition, the M. marinum yolk infection 
model can be useful for high-throughput applications since it can be automated 
using an injection robot [75, 81, 82].

Active TB in zebrafish is characterized by rapid lethal inflammation, whilst 
chronic disease shows swelling of the abdomen and haemorrhages and skin ulcer-
ation typical of TB [83]. Following infection, bacteria invading zebrafish are phago-
cytized by macrophages and form caseating granulomas similar to human TB [72, 
84]. Most granulomas also contain a necrotic centre where bacteria settle and form 
a cuff of cells, separate from the surrounding tissue [76, 77].

Zebrafish have been used extensively to evaluate new drugs and vaccines and are 
a useful model for gene editing and real-time imaging techniques. Embryonic-larval 
and adult zebrafish have been used to investigate each life stage of TB infection. 
Only the innate immune system exists in embryonic-larval zebrafish, and the main 
functional immune cells in this life stage are macrophages and neutrophils (the most 
suitable cells for studying zebrafish innate immune responses) [85–87]. In addition, 
the embryonic-larval model can develop externally and remain transparent, thus 
proving to be useful for studying host-pathogen interactions with real-time imaging 
systems [78, 88]. The use of fluorescent reporter systems has enabled more molecu-
lar details to be discovered, such as immune cell types, subcellular structures, intra-
cytoplasmic trafficking and immune-modulatory mechanisms [89]. The development 
of gene editing techniques has enabled researchers to artificially design models on 
the genetic level, such as gene knockouts, to better meet research needs [90–94]. 
The larval model has been used to evaluate the efficacy of TB drugs such as rifam-
picin, isoniazid, ethambutol and moxifloxacin [95]. In addition, the embryonic 
infection model has been used to investigate early pathogenesis mechanisms, e.g. 
p62, a ubiquitin-mediated receptor protein contributed to host resistance to Mtb 
infection [96], and to elucidate the underlying mechanisms of the isoniazid-induced 
hepatotoxicity [97].

The adult zebrafish is more suitable for studying the pathogenic mechanisms of 
TB based on the mature innate and adaptive immunity system. The most common 
route for injecting bacteria into adult zebrafish is intraperitoneal, which results in 
progressive or chronic infection symptoms. At 1-week post-infection, form within 
many tissues and organs, including fatty tissue, pancreas, liver, spleen, adipose tis-
sue and gonads. The histology of zebrafish granulomas is similar to human TB with 
a caseating and necrotic core surrounded by leukocytes and epithelial cells [98]. 
Like human control of TB, zebrafish control Mtb infection with their adaptive 
immune system. However, since zebrafish lack lymph nodes, immune cells can only 
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develop and function in tissues or organs such as the spleen, kidney and thymus. 
The adaptive immune system begins to function at 4 weeks post-infection [76, 84].

The main advantage of zebrafish models is that granuloma formation can be 
reproduced, which is difficult in other animal models [99]. Other advantages include 
their small size, easy of breeding and their use for real-time imaging. However, 
zebrafish do have some disadvantages: for example, (1) they do not have lungs and 
cannot systematically reflect the symptoms of TB in mammals, limiting their use for 
studying underlying mechanisms of TB, and (2) blood samples for detecting immu-
nological markers are difficult to collect [100].

7.6 � Cattle (Order Artiodactyla, Family Bovidae, Subfamily 
Bovinae, Bos taurus)

A century has passed since Mycobacterium bovis was identified as the etiological 
agent of bovine TB [101]. Despite extensive research on the pathogenesis of 
M. bovis infection, the prevention, control and treatment of bovine TB still face 
great challenges. At present, BCG vaccination is the most effective way to prevent 
bovine TB. However, immune protection in cattle begins to decline 2 years after 
BCG vaccination, and this can be solved by repeating BCG vaccination [102–104]. 
Studies have shown also that BCG vaccine does not protect 6-month-old calves 
from bovine TB infection after pre-sensitization to environmental TB. This suggests 
that sensitivity to TB in the environment in human clinical trials is one of the main 
reasons for the wide variation in immune efficiency with BCG vaccination [105, 
106]. Since calves are immune from birth, this model can be used to mimic vaccine 
immunity of human newborns in many developing countries. Despite decades of 
research and numerous new vaccines being tested, nothing superior to BCG has yet 
emerged. Cattle are a suitable model for simulating human diseases because of the 
similarity in disease type (Table  7.5). In addition, the outcrossing of almost all 
experimental cattle can serve as a link between vaccine testing in small animal mod-
els and subsequent human experiments.

