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Abstract. This chapter presents an overview of the state-of-the-art in
natural language processing, exploring one specific computational archi-
tecture, the Transformer model, which plays a central role in a wide
range of applications. This architecture condenses many advances in neu-
ral learning methods and can be exploited in many ways: to learn rep-
resentations for linguistic entities; to generate coherent utterances and
answer questions; to perform utterance transformations, a major applica-
tion being machine translation. These different facets of the architecture
will be successively presented, which will also allow us to discuss its
limitations.
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1 Introduction

Language technologies are prominent among the applications of Artificial Intel-
ligence (AI) and are now reaching the general public. They are essential for an
effective access to textual information available on the Web or in large document
databases; they enable for new forms of interaction with the machine, either by
voice or by means of writing aids; they help to communicate with other humans,
for example through machine translation systems; in a more underground way,
these algorithms structure, organize, filter, select, transform and make possible
the management of the myriads of texts and audio recordings that circulate
continuously on the Web or on social networks.

These technologies are gradually becoming more efficient for ever-increasing
and varied uses. Their progress is the result of a combination of several factors:
on the one hand, the development of sophisticated machine learning algorithms
capable of taking advantage of the high performance computing devices; on
the other hand, the possibility to access vast amounts of textual data, whether
annotated or not, to feed the training process. Among the algorithms for text
processing, neural algorithms and, in particular, the Transformer architecture
are nowadays at the forefront. Transformers have become central to carry out
three types of computations that, until then, required dedicated architectures:
first, text mining and information retrieval algorithms, which benefit from the
richness of the internal representations calculated by this model; second,
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linguistic analysis algorithms, which can take advantage of the Transformers’
ability to integrate and model very long-distance dependencies; finally, text
generation algorithms, which use this model primarily for their predictive
ability. If we add that this same architecture is also suitable for the processing
of oral or even multimodal data, and that it allows efficient calculations on a very
large scale, we can better understand why this model has become the modern
workhorse of computational linguists.

This chapter proposes a gentle introduction to the Transformer architecture,
adopting an historical perspective, so as to highlight how this model inherits from
and extends previous machine learning approaches to Natural Language Pro-
cessing. We start in Sect. 2 with an introduction to discrete statistical language
models, before moving on to feed forward and recurrent neural architectures,
enabling us to introduce important concepts such as lexical embeddings and
attention. Section 3 then presents the Transformer architecture in details, and
showcases its main applications: representation extraction on the one hand, lan-
guage generation on the other hand. The last section is devoted to multilingual
extensions of this model, which will make its genericity and wide applicability
more obvious. We conclude in Sect. 5 by introducing the reader to the main lim-
itations of this models and motivate some directions for future research. After
studying this chapter, the reader should be in a position to understand why
this architecture has been so successful for language modeling, and get a better
grasp at the multiple extensions and developments that are happening in other
domains such as audio processing or computer vision.

2 Writing Machines: Language Models

2.1 The Simplest Model

Let us consider starting a basic task of language processing: spam filtering. Its
probabilistic treatment involves three steps:

1. the collection of a representative set of emails, containing a set Dok of accept-
able emails (hams) and a set Dko of unwanted emails (spams);

2. the construction of a numerical representation for texts. A very simple rep-
resentation encodes each email d as a large binary vector h in {0, 1}|V |, with
V a predefined vocabulary. For each component, hw = 1 if word w appears in
the email, 0 otherwise. These representations (so-called “bag-of-words”) are
inherently sparse, since most of the components of this vector are null;

3. learning a probabilistic model P (OK|d) ∝ exp
∑

w θwhw,1 which evaluates
the likelihood that a mail is acceptable. The parameter vector θ weights the
contribution of each individual word to the final decision. The estimation of

1 The notation P (u|x) ∝ exp f(θ, x) means that the conditional probability of event
u given x is proportional to the logit exp f(θ, x). P (u|x) is obtained by normalizing
this term, that is dividing by the summation over all possible outcomes

∑
u′ f(θ, x).
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θ is realized by maximizing the log-likelihood of the training data, according
to:

�(θ) =
∑

d∈Dok

log P (OK|d) +
∑

d∈Dko

log(1 − P (OK|d)).

This “historical” model is ubiquitous in modern natural language process-
ing: multi-class routing and classification of documents, “sentiment” or opin-
ion analysis (classes correspond to the polarity of the text), textual entailment,
aimed at deciding whether a sentence logically implies another sentence, etc.
It already highlights three essential concepts of the statistical approach that
has become dominant since the 1990s to address NLP problems: (a) the com-
putation of numerical representations (here binary representations) to encode
linguistic entities and their properties; (b) the use of these representations in
probabilistic models evaluating discrete decisions (here: to classify an email in
one of the two possible classes); (c) the estimation of model parameters using
annotated data (here: correct and incorrect emails). As we will see, the most
recent developments in the field continue to rely on these concepts, using neural
networks to learn incomparably more sophisticated representations and models
than the one outlined above.

2.2 Word Order

Filtering emails is a simple task: useful representations for this task can disregard
the order of word, and more broadly, the structure of the document. However,
these representations ignore one of the essential properties of texts, namely their
organization in a linear sequence of units. Language models are probabilistic
models designed to take into account this sequentiality. We use w = w1 . . . wT

to denote a discrete sequence including T units (words) denoted wt. In a n-gram
language model, the probability of this sequence is written as:

P (w1 . . . wT ) =
∏T

t=1 P (wt|w1 . . . wt−1)
=

∏T
t=1 P (wt|wt−n+1 . . . wt−1).

