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Abstract. This tutorial examines the role of Computational Argumen-
tation at the theoretical and practical level of Human-centric AI. It rests
on the central role that argumentation has in human cognition render-
ing argumentation as a possible foundation for the two basic elements of
intelligence, namely learning and reasoning, in a way that is suitable for
human-centric AI. The tutorial examines argumentation as a basis for
cognitive technologies of Learning and Explainable Inference or Decision
Making and their application in today’s AI.

Keywords: Argumentation · Human-centric AI · Learning and
reasoning in argumentation · Cognitive modeling

1 Introduction

This tutorial follows a first tutorial, “Argumentation in AI” on Abstract Argu-
mentation in AI, given at the same ACAI 2021 school. The purpose of the current
tutorial is to connect argumentation with Human-centric AI by examining the
natural link of argumentation with human cognition and the two basic elements
of intelligence, learning and reasoning. The main learning objective of the
tutorial is for participants to appreciate the potential central role of argumen-
tation for Human-centric AI and how this can form the basis for developing
real-life applications. The tutorial is structured into four parts, as follows:

– Section 2: Structured Argumentation, presenting a general review of
structured argumentation as the underlying framework on which applications
of (explainable) Human-centric AI can be build. These general ideas are illus-
trated within the concrete structured argumentation framework of Gorgias
and its associated system, available at Cloud Gorgias.1

1 http://gorgiasb.tuc.gr/GorgiasCloud.html.
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– Section 3: Cognitive Argumentation, examining the natural link between
human reasoning and argumentation. The COGNICA system2 implements
such a Cognitive Argumentation framework. Also the link of argumentation
to existing Cognitive Architectures, such as ACT-R, is examined.

– Section 4: Argumentation for Learning, introducing the features of argu-
mentation that make it a fitting target language for learning and explanations.
It showcases this natural fit by presenting two protocols that learn and rep-
resent knowledge in the language of argumentation.

– Section 5: Real-life Applications of Argumentation, presenting an
argumentation-based software development methodology for acquiring the
knowledge required for building systems under a general “mind-like” architec-
ture. This methodology is illustrated through a series of real-life application
systems and the major challenges it poses.

In the tutorial repository3 one can find further details on all parts of the
tutorial, e.g., extended presentations of examples or other illustrative applica-
tions. Note also that for each section of this tutorial, a general bibliography is
listed separately at the end, without explicit citations in the text. For a more
complete bibliography the reader can consult the tutorial repository.

2 Structured Argumentation

In contrast to Abstract Argumentation, Structured Argumentation puts the
emphasis in providing argumentation frameworks that can be used to model
and develop applications of argumentation. They provide the necessary scaffold-
ing for dialectic argumentative reasoning (or inference) to be mapped into, and
applications to be build on top of this.

At a general and abstract level a structured argumentation framework con-
sists of a triple 〈Args,Att ,Def 〉 where Args is a set of arguments, Att an attack
relation between arguments and Def a defense relation between arguments. Typ-
ically, the defense relation Def is a subset of the attack relation Att and relates
to the relative strength between arguments.4 Informally, (a, b) ∈ Def means that
argument a is at least as strong as b, and can thus provide a defense against b.

In Structured Argumentation, like in abstract argumentation, we can give an
underlying dialectical semantics for the acceptability of arguments. For example,
a subset of arguments Δ is admissible iff (a) it is not self-attacking, i.e., there
are no arguments a, b in Δ such that (a, b) ∈ Att and (b) for any counter-
argument c against Δ, i.e., (c, a) ∈ Att holds for some argument a in Δ, Δ
defends against c, i.e., (d, c) ∈ Def for some d in Δ. This then maps directly
into a dialectic process of inference of recursively considering attacks against an
argument supporting a desired conclusion and defending against these attacks

2 http://cognica.cs.ucy.ac.cy/COGNICAb/index.php.
3 https://cognition.ouc.ac.cy/argument.
4 Alternatively, the notion or terminology of a defeating attack is used instead to
express that an attack is strong enough to defeat the argument that it is attacking.

http://cognica.cs.ucy.ac.cy/COGNICAb/index.php
https://cognition.ouc.ac.cy/argument
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with possibly the help of other arguments thus building an admissible Δ. We
call such an admissible set Δ a case for the inferred conclusion.

In practice, structured argumentation frameworks are realized in an applica-
tion domain via triples of 〈As, C,�〉 where As is a set of (parameterized) argu-
ment schemes, instances of which form arguments, C is a conflict relation between
the argument schemes and the arguments constructed from these schemes and �
is a priority or preference relation again between the argument schemes and their
arguments. Argument schemes are parameterized named statements of asso-
ciation AS = (Premises � Position) between some information called Premises
and another statement called the Position or Claim.

The conflict relation C is typically defined through the language of the appli-
cation domain, e.g., through some global notion of incompatibility between state-
ments in the language, possibly also augmented with a direct expression of con-
flict between two argument schemes and/or particular instances of these. Given
such a conflict relation we can build the attack relation between arguments by
identifying three different types of attacks, called rebuttal, undermining or
undercutting attacks. The first type results when the claim of the attacking
argument conflicts with the claim of the argument attacked, the second type
when it conflicts with a premise of the argument attacked and the third type
when the two arguments have been declared as conflicting — the conflict is on
the link of the argument that it is attacked.

Example 1. Consider argument arg1 :Arrival of Ambulance � Pick up Patient ,
i.e., the arrival of an ambulance supports the claim that it will pick up a patient
(from the place of arrival). A rebuttal attack against this is given by the argument
arg2 : No Ambulance Siren � Not Pick up Patient , i.e., the argument support-
ing the opposite claim when there is no ambulance (arriving) with its siren on,
whereas the argument arg3 : Broken Ambulance � Not Arrival of Ambulance
supporting the claim that an ambulance cannot arrive based on the premise
that it is broken is an undermining attack on arg1. Finally, the argument
arg4 : Arrival of Ambulance � Pick up Nurse is an undercutting attack against
arg1 as this goes against the actual link of the argument: arg1 claims that the
reason it has arrived is to pick up a patient whereas arg4 claims it is to pick up
a nurse.

The third component, the priority or strength relation � between arguments,
is used to build the defense relation of an application argumentation framework.
Informally, in most frameworks arg1 defends against arg2 iff arg1 conflicts with
arg2 and arg1 is not of lower priority than arg2, i.e., arg1 �≺ arg2. In contrast
to the conflict relation which is static the priority relation is not so, but can be
highly context-sensitive depending crucially on (how we perceive) the current
state of the application environment.

To illustrate the process of how an argumentation framework is built dynam-
ically through a changing current environment, let us consider the following
example from the domain of common-sense temporal reasoning.
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Example 2. Suppose we read the following piece of text: “Bob came home and
found the house in darkness. He turned on the light switch in the hall.” Consider
the question “Is the hall still in darkness?”. Can we explain5 how (most) people
reach the conclusion or explain why “the hall now is illuminated”?

One way to do this within an argumentation perspective is as follows.

– From the information Room in darkness at T using the general argument
schema that properties persist in time we have the argument
arg1 : {Room in darkness at T �Room in darkness at T+} supporting the
claim that the hall is still in darkness at some time T+ after T .