Cattle with bovine TB show significant pathological changes and immune 
responses in various target organs that are comparably observed in human and 
mainly in the lungs, respiratory tracts and lymph nodes [101, 112]. Generally, cattle 
in-the-field become infected when they inhale or ingest pasture, water or fomites 
contaminated with M. bovis [113]. In experimental research, there are many routes 
by which TB can spread to cattle other than via the respiratory tract and include the 
intravenous [114], subcutaneous [115], oral [116], intranasal [117], intratracheal 
[118], intratonsillar [119] and aerosol routes [120]. More recently, some researchers 
have tried to establish the infection model upon exposure to infectious sources in 
laboratory animals, in order to mimic natural infection conditions [105, 107, 121]. 
In cattle, as in other animal models, the doses and routes of inoculation can signifi-
cantly affect the outcome of infection. Unlike other animals, cattle rarely shed 
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Table 7.5  The biological characteristics of cattle as models for TB research

Species Strains Routes Application Reference

Cattle M. 
bovis

Inhale or ingest pasture, water or 
fomites contaminated with M. 
bovis; intravenous; subcutaneous; 
oral; intranasal; intratracheal; 
intratonsillar; aerosol

DNA vaccines; 
recombinant protein 
vaccine

[107–109]

Neonatal 
calves

M. 
bovis

Subcutaneously; intratracheal; 
aerosol

Modified BCG; attenuated 
vaccine; Mycobacterium 
microti; inactivated 
vaccine; DNA vaccines

[105, 110, 
111]

M. bovis, and establishing infection in other cattle usually requires large doses of 
bacteria [122]. Neill et al. fully elucidated, experimentally, the relationship between 
challenge doses and pathological changes in cattle [123].

Calmette and Guerin created the first attenuated TB vaccine in 1906—BCG vac-
cine—that can protect against artificial or natural TB infection. Since then, new 
anti-TB vaccines have been developed that inactivate some of BCG’s own genes, 
such as auxotrophic mutants, to reduce skin test responses and develop more safe 
vaccines for immuno-deficient individuals [108]. A gene deletion vaccine based on 
M. bovis is also an option, whereby some virulence or metabolism-related genes 
were deleted and the vaccine showed a significantly increased IFN-γ response in a 
calf infection model [105]. Relatively safe inactivated vaccines and DNA vaccines 
have also been developed, but trials in calf models did not show superior immune 
performance over BCG [107, 109]. Thus, safer and effective vaccines need to be 
developed, and both neonatal and adult bovine models are important for validating 
vaccine efficacy.

The main advantage of using cattle is that they are the natural host for M. bovis 
and thus display the most complete pathogenic mechanisms and pathological 
changes. Promising vaccine candidates can be tested on natural hosts prior to clini-
cal trials. Other advantages are that the pathology and immunology of bovine TB 
are very similar to human TB, and related commercial immunological reagents are 
readily available. In addition, cattle are suitable for screening anti-TB vaccines and 
drugs, and it is relatively easy to collect large numbers and volumes of blood sam-
ples. Conversely, the disadvantages of using cattle are high cost of the animals and 
the larger facilities required for experimental work.