(1)

The first line breaks down the probability of the sequence as a product of con-
ditional distributions; the second makes this decomposition tractable by assum-
ing locality of dependencies within the sequence. Formally, this means that the
probability of occurrence of unit wt is independent from the past units, given the
context composed of the previous n − 1 words. The corresponding conditional
distributions are discrete probabilities that parameterize the model; the bulk of
these parameters will be denoted θ. Assuming that the vocabulary V is finite
and known, these parameters are in finite numbers. Conceptually, this model is
identical to the previous one: it assigns each “document” (here reduced to the
few words preceding the current position) to a “class” (here, one word among
all possible words). Effective estimation procedures for the n-gram model are
based on counts of occurrences in large corpora, and the resulting parameters
estimates take the following form for a trigram model (n = 2):
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∀u, v, w ∈ V : P (w|uv) =
n(uvw)

∑
w′∈V n(uvw′)

, (2)

where n(uvw) is the number of occurrences of the sequence uvw in a training
corpus.

The two basic assumptions of the n-grams model (local dependencies, finite
vocabulary) are linguistically naive. On the one hand, there are many examples of
dependencies between distant words. These dependencies can be syntactic as in
“the decisions of my branch manager are effective”, where the plural agreement is
between “decisions” and “are”, separated by four words; they can be semantic, as
in “the judges of the European Court of Justice have decided...”, where “decided”
can be predicted as a typical action carried out by judges; or even discursive,
thematic or stylistic. There are, on the other hand, multiple arguments that
oppose the idea of a finite vocabulary: we return to this issue in Sect. 2.4.

Despite their simplicity, language models are useful for a wide range of appli-
cations. First, they can be used as automatic text generators: it suffices to repeat-
edly use Eq. (1), sampling at each step the next word conditioned on the previ-
ously generated tokens. Second, these models make it possible to compare several
sequences in order to select the most plausible one, which often will also be the
most grammatically correct one. Such decisions are useful for a spell checker,
which must choose the best correction; or for a machine translation system, to
select the most correct translation hypothesis, etc. Third, they are useful for com-
paring languages: if a language model is trained with French texts and another
one with Italian texts, comparing the probabilities of a sentence for these two
models provides a way to decide the most likely language of that text. It can
also be used for other types of linguistic sequences: sequences of sounds, letters,
or even sequences of utterance to model discourse dependencies.

Initially developped for speech processing applications [38,39], language mod-
els have quickly became basic tools for the statistical processing of languages
and have given rise to countless developments, notably including improvements
in their estimation procedures. Pure count-base estimators (Eq. (2))) are in fact
not appropriate to model the probability of very rare events. When using vocab-
ularies of several tens of thousands of units, the vast majority of three word
sequences are never observed, and using counts yields zero estimates for most
parameters. Smoothing methods aim to improve these estimates, for instance
by using word clusters. A review of these developments is in [68]; generaliza-
tions of the n-gram based on Markov models or stochastic grammars are in [17];
recent introductions to these techniques can be found in various NLP textbooks
[26,41,54].

2.3 Neural Models: Smoothing the Context Space

Feedforward Language Models. The next word prediction task imple-
mented in language models is fundamentally a classification task: [9] propose to
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implement it using the feedforward network) of Fig. 1 (corresponding to a four-
gram model, n = 3).

Fig. 1. A multi-layer feedforward network implementing a 4-gram model

The network computing P (w|tuv) inputs the three vectors t,u,v in {0, 1}|V |,
where words t, u, and v are replaced by binary vectors whose only non-zero com-
ponent is the word index in the vocabulary (one-hot-encoding). The following
computations are then performed:

i = [R;R;R], with R ∈ R
3V |×dmd

h = φ(Wihi + bih), with Wih ∈ R
3dmd×dmd et bih ∈ R

dmd

o = Whoh + bho, with Who ∈ R
dmd×|V | and bho ∈ R

|V |

P (w|tuv) = softmax(o)w, with softmax(x)t = exp(xt)∑
t′ exp(xt′ )

(3)

These four steps respectively correspond to:

1. the computation of dense numerical representations, via the matrix R, which
projects each input vector into a dmd dimensional space, with dmd � |V |;

2. the introduction of a “nonlinearity”, via the function φ(), the hyperbolic
tangent function (tanh) in the original implementation;

3. the calculation of non-normalized logits for each of the words that can follow
the context tuv, obtained by comparing the output of the hidden layer h with
the lexical output representations Who

4. the normalization of these scores via the softmax operator, which outputs a
probability vector.
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Training such models requires to use numerical optimisation methods that
adjust parameters in θ = {R,Wih,bih,Who,bho} so as to make more likely the
associations between contexts and words observed in a large corpus. Formally,
for each sequence [t, u, v, w] in the training corpus, one wish that the quantity
log P (w|tuv) = ow − log

∑
w′ exp ow′ will be as large as possible. This leads to

maximizing (in θ) the following cross-entropy criterion:

�(θ) =
∑

[t,u,v,w]

log P (w|tuv) = ow − log
∑

w′
exp ow′ . (4)

This optimization is typically performed using stochastic gradient descent
methods, which update parameters based on gradient values. Note that training
again does not require any annotation and can be carried out on huge quantities
of texts, as long as they can be segmented into “words”.