– From the information Turn on switch at T using the common sense knowl-
edge that turning on the light switch causes the light to come on, we have
the argument: arg2 : {Turn on switch at T �Room illuminated at T+} sup-
porting the claim that the hall is illuminated at T+.

These two arguments are counter-arguments of each other as their claims are
in conflict: in our common-sense language a room in darkness is the opposite of
a room illuminated and vice-versa. Furthermore, in our common sense temporal
reasoning we consider causal information stronger than the persistence of prop-
erties (when the causal action occurs at least as late as the time of the observed
property that we are persisting from into the future). This gives a priority or
strength to causal arguments over persistence arguments and hence to arg2 over
arg1, i.e., arg2 � arg1. This in turn means that arg2 can defend against arg1
but not vice versa.

Fig. 1. The argumentation arena for the two narratives of Example 2.

We thus have an argumentation arena depicted by the left part of Fig. 1.
In this figure, we have equated the defence relation with the attack relation so
that we only show the non-weak attacks. From this we can see that {arg2} is an
acceptable/admissible set of arguments forming a case supporting the conclusion
Room illuminated at T+ and that there is no case supporting the opposite con-
clusion as {arg1} is not acceptable/admissible. Hence we are “confident” about
deriving the inference that the room is not in darkness after Bob has turned on
the light switch.

5 We are not looking here for an explanation of the subconscious operation of the
brain to reach this conclusion, but for an explanation at a high cognitive level that
would also be helpful to some other process that would act on our conclusion.
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Example 3. Consider now a more complex case by changing slightly the narra-
tive: “The power cut had turned the house in darkness. Bob came home and
turned on the light switch in the hall.” Now some people may not feel confident
that the hall will be illuminated after turning on the light switch. This can be
attributed to two things: (1) the text now alerts us to the fact that electricity
is needed for the light to come on, and (2) it is not clear if the power cut has
ended before or after Bob came home. From an argumentation point of view new
arguments come into the arena:

– From the statement about a power cut we can build the following argument:
arg3 : {Power cut at T �No electricity at T} which conflicts with argument
arg2. This is an undercutting6 attack against arg2 and it is, according to our
common-sense knowledge, a stronger argument than arg2. Hence arg3 cannot
be defended back by arg2, or arg3 is a defeating attack against arg2. But
to enable arg3 we need to have an argument supporting its premise. We can
thus extend argument arg3 to: {hyp(Power cut at T ));Power cut at T �
No electricity at T} where hyp(Power cut at T ) is a hypothetical argument
supporting that the power cut holds at the time of turning on the switch.
This then means that now arg3 can be attacked by the opposite hypothetical
argument supporting that the power cut did not last until time T , i.e., we
have a fourth argument in the arena: arg4 : {hyp(No power cut at T )}. This
argument is in conflict with arg3 on its weak premise and thus forms an
(undermining) attack on it. Importantly, it is non-comparable in strength
with arg3. Hence arg3 and arg4 attack and defend against each other.

Given the above we now have a new argumentation arena depicted by the
right part of Fig. 1. From this we now have two acceptable/admissible subsets of
arguments: {arg2, arg4} forming a case supporting Room illuminated at T+ and
the case of {arg1, arg3} for the opposite conclusion of Room in darkness at T+.
We have a dilemma and hence we cannot be sure either way that the room is
in darkness or not after turning on the switch. This then reflects the variability
in answers given by different people (see more on this in Sect. 3).

There are several Structured Argumentation frameworks in the literature
and although these may appear different they share a very similar theoretical
underpinning. One of the earliest such frameworks is that of the GORGIAS frame-
work, named after the ancient Greek philosopher of dialectics, on which we will
concentrate.

2.1 The GORGIAS Argumentation Framework

GORGIAS is a structured argumentation framework where arguments are con-
structed using a basic (content independent) scheme of argument rules,

6 Indeed, this attacks the link of arg2 not its claim or premises. There is no general
conflict between No electricity at T and Room illuminated at T as the room can
be illuminated in other ways.
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denoted by Premises � Claim. The Premises and Claim are literals in the syn-
tax of Extended Logic Programming, but where negation as failure is excluded
from the language7. An important element of the GORGIAS framework is that
it allows a special class of argument rules, called priority argument rules
that are used to express a context-sensitive relative strength between (other)
argument rules. They have the same syntactic form as argument rules, but now
the Claim is of a special type, a1 > a2 , where a1 and a2 are (the names of)
any two other individual argument rules. When the claim of an argument rule
is not a priority statement, i.e., it is a literal in the language, this is called an
object-level argument rule.

The purpose of priority arguments, constructed from priority argument rules,
is to provide the defense relation between arguments. They are combined with
other (e.g., object-level) arguments to give them strength. A composite argu-
ment in the framework is then a (minimal and closed) set of (instantiated)
argument rules, Δ = (A1 ,AP ), where, A1 , is a subset of object level argu-
ment rules and AP is a subset of priority argument rules, referring to the other
arguments in Δ. Then, informally, a composite argument, Δ1, defends against
another composite argument, Δ2, whenever they are in conflict, and the argu-
ments in Δ1 are rendered by the priority arguments that it contains at least as
strong as the arguments contained in Δ2.

The GORGIAS System. The GORGIAS system allows us to code argumentation
theories of the form described above and subsequently query the system to find
out if there is an admissible (composite) argument that supports the query. GOR-
GIAS has been publicly available since 2003 and has been used by several research
groups to develop prototype real-life applications of argumentation in a variety
of application domains. Today the GORGIAS system is available as a service over
the internet in Cloud Gorgias at http://gorgiasb.tuc.gr/GorgiasCloud.html.

Let us illustrate the GORGIAS argumentation framework and the dialectic
computational model of the GORGIAS system through a simple example. This
is written below in the internal GORGIAS system language.8 This language is
build on top of Prolog where an argument rule has the form:

rule(arg name,Claim, defeasible premises]) : −non defeasible premises.

arg name is a Prolog term with which we name the arguments expressed
by this rule, non defeasible premises can be any conjunction of Prolog con-
ditions and are executed under ??? and defeasible premises are conjunc-
tions of literals executed under GORGIAS using argument rules relating to
them. Priority argument rules have exactly the same form, but now Claim is
prefer(arg name1, arg name2) where arg name1 and arg name2 name two other
different argument rules.

7 Initially, the framework of GORGIAS had the name LPwNF : Logic Programming
without Negation as failure.

8 As we will see in Sect. 5 of the tutorial, it is not necessary to work at this internal
level of GORGIAS when developing applications.

http://gorgiasb.tuc.gr/GorgiasCloud.html
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Example 4 (Commonsense Reasoning). The following argument rules express
a common sense knowledge about birds (b), in particular penguins (p), flying
(f ) or not. We assume that we have sensors that can recognize clearly objects
that are birds. They are unable to recognize directly penguins, but instead can
recognize if an object walks like a penguin, how tall it is, and how far away it is.

rule(r1(X), f (X), []) : −b(X).
rule(r3(X), p(X), []) : −walks like p(X).
rule(r2(X),neg(f (X)), [p(X)]).
rule(r4(X)neg(p(X)), []) : −over a meter(X).
rule(p1(X), prefer(r2(X), r1(X)), []).
rule(p2(X), prefer(r4(X), r3(X)), []) : −1m dist .