7.7 � Guinea Pigs (Order Rodentia, Family Caviidae, Cavia, 
C. porcellus)

Guinea pigs have been used for more than a century for studying TB [4]. This ani-
mal model has played a key role in elucidating the pathogenesis of TB. Guinea pigs 
are highly susceptible to Mtb and can be infected by aerosol inoculation with 
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Table 7.6  Biological characteristics of guinea pigs as models for TB research

Species Strains Routes Doses Pathology Reference

Dunkin-
Hartley 
strain

H37Rv strain (ATCC 
25618); HN878; 
CDC1551/CSU93; 
Erdman-K01; 
Bacille Calmette-
Guérin (BCG); 
Mycobacterium 
bovis; 
Mycobacterium 
leprae; 
Mycobacterium 
ulcerans

Subcutaneously; 
aerosol; 
intradermal; 
intrapleural

Low Microgranulomas in 
the lungs, liver and 
spleen; granulomatous 
necrosis; fibrosis and 
mineralization of 
central necrotic cores; 
mixed inflammatory 
response; 
granulomatous 
lymphadenitis; 
granulomatous 
pancreatitis

[127–130]

ultra-low doses of bacteria [124]. At present, the guinea pig strain most used in the 
laboratory is the outbred Dunkin-Hartley strain, although inbred strains do exist 
[125, 126] (Table 7.6). Several well-characterized inoculation routes have been used 
to establish TB infection in guinea pigs, including the aerosol route and intratra-
cheal and intranasal instillation [131]. The aerosol route is the most used. After 
infection with Mtb, symptoms similar to those of human TB appear at the lesion, 
such as central necrotic granuloma surrounded by lymphocytes, macrophages, mul-
tinucleated giant cells and fibrotic capsules [4]. However, cavitation is rarely 
observed in guinea pigs, which is a shortcoming of the model that may affect the 
testing of some anti-TB compounds [131, 132].

In order to clearly establish and characterize the symptoms of guinea pig infec-
tion with Mtb, the aerosol method was used initially to inoculate very low doses of 
bacteria [4]. The process of bacterial replication in the lungs and spleen of guinea 
pigs after infection was comprehensively described by Alsaadi and Smith in 1973 
[133]. In the lungs, the logarithmic growth phase was reached after 16 days of infec-
tion, and after a few weeks of replication, the bacterial load reached its maximum 
and remained stable [133]. TB infection in guinea pigs shows dose-dependent char-
acteristics, e.g. aerosol infection with 20–50 bacilli enables animals to reach humane 
end points more quickly than low-dose infection in non-sensitive animal models, 
and high-dose infection leads to earlier humane end points [134–137]. Importantly, 
high doses of infection are not consistent with the nature of natural transmission and 
are not particularly relevant to clinical trials.

The guinea pig model has been used widely to test new anti-TB drugs such as 
Capreomycin [138], PA-824 [139] and vaccines, such as the subunit vaccine com-
posed of proteins Ag85b and ESAT6-CFP10 [137, 140–142]. Guinea pigs have 
some immunological features, such as the substantial similarities between the 
guinea pig and human CD1 systems [143, 144], which can be an advantage in test-
ing for more types of vaccines, including glycolipid vaccines [136, 145]. The guinea 
pig model is also useful for identifying antigen targets for vaccine development. 
Testing of live attenuated TB vaccines has also been done with guinea pig models to 
provide a full profile of biosafety and potency prior to use in humans [142, 146]. 
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Guinea pigs are considered an ideal model for testing anti-TB drugs because they 
mimic the pathological lesion changes observed in humans [147]. A significant 
advantage of the guinea pig model compared to the mouse model is that it can 
mimic the symptoms of latent infection and thus provides an opportunity for sur-
rogate studies of the latency of human TB [148]. Disadvantages of guinea pigs as a 
model are the paucity of immunological tools, reagents and guinea pig strains. 
Nevertheless, the development of tools for guinea pig research is likely to increase 
their use in the future.