The shift from discrete models to continuous space representations is compu-
tationally intensive, because computing the softmax operator involves a sum over
a large vocabulary. Practical solutions are proposed and evaluated in [45,69]; we
discuss them in Sect. 2.4. However, this shift has proven decisive to improve the
quality of applications such as speech recognition or machine translation. This
is because two quantities are learned simultaneously:

– a numerical representation h summarising the context made of several pre-
vious words into a low-dimensional vector, from which the conditional dis-
tribution of successor words is calculated. This ability to compute numerical
representations of the prediction context is assimilated to the encoding func-
tion of the neural network.

– a lexical embedding of the vocabulary V into R
dmd through matrix R. This

embedding has remarkable properties; in particular, words that share many
contexts, which are often semantically related words or words of the same mor-
phological family, tend to get close in the embedding space. The use of these
embeddings as generic lexical representations [20] has become widespread
with the development of rapid and effective methods for calculating them
[11,58].

Recurrent Neural Networks as Language Models. The previous model
shares with the n-gram model the use of a context restricted to neighbouring
n − 1 words. The use of recurrent networks [27] makes it possible to overcome
this limitation and to compute terms such as P (wt+1|w1 . . . wt) without resorting
to locality assumptions. The strength of this approach and its superiority over
the feedforward model are highlighted in [59], who present a network capable of
taking into account an unbounded context. It contains the same two components
as before, namely: (a) dense numerical representations for lexical units computed
by the matrix R; (b) a context encoding function defined here recursively by φ(),
which again denotes a non-linear function:
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ht = φ(Wh′hht−1 + Rwt + bh)
= φ(Wh′hφ(Wh′hht−2 + Rwt−1 + bh) + Rwt + bh). (5)

As before, the final step will project the internal representation ht to yield the
conditional output distribution associated with context w≤t = w1 . . . wt accord-
ing to P (w|w≤t) = P (w|ht) = softmax(Whoht + bo). Parameters of the recur-
rent network {θ = R,Wh′h,Who,bh,bo} are trained by maximizing the cross-
entropy loss function.

Unfolding the recursion (second line of Eq. (5)) makes the functional rela-
tionship between ht and words wt and wt−1, then, by recurrence, with all previ-
ous words. This also highlights that the influence of words decreases with their
distance to the current position. It also highlights a computational difficulty
associated to the direct computation of the gradient (by the rules of derivation
of compound functions), which gives rise to numerical instabilities that make
learning delicate. Remedies, which involve the use of more complex dependen-
cies between ht and ht−1 are proposed by [19,36]. They realize the full potential
of these networks, which are then able to partly capture dependencies between
distant words - such as the one observed in English between verb and sub-
ject, which must agree in number and person regardless of their distance in the
sentence (see [50] for a study of such phenomena). Their expressiveness as a
computational model is analyzed in [57].

In practice, however, the recursive formulation of the computation of latent
representations poses a major problem, as it requires each sequence to be pro-
cessed word by word from left to right in the order of their appearance. It is
impossible to build ht without having previously computed ht−1, which itself
requires ht−2 etc.; such models are said to be auto-regressive. As a result, it is
not possible to parallelize the computation of the objective function (Eq. (4))),
which significantly slows down the training process.

Recurrent Models as “Pure” Representations: ELMo. Among the many
extensions of these models, the most remarkable is their use as “pure” encoders.
Let us first note again that learning such language models does not require
annotation and can therefore be carried out on very large text corpora. Assuming
that the parameters are known, a recurrent network transforms a string of words
w1 . . . wT into a sequence of vectors h1 . . .hT . The same process can be performed
by running the sequence backwards, from wT down to w1, yielding another vector
sequence h̃1 . . . h̃T. Concatenating the two representations for word wt yields
[ht; h̃t], which encodes wt in a bidirectional context integrating both previous
and subsequent words. It also turns out that [h̃1;hT] is a very good way to
represent the whole variable-length sentence w1 . . . wT into a fixed-size vector.
This vector can then be used to compare sentences or to make predictions about
their polarity or their meaning. It finally appears that stacking bi-directional
recurrent layers, where [ht; h̃t] are used as the input of a new layer, will deliver
deeper and better representations. These principles are used to construct the
ELMo model [60] model, one of the first to highlight the richness of these deep
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contextual representations, which can serve as a beneficial plug-and-play pre-
processing module for any application dealing with linguistic sequences.

Consider, for instance, the task of textual entailment, which consists of
deciding whether sentence wP logically entails sentence wC . For this task,
we need to predict a Yes/No answer given the two input sentences, yield-
ing a model P (Yes |wP , wC). A possible approach encodes each sentence into
a single vector (respectively ELMo(wP ) and ELMo(wC)) that are then con-
catenated and used in a log-linear model according to: P (Yes |wP , wC) ∝
exp(W[ELMo(wP ); ELMo(wC)] + b), where matrix W and vector b are the
model parameters. By pre-training the parameters of the ELMo model, then by
fine-tuning those of the textual entailment model, it becomes possible to achieve
very good performance even when the train data of the textual entailment model
is limited.

2.4 Defining the Vocabulary

We left open the question of the support of probability distributions represented
by Eqs. (1) and (3). They presuppose the existence of a finite inventory V of
discrete units. To model sequences of letters, sounds or syllables, this hypothesis
is easy to defend. For sequences of words, it no longer makes sense, as no cor-
pus, however large, can exhaust the word formation processes, not to mention
borrowings from other languages, and extra-lexical (names, numbers, acronyms)
whose occurrences must also be modelled. This issue has long been a source of
difficulty for language models and has justified to take into account very large
vocabularies, despite the associated computational problems.