Suppose our sensors have given us the following trusted information
about a particular object with identifier obj 1: b(obj 1),walks like p(obj 1),
over a meter(obj 1). Can we infer that obj 1 (possibly) flies or not, i.e., can
f (obj 1) or neg(f (obj 1)) be supported by admissible arguments or not?

GORGIAS will try to build a (composite) argument Δ supporting f (obj 1)
starting with the argument rule r1(obj 1) which supports f (obj 1) based on the
premise of b(obj 1). This is attacked by the argument A = {r2(obj 1), r3(obj 1)} on
the claim of f (obj1) of Δ. Δ itself forms a defense against this as they are equally
strong. But this attacking argument can by strengthened by including in it the
priority argument p1(obj 1). Now Δ as it currently stands cannot defend against
this strengthened composite attacking argument. It therefore needs to look for
other arguments to help it do so, and so it adds in Δ the argument r4(obj 1). This
is in conflict with the attack A on the claim of p(obj 1) and (in the absence of any
information of how close we are to the object) these conflicting arguments of A
and r4(obj1) are of non-comparable (or equal) strength and so the latter can form
a defense against the former. Thus the extended Δ = {r1(obj1), r4(obj1)} forms
an admissible argument supporting f (obj 1). Note that A = {r2(obj 1), r3(obj 1)}
supporting neg(f (obj 1)) is also admissible.

Suppose now that we also have that 1m dist holds. When we are look-
ing for a defense against the counter-argument A, GORGIAS can now use a
stronger (than above) defense by including also the priority argument p2(obj 1)
resulting in a final Δ = {r1(obj 1), r4(obj 1), p2(obj 1)}. In addition, now we
cannot build an admissible argument supporting neg(f (obj 1)). Argument A =
{r2(obj 1), r3(obj 1)} is attacked strongly (i.e. it cannot defend back at this) by
{r4(obj 1), p2(obj 1)} and there is no other argument strong enough to defend
against this.

An important feature of the GORGIAS generated admissible composite argu-
ment Δ supporting a claim is that this serves as an explanation for the possible
adoption of the claim. This explanation at the internal level of the GORGIAS
framework can be naturally translated into an application level explanation
exhibiting the desired characteristics of being attributive, contrastive and
actionable as follows:.
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– Attributive: Extracted from the object-level argument rules in Δ.
– Contrastive: Extracted from the priority argument rules in Δ.
– Actionable: Extracted from the hypothetical9 arguments in Δ.

From the internal GORGIAS explanation of Δ = {r1(obj 1), r4(obj 1), p2(obj 1)} of
Example 4 we automatically generate the application level explanation:

– The statement “f (obj 1)” is supported by: — b(obj 1) and neg(p(obj 1)).
– This support is strengthened: — (against p(obj 1))) by: “1m dist .”

3 Cognitive Argumentation

In what follows, the natural link between human reasoning and argumentation
will be exposed. It will present how cognitive principles drawn from Cognitive
Psychology, Social Sciences and Philosophy can help develop an argumenta-
tion framework, called Cognitive Argumentation, as a case of structured argu-
mentation, 〈As, C,�〉, that is customized according to these cognitive princi-
ples. These principles would help us capture the context sensitive and adaptive
nature of human reasoning as well as other computational features such as the
“on demand” or “lazy process” of human reasoning. The framework of Cogni-
tive Argumentation will be illustrated by discussing in detail the particular case
of the suppression task as studied in Cognitive Psychology to understand the
nature of human reasoning.

3.1 The Suppression Task

In the psychological study of the suppression task three groups of participants
were asked to derive conclusions given variations of a set of premises. Group I
was given the following two premises: If she has an essay to finish, then she will
study late in the library. (e � �). She has an essay to finish. (e). The participants
were asked what necessarily follows from the above two premises. They could
choose between the following three answers: She will study late in the library. (�)
She will not study late in the library. (�) and She may or may not study late in
the library. (� or �) In group I, 96% of the participants concluded: She will study
late in the library.

In addition to the above two premises for Group I, Group II was given the
following premise: If she has a textbook to read, then she will study late in the
library. (t � �) Still, 96% of the participants concluded that She will study late
in the library. Finally, Group III received, together with the two premises of
Group I, additionally the following premise: If the library stays open, then she
will study late in the library. (o � �) In this group only 38% concluded that She
will study late in the library : The conclusion drawn in the previous groups was
suppressed in Group III.

9 These are arguments whose premises are empty but are generally weaker than any
conflicting argument grounded on some given premises.
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Cognitive Principles. Humans make assumptions while reasoning, many of
which are not necessarily valid under formal (classical) logic. Yet, humans are
pretty good in explaining plausibly why they make these assumptions. Let us
consider some such (typically) non-formal or extra-logical properties and formal-
ize them as cognitive principles.

According to Grice, human communicate according to the maxim of qual-
ity, implying that humans try to be truthful. Applied to the suppression task
this implies the following: When the experimenter states She has an essay to
finish, then participants believe this information to be true. To reflect this prin-
ciple, we establish (strong) factual argument schemes. Further, following Grice’s
maxim of relevance, mentioned information is assumed to be relevant. Even
though mentioned information is not necessarily factual (e.g., if the library stays
open), humans can still construct various context-dependent hypotheses sup-
porting statements concerning this information. For this purpose we establish
(weak) hypothesis argument schemes.

Consider again the conditional (e � �): She has an essay to finish is sufficient
support for She will study late in the library. Thus we say that e in (e � �) is
a sufficient condition. Similarly, t is a sufficient condition in (t � �) Yet, the
library stays open is not sufficient support for She will study late in the library
in conditional (o � �). However, the library is not open plausibly explains She
will not study late in the library. Here, o in (o � �) is a necessary condition.
Conditionals with sufficient condition and conditionals with necessary condition
will be denoted by s� and n�, respectively. Further, we establish two types of
argument schemes for both types of conditionals.

The following cognitively motivated relative strength relation among schemes
will apply for the dialectic argumentation process: Fact schemes are the strongest
schemes, whereas hypotheses schemes are the weakest schemes, and necessary
schemes are stronger than sufficient schemes.

The Suppression Task in Argumentation. Given the above principles we
can build an argumentation framework, 〈As, C,�〉, where As contains argument
schemes drawn from the cognitive principles. To do so we assume that we have
a cognitive state S = 〈F ,A〉 where F is the set of facts, and A is the set
of relevance, namely A includes all concepts that we are made aware of by the
external environment. Then the maxim of quality principle gives a fact scheme:
fact(L) = (∅ �L) ∈ As, applied for any statement L ∈ F of the current cognitive
state S = (F ,A). Similarly, the maxim of relevance principle gives a hypothesis
scheme: hyp(A) = (∅ � A) ∈ As and hyp(A) = (∅ � A) ∈ As, applied for any
proposition, A ∈ A of the current cognitive state S = (F ,A). The two different
types of a condition P in relation to a consequent Q, each give a conditional
argument schemes: When P is sufficient: suff(P � Q) = (P � Q) and when P
is necessary: necc(P � Q) = (P �Q). Finally, the conflict relation C is simply
that of negation, and the strength relation � among the argument schemes is
that given above in the cognitive principles.