7.8 � Non-Human Primates

Non-human primates (NHPs) have become increasingly popular in TB research, 
largely because NHPs provide excellent cellular and immunological insights into 
TB [49, 149] (Table 7.7). NHPs were first used in TB research in 1956, when Leno 
et al. used rhesus macaques to develop anti-TB drugs [150, 151]. In the past few 
decades, the application of NHPs in TB research has made great progress. For any 
animal model, the first consideration is whether the model is susceptible to the tar-
get pathogen. Previous studies have shown that both Old World and New World 
NHPs are susceptible to all Mtb strains tested [161]. Initially, rhesus macaques were 
used as animal models to study the pathogenesis of TB and to test new drugs and 
vaccines. Interest in using NHPs has increased with the emergence of human immu-
nodeficiency virus (HIV) [162]. NHPs commonly used in the laboratory include 
rhesus macaques (Order Primates, Family Cercopithecidae, Macaca mulatta), 
cynomolgus macaques (Macaca fascicularis) and the common marmoset (Callithrix 
jacchus), all of which can recapitulate the full spectrum of outcomes of TB infection 
seen in humans. Indeed, different Mtb strains can produce different outcomes, rang-
ing from rapidly progressive TB to latent TB. Many Mtb strains have been used in 
NHPs, including Mtb 5159, CDC1551, H37Rv and the Erdman strain. The latter is 
most used to study TB in NHPs [9, 163–167]. In addition, the routes, locations and 
doses of Mtb inoculation can affect infection outcomes [149]. For example, intra-
bronchial instillation can mimic all the outcomes of TB infection seen in humans, 
but it does not reflect the natural course of infection and bypasses the immune 
defences of the host’s upper respiratory tract [9, 165]. The first reported infection 
route of Mtb in NHPs was intratracheal instillation [150, 151], and the most com-
monly used methods currently in the laboratory are intra-airway instillation and 
inhalation of aerosolized bacilli [168]. Furthermore, Capuano et  al. refined the 
infection process by introducing the fibre-optic bronchoscope, which could pre-
cisely quantify bacterial inocula into targeted organs [9]. Regardless, the results of 
some infections can still vary, and individual genetic differences, sample prepara-
tion and delivery before challenge can all significantly influence outcomes [169]. 
Therefore, more specialized and advanced equipment are needed urgently to pro-
duce better data by NHP models.
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Table 7.7  The biological characteristics of non-human primates (NHPs) as animals to study TB

Species Strains Routes Doses Pathology References

Rhesus 
macaques

BCG; M. 
tuberculosis 
CDC1551; 
H37Rvs; 
Erdman; M. 
tuberculosis 
5159

Aerosol; 
intratracheal; 
intravenous; 
intrabronchial

Low Caseous 
granulomas and 
cavitary disease in 
the lungs; discrete 
granuloma; TB 
hilar 
lymphadenopathy

[150–157]

Cynomolgus 
macaques

Erdman Aerosol; 
bronchoscopic 
instillation

High Extensive bilateral 
TB pneumonia; 
abundant necrosis; 
ocular TB, 
meningitis and 
spondylitis

[9, 153, 158]

Moderate Less necrosis; 
more cellular; less 
extrapulmonary 
disease infiltration

Low Granulomas with 
much smaller and 
densely cellular

Common 
marmoset

M. tuberculosis 
CDC1551; 
Beijing strain; 
M. africanum 
N0091; M. 
tuberculosis 
K04; Erdman 
strain

Aerosol; 
intratracheal

Various Cavitary TB; 
extensive 
extrapulmonary 
disease; solid 
cellular non-
necrotizing lesions; 
marginal fibrosis; 
inflammation; 
hyperplasia; 
caseous lesions

[159, 160]

NHPs infected with different doses of the Erdman strain Mtb by intratracheal 
instillation produce a range of symptoms from active TB to latent TB [158]. This 
was proved by the development of dose-dependent TB in Mtb-infected macaques. 
High doses of bacteria caused monkeys to die of TB between 7 and 13 weeks post-
infection, with pathological findings of extensive bilateral tuberculous pneumonia, 
abundant necrosis and extrapulmonary disease at the lesion sites [149]. Infection 
with moderate doses of bacteria led to a slower progression of disease in macaques, 
with the host dying between 14 and 24 months post-infection, with pathological 
findings of extensive pulmonary changes such as necrosis and extrapulmonary dis-
ease. Interestingly, cell infiltration in moderately infected macaques showed a ten-
dency to increase compared to pathological changes after a high dose of infection. 
At low doses, the macaques developed a slower progression of the disease, and the 
host animals lived up to 19 months post-infection; their pathology showed smaller, 
denser granulomas at the site of the lesion, which were very similar to human TB [9, 
149]. These pathological observations are extremely advantageous for studying 
human TB, especially with a low-dose infection model, and should provide a clearer 
understanding of the pathogenesis and pathological changes of human TB.