A better trade-off is achieved by abandoning the notion of word and seg-
menting texts into sub-lexical units, by means of processes that are themselves
optimized over large corpora to take frequencies of occurrences into account. Fre-
quent words are thus preserved in their integrity, while the rarest words are split
into subwords, if necessary reduced to mere sequences of letters. This makes
it possible to manipulate medium-size vocabularies (containing tens of thou-
sands of units), while at the same time preserving the ability to compute the
probability of arbitrary sequences (possibly including unknown words, made of
the concatenation of known subwords). The best known-algorithms for learning
such vocabularies are the Byte Pair Encoding (BPE) algorithm [31,70] and the
unigram algorithm [22,44].

Example segmentations realized by these algorithms are in Fig. 2.
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Fig. 2. Sub-lexical unit segmentation of the beginning of the French, English and Ger-
man versions of the Universal Declaration of Human Rights. The vocabulary contains
10,000 units, character ‘ ’ identifies word-initial units. With this segmentation model
optimized on French texts, only rare words (such as ‘dignité’, ‘fraternité’) are seg-
mented. It is also used to segment, with the same alphabet, texts written in other
languages, here sentences in English and German.

3 The Transformer Model

3.1 Attention, a Fundamental Mechanism

Having established all the necessary basic concepts of LMs, we now turn to the
Transformer model, which relies on a more generic and powerful model to encode
the context of each decision.

Encoding the Context. The main idea of the Transformer model of [77] is
to make the representation of word wt depend on all preceding words according
to ht = φ(w1 . . .wt), while at the same time removing the recurrence of the
computation of φ() so as to be able to parallelize it. In the Transformer model,
this computation is achieved by stacking L layers. Each layer l recombines the
representations from the previous layer h(l−1)

1 . . .h(l−1)
t to construct outputs

h(l)
1 . . .h(l)

t through elementary operations: linear projections, linear combina-
tions, vector concatenation, plus feedforward networks. The recursion of the
recurrent model is thus replaced by a stack of layers, each having a global scope.
The result remains the same as for other language models: a numerical vector
representation of the context that summarises all the previous words, based on
which one can predicts the next word in the sequence. Figure 3 illustrates the
context encodings computed by these various architectures.

Formally, each layer in a Transformer is parameterized by a set of K attention
heads and by a multi-layer feedforward model. Each attention head is param-
eterized by three projection matrices Q,K,V in R

dmd×dkv and performs the
following computations to derive h(l)

t from the outputs of the previous layer
{h(l−1)

s , s = 1 . . . t}. For the kth head in layer l:
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Fig. 3. The encodings of the left context computed by various language models: n-gram
feedforward models (FF LM) encode only a small context; Recurrent models (RNNs)
assume that close words are more important than remote words; Transformer models
(Tr LM) process all the context words on an equal footing.

(6.q) Query qt
(k,l) = Q(k,l)ht

(l−1) (∈ R
dkv)

(6.k) Keys ks
(k,l) = K(k,l)hs

(l−1),∀s ≤ t (∈ R
dkv)

(6.v) Values vs
(k,l) = V(k,l)hs

(l−1),∀s ≤ t (∈ R
dkv)

(6.a) Attention α
(k,l)
s = softmax( 1√

dkv
,ot)s,∀s ≤ t (∈ [0, 1])

avec ots = qt
(k,l)Tks

(k,l),∀s ≤ t

(6.o) Output gt
(k,l) =

∑
s≤t α

(k,l)
s vs

(k,l) (∈ R
dkv)

(6)

The first three steps compute dkv-dimensional projections of their input,
respectively called query, key and value. The dot product ots computes a sim-
ilarity between the query at position t and the keys at all positions before t
(included). These similarities are normalized by the softmax operator, which
transforms them into attention coefficients in [0, 1]. The last step linearly com-
bines the values to generate the output vector.

Each layer comprising several heads, it remains to aggregate their results.
Two elementary operations come into play. The first is a transform made by a
multi-layer perceptron according to:

{
f (l)
t = φ(Wif

(l)g(l)
t + bif ) ∈ R

dff , with φ() a non-linear function.
h(l)
t = Wfof

(l)
t + bfo ∈ R

dmd .
(7)
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The input g(l)
t of this perceptron is the concatenation of the outputs of

the K heads, to which we add the output of the previous layer: g(l)
t =

[g(1,l)
t ; . . . ;g(K,l)

t ]+h(l−1)
t . Adding the output of the previous layer serves several

purposes: (a) to provide gradients with a direct path from the higher layers to
the lower layers; (b) to ensure that ht

(l−1) and ht
(l) remain close, and that each

word thus retains its singularities, regardless of the influence of its context. One
consequence is that both terms must have the same dimensions, which implies
K × dkv = dmd. A typical implementation of this forward propagation step
projects g(l)

t via Wif
(l) into a dff -dimensional vector, with dff � dmd, for instance

dff = 4dmd; the non-linearity of the hidden layer uses function φ() = ReLU (for
Rectified Linear Unit).

The second basic operation normalizes the outputs, so that input and out-
put vectors will remain commensurable throughout the layers. At a high level,
each layer simply recombines the current representation at position t so as to
incorporate the influence of the preceding words. Unlike the recurrent model,
where the influence of the context words is computed in a left-to-right manner,
in this model no position is privileged, and each attention head, in each layer,
can select the positions that are the most significant for the current position, via
the attention coefficients α.