We will then see that human reasoning in the suppression task can be
understood through the dialectic process of argumentation to build acceptable
(or admissible) arguments supporting the statement of the question and its
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Fig. 2. Argumentation process for � and � in Group I. Only � is acceptable.

negation. Figures 2 and 3 show this for Group I and Group III in terms of the
following dialectic argumentation process:

Step 1 construct a root argument supporting a conclusion of interest,
Step 2 consider a counterargument against the root argument,
Step 3 find a defense argument against the counterargument,
Step 4 check if this defense argument is not in conflict with the root argument,
Step 5 add this defense argument to the root argument,
Repeat from Step 2, with the extended root argument.

Carrying out the process until there are no other counterarguments in Step 2
that have not already being considered, clearly results in an extended root argu-
ment that is an acceptable argument supporting the conclusion of interest.

Figure 2 shows this process to build an argument for � (for Group I) starting
with the relatively strong argument of Δe

e
s��

= {fact(e), suff(e � �)} (Fig. 2.1, �).
This is attacked by the argument Δ

e,e
n��

= {hyp(e), necc(e � �)} supporting �

(Fig. 2.2) but this immediately defended against (or defeated) by Δe = {fact(e)}
(Fig. 2.3) which attacks Δ

e,e
n��

on the hypothesis part it contains. This strong
attack by Δe which cannot be defended against is the reason why we cannot
build an acceptable argument supporting �, as we see in the right part of Fig. 2.
Hence, on the one hand Δe

e
s��

acceptably supports � while there is no acceptable
support for �. Consequently, � is a definite conclusion. This conforms with the
empirical observation of an overwhelming majority of responses for She will study
late in the library in this first group (96%).

In contrast, for Group III, Fig. 3 shows how we can build acceptable argu-
ments for either � (left part of the figure) or � (right part of the figure) using the
new argument Δ

o,o
n��

= {hyp(o), necc(o � �)} that is enabled by the awareness,
in Group III, of the concept of open and conditional schemes involving this.
Hence in Group III both � and � are acceptably supported and hence are only
plausible (credulous) conclusions. This then accounts for the observed suppres-
sion effect, where only 38% responded that definitely She will study late in the
library. Those participants who considered the possibility of the library being not
open could support that she did not study in the library and so did not answer
that � definitely holds. All twelve cases of the suppression task, where empirical
data is collected, can similarly be accounted for in Cognitive Argumentation.
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Fig. 3. Argumentation process for � and � in Group III. Both � and � are acceptable.

3.2 The COGNICA System

COGNICA10 is a system, built on top of the GORGIAS system, that implements
the framework of Cognitive Argumentation with emphasis on conditional reason-
ing. It is based on the particular work of Johnson-Laird and Byrne, “Condition-
als: A Theory of Meaning, Pragmatics, and Inference” and the mental models
theory that underlies this work. It has a simple interface of a Controlled Nat-
ural Language for expressing different types of conditional sentences which are
automatically translated into the GORGIAS argumentation framework by adapt-
ing and extending the mental models interpretation from a theory on individual
conditionals to sets of conditionals and their interaction.

The controlled natural language of COGNICA allows one to enter conditionals
in these different types as foreground knowledge, i.e., particular knowledge that
the system would reason about. Any relevant background knowledge is entered
in the system, alongside the foreground knowledge, using exactly the same con-
ditional form of controlled natural language.

Example 5 (Foreground Knowledge). Consider the ethics example of “Hal vs
Carla” introduced in the tutorial on Argumentation and AI in this school.11 Its
specific foreground knowledge can be captured as:
If use someone’s resource then compensate.
If justified use of someone’s resource then not compensate.
If in life threatening situation then justified use of someone’s resource.
If have alternatives then not justified use of someone’s resource.

Then given a certain case where the following facts hold, “use of someone’s
resource”, “in life threatening situation” and “have alternatives”, the COGNICA
system will reply “Maybe” to the query of whether “compensate” holds or not.

COGNICA provides explanations in verbal and graphical form for its answers.
Figure 4 shows the graphical explanation for the above answer “Maybe”. These

10 http://cognica.cs.ucy.ac.cy/COGNICAb/login.php.
11 “Hal, a diabetic, loses his insulin in an accident through no fault of his own. Before

collapsing into a coma he rushes to the house of Carla, another diabetic. She is not
at home, but Hal enters her house and uses some of her insulin. Was Hal justified,
and does Carla have a right to compensation?”.

http://cognica.cs.ucy.ac.cy/COGNICAb/login.php
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graphical explanations present the argumentative dialectic nature of reasoning
by COGNICA as “reasoning pathways” of the “mind” of the COGNICA system.

Fig. 4. Visual explanation of COGNICA for the “Hal vs Carla” example.

A first evaluation experiment has been set up to evaluate both the “natu-
rality” of the system’s conclusions and the possible effect of the system’s expla-
nations on the human reasoning. The main part of the experiment consists of
each participant shown a short piece of text about a common everyday situation
and asked to answer questions on whether a statement holds. The human par-
ticipant is then shown the answer of COGNICA with its explanations and asked
to reconsider her/his answer after seeing these. The initial results of this exper-
iment have shown 70% agreement between human participants and COGNICA
on the answers which increases to 85% agreement after seeing the explanation of
COGNICA. The change of human’s answers occurred mainly when the COGNICA
answer was “maybe”, and there is a “drift” to more “careful or intense reason-
ing” by the human participants as they continue. The exercise is open to anyone
and can be found at http://cognica.cs.ucy.ac.cy/cognica evaluation/index.html.

3.3 Argumentation and Cognitive Architectures

The cognitive architecture ACT-R is a theory about how human cognition works.
Cognitive functions are represented by modules that communicate with others
through buffers. Simulations of these modules and their interactions aim at better
understanding processes in human cognition. One strength of ACT-R is that is
allows the representation of knowledge symbolically while including sub-symbolic
components. Here, we will sketch how cognitive argumentation can be guided by

http://cognica.cs.ucy.ac.cy/cognica_evaluation/index.html.
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some functionalities in ACT-R. In particular, we discuss the declarative memory,
the procedural module, and spreading activation.

Declarative Memory. Declarative memory stores knowledge as chunks, each
of them having a name (used for reference) and possibly containing a set of
named slots with single values. Consider the following two examples:

(ESSAY-SUF isa meaning word "essay" context SUFFICIENT)

(ARGUMENT-FOR-L isa argument fact "essay" position "library"

opposite-pos "not library" context SUFFICIENT)

The chunk named ESSAY-SUF is of type meaning and has two slots: word has
the (string) value "essay", whereas context has the value SUFFICIENT, which
is yet another chunk. The chunk ARGUMENT-FOR-L is of type argument and has
four slots: fact, position, and opposite-pos have the (string) value "essay",
"library" and "not library", respectively, whereas the slot context has as
value the chunk SUFFICIENT.

Fig. 5. Two simple examples of production rules in ACT-R.