7  Animal Models of Tuberculosis



154

NHPs are generally considered to be very similar to humans, both anatomically, 
and pathologically and symptomatically for TB [168, 170]. The rhesus monkey is 
the first animal model of NHP, and its significant advantage is that it can perfectly 
recapitulate a series of symptoms of human TB, and the relevant commercial 
reagents and procedures are well developed [9, 149, 165]. Earlier studies showed 
that very low doses of Mtb could cause fatal TB in macaques [152, 171]. In NHP, 
there were also differences in susceptibility between macaque species. In rhesus 
monkeys, cynomolgus macaques and vervets, 100 colony forming units (CFU) of 
Erdman strains were inoculated into the three models by intrathecal injection [149, 
164]. The infection time in vervet monkeys was faster than in rhesus monkeys, and 
the cynomolgus monkeys even showed resistance to Mtb infection [153]. However, 
different strains infected the same model differently [7, 128, 163]. For example, 
rhesus monkeys infected with the H37Rv strain showed subclinical symptoms 
[154], the attenuated strain CDC1551 led to latent TB, and Erdman strain showed 
progressive TB symptoms [155, 159]. Interestingly, the susceptibility of the same 
species of macaques from different geographical regions to the Mycobacterium 
strains also varies [172]. For example, rhesus macaques from India and China were 
inoculated with the same dose of Mtb, and whereas macaques from India were 
asymptomatic, the macaques from China showed progressive TB symptoms [154–
156]. In 2013, a new NHP model, the common marmoset, was developed, which not 
only has the advantages of traditional NHP models but also has more prominent 
advantages in individual size of the monkey, their conditions for breeding and dif-
ferences in their individual genetic backgrounds [159].

TB in NHPs and humans share similar symptoms [149]. After infection with 
Mtb, the bacteria enter the lungs and are taken up by professional phagocytes such 
as alveolar macrophages or dendritic cells [167]. After overcoming host innate and 
adaptive immune responses, the bacteria begin to replicate and spread in vivo. Every 
bacterium that survives in the body can form granulomas in the lungs. There is no 
uniform structure of TB granulomas, and in vivo granulomas are structurally and 
histopathologically diverse [165]. Lin et  al. tracked the lesions in Mtb-infected 
cynomolgus macaques with F-fluorodeoxyglucose positron emission tomography/
computed tomography imaging [167, 173] and showed that there were significant 
differences in lesions within individuals, and the final infection outcome could be 
predicted by the lesions [167]. Traditionally, the host can either control bacterial 
replication in vivo resulting in latent TB, or the bacteria start replicating and spread-
ing to form active TB [149]. Latent infection carries the risk of reactivation and is a 
potential active TB outbreak point, and more research is needed to establish effec-
tive protocols for diagnosing and treating latent infections. The well-characterized 
cynomolgus monkey is the most suitable model for research into diagnostics and 
vaccines [174, 175]. Latent infection can remain stable in cynomolgus monkeys and 
reactivated when the host is immunosuppressed and thus mimic the symptoms of 
human latent TB [165].

Thus, the main advantages of NHPS are as follows: (1) similarity to humans; (2) 
rhesus macaque, cynomolgus macaque and common marmosets can reflect a series 
of similar outcomes to human TB; (3) cynomolgus macaques in particular present 
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symptoms like human TB, and rhesus macaques and common marmosets play an 
important role in simulating particular aspects of TB; (4) the common marmosets 
are small, easy to group and house and cost-effective.

7.9 � Other Models

The biological characteristics of other animals used to study TB are shown in 
Table 7.8 and discussed below.

7.9.1 � Cat (Order Carnivora, Family Felidae, Felis catus)

Recently, five Abyssinian cats from an Italian cat farm were diagnosed with TB 
interstitial pneumonia, drawing our attention to the possibility of using cats as 
experimental animal models for TB research [181]. One interesting finding was that 
infection of cats with Bartonella henselae, the etiological agent of cat scratch dis-
ease, showed TB-like symptoms such as caseous necrosis and Langhans giant cells 
[182, 183].