Limiting Conditions: Layers 0 and L. We still have to describe the inputs
and outputs of this system. For the input h(0)

1 , one can choose to use either one-
hot representations (see Sect. 2.3) or non-contextual representations computed
by the skip-gram model [58]. However, lexical representations alone are not suf-
ficient. In fact, equations ((6).[q–v]) do not distinguish between indices, whether
close to or distant from the current position t. This illustrates the potential
of Transformers to take into account non-local dependencies better than recur-
rent networks. However, it is useful to introduce the notion of position in the
sequence, for example by encoding each index with s a dmd-dimensional vector
ps, which is added to the lexical embedding. This positional encoding is either
learned or computed by a deterministic function defined in [77] as:

{
ps[2i] = sin(t/100002i/d)
ps[2i + 1] = cos(t/100002i/d)

The output of the last layer h(L)
t is used to compute the probability of the next

word at position t + 1 and involves the same steps as for the standard neuronal
model (Eq. (3)): a linear transformation in a |V |-dimensional space to obtain
logits, that are then normalized into a probability distribution.

3.2 Causal Transformer as Pure Language Models

The presentation above expresses the computation of h
(l)
t as a sequential oper-

ation: h(l)
1 , l = 1 . . . L are first computed, then h(l)

2 , l = 1 . . . L in the context
of h(l)

1 , l = 1 . . . L, etc. This is the most natural and computationally effective
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method for language models, since the representation of each word is computed
only once. This model is dubbed as self-attentional (since the context consists of
the previous words in the same sequence) and causal (the representation of each
word only depends on the previous words). It is used for instance in the GPT-
* architectures [14,64]. A non-causal variant recomputes all representations at
each time steps, i.e. first h(l)

1 , l = 1 . . . L, then {h(l)
1 ,h(l)

2 , l = 1 . . . L}: this means,
for instance, that the representation h

(l)
1 will change over time, integrating the

context of words to its right as they are revealed. This variant, sometimes called
prefix language model, is more computationally involved, but seems to yield bet-
ter results [65].

Like other LMs, these architectures generate texts from left to right, by sam-
pling at time step t the next word wt according to P (wt|ht−1). Trained on very
large corpora, they generate texts that are often grammatically correct, or even
show a form of global consistency. This suggests that Transformers are able to
model dependencies between distant words in the same sentence or even in differ-
ent sentences (when the context is sufficiently large). It is also possible to begin
a text and let the model continue the generation. This form of text initialization
is dubbed “prompting”, where the prompt denotes the user-selected prefix. It
turns out that with a proper choice of these “prompts”, a language model can
perform multiple tasks: when the prompt is composed of a text and comprehen-
sion questions, the model generate the answers, when prompted with a sentence
in French, the model generates the translation into English, etc. It is possible, at
the cost of a short learning stage, or by prompting with a handful of examples,
to improve this behavior [64]. Owing to these remarkable properties, some of
which are still poorly understood, large language models nowadays constitute a
basic building block to address a large number of language processing tasks.

3.3 Transformers as Representations: Bert and Its Clones

As with recurrent models, the use of Transformers as pure contextualized repre-
sentation extractors has proved to be extremely powerful and effective. Originally
proposed in [23], the BERT model is mostly a non-sequential and non-causal
Transformer. This means that the update formulas of Eq. (6) simultaneously
apply to all positions in the input sequence via matrix calculations, and that the
contextual representations of each word integrate both its left and right contexts.
Learning such model is typically performed by optimizing the reconstruction of
a noised input: in its basic form, noising simply randomly hides (masks) some
tokens wt, which the model then seeks to recover based on the representation
h

(L)
t . By maximizing the log-probability of original text, it becomes possible to

estimate model parameters (see Fig. 5) (Fig. 4).
As for other language models, this learning process does not require any

annotation and can be performed on very large corpora. BERT thus provides
contextualised “pre-trained” lexical representations that can be used as input
to any automatic processing system [23,52]. Other methods for constructing
denoising tasks have also been studied [65]: masking groups of words, parts



Transformers in NLP 93

Fig. 4. Prompting a language model. By varying the prompt, the same model can be
used to perform multiple tasks. From top to bottom, language generation is used to
write the continuation of a prompted text, to write a summary, to answer a question,
to check the implication between two sentences, etc. Examples are from [14,64]

Fig. 5. Learning the BERT model with random masking. The model parameters are
trained to maximize the probability of recovering the hidden tokens (bold on the figure).

of words, deleting and permuting words, etc. Due to their performance, these
models have quickly become central in NLP [71] and were quickly adapted to
multiple languages, such as French [46,55], German [16], Dutch [78], Spanish [15],
etc. Versions adapted to specialized textual genres such as patents [47], scientific
texts [5], tweets [4] or even sub-domains such as medicine [48] or nuclear physics
[37] have also developed. A rich literature also studies the empirical behaviour of
Transformers, trying in particular to analyze the internal representations {hl

t, t =
1 . . . T, l = 1 . . . L} in relationship to linguistic concepts; or use attention matrices
as a source of explanation of the system’s decisions. A recent bibliographical
survey of this “Bertological” literature has no less than 110 references [67].