Procedural Module. The procedural module synchronizes the different func-
tionalities in ACT-R and modifies the model’s state through the execution of
rules. Consider the production rule retrieve-word-semantics in Fig. 5 (left):
This production rule is only considered if the left hand side (everything before
the ==> sign) is true: there needs to be a slot called word in the imaginal buffer
with a certain value represented as the variable =word. Note that the imaginal
buffer can be understood as a place where context information is represented
internally. If this rule fires, then the right hand side applies (everything after
the ==> sign): the cognitive model requests a chunk from the retrieval buffer,
which needs to be of type meaning with the slot word and has the value =word,
as defined in the imaginal buffer. Assume that the cognitive model reads the



376 E. Dietz et al.

string “essay” which then will be represented internally in its imaginal buffer. If
this rule is fired and ESSAY-SUF is in the declarative memory, then ESSAY-SUF
matches the request and might be retrieved.

The production rule retrieve-counter-argument in Fig. 5 (right) only
applies if the state of the goal buffer is retrieve-counter and the retrieval
buffer on the left hand side (everything before ==>) contains a chunk with slots
fact, position and opposite-pos. If this rule fires, a new retrieval request
will be made, i.e., a chunk is requested to the declarative memory constraint
by the following properties: The new retrieval needs to have (1) the same value
in the slot fact as the current chunk in the retrieval buffer, and (2) the same
value in the slot position as the current chunk in the retrieval buffer has in its
opposite-pos slot.

Argument Retrieval Guided by Chunk Activation. Recall the dialec-
tic argumentation process (Steps 1–5 on page 9) described in the previous
section: This procedure is computationally intensive because in all the main
steps, Steps 1–3, a choice is required and all counter arguments need to be
considered. Yet, exhaustively searching for arguments does not seem to be cog-
nitively plausible. It is more likely that humans consider only a few arguments,
possibly only the most ubiquitous ones. Yet, how to determine these arguments?
One possible assumption is that this choice is guided by the context, which in
ACT-R can be modeled through the activation of chunks: The activation of a
chunk in ACT-R is a numerical value based on the recency and frequency this
chunk was previously used, a noise parameter and the spreading activation, i.e.,
in how far the chunk is related to other chunks in the current context.12 The
chunk’s activation determines whether that chunk will be chosen upon retrieval.

In the current ACT-R implementation, the main arguments are represented
as whole chunks. The retrieval of arguments depends on their activation, which is
determined by whether the given contexts will rather activate the NECESSARY or
SUFFICIENT chunks. Consider the production rule retrieve-counter-argument
on page 13: The counter argument with the highest activation will be chosen,
and this activation in turn, is determined by the parameters above. For instance,
if the chunk SUFFICIENT has a higher activation than the chunk NECESSARY,
arguments with the value SUFFICIENT in their context slot (see argument
ARGUMENT-FOR-L on page 13) are more likely to be retrieved than arguments
with the same slot values for fact and position but where context has the
chunk value NECESSARY.

4 Argumentation for Learning

We now continue to discuss the fundamental role of argumentation in the back-
drop of the emergent need for Explainable ML, and how argumentation supports

12 For more information on the activation function see e.g., http://act-r.psy.cmu.edu/
wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm.

http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm
http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/tutorials/unit5.htm
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this role by: (i) acknowledging the need to deal with data that is uncertain,
incomplete, and inconsistent (with any classical logical theory); (ii) offering a
target language (syntax and semantics) for learned knowledge that is compatible
with human cognition; and (iii) supporting a flexible prediction and coverage
mechanism for learning that can feed back and guide the learning process.

4.1 What Should a Language of Learning Be Like?

Modern machine learning is typically viewed as a process of turning data into
a model that can accurately predict the labels of future data. Increasingly, this
focus on predictive accuracy is deemed insufficient as a metric of success, and
the ability to explain the reasons behind these predictions is also emphasized.

What counts as an acceptable explanation ultimately boils down to what the
purpose of learning is. Learning does not exist, nor carried out, in vacuum, but
always takes place in the context of facilitating the informed decision-making of
some agent. Learning is coupled with the eventual use of the learned model by
the agent, by having each of the two processes guiding and restricting the other.
Thus, for example, in situations where a learned model will be used to guide the
taking of actions, the coupling implies that learning cannot be done passively.

Learning a model is, thus, not an end but a means to its eventual use. Expla-
nations act as proxy translations of the model into a cognitively-compatible
form for the decision-making agent to: (i) understand, and adopt or contest, the
model’s predictions; (ii) use predictions and prior knowledge to reach a conclu-
sion; or (iii) assimilate the model with prior knowledge in a coherent way.

The importance of explanations as proxy translations becomes more apparent
in cases of a dilemma: (i) on competing predictions of the learned model; (ii)
on whether we can trust the prediction from a black box; or (iii) on how to best
utilize or go forward from the prediction. The learned model by itself can not help
the decision-making agent to resolve such types of dilemmas, and explanations,
then, in support or against the various choices at hand, can help to do so.

The desired characteristics for a language of explanations are none others
than those needed to support the role of learning as a facilitator of decision-
making: flexibility, adaptability, and ability to recognize and accommodate the
inadequacy of the learned model (and the learning process and data) to capture
fully the phenomena that produce the data; ability to place the learned model in
the cognitive sphere of the decision-making agent; and ability of linking back to
the learning process to guide it towards improving the learned model’s adequacy.

4.2 Argumentation as a Language of Learning

Below we demonstrate how argumentation can undertake the role for a language
of learning and explanations through Pierce’s “Beans from a Bag” scenario.

We draw beans from a given bag. Observing that all the drawn beans so far
are white, we learn the induced argument arg(W): “beans in this bag are white”.
If, however, we happen to draw a black bean b1 from the bag, our learned model
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Fig. 6. Representations of a model learned following the “Beans from a Bag” scenario
based on argumentation (ARG), decision trees (DT), or decision lists (DL). Underlined
nodes are choices made during learning despite lack of evidence in the training data.
The table shows the predictions of the three models on selected data points, where ‘?’
is a dilemma, ‘-’ is an abstention due to missing information in a data point, and pairs
of predictions show a dependence on the choices of underlined nodes in learned models.

does not collapse, but is gracefully extended with the observational argument
arg(b1): “this particular bean is black”. By its nature, an observational argument
is stronger than an induced one, naturally accommodating the specific exception
or anomaly, while maintaining that all other beans in the bag are white.

As we continue drawing beans from the bag, we might encounter additional
non-white beans and learn the induced arguments arg(B): “small beans in this
bag are black” and arg(G): “wrinkled beans in this bag are green”. Having more
specific conditions than arg(W), these two induced arguments are stronger than
the latter. So, if we draw again a small bean, then arg(B) will defeat arg(W),
and will explain its predictions by attributing it to the size of the bean.

The two induced arguments are incomparable, and produce a dilemma in
cases of a small wrinkled bean, suggesting that learning needs more such beans to
resolve the ambiguity. By drawing additional beans, we might end up learning the
priority argument arg(G) > arg(B) if light: “if light bean then green”, which does
not make a prediction per se, but resolves the dilemma by offering a contrastive
explanation of why a small wrinkled bean should be green rather than black.

One could posit that other typical white-box representations with some form
of prioritization could equally-well take on the role of a language of learning
or explanations. Figure 6 shows possible learned models for the scenario above,
using argumentation, decision trees, and decision lists, which we compare next.