The main etiological agents of cat TB are M. bovis, M. microti and some non-TB 
Mycobacteria. The incidence of TB in cats has been low, thanks to specialized erad-
ication programmes and the use of commercial feed for pets [184]. TB in cats is 
transmitted mainly through the digestive tract, skin and by inhalation, and surpris-
ingly there are no specific clinical TB characteristics in cats [185]. Granulomatous 
inflammation, cell infiltration and numerous alveolar macrophages containing Mtb 
are present in lesions [186]. There are very few reports on the use of cats as a TB 
model animal, and further research is needed to determine if they have any advan-
tages over the more commonly used animal models.

Table 7.8  Biological characteristics of other animals used to study TB

Species Strains Routes Applications Reference

Cat M. bovis; M. microti; 
non-tuberculous 
mycobacteria

Digestive tract; 
skin; inhalation

Diagnostic [176]

Dog M. bovis Bites from 
wildlife

Drug search; pathogen 
detection

[177]

Deer M. bovis; Mycobacterium 
avium complex

Aerosol Diagnostic; vaccine [178]

Fruit 
fly

M. marinum Abdomen 
injection

Testing interactions 
between the pathogen and 
the host

[179]

Minipig W-Beijing (Mtb) HN878 Aerosol Natural transmission [180]
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7.9.2 � Dog (Order Carnivora, Family Canidae, 
Canis familiaris)

Dogs are typical ‘sniffer’ animals with a very sensitive olfactory system, and they 
are used widely for drug searches, search-and-rescue and detecting pathogens [187] 
and pathological signals and conditions, e.g. malaria [188]. Some microbial infec-
tions produce special volatile organic compounds that can be sensed by sniffer ani-
mals [189]. Companion animals are rarely infected with TB, although there has 
been a report of a dog infected after being bitten by a wild animal infected with Mtb 
[177]. This raises the possibility that the frequent close contact between pets and 
humans may provide an opportunity for TB to spread inter-species. In dogs, the 
main symptoms of TB affect the lungs and regional lymph nodes. The first reported 
case of TB in a dog was published in 2016 [190]. The main pathological changes of 
a dog with cardiac tuberculoma were diffuse pneumonia, fibrinous pericarditis and 
large, yellow, semi-solid masses of caseous necrosis in the left and right atrium. 
Importantly, Mtb was isolated from the faeces of infected dogs, suggesting that fae-
cal matter can act as a potential source of Mtb infection for animals and humans. 
Mtb can also be found in dog nasal secretions and urine. Dogs should be considered 
as a model animal to demonstrate the source and incidence of TB infection in 
humans, during studies of TB induced by M. tuberculosis and M. bovis infection.

7.9.3 � Deer (Order Artiodactyla, Family Cervidae, 
Genus cervus)

Deer are globally ubiquitous, and some subgroups feed in artificial facilities such as 
game parks, zoological parks and gardens, where they can come into close contact 
with humans [191]. Many deer farms have been established to provide antler, veni-
son and deer by-products. The occurrence of TB has been detected early in deers, 
and both captive and wild deer herds are highly susceptible to M. bovis, which has 
stimulated research in TB in this animal [192]. This is a major advance in under-
standing the aetiology, pathogenesis and epidemiology of TB in natural hosts and 
has important implications for detecting and treating TB.

M. bovis is the primary Mycobacterium detected in deer, which can be infected 
through contact with animals that carry the pathogens, such as tubercule-infected 
cattle and brush-tailed possums [193]. Indeed, there is another explanation: farmed 
animals and wild populations may have been infected by inhaling or licking termi-
nally ill possums [194, 195]! Farmed deer are valuable economically, and it is 
important to develop a suitable method to detect M. bovis. Initially, intradermal tests 
were used, but deer sensitivity to the presence of M. bovis in the environment pro-
duced false-positive data that severely compromised the accuracy of the tests [196]. 
Carter et al. established a comparative cervical test in 1985, which showed up to 
90% sensitivity in experimentally infected herds [197]. Subsequently, in 1985, 
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Griffin and Cross developed a more sophisticated and accurate laboratory test that 
involved all aspects of immunological indicators in animals infected with TB [198]. 
In 2002, a more accurate ELISA-based antibody test was developed to compensate 
for the false-positives of previous tests [196].