3.4 Computational Costs of Transformer-ing

As Transformer based models take a central role in natural language processing,
it becomes necessary to take a closer look at the computations performed by
these algorithms and to better assess their cost, in a context where the carbon
footprint of Artificial Intelligence algorithms is also becoming a concern [35,
73]. A first observation is that, unlike recurring networks, the computations
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of Transformers are easy to parallelize. In particular, computing the output
representation of a word requires knowledge of its neighboring words, but not
of their deep output representations. These output representations can then all
be computed simultaneously by implementing Eq. (6) with operations. Table 1
provides indications regarding the size and number of parameters for some recent
models.

Table 1. Measuring the size of Transformer models. The number of parameters used
for lexical (L) and internal (I) representations are counted separately. Notations k, m, b
respectively denote thousands, millions and billions of units.

|V | T K L dmd dkv dff Params (L) Params (I)

32k 512 8 6 512 64 2048 32,8 m 49,9 m

32k 512 12 12 768 64 3072 49,2 m 127 m

32k 512 16 24 1024 64 4096 65,5 m 342 m

32k 512 32 24 1024 128 16384 65,5 m 2,38 b

32k 512 128 24 1024 128 65536 65,5 m 28,7 b

A last important dimension for complexity calculations is the sequences
length T , which determines the overall dimension at the input and output of
each layer (T × dmd). Sequences typically contains several hundreds of words or
even more (2048 for GPT-3). During training, it is necessary to keep the values
of all layers in memory, as they are needed to compute the gradient. To speed
up calculations, batches of B sequences are processed simultaneously, yielding
tensors of dimension B × T × dmd, whose manipulations are optimized on GPU
cards.

The computational complexity of the Transformer operations is dominated
by the evaluation of attention matrices in Eq. (6). This computation is linear in
dmd, but quadratic in T : for each of the T positions, the similarity with all the
other positions need to be computed, in order to derive the attentions weights α,
then the T output values vectors. To reduce this complexity, several directions
are considered in the literature. It is first possible to restrict the computation
of attention weight to a neighborhood N(t) of wt, by imposing words outside
N(t) to have null weights (αt(s) = 0,∀s �∈ N(t)); note that these words still
influence wt indirectly by influencing its neighbours (or the neighbors of its
neighbors) across the multiple computations layers. By choosing neighborhoods
N(t) of fixed size S, with S much smaller than T , the attention computation
becomes linear in T . There are several other ways to define N(t), using syntactic
dependencies, or using random subsets of indices: what matters is that for almost
every word, |N(t)| is small and, that for a few positions, N(t) encompasses the
whole sequence. Other approaches to speed up these computations focus on
effective approximations of dot products (Eq. (6)a). A recent survey of effective
implementations of the Transformer model is in [75]; some methods aimed to
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reduce the memory footprint are presented in [66]. Since the amount of training
data continues to increase the performance for many tasks [42], developing larger
models is likely to remain an active area of research [29], posing formidable
computational challenges both for learning and inference.

3.5 Transformers: A Flexible Architecture

The language models implemented in Transformer architectures combine all the
advantages of neuronal architectures: they can learn both predictive models
capable of taking into account long-range dependencies and rich contextual rep-
resentations for atomic units, which can be pre-trained and then used for multi-
ple language processing tasks. They result in effective implementations [79], and
have also been adapted for other types of structured data: acoustic sequences for
speech modelling [2], images for artificial vision [63], and even image sequences
[74]. Like other neural language models, their behavior remains difficult to con-
trol: while some regularities are almost perfectly learned, others are learned only
approximately, and it is difficult to predict or understand the reasons for these
failures.

4 Towards Multilingualism

4.1 Neural Machine Translation: Conditional Text Generation

A Simple Encoder-Decoder Model. The Transformer model presented
above as a language model is initially introduced for machine translation (MT)
[77]. This application formally corresponds to the generation (in a “target lan-
guage”) of a sentence e translating the input “source” sentence f . Viewed as a
probabilistic decision, this problem corresponds to finding:

e∗ = argmaxe P (e|f) = argmaxe

∏

t

P (et|f , e<t). (8)

This formalization again requires to define a probability distribution over a set of
sentences (see Eq. (1)), except that this distribution is conditioned by the input
sentence f . The Transformer model computes such a distribution by extend-
ing the neural encoder-decoder architectures proposed for MT in [3,18]. These
architectures rely on two computation steps:

(a) the computation of a numerical representation (encoding) for f taking the
form of a sequence of numerical vectors s1, . . . , sJ ;

(b) the iterative decoding of the translation, by choosing at each step the
most likely next word et given the source encoding [g(l)

1 , . . . ,g(l)
I ], l =

1 . . . L as well as the previous target words e<t, encoded as previously as
[h(l)

1 , . . . ,h(l)
t−1], l = 1 . . . L.
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The first neural MT systems perform these two steps using recurrent net-
works (Sect. 2.3). In a Transformer-based architecture, step (a) is performed by
a non-causal encoder (Sect. 3.3) and step (b) is performed by a causal decoder
(Sect. 3.2). During this stage, it is necessary to integrate the double dependency
in f and e<t, since the prediction of the next target word is influenced by these
two sequences (see Eq. (8)). This is implemented by the addition of an additional
cross-attentional sublayer within the decoder. The corresponding computations
are similar to those of Eq. (6), using h(l)

t . . .h(l)
t for the query, and g(L)

1 , . . . ,g(L)
J

for keys and values. In this way, the context vector of each target word inte-
grates not only the target prefix, but also all the words in the source phrase,
represented at the last layer (L) of the encoder. As before, the last layer vector of
the decoder is projected into a |V |—dimensional space, then normalized through
the softmax function to provide the desired output distribution P (et|f , e<t).