First, in terms of the representation structure, the conflict resolution process
in argumentation is learnable and expressible in a layered fashion. This yields a
more compact representation, and avoids imposing a total order or mutual exclu-
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sion between conditions. Argumentation does not necessitate access to full infor-
mation, or even negative information in some cases, and is not over-committed
to always reach a prediction if not supported by the statistical evidence from the
data. Argumentation can still abstain if the information in any given data point
is insufficient, and it will cleanly distinguish an abstention from a dilemma.

Second, in terms of cognitive compatibility, argumentation does not confound
the attributive (object-level) explanations from the contrastive (meta-level) ones
that defeat conflicting decisions. Argumentation also supports actionable expla-
nations through the elaboration-tolerant amendment of the learned model.

Third, in terms of learning flexibility, argumentation supports the integration
of other models/new knowledge, its lack of insistence to firmly predict if not
supported by statistical evidence allows it to identify learning gaps for further
training, and its natural handling of missing information allows it to encode
knowledge and engage in conflict resolution from visible data only.

Despite the natural connection between argumentation and learning, and the
diverse ways in which past learning work has used argumentation, this connection
remains largely under-explored. This is particularly so in the context of neural-
symbolic systems, where conflicts between signals from multiple neural modules
could be resolved by an argumentation theory, offering a cognitively-compatible
decision-support layer on top of the opaque perception layer, which could help
guide the latter’s training in a modular and compositional fashion.

To further appreciate how argumentation and learning can fruitfully interact,
we will present two cases of learning with ex ante explainability in mind, where
arguments are used natively to represent the learned model and/or data.

4.3 Case Study 1: Autodidactic Learning of Arguments

The first case study that we consider is that of autodidactic (or self-supervised)
learning of arguments from partial data, treated as an appearance of some under-
lying reality, whose commonsense regularities one wishes to learn. These appear-
ances, or observations, are represented as sets of literals; cf. Fig. 8.

The learning mechanism that we consider is called NERD, standing for Never-
Ending Rule Discovery. NERD operates in an online/streaming fashion, and pas-
sively processes received observations, seeking to identify associations between
literals. Confidence in learned rules increases or decreases every time they are
satisfied or falsified by an observation. Rules start by being provisional, and
become active when their associated confidence exceeds a prescribed threshold.

To resolve conflicts between rules, NERD prioritizes rules based on the order
in which they became active, the intuition being that a rule with fewer exceptions
(e.g., that penguins cannot fly) will have stronger statistical support from the
data, and will become active earlier than a rule with more exceptions (e.g., that
birds can fly). Accordingly, when the former rule becomes active, it explains
away some of the counter-examples of the latter rule (e.g., observations where
birds are also penguins do not count as negative evidence for the latter rule),
supporting the latter rule further to gain confidence; see Fig. 7.
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Fig. 7. Updating of the confidence of two learned rules as observations are processed
by NERD. The horizontal line in each graph indicates the threshold above which rules
are considered active. The arrows show key points of the learning process.

Fig. 8. Observations (left) are iteratively processed by the NERD algorithm to pro-
duce the learned model (right). During the last iteration, “penguin” and “flying” are
observed (green filled ovals), “bird” and “-flying” are inferred (green and red glow-
ing ovals) by applying the corresponding active rules, and the confidence of the rules
“penguin implies not flying” and “bird implies flying” is, respectively, demoted and
promoted. The latter rule becomes active (having previously been deactivated from an
earlier active state), and is given lower priority than the currently active former rule.
(Color figure online)

The interaction between rules happens naturally by simply reasoning with
active rules — chaining them together to form arguments, whose strengths come
from rule priorities — before each observation is utilized for learning. This app-
roach fully aligns with the coupling of learning with the eventual use of knowl-
edge learned from partial data, as this knowledge is to be used to comprehend
observations by completing their missing parts. As NERD proceeds, the learned
model increases its coverage with additional (active) rules; see Fig. 8.

4.4 Case Study 2: eXplanations In, eXplanations Out

The second case study that we consider is that of learning by engaging with a
user who offers advice to the learner, and from which one wishes to learn a user-
specific policy. A learning algorithm processes the feedback coming from a user
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Fig. 9. Contexts and corresponding user reactions (left) are iteratively processed by
the Machine Coaching protocol to produce the learned model (right). During the last
iteration, “B”, “C”, and “not D” are observed (green and red filled circles), and “F” is
inferred (green glowing circle) by applying the corresponding rule. Following the user’s
reaction, a new rule r5 is added, and is given higher priority than the existing rule r4.
(Color figure online)

following the eXplanations In, eXplanations Out (XIXO) principle: if we expect
to learn a model able to offer explanations that are cognitively compatible with,
and acceptable to, a given user, then the same type of explanations should be
offered during the learning phase as training material to the learner.

The learning mechanism that we consider is called Machine Coaching, empha-
sizing the active interaction of the learner with a coach. Machine Coaching oper-
ates in an online/streaming fashion, and passively processes received observa-
tions. Unlike in the first case study, these observations are not meant to corre-
spond to experiences from which one learns, but rather statements that provide
the context within which learning takes place. Given such a context, Machine
Coaching proceeds to reason with its existing learned model — following the
approach of chaining rules to form arguments from the first case study, and
aligning with the coupling of learning — to draw an inference, which it presents
to the user along with the arguments in support of that inference.

The user reacts to the inference and the associated explanation of the learned
model by offering a counter-argument explaining why the learned model’s infer-
ence or explanation is not acceptable. Machine Coaching revises the learned
model by integrating the user’s explanation. This integration happens naturally
by virtue of the learned model being represented in the language of argumenta-
tion, so that the simple addition of the counter-argument with higher strength
than existing conflicting arguments suffices; see Fig. 9. This approach fully aligns
with the XIXO principle and the coupling of learning.

Unlike typical online learning, in Machine Coaching the supervision signal is
not the label of a data point, nor a reaction to whether the prediction of the
current learned model is correct, but rather a reaction to whether the explana-
tion of the learned model is acceptable to the user. On the other hand, the goal
of the learned model is not to anticipate what supervision signal it would have
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gotten on a future data point, but rather to make a prediction and an associ-
ated explanation that would lead to no reaction from the user. Finally, note that
each supervision signal offers information beyond the individual data point, as
it proactively provides information on the labels of multiple future data points
(those that satisfy the conditions of the counter-argument), making the pro-
cess more efficient than a typical supervised learning process. Despite ultimately
being a form of machine learning, Machine Coaching can be best understood as
lying between learning and programming, with the dialectical exchange of expla-
nations between the learner and the user leading to a better balance between
the user’s cognitive effort and the learner’s computational burden, compared to
what one would get at either of the extreme cases of learning and programming.

5 Applications of Argumentation

In this final section we will see how to develop real-life, large scale applications
of argumentation based on the theory and methods presented in the earlier
parts of the tutorial. We will examine a general methodology for developing
argumentation-based systems within a simple high-level architecture and illus-
trate this with several example applications from various domains. These AI
systems are designed with an emphasis on their (soft) embodiment within
an external dynamic environment with a two-way continual interaction with
the environment that includes the “human in the loop”. To realize such human-
centric AI systems we can follow a human, “mind-like” architecture, as in Fig. 10.