In terms of vaccines, BCG is currently the only commercially approved vaccine 
with very high protection efficacy in humans and animals. An effective vaccine can 
protect animal populations, but the problems that arise are also of concern. 
Vaccinating farmed animals with BCG, for example, may lead to a higher false-
positive rate in skin reactions for later TB tests, affecting normal test results [199]. 
It has been reported that either continuous or booster doses of BCG greatly improved 
immunity to BCG for deer [200]. The development of a new TB vaccine may help 
prevent TB in domestic and farmed animals.

7.9.4 � Minipig (Order Artiodactyla, Family Suidae, 
Sus domesticus)

Use of the minipig model in TB research was first reported in 2010 by Gil et al. 
[201]. Minipigs infected with Mtb show similar symptoms of latent TB infection 
(LTBI) to those seen in humans. A characteristic feature of this model is the ability 
to generate a very strong Th1-type immune response to control infection, as well as 
the ability to induce a strong local response during fibrosis. In terms of local pulmo-
nary structure, minipigs are very similar to humans, which will greatly benefit our 
understanding of LTBI mechanisms and allow us to establish more rational treat-
ment and prevention approaches in the future.

7.9.5 � Fruit Fly (Order Diptera, Family Drosophilidae, 
Drosophila melanogaster)

D. melanogaster is an ideal model organism for studying innate immunity, and it 
has been widely used to elucidate the pathophysiological mechanisms of pathogen 
infections and associated immune responses. The Mycobacterium commonly used 
in fruit flies is M. marinum, which is usually injected into the abdomen under CO2 
anaesthesia using specialized equipment. The pathology of Drosophila infected 
with Mtb is characterized by extensive tissue lesions and low bacterial load, which 
is useful for studying pathogen-host interaction mechanisms [202]. Drosophila 
have obvious advantages of easy feeding, handling, strong fertility, short passage 
time, low cost and mature technology, which is conducive to effective cost control 
[203, 204]. However, their lack of an adaptive immune system is a disadvantage and 
limits their use to studying only innate immune responses.
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7.10 � Conclusions and Perspectives

TB has been known for millennia, and it has been a century since the BCG vaccine 
was developed and given to people in 1921, but the infection is still not completely 
controlled. The main reasons are the complex mechanisms of tuberculosis initiation 
and progression and the difficulties in developing effective vaccines and drugs for 
absolutely preventing and treating TB.  Using animal models is crucial in TB 
research, especially in simulating TB symptoms and elucidating mechanisms of 
pathogenesis and pathology. Although a variety of animal models have been used 
and described in detail above, none has been able to recapitulate all the symptoms 
of TB in humans. The development of LTBI animal models is still a challenge. An 
ideal animal model of LTBI needs to adequately mimic the state of persistent infec-
tions in TB patients. Although animal models like mouse, guinea pigs, rabbit and 
non-human primates can mimic human LTBI to a certain extent, they still cannot 
fully replicate human infection. Therefore, it is necessary to modify the available 
latent animal models or develop new models for LTBI research. Recently, the appli-
cation of new techniques in genetics, immunology and molecular biology has led to 
new experimental animal models for TB research, such as humanized mice. Other 
experimental animal models, such as transgenic mice and knockout animal models, 
are also needed for developing and testing vaccines and drug treatments. However, 
many of the TB animal models are limited by their high cost and considerations of 
biosafety and ethics. To improve the efficacy of animal models to evaluate vaccines 
and drugs, new advanced imaging technologies are also needed. In addition, math-
ematical modelling plays an important role in collecting and analysing the data 
from TB animal models, and these models need to be developed further. In studies, 
it is important to choose the right TB animal models for different research aims and 
projects, and using complementary models is encouraged. Although there maybe 
disadvantages of different animal models, it is undeniable that all experimental ani-
mal models have made outstanding contributions to understanding the pathogenesis 
of TB, and they will continue to be used to develop new TB vaccines, drugs and 
therapies.
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