Difficulties of Machine Translation

Learning from Parallel Corpora. The learning of conditional models is similar to
the learning of language models and consists of optimizing the log-probability of
the training sequences, which decomposes into a sum of terms as in Eq. (4). This
computation requires both words from the source and the target sentences, which
are aligned in large parallel corpora matching sentences with their translation.
Such resources are now publicly available en masse from resource distribution
agencies such as ELDA or the Linguistic Data Consortium. A variety of parallel
corpora can be found specialized websites such as OPUS [76].

Machine Translation is Difficult. Once training (which can take days, depending
on the amount of available parallel data) is complete, the Transformer is ready
to translate. Translation is performed incrementally, word by word, in a greedy
manner and poses the same difficult problems as the unconditional generation
of texts. It appears, on the one hand, that choosing at each time step the best
next word is a risky strategy, since each past error might yield incorrect or
simply unusual internal representations, which in turn can cause more errors.
This problem is known as the exposure bias problem [8] and requires to use
of more sophisticated search strategies, such as beam search, to compute the
argmax (Eq. (8)). An alternative decoding strategy simultaneously predicts all
the target words in parallel, which dramatically speeds up decoding. However,
global constraints on the relative positions of words must apply to ensure that
the target sentence remains well-formed [32].

Two additional difficulties are directly related to the machine translation
problem: in MT, it is necessary to translate the entire source phase (each word
only once), without introducing any additional information. However, these two
constraints are not explicitly formulated in Eq. (8): to ensure that the length of
the target sentence matches that of the source, and effectively translates all input
words, the search algorithm must include additional heuristics: [40] presents the
most commonly used ones.

https://www.elda.org
https://ldc.upenn.edu
https://www.opus.eu
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4.2 Multilingual Representations, Multilingual Translations

An additional benefits of numeric representations is that they represent words
of different languages in a unified manner. It is then possible, assuming a shared
units directory for all languages, to use the same encoders and decoders to
process multiple languages. The easiest way to proceed is to implement the
same learning procedure as for BERT (Sect. 3.3), inputting sentences in multiple
languages into the system: this approach is used for mBERT [23] and XLM [21].

Such approaches readily deliver multilingual contextual representations that
bring together, in the same vector space, units (words, sentences) that are mutual
translations. Learning multilingual representations thus makes parallel sentences
in multiple languages almost indistinguishable (for the neural network). This
enables to transfer processing models and applications from a resource-rich lan-
guage into languages for which resources do not exist. Let us take the example
of a sentiment analysis system, which aims to associate textual comments on
a merchant site with satisfaction scores, and assume that we have annotated
training examples for language A, but not for language B. Learning to pre-
dict the numerical score from multilingual representations of texts in language
A makes us also able to predict the note of texts in language B without ever
having observed any training example associating a text in language B with its
evaluation (see Fig. 6).

Fig. 6. A multilingual architecture for spam filtering. The second step uses multilin-
gual pre-trained representations which enable to transfer knowledge across languages:
French spam mails can then be identify even though the classifier has never seen any
French example.

Learning multilingual representations is therefore a major challenge to
broaden the spectrum of languages covered by language technologies. Many
approaches have also been proposed to train non-contextual multilingual rep-
resentations, or to adapt existing representations to a specialized domain. A
recent survey of these methods is in [72].

Note finally, that the encoder-decoder architecture can also be used to com-
pute monolingual representations: this is again achieved by inputting noisy texts
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into the encoder, that the decode will then have to recover. All that is needed is
the definition of the noising operations used to generate parallel artificial data:
masking one or several words, replacing a word with a similar word, changing
the order of words are typical noising operations. BART, introduced by [49],
has the benefits of a faster learning than BERT (more words are noised in the
encoder). With an additional fine fine-tuning stage, BART can also be used as
a generation model, as the decoder is non-causal: a possible application there
is automatic summarization. Finally, like BERT, BART can be trained multi-
lingually, simultaneously computing multilingual representations and machine
translation.

4.3 One Model to Translate Them All

Multilingual translation combines the approaches described in the previous sec-
tions: the use of an encoder-decoder architecture, with conditional generation of
texts; the use of sentence pairs combining input and output for multiple language
pairs. This idea, originally proposed in [30,34] and recently used on a large scale
in [1,28] opens new perspectives: (a) operationally it means that we just need
one single system to handle all translations between N languages, where O(N2)
where previously required; (b) it also enable to compute translations between
languages for which no data is observed (again through cross-lingual transfer,
which happens here both in the encoder and in the decoder).

This approach is not without difficulty, in particular from the point of view
of collecting and balancing parallel learning data, as well as supporting a variety
of linguistic systems, which may, for example, use different writing systems, or
manipulate divergent underlying structures at the levels of word or phrases. For
such multilingual models, a necessary pre-processing step is to learn a shared
tokenization (in word and subwords, see Sect. 2.4) using multilingual corpora, so
that all input-outputs in the system use the same vocabulary.