Fig. 10. High-level architecture for Cognitive AI Systems.

In this architecture there are two levels of knowledge that the system uti-
lizes. At the top we have the decision policy containing the specific application
knowledge of the requirements which regulate the decision making process.
This is expressed in terms of high-level concepts about the current state of affairs
under which a decision has to be taken and depends on the high-level understand-
ing of the current external environment based on the sensory information that
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the system has (just) received. Recognizing the information received through
the sensors and comprehending this in terms of the higher-level application lan-
guage is based on world knowledge. This knowledge associates the lower-level
information from the environment to increasingly higher-levels of generalization
or abstraction required by the top application knowledge.

The central task of developing these system rests in acquiring or learning
these two pieces of knowledge. This poses two major challenges:

– Acquisition of Application Knowledge What is an appropriate language
level that would facilitate capturing the application knowledge either from
the application expert and/or the application data? What is the appropriate
cognitive-level of this language?

– Middleware from Sensory Information to High-level Application
Concepts What are effective ways of comprehending the relevant part of the
current application environment? How do we recognize the current state of
affairs and the particular decision context in which the system finds itself?

5.1 SoDA: Software Development Through Argumentation

Motivated by the above challenges we can adopt a knowledge representation
approach where knowledge is captured in terms of a structure called Scenario-
Based Preference (SBP). This is a high-level structure that allows us to
represent knowledge directly at the application level in terms of the applica-
tion language. It can be translated automatically into an executable Gorgias
argumentation theory thus implementing the decision policy and comprehension
modules of our Cognitive AI system.

Scenario-based preferences are triplets, 〈Id ,Scenario,POptions〉 where Id is
a unique identifier of the triplet, Scenario is a set of conditions that partially
describe a possible subset of states or scenarios of the application environment
and POptions is a subset of decision options that are preferred in any state where
the Scenario conditions hold. As we will see below it is very useful to group
these scenarios in hierarchies of increasing specificity. Essentially, scenario-based
preferences are a formal structure that allows us to capture knowledge of the
general cognitive form:

“Generally, when [SITUATION] prefer Oi, but in the more particular
[CONTEXT], prefer Oj”

where Oi and Oj are subsets of options and SITUATION, CONTEXT are subsets
of scenario conditions with CONTEXT describing a more specific situation.

Let us illustrate, through a simple example, SBPs and a methodology, called
SoDA: Software Development through Argumentation, for acquiring and building
the application knowledge as a set of hierarchies of SBPs.

Example 6 (Study Assistant). Consider the problem of deciding where to study
with three possible options, study at the Library , Home or Cafe. Assume that
we are given or learned the decision guidelines:
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“When [Have Homework] prefer to study at Home,Cafe, but if [Late], prefer to
study at Home or when [Need Sources] prefer to study at Library .”

This is captured by following hierarchy of scenario-based preferences:

〈1, {Homework}, {Home,Cafe}〉 〈11, {Homework ,Late}, {Home}〉
〈12, {Homework ,Need Sources}, {Library}〉

Here each of 11 and 12 form refinements of the root scenario-based preference
1 resulting into two the hierarchies of (1,11) and (1,12).

Together with the operation of refinement, we have a second operation of
combination, where we consider the union of scenario conditions from two
SBPs. From Example 6 consider the combination of scenarios in 11 and 12
to generate the interim new SBP of: 〈11|12i,Homework ,Late,Need Sources},
{Home,Library}〉.

We can then return to the decision policy, e.g., ask or learn from the appli-
cation owner or user, for possible preferences in the combined scenario and gen-
erate SBPs refining the interim SBP. For example, we may learn a preference to
Library and so have: 〈11|12, {Homework ,Late,Need Sources}, {Library}〉.

The SoDA methodology provides guidelines for carrying out this process of
knowledge engineering of scenario-based preferences. An associated tool, called
Gorgias-B13, supports the methodology by providing a framework to build
contextual refinements of SBPs and to consider appropriate combinations of
these. This tool also carries out an automatic generation, from the SBPs, of an
argumentation theory in the Gorgias framework and an interface to execute this
under the GORGIAS system. This has now evolved into a professional platform
tool, called rAIson, developed by a new company, called Argument Theory14.

5.2 Application Language Levels: Example Applications

The language that we use to specify the decision policy of an application can vary
according to the nature of the application. Ideally, the level of the application
language should be as close as possible to natural language or some form of
structured natural language. Given a language level the task for translating a
decision policy into scenario-based preferences differs in the degree of manual
effort required. The following is a list of different application language levels
each together with a typical real-life application domain.

– Free Text in Structured Natural Language.
An example case is that where the policy is given in a Legal Document.
Such documents are highly structured and are already in a scenario-based
preference and argumentation form. The translation into a scenario-based
preference form is carried out manually but this is direct and it is easily

13 http://gorgiasb.tuc.gr/.
14 https://www.argument-theory.com/en/.

http://gorgiasb.tuc.gr/
https://www.argument-theory.com/en/
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carried out. We can then automate the task of compliance with the legal
requirements providing explanations of why an action is compliant or not
and if not how it can become compliant. An example of such application
is MEDICA15 a system for granting the appropriate level of access to the
electronic patient record, as specified by the European law.

– Controlled Natural Language in a Restricted Vocabulary
This language level is appropriate for Cognitive Assistant applications
where these systems provide services in a restricted domain of interest. Exam-
ples of such cognitive assistants are Call Assistant, Tourist Assistant, Care
Assistant, Calendar Assistant, Investor Assistant and Social Media Assistant.
These systems can start with a minimal vocabulary and gradually expand it
as the systems are starting to be deployed. The policy guidelines are given
in a controlled form of natural language customized to the vocabulary and
particular features of the domain of application.
Let us consider the example of a Social Media assistant. This is a system that
monitors the user’s social media feed and helps a user manage the information
overload by explainably “re-arranging”, according to the user’s liking, the
information pieces, e.g., posts, that she/he receives. For example, for each
post the assistant would decide amongst highlighting this at the top or even
notifying the user, demoting it to the bottom or hiding it completely and
other such actions. A user can express her/his personal policy guidelines at a
high level using controlled natural language. For example:

I like sports, particularly tennis and basketball. I love drama and com-
edy movies especially if produced in the UK. I like to know what my
closest friends are doing and to stay in touch with current popular
news. But I hate politics except when related to climate change.

Representing this in scenario-based preferences we take into consideration two
types of information conveyed in this type of policies: (1) the high-level con-
cepts that act as decision criteria, e.g., “sports”, “drama movies”, “produced
in the UK”, “closest friends”, “popular news”, ..., that form the scenario
conditions and (2) the implicit preferences conveyed by various keywords
used, e.g., “like”, “love”, “particularly” “stay in touch”, “hate”, “except”, ...,
used to fill in the preferred options in scenario-based preferences and to form
refinements of these. The sensory information received by the social media
assistant is the low-level data on each post that the user receives on a social
media platform, such as who posted it, its content, its popularity figures,
etc. We can then build middleware based on different technologies to decide
on the description of the post in terms of the high-level concepts referred
to in the decision policy. The output of the assistant is a presentation of the
user’s posts based on which classification and related action can be supported
acceptably by the underlying Gorgias argumentation theory. The classifica-
tion is shown next to the post together with its supporting explanation when
the user wishes to see it. A typical example explanation, that highlights their
contrasting nature is:

15 http://medica.cs.ucy.ac.cy/.

http://medica.cs.ucy.ac.cy/
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“Even though this post is not (very) interesting to you it was made
from a close friend.”