4.4 Machine Translation as a Generic Task

Generalizing Machine Translation. The transition from the unconditional
model (Sect. 3) to the the conditional model (Sect. 4.1) outlines the flexibility of
numerical representations manipulated by neural networks: by adding a cross-
attention mechanism between two Transformers, it is possible to encode two word
sequences in a single vector h, from which the next word is generated. This tech-
nique enables to encode “generalized” contexts, to model more complex tasks or
scenarios. It is for instance possible to handle multi-source translation scenarios,
corresponding to the generation of a target sentence from several two sentences
f1 and f2. In such setting, the distribution P (e|f1, f2) can be obtained by com-
puting the cross-lingual based on a concatenation of the two source encodings.
Another illustration of this flexibility is document-level translation, which aims
to integrate long-distance dependencies beyond the sentence level. This might
be needed to handle pronominal references, as when computing the translation
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of “This bike is broken. It needs a fix.” from English into French. For this exam-
ple, the generation of the correct subject pronoun for the second sentence (“il”
ou “elle”) requires knowledge of the translation of “bike” in the previous sen-
tence: (“vélo” will imply a masculine subject, ”bicyclette” a feminine one). By
encoding contexts made of several previous sentences, such difficulties can be
addressed [56].

Monolingual and Multimodal Machine Translation. Machine translation
is an extreme example of a sequence transduction task, corresponding to a lan-
guage change, while preserving the global meaning. Similar problems appear in
a large number of monolingual tasks: for example, grammar correction can be
viewed as a ”translation” between a noisy sentence and its correction, a frame-
work that also includes spelling normalization (to turn short texts into standard
English). Simplification, paraphrase generation, style transfer (e.g from a formal
style to more relaxed style), automatic summarization [51] are other instances of
these monolingual translations: assuming the availability of pairs (input, output)
to learn the parameters, it will be possible to use Transformer architectures.

The encoder-decoder architecture is also generalized in other ways. By consid-
ering pairs associating voice recordings with their transcription, it is possible to
apply the same techniques for automatic speech recognition [24,33,43]; or even,
when recordings and transcripts are in different languages, to directly translate
the speech into foreign text [10]. Similar approaches consider the recognition of
patterns in images [25] or the generation of descriptions from images [53]. The
application of the Transformers to these other modalities is only starting and is
expected to develop, both to learn generation models and to train multimodal
representations. An introduction to these exciting developments is presented in
this volume in M. Evrard’s chapter on Transformer in Automatic Speech Recog-
nition and C. Guinaudeau’s chapter on Vision and Multi-modal Transformers.

4.5 Summary

The Transformer architecture readily generalizes to the conditional generation
framework, with an interdependent encoder and decoder, an approach that has
quickly become the de facto standard for neural machine translation. When fed
with inputs and outputs in multiple languages, this architecture learns multilin-
gual representations that can be used for cross-lingual transfer in many appli-
cations. By analogy with the translation task, the same approach model can be
used for many monolingual tasks as well as for tasks involving other modalities
(speech, image, video).

5 Conclusion

The Transformer architecture, both in its unconditional (Sect. 3) and in its con-
ditional (Sect. 4) versions has quickly emerged as a critical component of all
language processing tools and has often led to considerable improvements of the
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performance of these systems. This architecture generates contextual representa-
tions from vast amounts of raw data; these representations are useful for a wide
range of applications, and also enable to transfer learned knowledge between
tasks, domains and languages. This provides an operational response to the lack
of annotated data that would be necessary to carry out supervised learning in
many contexts. It is also used to learn word generation models capable of pro-
ducing coherent texts, and, at the cost of elementary reformulations, to handle a
large number of related tasks: sentiment analysis, textual implication, question
answering, summarization, translation, etc. Multilingual and multimodal exten-
sions of these architectures make it possible to build models from heterogeneous
data, further opening the range of possible applications. Finally, Transformers
define a shared conceptual framework for many communities of researchers and
developers, facilitating interdisciplinary exchanges and accelerating the dissem-
ination of effective implementations and sharing of models [12].

Have Transformer “solved natural language processing”? Several limitations
of these models are highlighted in recent papers, suggesting many avenues for
future research. A first limitation is that these models do not incorporate any lin-
guistic knowledge (regarding the structure of words and phrases), which makes
them unsuitable for reproducing the systematic behaviour that is expected
when dealing with regular phenomena, such as grammatical agreement, or co-
reference phenomena. Although possible, the integration of linguistic knowledge
runs against the increase in training data and in the number of languages taken
into account, and is not very actively researched. Similarly, the world knowl-
edge injected into Transformers is restricted to whatever occurs in the training
texts. Although these models are capable of memorizing and restoring many of
these factual knowledge, they remain incomplete and their learning is uncertain
and non-systematic [62]: it thus seems inappropriate to think that they help
us progress towards deep language understanding [7]. For this, the combination
of statistical models with knowledge graphs seems to be a promising research
direction [13,61].

Another limitation of these architectures is that their “black box” behaviour,
which creates multiple problems when these systems are run on a very large
scale. In particular, it is extremely hard to explain the decisions made, as they
ultimately result from the particular dynamics of model training, and from the
nature of the training data. As shown on many occasions [6], these models in
particular tend to amplify the biases present in the data, and may, for example,
generate uncontrolled statements of a sexist or racist nature. The apparent con-
sistency of automatically generated texts is also misleading, and may fool users
into endowing these systems with a form of understanding they do not actually
possess. These weaknesses are shared with all probabilistic models, which are
constrained in their performance by the limitations of the training data, which
are often too rare, incomplete, or biased, and result in systems that may be
incomplete and inconsistent.
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