– Structured Tables of Scenario Hierarchies
For applications that are based on expert knowledge, e.g., Decision Sup-
port Assistants, we need a more structured language to capture large scale
amounts of expert knowledge. A suitable such structure is that of structured
tables where each row essentially corresponds to a scenario-based preference.
The first column of the table contains the scenario conditions and each of the
other columns corresponds to a single option which is marked or not in each
row as one of the preferred options in the scenario of the row.
In the medical domain, where this has been mostly applied, the doctors use
their familiar medical language for constructing/filling these tables. Also they
are already familiar, from Evidence Medicine, with the notions of support-
ing and differential evidence, which are directly used in the construction of
these tables. This method for knowledge acquisition has been applied to
two particular cases of medical decision support, in ophthalmology and in
the much larger domain of gynecology. The purpose of the first system of
OPHTALMOLOGICA, is to understand the level of severity of the possi-
ble disease(s) so that a scheduling appointment system (or the receptionist)
can give an appropriate priority to the patient. The second system of GAID:
Gynecological AI Diagnostic Assistant has its overall aim to:

“Support clinicians feel more confident in decision, helping to avoid
over-diagnosis of common diseases and to ensure that emergency
cases are not missed out.”

It covers fully the area of gynecology with over 140 diseases (i.e., options) and
over a thousand different parameters (current symptoms, patient record, clin-
ical examination findings and laboratory tests) that can affect the diagnosis.
The system generates a set of suspicious diseases every time some new infor-
mation about a patient is received (during a clinical visit to the doctor). All
suspicious diseases come with an explanation, generated automatically from
the Gorgias object-level and priority arguments that support the suspicion
of the disease. A typical example of an explanation is:

“Under the information Vaginal Burning it is recommended that
you investigate Vulva Candidiasis. This is also supported by Post-
Coital Bleeding and further strengthened by Vaginal Discharge. A
negative test for Vaginal Secretions would exclude this disease.”

The GAID system is under a pilot clinical trial to evaluate both the accuracy
of its suggested suspicious diseases as well as its guidance to (junior) clinicians
to collect relevant information that would help focus the diagnosis.

5.3 Machine Learning Assisted Policy Formation

Machine Learning offers the possibility to automatically acquire (at least partly)
the knowledge for Cognitive AI systems with the high-level architecture of
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Fig. 10. As presented in Sect. 4, treating learned associations as object-level argu-
ments we can continue the learning process to construct priority arguments over
these thus improving the predictive power of our learned theory and providing
more informed explanations. Importantly, by adopting this argumentation per-
spective on learning we can then integrate together with the machine learned
knowledge other knowledge that is already known by experts (e.g., medical or
clinical knowledge) and thus have a hybrid approach in generating and updat-
ing the knowledge of our application. Machine learning is thus integrated with
knowledge elicitation methods directly from the “policy source/owner” as we
saw above. Indeed in many expert application cases, but also in other applica-
tion domains, we can have domain expert knowledge, or a company’s business
policy or a legal requirement, that it would be futile to insist to learn again
through machine learning on a large data corpus of example cases.

Examples of applications where we have machine learning assisted knowledge
generation or acquisition have been developed in the area of medical decision
support area based on real-life data sets in the area of risk assessment of Stroke
and the area of deciding on the possible development of Alzheimer. These sys-
tems act as peer companions to the doctors to offer a second opinion on a new
case. This is done through “peer explanations” at the cognitive level of the
specialists, e.g., the radiologist or doctor, offered by the system. An example of
such a “peer explanation” for the domain of Stroke is:

“This patient is judged to be asymptotic because Log(GSM+40) is in the
range [4.28, 5.17] and has no history of contralateral TIAs or Stroke. Although
the patient has (Plaque Area)1/3 in the range [3.47, 6.78] and Discrete White
Areas in the plaque, suggesting a risk for stroke, the first symptoms are more

significant when the patient has (Plaque Area)1/3 less than 3.9.”

Finally, we mention the area of argument mining which in effect uses
machine learning to extract arguments (mostly from text) to construct knowl-
edge in the form of argument graphs. This is particularly appropriate for learning
the world knowledge on which we base the middle-ware of an application that
links sensory information to high-level cognitive concepts on which the decision
policy is formed. Argument mining is not covered in this tutorial but it is very
important and the reader is urged to consult the many references on this topic.

References

1. Besnard, P., et al.: Tutorials on structured argumentation. Argument Comput.
5(1), 1–4 (2014)

2. Kakas, A.C., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: Proceedings of 2nd International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS, pp. 883–890. ACM (2003)

3. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1(2), 93–124 (2010)

4. Anderson, J.R.: How Can the Human Mind Occur in the Physical Universe? Oxford
University Press, Oxford (2007)



388 E. Dietz et al.

5. Byrne, R.: Suppressing valid inferences with conditionals. Cognition 31, 61–83
(1989)

6. Dietz, E., Kakas, A.C.: Cognitive argumentation and the suppression task. CoRR
abs/2002.10149 (2020). https://arxiv.org/abs/2002.10149

7. Michael, L.: Autodidactic learning and reasoning. doctoral dissertation. Harvard
University, Cambridge (2008)

8. Michael, L.: Cognitive reasoning and learning mechanisms. In: Proceedings 4th
BICA International Workshop on Artificial Intelligence and Cognition, pp. 2–23
(2016)

9. Michael, L.: Machine coaching. In: Proceedings 2019 IJCAI Workshop on Explain-
able Artificial Intelligence, pp. 80–86 (2019)

10. Almpani, S., Kiouvrekis, Y., Stefaneas, P.: Modeling of medical devices classifica-
tion with computational argumentation. In: 2021 12th International Conference on
Information, Intelligence, Systems Applications (IISA), pp. 1–6 (2021)

11. Kakas, A.C., Moraitis, P., Spanoudakis, N.: Gorgias: applying argumentation.
Argument Comput. 10(1), 55–81 (2019)

https://arxiv.org/abs/2002.10149

	Computational Argumentation & Cognitive AI
	1 Introduction
	2 Structured Argumentation
	2.1 The GORGIAS Argumentation Framework

	3 Cognitive Argumentation
	3.1 The Suppression Task
	3.2 The COGNICA System
	3.3 Argumentation and Cognitive Architectures

	4 Argumentation for Learning
	4.1 What Should a Language of Learning Be Like?
	4.2 Argumentation as a Language of Learning
	4.3 Case Study 1: Autodidactic Learning of Arguments
	4.4 Case Study 2: eXplanations In, eXplanations Out

	5 Applications of Argumentation
	5.1 SoDA: Software Development Through Argumentation
	5.2 Application Language Levels: Example Applications
	5.3 Machine Learning Assisted Policy Formation

	References




